WorldWideScience

Sample records for drilling rock

  1. Ultrasonically assisted drilling of rocks

    Science.gov (United States)

    Mikhailova, N. V.; Onawumi, P. Y.; Roy, A.; Silberschmidt, V. V.

    2018-05-01

    Conventional drilling of rocks can generate significant damage in the drilled material; a material layer is often split off a back surface of a sample during drilling, negatively affecting its strength. To improve finish quality, ultrasonically assisted drilling (UAD) was employed in two rocks - sandstone and marble. Damage areas in both materials were reduced in UAD when compared to conventional drilling. Reductions in a thrust force and a torque reduction were observed only for UAD in marble; ultrasonic assistance in sandstone drilling did not result in improvements in this regard.

  2. Rock melting technology and geothermal drilling

    Science.gov (United States)

    Rowley, J. C.

    1974-01-01

    National awareness of the potential future shortages in energy resources has heightened interest in exploration and utilization of a variety of geothermal energy (GTE) reservoirs. The status of conventional drilling of GTE wells is reviewed briefly and problem areas which lead to higher drilling costs are identified and R and D directions toward solution are suggested. In the immediate future, an expanded program of drilling in GTE formations can benefit from improvements in drilling equipment and technology normally associated with oil or gas wells. Over a longer time period, the new rock-melting drill bits being developed as a part of the Los Alamos Scientific Laboratory's Subterrene Program offer new solutions to a number of problems which frequently hamper GTE drilling, including the most basic problem - high temperature. Two of the most favorable characteristics of rock-melting penetrators are their ability to operate effectively in hot rock and produce glass linings around the hole as an integral part of the drilling process. The technical advantages to be gained by use of rock-melting penetrators are discussed in relation to the basic needs for GTE wells.

  3. Study on Monitoring Rock Burst through Drill Pipe Torque

    OpenAIRE

    Zhonghua Li; Liyuan Zhu; Wanlei Yin; Yanfang Song

    2015-01-01

    This paper presents a new method to identify the danger of rock burst from the response of drill pipe torque during drilling process to overcome many defects of the conventional volume of drilled coal rubble method. It is based on the relationship of rock burst with coal stress and coal strength. Through theoretic analysis, the change mechanism of drill pipe torque and the relationship of drill pipe torque with coal stress, coal strength, and drilling speed are investigated. In light of the a...

  4. A drilling mud for drilling wells in collapsing rocks

    Energy Technology Data Exchange (ETDEWEB)

    Bochkarev, G P; Anderson, B A; Minkhayrov, K A; Sharipov, A U

    1982-01-01

    In a known drilling mud for drilling wells in collapsing rocks, which contains clay, sodium silicate and polyacrylamide (PAA), in order to increase its specific electrical resistance and to increase the strengthening properties, a silicoorganic liquid is additionally introduced into its composition with the following component ratio (percent): clay, 5 to 7; sodium silicate, 5 to 7; polyacrylamide, 0.3 to 0.5; silicoorganic liquid, GKZh-94, 0.5 to 1.5 and water, the remainder. The GKZh-94 is a chemical compound based on alkylphenylchlorsilanes and substituted ethers of orthosilicic acid, used for waterproofing fabrics and soils. The addition of GKZh-94 provides the required values of the specific electric resistance of the mud and does not distort the gas logging indications. The proposed mud has low water production (4 to 6 cubic centimeters), optimal viscosity (25 to 31 seconds) and high structural and mechanical properties. Its strengthening properties are substantially above those of the known mud.

  5. Study on Monitoring Rock Burst through Drill Pipe Torque

    Directory of Open Access Journals (Sweden)

    Zhonghua Li

    2015-01-01

    Full Text Available This paper presents a new method to identify the danger of rock burst from the response of drill pipe torque during drilling process to overcome many defects of the conventional volume of drilled coal rubble method. It is based on the relationship of rock burst with coal stress and coal strength. Through theoretic analysis, the change mechanism of drill pipe torque and the relationship of drill pipe torque with coal stress, coal strength, and drilling speed are investigated. In light of the analysis, a new device for testing drill pipe torque is developed and a series of experiments is performed under different conditions; the results show that drill pipe torque linearly increases with the increase of coal stress and coal strength; the faster the drilling speed, the larger the drill pipe torque, and vice versa. When monitoring rock burst by drill pipe torque method, the index of rock burst is regarded as a function in which coal stress index and coal strength index are principal variables. The results are important for the forecast of rock burst in coal mine.

  6. Superhard nanophase materials for rock drilling applications

    Energy Technology Data Exchange (ETDEWEB)

    Sadangi, R.K.; Voronov, O.A.; Tompa, G.S. [Diamond Materials Inc., Pisctaway, NJ (United States); Kear, B.H. [Rutgers Univ., Piscataway, NJ (United States)

    1997-12-31

    Diamond Materials Incorporated is developing new class of superhard materials for rock drilling applications. In this paper, we will describe two types of superhard materials, (a) binderless polycrystalline diamond compacts (BPCD), and (b) functionally graded triphasic nanocomposite materials (FGTNC). BPCDs are true polycrystalline diamond ceramic with < 0.5 wt% binders and have demonstrated to maintain their wear properties in a granite-log test even after 700{degrees}C thermal treatment. FGTNCs are functionally-graded triphasic superhard material, comprising a nanophase WC/Co core and a diamond-enriched surface, that combine high strength and toughness with superior wear resistance, making FGTNC an attractive material for use as roller cone stud inserts.

  7. Uniaxial Compressive Strengths of Rocks Drilled at Gale Crater, Mars

    Science.gov (United States)

    Peters, G. H.; Carey, E. M.; Anderson, R. C.; Abbey, W. J.; Kinnett, R.; Watkins, J. A.; Schemel, M.; Lashore, M. O.; Chasek, M. D.; Green, W.; Beegle, L. W.; Vasavada, A. R.

    2018-01-01

    Measuring the physical properties of geological materials is important for understanding geologic history. Yet there has never been an instrument with the purpose of measuring mechanical properties of rocks sent to another planet. The Mars Science Laboratory (MSL) rover employs the Powder Acquisition Drill System (PADS), which provides direct mechanical interaction with Martian outcrops. While the objective of the drill system is not to make scientific measurements, the drill's performance is directly influenced by the mechanical properties of the rocks it drills into. We have developed a methodology that uses the drill to indicate the uniaxial compressive strengths of rocks through comparison with performance of an identically assembled drill system in terrestrial samples of comparable sedimentary class. During this investigation, we utilize engineering data collected on Mars to calculate the percussive energy needed to maintain a prescribed rate of penetration and correlate that to rock strength.

  8. Drilling Performance of Rock Drill by High-Pressure Water Jet under Different Configuration Modes

    Directory of Open Access Journals (Sweden)

    Songyong Liu

    2017-01-01

    Full Text Available In the rock drilling progress, the resistant force results in tools failure and the low drilling efficiency; thus, it is necessary to reduce the tools failure and enhance the drilling efficiency. In this paper, different configuration modes of drilling performance assisted with water jet are explored based on the mechanism and experiment analysis of rock drilling assisted with water jet. Moreover, the rotary sealing device with high pressure is designed to achieve the axial and rotation movement simultaneously as well as good sealing effect under high-pressure water jet. The results indicate that the NDB and NFB have better effects on drilling performance compared with that of NSB. Moreover, the high-pressure water jet is helpful not only to reduce the drill rod deflection, but also to reduce the probability of drill rod bending and improve the drill rod service life.

  9. Contamination Tracer Testing With Seabed Rock Drills: IODP Expedition 357

    Science.gov (United States)

    Orcutt, B.; Bergenthal, M.; Freudenthal, T.; Smith, D. J.; Lilley, M. D.; Schneiders, L.; Fruh-Green, G. L.

    2016-12-01

    IODP Expedition 357 utilized seabed rock drills for the first time in the history of the ocean drilling program, with the aim of collecting intact core of shallow mantle sequences from the Atlantis Massif to examine serpentinization processes and the deep biosphere. This new drilling approach required the development of a new system for delivering synthetic tracers during drilling to assess for possible sample contamination. Here, we describe this new tracer delivery system, assess the performance of the system during the expedition, provide an overview of the quality of the core samples collected for deep biosphere investigations based on tracer concentrations, and make recommendations for future applications of the system.

  10. Confined compressive strength model of rock for drilling optimization

    Directory of Open Access Journals (Sweden)

    Xiangchao Shi

    2015-03-01

    Full Text Available The confined compressive strength (CCS plays a vital role in drilling optimization. On the basis of Jizba's experimental results, a new CCS model considering the effects of the porosity and nonlinear characteristics with increasing confining pressure has been developed. Because the confining pressure plays a fundamental role in determining the CCS of bottom-hole rock and because the theory of Terzaghi's effective stress principle is founded upon soil mechanics, which is not suitable for calculating the confining pressure in rock mechanics, the double effective stress theory, which treats the porosity as a weighting factor of the formation pore pressure, is adopted in this study. The new CCS model combined with the mechanical specific energy equation is employed to optimize the drilling parameters in two practical wells located in Sichuan basin, China, and the calculated results show that they can be used to identify the inefficient drilling situations of underbalanced drilling (UBD and overbalanced drilling (OBD.

  11. Superhard nanophase cutter materials for rock drilling applications; FINAL

    International Nuclear Information System (INIS)

    Voronov, O.; Tompa, G.; Sadangi, R.; Kear, B.; Wilson, C.; Yan, P.

    2000-01-01

    The Low Pressure-High Temperature (LPHT) System has been developed for sintering of nanophase cutter and anvil materials. Microstructured and nanostructured cutters were sintered and studied for rock drilling applications. The WC/Co anvils were sintered and used for development of High Pressure-High Temperature (HPHT) Systems. Binderless diamond and superhard nanophase cutter materials were manufactured with help of HPHT Systems. The diamond materials were studied for rock machining and drilling applications. Binderless Polycrystalline Diamonds (BPCD) have high thermal stability and can be used in geothermal drilling of hard rock formations. Nanophase Polycrystalline Diamonds (NPCD) are under study in precision machining of optical lenses. Triphasic Diamond/Carbide/Metal Composites (TDCC) will be commercialized in drilling and machining applications

  12. Dome-shaped PDC cutters drill harder rock effectively

    International Nuclear Information System (INIS)

    Moran, D.P.

    1992-01-01

    This paper reports that rock mechanics and sonic travel time log data indicate that bits with convex-shaped polycrystalline diamond compact (PDC) cutters can drill harder rock formations than comparable bits with flat PDC cutters. The Dome-shaped cutters have drilled carbonate formations with sonic travel times as small as 50 μsec/ft, compared to the standard cutoff of 75 μsec/ft for flat PCD cutters. Recent field data from slim hole wells drilled in the Permian basin have shown successful applications of the 3/8-in. Dome cutter in the Grayburg dolomite with its sonic travel times as low as 50-55 μsec/ft and compressive strengths significantly greater than the standard operating range for PDC bit applications. These field data indicate that the Dome cutters can successfully drill hard rock. The convex cutter shape as good impact resistance, cuttings removal, heat dissipation, and wear resistance

  13. Registration and processing of acoustic signal in rock drilling

    Directory of Open Access Journals (Sweden)

    Futó Jozef

    2002-03-01

    Full Text Available For the determination of an effective rock disintegration for a given tool and rock type it is needed to define an optimal disintegration regime. Optimisation of the disintegration process by drilling denotes the finding out an appropriate couple of input parameters of disintegration, i.e. the thrust and revolutions for a quasi-equal rock environment. The disintegration process can be optimised to reach the maximum immediate drilling rate, to reach the minimum specific disintegration energy or to reach the maximum ratio of immediate drilling rate and specific disintegration energy. For the determination of the optimal thrust and revolutions it is needed to monitor the disintegration process. Monitoring of the disintegration process in real conditions is complicated by unfavourable factors, such as the presence of water, dust, vibrations etc. Following our present experience in the monitoring of drilling or full-profile driving, we try to replace the monitoring of input values by monitoring of the scanned acoustic signal. This method of monitoring can extend the optimisation of disintegration process in the technical practice. Its advantage consists in the registration of one acoustic signal by an appropriate microphone. Monitoring of acoustic signal is used also in monitoring of metal machining by milling and turning jobs. The research results of scanning of the acoustic signal in machining of metals are encouraging. Acoustic signal can be processed by different statistical parameters. The paper decribes some results of monitoring of the acoustic signal in rock disintegration on the drilling stand of the Institute of Geotechnics SAS in Košice. The acoustic signal has been registered and processed in no-load run of electric motor, in no-load run of electric motor with a drilling fluid, and in the Ruskov andesite drilling. Registration and processing of the acoustic signal is solved as a part of the research grant task within the basic research

  14. Experimental assessment of borehole wall drilling damage in basaltic rocks

    International Nuclear Information System (INIS)

    Fuenkajorn, K.; Daemen, J.J.K.

    1986-06-01

    Ring tension tests, permeability tests, and microscopic fracture studies have been performed to investigate the borehole damage induced at low confining pressure by three drilling techniques (diamond, percussion and rotary). Specimens are drilled with three hole sizes (38, 76, and 102 mm diameter) in Pomona basalt and Grande basaltic andesite. The damaged zone is characterized in terms of fractures and fracture patterns around the hole, and in terms of tensile strength reduction of the rock around the holes. Experimental results show that the thickness of the damaged zone around the hole ranges from 0.0 to 1.7 mm. A larger drill bit induces more wall damage than does a smaller one. Different drilling techniques show different damage characteristics (intensity and distribution). Damage characteristics are governed not only by drilling parameters (bit size, weight on bit, rotational speed, diamond radius, and energy), but also by properties of the rock. The weaker rock tends to show more intense damage than does the stronger one. Cracks within grains or cleavage fractures are predominant in slightly coarser grained rock (larger than 0.5 mm grain size) while intergranular cracks are predominant in very fine grained rock (smaller than 0.01 mm grain size). The damaged zones play no significant role in the flow path around a borehole plug

  15. A self propelled drilling system for hard-rock, horizontal and coiled tube drilling

    Energy Technology Data Exchange (ETDEWEB)

    Biglin, D.; Wassell, M.

    1997-12-31

    Several advancements are needed to improve the efficiency and reliability of both hard rock drilling and extended reach drilling. This paper will present a Self Propelled Drilling System (SPDS) which can grip the borehole wall in order to provide a stable platform for the application of weight on bit (WOB) and resisting the reactive torque created by the downhole drilling motor, bit and formation interaction. The system will also dampen the damaging effects of drill string vibration. This tool employs two hydraulically activated anchors (front and rear) to grip the borehole wall, and a two-way thrust mandrel to apply both the drilling force to the bit, and a retraction force to pull the drill string into the hole. Forward drilling motion will commence by sequencing the anchor pistons and thrust mandrel to allow the tool to walk in a stepping motion. The SPDS has a microprocessor to control valve timing, sensing and communication functions. An optional Measurement While Drilling (MWD) interface can provide two-way communication of critical operating parameters such as hydraulic pressure and piston location. This information can then be telemetered to the surface, or used downhole to autonomously control system parameters such as anchor and thrust force or damping characteristics.

  16. Buffer mass test - Rock drilling and civil engineering

    International Nuclear Information System (INIS)

    Pusch, R.

    1982-09-01

    The buffer mass test (BMT) is being run in the former 'ventilation drift' in which a number of rock investigations were previously conducted. A number of vertical pilot holes were drilled from the tunnel floor to get information of the water inflow in possible heater hole position. The final decision of the location of the heater holes was then made, the main principle being that much water should be available in each hole with the possible exception of one of the holes. Thereafter, the diameter 0.76 m heater holes were drilled to a depth of 3-3.3 m. Additional holes were then drilled for rock anchoring of the lids of the four outer heater holes, for the rock mechanical investigation, as well as for a number of water pressure gauges. The inner, about 12 m long part of the tunnel, was separated from the outer by bulwark. The purpose of this construction was to confine a backfill, the requirements of the bulwark being to withstand the swelling pressure as well as the water pressure. Outside the bulwark an approximately 1.5-1.7 m thick concrete slab was cast on the tunnel floor, extending about 24.7 m from the bulwark. Boxing-outs with the same height as the slab and with the horizontal dimensions 1.8 x 1.8 m, were made and rock-anchored concrete lids were cast on top of them after backfilling. The slab which thus represents 'rock', also forms a basal support of the bulwark. The lids permits access to the backfill as well as to the underlying, highly compacted bentonite for rapid direct determination of the water distributin at the intended successive test stops. The construction of the slab and lids will be described in this report. (Author)

  17. Examining the relation between rock mass cuttability index and rock drilling properties

    Science.gov (United States)

    Yetkin, Mustafa E.; Özfırat, M. Kemal; Yenice, Hayati; Şimşir, Ferhan; Kahraman, Bayram

    2016-12-01

    Drilling rate is a substantial index value in drilling and excavation operations at mining. It is not only a help in determining physical and mechanical features of rocks, but also delivers strong estimations about instantaneous cutting rates. By this way, work durations to be finished on time, proper machine/equipment selection and efficient excavation works can be achieved. In this study, physical and mechanical properties of surrounding rocks and ore zones are determined by investigations carried out on specimens taken from an underground ore mine. Later, relationships among rock mass classifications, drillability rates, cuttability, and abrasivity have been investigated using multi regression analysis. As a result, equations having high regression rates have been found out among instantaneous cutting rates and geomechanical properties of rocks. Moreover, excavation machine selection for the study area has been made at the best possible interval.

  18. Energy-saving compression valve of the rock drill

    Science.gov (United States)

    Glazov, A. N.; Efanov, A. A.; Aikina, T. Yu

    2015-11-01

    The relevance of the research is due to the necessity to create pneumatic rock drills with low air consumption. The article analyzes the reasons for low efficiency of percussive machines. The authors state that applying a single distribution body in the percussive mechanism does not allow carrying out a low-energy operating cycle of the mechanism. Using the studied device as an example, it is substantiated that applying a compression valve with two distribution bodies separately operating the working chambers makes it possible to significantly reduce the airflow. The authors describe the construction of a core drill percussive mechanism and the operation of a compression valve. It is shown that in the new percussive mechanism working chambers are cut off the circuit by the time when exhaust windows are opened by the piston and air is not supplied into the cylinder up to 20% of the cycle time. The air flow rate of the new mechanism was 3.8 m3/min. In comparison with the drill PK-75, the overall noise level of the new machine is lower by 8-10 dB, while the percussive mechanism efficiency is 2.3 times higher.

  19. Application of air hammer drilling technology in igneous rocks of Junggar basin

    Science.gov (United States)

    Zhao, Hongshan; Feng, Guangtong; Yu, Haiye

    2018-03-01

    There were many technical problems such as serious well deviation, low penetration rate and long drilling cycle in igneous rocks because of its hardness, strong abrasive and poor drillability, which severely influenced the exploration and development process of Junggar basin. Through analyzing the difficulties of gas drilling with roller bits in Well HS 2, conducting the mechanics experiments about igneous rock, and deeply describing the rock-breaking mechanism of air hammer drilling and its adaptability in igneous rocks, air hammer drilling can realize deviation control and fast drilling in igneous rocks of piedmont zone and avoid the wear and fatigue fracture of drilling strings due to its characteristics of low WOB, low RPM and high frequency impact. Through firstly used in igneous rocks of Well HS 201, compared with gas drilling with cone bit, the average penetration rate and one-trip footage of air hammer drilling respectively increased by more than 2.45 times and 6.42 times while the well deviation was always controlled less than 2 degrees. Two records for Block HS were set up such as the fastest penetration rate of 14.29m/h in Φ444.5mm well hole and the highest one-trip footage of 470.62m in Φ311.2mm well hole. So air hammer drilling was an effective way to realize optimal and fast drilling in the igneous rock formation of Junggar basin.

  20. Technique for estimating the sound power level radiated by pneumatic rock drills and the evaluation of a CSIR prototype rock drill with engineering noise controls

    CSIR Research Space (South Africa)

    Kovalchik, PG

    2009-05-01

    Full Text Available and the radiation patterns in octave and 1/3 octave bands. Overall sound power level is also determined. This paper also reports the results obtained by using this procedure to evaluate a SECO S215 standard production drill and a CSIR Miningtek prototype rock drill...

  1. Rock characterization while drilling and application of roof bolter drilling data for evaluation of ground conditions

    Directory of Open Access Journals (Sweden)

    Jamal Rostami

    2015-06-01

    Full Text Available Despite recent advances in mine health and safety, roof collapse and instabilities are still the leading causes of injury and fatality in underground mining operations. Improving safety and optimum design of ground support requires good and reliable ground characterization. While many geophysical methods have been developed for ground characterizations, their accuracy is insufficient for customized ground support design of underground workings. The actual measurements on the samples of the roof and wall strata from the exploration boring are reliable but the related holes are far apart, thus unsuitable for design purposes. The best source of information could be the geological back mapping of the roof and walls, but this is disruptive to mining operations, and provided information is only from rock surface. Interpretation of the data obtained from roof bolt drilling can offer a good and reliable source of information that can be used for ground characterization and ground support design and evaluations. This paper offers a brief review of the mine roof characterization methods, followed by introduction and discussion of the roof characterization methods by instrumented roof bolters. A brief overview of the results of the preliminary study and initial testing on an instrumented drill and summary of the suggested improvements are also discussed.

  2. Modified Standard Penetration Test–based Drilled Shaft Design Method for Weak Rocks (Phase 2 Study)

    Science.gov (United States)

    2017-12-15

    In this project, Illinois-specific design procedures were developed for drilled shafts founded in weak shale or rock. In particular, a modified standard penetration test was developed and verified to characterize the in situ condition of weak shales ...

  3. Improving Site Characterization for Rock Dredging using a Drilling Parameter Recorder and the Point Load Test

    Science.gov (United States)

    1994-09-01

    materials. Also, available data from drilling rates in the mining and tunneling industries (Howarth and Rowlands 1987, Somerton 1959) indicate a...selected uniform natural rock materials and several man -made rock simulants were used to obtain drilling parameter records for materials of known...Dredging Seminar, Atlantic City, NJ, May 1993. Western Dredging Association (WEDA) and Texas A&M University. Somerton , W. H. (1959). "A laboratory study of

  4. A sampling study on rock properties affecting drilling rate index (DRI)

    Science.gov (United States)

    Yenice, Hayati; Özdoğan, Mehmet V.; Özfırat, M. Kemal

    2018-05-01

    Drilling rate index (DRI) developed in Norway is a very useful index in determining the drillability of rocks and even in performance prediction of hard rock TBMs and it requires special laboratory test equipment. Drillability is one of the most important subjects in rock excavation. However, determining drillability index from physical and mechanical properties of rocks is very important for practicing engineers such as underground excavation, drilling operations in open pit mining, underground mining and natural stone production. That is why many researchers have studied concerned with drillability to find the correlations between drilling rate index (DRI) and penetration rate, influence of geological properties on drillability prediction in tunneling, correlations between rock properties and drillability. In this study, the relationships between drilling rate index (DRI) and some physico-mechanical properties (Density, Shore hardness, uniaxial compressive strength (UCS, σc), Indirect tensile strength (ITS, σt)) of three different rock groups including magmatic, sedimentary and metamorphic were evaluated using both simple and multiple regression analysis. This study reveals the effects of rock properties on DRI according to different types of rocks. In simple regression, quite high correlations were found between DRI and uniaxial compressive strength (UCS) and also between DRI and indirect tensile strength (ITS) values. Multiple regression analyses revealed even higher correlations when compared to simple regression. Especially, UCS, ITS, Shore hardness (SH) and the interactions between them were found to be very effective on DRI values.

  5. Demonstrations of Gravity-Independent Mobility and Drilling on Natural Rock using Microspines

    Science.gov (United States)

    Parness, Aaron; Frost, Matthew; King, Jonathan P.; Thatte, Nitish

    2012-01-01

    The video presents microspine-based anchors be ing developed for gripping rocks on the surfaces of comets and asteroids, or for use on cliff faces and lava tubes on Mars. Two types of anchor prototypes are shown on supporting forces in all directions away from the rock; >160 N tangent, >150 N at 45?, and >180 N normal to the surface of the rock. A compliant robotic ankle with two active degrees of freedom interfaces these anchors to the Lemur IIB robot for future climbing trials. Finally, a rotary percussive drill is shown coring into rock regardless of gravitational orientation. As a harder- than-zero-g proof of concept, inverted drilling was performed creating 20mm diameter boreholes 83 mm deep in vesicular basalt samples while retaining 12 mm diameter rock cores in 3-6 pieces.

  6. Drilling fluids and lost circulation in hot-dry-rock geothermal wells at Fenton Hill

    Energy Technology Data Exchange (ETDEWEB)

    Nuckols, E.B.; Miles, D.; Laney, R.; Polk, G.; Friddle, H.; Simpson, G.

    1981-01-01

    Geothermal hot dry rock drilling at Fenton Hill in northern New Mexico encountered problems of catastrophic lost circulation in cavernous areas of limestones in the Sandia Formation, severe corrosion due to temperatures of up to 320/sup 0/C, and torque problems caused by 35/sup 0/ hole angle and the abrasiveness of Precambrian crystalline rock. The use of polymeric flocculated bentonite fluid, clear water, fibrous material, dry drilling, oxygen scavengers, a biodegradable lubricant mixture of modified triglicerides and alcohol, and maintenance of a high pH, were some of the approaches taken toward solving these problems.

  7. Drill-back studies examine fractured, heated rock

    International Nuclear Information System (INIS)

    Wollenberg, H.A.; Flexser, S.; Myer, L.R.

    1990-01-01

    To investigate the effects of heating on the mineralogical, geochemical, and mechanical properties of rock by high-level radioactive waste, cores are being examined from holes penetrating locations where electric heaters simulated the presence of a waste canister, and from holes penetration natural hydrothermal systems. Results to date indicate the localized mobility and deposition of uranium in an open fracture in heated granitic rock, the mobility of U in a breccia zone in an active hydrothermal system in tuff, and the presence of U in relatively high concentration in fracture-lining material in tuff. Mechanical -- property studies indicate that differences in compressional- and shear-wave parameters between heated and less heated rock can be attributed to differences in the density of microcracks. Emphasis has shifted from initial studies of granitic rock at Stripa, Sweden to current investigations of welded tuff at the Nevada Test Site. 7 refs., 8 figs

  8. Potential Cement Phases in Sedimentary Rocks Drilled by Curiosity at Gale Crater, Mars

    Science.gov (United States)

    Rampe, E. B.; Morris, R. V.; Bish, D. L.; Chipera, S. J.; Ming, D. W.; Blake, D. F.; Vaniman, D. T.; Bristow, T. F.; Cavanagh, P.; Farmer, J. D.; hide

    2015-01-01

    The Mars Science Laboratory rover Curiosity has encountered a variety of sedimentary rocks in Gale crater with different grain sizes, diagenetic features, sedimentary structures, and varying degrees of resistance to erosion. Curiosity has drilled three rocks to date and has analyzed the mineralogy, chemical composition, and textures of the samples with the science payload. The drilled rocks are the Sheepbed mudstone at Yellowknife Bay on the plains of Gale crater (John Klein and Cumberland targets), the Dillinger sandstone at the Kimberley on the plains of Gale crater (Windjana target), and a sedimentary unit in the Pahrump Hills in the lowermost rocks at the base of Mt. Sharp (Confidence Hills target). CheMin is the Xray diffractometer on Curiosity, and its data are used to identify and determine the abundance of mineral phases. Secondary phases can tell us about aqueous alteration processes and, thus, can help to elucidate past aqueous environments. Here, we present the secondary mineralogy of the rocks drilled to date as seen by CheMin and discuss past aqueous environments in Gale crater, the potential cementing agents in each rock, and how amorphous materials may play a role in cementing the sediments.

  9. Gravity-Independent Mobility and Drilling on Natural Rock using Microspines

    Science.gov (United States)

    Parness, Aaron; Frost, Matthew; Thatte, Nitish; King, Jonathan P.

    2012-01-01

    To grip rocks on the surfaces of asteroids and comets, and to grip the cliff faces and lava tubes of Mars, a 250 mm diameter omni-directional anchor is presented that utilizes a hierarchical array of claws with suspension flexures, called microspines, to create fast, strong attachment. Prototypes have been demonstrated on vesicular basalt and a'a lava rock supporting forces in all directions away from the rock. Each anchor can support >160 N tangent, >150 N at 45?, and >180 N normal to the surface of the rock. A two-actuator selectively- compliant ankle interfaces these anchors to the Lemur IIB robot for climbing trials. A rotary percussive drill was also integrated into the anchor, demonstrating self-contained rock coring regardless of gravitational orientation. As a harder- than-zero-g proof of concept, 20mm diameter boreholes were drilled 83 mm deep in vesicular basalt samples, retaining a 12 mm diameter rock core in 3-6 pieces while in an inverted configuration, literally drilling into the ceiling.

  10. Flushing wells during drilling in rocks with negative temperature

    Energy Technology Data Exchange (ETDEWEB)

    Badalov, S S

    1982-01-01

    Results are examined of experimental studies of cavern formation in loose sands cemented by ice. The new data obtained make it possible to have a substantiated plan for the indicators of the flushing fluid and its chemical treatment. Results are presented of studies of argillaceous solutions chemically treated and untreated, as well as water and diesel fuel. Comparison of the findings with the technological indicators of the argillaceous solutions indicated that with an increase in viscosity of the solution and its content of clay powder, the rates of ice destruction diminish. It was established that with a rise in viscosity, there is also an intensification of the ice destruction rate, if the rise in viscosity is accompanied by increase in water-output of the flushing fluid. It is namely the water-output of the flushing fluid which is one of the universal indicators for the suitability of the flushing fluid for drilling under the examined conditions.

  11. Permeability measurements on rock samples from Unzen Scientific Drilling Project Drill Hole 4 (USDP-4)

    Science.gov (United States)

    Watanabe, Tohru; Shimizu, Yuhta; Noguchi, Satoshi; Nakada, Setsuya

    2008-07-01

    Permeability measurement was made on five rock samples from USDP-4 cores. Rock samples were collected from the conduit zone and its country rock. One sample (C14-1-1) is considered as a part of the feeder dyke for the 1991-1995 eruption. The transient pulse method was employed under confining pressure up to 50 MPa. Compressional wave velocity was measured along with permeability. The measured permeability ranges from 10 - 19 to 10 - 17 m 2 at the atmospheric pressure, and is as low as that reported for tight rocks such as granite. The permeability decreases with increasing confining pressure, while the compressional wave velocity increases. Assuming that pores are parallel elliptical tubes, the pressure dependence of permeability requires aspect ratio of 10 - 4 -10 - 2 at the atmospheric pressure. The pore aperture is estimated to be less than 1 μm. The estimated aspect ratio and pore aperture suggest that connectivity of pores is maintained by narrow cracks. The existence of cracks is supported by the pressure dependence of compressional wave velocity. Narrow cracks (< 1 μm) are observed in dyke samples, and they must have been created after solidification. Dyke samples do not provide us information of pore structures during degassing, since exsolved gas has mostly escaped and pores governing the gas permeable flow should have been lost. Both dyke and country rock samples provide us information of materials around ascending magma. Although the measured small-scale permeability cannot be directly applied to geological-scale processes, it gives constrains on studies of large-scale permeability.

  12. Physical properties of uranium host rocks and experimental drilling at Long Park, Montrose County, Colorado. Final report

    International Nuclear Information System (INIS)

    Manger, G.E.; Gates, G.L.; Cadigan, R.A.

    1975-01-01

    A core-drilling study in uranium host rocks of the Jurassic Morrison Formation in southwestern Colorado attempted to obtain samples of host rock in its natural state. Three holes were drilled, holes and core were logged for radioactivity and electrical properties. Samples were analyzed for physical and chemical properties. Drilling results suggest that drilling with dried air yields core with least contamination at least cost. Drilling with oil results in maximum core recovery but also maximum cost and significant core contamination. Drilling with water results in contamination and loss of original pore water. A factor group of variables present are: Those positively related to uranium mineralization are poor sorting, percent by weight clay, percent of pore space containing water; negatively related variables are median grain size (mm), electrical resistivity, permeability. Optimum depth to locate ore seems to be at the top of the pore water capillary circulation zone, below the dehydrated no-capillary-circulation zone

  13. Fundamental Research on Percussion Drilling: Improved rock mechanics analysis, advanced simulation technology, and full-scale laboratory investigations

    Energy Technology Data Exchange (ETDEWEB)

    Michael S. Bruno

    2005-12-31

    This report summarizes the research efforts on the DOE supported research project Percussion Drilling (DE-FC26-03NT41999), which is to significantly advance the fundamental understandings of the physical mechanisms involved in combined percussion and rotary drilling, and thereby facilitate more efficient and lower cost drilling and exploration of hard-rock reservoirs. The project has been divided into multiple tasks: literature reviews, analytical and numerical modeling, full scale laboratory testing and model validation, and final report delivery. Literature reviews document the history, pros and cons, and rock failure physics of percussion drilling in oil and gas industries. Based on the current understandings, a conceptual drilling model is proposed for modeling efforts. Both analytical and numerical approaches are deployed to investigate drilling processes such as drillbit penetration with compression, rotation and percussion, rock response with stress propagation, damage accumulation and failure, and debris transportation inside the annulus after disintegrated from rock. For rock mechanics modeling, a dynamic numerical tool has been developed to describe rock damage and failure, including rock crushing by compressive bit load, rock fracturing by both shearing and tensile forces, and rock weakening by repetitive compression-tension loading. Besides multiple failure criteria, the tool also includes a damping algorithm to dissipate oscillation energy and a fatigue/damage algorithm to update rock properties during each impact. From the model, Rate of Penetration (ROP) and rock failure history can be estimated. For cuttings transport in annulus, a 3D numerical particle flowing model has been developed with aid of analytical approaches. The tool can simulate cuttings movement at particle scale under laminar or turbulent fluid flow conditions and evaluate the efficiency of cutting removal. To calibrate the modeling efforts, a series of full-scale fluid hammer

  14. Microstructural characterization of cermet-steel interface in rock drilling tool

    International Nuclear Information System (INIS)

    Ybarra, L.A.C.; Molisani, A.L.; Yoshimura, H.N.

    2010-01-01

    Rock drilling tools basically present a WC cermet bonded to a steel shank. The interface cermet-steel plays fundamental role during drilling operation, since the fracture of this interface is the main failure mode of the tools. In this work, the microstructure of this interface in crown samples (type A), prepared in an industrial like process, was evaluated. In this process, a WC-containing powder was infiltrated with a copper alloy at 1100 deg C in a graphite mold previously mounted with a 1020 steel tube. The powder was characterized by XRD analysis and the cross-section microstructure of cermet-steel was analyzed using SEM-EDS. It was observed that Ni and small amount of Cu from cermet matrix diffused into the superficial region of the steel, and the Cu alloy dissolved and penetrated along the steel grain boundaries, resulting in good metallurgical bonding of the interface.(author)

  15. Drilled shaft resistance based on diameter, torque and crowd (drilling resistance vs. rock strength) phase II [summary].

    Science.gov (United States)

    2016-05-01

    Over the past 20 years, drilled shafts have demonstrated increasing popularity over driven : precast piles. Drilled shafts can accommodate a wider range of sizes, and noise and vibration : during construction are significantly reduced. On the other h...

  16. Geothermal heat from solid rock - increased energy extraction through hydraulic pressurizing of drill wells

    International Nuclear Information System (INIS)

    Ramstad, Randi Kalskin; Hilmo, Bernt Olav; Skarphagen, Helge

    2005-01-01

    New equipment for hydraulic pressurizing, a double collar of the type FrakPak - AIP 410-550, is developed by the Broennteknologi AS. The equipment is tested in the laboratory and in the field at Lade in Trondheim. By the construction of two pilot plants for geothermal heat at Bryn and on the previous grounds of the energy company in Asker and Baerum (EAB) extensive studies connected to hydraulic pressurizing are carried out both with water and sand injection. The geothermal heat plants at Bryn and AEB were supposed to be based on pumped ground water from rock wells where increased effect was obtained through pumping up, returning and circulating the water. The aim of the study was to test and develop the methods for hydraulic pressurizing both with water and sand injection, document the effect of the various types of pressurizing as well as mapping the hydro- and rock geological conditions for this type of geothermal heat plants. In addition to stimulating 10 drill holes with hydraulic pressurizing with water and sand injection, the studies have carried out test pumping, water sampling, geophysical logging, measurements of alterations in the terrain, current and rock strain measurements and geothermal response tests. Furthermore an efficacy test and a theoretical model of the energy potential of the plants are carried out. The results from the pilot plant at Bryn show that the drill hole capacities are significantly increased both through hydraulic pressurizing with water and sand injection. There seems to be a greater need for sand as ''prepping agent'' or distance maker in cracks with high pressure resistance than in cracks with lower resistance. The grain size of the sand should be adapted to the resistance pressure and injection of coarser sand is recommended in cracks with lower resistance pressure. The rock strength and strain conditions determine the successes of hydraulic pressurizing at the reopening of existing or opening of new faults. Test pumping was

  17. Applying the information received in the process of drilling for the estimation of the state of rocks

    Energy Technology Data Exchange (ETDEWEB)

    Denissov, N Ya; Paushkin, G A; Zaytzev, A S

    1966-01-01

    In estimating rock foundations for construction, data on the condition of the degree of jointing and weathering are of major importance. For estimating the condition, (in particular, data on core recovery and the speed of boring) drill holes are used. In this paper it is shown that the data on core recovery during the boring of drill holes in regions with complex tectonics can give a wrong idea about the state of rock. However, data on the speed of clean boring may prove to be useful. In some cases low core recovery and its large crushing are caused by the influence of the heterogeneity of rock composition as well as by the influence of changes in the stressed state of rock during boring. The data on the speed of clean boring can be used in engineering geological practice to estimate the intensity and character of spreading rock jointing and to determine the depth of weathering penetration.

  18. Automated classification of Acid Rock Drainage potential from Corescan drill core imagery

    Science.gov (United States)

    Cracknell, M. J.; Jackson, L.; Parbhakar-Fox, A.; Savinova, K.

    2017-12-01

    Classification of the acid forming potential of waste rock is important for managing environmental hazards associated with mining operations. Current methods for the classification of acid rock drainage (ARD) potential usually involve labour intensive and subjective assessment of drill core and/or hand specimens. Manual methods are subject to operator bias, human error and the amount of material that can be assessed within a given time frame is limited. The automated classification of ARD potential documented here is based on the ARD Index developed by Parbhakar-Fox et al. (2011). This ARD Index involves the combination of five indicators: A - sulphide content; B - sulphide alteration; C - sulphide morphology; D - primary neutraliser content; and E - sulphide mineral association. Several components of the ARD Index require accurate identification of sulphide minerals. This is achieved by classifying Corescan Red-Green-Blue true colour images into the presence or absence of sulphide minerals using supervised classification. Subsequently, sulphide classification images are processed and combined with Corescan SWIR-based mineral classifications to obtain information on sulphide content, indices representing sulphide textures (disseminated versus massive and degree of veining), and spatially associated minerals. This information is combined to calculate ARD Index indicator values that feed into the classification of ARD potential. Automated ARD potential classifications of drill core samples associated with a porphyry Cu-Au deposit are compared to manually derived classifications and those obtained by standard static geochemical testing and X-ray diffractometry analyses. Results indicate a high degree of similarity between automated and manual ARD potential classifications. Major differences between approaches are observed in sulphide and neutraliser mineral percentages, likely due to the subjective nature of manual estimates of mineral content. The automated approach

  19. Evaluation of Relationships between Drilling Rate Index and Physical and Strength Properties of Selected Rock Units of Pakistan

    International Nuclear Information System (INIS)

    Shafique, U.; Abu Bakar, M. Z.

    2015-01-01

    Fifteen selected rock types collected from different formations of Pakistan were subjected to Drilling Rate Index (DRI) tests and various physical and strength properties tests including, porosity (n), density, primary wave velocity (V/sub p/), uniaxial compressive strength (sigma/sub c/), Brazilian tensile strength (sigma/sub t/) and Schmidt hammer rebound number (R/sub n/),. Prior knowledge of the drill ability of rocks and their physico-mechanical properties plays a decisive role in planning and design of rock drilling and excavation processes. DRI tests developed by NTNU/SINTEF are in use by the industry since 1960s and have proved very successful in estimation of the boreability of rocks, but no such work has been reported for Pakistani rocks to date. Reasonable correlations were found between the DRI and the properties of the tested rocks. The trends shown in this paper are of interest for the machine manufacturers and operators working on various projects involving the use of drilling machines and other mechanical excavators. (author)

  20. Analysis and Testing of Load Characteristics for Rotary-Percussive Drilling of Lunar Rock Simulant with a Lunar Regolith Coring Bit

    Directory of Open Access Journals (Sweden)

    Peng Li

    2017-01-01

    Full Text Available Based on an optimized lunar regolith coring bit (LRCB configuration, the load characteristics of rotary-percussive drilling of lunar rock simulant in a laboratory environment are analyzed to determine the effects of the drilling parameters (the rotational velocity, the penetration rate, and the percussion frequency on the drilling load. The process of rotary drilling into lunar rock using an LRCB is modeled as an interaction between an elemental blade and the rock. The rock’s fracture mechanism during different stages of the percussive mechanism is analyzed to create a load forecasting model for the cutting and percussive fracturing of rock using an elemental blade. Finally, a model of the load on the LRCB is obtained from the analytic equation for the bit’s cutting blade distribution; experimental verification of the rotary-impact load characteristics for lunar rock simulant with different parameters is performed. The results show that the penetrations per revolution (PPR are the primary parameter influencing the drilling load. When the PPR are fixed, increasing the percussion frequency reduces the drilling load on the rock. Additionally, the variation pattern of the drilling load of the bit is in agreement with that predicted by the theoretical model. This provides a research basis for subsequent optimization of the drilling procedure and online recognition of the drilling process.

  1. Permeability Measurements of Rock Samples from Conduit Drilling at Unzen Volcano, Japan

    Science.gov (United States)

    Watanabe, T.; Shimizu, Y.; Noguchi, S.; Nakada, S.

    2006-12-01

    The last eruption of Unzen Volcano (1990-1995) was effusive to form lava domes, though magmas at depths are estimated to have contained volatile materials enough to cause explosive eruptions [e.g., Sato et al., 1995]. Most of volatile materials should have escaped from ascending magmas. The escape of gas is controlled by permeability of magmas and country rocks. Unzen Scientific Drilling Project sampled both the latest conduit and its country rock (USDP-4). In order to understand degassing processes, we have measured the permeability of these rock samples. Four cube samples with edges of 25 mm were cut from USDP-4 cores C1, C12 (country rock), C13 and C14 (conduit). Sample C1 is considered as Old Unzen Lava, and Sample C12 volcanic breccia. The transient pulse method was employed to measure the permeability. It applies a step of the fluid pressure difference across a specimen, and measures the decay rate of the fluid pressure difference. This method can be applied to samples with very low permeability, since it determines the permeability without measuring the fluid flux. Nitrogen gas was used as a pore fluid. Our permeametry system is built in a pressure vessel, and the confining pressure and the pore fluid pressure can be controlled independently. The temperature of the measurement system is kept constant within 0.1 degree. The temperature control and the background leak rate limit the measurable permeability to be higher than 10^{-20} m2. Measurements were first conducted under the atmospheric pressure. The permeability in a rock sample varies with the direction by a factor less than 5. Sample C1 has the lowest permeability (10^{-19} m2), and Sample C12 the highest value (10^{-17 m2). The permeability of C13 and C14 is of the order of 10^{- 18} m2. Though only a trace of vesicles can be seen in conduit samples, the interconnection is still maintained. The pressure dependence of the permeability is now investigated up to 50 MPa. The permeability of C13 and C14

  2. In-situ rock melting applied to lunar base construction and for exploration drilling and coring on the moon

    International Nuclear Information System (INIS)

    Rowley, J.C.; Neudecker, J.W.

    1984-01-01

    An excavation technology based upon melting of rock and soil has been extensively developed at the prototype hardware and conceptual design levels for terrestrial conditions. Laboratory and field tests of rock-melting penetration have conclusively indicated that this excavation method is insensitive to rock, soil types, and conditions. Especially significant is the ability to form in-place glass linings or casings on the walls of boreholes, tunnels, and shafts. These factors indicate the unique potential for in situ construction of primary lunar base facilities. Drilling and coring equipment for resource exploration on the moon can also be devised that are largely automated and remotely operated. It is also very likely that lunar melt-glasses will have changed mechanical properties when formed in anhydrous and hard vacuum conditions. Rock melting experiments and prototype hardware designs for lunar rock-melting excavation applications are suggested

  3. Hard rock drilling: from conventional technologies to the potential use of laser; Perfuracao em rochas duras: das tecnologias convencionais ate o potencial uso do laser

    Energy Technology Data Exchange (ETDEWEB)

    Amaro, Renato; Lomba, Rosana Fatima Teixieira [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil); Perez, Maria Angelica Acosta; Valente, Luiz Carlos Guedes; Braga, Arthur Martins Barbosa [Pontificia Universidade Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil)

    2012-07-01

    One of the biggest challenges in the drilling of the carbonate rocks of the Pre-salt is to overcome the low penetration rates that have been obtained in the drilling of the reservoir rock in the vertical and directional wells. To overcome this challenge, a great effort is being developed in several lines of research, both in developing new concepts in drill bits and in the selection of a drilling system that together with appropriate type of bit provide an expected improvement in performance. To achieve these results, procedures are being prioritized and drilling systems with lower vibration levels are being used, since this phenomenon of vibration reduces the performance of penetration rate also affecting the lifetime of the equipment and consequently causes a reduction in reliability of all system and raises the cost per meter of drilling. Thus, new drill bit technology and new drilling systems are under development and, among these technologies we can distinguish those that promote improvements in conventional technologies and innovative technologies frankly which uses new mechanisms to cut or weaken the rock. This paper presents an overview of the conventional technology of drilling systems and drill bits, and provides information about the researches that have been developed with the use of innovative technologies which is presented as highly promising, among these innovative technologies, laser drilling and the drilling itself assisted by laser. In this process the laser beam has the main function to weaken the rock improving the rate of penetration. This paper presents a summary of studies and analyzes which are underway to investigate the potential of laser technology, also presents some results of laboratory tests already carried out. The drilling fluid in which the laser will have to pass through in the future applications is analyzed on the approach of their physicochemical properties. Thus, a better understanding of the interaction with the drilling

  4. Theoretical analysis and design of hydro-hammer with a jet actuator: An engineering application to improve the penetration rate of directional well drilling in hard rock formations.

    Science.gov (United States)

    He, Jiang-Fu; Liang, Yun-Pei; Li, Li-Jia; Luo, Yong-Jiang

    2018-01-01

    Rapid horizontal directional well drilling in hard or fractured formations requires efficient drilling technology. The penetration rate of conventional hard rock drilling technology in horizontal directional well excavations is relatively low, resulting in multiple overgrinding of drill cuttings in bottom boreholes. Conventional drilling techniques with reamer or diamond drill bit face difficulties due to the long construction periods, low penetration rates, and high engineering costs in the directional well drilling of hard rock. To improve the impact energy and penetration rate of directional well drilling in hard formations, a new drilling system with a percussive and rotary drilling technology has been proposed, and a hydro-hammer with a jet actuator has also been theoretically designed on the basis of the impulse hydro-turbine pressure model. In addition, the performance parameters of the hydro-hammer with a jet actuator have been numerically and experimentally analyzed, and the influence of impact stroke and pumped flow rate on the motion velocity and impact energy of the hydro-hammer has been obtained. Moreover, the designed hydro-hammer with a jet actuator has been applied to hard rock drilling in a trenchless drilling program. The motion velocity of the hydro-hammer ranges from 1.2 m/s to 3.19 m/s with diverse flow rates and impact strokes, and the motion frequency ranges from 10 Hz to 22 Hz. Moreover, the maximum impact energy of the hydro-hammer is 407 J, and the pumped flow rate is 2.3 m3/min. Thus, the average penetration rate of the optimized hydro-hammer improves by over 30% compared to conventional directional drilling in hard rock formations.

  5. Stratigraphy and structure of volcanic rocks in drill hole USW-G1, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Spengler, R.W.; Byers, F.M. Jr.; Warner, J.B.

    1981-01-01

    Detailed subsurface studies in connection with the Nevada Nuclear Waste Storage Investigations program are being conducted to investigate the stratigraphic and structural features of volcanic rocks underlying Yucca Mountain, a volcanic highland situated along the western boundary of the Nevada Test Site in southern Nevada. As part of this continuing effort, drill hole USW-G1 was cored from 292 ft to a depth of 6000 ft from March to August 1980. The stratigraphic section is composed of thick sequences of ash-flow tuff and volcanic breccia interbedded with subordinate amounts of fine- to coarse-grained volcaniclastic rocks. All rocks are of Tertiary age and vary in composition from rhyolite to dacite. The 3005-ft level in the drill hole represents a significant demarcation between unaltered and altered volcanic rocks. For the most part, tuff units above 3005 ft appear devitrified and show little secondary alteration except within tuffaceous beds of Calico Hills, where the rock contains 60 to 80% zeolites. Below 3005 ft, most rocks show intermittent to pervasive alteration to clay minerals and zeolites. Examination of core for structural features revealed the presence of 61 shear fractures, 528 joints, and 4 conspicuous fault zones. Shear fractures mainly occurred in the Topopah Spring Member of the Paintbrush Tuff, flow breccia, and near fault zones. Nearly 88% of shear and joint surfaces show evidence of coatings. Approximately 40% of the fractures were categorized as completely healed. Rock quality characteristics as defined by the core index indicate that greater amounts of broken and lost core are commonly associated with (1) the densely welded zone of the Topopah Spring, (2) highly silicified zones, and (3) fault zones

  6. Site investigation SFR. Rock type coding, overview geological mapping and identification of rock units and possible deformation zones in drill cores from the construction of SFR

    Energy Technology Data Exchange (ETDEWEB)

    Petersson, Jesper (Vattenfall Power Consultant AB, Stockholm (Sweden)); Curtis, Philip; Bockgaard, Niclas (Golder Associates AB (Sweden)); Mattsson, Haakan (GeoVista AB, Luleaa (Sweden))

    2011-01-15

    This report presents the rock type coding, overview lithological mapping and identification of rock units and possible deformation zones in drill cores from 32 boreholes associated with the construction of SFR. This work can be seen as complementary to single-hole interpretations of other older SFR boreholes earlier reported in /Petersson and Andersson 2010/: KFR04, KFR08, KFR09, KFR13, KFR35, KFR36, KFR54, KFR55, KFR7A, KFR7B and KFR7C. Due to deficiencies in the available material, the necessary activities have deviated somewhat from the established methodologies used during the recent Forsmark site investigations for the final repository for spent nuclear fuel. The aim of the current work has been, wherever possible, to allow the incorporation of all relevant material from older boreholes in the ongoing SFR geological modelling work in spite of the deficiencies. The activities include: - Rock type coding of the original geological mapping according to the nomenclature used during the preceding Forsmark site investigation. As part of the Forsmark site investigation such rock type coding has already been performed on most of the old SFR boreholes if the original geological mapping results were available. This earlier work has been complemented by rock type coding on two further boreholes: KFR01 and KFR02. - Lithological overview mapping, including documentation of (1) rock types, (2) ductile and brittle-ductile deformation and (3) alteration for drill cores from eleven of the boreholes for which no original geological borehole mapping was available (KFR31, KFR32, KFR34, KFR37,KFR38, KFR51, KFR69, KFR70, KFR71, KFR72 and KFR89). - Identification of possible deformation zones and merging of similar rock types into rock units. This follows SKB's established criteria and methodology of the geological Single-hole interpretation (SHI) process wherever possible. Deviations from the standard SHI process are associated with the lack of data, for example BIPS images

  7. Site investigation SFR. Rock type coding, overview geological mapping and identification of rock units and possible deformation zones in drill cores from the construction of SFR

    International Nuclear Information System (INIS)

    Petersson, Jesper; Curtis, Philip; Bockgaard, Niclas; Mattsson, Haakan

    2011-01-01

    This report presents the rock type coding, overview lithological mapping and identification of rock units and possible deformation zones in drill cores from 32 boreholes associated with the construction of SFR. This work can be seen as complementary to single-hole interpretations of other older SFR boreholes earlier reported in /Petersson and Andersson 2010/: KFR04, KFR08, KFR09, KFR13, KFR35, KFR36, KFR54, KFR55, KFR7A, KFR7B and KFR7C. Due to deficiencies in the available material, the necessary activities have deviated somewhat from the established methodologies used during the recent Forsmark site investigations for the final repository for spent nuclear fuel. The aim of the current work has been, wherever possible, to allow the incorporation of all relevant material from older boreholes in the ongoing SFR geological modelling work in spite of the deficiencies. The activities include: - Rock type coding of the original geological mapping according to the nomenclature used during the preceding Forsmark site investigation. As part of the Forsmark site investigation such rock type coding has already been performed on most of the old SFR boreholes if the original geological mapping results were available. This earlier work has been complemented by rock type coding on two further boreholes: KFR01 and KFR02. - Lithological overview mapping, including documentation of (1) rock types, (2) ductile and brittle-ductile deformation and (3) alteration for drill cores from eleven of the boreholes for which no original geological borehole mapping was available (KFR31, KFR32, KFR34, KFR37,KFR38, KFR51, KFR69, KFR70, KFR71, KFR72 and KFR89). - Identification of possible deformation zones and merging of similar rock types into rock units. This follows SKB's established criteria and methodology of the geological Single-hole interpretation (SHI) process wherever possible. Deviations from the standard SHI process are associated with the lack of data, for example BIPS images, or a

  8. Rock fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Brown, W.S.; Green, S.J.; Hakala, W.W.; Hustrulid, W.A.; Maurer, W.C. (eds.)

    1976-01-01

    Experts in rock mechanics, mining, excavation, drilling, tunneling and use of underground space met to discuss the relative merits of a wide variety of rock fragmentation schemes. Information is presented on novel rock fracturing techniques; tunneling using electron beams, thermocorer, electric spark drills, water jets, and diamond drills; and rock fracturing research needs for mining and underground construction. (LCL)

  9. Numerical Simulation of Rock Mass Damage Evolution During Deep-Buried Tunnel Excavation by Drill and Blast

    Science.gov (United States)

    Yang, Jianhua; Lu, Wenbo; Hu, Yingguo; Chen, Ming; Yan, Peng

    2015-09-01

    Presence of an excavation damage zone (EDZ) around a tunnel perimeter is of significant concern with regard to safety, stability, costs and overall performance of the tunnel. For deep-buried tunnel excavation by drill and blast, it is generally accepted that a combination of effects of stress redistribution and blasting is mainly responsible for development of the EDZ. However, few open literatures can be found to use numerical methods to investigate the behavior of rock damage induced by the combined effects, and it is still far from full understanding how, when and to what degree the blasting affects the behavior of the EDZ during excavation. By implementing a statistical damage evolution law based on stress criterion into the commercial software LS-DYNA through its user-subroutines, this paper presents a 3D numerical simulation of the rock damage evolution of a deep-buried tunnel excavation, with a special emphasis on the combined effects of the stress redistribution of surrounding rock masses and the blasting-induced damage. Influence of repeated blast loadings on the damage extension for practical millisecond delay blasting is investigated in the present analysis. Accompanying explosive detonation and secession of rock fragments from their initial locations, in situ stress in the immediate vicinity of the excavation face is suddenly released. The transient characteristics of the in situ stress release and induced dynamic responses in the surrounding rock masses are also highlighted. From the simulation results, some instructive conclusions are drawn with respect to the rock damage mechanism and evolution during deep-buried tunnel excavation by drill and blast.

  10. A Green's function approach for assessing the thermal disturbance caused by drilling deep boreholes in rock or ice

    Science.gov (United States)

    Clow, Gary D.

    2015-01-01

    drilling effects in rock or ice for a wide variety of drilling technologies. Numerical values for the required radial GFs GR are available through the Advanced Cooperative Arctic Data and Information Service at doi:10.5065/D64F1NS6.

  11. Drilling and coring methods that minimize the disturbance of cuttings, core, and rock formation in the unsaturated zone, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Hammermeister, D.P.; Blout, D.O.; McDaniel, J.C.

    1985-01-01

    A drilling-and-casing method (Odex 115 system) utilizing air as a drilling fluid was used successfully to drill through various rock types within the unsaturated zone at Yucca Mountain, Nevada. This paper describes this method and the equipment used to rapidly penetrate bouldery alluvial-colluvial deposits, poorly consolidated bedded and nonwelded tuff, and fractured, densely welded tuff to depths of about 130 meters. A comparison of water-content and water-potential data from drill cuttings with similar measurements on rock cores indicates that drill cuttings were only slightly disturbed for several of the rock types penetrated. Coring, sampling, and handling methods were devised to obtain minimally disturbed drive core from bouldery alluvial-colluvial deposits. Bulk-density values obtained from bulk samples dug from nearby trenches were compared to bulk-density values obtained from drive core to determine the effects of drive coring on the porosity of the core. Rotary coring methods utilizing a triple-tube core barrel and air as the drilling fluid were used to obtain core from welded and nonwelded tuff. Results indicate that the disturbance of the water content of the core was minimal. Water-content distributions in alluvium-colluvium were determined before drilling occurred by drive-core methods. After drilling, water-content distributions were determined by nuclear-logging methods. A comparison of the water-content distributions made before and after drilling indicates that Odex 115 drilling minimally disturbs the water content of the formation rock. 10 refs., 12 figs., 4 tabs

  12. Drilling holes in rock for final storage of spent nuclear fuel

    International Nuclear Information System (INIS)

    Nord, G.

    1980-09-01

    This report delas with the technical and economic aspects of the drilling of vertical holes with diameters of 1.5 metres and 1 metre in the Swedish bedrock. The holes will be 7.7 metres in depth and located on a level approximately 500 metres below the ground surface. There is no directly applicable technique for the construction of the above-mentioned holes from a small tunnel. The data presented in this report are based to a great extent on information supplied by the manufacturers of drilling equipment, and by underground construction contractors. Three different techniques for drilling the holes have been delat with in the report: shaft boring, stitch drilling (three alternative methods) and core drilling. In order to produce the required 233 holes per year, the following sets of equipment must be purchased, and personnel engaged. A hole with a diameter of 1.5 m and a depth of 7.7 m requires 3 to 7 sets of equipment for shaft boring or stitch drilling and engages 12 to 27 employees. The cost per hole varies between 24.200 and 31.200 SKr. Core drilling requires 7 sets of equipment, engages 29 persons and costs 55.300 SKr per hole. A hole with a diameter of 1.0 m requires less personnel and costs between 19.700 and 25.800 per hole except for core drilling where the cost per hole is estimated to 43.900 SKr. Interest costs account for 10 percent - 15 percent of the above-mentioned costs. Our aim has been to calculate the costs for the different methods on as similar a basis as possible, but a margin of error of +- 15 percent entails and overlapping of the cost span for most of the methods considered. (G.B.)

  13. Large-diameter boring of rock bed by a reveres circulation drill; Ribasu sakyureshon doriru ni yoru daikokei ganban sakko

    Energy Technology Data Exchange (ETDEWEB)

    Sakae, S.; Torii, K. [Kajima Corp., Tokyo (Japan); Hoshino, S.; Motoyama, M.

    1995-09-25

    The Itojima Large Bridge is a road bridge of 675 m in the total length connecting together the Nagashima Island and the Itojima Island in the northwest district of Kagoshima Prefecture, having a central span of 260 m and comprising a 5-span-continuous PC cable stayed bridges and PC box girder bridges. The foundation of this bridge employs a multi-pillar type pile structure. The piling work was started in July, 1991 by a hole inset method in a severe working environment where the depth of water is 20 m, the range of the tides is 4 m, the speed of tidal current is 2 kt, the rock bed structure is complicated and the steep seabed is steeply inclined. This report describes the results of the execution of the reverse circulation drilling, which has a high general versatility in rock bed boring, using self-lifting barges and large working boats during the rock bed boring for the foundation piling for the construction of the Itojima Large Bridge. The report, especially, also introduces the details of the work that casing pipes were driven into a stable rock bed by a vibrojet method for the measure against the collapse of a bore wall which occurred during the boring work. 24 figs., 14 tabs.

  14. Excavation and drilling at a spent-fuel test facility in granitic rock

    Energy Technology Data Exchange (ETDEWEB)

    Patrick, W.C.; Mayr, M.C.

    1981-10-01

    Funding for a project to test the feasibility of safe and reliable storage and retrieval of spent fuel from a commercial nuclear reactor was approved by the Department of Energy on June 2, 1978. By May 28, 1980, 11 spent-fuel assemblies had been emplaced 420 m below the surface in the Climax granitic stock at the Nevada Test Site. Design and construction of the Spent Fuel Test-Climax, including fuel emplacement, had taken less than two years, at a total cost of $18.4 million. Construction activities were preceded by geologic exploration using four cored holes and existing underground workings. The sinking of a 0.76-m-diam shaft to the 420-m level initiated construction at the site. Effective rates of sinking varied from 0.16 m/h with a rotary tricone drill to 0.5 m/h with a hammer drill. Underground excavation included a central canister-storage drift 4.6 x 6.1 x 64 m long, two parallel 3.4 x 3.4-m heater drifts, and a tail drift. About 6700 m{sup 3} were excavated at an average rate of 2 m{sup 3}/h, and 178 cored holes, with diameters from 38 to 152 mm, were drilled. A total length of nearly 1100 m was drilled at rates ranging from 0.4 m/h to 1 m/h, depending on hole size and drilling equipment. Eighteen 610-mm-diam canister emplacement holes were hammer-drilled at an average rate of 1.4 m/h. The use of the critical path method, integrated contractors, and close cooperation between project participants facilitated completion of the project on schedule.

  15. Excavation and drilling at a spent-fuel test facility in granitic rock

    International Nuclear Information System (INIS)

    Patrick, W.C.; Mayr, M.C.

    1981-10-01

    Funding for a project to test the feasibility of safe and reliable storage and retrieval of spent fuel from a commercial nuclear reactor was approved by the Department of Energy on June 2, 1978. By May 28, 1980, 11 spent-fuel assemblies had been emplaced 420 m below the surface in the Climax granitic stock at the Nevada Test Site. Design and construction of the Spent Fuel Test-Climax, including fuel emplacement, had taken less than two years, at a total cost of $18.4 million. Construction activities were preceded by geologic exploration using four cored holes and existing underground workings. The sinking of a 0.76-m-diam shaft to the 420-m level initiated construction at the site. Effective rates of sinking varied from 0.16 m/h with a rotary tricone drill to 0.5 m/h with a hammer drill. Underground excavation included a central canister-storage drift 4.6 x 6.1 x 64 m long, two parallel 3.4 x 3.4-m heater drifts, and a tail drift. About 6700 m 3 were excavated at an average rate of 2 m 3 /h, and 178 cored holes, with diameters from 38 to 152 mm, were drilled. A total length of nearly 1100 m was drilled at rates ranging from 0.4 m/h to 1 m/h, depending on hole size and drilling equipment. Eighteen 610-mm-diam canister emplacement holes were hammer-drilled at an average rate of 1.4 m/h. The use of the critical path method, integrated contractors, and close cooperation between project participants facilitated completion of the project on schedule

  16. Attempt of groundwater dating using the drilled rock core. 1. Development of the rock sampling method for measurement of noble gases dissolved in interstitial water in rock

    International Nuclear Information System (INIS)

    Mahara, Yasunori

    2002-01-01

    Groundwater dating in low permeable rock is very difficult and impracticable, because we take a very long time to collect groundwater sample in a borehole and have to invest much fund in production of the in-situ groundwater sampler and in operation of it. If we can directly measure noble gases dissolved in interstitial groundwater in rock core, we have a big merit to estimate groundwater resident time easy. In this study, we designed and produced a high vacuum container to let dissolved noble gases diffuse until reaching in equilibrium, and we made a handling manual of the rock core into the container and a procedure to vacuum out air from the sealed container. We compared data sets of noble gas concentration obtained from rock cores and groundwater sample collected from boreholes in-situ. The measured rocks are pumice-tuff rock, mud rock and hornfels, which have their permeabilities of 10 -6 cm/s, 10 -9 cm/s and 10 -11 cm/s, respectively. Consequently, we evaluated the rock core method is better than the in-situ groundwater sampling method for low permeable rock. (author)

  17. Geology of drill hole UE25p No. 1: A test hole into pre-Tertiary rocks near Yucca Mountain, southern Nevada

    International Nuclear Information System (INIS)

    Carr, M.D.; Waddell, S.J.; Vick, G.S.; Stock, J.M.; Monsen, S.A.; Harris, A.G.; Cork, B.W.; Byers, F.M. Jr.

    1986-01-01

    Yucca Mountain in southern Nye County, Nevada, has been proposed as a potential site for the underground disposal of high-level nuclear waste. An exploratory drill hole designated UE25p No. 1 was drilled 3 km east of the proposed repository site to investigate the geology and hydrology of the rocks that underlie the Tertiary volcanic and sedimentary rock sequence forming Yucca Mountain. Silurian dolomite assigned to the Roberts Mountain and Lone Mountain Formations was intersected below the Tertiary section between a depth of approximately 1244 m (4080 ft) and the bottom of the drill hole at 1807 m (5923 ft). These formations are part of an important regional carbonate aquifer in the deep ground-water system. Tertiary units deeper than 1139 m (3733 ft) in drill hole UE25p No. 1 are stratigraphically older than any units previously penetrated by drill holes at Yucca Mountain. These units are, in ascending order, the tuff of Yucca Flat, an unnamed calcified ash-flow tuff, and a sequence of clastic deposits. The upper part of the Tertiary sequence in drill hole UE25p No. 1 is similar to that found in other drill holes at Yucca Mountain. The Tertiary sequence is in fault contact with the Silurian rocks. This fault between Tertiary and Paleozoic rocks may correlate with the Fran Ridge fault, a steeply westward-dipping fault exposed approximately 0.5 km east of the drill hole. Another fault intersects UE25p No. 1 at 873 m (2863 ft), but its surface trace is concealed beneath the valley west of the Fran Ridge fault. The Paintbrush Canyon fault, the trace of which passes less than 100 m (330 ft) east of the drilling site, intersects drill hole UE25p No. 1 at a depth of approximately 78 m (255 ft). The drill hole apparently intersected the west flank of a structural high of pre-Tertiary rocks, near the eastern edge of the Crater Flat structural depression

  18. Mapping porosity of the deep critical zone in 3D using near-surface geophysics, rock physics modeling, and drilling

    Science.gov (United States)

    Flinchum, B. A.; Holbrook, W. S.; Grana, D.; Parsekian, A.; Carr, B.; Jiao, J.

    2017-12-01

    Porosity is generated by chemical, physical and biological processes that work to transform bedrock into soil. The resulting porosity structure can provide specifics about these processes and can improve understanding groundwater storage in the deep critical zone. Near-surface geophysical methods, when combined with rock physics and drilling, can be a tool used to map porosity over large spatial scales. In this study, we estimate porosity in three-dimensions (3D) across a 58 Ha granite catchment. Observations focus on seismic refraction, downhole nuclear magnetic resonance logs, downhole sonic logs, and samples of core acquired by push coring. We use a novel petrophysical approach integrating two rock physics models, a porous medium for the saprolite and a differential effective medium for the fractured rock, that drive a Bayesian inversion to calculate porosity from seismic velocities. The inverted geophysical porosities are within about 0.05 m3/m3 of lab measured values. We extrapolate the porosity estimates below seismic refraction lines to a 3D volume using ordinary kriging to map the distribution of porosity in 3D up to depths of 80 m. This study provides a unique map of porosity on scale never-before-seen in critical zone science. Estimating porosity on these large spatial scales opens the door for improving and understanding the processes that shape the deep critical zone.

  19. Interpreting strain measurements when drilling anisotropic rocks: return of experience from using CSIRO cells in Tournemire argillite

    International Nuclear Information System (INIS)

    Ben Ouanas, Abdelmonem

    2010-01-01

    In Geomechanics, determining the state of stress and the rheology of rock massif can be obtained by measuring the strain response of the ground under the effect of a known stress. A method among others is to use a cell integrated (with strain gauges oriented in different directions) installed in a borehole and secured to the mass through an epoxy glue. This measurement is used, notably, to determine the stress state in situ by the 'overcoring' method and the elastic parameters of the rock from the 'biaxial' test. Between November 2005 and January 2006, a geomechanical testing campaign was conducted in the argillaceous formation of the Tournemire experimental site (Aveyron, France) using CSIRO Hi cells. The strain measurements obtained during overcoring and biaxial tests have shown unusual phenomena, which have made difficult the determination of anisotropic elastic parameters of the rock and the access to the site stress. Therefore, through researches for explanations of the origin of these phenomena, this thesis aimed to improve and contribute to the understanding of the Tournemire argillite behaviour and to upgrade the measurement protocol as well as the interpretation of cells CSIRO's strain. The approach was, firstly, to issue a number of hypotheses to explain certain phenomena observed in literature. In a second step, these hypotheses were tested through analytical and numerical modelling of the biaxial and overcoring tests then through the realization of new experiments in situ within laboratory on argillite, and also on materials tests (cement, sample of glue). It is concluded that the unusual phenomena observed are essentially the result of the conditions for implementing in situ CSIRO's cell. The study particularly focused on the artefacts induced by the visco-plastic behaviour of the epoxy glue when it is incompletely polymerised. The role of damage on the rock generated by drilling operations is also discussed. Some practical recommendations for

  20. Why Is There an Abrupt Transition from Solid Rock to Low Crystallinity Magma in Drilled Magma Bodies?

    Science.gov (United States)

    Eichelberger, J. C.; Carrigan, C. R.; Sun, Y.; Lavallée, Y.

    2017-12-01

    We report on a preliminary evaluation, from basic principles of heat and mass transfer, on the unexpectedly abrupt transition from cuttings of solid rock to fragments of crystal poor glass during drilling into magma bodies. Our analysis is based on conditions determined and inferred for the 2009 IDDP-1 well in Krafla Caldera, which entered apparently liquidus rhyolite magma at about 900oC at a depth of 2104 m. Simple conduction would predict some 30 m of crystallization and partial crystallization since the latest time the magma could have been intruded, approximately 30 years prior to discovery by drilling. Option 1: The expected crystallization of magma has occurred but interstitial melt remains. The pressure difference between lithostatic load of about 50 MPa on the mush and 20 MPa hydrostatic pressure in the well causes pore melt to flow from the permeable mush into the borehole, where it becomes the source of the quenched melt chips. To be viable, this mechanism must work over the time frame of a day. Option 2: The expected crystallization is occurring, but high Rayleigh number thermal convection in the magma chamber continuously displaces crystallizing roof magma by liquidus magma from the interior of the body. To be viable, this mechanism must result in overturning magma in the chamber on a time scale that is much shorter than that of crystallization. Option 3: Flow-induced crystal migration away from zones of high shear created during drilling into magma may preferentially produce low-crystal-content melt at the boundary of the borehole, which is then sampled.

  1. A biomechanical model of rock drilling in the piddock Barnea candida (Bivalvia; Mollusca)

    NARCIS (Netherlands)

    Nederlof, R.; Muller, M.

    2012-01-01

    The bivalve Barnea candida (Pholadacea) makes its burrow in clay, soft rock and peat. Barnea has developed a number of adaptations to accommodate this lifestyle. Four muscles enable burrowing. These are situated around a dorsal pivot in such a way that the piddock is able to rotate the shells around

  2. Magnetic rock properties of the gabbros from the ODP Drill Hole ...

    Indian Academy of Sciences (India)

    R.Narasimhan(krishtel emaging) 1461 1996 Oct 15 13:05:22

    most coarse-grained oxide mineral bearing rocks record low Koenigsberger ratio (2 to 5) and median .... K. S. Krishna. Figure 2. (c) Stable remanence data of oxide gabbro (sample 29R-4, 54) which is nearly ..... the oxide gabbro with a mean around 3500×10−6 SI ..... Glover L 1994 The EDGE Experiment and the US East.

  3. Use of spectral gamma ray as a lithology guide for fault rocks: A case study from the Wenchuan Earthquake Fault Scientific Drilling project Borehole 4 (WFSD-4).

    Science.gov (United States)

    Amara Konaté, Ahmed; Pan, Heping; Ma, Huolin; Qin, Zhen; Guo, Bo; Yevenyo Ziggah, Yao; Kounga, Claude Ernest Moussounda; Khan, Nasir; Tounkara, Fodé

    2017-10-01

    The main purpose of the Wenchuan Earthquake Fault Scientific drilling project (WFSD) was to produce an in-depth borehole into the Yingxiu-Beichuan (YBF) and Anxian-Guanxian faults in order to gain a much better understanding of the physical and chemical properties as well as the mechanical faulting involved. Five boreholes, namely WFSD-1, WFSD-2, WFSD-3P, WFSD-3 and WFSD-4, were drilled during the project entirety. This study, therefore, presents first-hand WFSD-4 data on the lithology (original rocks) and fault rocks that have been obtained from the WFSD project. In an attempt to determine the physical properties and the clay minerals of the lithology and fault rocks, this study analyzed the spectral gamma ray logs (Total gamma ray, Potassium, Thorium and Uranium) recorded in WFSD-4 borehole on the Northern segment of the YBF. The obtained results are presented as cross-plots and statistical multi log analysis. Both lithology and fault rocks show a variability of spectral gamma ray (SGR) logs responses and clay minerals. This study has shown the capabilities of the SGR logs for well-logging of earthquake faults and proves that SGR logs together with others logs in combination with drill hole core description is a useful method of lithology and fault rocks characterization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Determination of In-situ Rock Thermal Properties from Geophysical Log Data of SK-2 East Borehole, Continental Scientific Drilling Project of Songliao Basin, NE China

    Science.gov (United States)

    Zou, C.; Zhao, J.; Zhang, X.; Peng, C.; Zhang, S.

    2017-12-01

    Continental Scientific Drilling Project of Songliao Basin is a drilling project under the framework of ICDP. It aims at detecting Cretaceous environmental/climate changes and exploring potential resources near or beneath the base of the basin. The main hole, SK-2 East Borehole, has been drilled to penetrate through the Cretaceous formation. A variety of geophysical log data were collected from the borehole, which provide a great opportunity to analyze thermal properties of in-situ rock surrounding the borehole.The geothermal gradients were derived directly from temperature logs recorded 41 days after shut-in. The matrix and bulk thermal conductivity of rock were calculated with the geometric-mean model, in which mineral/rock contents and porosity were required as inputs (Fuchs et. al., 2014). Accurate mineral contents were available from the elemental capture spectroscopy logs and porosity data were derived from conventional logs (density, neutron and sonic). The heat production data were calculated by means of the concentrations of uranium, thorium and potassium determined from natural gamma-ray spectroscopy logs. Then, the heat flow was determined by using the values of geothermal gradients and thermal conductivity.The thermal parameters of in-situ rock over the depth interval of 0 4500m in the borehole were derived from geophysical logs. Statistically, the numerical ranges of thermal parameters are in good agreement with the measured values from both laboratory and field in this area. The results show that high geothermal gradient and heat flow exist over the whole Cretaceous formation, with anomalously high values in the Qingshankou formation (1372.0 1671.7m) and the Quantou formation (1671.7 2533.5m). It is meaningful for characterization of geothermal regime and exploration of geothermal resources in the basin. Acknowledgment: This work was supported by the "China Continental Scientific Drilling Program of Cretaceous Songliao Basin (CCSD-SK)" of China

  5. Control procedure for well drilling operations

    Energy Technology Data Exchange (ETDEWEB)

    Bourdon, J C

    1988-09-09

    A control procedure of rotary drilling operations is proposed. It uses the Drill off test. The drill-off test permits to determine the rock drill speed variation as a function of the wright applied on the top of the pipe. We can deduce from that a rock drill wear parameter. The method permits to prevent a rupture and its grave economic consequences.

  6. Teaching Marine Geoscience at Sea: Integrated Ocean Drilling Program's School of Rock Explores Cascadia Subduction Zone - Cores, Logs, and ACORKs

    Science.gov (United States)

    Reagan, M.; Collins, J.; Ludwig, K. A.; Slough, S.; Delaney, M. L.; Hovan, S. A.; Expedition 328 Scientists

    2010-12-01

    For twelve days this past September, seventeen formal and informal educators from the US, UK, and France joined six instructors and a small science party on the scientific drillship JOIDES Resolution for the Integrated Ocean Drilling Program (IODP)’s Cascadia ACORK Expedition. The educators were part of the annual “School of Rock (SOR)” education program. SOR is coordinated by the U.S. Implementing Organization (USIO) of IODP and is designed to engage participants in seagoing Earth systems research and education workshops onboard the JOIDES Resolution and on shore at the Gulf Coast Core Repository in Texas. The scientific objective of the Cascadia ACORK expedition was to install a new permanent hydrologic observatory at ODP Site 889 to provide long-term monitoring of the pressure at the frontal part of the Cascadia accretionary prism. This year’s SOR workshop focused on how cores, logs, and ACORKs shed light on the hydrology and geology of the Cascadia subduction zone in the Northeast Pacific. In addition to observing the deployment of the ACORK, the SOR participants conducted daily hands-on analyses of archived sediment and hard-rock cores with scientists and technicians who specialize in IODP research using the lab facilities on the ship. Throughout the expedition, participants engaged in different activities and lessons designed to explore the deep biosphere, methane hydrates, paleoceanography, sedimentology, biostratigraphy, seafloor spreading, and drilling technology. The workshop also provided participants with “C3” time; time to communicate their experience using the successful joidesresolution.org website and other tools, make connections to their prior knowledge and expertise, and to be creative in developing and planning new education and outreach activities based on their new knowledge and research. As part of participating in the expedition, participants committed to further developing and testing their education and outreach products after

  7. The Chinese Cretaceous Continental Scientific Drilling Project in the Songliao Basin, NE China: Organic-rich source rock evaluation with geophysical logs from Borehole SK-2

    Science.gov (United States)

    Zhang, X.; Zou, C.

    2017-12-01

    The Cretaceous strata have been recognized as an important target of oil or gas exploration in the Songliao Basin, northeast China. The second borehole (SK-2) of the Chinese Cretaceous Continental Scientific Drilling Project in the Songliao Basin (CCSD-SK) is the first one to drill through the Cretaceous continental strata in the frame of ICDP. It was designed not only to solve multiple scientific problems (including the Cretaceous paleoenvironment and paleoclimate, as well as deep resources exploration of the Songliao Basin), but also to expect to achieve new breakthroughs in oil and gas exploration. Based on the project, various geophysical log data (including gamma, sonic, resistivity, density etc.) and core samples have been collected from Borehole SK-2. We do research on organic-rich source rocks estimation using various geophysical log data. Firstly, we comprehensively analyzed organic-rich source rocks' geophysical log response characteristics. Then, source rock's identification methods were constructed to identify organic-rich source rocks with geophysical logs. The main identification methods include cross-plot, multiple overlap and Decision Tree method. Finally, the technique and the CARBOLOG method were applied to evaluate total organic carbon (TOC) content from geophysical logs which provide continuous vertical profile estimations (Passey, 1990; Carpentier et al., 1991). The results show that source rocks are widely distributed in Borehole SK-2, over a large depth strata (985 5700m), including Nenjiang, Qingshankou, Denglouku, Yingcheng, Shahezi Formations. The organic-rich source rocks with higher TOC content occur in the Qingshankou (1647 1650m), Denglouku (2534 2887m) and Shahezi (3367 5697m) Formations. The highest TOC content in these formations can reach 10.31%, 6.58%, 12.79% respectively. The bed thickness of organic-rich source rocks in the these formations are totally up to 7.88m, 74.34m, 276.60m respectively. These organic-rich rocks in the

  8. South African drilling

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    According to the president of the South African Drilling Association, the drilling industry is meeting head-on the challenges created by the worldwide recession. The paper is a synopsis of several of the papers presented at the SADA symposium and a look at several mining-related drilling projects in South Africa. These papers include grouting techniques, the use of impregnated bits in hard rock drilling, tunnel boring for mines, surveying improvement methods and the use of explosives to increase groundwater yield

  9. Physical properties of fault zone rocks from SAFOD: Tying logging data to high-pressure measurements on drill core

    Science.gov (United States)

    Jeppson, T.; Tobin, H. J.

    2013-12-01

    In the summer of 2005, Phase 2 of the San Andreas Fault Observatory at Depth (SAFOD) borehole was completed and logged with wireline tools including a dipole sonic tool to measure P- and S-wave velocities. A zone of anomalously low velocity was detected from 3150 to 3414 m measured depth (MD), corresponding with the subsurface location of the San Andreas Fault Zone (SAFZ). This low velocity zone is 5-30% slower than the surrounding host rock. Within this broad low-velocity zone, several slip surfaces were identified as well as two actively deforming shear zones: the southwest deformation zone (SDZ) and the central deformation zone (CDZ), located at 3192 and 3302 m MD, respectively. The SAFZ had also previously been identified as a low velocity zone in seismic velocity inversion models. The anomalously low velocity was hypothesized to result from either (a) brittle deformation in the damage zone of the fault, (b) high fluid pressures with in the fault zone, or (c) lithological variation, or a combination of the above. We measured P- and S-wave velocities at ultrasonic frequencies on saturated 2.5 cm diameter core plug samples taken from SAFOD core obtained in 2007 from within the low velocity zone. The resulting values fall into two distinct groups: foliated fault gouge and non-gouge. Samples of the foliated fault gouge have P-wave velocities between 2.3-3.5 km/s while non-gouge samples lie between 4.1-5.4 km/s over a range of effective pressures from 5-70 MPa. There is a good correlation between the log measurements and laboratory values of P-and S wave velocity at in situ pressure conditions especially for the foliated fault gouge. For non-gouge samples the laboratory values are approximately 0.08-0.73 km/s faster than the log values. This difference places the non-gouge velocities within the Great Valley siltstone velocity range, as measured by logs and ultrasonic measurements performed on outcrop samples. As a high fluid pressure zone was not encountered during

  10. Elastic wave velocities, chemistry and modal mineralogy of crustal rocks sampled by the Outokumpu scientific drill hole: Evidence from lab measurements and modeling

    Science.gov (United States)

    Kern, H.; Mengel, K.; Strauss, K. W.; Ivankina, T. I.; Nikitin, A. N.; Kukkonen, I. T.

    2009-07-01

    The Outokumpu scientific deep drill hole intersects a 2500 m deep Precambrian crustal section comprising a 1300 m thick biotite-gneiss series (mica schists) at top, followed by a 200 m thick meta-ophiolite sequence, underlain again by biotite gneisses (mica schists) (500 m thick) with intercalations of amphibolite and meta-pegmatoids (pegmatitic granite). From 2000 m downward the dominating rock types are meta-pegmatoids (pegmatitic granite). Average isotropic intrinsic P- and S-wave velocities and densities of rocks were calculated on the basis of the volume fraction of the constituent minerals and their single crystal properties for 29 core samples covering the depth range 198-2491 m. The modal composition of the rocks is obtained from bulk rock (XRF) and mineral chemistry (microprobe), using least squares fitting. Laboratory seismic measurements on 13 selected samples representing the main lithologies revealed strong anisotropy of P- and S-wave velocities and shear wave splitting. Seismic anisotropy is strongly related to foliation and is, in particular, an important property of the biotite gneisses, which dominate the upper and lower gneiss series. At in situ conditions, velocity anisotropy is largely caused by oriented microcracks, which are not completely closed at the pressures corresponding to the relatively shallow depth drilled by the borehole, in addition to crystallographic preferred orientation (CPO) of the phyllosilicates. The contribution of CPO to bulk anisotropy is confirmed by 3D velocity calculations based on neutron diffraction texture measurements. For vertical incidence of the wave train, the in situ velocities derived from the lab measurements are significantly lower than the measured and calculated intrinsic velocities. The experimental results give evidence that the strong reflective nature of the ophiolite-derived rock assemblages is largely affected by oriented microcracks and preferred crystallographic orientation of major minerals, in

  11. Modeling pellet impact drilling process

    Science.gov (United States)

    Kovalyov, A. V.; Ryabchikov, S. Ya; Isaev, Ye D.; Ulyanova, O. S.

    2016-03-01

    The paper describes pellet impact drilling which could be used to increase the drilling speed and the rate of penetration when drilling hard rocks. Pellet impact drilling implies rock destruction by metal pellets with high kinetic energy in the immediate vicinity of the earth formation encountered. The pellets are circulated in the bottom hole by a high velocity fluid jet, which is the principle component of the ejector pellet impact drill bit. The experiments conducted has allowed modeling the process of pellet impact drilling, which creates the scientific and methodological basis for engineering design of drilling operations under different geo-technical conditions.

  12. Numerical study of influence of drilling depth and physico-mechanical characteristics of bedding of rock ores on stability of horizontal well

    International Nuclear Information System (INIS)

    Dzhukataev, Z.D.

    1997-01-01

    Stability of elastic and plastic equilibrium of deep horizontal well has been studied conformably to West Kazakhstan deposits conditions. Different forms of flat stability loss for rock ores massif are studied. This massif was weaken by deep horizontal well, on counter of this well uniformly distributed load is enclosed - pressure of drilling mortar. Linearized boundary conditions for stability are defined on the well counter and on boundary between field of elastic and inelastic deformations. The characteristic determinant is received. It is revealed, that greatest from critical pressures takes place under wave-formation by well counter equals to 1

  13. Magnetic rock properties of the gabbros from the ODP Drill Hole 1105A of the Atlantis Bank, southwest Indian Ridge

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, D.G.; Krishna, K.S.

    . Comparison of modal proportions of the oxides, grain sizes and magnetization parameters of the rocks has con rmed that most coarse-grained oxide mineral bearing rocks record low Koenigsberger ratio (2 to 5) and median destructive elds (5 to 7 mT). Average...- swered is to what extent lower crustal rocks con- tribute to linear marine magnetic anomalies. The Atlantis Bank (32 43:130S; 57 16:650E), east of the Atlantis II Fracture Zone is a window in the Indian Ocean where lower crustal rocks, gabbros...

  14. Hard rock star : Weatherford's multiphase performance drilling system increases penetration rates in hard, abrasive formations

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.

    2010-12-15

    This article described Weatherford's Multiphase Performance Drilling (MPPD) system that enhances drilling rate penetration. The technology was awarded the 2010 winner for best drilling technology for a company with 100 employees or more. Weatherford Canada and Suncor Energy developed the patent-pending MPPD system in the Panther field, and have expanded its use to Suncor's Kelly Lake and Gwillim plays in British Columbia. The new technology is ready to be launched worldwide. This article discussed the MPPD system, with particular reference to its benefits; process; cost savings; and technology utilization. The technique is ideal for drilling in harsh, abrasive formations such as the Nikanassin or Cadomin. It has allowed Suncor to save as much as $1.5 million per well. The article also noted that the key to the process is the controlled use of nitrogen to lighten mud weight. Weatherford used its model 7000 rotating control device to provide precise control of the wellbore pressure profile. It was concluded that Weatherford had significant praise for its partner in developing the MPPD system since its inception with Suncor in 2004, particularly since few client companies have the patience and the willingness to make expensive long-term investment necessary to perfect such systems. 2 figs.

  15. 30 CFR 33.34 - Drilling test.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drilling test. 33.34 Section 33.34 Mineral... MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES Test Requirements § 33.34 Drilling test. (a) A drilling test shall consist of drilling a set of 10 test holes, without...

  16. Detailed petrographic descriptions and microprobe data for tertiary silicic volcanic rocks in drill hole USW G-1, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Caporuscio, F.A.; Warren, R.G.; Broxton, D.E.

    1985-12-01

    This report contains detailed petrographic descriptions of 74 thin sections from drill hole USW G-1 at Yucca Mountain, Nevada. These descriptions are keyed to the distinctions between devitrified, vitrophyre, vitric, and zeolitized intervals below the Topopah Spring Member repository horizon. The petrographic features of the zeolitized intervals down through the Crater Flat tuff, as well as the sorption properties determined from these intervals, suggest that these zeolite occurrences may each have comparable sorptive capability.

  17. Subsurface Rock Physical Properties by Downhole Loggings - Case Studies of Continental Deep Drilling in Kanto Distinct, Japan

    Science.gov (United States)

    Omura, K.

    2014-12-01

    In recent years, many examples of physical logging have been carried out in deep boreholes. The loggings are direct in-situ measurements of rock physical properties under the ground. They provide significant basic data for the geological, geophysical and geotechnical investigations, e.g., tectonic history, seismic wave propagation, and ground motion prediction. Since about 1980's, Natl. Res. Inst. for Earth Sci. and Disast. Prev. (NIED) dug deep boreholes (from 200m to 3000m depth) in sedimentary basin of Kanto distinct, Japan, for purposes of installing seismographs and hydrological instruments, and in-situ stress and pore pressure measurements. At that time, downhole physical loggings were conducted in the boreholes: spontaneous potential, electrical resistance, elastic wave velocity, formation density, neutron porosity, total gamma ray, caliper, temperature loggings. In many cases, digital data values were provided every 2m or 1m or 0.1m. In other cases, we read printed graphs of logging plots and got digital data values. Data from about 30 boreholes are compiled. Especially, particular change of logging data at the depth of an interface between a shallow part (soft sedimentary rock) and a base rock (equivalent to hard pre-Neogene rock) is examined. In this presentation, the correlations among physical properties of rock (especially, formation density, elastic wave velocity and electrical resistance) are introduced and the relation to the lithology is discussed. Formation density, elastic wave velocity and electric resistance data indicate the data are divide in two groups that are higher or lower than 2.5g/cm3: the one correspond to a shallow part and the other correspond to a base rock part. In each group, the elastic wave velocity and electric resistance increase with increase of formation density. However the rates of increases in the shallow part are smaller than in the base rock part. The shallow part has lower degree of solidification and higher porosity

  18. Rock Magnetic Study of IODP/ICDP Expedition 364 Site M0077A Drill Cores: Post-Impact Sediments, Impact Breccias, Melt, Granitic Basement and Dikes

    Science.gov (United States)

    Fucugauchi, J. U.; Perez-Cruz, L. L.; Rebolledo-Vieyra, M.; Tikoo, S.; Zylberman, W.; Lofi, J.

    2017-12-01

    Drilling at Site M0077 sampled post-impact sediments overlying a peak ring consisting of impact breccias, melt rock and granitoids. Here we focus on characterizing the peak ring using magnetic properties, which vary widely and depend on mineralogy, depositional and emplacement conditions and secondary alterations. Rock magnetic properties are integrated with Multi-Sensor Core Logger (MSCL) data, vertical seismic profile, physical properties, petrographic and chemical analyses and geophysical models. We measure low-field magnetic susceptibility at low- and high-frequencies, intensity and direction of natural remanent magnetization (NRM) and laboratory-induced isothermal (IRM) and anhysteretic (ARM) magnetizations, alternating-field demagnetization of NRM, IRM and NRM, susceptibility variation with temperature, anisotropy of magnetic susceptibility, hysteresis and IRM back-field demagnetization. Post-impact carbonates show low susceptibilities and NRM intensities, variable frequency-dependent susceptibilities and multivectorial remanences residing in low and high coercivity minerals. Hysteresis loops show low coercivity saturation magnetizations and variable paramagnetic mineral contents. Impact breccias (suevites) and melt rock show higher susceptibilities, low frequency-dependent susceptibilities, high NRM, ARM and IRM intensities and moderate ARM intensity/susceptibility ratios. Magnetic signal is dominated by fine-grained magnetite and titanomagnetites with PSD domain states. Melt rocks at the base of impactite section show the highest susceptibilities and remanence intensities. Basement section is characterized by low susceptibilities in the granites and higher values in the dikes, with NRM and ARM intensities increasing towards the base. The high susceptibilities and remanence intensities correlate with high seismic velocities, density and decreased porosity and electrical resistivity. Fracturing and alteration account for the reduced seismic velocities

  19. Well drilling by rotary percussive drill above ground

    International Nuclear Information System (INIS)

    Sabatier, G.

    1987-01-01

    Originally, the Well Drilling Section of Cogema used only the diamond core drilling technique. The appearance of independent rotation for compressed air rock drills has led to the use and to the development of this drilling system, as a drill core is not indispensable, when the material of the search is radioactive. During the last few years, hydraulic drills have replaced the compressed air drills and have resulted in a very marked improvement: - of the penetration rates; - of the depth achieved. The Well Drilling Section of Cogema has to drill about 400 km per year with rock drills above ground and holds also the record for depth achieved with this technique, i.e. 400 m in granite. In France, the costs of these types of drilling are for the same depth of the order of one-quarter of the core drilling and half of the drilling with a down-the-hole drill. Cogema has greatly developed the types of well logging which now permits the extension of this type of drilling to the search for other materials than uranium [fr

  20. Aespoe Hard Rock Laboratory. Backfill and Plug test. Hydraulic testing of core drilled boreholes in the ZEDEX drift

    Energy Technology Data Exchange (ETDEWEB)

    Ludvigson, Jan-Erik; Nordqvist, Rune; Ekman, Lennart; Hansson, Kent (GEOSIGMA AB, Uppsala (Sweden))

    2009-07-01

    The present report documents the performance and results of hydraulic testing in selected core boreholes in the Zedex drift. The holes will be used as rock instrumentation boreholes during the Backfill and Plug Test at Aespoe HRL. The testing involves both 1 m long boreholes with 56 mm diameter as well as longer boreholes c. 5 m, 8 m and 25 m long with 56 mm or 76 mm diameter. Only single-hole tests were performed. The tests were carried out as short-time constant head injection tests since all boreholes tested (except one) were non-flowing before tests. The injection phase was followed by a pressure recovery phase. Furthermore, the tests were carried out as single-packer tests. A specially designed test system was used for the tests. The main evaluation of the tests was performed on data from the recovery phase by a new approach based on a non-linear regression technique combined with a flow simulation model (SUTRA). The tests in the 1 m-holes (testing the interval c. 0.3-0.7 m in the rock perpendicular to the tunnel face) show that the hydraulic conductivity of the superficial rock around the Zedex drift in general is low. However, during testing in some boreholes, visible leakage in the rock occurred through superficial fractures into the tunnel. These fractures were mainly located in the floor of the Zedex drift and are probably blast-induced. These fractures have a high hydraulic conductivity. The tests in the longer boreholes show that the hydraulic conductivity further into the rock in general is below c. 1x10-10 m/s. Increased hydraulic conductivity (c.1.5x10-8 m/s) was only observed in the flowing borehole KXZSD8HL.

  1. Measurement of activity concentration of 222Rn in ground waters drawn from two wells drilled in the Amparo Complex metamorphic rocks, municipio de Amparo, SP

    International Nuclear Information System (INIS)

    Oliveira, Igor Jose Chaves de

    2008-01-01

    A sampling system was assembled for field 222 Rn activity concentration measurements in ground waters. The system consists of a sampling flask that prevents the contact between the water sample and the atmosphere and a closed line for radon extraction from water. The system, its operation and calibration, are described in full detail, as well as, the conversion of the measured alpha counting rates in activity concentrations. The assembled system was used in 222 Rn activity concentrations measurements in ground waters drawn from two wells drilled in the Amparo Complex metamorphic rocks. The wells are located at the urban area of the city of Amparo and are exploited for public use water. One well, named Vale Verde, is 56 meters deep and crosses 18 meters of soil, 26 meters of quartz rich gneiss and 12 meters of biotite-gneiss. The other well, named Seabra, is 117 meters deep, crosses 28 meters of soil and weathered rocks and ends in granite-gneiss. The mean activity concentrations for the year long observation were (377 +- 25) Bq/dm 3 , for Seabra well, and (1282 +- 57) Bq/dm3, for the Vale Verde well. The 222 Rn activity concentrations fall in the activity concentration range reported in the literature for similar geology areas and are larger than the concentrations found neighboring areas of the same metamorphic Complex. The seasonal activity concentration variations seem to correlate with rain fall variations in the study area. (author)

  2. Analysis of the possibility of isolation of radioactive wastes of Chernobyl nuclear power plant into the deep drills of the Korosten crystalline rocks

    International Nuclear Information System (INIS)

    Shestopalov, V.; Kedrovsky, O.; Shishits, I.

    1996-01-01

    The aim of the offered research: - investigation and proving the possibility to isolate the radioactive wastes (RAW), that were created as a result of the Chernobyl accident, its operation, and shutting down, by placing the wastes into the chinks of the depth up to 4 km. The chinks are supposed to be made in the crystalline rocks of the Korosten massif located near of the Chernobyl NPP. - developing of the basis of the technology and fulfilling the designing work for isolation the RAW in the deep chinks. The basic aims of the researches of the project are the following : Finding out the location of a suitable place. The Ukraine plate's territory (having non-deep occurrences of the crystalline rocks that are minimally subjected to the tectonic destroying), near of the Chernobyl NPP, would be investigated. To solve the problem , the decoding of the aero- and space-photos, geophysical and indicating works, testing drilling of non-deep chinks, and testing works in it have to be done. So, during of the carrying out the project , the following points would be developed: - the geological grounds for creating the RAW isolating system in the deep chinks (taking the conditions at the Nuclear Power Plant), - the best design of the deep chink, - the technology of isolating the RAW in the deep chinks, - the requirements on the monitoring, - the estimations of the ecological safety and efficiency of the chink type systems for RAW isolating

  3. Rock strength measurements on Archaean basement granitoids recovered from scientific drilling in the active Koyna seismogenic zone, western India

    Science.gov (United States)

    Goswami, Deepjyoti; Akkiraju, Vyasulu V.; Misra, Surajit; Roy, Sukanta; Singh, Santosh K.; Sinha, Amalendu; Gupta, Harsh; Bansal, B. K.; Nayak, Shailesh

    2017-08-01

    Reservoir triggered earthquakes have been occurring in the Koyna area, western India for the past five decades. Triaxial tests carried out on 181 core samples of Archaean granitoids underlying the Deccan Traps provide valuable constraints on rock strength properties in the Koyna seismogenic zone for the first time. The data include measurements on granite gneiss, granite, migmatitic gneiss and mylonitised granite gneiss obtained from boreholes KBH-3, KBH-4A, KBH-5 and KBH-7 located in the western and eastern margins of the seismic zone. Salient results are as follows. (i) Increase of rock strength with increasing confining pressure allow determination of the linearized failure envelopes from which the cohesive strength and angle of internal friction are calculated. (ii) Variable differential stresses at different depths are the manifestations of deformation partitioning in close association of fault zone(s) or localized fracture zones. (iii) Fractures controlled by naturally developed weak planes such as cleavage and fabric directly affect the rock strength properties, but the majority of failure planes developed during triaxial tests is not consistent with the orientations of pre-existing weak planes. The failure planes may, therefore, represent other planes of weakness induced by ongoing seismic activity. (iv) Stress-strain curves confirm that axial deformation is controlled by the varying intensity of pre-existing shear in the granitoids, viz., mylonite, granite gneiss and migmatitic gneiss. (v) Frequent occurrences of low magnitude earthquakes may be attributed to low and variable rock strength of the granitoids, which, in turn, is modified by successive seismic events.

  4. Advanced Drilling through Diagnostics-White-Drilling

    International Nuclear Information System (INIS)

    FINGER, JOHN T.; GLOWKA, DAVID ANTHONY; LIVESAY, BILLY JOE; MANSURE, ARTHUR J.; PRAIRIE, MICHAEL R.

    1999-01-01

    A high-speed data link that would provide dramatically faster communication from downhole instruments to the surface and back again has the potential to revolutionize deep drilling for geothermal resources through Diagnostics-While-Drilling (DWD). Many aspects of the drilling process would significantly improve if downhole and surface data were acquired and processed in real-time at the surface, and used to guide the drilling operation. Such a closed-loop, driller-in-the-loop DWD system, would complete the loop between information and control, and greatly improve the performance of drilling systems. The main focus of this program is to demonstrate the value of real-time data for improving drilling. While high-rate transfer of down-hole data to the surface has been accomplished before, insufficient emphasis has been placed on utilization of the data to tune the drilling process to demonstrate the true merit of the concept. Consequently, there has been a lack of incentive on the part of industry to develop a simple, low-cost, effective high-speed data link. Demonstration of the benefits of DWD based on a high-speed data link will convince the drilling industry and stimulate the flow of private resources into the development of an economical high-speed data link for geothermal drilling applications. Such a downhole communication system would then make possible the development of surface data acquisition and expert systems that would greatly enhance drilling operations. Further, it would foster the development of downhole equipment that could be controlled from the surface to improve hole trajectory and drilling performance. Real-time data that would benefit drilling performance include: bit accelerations for use in controlling bit bounce and improving rock penetration rates and bit life; downhole fluid pressures for use in the management of drilling hydraulics and improved diagnosis of lost circulation and gas kicks; hole trajectory for use in reducing directional

  5. The Influence Of Hydrothermal Alteration And Weathering On Rock Magnetic Properties Of Granites From The Eps-1 Drilling (soultz-sous-forÊts / France)

    Science.gov (United States)

    Just, J.; Schleicher, A.; Kontny, A.; de Wall, H.

    The EPS-1 drilling in Soultz-sous-Forêts (Rhinegraben, France) recovered a core pro- file of Tertiary to Permo-Mesozoic sediments deposited on a Variscan granitic base- ment. Magnetic susceptibility (k) measurements on the core material revealed a con- tinous increase from the basement/cover boundary (kmean 0.4 x 10-3 SI) into the magnetite-bearing granite (kmean 13 x 10-3 SI) over a depth range of 1417 U 1555 m. Rock magnetic and mineralogic studies were performed for the fresh granite, the hydrothermally altered granite near a fault zone and the altered granite from the fossil land surface near the basement/cover boundary. The decrease in susceptibility can be correlated with a gradual decomposition of magnetite to hematite and an alteration of the matrix minerals feldspars, biotite and hornblende to clay minerals and carbon- ates. Along with this transition, characteristic rock magnetic signatures can be dis- criminated for different degrees of alteration. While temperature-dependent magnetic susceptibility k(T)-curves in fresh granites indicate a typical multidomain magnetite course with good reversibility, different types of irreversible courses are observed for the altered granite. However, hematite could not be identified in the k(T)-curves. Al- tered granite shows relatively weak magnetic behaviour in AF-demagnetisation exper- iments, untypical for hematite. The alteration of the fresh granite also causes a change in magnetic fabric parameter, especially of the anisotropy factor. The magnetic min- eralogy from the altered granite in respect to the changes in rock magnetic properties will be discussed.

  6. SHRIMP zircon dating and LA-ICPMS Hf analysis of early Precambrian rocks from drill holes into the basement beneath the Central Hebei Basin, North China Craton

    Directory of Open Access Journals (Sweden)

    Yusheng Wan

    2014-07-01

    Full Text Available The Central Hebei Basin (CHB is one of the largest sedimentary basins in the North China Craton, extending in a northeast–southwest direction with an area of >350 km2. We carried out SHRIMP zircon dating, Hf-in-zircon isotopic analysis and a whole-rock geochemical study on igneous and metasedimentary rocks recovered from drill holes that penetrated into the basement of the CHB. Two samples of gneissic granodiorite (XG1-1 and gneissic quartz diorite (J48-1 have magmatic ages of 2500 and 2496 Ma, respectively. Their zircons also record metamorphic ages of 2.41–2.51 and ∼2.5 Ga, respectively. Compared with the gneissic granodiorite, the gneissic quartz diorite has higher ΣREE contents and lower Eu/Eu* and (La/Ybn values. Two metasedimentary samples (MG1, H5 mainly contain ∼2.5 Ga detrital zircons as well as late Paleoproterozoic metamorphic grains. The zircons of different origins have εHf (2.5 Ga values and Hf crustal model ages ranging from 0 to 5 and 2.7 to 2.9 Ga, respectively. Therefore, ∼2.5 Ga magmatic and Paleoproterozoic metasedimentary rocks and late Neoarchean to early Paleoproterozoic and late Paleoproterozoic tectono-thermal events have been identified in the basement beneath the CHB. Based on regional comparisons, we conclude that the early Precambrian basement beneath the CHB is part of the North China Craton.

  7. Transformation of Serpentinite to Listvenite as Recorded in the Vein History of Rocks From Oman Drilling Project Hole BT1B

    Science.gov (United States)

    Manning, C. E.; Kelemen, P. B.; Michibayashi, K.; Harris, M.; Urai, J. L.; de Obeso, J. C.; Jesus, A. P. M.; Zeko, D.

    2017-12-01

    Oman Drilling Project Hole BT1B intersected 191 m of listvenite (magnesite + quartz rock) and serpentinite in the hanging wall of the basal thrust of the Oman ophiolite. Recovery was 100%. Listvenite is the dominant lithology in the upper plate rocks (166 m). Its shows wide color and textural variation, including pseudomorphic replacement of serpentinized peridotite. Serpentinite was encountered in two main contiguous intervals totaling 25 m. In light of the strongly metasomatic nature for the origin of listvenite, a substantial portion of the core description effort was dedicated to characterization of the complex veining history recorded in the hole. Dense veining is recorded in both lithologies. The density of 200/m. The density of veins >1 mm was 50-100/m, with somewhat higher densities recorded in serpentinite than in listvenite. In order of oldest to youngest, the main vein types in serpentinite are microscopic mesh-textured serpentine veins, macroscopic serpentine veins, carbonate-oxide veins, and carbonate veins. The vein paragenesis in listvenite is: early carbonate-oxide veins, followed by carbonate and carbonate-quartz veins, then late carbonate veins. The carbonate-oxide and carbonate veins are shared by the lithologies and hold clues to the transformation of ultramafic rocks to listvenite. Carbonate-oxide veins form a distinctive set that is interpreted to be the earliest record of carbonate formation in serpentinite. They contain Fe-oxide, usually hematite, on a medial line, with antitaxial magnesite crystals growing outward and showing terminations against wall rock minerals. Antitaxial textures may be evidence of positive reaction volumes. In serpentinite, secondary serpentine after earlier serpentine is common at vein margins. Carbonate-oxide veins are the earliest observed in listvenite, where they may form isolated veins to dense, aligned networks that impart a foliated texture. In some cases, they appear to predate replacement of serpentine by

  8. Bucket drill

    Energy Technology Data Exchange (ETDEWEB)

    Bezverkhiy, V.M.; Nabokov, I.M.; Podoksik, D.Z.; Sadovskiy, S.S.; Shanyukevich, V.A.

    1983-01-01

    The bucket drill including a cylindrical housing with bottom, ground intake windows and cutting knives is hinged to the housing, the mechanism of rotation of the cutting knives including rods connected by the cutter knives, and drive shaft is distinguished by the fact that in order to improve the effectiveness of drilling by automatic change in the angle of cutting depending on the strength of the drillable rock, the drill is equipped with elastic elements and cap with annular slits in which there are elastic elements. The mechanism of rotation of the cutting knives is equipped with levers hinged to the housing, pins with shaft and rocker arm. The rods are made with a slit and from one end are rigidly connected to the cutting knives, and from the other end to the levers by means of pins which are arranged in slits of the rod with the possibility of movement. The upper ends of the levers are installed with the possibility of movement in the pins whose shafts are arranged with the possibility of rotation in the rocker arm rigidly connected to the drive shaft. The drive shaft is equipped with cantilevers installed in the cap with the possibility of rotation and interaction with the elastic elements.

  9. Rock thermal property measurements with the Posiva TERO56 drill hole device in the forsmark study site

    International Nuclear Information System (INIS)

    Kukkonen, I.; Suppala, I.; Korpisalo, A.

    2007-10-01

    Thermal properties were measured in situ in Forsmark at the SKB study site constructed for large-scale thermal conductivity investigations in an outcrop of anisotropic granite. The Posiva TERO56 drill hole tool was used for in situ measurements in four 20 m deep boreholes KFM90C, D, E and F located within very short distances of each other (less than 2.3 m). Measurements were done at depths of 10-18 m in water-filled holes. The bedrock is granite with thin amphibolite and pegmatite layers and thin felsic veins. The measurement principle of the TERO56 logging device is based on conduction of heat from a cylindrical source placed in a borehole and the thermal parameter values are calculated with a least squares inversion algorithm. Measurements in Forsmark consisted typically of 6 hours heating time followed by 10 hours cooling time, but in one measurement the heating time was reduced to of 2 h 45 min and the cooling time to 5 hours. Average thermal conductivity values range from 3.37 to 3.91 W m -1 K -1 with standard deviations between 0.01 and 0.04 W m -1 K -1 . The result is plausible considering the quite homogeneous target geology and short distances between different experiment stations. Diffusivity values, however, vary much more, and averages range from 0.68 to 2.08 A 10 -6 m 2 s -1 with standard deviations ranging from 0.04 to 0.09 A 10 -6 m 2 s -1 . Variations may be attributed to small flow effects or time-dependent temperature trends related to thermal equilibration of the probe. (orig.)

  10. Multi-azimuth Anisotropic Velocity Measurements in Fractured Crystalline Rock From the International Continental Drilling Program Outokumpu Borehole, Finland

    Science.gov (United States)

    Schijns, H.; Duo, X.; Heinonen, S.; Schmitt, D. R.; Kukkonen, I. T.; Heikkinen, P.

    2008-12-01

    A high resolution seismic survey consisting of a multi-depth multi-azimuth VSP, a zero-offset VSP and a reflection/refraction survey was conducting in May, 2006, near the town of Outokumpu, Finland, using the International Continental Scientific Drilling Program 2.5 km deep fully cored scientific borehole. The survey was undertaken in order to create an anisotropic velocity model for future micro-seism studies as well as to provide a higher resolution reflection profile through the area than was previously available. The seismic survey high frequency seismic vibrator as a source, employing 8 s linear taper sweeps from 15-250 Hz at 20 m shot spacing. Receivers were 14 Hz single component geophones on the surface and a three component geophone downhole. The walk-away VSP included measurements over two azimuths with the receiver at depths of 1000, 1750 and 2500 m, while the zero-offset VSP used a 2 m depth increment. Surface geophones were located along the same seismic lines as employed in the walk-away VSP and were nominally 4 m apart. The survey area is located on the Fennoscandian shield, and the glacial history of the area required significant static corrections to account for the variable overburden overlying the mica-rich schist and pegmatitic granite composing the bedrock. These were calculated using travel-time inversion of the refraction data and were applied to the walk-away VSP and reflection profiles, significantly improving the quality of both. Anisotropic velocity analysis was performed using a plane-wave decomposition of the processed walk-away VSP. The maximum anisotropy was observed in the walk-away VSPs along the Southeastern azimuth, with the P-wave phase velocity ranging from 5330-5950 m/s between 50-1000 m in depth, and up to 6150 m/s between 1000-1750 m in depth. Shear wave splitting was observed in the Northeastern direction. Preliminary analysis of the zero-offset VSP has revealed shown good agreement with the relevant portions of the

  11. Drilling and blasting parameters in sublevel caving in Sheregesh mine

    Science.gov (United States)

    Eremenko, AA; Filippov, VN; Konurin, AI; Khmelinin, AP; Baryshnikov, DV; Khristolyubov, EA

    2018-03-01

    The factors that influence geomechanical state of rock mass in Sheregesh Mine are determined. The authors discuss a variant of geotechnology with fan drilling. The drill-hole patterns and drilling-and-blasting parameters are presented. The revealed causes of low-quality fragmentation of rocks include the presence of closed and open fractures at different distances from drill-hole mouths, both in case of rings and fans, as well as the blocking of drill-holes with rocks.

  12. Drilling mortar

    Energy Technology Data Exchange (ETDEWEB)

    Theodorescu, V; Ditulescu, E

    1979-01-30

    A method is proposed for producing stable drilling mortar from drilled rock which makes it possible to stabilize the walls of the borehole and to maintain producing horizons of oil and gas wells in an undisturbed state. The proposed drilling mortar includes 5-12 wt.-% dry modified calcium lignosulfonate in the form of a solution containing about 30% dry matter with the addition of 0.1 wt.-% anti-foaming agent consisting of C/sub 19/-C/sub 20/ alcohol dissolved in a light petroleum product; cream of milk with about 10 wt.-% Ca(OH)/sub 2/ in a quantity sufficient for reducing the pH value of the ions down to 10.5; sodium chloride in amounts from 5 mg to 100 ml (aqueous phase); ordinarily used agents for ensuring the necessary density, viscosity, and filterability. For example, the preparation of the drilling fluid begins with the processing under laboratory conditions of lignosulfonic pulp obtained in the production of yeast fodder with the following characteristics: specific density, 1.15 kgf/dm/sup 3/; water content, 67% (according to the Dean and Stark method); pH 4.0. In the vessel is placed 1000 cm/sup 3/ lignosulfonic pulp containing 33% dry matter, and the pulp is heated to 90-95/sup 0/C by means of a water bath. To the heated pulp 33 cm/sup 3/ formic acid at a 40-% concentration is added by mixing. The specific temperature of the pulp is maintained in the constant mixing process for two hours. Then the cream of milk containing 10 wt.-% Ca(OH)/sub 2/ is added to raise the pH to 10.5. The cooled product is calcium lignosulfonate. To produce a stable form of the drilling mortar, 750 g clay and 10 g trass gel are added to a vessel containing 1500 cm/sup 3/ fresh water by means of mixing. The resulting dispersed mass remains at rest for 12 hours for purposes of hydration. Then 2 g of an anti-foaming agent dissolved in 6 cm/sup 3/ benzene is introduced to 1000 cm/sup 3/ modified calcium lignosulfonate produced by the above method.

  13. Geological data summary for a borehole drilled between 1991 September 16 and 1991 October 1 for the Transport Properties in Highly Fractured Rock Experiment at the Underground Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Woodcock, D. R.; Everitt, R. A.

    1992-08-01

    Borehole 101-013-HG4 was drilled between 1991 September 16 and October 1 from the 130 Level station, as part of the Transport Properties in Highly Fractured Rock Experiment, to explore the geological, hydrogeological and geochemical conditions of the rock mass in an area northwest of the Underground Research Laboratory (URL) shaft. The borehole was drilled to provide information at an intersection with Fracture Zone 2.0, 100 m to the west of boreholes collared from Room 211 of the 240 Level for future solute transport experiments within Fracture Zone 2.0, and to further our understanding of the rock mass in the area. Fracture Zones 2.5, 2.0, 1.9 and a subvertical joint zone in the footwall were all intersected in the borehole. Preliminary results from detailed core logging show that the lithostructural domains intersected in the borehole correlate with those previously identified in the URL shaft, and in nearby exploration boreholes drilled from the 130 Level. The domains are shallow-dipping toward the southeast and are parallel to the three main fracture zones intersected in the borehole.

  14. Methods to ensure optimal off-bottom and drill bit distance under pellet impact drilling

    Science.gov (United States)

    Kovalyov, A. V.; Isaev, Ye D.; Vagapov, A. R.; Urnish, V. V.; Ulyanova, O. S.

    2016-09-01

    The paper describes pellet impact drilling which could be used to increase the drilling speed and the rate of penetration when drilling hard rock for various purposes. Pellet impact drilling implies rock destruction by metal pellets with high kinetic energy in the immediate vicinity of the earth formation encountered. The pellets are circulated in the bottom hole by a high velocity fluid jet, which is the principle component of the ejector pellet impact drill bit. The paper presents the survey of methods ensuring an optimal off-bottom and a drill bit distance. The analysis of methods shows that the issue is topical and requires further research.

  15. Casing drilling

    Energy Technology Data Exchange (ETDEWEB)

    Heenan, D. [Tesco Corp., Calgary, AB (Canada)

    2003-07-01

    This paper reviewed the experience that Tesco has gained by drilling several wells using only casings as the drill stem. Tesco has manufactured a mobile and compact hydraulic drilling rig called the Casing Drilling {sup TM} system. The system could be very effective and efficient for exploration and development of coalbed methane (CBM) reserves which typically require extensive coring. Continuous coring while drilling ahead, along wire line retrieval, can offer time savings and quick core recovery of large diameter core which is typically required for exploration core desorption tests. The proposed system may also have the potential to core or drill typically tight gas sands or underbalanced wells with air or foam. This would reduce drilling fluid damage while simultaneously finding gas. Compared to conventional drill pipes, Casing Drilling {sup TM} could also be effective with water production from shallow sands because of the smaller annual clearance which requires less air volumes to lift any produced water. 9 figs.

  16. Whole-body Vibration Exposure of Drill Operators in Iron Ore Mines and Role of Machine-Related, Individual, and Rock-Related Factors

    Directory of Open Access Journals (Sweden)

    Dhanjee Kumar Chaudhary

    2015-12-01

    Conclusion: Prevention should include using appropriate machines to handle rock hardness, rock uniaxial compressive strength and density, and seat improvement using ergonomic approaches such as including a suspension system.

  17. Aerated drilling cutting transport analysis in geothermal well

    Science.gov (United States)

    Wakhyudin, Aris; Setiawan, Deni; Dwi Marjuan, Oscar

    2017-12-01

    Aeratad drilling widely used for geothermal drilling especially when drilled into predicted production zone. Aerated drilling give better performance on preventing lost circulation problem, improving rate of penetration, and avoiding drilling fluid invasion to productive zone. While well is drilled, cutting is produced and should be carried to surface by drilling fluid. Hole problem, especially pipe sticking will occur while the cutting is not lifted properly to surface. The problem will effect on drilling schedule; non-productive time finally result more cost to be spent. Geothermal formation has different characteristic comparing oil and gas formation. Geothermal mainly has igneous rock while oil and gas mostly sedimentary rock. In same depth, formation pressure in geothermal well commonly lower than oil and gas well while formation temperature geothermal well is higher. While aerated drilling is applied in geothermal well, Igneous rock density has higher density than sedimentary rock and aerated drilling fluid is lighter than water based mud hence minimum velocity requirement to transport cutting is larger than in oil/gas well drilling. Temperature and pressure also has impact on drilling fluid (aerated) density. High temperature in geothermal well decrease drilling fluid density hence the effect of pressure and temperature also considered. In this paper, Aerated drilling cutting transport performance on geothermal well will be analysed due to different rock and drilling fluid density. Additionally, temperature and pressure effect on drilling fluid density also presented to merge.

  18. Drilling unit

    Energy Technology Data Exchange (ETDEWEB)

    Umanchik, N P; Demin, A V; Khrustalev, N N; Linnik, G N; Lovchev, S V; Rozin, M M; Sidorov, R V; Sokolov, S I; Tsaregradskiy, Yu P

    1981-01-01

    A drilling unit is proposed which includes a hydraulic lifter, hydraulic multiple-cylinder pump with valve distribution and sectional drilling pump with separators of the working and flushing fluid. In order to reduce metal consumption and the overall dimensions of the drilling unit, the working cavity of each cylinder of the hydraulic multiple-cylinder pump is equipped with suction and injection valves and is hydraulically connected to the working cavity by one of the sections of the drilling pump.

  19. 'Escher' Rock

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Chemical Changes in 'Endurance' Rocks [figure removed for brevity, see original site] Figure 1 This false-color image taken by NASA's Mars Exploration Rover Opportunity shows a rock dubbed 'Escher' on the southwestern slopes of 'Endurance Crater.' Scientists believe the rock's fractures, which divide the surface into polygons, may have been formed by one of several processes. They may have been caused by the impact that created Endurance Crater, or they might have arisen when water leftover from the rock's formation dried up. A third possibility is that much later, after the rock was formed, and after the crater was created, the rock became wet once again, then dried up and developed cracks. Opportunity has spent the last 14 sols investigating Escher, specifically the target dubbed 'Kirchner,' and other similar rocks with its scientific instruments. This image was taken on sol 208 (Aug. 24, 2004) by the rover's panoramic camera, using the 750-, 530- and 430-nanometer filters. The graph above shows that rocks located deeper into 'Endurance Crater' are chemically altered to a greater degree than rocks located higher up. This chemical alteration is believed to result from exposure to water. Specifically, the graph compares ratios of chemicals between the deep rock dubbed 'Escher,' and the more shallow rock called 'Virginia,' before (red and blue lines) and after (green line) the Mars Exploration Rover Opportunity drilled into the rocks. As the red and blue lines indicate, Escher's levels of chlorine relative to Virginia's went up, and sulfur down, before the rover dug a hole into the rocks. This implies that the surface of Escher has been chemically altered to a greater extent than the surface of Virginia. Scientists are still investigating the role water played in influencing this trend. These data were taken by the rover's alpha particle X-ray spectrometer.

  20. Study methods for the drillings around the underground nuclear explosions in the Sahara. Part 1. study of rock samples; Methodes d'etude des forages realises autour des explosions nucleaires souterraines au Sahara. Premiere partie: etude des echantillons de roche

    Energy Technology Data Exchange (ETDEWEB)

    Derlich, S [Commissariat a l' Energie Atomique, Bruyers-le-Chatel (France). Centre d' Etudes

    1969-07-01

    An examination of the mechanical effects produced on rocks by an underground nuclear explosion calls for the use of particular means of exploration which are described in this report, special attention being paid to the equipment used in connection with the French nuclear tests in the Sahara. The drilling methods used (rotary and turbo-drilling) are adapted to the particular conditions of the sampling programme, to the radioactivity and to the temperature in the region of the explosion. A study of the samples makes it possible to obtain the new characteristics of the rock and to assess the chemical and mechanical transformations which it has undergone. An examination of the core obtained from the drilling, together with a knowledge of the drilling parameters (depth of the probe, sample recovery, etc...), makes it possible to study the extent and the characteristics of the zones which have been damaged to different degrees according to their distance from the zero point: cavity, strongly powdered zone, fractured zone, chimney, zones containing high stresses leading to a particular type of fracture of the cores. The problems connected with the interpretation of the results are also presented. (author) [French] L'examen des effets mecaniques provoques par une explosion nucleaire souterraine sur la roche necessite la mise en oeuvre de moyens d'exploration particuliers dont l'expose fait l'objet de ce rapport, essentiellement pour les moyens utilises autour des essais nucleaires francais au Sahara. Les methodes de forage (rotary et turboforage) sont adaptees aux conditions particulieres dues au programme d'echantillonnage, a la radioactivite et a la temperature regnant a proximite du point de tir. L'etude des echantillons permet la determination des nouveaux caracteres de la roche et de ses transformations chimique et mecanique. L'examen des carottes et l'utilisation des parametres de forage (cotes sondeurs, recuperation des echantillons, etc...) permettent d'etudier l

  1. Microgravity Drill and Anchor System

    Science.gov (United States)

    Parness, Aaron; Frost, Matthew A.; King, Jonathan P.

    2013-01-01

    This work is a method to drill into a rock surface regardless of the gravitational field or orientation. The required weight-on-bit (WOB) is supplied by a self-contained anchoring mechanism. The system includes a rotary percussive coring drill, forming a complete sampling instrument usable by robot or human. This method of in situ sample acquisition using micro - spine anchoring technology enables several NASA mission concepts not currently possible with existing technology, including sampling from consolidated rock on asteroids, providing a bolt network for astronauts visiting a near-Earth asteroid, and sampling from the ceilings or vertical walls of lava tubes and cliff faces on Mars. One of the most fundamental parameters of drilling is the WOB; essentially, the load applied to the bit that allows it to cut, creating a reaction force normal to the surface. In every drilling application, there is a minimum WOB that must be maintained for the system to function properly. In microgravity (asteroids and comets), even a small WOB could not be supported conventionally by the weight of the robot or astronaut. An anchoring mechanism would be needed to resist the reactions, or the robot or astronaut would push themselves off the surface and into space. The ability of the system to anchor itself to a surface creates potential applications that reach beyond use in low gravity. The use of these anchoring mechanisms as end effectors on climbing robots has the potential of vastly expanding the scope of what is considered accessible terrain. Further, because the drill is supported by its own anchor rather than by a robotic arm, the workspace is not constrained by the reach of such an arm. Yet, if the drill is on a robotic arm, it has the benefit of not reflecting the forces of drilling back to the arm s joints. Combining the drill with the anchoring feet will create a highly mobile, highly stable, and highly reliable system. The drilling system s anchor uses hundreds of

  2. Stratigraphy, structure, and some petrographic features of Tertiary volcanic rocks at the USW G-2 drill hole, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Maldonado, F.; Koether, S.L.

    1983-01-01

    A continuously cored drill hole penetrated 1830.6 m of Tertiary volcanic strata comprised of the following in descending order: Paintbrush Tuff, tuffaceous beds of Calico Hills, Crater Flat Tuff, lava and flow breccia (rhyodacitic), tuff of Lithic Ridge, bedded and ash-flow tuff, lava and flow breccia bedded tuff, conglomerate and ash-flow tuff, and older tuffs of USW G-2. Comparison of unit thicknesses at USW G-2 to unit thicknesses at previously drilled holes at Yucca Mountain indicate: (1) thickening of the Paintbrush Tuff members and tuffaceous beds of Calico Hills toward the northern part of Yucca Mountain; (2) thickening of the Prow Pass Member but thinning of the Bullfrog Member and Tram unit; (3) thinning of the tuff of Lithic Ridge; (4) presence of about 280 m of lava and flow breccia not previously penetrated by any drill hole; and (5) presence of an ash-flow tuff unit at the bottom of the drill hole not previously intersected, apparently the oldest unit penetrated at Yucca Mountain to date. Petrographic features of some of the units include: (1) decrease in quartz and K-feldspar and increases in biotite and plagioclase with depth in the tuffaceous beds of Calico Hills; (2) an increase in quartz phenocrysts from the top to the bottom members of the Crater Flat Tuff; (3) a low quartz content in the tuff of Lithic Ridge, suggesting tapping of the magma chamber at quartz-poor levels; (4) a change in zeolitic alteration from heulandite to clinoptilolite to mordenite with increasing depth; (5) lavas characterized by a rhyolitic top and dacitic base, suggesting reverse compositional zoning; and (6) presence of hydrothermal mineralization in the lavas that could be related to an itrusive under Yucca Mountain or to volcanism associated with the Timber Mountain-Claim Canyon caldera complex. A fracture analysis of the core resulted in tabulation of 7848 fractures, predominately open and high angle

  3. Multi-state autonomous drilling for lunar exploration

    Directory of Open Access Journals (Sweden)

    Chen Chongbin

    2016-10-01

    Full Text Available Due to the lack of information of subsurface lunar regolith stratification which varies along depth, the drilling device may encounter lunar soil and lunar rock randomly in the drilling process. To meet the load safety requirements of unmanned sampling mission under limited orbital resources, the control strategy of autonomous drilling should adapt to the indeterminable lunar environments. Based on the analysis of two types of typical drilling media (i.e., lunar soil and lunar rock, this paper proposes a multi-state control strategy for autonomous lunar drilling. To represent the working circumstances in the lunar subsurface and reduce the complexity of the control algorithm, lunar drilling process was categorized into three drilling states: the interface detection, initiation of drilling parameters for recognition and drilling medium recognition. Support vector machine (SVM and continuous wavelet transform were employed for the online recognition of drilling media and interface, respectively. Finite state machine was utilized to control the transition among different drilling states. To verify the effectiveness of the multi-state control strategy, drilling experiments were implemented with multi-layered drilling media constructed by lunar soil simulant and lunar rock simulant. The results reveal that the multi-state control method is capable of detecting drilling state variation and adjusting drilling parameters timely under vibration interferences. The multi-state control method provides a feasible reference for the control of extraterrestrial autonomous drilling.

  4. Advanced control strategies for a drill rig

    International Nuclear Information System (INIS)

    Banerjee, A.; Hiller, M.; Fink, B.

    1996-01-01

    The construction of tunnels is usually undertaken using a combination of blasting and drilling to achieve rock excavation. Easy handling and high accuracy, and thus greater efficiency, in drilling rigs is an essential ingredient of successful competition in the market place. This article describes a cartesian control concept used for a twin boom drill rig. This simplifies the handling of a drilling boom, reduces the duration of a working cycle and increases security. A remote control system has been added to the drill rig to support the operator working in complicated environments. (UK)

  5. Drilling reorganizes

    Science.gov (United States)

    Richman, Barbara T.

    As the first in a proposed series of steps that would move scientific ocean drilling from its own niche within the National Science Foundation's (NSF) Directorate for Astronomical, Atmospheric, Earth, and Ocean Sciences (AAEO) into the agency's Division of Ocean Sciences, Grant Gross, division director, has been appointed acting director of the Office of Scientific Ocean Drilling (OSOD). Gross will retain the directorship of the division, which also is part of AAEO. Allen M. Shinn, Jr., OSOD director for nearly 2 years, has been reassigned effective July 10 to a position in NSF's Office of Planning and Resource Management.The move aims to tie drilling operations more closely to the science with which it is associated, Gross said. This first step is an organizational response to the current leaning toward using a commercial drilling vessel as the drilling platform, he said. Before the market for such commercial drill ships opened (Eos, February 22, 1983, p . 73), other ship options for scientific ocean drilling included refurbishing the aging Glomar Challenger or renovating, at great expense, the Glomar Explorer. A possible next step in the reorganization is to make OSOD the third section within the Ocean Sciences Division. Currently, the division is divided into the Oceanographic Facilities and Support Section and the Ocean Sciences Research Section.

  6. Exploration of the crystalline underground by extension drilling of the Urach 3 well in the framework of a feasibility study for a hot dry rock demonstration project; Erkundung des kristallinen Untergrunds mit der Vertiefungsbohrung Urach 3 im Rahmen einer Machbarkeitsstudie fuer ein Hot-Dry-Rock-Demonstrationsprojekt

    Energy Technology Data Exchange (ETDEWEB)

    Tenzer, H [Stadtwerke Bad Urach (Germany); Genter, A; Hottin, A M [BRGM/GIG, Orleans (France)

    1997-12-01

    The prerequisites for specific research into the use of Hot Dry Rock geothermal energy at great depths and temperatures of up to 147 C. In Europe were created with the drilling and completition of the 3334 m deep research drill hole Urach 3 in its phase I (1977/78), and its subsequent extension to 3488 m in phase II (1982/83) within the metamorphic gneiss rock of Urach. A single hole circulation system was tested. Basic results concerning the temperature field, joint system, stress field and hydraulic behavior of the rock were achieved. According to the European HDR guidelines data from depths were a mean reservoir temperature of 175-180 C prevails were necessary to carry out a HDR pilot project. Within the scope of a feasibility study the already existing drill hole Urach 3 was extended from 3488 m to 4445 m depth where the required rock temperature of >170 C was expected. The objective of the project was to determine rock parameters at depth of high temperatures. The bottom hole temperature at true vertical depth of 4394.72 m was determined with 170 C. It can be proved that the temperature gradient is constant with 2.9 K/100 m depth. Due to the results of the investigations it is proposed that the Urach site located in a widespread tectonic horizontal strike-slip system is suitable for a HDR demonstration project. The results can be applied in south German and northern Swiss regions and in other large regions of Europe. Many potential consumers of geothermal energy produced by the HDR concept are situated close around the Urach 3 drill site. (orig./AKF) [Deutsch] Die Forschungsarbeiten zur Weiterentwicklung des Hot-Dry-Rock-Verfahrens begannen am Standort Bad Urach im Jahr 1975. In einer ersten Phase wurde die Bohrung Urach 3 1977/78 auf 3334 m mit einer Gesteinstemperatur von 143 C abgeteuft. Umfangreiche Hydraulische Tests und Frac-Versuche erfolgten. Hiermit wurden die Voraussetzungen fuer die Erkundung des Hot-Dry-Rock-Konzeptes in grossen Tiefen und

  7. HYDRATE CORE DRILLING TESTS

    Energy Technology Data Exchange (ETDEWEB)

    John H. Cohen; Thomas E. Williams; Ali G. Kadaster; Bill V. Liddell

    2002-11-01

    The ''Methane Hydrate Production from Alaskan Permafrost'' project is a three-year endeavor being conducted by Maurer Technology Inc. (MTI), Noble, and Anadarko Petroleum, in partnership with the U.S. DOE National Energy Technology Laboratory (NETL). The project's goal is to build on previous and ongoing R&D in the area of onshore hydrate deposition. The project team plans to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope includes drilling and coring one well on Anadarko leases in FY 2003 during the winter drilling season. A specially built on-site core analysis laboratory will be used to determine some of the physical characteristics of the hydrates and surrounding rock. Prior to going to the field, the project team designed and conducted a controlled series of coring tests for simulating coring of hydrate formations. A variety of equipment and procedures were tested and modified to develop a practical solution for this special application. This Topical Report summarizes these coring tests. A special facility was designed and installed at MTI's Drilling Research Center (DRC) in Houston and used to conduct coring tests. Equipment and procedures were tested by cutting cores from frozen mixtures of sand and water supported by casing and designed to simulate hydrate formations. Tests were conducted with chilled drilling fluids. Tests showed that frozen core can be washed out and reduced in size by the action of the drilling fluid. Washing of the core by the drilling fluid caused a reduction in core diameter, making core recovery very difficult (if not impossible). One successful solution was to drill the last 6 inches of core dry (without fluid circulation). These tests demonstrated that it will be difficult to capture core when drilling in permafrost or hydrates without implementing certain safeguards. Among the coring tests was a simulated hydrate

  8. Geologic field notes and geochemical analyses of outcrop and drill core from Mesoproterozoic rocks and iron-oxide deposits and prospects of southeast Missouri

    Science.gov (United States)

    Day, Warren C.; Granitto, Matthew

    2014-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources/Missouri Geological Survey, undertook a study from 1988 to 1994 on the iron-oxide deposits and their host Mesoproterozoic igneous rocks in southeastern Missouri. The project resulted in an improvement of our understanding of the geologic setting, mode of formation, and the composition of many of the known deposits and prospects and the associated rocks of the St. Francois terrane in Missouri. The goal for this earlier work was to allow the comparison of Missouri iron-oxide deposits in context with other iron oxide-copper ± uranium (IOCG) types of mineral deposits observed globally. The raw geochemical analyses were released originally through the USGS National Geochemical Database (NGDB, http://mrdata.usgs.gov). The data presented herein offers all of the field notes, locations, rock descriptions, and geochemical analyses in a coherent package to facilitate new research efforts in IOCG deposit types. The data are provided in both Microsoft Excel (Version Office 2010) spreadsheet format (*.xlsx) and MS-DOS text formats (*.txt) for ease of use by numerous computer programs.

  9. Development of controlled drilling system

    International Nuclear Information System (INIS)

    Kiho, Kenzo; Miyakawa, Kimio; Suzuki, Koichi; Sunaga, Takayuki

    2008-01-01

    In Japan, the soft sedimentary rock of the Neogene tertiary is being focused as a host rock for the High Level Radioactive Waste (HLW) disposal. Especially, the soft sedimentary rock at the offshore, region is thought to be one of the best candidates, since there is no driving force of the underground water. The measurement and logging in the bore hole in order to check the hydro-geological and geomechanical conditions of the host rock is a very important way to examine the potentially of the disposal candidates. The CRIEPI (Central Research Institute of Electric Power Industry) has been conducting the project about the controlled drilling technology and the measurement and logging technologies in its borehole. In 2000, as the beginning year of the project, we made the conceptual design of the drilling and measuring systems, and made key tools concerning each technology on an experimental basis. We have been developing sub tools constructing drilling and measuring systems since 2000, and applying these systems to the Horonobe site recent 5 years. We will briefly report the outline of the system and the results of drilling and measurement that were carried out at the Horonobe site. (author)

  10. Percussive drilling application of translational motion permanent magnet machine

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shujun

    2012-07-01

    It is clear that percussive drills are very promising since they can increase the rate of penetration in hard rock formations. Any small improvements on the percussive drills can make a big contribution to lowering the drilling costs since drilling a well for the oil and gas industry is very costly. This thesis presents a percussive drilling system mainly driven by a tubular reciprocating translational motion permanent magnet synchronous motor (RTPMSM), which efficiently converts electric energy to kinetic energy for crushing the hard rock since there is no mechanical media. The thesis starts from state-of-the-art of percussive drilling techniques, reciprocating translational motion motors, and self-sensing control of electric motors and its implementation issues. The following chapters present modeling the hard rock, modeling the drill, the design issues of the drill, the RTPMSM and its control. A single-phase RTPMSM prototype is tested for the hard rock drilling. The presented variable voltage variable frequency control is also validated on it. The space vector control and self-sensing control are also explored on a three-phase RTPMSM prototype. The results show that the percussive drill can be implemented to the hard rock drilling applications. A detailed summarisation of contributions and future work is presented at the end of the thesis.(Author)

  11. Compressional wave velocity and index properties of the gabbroic rocks drilled at hole 1105A of the Atlantis Bank, southwest Indian Ridge

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, D.G.; Krishna, K.S.

    Director, NIO, Goa for his continuous encouragement in carrying out the work. The support provided by the scientific party and technical staff of ODP Leg 179 at sea is highly appreciated. We are grateful to both the co-chiefs for providing rock samples... and porosity parameters by gravimetric and gamma-ray attenuation techniques. In: S.O. Schlanger, E.D Jackson, et al. (Eds), Initial Report., DSDP 33: Washington (U.S. Govt. Printing Office), pp.931-958. CHRISTENSEN, NIKOLAS, I. (1977) Seismic velocities...

  12. Drillings at Veitsivaara in Hyrynsalmi

    International Nuclear Information System (INIS)

    Hinkkanen, H.; Oehberg, A.

    1990-04-01

    According to Governmen's decision in principle Teollisuuden Voima Oy is obliged to make bedrock investigations for the final disposal of the spent fuel produced by its power plant in Olkiluoto. Areas in Kuhmo, Hyrynsalmi, Sievi, Konginkangas and Olkiluoto were selected for the preliminary site investigations to be carried out during years 1987-1992. In Veitsivaara, Hyrynsalmi the investigation program was started in April 1987. During years 1987-1988 a deep borehole (1002 m) and 4 and 500 m deep additional boreholes were core drilled in the area. Various parameters were measured from the flushing water during the drilling. Corelogging included collecting detailed data of fractures and determining the weathering degree and petrographical properties. Rock mechanical properties, uniaxial compressive strength, Young's modulus and Poisso's ratio were measured from core samples. The flushing water needed in the drillings was pumped from 100 m deep borehole wells drilled with down-the-hole method in the vicinity of the borehole. The water was labeled with 2 tracers before use. About 75 m deep hole was percussion drilled near the borehole KR1. The spreading of the flushing water in the upper part of bedrock and the quality off the ground of the groundwater were studied by taking watersamples from the hole. 30 vertical holes were core drilled down to the depth of 10 m in bedrock with a light drilling unit. Drilling was carried out in order to determine the thickness of the overburden, to investigate the geophysical anomaly sources and to support geological mapping in areas covered with overburden. Groundwater hydraulics is one of the main subjects during the preliminary site investigation phase. For that reason 7 multilevel piezometers were installed on the site to monitore hydraulic head in 3 levels in the uppermost part of bedrock. The work consisted of borehole drillings to the depth of 100 m, geophysical borehole loggings and installation of piezometers. In addition

  13. Possibilities of instrumental neutron activation and X-ray fluorescence analyses of sedimentary-magmatic metamorphosed rocks from deep borehole drill cores

    International Nuclear Information System (INIS)

    Gurevich, A.L.; Drynkin, V.I.; Lejpunskaya, D.I.

    1977-01-01

    The possibilities for instrumental neutron-activation and X-ray fluorescence analyses of rocks of metamorphized sedimentary magmatic complexes have been studied with the aid of deep-hole core. The principal characteristics of the conditions of irradiation and of sample measurement ensuring the determination of the content of 26 elements are presented. The use of X-ray fluorescence analysis enables one to determine additionally the content of stron-tium and niobium. Standard specimens of the composition of rocks and complex reference compounds based on phenol formaldehyde resins are used as metrolo.o.ical auxiliaries in the calibration system and in evaluating the correctness of the techniques of instrumental neutron activation and fluorescence analysis. The ranges of the contents to be determined, the sensitivity and relative standard deviation are given. The contribution from the nonuniformity of the specimens to the summary error of element determination is estimated. It is shown that the accuracy and error of analyses are within the allowable range

  14. Drilling rig

    Energy Technology Data Exchange (ETDEWEB)

    Galiopa, A A; Yegorov, E K

    1981-01-04

    A drilling rig is proposed which contains a tower, lifter in the form of n infinite chain, and mobile rotator with holding device connected to the chain, and pipe holder. In order to accelerate the auxiliary operations to move the drilling string and unloaded rotator, the rotator is equipped with a clamp with means for transverse connection of it to both branches of the chain, while the pipe holders equipped with a clamp with means of connecting it to one of the branches of the chain.

  15. Drilling mud

    Energy Technology Data Exchange (ETDEWEB)

    Rusayev, A A; Bibikov, K V; Simonenkov, I D; Surkova, K I

    1982-01-01

    Drilling mud is proposed which contains clay, water, water output reducer, pH regulator, viscosity reducer and hydrogen sulfide absorber. In order to improve the absorbing capacity of the drilling mud with pH 8-11 and simultaneously preservation of the technological properties of the mud, it contains as the absorber of hydrogen sulfide pyrite cinders with the following ratio of components, % by mass: clay 5.0-35.0; water output reducer 0.2-2.0; pH regulator 0.05-0.25; viscosity reducer 0.1-1.0; pyrite cinders 0.5-4.0; water--the rest.

  16. Rb-Sr systematics in drill core samples of the Eye-Dashwa Lakes pluton at the whole rock and mineral scale

    International Nuclear Information System (INIS)

    Peterman, Z.E.; Futa, K.; Kamineni, D.C.

    1990-01-01

    Twenty-one whole-rock samples from boreholes ATK-1 and ATK-6 define a precise Rb-Sr isochron with an age of 2637 ± 33 Ma and initial 87 Sr/ 86 Sr intercept, IR(Sr), of 0.70144 ± 0.00006. An internal mineral isochron for ATC-1 (991-997) and biotites from ATK-1 (35.63) and ATK-1 (3.84) give younger ages of 2541 ± 14 Ma 2574 ± 25 Ma, and 2534 ± 25 Ma, respectively. Data for samples from fracture zones scatter but correlate around an isochron of 2281 ± 153 Ma. The internal isochron and biotite ages record cooling below about 300 C due to uplift and erosion. The younger age, 2281 ± 153 Ma, records an episode or episodes of brittle failure at relatively high crustal levels. These fractures provided pathways for infiltration of water, which facilitated the mineralogical alteration

  17. Geological Development of the Izu-Bonin Forearc Since the Eocene Based on Biostratigraphic, Rock Magnetic, and Sediment Provenance Observations from IODP Expedition 352 Drill Cores

    Science.gov (United States)

    Petronotis, K. E.; Robertson, A.; Kutterolf, S.; Avery, A.; Baxter, A.; Schindlbeck, J. C.; Wang, K. L.; Acton, G.

    2016-12-01

    International Ocean Discovery Program (IODP) Expedition 352 recovered early Oligocene to recent sediments above Eocene igneous basement at 4 sites in the Izu-Bonin Forearc. The sites were selected to investigate the forearc region since subduction initiation in the Eocene, with Sites U1439 and U1442 being cored into the upper trench slope and Sites U1440 and U1441 into the lower trench slope. Postcruise studies of biostratigraphy, sediment chemistry, tephra composition and chronology and magnetic properties, along with observations from prior coring help constrain the regional geological development. Volcanic activity in the area, as inferred from its influence on sediment composition, has varied between long periods of activity and quiescence. Combined whole-rock sediment chemistry and tephra compositions suggest that during the Oligocene to earliest Miocene ( 30-22 Ma) tuffaceous input of predominantly dacitic composition was mainly derived from the intra-oceanic Izu-Bonin Arc. The early Miocene interval ( 22-15 Ma) lacks tuffaceous input, as supported by rock magnetic data. During this period, the forearc subsided beneath the carbonate compensation depth (CCD), as evidenced by radiolarian-bearing mud and metal-rich silty clay. This was followed by input of tephra with bimodal felsic and mafic compositions from the Izu-Bonin Arc from 15 to 5 Ma. Middle Miocene to Quaternary time was characterized by increased carbonate preservation, coupled with abundant, predominantly felsic tephra input, which is chemically indicative of a Japan continental arc source (Honshu), with additional chemically distinctive input from the Izu-Bonin Arc. Extending back to 32 Ma, tephra layers can be correlated between the upper-slope sites, extrapolated to the less well-dated lower-slope sites, and further correlated with onland Japanese tephra (Kutterolf et al., 2016; Goldschmidt Conference). Overall, the new results provide an improved understanding of the regional tectonic evolution.

  18. Inferring the lithology of borehole rocks by applying neural network classifiers to downhole logs: an example from the Ocean Drilling Program

    Science.gov (United States)

    Benaouda, D.; Wadge, G.; Whitmarsh, R. B.; Rothwell, R. G.; MacLeod, C.

    1999-02-01

    In boreholes with partial or no core recovery, interpretations of lithology in the remainder of the hole are routinely attempted using data from downhole geophysical sensors. We present a practical neural net-based technique that greatly enhances lithological interpretation in holes with partial core recovery by using downhole data to train classifiers to give a global classification scheme for those parts of the borehole for which no core was retrieved. We describe the system and its underlying methods of data exploration, selection and classification, and present a typical example of the system in use. Although the technique is equally applicable to oil industry boreholes, we apply it here to an Ocean Drilling Program (ODP) borehole (Hole 792E, Izu-Bonin forearc, a mixture of volcaniclastic sandstones, conglomerates and claystones). The quantitative benefits of quality-control measures and different subsampling strategies are shown. Direct comparisons between a number of discriminant analysis methods and the use of neural networks with back-propagation of error are presented. The neural networks perform better than the discriminant analysis techniques both in terms of performance rates with test data sets (2-3 per cent better) and in qualitative correlation with non-depth-matched core. We illustrate with the Hole 792E data how vital it is to have a system that permits the number and membership of training classes to be changed as analysis proceeds. The initial classification for Hole 792E evolved from a five-class to a three-class and then to a four-class scheme with resultant classification performance rates for the back-propagation neural network method of 83, 84 and 93 per cent respectively.

  19. Drillings at Kivetty in Konginkangas

    International Nuclear Information System (INIS)

    Hinkkanen, H.; Oehberg, A.

    1990-05-01

    According to Government's decision in principle Teollisuuden Voima Oy is obliged to make bedrock investigations for the final disposal of the spent fuel produced by its power plant in Olkiluoto. Areas in Kuhmo, Hyrynsalmi, Sievi, Konginkangas and Olkiluoto were selected for the preliminary site investigations to be carried out during years 1987-1992. In Kivetty, Konginkangas the investigation program was started in spring 1988. During years 1988-1989 a deep borehole (1019 m) and 4 about 500 m deep additional boreholes were core drilled in the area. The structure of the holes makes it possible to carry out many investigations in the holes. Various parameters were measured from the flushing water during the drilling. Corelogging included collecting detailed data of fractures and determining the weathering degree and petrographical properties. Rock mechanical properties, uniaxial compressive strength, Young's modulus and Poisson's ratio were measured from core samples. The flushing water needed in the drillings was pumped from 100 m deep borehole wells drilled with down-the-hole method in the vicinity of the borehole. The water was labeled with 2 tracers before use. 30 vertical holes were core drilled down to the depth of 10 m in bedrock with a light drilling unit. Drilling was carried out in order to determine the thickness of the overburden to investigate the geophysical anomaly sources and to support geological mapping in areas covered with overburden. Groundwater hydraulics is one of the main subjects during the preliminary site investigation phase. For that reason 7 multilevel piezometers were installed on the site to monitore hydraulic head in 3 levels in the uppermost part of bedrock. The work consisted of borehole drillings to the depth of 100 m, geophysical borehole loggings and installation of piezometers. In addition about 65 shotholes were drilled for VSP-, tubewave and seismic measurements

  20. Drillings at Syyry in Sievi

    International Nuclear Information System (INIS)

    Hinkkanen, H.; Oehberg, A.

    1990-10-01

    According to Government's decision in principle Teollisuuden Voima Oy is obliged to make bedrock investigations for the final disposal of the spent fuel produced by its power plant in Olkiluoto. Areas in Kuhmo, Hyrynsalmi, Sievi, Konginkangas and Olkiluoto were selected for the preliminary site investigations to be carried out during years 1987-1992. In Syyry, Sievi the investigation program was started in spring 1988. During years 1988-1989 a deep borehole (1022 m) and 4 about 500-700 m deep additional boreholes were core drilled in the area. The structure of the holes makes it possible to carry out many investigations in the holes. Various parameters were measured from the flushing water during the drilling. Corelogging included collecting detailed data of fractures and determining the weathering degree and petrographical properties. Rock mechanical properties, uniaxial compressive strength, Young's modulus and Poisson's ratio were measured from core samples. The flushing water needed in the drillings was pumped from 100 m deep borehole wells drilled with down-the-hole method in the vicinity of the borehole. The water was labeled with 2 tracers before use. 35 vertical holes were core drilled down to the depth of 10-20 m in bedrock with a light drilling unit. Drilling was carried out in order to determine the thickness of the overburden, to investigate the geophysical anomaly sources and to support geological mapping in areas covered with overburden. Groundwater hydraulics is one of the main subjects during the preliminary site investigation phase. For that reason 7 multilevel piezometers were installed on the site to monitore hydraulic head in 3 levels in the uppermost part of bedrock. The work consisted of borehole drillings to the depth of 100 m, geophysical borehole loggings and installation of piezometers. In addition about 85 shotholes were drilled for VSP-, tubewave and seismic measurements

  1. Study of rock-drilling fluid interactions that contribute for the borehole instability; Estudo das interacoes rocha-fluido de perfuracao que contribuem para a instabilidade dos pocos de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Correa, Cleysson C.; Nascimento, Regina S.V. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Quimica; Sa, Carlos H. de [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2004-07-01

    In this work it was developed a new three points flexural mechanical test submersed for the simultaneous evaluation of the mechanical and chemical nature processes involved in the rock/drilling fluid interactions, which contribute for the borehole instability. The utilized fluids were air, mineral oil, distilled water and water solutions of non hydrolized polyacrylamide, poly(diallyldimethylammonium chloride) with different molecular weights, and the copolymer with acrylamide. Cuttings rolling tests were utilized to help in the understanding of the mechanisms involved in the shale's inhibition process. The results suggest that shale/polymer interactions are responsible for the shale's mechanical resistance, since the quantity of water and total carbon content of the shales were the same, after the test, independently of the inhibitor used. The results also suggest that the shale instability depends on the amount of adsorbed water, since independently of the inhibitor utilized, the quantity of adsorbed water was the same as that obtained with the shale/water system. (author)

  2. Drilling mud

    Energy Technology Data Exchange (ETDEWEB)

    Babets, M A; Nechayev, N D; Vinogradova, G P

    1982-01-01

    A drilling mud is proposed which contains clay, alkali, water and stabilizer reagent. It is distinguished by the fact that in order to improve the viscosity and static shear stress, the stabilizer reagent contained is composted solid general wastes with the following ratio of components (% by weight): clay 10-15, alkali 0.1-0.2; composted solid general wastes 2-5; water--the rest.

  3. HIGH-POWER TURBODRILL AND DRILL BIT FOR DRILLING WITH COILED TUBING

    Energy Technology Data Exchange (ETDEWEB)

    Robert Radtke; David Glowka; Man Mohan Rai; David Conroy; Tim Beaton; Rocky Seale; Joseph Hanna; Smith Neyrfor; Homer Robertson

    2008-03-31

    Commercial introduction of Microhole Technology to the gas and oil drilling industry requires an effective downhole drive mechanism which operates efficiently at relatively high RPM and low bit weight for delivering efficient power to the special high RPM drill bit for ensuring both high penetration rate and long bit life. This project entails developing and testing a more efficient 2-7/8 in. diameter Turbodrill and a novel 4-1/8 in. diameter drill bit for drilling with coiled tubing. The high-power Turbodrill were developed to deliver efficient power, and the more durable drill bit employed high-temperature cutters that can more effectively drill hard and abrasive rock. This project teams Schlumberger Smith Neyrfor and Smith Bits, and NASA AMES Research Center with Technology International, Inc (TII), to deliver a downhole, hydraulically-driven power unit, matched with a custom drill bit designed to drill 4-1/8 in. boreholes with a purpose-built coiled tubing rig. The U.S. Department of Energy National Energy Technology Laboratory has funded Technology International Inc. Houston, Texas to develop a higher power Turbodrill and drill bit for use in drilling with a coiled tubing unit. This project entails developing and testing an effective downhole drive mechanism and a novel drill bit for drilling 'microholes' with coiled tubing. The new higher power Turbodrill is shorter, delivers power more efficiently, operates at relatively high revolutions per minute, and requires low weight on bit. The more durable thermally stable diamond drill bit employs high-temperature TSP (thermally stable) diamond cutters that can more effectively drill hard and abrasive rock. Expectations are that widespread adoption of microhole technology could spawn a wave of 'infill development' drilling of wells spaced between existing wells, which could tap potentially billions of barrels of bypassed oil at shallow depths in mature producing areas. At the same time, microhole

  4. Drilling mud

    Energy Technology Data Exchange (ETDEWEB)

    Baranovskiy, V D; Brintsev, A I; Gusev, V G; Katenev, Ye P; Pokhorenko, I V

    1979-10-25

    A drilling mud is proposed, which contains a dispersion medium, a dispersion phase, for instance, clay, a stabilizer reagent, for instance, carboxymethylcellulose and a weighter. In order to reduce the viscosity and to increase the stability of the mud it contains as the dispersion medium a 75% aqueous solution of the L-7 reagent. To increase the salt resistance of the mud, it additionally contains sodium chloride in a volume of 4.04.5 percent by weight, and to regulate the alkalinity, it additionally contains sodium hydroxide in a volume of 1.1 to 1.3 percent by weight.

  5. GRAIN-SCALE FAILURE IN THERMAL SPALLATION DRILLING

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, S C; Lomov, I; Roberts, J J

    2012-01-19

    Geothermal power promises clean, renewable, reliable and potentially widely-available energy, but is limited by high initial capital costs. New drilling technologies are required to make geothermal power financially competitive with other energy sources. One potential solution is offered by Thermal Spallation Drilling (TSD) - a novel drilling technique in which small particles (spalls) are released from the rock surface by rapid heating. While TSD has the potential to improve drilling rates of brittle granitic rocks, the coupled thermomechanical processes involved in TSD are poorly described, making system control and optimization difficult for this drilling technology. In this paper, we discuss results from a new modeling effort investigating thermal spallation drilling. In particular, we describe an explicit model that simulates the grain-scale mechanics of thermal spallation and use this model to examine existing theories concerning spalling mechanisms. We will report how borehole conditions influence spall production, and discuss implications for macro-scale models of drilling systems.

  6. Reduced abrasion drilling fluid

    NARCIS (Netherlands)

    2010-01-01

    A reduced abrasion drilling fluid system and method of drilling a borehole by circulating the reduced abrasion drilling fluid through the borehole is disclosed. The reduced abrasion drilling fluid comprises a drilling fluid, a first additive and a weighting agent, wherein the weighting agent has a

  7. Reduced abrasion drilling fluid

    NARCIS (Netherlands)

    2012-01-01

    A reduced abrasion drilling fluid system and method of drilling a borehole by circulating the reduced abrasion drilling fluid through the borehole is disclosed. The reduced abrasion drilling fluid comprises a drilling fluid, a first additive and a weighting agent, wherein the weighting agent has a

  8. Research into robotic automation of drilling equipment by the Institute of Mining, UB RAS

    Science.gov (United States)

    Regotunov, AS; Sukhov, RI

    2018-03-01

    The article discusses the issues connected with the development of instrumentation for the express-determination of strength characteristics of rocks during blasthole drilling in open pit mines. The trial results of the instrumentation are reported in terms of the drilling rate–energy content interrelation determined in the analyses of experimental drilling block data and by the digital model of rock distribution in depth versus drilling complexity index.

  9. Results from Testing of Two Rotary Percussive Drilling Systems

    Science.gov (United States)

    Kriechbaum, Kristopher; Brown, Kyle; Cady, Ian; von der Heydt, Max; Klein, Kerry; Kulczycki, Eric; Okon, Avi

    2010-01-01

    The developmental test program for the MSL (Mars Science Laboratory) rotary percussive drill examined the e ect of various drill input parameters on the drill pene- tration rate. Some of the input parameters tested were drill angle with respect to gravity and percussive impact energy. The suite of rocks tested ranged from a high strength basalt to soft Kaolinite clay. We developed a hole start routine to reduce high sideloads from bit walk. The ongoing development test program for the IMSAH (Integrated Mars Sample Acquisition and Handling) rotary percussive corer uses many of the same rocks as the MSL suite. An additional performance parameter is core integrity. The MSL development test drill and the IMSAH test drill use similar hardware to provide rotation and percussion. However, the MSL test drill uses external stabilizers, while the IMSAH test drill does not have external stabilization. In addition the IMSAH drill is a core drill, while the MSL drill uses a solid powdering bit. Results from the testing of these two related drilling systems is examined.

  10. Preliminary Research on Possibilities of Drilling Process Robotization

    Science.gov (United States)

    Pawel, Stefaniak; Jacek, Wodecki; Jakubiak, Janusz; Zimroz, Radoslaw

    2017-12-01

    Nowadays, drilling & blasting is crucial technique for deposit excavation using in hard rock mining. Unfortunately, such approach requires qualified staff to perform, and consequently there is a serious risk related to rock mechanics when using explosives. Negative influence of explosives usage on safety issues of underground mine is a main cause of mining demands related to elimination of people from production area. Other aspects worth taking into consideration are drilling precision according to drilling pattern, blasting effectiveness, improvement of drilling tool reliability etc. In the literature different drilling support solutions are well-known in terms of positioning support systems, anti-jamming systems or cavity detection systems. For many years, teleoperation of drilling process is also developed. Unfortunately, available technologies have so far not fully met the industries expectation in hard rock. Mine of the future is expected to incorporate robotic system instead of current approaches. In this paper we present preliminary research related to robotization of drilling process and possibilities of its application in underground mine condition. A test rig has been proposed. To simulate drilling process several key assumptions have been accepted. As a result, algorithms for automation of drilling process have been proposed and tested on the test rig. Experiences gathered so far underline that there is a need for further developing robotic system for drilling process.

  11. A method for automated processing of measurement information during mechanical drilling

    Energy Technology Data Exchange (ETDEWEB)

    Samonenko, V.I.; Belinkov, V.G.; Romanova, L.A.

    1984-01-01

    An algorithm is cited for a developed method for automated processing of measurement information during mechanical drilling. Its use in conditions of operation of an automated control system (ASU) from drilling will make it possible to precisely identify a change in the lithology, the physical and mechanical and the abrasive properties, in the stratum (pore) pressure in the rock being drilled out during mechanical drilling, which along with other methods for testing the drilling process will increase the reliability of the decisions made.

  12. Drill cuttings mount formation study

    Science.gov (United States)

    Teh, Su Yean; Koh, Hock Lye

    2014-07-01

    Oil, Gas and Energy sector has been identified as an essential driving force in the Malaysian Economic Transformation Programs (ETP). Recently confirmed discovery of many offshore oil and gas deposits in Malaysian waters has ignited new confidence in this sector. However, this has also spurred intense interest on safeguarding the health and environment of coastal waters in Malaysia from adverse impact resulting from offshore oil and gas production operation. Offshore discharge of spent drilling mud and rock cuttings is the least expensive and simplest option to dispose of large volumes of drilling wastes. But this onsite offshore disposal may have adverse environmental impacts on the water column and the seabed. It may also pose occupational health hazards to the workers living in the offshore platforms. It is therefore important to model the transport and deposition of drilling mud and rock cuttings in the sea to enable proper assessment of their adverse impacts on the environment and the workers. Further, accumulation of drill particles on the seabed may impede proper operation of pipelines on the seabed. In this paper, we present an in-house application model TUNA-PT developed to cater to local oil and gas industry needs to simulate the dispersion and mount formation of drill cuttings by offshore oil and gas exploration and production platforms. Using available data on Malaysian coastal waters, simulation analyses project a pile formation on the seabed with a maximum height of about 1 m and pile radius of around 30 to 50 m. Simulated pile heights are not sensitive to the heights of release of the cuttings as the sensitivity has been mitigated by the depth of water.

  13. New findings for the use of NMR- and computer tomography for gauging the potential of drilling fluids to cause damage to rocks; Neue Erkenntnisse bei der Anwendung von NMR- und Computertomografie-Methoden im Rahmen der Bewertung des Traegerschaedigungspotentiales von Bohrfluessigkeiten

    Energy Technology Data Exchange (ETDEWEB)

    Zwaag, C. van der [Reservoir Labs. AS, Trondheim (Norway); Stallmach, F. [Univ. Leipzig (Germany). Fakultaet fuer Physik und Geowissenschaften; Hanssen, J.E. [MI/Anchor Drilling Fluids AS, Stavanger (Norway); Soergaard, E. [Norsk Hydro AS, Bergen (Norway); Toennesen, R. [Saga Petroleum ASA, Stavanger (Norway)

    1998-12-31

    Polyanionic cellulose, xanthane and ppolyglycole are standard additives for water-based drilling fluids. These are added to drilling liquids to control water loss, provide viscosity and inhibit slating. Filtration losses, which are unavoidable when drilling, cause scavenging polymers to penetrate the area around the drilled hole. This causes a number of different reactions with the surrounding rocks and may ultimately have a permanent influence on the flow conditions of hydrocarbons. The study mentioned above aimed at determining the damage potential of these additives. [Deutsch] Polyanionische Cellulose, Xanthan und Polyglykol sind uebliche Zusatzstoffe von wasserbasischen Bohrspuelungen. Diese werden Bohrfluessigkeiten zur Wasserverlustkontrolle, zur Viskositaetsbildung und zur Schieferinhibierung zugesetzt. Die beim Bohrprozess unvermeidlichen Filtrationsverluste fuehren dazu, dass Spuelungspolymere beim Bohren in den Bohrlochnahbereich eindringen. Die Beschaffenheit dieser Stoffe fuehrt nach dem Eindringen zu unterschiedlichen Reaktionen mit dem Traegergestein. Diese koennen letzten Endes einen dauerhaften Einfluss auf die Zuflussbedingungen von Kohlenwasserstoffen haben. Das Ziel der vorliegenden Studie war es, das Traegerschaedigungspotential der obengenannten Spuelungszusaetze zu charakterisieren. (orig.)

  14. Drilling rate for the Cerro Prieto stratigraphic sequence

    Energy Technology Data Exchange (ETDEWEB)

    Prian C, R.

    1981-01-01

    Drilling practice at the field has been modified in several ways as better information is being obtained. The stratigraphic sequence of the area is made up of three sedimentary rock units of deltaic origin having different densities. These units have been named non-consolidated, semi-consolidated, and consolidated rocks; the thermal reservoirs are located in the latter. To investigate how the drilling rates are affected by the three rock units, plots of drilling advance versus time were made for a large number of wells. A typical plot is shown and drilling rates are practically constant in three different zones; that is, the drilling rate has only two breaks or changes in slope.

  15. Laser Drilling - Drilling with the Power of Light

    Energy Technology Data Exchange (ETDEWEB)

    Iraj A. Salehi; Brian C. Gahan; Samih Batarseh

    2007-02-28

    Gas Technology Institute (GTI) has been the leading investigator in the field of high power laser applications research for well construction and completion applications. Since 1997, GTI (then as Gas Research Institute- GRI) has investigated several military and industrial laser systems and their ability to cut and drill into reservoir type rocks. In this report, GTI continues its investigation with a 5.34 kW ytterbium-doped multi-clad high power fiber laser (HPFL). When compared to its competitors; the HPFL represents a technology that is more cost effective to operate, capable of remote operations, and requires considerably less maintenance and repair. Work performed under this contract included design and implementation of laboratory experiments to investigate the effects of high power laser energy on a variety of rock types. All previous laser/rock interaction tests were performed on samples in the lab at atmospheric pressure. To determine the effect of downhole pressure conditions, a sophisticated tri-axial cell was designed and tested. For the first time, Berea sandstone, limestone and clad core samples were lased under various combinations of confining, axial and pore pressures. Composite core samples consisted of steel cemented to rock in an effort to represent material penetrated in a cased hole. The results of this experiment will assist in the development of a downhole laser perforation or side tracking prototype tool. To determine how this promising laser would perform under high pressure in-situ conditions, GTI performed a number of experiments with results directly comparable to previous data. Experiments were designed to investigate the effect of laser input parameters on representative reservoir rock types of sandstone and limestone. The focus of the experiments was on laser/rock interaction under confining pressure as would be the case for all drilling and completion operations. As such, the results would be applicable to drilling, perforation, and

  16. Optimizing drilling performance using a selected drilling fluid

    Science.gov (United States)

    Judzis, Arnis [Salt Lake City, UT; Black, Alan D [Coral Springs, FL; Green, Sidney J [Salt Lake City, UT; Robertson, Homer A [West Jordan, UT; Bland, Ronald G [Houston, TX; Curry, David Alexander [The Woodlands, TX; Ledgerwood, III, Leroy W.

    2011-04-19

    To improve drilling performance, a drilling fluid is selected based on one or more criteria and to have at least one target characteristic. Drilling equipment is used to drill a wellbore, and the selected drilling fluid is provided into the wellbore during drilling with the drilling equipment. The at least one target characteristic of the drilling fluid includes an ability of the drilling fluid to penetrate into formation cuttings during drilling to weaken the formation cuttings.

  17. Brine and Gas Flow Patterns Between Excavated Areas and Disturbed Rock Zone in the 1996 Performance Assessment for the Waste Isolation Pilot Plant for a Single Drilling Intrusion that Penetrates Repository and Castile Brine Reservoir

    International Nuclear Information System (INIS)

    Economy, Kathleen M.; Helton, Jon Craig; Vaughn, Palmer

    1999-01-01

    The Waste Isolation Pilot Plant (WIPP), which is located in southeastern New Mexico, is being developed for the geologic disposal of transuranic (TRU) waste by the U.S. Department of Energy (DOE). Waste disposal will take place in panels excavated in a bedded salt formation approximately 2000 ft (610 m) below the land surface. The BRAGFLO computer program which solves a system of nonlinear partial differential equations for two-phase flow, was used to investigate brine and gas flow patterns in the vicinity of the repository for the 1996 WIPP performance assessment (PA). The present study examines the implications of modeling assumptions used in conjunction with BRAGFLO in the 1996 WIPP PA that affect brine and gas flow patterns involving two waste regions in the repository (i.e., a single waste panel and the remaining nine waste panels), a disturbed rock zone (DRZ) that lies just above and below these two regions, and a borehole that penetrates the single waste panel and a brine pocket below this panel. The two waste regions are separated by a panel closure. The following insights were obtained from this study. First, the impediment to flow between the two waste regions provided by the panel closure model is reduced due to the permeable and areally extensive nature of the DRZ adopted in the 1996 WIPP PA, which results in the DRZ becoming an effective pathway for gas and brine movement around the panel closures and thus between the two waste regions. Brine and gas flow between the two waste regions via the DRZ causes pressures between the two to equilibrate rapidly, with the result that processes in the intruded waste panel are not isolated from the rest of the repository. Second, the connection between intruded and unintruded waste panels provided by the DRZ increases the time required for repository pressures to equilibrate with the overlying and/or underlying units subsequent to a drilling intrusion. Third, the large and areally extensive DRZ void volumes is a

  18. Brine and Gas Flow Patterns Between Excavated Areas and Disturbed Rock Zone in the 1996 Performance Assessment for the Waste Isolation Pilot Plant for a Single Drilling Intrusion that Penetrates Repository and Castile Brine Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    ECONOMY,KATHLEEN M.; HELTON,JON CRAIG; VAUGHN,PALMER

    1999-10-01

    The Waste Isolation Pilot Plant (WIPP), which is located in southeastern New Mexico, is being developed for the geologic disposal of transuranic (TRU) waste by the U.S. Department of Energy (DOE). Waste disposal will take place in panels excavated in a bedded salt formation approximately 2000 ft (610 m) below the land surface. The BRAGFLO computer program which solves a system of nonlinear partial differential equations for two-phase flow, was used to investigate brine and gas flow patterns in the vicinity of the repository for the 1996 WIPP performance assessment (PA). The present study examines the implications of modeling assumptions used in conjunction with BRAGFLO in the 1996 WIPP PA that affect brine and gas flow patterns involving two waste regions in the repository (i.e., a single waste panel and the remaining nine waste panels), a disturbed rock zone (DRZ) that lies just above and below these two regions, and a borehole that penetrates the single waste panel and a brine pocket below this panel. The two waste regions are separated by a panel closure. The following insights were obtained from this study. First, the impediment to flow between the two waste regions provided by the panel closure model is reduced due to the permeable and areally extensive nature of the DRZ adopted in the 1996 WIPP PA, which results in the DRZ becoming an effective pathway for gas and brine movement around the panel closures and thus between the two waste regions. Brine and gas flow between the two waste regions via the DRZ causes pressures between the two to equilibrate rapidly, with the result that processes in the intruded waste panel are not isolated from the rest of the repository. Second, the connection between intruded and unintruded waste panels provided by the DRZ increases the time required for repository pressures to equilibrate with the overlying and/or underlying units subsequent to a drilling intrusion. Third, the large and areally extensive DRZ void volumes is a

  19. Real Time Seismic Prediction while Drilling

    Science.gov (United States)

    Schilling, F. R.; Bohlen, T.; Edelmann, T.; Kassel, A.; Heim, A.; Gehring, M.; Lüth, S.; Giese, R.; Jaksch, K.; Rechlin, A.; Kopf, M.; Stahlmann, J.; Gattermann, J.; Bruns, B.

    2009-12-01

    Efficient and safe drilling is a prerequisite to enhance the mobility of people and goods, to improve the traffic as well as utility infrastructure of growing megacities, and to ensure the growing energy demand while building geothermal and in hydroelectric power plants. Construction within the underground is often building within the unknown. An enhanced risk potential for people and the underground building may arise if drilling enters fracture zones, karsts, brittle rocks, mixed solid and soft rocks, caves, or anthropogenic obstacles. Knowing about the material behavior ahead of the drilling allows reducing the risk during drilling and construction operation. In drilling operations direct observations from boreholes can be complemented with geophysical investigations. In this presentation we focus on “real time” seismic prediction while drilling which is seen as a prerequisite while using geophysical methods in modern drilling operations. In solid rocks P- and S-wave velocity, refraction and reflection as well as seismic wave attenuation can be used for the interpretation of structures ahead of the drilling. An Integrated Seismic Imaging System (ISIS) for exploration ahead of a construction is used, where a pneumatic hammer or a magnetostrictive vibration source generate repetitive signals behind the tunneling machine. Tube waves are generated which travel along the tunnel to the working face. There the tube waves are converted to mainly S- but also P-Waves which interact with the formation ahead of the heading face. The reflected or refracted waves travel back to the working front are converted back to tube waves and recorded using three-component geophones which are fit into the tips of anchor rods. In near real time, the ISIS software allows for an integrated 3D imaging and interpretation of the observed data, geological and geotechnical parameters. Fracture zones, heterogeneities, and variations in the rock properties can be revealed during the drilling

  20. Numerical Investigation of Influences of Drilling Arrangements on the Mechanical Behavior and Energy Evolution of Coal Models

    Directory of Open Access Journals (Sweden)

    Tong-bin Zhao

    2018-01-01

    Full Text Available Destress drilling method is one of the commonly used methods for mitigating rock bursts, especially in coal mining. To better understand the influences of drilling arrangements on the destress effect is beneficial for rock burst mitigation. This study first introduced the rock burst mitigation mechanism of the destress drilling method and then numerically investigated the influences of drilling arrangements on the mechanical properties of coal models through uniaxial compression tests. Based on the test results, the energy evolution (i.e., the energy dissipation and bursting energy indexes influenced by different drilling arrangements was analyzed. When the drilling diameter, the number of drilling holes in one row, or the number of drilling rows increases, the bearing capacity of specimens nonlinearly decreases, but the energy dissipation index increases. In addition, the drilling diameter or the number of drilling holes in one row affects the failure mode weakly, which is different from that of the number of drilling rows. Consequently, the bursting energy index decreases as increasing the drilling diameter or the number of drilling holes in one row, but as increasing the number of drilling rows, the variation law of bursting energy index is not obvious. At last, the influencing mechanism of drilling arrangement on the rock burst prevention mechanism of the destress drilling method was discussed and revealed.

  1. CASING DRILLING TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    2005-12-01

    Full Text Available Casing drilling is an alternative option to conventional drilling and uses standard oilfield casing instead of drillstring. This technology is one of the greatest developments in drilling operations. Casing drilling involves drilling and casing a well simultaneously. In casing driling process, downhole tools can be retrieved, through the casing on wire-line, meaning tool recovery or replacement of tools can take minutes versus hours under conventional methods. This process employs wireline-retrievable tools and a drill-lock assembly, permitting bit and BHA changes, coring, electrical logging and even directional or horizontal drilling. Once the casing point is reached, the casing is cemented in place without tripping pipe.

  2. Continuation of down-hole geophysical testing for rock sockets : [technical summary].

    Science.gov (United States)

    2013-11-01

    The rock socket is critical to a drilled shaft : foundation because it lies within a rock stratum : and accounts for much of the capacity of the : foundational unit. Consistency of the rocks : structure and composition must be identifed : because ...

  3. Drilling trends in the nineties

    International Nuclear Information System (INIS)

    1993-01-01

    At a conference on various aspects of well drilling in the 1990s, papers were presented on drilling waste management, well completion and workovers, drilling fluids, drilling rig equipment and design, drilling mechanics, drill stem testing and materials, cementing, business management, health and safety, environmental issues, and directional drilling technology. Separate abstracts have been prepared for 46 papers from this conference

  4. Test report for core drilling ignitability testing

    International Nuclear Information System (INIS)

    Witwer, K.S.

    1996-01-01

    Testing was carried out with the cooperation of Westinghouse Hanford Company and the United States Bureau of Mines at the Pittsburgh Research Center in Pennsylvania under the Memorandum of Agreement 14- 09-0050-3666. Several core drilling equipment items, specifically those which can come in contact with flammable gasses while drilling into some waste tanks, were tested under conditions similar to actual field sampling conditions. Rotary drilling against steel and rock as well as drop testing of several different pieces of equipment in a flammable gas environment were the specific items addressed. The test items completed either caused no ignition of the gas mixture, or, after having hardware changes or drilling parameters modified, produced no ignition in repeat testing

  5. Diamond bits for directional drilling of wells and technology of using them

    Energy Technology Data Exchange (ETDEWEB)

    Romanov, V P; Steblev, B Ye; Sumaneyev, N N

    1979-01-01

    Characteristics are presented for a diamond bit for directional drilling ADN-08. Technology of using it is described, as well as cutter bits for directional drilling. Based on specially developed technique, the economic effect of using the diamond bits is calculated. This indicates that the use of the diamond bits in rocks of the VIII category significantly improves the quality of directional drilling.

  6. Robotic Planetary Drill Tests

    Science.gov (United States)

    Glass, Brian J.; Thompson, S.; Paulsen, G.

    2010-01-01

    Several proposed or planned planetary science missions to Mars and other Solar System bodies over the next decade require subsurface access by drilling. This paper discusses the problems of remote robotic drilling, an automation and control architecture based loosely on observed human behaviors in drilling on Earth, and an overview of robotic drilling field test results using this architecture since 2005. Both rotary-drag and rotary-percussive drills are targeted. A hybrid diagnostic approach incorporates heuristics, model-based reasoning and vibration monitoring with neural nets. Ongoing work leads to flight-ready drilling software.

  7. Development of a jet-assisted polycrystalline diamond drill bit

    Energy Technology Data Exchange (ETDEWEB)

    Pixton, D.S.; Hall, D.R.; Summers, D.A.; Gertsch, R.E.

    1997-12-31

    A preliminary investigation has been conducted to evaluate the technical feasibility and potential economic benefits of a new type of drill bit. This bit transmits both rotary and percussive drilling forces to the rock face, and augments this cutting action with high-pressure mud jets. Both the percussive drilling forces and the mud jets are generated down-hole by a mud-actuated hammer. Initial laboratory studies show that rate of penetration increases on the order of a factor of two over unaugmented rotary and/or percussive drilling rates are possible with jet-assistance.

  8. ResonantSonic drilling: History, progress, and advances in environmental restoration programs

    International Nuclear Information System (INIS)

    Moak, D.J.

    1995-01-01

    ResonantSonic drilling is being used in the environmental industry to drill faster, cheaper, and safer than conventional drilling methodologies. The ResonantSonic drilling method requires no mud, air, or water for rapid penetration through geologic materials ranging from rock and clay to sand and boulders. A specialized drill head imparts high frequency vibrations into steel drill pipe and creates a drilling action which allows the retrieval of continuous, undisturbed cores. An added benefit is that the method can be used for angle drilling. The ResonantSonic method has been used in the past for projects ranging from pile driving to horizontal drilling. Current programs utilize the technique as a valuable tool for obtaining in situ, pristine environmental samples. In the future, this drilling technology could be used for remote, automated sampling at hazardous waste sites

  9. ResonantSonic drilling: History, progress and advances in environmental restoration programs

    International Nuclear Information System (INIS)

    Volk, B.W.; McLellan, G.W.; Moak, D.J.; Lerch, R.E.; Thompson, K.M.; Barrow, J.C.

    1993-01-01

    ResonantSonic SM drilling is being used in the environmental industry to drill faster, cheaper, and safer than conventional drilling methodologies. ResonantSonic is a registered service mark of the Water Development Corporation, Woodland, California. The ResonantSonic drilling method, requires no mud, air or water for rapid penetration through geologic materials ranging from rock and clay to sand and boulders. The specialized drill head imparts high frequency vibrations into a steel drill pipe creating a drilling action which allows the retrieval of continuous, undisturbed cores. An added benefit is that the method can be used for angle drilling. The ReasonantSonic method has been used in the past for projects ranging from pile driving to horizontal drilling. Current programs are utilizing the technique as a valuable tool for obtaining in situ, pristine environmental samples. In the future, this drilling technology could be used for remote, automated sampling at hazardous waste sites

  10. Exploratory borehole Schafisheim: constructional- and environmental aspects, drilling technique

    International Nuclear Information System (INIS)

    1991-04-01

    The Schafisheim borehole was the fourth borehole in the Nagra deep drilling programme in Northern Switzerland. The drilling work began on the 26th of November 1983. The final depth of 2000.6 m was reached on June 29th, 1984 and this was followed by a transition to a test phase which lasted until 25th February 1985. To reach the final depth, the borehole passed through around 1500 m of sediments and 500 m of crystalline rock. More than 50% of the drilled section, including more or less all of the crystalline rock, was cored. This report describes the drilling activities, the construction work relating to the Schafisheim site and the measures taken to ensure environmental protection. The report closes with a chapter dealing with the supervisory commission consisting of members of the federal, cantonal and local authorities and with the report series on the drilling work. (author) figs., tabs

  11. A Study of Specific Fracture Energy at Percussion Drilling

    Science.gov (United States)

    A, Shadrina; T, Kabanova; V, Krets; L, Saruev

    2014-08-01

    The paper presents experimental studies of rock failure provided by percussion drilling. Quantification and qualitative analysis were carried out to estimate critical values of rock failure depending on the hammer pre-impact velocity, types of drill bits and cylindrical hammer parameters (weight, length, diameter), and turn angle of a drill bit. Obtained data in this work were compared with obtained results by other researchers. The particle-size distribution in granite-cutting sludge was analyzed in this paper. Statistical approach (Spearmen's rank-order correlation, multiple regression analysis with dummy variables, Kruskal-Wallis nonparametric test) was used to analyze the drilling process. Experimental data will be useful for specialists engaged in simulation and illustration of rock failure.

  12. A Study of Specific Fracture Energy at Percussion Drilling

    International Nuclear Information System (INIS)

    Shadrina A; Krets V; Saruev L; Kabanova T

    2014-01-01

    The paper presents experimental studies of rock failure provided by percussion drilling. Quantification and qualitative analysis were carried out to estimate critical values of rock failure depending on the hammer pre-impact velocity, types of drill bits and cylindrical hammer parameters (weight, length, diameter), and turn angle of a drill bit. Obtained data in this work were compared with obtained results by other researchers. The particle-size distribution in granite-cutting sludge was analyzed in this paper. Statistical approach (Spearmen's rank-order correlation, multiple regression analysis with dummy variables, Kruskal-Wallis nonparametric test) was used to analyze the drilling process. Experimental data will be useful for specialists engaged in simulation and illustration of rock failure

  13. Study for increasing micro-drill reliability by vibrating drilling

    International Nuclear Information System (INIS)

    Yang Zhaojun; Li Wei; Chen Yanhong; Wang Lijiang

    1998-01-01

    A study for increasing micro-drill reliability by vibrating drilling is described. Under the experimental conditions of this study it is observed, from reliability testing and the fitting of a life-distribution function, that the lives of micro-drills under ordinary drilling follow the log-normal distribution and the lives of micro-drills under vibrating drilling follow the Weibull distribution. Calculations for reliability analysis show that vibrating drilling can increase the lives of micro-drills and correspondingly reduce the scatter of drill lives. Therefore, vibrating drilling increases the reliability of micro-drills

  14. The Hans Tausen drill

    DEFF Research Database (Denmark)

    Johnsen, Sigfus Johann; Dahl-Jensen, Dorthe; Steffensen, Jørgen Peder

    2007-01-01

    In the mid-1990s, excellent results from the GRIP and GISP2 deep drilling projects in Greenland opened up funding for continued ice-coring efforts in Antarctica (EPICA) and Greenland (NorthGRIP). The Glaciology Group of the Niels Bohr Institute, University of Copenhagen, was assigned the task...... of providing drilling capability for these projects, as it had done for the GRIP project. The group decided to further simplify existing deep drill designs for better reliability and ease of handling. The drill design decided upon was successfully tested on Hans Tausen Ice Cap, Peary Land, Greenland, in 1995....... The 5.0 m long Hans Tausen (HT) drill was a prototype for the ~11 m long EPICA and NorthGRIP versions of the drill which were mechanically identical to the HT drill except for a much longer core barrel and chips chamber. These drills could deliver up to 4 m long ice cores after some design improvements...

  15. The Swedish Deep Drilling Program - an emerging scientific drilling program and new infrastructure.

    Science.gov (United States)

    Lorenz, Henning; Juhlin, Christopher

    2010-05-01

    Scientific drilling projects imply numerous aspects that are difficult to handle for individual research groups. Therefore, about three years ago a joint effort was launched in the Swedish geoscientific community to establish a national program for scientific drilling, the Swedish Deep Drilling Program (SDDP). Soon afterwards, several working groups established drilling proposals with Nordic and, also, international participation. With this serious interest in scientific drilling SDDP was able to successfully promote the Swedish membership in ICDP which commenced in 2008. Two SDDP projects achieved workshop grants from the International Continental Scientific Drilling Program (ICDP) in 2009. In the same year the Swedish Research Council decided to support an application for a truck-mounted drill rig - a big success for the SDDP working group. Scientific Drilling infrastructure: SDDP envisages a mobile platform that is capable of core drilling to at least 2500 m depth. The procurement will be made during 2010 and first operations are planned for 2011. This drill rig is primarily intended for use in the SDDP drilling projects, but will be rented out to other scientific drilling projects or even commercial enterprises in the remaining time to cover maintenance and future upgrade costs. SDDP's drill rig will be unique in Europe and complementary to the deep drilling InnovaRig of the GFZ German Research Centre for Geosciences. Until now, drilling to 2000 - 3000 m implied the use of a full-sized drill rig like the InnovaRig or the mobilization of a core drill rig from another continent. This gap will now be filled by Sweden's upcoming scientific drilling infrastructure. Drilling projects and proposals: Presently, SDDP serves six projects: "Collisional Orogeny in the Scandinavian Caledonides" (COSC; ICDP workshop spring 2010), the "Postglacial Fault Drilling Project" (PFDP; ICDP workshop autumn 2010), a "Deep Rock Laboratory" (DRL), "Palaeoproterozoic Mineralized Volcanic

  16. Monitoring of drilling process with the application of acoustic signal

    Directory of Open Access Journals (Sweden)

    Labaš Milan

    2000-09-01

    Full Text Available Monitoring of rock disintegration process at drilling, scanning of input quantities: thrust F, revolution n and the course of some output quantities: the drilling rate v and the power input P are needed for the control of this process. We can calculate the specific volume work of rock disintegration w and ϕ - quotient of drilling rate v and the specific volume work of disintegration w from the presented quantities.Works on an expertimental stand showed that the correlation relationships between the input and output quantities can be found by scanning the accompanying sound of the drilling proces.Research of the rock disintegration with small-diameter diamond drill tools and different rock types is done at the Institute of Geotechnics. The aim of this research is the possibility of monitoring and controlling the rock disintegration process with the application of acoustic signal. The acoustic vibrations accompanying the drilling process are recorded by a microphone placed in a defined position in the acoustic space. The drilling device (drilling stand, the drilling tool and the rock are the source of sound. Two basic sound states exist in the drilling stand research : the noise at no-load running and the noise at the rotary drilling of rock. Suitable quantities for optimizing the rock disintegration process are searched by the study of the acoustic signal. The dominant frequencies that characterize the disintegration process for the given rock and tool are searched by the analysis of the acoustic signal. The analysis of dominant frequencies indicates the possibility of determining an optimal regime for the maximal drilling rate. Extreme of the specific disintegration energy is determinated by the dispersion of the dominant frequency.The scanned acoustic signal is processed by the Fourier transformation. The Fourier transformation facilitates the distribution of the general non-harmonic periodic process into harmonic components. The harmonic

  17. Grinding into Soft, Powdery Rock

    Science.gov (United States)

    2004-01-01

    This hole in a rock dubbed 'Clovis' is the deepest hole drilled so far in any rock on Mars. NASA's Mars Exploration Rover Spirit captured this view with its microscopic imager on martian sol 217 (Aug. 12, 2004) after drilling 8.9 millimeters (0.35 inch) into the rock with its rock abrasion tool. The view is a mosaic of four frames taken by the microscopic imager. The hole is 4.5 centimeters (1.8 inches) in diameter. Clovis is key to a developing story about environmental change on Mars, not only because it is among the softest rocks encountered so far in Gusev Crater, but also because it contains mineral alterations that extend relatively deep beneath its surface. In fact, as evidenced by its fairly crumbly texture, it is possibly the most highly altered volcanic rock ever studied on Mars. Scientific analysis shows that the rock contains higher levels of the elements sulfur, chlorine, and bromine than are normally encountered in basaltic rocks, such as a rock dubbed 'Humphrey' that Spirit encountered two months after arriving on Mars. Humphrey showed elevated levels of sulfur, chlorine, and bromine only in the outermost 2 millimeters (less than 0.1 inch) of its surface. Clovis shows elevated levels of the same elements along with the associated softness of the rock within a borehole that is 4 times as deep. Scientists hope to compare Clovis to other, less-altered rocks in the vicinity to assess what sort of water-based processes altered the rock. Hypotheses include transport of sulfur, chlorine, and bromine in water vapor in volcanic gases; hydrothermal circulation (flow of volcanically heated water through rock); or saturation in a briny soup containing the same elements. In this image, very fine-grained material from the rock has clumped together by electrostatic attraction and fallen into the borehole. NASA/JPL/Cornell/USGS

  18. Accounting for the temperature conditions during deep prospecting hole drilling

    Energy Technology Data Exchange (ETDEWEB)

    Shcherban, A N; Cheniak, V P; Zolotarenko, U P

    1977-01-01

    A methodology is described for calculating and controlling the temperature in inclined holes in order to establish a non-steady-state heat exchange between the medium circulating in the hole, and the construction components and rock. In order to verify the proposed methodology, the temperature of the drilling fluid is measured directly during the drilling process using a specially-designed automatic device which is lowered into the hole with the drilling string and turned on automatically at a given depth. This device makes it possible to record the drilling fluid temperature on magnetic tape, and convert the sensor signals arriving from the drilling string and the annular space. A comparison of calculation and experimental data confirmed the sufficiently high accuracy of the methods for predicting the thermal conditions in drilling deep prospecting holes.

  19. Drilling contracts and incentives

    International Nuclear Information System (INIS)

    Osmundsen, Petter; Sorenes, Terje; Toft, Anders

    2008-01-01

    Shortages of rigs and personnel have encouraged discussion of designing incentive contracts in the drilling sector. However, for the drilling contracts, there are not a large variety of contract types in use. This article describes and analyses incentives for drilling contractors. These are directly represented by the compensation formats utilised in the present and in the consecutive drilling contracts. Indirectly, incentives are also provided by the evaluation criteria that oil companies use for awarding drilling assignments. Changes in contract format pose a number of relevant questions relating to resource management, and the article takes an in-depth look at some of these. Do evaluation criteria for awarding drilling assignments encourage the development of new technology and solutions? How will a stronger focus on drilling efficiency influence reservoir utilisation?

  20. Deep-Time drilling in the Australian Archean: the Agouron Institute geobiological drilling project. (Invited)

    Science.gov (United States)

    Buick, R.

    2010-12-01

    The Agouron Institute has sponsored deep-time drilling across the South African Archean-Proterozoic boundary, investigating the rise of oxygen over an onshore-offshore environmental transect. It is now supporting a drilling program in the Australian Archean of the Pilbara Craton, addressing a similar theme but with the added goal of resolving controversy over the age and origin of hydrocarbon biomarker molecules in ancient kerogenous shales. As these have been claimed to provide evidence for the evolution of oxygenic photosynthesis long before the rise of atmospheric oxygen to persistently high levels during the ~2.3 Ga “Great Oxidation Event”, their syngenesis with their host shales is thus of critical importance for the interpretation of Earth’s early oxygenation history. During the first drilling season, 3 holes were drilled using techniques and equipment to minimize organic geochemical contamination (new drill-string components cleaned before drilling potentially biomarker-bearing rocks, pre-contamination of drilling fluid with a synthetic organic compound of similar geochemical characteristics to biomarkers, sterile cutting and storage of samples immediately upon retrieval from the core-barrel). The initial hole was a blank control for organic geochemistry, drilled into rocks too metamorphosed to retain biomarker molecules. These rocks, cherts, carbonates and pelites of the 3.52 Ga Coucal Formation, Coonterunah Group, have been metamorphosed to upper greenschist facies at temperatures near 500°C and so should have had any ancient soluble hydrocarbons destroyed. However, because they contain both carbonate and organic carbon, these rocks can instead provide isotopic information about the earliest evolution of biological metabolism as they possess residues of both the reactant and product sides of the carbon-fixation reaction. The second hole sampled an on-shore section of carbonates and kerogenous shales in the ~2.65 Ga Carawine Dolomite and Lewin Shale

  1. Stinger Enhanced Drill Bits For EGS

    Energy Technology Data Exchange (ETDEWEB)

    Durrand, Christopher J. [Novatek International, Inc., Provo, UT (United States); Skeem, Marcus R. [Novatek International, Inc., Provo, UT (United States); Crockett, Ron B. [Novatek International, Inc., Provo, UT (United States); Hall, David R. [Novatek International, Inc., Provo, UT (United States)

    2013-04-29

    The project objectives were to design, engineer, test, and commercialize a drill bit suitable for drilling in hard rock and high temperature environments (10,000 meters) likely to be encountered in drilling enhanced geothermal wells. The goal is provide a drill bit that can aid in the increased penetration rate of three times over conventional drilling. Novatek has sought to leverage its polycrystalline diamond technology and a new conical cutter shape, known as the Stinger®, for this purpose. Novatek has developed a fixed bladed bit, known as the JackBit®, populated with both shear cutter and Stingers that is currently being tested by major drilling companies for geothermal and oil and gas applications. The JackBit concept comprises a fixed bladed bit with a center indenter, referred to as the Jack. The JackBit has been extensively tested in the lab and in the field. The JackBit has been transferred to a major bit manufacturer and oil service company. Except for the attached published reports all other information is confidential.

  2. Reaching 1 m deep on Mars: the Icebreaker drill.

    Science.gov (United States)

    Zacny, K; Paulsen, G; McKay, C P; Glass, B; Davé, A; Davila, A F; Marinova, M; Mellerowicz, B; Heldmann, J; Stoker, C; Cabrol, N; Hedlund, M; Craft, J

    2013-12-01

    The future exploration of Mars will require access to the subsurface, along with acquisition of samples for scientific analysis and ground-truthing of water ice and mineral reserves for in situ resource utilization. The Icebreaker drill is an integral part of the Icebreaker mission concept to search for life in ice-rich regions on Mars. Since the mission targets Mars Special Regions as defined by the Committee on Space Research (COSPAR), the drill has to meet the appropriate cleanliness standards as requested by NASA's Planetary Protection Office. In addition, the Icebreaker mission carries life-detection instruments; and in turn, the drill and sample delivery system have to meet stringent contamination requirements to prevent false positives. This paper reports on the development and testing of the Icebreaker drill, a 1 m class rotary-percussive drill and triple redundant sample delivery system. The drill acquires subsurface samples in short, approximately 10 cm bites, which makes the sampling system robust and prevents thawing and phase changes in the target materials. Autonomous drilling, sample acquisition, and sample transfer have been successfully demonstrated in Mars analog environments in the Arctic and the Antarctic Dry Valleys, as well as in a Mars environmental chamber. In all environments, the drill has been shown to perform at the "1-1-100-100" level; that is, it drilled to 1 m depth in approximately 1 hour with less than 100 N weight on bit and approximately 100 W of power. The drilled substrate varied and included pure ice, ice-rich regolith with and without rocks and with and without 2% perchlorate, and whole rocks. The drill is currently at a Technology Readiness Level (TRL) of 5. The next-generation Icebreaker drill weighs 10 kg, which is representative of the flightlike model at TRL 5/6.

  3. Inverted emulsion drilling fluid

    Energy Technology Data Exchange (ETDEWEB)

    Ana, I; Astanei, E; Mireanu, G; Orosz, M; Popescu, F; Vasile, I

    1979-07-28

    The subject of the invention is the method of obtaining inverted drilling fluid which is required during stripping of a productive bed and ending of a well where difficulties develop during drilling of the argillaceous rock. Example: in a reservoir with capacity 30 m/sup 3/, 10 m/sup 3/ of diesel fuel are added. A total of 1000 kg of emulsifier are added to the diesel fuel consisting of: 85 mass% of a mixture of sodium and potassium salts of fatty acids, residues of fatty acids or naphthene acids with high molecular weight taken in proportion of 10:90; 5 mass% of a mixture of polymers with hydrophilic-hydrophobic properties obtained by mixing 75 mass% of polyethylene oxide with molecular weight 10,000 and 25 mass% of propylene oxide with molecular weight 15,000, and 10 mass% of salt on alkaline earth metal (preferably calcium chloride). The mixture is mixed into complete dissolving. Then 1200 kg of filtering accelerator are added obtained from concentrated sulfuric acid serving for sulfur oxidation, asphalt substance with softening temperature 85-104/sup 0/C and fatty acids C/sub 10/-C/sub 20/ taken in a proportion of 23.70 and 7 mass% The mixture obtained in this manner is neutralized by adding calcium hydroxide and equal quantities of alumina and activated bentonite clay in a concentration of 1-10 mass%, more preferably 5 mass% in relation to the initial mixture. The obtained mass is mixed until complete dispersion, after which 200 kg of organophilic clay are added obtained from bentonite of the type montmorillonite of sodium by processing with derivate obtained from amine of the type of the quaternary base of ammonium salt, and agent of hydrophobization of the type of fatty alcohols, fatty acids, nonion surfactants of the block-polymer type. After complete dispersion of the organophilic clay, 100 kg of stabilizer of emulsion of the surfactant type was added with molecular weight of 250010,000, more preferably 5000, in concentration of 0.1-5.0 mass%, more

  4. Quality in drilling operations

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, E; Gervais, I [Sedco Forex Jacintoport Facility, Channelview, TX (United States); Le Moign, Y; Pangarkar, S; Stibbs, B [Sedco Forex, Montrouge (France); McMorran, P [Sedco Forex, Pau (France); Nordquist, E [Dubai Petroleum Company, Dubai (United Arab Emirates); Pittman, T [Sedco Forex, Perth (Australia); Schindler, H [Sedco Forex, Dubai (United Arab Emirates); Scott, P [Woodside Offshore Petroleum Pty. Ltd., Perth (Australia)

    1997-12-31

    Driven by cost and profitability pressures, quality has taken on new meaning and importance in the oil field during the past decade. In drilling operations, new initiatives have led to cooperative team efforts between operators and drilling contractors to enhance quality. In this article examples are given of how one drilling contractor, by adopting a quality culture, is reaping major benefits for its clients as well as its employees. 22 figs., 19 refs.

  5. Quality in drilling operations

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, E.; Gervais, I. [Sedco Forex Jacintoport Facility, Channelview, TX (United States); Le Moign, Y.; Pangarkar, S.; Stibbs, B. [Sedco Forex, Montrouge (France); McMorran, P. [Sedco Forex, Pau (France); Nordquist, E. [Dubai Petroleum Company, Dubai (United Arab Emirates); Pittman, T. [Sedco Forex, Perth (Australia); Schindler, H. [Sedco Forex, Dubai (United Arab Emirates); Scott, P. [Woodside Offshore Petroleum Pty. Ltd., Perth (Australia)

    1996-12-31

    Driven by cost and profitability pressures, quality has taken on new meaning and importance in the oil field during the past decade. In drilling operations, new initiatives have led to cooperative team efforts between operators and drilling contractors to enhance quality. In this article examples are given of how one drilling contractor, by adopting a quality culture, is reaping major benefits for its clients as well as its employees. 22 figs., 19 refs.

  6. Seismic Prediction While Drilling (SPWD: Looking Ahead of the Drill Bit by Application of Phased Array Technology

    Directory of Open Access Journals (Sweden)

    Marco Groh

    2010-04-01

    Full Text Available Geophysical exploration is indispensable for planning deep drilling. Usually 2D- or 3D-seismics investigations are applied and, depending on the resulting geologic model for the underground, the drill site and drilling path are determined. In recent years the focus of exploration has shifted towards small-scale geological structures such as local layers and faults. Depending on the source frequencies and the target depth, 2D- or 3D-seismics from surface cannot always resolve such structures in particular at larger depths. In general, signal frequencies of about 30–70 Hz are typical for surface seismic methods. The deeper and smaller the sought-after structures are, the worse will be the resolution. Therefore, borehole seismic measurements like Vertical Seismic Profile (VSP or Seismic While Drilling (SWD have been developed (Fig. 1. For the VSP method geophones are normally integrated in the borehole, while the seismicsource generates seismic waves at the surface. The SWD method uses the drill bit as the seismic source. Hence, the quality of the seismic signals is highly dependent on the drilled rock and the type of drill bit, but even well-suited rock conditions and adequate drilling may not provide sufficient data quality.

  7. Principles of selection ofdrilling mud stream volume when drilling with a stream pump

    Directory of Open Access Journals (Sweden)

    Jan Macuda

    2006-10-01

    Full Text Available The reverse mud circulation induced by a stream pump is most frequently applied for large diameter drilling. This system is treated as auxiliary in all design solutions. It is implemented to drilling wells from the surface to the depth of deposition of the preliminary column. It enables performing wells in loose sands, gravel, clays clayey shales, marls, limestones, sandstones and other sedimentary rocks.A principle of selecting a drilling mud stream volume for various bit diameters and drilling rates in loose rocks are presented in the paper. A special attention has been paid to the drop of efficiency of cuttings removal with an increasing depth of the borehole.

  8. Advanced Seismic While Drilling System

    Energy Technology Data Exchange (ETDEWEB)

    Robert Radtke; John Fontenot; David Glowka; Robert Stokes; Jeffery Sutherland; Ron Evans; Jim Musser

    2008-06-30

    A breakthrough has been discovered for controlling seismic sources to generate selectable low frequencies. Conventional seismic sources, including sparkers, rotary mechanical, hydraulic, air guns, and explosives, by their very nature produce high-frequencies. This is counter to the need for long signal transmission through rock. The patent pending SeismicPULSER{trademark} methodology has been developed for controlling otherwise high-frequency seismic sources to generate selectable low-frequency peak spectra applicable to many seismic applications. Specifically, we have demonstrated the application of a low-frequency sparker source which can be incorporated into a drill bit for Drill Bit Seismic While Drilling (SWD). To create the methodology of a controllable low-frequency sparker seismic source, it was necessary to learn how to maximize sparker efficiencies to couple to, and transmit through, rock with the study of sparker designs and mechanisms for (a) coupling the sparker-generated gas bubble expansion and contraction to the rock, (b) the effects of fluid properties and dynamics, (c) linear and non-linear acoustics, and (d) imparted force directionality. After extensive seismic modeling, the design of high-efficiency sparkers, laboratory high frequency sparker testing, and field tests were performed at the University of Texas Devine seismic test site. The conclusion of the field test was that extremely high power levels would be required to have the range required for deep, 15,000+ ft, high-temperature, high-pressure (HTHP) wells. Thereafter, more modeling and laboratory testing led to the discovery of a method to control a sparker that could generate low frequencies required for deep wells. The low frequency sparker was successfully tested at the Department of Energy Rocky Mountain Oilfield Test Center (DOE RMOTC) field test site in Casper, Wyoming. An 8-in diameter by 26-ft long SeismicPULSER{trademark} drill string tool was designed and manufactured by TII

  9. Drilling bits for deep drilling and process for their manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Rhode, H.; Juergens, R.; Feenstra, R.; Busking, B.E.

    1978-11-30

    The invention concerns a drilling head or a drilling bit for use in deep drilling in underground formations and particularly concerns a drilling bit with a drilling bit body, which has a shank and a hollow space, which is connected with a duct extending through the shank. The drilling bit body has several separate cutting elements for removing material from the floor of a borehole and hydraulic devices for cooling and/or cleaning the cutting elements are provided.

  10. Tribological characterization of the drill collars and casing friction couples

    Science.gov (United States)

    Ripeanu, R. G.; Badicioiu, M.; Caltaru, M.; Dinita, A.; Laudacescu, E.

    2018-01-01

    Drill collars are special pipes used in the drilling of wells for weighting the drill bit, enabling it to drill through the rock. In the drilling process, the drill collars are exposed to an intensive wear due to friction on inner surface of casing wall. In order to evaluate the tribological behaviour of this friction couple, paper presents the drill collars parent material, reconditioned and casing pipe chemical composition, microstructures, hardness and friction tests. For friction tests were prepared samples extracted from new and reconditioned drill collars and from casing pipes and tested on a universal tribometer. Were used plane-on-disk surface friction couples and tests were conducted at two sliding speeds and three normal loads for each materials couple. Plane static partner samples were extracted from casing pipes and disks samples were extracted from new and reconditioned drill collars. Were obtained friction coefficients values and also the temperatures increasing values due to friction working tests parameters. The temperature increasing values were obtained by measuring it with an infrared thermographic camera.

  11. Drilling contract issues

    International Nuclear Information System (INIS)

    Davison, G.B.; Worden, D.R.; Borbridge, G.K.D.

    1997-01-01

    Some selected issues which are facing both operators and contractors in drilling for oil and gas, such as the allocation of risk by contract and by statute and the implementation of new technologies, were discussed. There are three varieties of written drilling contracts used in Canada: (1) day work and meterage contracts, (2) master drilling agreements, and (3) contracts that are used in construction projects that do not specifically relate to drilling. Issues relevant to the contractual allocation of risk, to implementing new drilling technologies, to reconciling contract and statute liability, and the formation of strategic alliances for mutual benefit, and the factors contributing to the success of such alliances were explored. 12 refs

  12. Development of controlled drilling technology and measurement method in the borehole (Phase 1)

    International Nuclear Information System (INIS)

    Kiho, Kenzo; Shin, Koichi; Suzuki, Koichi; Miyakawa, Kimio; Okada, Tetsuji; Masuhara, Yasunobu; Igeta, Noriyuki; Kobayakawa, Hiroaki; Yamamoto, Shinya

    2006-01-01

    In Japan, the soft sedimentary rock of the Neogene tertiary is being focused as a host rock for High Level Waste (HLW) disposal. Especially, the soft sedimentary rock at the coastal area is thought to be one of the best candidates, since there is little driving force of the underground water. The measurement and logging of the bore hole in order to investigate the hydro-geological and geo-mechanical conditions of the host rock is a very important way to examine the potential of the disposal candidates. Central Research Institute of Electric Power Industry (CRIEPI) has been conducting the project on controlled drilling and the logging/measurement technologies in its boreholes. The key technologies of the project were defined as follows; (1) Drilling technology to bent the hole as intend. (2) Locality detection technology of the drill bit (MWD). (3) Core sampling technology to obtain the undisturbed rock core. (4) Logging and measurement technology during drilling. The drilling system and measuring system were integrated and systemized after each apparatus was manufactured and its performance was checked. The performance of the drilling system was checked to drill the artificial rock mass to the depth of 80 m before conducting in-situ drilling. The performance of the drilling and measurement systems were investigated to drill the mudstone of the Neogene Tertiary to the length of 547 m and to conduct the downhole measurement and logging in its borehole at the Horonobe site. Considering these performance testing, the flow diagram of the controlled drilling and measurement system was established. (author)

  13. Scientific Drilling with the Sea Floor Drill Rig MeBo

    Directory of Open Access Journals (Sweden)

    Gerold Wefer

    2007-09-01

    Full Text Available In March 2007 the sea floor drill rig MeBo (short for “Meeresboden-Bohrgerät”, ‘sea floor drill rig’ in German returned from a 17-day scientific cruise with the new German research vessel Maria S. Merian. Four sites between 350 m and 1700 m water depth were sampled at the continental slope off Morocco by push coring and rotary drilling. Up to 41.5-m-long sediment cores were recovered from Miocene, Pliocene, and Pleistocene marls. MeBo bridges the gapbetween conventional sampling methods from standard multipurpose research vessels (gravity corer, piston corer, dredges and drill ships. Most bigger research vessels will be able to support deployment of the MeBo. Since the drill system can be easily transported within 20-ft containers, worldwide operation from vessels of opportunity is possible. With the MeBo a new system is available for marine geosciences that allows the recovery of high quality samples from soft sediments and hard rock from the deep sea withoutrelying on the services of expensive drilling vessels.

  14. Drilling technologies in hydrogeological survey

    OpenAIRE

    Vorlíček, Petr

    2014-01-01

    This work deals with the drilling technologies used in hydrogeology. The main aim of the work is to explore types of drilling technologies used at hydrogeological drilling wells and modern technologies that could potentially be used in the future. The work also summarizes a historical development of drilling techniques, a drilling process procedure, information obtained from boreholes and the most common types of drilling fluids.

  15. Processing of acoustic signal in rock desintegration

    Directory of Open Access Journals (Sweden)

    Futó Jozef

    2002-12-01

    Full Text Available For the determination of an effective rock disintegration for a given tool and rock type it is needed to define an optimal disintegration regime. Optimisation of the disintegration process by drilling denotes the finding out an appropriate couple of input parameters of disintegration, i.e. the thrust and revolutions for a quasi-equal rock environment. The disintegration process can be optimised to reach the maximum immediate drilling rate, to reach the minimum specific disintegration energy or to reach the maximum ratio of immediate drilling rate and specific disintegration energy. For the determination of the optimal thrust and revolutions it is needed to monitor the disintegration process. Monitoring of the disintegration process in real conditions is complicated by unfavourable factors, such as the presence of water, dust, vibrations etc. Following our present experience in the monitoring of drilling or full-profile driving, we try to replace the monitoring of input values by monitoring of the scanned acoustic signal. This method of monitoring can extend the optimisation of disintegration process in the technical practice. Its advantage consists in the registration of one acoustic signal by an appropriate microphone. Monitoring of acoustic signal is used also in monitoring of metal machining by milling and turning jobs. The research results of scanning of the acoustic signal in machining of metals are encouraging. Acoustic signal can be processed by different statistical parameters. The paper decribes some results of monitoring of the acoustic signal in rock disintegration on the drilling stand of the Institute of Geotechnics SAS in Košice. The acoustic signal has been registered and processed in no-load run of electric motor, in no-load run of electric motor with a drilling fluid, and in the Ruskov andesite drilling. Registration and processing of the acoustic signal is solved as a part of the research grant task within the basic research

  16. Taking aim : particle impact drilling targets ROP gains

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, J.

    2005-11-01

    Details of a new drilling technique developed by Particle Drilling Technologies Inc. were presented. Particle impact drilling uses buckshot-like steel particles entrained with ordinary drilling mud that are accelerated through a specially-designed drill bit to bombard hard-rock formations at rapid-fire velocities of up to 4 million times a minute. Conventional drill bits rely on mechanical energy from some 50,000 pounds of weight on bit and torque to break or fracture the formation, whereas particle impact drilling relies on hydraulic energy to blast the steel particles from the bit's jetting nozzles in order to repeatedly fracture the formation. It was suggested that the new technology will accelerate the drilling process. Tests have shown that the new device out-performs conventional bits in hard formations by utilizing the hydraulics of the rig to drill with particles. In field tests, drilling was 4 times faster than conventional methods. It was anticipated that the bit will be up to 150 per cent faster in softer rock formations. In order to avoid clogging, the system uses a shot trap to remove the steel balls, which are roughly one-tenth of an inch in diameter, from the drilling fluid before it enters the shale shaker. The shot is recycled after each well. During drilling, mud circulation must be continuous for the system to work. If the system can't circulate cleanly out of a hole, there is a disruption in the process and drilling fluid may move up the annulus at 350 feet per minute when it leaves bottomhole. It was suggested that circulation issues can be resolved by increasing mud viscosity. A less than optimal performance during a recent test at Catoosa was attributed to a lack of control over drilling fluid parameters and to the use of an overly-large well casing. It was concluded that the new system will likely greatly reduce the number of days it takes to drill a well. 2 figs.

  17. Integral analysis of the drill string dynamic behaviour to optimize drilling operation; Analise integrada do comportamento dinamico da coluna para otimizacao de perfuracao

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Araken [Smith International do Brasil, Macae, RJ (Brazil); Placido, Joao C.R.; Percy, Joseir G.; Falcao, Jose; Freire, Helena; Ono, Eduardo H.; Masculo, Miguel S. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Azuaga, Denise; Frenzel, Mark [Smith International Inc., Houston, TX (United States)

    2008-07-01

    For a performance preview of a drilling system is necessary a dynamic and integrated modeling for understanding all system forces resulting from the combination of the rock strength, cut structure action, drilling parameters, BHA and all others drilling components. This study must predict, for the drill string, vibrations and torsions, from bit to surface, its origins and its effects, and provides the best way to reduce these vibrations, determining the best bit, BHA and drilling parameters. Thereby, this study eliminates the trial and error approach and the operation risks. This paper aims to present studies of optimization for two drilling wells conducted in Brazil, one in Santos Basin and other in Campos Basin, and compares the numerical simulations results with the data from drilling operations. (author)

  18. A vision for drilling

    Energy Technology Data Exchange (ETDEWEB)

    Millheim, K. [Montanuniversitaet Leoben (Austria)

    1995-12-31

    The future of drilling lies in its relationship with the oil and gas industry. This paper examines how the future of drilling is seen from the view point of the exploration manager, the drilling contractor, the drilling engineer and the company president or managing director. The various pressures on the oil and gas industry are examined, such as environmental issues, alternative energy sources, and the price of oil which determines how companies are run. Exploration activity is driven by the price of oil and gas. The development of wells with multiple horizontal wells or multiple horizontal wells with tributaries will reduce the cost of exploration. Companies will rely less and less on reservoir simulation and more on cheap well-bores, multi-lateral well-bores and will exploit oil that could not be exploited before. The cost of exploratory drilling will need to be kept down so that in the future the industry will get better at economically finding fields at the 10 million to 20 million barrel range that would not have been possible before. The future is expected to see drilling contractors tunnelling, making sewerage lines and drilling 10,000 foot wells with purpose built rigs. Franchising will become a feature of the industry as will the use of databases to answer key technical questions. Offshore platforms will be built to be moveable and disposable. The industry is capable of solving problems, meeting challenges and making ideas work, providing much hope for the future. 10 figs., 1 photo.

  19. Drilling cost analysis

    International Nuclear Information System (INIS)

    Anand, A.B.

    1992-01-01

    Drilling assumes greater importance in present day uranium exploration which emphasizes to explore more areas on the basis of conceptual model than merely on surface anomalies. But drilling is as costly as it is important and consumes a major share (50% to 60%) of the exploration budget. As such the cost of drilling has great bearing on the exploration strategy as well as on the overall cost of the project. Therefore, understanding the cost analysis is very much important when planning or intensifying an exploration programme. This not only helps in controlling the current operations but also in planning the budgetary provisions for future operations. Also, if the work is entrusted to a private party, knowledge of in-house cost analysis helps in fixing the rates of drilling in different formations and areas to be drilled. Under this topic, various factors that contribute to the cost of drilling per meter as well as ways to minimize the drilling cost for better economic evaluation of mineral deposits are discussed. (author)

  20. Drilling for scientific purpose

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Shoichi

    1987-09-01

    Drilling for scientific purpose is a process of conducting geophysical exploration at deep underground and drilling for collecting crust samples directly. This is because earth science has advanced to get a good understanding about the top of the crust and has shifted its main interest to the lower layer of the crust in land regions. The on-land drilling plan in Japan has just started, and the planned drilling spots are areas around the Minami River, Hidaka Mts., kinds of the Mesozoic and Cenozoic granite in outside zone, the extension of Japan Sea, Ogasawara Is., Minami-Tori Is., and active volcanos. The paper also outlines the present situation of on-land drilling in the world, focusing on the SG-3rd super-deep well SG-3 on the Kola Peninsula, USSR, Satori SG-1st well SG-1 in Azerbaidzhan S.S.R, V.S.S.R, Sweden's wells, Cyprus' wells, Bayearn well Plan in West Germany, and Salton Sea Scientific Drilling Program in the U.S. At its end, the paper explains the present situation and the future theme of the Japanese drilling technique and points out the necessity of developing equipment, and techniques. (14 figs, 5 tabs, 26 refs)

  1. Drilling and well technology

    Energy Technology Data Exchange (ETDEWEB)

    Milheim, K. [Mining University Leoben Institute for Drilling Technology, (Austria)

    1996-12-31

    Over a billion dollars a year is lost by exploration and production companies drilling wells because of the lack of learn curve management (LMC) practices. This paper presents the importance of the LMC concept, what it is, why LMC has not yet been recognized as a major initiative for improving drilling cost performance. The paper discusses the different types of planning, problems with implementation of plans, the use and misuse of drilling results and data bases, and the lack of post analysis practices. The major point of the paper is to show the massive savings that can be achieved by valuing LMC, learning LMC and successfully implementing LMC. . 2 refs., 5 figs.

  2. Analysis on the nitrogen drilling accident of Well Qionglai 1 (I: Major inducement events of the accident

    Directory of Open Access Journals (Sweden)

    Yingfeng Meng

    2015-12-01

    Full Text Available Nitrogen drilling in poor tight gas sandstone should be safe because of very low gas production. But a serious accident of fire blowout occurred during nitrogen drilling of Well Qionglai 1. This is the first nitrogen drilling accident in China, which was beyond people's knowledge about the safety of nitrogen drilling and brought negative effects on the development of gas drilling technology still in start-up phase and resulted in dramatic reduction in application of gas drilling. In order to form a correct understanding, the accident was systematically analyzed, the major events resulting in this accident were inferred. It is discovered for the first time that violent ejection of rock clasts and natural gas occurred due to the sudden burst of downhole rock when the fractured tight gas zone was penetrated during nitrogen drilling, which has been named as “rock burst and blowout by gas bomb”, short for “rock burst”. Then all the induced events related to the rock burst are as following: upthrust force on drilling string from rock burst, bridging-off formed and destructed repeatedly at bit and centralizer, and so on. However, the most direct important event of the accident turns out to be the blockage in the blooie pipe from rock burst clasts and the resulted high pressure at the wellhead. The high pressure at the wellhead causes the blooie pipe to crack and trigged blowout and deflagration of natural gas, which is the direct presentation of the accident.

  3. Multi-Index Monitoring and Evaluation on Rock Burst in Yangcheng Mine

    OpenAIRE

    Tan, Yunliang; Yin, Yanchun; Gu, Shitan; Tian, Zhiwei

    2015-01-01

    Based on the foreboding information monitoring of the energy released in the developing process of rock burst, prediction system for rock burst can be established. By using microseismic method, electromagnetic radiation method, and drilling bits method, rock burst in Yangcheng Mine was monitored, and a system of multi-index monitoring and evaluation on rock burst was established. Microseismic monitoring and electromagnetic radiation monitoring were early warning method, and drilling bits moni...

  4. Technology of Rock Destruction by Combined Explosion-Mechanical Load

    Directory of Open Access Journals (Sweden)

    Oleg M. Terentiev

    2017-10-01

    Full Text Available Background. Rock drilling is characterized by an energy capacity of more than 120 kWh/m3. This is due to the fact that about 90 % of the energy is expended on the “preparation” of rocks for destruction. This study proposes to combine explosive and mechanical loads to reduce specific energy consumption of rock destruction. Objective. The aim of the paper is energy effective technology development for rock destruction by combined explosive-mechanical loads. Methods. Analytical studies; regression analysis; math modeling; experimental research; technical and economic analysis. Results. Specific energy decreasing for explosive-mechanical rock drilling by 4–16 % was experimentally proved. Conclusions. As a result of the implementation of explosive-mechanical rock drilling on the created full-sized experimental device, the efficiency coefficient increased from 77 to 80 %.

  5. Humvee Armor Plate Drilling

    National Research Council Canada - National Science Library

    2004-01-01

    When drilling holes in hard steel plate used in up-armor kits for Humvee light trucks, the Anniston Army Depot, Anniston, Alabama, requested the assistance of the National Center for Defense Manufacturing and Machining (NCDMM...

  6. Controlled drill ampersand blast excavation at AECL's Underground Research Laboratory

    International Nuclear Information System (INIS)

    Kuzyk, G.W.; Onagi, D.P.; Thompson, P.M.

    1996-01-01

    A controlled drill and blast method has been developed and used to excavate the Underground Research Laboratory, a geotechnical facility constructed by Atomic Energy of Canada Limited (AECL) in crystalline rock. It has been demonstrated that the method can effectively reduce the excavation disturbed zone (EDZ) and is suitable for the construction of a used fuel disposal vault in the plutonic rock of the Canadian Shield

  7. RESEARCH AND MODEL DEVELOPMENT OF DRILLING AND BLASTING TECHNOLOGY PENETRATIONS OF VERTICAL SHAFTS

    OpenAIRE

    O. I. Rubleva

    2007-01-01

    The model of destruction of rocks by explosion in vertical shafts is presented. On its basis the most important parameters of technical-and-economical indices of the drilling-and-blasting technology are calculated.

  8. RESEARCH AND MODEL DEVELOPMENT OF DRILLING AND BLASTING TECHNOLOGY PENETRATIONS OF VERTICAL SHAFTS

    Directory of Open Access Journals (Sweden)

    O. I. Rubleva

    2007-10-01

    Full Text Available The model of destruction of rocks by explosion in vertical shafts is presented. On its basis the most important parameters of technical-and-economical indices of the drilling-and-blasting technology are calculated.

  9. Drilling rig mast

    Energy Technology Data Exchange (ETDEWEB)

    Bulgakov, E.S.; Barashkov, V.A.; Lebedev, A.I.; Panin, N.M.; Sirotkin, N.V.

    1981-01-07

    A drilling rig mast is proposed that contains a portal with a carrier shaft hinged to it and struts with stays. In order to decrease the time expended in the assembly and dessembly of the drilling rig, the portal is constructed from mobile and immobile parts that are connected together by a ball pivot; the immobile section of the portal has a T-shaped recess for directing the mobile section.

  10. Horizontal drilling under Lake Erie

    Energy Technology Data Exchange (ETDEWEB)

    Meller, R.

    2001-07-01

    Drilling oil wells under Lake Erie calls for horizontal drilling wells to be drilled from shore out into the pay-zone under the lake. The nature and characteristics of horizontal wells as compared to vertical wells are explored. Considerations that have to be taken into account in drilling horizontal wells are explained (the degree of curvature, drilling fluid quality, geosteering in the pay-zone, steering instrumentation, measurements while drilling (MWD), logging while drilling (LWD)). The concept and reasons for extended reach wells are outlined, along with characteristic features of multilateral wells.

  11. Development and Manufacture of Cost-Effective Composite Drill Pipe

    Energy Technology Data Exchange (ETDEWEB)

    James C. Leslie

    2008-12-31

    fields up to 74 kilohertz (KHz), a removable section of copper wire can be placed inside the composite pipe to short the tool joints electrically allowing electromagnetic signals inside the collar to induce and measure the same within the rock formation. By embedding a pair of wires in the composite section and using standard drill pipe box and pin ends equipped with a specially developed direct contact joint electrical interface, power can be supplied to measurement-while-drilling (MWD) and logging-while-drilling (LWD) bottom hole assemblies. Instantaneous high-speed data communications between near drill bit and the surface are obtainable utilizing this 'smart' drilling technology. The composite drill pipe developed by ACPT has been field tested successfully in several wells nationally and internationally. These tests were primarily for short radius and ultra short radius directional drilling. The CDP in most cases performed flawlessly with little or no appreciable wear. ACPT is currently marketing a complete line of composite drill collars, subs, isolators, casing, and drill pipe to meet the drilling industry's needs and tailored to replace metal for specific application requirements.

  12. Characterization of rotary-percussion drilling as a seismic-while-drilling source

    Science.gov (United States)

    Xiao, Yingjian; Hurich, Charles; Butt, Stephen D.

    2018-04-01

    This paper focuses on an evaluation of rotary-percussion drilling (RPD) as a seismic source. Two field experiments were conducted to characterize seismic sources from different rocks with different strengths, i.e. weak shale and hard arkose. Characterization of RPD sources consist of spectral analysis and mean power measurements, along with field measurements of the source radiation patterns. Spectral analysis shows that increase of rock strength increases peak frequency and widens bandwidth, which makes harder rock more viable for seismic-while-drilling purposes. Mean power analysis infers higher magnitude of body waves in RPD than in conventional drillings. Within the horizontal plane, the observed P-wave energy radiation pattern partially confirms the theoretical radiation pattern under a single vertical bit vibration. However a horizontal lobe of energy is observed close to orthogonal to the axial bit vibration. From analysis, this lobe is attributed to lateral bit vibration, which is not documented elsewhere during RPD. Within the horizontal plane, the observed radiation pattern of P-waves is generally consistent with a spherically-symmetric distribution of energy. In addition, polarization analysis is conducted on P-waves recorded at surface geophones for understanding the particle motions. P-wave particle motions are predominantly in the vertical direction showing the interference of the free-surface.

  13. Development of a Piezoelectric Rotary Hammer Drill

    Science.gov (United States)

    Domm, Lukas N.

    2011-01-01

    The Piezoelectric Rotary Hammer Drill is designed to core through rock using a combination of rotation and high frequency hammering powered by a single piezoelectric actuator. It is designed as a low axial preload, low mass, and low power device for sample acquisition on future missions to extraterrestrial bodies. The purpose of this internship is to develop and test a prototype of the Piezoelectric Rotary Hammer Drill in order to verify the use of a horn with helical or angled cuts as a hammering and torque inducing mechanism. Through an iterative design process using models in ANSYS Finite Element software and a Mason's Equivalent Circuit model in MATLAB, a horn design was chosen for fabrication based on the predicted horn tip motion, electromechanical coupling, and neutral plane location. The design was then machined and a test bed assembled. The completed prototype has proven that a single piezoelectric actuator can be used to produce both rotation and hammering in a drill string through the use of a torque inducing horn. Final data results include bit rotation produced versus input power, and best drilling rate achieved with the prototype.

  14. Mechanism of Rock Burst Occurrence in Specially Thick Coal Seam with Rock Parting

    Science.gov (United States)

    Wang, Jian-chao; Jiang, Fu-xing; Meng, Xiang-jun; Wang, Xu-you; Zhu, Si-tao; Feng, Yu

    2016-05-01

    Specially thick coal seam with complex construction, such as rock parting and alternative soft and hard coal, is called specially thick coal seam with rock parting (STCSRP), which easily leads to rock burst during mining. Based on the stress distribution of rock parting zone, this study investigated the mechanism, engineering discriminant conditions, prevention methods, and risk evaluation method of rock burst occurrence in STCSRP through setting up a mechanical model. The main conclusions of this study are as follows. (1) When the mining face moves closer to the rock parting zone, the original non-uniform stress of the rock parting zone and the advancing stress of the mining face are combined to intensify gradually the shearing action of coal near the mining face. When the shearing action reaches a certain degree, rock burst easily occurs near the mining face. (2) Rock burst occurrence in STCSRP is positively associated with mining depth, advancing stress concentration factor of the mining face, thickness of rock parting, bursting liability of coal, thickness ratio of rock parting to coal seam, and difference of elastic modulus between rock parting and coal, whereas negatively associated with shear strength. (3) Technologies of large-diameter drilling, coal seam water injection, and deep hole blasting can reduce advancing stress concentration factor, thickness of rock parting, and difference of elastic modulus between rock parting and coal to lower the risk of rock burst in STCSRP. (4) The research result was applied to evaluate and control the risk of rock burst occurrence in STCSRP.

  15. About creation of machines for rock destruction with formation of apertures of various cross-sections

    Science.gov (United States)

    Zhukov, I. A.; Dvornikov, L. T.; Nikitenko, S. M.

    2016-04-01

    The article presents the results of the experimental research of the high strength rock destruction by a bladeless tool. Rational circuit designs of disposing of indenters in the impact part of the drill bits and a diamond tool are justified. New constructive solutions of reinforcing bladeless drill bits, which allow drilling blast-holes of the various cross-section, are shown.

  16. Ultrasonic/Sonic Rotary-Hammer Drills

    Science.gov (United States)

    Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph; Bao, Xiaoqi; Kassab, Steve

    2010-01-01

    Ultrasonic/sonic rotary-hammer drill (USRoHD) is a recent addition to the collection of apparatuses based on ultrasonic/sonic drill corer (USDC). As described below, the USRoHD has several features, not present in a basic USDC, that increase efficiency and provide some redundancy against partial failure. USDCs and related apparatuses were conceived for boring into, and/or acquiring samples of, rock or other hard, brittle materials of geological interest. They have been described in numerous previous NASA Tech Briefs articles. To recapitulate: A USDC can be characterized as a lightweight, lowpower, piezoelectrically driven jackhammer in which ultrasonic and sonic vibrations are generated and coupled to a tool bit. A basic USDC includes a piezoelectric stack, an ultrasonic transducer horn connected to the stack, a free mass ( free in the sense that it can bounce axially a short distance between hard stops on the horn and the bit), and a tool bit. The piezoelectric stack creates ultrasonic vibrations that are mechanically amplified by the horn. The bouncing of the free mass between the hard stops generates the sonic vibrations. The combination of ultrasonic and sonic vibrations gives rise to a hammering action (and a resulting chiseling action at the tip of the tool bit) that is more effective for drilling than is the microhammering action of ultrasonic vibrations alone. The hammering and chiseling actions are so effective that unlike in conventional twist drilling, little applied axial force is needed to make the apparatus advance into the material of interest. There are numerous potential applications for USDCs and related apparatuses in geological exploration on Earth and on remote planets. In early USDC experiments, it was observed that accumulation of cuttings in a drilled hole causes the rate of penetration of the USDC to decrease steeply with depth, and that the rate of penetration can be increased by removing the cuttings. The USRoHD concept provides for

  17. Request by the Bure (Haute-Marne) CLIS related to the reading of well logging performed by the ANDRA from drilling located around Bure, to check rock characterization and properties. Report made by the ANCCLI's Scientific Committee

    International Nuclear Information System (INIS)

    2006-01-01

    After having recalled the first conclusions of a work group built up by the Scientific Committee at the request of the Bure CLIS to assess studies performed by the ANDRA regarding the geological properties of the Bure site (site of deep geological storage of long life and high level radio-elements), this report proposes a critical discussion of measurements performed by the ANDRA, and more particularly of methodological aspects of this assessment of rock characteristics and properties based on well logging data. Thus, it comments the available raw data, the used instrumentation, the assessment of clay containment capacities (containment horizon homogeneity, stability of petrophysical properties, hydraulic studies with a focus on a noticed overpressure, modelling and data integration). Some brief propositions are stated. The appendix contains a set a questions to be submitted to the ANDRA by the Bure CLIS on the available data, on data calibration and homogenization, and on the assessment of containment capacities

  18. Rock Art

    Science.gov (United States)

    Henn, Cynthia A.

    2004-01-01

    There are many interpretations for the symbols that are seen in rock art, but no decoding key has ever been discovered. This article describes one classroom's experiences with a lesson on rock art--making their rock art and developing their own personal symbols. This lesson allowed for creativity, while giving an opportunity for integration…

  19. Ocean Drilling: Forty Years of International Collaboration

    Science.gov (United States)

    Smith, Deborah K.; Exon, Neville; Barriga, Fernando J. A. S.; Tatsumi, Yoshiyuki

    2010-10-01

    International cooperation is an essential component of modern scientific research and societal advancement [see Ismail-Zadeh and Beer, 2009], and scientific ocean drilling represents one of Earth science's longest-running and most successful international collaborations. The strength of this collaboration and its continued success result from the realization that scientific ocean drilling provides a unique and powerful tool to study the critical processes of both short-term change and the long-term evolution of Earth systems. A record of Earth's changing tectonics, climate, ocean circulation, and biota is preserved in marine sedimentary deposits and the underlying basement rocks. And because the ocean floor is the natural site for accumulation and preservation of geological materials, it may preserve a continuous record of these processes.

  20. Evacuation drill at CMS

    CERN Multimedia

    Niels Dupont-Sagorin and Christoph Schaefer

    2012-01-01

    Training personnel, including evacuation guides and shifters, checking procedures, improving collaboration with the CERN Fire Brigade: the first real-life evacuation drill at CMS took place on Friday 3 February from 12p.m. to 3p.m. in the two caverns located at Point 5 of the LHC.   CERN personnel during the evacuation drill at CMS. Evacuation drills are required by law and have to be organized periodically in all areas of CERN, both above and below ground. The last drill at CMS, which took place in June 2007, revealed some desiderata, most notably the need for a public address system. With this equipment in place, it is now possible to broadcast audio messages from the CMS control room to the underground areas.   The CMS Technical Coordination Team and the GLIMOS have focused particularly on preparing collaborators for emergency situations by providing training and organizing regular safety drills with the HSE Unit and the CERN Fire Brigade. This Friday, the practical traini...

  1. A Universal Rig for Supporting Large Hammer Drills: Reduced Injury Risk and Improved Productivity.

    Science.gov (United States)

    Rempel, David; Barr, Alan

    2015-10-01

    Drilling holes into concrete with heavy hammer and rock drills is one of the most physically demanding tasks performed in commercial construction and poses risks for musculoskeletal disorders, noise induced hearing loss, hand arm vibration syndrome and silicosis. The aim of this study was to (1) use a participatory process to develop a rig to support pneumatic rock drills or large electric hammer drills in order to reduce the health risks and (2) evaluate the usability of the rig. Seven prototype rigs for supporting large hammer drills were developed and modified with feedback from commercial contractors and construction workers. The final design was evaluated by laborers and electricians (N=29) who performed their usual concrete drilling with the usual method and the new rig. Subjective regional fatigue was significantly less in the neck, shoulders, hands and arms, and lower back) when using the universal rig compared to the usual manual method. Usability ratings for the rig were significantly better than the usual method on stability, control, drilling, accuracy, and vibration. Drilling time was reduced by approximately 50% with the rig. Commercial construction contractors, laborers and electricians who use large hammer drills for drilling many holes should consider using such a rig to prevent musculoskeletal disorders, fatigue, and silicosis.

  2. Individual Drilling Bit Design and Optimization in Mahu Area

    Directory of Open Access Journals (Sweden)

    Zhang Wenbo

    2017-01-01

    Full Text Available There are three sets of gravels in Mahu region. The gravels formation is characterized by high heterogeneity, high abrasiveness and poor drillability. It is so difficult to optimize bit that restrict seriously the overall exploration and development process. The compressive strength, internal friction angle, and drillability of the formation are tested to check the rock mechanical characteristic profile established by logging data. The individual bit design is carried out by the 3D simulation technology. A new PDC bit type is designed to form the drill bit series for Mahu area. Single PDC bit increases 90% of the drilling footage. The trip average footage is improved 3.45 times, the horizontal section average penetration increased 34.8%. The technical achievements have greatly improved economic development benefits of Mahu region by improving drilling speed and saving drilling costs.

  3. Problem analysis of geotechnical well drilling in complex environment

    International Nuclear Information System (INIS)

    Kasenov, A K; Biletskiy, M T; Ratov, B T; Korotchenko, T V

    2015-01-01

    The article examines primary causes of problems occurring during the drilling of geotechnical wells (injection, production and monitoring wells) for in-situ leaching to extract uranium in South Kazakhstan. Such a drilling problem as hole caving which is basically caused by various chemical and physical factors (hydraulic, mechanical, etc.) has been thoroughly investigated. The analysis of packing causes has revealed that this problem usually occurs because of insufficient amount of drilling mud being associated with small cross section downward flow and relatively large cross section upward flow. This is explained by the fact that when spear bores are used to drill clay rocks, cutting size is usually rather big and there is a risk for clay particles to coagulate

  4. Mars Drilling Status

    Science.gov (United States)

    Mandell, Humboldt, C., Jr.

    2002-01-01

    This slide presentation reviews the current status of work to explore Mars beneath the surface of planet. One of the objective of this work is to enable further exploration of Mars by humans. One of the requirements for this is to find water on Mars. The presences of water is critical for Human Exploration and a permanent presence on Mars. If water is present beneath the surface it is the best chance of finding life on Mars. The presentation includes a timeline showing the robotic missions, those that have already been on Mars, and planned missions, an explanation of why do we want to drill on Mars, and some of the challenges, Also include are reviews of a missions that would drill 200 and 4,000 to 6,000 meters into the Martian bedrock, and a overview description of the drill. There is a view of some places where we have hopes of finding water.

  5. The LITA Drill and Sample Delivery System

    Science.gov (United States)

    Paulsen, G.; Yoon, S.; Zacny, K.; Wettergreeng, D.; Cabrol, N. A.

    2013-12-01

    fall back material will be augered out during auger re-insertion. The next bite will be taken only once the auger has reached the true bottom. In the bite sampling approach the stratigraphy is somewhat preserved since every time the sample is taken, it more or less represents the depth interval in the hole. There is going to be some level of cross contamination due to smearing of cuttings on the flutes against the borehole as the auger is being pulled out, or when formation is very porous and unstable. The goal of the first drill campaign in Atacama in May of 2012 was to demonstrate successful operation of the bite sampling method and to learn about diversity of soils and rocks in the Atacama. In 2013, the sampling system has been integrated onto the CMU Zoe rover and autonomously deployed in Atacama. The drill penetrated various formations and delivered samples to a carousel. When soil was very porous, poor sample recovery was observed. When the soil was dense and cohesive, sample recovery was 100% with little cross contamination. To enable greater sample recovery in loose and unstable formations, the auger diameter will be increased from the current 12.5 mm to 19 mm. Acknowledgements: The project has been funded by the NASA ASTEP program.

  6. Extended Horizontal Jet Drilling for EGS applications in Petrothermal Environments

    Science.gov (United States)

    Hahn, Simon; Duda, Mandy; Stoeckhert, Ferdinand; Wittig, Volker; Bracke, Rolf

    2017-04-01

    Extended Horizontal Jet Drilling for EGS applications in Petrothermal Environments S. Hahn, M. Duda, F. Stoeckhert, V. Wittig, R. Bracke International Geothermal Centre Bochum High pressure water jet drilling technologies are widely used in the drilling industry. Especially in geothermal and hard rock applications, horizontal (radial) jet drilling is, however, confronted with several limitations like lateral length, hole size and steerability. In order to serve as a serious alternative to conventional stimulation techniques these high pressure jetting techniques are experimentally investigated to gain fundamental knowledge about the fluid-structure interaction, to enhance the rock failing process and to identify the governing drilling parameters. The experimental program is divided into three levels. In a first step jetting experiments are performed under free surface conditions while logging fluid pressures, flow speeds and extracted rock volume. All process parameters are quantified with a self-developed jet-ability index and compared to the rock properties (density, porosity, permeability, etc.). In a second step experiments will be performed under pressure-controlled conditions. A test bench is currently under construction offering the possibility to assign an in-situ stress field to the specimen while penetrating the rock sample with a high pressure water jet or a radial jet drilling device. The experimental results from levels 1 and 2 allow to identify the governing rock failure mechanisms and to correlate them with physical rock properties and limited reservoir conditions. Results of the initial tests do show a clear dependency of achievable penetration depth on the interaction of jetting and rock parameters and an individual threshold of the nozzle outlet velocity can be noticed in order to successfully penetrate different formation types. At level 3 jetting experiments will be performed at simulated reservoir conditions corresponding to 5.000 m depth (e

  7. Impact of Drill and Blast Excavation on Repository Performance Confirmation

    International Nuclear Information System (INIS)

    Keller, R.; Francis, N.; Houseworth, J.; Kramer, N.

    2000-01-01

    There has been considerable work accomplished internationally examining the effects of drill and blast excavation on rock masses surrounding emplacement openings of proposed nuclear waste repositories. However, there has been limited discussion tying the previous work to performance confirmation models such as those proposed for Yucca Mountain, Nevada. This paper addresses a possible approach to joining the available information on drill and blast excavation and performance confirmation. The method for coupling rock damage data from drill and blast models to performance assessment models for fracture flow requires a correlation representing the functional relationship between the peak particle velocity (PPV) vibration levels and the potential properties that govern water flow rates in the host rock. Fracture aperture and frequency are the rock properties which may be most influenced by drill and blast induced vibration. If it can be shown (using an appropriate blasting model simulation) that the effect of blasting is far removed from the waste package in an emplacement drift, then disturbance to the host rock induced in the process of drill and blast excavation may be reasonably ignored in performance assessment calculations. This paper proposes that the CANMET (Canada Center for Mineral and Energy Technology) Criterion, based on properties that determine rock strength, may be used to define a minimum PPV. This PPV can be used to delineate the extent of blast induced damage. Initial applications have demonstrated that blasting models can successfully be coupled with this criterion to predict blast damage surrounding underground openings. The Exploratory Studies Facility at Yucca Mountain has used a blasting model to generate meaningful estimates of near-field vibration levels and damage envelopes correlating to data collected from pre-existing studies conducted. Further work is underway to expand this application over a statistical distribution of geologic

  8. Effect of excavation method on rock mass displacement

    International Nuclear Information System (INIS)

    Sato, Toshinori; Kikuchi, Tadashi; Sugihara, Kozo

    1998-01-01

    Rock mass displacement measurements have been performed to understand rock mass behavior and its dependence on excavation method during drift excavation at the Tono mine. Rock mass displacements of 1.46 mm and 0.67 mm have been measured at one meter (0.33D: blasting, 0.42D: machine, D: width of drift) from the walls of drifts excavated by the drill and blasting method and machine, respectively. Numerical analysis of rock mass displacements with Finite Element Method has been performed assuming an excavation disturbed zone. Measured and analysed rock mass displacements are consistent with each other for the drift excavation by the drill and blasting method. The excavation disturbed zone was narrower for the drift excavated by machine than for the drift excavated by the drill and blasting method. (author)

  9. Rotary core drills

    Energy Technology Data Exchange (ETDEWEB)

    1967-11-30

    The design of a rotary core drill is described. Primary consideration is given to the following component parts of the drill: the inner and outer tube, the core bit, an adapter, and the core lifter. The adapter has the form of a downward-converging sleeve and is mounted to the lower end of the inner tube. The lifter, extending from the adapter, is split along each side so that it can be held open to permit movement of a core. It is possible to grip a core by allowing the lifter to assume a closed position.

  10. Drilling comparison in "warm ice" and drill design comparison

    DEFF Research Database (Denmark)

    Augustin, L.; Motoyama, H.; Wilhelms, F.

    2007-01-01

    For the deep ice-core drilling community, the 2005/06 Antarctic season was an exciting and fruitful one. In three different Antarctic locations, Dome Fuji, EPICA DML and Vostok, deep drillings approached bedrock (the ice-water interface in the case of Vostok), emulating what had previously been...... achieved at NorthGRIP, Greenland, (summer 2003 and 2004) and at EPICA Dome C2, Antarctica (season 2004/05). For the first time in ice-core drilling history, three different types of drill (KEMS, JARE and EPICA) simultaneously reached the depth of 'warm ice' under high pressure. After excellent progress...... at each site, the drilling rate dropped and the drilling teams had to deal with refrozen ice on cutters and drill heads. Drills have different limits and perform differently. In this comparative study, we examine depth, pressure, temperature, pump flow and cutting speed. Finally, we compare a few...

  11. Numerical Simulations of Thermo-Mechanical Processes during Thermal Spallation Drilling for Geothermal Reservoirs

    Science.gov (United States)

    Vogler, D.; Walsh, S. D. C.; Rudolf von Rohr, P.; Saar, M. O.

    2017-12-01

    Drilling expenses constitute a significant share of the upfront capital costs and thereby the associated risks of geothermal energy production. This is especially true for deep boreholes, as drilling costs per meter increase significantly with depth. Thermal spallation drilling is a relatively new drilling technique, particularly suited to the hard crystalline (e.g., basement) rocks in which many deep geothermal resources are located. The method uses a hot jet-flame to rapidly heat the rock surface, which leads to large temperature gradients in the rock. These temperature gradients cause localized thermal stresses that, in combination with the in situ stress field, lead to the formation and ejection of spalls. These spalls are then transported out of the borehole with the drilling mud. Thermal spallation not only in principle enables much faster rates of penetration than traditional rotary drilling, but is also contact-less, which significantly reduces the long tripping times associated with conventional rotary head drilling. We present numerical simulations investigating the influence of rock heterogeneities on the thermal spallation process. Special emphasis is put on different mineral compositions, stress regimes, and heat sources.

  12. Rock excavation by pulsed electron beams

    International Nuclear Information System (INIS)

    Avery, R.T.; Keefe, D.; Brekke, T.L.; Finnie, I.

    1976-03-01

    If an intense short pulse of megavolt electrons is deposited in a brittle solid, dynamic spalling can be made to occur with removal of material. Experiments were made on several types of hard rock; results are reproducible and well-described theoretically. An accelerator with a rapidly-pulsed scanning electron beam was designed that could tunnel in hard rock about ten times faster than conventional drill/blast methods

  13. Rock excavation by pulsed electron beams

    International Nuclear Information System (INIS)

    Avery, R.T.; Keefe, D.; Brekke, T.L.; Finnie, I.

    1976-01-01

    If an intense short pulse of megavolt electrons is deposited in a brittle solid, dynamic spalling can be made to occur with removal of material. Experiments have been made on several types of hard rock; results are reproducible and well-described theoretically. An accelerator with a rapid-pulsed scanning electron-beam has been designed that could tunnel in hard rock about ten times faster than conventional drill/blast methods. (author)

  14. Development of controlled drilling technology and measurement method in the borehole. Phase 2. Upgrading of drilling and measurement system and its application to the fault

    International Nuclear Information System (INIS)

    Kiho, Kenzo; Shin, Koichi; Ohtsu, Masashi

    2009-01-01

    In Japan, the soft sedimentary rock of the Neogene tertiary is being focused as a host rock for High Level Waste (HLW) disposal. Especially, the soft sedimentary rock at the coastal area is thought to be one of the best candidates, since there is little driving force of the underground water. The measurement and logging of the bore hole in order to investigate the hydro-geological and geo-mechanical conditions of the host rock is a very important way to examine the potential of the disposal candidates. Since 2000, CRIEPI (Central Research Institute of Electric Power Industry) has been conducting the project on controlled drilling and the logging/measurement technologies in its boreholes. Based on the results of phase 1(2000-2004), CRIEPI has been developing the drilling and logging/measurement technologies for fault zone during phase 2 (2005-2007). The drilling technology such as drilling for fault zone, horizontal drilling, long hole drilling, coring and locality detection was developed and these applicability was confirmed while drilling. The permeability/water-sampling/imaging tool was revised to apply wider borehole and longer measuring section. The WL-LWD was improved to be tougher in the hole. The borehole pressure meter and stress measurement tools were unified. Each tools necessary for the monitoring system is manufactured. The applicability of these tools and systems were verified in the borehole. After conducting surveys for the Omagari fault distributing at the Kami-horonobe area, the drilling site and borehole trace was decided in 2005. Considering the planned trace, the bore hole was drilled to the 683.5m long and its core recovery was 99.8%. Using borehole logging/measurement/survey, the geological, hydrological, geo-mechanical, geophysical and geochemical data were collected and the Omagari fault was characterized. (author)

  15. The application of SEM in analyzing the damage to the petroleum reservoirs caused by drilling fluids

    International Nuclear Information System (INIS)

    Abdul Razak Ismail

    1996-01-01

    An experimental study has been conducted to analyze the damage to the potential oil and gas reservoirs due to the invasion of drilling fluid during drilling operation. Two types of rock samples representing low and high permeability were used to stimulate the petroleum reservoirs. Sea water based drilling fluids were used in this study. Detail observations to the rock samples were analyzed using scanning electron microscope (SEM). The results of both permeability restoration and SEM observation showed that severe permeability impairments were obtained for high permeability rock. These results indicate that the relative size of the barite particles and the pore size distribution and characteristics of the formation play an important role in determining the damage caused by the drilling fluids

  16. Drill Sergeant Candidate Transformation

    Science.gov (United States)

    2009-02-01

    leadership styles of NCOs entering Drill Sergeant School (DSS). ARI also developed and administered a prototype DS Assessment Battery to assess...preferred leadership styles . DSS training increases both the degree to which the DSC feels obligated to and identifies with the Army. DSS training...4 TABLE 3. PREFERRED LEADERSHIP STYLES DEFINITIONS .............................................6 TABLE 4. DSC CHANGE IN

  17. Measurement Space Drill Support

    Science.gov (United States)

    2015-08-30

    II) H-47 Block II (I) *H-47 Block II (II) AVN FVL Att (I) * AVN FVL Att (II) TRAC- MTRY F2025B Logistic Flow MS Drill Support FY15 Research...does not have to use other AVN /ground assets to cover the area, freeing these assets to perform other missions and potentially enhancing the

  18. Core drilling of REPRO drillholes in ONKALO at Olkiluoto 2010-2011

    International Nuclear Information System (INIS)

    Toropainen, V.

    2012-05-01

    Suomen Malmi Oy (Smoy) core drilled ten drillholes for the Posiva's Experiments to investigate Rock Matrix Retention Properties (REPRO) in ONKALO at Eurajoki, 2010 - 2011. The drillholes are used for geological characterization, hydrological and geophysical studies and instrumenting in research for retention of radionuclides to rock matrix. The drillhole ONK-PP240 was drilled in March 2010 and the drillholes ONKPP318... 324 and ONK-PP326...327 in October - December 2011. The lengths of the drillholes range from 4.90 to 21.65 metres. The drillholes are 56.5 mm by diameter. The drillhole ONK-PP240 was drilled for pretesting in the investigation niche 4 at access tunnel chainage 3747 and the rest of the drillholes in the investigation niche 5 at access tunnel chainage 4219. The hydraulic DE 130 drilling rig was used. The starting directions of the close spaced drillholes were controlled with an aligner assembly to be as parallel as possible. The drilling water was taken from the ONKALO drilling water pipeline and premixed sodium fluorescein was used as a label agent in the drilling water. The drillholes were measured with EMS deviation survey tool. In addition to drilling the drillcores were logged and reported by geologist. Geological logging included the following parameters: lithology, foliation, fracture parameters, fractured zones, core loss, weathering, fracture frequency, RQD and rock quality. The main rock types in the drillholes are veined gneiss, pegmatitic granite and quartz gneiss (skarn rock). The average fracture frequency in drill cores is 1.2 pcs/m and the average RQD value 98.6 %. (orig.)

  19. Core drilling of REPRO drillholes in ONKALO at Olkiluoto 2010-2011

    Energy Technology Data Exchange (ETDEWEB)

    Toropainen, V. [Suomen Malmi Oy, Espoo (Finland)

    2012-05-15

    Suomen Malmi Oy (Smoy) core drilled ten drillholes for the Posiva's Experiments to investigate Rock Matrix Retention Properties (REPRO) in ONKALO at Eurajoki, 2010 - 2011. The drillholes are used for geological characterization, hydrological and geophysical studies and instrumenting in research for retention of radionuclides to rock matrix. The drillhole ONK-PP240 was drilled in March 2010 and the drillholes ONKPP318... 324 and ONK-PP326...327 in October - December 2011. The lengths of the drillholes range from 4.90 to 21.65 metres. The drillholes are 56.5 mm by diameter. The drillhole ONK-PP240 was drilled for pretesting in the investigation niche 4 at access tunnel chainage 3747 and the rest of the drillholes in the investigation niche 5 at access tunnel chainage 4219. The hydraulic DE 130 drilling rig was used. The starting directions of the close spaced drillholes were controlled with an aligner assembly to be as parallel as possible. The drilling water was taken from the ONKALO drilling water pipeline and premixed sodium fluorescein was used as a label agent in the drilling water. The drillholes were measured with EMS deviation survey tool. In addition to drilling the drillcores were logged and reported by geologist. Geological logging included the following parameters: lithology, foliation, fracture parameters, fractured zones, core loss, weathering, fracture frequency, RQD and rock quality. The main rock types in the drillholes are veined gneiss, pegmatitic granite and quartz gneiss (skarn rock). The average fracture frequency in drill cores is 1.2 pcs/m and the average RQD value 98.6 %. (orig.)

  20. Experimental study on effects of drilling parameters on respirable dust production during roof bolting operations.

    Science.gov (United States)

    Jiang, Hua; Luo, Yi; McQuerrey, Joe

    2018-02-01

    Underground coalmine roof bolting operators exhibit a continued risk for overexposure to airborne levels of respirable coal and crystalline silica dust from the roof drilling operation. Inhaling these dusts can cause coal worker's pneumoconiosis and silicosis. This research explores the effect of drilling control parameters, specifically drilling bite depth, on the reduction of respirable dust generated during the drilling process. Laboratory drilling experiments were conducted and results demonstrated the feasibility of this dust control approach. Both the weight and size distribution of the dust particles collected from drilling tests with different bite depths were analyzed. The results showed that the amount of total inhalable and respirable dust was inversely proportional to the drilling bite depth. Therefore, control of the drilling process to achieve proper high-bite depth for the rock can be an important approach to reducing the generation of harmful dust. Different from conventional passive engineering controls, such as mist drilling and ventilation approaches, this approach is proactive and can cut down the generation of respirable dust from the source. These findings can be used to develop an integrated drilling control algorithm to achieve the best drilling efficiency as well as reducing respirable dust and noise.

  1. NEW HIGH STRENGTH AND FASTER DRILLING TSP DIAMOND CUTTERS

    Energy Technology Data Exchange (ETDEWEB)

    Robert Radtke

    2006-01-31

    The manufacture of thermally stable diamond (TSP) cutters for drill bits used in petroleum drilling requires the brazing of two dissimilar materials--TSP diamond and tungsten carbide. The ENDURUS{trademark} thermally stable diamond cutter developed by Technology International, Inc. exhibits (1) high attachment (shear) strength, exceeding 345 MPa (50,000 psi), (2) TSP diamond impact strength increased by 36%, (3) prevents TSP fracture when drilling hard rock, and (4) maintains a sharp edge when drilling hard and abrasive rock. A novel microwave brazing (MWB) method for joining dissimilar materials has been developed. A conventional braze filler metal is combined with microwave heating which minimizes thermal residual stress between materials with dissimilar coefficients of thermal expansion. The process results in preferential heating of the lower thermal expansion diamond material, thus providing the ability to match the thermal expansion of the dissimilar material pair. Methods for brazing with both conventional and exothermic braze filler metals have been developed. Finite element modeling (FEM) assisted in the fabrication of TSP cutters controllable thermal residual stress and high shear attachment strength. Further, a unique cutter design for absorbing shock, the densification of otherwise porous TSP diamond for increased mechanical strength, and diamond ion implantation for increased diamond fracture resistance resulted in successful drill bit tests.

  2. Core drilling of drillhole ONK-PVA11 in ONKALO at Olkiluoto 2014

    Energy Technology Data Exchange (ETDEWEB)

    Toropainen, V. [Drillcon SMOY, Espoo (Finland)

    2014-12-15

    Suomen Malmi Oy (Smoy) core drilled a drillhole for groundwater monitoring station in ONKALO at Eurajoki, Olkiluoto in 2014. The groundwater monitoring stations are used for monitoring changes in groundwater conditions. The drillhole ONK-PVA11 was drilled in February 2014. The length of the drillhole is 30.05 metres. The drillhole is 75.7 mm by diameter. The drillhole ONK-PVA11 was drilled in the left wall of the ONK-TT-4399 (tunnel chainage 50) between the demonstration tunnel ONK-TDT-4399-44 and 56 openings. The hydraulic DE 130 drilling rig was used. The drilling water was taken from the ONKALO drilling water pipeline and premixed sodium fluorescein was used as a label agent in the drilling water. The drillhole was measured with EMS deviation survey tool. In addition to drilling the drillcore was logged and reported by geologist. Geological logging included the following parameters: lithology, foliation, fracture parameters, fractured zones, core loss, weathering, fracture frequency, RQD and rock quality. The main rock types in the drillcore are veined gneiss, diatexitic gneiss and pegmatitic granite. The average fracture frequency in drill core is 2.3 pcs/m and the average RQD value 95.2 %. (orig.)

  3. Core drilling of drillhole ONK-PVA11 in ONKALO at Olkiluoto 2014

    International Nuclear Information System (INIS)

    Toropainen, V.

    2014-12-01

    Suomen Malmi Oy (Smoy) core drilled a drillhole for groundwater monitoring station in ONKALO at Eurajoki, Olkiluoto in 2014. The groundwater monitoring stations are used for monitoring changes in groundwater conditions. The drillhole ONK-PVA11 was drilled in February 2014. The length of the drillhole is 30.05 metres. The drillhole is 75.7 mm by diameter. The drillhole ONK-PVA11 was drilled in the left wall of the ONK-TT-4399 (tunnel chainage 50) between the demonstration tunnel ONK-TDT-4399-44 and 56 openings. The hydraulic DE 130 drilling rig was used. The drilling water was taken from the ONKALO drilling water pipeline and premixed sodium fluorescein was used as a label agent in the drilling water. The drillhole was measured with EMS deviation survey tool. In addition to drilling the drillcore was logged and reported by geologist. Geological logging included the following parameters: lithology, foliation, fracture parameters, fractured zones, core loss, weathering, fracture frequency, RQD and rock quality. The main rock types in the drillcore are veined gneiss, diatexitic gneiss and pegmatitic granite. The average fracture frequency in drill core is 2.3 pcs/m and the average RQD value 95.2 %. (orig.)

  4. Acoustics aspects of technological process in the rock disintegration

    Directory of Open Access Journals (Sweden)

    Jozef Futó

    2007-04-01

    Full Text Available The paper describes some results of monitoring and aspects of the acoustic signal in the rock disintegration on the drillig stand of the Institute of Geotechnics, SAS in Košice. The registration and processing of the acoustic signal is solved as a part of the research grant task within the basic research of the rock disintegration by drilling.

  5. Recreating Rocks

    DEFF Research Database (Denmark)

    Posth, Nicole R

    2008-01-01

    Nicole Posth and colleagues spent a month touring South African rock formations in their quest to understand the origin of ancient iron and silicate layers.......Nicole Posth and colleagues spent a month touring South African rock formations in their quest to understand the origin of ancient iron and silicate layers....

  6. Application of the Drilling Impact Study (DIS) to Forsmark groundwaters

    International Nuclear Information System (INIS)

    Gascoyne, Mel; Gurban, Ioana

    2008-01-01

    Characterisation of a geological formation as a repository for nuclear fuel waste requires deep drilling into the bedrock to gain an understanding of the geological structure, rock types, groundwater flow and the chemical composition of groundwater and the adjacent rock. The methods of characterisation from a hydrogeochemical point of view, might be affected by the various drilling activities and techniques for determining groundwater composition have been employed so that the composition can be corrected for these activities. SKB has developed and supported the Drilling Impact Study (DIS) project in which a tracer is used as an indicator of contamination to attempt to correct the groundwater composition for dilution or contamination by surface waters. The project began about five years ago with the intention of developing a routine method for determining the extent of contamination of borehole groundwater by drilling water. The main objectives of this work were: 1. Determine the extent of drilling water contamination in permeable zones in a test borehole on the Forsmark site. 2. Correct measured chemical compositions of the groundwaters based on contamination results. 3. Provide a workable methodology for routine correction of groundwater composition. 4. Apply the modified DIS model to suitable borehole zones at the Forsmark site in a systematic fashion 5. Determine uncertainties in DIS modelling. A memorandum was prepared by describing the characteristics of borehole KFM06 and its drilling history. Estimates were made of the amount of drilling water in permeable zones in the borehole and the various approaches to applying results of DIS were described and recommendations made, with an example calculation

  7. Drilling subsurface wellbores with cutting structures

    Science.gov (United States)

    Mansure, Arthur James; Guimerans, Rosalvina Ramona

    2010-11-30

    A system for forming a wellbore includes a drill tubular. A drill bit is coupled to the drill tubular. One or more cutting structures are coupled to the drill tubular above the drill bit. The cutting structures remove at least a portion of formation that extends into the wellbore formed by the drill bit.

  8. Contemporary drilling and grouting practices for dam remediation

    International Nuclear Information System (INIS)

    Bruce, D.A.; Naudts, A.

    1998-01-01

    A generic classification for the different methods used in rock drilling and overburden drilling is described, along with a classification of the range of grouting materials available and the different grouting methods that can be used. Examples are presented from two recent major dam remediation projects to demonstrate the basis for selection and use of the different methods and materials. It was shown that a high level of performance can be obtained when a project is properly designed, executed and monitored. 29 refs., 5 tabs., 5 figs

  9. Single Piezo-Actuator Rotary-Hammering Drill

    Science.gov (United States)

    Sherrit, Stewart; Bao, Xiaoqi; Badescu, Mircea; Bar-Cohen, Yoseph

    2011-01-01

    This innovation comprises a compact drill that uses low-axial preload, via vibrations, that fractures the rock under the bit kerf, and rotates the bit to remove the powdered cuttings while augmenting the rock fracture via shear forces. The vibrations fluidize the powered cuttings inside the flutes around the bit, reducing the friction with the auger surface. These combined actions reduce the consumed power and the heating of the drilled medium, helping to preserve the pristine content of the produced samples. The drill consists of an actuator that simultaneously impacts and rotates the bit by applying force and torque via a single piezoelectric stack actuator without the need for a gearbox or lever mechanism. This reduces the development/fabrication cost and complexity. The piezoelectric actuator impacts the surface and generates shear forces, fragmenting the drilled medium directly under the bit kerf by exceeding the tensile and/or shear strength of the struck surface. The percussive impact action of the actuator leads to penetration of the medium by producing a zone of finely crushed rock directly underneath the struck location. This fracturing process is highly enhanced by the shear forces from the rotation and twisting action. To remove the formed cuttings, the bit is constructed with an auger on its internal or external surface. One of the problems with pure hammering is that, as the teeth become embedded in the sample, the drilling efficiency drops unless the teeth are moved away from the specific footprint location. By rotating the teeth, they are moved to areas that were not fragmented, and thus the rock fracturing is enhanced via shear forces. The shear motion creates ripping or chiseling action to produce larger fragments to increase the drilling efficiency, and to reduce the required power. The actuator of the drill consists of a piezoelectric stack that vibrates the horn. The stack is compressed by a bolt between the backing and the horn in order to

  10. High Temperature Piezoelectric Drill

    Science.gov (United States)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom

    2012-01-01

    Venus is one of the planets in the solar systems that are considered for potential future exploration missions. It has extreme environment where the average temperature is 460 deg C and its ambient pressure is about 90 atm. Since the existing actuation technology cannot maintain functionality under the harsh conditions of Venus, it is a challenge to perform sampling and other tasks that require the use of moving parts. Specifically, the currently available electromagnetic actuators are limited in their ability to produce sufficiently high stroke, torque, or force. In contrast, advances in developing electro-mechanical materials (such as piezoelectric and electrostrictive) have enabled potential actuation capabilities that can be used to support such missions. Taking advantage of these materials, we developed a piezoelectric actuated drill that operates at the temperature range up to 500 deg C and the mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) configuration. The detailed results of our study are presented in this paper

  11. Offset drilling obligations

    International Nuclear Information System (INIS)

    Boyd, K.D.; Kalmakoff, J.J.

    1998-01-01

    A review of the 'offset well' clause found in freehold and Crown natural gas and petroleum leases was presented. The objective was to provide lessors and lessees with a clear understanding of the rights and obligations associated with offset wells. It was noted that offset well obligations vary according to the form of lease used, the type of offsetting well, the regulatory regime and the geophysical characteristics of the producing formation. Some suggestions were made as to how current versions of the offset well clause can be amended to overcome some of the problems encountered in applying the clause to an offset horizontal well that has been drilled on adjoining lands. Failure to resolve the new issues presented by horizontal drilling technology in terms of documentation, which records respective rights and obligations on the basis of generally accepted principles, will result in large numbers of conflicts and unnecessary litigation. 144 refs., 1 fig

  12. Drilling in salt formations; Perfuracao em formacoes salinas

    Energy Technology Data Exchange (ETDEWEB)

    Falcao, Jose Luiz [PETROBRAS, Rio de Janeiro, RJ (Brazil). E e P Engenharia de Producao. Gerencia de Perfuracao e Operacoes Especiais], e-mail: jfalcao@petrobras.com.br; Poiate Junior, Edgard [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas da Petrobras (CENPES). Gerencia de Metodos Cientificos], e-mail: poiate@petrobras.com.br; Costa, Alvaro Maia da [PETROBRAS, Rio de Janeiro, RJ (Brazil). Diretoria de Exploracao e Producao], e-mail: amcta@petrobras.com.br; Alves, Ivan Antonio Silva [PETROBRAS, Rio de Janeiro, RJ (Brazil). E e P Exploracao. Gerencia de Operacoes em Pocos], e-mail: ialves@petrobras.com.br; Eston, Sergio Medici de [Universidade de Sao Paulo (USP), SP (Brazil). Engenharia de Minas e Petroleo], e-mail: e-mail: sergio.eston@poli.usp.br

    2007-12-15

    This paper is a collection of experiences of service companies, operators and PETROBRAS in the drilling of salt rocks in petroleum prospecting. From the exploratory point of view, the presence of these rocks in the area increases the chances of success. By their characteristics, these sediments can deform, dissolve and migrate, creating preferential flow paths and generating stratigraphic structures and traps ideal for the accumulation of hydrocarbons. This has been a well known fact since the beginning of the petroleum industry. In addition to these factors, the salts are almost perfect seals for the accumulations under them. Their presence in sedimentary basins have an important economical significance, not only in the exploratory interpretation phase, but also in the drilling of wells, as they present mechanical characteristics distinct from siliclastic and carbonatic rocks. However, from the operational point of view, the drilling of some of these salt rocks is associated with a large number of well stability problems (in the short term) and the integrity of wellbore liners (in the long term), when compared to other lithologies. (author)

  13. Core drilling of short drillholes at Olkiluoto in Eurajoki 2006

    International Nuclear Information System (INIS)

    Rautio, T.

    2007-05-01

    Posiva Oy submitted an application to the Finnish Government in May 1999 for the Decision in Principle to choose Olkiluoto in the municipality of Eurajoki as the site of the final disposal facility for spent nuclear fuel. A positive decision was made at the end of 2000 by the Government. The Finnish Parliament ratified the decision in May 2001. The decision makes it possible for Posiva to focus the confirming bedrock investigations at Olkiluoto, where in the next few years an underground rock characterisation facility, ONKALO, will be constructed. As a part of the investigations Suomen Malmi Oy (Smoy) core drilled six short drillholes with a diameter of 75.7 mm at Olkiluoto in July - August 2006. The identification numbers of the drillholes are OL-PP51 - OL-PP56. The deviation of the drillholes was measured with the deviation measuring instruments Reflex EMS. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. The volume of the drilling water was recorded. Sodium fluorescein was used as a label agent in the drilling water. The total volume of the used drilling and flushing water were 37 m 3 . (orig.)

  14. Art Rocks with Rock Art!

    Science.gov (United States)

    Bickett, Marianne

    2011-01-01

    This article discusses rock art which was the very first "art." Rock art, such as the images created on the stone surfaces of the caves of Lascaux and Altimira, is the true origin of the canvas, paintbrush, and painting media. For there, within caverns deep in the earth, the first artists mixed animal fat, urine, and saliva with powdered minerals…

  15. Slim hole drilling and testing strategies

    Science.gov (United States)

    Nielson, Dennis L.; Garg, Sabodh K.; Goranson, Colin

    2017-12-01

    The financial and geologic advantages of drilling slim holes instead of large production wells in the early stages of geothermal reservoir assessment has been understood for many years. However, the practice has not been fully embraced by geothermal developers. We believe that the reason for this is that there is a poor understanding of testing and reservoir analysis that can be conducted in slim holes. In addition to reservoir engineering information, coring through the cap rock and into the reservoir provides important data for designing subsequent production well drilling and completion. Core drilling requires significantly less mud volume than conventional rotary drilling, and it is typically not necessary to cure lost circulation zones (LCZ). LCZs should be tested by either production or injection methods as they are encountered. The testing methodologies are similar to those conducted on large-diameter wells; although produced and/or injected fluid volumes are much less. Pressure, temperature and spinner (PTS) surveys in slim holes under static conditions can used to characterize temperature and pressure distribution in the geothermal reservoir. In many cases it is possible to discharge slim holes and obtain fluid samples to delineate the geochemical properties of the reservoir fluid. Also in the latter case, drawdown and buildup data obtained using a downhole pressure tool can be employed to determine formation transmissivity and well properties. Even if it proves difficult to discharge a slim hole, an injection test can be performed to obtain formation transmissivity. Given the discharge (or injection) data from a slimhole, discharge properties of a large-diameter well can be inferred using wellbore modeling. Finally, slim hole data (pressure, temperature, transmissivity, fluid properties) together with reservoir simulation can help predict the ability of the geothermal reservoir to sustain power production.

  16. Rock Physics

    DEFF Research Database (Denmark)

    Fabricius, Ida Lykke

    2017-01-01

    Rock physics is the discipline linking petrophysical properties as derived from borehole data to surface based geophysical exploration data. It can involve interpretation of both elastic wave propagation and electrical conductivity, but in this chapter focus is on elasticity. Rock physics is based...... on continuum mechanics, and the theory of elasticity developed for statics becomes the key to petrophysical interpretation of velocity of elastic waves. In practice, rock physics involves interpretation of well logs including vertical seismic profiling (VSP) and analysis of core samples. The results...

  17. DOE HIGH-POWER SLIM-HOLE DRILLING SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Dr. William C. Maurer; John H. Cohen; J. Chris Hetmaniak; Curtis Leitko

    1999-09-01

    This project used a systems approach to improve slim-hole drilling performance. A high power mud motor, having a double-length power section, and hybrid PDC/TSP drill bit were developed to deliver maximum horsepower to the rock while providing a long life down hole. This high-power slim-hole drilling system drills much faster than conventional slim-hole motor and bit combinations and holds significant potential to reduce slim-hole drilling costs. The oil and gas industries have been faced with downward price pressures since the 1980s. These pressures are not expected to be relieved in the near future. To maintain profitability, companies have had to find ways to reduce the costs of producing oil and gas. Drilling is one of the more costly operations in the production process. One method to reduce costs of drilling is to use smaller more mobile equipment. Slim holes have been drilled in the past using this principle. These wells can save money not only from the use of smaller drilling equipment, but also from reduced tubular costs. Stepping down even one casing size results in significant savings. However, slim holes have not found wide spread use for three reasons. First, until recently, the price of oil has been high so there were no forces to move the industry in this direction. Second, small roller bits and motors were not very reliable and they drilled slowly, removing much of the economic benefit. The third and final reason was the misconception that large holes were needed everywhere to deliver the desired production. Several factors have changed that will encourage the use of slim holes. The industry now favors any method of reducing the costs of producing oil and gas. In addition, the industry now understands that large holes are not always needed. Gas, in particular, can have high production rates in smaller holes. New materials now make it possible to manufacture improved bits and motors that drill for long periods at high rates. All that remains is to

  18. Numerical analysis of wellbore instability in gas hydrate formation during deep-water drilling

    Science.gov (United States)

    Zhang, Huaiwen; Cheng, Yuanfang; Li, Qingchao; Yan, Chuanliang; Han, Xiuting

    2018-02-01

    Gas hydrate formation may be encountered during deep-water drilling because of the large amount and wide distribution of gas hydrates under the shallow seabed of the South China Sea. Hydrates are extremely sensitive to temperature and pressure changes, and drilling through gas hydrate formation may cause dissociation of hydrates, accompanied by changes in wellbore temperatures, pore pressures, and stress states, thereby leading to wellbore plastic yield and wellbore instability. Considering the coupling effect of seepage of drilling fluid into gas hydrate formation, heat conduction between drilling fluid and formation, hydrate dissociation, and transformation of the formation framework, this study established a multi-field coupling mathematical model of the wellbore in the hydrate formation. Furthermore, the influences of drilling fluid temperatures, densities, and soaking time on the instability of hydrate formation were calculated and analyzed. Results show that the greater the temperature difference between the drilling fluid and hydrate formation is, the faster the hydrate dissociates, the wider the plastic dissociation range is, and the greater the failure width becomes. When the temperature difference is greater than 7°C, the maximum rate of plastic deformation around the wellbore is more than 10%, which is along the direction of the minimum horizontal in-situ stress and associated with instability and damage on the surrounding rock. The hydrate dissociation is insensitive to the variation of drilling fluid density, thereby implying that the change of the density of drilling fluids has a minimal effect on the hydrate dissociation. Drilling fluids that are absorbed into the hydrate formation result in fast dissociation at the initial stage. As time elapses, the hydrate dissociation slows down, but the risk of wellbore instability is aggravated due to the prolonged submersion in drilling fluids. For the sake of the stability of the wellbore in deep

  19. Model-based analysis and control of axial and torsional stick-slip oscillations in drilling systems

    NARCIS (Netherlands)

    Besselink, B.; Wouw, van de N.; Nijmeijer, H.

    2011-01-01

    The mechanisms leading to torsional vibrations in drilling systems are considered in this paper. Thereto, a drill string model of the axial and torsional dynamics is proposed, where coupling is provided by a rate-independent bit-rock interaction law. Analysis of this model shows that the fast axial

  20. Assessment of abrasiveness for research of rock cutting

    Directory of Open Access Journals (Sweden)

    Milan Labaš

    2012-12-01

    Full Text Available Rock abrasiveness is ability of rock to wear down the working tool during the mutual interaction between the working indentorand the rock in the mechanical rock cutting process. The cutting indentor is worn down during the interaction, which changes itsgeometric dimensions causing the enlargement of a contact area between the tool and the rock surface. The changes in these dimensionsconsequently alter the rate of advance of the drilling machine and the specific cutting energy. We have determined the abrasivenessaccording to the norm ON 44 1121 (1982 on the testing device constructed at the Institute of Geotechnics SAS.

  1. Advanced Mud System for Microhole Coiled Tubing Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth Oglesby

    2008-12-01

    An advanced mud system was designed and key components were built that augment a coiled tubing drilling (CTD) rig that is designed specifically to drill microholes (less than 4-inch diameter) with advanced drilling techniques. The mud system was tailored to the hydraulics of the hole geometries and rig characteristics required for microholes and is capable of mixing and circulating mud and removing solids while being self contained and having zero discharge capability. Key components of this system are two modified triplex mud pumps (High Pressure Slurry Pumps) for advanced Abrasive Slurry Jetting (ASJ) and a modified Gas-Liquid-Solid (GLS) Separator for well control, flow return and initial processing. The system developed also includes an additional component of an advanced version of ASJ which allows cutting through most all materials encountered in oil and gas wells including steel, cement, and all rock types. It includes new fluids and new ASJ nozzles. The jetting mechanism does not require rotation of the bottom hole assembly or drill string, which is essential for use with Coiled Tubing (CT). It also has low reactive forces acting on the CT and generates cuttings small enough to be easily cleaned from the well bore, which is important in horizontal drilling. These cutting and mud processing components and capabilities compliment the concepts put forth by DOE for microhole coiled tubing drilling (MHTCTD) and should help insure the reality of drilling small diameter holes quickly and inexpensively with a minimal environmental footprint and that is efficient, compact and portable. Other components (site liners, sump and transfer pumps, stacked shakers, filter membranes, etc.. ) of the overall mud system were identified as readily available in industry and will not be purchased until we are ready to drill a specific well.

  2. The research of breaking rock with liquid-solid two-phase jet flow

    Science.gov (United States)

    Cheng, X. Z.; Ren, F. S.; Fang, T. C.

    2018-03-01

    Abstracts. Particle impact drilling is an efficient way of breaking rock, which is mainly used in deep drilling and ultra-deep drilling. The differential equation was established based on the theory of Hertz and Newton’s second law, through the analysis of particle impact rock, the depth of particles into the rock was obtained. The mathematical model was established based on the effect of water impact crack. The research results show when water jet speed is more than 40 m/s, rock stability coefficient is more than 1.0, the rock fracture appear. Through the experimental research of particle impact drilling facilities, analysis of cuttings and the crack size which was analyzed through Scanning electron microscope consistent with the theoretical calculation, the validity of the model was verified.

  3. Assessing the efficiency of carbide drill bits and factors influencing their application to debris-rich subglacial ice

    Science.gov (United States)

    Yang, Cheng; Jiang, Jianliang; Cao, Pinlu; Wang, Jinsong; Fan, Xiaopeng; Shang, Yuequan; Talalay, Pavel

    2017-09-01

    When drilling into subglacial bedrock, drill operators commonly encounter basal ice containing high concentrations of rock debris and melt water. As such conditions can easily damage conventional ice drills, researchers have experimented with carbide, diamond, and polycrystalline diamond compact drill bits, with varying degrees of success. In this study, we analyzed the relationship between drilling speed and power consumption for a carbide drill bit penetrating debris-rich ice. We also assessed drill load, rotation speed, and various performance parameters for the cutting element, as well as the physical and mechanical properties of rock and ice, to construct mathematical models. We show that our modeled results are in close agreement with the experimental data, and that both penetration speed and power consumption are positively correlated with drill speed and load. When used in ice with 30% rock content, the maximum penetration speed of the carbide bit is 3.4 mm/s with a power consumption of ≤0.5 kW, making the bit suitable for use with existing electromechanical drills. Our study also provides a guide for further research into cutting heat and equipment design.

  4. Rocking pneumonia

    OpenAIRE

    Rijkers, Ger T.; Rodriguez Gomez, Maria

    2017-01-01

    Ever since Chuck Berry coined the term “rocking pneumonia” in his 1956 song “Roll over Beethoven”, pneumonia has been mentioned frequently in modern blues and rock songs. We analyzed the lyrics of these songs to examine how various elements of pneumonia have been represented in popular music, specifically the cause of pneumonia, the risk groups, comorbidity (such as the boogie woogie flu), the clinical symptoms, and treatment and outcome. Up to this day, songwriters suggest that pneumonia is ...

  5. Fire effects on rock images and similar cultural resources [Chapter 5

    Science.gov (United States)

    Roger E. Kelly; Daniel F. McCarthy

    2012-01-01

    Throughout human global history, people have purposely altered natural rock surfaces by drilling, drawing, painting, incising, pecking, abrading and chiseling images into stone. Some rock types that present suitable media surfaces for these activities are fine-grained sandstones and granites, basalts, volcanic tuff, dolomites, and limestones. Commonly called rock...

  6. The subsurface geology of Río Tinto: material examined during a simulated Mars drilling mission for the Mars Astrobiology Research and Technology Experiment (MARTE).

    Science.gov (United States)

    Prieto-Ballesteros, Olga; Martínez-Frías, Jesús; Schutt, John; Sutter, Brad; Heldmann, Jennifer L; Bell, Mary Sue; Battler, Melissa; Cannon, Howard; Gómez-Elvira, Javier; Stoker, Carol R

    2008-10-01

    The 2005 Mars Astrobiology Research and Technology Experiment (MARTE) project conducted a simulated 1-month Mars drilling mission in the Río Tinto district, Spain. Dry robotic drilling, core sampling, and biological and geological analytical technologies were collectively tested for the first time for potential use on Mars. Drilling and subsurface sampling and analytical technologies are being explored for Mars because the subsurface is the most likely place to find life on Mars. The objectives of this work are to describe drilling, sampling, and analytical procedures; present the geological analysis of core and borehole material; and examine lessons learned from the drilling simulation. Drilling occurred at an undisclosed location, causing the science team to rely only on mission data for geological and biological interpretations. Core and borehole imaging was used for micromorphological analysis of rock, targeting rock for biological analysis, and making decisions regarding the next day's drilling operations. Drilling reached 606 cm depth into poorly consolidated gossan that allowed only 35% of core recovery and contributed to borehole wall failure during drilling. Core material containing any indication of biology was sampled and analyzed in more detail for its confirmation. Despite the poorly consolidated nature of the subsurface gossan, dry drilling was able to retrieve useful core material for geological and biological analysis. Lessons learned from this drilling simulation can guide the development of dry drilling and subsurface geological and biological analytical technologies for future Mars drilling missions.

  7. New drilling optimization technologies make drilling more efficient

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D.C.-K. [Halliburton Energy Services, Calgary, AB (Canada). Sperry Division

    2004-07-01

    Several new technologies have been adopted by the upstream petroleum industry in the past two decades in order to optimize drilling operations and improve drilling efficiency. Since financial returns from an oil and gas investment strongly depend on drilling costs, it is important to reduce non-productive time due to stuck pipes, lost circulation, hole cleaning and well bore stability problems. The most notable new technologies are the use of computer-based instrumentation and data acquisition systems, integrated rig site systems and networks, and Measurement-While-Drilling and Logging-While-Drilling (MWD/LWD) systems. Drilling optimization should include solutions for drillstring integrity, hydraulics management and wellbore integrity. New drilling optimization methods emphasize information management and real-time decision making. A recent study for drilling in shallow water in the Gulf of Mexico demonstrates that trouble time accounts for 25 per cent of rig time. This translates to about $1.5 MM U.S. per well. A reduction in trouble time could result in significant cost savings for the industry. This paper presents a case study on vibration prevention to demonstrate how the drilling industry has benefited from new technologies. 13 refs., 10 figs.

  8. Importance of drill string assembly swivel in horizontal drilling

    Directory of Open Access Journals (Sweden)

    Edmund Tasak

    2006-10-01

    Full Text Available A part of the drill string – the swivel (rotational connector – accomplishes an important task in the horizontal drilling. Its malfunctioning makes it impossible to draw in ( install large diameter and length pipelines. The causes of the connector break-down during the horizontal drilling are investigated in the paper. The drilling has been made for twenty inches gas pipeline installation during reaming operations. A trouble was encountered making good work conditions of a system consisting of the drilling machine drill string reamer swivel tube shield of Cardan joint and the gas pipeline 500 m long. In this case, the swivel brokes down and the planned operation was not finished. The assessment of improper drilling conditions, selection of operation system components, and drilling parameters and the insufficient technological supervising have created an excessive risk of failure. A proper application of technical analysis would considerably decrease the hazard of failure which cause large costs, delays and decrease of confidence to the drilling contractor and pipeline installation.

  9. Core drilling of drillhole ONK-PVA8 in ONKALO at Olkiluoto 2010

    International Nuclear Information System (INIS)

    Toropainen, V.

    2010-12-01

    Suomen Malmi Oy (Smoy) core drilled a drillhole for groundwater monitoring station in ONKALO at Eurajoki, Olkiluoto in July 2010. The groundwater monitoring stations are used for monitoring changes in groundwater conditions. The identification number of the hole is ONK-PVA8, and the length of the drillhole is 17.74 m. The drillhole is 75.7 mm by diameter. The drillhole was drilled in a niche of the access tunnel at chainage 2935. The hydraulic DE 130 drilling rig was used. The drilling water was taken from the ONKALO drilling water pipeline and premixed sodium fluorescein was used as a label agent in the drilling water. In addition to drilling the drillcores were logged and reported by geologist. Geological logging included the following parameters: lithology, foliation, fracture parameters, fractured zones, core loss, weathering, fracture frequency, RQD and rock quality. The main rock types in the drillholes are diatexitic gneiss and pegmatitic granite. The average fracture frequency in drill core ONK-PVA8 is 1.7 pcs / m and the average RQD value 96.0 %. (orig.)

  10. Geological-geotechnical investigation for large horizontal directional drilling

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Pedro R.R.; Rocha, Ronaldo; Avesani Neto, Jose Orlando; Placido, Rafael R.; Ignatius, Scandar G.; Galli, Vicente Luiz [Instituto de Pesquisas Tecnologicas do Estado de Sao Paulo (IPT), Sao Paulo, SP (Brazil); Amaral, Claudio S. [Centro de Pesquisa Leopoldo A. Miguez de Melo (CENPES/PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2009-07-01

    Use of Horizontal Directional Drilling - HDD for large diameter (OD>20 inches) pipeline installation started in the second half of the seventies. Since then the method became the preferred alternative for situations in which it is necessary an underground pipeline but there are concerns about digging trenches. Crossings of roadways, water bodies and environmental sensitive areas are typical examples of its application. Technical and economic feasibility of HDD depends significantly on the properties of the materials that will be drilled. Lack of information about these materials can lead to several problems as: schedule delays, cost elevation, pipeline damage, unforeseen environmental impacts and even the failure of the entire operation. Ground investigation campaigns for HDD should define a consistent geological-geotechnical model, which must include determination of behaviour parameters for soil and rock masses that will be drilled. Thus it is proposed an investigation in tree stages: review of available geological-geotechnical information, site reconnaissance, and field survey. (author)

  11. Drill string gas data

    Energy Technology Data Exchange (ETDEWEB)

    Siciliano, E.R.

    1998-05-12

    Data and supporting documentation were compiled and analyzed for 26 cases of gas grab samples taken during waste-tank core sampling activities between September 1, 1995 and December 31, 1997. These cases were tested against specific criteria to reduce uncertainties associated with in-tank sampling location and conditions. Of the 26 possible cases, 16 qualified as drill-string grab samples most likely to represent recently released waste gases. The data from these 16 ``confirmed`` cases were adjusted to remove non-waste gas contributions from core-sampling activities (argon or nitrogen purge), the atmospheric background, and laboratory sampler preparation (helium). The procedure for subtracting atmospheric, laboratory, and argon purge gases was unambiguous. No reliable method for determining the exact amount of nitrogen purge gas was established. Thus, the final set of ``Adjusted`` drill string gas data for the 6 nitrogen-purged cases had a greater degree of uncertainty than the final results for the 10 argon-purged cases. Including the appropriate amounts of uncertainty, this final set of data was added to the set of high-quality results from the Retained Gas Sampler (RGS), and good agreement was found for the N{sub 2}, H{sub 2}, and N{sub 2}O mole fractions sampled from common tanks. These results indicate that under favorable sampling conditions, Drill-String (DS) grab samples can provide reasonably accurate information about the dominant species of released gas. One conclusion from this set of total gas data is that the distribution of the H{sub 2} mole fractions is bimodal in shape, with an upper bound of 78%.

  12. Drilling string lifter

    Energy Technology Data Exchange (ETDEWEB)

    Shakhobalov, A B; Galiopa, A A; Ponomarev, G V; Ushakov, A M

    1981-04-28

    A drilling string lifter is suggested which includes a rotating tower installed on a fixed base, hydraulic cylinder and pipe-clamping assembly connected through a chain gear to the drive motor. In order to simplify the design of the hydraulic lifter, the drive motor is installed on a fixed base so that the axis of the outlet shaft of the drive motor coincides with the axis of rotation of the tower. In addition, the axis of rotation of the tower is made in the form of a tubular element, and the outlet shaft of the drive motor is ranged between the tubular element.

  13. Source rock hydrocarbons. Present status

    International Nuclear Information System (INIS)

    Vially, R.; Maisonnier, G.; Rouaud, T.

    2013-01-01

    This report first presents the characteristics of conventional oil and gas system, and the classification of liquid and gaseous non conventional hydrocarbons, with the peculiar case of coal-bed methane. The authors then describe how source rock hydrocarbons are produced: production of shale oils and gases (horizontal drilling, hydraulic fracturing, exploitation) and of coal-bed methane and coal mine methane. In the next part, they address and discuss the environmental impact of source rock hydrocarbon production: installation footprint, water resource management, drilling fluids, fracturing fluids composition, toxicity and recycling, air pollution, induced seismicity, pollutions from other exploitation and production activities. They propose an overview of the exploitation and production of source rock gas, coal-bed gas and other non conventional gases in the world. They describe the current development and discuss their economic impacts: world oil context and trends in the USA, in Canada and other countries, impacts on the North American market, on the world oil industry, on refining industries, on the world oil balance. They analyse the economic impacts of non conventional gases: development potential, stakes for the world gas trade, consequence for gas prices, development opportunities for oil companies and for the transport sector, impact on CO 2 emissions, macro-economic impact in the case of the USA

  14. STATE OF THE ART OF DRILLING LARGE DIAMETER BOREHOLES FOR DEPOSITION OF HIGH LEVEL WASTE AND SPENT NUCLEAR FUEL

    Directory of Open Access Journals (Sweden)

    Trpimir Kujundžić

    2012-07-01

    Full Text Available Deep geological disposal is internationally recognized as the safest and most sustainable option for the long-term management of high-level radioactive waste. Mainly, clay rock, salt rock and crystalline rock are being considered as possible host rocks. Different geological environment in different countries led to the various repository concepts. Main feature of the most matured repository concept is that canisters with spent nuclear fuel are emplaced in vertical or horizontal large diameter deposition holes. Drilling technology of the deposition holes depends on repository concept and geological and geomechanical characteristics of the rock. The deposition holes are mechanically excavated since drill & blast is not a possible method due to requirements on final geometry like surface roughness etc. Different methods of drilling large diameter boreholes for deposition of high-level waste and spent nuclear fuel are described. Comparison of methods is made considering performance and particularities in technology.

  15. Investigation of active vibration drilling using acoustic emission and cutting size analysis

    Directory of Open Access Journals (Sweden)

    Yingjian Xiao

    2018-04-01

    Full Text Available This paper describes an investigation of active bit vibration on the penetration mechanisms and bit-rock interaction for drilling with a diamond impregnated coring bit. A series of drill-off tests (DOTs were conducted where the drilling rate-of-penetration (ROP was measured at a series of step-wise increasing static bit thrusts or weight-on-bits (WOBs. Two active DOTs were conducted by applying 60 Hz axial vibration at the bit-rock interface using an electromagnetic vibrating table mounted underneath the drilling samples, and a passive DOT was conducted where the bit was allowed to vibrate naturally with lower amplitude due to the compliance of the drilling sample mountings. During drilling, an acoustic emission (AE system was used to record the AE signals generated by the diamond cutter penetration and the cuttings were collected for grain size analysis. The instrumented drilling system recorded the dynamic motions of the bit-rock interface using a laser displacement sensor, a load cell, and an LVDT (linear variable differential transformer recorded the dynamic WOB and the ROP, respectively. Calibration with the drilling system showed that rotary speed was approximately the same at any given WOB, facilitating comparison of the results at the same WOB. Analysis of the experimental results shows that the ROP of the bit at any given WOB increased with higher amplitude of axial bit-rock vibration, and the drill cuttings increased in size with a higher ROP. Spectral analysis of the AEs indicated that the higher ROP and larger cutting size were correlated with a higher AE energy and a lower AE frequency. This indicated that larger fractures were being created to generate larger cutting size. Overall, these results indicate that a greater magnitude of axial bit-rock vibration produces larger fractures and generates larger cuttings which, at the same rotary speed, results in a higher ROP. Keywords: Active bit vibration, Diamond coring drilling, Drill

  16. Continental Scientific Drilling Program.

    Science.gov (United States)

    1979-01-01

    are useful to analyze subsidence that accompanies sedimentation. Borehole gravimetry and well logging are useful in determining sediment density, which...their subsequent transport and precipitation . Specifically, do interconnected rock pores and fractures exist over a range of sizes, so that essentially

  17. Fragment Size Distribution of Blasted Rock Mass

    Science.gov (United States)

    Jug, Jasmin; Strelec, Stjepan; Gazdek, Mario; Kavur, Boris

    2017-12-01

    Rock mass is a heterogeneous material, and the heterogeneity of rock causes sizes distribution of fragmented rocks in blasting. Prediction of blasted rock mass fragmentation has a significant role in the overall economics of opencast mines. Blasting as primary fragmentation can significantly decrease the cost of loading, transport, crushing and milling operations. Blast fragmentation chiefly depends on the specific blast design (geometry of blast holes drilling, the quantity and class of explosive, the blasting form, the timing and partition, etc.) and on the properties of the rock mass (including the uniaxial compressive strength, the rock mass elastic Young modulus, the rock discontinuity characteristics and the rock density). Prediction and processing of blasting results researchers can accomplish by a variety of existing software’s and models, one of them is the Kuz-Ram model, which is possibly the most widely used approach to estimating fragmentation from blasting. This paper shows the estimation of fragmentation using the "SB" program, which was created by the authors. Mentioned program includes the Kuz-Ram model. Models of fragmentation are confirmed and calibrated by comparing the estimated fragmentation with actual post-blast fragmentation from image processing techniques. In this study, the Kuz-Ram fragmentation model has been used for an open-pit limestone quarry in Dalmatia, southern Croatia. The resulting calibrated value of the rock factor enables the quality prognosis of fragmentation in further blasting works, with changed drilling geometry and blast design parameters. It also facilitates simulation in the program to optimize blasting works and get the desired fragmentations of the blasted rock mass.

  18. A Review of the Evaluation, Control, and Application Technologies for Drill String Vibrations and Shocks in Oil and Gas Well

    Directory of Open Access Journals (Sweden)

    Guangjian Dong

    2016-01-01

    Full Text Available Drill string vibrations and shocks (V&S can limit the optimization of drilling performance, which is a key problem for trajectory optimizing, wellbore design, increasing drill tools life, rate of penetration, and intelligent drilling. The directional wells and other special trajectory drilling technologies are often used in deep water, deep well, hard rock, and brittle shale formations. In drilling these complex wells, the cost caused by V&S increases. According to past theories, indoor experiments, and field studies, the relations among ten kinds of V&S, which contain basic forms, response frequency, and amplitude, are summarized and discussed. Two evaluation methods are compared systematically, such as theoretical and measurement methods. Typical vibration measurement tools are investigated and discussed. The control technologies for drill string V&S are divided into passive control, active control, and semiactive control. Key methods for and critical equipment of three control types are compared. Based on the past development, a controlling program of drill string V&S is devised. Application technologies of the drill string V&S are discussed, such as improving the rate of penetration, controlling borehole trajectory, finding source of seismic while drilling, and reducing the friction of drill string. Related discussions and recommendations for evaluating, controlling, and applying the drill string V&S are made.

  19. GEO-ECOLOGICAL PROBLEMS OF DRILLING WASTE DISPOSAL IN THE YAMAL PENINSULA

    Directory of Open Access Journals (Sweden)

    Oreshkin Dmitrij Vladimirovich

    2012-10-01

    Full Text Available Crude oil and gas fields are located in remote areas known for their severe geological and climatic conditions that are aggravated by the presence of the paleocrystic frozen rock. Borehole drilling causes generation of the substantial amount of drilling waste. The sludge weighs millions of tons. Any rock is to remain frozen at any drilling site in the Yamal peninsula. Semifluid drilling waste occupies extensive areas around drilling sites; they prevent development of the surface infrastructure, they interfere with the work of drilling technicians and contribute to hazardous working conditions, they are a challenge to the local ecology. The above factors produce a negative impact on the environment and prevent sustainable development of the region. For example, disposal of drilling waste at condensed gas fields operated in the Yamal peninsula represents a substantial problem. Drilling waste contains drilling fluid used in the process of borehole drilling. It was discovered in the course of the preliminary research that drilling fluids were composite suspensions that contained bentonite, heavy spar, caustic soda, dilutants, and polymers. It was found out that the sludge was composed of silica, calcite, dolomite, aragonite, magnesite, some feldspars, heavy spar, gypsum and anhydrite, micas, hydromicas, clay minerals. Projections provided in the paper say that pre-neutralized sludge may be used in the manufacturing of building materials, such as bricks, claydite, small-size building units, etc. The authors argue that further research of the sludge elements and microstructure, as well as its chemical, mineral, granulometric and X-ray phase analyses need to be performed.

  20. Core drilling of drillholes OL-PP66-69 at Olkiluoto 2008

    International Nuclear Information System (INIS)

    Kuusirati, J.; Tarvainen, A.-M.

    2009-04-01

    Suomen Malmi Oy (Smoy) core drilled four 24.88 - 25.39 m long investigation drillholes at Olkiluoto in June 2008. The identification numbers of the holes are OL-PP66, OL-PP67, OL-PP68 and OL-PP69. The drillholes are 75.7 mm by diameter. Drillholes were core drilled with the diamond drill rig Diamec 1000. The drilling water was taken from the ONKALO drilling water pipeline and premixed sodium fluorescein was used as a label agent in the drilling water. The labelled drilling water was driven to the drilling places in a tank. In addition to drilling the drill cores were logged and reported by geologist. During geological investigation the following parameters were logged: lithology, foliation, fracture parameters, fractured zones, core loss, weathering, fracture frequency, RQD and rock quality. The main rock types in the drillholes are diatexitic and veined gneisses and pegmatitic granite. The average fracture frequency in holes varied from 3.9 pcs/m to 5.8 pcs/m. The average RQD values varied from 84 % to 93 %. In the drillhole OL-PP66 two fractured zones were penetrated and in OL-PP69 one fractured zone. The drill cores OL-PP67 and OL-PP68 showed no fractured zones. Smoy also carried out optical imaging of the drillholes. The assignment included the field work and the data processing. This report describes the field operation, the equipment as well as the processing procedures and shows the obtained results and their quality. The raw and processed data are delivered digitally in WellCAD and PDF format. (orig.)

  1. Deep Drilling Basic Research: Volume 4 - System Description. Final Report, November 1988--August 1990

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, E.E.; Maurer, W.C.; Hood, M.; Cooper, G.; Cook, N.

    1990-06-01

    The first section of this Volume will discuss the ''Conventional Drilling System''. Today's complex arrangement of numerous interacting systems has slowly evolved from the very simple cable tool rigs used in the late 1800s. Improvements to the conventional drilling rig have varied in size and impact over the years, but the majority of them have been evolutionary modifications. Each individual change or improvement of this type does not have significant impact on drilling efficiency and economics. However, the change is almost certain to succeed, and over time--as the number of evolutionary changes to the system begin to add up--improvements in efficiency and economics can be seen. Some modifications, defined and described in this Volume as Advanced Modifications, have more than just an evolutionary effect on the conventional drilling system. Although the distinction is subtle, there are several examples of incorporated advancements that have had significantly more impact on drilling procedures than would a truly evolutionary improvement. An example of an advanced modification occurred in the late 1970s with the introduction of Polycrystalline Diamond Compact (PDC) drill bits. PDC bits resulted in a fundamental advancement in drilling procedures that could not have been accomplished by an evolutionary improvement in materials metallurgy, for example. The last drilling techniques discussed in this Volume are the ''Novel Drilling Systems''. The extent to which some of these systems have been developed varies from actually being tested in the field, to being no more than a theoretical concept. However, they all have one thing in common--their methods of rock destruction are fundamentally different from conventional drilling techniques. When a novel drilling system is introduced, it is a revolutionary modification of accepted drilling procedures and will completely replace current techniques. The most prominent example of a

  2. New roller cone bits with unique nozzle designs reduce drilling costs

    International Nuclear Information System (INIS)

    Moffitt, S.R.; Pearce, D.E.; Ivie, C.R.

    1992-01-01

    This paper reports that selection of the optimum rock bit design to achieve the lowest drilling cost in a given application is often difficult due to a large number of rock bit performance considerations. However, in a majority of applications increased penetration rate is the key consideration in reducing drilling costs. Discovery of a new bit design concept has led to the development of roller cone bits that achieve significant penetration rate increases using superior hydraulic nozzle designs. Prototype designs have achieved 20 to 40% increases in penetration rate with comparable footage drilled when tested in 6 1/2, 8 1/2, 8-3/4, 9-7/8 and 12 1/4 IADC 437, 517 and 537 type bits in the U.S., North Sea, Italy, and Oman. Second-generation designs tested in a full-scale drilling laboratory have delivered 70% increases in penetration rates

  3. Deep Geothermal Drilling Using Millimeter Wave Technology. Final Technical Research Report

    Energy Technology Data Exchange (ETDEWEB)

    Oglesby, Kenneth [Impact Technologies LLC, Tulsa, OK (United States); Woskov, Paul [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Einstein, Herbert [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Livesay, Bill [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States)

    2014-12-30

    Conventional drilling methods are very mature, but still have difficulty drilling through very deep,very hard and hot rocks for geothermal, nuclear waste entombment and oil and gas applications.This project demonstrated the capabilities of utilizing only high energy beams to drill such rocks,commonly called ‘Direct Energy Drilling’, which has been the dream of industry since the invention of the laser in the 1960s. A new region of the electromagnetic spectrum, millimeter wave (MMW) wavelengths at 30-300 giga-hertz (GHz) frequency was used to accomplish this feat. To demonstrate MMW beam drilling capabilities a lab bench waveguide delivery, monitoring and instrument system was designed, built and tested around an existing (but non-optimal) 28 GHz frequency, 10 kilowatt (kW) gyrotron. Low waveguide efficiency, plasma generation and reflected power challenges were overcome. Real-time monitoring of the drilling process was also demonstrated. Then the technical capability of using only high power intense millimeter waves to melt (with some vaporization) four different rock types (granite, basalt, sandstone, limestone) was demonstrated through 36 bench tests. Full bore drilling up to 2” diameter (size limited by the available MMW power) was demonstrated through granite and basalt samples. The project also demonstrated that MMW beam transmission losses through high temperature (260°C, 500oF), high pressure (34.5 MPa, 5000 psi) nitrogen gas was below the error range of the meter long path length test equipment and instruments utilized. To refine those transmission losses closer, to allow extrapolation to very great distances, will require a new test cell design and higher sensitivity instruments. All rock samples subjected to high peak temperature by MMW beams developed fractures due to thermal stresses, although the peak temperature was thermodynamically limited by radiative losses. Therefore, this limited drill rate and rock strength data were not able to be

  4. 30 CFR 57.7052 - Drilling positions.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drilling positions. 57.7052 Section 57.7052... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface and Underground § 57.7052 Drilling positions. Persons shall not drill...

  5. 30 CFR 56.7052 - Drilling positions.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drilling positions. 56.7052 Section 56.7052... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7052 Drilling positions. Persons shall not drill from— (a) Positions which hinder...

  6. Key technologies of drilling process with raise boring method

    Directory of Open Access Journals (Sweden)

    Zhiqiang Liu

    2015-08-01

    Full Text Available This study presents the concept of shaft constructed by raise boring in underground mines, and the idea of inverse construction can be extended to other fields of underground engineering. The conventional raise boring methods, such as the wood support method, the hanging cage method, the creeping cage method, and the deep-hole blasting method, are analyzed and compared. In addition, the raise boring machines are classified into different types and the characteristics of each type are described. The components of a raise boring machine including the drill rig, the drill string and the auxiliary system are also presented. Based on the analysis of the raise boring method, the rock mechanics problems during the raise boring process are put forward, including rock fragmentation, removal of cuttings, shaft wall stability, and borehole deviation control. Finally, the development trends of raise boring technology are described as follows: (i improvement of rock-breaking modes to raise drilling efficiency, (ii development of an intelligent control technique, and (iii development of technology and equipment for nonlinear raise boring.

  7. Activity plan: Directional drilling and environmental measurements while drilling

    International Nuclear Information System (INIS)

    Myers, D.A.

    1998-01-01

    This activity plan describes the testing of directional drilling combined with environmental measurements while drilling at two Hanford Site locations. A cold test is to be conducted at the 105A Mock Tank Leak Facility in the 200 East Area. A hot test is proposed to be run at the 216-B-8 tile field north of the 241-B Tank Farm in 200 East Area. Criteria to judge the success, partial success or failure of various aspects of the test are included. The TWRS program is assessing the potential for use of directional drilling because of an identified need to interrogate the vadose zone beneath the single-shell tanks. Because every precaution must be taken to assure that investigation activities do not violate the integrity of the tanks, control of the drill bit and ability to follow a predetermined drill path are of utmost importance and are being tested

  8. Design and Exploitation Problems of Drill String in Directional Drilling

    Directory of Open Access Journals (Sweden)

    Bednarz Stanislaw

    2004-09-01

    Full Text Available Drill string design for directional drilling requires accounting for a number of factors. First, types and expected values of loads should be determined. Then, elements of the drill string should be so selected as to enable realization of the plan at specified loads. Some of additional factors, e. g. purchase, exploitation cost, geological conditions in the bore-hole, washing of the bore-hole, stability, trajectory, rig parameters, accuracy of gauges, pumps parameters remain in conflict. Drill pipes are made of rolled pipes, upset and welded with tool joints to 9,5 m long; the shorter ones can be made of hot forged rods. Exploitation requirements, being a result of practical experience supported by theoretical and laboratory analyses should be a part of syllabuses of technical staff educational programs. Apart from designing the string, it is also vital to lower the risk of a drilling failure. The significance of these aspects seems to be unquestionable.

  9. A new drilling method-Earthworm-like vibration drilling.

    Science.gov (United States)

    Wang, Peng; Ni, Hongjian; Wang, Ruihe

    2018-01-01

    The load transfer difficulty caused by borehole wall friction severely limits the penetration rate and extended-reach limit of complex structural wells. A new friction reduction technology termed "earthworm-like drilling" is proposed in this paper to improve the load transfer of complex structural wells. A mathematical model based on a "soft-string" model is developed and solved. The results show that earthworm-like drilling is more effective than single-point vibration drilling. The amplitude and frequency of the pulse pressure and the installation position of the shakers have a substantial impact on friction reduction and load transfer. An optimization model based on the projection gradient method is developed and used to optimize the position of three shakers in a horizontal well. The results verify the feasibility and advantages of earthworm-like drilling, and establish a solid theoretical foundation for its application in oil field drilling.

  10. Case drilling - an innovative approach to reducing drilling costs

    Energy Technology Data Exchange (ETDEWEB)

    Madell, G.; Tessari, R. M. [Tesco Corp., Calgary, AB (Canada); Warren, T. [Tesco Drilling Technology, Calgary, AB (Canada)

    1999-11-01

    Casing drilling is introduced as a new drilling technique that uses standard oil field casing to simultaneously drill and case the well. The technology includes both rig and downhole equipment, customized to function effectively as an integrated drilling system. This paper describes the testing program designed to identify and overcome technical challenges. Although not fully optimized, it appears that the system is functional. Test results indicate the need for improvements in the pump down cement float equipment and the tools and procedures for drilling up the cement plugs. The pump down latch and retrieval system also needs to be further developed and tested for high angle directional applications. Cost savings in the range of 10 to 15 per cent are expected for trouble-free wells. By eliminating the cost of unscheduled events encountered in troublesome wells, cost savings may reach as high as 30 per cent. 3 refs., 7 figs.

  11. Activity plan: Directional drilling and environmental measurements while drilling

    Energy Technology Data Exchange (ETDEWEB)

    Myers, D.A.

    1998-07-16

    This activity plan describes the testing of directional drilling combined with environmental measurements while drilling at two Hanford Site locations. A cold test is to be conducted at the 105A Mock Tank Leak Facility in the 200 East Area. A hot test is proposed to be run at the 216-B-8 tile field north of the 241-B Tank Farm in 200 East Area. Criteria to judge the success, partial success or failure of various aspects of the test are included. The TWRS program is assessing the potential for use of directional drilling because of an identified need to interrogate the vadose zone beneath the single-shell tanks. Because every precaution must be taken to assure that investigation activities do not violate the integrity of the tanks, control of the drill bit and ability to follow a predetermined drill path are of utmost importance and are being tested.

  12. Improving recovery efficiency of water-drive channel sandstone reservoir by drilling wells laterally

    Energy Technology Data Exchange (ETDEWEB)

    Zhiguo, F.; Quinglong, D.; Pingshi, Z.; Bingyu, J.; Weigang, L. [Research Institute of Exploration and Development, Daqing (China)

    1998-12-31

    Example of drilling a horizontal well in reservoir rock of only four meter thick by using existing casing pipe of low efficiency vertical wells to induce production in the top remaining reservoir is described. The experience shows that drilling horizontal wells laterally in thin bodies of sandstone reservoirs and improve their productivity is a feasible proposition. Productivity will still be low, but it can be improved by well stimulation. 3 refs., 3 figs.

  13. Source rock

    Directory of Open Access Journals (Sweden)

    Abubakr F. Makky

    2014-03-01

    Full Text Available West Beni Suef Concession is located at the western part of Beni Suef Basin which is a relatively under-explored basin and lies about 150 km south of Cairo. The major goal of this study is to evaluate the source rock by using different techniques as Rock-Eval pyrolysis, Vitrinite reflectance (%Ro, and well log data of some Cretaceous sequences including Abu Roash (E, F and G members, Kharita and Betty formations. The BasinMod 1D program is used in this study to construct the burial history and calculate the levels of thermal maturity of the Fayoum-1X well based on calibration of measured %Ro and Tmax against calculated %Ro model. The calculated Total Organic Carbon (TOC content from well log data compared with the measured TOC from the Rock-Eval pyrolysis in Fayoum-1X well is shown to match against the shale source rock but gives high values against the limestone source rock. For that, a new model is derived from well log data to calculate accurately the TOC content against the limestone source rock in the study area. The organic matter existing in Abu Roash (F member is fair to excellent and capable of generating a significant amount of hydrocarbons (oil prone produced from (mixed type I/II kerogen. The generation potential of kerogen in Abu Roash (E and G members and Betty formations is ranging from poor to fair, and generating hydrocarbons of oil and gas prone (mixed type II/III kerogen. Eventually, kerogen (type III of Kharita Formation has poor to very good generation potential and mainly produces gas. Thermal maturation of the measured %Ro, calculated %Ro model, Tmax and Production index (PI indicates that Abu Roash (F member exciting in the onset of oil generation, whereas Abu Roash (E and G members, Kharita and Betty formations entered the peak of oil generation.

  14. Core drilling of deep drillhole OL-KR54 at Olkiluoto in Eurajoki 2010

    International Nuclear Information System (INIS)

    Toropainen, V.

    2010-11-01

    As a part of the confirming site investigations at Olkiluoto, Suomen Malmi Oy (Smoy) core drilled a 500.18 m deep drillhole with a diameter of 75.7 mm at Olkiluoto in July - August 2010. The identification number of the drillhole is OL-KR54. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the returning and drilling water were recorded. The drill rig was computer controlled and the computer recorded drilling parameters during drilling. The objective of the measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The total volume of the used drilling, washing and flushing water was 382 m 3 . The measured volume of the returning water in the drillhole was 334 m 3 . The deviation of the drillhole was measured with the deviation measuring instruments EMS and Gyro. Uniaxial compressive strength, Young's Modulus and Poisson's ratio were measured from the core samples. The average uniaxial compressive strength was 111.5 MPa, the average Young's Modulus was 43.7 GPa and the average Poisson's ratio was 0.17. The main rock types are diatexitic and veined gneisses, pegmatitic granite and mafic gneiss. The average fracture frequency is 1.6 pcs/m and the average RQD value is 97.6 %. Nine fractured zones were penetrated by the drillhole. (orig.)

  15. Reinforcement and Drill by Microcomputer.

    Science.gov (United States)

    Balajthy, Ernest

    1984-01-01

    Points out why drill work has a role in the language arts classroom, explores the possibilities of using a microcomputer to give children drill work, and discusses the characteristics of a good software program, along with faults found in many software programs. (FL)

  16. High cost for drilling ships

    International Nuclear Information System (INIS)

    Hooghiemstra, J.

    2007-01-01

    Prices for the rent of a drilling ship are very high. Per day the rent is 1% of the price for building such a ship, and those prices have risen as well. Still, it is attractive for oil companies to rent a drilling ship [nl

  17. Optimization of bridging agents size distribution for drilling operations

    Energy Technology Data Exchange (ETDEWEB)

    Waldmann, Alex; Andrade, Alex Rodrigues de; Pires Junior, Idvard Jose; Martins, Andre Leibsohn [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)]. E-mails: awaldmann@petrobras.com.br; andradear.gorceix@petrobras.com.br; idvard.gorceix@petrobras.com.br; aleibsohn@petrobras.com.br

    2008-07-01

    The conventional drilling technique is based on positive hydrostatic pressure against well walls to prevent inflows of native fluids into the well. Such inflows can cause security problems for the team well and to probe. As the differential pressure of the well to reservoir is always positive, the filtrate of the fluid tends to invade the reservoir rock. Minimize the invasion of drilling fluid is a relevant theme in the oil wells drilling operations. In the design of drilling fluid, a common practice in the industry is the addition of bridging agents in the composition of the fluid to form a cake of low permeability at well walls and hence restrict the invasive process. The choice of drilling fluid requires the optimization of the concentration, shape and size distribution of particles. The ability of the fluid to prevent the invasion is usually evaluated in laboratory tests through filtration in porous media consolidated. This paper presents a description of the methods available in the literature for optimization of the formulation of bridging agents to drill-in fluids, predicting the pore throat from data psychotherapy, and a sensitivity analysis of the main operational parameters. The analysis is based on experimental results of the impact of the size distribution and concentration of bridging agents in the filtration process of drill-in fluids through porous media submitted to various different differential of pressure. The final objective is to develop a software for use of PETROBRAS, which may relate different types and concentrations of bridging agents with the properties of the reservoir to minimize the invasion. (author)

  18. Magnetic insights on seismogenic processes from scientific drilling of fault

    Science.gov (United States)

    Ferre, E. C.; Chou, Y. M.; Aubourg, C. T.; Li, H.; Doan, M. L.; Townend, J.; Sutherland, R.; Toy, V.

    2017-12-01

    Modern investigations through scientific drilling of recently seismogenic faults have provided remarkable insights on the physics of rupture processes. Following devastating earthquakes, several drilling programs focused since 1995 on the Nojima, Chelungpu, San Andreas, Wenchuan, Nankai Trough, Japan Trench and New Zealand Alpine faults. While these efforts were all crowned with success largely due to the multidisciplinarity of investigations, valuable insights were gained from rock magnetism and paleomagnetism and deserve to be highlighted. Continuous logging of magnetic properties allows detection of mineralogical and chemical changes in the host rock and fault zone particularly in slip zones, whether these are caused by frictional melting, elevation of temperature, ultracataclasis, or post-seismic fluid rock interaction. Further magnetic experiments on discrete samples including magnetic susceptibility, natural remanent magnetization, hysteresis properties, isothermal remanent magnetization acquisition and first order reversal curves, provide additional constrains on the nature, concentration and grain size of magnetic carriers. These experiments typically also inform on magnetization processes by thermal, chemical, or electrical mechanisms. Magnetic fabrics are generally not investigated on fault rocks from drill cores primarily in an effort to conserve the recovered core. However, recent methodological developments now would allow chemically non-destructive anisotropy of magnetic susceptibility (AMS) measurements to be performed on small 3.5 mm cubes. The mini-AMS method could provide crucial information on the kinematics of frictional melts produced during recent or ancient earthquakes and therefore would constrain the corresponding focal mechanisms. Finally, demagnetization experiments of the natural remanent magnetization (NRM) are one of the most powerful items in the magnetic toolkit because they provide chronological constrains on magnetization processes

  19. Diamonds are forever: drill bit advances may offer cheaper and stronger alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, J.

    2001-02-01

    The rise to prominence of polycrystalline diamond compact (PDC) and diamond-impregnated drill bits, slowly providing stiff competition to the roller-cone type bits that for many years was the standard in the drilling industry, is discussed. A roller-cone drill bit, although much improved by heat treatment of the metal and the addition of tungsten carbide, is still mostly steel. It works by crushing the rock by overcoming its compressive strength, whereas PDC drill bits shear the rock away in a manner similar to scraping ice from a car windshield. PDC bits typically have three to six cutting surfaces, each one edged with a row of polycrystalline diamond cutters, bonded to a tungsten carbide base by a process called microwave sintering. Compared to roller cones, PDCs drill at least twice as fast, especially in the soft rock and clay where they have been used principally. In addition to saving rig time, PDC bits can handle longer runs; in the right application it is possible to drill the total depth of a well with only one bit. The microwave-sintered tungsten carbide also has higher corrosion resistance than the same material bonded under high pressure; PDCs are also less subject to mechanical failure than roller cones which use moveable bearings, seals and rotating cones. 1 photo.

  20. Ultrasonic rotary-hammer drill

    Science.gov (United States)

    Bar-Cohen, Yoseph (Inventor); Badescu, Mircea (Inventor); Sherrit, Stewart (Inventor); Bao, Xiaoqi (Inventor); Kassab, Steve (Inventor)

    2010-01-01

    A mechanism for drilling or coring by a combination of sonic hammering and rotation. The drill includes a hammering section with a set of preload weights mounted atop a hammering actuator and an axial passage through the hammering section. In addition, a rotary section includes a motor coupled to a drive shaft that traverses the axial passage through the hammering section. A drill bit is coupled to the drive shaft for drilling by a combination of sonic hammering and rotation. The drill bit includes a fluted shaft leading to a distal crown cutter with teeth. The bit penetrates sampled media by repeated hammering action. In addition, the bit is rotated. As it rotates the fluted bit carries powdered cuttings helically upward along the side of the bit to the surface.

  1. The Marskhod Egyptian Drill Project

    Science.gov (United States)

    Shaltout, M. A. M.

    We describe a possible participation of Egypt in a future Mars rover Mission. It was suggested that Egypt participate through involvement in the design, building and testing of a drill to obtain sub-surface samples. The Space Research Institute of the Russian Academy of Sciences (IKI), formally invited the Egyptian Ministry of Scientific Research to study the concept for potential use on the Russian Mars 2001 Mission. As one of the objectives of the Marskhod mission was the analysis of sub-surface samples, a drilling mechanism in the payload would be essential. The Egyptian expertise in drill development is associated with the archaeological exploration of the Pyramids. A sophisticated drilling system perforated limestone to a depth of 2 m without the use of lubricants or cooling fluids that might have contaminated the Pit's environment. This experience could have been applied to a drill development Mars 2001 mission, which was unfortunately canceled due to economic problems.

  2. Drilling waste makes concrete

    International Nuclear Information System (INIS)

    Rosfjord, A.

    1993-01-01

    The article deals with a method of drilling waste reclamation by utilizing the converted oil-containing cuttings from the North Sea in the concrete production in Norway. The oil content is to be removed in an incineration process by heating the cuttings to about 800 o C. The output capacity from the exhaust gas water cooling system is 7500 kW/hour, and is to be used in different industrial heating processes. The remaining content of pollutants in the cleaned exhaust gas outlet corresponds to the required limits with the exception of SO 2 and HCl. In addition, an exhaust gas washing plant is to be installed in the near future designed for the further reduction of pollutants by 90%. The converted raw materials are used as a supplement for lessening the demand of sand and cement in the production of concrete-made pipes. 1 fig

  3. Hospital preparation and drills

    International Nuclear Information System (INIS)

    Marshall, J.C.; Mettler, F.A. Jr.

    1990-01-01

    The authors discuss how effective management of radiation accidents requires a large amount of preparation and thought. In addition, training of the staff is absolutely essential. This is best accomplished through annual drills, but also may be accomplished through the use of videotapes. The critical points to be remembered in the handling of such accidents and in writing the procedures is that treatment of non-radiation-related injuries and medical stabilization are paramount. The second point is that it is important to be able to distinguish between a patient who has been irradiated from an external radiation source and one who is contaminated with radioactive materials. The handling of these two types of accidents is entirely different and this distinction needs to be made early. All of the items outlined in this chapter concern the care of the severely injured and radioactively contaminated

  4. Single Piezo-Actuator Rotary-Hammering (SPaRH) Drill

    Science.gov (United States)

    Sherrit, Stewart (Inventor); Bao, Xiaoqi (Inventor); Badescu, Mircea (Inventor); Bar-Cohen, Yoseph (Inventor)

    2014-01-01

    A Single Piezo-Actuator Rotary-Hammering (SPaRH) Drill includes a horn actuator having high power piezoelectric materials and a flexure pre-stress to increase the actuators effectiveness. The drill is a low mass, low power, compact coring drill measuring 20-cm high by 7-cm diameter and having a total weight of 2 kg including drive electronics. Using an average power of 50-Watts, the drill basalt is expected to cut basalt at a rate of 0.2 cm/min down to depth of 10-cm and create cuttings and an intact core. The drill is expected to operate under different environments including Martian ambient (6 Torr and down to -50 degree C), and liquid nitrogen temperatures (77 K) and low pressure (<<1 Torr) to simulate lunar polar and Europa conditions. Materials expected to be sampled include Kaolinite, Saddleback Basalt, Limestone, Volcanic Breccia, Siltstone, ice, permafrost and layered rocks with different hardness.

  5. Intellektuaalne rock

    Index Scriptorium Estoniae

    2007-01-01

    Briti laulja-helilooja ja näitleja Toyah Willcox ning Bill Rieflin ansamblist R.E.M. ja Pat Mastelotto King Krimsonist esinevad koos ansamblitega The Humans ja Tuner 25. okt. Tallinnas Rock Cafés ja 27. okt Tartu Jaani kirikus

  6. Reservoir pressure evolution model during exploration drilling

    Directory of Open Access Journals (Sweden)

    Korotaev B. A.

    2017-03-01

    Full Text Available Based on the analysis of laboratory studies and literature data the method for estimating reservoir pressure in exploratory drilling has been proposed, it allows identify zones of abnormal reservoir pressure in the presence of seismic data on reservoir location depths. This method of assessment is based on developed at the end of the XX century methods using d- and σ-exponentials taking into account the mechanical drilling speed, rotor speed, bit load and its diameter, lithological constant and degree of rocks' compaction, mud density and "regional density". It is known that in exploratory drilling pulsation of pressure at the wellhead is observed. Such pulsation is a consequence of transferring reservoir pressure through clay. In the paper the mechanism for transferring pressure to the bottomhole as well as the behaviour of the clay layer during transmission of excess pressure has been described. A laboratory installation has been built, it has been used for modelling pressure propagation to the bottomhole of the well through a layer of clay. The bulge of the clay layer is established for 215.9 mm bottomhole diameter. Functional correlation of pressure propagation through the layer of clay has been determined and a reaction of the top clay layer has been shown to have bulge with a height of 25 mm. A pressure distribution scheme (balance has been developed, which takes into account the distance from layers with abnormal pressure to the bottomhole. A balance equation for reservoir pressure evaluation has been derived including well depth, distance from bottomhole to the top of the formation with abnormal pressure and density of clay.

  7. Rock mass characterization for tunnels in the Copenhagen limestone

    DEFF Research Database (Denmark)

    Foged, Niels Nielsen; Jakobsen, Lisa; Jackson, Peter

    2007-01-01

    Tunnels in Copenhagen are drilled through highly anisotropic limestone comprising alternating strongly lithified and less lithified parts. The mass quality of the limestone is usually defined from fracture spacing registered in core samples. The deposit is, however, affected destructively by dril...... by drilling activity yielding a low Rock Quality Designation RQD. In-situ observations of the limestone in excavations or televiewer logs reveal only few natural discontinuities compared to core logging, indicating a very good suitability for tunneling....

  8. WETTABILITY AND PREDICTION OF OIL RECOVERY FROM RESERVOIRS DEVELOPED WITH MODERN DRILLING AND COMPLETION FLUIDS

    Energy Technology Data Exchange (ETDEWEB)

    Jill S. Buckley; Norman R. Morrow

    2006-01-01

    The objectives of this project are: (1) to improve understanding of the wettability alteration of mixed-wet rocks that results from contact with the components of synthetic oil-based drilling and completion fluids formulated to meet the needs of arctic drilling; (2) to investigate cleaning methods to reverse the wettability alteration of mixed-wet cores caused by contact with these SBM components; and (3) to develop new approaches to restoration of wetting that will permit the use of cores drilled with SBM formulations for valid studies of reservoir properties.

  9. Mesoscopic Structural Observations of Cores from the Chelungpu Fault System, Taiwan Chelungpu-Fault Drilling Project Hole-A, Taiwan

    Directory of Open Access Journals (Sweden)

    Hiroki Sone

    2007-01-01

    Full Text Available Structural characteristics of fault rocks distributed within major fault zones provide basic information in understanding the physical aspects of faulting. Mesoscopic structural observations of the drilledcores from Taiwan Chelungpu-fault Drilling Project Hole-A are reported in this article to describe and reveal the distribution of fault rocks within the Chelungpu Fault System.

  10. Igneous Rocks

    Science.gov (United States)

    Doe, Bruce R.

    “Igneous Rocks was written for undergraduate geology majors who have had a year of college-level chemistry and a course in mineralogy … and for beginning graduate students. Geologists working in industry, government, or academia should find this text useful as a guide to the technical literature up to 1981 and as an overview of topics with which they have not worked but which may have unanticipated pertinence to their own projects.” So starts the preface to this textbook.As one who works part time in research on igneous rocks, especially as they relate to mineral deposits, I have been looking for such a book with this avowed purpose in a field that has a choking richness of evolving terminology and a bewildering volume of interdisciplinary literature. In addition to the standard topics of igneous petrology, the book contains a chapter on the role of igneous activity in the genesis of mineral deposits, its value to geothermal energy, and the potential of igneous rocks as an environment for nuclear waste disposal. These topics are presented rather apologetically in the preface, but the author is to be applauded for including this chapter. The apology shows just how new these interests are to petrology. Recognition is finally coming that, for example, mineral deposits are not “sports of nature,” a view held even by many economic geologists as recently as the early 1960's; instead they are perfectly ordinary geochemical features formed by perfectly ordinary geologic processes. In fact, the mineral deposits and their attendant alteration zones probably have as much to tell us about igneous rocks as the igneous rocks have to tell us about mineral deposits.

  11. Leak-off mechanism and pressure prediction for shallow sediments in deepwater drilling

    Science.gov (United States)

    Tan, Qiang; Deng, Jingen; Sun, Jin; Liu, Wei; Yu, Baohua

    2018-02-01

    Deepwater sediments are prone to loss circulation in drilling due to a low overburden gradient. How to predict the magnitude of leak-off pressure more accurately is an important issue in the protection of drilling safety and the reduction of drilling cost in deep water. Starting from the mechanical properties of a shallow formation and based on the basic theory of rock-soil mechanics, the stress distribution around a borehole was analyzed. It was found that the rock or soil on a borehole is in the plastic yield state before the effective tensile stress is generated, and the effective tangential and vertical stresses increase as the drilling fluid density increases; thus, tensile failure will not occur on the borehole wall. Based on the results of stress calculation, two mechanisms and leak-off pressure prediction models for shallow sediments in deepwater drilling were put forward, and the calculated values of these models were compared with the measured value of shallow leak-off pressure in actual drilling. The results show that the MHPS (minimum horizontal principle stress) model and the FIF (fracturing in formation) model can predict the lower and upper limits of leak-off pressure. The PLC (permeable lost circulation) model can comprehensively analyze the factors influencing permeable leakage and provide a theoretical basis for leak-off prevention and plugging in deepwater drilling.

  12. ROP MATHEMATICAL MODEL OF ROTARY-ULTRASONIC CORE DRILLING OF BRITTLE MATERIAL

    Directory of Open Access Journals (Sweden)

    Mera Fayez Horne

    2017-03-01

    Full Text Available The results from the Phoenix mission led scientists to believe it is possible that primitive life exists below the Martian surface. Therefore, drilling in Martian soil in search for organisms is the next logical step. Drilling on Mars is a major engineering challenge due to the drilling depth requirement and extreme environment condition. Mars lacks a thick atmosphere and a continuous magnetic field that shield the planet’s surface from solar radiation and solar flares. As a result, the Martian surface is sterile and if life ever existed, it must be found below the surface. NASA’s Mars Exploration Payload Advisory Group proposed that drilling should be considered as a priority investigation on Mars in an effort of finding evidence of extinct or extant life. The results from the Curiosity mission suggested drilling six meters deep in the red planet in search for life. Excavation tools deployed to Mars so far have been able to drill to a maximum depth of 6.5 cm. Thus, the drilling capabilities need to be increased by a factor of approximately 100 to achieve the goal of drilling six meters deep. This requirement puts a demand on developing new and more effective technologies to reach this goal. Previous research shows evidence of a promising drilling mechanism in rotary-ultrasonic for what it offers in terms of high surface quality, faster rate of penetration and higher material removal rate. This research addresses the need to understand the mechanics of the drill bit tip and rock interface in rotary-ultrasonic drilling performance of one drill bit at a time drilling in three types of rocks that vary in strength. A mathematical model identifying all contributing independent parameters, such as drill bit design parameters, drilling process parameters, ultrasonic wave amplitude and rocks’ material properties, that have effect on rate of penetration is developed. Analytical and experimental results under ambient condition are presented to show

  13. Scientific Drilling of Impact Craters - Well Logging and Core Analyses Using Magnetic Methods (Invited)

    Science.gov (United States)

    Fucugauchi, J. U.; Perez-Cruz, L. L.; Velasco-Villarreal, M.

    2013-12-01

    Drilling projects of impact structures provide data on the structure and stratigraphy of target, impact and post-impact lithologies, providing insight on the impact dynamics and cratering. Studies have successfully included magnetic well logging and analyses in core and cuttings, directed to characterize the subsurface stratigraphy and structure at depth. There are 170-180 impact craters documented in the terrestrial record, which is a small proportion compared to expectations derived from what is observed on the Moon, Mars and other bodies of the solar system. Knowledge of the internal 3-D deep structure of craters, critical for understanding impacts and crater formation, can best be studied by geophysics and drilling. On Earth, few craters have yet been investigated by drilling. Craters have been drilled as part of industry surveys and/or academic projects, including notably Chicxulub, Sudbury, Ries, Vredefort, Manson and many other craters. As part of the Continental ICDP program, drilling projects have been conducted on the Chicxulub, Bosumtwi, Chesapeake, Ries and El gygytgyn craters. Inclusion of continuous core recovery expanded the range of paleomagnetic and rock magnetic applications, with direct core laboratory measurements, which are part of the tools available in the ocean and continental drilling programs. Drilling studies are here briefly reviewed, with emphasis on the Chicxulub crater formed by an asteroid impact 66 Ma ago at the Cretaceous/Paleogene boundary. Chicxulub crater has no surface expression, covered by a kilometer of Cenozoic sediments, thus making drilling an essential tool. As part of our studies we have drilled eleven wells with continuous core recovery. Magnetic susceptibility logging, magnetostratigraphic, rock magnetic and fabric studies have been carried out and results used for lateral correlation, dating, formation evaluation, azimuthal core orientation and physical property contrasts. Contributions of magnetic studies on impact

  14. Site investigation SFR. Boremap mapping of core drilled borehole KFR106

    Energy Technology Data Exchange (ETDEWEB)

    Winell, Sofia (Geosigma AB (Sweden))

    2010-06-15

    This report presents the result from the Boremap mapping of the core drilled borehole KFR106, drilled from an islet ca 220 m southeast of the pier above SFR. The borehole has a length of 300.13 m, and a bearing and inclination of 195.1 deg and -69.9 deg, respectively. The purpose of the location and orientation of the borehole is to investigate the possible occurrence of gently dipping, water-bearing structures in the area. The geological mapping is based on simultaneous study of drill core and borehole image (BIPS). The two lowermost meters of the drill core was mapped in Boremap without access to complementary BIPS-image. The dominating rock type, which occupies 72% of KFR106, is fine- to medium-grained, metagranite granodiorite (rock code 101057), which is foliated with a medium to strong intensity. Pegmatite to pegmatitic granite (rock code 101061) is the second most common rock type and it occupies 16% of the mapped interval. It is also frequent as smaller rock occurrences (< 1 m) in other rock types throughout the borehole. Subordinate rock types are fine- to medium-grained granite (rock code 111058), felsic to intermediate meta volcanic rock (rock code 103076), fine- to medium-grained metagranitoid (rock code 101051) and amphibolite (rock code 102017). Totally 49% of the rock in KFR106 has been mapped as altered, where muscovitization and oxidation is the two most common. Additional shorter intervals of alterations are in decreasing order of abundance quartz dissolution, epidotization, argillization, albitization, chloritization, laumontization and carbonatization. A total number of 2801 fractures are registered in KFR106. Of these are 1059 open, 1742 sealed and 84 partly open. This result in the following fracture frequencies: 6.0 sealed fractures/m, 3.7 open fractures/m and 0.3 partly open fractures/m. In addition there are 5 narrow brecciated zones, and 20 sealed networks with a total length of 18 m. The most frequent fracture fillings in KFR106 are

  15. Core drilling of drillholes ONK-PVA9 and ONK-PVA10 in ONKALO at Olkiluoto 2011

    Energy Technology Data Exchange (ETDEWEB)

    Toropainen, V. [Suomen Malmi Oy, Espoo (Finland)

    2011-10-15

    Suomen Malmi Oy (Smoy) core drilled two drillholes for groundwater monitoring stations in ONKALO at Eurajoki, Olkiluoto in 2011. The groundwater monitoring stations are used for monitoring changes in groundwater conditions. The drillhole ONK-PVA9 was drilled in March 2011 and the drillhole ONK-PVA10 in June 2011. The lengths of the drillholes are 15.95 and 20.10 m respectively. The drillholes are 75.7 mm by diameter. The drillhole ONK-PVA9 was drilled in a niche of the access tunnel at chainage 4366 and the ONK-PVA10 in the access tunnel wall at chainage 3851. The hydraulic DE 130 drilling rig was used. The drilling water was taken from the ONKALO drilling water pipeline and premixed sodium fluorescein was used as a label agent in the drilling water. The drillholes were measured with EMS deviation survey tool. In addition to drilling the drillcores were logged and reported by geologist. Geological logging included the following parameters: lithology, foliation, fracture parameters, fractured zones, core loss, weathering, fracture frequency, RQD and rock quality. The main rock types in the drillholes are veined gneiss and pegmatitic granite. The average fracture frequencies in drill cores are 2.9 pcs/m (ONK-PVA9) and 2.3 pcs/m (ONK-PVA10) and the average RQD values 81.6 % and 96.2 % respectively. (orig.)

  16. Core drilling of hydco drillholes ONK-PP262 and ONK-PP274 in ONKALO at Olkiluoto 2010

    Energy Technology Data Exchange (ETDEWEB)

    Toropainen, V. [Suomen Malmi Oy, Espoo (Finland)

    2011-10-15

    Suomen Malmi Oy (Smoy) core drilled two drillholes for HYDCO-program in ONKALO at Eurajoki, Olkiluoto in 2010. The drillhole ONK-PP262 was drilled in May 2010 and the drillhole ONK-PP274 in December 2010. The lengths of the drillholes are 25.02 and 23.88 m respectively. The drillholes are 75.7 mm by diameter. The drillholes were drilled in the investigation niche 4 at the access tunnel chainage 3747. The hydraulic DE 130 drilling rig was used. The drilling water was taken from the ONKALO drilling water pipeline and premixed sodium fluorescein was used as a label agent in the drilling water. The drillholes were measured with EMS deviation survey tool. In addition to drilling the drillcores were logged and reported by geologist. Geological logging included the following parameters: lithology, foliation, fracture parameters, fractured zones, core loss, weathering, fracture frequency, RQD and rock quality. The main rock types in the drillholes are veined gneiss and pegmatitic granite. The average fracture frequencies in both drill cores are 1.4 pcs/m. The average RQD values in the drillcores are 97.2 % (ONK-PP262) and 98.6 % (ONK-PP274). (orig.)

  17. Core drilling of hydco drillholes ONK-PP262 and ONK-PP274 in ONKALO at Olkiluoto 2010

    International Nuclear Information System (INIS)

    Toropainen, V.

    2011-10-01

    Suomen Malmi Oy (Smoy) core drilled two drillholes for HYDCO-program in ONKALO at Eurajoki, Olkiluoto in 2010. The drillhole ONK-PP262 was drilled in May 2010 and the drillhole ONK-PP274 in December 2010. The lengths of the drillholes are 25.02 and 23.88 m respectively. The drillholes are 75.7 mm by diameter. The drillholes were drilled in the investigation niche 4 at the access tunnel chainage 3747. The hydraulic DE 130 drilling rig was used. The drilling water was taken from the ONKALO drilling water pipeline and premixed sodium fluorescein was used as a label agent in the drilling water. The drillholes were measured with EMS deviation survey tool. In addition to drilling the drillcores were logged and reported by geologist. Geological logging included the following parameters: lithology, foliation, fracture parameters, fractured zones, core loss, weathering, fracture frequency, RQD and rock quality. The main rock types in the drillholes are veined gneiss and pegmatitic granite. The average fracture frequencies in both drill cores are 1.4 pcs/m. The average RQD values in the drillcores are 97.2 % (ONK-PP262) and 98.6 % (ONK-PP274). (orig.)

  18. An Overview on Measurement-While-Drilling Technique and its Scope in Excavation Industry

    Science.gov (United States)

    Rai, P.; Schunesson, H.; Lindqvist, P.-A.; Kumar, U.

    2015-04-01

    Measurement-while-drilling (MWD) aims at collecting accurate, speedy and high resolution information from the production blast hole drills with a target of characterization of highly variable rock masses encountered in sub-surface excavations. The essence of the technique rests on combining the physical drill variables in a manner to yield a fairly accurate description of the sub-surface rock mass much ahead of following downstream operations. In this light, the current paper presents an overview of the MWD by explaining the technique and its set-up, the existing drill-rock mass relationships and numerous on-going researches highlighting the real-time applications. Although the paper acknowledges the importance of concepts of specific energy, rock quality index and a couple of other indices and techniques for rock mass characterization, it must be distinctly borne in mind that the technique of MWD is highly site-specific, which entails derivation of site-specific calibration with utmost care.

  19. Drilling miniature holes, Part III

    Energy Technology Data Exchange (ETDEWEB)

    Gillespie, L.K.

    1978-07-01

    Miniature components for precision electromechanical mechanisms such as switches, timers, and actuators typically require a number of small holes. Because of the precision required, the workpiece materials, and the geometry of the parts, most of these holes must be produced by conventional drilling techniques. The use of such techniques is tedious and often requires considerable trial and error to prevent drill breakage, minimize hole mislocation and variations in hole diameter. This study of eight commercial drill designs revealed that printed circuit board drills produced better locational and size repeatability than did other drills when centerdrilling was not used. Boring holes 1 mm in dia, or less, as a general rule did not improve hole location in brass or stainless steel. Hole locations of patterns of 0.66-mm holes can be maintained within 25.4-..mu..m diametral positional tolerance if setup misalignments can be eliminated. Size tolerances of +- 3.8 ..mu..m can be maintained under some conditions when drilling flat plates. While these levels of precision are possible with existing off-the-shelf drills, they may not be practical in many cases.

  20. Rock stress measurements in the Grimsel Underground Rock Laboratory and their geological interpretation

    International Nuclear Information System (INIS)

    Braeuer, V.; Heusermann, S.; Pahl, A.

    1989-01-01

    Rock stress is being studied as part of the Swiss-German cooperation between the National Cooperative for the Storage of Radioactive Waste (NAGRA), the Research Centre for Environmental Sciences (GSF), and the Federal Institute for Geosciences and Natural Resources (BGR) in the Grimsel Rock Laboratory in Switzerland. Several methods and various equipment for measuring rock stress have been developed and tested in an approximately 200-m borehole drilled from a gallery at a depth of 450 m. The measurements were made continually during overcoring; the data were recorded and processed in a computer located downhole or outside the borehole. The results of the overcoring tests and of frac tests indicate a principle horizontal stress of 25-40 MPa, directed mainly NW-SE. Detailed geological mapping shows relationships between stress and rock structure. A zone of nearly unfractured rock exhibits an increase in stress and a change in stress direction. (orig.)

  1. Drilling, Coring and Sampling Using Piezoelectric Actuated Mechanisms: From the USDC to a Piezo-Rotary-Hammer Drill

    Science.gov (United States)

    Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Bao, Xiaoqi

    2012-01-01

    NASA exploration missions are increasingly including sampling tasks but with the growth in engineering experience (particularly, Phoenix Scout and MSL) it is now very much recognized that planetary drilling poses many challenges. The difficulties grow significantly with the hardness of sampled material, the depth of drilling and the harshness of the environmental conditions. To address the requirements for samplers that could be operated at the conditions of the various bodies in the solar system, a number of piezoelectric actuated drills and corers were developed by the Advanced Technologies Group of JPL. The basic configuration that was conceived in 1998 is known as the Ultrasonic/Sonic Driller/Corer (USDC), and it operates as a percussive mechanism. This drill requires as low preload as 10N (important for operation at low gravity) allowing to operate with as low-mass device as 400g, use an average power as low as 2- 3W and drill rocks as hard as basalt. A key feature of this drilling mechanism is the use of a free-mass to convert the ultrasonic vibrations generated by piezoelectric stack to sonic impacts on the bit. Using the versatile capabilities f the USDC led to the development of many configurations and device sizes. Significant improvement of the penetration rate was achieved by augmenting the hammering action by rotation and use of a fluted bit to remove cuttings. To reach meters deep in ice a wireline drill was developed called the Ultrasonic/Sonic Gopher and it was demonstrated in 2005 to penetrate about 2-m deep at Antarctica. Jointly with Honeybee Robotics, this mechanism is currently being modified to incorporate rotation and inchworm operation forming Auto-Gopher to reach meters deep in rocks. To take advantage of the ability of piezoelectric actuators to operate over a wide temperatures range, piezoelectric actuated drills were developed and demonstrated to operate at as cold as -200oC and as hot as 500oC. In this paper, the developed mechanisms

  2. Measuring procedure of experimental data acquisition and data evaluation of acoustic emission in rock disintegration

    Directory of Open Access Journals (Sweden)

    Lucia Ivaničová

    2009-12-01

    Full Text Available The paper describes the results of measurements of acoustic signal arising in rock disintegration on the drilling standof the Institute of Geotechnics SAS in Košice. The acoustic signal was registered with sonometer Mediator 2238. Registrationand processing of the acoustic signal is solved as a part of the research grant task within the basic research of the rock disintegrationby drilling.

  3. A new drilling method—Earthworm-like vibration drilling

    Science.gov (United States)

    Wang, Peng; Wang, Ruihe

    2018-01-01

    The load transfer difficulty caused by borehole wall friction severely limits the penetration rate and extended-reach limit of complex structural wells. A new friction reduction technology termed “earthworm-like drilling” is proposed in this paper to improve the load transfer of complex structural wells. A mathematical model based on a “soft-string” model is developed and solved. The results show that earthworm-like drilling is more effective than single-point vibration drilling. The amplitude and frequency of the pulse pressure and the installation position of the shakers have a substantial impact on friction reduction and load transfer. An optimization model based on the projection gradient method is developed and used to optimize the position of three shakers in a horizontal well. The results verify the feasibility and advantages of earthworm-like drilling, and establish a solid theoretical foundation for its application in oil field drilling. PMID:29641615

  4. White Rock

    Science.gov (United States)

    2002-01-01

    (Released 19 April 2002) The Science 'White Rock' is the unofficial name for this unusual landform which was first observed during the Mariner 9 mission in the early 1970's. As later analysis of additional data sets would show, White Rock is neither white nor dense rock. Its apparent brightness arises from the fact that the material surrounding it is so dark. Images from the Mars Global Surveyor MOC camera revealed dark sand dunes surrounding White Rock and on the floor of the troughs within it. Some of these dunes are just apparent in the THEMIS image. Although there was speculation that the material composing White Rock could be salts from an ancient dry lakebed, spectral data from the MGS TES instrument did not support this claim. Instead, the White Rock deposit may be the erosional remnant of a previously more continuous occurrence of air fall sediments, either volcanic ash or windblown dust. The THEMIS image offers new evidence for the idea that the original deposit covered a larger area. Approximately 10 kilometers to the southeast of the main deposit are some tiny knobs of similarly bright material preserved on the floor of a small crater. Given that the eolian erosion of the main White Rock deposit has produced isolated knobs at its edges, it is reasonable to suspect that the more distant outliers are the remnants of a once continuous deposit that stretched at least to this location. The fact that so little remains of the larger deposit suggests that the material is very easily eroded and simply blows away. The Story Fingers of hard, white rock seem to jut out like icy daggers across a moody Martian surface, but appearances can be deceiving. These bright, jagged features are neither white, nor icy, nor even hard and rocky! So what are they, and why are they so different from the surrounding terrain? Scientists know that you can't always trust what your eyes see alone. You have to use other kinds of science instruments to measure things that our eyes can

  5. Optimization of Mud Hammer Drilling Performance--A Program to Benchmark the Viability of Advanced Mud Hammer Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Arnis Judzis

    2006-03-01

    Operators continue to look for ways to improve hard rock drilling performance through emerging technologies. A consortium of Department of Energy, operator and industry participants put together an effort to test and optimize mud driven fluid hammers as one emerging technology that has shown promise to increase penetration rates in hard rock. The thrust of this program has been to test and record the performance of fluid hammers in full scale test conditions including, hard formations at simulated depth, high density/high solids drilling muds, and realistic fluid power levels. This paper details the testing and results of testing two 7 3/4 inch diameter mud hammers with 8 1/2 inch hammer bits. A Novatek MHN5 and an SDS Digger FH185 mud hammer were tested with several bit types, with performance being compared to a conventional (IADC Code 537) tricone bit. These tools functionally operated in all of the simulated downhole environments. The performance was in the range of the baseline ticone or better at lower borehole pressures, but at higher borehole pressures the performance was in the lower range or below that of the baseline tricone bit. A new drilling mode was observed, while operating the MHN5 mud hammer. This mode was noticed as the weight on bit (WOB) was in transition from low to high applied load. During this new ''transition drilling mode'', performance was substantially improved and in some cases outperformed the tricone bit. Improvements were noted for the SDS tool while drilling with a more aggressive bit design. Future work includes the optimization of these or the next generation tools for operating in higher density and higher borehole pressure conditions and improving bit design and technology based on the knowledge gained from this test program.

  6. A drilling rig tower

    Energy Technology Data Exchange (ETDEWEB)

    Mironov, A.A.; Barashkov, V.A.; Bulgakov, E.S.; Kuldoshin, I.P.; Lebedev, A.I.; Papin, N.M.; Rebrik, B.M.; Sirotkin, N.V.

    1981-05-23

    Presentation is made of a drilling rig tower, comprising a gantry, a support shaft with a bracing strut and drawings out, and turn buckles. In order to increase the reliability of the tower in operation, to decrease the over all dimensions in a transport position, and to decrease the amount of time taken to transfer the tower from an operational position into a transportable one, and vice versa, the tower is equipped with a rotary frame made in the form of a triangular prism, whose lateral edges are connected by hinges: the first one with the lower part of the support shaft, the second with the gantry, and the third one to the upper part of the support shaft by means of the drawings out. The large boundary of the rotary frame is connected by a hinge to the support shaft by means of a bracing strut, which is equipped with a slide block connected to it by a hinge, and the rotary frame has a guide for the slide block reinforced to it on the large boundary. Besides this, the lateral edge of the rotary frame is connected to the gantry by means of turn buckles.

  7. Drilling a borehole for LEP

    CERN Multimedia

    1981-01-01

    Boreholes were drilled along the earlier proposed line of the LEP tunnel under the Jura to find out the conditions likely to be encountered during the construction of the LEP tunnel (Annual Report 1981 p. 106, Fig. 10).

  8. Computed tomography of drill cores

    International Nuclear Information System (INIS)

    Taylor, T.

    1985-08-01

    A preliminary computed tomography evaluation of drill cores of granite and sandstone has generated geologically significant data. Density variations as small as 4 percent and fractures as narrow as 0.1 mm were easily detected

  9. Geothermal drilling in Cerro Prieto

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez A., Bernardo

    1982-08-10

    The number of characteristics of the different wells that have been drilled in the Cerro Prieto geothermal field to date enable one to summarize the basic factors in the applied technology, draw some conclusions, improve systems and procedures, and define some problems that have not yet been satisfactorily solved, although the existing solution is the best now available. For all practical purposes, the 100 wells drilled in the three areas or blocks into which the Cerro Prieto field has been divided have been completed. Both exploratory and production wells have been drilled; problems of partial or total lack of control have made it necessary to abandon some of these wells, since they were unsafe to keep in production or even to be used for observation and/or study. The wells and their type, the type of constructed wells and the accumulative meters that have been drilled for such wells are summarized.

  10. The final frontier: Tesco takes evolution of casing drilling system offshore

    Energy Technology Data Exchange (ETDEWEB)

    Polczer, S.

    2000-04-01

    Tesco Corporation is complementing its smaller 4 1/2-inch casing-while-drilling (CWD) tools by designing a series of 13 3/8-inch and a 9 5/8-inch underreamers and cutters to accommodate the larger diameter holes typical of offshore drilling. Tesco is building its own rig; it is a single rated to 3,000 metres that can be moved in seven loads with an overall 100 ton load rating. The unit features dimensional drilling capability in addition to features such as logging-while-drilling, and measurement-while-drilling. A conventional coring unit is employed via wireline. To date, Tesco has successfully overcome two of the main challenges in developing the new drilling process, i. e. to guarantee that casing can be run in high compression loads without damage to connections, and to develop an underreamer cutting structure to destroy rock at a rate comparable to conventional rotary drilling. The wireline retrieval system, which is 100 per cent reliable in running mode, but only 70 per cent successful in the retrieval mode, is the next challenge to be overcome. Tesco claims a 40 per cent reduction in overall 'spud to release' time, however, the main advantage claimed for the system is that the casing system protects the integrity of the hole as it is being drilled.

  11. Mineralogy of drill hole UE-25pnumber1 at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Chipera, S.J.; Bish, D.L.

    1988-05-01

    Drill hole UE-25p/number sign/1 is located east of the candidate repository block at Yucca Mountain, Nevada, and as such provides information on the geology of the accessible environment. The hole was drilled to a depth of 1807 m (5923 ft) and is unique in that it penetrates tuffs that are older than any volcanic units previously encountered in drill holes at Yucca Mountain. In addition, it is the only hole drilled to date that penetrates the base of the tuff sequence and enters the underlying Paleozoic dolomite basement. We have examined the mineralogy of drill cuttings, core, and sidewall samples from drill hole UE-25p/number sign/1 is similar to that in the other drill holes examined at Yucca Mountain. The only significant differences in mineralogy from other drill holes include the presence of dolomite in the Paleozoic carbonate rocks and the occurrence of up to 3% laumontite, a Ca-zeolite, in four samples of the Lithic Ridge Tuff. 15 refs., 5 figs., 4 tabs

  12. Deep drilling in the Chesapeake Bay impact structure - An overview

    Science.gov (United States)

    Gohn, G.S.; Koeberl, C.; Miller, K.G.; Reimold, W.U.

    2009-01-01

    The late Eocene Chesapeake Bay impact structure lies buried at moderate depths below Chesapeake Bay and surrounding landmasses in southeastern Virginia, USA. Numerous characteristics made this impact structure an inviting target for scientific drilling, including the location of the impact on the Eocene continental shelf, its threelayer target structure, its large size (??85 km diameter), its status as the source of the North American tektite strewn field, its temporal association with other late Eocene terrestrial impacts, its documented effects on the regional groundwater system, and its previously unstudied effects on the deep microbial biosphere. The Chesapeake Bay Impact Structure Deep Drilling Project was designed to drill a deep, continuously cored test hole into the central part of the structure. A project workshop, funding proposals, and the acceptance of those proposals occurred during 2003-2005. Initial drilling funds were provided by the International Continental Scientific Drilling Program (ICDP) and the U.S. Geological Survey (USGS). Supplementary funds were provided by the National Aeronautics and Space Administration (NASA) Science Mission Directorate, ICDP, and USGS. Field operations were conducted at Eyreville Farm, Northampton County, Virginia, by Drilling, Observation, and Sampling of the Earth's Continental Crust (DOSECC) and the project staff during September-December 2005, resulting in two continuously cored, deep holes. The USGS and Rutgers University cored a shallow hole to 140 m in April-May 2006 to complete the recovered section from land surface to 1766 m depth. The recovered section consists of 1322 m of crater materials and 444 m of overlying postimpact Eocene to Pleistocene sediments. The crater section consists of, from base to top: basement-derived blocks of crystalline rocks (215 m); a section of suevite, impact melt rock, lithic impact breccia, and cataclasites (154 m); a thin interval of quartz sand and lithic blocks (26 m); a

  13. Exploration Drilling and Technology Demonstration At Fort Bliss

    Energy Technology Data Exchange (ETDEWEB)

    Barker, Ben; Moore, Joe [EGI; Segall, Marylin; Nash, Greg; Simmons, Stuart; Jones, Clay; Lear, Jon; Bennett, Carlon

    2014-02-26

    The Tularosa-Hueco basin in south-central New Mexico has long been known as an extensional area of high heat flow. Much of the basin is within the Fort Bliss military reservation, which is an exceptionally high value customer for power independent of the regional electric grid and for direct use energy in building climate control. A series of slim holes drilled in the 1990s established the existence of a thermal anomaly but not its practical value. This study began in 2009 with a demonstration of new exploration drilling technology. The subsequent phases reported here delivered a useful well, comparative exploration data sets and encouragement for further development. A production-size well, RMI56-5, was sited after extensive study of archival and newly collected data in 2010-2011. Most of 2012 was taken up with getting state and Federal authorities to agree on a lead agency for permitting purposes, getting a drilling permit and redesigning the drilling program to suit available equipment. In 2013 we drilled, logged and tested a 924 m well on the McGregor Range at Fort Bliss using a reverse circulation rig. Rig tests demonstrated commercial permeability and the well has a 7-inch slotted liner for use either in production or injection. An August 2013 survey of the completed well showed a temperature of 90 C with no reversal, the highest such temperature in the vicinity. The well’s proximity to demand suggests a potentially valuable resource for direct use heat and emergency power generation. The drilling produced cuttings of excellent size and quality. These were subjected to traditional analyses (thin sections, XRD) and to the QEMScan™ for comparison. QEMScan™ technology includes algorithms for determining such properties of rocks as density, mineralogy, heavy/light atoms, and porosity to be compared with direct measurements of the cuttings. In addition to a complete cuttings set, conventional and resistivity image logs were obtained in the open hole before

  14. Synthesis of engineering designs of drilling facilities

    Science.gov (United States)

    Porozhsky, K.

    2018-03-01

    The article sets forth key principles of engineering of drilling equipment based on successive analysis of the goals of the production method, technologies of its implementation and conditions of mineral mining using a new approach to systematization of drilling methods. Potential advancement in the technologies and equipment of drilling is illustrated in terms of oil-well drilling.

  15. Rock stresses (Grimsel rock laboratory)

    International Nuclear Information System (INIS)

    Pahl, A.; Heusermann, S.; Braeuer, V.; Gloeggler, W.

    1989-01-01

    On the research and development project 'Rock Stress Measurements' the BGR has developed and tested several test devices and methods at GTS for use in boreholes at a depth of 200 m and has carried out rock mechanical and engineering geological investigations for the evaluation and interpretation of the stress measurements. The first time a computer for data processing was installed in the borehole together with the BGR-probe. Laboratory tests on hollow cylinders were made to study the stress-deformation behavior. To validate and to interprete the measurement results some test methods were modelled using the finite-element method. The dilatometer-tests yielded high values of Young's modulus, whereas laboratory tests showed lower values with a distinct deformation anisotropy. Stress measurements with the BGR-probe yielded horizontal stresses being higher than the theoretical overburden pressure and vertical stresses which agree well with the theoretical overburden pressure. These results are comparable to the results of the hydraulic fracturing tests, whereas stresses obtained with CSIR-triaxial cells are generally lower. The detailed geological mapping of the borehole indicated relationships between stress and geology. With regard to borehole depth different zones of rock structure joint frequency, joint orientation, and orientation of microfissures as well as stress magnitude, stress direction, and degree of deformation anisotropy could be distinguished. (orig./HP) [de

  16. Enhancing cuttings removal with gas blasts while drilling on Mars

    Science.gov (United States)

    Zacny, K. A.; Quayle, M. C.; Cooper, G. A.

    2005-04-01

    Future missions to Mars envision use of drills for subsurface exploration. Since the Martian atmosphere precludes the use of liquids for cuttings removal, proposed drilling machines utilize mechanical cuttings removal systems such as augers. However, an auger can substantially contribute to the total power requirements, and in the worst scenario it can choke. A number of experiments conducted under Martian pressures showed that intermittent blasts of gas at low differential pressures can effectively lift the cuttings out of the hole. A gas flushing system could be incorporated into the drill assembly for assistance in clearing the holes of rock cuttings or for redundancy in case of auger jamming. A number of variables such as the particle size distribution of the rock powder, the type of gas used, the bit and auger side clearances, the initial mass of cuttings, and the ambient pressure were investigated and found to affect the efficiency. In all tests the initial volume of gas was close to 1 L and the differential pressure was varied to achieve desired clearing efficiencies. Particles were being lifted out of the hole at a maximum speed of 6 m/s at a differential pressure of 25 torr and ambient pressure of 5 torr. Flushing tests lasted on average for 2 s. The power required to compress the thin Martian atmosphere to achieve a sufficient gas blast every minute or so at 10% efficiency was calculated to be of the order of a few watts.

  17. Device for storing drilling pipes

    Energy Technology Data Exchange (ETDEWEB)

    Kolasinski, A; Wedrychowicz, J

    1981-02-16

    The patented device contains a profiled arch 14 (see figure) installed in the upper part of the drilling rig 15. On base 16 of the drilling unit, there is bin 1 which is installed on frame 2 to which it is hinge connected with the help of pin 3. On the other side, the bin rests on rollers 4 which are attached to lever 5 of lifting mechanism 6. Bin 1 is a series of parallel-arranged guides rigidly connected by transverse beams. Frame 2 contains the collapsible support 10. During operation of the device, the hydraulic lifter 6 with the help of frame 5 and rollers 4 lifts bin 1 with drilling pipes installed on it, giving it an angle of 4/sup 0/ in relation to the plane of frame 2. The collapsible support 10 is installed in a vertical position and holds bin 1. This position of bin 1 is the most suitable for movement of the vertically installed drilling pipes on the guides. The distinguishing feature of the patented device is the possibility of convenient arrangement of the drilling pipes on the guides of bin 1. Because of this, the time spent on lifting and lowering the drill apparatus is considerably reduced.

  18. Lithologic and geophysical logs of drill holes Felderhoff Federal 5-1 and 25-1, Amargosa Desert, Nye County, Nevada

    International Nuclear Information System (INIS)

    Carr, W.J.; Grow, J.A.; Keller, S.M.

    1995-01-01

    Two wildcat oil and gas exploration holes drilled in 1991 on the northern edge of the Amargosa Desert penetrated Tertiary and Quaternary sedimentary rocks, alluvium, and basalt, possible Tertiary volcanic or volcaniclastic rocks, and Tertiary (?) and Paleozoic carbonate rocks. The easternmost of the two holes, Felderhoff-Federal 5-1, encountered about 200 feet of alluvium, underlain by 305 feet of basalt breccia and basalt, about 345 feet of probable Tertiary tuffaceous sedimentary rocks, and 616 feet of dense limestone and dolomite of uncertain age. Drill hole 25-1 penetrated 240 feet of alluvium and marl (?), and 250 feet of basalt breccia (?) and basalt, 270 feet of tuff (?) and/or tuffaceous sedimentary rocks, 360 feet of slide blocks (?) and large boulders of Paleozoic carbonate rocks, and 2,800 feet of Paleozoic limestone and dolomite. The two drill holes are located within a northerly trending fault zone defined largely by geophysical data; this fault zone lies along the east side of a major rift containing many small basalt eruptive centers and, farther north, several caldera complexes. Drill hole 25-1 penetrated an inverted paleozoic rock sequence; drill hole 5-1 encountered two large cavities 24-inches wide or more in dense carbonate rock of uncertain, but probable Paleozoic age. These openings may be tectonic and controlled by a regional system of northeast-striking faults

  19. Rotary Percussive Auto-Gopher for Deep Drilling and Sampling

    Science.gov (United States)

    Bar-Cohen, Yoseph; Badescu, Mircea; Sherrit, Stewart

    2009-01-01

    The term "rotary percussive auto-gopher" denotes a proposed addition to a family of apparatuses, based on ultrasonic/ sonic drill corers (USDCs), that have been described in numerous previous NASA Tech Briefs articles. These apparatuses have been designed, variously, for boring into, and/or acquiring samples of, rock or other hard, brittle materials of geological interest. In the case of the rotary percussive autogopher, the emphasis would be on developing an apparatus capable of penetrating to, and acquiring samples at, depths that could otherwise be reached only by use of much longer, heavier, conventional drilling-and-sampling apparatuses. To recapitulate from the prior articles about USDCs: A USDC can be characterized as a lightweight, low-power jackhammer in which a piezoelectrically driven actuator generates ultrasonic vibrations and is coupled to a tool bit through a free mass. The bouncing of the free mass between the actuator horn and the drill bit converts the actuator ultrasonic vibrations into sonic hammering of the drill bit. The combination of ultrasonic and sonic vibrations gives rise to a hammering action (and a resulting chiseling action at the tip of the tool bit) that is more effective for drilling than is the microhammering action of ultrasonic vibrations alone. The hammering and chiseling actions are so effective that the size of the axial force needed to make the tool bit advance into soil, rock, or another material of interest is much smaller than in ordinary rotary drilling, ordinary hammering, or ordinary steady pushing. The predecessor of the rotary percussive auto-gopher is an apparatus, now denoted an ultrasonic/sonic gopher and previously denoted an ultrasonic gopher, described in "Ultrasonic/ Sonic Mechanism for Drilling and Coring" (NPO-30291), NASA Tech Briefs Vol. 27, No. 9 (September 2003), page 65. The ultrasonic/sonic gopher is intended for use mainly in acquiring cores. The name of the apparatus reflects the fact that, like a

  20. Requirements for drilling and disposal in deep boreholes; Foerutsaettningar foer borrning av och deponering i djupa borrhaal

    Energy Technology Data Exchange (ETDEWEB)

    Oden, Anders [QTOB, Haesselby (Sweden)

    2013-09-15

    In this report experience from drilling at great depth in crystalline rock is compiled based on project descriptions, articles and personal contacts. Rock mechanical effects have been analyzed. The report also describes proposals made by SKB and other agencies regarding the disposal of and closure of deep boreholes. The combination of drilling deep with large diameter in crystalline rocks have mainly occurred in various research projects, such as in the German KTB project. Through these projects and the increased interest in recent years for geothermal energy , today's equipment is expected to be used to drill 5000 m deep holes , with a hole diameter of 445 mm , in crystalline rock. Such holes could be used for the disposal of spent nuclear fuel. With the deposition technique recently described by Sandia National Laboratories in USA, SKB estimates that it might be possible to implement the disposal to 5000 m depth. Considering the actual implementation, drilling and disposal, and the far-reaching requirements on nuclear safety and radiation protection, it is considered an important risk getting stuck with the capsule-string, or part of it, above deposition zone without being able to get it loose. In conclusion, even if the drilling and the deposit would succeed there remains to verify that the drill holes with the deposited canisters meet the initial requirements and is long-term safe.

  1. New generation of membrane efficient water-based drilling fluids: pragmatic and cost-effective solutions to borehole stability problems

    Energy Technology Data Exchange (ETDEWEB)

    Tare, U.A. [Haliburton, Calgary, AB (Canada); Mody, F.K. [Shell International E and P Inc., Calgary, AB (Canada); Tan, C.P. [CSIRO Petroleum, Kensington, WA (Australia)

    2002-06-01

    Drilling and completion operations in shales often suffer as a result of wellbore instability. Mechanical failure of the rock around a wellbore is the primary cause of shale instability. This process can be exacerbated by physico-chemical interactions between drilling fluids and shales. Water-based drilling fluids are used more and more due to environmental awareness that becomes more prevalent. Wellbore instability problems can however result from an improper application of water-based drilling fluids in those cases where drilling occurs in sensitive clay-rich formations. To meet the requirements of the petroleum industry, considerable collaborative efforts were expanded in the development of innovative environmentally acceptable water-based drilling fluids. In this paper, the authors describe the process that leads to the development of these drilling fluids. It is possible to achieve shale stability through an osmotic outflow of pore fluid and prevention/minimization of mud pressure penetration, as laboratory experiments on shale samples under realistic downhole conditions exposed to these drilling fluids prove. High membrane efficiencies, in excess of 80 per cent, were generated by this new generation of membrane efficient water-based drilling fluids. Drilling objectives resulting from an improved application of water-based drilling fluids are made possible by a fundamental understanding of the main drilling fluid-shale interaction mechanisms for shale stability and the application of experimental data to field conditions. The authors indicate that the achievement of trouble-free drilling of shales and notable reductions in non-productive time is accomplished by following the practical guidelines included in this paper for maintaining shale stability with the new generation of water-based drilling fluids. 8 refs., 2 tabs., 4 figs.

  2. Drilling a better pair : new technologies in SAGD directional drilling

    Energy Technology Data Exchange (ETDEWEB)

    Zimmer, C.; Richter, D. [Statoil Canada Ltd., Calgary, AB (Canada); Person, J.; Tilley, J.; Bittar, M. [Halliburton Energy Services, Calgary, AB (Canada)

    2010-07-01

    The Leismer Demonstration Project (LDP) is the first of 8 proposed major steam assisted gravity drainage (SAGD) projects for Statoil's Kai Kos Dehseh (KKD) asset in the Athabasca oil sands deposit. The bitumen resources are expected to produce approximately 2.2 billion barrels of oil over approximately 35 years with a peak production of 220,000 bbl/day. To date, 23 well pairs have been drilled on 4 drilling pads. The precise placement of well pairs is among the most important factors in a successful SAGD drilling program. The producer well must be placed in relation to the reservoir boundaries. It must also be accurately twinned with the injector well. A strong focus on technological innovation is needed in order to deliver on these high expectations in unconsolidated formations, such as the McMurray oil sands. Lateral SAGD pairs are often drilled with conventional steerable mud motors and logging-while-drilling (LWD) resistivity measurements, but this combination imposes certain limitations in terms of wellbore quality and placement. Several industry firsts were successfully implemented at the Statoil LDP, including a combination of the newest and most cutting-edge directional, measurement, and LWD technology. The keystone of these industry firsts was the use of a soft formation modified, point-the-bit rotary steerable system (RSS), used on 20 horizontal wells. The RRS was combined with an ultra deep azimuthal resistivity sensor to provide precise geosteering along the bottom bed boundary in the producer wells, resulting in improved reservoir capture and reservoir characterization. This paper described the new drilling system and its impact on the progressive future of directional drilling in SAGD. 8 refs., 1 tab., 22 figs.

  3. Thermal Inertia of Rocks and Rock Populations

    Science.gov (United States)

    Golombek, M. P.; Jakosky, B. M.; Mellon, M. T.

    2001-01-01

    The effective thermal inertia of rock populations on Mars and Earth is derived from a model of effective inertia versus rock diameter. Results allow a parameterization of the effective rock inertia versus rock abundance and bulk and fine component inertia. Additional information is contained in the original extended abstract.

  4. Full-scale laboratory drilling tests on sandstone and dolomite. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Black, A. D.; Green, S. J.; Rogers, L. A.

    1977-08-01

    Full-scale laboratory drilling experiments were performed under simulated downhole conditions to determine what effect changing various drilling parameters has on penetration rate. The two rock types, typical of deep oil and gas reservoirs, used for the tests were Colton Sandstone and Bonne Terre Dolomite. Drilling was performed with standard 7/sup 7///sub 8/ inch rotary insert bits and water base mud. The results showed the penetration rate to be strongly dependent on bit weight, rotary speed and borehole mud pressure. There was only a small dependence on mud flow rate. The drilling rate decreased rapidly with increasing borehole mud pressure for borehole pressures up to about 2,000 psi. Above this pressure, the borehole pressure and rotary speeds had a smaller effect on penetration rate. The penetration rate was then dependent mostly on the bit weight. Penetration rate per horsepower input was also shown to decrease at higher mud pressures and bit weights. The ratio of horizontal confining stress to axial overburden stress was maintained at 0.7 for simulated overburden stresses between 0 and 12,800 psi. For this simulated downhole stress state, the undrilled rock sample was within the elastic response range and the confining pressures were found to have only a small or negligible effect on the penetration rate. Visual examination of the bottomhole pattern of the rocks after simulated downhole drilling, however, revealed ductile chipping of the Sandstone, but more brittle behavior in the Dolomite.

  5. Dynamic characteristics of rocks and method of their determine

    OpenAIRE

    Radoslav Schügerl

    2009-01-01

    This paper presents selected problems of the research of the influence of technical vibrations on rocks. The vibrations are the products of the technological procedure, such as mining blasting, ramming of the piles, using of the drilling-equipment or vibration machines. The vibrations could be also evocated by road or train traffic. The most important dynamic characteristics of rocks are dynamic modulus of elasticity Edyn; dynamic modulus of deformation Edef, dyn; dynamic shear-modulus Gdyn; ...

  6. An analysis of relative costs in drilling deep wells

    International Nuclear Information System (INIS)

    Anderson, E.E.; Cooper, G.A.; Maurer, W.C.; Westcott, P.A.

    1991-01-01

    The search for new sources of oil, and particularly gas, is leading the industry to drill ever deeper wells. A depth of 15,000 ft was first passed in 1938, 20,000 ft was reached in 1939, followed by 25,000 ft in 1958, and 30,000 ft in 1972. The current US record depth is 31,441 ft. As the total depth increases, not only does the rock to be drilled become stronger, but increasing pressure and temperature induce plasticity and chip hold-down effects that make it more difficult to remove cuttings from the workfront. In addition to the reduction in rate of the drilling process itself, other activities become more complex and time-consuming, for example, tripping, running and cementing casing, and logging and coring activities. This paper analyzes the different tasks involved in drilling deep wells, in order to identify those activities that contribute most to the overall cost. These are therefore expected to be the activities where future efforts in research and development should provide the greatest reductions in total cost

  7. Hydraulic testing in crystalline rock

    International Nuclear Information System (INIS)

    Almen, K.E.; Andersson, J.E.; Carlsson, L.; Hansson, K.; Larsson, N.A.

    1986-12-01

    Swedish Geolocical Company (SGAB) conducted and carried out single-hole hydraulic testing in borehole Fi 6 in the Finnsjoen area of central Sweden. The purpose was to make a comprehensive evaluation of different methods applicable in crystalline rocks and to recommend methods for use in current and scheduled investigations in a range of low hydraulic conductivity rocks. A total of eight different methods of testing were compared using the same equipment. This equipment was thoroughly tested as regards the elasticity of the packers and change in volume of the test section. The use of a hydraulically operated down-hole valve enabled all the tests to be conducted. Twelve different 3-m long sections were tested. The hydraulic conductivity calculated ranged from about 5x10 -14 m/s to 1x10 -6 m/s. The methods used were water injection under constant head and then at a constant rate-of-flow, each of which was followed by a pressure fall-off period. Water loss, pressure pulse, slug and drill stem tests were also performed. Interpretation was carried out using standard transient evaluation methods for flow in porous media. The methods used showed themselves to be best suited to specific conductivity ranges. Among the less time-consuming methods, water loss, slug and drill stem tests usually gave somewhat higher hydraulic conductivity values but still comparable to those obtained using the more time-consuming tests. These latter tests, however, provided supplementary information on hydraulic and physical properties and flow conditions, together with hydraulic conductivity values representing a larger volume of rock. (orig./HP)

  8. Rotary steerable motor system for underground drilling

    Science.gov (United States)

    Turner, William E [Durham, CT; Perry, Carl A [Middletown, CT; Wassell, Mark E [Kingwood, TX; Barbely, Jason R [Middletown, CT; Burgess, Daniel E [Middletown, CT; Cobern, Martin E [Cheshire, CT

    2008-06-24

    A preferred embodiment of a system for rotating and guiding a drill bit in an underground bore includes a drilling motor and a drive shaft coupled to drilling motor so that drill bit can be rotated by the drilling motor. The system further includes a guidance module having an actuating arm movable between an extended position wherein the actuating arm can contact a surface of the bore and thereby exert a force on the housing of the guidance module, and a retracted position.

  9. Diagnostic System of Drill Condition in Laminated Chipboard Drilling Process

    Directory of Open Access Journals (Sweden)

    Swiderski Bartosz

    2017-01-01

    Full Text Available The paper presents an on-line automatic system for recognition of the drill condition in a laminated chipboard drilling process. Two states of the drill are considered: the sharp enough (still able to drill holes acceptable for processing quality and worn out (excessive drill wear, not satisfactory from the quality point of view of the process. The automatic system requires defining the diagnostic features, which are used as the input attributes to the classifier. The features have been generated from 5 registered signals: feed force, cutting torque, noise, vibration and acoustic emission. The statistical parameters defined on the basis of the auto regression model of these signals have been used as the diagnostic features. The sequential step-wise feature selection is applied for choosing the most discriminative set of features. The final step of recognition is done by support vector machine classifier working in leave one out mode. The results of numerical experiments have confirmed good quality of the proposed diagnostic system.

  10. Development and Application of the Downhole Drilling String Shock-Absorption and Hydraulic Supercharging Device

    Directory of Open Access Journals (Sweden)

    Yongwang Liu

    2016-01-01

    Full Text Available It is a hot topic for deep/ultradeep wells to improve rock-breaking efficiency and drilling speed by available downhole energy. Based on different downhole energies and working conditions, specialized plunger pump is proposed to convert longitudinal vibration of drilling string into rock-breaking energy. Technical design is developed to generate high-pressure water jet. And then a simulation model is built to verify feasibility of the technical design. Through simulation, the influence law of key factors is obtained. On this basis, this device is tested in several wells. The result indicates this device can increase drilling speed as much as 136%. Meanwhile the harmful vibration can be absorbed. The energy from drilling string vibration is of high frequency and increases as well depth and formation anisotropy increase. By reducing adverse vibration, this device is able to increase the drilling speed and the service life also meets the demand of field application. The longest working time lasts for more than 130 hours. The performance of this device demonstrates great application prospect in deep/ultradeep resources exploration. To provide more equipment support for deep/ultradeep wells, more effort should be put into fundamental study on downhole drill string vibration and related equipment.

  11. Posiva microseismic network. Core drilling of drillholes ONK-PP348...351 in ONKALO at Olkiluoto 2012

    Energy Technology Data Exchange (ETDEWEB)

    Toropainen, V. [Suomen Malmi Oy, Espoo (Finland)

    2014-04-15

    Suomen Malmi Oy (Smoy) core drilled four drillholes for the Posiva's ONKALO microseismic network in ONKALO at Eurajoki, 2012. The drillholes are used for geophone instrumentation and geological characterization. The drillholes ONKPP348... 351 were core drilled in February 2012. All the drillholes are ∼ 9.40 m by length. The drillholes are 56.5 mm by diameter. The drillholes were drilled in deep angles to the floors of the access tunnel and three niches near each other at access tunnel chainages 3019 - 3080. The hydraulic DE 130 drilling rig was used. The drilling water was taken from the ONKALO drilling water pipeline and premixed sodium fluorescein was used as a label agent in the drilling water. The drillholes were measured with EMS deviation survey tool. In addition to drilling the drillcores were logged and reported by geologist. Geological logging included the following parameters: lithology, foliation, fracture parameters, fractured zones, core loss, weathering, fracture frequency, RQD and rock quality. The main rock types in the drillcores are diatexitic gneiss and pegmatitic granite. The average fracture frequency of the drillcores range from 1.2 to 2.4 pc/m and the average RQD value from 96.6 % to 98.6 %. Two fractured zones were intersected. (orig.)

  12. Bentonite buffer pre-test. Core drilling of drillholes ONK-PP264...267 in ONKALO at Olkiluoto 2010

    International Nuclear Information System (INIS)

    Toropainen, V.

    2010-12-01

    Suomen Malmi Oy (Smoy) core drilled four drillholes for bentonite buffer pre-test in ONKALO at Eurajoki, Olkiluoto in July 2010. The identification numbers of the holes are ONK-PP264..267, and the lengths of the drillholes are approximately 4.30 metres each. The drillholes are 75.7 mm by diameter. The drillholes were drilled in a niche at access tunnel chainage 1475. The hydraulic DE 130 drilling rig was used for the work. The drilling water was taken from the ONKALO drilling water pipeline and premixed sodium fluorescein was used as a label agent in the drilling water. In addition to drilling, the drillcores were logged and reported by geologist. Geological logging included the following parameters: lithology, foliation, fracture parameters, fractured zones, core loss, weathering, fracture frequency, RQD and rock quality. The main rock type in the drillholes is pegmatitic granite. The average fracture frequency in the drill cores is 4.0 pcs / m and the average RQD value 94.2 %. (orig.)

  13. Posiva microseismic network. Core drilling of drillholes ONK-PP348...351 in ONKALO at Olkiluoto 2012

    International Nuclear Information System (INIS)

    Toropainen, V.

    2014-04-01

    Suomen Malmi Oy (Smoy) core drilled four drillholes for the Posiva's ONKALO microseismic network in ONKALO at Eurajoki, 2012. The drillholes are used for geophone instrumentation and geological characterization. The drillholes ONKPP348... 351 were core drilled in February 2012. All the drillholes are ∼ 9.40 m by length. The drillholes are 56.5 mm by diameter. The drillholes were drilled in deep angles to the floors of the access tunnel and three niches near each other at access tunnel chainages 3019 - 3080. The hydraulic DE 130 drilling rig was used. The drilling water was taken from the ONKALO drilling water pipeline and premixed sodium fluorescein was used as a label agent in the drilling water. The drillholes were measured with EMS deviation survey tool. In addition to drilling the drillcores were logged and reported by geologist. Geological logging included the following parameters: lithology, foliation, fracture parameters, fractured zones, core loss, weathering, fracture frequency, RQD and rock quality. The main rock types in the drillcores are diatexitic gneiss and pegmatitic granite. The average fracture frequency of the drillcores range from 1.2 to 2.4 pc/m and the average RQD value from 96.6 % to 98.6 %. Two fractured zones were intersected. (orig.)

  14. Demonstration of a Fractured Rock Geophysical Toolbox (FRGT) for Characterization and Monitoring of DNAPL Biodegradation in Fractured Rock Aquifers

    Science.gov (United States)

    2015-09-29

    is characterized by dark gray slate or phyllite, alternating with thin layers of light gray siltstone or sandstone . Table 1 summarizes the primary...sedimentary rocks of the Newark Basin. Competent rocks are primarily mudstones and sandstones of the Lockatong and Stockton Formations. Fill, weathered silt... sandstone , and characterized by water bearing bedding plane fractures. An array of open boreholes in the source area that were drilled for the 2002

  15. A novel enzyme-based acidizing system: Matrix acidizing and drilling fluid damage removal

    Energy Technology Data Exchange (ETDEWEB)

    Harris, R.E.; McKay, D.M. [Cleansorb Limited, Surrey (United Kingdom); Moses, V. [King`s College, London (United Kingdom)

    1995-12-31

    A novel acidizing process is used to increase the permeability of carbonate rock cores in the laboratory and to remove drilling fluid damage from cores and wafers. Field results show the benefits of the technology as applied both to injector and producer wells.

  16. The Experiences and Challenges in Drilling into Semi molten or Molten Intrusive in Menengai Geothermal Field

    Science.gov (United States)

    Mortensen, A. K.; Mibei, G. K.

    2017-12-01

    Drilling in Menengai has experienced various challenges related to drilling operations and the resource itself i.e. quality discharge fluids vis a vis gas content. The main reason for these challenges is related to the nature of rocks encountered at depths. Intrusives encountered within Menengai geothermal field have been group into three based on their geological characteristics i.e. S1, S2 and S3.Detailed geology and mineralogical characterization have not been done on these intrusive types. However, based on physical appearances, S1 is considered as a diorite dike, S2 is syenite while S3 is molten rock material. This paper summarizes the experiences in drilling into semi molten or molten intrusive (S3).

  17. Drill-Core Scanning for Radioelements by Gamma-Ray Spectrometry

    DEFF Research Database (Denmark)

    Løvborg, Leif; Wollenberg, H.; Rose-Hansen, J.

    1972-01-01

    A system has been developed for the continuous and stepwise scanning of rock drill cores for gamma-ray spectrometric determinations of uranium, thorium, and potassium. The apparatus accomodates 3- to 4-cm-diameter core as it passes two opposing 2-inch diameter by 3-inch- thick NaI(Tl) detectors, ......, disclosing detailed variations of U and Th. Contents of U and Th determined by scanning of drill core were consistent with the gross gamma-ray counting rates measured in the boreholes. ©1972 Society of Exploration Geophysicists......A system has been developed for the continuous and stepwise scanning of rock drill cores for gamma-ray spectrometric determinations of uranium, thorium, and potassium. The apparatus accomodates 3- to 4-cm-diameter core as it passes two opposing 2-inch diameter by 3-inch- thick NaI(Tl) detectors...

  18. Seismic Prediction While Drilling (SPWD): Seismic exploration ahead of the drill bit using phased array sources

    Science.gov (United States)

    Jaksch, Katrin; Giese, Rüdiger; Kopf, Matthias

    2010-05-01

    maximize the energy of the seismic source in order to reach a sufficient exploration range. The next step for focusing is to use the method of phased array. Dependent of the seismic wave velocities of the surrounding rock, the distance of the actuators to each other and the used frequencies the signal phases for each actuator can be determined. Since one year several measurements with the prototype have been realized under defined conditions at a test site in a mine. The test site consists of a rock block surrounded from three galleries with a dimension of about 100 by 200 meters. For testing the prototype two horizontal boreholes were drilled. They are directed to one of the gallery to get a strong reflector. The quality of the data of the borehole seismics in amplitude and frequency spectra show overall a good signal-to-noise ratio and correlate strongly with the fracture density along the borehole and are associated with a lower signal-to-noise ratio. Additionally, the geophones of the prototype show reflections from ahead and rearward in the seismic data. In particular, the reflections from the gallery ahead are used for the calibration of focusing. The direct seismic wave field indicates distinct compression and shear waves. The analysis of several seismic measurements with a focus on the direct seismic waves shows that the phased array technology explicit can influence the directional characteristics of the radiated seimic waves. The amplitudes of the seismic waves can be enhanced up to three times more in the desired direction and simultaneously be attenuated in the reverse direction. A major step for the directional investigation in boreholes has accomplished. But the focusing of the seismic waves has to be improved to maximize the energy in the desired direction in more measurements by calibrating the initiating seismic signals of the sources. A next step this year is the development of a wireline prototype for application in vertical boreholes with depths not

  19. Scientific Results of Conduit Drilling in the Unzen Scientific Drilling Project (USDP

    Directory of Open Access Journals (Sweden)

    Kozo Uto

    2005-09-01

    Full Text Available Abstract Directional drilling at Unzen Volcano in Japan duringmid of 2004 penetrated the magma conduit and successfullyrecovered samples of the lava dike that is believed to havefed the 1991–1995 eruption. The dike was sampled about1.3 km below the volcano’s summit vent and is intrudedinto a broader conduit zone that is 0.5 km wide. This zoneconsists of multiple older lava dikes and pyroclastic veinsand has cooled to less than 200˚C. The lava dike sample wasunexpectedly altered, suggesting that circulation of hydrothermalfluids rapidly cools the conduit region of even veryactive volcanoes. It is likely that seismic signals monitoredprior to emergence of the lava dome reflected fracturing ofthe country rocks, caused by veining as volatiles escapedpredominantly upward, not outward, from the rising magma.Geophysical and geological investigation of cuttings andcore samples from the conduit and of bore-hole logging datacontinues.

  20. Site investigation SFR. Boremap mapping of percussion drilled borehole HFR106

    Energy Technology Data Exchange (ETDEWEB)

    Winell, Sofia (Geosigma AB (Sweden))

    2010-06-15

    This report presents the result from the Boremap mapping of the percussion drilled borehole HFR106, which is drilled from an islet located ca 220 m southeast of the pier above SFR. The purpose of the location and orientation of the borehole is to investigate the possible occurrence of gently dipping, water-bearing structures in the area. HFR106 has a length of 190.4 m and oriented 269.4 deg/-60.9 deg. The mapping is based on the borehole image (BIPS), investigation of drill cuttings and generalized, as well as more detailed geophysical logs. The dominating rock type, which occupies 68% of HFR106, is fine- to medium-grained, pinkish grey metagranite-granodiorite (rock code 101057) mapped as foliated with a medium to strong intensity. Pegmatite to pegmatitic granite (rock code 101061) occupies 29% of the borehole. Subordinate rock types are felsic to intermediate meta volcanic rock (rock code 103076) and fine- to medium-grained granite (rock code 111058). Rock occurrences (rock types < 1 m in length) occupy about 16% of the mapped interval, of which half is veins, dykes and unspecified occurrences of pegmatite and pegmatitic granite. Only 5.5% of HFR106 is inferred to be altered, mainly oxidation in two intervals with an increased fracture frequency. A total number of 845 fractures are registered in HFR106. Of these are 64 interpreted as open with a certain aperture, 230 open with a possible aperture, and 551 sealed. This result in the following fracture frequencies: 1.6 open fractures/m and 3.0 sealed fractures/m. Three fracture sets of open and sealed fractures with the orientations 290 deg/70 deg, 150 deg/85 deg and 200 deg/85 deg can be distinguished in HFR106. The fracture frequency is generally higher in the second half of the borehole, and particularly in the interval 176-187.4 m.

  1. Site investigation SFR. Boremap mapping of percussion drilled borehole HFR106

    International Nuclear Information System (INIS)

    Winell, Sofia

    2010-06-01

    This report presents the result from the Boremap mapping of the percussion drilled borehole HFR106, which is drilled from an islet located ca 220 m southeast of the pier above SFR. The purpose of the location and orientation of the borehole is to investigate the possible occurrence of gently dipping, water-bearing structures in the area. HFR106 has a length of 190.4 m and oriented 269.4 deg/-60.9 deg. The mapping is based on the borehole image (BIPS), investigation of drill cuttings and generalized, as well as more detailed geophysical logs. The dominating rock type, which occupies 68% of HFR106, is fine- to medium-grained, pinkish grey metagranite-granodiorite (rock code 101057) mapped as foliated with a medium to strong intensity. Pegmatite to pegmatitic granite (rock code 101061) occupies 29% of the borehole. Subordinate rock types are felsic to intermediate meta volcanic rock (rock code 103076) and fine- to medium-grained granite (rock code 111058). Rock occurrences (rock types < 1 m in length) occupy about 16% of the mapped interval, of which half is veins, dykes and unspecified occurrences of pegmatite and pegmatitic granite. Only 5.5% of HFR106 is inferred to be altered, mainly oxidation in two intervals with an increased fracture frequency. A total number of 845 fractures are registered in HFR106. Of these are 64 interpreted as open with a certain aperture, 230 open with a possible aperture, and 551 sealed. This result in the following fracture frequencies: 1.6 open fractures/m and 3.0 sealed fractures/m. Three fracture sets of open and sealed fractures with the orientations 290 deg/70 deg, 150 deg/85 deg and 200 deg/85 deg can be distinguished in HFR106. The fracture frequency is generally higher in the second half of the borehole, and particularly in the interval 176-187.4 m

  2. The tunnel project. Drill hole logging and structural geologic studies in the Grualia, the Lunner county

    International Nuclear Information System (INIS)

    Elvebakk, Harald; Braathen, Alvar; Roenning, Jan S.; Nordgulen, Oeystein

    2001-01-01

    In connection with the project ''Environmental and community useful tunnels'' the Norwegian Geologic Survey (NGU) has made geologic and geophysical investigations along parts of the tunnel at the Grualia in the Lunner county. The purpose of the geologic studies was to map and investigate weakness zones in the rock foundations. The geophysical studies aimed at testing techniques that was in little use in preliminary studies for tunnel operations. The methods used have been optical inspection of drill holes, measurements of temperature and conductivity in the water and the measuring of the natural gamma radiation in the drill holes. The resistivity in the drill holes is also determined and test pumping with flow measurements is carried out in order to calculate the well water influx capacity. These methods may contribute to information about the rock condition (cracking, water influx). Previously the NGU has made 2D resistivity measurements at the ground in the tunnel in order to map the weakness zones. The results from the measurements in 6 wells show large variations in the rock qualities. The wells are drilled towards indicated weakness zones. Open water conducting cracks and sections with largely cracked rocks are detected in or in the proximity of the tunnel route. The weakness zone between the hornfels and the syenite west of the Langvatnet is largely cracked, has a large water conducting capacity and there are some unstable masses. Further east several open, water- conducting cracks are detected in the syenite. Furthest to the east in the route cracked and unstable rocks are found. Several of the holes are blocked by ravines which confirm the poor rock quality. In the particular areas problems are to be expected during the operation with respect to water influx and stability. Methodically the drill hole studies have shown great value for the follow up of the 2D resistivity measurements on the ground. The indicated weakness zones through the 2D have been

  3. Western Canada drilling cycle optimization

    International Nuclear Information System (INIS)

    2003-06-01

    The oil and gas industry in western Canada operates in annual and seasonal cycles with peak activity periods that require a large skilled labour force for short periods of time. This study examines why seismic and drilling activity is greatest during the first quarter of the year instead of being distributed evenly over the year. The objective of the study was to provide recommendations that would help optimize the industry cycle. The study includes an analysis of historical trends that validate the industry first quarter peaking activity. It also includes interviews with 36 industry representatives and provides insight and validation of trends. The final phase of the report includes recommendations that both industry and governments may wish to implement. The study includes financial, operational and environmental considerations. It was shown that natural gas directed drilling activity is strongly correlated with changes in natural gas prices. In the case of oil drilling activity, peak activity responds to oil prices from the prior quarter. In general, drilling and seismic costs are higher in the winter months because of increased demand for equipment and services. In addition winter drilling operations require a diesel fired boiler to generate steam. 36 refs., 2 tabs., 52 figs

  4. Drilling and associated drillhole measurements of the pilot hole ONK-PH11

    International Nuclear Information System (INIS)

    Karttunen, P.; Mancini, P.; Pekkanen, J.; Poellaenen, J.; Tarvainen, A.-M.; Toropainen, V.; Pere, T.

    2011-01-01

    The construction of the ONKALO access tunnel started in September 2004 at Olkiluoto. Most of the investigations related to the construction of the access tunnel aim to ensure successful excavations, reinforcement and sealing. Pilot holes are drillholes, which are core drilled along the tunnel profile. The length of the pilot holes typically varies from several tens of metres to a couple of hundred metres. The pilot holes are aimed to confirm the quality of the rock mass for tunnel construction, and in particular to identify water conductive fractured zones and to provide information that could result in modifications of the existing construction plans. The pilot hole ONK-PH11 was drilled from chainage 3922 to chainage 4053 in October 2009. The length of the hole is 131.21 metres. The aim during the drilling work was to orient core samples as much as possible. The deviation of the drillhole was measured during and after the drilling phase. Electric conductivity was measured from the collected returning water samples. Hydraulic conductivity of the fractures or fractured zones was measured by Posiva Flow Log equipment. During flow measurements also electric conductivity and temperature were measured. In flow logging test sections of 0.5 m and increments of 0.1 m were used. The water loss measurements were performed after drilling was completed by the drilling company. Logging of the core samples included the following parameters: lithology, foliation, fracturing, RQD, fractured zones, weathering and possible intersections. The rock mechanical logging was based on Q-classification. The rock strength and deformation were determined with Rock Tester -equipment. Geophysical logging and optical imaging of the pilot hole included the fieldwork of all surveys, the integration of the data as well as interpretation of the acoustic and drillhole radar data. The groundwater samples were collected from the open hole without any packers. The collected groundwater samples were

  5. Water - rock interaction in different rock environments

    International Nuclear Information System (INIS)

    Lamminen, S.

    1995-01-01

    The study assesses the groundwater geochemistry and geological environment of 44 study sites for radioactive waste disposal. Initially, the study sites were divided by rock type into 5 groups: (1) acid - intermediate rocks, (2) mafic - ultramafic rocks, (3) gabbros, amphibolites and gneisses that contain calc-silicate (skarn) rocks, (4) carbonates and (5) sandstones. Separate assessments are made of acid - intermediate plutonic rocks and of a subgroup that comprises migmatites, granite and mica gneiss. These all belong to the group of acid - intermediate rocks. Within the mafic -ultramafic rock group, a subgroup that comprises mafic - ultramafic plutonic rocks, serpentinites, mafic - ultramafic volcanic rocks and volcanic - sedimentary schists is also evaluated separately. Bedrock groundwaters are classified by their concentration of total dissolved solids as fresh, brackish, saline, strongly saline and brine-class groundwaters. (75 refs., 24 figs., 3 tabs.)

  6. Kaisten exploration well. Civil construction work, environemntal protection and drilling techniques

    International Nuclear Information System (INIS)

    Anon.

    1986-02-01

    The exploration well at Kaisten was realized as the fifth well within the Nagra Deep Drilling Program in Northern Switzerland. The drilling work was startet February 13, 1984. Having reached the final depth of 1305.8 m on June 27, 1984, the test phase was initiated and completed by May 3, 1985. The well drilled approx. 300 m of sediments and approx. 1000 m of crystalline rock. Oriented cores were taken over the whole length of the well. The present report presents the drilling activities, civil construction work related to the site and precautions taken to account for environmental protection aspects. A chapter dealing with the commission representing members of the federal, cantonal and local authorities and about reporting is given at the end of this report. (author)

  7. Review of casing while drilling technology

    Directory of Open Access Journals (Sweden)

    Pavković Bojan

    2016-01-01

    Full Text Available Conventional drilling methods have been plagued with huge operational and financial challenges, such as cost of purchasing, inspecting, handling, transporting the drill equipment and most importantly, tripping in-and-out of the drill string whenever the Bottom Hole Assembly (BHA needs a replacement, needs of wiper trip or when total depth is reached. The tripping in-and-out of the drill string not only contributes to Non Productive Time (NPT but also leads to well control difficulties including wellbore instability and lost circulation. All this has led Oil and Gas industry, as well as any other engineering industry, to seek for new ways and methods in order to reduce these problems. Thanks to the advances in technical solutions and constant improvements of conventional drilling methods, a new drilling method - casing while drilling has been developed. Casing Drilling encompasses the process of simultaneously drilling and casing a well, using the active casing and thus optimizes the production. This paper presents a review of casing while drilling method (CwD and its practical usage in drilling wells. The comparison of conventional drilling method and casing while drilling is also presented. The CwD method achieves significantly better results than conventional drilling method.

  8. Hydrogeological Properties of the Rocks in Adansi Mining Area ...

    African Journals Online (AJOL)

    The hydrogeological properties of an aquifer coupled with climatic conditions and geomorphology determines how much groundwater exists in that location. A hydrogeological study of the rocks in the Adansi area was carried out to obtain the aquifer hydraulic properties. Drilling and pumping test analysis information were ...

  9. Numerical investigation of the prospects of high energy laser in drilling oil and gas wells

    International Nuclear Information System (INIS)

    Agha, K.R.; Belhaj, H.A.; Mustafiz, S.; Islam, M.R.; Bjorndalen, N.

    2004-01-01

    Rotary drilling is the primary method used to reach oil and gas formations that was developed over a century ago. Many problems persist with this method, including downtime due to dull bits, the lack of precise vertical or horizontal wells and formation fluid leakage during drilling due to the lack of a seal around the hole. Laser drilling is a new technology that has been proposed as a method to eliminate the current problems while drilling and provide a less expensive alternative to conventional methods. This paper discussed the development of a numerical model based on the fundamental heat transfer and fluid flow phenomena including conduction, melting and vaporization responsible for material removal by laser drilling process. The paper addressed the thermal process involved in laser drilling of sandstone and limestone rocks as well as aluminum and mild steel. The paper outlined the parametric study and discussed the design considerations for a field application. Economical and environmental impacts were also included. It was concluded that more experimental investigation is needed to fully understand the laser operation and to enhance the integrity of the numerical models. In addition, it was concluded that field equipment must be designed to meet the changes in drilling requirements. 19 refs., 10 figs

  10. A drill-soil system modelization for future Mars exploration

    Science.gov (United States)

    Finzi, A. E.; Lavagna, M.; Rocchitelli, G.

    2004-01-01

    This paper presents a first approach to the problem of modeling a drilling process to be carried on in the space environment by a dedicated payload. Systems devoted to work in space present very strict requirements in many different fields such as thermal response, electric power demand, reliability and so on. Thus, models devoted to the operational behaviour simulation represent a fundamental help in the design phase and give a great improvement in the final product quality. As the required power is the crucial constraint within drilling devices, the tool-soil interaction modelization and simulation are finalized to the computation of the power demand as a function of both the drill and the soil parameters. An accurate study of the tool and the soil separately has been firstly carried on and, secondly their interaction has been analyzed. The Dee-Dri system, designed by Tecnospazio and to be part of the lander components in the NASA's Mars Sample Return Mission, has been taken as the tool reference. The Deep-Drill system is a complex rotary tool devoted to the soil perforation and sample collection; it has to operate in a Martian zone made of rocks similar to the terrestrial basalt, then the modelization is restricted to the interaction analysis between the tool and materials belonging to the rock set. The tool geometric modelization has been faced by a finite element approach with a Langrangian formulation: for the static analysis a refined model is assumed considering both the actual geometry of the head and the rod screws; a simplified model has been used to deal with the dynamic analysis. The soil representation is based on the Mohr-Coulomb crack criterion and an Eulerian approach has been selected to model it. However, software limitations in dealing with the tool-soil interface definition required assuming a Langrangian formulation for the soil too. The interaction between the soil and the tool has been modeled by extending the two-dimensional Nishimatsu

  11. Active Suppression of Drilling System Vibrations For Deep Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, David W.; Blankenship, Douglas A.; Buerger, Stephen; Mesh, Mikhail; Radigan, William Thomas; Su, Jiann-Cherng

    2015-10-01

    The dynamic stability of deep drillstrings is challenged by an inability to impart controllability with ever-changing conditions introduced by geology, depth, structural dynamic properties and operating conditions. A multi-organizational LDRD project team at Sandia National Laboratories successfully demonstrated advanced technologies for mitigating drillstring vibrations to improve the reliability of drilling systems used for construction of deep, high-value wells. Using computational modeling and dynamic substructuring techniques, the benefit of controllable actuators at discrete locations in the drillstring is determined. Prototype downhole tools were developed and evaluated in laboratory test fixtures simulating the structural dynamic response of a deep drillstring. A laboratory-based drilling applicability demonstration was conducted to demonstrate the benefit available from deployment of an autonomous, downhole tool with self-actuation capabilities in response to the dynamic response of the host drillstring. A concept is presented for a prototype drilling tool based upon the technical advances. The technology described herein is the subject of U.S. Patent Application No. 62219481, entitled "DRILLING SYSTEM VIBRATION SUPPRESSION SYSTEMS AND METHODS", filed September 16, 2015.

  12. Origin and in situ concentrations of hydrocarbons in the Kumano forearc basin from drilling mud gas monitoring during IODP NanTroSEIZE Exp. 319

    International Nuclear Information System (INIS)

    Wiersberg, Thomas; Schleicher, Anja M.; Horiguchi, Keika; Doan, Mai-Linh; Eguchi, Nobuhisa; Erzinger, Jörg

    2015-01-01

    Highlights: • Exp. 319 of IODP was the first cruise in the history of scientific ocean drilling with drilling mud gas monitoring. • Hydrocarbons were the only formation-derived gases identified in drilling mud. • Chemical and isotopic compositions of hydrocarbons exhibit a microbial origin. • Absolute CH 4 concentrations in the formation reaching up to 24 L gas /L sediment . - Abstract: NanTroSEIZE Exp. 319 of the Integrated Ocean Drilling Program (IODP) was the first cruise in the history of scientific ocean drilling with drilling mud circulation through a riser. Drilling mud was pumped through the drill string and returned to the drill ship through the riser pipe during drilling of hole C0009A from 703 to 1604 mbsf (meter below sea floor) and hole enlargement from 703 to 1569 mbsf. During riser drilling, gas from returning drilling mud was continuously extracted, sampled and analyzed in real time to reveal information on the gas composition and gas concentrations at depth. Hydrocarbons were the only formation-derived gases identified in drilling mud and reached up to 14 vol.% of methane and 48 ppmv of ethane. The chemical and isotopic compositions of hydrocarbons exhibit a microbial origin. Hydrocarbons released from drilling mud and cuttings correlate with visible allochthonous material (wood, lignite) in drilling cuttings. At greater depth, addition of small but increasing amounts of hydrocarbons probably from low-temperature thermal degradation of organic matter is indicated. The methane content is also tightly correlated with several intervals of low Poisson’s ratio from Vp/Vs observed in sonic velocity logs, suggesting that the gas is situated in the pore space of the rock as free gas. The gas concentrations in the formation, determined from drilling mud gas monitoring, reaching up to 24 L gas /L sediment for methane in hole C0009A, in line with gas concentrations from interpreted downhole sonic logs

  13. Sorption of cesium in intact rock

    International Nuclear Information System (INIS)

    Puukko, E.

    2014-04-01

    The mass distribution coefficient K d is used in performance assessment (PA) to describe sorption of a radionuclide on rock. The R d is determined using crushed rock which causes uncertainty in converting the R d values to K d values for intact rock. This work describes a method to determine the equilibrium of sorption on intact rock. The rock types of the planned Olkiluoto waste disposal site were T-series mica gneiss (T-MGN), T-series tonalite granodiorite granite gneiss (T-TGG), P-series tonalite granodiorite granite gneiss (P-TGG) and pegmatitic granite (PGR). These rocks contain different amount of biotite which is the main sorbing mineral. The sorption of cesium on intact rock slices was studied by applying an electrical field to speed up migration of cesium into the rock. Cesium is in the solution as a noncomplex cation Cs + and it is sorbed by ion exchange. The tracer used in the experiments was 134 Cs. The experimental sorption on the intact rock is compared with values calculated using the in house cation exchange sorption model (HYRL model) in PHREEQC program. The observed sorption on T-MGN and T-TGG rocks was close to the calculated values. Two PGR samples were from a depth of 70 m and three samples were from a depth of 150 m. Cesium sorbed more than predicted on the two 70 m PGR samples. The sorption of Cs on the three 150 m PGR samples was small which was consistent with the calculations. The pegmatitic granite PGR has the smallest content of biotite of the four rock types. In the case of P-TGG rock the observed values of sorption were only half of the calculated values. Two kind of slices were cut from P-TGG drill core. The slices were against and to the direction of the foliation of the biotite rims. The sorption of cesium on P-TGG rock was same in both cases. The results indicated that there was no effect of the directions of the electric field and the foliation of biotite in the P-TGG rock. (orig.)

  14. Drilling history of core hole DB-15

    International Nuclear Information System (INIS)

    Diediker, L.D.; Ledgerwood, R.K.

    1980-09-01

    This core hole was drilled to obtain hydrologic and chemical data on the permeable zones of the Saddle Mountains and Wanapum Formations. These data were obtained by testing the zones that were penetrated during drilling. This testing-as-drilled method reduced the potential problems of interflow and water contamination. This report summarizes the drilling and coring operations; geologic logging, hydrologic testing, and geophysical logging activities; and cementing operations of DB-15 during drilling. The successful completion of DB-15 demonstrated that hydrologic testing can be conducted during core drilling operations. More reliable head measurements and uncontaminated representative water samples from isolated permeable zones, which have not been exposed to potential open borehole cross-flow and head equilibration problems, were benefits derived from the testing-as-drilled method. Disadvantages of the technique were a longer time to complete the borehole caused by time required for testing and increased drilling costs due to rig standby time during testing. Extension of the testing-as-drilled method to the drilling of future core holes is recommended. An evaluation should be made of the required hydrologic data and expected borehole stratigraphy before and during drilling to allow uninterrupted drilling in zones of low permeability that can be tested after drilling is complete

  15. Rock burst prevention at steep seam mining

    Energy Technology Data Exchange (ETDEWEB)

    Efremov, G D

    1988-09-01

    At steep shield longwalls one method of preventing rock bursts is to avoid sharp angles during working. Stress in coal and rock body that appears when steep seams are worked where rock bursts occur at corners of set-up entries is discussed. The dynamic interaction between gas and rock pressure is assessed. Maintains that in order to avoid rock bursts at these places it is necessary to turn the protruding coal wall by 20-30 degrees towards the coal body to divert the action of shift forces. At the same time the face should also be inclined (by 10-15 degrees) to move the zones of increased stress away from the corner into the coal and rock body. Stress at workings with round cross-sections is 3-4 times lower than at square cross-sections. Recommendations are given that concern shearer loader operation (semi-spherical shape of the face), borehole drilling and water injection. Initial distance of 10-15 m between boreholes is suggested. 3 refs.

  16. CERN Rocks

    CERN Multimedia

    2004-01-01

    The 15th CERN Hardronic Festival took place on 17 July on the terrace of Rest 3 (Prévessin). Over 1000 people, from CERN and other International Organizations, came to enjoy the warm summer night, and to watch the best of the World's High Energy music. Jazz, rock, pop, country, metal, blues, funk and punk blasted out from 9 bands from the CERN Musiclub and Jazz club, alternating on two stages in a non-stop show.  The night reached its hottest point when The Canettes Blues Band got everybody dancing to sixties R&B tunes (pictured). Meanwhile, the bars and food vans were working at full capacity, under the expert management of the CERN Softball club, who were at the same time running a Softball tournament in the adjacent "Higgs Field". The Hardronic Festival is the main yearly CERN music event, and it is organized with the support of the Staff Association and the CERN Administration.

  17. Multi-Index Monitoring and Evaluation on Rock Burst in Yangcheng Mine

    Directory of Open Access Journals (Sweden)

    Yunliang Tan

    2015-01-01

    Full Text Available Based on the foreboding information monitoring of the energy released in the developing process of rock burst, prediction system for rock burst can be established. By using microseismic method, electromagnetic radiation method, and drilling bits method, rock burst in Yangcheng Mine was monitored, and a system of multi-index monitoring and evaluation on rock burst was established. Microseismic monitoring and electromagnetic radiation monitoring were early warning method, and drilling bits monitoring was burst region identification method. There were three identifying indexes: silence period in microseismic monitoring, rising period of the intensity, and rising period of pulse count in electromagnetic radiation monitoring. If there is identified burst risk in the workface, drilling bits method was used to ascertain the burst region, and then pressure releasing methods were carried out to eliminate the disaster.

  18. Fault rocks from the SAFOD core samples : implications for weakening at shallow depths along the San Andreas Fault, California

    NARCIS (Netherlands)

    Holdsworth, R.E.; van Diggelen, E.W.E.; Spiers, C.J.; Bresser, J.H.P. de; Walker, R.J.; Bown, L.

    2011-01-01

    The drilling of a deep borehole across the actively creeping Parkfield segment of the San Andreas Fault Zone (SAFZ), California, and collection of core materials permit direct geological study of fault zone processes at 2–3 km depth. The three drill cores sample both host and fault rocks and pass

  19. Cascade geothermal drilling/corehole N-1

    Energy Technology Data Exchange (ETDEWEB)

    Swanberg, C.A.; Combs, J. (Geothermal Resources International, Inc., San Mateo, CA (USA)); Walkey, W.C. (GEO Operator Corp., Bend, OR (USA))

    1988-07-19

    Two core holes have been completed on the flanks of Newberry Volcano, Oregon. Core hole GEO N-1 has a heat flow of 180 mWm-2 reflecting subsurface temperature sufficient for commerical exploitation of geothermally generated electricity. GEO N-3, which has a heat flow of 86 mWm-2, is less encouraging. Considerable emphasis has been placed on the ''rain curtain'' effect with the hope that a detailed discussion of this phenomenon at two distinct localities will lead to a better understanding of the physical processes in operation. Core hole GEO N-1 was cored to a depth of 1387 m at a site located 9.3 km south of the center of the volcano. Core hole GEO N-3 was cored to a depth of 1220 m at a site located 12.6 km north of the center of the volcano. Both core holes penetrated interbedded pyroclastic lava flows and lithic tuffs ranging in composition from basalt to rhyolite with basaltic andesite being the most common rock type. Potassium-argon age dates range up to 2 Ma. Difficult drilling conditions were encountered in both core holes at depths near the regional water table. Additionally, both core holes penetrate three distinct thermal regimes (isothermal (the rain curtain), transition, and conductive) each having its own unique features based on geophysical logs, fluid geochemistry, age dates, and rock alteration. Smectite alteration, which seems to control the results of surface geoelectrical studies, begins in the isothermal regime close to and perhaps associated with the regional water table. 28 refs., 15 figs., 2 tabs.

  20. Cascade geothermal drilling/corehole N-3

    Energy Technology Data Exchange (ETDEWEB)

    Swanberg, C.A.

    1988-07-19

    Two core holes have been completed on the flanks of Newberry Volcano, Oregon. Core holes GEO N-1 has a heat flow of 180 mWm-2 reflecting subsurface temperature sufficient for commercial exploitation of geothermally generated electricity. GEO N-3, which has a heat flow of 86 mWm-2, is less encouraging. Considerable emphasis has been placed on the rain curtain'' effect with the hope that a detailed discussion of this phenomenon at two distinct localities will lead to a better understanding of the physical processes in operation. Core hole GEO N-1 was cored to a depth of 1387 m at a site located 9.3 km south of the center of the volcano. Core hole GEO N-3 was cored to a depth of 1220 m at a site located 12.6 km north of the center of the volcano. Both core holes penetrated interbedded pyroclastic lava flows and lithic tuffs ranging in composition from basalt to rhyolite with basaltic andesite being the most common rock type. Potassium-argon age dates range up to 2 Ma. Difficult drilling conditions were encountered in both core holes at depths near the regional water table. Additionally, both core holes penetrate three distinct thermal regimes (isothermal (the rain curtain), transition, and conductive) each having its own unique features based on geophysical logs, fluid geochemistry, age dates, and rock alteration. Smectite alteration, which seems to control the results of surface geoelectrical studies, begins in the isothermal regime close to and perhaps associated with the regional water table.

  1. Additive to clay drilling muds

    Energy Technology Data Exchange (ETDEWEB)

    Voytenko, V.S.; Nekrasova, V.B.; Nikitinskiy, E.L.; Ponomarev, V.N.

    1984-01-01

    The purpose of the invention is to improve the lubricating and strengthening properties of clay drilling muds. This goal is achieved because the lubricating and strengthening additive used is waste from the pulp and paper industry at the stage of reprocessing crude sulfate soap into phytosterol.

  2. Drilling azimuth gamma embedded design

    Directory of Open Access Journals (Sweden)

    Zhou Yi Ren

    2016-01-01

    Full Text Available Embedded drilling azimuth gamma design, the use of radioactive measuring principle embedded gamma measurement while drilling a short section analysis. Monte Carlo method, in response to the density of horizontal well logging numerical simulation of 16 orientation, the orientation of horizontal well analysed, calliper, bed boundary location, space, different formation density, formation thickness, and other factors inclined strata dip the impact by simulating 137Cs sources under different formation conditions of the gamma distribution, to determine the orientation of drilling density tool can detect window size and space, draw depth of the logging methods. The data 360° azimuth imaging, image processing method to obtain graph, display density of the formation, dip and strata thickness and other parameters, the logging methods obtain real-time geo-steering. To establish a theoretical basis for the orientation density logging while drilling method implementation and application of numerical simulation in-depth study of the MWD azimuth and density log response factors of horizontal wells.

  3. Hydraulics calculation in drilling simulator

    Science.gov (United States)

    Malyugin, Aleksey A.; Kazunin, Dmitry V.

    2018-05-01

    The modeling of drilling hydraulics in the simulator system is discussed. This model is based on the previously developed quasi-steady model of an incompressible fluid flow. The model simulates the operation of all parts of the hydraulic drilling system. Based on the principles of creating a common hydraulic model, a set of new elements for well hydraulics was developed. It includes elements that correspond to the in-drillstring and annular space. There are elements controlling the inflow from the reservoir into the well and simulating the lift of gas along the annulus. New elements of the hydrosystem take into account the changing geometry of the well, loss in the bit, characteristics of the fluids including viscoplasticity. There is an opportunity specify the complications, the main one of which is gas, oil and water inflow. Correct work of models in cases of complications makes it possible to work out various methods for their elimination. The coefficients of the model are adjusted on the basis of incomplete experimental data provided by operators of drilling platforms. At the end of the article the results of modeling the elimination of gas inflow by a continuous method are presented. The values displayed in the simulator (drill pipe pressure, annulus pressure, input and output flow rates) are in good agreement with the experimental data. This exercise took one hour, which is less than the time on a real rig with the same configuration of equipment and well.

  4. DM Considerations for Deep Drilling

    OpenAIRE

    Dubois-Felsmann, Gregory

    2016-01-01

    An outline of the current situation regarding the DM plans for the Deep Drilling surveys and an invitation to the community to provide feedback on what they would like to see included in the data processing and visualization of these surveys.

  5. Stakeholder acceptance analysis ResonantSonic drilling

    International Nuclear Information System (INIS)

    Peterson, T.

    1995-12-01

    This report presents evaluations, recommendations, and requirements concerning ResonantSonic Drilling (Sonic Drilling), derived from a three-year program of stakeholder involvement. Sonic Drilling is an innovative method to reach contamination in soil and groundwater. The resonant sonic drill rig uses counter-rotating weights to generate energy, which causes the drill pipe to vibrate elastically along its entire length. In the resonant condition, forces of up to 200,000 pounds are transmitted to the drill bit face to create a cutting action. The resonant energy causes subsurface materials to move back into the adjacent formation, permitting the drill pipe to advance. This report is for technology developers and those responsible for making decisions about the use of technology to remediate contamination by volatile organic compounds. Stakeholders' perspectives help those responsible for technology deployment to make good decisions concerning the acceptability and applicability of sonic drilling to the remediation problems they face

  6. Drill machine guidance using natural occurring radiation

    International Nuclear Information System (INIS)

    Dahl, H.D.; Schroeder, R.L.; Williams, B.J.

    1980-01-01

    A drilling machine guidance system is described which uses only the naturally occuring radiation within the seam or stratum of interest. The apparatus can be used for guiding horizontal drilling machines through coal seams and the like. (U.K.)

  7. Economic environmental management of drilling operations

    International Nuclear Information System (INIS)

    Longwell, H.J.; Akers, T.J.

    1992-01-01

    This paper presents significant environmental and regulatory initiatives developed by Exxon's New Orleans Drilling Organization. Specifically, the paper will cover drilling waste minimization techniques and disposal options, recycling of drilling waste streams, and environmentally managed drilling location design considerations. The implementation of some of these initiatives at Exxon's Chalkley field land locations have resulted in a fifty percent reduction in drilling location waste management costs. Some of these same initiatives have been successfully applied to Exxon's barge drilling locations. For operations at the environmentally sensitive Mobile Bay, Exxon contracted with a local company and assisted in the development of an economically and environmentally superior drilling waste disposal and treatment system. In summary, it is possible for drilling operators to pro-actively manage escalating environmental and regulatory challenges through the implementation of economic and practical initiatives

  8. Catamaran type semisubmersible platform for offshore drilling

    Energy Technology Data Exchange (ETDEWEB)

    Pouget, G; Chevallier, J; Hampton, G

    1988-06-10

    A semi-submersible oil rig which allows the vertical storage of drilling tubes and drill pipes is presented. The structure which links the floaters to the bridge consists of hollow columns forming caissons and containing means for storing tubes.

  9. Effect of differential pressure on the magnitude of the destructive force in tooth penetration into rock

    Energy Technology Data Exchange (ETDEWEB)

    Kolesnikov, N.A.; Shestakov, V.N.

    1981-08-01

    Analytical relations are established describing the final stage of the breakup of rocks in the course of penetration of the tooth of a drilling bit into the rock in the presence of a pressure drop. A good convergence between the calculated and experimental data is shown. A formula is presented permitting calculation of contact pressures necessary for the volumetric breakup of rocks in the presence of a pressure drop.

  10. Advancing Understanding of Earthquakes by Drilling an Eroding Convergent Margin

    Science.gov (United States)

    von Huene, R.; Vannucchi, P.; Ranero, C. R.

    2010-12-01

    A program of IODP with great societal relevance is sampling and instrumenting the seismogenic zone. The zone generates great earthquakes that trigger tsunamis, and submarine slides thereby endangering coastal communities containing over sixty percent of the earth’s population. To asses and mitigate this endangerment it is urgent to advance understanding of fault dynamics that allows more timely anticipation of hazardous seismicity. Seismogenesis on accreting and eroding convergent plate boundaries apparently differ because of dissimilar materials along the interplate fault. As the history of instrumentally recorded earthquakes expands the difference becomes clearer. The more homogeneous clay, silt and sand subducted at accreting margins is associated with great earthquakes (M 9) whereas the fragmented upper plate rock that can dominate subducted material along an eroding margin plate interface is associated with many tsunamigenic earthquakes (Bilek, 2010). Few areas have been identified where the seismogenic zone can be reached with scientific drilling. In IODP accreting margins are studied on the NanTroSeize drill transect off Japan where the ultimate drilling of the seismogenic interface may occur by the end of IODP. The eroding Costa Rica margin will be studied in CRISP where a drill program will begin in 2011. The Costa Rican geophysical site survey will be complete with acquisition and processing of 3D seismic data in 2011 but the entire drilling will not be accomplished in IODP. It is appropriate that the accreting margin study be accomplished soon considering the indications of a pending great earthquake that will affect a country that has devoted enormous resources to IODP. However, understanding the erosional end-member is scientifically as important to an understanding of fault mechanics. Transoceanic tsunamis affect the entire Pacific rim where most subduction zones are eroding margins. The Costa Rican subduction zone is less complex operationally and

  11. Oman Drilling Project Phase I Borehole Geophysical Survey

    Science.gov (United States)

    Matter, J. M.; Pezard, P. A.; Henry, G.; Brun, L.; Célérier, B.; Lods, G.; Robert, P.; Benchikh, A. M.; Al Shukaili, M.; Al Qassabi, A.

    2017-12-01

    The Oman Drilling Project (OmanDP) drilled six holes at six sites in the Samail ophiolite in the southern Samail and Tayin massifs. 1500-m of igneous and metamorphic rocks were recovered at four sites (GT1, GT2, GT3 and BT1) using wireline diamond core drilling and drill cuttings at two sites (BA1, BA2) using air rotary drilling, respectively. OmanDP is an international collaboration supported by the International Continental Scientific Drilling Program, the Deep Carbon Observatory, NSF, NASA, IODP, JAMSTEC, and the European, Japanese, German and Swiss Science Foundations, and with in-kind support in Oman from Ministry of Regional Municipalities and Water Resources, Public Authority of Mining, Sultan Qaboos University and the German University of Technology. A comprehensive borehole geophysical survey was conducted in all the OmanDP Phase I boreholes shortly after drilling in April 2017. Following geophysical wireline logs, using slim-hole borehole logging equipment provided and run by the Centre National De La Recherche Scientifique (CNRS) and the Université de Montpellier/ Géosciences Montpellier, and logging trucks from the Ministry of Regional Municipalities and Water Resources, were collected in most of the holes: electrical resistivity (dual laterolog resistivity, LLd and LLs), spectral gamma ray (K, U, and Th contents), magnetic susceptibility, total natural gamma ray, full waveform sonic (Vp and Vs), acoustic borehole wall imaging, optical borehole wall imaging, borehole fluid parameters (pressure, temperature, electrical conductivity, dissolved oxygen, pH, redox potential, non-polarized spontaneous electrical potential), and caliper (borehole diameter). In addition, spinner flowmeter (downhole fluid flow rate along borehole axis) and heatpulse flow meter logs (dowhole fluid flow rate along borehole axis) were collected in BA1 to characterize downhole fluid flow rates along borehole axis. Unfortuantely, only incomplete wireline logs are available for

  12. Heat accumulation during sequential cortical bone drilling.

    Science.gov (United States)

    Palmisano, Andrew C; Tai, Bruce L; Belmont, Barry; Irwin, Todd A; Shih, Albert; Holmes, James R

    2016-03-01

    Significant research exists regarding heat production during single-hole bone drilling. No published data exist regarding repetitive sequential drilling. This study elucidates the phenomenon of heat accumulation for sequential drilling with both Kirschner wires (K wires) and standard two-flute twist drills. It was hypothesized that cumulative heat would result in a higher temperature with each subsequent drill pass. Nine holes in a 3 × 3 array were drilled sequentially on moistened cadaveric tibia bone kept at body temperature (about 37 °C). Four thermocouples were placed at the center of four adjacent holes and 2 mm below the surface. A battery-driven hand drill guided by a servo-controlled motion system was used. Six samples were drilled with each tool (2.0 mm K wire and 2.0 and 2.5 mm standard drills). K wire drilling increased temperature from 5 °C at the first hole to 20 °C at holes 6 through 9. A similar trend was found in standard drills with less significant increments. The maximum temperatures of both tools increased from drill sizes was found to be insignificant (P > 0.05). In conclusion, heat accumulated during sequential drilling, with size difference being insignificant. K wire produced more heat than its twist-drill counterparts. This study has demonstrated the heat accumulation phenomenon and its significant effect on temperature. Maximizing the drilling field and reducing the number of drill passes may decrease bone injury. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  13. Effects of a Short Drilling Implant Protocol on Osteotomy Site Temperature and Drill Torque.

    Science.gov (United States)

    Mihali, Sorin G; Canjau, Silvana; Cernescu, Anghel; Bortun, Cristina M; Wang, Hom-Lay; Bratu, Emanuel

    2018-02-01

    To establish a protocol for reducing the drilling sequence during implant site preparation based on temperature and insertion torque. The traditional conventional drilling sequence (used several drills with 0.6-mm increment each time) was compared with the proposed short drilling protocol (only used 2 drills: initial and final drill). One hundred drilling osteotomies were performed in bovine and porcine bones. Sets of 2 osteotomy sites were created in 5 bone densities using 2 types of drilling protocols. Thermographic pictures were captured throughout all drilling procedures and analyzed using ThermaCAM Researcher Professional 2.10. Torque values were determined during drilling by measuring electrical input and drill speed. There were statistically significant differences in bone temperature between the conventional and short drilling protocols during implant site preparation (analysis of variance P = 0.0008). However, there were no significant differences between the 2 types of drilling protocols for both implant diameters. Implant site preparation time was significantly reduced when using the short drilling protocol compared with the conventional drilling protocol (P drilling protocol proposed herein may represent a safe approach for implant site preparation.

  14. Surgical drill system and surgical drill bit to be used therein

    NARCIS (Netherlands)

    Margallo Balbas, E.; Wieringa, P.A.; French, P.J.; Lee, R.A.; Breedveld, P.

    2007-01-01

    Surgical drill system comprising a mechanical drill bit and means for imaging the vicinity of the drill bit tip, said means comprising: at least one optical fiber having a distal end and a proximal end, said distal end being located adjacent said drill bit tip, an optical processing unit, said

  15. 25 CFR 226.33 - Line drilling.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Line drilling. 226.33 Section 226.33 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF OSAGE RESERVATION LANDS FOR OIL AND GAS MINING Requirements of Lessees § 226.33 Line drilling. Lessee shall not drill within 300 feet...

  16. 30 CFR 256.71 - Directional drilling.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Directional drilling. 256.71 Section 256.71... drilling. In accordance with an approved exploration plan or development and production plan, a lease may be maintained in force by directional wells drilled under the leased area from surface locations on...

  17. Drilling of bone: A comprehensive review

    Science.gov (United States)

    Pandey, Rupesh Kumar; Panda, S.S.

    2013-01-01

    Background Bone fracture treatment usually involves restoring of the fractured parts to their initial position and immobilizing them until the healing takes place. Drilling of bone is common to produce hole for screw insertion to fix the fractured parts for immobilization. Orthopaedic drilling during surgical process causes increase in the bone temperature and forces which can cause osteonecrosis reducing the stability and strength of the fixation. Methods A comprehensive review of all the relevant investigations carried on bone drilling is conducted. The experimental method used, results obtained and the conclusions made by the various researchers are described and compared. Result Review suggests that the further improvement in the area of bone drilling is possible. The systematic review identified several consequential factors (drilling parameters and drill specifications) affecting bone drilling on which there no general agreement among investigators or are not adequately evaluated. These factors are highlighted and use of more advanced methods of drilling is accentuated. The use of more precise experimental set up which resembles the actual situation and the development of automated bone drilling system to minimize human error is addressed. Conclusion In this review, an attempt has been made to systematically organize the research investigations conducted on bone drilling. Methods of treatment of bone fracture, studies on the determination of the threshold for thermal osteonecrosis, studies on the parameters influencing bone drilling and methods of the temperature measurement used are reviewed and the future work for the further improvement of bone drilling process is highlighted. PMID:26403771

  18. 30 CFR 250.1605 - Drilling requirements.

    Science.gov (United States)

    2010-07-01

    ... deposit. (2) Inclinational surveys shall be obtained on all vertical wells at intervals not exceeding 1... to that leaseholder. (f) Fixed drilling platforms. Applications for installation of fixed drilling... removed or have been otherwise immobilized are classified as fixed bottom founded drilling platforms. (g...

  19. Development of vertical drilling apparatus (Terra-Drill); Entwicklung eines Vertikal-Bohrgeraets (Terra-Drill) - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Jenne, D.

    2009-05-15

    This well-illustrated final report for the Swiss Federal Office of Energy (SFOE) reports on the development of a vertical drilling apparatus named Terra-Drill. The various stages of the development of the apparatus, which is based on earlier designs, is discussed. New norms issued in Germany for the size of boreholes for buried vertical heat-exchangers and the appropriate linings to be used are discussed. The new Terra Drill 4407 V drilling apparatus and its testing are discussed. The drill is quoted as being particularly suitable for cramped locations. Technical details are presented and a comprehensive collection of photographs is included. Various preliminary reports and development documentation are included.

  20. Core drilling of deep drillhole OL-KR57 at Olkiluoto in Eurajoki 2011-2012

    International Nuclear Information System (INIS)

    Toropainen, V.

    2012-07-01

    As a part of the confirming site investigations at Olkiluoto, Suomen Malmi Oy (Smoy) core drilled 401.71 m and 45.01 m deep drillholes, OL-KR57 and OL-KR57B, at Olkiluoto in September 2011 - January 2012. The diameter of the drillholes is 75.7 mm. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the returning and drilling water were recorded. The drill rig was computer controlled and the computer recorded drilling parameters during drilling. The objective of the measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The total volumes of the used drilling, flushing and washing water were 350 m3 and 30 m3 in the drillholes OL-KR57 and OL-KR57B, respectively. The measured volumes of the returning water in the drillholes were 328 m 3 and 16.8 m 3 , respectively. The deviations of the drillholes were measured with the deviation measuring instruments EMS and Gyro. Uniaxial compressive strength, Young's Modulus and Poisson's ratio were measured from the core samples. The average uniaxial compressive strength was 123.9 MPa, the average Young's Modulus was 42.6 GPa and the average Poisson's ratio was 0.23. The main rock types are veined and diatexitic gneisses, mica gneiss and tonaliticgranodioritic- granitic gneiss. The average fracture frequency is 2.5 pcs/m in drillhole OL-KR57 and 3.3 pcs/m in the drillhole OL-KR57B. The average RQD values are 95.0 % and 93.0 %. Seven separate fractured zones were interpreted from OL-KR57 and three fractured zones from OL-KR57B. (orig.)

  1. Core drilling of deep drillhole OL-KR56 at Olkiluoto in Eurajoki 2011 - 2012

    Energy Technology Data Exchange (ETDEWEB)

    Toropainen, V. [Suomen Malmi Oy, Espoo (Finland)

    2012-07-15

    As a part of the confirming site investigations at Olkiluoto, Suomen Malmi Oy (Smoy) core drilled a 1201.65 m deep drillhole with a diameter of 75.7 mm at Olkiluoto in October 2011 - January 2012. The identification number of the drillhole is OL-KR56. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the returning and drilling water were recorded. The drill rig was computer controlled and the computer recorded drilling parameters during drilling. The objective of the measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The total volume of the used drilling, washing and flushing water was 1628 m{sup 3}. The measured volume of the returning water in the drillhole was 1142 m{sup 3}. The deviation of the drillhole was measured with the deviation measuring instruments Reflex EMS and Reflex Gyro. The main rock types are veined and diatexitic gneisses, pegmatitic granite and mica gneiss. The average fracture frequency is 2.4 pcs/m and the average RQD value is 96.2 %. Fifty fractured zones were penetrated by the drillhole. Uniaxial compressive strength, Young's Modulus and Poisson's ratio were measured from the core samples. The average uniaxial compressive strength was 120.0 MPa, the average Young's Modulus was 38.3 GPa and the average Poisson's ratio was 0.22. (orig.)

  2. Core drilling of deep drillhole OL-KR50 at Olkiluoto in Eurajoki 2008

    International Nuclear Information System (INIS)

    Toropainen, V.

    2009-02-01

    As a part of the confirming site investigations at Olkiluoto, Suomen Malmi Oy (Smoy) core drilled 939.33 m and 45.44 m deep drillholes with a diameter of 75.7 mm at Olkiluoto in September - November 2008. The identification numbers of the drillholes are OL-KR50 and OL-KR50B, respectively. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the returning and drilling water were recorded. The drill rig was computer controlled and the computer recorded drilling parameters during drilling. The objective of the measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The total volumes of the used drilling and washing water were 1135 m 3 and 20 m 3 in the drillholes OL-KR50 and OL-KR50B, respectively. The measured volume of the returning water in the drillhole OL-KR50 was 954 m 3 . The deviation of the drillholes was measured with the deviation measuring instruments EMS and Maxibor II. Uniaxial compressive strength, Young's Modulus and Poisson's ratio were measured from the core samples. The average uniaxial compressive strength was 129.7 MPa, the average Young's Modulus was 45.8 GPa and the average Poisson's ratio was 0.15. The main rock types were veined and diatexitic gneisses, pegmatitic granite and tonaliticgranodioritic-granitic gneiss. The average fracture frequency is 2.0 pcs/m in drillhole OL KR50 and 3.6 pcs/m in the drillhole OL-KR50B. The average RQD values are 96.1 % and 94.3 %, respectively. 39 fractured zones were penetrated by drillhole OL-KR50 and four by drillhole OL-KR50B. (orig.)

  3. Parameter definition using vibration prediction software leads to significant drilling performance improvements

    Energy Technology Data Exchange (ETDEWEB)

    Amorim, Dalmo; Hanley, Chris Hanley; Fonseca, Isaac; Santos, Juliana [National Oilwell Varco, Houston TX (United States); Leite, Daltro J.; Borella, Augusto; Gozzi, Danilo [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    The understanding and mitigation of downhole vibration has been a heavily researched subject in the oil industry as it results in more expensive drilling operations, as vibrations significantly diminish the amount of effective drilling energy available to the bit and generate forces that can push the bit or the Bottom Hole Assembly (BHA) off its concentric axis of rotation, producing high magnitude impacts with the borehole wall. In order to drill ahead, a sufficient amount of energy must be supplied by the rig to overcome the resistance of the drilling system, including the reactive torque of the system, drag forces, fluid pressure losses and energy dissipated by downhole vibrations, then providing the bit with the energy required to fail the rock. If the drill string enters resonant modes of vibration, not only does it decreases the amount of available energy to drill, but increases the potential for catastrophic downhole equipment and drilling bit failures. In this sense, the mitigation of downhole vibrations will result in faster, smoother, and cheaper drilling operations. A software tool using Finite Element Analysis (FEA) has been developed to provide better understanding of downhole vibration phenomena in drilling environments. The software tool calculates the response of the drilling system at various input conditions, based on the design of the wellbore along with the geometry of the Bottom Hole Assembly (BHA) and the drill string. It identifies where undesired levels of resonant vibration will be driven by certain combinations of specific drilling parameters, and also which combinations of drilling parameters will result in lower levels of vibration, so the least shocks, the highest penetration rate and the lowest cost per foot can be achieved. With the growing performance of personal computers, complex software systems modeling the drilling vibrations using FEA has been accessible to a wider audience of field users, further complimenting with real time

  4. Study on drilling induced delamination of woven kenaf fiber reinforced epoxy composite using carbide drills

    Science.gov (United States)

    Suhaily, M.; Hassan, C. H. Che; Jaharah, A. G.; Azmi, H.; Afifah, M. A.; Khairusshima, M. K. Nor

    2018-04-01

    In this research study, it presents the influences of drilling parameters on the delamination factor during the drilling of woven kenaf fiber reinforced epoxy composite laminates when using the carbide drill bits. The purpose of this study is to investigate the influence of drilling parameters such as cutting speed, feed rate and drill sizes on the delamination produced when drilling woven kenaf reinforced epoxy composite using the non-coated carbide drill bits. The damage generated on the woven kenaf reinforced epoxy composite laminates were observed both at the entrance and exit surface during the drilling operation. The experiments were conducted according to the Box Behnken experimental designs. The results indicated that the drill diameter has a significant influence on the delamination when drilling the woven kenaf fiber reinforced epoxy composites.

  5. Automatic real time drilling support on Ekofisk utilizing eDrilling

    Energy Technology Data Exchange (ETDEWEB)

    Rommetveit, Rolv; Bjorkevoll, Knut S.; Halsey, George W.; Kluge, Roald; Molde, Dag Ove; Odegard, Sven Inge [SINTEF Petroleum Research, Trondheim (Norway); Herbert, Mike [HITEC Products Drilling, Stavanger (Norway); ConocoPhillips Norge, Stavanger (Norway)

    2008-07-01

    eDrilling is a new and innovative system for real time drilling simulation, 3D visualization and control from a remote drilling expert centre. The concept uses all available real time drilling data (surface and downhole) in combination with real time modelling to monitor and optimize the drilling process. This information is used to visualize the wellbore in 3D in real time. eDrilling has been implemented in an Onshore Drilling Center in Norway. The system is composed of the following elements, some of which are unique and ground-breaking: an advanced and fast Integrated Drilling Simulator which is capable to model the different drilling sub-processes dynamically, and also the interaction between these sub-processes in real time; automatic quality check and corrections of drilling data; making them suitable for processing by computer models; real time supervision methodology for the drilling process using time based drilling data as well as drilling models / the integrated drilling simulator; methodology for diagnosis of the drilling state and conditions. This is obtained from comparing model predictions with measured data. Advisory technology for more optimal drilling. A Virtual Wellbore, with advanced visualization of the downhole process. Dat low and computer infrastructure. e-Drilling has been implemented in an Onshore Drilling Center on Ekofisk in Norway. The system is being used on drilling operations, and experiences from its use are presented. The supervision and diagnosis functionalities have been useful in particular, as the system has given early warnings on ECD and friction related problems. This paper will present the eDrilling system as well as experiences from its use. (author)

  6. Rollerjaw Rock Crusher

    Science.gov (United States)

    Peters, Gregory; Brown, Kyle; Fuerstenau, Stephen

    2009-01-01

    The rollerjaw rock crusher melds the concepts of jaw crushing and roll crushing long employed in the mining and rock-crushing industries. Rollerjaw rock crushers have been proposed for inclusion in geological exploration missions on Mars, where they would be used to pulverize rock samples into powders in the tens of micrometer particle size range required for analysis by scientific instruments.

  7. Advanced Percussive Drilling Technology for Geothermal Exploration and Development

    Energy Technology Data Exchange (ETDEWEB)

    Su, Jiann [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Raymond, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Prasad, Somuri [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wolfer, Dale [Atlas-Copco Secoroc LLC, Fagersta (Sweden)

    2017-06-12

    Percussive hammers are a promising advance in drilling technology for geothermal since they rely upon rock reduction mechanisms that are well-suited for use in the hard, brittle rock characteristic of geothermal formations. The project research approach and work plan includes a critical path to development of a high-temperature (HT) percussive hammer using a two phase approach. The work completed in Phase I of the project demonstrated the viability of percussive hammers and that solutions to technical challenges in design, material technology, and performance are likely to be resolved. Work completed in Phase II focused on testing the findings from Phase I and evaluating performance of the materials and designs at high operating temperatures. A high-operating temperature (HOT) drilling facility was designed, built, and used to test the performance of the DTH under extreme conditions. Results from the testing indicate that a high-temperature capable hammer can be developed and is a viable alternative for use in the driller’s toolbox.

  8. Drilling of deep boreholes and associated geological investigations. Final disposal of spent fuel

    International Nuclear Information System (INIS)

    Anttila, P.

    1983-12-01

    Teollisuuden Voima Oy (Industrial Power Company Ltd.) will take precautions for the final disposal of spent fuel in the Finnish bedrock. The first stage of the site selection studies includes drilling of a deep borehole down to approximately 1000 metres in the winter of 1984. The choice of drilling method and equipment depends on the geological circumstances and the target of the investigation. The most common drilling methods used with the investigations of nuclear waste disposal are diamond core drilling and percussion drilling. The Precambrian bedrock outcropping in Finland exists also in Sweden and Canada, where deep boreholes have been done down to more than 1000 metres using diamond core drilling. This method can be also used in Finland and equipment for the drilling are available. One of the main targets of the investigation is to clarify the true strike and dip of fractures and other discontinuities. The methods used abroad are taking of oriented cores, borehole television survey and geophysical measurements. TV-survey and geophysical methods seem to be most favourable in deep boreholes. Also the accurate position (inclination, bearing) of the borehole is essential to know and many techniques are used for measuring of it. Investigations performed on the core samples include core logging and laboratory tests. For the core logging there is no uniform practice concerning the nuclear waste investigations. Different counries use their own classifications. All of these, however, are based on the petrography and fracture properties of the rock samples. Laboratory tests (petrographical and rock mechanical tests) are generally performed according to the recommendations of international standards. The large volumes of data obtained during investigations require computer techniques which allow more comprehensive collection, storage and processing of data. This kind of systems are already used in Sweden and Canada, for instance, and they could be utilize in Finland

  9. Uranium and radon in wells drilled into bedrock in Southern Finland

    International Nuclear Information System (INIS)

    Juntunen, R.

    1991-01-01

    More than 1000 samples of groundwater were taken from drilled wells in Southern Finland in 1982-1986 and submitted to chemical analyses that included the determination of uranium and radon abundances in the water. The waters were divided into eight groups by dominant rock type to establish the influence of the geological environment of the water. The median radon abundance for the total data on the drilled wells in southern Finland was 210 Bq/l, and that of uranium 5 ppb. The maximum uranium abundance was 20 000 ppb and that of radon about 50 000 Bq/l

  10. Rock Physical Interpretation of the Relationship between Dynamic and Static Young's Moduli of Sedimentary Rocks

    Science.gov (United States)

    Takahashi, T.

    2017-12-01

    The static Young's modulus (deformability) of a rock is indispensable for designing and constructing tunnels, dams and underground caverns in civil engineering. Static Young's modulus which is an elastic modulus at large strain level is usually obtained with the laboratory tests of rock cores sampled in boreholes drilled in a rock mass. A deformability model of the entire rock mass is then built by extrapolating the measurements based on a rock mass classification obtained in geological site characterization. However, model-building using data obtained from a limited number of boreholes in the rock mass, especially a complex rock mass, may cause problems in the accuracy and reliability of the model. On the other hand, dynamic Young's modulus which is the modulus at small strain level can be obtained from seismic velocity. If dynamic Young's modulus can be rationally converted to static one, a seismic velocity model by the seismic method can be effectively used to build a deformability model of the rock mass. In this study, we have, therefore, developed a rock physics model (Mavko et al., 2009) to estimate static Young's modulus from dynamic one for sedimentary rocks. The rock physics model has been generally applied to seismic properties at small strain level. In the proposed model, however, the sandy shale model, one of rock physics models, is extended for modeling the static Young's modulus at large strain level by incorporating the mixture of frictional and frictionless grain contacts into the Hertz-Mindlin model. The proposed model is verified through its application to the dynamic Young's moduli derived from well log velocities and static Young's moduli measured in the tri-axial compression tests of rock cores sampled in the same borehole as the logs were acquired. This application proves that the proposed rock physics model can be possibly used to estimate static Young's modulus (deformability) which is required in many types of civil engineering applications

  11. Fluorocarbon Contamination from the Drill on the Mars Science Laboratory: Potential Science Impact on Detecting Martian Organics by Sample Analysis at Mars (SAM)

    Science.gov (United States)

    Eigenbrode, J. L.; McAdam, A.; Franz, H.; Freissinet, C.; Bower, H.; Floyd, M.; Conrad, P.; Mahaffy, P.; Feldman, J.; Hurowitz, J.; hide

    2013-01-01

    Polytetrafluoroethylene (PTFE or trade name: Teflon by Dupont Co.) has been detected in rocks drilled during terrestrial testing of the Mars Science Laboratory (MSL) drilling hardware. The PTFE in sediments is a wear product of the seals used in the Drill Bit Assemblies (DBAs). It is expected that the drill assembly on the MSL flight model will also shed Teflon particles into drilled samples. One of the primary goals of the Sample Analysis at Mars (SAM) instrument suite on MSL is to test for the presence of martian organics in samples. Complications introduced by the potential presence of PTFE in drilled samples to the SAM evolved gas analysis (EGA or pyrolysisquadrupole mass spectrometry, pyr-QMS) and pyrolysis- gas chromatography mass spectrometry (Pyr- GCMS) experiments was investigated.

  12. Testing the process of drilling - analysis of drilling performance in variegated sandstone and Keuper in Northern Germany; Der Bohrprozess auf dem Pruefstand - Analyse der Bohrleistungen im Buntsandstein und Keuper in Norddeutschland

    Energy Technology Data Exchange (ETDEWEB)

    Pust, G.; Tschaffler, H. [Mobil Erdgas Erdoel GmbH, Celle (Germany); Grunwald, R. [BEB Erdgas und Erdoel GmbH, Nienhagen (Germany); Gloth, H. [TU Bergakademie Freiberg (Germany); Marx, C. [ITE, Clausthal-Zellerfeld (Germany)

    1998-12-31

    The aim of the project launched jointly by DGMK and 5 companies from the German oil- and gas industry and two institutes for drilling technologies was to find suitable ways in which the drilling progress in formations with bad drilling conditions in Northern Germany, i.e. lower and middle variegated sandstone and Keuper can be increases in order to bring costs down. The borehole sunk in Northern Germany were surveyed and inventorised. Data were subjected to a thorough statistical analysis in order to obtain optimal drilling parameters and improve the drilling tools. Basic studies on rock damaging were also to be included in order to better understand the processes. Finally, the project aims at realising the optimal drilling parameters, increase drilling progress, use improved drilling machinery and thus cut costs. (orig.) [Deutsch] Ziel des DGMK-Gemeinschaftsprojektes mit 5 Firmen der deutschen Erdoel- und Erdgasindustrie sowie 2 bohrtechnischen Instituten war es, durch geeignete Massnahmen den Bohrfortschritt in schlechtbohrbaren Formationen in Norddeutschland, naemlich unterer und mittlerer Buntsandstein sowie Keuper, zu erhoehen und damit einen Beitrag zur Kostensenkung zu leisten. Um dieses Ziel zu erreichen, sollte eine Bestandsaufnahme der in Norddeutschland abgeteuften Bohrungen erfolgen. Die Daten sollten einer eingehenden statistischen Auswertung unterzogen werden. Hieraus sollten optimale Bohrparameter und Verbesserungen der Bohrwerkzeuge abgeleitet werden. Ferner sollten grundlegende Untersuchungen zur Gesteinszerstoerung herangezogen werden, um ein besseres Verstaendnis fuer die ablaufenden Prozesse zu bekommen. Durch die Realisierung optimaler Bohrparameter und den Einsatz verbesserter Bohrwerkszeuge sollte schliesslich die Erhoehung des Bohrfortschritts und damit eine Senkung der Kosten erreicht werden. (orig.)

  13. Quiet tunneling method in hard rock mass by cutting grooves and fracturing rock; Mizo wo hori, iwa wo wari, katai tonneru wo shizukani kussaku

    Energy Technology Data Exchange (ETDEWEB)

    Noma, T. [Fujita Corp., Tokyo (Japan)

    1998-08-15

    Where blasting cannot be applied due to large vibration and noise, adoption of mechanical tunneling is essential to tunneling of hard rock. In tunneling of hard rock, the existing of free surface is important. The free surface means a surface which does not restrict destruction on fracturing and it is important to form a continuous free surface efficiently and economically. The development of a new free surface forming engineering method is described. It requires no exclusive machines and all drilling works can be operated with general drill jumbo machine. In this new engineering method, the free surface is formed by continuous drilling of a single hole. Spinning anti-bend (SAB) rod is inserted into the existing drilled hole and a drill bit generates the free surface by contact with and blow the SAB rod. The procedure of the continuous drilling, an application example and the features of the procedure are described. This method has an ability to form a free surface more than 3.5m{sup 2}h even for rock bed wit compression strength more than 200MPa. 2 refs., 8 figs.

  14. Electric drill-string telemetry

    CERN Document Server

    Carcione, J M

    2003-01-01

    We design a numerical algorithm for simulation of low-frequency electric-signal transmission through a drill string. This is represented by a transmission line with varying geometrical and electromagnetic properties versus depth, depending on the characteristics of the drill-string/formation system. These properties are implicitly modeled by the series impedance and the shunt admittance of the transmission line. The differential equations are parabolic, since at low frequencies the wave field is diffusive. We use an explicit scheme for the solution of parabolic problems, based on a Chebyshev expansion of the evolution operator and the Fourier pseudospectral method to compute the spatial derivatives. The results are verified by comparison to analytical solutions obtained for the initial-value problem with a voltage source.

  15. Laboratory Investigations for the Role of Flushing Media in Diamond Drilling of Marble

    Science.gov (United States)

    Bhatnagar, A.; Khandelwal, Manoj; Rao, K. U. M.

    2011-05-01

    Marble is used as a natural stone for decorative purposes from ages. Marble is a crystalline rock, composed predominantly of calcite, dolomite or serpentine. The presence of impurities imparts decorative pattern and colors. The diamond-based operations are extensively used in the mining and processing of marble. Marble is mined out in the form of blocks of cuboids shape and has to undergo extensive processing to make it suitable for the end users. The processing operation includes slabbing, sizing, polishing, etc. Diamond drilling is also commonly used for the exploration of different mineral deposits throughout the world. In this paper an attempt has been made to enhance the performance of diamond drilling on marble rocks by adding polyethylene-oxide (PEO) in the flushing water. The effect of PEO added with the drilling water was studied by varying different machine parameters and flushing media concentration in the laboratory. The responses were rate of penetration and torque at bit-rock interface. Different physico-mechanical properties of marble were also determined. It was found that flushing water added with PEO can substantially enhance the penetration rates and reduce the torque developed at the bit-rock interface as compared to plain flushing water.

  16. Innovative techniques cut costs in wetlands drilling

    International Nuclear Information System (INIS)

    Navarro, A.R.

    1991-01-01

    This paper reports on an approach to drilling oil and gas wells in sensitive wetlands areas contributed to a savings of over $1.2 million on a three-well, $3 million drilling project in south Louisiana. ARCO Oil and Gas Co. drilled a three-well project in the Bayou Sale field with a truck-mounted workover rig and a modified solids-control system. This smaller equipment eliminated the need to build a large location in the marsh. Traditional drilling techniques require a large drillsite to accommodate all the equipment of a modern drilling complex. However, recently imposed environmental regulations substantially limit, and in some cases prohibit, the use of these conventional techniques for drilling wells in wetlands areas. Based on the potentially huge economic and operational impact on the drilling industry because of these stricter regulations, alternatives to these traditional practices are essential

  17. Chemical Speciation of Chromium in Drilling Muds

    International Nuclear Information System (INIS)

    Taguchi, Takeyoshi; Yoshii, Mitsuru; Shinoda, Kohzo

    2007-01-01

    Drilling muds are made of bentonite and other clays, and/or polymers, mixed with water to the desired viscosity. Without the drilling muds, corporations could not drill for oil and gas and we would have hardly any of the fuels and lubricants considered essential for modern industrial civilization. There are hundreds of drilling muds used and some kinds of drilling muds contain chromium. The chemical states of chromium in muds have been studied carefully due to concerns about the environmental influence. However it is difficult to determine the chemical state of chromium in drilling muds directly by conventional analytical methods. We have studied the chemical form of chromium in drilling muds by using a laboratory XAFS system and a synchrotron facility

  18. Bedrock Geology of the DFDP-2 Drill-Site

    Science.gov (United States)

    Toy, V.; Sutherland, R.; Townend, J.

    2015-12-01

    Bedrock was encountered in DFDP-2B at drilled depths (MD) of 238.50-893.18 m (vertical depths of 238.40-818.00 m). Continuous sampling of cuttings revealed the bedrock is composed predominantly of ductilely sheared mylonite-series lithologies exhumed from the roots of the Alpine Fault zone. The protolith is interpreted to be amphibolite facies metasediments classified as part of the Aspiring Subdivision of the Torlesse Supergroup. Onsite description of whole cuttings and thin sections made within a few hours of sample recovery allowed identification of progressive structural changes. Fabrics were schistose in the upper part of the hole, but at greater depths we observed increasing indications that the rocks had been subjected to simple shear deformation. These macro-and micro-structural features are consistent with those that typify the Alpine Fault mylonite sequence previously described, and were used as input to drilling decisions. The structural features found to be the most useful indicators of ductile simple shear strain accommodated by the recovered rocks were the occurrence of shear bands; changes in mean quartz grain size; changes in maximum mica grain size; and redistribution of or changes in microstructural setting of accessory phases (e.g. graphite). The quartz:mica ratio based on mass was also determined but the extent to which this reflects true lithologic variations is unclear, as washing and winnowing of the samples (both by circulating drill fluids and during the sample collection process) probably modified bulk mineralogy in different particle size domains. Nevertheless, the quartz:mica dataset suggests a dramatic change in mineralogy at 730 m MD (vertical depth of 695 m). This coincides with a pronounced step in the temperature gradient, possibly related to large changes in hydrogeology.

  19. Lower crustal section of the Oman Ophiolite drilled in Hole GT1A, ICDP Oman Drilling Project

    Science.gov (United States)

    Umino, S.; Kelemen, P. B.; Matter, J. M.; Coggon, J. A.; Takazawa, E.; Michibayashi, K.; Teagle, D. A. H.

    2017-12-01

    Hole GT1A (22° 53.535'N, 58° 30.904'E) was drilled by the Oman Drilling Project (OmDP) into GT1A of the Samail ophiolite, Oman. OmDP is an international collaboration supported by the International Continental Scientific Drilling Program, the Deep Carbon Observatory, NSF, IODP, JAMSTEC, and the European, Japanese, German and Swiss Science Foundations, with in-kind support in Oman from the Ministry of Regional Municipalities and Water Resources, Public Authority of Mining, Sultan Qaboos University, and the German University of Technology. Hole GT1A was diamond cored in 22 Jan to 08 Feb 2017 to a total depth of 403.05 m. The outer surfaces of the cores were imaged and described on site before being curated, boxed and shipped to the IODP drill ship Chikyu, where they underwent comprehensive visual and instrumental analysis. Hole GT1A drilled the lower crustal section in the southern Oman Ophiolite and recovered 401.52 m of total cores (99.6% recovery). The main lithology is dominated by olivine gabbro (65.9%), followed in abundance by olivine-bearing gabbro (21.5%) and olivine melagabbro (3.9%). Minor rock types are orthopyroxene-bearing olivine gabbro (2.4%), oxide-bearing olivine gabbro (1.5%), gabbro (1.1%), anorthositic gabbro (1%), troctolitic gabbro (0.8%); orthopyroxene-bearing gabbro (0.5%), gabbronorite (0.3%); and dunite (0.3%). These rocks are divided into Lithologic Unit I to VII at 26.62 m, 88.16 m, 104.72 m, 154.04 m, 215.22 m, 306.94 m in Chikyu Curated Depth in descending order; Unit I and II consist of medium-grained olivine gabbro with lower olivine abundance in Unit II. Unit III is medium-grained olivine melagabbros, marked by an increase in olivine. Unit IV is relatively homogenous medium-grained olivine gabbros with granular textures. Unit V is identified by the appearance of fine-grained gabbros, but the major rocktypes are medium grained olivine gabbros. Unit VI is medium-grained olivine gabbro, marked by appearance of orthopyroxene. Unit VII

  20. Drilling and geohydrologic data for test hole USW UZ-1, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Whitfield, M.S.; Thordarson, W.; Hammermeister, D.P.; Warner, J.B.

    1990-01-01

    This report presents data collected to determine the hydrologic characteristics of tuffaceous rocks penetrated in test hole USW UZ-1. The borehole is the first of two deep, large-diameter, unsaturated-zone test holes dry drilled using the vacuum/reverse-air-circulation method. This test hole was drilled in and near the southwestern part of the Nevada Test Site, Nye County, Nevada, in a program conducted in cooperation with the US Department of Energy. These investigations are part of the Yucca Mountain Project (formerly the Nevada Nuclear Waste Storage Investigations) to identify a potentially suitable site for the storage of high-level radioactive wastes. Data are presented for bit and casing configurations, coring methods, sample collection, drilling rate, borehole deviation, and out-of-gage borehole. Geologic data for this borehole include geophysical logs, a lithologic log of drill-bit cuttings, and strike and distribution of fractures. Hydrologic data include water-content and water-potential measurements of drill-bit cuttings, water-level measurements, and physical and chemical analyses of water. Laboratory measurements of moisture content and matric properties from the larger drill-bit cutting fragments were considered to be representative of in-situ conditions. 3 refs., 5 figs., 10 tabs

  1. Aespoe Hard Rock Laboratory Annual Report 1999

    International Nuclear Information System (INIS)

    2000-08-01

    The Aespoe Hard Rock Laboratory has been constructed as part of the preparations for the deep geological repository for spent nuclear fuel in Sweden. The Tracer Retention Understanding Experiments are made to gain a better understanding of radionuclide retention in the rock and create confidence in the radionuclide transport models that are intended to be used in the licensing of a deep repository for spent fuel. The TRUE -1 experiment including tests with sorbing radioactive tracers in a single fracture over a distance of about 5 m has been completed. Diffusion and sorption in the rock matrix is the dominant retention mechanism over the time scales of the experiments. The main objective of the TRUE Block Scale Experiment is to increase understanding and our ability to predict tracer transport in a fracture network over spatial scales of 10 to 50 m. In total six boreholes have been drilled into the experimental volume located at the 450 m level. The Long-Term Diffusion Experiment is intended as a complement to the dynamic in-situ experiments and the laboratory experiments performed in the TRUE Programme. Diffusion from a fracture into the rock matrix will be studied in situ. The REX project focuses on the reduction of oxygen in a repository after closure due to reactions with rock minerals and microbial activity. Results show that oxygen is consumed within a few days both for the field and laboratory experiments. A new site for the CHEMLAB experiments was selected and prepared during 1999. All future experiment will be conducted in the J niche at 450 m depth. The Prototype Repository Test is focused on testing and demonstrating repository system function. A full-scale prototype including six deposition holes with canisters with electric heaters surrounded by highly compacted bentonite will be built and instrumented. Characterisation of the rock mass in the area of the Prototype repository is completed and the six deposition holes have been drilled. The Backfill and

  2. Aespoe Hard Rock Laboratory Annual Report 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-08-01

    The Aespoe Hard Rock Laboratory has been constructed as part of the preparations for the deep geological repository for spent nuclear fuel in Sweden. The Tracer Retention Understanding Experiments are made to gain a better understanding of radionuclide retention in the rock and create confidence in the radionuclide transport models that are intended to be used in the licensing of a deep repository for spent fuel. The TRUE -1 experiment including tests with sorbing radioactive tracers in a single fracture over a distance of about 5 m has been completed. Diffusion and sorption in the rock matrix is the dominant retention mechanism over the time scales of the experiments. The main objective of the TRUE Block Scale Experiment is to increase understanding and our ability to predict tracer transport in a fracture network over spatial scales of 10 to 50 m. In total six boreholes have been drilled into the experimental volume located at the 450 m level. The Long-Term Diffusion Experiment is intended as a complement to the dynamic in-situ experiments and the laboratory experiments performed in the TRUE Programme. Diffusion from a fracture into the rock matrix will be studied in situ. The REX project focuses on the reduction of oxygen in a repository after closure due to reactions with rock minerals and microbial activity. Results show that oxygen is consumed within a few days both for the field and laboratory experiments. A new site for the CHEMLAB experiments was selected and prepared during 1999. All future experiment will be conducted in the J niche at 450 m depth. The Prototype Repository Test is focused on testing and demonstrating repository system function. A full-scale prototype including six deposition holes with canisters with electric heaters surrounded by highly compacted bentonite will be built and instrumented. Characterisation of the rock mass in the area of the Prototype repository is completed and the six deposition holes have been drilled. The Backfill and

  3. Elemental Geochemistry of Samples From Fault Segments of the San Andreas Fault Observatory at Depth (SAFOD) Drill Hole

    Science.gov (United States)

    Tourscher, S. N.; Schleicher, A. M.; van der Pluijm, B. A.; Warr, L. N.

    2006-12-01

    Elemental geochemistry of mudrock samples from phase 2 drilling of the San Andreas Fault Observatory at Depth (SAFOD) is presented from bore hole depths of 3066 m to 3169 m and from 3292 m to 3368 m, which contain a creeping section and main trace of the fault, respectively. In addition to preparation and analysis of whole rock sample, fault grains with neomineralized, polished surfaces were hand picked from well-washed whole rock samples, minimizing the potential contamination from drilling mud and steel shavings. The separated fractions were washed in deionized water, powdered using a mortar and pestle, and analyzed using an Inductively Coupled Plasma- Optical Emission Spectrometer for major and minor elements. Based on oxide data results, systematic differences in element concentrations are observed between the whole rock and fault rock. Two groupings of data points are distinguishable in the regions containing the main trace of the fault, a shallow part (3292- 3316 m) and a deeper section (3320-3368 m). Applying the isocon method, assuming Zr and Ti to be immobile elements in these samples, indicates a volume loss of more than 30 percent in the shallow part and about 23 percent in the deep part of the main trace. These changes are minimum estimates of fault-related volume loss, because the whole rock from drilling samples contains variable amount of fault rock as well. Minimum estimates for volume loss in the creeping section of the fault are more than 50 percent when using the isocon method, comparing whole rock to plucked fault rock. The majority of the volume loss in the fault rocks is due to the dissolution and loss of silica, potassium, aluminum, sodium and calcium, whereas (based on oxide data) the mineralized surfaces of fractures appear to be enriched in Fe and Mg. The large amount of element mobility within these fault traces suggests extensive circulation of hydrous fluids along fractures that was responsible for progressive dissolution and leaching

  4. Applications of NTNU/SINTEF Drillability Indices in Hard Rock Tunneling

    Science.gov (United States)

    Zare, S.; Bruland, A.

    2013-01-01

    Drillability indices, i.e., the Drilling Rate Index™ (DRI), Bit Wear Index™ (BWI), Cutter Life Index™ (CLI), and Vickers Hardness Number Rock (VHNR), are indirect measures of rock drillability. These indices are recognized as providing practical characterization of rock properties used in the Norwegian University of Science and Technology (NTNU) time and cost prediction models available for hard rock tunneling and surface excavation. The tests form the foundation of various hard rock equipment capacity and performance prediction methods. In this paper, application of the tests for tunnel boring machine (TBM) and drill and blast (D&B) tunneling is investigated and the impact of the indices on excavation time and costs is presented.

  5. Numerical simulation of rock cutting using 2D AUTODYN

    International Nuclear Information System (INIS)

    Woldemichael, D E; Rani, A M Abdul; Lemma, T A; Altaf, K

    2015-01-01

    In a drilling process for oil and gas exploration, understanding of the interaction between the cutting tool and the rock is important for optimization of the drilling process using polycrystalline diamond compact (PDC) cutters. In this study the finite element method in ANSYS AUTODYN-2D is used to simulate the dynamics of cutter rock interaction, rock failure, and fragmentation. A two-dimensional single PDC cutter and rock model were used to simulate the orthogonal cutting process and to investigate the effect of different parameters such as depth of cut, and back rake angle on two types of rocks (sandstone and limestone). In the simulation, the cutting tool was dragged against stationary rock at predetermined linear velocity and the depth of cut (1,2, and 3 mm) and the back rake angles(-10°, 0°, and +10°) were varied. The simulation result shows that the +10° back rake angle results in higher rate of penetration (ROP). Increasing depth of cut leads to higher ROP at the cost of higher cutting force. (paper)

  6. Core drilling of deep borehole OL-KR39 at Olkiluoto in Eurajoki 2005

    Energy Technology Data Exchange (ETDEWEB)

    Niinimaeki, R. [Suomen Malmi Oy, Espoo (Finland)

    2005-11-15

    Posiva Oy submitted an application to the Finnish Government in May 1999 for the Decision in Principle to choose Olkiluoto in the municipality of Eurajoki as the site of the final disposal facility for spent nuclear fuel. A positive decision was made at the end of 2000 by the Government. The Finnish Parliament ratified the decision in May 2001. The decision makes it possible for Posiva to focus the confirming bedrock investigations at Olkiluoto, where in the next few years an underground rock characterisation facility, ONKALO, will be constructed. As a part of the investigations Suomen Malmi Oy (Smoy) core drilled 502.97 m and 45.11 m deep boreholes with a diameter of 75.7 mm at Olkiluoto in August- October 2005. The identification numbers of the boreholes are OL-KR39 and OL-KR39B, respectively. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the drilling water and the returning water were recorded. The drill rig was computer controlled and during drilling the computer recorded drilling parameters. The objective of all these measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The total volumes of the used drilling and flushing water were 415m{sup 3} and 25 m{sup 3} and the measured volumes of the returning water were 175 m{sup 3} and 7 m{sup 3} in boreholes OLKR39 and OL-KR39B, respectively. The deviation of the borehole was measured with the deviation measuring instruments EMS and Maxibor. Uniaxial compressive strength, Young's Modulus and Poisson' s ratio were measured from the core samples. The average uniaxial compressive strength is about 110 MPa, the average Young's Modulus is 49 GP a and the average Poisson' s ratio is 0.25. The main rock types are migmatitic mica gneiss and granite. Filled fracture is the most common

  7. Core drilling of deep borehole OL-KR37 at Olkiluoto in Eurajoki 2005

    Energy Technology Data Exchange (ETDEWEB)

    Niinimaeki, R. [Suomen Malmi Oy, Espoo (Finland)

    2005-11-15

    Posiva Oy submitted an application to the Finnish Government in May 1999 for the Decision in Principle to choose Olkiluoto in the municipality of Eurajoki as the site of the final disposal facility for spent nuclear fuel. A positive decision was made at the end of 2000 by the Government. The Finnish Parliament ratified the decision in May 2001. The decision makes it possible for Posiva to focus the confirming bedrock investigations at Olkiluoto, where in the next few years an underground rock characterisation facility, ONKALO, will be constructed. As a part of the investigations Suomen Malmi Oy (Smoy) core drilled 350.00 m and 45.10 m deep boreholes with a diameter of 75.7 mm at Olkiluoto in June- August 2005. The identification numbers of the boreholes are OL-KR37 and OL-KR37B, respectively. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the drilling water and the returning water were recorded. The drill rig was computer controlled and during drilling the computer recorded information about drilling parameters. The objective of all these measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The total volumes of the used drilling and flushing water were 273 m{sup 3} and 21m{sup 3} and the measured volumes of the returning water were 221m{sup 3} and 16m{sup 3} in boreholes OL-KR37 and OL-KR37B, respectively. The deviation of the borehole was measured with the deviation measuring instruments EMS and Maxibor. Uniaxial compressive strength, Young's Modulus and Poisson' s ratio were measured from the core samples. The average uniaxial compressive strength is about 106 MPa, the average Young's modulus is 40 GPa and the average Poisson's ratio is 0.20. The main rock types are migmatitic mica gneiss, granite and tonalite. Filled

  8. Core drilling of deep borehole OL-KR39 at Olkiluoto in Eurajoki 2005

    International Nuclear Information System (INIS)

    Niinimaeki, R.

    2005-11-01

    Posiva Oy submitted an application to the Finnish Government in May 1999 for the Decision in Principle to choose Olkiluoto in the municipality of Eurajoki as the site of the final disposal facility for spent nuclear fuel. A positive decision was made at the end of 2000 by the Government. The Finnish Parliament ratified the decision in May 2001. The decision makes it possible for Posiva to focus the confirming bedrock investigations at Olkiluoto, where in the next few years an underground rock characterisation facility, ONKALO, will be constructed. As a part of the investigations Suomen Malmi Oy (Smoy) core drilled 502.97 m and 45.11 m deep boreholes with a diameter of 75.7 mm at Olkiluoto in August- October 2005. The identification numbers of the boreholes are OL-KR39 and OL-KR39B, respectively. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the drilling water and the returning water were recorded. The drill rig was computer controlled and during drilling the computer recorded drilling parameters. The objective of all these measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The total volumes of the used drilling and flushing water were 415m 3 and 25 m 3 and the measured volumes of the returning water were 175 m 3 and 7 m 3 in boreholes OLKR39 and OL-KR39B, respectively. The deviation of the borehole was measured with the deviation measuring instruments EMS and Maxibor. Uniaxial compressive strength, Young's Modulus and Poisson' s ratio were measured from the core samples. The average uniaxial compressive strength is about 110 MPa, the average Young's Modulus is 49 GP a and the average Poisson' s ratio is 0.25. The main rock types are migmatitic mica gneiss and granite. Filled fracture is the most common fracture type. The average fracture

  9. Core drilling of deep borehole OL-KR43 at Olkiluoto in Eurajoki 2006

    Energy Technology Data Exchange (ETDEWEB)

    Niinimaeki, R. [Suomen Malmi Oy, Espoo (Finland)

    2006-12-15

    Posiva Oy submitted an application to the Finnish Government in May 1999 for the Decision in Principle to choose Olkiluoto in the municipality of Eurajoki as the site of the final disposal facility for spent nuclear fuel. A positive decision was made at the end of 2000 by the Government. The Finnish Parliament ratified the decision in May 2001. The decision makes it possible for Posiva to focus the confirming bedrock investigations at Olkiluoto, where in the next few years an underground rock characterisation facility, ONKALO, will be constructed. As a part of the investigations Suomen Malmi Oy (Smoy) core drilled 1000.26 m and 45.01 m deep boreholes with a diameter of 75.7 mm at Olkiluoto in July - October 2006. The identification numbers of the boreholes are OL-KR43 and OL-KR43B, respectively. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the drilling water and the returning water were recorded. The drill rig was computer controlled and during drilling the computer recorded drilling parameters. The objective of all these measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The total volumes of the used drilling and flushing water were 1103 m{sup 3} and 16 m{sup 3} in boreholes OL-KR43 and OL-KR43B, respectively. Measured volumes of the returning water were 916m{sup 3} in borehole OL-KR43 and 13m{sup 3} in borehole OL-KR43B. The deviation of the boreholes was measured with the deviation measuring instruments EMS and Maxibor. Uniaxial compressive strength, Young's Modulus and Poisson's ratio were measured from the core samples. The average uniaxial compressive strength is about 131 MPa, the average Young's Modulus is 37 GPa and the average Poisson's ratio is 0.19. The main rock types are veined gneiss, diatexitic gneiss

  10. Core drilling of deep borehole OL-KR46 at Olkiluoto in Eurajoki 2007

    International Nuclear Information System (INIS)

    Toropainen, V.

    2007-09-01

    Posiva Oy submitted an application to the Finnish Government in May 1999 for the Decision in Principle to choose Olkiluoto in the municipality of Eurajoki as the site of the final disposal facility for spent nuclear fuel. A positive decision was made at the end of 2000 by the Government. The Finnish Parliament ratified the decision in May 2001. The decision makes it possible for Posiva to focus the confirming bedrock investigations at Olkiluoto, where in the next few years an underground rock characterisation facility, ONKALO, will be constructed. As a part of the investigations Suomen Malmi Oy (Smoy) core drilled 600.10 m and 45.16 m deep boreholes with a diameter of 75.7 mm at Olkiluoto in May - June 2007. The identification numbers of the boreholes are OL-KR46 and OL-KR46B, respectively. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the returning water, and the volume of drilling water were recorded. The drill rig was computer controlled and during drilling the computer recorded drilling parameters. The objective of all these measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The total volumes of the used drilling and flushing water were 466 m 3 and 20 m 3 in boreholes OL-KR46 and OL-KR46B, respectively. Measured volumes of the returning water were 407 m 3 in borehole OL-KR46 and 12 m 3 in borehole OL-KR46B. The deviation of the boreholes was measured with the deviation measuring instruments EMS and Maxibor. Uniaxial compressive strength, Young's Modulus and Poisson's ratio were measured from the core samples. The average uniaxial compressive strength is 116.5 MPa, the average Young's Modulus is 31.5 GPa and the average Poisson's ratio is 0.20. The main rock types are veined gneiss, tonalitic-granodioritic-granitic gneiss and pegmatite

  11. Core drilling of deep drillhole OL-KR47 at Olkiluoto in Eurajoki 2007-2008

    International Nuclear Information System (INIS)

    Toropainen, V.

    2008-02-01

    As a part of the confirming site investigations for ONKALO rock characterisation facility, Suomen Malmi Oy (Smoy) core drilled 1008.76 m and 44.31 m deep drillholes with a diameter of 75.7 mm at Olkiluoto in October 2007 - January 2008. The identification numbers of the drillholes are OL-KR47 and OL-KR47B, respectively. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the returning and drilling waters were recorded. The drill rig was computer controlled and during drilling the computer recorded drilling parameters. The objective of all these measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The total volumes of the used drilling and flushing water were 1229 m 3 and 13.6 m 3 in drillholes OL-KR47 and OL-KR47B, respectively. Measured volume of the returning water in drillhole OL-KR47 was 1125 m 3 , water did not return in drillhole OL-KR47B. The deviation of the drillholes was measured with the deviation measuring instruments EMS and Maxibor II. Uniaxial compressive strength, Young's Modulus and Poisson's ratio were measured from the core samples. The average uniaxial compressive strength is 92.1 MPa, the average Young's Modulus is 32.5 GPa and the average Poisson's ratio is 0.33. The main rock types are diatexitic and veined gneisses, pegmatitic granite and tonaliticgranodioritic- granitic gneiss. The average fracture frequency is 2.2 pcs / m in drillhole OL-KR47 and 3.4 pcs / m in drillhole OL-KR47B. The average RQD values were 95.3 % and 94.1 %. In drillhole OL-KR47 46 fractured zones and in drillhole OL-KR47B two fractured zones were penetrated during drilling work. (orig.)

  12. Core drilling of deep drillhole OL-KR45 at Olkiluoto in Eurajoki 2007

    International Nuclear Information System (INIS)

    Toropainen, V.

    2007-11-01

    Posiva Oy submitted an application to the Finnish Government in May 1999 for the Decision in Principle to choose Olkiluoto in the municipality of Eurajoki as the site of the final disposal facility for spent nuclear fuel. A positive decision was made at the end of 2000 by the Government. The Finnish Parliament ratified the decision in May 2001. The decision makes it possible for Posiva to focus the confirming bedrock investigations at Olkiluoto, where in the next few years an underground rock characterisation facility, ONKALO, will be constructed. As a part of the investigations Suomen Malmi Oy (Smoy) core drilled 1023.30 m and 44.75 m deep drillholes with a diameter of 75.7 mm at Olkiluoto in June - September 2007. The identification numbers of the drillholes are OL-KR45 and OL-KR45B, respectively. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the returning and drilling waters were recorded. The drill rig was computer controlled and during drilling the computer recorded drilling parameters. The objective of all these measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The total volumes of the used drilling and washing water were 1186 m 3 and 19 m 3 in drillholes OL-KR45 and OL-KR45B, respectively. Measured volumes of the returning water were 962 m 3 in drillhole OL-KR45 and 15 m 3 in drillhole OL-KR45B. The deviation of the drillholes was measured with the deviation measuring instruments EMS and Maxibor II. Uniaxial compressive strength, Young's Modulus and Poisson's ratio were measured from the core samples. The average uniaxial compressive strength is 126.2 MPa, the average Young's Modulus is 42.5 GPa and the average Poisson's ratio is 0.21. The main rock types are veined and diatexitic gneisses, pegmatitic granite and tonalitic

  13. Hard rock tunneling using pulsed electron beams

    International Nuclear Information System (INIS)

    Avery, R.T.; Brekke, T.L.; Finnie, I.

    1974-01-01

    Intense submicrosecond bursts of energetic electrons cause significant pulverization and surface spalling of a variety of rock types, the spall debris generally consisting of sand, dust, and small flakes. If carried out at rapid repetition rate this can lead to a promising technique for increasing the speed and reducing the cost of underground excavation of tunnels, mines, and storage spaces. The conceptual design features of a Pulsed Electron Tunnel Excavator capable of tunneling approximately ten times faster than conventional drill/blast methods were studied. (auth)

  14. Research borehole drilling activity for boreholes DH-18, DH-19, DC-12, DC-13, DC-14, DC-15, and deepening of existing borehole DC-7

    International Nuclear Information System (INIS)

    1979-09-01

    This report is an environmental evaluation of the impacts of proposed borehole drilling activities at the Hanford Site, northwest of Richland, Washington. The proposed action is to drill six research boreholes ranging in depth from 137 to 1372 meters (m) [250 to 4500 +- feet (ft)]. In addition, an existing borehole (DC-7) will be extended from 1249 to 1524 m (4099 to 5000 +- ft). The purpose of the US Department of Energy's (DOE) borehole drilling activities is to collect data on in situ rock formations that are considered potentialy suitable for nuclear waste repositories. The technical program efforts necessary to identify and qualify specific underground waste facility sites in candidate rock formations include geologic and hydrologic studies (seismicity and tectonics, rock structure and stratigraphy, lithology, etc.). Borehole drilling is an integral part of the geological studies and is essential to a thorough understanding of potentially suitable geologic formations. The purpose of the proposed drilling activities is to obtain data for evaluating Columbia River basalts that are being evaluated by the National Waste Terminal Storage (NWTS) Program to determine their suitability potential for nuclear waste repositories. Unavoidable impact to the environment is limited primarily to the clearing of land needed for access and drilling operations. Considerations exercised during site preparation, drilling, and subsequent site restoration will limit modification of the natural environment to the minimum required for accomplishment of test objectives

  15. Slant rigs offer big payoffs in shallow drilling

    International Nuclear Information System (INIS)

    Smith, J.; Edwards, B.

    1992-01-01

    Slant hole drilling technology can result in considerable savings over conventionally drilled deviated holes because mud motors and deviation control with measurement while drilling tools are usually unnecessary. The benefits of using slant hole rigs for development drilling improve after the bit walk tendencies and the correct bottom hole assemblies have been determined for a particular area. This article discusses three recent drilling operations that successfully used slant drilling technology on land-based projects: drilling for heavy oil in Alberta, drilling for gas in Alberta, and drilling a river crossing for a gas pipeline in British Columbia. These examples demonstrate the flexibility of slant drilling technology

  16. Analysis on the nitrogen drilling accident of Well Qionglai 1 (II: Restoration of the accident process and lessons learned

    Directory of Open Access Journals (Sweden)

    Yingfeng Meng

    2015-12-01

    Full Text Available All the important events of the accident of nitrogen drilling of Well Qionglai 1 have been speculated and analyzed in the paper I. In this paper II, based on the investigating information, the well log data and some calculating and simulating results, according to the analysis method of the fault tree of safe engineering, the every possible compositions, their possibilities and time schedule of the events of the accident of Well Qionglai 1 have been analyzed, the implications of the logging data have been revealed, the process of the accident of Well Qionglai 1 has been restored. Some important understandings have been obtained: the objective causes of the accident is the rock burst and the induced events form rock burst, the subjective cause of the accident is that the blooie pipe could not bear the flow burden of the clasts from rock burst and was blocked by the clasts. The blocking of blooie pipe caused high pressure in wellhead, the high pressure made the blooie pipe burst, natural gas came out and flared fire. This paper also thinks that the rock burst in gas drilling in fractured tight sandstone gas zone is objective and not avoidable, but the accidents induced from rock burst can be avoidable by improving the performance of the blooie pipe, wellhead assemblies and drilling tool accessories aiming at the downhole rock burst.

  17. Hot Dry Rock; Geothermal Energy

    Energy Technology Data Exchange (ETDEWEB)

    None

    1990-01-01

    The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic

  18. CFPL installs products pipeline with directional drilling

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    Central Florida Pipeline Company (CFPL), a subsidiary of GATX Terminals Corp., Tampa, FL, has used directional drilling under seven water bodies in Hillsborough, Polk and Osceola Counties in constructing its new pipeline from Tampa to Orlando. Primary reason for using directional drilling is to protect the environment by minimizing water turbidity while the 16-inch diameter, 109-mile refined petroleum products pipeline is being installed. Total cost of the project is pegged at $68.5 million. Directional drilling enabled the pipe to be placed about 20 feet below the bottom of: The Alafia River in Riverview with 999 feet drilled; Port Sutton Channel near the Port of Tampa with 2,756 feet drilled; Reedy Creek Swamp at the intersection of Interstate 4 and Highway 192 which had 1,111 feet drilled; Wetland number-sign 70 southwest of Lake Wales with 1,575 feet drilled; Peace River south of Bartow had 2,470 feet drilled; Bonnet Creek west of Kissimmee had 693 feet drilled. Shingle Creek near the borders of Osceola and Orange Counties with 1,700 feet drilled. This paper reviews the design plans for construction and the emergency response plans should a rupture occur in the line

  19. Core Drilling of shallow drillholes OL-PP72...OL-PP89 at Olkiluoto, Eurajoki 2011

    Energy Technology Data Exchange (ETDEWEB)

    Toropainen, V. [Suomen Malmi Oy, Espoo (Finland)

    2012-05-15

    Suomen Malmi Oy (Smoy) core drilled eighteen drillholes to survey the ground and bedrock conditions in the encapsulation plant building site at Olkiluoto, Eurajoki 2011. Soil quality, bedrock depth and quality of near surface bedrock were investigated in this project. The drillholes were drilled between 19th of October and 8th of November 2011. The lengths of the drillholes are mostly between 7 to 9 metres, except for the drillhole OL-PP79, which is 15 metres by length. The drillholes are 76 mm by diameter, and the core diameter is 60.2 mm. The lightweight GM75 drilling rig with rubber tracks was used. The drilling water was taken from the ONKALO area research building freshwater pipeline and sodium fluorescein was added as a label agent in the drilling water. The drillholes were not left open. In addition to drilling the drillcores were logged and reported by geologist. Geological logging included the following parameters: lithology, foliation, fracture parameters, fractured zones, core loss, weathering, fracture frequency, RQD and rock quality. The average natural fracture frequencies of the drillcores range from 2.5 pc/m (OL-PP77) to 11.8 pc/m (OL-PP86). The average RQD ranges from 55.1 % (OL-PP86) to 96.4 % (OL-PP77). The penetrated soils are mostly ground fill (blast rock), but some clays and sands are lying below the fill layer. (orig.)

  20. Core Drilling of shallow drillholes OL-PP72...OL-PP89 at Olkiluoto, Eurajoki 2011

    International Nuclear Information System (INIS)

    Toropainen, V.

    2012-05-01

    Suomen Malmi Oy (Smoy) core drilled eighteen drillholes to survey the ground and bedrock conditions in the encapsulation plant building site at Olkiluoto, Eurajoki 2011. Soil quality, bedrock depth and quality of near surface bedrock were investigated in this project. The drillholes were drilled between 19th of October and 8th of November 2011. The lengths of the drillholes are mostly between 7 to 9 metres, except for the drillhole OL-PP79, which is 15 metres by length. The drillholes are 76 mm by diameter, and the core diameter is 60.2 mm. The lightweight GM75 drilling rig with rubber tracks was used. The drilling water was taken from the ONKALO area research building freshwater pipeline and sodium fluorescein was added as a label agent in the drilling water. The drillholes were not left open. In addition to drilling the drillcores were logged and reported by geologist. Geological logging included the following parameters: lithology, foliation, fracture parameters, fractured zones, core loss, weathering, fracture frequency, RQD and rock quality. The average natural fracture frequencies of the drillcores range from 2.5 pc/m (OL-PP77) to 11.8 pc/m (OL-PP86). The average RQD ranges from 55.1 % (OL-PP86) to 96.4 % (OL-PP77). The penetrated soils are mostly ground fill (blast rock), but some clays and sands are lying below the fill layer. (orig.)

  1. Rocks Can Wow? Yes, Rocks Can Wow!

    Science.gov (United States)

    Hardman, Sally; Luke, Sue

    2016-01-01

    Rocks and fossils appear in the National Curriculum of England science programmes of study for children in year 3 (ages 7-8). A frequently asked question is "How do you make the classification of rocks engaging?" In response to this request from a school, a set of interactive activities was designed and organised by tutors and students…

  2. Identification of carbonate reservoirs based on well logging data for boreholes drilled using oil base muds

    International Nuclear Information System (INIS)

    Abdukhalikov, Ya.N; Serebrennikov, V.S.

    1979-01-01

    Experiment on carbonate reservoir identification according to well logging data for boreholes drilled using oil base muds is described. Pulse neutron-neutron logging (PNNL) was widely used at the territory of Pripyat' hole to solve the task. To evaluate volumetric clayiness of carbonate rocks the dependence of gamma-logging, that is data of gamma-logging against clayey rocks built for every hollow, is used. Quantitative estimation of clayiness of dense and clayey carbonate rocks-non-reservoirs is carried out on the basis of the data of neutron-gamma and acoustic logging. Porosity coefficient and lithological characteristic of rocks are also determined according to the data of acoustic and neutron gamma-logging

  3. 3D seismic imaging of the subsurface for underground construction and drilling

    International Nuclear Information System (INIS)

    Juhlin, Christopher

    2014-01-01

    3D seismic imaging of underground structure has been carried out in various parts of the world for various purposes. Examples shown below were introduced in the presentation. - CO 2 storage in Ketzin, Germany; - Mine planning at the Millennium Uranium Deposit in Canada; - Planned Forsmark spent nuclear fuel repository in Sweden; - Exploring the Scandinavian Mountain Belt by Deep Drilling: the COSC drilling project in Sweden. The author explained that seismic methods provide the highest resolution images (5-10 m) of deeper (1-5 km) sub-surfaces in the sedimentary environment, but further improvement is required in crystalline rock environments, and the integration of geology, geophysics, and drilling will provide an optimal interpretation. (author)

  4. Engineering report on the drilling in the Spor Mountain area of Utah

    International Nuclear Information System (INIS)

    1979-07-01

    The Spor Mountain Drilling Project was conducted by Bendix Field Engineering Corporation in support of the United States Department of Energy (DOE) National Uranium Resource Evaluation (NURE) program. This project consisted of 30 drill holes, ranging in depth from 372 feet (113.39 m) to 2,525 feet (769.62 m). A total of 33,143 feet (10,101.99 m) were drilled, of which 11,579 feet (3,529.28 m) were cored. The objective of the project was to test the continuity of uranium bearing host rocks, including the Beryllium Tuff and Yellow Chief sandstones, in several geologically favorable areas of the Thomas Range. This project began June 22, 1978, and continued through May 1979 with final site restoration and cleanup

  5. Deep drilling KLX 02. Drilling and documentation of a 1700 m deep borehole at Laxemar, Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, O [VBB VIAK AB, Malmoe (Sweden)

    1994-08-01

    In this report the preparation and execution of the deep core drilling KLX 02 is described. The hole was drilled with the wireline methods, NQ dimension (diameter 76 mm), to a final depth of 1700.5 m. Prior to core drilling a diameter 215 mm pilot hole was pre drilled to 200 m with controlled hammer drilling (DTH). In this hole casing and air-lift equipment was installed with the aim to support the circulation of drilling fluid. During core drilling there was a measurement of major drilling parameters and drilling fluid in and out of hole. As a fluid tracer uranine was used. Each 300 m of core drilling air-lift pump tests were performed. After completion a flow-meter log was run to finalize the project phase. It can be concluded that both the pre drilling and core drilling methods used proved to be successful. No severe technical problem occurred. However, potential risks have been pointed at in the report. The air-lift system functioned only partly and has to be modified for further use. Also the technique for monitoring of drilling parameters needs improvement as does the method for air-lift pump tests with packer. The organisation model for planning and realization functioned satisfactory and can be recommended for similar future projects. 9 refs, numerous tabs and figs.

  6. New optimized drill pipe size for deep-water, extended reach and ultra-deep drilling

    Energy Technology Data Exchange (ETDEWEB)

    Jellison, Michael J.; Delgado, Ivanni [Grant Prideco, Inc., Hoston, TX (United States); Falcao, Jose Luiz; Sato, Ademar Takashi [PETROBRAS, Rio de Janeiro, RJ (Brazil); Moura, Carlos Amsler [Comercial Perfuradora Delba Baiana Ltda., Rio de Janeiro, RJ (Brazil)

    2004-07-01

    A new drill pipe size, 5-7/8 in. OD, represents enabling technology for Extended Reach Drilling (ERD), deep water and other deep well applications. Most world-class ERD and deep water wells have traditionally been drilled with 5-1/2 in. drill pipe or a combination of 6-5/8 in. and 5-1/2 in. drill pipe. The hydraulic performance of 5-1/2 in. drill pipe can be a major limitation in substantial ERD and deep water wells resulting in poor cuttings removal, slower penetration rates, diminished control over well trajectory and more tendency for drill pipe sticking. The 5-7/8 in. drill pipe provides a significant improvement in hydraulic efficiency compared to 5-1/2 in. drill pipe and does not suffer from the disadvantages associated with use of 6-5/8 in. drill pipe. It represents a drill pipe assembly that is optimized dimensionally and on a performance basis for casing and bit programs that are commonly used for ERD, deep water and ultra-deep wells. The paper discusses the engineering philosophy behind 5-7/8 in. drill pipe, the design challenges associated with development of the product and reviews the features and capabilities of the second-generation double-shoulder connection. The paper provides drilling case history information on significant projects where the pipe has been used and details results achieved with the pipe. (author)

  7. Deep drilling KLX 02. Drilling and documentation of a 1700 m deep borehole at Laxemar, Sweden

    International Nuclear Information System (INIS)

    Andersson, O.

    1994-08-01

    In this report the preparation and execution of the deep core drilling KLX 02 is described. The hole was drilled with the wireline methods, NQ dimension (diameter 76 mm), to a final depth of 1700.5 m. Prior to core drilling a diameter 215 mm pilot hole was pre drilled to 200 m with controlled hammer drilling (DTH). In this hole casing and air-lift equipment was installed with the aim to support the circulation of drilling fluid. During core drilling there was a measurement of major drilling parameters and drilling fluid in and out of hole. As a fluid tracer uranine was used. Each 300 m of core drilling air-lift pump tests were performed. After completion a flow-meter log was run to finalize the project phase. It can be concluded that both the pre drilling and core drilling methods used proved to be successful. No severe technical problem occurred. However, potential risks have been pointed at in the report. The air-lift system functioned only partly and has to be modified for further use. Also the technique for monitoring of drilling parameters needs improvement as does the method for air-lift pump tests with packer. The organisation model for planning and realization functioned satisfactory and can be recommended for similar future projects. 9 refs, numerous tabs and figs

  8. Trends in the Drilling Waste Management

    Directory of Open Access Journals (Sweden)

    Lucyna Czekaj

    2006-10-01

    Full Text Available Petroleum Industry is trying to achieve sustainable development goals. Each year new solutions are implemented to minimize the environmental impact of drilling operations. The paper presents trends in the drilling waste management caused by introducing the sustainable development into the petroleum industry. Old solutions such as the drilling waste disposal at the waste dump or dumping ground are not acceptable from the environmental point of view. The paper presents an analysis of new solutions as the sustainable solutions. The most important problem is the chemical pollution in cuttings and the waste drilling mud. The industrial solutions as well as the laboratory research on the pollution removing from drilling wastes are analysed. The most promising method seems to be the recycling and design for the environment of drilling mud.

  9. PDVSA INTEVEP Technologies in oil well drilling

    International Nuclear Information System (INIS)

    Bolivar, C.; Rafael, A.; Davila, Manuel A.

    1998-01-01

    The orimulsion, the generation of catalytic technologies and the development of HDH (process which transform heavy crudes in light crudes), are examples of some of the well known technologies developed by PDVSA INTEVEP. But the drilling oil wells technologies developed by the same entreprise, even though are very important, are less known all around the world. This document describes some products developed through those technologies: THIXOGAS T M which is an antimigratory aditive; INTEFLOW T M which is a fluid for drilling, complementation and rehabilitation of oil drills; INTERCAB T M which is an aditive for fluids in drilling; orimatita which is a denser for drilling fluids; CARBOLIG T M which is an aditive for drilling fluids; and many other products and technologies in development, impacted considerably the venezuelan economy by preserving the environment and saving quite an important amount of money in 1997 (Bs. 3.000 M M)

  10. Core drilling of deep borehole OL-KR32 at Olkiluoto in Eurajoki 2004

    Energy Technology Data Exchange (ETDEWEB)

    Rautio, T. [Suomen Malmi Oy, Espoo (Finland)

    2005-01-15

    Posiva Oy submitted an application for the Decision in Principle to the Finnish Government in May 1999. A positive decision was made at the end of 2000 by the Government. The Finnish Parliament ratified the Decision in Principle on the final disposal facility for spent nuclear fuel at Olkiluoto, Eurajoki in May 2001. The decision makes it possible for Posiva to focus the confirming bedrock investigations at Olkiluoto, where in the next few years an underground rock characterisation facility, the ONKALO, will be constructed. As a part of the investigations Suomen Malmi Oy (Smoy) core drilled a 191.81 m deep borehole with a diameter of 75.7 mm at Olkiluoto in November 2004. This borehole was aimed to get additional information of the quality and the location of the fractured zones R20A and R20B and the fractured zones near rock surface noticed in investigation trench TK8. The identification number of the borehole is OL-KR32. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the drilling water and the returning water were recorded as well as the pressure of the drilling water. The objective of these measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The volume of the used drilling water was about 93 m{sup 3} and the measured volume of the returning water was about 6 m{sup 3} in borehole OL-KR32. The deviation of the borehole was measured with the deviation measuring instruments EMS and Maxibor. The results of the Maxibor measurements indicate that borehole OL-KR32 deviates 4.42 m right and 4.66 m up at the borehole depth of 189 m. Uniaxial compressive strength, Young's Modulus and Poisson's ratio were measured from the core samples. The average uniaxial compressive strength is about 130 MPa, the average Young's modulus is 47 GPa and

  11. Core drilling of deep borehole OL-KR32 at Olkiluoto in Eurajoki 2004

    International Nuclear Information System (INIS)

    Rautio, T.

    2005-01-01

    Posiva Oy submitted an application for the Decision in Principle to the Finnish Government in May 1999. A positive decision was made at the end of 2000 by the Government. The Finnish Parliament ratified the Decision in Principle on the final disposal facility for spent nuclear fuel at Olkiluoto, Eurajoki in May 2001. The decision makes it possible for Posiva to focus the confirming bedrock investigations at Olkiluoto, where in the next few years an underground rock characterisation facility, the ONKALO, will be constructed. As a part of the investigations Suomen Malmi Oy (Smoy) core drilled a 191.81 m deep borehole with a diameter of 75.7 mm at Olkiluoto in November 2004. This borehole was aimed to get additional information of the quality and the location of the fractured zones R20A and R20B and the fractured zones near rock surface noticed in investigation trench TK8. The identification number of the borehole is OL-KR32. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the drilling water and the returning water were recorded as well as the pressure of the drilling water. The objective of these measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The volume of the used drilling water was about 93 m 3 and the measured volume of the returning water was about 6 m 3 in borehole OL-KR32. The deviation of the borehole was measured with the deviation measuring instruments EMS and Maxibor. The results of the Maxibor measurements indicate that borehole OL-KR32 deviates 4.42 m right and 4.66 m up at the borehole depth of 189 m. Uniaxial compressive strength, Young's Modulus and Poisson's ratio were measured from the core samples. The average uniaxial compressive strength is about 130 MPa, the average Young's modulus is 47 GPa and the average Poisson

  12. Optimization of Operating Parameters for Minimum Mechanical Specific Energy in Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Hamrick, Todd [West Virginia Univ., Morgantown, WV (United States)

    2011-01-01

    Efficiency in drilling is measured by Mechanical Specific Energy (MSE). MSE is the measure of the amount of energy input required to remove a unit volume of rock, expressed in units of energy input divided by volume removed. It can be expressed mathematically in terms of controllable parameters; Weight on Bit, Torque, Rate of Penetration, and RPM. It is well documented that minimizing MSE by optimizing controllable factors results in maximum Rate of Penetration. Current methods for computing MSE make it possible to minimize MSE in the field only through a trial-and-error process. This work makes it possible to compute the optimum drilling parameters that result in minimum MSE. The parameters that have been traditionally used to compute MSE are interdependent. Mathematical relationships between the parameters were established, and the conventional MSE equation was rewritten in terms of a single parameter, Weight on Bit, establishing a form that can be minimized mathematically. Once the optimum Weight on Bit was determined, the interdependent relationship that Weight on Bit has with Torque and Penetration per Revolution was used to determine optimum values for those parameters for a given drilling situation. The improved method was validated through laboratory experimentation and analysis of published data. Two rock types were subjected to four treatments each, and drilled in a controlled laboratory environment. The method was applied in each case, and the optimum parameters for minimum MSE were computed. The method demonstrated an accurate means to determine optimum drilling parameters of Weight on Bit, Torque, and Penetration per Revolution. A unique application of micro-cracking is also presented, which demonstrates that rock failure ahead of the bit is related to axial force more than to rotation speed.

  13. Drilling for the Archean Roots of Life and Tectonic Earth in the Barberton Mountains

    Directory of Open Access Journals (Sweden)

    Nicola McLoughlin

    2009-09-01

    Full Text Available In the Barberton Scientific Drilling Program (BSDP we successfully completed three drill holes in 2008 across strategically selected rock formations in the early Archean Barberton Greenstone Belt, South Africa. This collaborative project’s goal is to advance understanding of geodynamic and biogeochemical processes of the young Earth. The program aims to better define and characterize Earth’s earliest preserved ocean crust shear zones and microbial borings in Archean basaltic glass, and to identify biogeochemical fingerprints of ancient ecological niches recorded in rocks. The state-of-the-art analytical and imaging work will address the question of earliest plate tectonics in the Archean, the δ18O composition, the redox state and temperature of Archean seawater, and the origin of life question.

  14. Groundwater drilling location determination in Girirejo Village, Tempuran Sub-District, Magelang

    International Nuclear Information System (INIS)

    FD Indrastomo; I Gde Sukadana

    2010-01-01

    Girirejo Village is one of the villages in Tempuran Sub-district, Magelang Regency which have fresh water difficulty. Determination of groundwater drilling location conducted with phases of activity include desk study stage, topographic data collection, geology and hydrogeology mapping, geo electrical surveys, and integrated analysis. Based on the results of field geological mapping, it is found that the area is composed of three rock units, namely andesite, breccia tuff and sandy tuff. Results of rock resistivity measurements show the value of resistivity 16 - 32 ohm-m are interpreted as sandy tuff with wet conditions, and the value of resistivity 60 - 80 ohm-m is interpreted as a breccia. Location TMG-14 at depths of 1.6 - 29.1 m by 27.5 m thick aquifer is a potential point which next recommended as potential sites of groundwater drilling. (author)

  15. Replacement team of mining drilling rigs

    OpenAIRE

    Hamodi, Hussan; Lundberg, Jan

    2014-01-01

    This paper presents a practical model to calculate the optimal replacement time (ORT) of drilling rigs used in underground mining. As a case study, cost data for drilling rig were collected over four years from a Swedish mine. The cost data include acquisition, operating, maintenance and downtime costs when using a redundant rig. A discount rate is used to determine the value of these costs over time. The study develops an optimisation model to identify the ORT of a mining drilling rig which ...

  16. Test plan for core drilling ignitability testing

    International Nuclear Information System (INIS)

    Witwer, K.S.

    1996-01-01

    The objective of this testing is to determine if ignition occurs while core drilling in a flammable gas environment. Drilling parameters are chosen so as to provide bounding conditions for the core sampling environment. If ignition does not occur under the conditions set forth in this test, then a satisfactory level of confidence will be obtained which would allow field operations under the normal drilling conditions

  17. Avoiding pollution in scientific ocean drilling

    International Nuclear Information System (INIS)

    Francis, T.J.G.

    1999-01-01

    Scientific ocean drilling has been carried out in the world's oceans since the nineteen sixties. From 1968-83 the Deep Sea Drilling Project (DSDP), managed by the Scripps Institution of Oceanography in California under a contract with the US National Science Foundation, employed the drilling vessel Glomar Challenger for this purpose. In January 1985 the Ocean Drilling Program (GDP), operated by Texas A and M University, began operations with the drillship JOIDES Resolution which continue to this day. The principal funding agency remains the US National Science Foundation, but since its inception GDP has been an international program and currently receives financial support from 21 countries. The ODP operates globally and, as with DSDP before it, drills without a riser or blowout preventer in a wide range of geological environments. Water depths at GDP drill sites have ranged from 38 m to 5969 m, but are typically within the range 1000-5000 m. Depths of penetration at GDP drill sites, while generally less than 1000 m, have ranged up to 2111 m below the sea floor. The drilling fluid is seawater, although occasional slugs of mud are circulated to clean or condition the hole. Thus drilling is carried out without well control, i.e. without the ability to control pressures within the well. Because of the absence of well control, it is vital to ensure that the drillship does not drill into an accumulation of oil or gas. Drilling into a charged reservoir and causing oil or gas to escape into the marine environment is recognised as the main pollution hazard in scientific ocean drilling

  18. Rock slope design guide.

    Science.gov (United States)

    2011-04-01

    This Manual is intended to provide guidance for the design of rock cut slopes, rockfall catchment, and : rockfall controls. Recommendations presented in this manual are based on research presented in Shakoor : and Admassu (2010) entitled Rock Slop...

  19. Rock Slope Design Criteria

    Science.gov (United States)

    2010-06-01

    Based on the stratigraphy and the type of slope stability problems, the flat lying, Paleozoic age, sedimentary : rocks of Ohio were divided into three design units: 1) competent rock design unit consisting of sandstones, limestones, : and siltstones ...

  20. The Rock Cycle

    Science.gov (United States)

    Singh, Raman J.; Bushee, Jonathan

    1977-01-01

    Presents a rock cycle diagram suitable for use at the secondary or introductory college levels which separates rocks formed on and below the surface, includes organic materials, and separates products from processes. (SL)

  1. A 3-D wellbore simulator (WELLTHER-SIM) to determine the thermal diffusivity of rock-formations

    Science.gov (United States)

    Wong-Loya, J. A.; Santoyo, E.; Andaverde, J.

    2017-06-01

    Acquiring thermophysical properties of rock-formations in geothermal systems is an essential task required for the well drilling and completion. Wellbore thermal simulators require such properties for predicting the thermal behavior of a wellbore and the formation under drilling and shut-in conditions. The estimation of static formation temperatures also needs the use of these properties for the wellbore and formation materials (drilling fluids and pipes, cements, casings, and rocks). A numerical simulator (WELLTHER-SIM) has been developed for modeling the drilling fluid circulation and shut-in processes of geothermal wellbores, and for the in-situ determination of thermal diffusivities of rocks. Bottomhole temperatures logged under shut-in conditions (BHTm), and thermophysical and transport properties of drilling fluids were used as main input data. To model the thermal disturbance and recovery processes in the wellbore and rock-formation, initial drilling fluid and static formation temperatures were used as initial and boundary conditions. WELLTHER-SIM uses these temperatures together with an initial thermal diffusivity for the rock-formation to solve the governing equations of the heat transfer model. WELLTHER-SIM was programmed using the finite volume technique to solve the heat conduction equations under 3-D and transient conditions. Thermal diffusivities of rock-formations were inversely computed by using an iterative and efficient numerical simulation, where simulated thermal recovery data sets (BHTs) were statistically compared with those temperature measurements (BHTm) logged in some geothermal wellbores. The simulator was validated using a well-documented case reported in the literature, where the thermophysical properties of the rock-formation are known with accuracy. The new numerical simulator has been successfully applied to two wellbores drilled in geothermal fields of Japan and Mexico. Details of the physical conceptual model, the numerical

  2. Newberry exploratory slimhole: Drilling and testing

    Energy Technology Data Exchange (ETDEWEB)

    Finger, J.T.; Jacobson, R.D.; Hickox, C.E.

    1997-11-01

    During July--November, 1995, Sandia National Laboratories, in cooperation with CE Exploration, drilled a 5,360 feet exploratory slimhole (3.895 inch diameter) in the Newberry Known Geothermal Resource Area (KGRA) near Bend, Oregon. This well was part of Sandia`s program to evaluate slimholes as a geothermal exploration tool. During and after drilling the authors performed numerous temperature logs, and at the completion of drilling attempted to perform injection tests. In addition to these measurements, the well`s data set includes: over 4,000 feet of continuous core (with detailed log); daily drilling reports from Sandia and from drilling contractor personnel; daily drilling fluid record; and comparative data from other wells drilled in the Newberry KGRA. This report contains: (1) a narrative account of the drilling and testing, (2) a description of equipment used, (3) a brief geologic description of the formation drilled, (4) a summary and preliminary interpretation of the data, and (5) recommendations for future work.

  3. Effects of drilling fluids on marine organisms

    International Nuclear Information System (INIS)

    Parrish, P.R.; Duke, T.W.

    1990-01-01

    This paper reports on drilling fluids, also called drilling muds, which are essential to drilling processes in the exploration and production of oil and gas from the U.S. Outer Continental Shelf (OCS). These fluids are usually discharged from drilling platforms into surrounding waters of the OCS and are regulated by the U.S. Environmental Protection Agency (EPA). In a program carried out by the EPA Environmental research Laboratory at Gulf Breeze, Florida, diverse marine species as well as microbiotic and macrobiotic communities were studied. Drilling fluids were toxic to marine organisms in certain concentrations and exposure regimes. Furthermore, the fluids adversely affected the benthos physically by burying them or by altering the substrates. Toxicity of the drilling-fluid components, used drilling fluids from active Gulf of Mexico sites, and laboratory-prepared drilling fluids varied considerably. for example 96-h LC 50 s were from 25 μ liter -1 to > 1500 μl liter -1 for clams, larval lobsters, mysids, and grass shrimp. In most instances, mortality was significantly (α = 0.05) correlated with the diesel-oil content of the fluids collected from the Gulf of Mexico. Data and model simulations suggest a rapid dilution of drilling fluids released into OCS waters, resulting in concentrations below the acute-effect concentration for the water column organisms tested

  4. Numerical Modeling of Foam Drilling Hydraulics

    Directory of Open Access Journals (Sweden)

    Ozcan Baris

    2007-12-01

    Full Text Available The use of foam as a drilling fluid was developed to meet a special set of conditions under which other common drilling fluids had failed. Foam drilling is defined as the process of making boreholes by utilizing foam as the circulating fluid. When compared with conventional drilling, underbalanced or foam drilling has several advantages. These advantages include: avoidance of lost circulation problems, minimizing damage to pay zones, higher penetration rates and bit life. Foams are usually characterized by the quality, the ratio of the volume of gas, and the total foam volume. Obtaining dependable pressure profiles for aerated (gasified fluids and foam is more difficult than for single phase fluids, since in the former ones the drilling mud contains a gas phase that is entrained within the fluid system. The primary goal of this study is to expand the knowledge-base of the hydrodynamic phenomena that occur in a foam drilling operation. In order to gain a better understanding of foam drilling operations, a hydrodynamic model is developed and run at different operating conditions. For this purpose, the flow of foam through the drilling system is modeled by invoking the basic principles of continuum mechanics and thermodynamics. The model was designed to allow gas and liquid flow at desired volumetric flow rates through the drillstring and annulus. Parametric studies are conducted in order to identify the most influential variables in the hydrodynamic modeling of foam flow.

  5. Cuttability Assessment of Selected Rocks Through Different Brittleness Values

    Science.gov (United States)

    Dursun, Arif Emre; Gokay, M. Kemal

    2016-04-01

    Prediction of cuttability is a critical issue for successful execution of tunnel or mining excavation projects. Rock cuttability is also used to determine specific energy, which is defined as the work done by the cutting force to excavate a unit volume of yield. Specific energy is a meaningful inverse measure of cutting efficiency, since it simply states how much energy must be expended to excavate a unit volume of rock. Brittleness is a fundamental rock property and applied in drilling and rock excavation. Brittleness is one of the most crucial rock features for rock excavation. For this reason, determination of relations between cuttability and brittleness will help rock engineers. This study aims to estimate the specific energy from different brittleness values of rocks by means of simple and multiple regression analyses. In this study, rock cutting, rock property, and brittleness index tests were carried out on 24 different rock samples with different strength values, including marble, travertine, and tuff, collected from sites around Konya Province, Turkey. Four previously used brittleness concepts were evaluated in this study, denoted as B 1 (ratio of compressive to tensile strength), B 2 (ratio of the difference between compressive and tensile strength to the sum of compressive and tensile strength), B 3 (area under the stress-strain line in relation to compressive and tensile strength), and B 9 = S 20, the percentage of fines (point load strengths of rocks using multiple regression analysis). The results suggest that the proposed simple regression-based prediction models including B 3, B 9, and B 9p outperform the other models including B 1 and B 2 and can be used for more accurate and reliable estimation of specific energy.

  6. Slow drilling speeds for single-drill implant bed preparation. Experimental in vitro study.

    Science.gov (United States)

    Delgado-Ruiz, R A; Velasco Ortega, E; Romanos, G E; Gerhke, S; Newen, I; Calvo-Guirado, J L

    2018-01-01

    To evaluate the real-time bone temperature changes during the preparation of the implant bed with a single-drill protocol with different drill designs and different slow drilling speeds in artificial type IV bone. For this experimental in vitro study, 600 implant bed preparations were performed in 10 bovine bone disks using three test slow drilling speeds (50/150/300 rpm) and a control drilling speed (1200 rpm). The temperature at crestal and apical areas and time variations produced during drilling with three different drill designs with similar diameter and length but different geometry were recorded with real-life thermographic analysis. Statistical analysis was performed by two-way analysis of variance. Multiple comparisons of temperatures and time with the different drill designs and speeds were performed with the Tukey's test. T Max values for the control drilling speed with all the drill designs (D1 + 1200; D2 + 1200; D3 + 1200) were higher compared to those for the controls for 11 ± 1.32 °C (p drilling at 50 rpm resulted in the lowest temperature increment (22.11 ± 0.8 °C) compared to the other slow drilling speeds of 150 (24.752 ± 1.1 °C) and 300 rpm (25.977 ± 1.2 °C) (p drilling speeds compared to that for the control drilling speed. Slow drilling speeds required significantly more time to finish the preparation of the implant bed shown as follows: 50 rpm > 150 rpm > 300 rpm > control (p drill protocol with slow drilling speeds (50, 150, and 300 rpm) without irrigation in type IV bone increases the temperature at the coronal and apical levels but is below the critical threshold of 47 °C. The drill design in single-drill protocols using slow speeds (50, 150, and 300 rpm) does not have an influence on the thermal variations. The time to accomplish the implant bed preparation with a single-drill protocol in type IV bone is influenced by the drilling speed and not by the drill design. As the speed decreases, then

  7. Investigation on Releasing of a Stuck Drill String by Means of a Mechanical Jar

    Directory of Open Access Journals (Sweden)

    Moisyshyn V.

    2017-09-01

    Full Text Available Purpose. In this article the most important part is dedicated to the research of elimination of accident that is caused by drill string sticking during the process. That is why it is necessary to develop a mathematical model of the mechanic system: travelling system + drill string + mechanical jar + rock, to develop a computer model for numerical calculation of dynamic characteristics of firing gear. The aim is to use the results of the research and to work out recommendations for expediency of jar application. Methods. For description of the drill string we are using synthesis of the wave theory and theory of the local distortions. For mathematical modeling of firing device we are offering the use of the combined method that combines static solutions of the theory of elasticity for contact zone of drill string and method of a plain wave of Saint-Venant. We solved systems of differential equations using the methods of mathematical physics. An algorithm of the numerical decision which mounted in the computing environment were used at simulation of the longitudinal impact to the stuck drill pipe. In this article we designed a wave chart of the equation system of the drill pipe and conducted step-by-step calculation of a collision momentum. We also designed a computer program for numerical modeling of the drill pipe mechanism with firing gear. We also designed a method of calculation of main dynamic characteristics of firing device that will help analyze and prove the performance of the mechanical jar. A wave diagram was built that shows the impact forces and speeds on the boundary surfaces of the sections of the drill string. There were calculated main dynamic characteristic of mechanical the jar. Originality. Authors also developed a dynamic mathematical model that combined elastic vibrations of continual system of loose part drill pipe, impact mechanisms and discrete movements of a given drill pipe. The process of a mechanical jar

  8. Insights into the radial water jet drilling technology – Application in a quarry

    Directory of Open Access Journals (Sweden)

    Thomas Reinsch

    2018-04-01

    Full Text Available In this context, we applied the radial water jet drilling (RJD technology to drill five horizontal holes into a quarry wall of the Gildehaus quarry close to Bad Bentheim, Germany. For testing the state-of-the-art jetting technology, a jetting experiment was performed to investigate the influence of geological heterogeneity on the jetting performance and the hole geometry, the influence of nozzle geometry and jetting pressure on the rate of penetration, and the possibility of localising the jetting nozzle utilizing acoustic activity. It is observed that the jetted holes can intersect fractures under varying angles, and the jetted holes do not follow a straight path when jetting at ambient surface condition. Cuttings from the jetting process retrieved from the holes can be used to estimate the reservoir rock permeability. Within the quarry, we did not observe a change in the rate of penetration due to jetting pressure variations. Acoustic monitoring was partially successful in estimating the nozzle location. Although the experiments were performed at ambient surface conditions, the results can give recommendations for a downhole application in deep wells. Keywords: Acoustic monitoring, Drilling performance, Trajectory, Permeability, Rock properties, Radial water jet drilling (RJD

  9. Alteration of properties of rock during their selection by shooting core lifter

    Energy Technology Data Exchange (ETDEWEB)

    Malinin, V F

    1969-01-01

    During the process of intrusion of the core lifter into rock, splitting and dislocation of the granules and crystals which compose it occur. In the core lifters, single small nondisintegrated fragments are sometimes encountered. Data on comparison of porosity of crushed cores and rock from which they were selected indicate increase in porosity and penetration of the filtrate of the drilling solution during the process of coring. The determined residual oil saturation of the core is different from the residual oil saturation of the rock from which they were selected. The permeability of cores of rock with high porosity is altered.

  10. Core drilling of deep borehole OL-KR3B at Olkiluoto in Eurajoki 2005

    Energy Technology Data Exchange (ETDEWEB)

    Rautio, T. [Suomen Malmi Oy, Espoo (Finland)

    2005-10-15

    Posiva Oy submitted an application for the Decision in Principle to the Finnish Government in May 1999. A positive decision was made at the end of 2000 by the Government. The Finnish Parliament ratified the Decision in Principle on the final disposal facility for spent nuclear fuel at Olkiluoto, Eurajoki in May 2001. The decision makes it possible for Posiva to focus the confirming bedrock investigations at Olkiluoto, where in the next few years an underground rock characterisation facility, ONKALO, will be constructed. As a part of the investigations Suomen Malmi Oy (Smoy) core drilled 530.60 m deep borehole with a diameter of 75.7 mm at Olkiluoto in summer 2005. This borehole was aimed to get additional information of the quality of bedrock in the area, where a new shaft with a diameter of 3 m is planned to be located. The identification number of the borehole is OL-KR38. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the drilling water and the returning water were recorded. The drill rig was computer controlled and during drilling the computer recorded information about drilling parameters. The objective of these measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The volume of the used drilling water was about 473m{sup 3} and the measured volume of the returning water was about 38m{sup 3} in borehole OL-KR38. The deviation of the borehole was measured with the deviation measuring instruments EMS and Devitool Peewee. The results of the EMS measurements indicate that borehole OL-KR38 deviates 1.02 m south and 0.58 m west from the target point at the borehole depth of 525 m. Uniaxial compressive strength, Young's Modulus and Poisson's ratio were measured from the core samples. The average uniaxial compressive strength is about 106

  11. Core drilling of deep borehole OL-KR34 at Olkiluoto in Eurajoki 2005

    Energy Technology Data Exchange (ETDEWEB)

    Rautio, T. [Suomen Malmi Oy, Espoo (Finland)

    2005-07-15

    Posiva Oy submitted an application for the Decision in Principle to the Finnish Government in May 1999. A positive decision was made at the end of 2000 by the Government. The Finnish Parliament ratified the Decision in Principle on the final disposal facility for spent nuclear fuel at Olkiluoto, Eurajoki in May 2001. The decision makes it possible for Posiva to focus the confirming bedrock investigations at Olkiluoto, where in the next few years an underground rock characterisation facility, ONKALO, will be constructed. As a part of the investigations Suomen Malmi Oy (Smoy) core drilled 100.07 m deep borehole with a diameter of 75.7 mm at Olkiluoto in April 2005. This borehole was aimed to get additional information of the quality of bedrock and the anomalous part of the bedrock and quality and the location of the fractured zones R19A and R19B. The identification number of the borehole is OL-KR34. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the drilling water and the returning water were recorded. The drill rig was computer controlled and during drilling the computer recorded information about drilling parameters. The objective of all measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The volume of the used drilling water was about 37m{sup 3} and the measured volume of the returning water was about 18m{sup 3} in borehole OL-KR34. The deviation of the borehole was measured with the deviation measuring instruments EMS and Maxibor. The results of the Maxibor measurements indicate that borehole OLKR34 deviates 0.84 m right and 0.15 m up at the borehole depth of 99 m. Uniaxial compressive strength, Young's Modulus and Poisson' s ratio were measured from the core samples. The average uniaxial compressive strength is about 142 MPa, the

  12. Core drilling of deep borehole OL-KR36 at Olkiluoto in Eurajoki 2005

    Energy Technology Data Exchange (ETDEWEB)

    Niinimaeki, R.; Rautio, T. [Suomen Malmi Oy, Espoo (Finland)

    2005-07-15

    Posiva Oy submitted an application for the Decision in Principle to the Finnish Government in May 1999. A positive decision was made at the end of 2000 by the Government. The Finnish Parliament ratified the Decision in Principle on the final disposal facility for spent nuclear fuel at Olkiluoto, Eurajoki in May 2001. The decision makes it possible for Posiva to focus the confirming bedrock investigations at Olkiluoto, where in the next few years an underground rock characterisation facility, ONKALO, will be constructed. As a part of the investigations Suomen Malmi Oy (Smoy) core drilled 205.17 m deep borehole with a diameter of 75.7 mm at Olkiluoto in May 2005. This borehole was aimed to get additional information of the quality of bedrock and the anomalous part of the bedrock and quality and the location of the fractured zones R19A and R19B. The identification number of the borehole is OL-KR36. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the drilling water and the returning water were recorded. The drill rig was computer controlled and during drilling the computer recorded information about drilling measurements. The objective of all these measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The volume of the used drilling water was about 117 m{sup 3} and the measured volume of the returning water was about 51m{sup 3} in borehole OL-KR36. The deviation of the borehole was measured with the deviation measuring instruments EMS and Maxibor. The results of the Maxibor measurements indicate that borehole OL-KR36 deviates 10.34 m left and 7.11 m up at the borehole depth of 204 m. Uniaxial compressive strength, Young's Modulus and Poisson' s ratio were measured from the core samples. The average uniaxial compressive strength is about 126

  13. Core drilling of deep borehole OL-KR35 at Olkiluoto in Eurajoki 2005

    Energy Technology Data Exchange (ETDEWEB)

    Rautio, T. [Suomen Malmi Oy, Espoo (Finland)

    2005-07-15

    Posiva Oy submitted an application for the Decision in Principle to the Finnish Government in May 1999. A positive decision was made at the end of 2000 by the Government. The Finnish Parliament ratified the Decision in Principle on the final disposal facility for spent nuclear fuel at Olkiluoto, Eurajoki in May 2001. The decision makes it possible for Posiva to focus the confirming bedrock investigations at Olkiluoto, where in the next few years an underground rock characterisation facility, ONKALO, will be constructed. As a part of the investigations Suomen Malmi Oy (Smoy) core drilled 100.87 m deep borehole with a diameter of 75.7 mm at Olkiluoto in May 2005. This borehole was aimed to get additional information of the quality of bedrock and the anomalous part of the bedrock and quality and the location of the fractured zones R19A and R19B. The identification number of the borehole is OL-KR35. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the drilling water and the returning water were recorded. The drill rig was computer controlled and during drilling the computer recorded information about drilling parameters. The objective of all measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The volume of the used drilling water was about 53 m{sup 3} and the measured volume of the returning water was about 25 m{sup 3} in borehole OL-KR35. The deviation of the borehole was measured with the deviation measuring instruments EMS and Maxibor. The results of the Maxibor measurements indicate that borehole OL-KR35 deviates 0.49 m right and 0.30 m up at the borehole depth of 99 m. Uniaxial compressive strength, Young's Modulus and Poisson' s ratio were measured from the core samples. The average uniaxial compressive strength is about 90 MPa, the

  14. Core drilling of deep drillhole OL-KR48 at Olkiluoto in Eurajoki 2007

    International Nuclear Information System (INIS)

    Toropainen, V.

    2008-01-01

    Posiva Oy submitted an application for the Decision in Principle to the Finnish Government in May 1999. A positive decision was made at the end of 2000 by the Government. The Finnish Parliament ratified the Decision in Principle on the final disposal facility for spent nuclear fuel at Olkiluoto, Eurajoki in May 2001. The decision makes it possible for Posiva to focus the confirming bedrock investigations at Olkiluoto, where in the next few years an underground rock characterisation facility, ONKALO, will be constructed. As a part of the investigations Suomen Malmi Oy (Smoy) core drilled 530.11 m deep drillhole (identification number OL-KR48) with a diameter of 75.7 mm at Olkiluoto in summer 2007. This drillhole was aimed to get additional information of the quality of bedrock in the area, where a new shaft with a diameter of 3.5 m is planned. The drillhole is nearly vertical, and its deviation was minimized with directional drilling. The drillhole requires cleaning and stabilization for down the hole measurements. To obtain more information about bedrock and groundwater properties, a set of monitoring measurements and samplings from the drilling and returning water was carried out during. Both the volume and the electric conductivity of the returning and drilling waters were recorded. The drill rig was computer controlled and recorded drilling parameters. Sodium fluorescein was used as a label agent in the drilling water. The total volume of the used drilling and washing water was 438 m 3 . Measured volume of the returning water was 123 m 3 . The deviation of the drillhole was measured with the deviation measuring instruments DeviTool and EMS. The results of the EMS measurements indicate that the drillhole deviates 2.51 m north and 0.51 m west from the target point at the drillhole depth of 528 m. Results of DeviTool indicate deviation of 1.44 m north and 0.40 m west at depth of 530 m. Uniaxial compressive strength (113.0 Mpa), Young's Modulus (36.2 GPa) and

  15. Drilling and associated drillhole measurements of the pilot hole ONK-PH12

    International Nuclear Information System (INIS)

    Toropainen, V.; Tarvainen, A.-M.; Poellaenen, J.; Pekkanen, J.; Pere, T.; Kaepyaho, E.; Lahti, M.

    2011-01-01

    The construction of the ONKALO access tunnel started in September 2004 at Olkiluoto. Most of the investigations related to the construction of the access tunnel aim to ensure successful excavations, reinforcement and sealing. Pilot holes are drillholes, which are core drilled along the tunnel profile. The length of the pilot holes typically varies from several tens of metres to a couple of hundred metres. The pilot holes are aimed to confirm the quality of the rock mass for tunnel construction, and in particular to identify water conductive fractured zones and to provide information that could result in modifications of the existing construction plans. The pilot hole ONK-PH12 was drilled from ONKALO chainage 4092 to chainage 4215 in January 2010. The length of the hole is 123.96 metres. The drilling method was orientated core drilling. The deviation of the drillhole was measured during and after the drilling phase. Electric conductivity was measured from the collected returning water samples. Logging of the core samples included the following parameters: lithology, foliation, fracturing, fracture frequency, RQD, fractured zones, core loss, and weathering. The rock mechanical logging was based on Q-classification. The test to determine rock strength and deformation were made with Rock Tester -equipment. Water conductivity of the fractures or fractured zones was measured by Posiva Flow Log equipment. The measurements were done in two phases. During flow measurements also grounding resistance electric conductivity and temperature were measured. In flow logging test, sections of 0.5 m with increments of 0.1 m were used. Water loss measurements were conducted in the drillhole section 5.0-123.85 m dhd. Geophysical logging as well as optical and acoustic imaging of the pilot hole included the fieldwork of all surveys, the integration of the data as well as interpretation of the acoustic and drillhole radar data. Groundwater sampling was not applicable because no

  16. Prediction of thermal conductivity of sedimentary rocks from well logs

    DEFF Research Database (Denmark)

    Fuchs, Sven; Förster, Andrea

    2014-01-01

    The calculation of heat-flow density in boreholes requires reliable values for the change of temperature and rock thermal conductivity with depth. As rock samples for laboratory measurements of thermal conductivity (TC) are usually rare geophysical well logs are used alternatively to determine TC...... parameters (i.e. thermal conductivity, density, hydrogen index, sonic interval transit time, gamma-ray response, photoelectric factor) of artificial mineral assemblages consisting 15 rock-forming minerals that are used in different combinations to typify sedimentary rocks. The predictive capacity of the new...... equations is evaluated on subsurface data from four boreholes drilled into the Mesozoic sequence of the North German Basin, including more than 1700 laboratory-measured thermal-conductivity values. Results are compared with those from other approaches published in the past. The new approach predicts TC...

  17. Environmental Measurement-While-Drilling System and Horizontal Directional Drilling Technology Demonstration, Hanford Site

    International Nuclear Information System (INIS)

    Williams, C.V.; Lockwood, G.J.; Normann, R.A.; Myers, D.A.; Gardner, M.G.; Williamson, T.; Huffman, J.

    1999-01-01

    The Environmental Measurement-While-Drilling (EMWD) system and Horizontal Directional Drilling (HDD) were successfully demonstrated at the Mock Tank Leak Simulation Site and the Drilling Technology Test Site, Hanford, Washington. The use of directional drilling offers an alternative to vertical drilling site characterization. Directional drilling can develop a borehole under a structure, such as a waste tank, from an angled entry and leveling off to horizontal at the desired depth. The EMWD system represents an innovative blend of new and existing technology that provides the capability of producing real-time environmental and drill bit data during drilling operations. The technology demonstration consisted of the development of one borehole under a mock waste tank at a depth of approximately minus8 m (minus27 ft.), following a predetermined drill path, tracking the drill path to within a radius of approximately1.5 m (5 ft.), and monitoring for zones of radiological activity using the EMWD system. The purpose of the second borehole was to demonstrate the capability of drilling to a depth of ∼ -21 m (-70 ft.), the depth needed to obtain access under the Hanford waste tanks, and continue drilling horizontally. This report presents information on the HDD and EMWD technologies, demonstration design, results of the demonstrations, and lessons learned

  18. Prediction and control of rock burst of coal seam contacting gas in deep mining

    Energy Technology Data Exchange (ETDEWEB)

    En-yuan Wang; Xiao-fei Liu; En-lai Zhao; Zhen-tang Liu [China University of Mining and Technology, Xuzhou (China). School of Safety Engineering

    2009-06-15

    By analyzing the characteristics and the production mechanism of rock burst that goes with abnormal gas emission in deep coal seams, the essential method of eliminating abnormal gas emission by eliminating the occurrence of rock burst or depressing the magnitude of rock burst was considered. The No.237 working face in Nanshan coal mine was selected as the typical working face contacting gas in deep mining; aimed at this working face, a system of rock burst prediction and control for coal seam contacting gas in deep mining was established using the three-dimensional distinct element code software 3DEC. This system includes three parts: (1) regional prediction of rock burst hazard before mining; (2) local prediction of rock burst hazard during mining; and (3) rock burts control by an electromagnetic radiation method and specific drilling method. 8 refs., 4 figs., 1 tab.

  19. Large-Scale True Triaxial Apparatus for Geophysical Studies in Fractured Rock

    KAUST Repository

    Garcia, A. V.

    2018-05-12

    The study of fractured rock masses in the laboratory remains challenging because of the large specimen sizes and bulky loading systems that are required. This article presents the design, structural analysis, and operation of a compact and self-reacting true triaxial device for fractured rock. The frame subjects a 50 cm by 50 cm by 50 cm fractured rock specimen to a maximum stress of 3 MPa along three independent axes. Concurrent measurements include long-wavelength P-wave propagation, passive acoustic emission monitoring, deformations, and thermal measurements. The device can accommodate diverse research, from rock mass properties and geophysical fractured rock characterizations, to coupled hydro-chemo-thermo-mechanical processes, drilling, and grouting. Preliminary wave propagation data gathered under isotropic and anisotropic stress conditions for an assembly of 4,000 rock blocks demonstrate the system’s versatility and provide unprecedented information related to long-wavelength propagation in fractured rock under various stress anisotropies.

  20. Large-Scale True Triaxial Apparatus for Geophysical Studies in Fractured Rock

    KAUST Repository

    Garcia, A. V.; Rached, R. M.; Santamarina, Carlos

    2018-01-01

    The study of fractured rock masses in the laboratory remains challenging because of the large specimen sizes and bulky loading systems that are required. This article presents the design, structural analysis, and operation of a compact and self-reacting true triaxial device for fractured rock. The frame subjects a 50 cm by 50 cm by 50 cm fractured rock specimen to a maximum stress of 3 MPa along three independent axes. Concurrent measurements include long-wavelength P-wave propagation, passive acoustic emission monitoring, deformations, and thermal measurements. The device can accommodate diverse research, from rock mass properties and geophysical fractured rock characterizations, to coupled hydro-chemo-thermo-mechanical processes, drilling, and grouting. Preliminary wave propagation data gathered under isotropic and anisotropic stress conditions for an assembly of 4,000 rock blocks demonstrate the system’s versatility and provide unprecedented information related to long-wavelength propagation in fractured rock under various stress anisotropies.

  1. 30 CFR 57.7050 - Tool and drill steel racks.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tool and drill steel racks. 57.7050 Section 57... Rotary Jet Piercing Drilling-Surface and Underground § 57.7050 Tool and drill steel racks. Receptacles or racks shall be provided for drill steel and tools stored or carried on drills. ...

  2. Brittleness and Packing Density Effects on Blast-hole Cuttings Yield of Selected Rocks

    Directory of Open Access Journals (Sweden)

    B. Adebayo

    2016-06-01

    Full Text Available This paper evaluates brittleness and packing density to analysis their effects on blast-hole cutting yield for three selected rocks in Nigeria. Brittleness test (S20 was carried out in accordance with Norwegian Soil and Rock Engineering and the Brittleness Index (BI for the selected rocks were estimated. The packing density determined from the photomicrograph of the rock samples. The grain size of 45 blast-holes drill cuttings collected from three selected while drilling of these rocks were determined using standard method of America Society for Testing and Materials (ASTM D 2487. The brittleness values are 50%, 44% and 42% for micro granite, porphyritic granite and medium biotite granite respectively. The result of BI varied from 10.32 – 11.59 and they are rated as moderately brittle rocks. The values of packing density varied from 92.20 – 94.55%, 91.00 -92.96% and 92.92 – 94.96% for all the rocks. The maximum weights of blast-hole particle size retained at 75 µm are 106.00g, 103.28 g and 99.76 g for medium biotite granite, micro granite and porhyritic granite respectively. Packing density values have correlation to some extent with (S20 values hence, this influence the yield of blast-hole cuttings as drilling progresses. The minimum weight of blast-hole cuttings particle size retained at 150 µm agrees with brittleness index classification for micro granite.

  3. A New Method of Stress Measurement Based upon Elastic Deformation of Core Sample with Stress Relief by Drilling

    Science.gov (United States)

    Ito, T.; Funato, A.; Tamagawa, T.; Tezuka, K.; Yabe, Y.; Abe, S.; Ishida, A.; Ogasawara, H.

    2017-12-01

    When rock is cored at depth by drilling, anisotropic expansion occurs with the relief of anisotropic rock stresses, resulting in a sinusoidal variation of core diameter with a period of 180 deg. in the core roll angle. The circumferential variation of core diameter is given theoretically as a function of rock stresses. These new findings can lead various ideas to estimate the rock stress from circumferential variation of core diameter measured after the core retrieving. In the simplest case when a single core sample is only available, the difference between the maximum and minimum components of rock stress in a plane perpendicular to the drilled hole can be estimated from the maximum and minimum core diameters (see the detail in, Funato and Ito, IJRMMS, 2017). The advantages of this method include, (i) much easier measurement operation than those in other in-situ or in-lab estimation methods, and (ii) applicability in high stress environment where stress measurements need pressure for packers or pumping system for the hydro-fracturing methods higher than their tolerance levels. We have successfully tested the method at deep seismogenic zones in South African gold mines, and we are going to apply it to boreholes collared at 3 km depth and intersecting a M5.5 rupture plane several hundred meters below the mine workings in the ICDP project of "Drilling into Seismogenic zones of M2.0 - M5.5 earthquakes in deep South African gold mines" (DSeis) (e.g., http://www.icdp-online.org/projects/world/africa/orkney-s-africa/details/). If several core samples with different orientation are available, all of three principal components of 3D rock stress can be estimated. To realize this, we should have several boreholes drilled in different directions in a rock mass where the stress field is considered to be uniform. It is commonly carried out to dill boreholes in different directions from a mine gallery. Even in a deep borehole drilled vertically from the ground surface, the

  4. Application of Composite Indices for Improving Joint Detection Capabilities of Instrumented Roof Bolt Drills in Underground Mining and Construction

    Science.gov (United States)

    Liu, Wenpeng; Rostami, Jamal; Elsworth, Derek; Ray, Asok

    2018-03-01

    Roof bolts are the dominant method of ground support in mining and tunneling applications, and the concept of using drilling parameters from the bolter for ground characterization has been studied for a few decades. This refers to the use of drilling data to identify geological features in the ground including joints and voids, as well as rock classification. Rock mass properties, including distribution of joints/voids and strengths of rock layers, are critical factors for proper design of ground support to avoid instability. The goal of this research was to improve the capability and sensitivity of joint detection programs based on the updated pattern recognition algorithms in sensing joints with smaller than 3.175 mm (0.125 in.) aperture while reducing the number of false alarms, and discriminating rock layers with different strengths. A set of concrete blocks with different strengths were used to simulate various rock layers, where the gap between the blocks would represent the joints in laboratory tests. Data obtained from drilling through these blocks were analyzed to improve the reliability and precision of joint detection systems. While drilling parameters can be used to detect the gaps, due to low accuracy of the results, new composite indices have been introduced and used in the analysis to improve the detection rates. This paper briefly discusses ongoing research on joint detection by using drilling parameters collected from a roof bolter in a controlled environment. The performances of the new algorithms for joint detection are also examined by comparing their ability to identify existing joints and reducing false alarms.

  5. Effect of diagenesis on pore pressures in fine-grained rocks in the Egersund Basin, Central North Sea

    OpenAIRE

    Kalani, Mohsen; Zadeh, Mohammad Koochak; Jahren, Jens; Mondol, Nazmul Haque; Faleide, Jan Inge

    2015-01-01

    - Pore pressure in fine-grained rocks is important with respect to drilling problems such as kicks, blowouts, borehole instability, stuck pipe and lost circulation. In this study, a succession of overpressured, fine-grained, sedimentary rocks located in the Egersund Basin, Central North Sea, was analysed with respect to mineralogical composition, source-rock maturation and log-derived petrophysical properties to highlight the effect of diagenetic processes on the pore pressure. Pe...

  6. An ultrasonic corer for planetary rock sample retrieval

    International Nuclear Information System (INIS)

    Harkness, P; Cardoni, A; Lucas, M

    2009-01-01

    Several recent and planned space projects have been focussed on surface rovers for planetary missions, such as the U.S. Mars Exploration Rovers and the European ExoMars. The main functions of similar extraterrestrial vehicles in the future will be moving across planetary surfaces and retrieving rock samples. This paper presents a novel ultrasonic rock sampling tool tuned in a longitudinal-torsional mode along with the conceptual design of a full coring apparatus for preload delivery and core removal. Drilling and coring bits have been designed so that a portion of the longitudinal motion supplied by the ultrasonic transducer is converted into torsional motion. Results of drilling/coring trials are also presented.

  7. Aespoe Hard Rock Laboratory. BIPS logging in borehole KAS09

    International Nuclear Information System (INIS)

    Gustafsson, Jaana; Gustafsson, Christer

    2010-01-01

    This report includes the data gained in BIPS logging performed at the Aespoe Hard Rock Laboratory. The logging operation presented here includes BIPS logging in the core drilled borehole KAS09. The objective for the BIPS logging was to observe the condition of KAS09 in order to restore the borehole in the hydrogeological monitoring programme.All measurements were conducted by Malaa Geoscience AB on October 9th 2009. The objective of the BIPS logging is to achieve information of the borehole including occurrence of rock types as well as determination of fracture distribution and orientation. This report describes the equipment used as well as the measurement procedures and data gained. For the BIPS survey, the result is presented as images. The basic conditions of the BIPS logging for geological mapping and orientation of structures are satisfying for borehole KAS09, although induced affects from the drilling on the borehole walls limit the visibility

  8. Aespoe Hard Rock Laboratory. BIPS logging in borehole KAS09

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Jaana; Gustafsson, Christer (Malaa Geoscience AB (Sweden))

    2010-01-15

    This report includes the data gained in BIPS logging performed at the Aespoe Hard Rock Laboratory. The logging operation presented here includes BIPS logging in the core drilled borehole KAS09. The objective for the BIPS logging was to observe the condition of KAS09 in order to restore the borehole in the hydrogeological monitoring programme.All measurements were conducted by Malaa Geoscience AB on October 9th 2009. The objective of the BIPS logging is to achieve information of the borehole including occurrence of rock types as well as determination of fracture distribution and orientation. This report describes the equipment used as well as the measurement procedures and data gained. For the BIPS survey, the result is presented as images. The basic conditions of the BIPS logging for geological mapping and orientation of structures are satisfying for borehole KAS09, although induced affects from the drilling on the borehole walls limit the visibility

  9. Rock sampling. [method for controlling particle size distribution

    Science.gov (United States)

    Blum, P. (Inventor)

    1971-01-01

    A method for sampling rock and other brittle materials and for controlling resultant particle sizes is described. The method involves cutting grooves in the rock surface to provide a grouping of parallel ridges and subsequently machining the ridges to provide a powder specimen. The machining step may comprise milling, drilling, lathe cutting or the like; but a planing step is advantageous. Control of the particle size distribution is effected primarily by changing the height and width of these ridges. This control exceeds that obtainable by conventional grinding.

  10. Drilling technology advances on four fronts

    Energy Technology Data Exchange (ETDEWEB)

    Budd, G.

    2002-01-01

    Trends and advances in drilling technology are discussed. Four different major trends have been identified. One of these is proprietary case drilling which is said to allow operators to simultaneously drill, case, and evaluate oil and gas wells. In proprietary case drilling, the well is drilled with standard oil field casing which remains in the hole all the time, eliminating the need for tripping. Drill bits and other downhole tools are lowered via wireline inside the casing and latched to the last joint of casing. Wells are drilled either by rotating the casing or by using a downhole mud motor for steering, using conventional directional tools. This technology was introduced by Tesco and is marketed in 25 countries along with a full range of drilling products and services. Super single rigs are an other trend which, owing to their versatility, combined with relatively small environmental footprint have become the rig of choice in a growing number of drilling programs. Super single rigs use 45-ft. joints of drill pipe, more versatile top drives and they have an automated pipe handling system. Super singles can be used on both vertical and slant wells and offer advantages of lower costs, higher efficiencies and greater drilling depths. Given their low environmental impact hydraulic capability, super singles also find application where zero disturbance rules are in effect, as for example, in some parts of southern Alberta. Directional drilling and MWD are most associated with SAGD projects but they also have been used and made significant difference in other spheres of oil recovery as well. The fact is that about 35 percent of wells drilled today are drilled with some form of directional drilling; this will stimulate the growth of ever more advanced MWD technology. Northern rigs are in a class of their own in that here the emphasis is on keeping the crew warm, as opposed to lots of gadgets. The most immediately-visible heat-conserving modification is the 60-ft wind

  11. Coiled tubing drilling with supercritical carbon dioxide

    Science.gov (United States)

    Kolle , Jack J.

    2002-01-01

    A method for increasing the efficiency of drilling operations by using a drilling fluid material that exists as supercritical fluid or a dense gas at temperature and pressure conditions existing at a drill site. The material can be used to reduce mechanical drilling forces, to remove cuttings, or to jet erode a substrate. In one embodiment, carbon dioxide (CO.sub.2) is used as the material for drilling within wells in the earth, where the normal temperature and pressure conditions cause CO.sub.2 to exist as a supercritical fluid. Supercritical carbon dioxide (SC--CO.sub.2) is preferably used with coiled tube (CT) drilling equipment. The very low viscosity SC--CO.sub.2 provides efficient cooling of the drill head, and efficient cuttings removal. Further, the diffusivity of SC--CO.sub.2 within the pores of petroleum formations is significantly higher than that of water, making jet erosion using SC--CO.sub.2 much more effective than water jet erosion. SC--CO.sub.2 jets can be used to assist mechanical drilling, for erosion drilling, or for scale removal. A choke manifold at the well head or mud cap drilling equipment can be used to control the pressure within the borehole, to ensure that the temperature and pressure conditions necessary for CO.sub.2 to exist as either a supercritical fluid or a dense gas occur at the drill site. Spent CO.sub.2 can be vented to the atmosphere, collected for reuse, or directed into the formation to aid in the recovery of petroleum.

  12. The condition and ways to develop operations to establish standards for drilling muds in the ''Grozneft''' Union

    Energy Technology Data Exchange (ETDEWEB)

    Baranov, V S; Volkova, A P

    1979-01-01

    Four intervals are strictly defined in the geological section of the sites of ''Grozneft''', which require the use of different types of drilling muds (R). The upper part of the section to the Karagano-Chokraksk sediments inclusively should be drilled with wash through by limestone clay mud, whose use should begin immediately after the lowering of the conducter. The upper Maykop sediments should be drilled with the use of a weighted limestone mud, strictly observing the concentration of the lime and the caustic soda in the mud. In the deposits of the lower Maykop, where the temperature reaches 120/sup 0/C, a gypsum and clay mud should be used, using oxyl for regulating its viscosity. In the deposits of the Upper Cretaceous, for which absorption is characteristic, it is expedient to wash through with water or clay mud, processed by UShchR and bichromate. The deposits of the lower Cretaceous should be drilled with wash through by a gypsum mud, processed by lignosulfonates, where it is recommended to use KSSB-4. The capability is assumed of using chlorocalcium clay mud in drilling the Maykop clays. A condition for the effective use of any types of drilling muds is the improved system for removing drilled out rock from the mud.

  13. Rock History and Culture

    OpenAIRE

    Gonzalez, Éric

    2013-01-01

    Two ambitious works written by French-speaking scholars tackle rock music as a research object, from different but complementary perspectives. Both are a definite must-read for anyone interested in the contextualisation of rock music in western popular culture. In Une histoire musicale du rock (i.e. A Musical History of Rock), rock music is approached from the point of view of the people – musicians and industry – behind the music. Christophe Pirenne endeavours to examine that field from a m...

  14. Evaluating the Relationships Between NTNU/SINTEF Drillability Indices with Index Properties and Petrographic Data of Hard Igneous Rocks

    Science.gov (United States)

    Aligholi, Saeed; Lashkaripour, Gholam Reza; Ghafoori, Mohammad; Azali, Sadegh Tarigh

    2017-11-01

    Thorough and realistic performance predictions are among the main requisites for estimating excavation costs and time of the tunneling projects. Also, NTNU/SINTEF rock drillability indices, including the Drilling Rate Index™ (DRI), Bit Wear Index™ (BWI), and Cutter Life Index™ (CLI), are among the most effective indices for determining rock drillability. In this study, brittleness value (S20), Sievers' J-Value (SJ), abrasion value (AV), and Abrasion Value Cutter Steel (AVS) tests are conducted to determine these indices for a wide range of Iranian hard igneous rocks. In addition, relationships between such drillability parameters with petrographic features and index properties of the tested rocks are investigated. The results from multiple regression analysis revealed that the multiple regression models prepared using petrographic features provide a better estimation of drillability compared to those prepared using index properties. Also, it was found that the semiautomatic petrography and multiple regression analyses provide a suitable complement to determine drillability properties of igneous rocks. Based on the results of this study, AV has higher correlations with studied mineralogical indices than AVS. The results imply that, in general, rock surface hardness of hard igneous rocks is very high, and the acidic igneous rocks have a lower strength and density and higher S20 than those of basic rocks. Moreover, DRI is higher, while BWI is lower in acidic igneous rocks, suggesting that drill and blast tunneling is more convenient in these rocks than basic rocks.

  15. Detailed petrographic descriptions and microprobe data for drill holes USW-G2 and UE25b-1H, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Broxton, D.; Vaniman, D.; Caporuscio, F.; Arney, B.; Heiken, G.

    1982-10-01

    Drill holes USW-G2 and UE25b-1H at Yucca Mountain, Nevada penetrate a thick sequence of volcanic rocks consisting of voluminous ash-flow tuffs, intercalated with thin bedded tuffs and minor lavas. This report provides detailed petrologic descriptions that were summarized in an earlier report. Microprobe analyses of feldspars and mafic phenocrysts as well as secondary feldspars are tabulated for these drill holes for the first time in this report

  16. Selected elements of rock burst state assessment in case studies from the Silesian hard coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Jozef Kabiesz; Janusz Makowka [Central Mining Institute, Katowice (Poland)

    2009-09-15

    Exploitation of coal seams in the Upper Silesian Coal Basin is conducted in complex and difficult conditions. These difficulties are connected with the occurrence of many natural mining hazards and limitations resulting from the existing in this area surface infrastructure. One of the most important problems of Polish mining is the rock burst hazard and reliable evaluation of its condition. During long-years' mining practice in Poland a comprehensive system of evaluation and control of this hazard was developed. In the paper the main aspects of rock burst hazard state evaluation will be presented, comprising: 1) rock mass inclination for rock bursts, i.e., rock strength properties investigation, comprehensive parametric evaluation of rock mass inclination for rock bursts, prognosis of seismic events induced by mining operations, methods of computer-aided modelling of stress and rock mass deformation parameters distribution, strategic rock mass classification under rock burst degrees; 2) immediate seismic and rock burst hazard state evaluation, i.e., low diameter test drilling method, seismologic and seismoacoustic method, comprehensive method of rock burst hazard state evaluation, non-standard methods of evaluation; 3) legal aspects of rock burst hazard state evaluation. Selected elements of the hazard state evaluation system are illustrated with specific practical examples of their application. 11 refs., 14 figs.

  17. Horizontal drilling in a natural gas storage horizon of 4 m thickness using reservoir navigation technology

    Energy Technology Data Exchange (ETDEWEB)

    Bastert, Thomas [E.ON Gas Storage GmbH, Essen (Germany); Liewert, Mathias; Rohde, Uwe [Baker Hughes INTEQ GmbH, Celle (Germany); Haberland, Joachim

    2010-09-15

    With a working gas capacity of 1,44 billion m{sup 3} (Vn) the natural gas storage facility at Bierwang is one of the largest storage facilities of E.ON Gas Storage (in Germany) and also one of the largest porous rock storages in Germany. The natural gas is stored in the tertiary storage horizons of the Chattian Hauptsand and Nebensand. To increase the storage capacity a second development well was planned for the Chattian Nebensand II (approx. 1680 m below ground). Following a comprehensive technical investigation the BW 502 well was planned as a horizontal well intended to provide a 300 m exposed section length through the reservoir. In a first step a pilot well was drilled to examine the Nebensand II which had been explored only to a limited extent before; the pilot well was also to provide accurate data on depth, thickness and dip. The results obtained indicated that the Nebensand II was only 4 m thick instead of 6 m as originally assumed. An azimuthal LWD resistivity tool was therefore used for reservoir navigation to allow horizontal drilling despite the lower thickness found. The technology allowed drilling of the horizontal well over its entire length of 315 m within a max. 1.5 m corridor relative to the reservoir top. Drilling confirmed that the actual formation found corresponded to the reservoir formation plan. Drilling operations were completed successfully. The well has been commissioned in the spring of 2010. (orig.)

  18. Towards the design of new and improved drilling fluid additives using molecular dynamics simulations

    International Nuclear Information System (INIS)

    Anderson, Richard L.; Greenwel, H. Christopher; Suter, James L.; Coveney, Peter V.; Jarvis, Rebecca M.

    2010-01-01

    During exploration for oil and gas, a technical drilling fluid is used to lubricate the drill bit, maintain hydrostatic pressure, transmit sensor readings, remove rock cuttings and inhibit swelling of unstable clay based reactive shale formations. Increasing environmental awareness and resulting legislation has led to the search for new, improved biodegradable drilling fluid components. In the case of additives for clay swelling inhibition, an understanding of how existing effective additives interact with clays must be gained to allow the design of improved molecules. Owing to the disordered nature and nano scope dimension of the interlayer pores of clay minerals, computer simulations have become an increasingly useful tool for studying clay-swelling inhibitor interactions. In this work we briefly review the history of the development of technical drilling fluids, the environmental impact of drilling fluids and the use of computer simulations to study the interactions between clay minerals and swelling inhibitors. We report on results from some recent large-scale molecular dynamics simulation studies on low molecular weight water-soluble macromolecular inhibitor molecules. The structure and interactions of poly(propylene oxide)-diamine, poly(ethylene glycol) and poly(ethylene oxide)-diacrylate inhibitor molecules with montmorillonite clay are studied. (author)

  19. Environmental assessment report to BEPCo Canada Company on exploratory drilling on EL2407

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-19

    BEPCo. Canada Company (BEPCo) is planning to drill exploratory deepwater wells offshore from Nova Scotia. This environmental assessment report was prepared to satisfy regulatory requirements associated with offshore drilling. It focuses on valued environmental components chosen during a scoping process. This report evaluated the potential project-related effects on marine benthos, marine fish, marine mammals, marine turtles, marine birds, special areas, and other ocean users. Discharges and emissions from the project include drilling mud and rock cuttings, small amounts of produced water, ship discharges and atmospheric emissions. This report includes oceanographic plume modelling for allowable discharges of mud and cuttings at sea. The report predicts that the potential adverse effects of the valued environmental components will be short term and highly localized around the drilling rigs. It was suggested that any adverse effects could be mitigated through the use of technically feasible mitigation and standard offshore oil and gas industry procedures for environmental health and safety. It was concluded that BEPCo's proposed drilling program for EL-2407 can be conducted without any significant adverse effects on Nova Scotia's offshore environment. 121 refs., 27 tabs., 24 figs.

  20. The BUK-GPK suspended drilling equipment for the GPK heading machine

    Energy Technology Data Exchange (ETDEWEB)

    1982-11-01

    The BUK-GPK system developed by PechorNIIproekt is used for borehole drilling in rocks with compression strength to 12 degrees on the Protod'yakonov scale. The BUK-GPK is used for drilling boreholes for roof bolts in development workings driven by heading machines under difficult conditions. The GPK heading machine with the BUK-GPK drill is 10 m long, 2.1 m high and 2.1 m wide. A borehole is up to 50 mm in diameter, rotating speed ranges from 170 to 315 rpm. Drillings are removed from a boreholes by flushing using water. The system is equipped with remote control. The BUK-GPK system was tested at the Pechora basin during mine drivage in a coal seam from 1.4 to 1.5 m thick. The BUK-GPK was reliable. It permitted labor productivity and occupational safety during during mine drivage to be increased. Commercial production of the BUK-GPK drill is recommended. (In Russian)

  1. Prediction of sonic flow conditions at drill bit nozzles to minimize complications in UBD

    Energy Technology Data Exchange (ETDEWEB)

    Guo, B.; Ghalambor, A. [Louisiana Univ., Lafayette, LA (United States); Al-Bemani, A.S. [Sultan Qaboos Univ. (Oman)

    2002-06-01

    Sonic flow at drill bit nozzles can complicate underbalanced drilling (UBD) operations, and should be considered when choosing bit nozzles and fluid injection rates. The complications stem from pressure discontinuity and temperature drop at the nozzle. UBD refers to drilling operations where the drilling fluid pressures in the borehole are maintained at less than the pore pressure in the formation rock in the open-hole section. UBD has become a popular drilling method because it offers minimal lost circulation and reduces formation damage. This paper presents an analytical model for calculating the critical pressure ratio where two-phase sonic flow occurs. In particular, it describes how Sachdeva's two-phase choke model can be used to estimate the critical pressure ratio at nozzles that cause sonic flow. The critical pressure ratio charts can be coded in spreadsheets. The critical pressure ratio depends on the in-situ volumetric gas content, or gas-liquid ratio, which depends on gas injection and pressure. 6 refs., 2 tabs., 5 figs.

  2. 30 CFR 77.1007 - Drilling; general.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drilling; general. 77.1007 Section 77.1007 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Control § 77.1007 Drilling; general. (a) Equipment that is to be used during a shift shall be inspected...

  3. Electric motor for laser-mechanical drilling

    Science.gov (United States)

    Grubb, Daryl L.; Faircloth, Brian O.; Zediker, Mark S.

    2015-07-07

    A high power laser drilling system utilizing an electric motor laser bottom hole assembly. A high power laser beam travels within the electric motor for advancing a borehole. High power laser drilling system includes a down hole electrical motor having a hollow rotor for conveying a high power laser beam through the electrical motor.

  4. Neurosurgical robotic arm drilling navigation system.

    Science.gov (United States)

    Lin, Chung-Chih; Lin, Hsin-Cheng; Lee, Wen-Yo; Lee, Shih-Tseng; Wu, Chieh-Tsai

    2017-09-01

    The aim of this work was to develop a neurosurgical robotic arm drilling navigation system that provides assistance throughout the complete bone drilling process. The system comprised neurosurgical robotic arm navigation combining robotic and surgical navigation, 3D medical imaging based surgical planning that could identify lesion location and plan the surgical path on 3D images, and automatic bone drilling control that would stop drilling when the bone was to be drilled-through. Three kinds of experiment were designed. The average positioning error deduced from 3D images of the robotic arm was 0.502 ± 0.069 mm. The correlation between automatically and manually planned paths was 0.975. The average distance error between automatically planned paths and risky zones was 0.279 ± 0.401 mm. The drilling auto-stopping algorithm had 0.00% unstopped cases (26.32% in control group 1) and 70.53% non-drilled-through cases (8.42% and 4.21% in control groups 1 and 2). The system may be useful for neurosurgical robotic arm drilling navigation. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Drilling Fluids Using Multiwall Carbon Nanotube (MWCNT

    Directory of Open Access Journals (Sweden)

    Mostafa Sedaghatzadeh

    2012-11-01

    Full Text Available Designing drilling fluids for drilling in deep gas reservoirs and geothermal wells is a major challenge. Cooling drilling fluids and preparing stable mud with high thermal conductivity are of great concern. Drilling nanofluids, i.e. a low fraction of carbon nanotube (CNT well dispersed in mud, may enhance the mixture thermal conductivity compared to the base fluids. Thus, they are potentially useful for advanced designing high temperature and high pressure (HTHP drilling fluids. In the present study, the impacts of CNT volume fraction, ball milling time, functionalization, temperature, and dispersion quality (by means of scanning electron microscopy, SEM on the thermal and rheological properties of water-based mud are experimentally investigated. The thermal conductivities of the nano-based drilling fluid are measured with a transient hot wire method. The experimental results show that the thermal conductivity of the water-based drilling fluid is enhanced by 23.2% in the presence of 1 vol% functionalized CNT at room temperature; it increases by 31.8% by raising the mud temperature to 50 °C. Furthermore, significant improvements are seen in the rheological properties—such as yield point, filtration properties, and annular viscosity—of the CNTmodified drilling fluid compared to the base mud, which pushes forward their future development.

  6. Basic Land Drills for Swimming Stroke Acquisition

    Science.gov (United States)

    Zhang, Peng

    2014-01-01

    Teaching swimming strokes can be