WorldWideScience

Sample records for drilling activities analise

  1. Activity plan: Directional drilling and environmental measurements while drilling

    International Nuclear Information System (INIS)

    Myers, D.A.

    1998-01-01

    This activity plan describes the testing of directional drilling combined with environmental measurements while drilling at two Hanford Site locations. A cold test is to be conducted at the 105A Mock Tank Leak Facility in the 200 East Area. A hot test is proposed to be run at the 216-B-8 tile field north of the 241-B Tank Farm in 200 East Area. Criteria to judge the success, partial success or failure of various aspects of the test are included. The TWRS program is assessing the potential for use of directional drilling because of an identified need to interrogate the vadose zone beneath the single-shell tanks. Because every precaution must be taken to assure that investigation activities do not violate the integrity of the tanks, control of the drill bit and ability to follow a predetermined drill path are of utmost importance and are being tested

  2. Activity plan: Directional drilling and environmental measurements while drilling

    Energy Technology Data Exchange (ETDEWEB)

    Myers, D.A.

    1998-07-16

    This activity plan describes the testing of directional drilling combined with environmental measurements while drilling at two Hanford Site locations. A cold test is to be conducted at the 105A Mock Tank Leak Facility in the 200 East Area. A hot test is proposed to be run at the 216-B-8 tile field north of the 241-B Tank Farm in 200 East Area. Criteria to judge the success, partial success or failure of various aspects of the test are included. The TWRS program is assessing the potential for use of directional drilling because of an identified need to interrogate the vadose zone beneath the single-shell tanks. Because every precaution must be taken to assure that investigation activities do not violate the integrity of the tanks, control of the drill bit and ability to follow a predetermined drill path are of utmost importance and are being tested.

  3. Thermodynamic analysis of hydrates formation in drilling activities; Analise termodinamica da formacao de hidratos em atividades de perfuracao

    Energy Technology Data Exchange (ETDEWEB)

    Baptista, Joao Marcelo Mussi; Rossi, Luciano Fernando dos Santos; Morales, Rigoberto E.M. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil)], e-mail: joaommussi@yahoo.com.br, e-mail: lfrossi@cefetpr.br, e-mail: rmorales@cefetpr.br

    2006-07-01

    The present work has for objective to present an analysis of hydrates formation in drilling activities. This analysis presents a study of the state conditions for gas hydrates formation in inhibitors containing systems (salts and alcohols, separately). To describe the nonidealities of liquid phase in electrolytic solutions, the activity coefficient model of Debye-Hueckel is used, as [4], and to describe the influence of alcohols in the activity of water, the UNQUAC model is used, as Parrish and Prausnitz. The hydrate phase is described by thermodynamic statistic model of van der Waals and Platteeuw, and the gaseous phase fugacities are modeled by the Peng-Robinson Equation of State. Some results are presented for saline inhibitors, and for methanol and ethyleneglycol. (author)

  4. BESKRYWING VAI'l TEGNIEKE EN CHEMIESE ANALISES VAN ...

    African Journals Online (AJOL)

    afwykings en koefftsiente van variasie tussen monsters en tussen analises binne monsters verstrek. Tussen monsters verteenwoordig die verskille tussen diere en tussen ana- lises binne monsters verteenwoordig die verskille tussen herhalings binne dieselfde monstefS en dui dus die akku- raatheid van die analises aan.

  5. Integral analysis of the drill string dynamic behaviour to optimize drilling operation; Analise integrada do comportamento dinamico da coluna para otimizacao de perfuracao

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Araken [Smith International do Brasil, Macae, RJ (Brazil); Placido, Joao C.R.; Percy, Joseir G.; Falcao, Jose; Freire, Helena; Ono, Eduardo H.; Masculo, Miguel S. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Azuaga, Denise; Frenzel, Mark [Smith International Inc., Houston, TX (United States)

    2008-07-01

    For a performance preview of a drilling system is necessary a dynamic and integrated modeling for understanding all system forces resulting from the combination of the rock strength, cut structure action, drilling parameters, BHA and all others drilling components. This study must predict, for the drill string, vibrations and torsions, from bit to surface, its origins and its effects, and provides the best way to reduce these vibrations, determining the best bit, BHA and drilling parameters. Thereby, this study eliminates the trial and error approach and the operation risks. This paper aims to present studies of optimization for two drilling wells conducted in Brazil, one in Santos Basin and other in Campos Basin, and compares the numerical simulations results with the data from drilling operations. (author)

  6. Drilling to investigate processes in active tectonics and magmatism

    OpenAIRE

    J. Shervais; J. Evans; V. Toy; J. Kirkpatrick; A. Clarke; J. Eichelberger

    2014-01-01

    Coordinated drilling efforts are an important method to investigate active tectonics and magmatic processes related to faults and volcanoes. The US National Science Foundation (NSF) recently sponsored a series of workshops to define the nature of future continental drilling efforts. As part of this series, we convened a workshop to explore how continental scientific drilling can be used to better understand active tectonic and magmatic processes. The workshop, held in Park C...

  7. Differing opinions about natural gas drilling in two adjacent counties with different levels of drilling activity

    International Nuclear Information System (INIS)

    Kriesky, J.; Goldstein, B.D.; Zell, K.; Beach, S.

    2013-01-01

    The pace of development of shale gas plays varies greatly among US states and globally. Through analysis of telephone survey responses, we explore support for natural gas drilling in residents of Washington County (WC), PA (n=502) vs. residents of Allegheny County (AC), PA (n=799). WC has had intense Marcellus Shale (MS) drilling activity, in comparison to adjacent AC, which has had little drilling activity. WC residents are marginally more supportive of MS drilling than are AC residents (p=0.0768). Residents of WC are more likely to perceive MS as an economic opportunity than are AC residents (p=0.0015); to be in a family that has signed a MS lease (p<0.0001); to follow the MS issue closely (p=0.0003); to get MS information from neighbors, friends, and relatives (p<0.0001); and are marginally less likely to perceive MS as an environmental threat (p=0.1090). WC leaseholders are significantly more supportive of MS drilling than WC non-leaseholders and AC non-leaseholders (p=0.0024). Mediation analyses show that county-based differences in support of MS drilling are due to WC residents seeing more of an economic opportunity in the MS and their greater likelihood of having a family-held lease. - Highlights: • Telephone survey analysis of sources of support for Marcellus Shale drilling. • Perceived positive economic impact of drilling drives support among respondents. • Mineral rights leaseholders are significantly more supportive than non-leaseholders

  8. Estimation grade of uranium from drill hole gamma logs

    International Nuclear Information System (INIS)

    Juliao, B.

    1986-01-01

    Radiometric grade of uranium deposits can be determined from drill hole gamma logs. The calculation of uranium oxide content can be obtained with good precision when the uranium ore is in radioactive equilibrium, containing only a small amount of thorium and no interference of potassium. This is the case of uranium ore from the Lagoa Real Uranium Province presented in this paper. The radioactive disequilibrium study in this province were made working over nine hundred samples analised with this special purpose in the CDTN-NUCLEBRAS laboratories. The data obtained indicated that the uranium in the ore is in perfect equilibrium with their daughter gamma emitters. Futhermore, the amount of Th and K is of no significance, so that the gamma counting represents exactly the uranium content of the ore. (author) [pt

  9. Drilling to investigate processes in active tectonics and magmatism

    Science.gov (United States)

    Shervais, J.; Evans, J.; Toy, V.; Kirkpatrick, J.; Clarke, A.; Eichelberger, J.

    2014-12-01

    Coordinated drilling efforts are an important method to investigate active tectonics and magmatic processes related to faults and volcanoes. The US National Science Foundation (NSF) recently sponsored a series of workshops to define the nature of future continental drilling efforts. As part of this series, we convened a workshop to explore how continental scientific drilling can be used to better understand active tectonic and magmatic processes. The workshop, held in Park City, Utah, in May 2013, was attended by 41 investigators from seven countries. Participants were asked to define compelling scientific justifications for examining problems that can be addressed by coordinated programs of continental scientific drilling and related site investigations. They were also asked to evaluate a wide range of proposed drilling projects, based on white papers submitted prior to the workshop. Participants working on faults and fault zone processes highlighted two overarching topics with exciting potential for future scientific drilling research: (1) the seismic cycle and (2) the mechanics and architecture of fault zones. Recommended projects target fundamental mechanical processes and controls on faulting, and range from induced earthquakes and earthquake initiation to investigations of detachment fault mechanics and fluid flow in fault zones. Participants working on active volcanism identified five themes: the volcano eruption cycle; eruption sustainability, near-field stresses, and system recovery; eruption hazards; verification of geophysical models; and interactions with other Earth systems. Recommended projects address problems that are transferrable to other volcanic systems, such as improved methods for identifying eruption history and constraining the rheological structure of shallow caldera regions. Participants working on chemical geodynamics identified four major themes: large igneous provinces (LIPs), ocean islands, continental hotspot tracks and rifts, and

  10. Investigation of active vibration drilling using acoustic emission and cutting size analysis

    Directory of Open Access Journals (Sweden)

    Yingjian Xiao

    2018-04-01

    Full Text Available This paper describes an investigation of active bit vibration on the penetration mechanisms and bit-rock interaction for drilling with a diamond impregnated coring bit. A series of drill-off tests (DOTs were conducted where the drilling rate-of-penetration (ROP was measured at a series of step-wise increasing static bit thrusts or weight-on-bits (WOBs. Two active DOTs were conducted by applying 60 Hz axial vibration at the bit-rock interface using an electromagnetic vibrating table mounted underneath the drilling samples, and a passive DOT was conducted where the bit was allowed to vibrate naturally with lower amplitude due to the compliance of the drilling sample mountings. During drilling, an acoustic emission (AE system was used to record the AE signals generated by the diamond cutter penetration and the cuttings were collected for grain size analysis. The instrumented drilling system recorded the dynamic motions of the bit-rock interface using a laser displacement sensor, a load cell, and an LVDT (linear variable differential transformer recorded the dynamic WOB and the ROP, respectively. Calibration with the drilling system showed that rotary speed was approximately the same at any given WOB, facilitating comparison of the results at the same WOB. Analysis of the experimental results shows that the ROP of the bit at any given WOB increased with higher amplitude of axial bit-rock vibration, and the drill cuttings increased in size with a higher ROP. Spectral analysis of the AEs indicated that the higher ROP and larger cutting size were correlated with a higher AE energy and a lower AE frequency. This indicated that larger fractures were being created to generate larger cutting size. Overall, these results indicate that a greater magnitude of axial bit-rock vibration produces larger fractures and generates larger cuttings which, at the same rotary speed, results in a higher ROP. Keywords: Active bit vibration, Diamond coring drilling, Drill

  11. Active Suppression of Drilling System Vibrations For Deep Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, David W.; Blankenship, Douglas A.; Buerger, Stephen; Mesh, Mikhail; Radigan, William Thomas; Su, Jiann-Cherng

    2015-10-01

    The dynamic stability of deep drillstrings is challenged by an inability to impart controllability with ever-changing conditions introduced by geology, depth, structural dynamic properties and operating conditions. A multi-organizational LDRD project team at Sandia National Laboratories successfully demonstrated advanced technologies for mitigating drillstring vibrations to improve the reliability of drilling systems used for construction of deep, high-value wells. Using computational modeling and dynamic substructuring techniques, the benefit of controllable actuators at discrete locations in the drillstring is determined. Prototype downhole tools were developed and evaluated in laboratory test fixtures simulating the structural dynamic response of a deep drillstring. A laboratory-based drilling applicability demonstration was conducted to demonstrate the benefit available from deployment of an autonomous, downhole tool with self-actuation capabilities in response to the dynamic response of the host drillstring. A concept is presented for a prototype drilling tool based upon the technical advances. The technology described herein is the subject of U.S. Patent Application No. 62219481, entitled "DRILLING SYSTEM VIBRATION SUPPRESSION SYSTEMS AND METHODS", filed September 16, 2015.

  12. Salton Sea Scientific Drilling Project: A summary of drilling and engineering activities and scientific results

    Energy Technology Data Exchange (ETDEWEB)

    Ross, H.P.; Forsgren, C.K. (eds.)

    1992-04-01

    The Salton Sea Scientific g Project (SSSDP) completed the first major well in the United States Continental Scientific Drilling Program. The well (State 2-14) was drilled to 10,W ft (3,220 m) in the Salton Sea Geothermal Field in California's Imperial Valley, to permit scientific study of a deep, high-temperature portion of an active geothermal system. The program was designed to investigate, through drilling and testing, the subsurface thermal, chemical, and mineralogical environments of this geothermal area. Extensive samples and data, including cores, cuttings, geothermal fluids and gases, and geophysical logs, were collected for future scientific analysis, interpretation, and publication. Short duration flow tests were conducted on reservoirs at a depth of approximately 6,120 ft (1,865 m) and at 10,136 ft (3,089 m). This report summarizes all major activities of the SSSDP, from project inception in the fall of 1984 through brine-pond cleanup and site restoration, ending in February 1989. This report presents a balanced summary of drilling, coring, logging, and flow-test operations, and a brief summary of technical and scientific results. Frequent reference is made to original records, data, and publication of results. The report also reviews the proposed versus the final well design, and operational summaries, such as the bit record, the casing and cementing program, and the coring program. Summaries are and the results of three flow tests. Several teamed during the project.

  13. Neutron activation analysis of core and drill cutting samples from geothermal well drilling

    International Nuclear Information System (INIS)

    Miller, G.E.

    1986-01-01

    Samples of sandstones and shales were analysed by instrumental neutron activation analysis for a total of 30 elements. Three irradiation and five counting periods were employed. Solutions and National Bureau of Standards Reference Materials were used for comparison. The samples were obtained from drill cuttings (with a few core samples) from drillings in the Salton Sea geothermal field of California. These determinations form part of a major study to establish elemental variation as a function of mineral variation as depth and temperature in the well vary. The overall goal is to examine mineral alteration and/or element migration under typical geothermal conditions. The techniques involve typical compromises between maximizing precision for individual element determinations and the amount of time and effort that can be expended, as it is desired to examine large numbers of samples. With the limitations imposed by the reactor flux available at the U.C.Irvine TRIGA reactor, the detectors available, and time factors, most precisions are acceptable for geological comparison purposes. Some additional measurements were made by delayed-neutron counting methods to compare with uranium determinations made by conventional instrumental neutron activation analysis methods. (author)

  14. Results of the marine biota monitoring during drilling activity on Campos Basin, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Petta, Claudia Brigagao de; Bastos, Fabio; Danielski, Monica; Ferreira, Mariana; Gama, Mariana; Coelho, Ana Paula Athanazio; Maia, Decio [Aecom do Brasil Ltda, Rio de Janeiro, RJ (Brazil)

    2012-07-01

    The Environmental Monitoring Project (PMA) aims to report environmental changes arising from drilling activity, in relation to the marine fauna. This project can also help in the monitoring of accidental spills. Since the professionals spend six hours of the day monitoring the ocean around the rigs, they can locate and identify oil stains, notify the responsible onboard, and also help in the monitoring of the oil stain. Such Project has been developed onboard a drilling unit working in Campos Basin. The results presented here were collected during the drilling activity in Bijupira and Salema fields, by Shell Brasil Petroleo Ltda, from July 13th to October 8th, 2011.

  15. n Analise van die gemeente as deel van hierdie proses

    African Journals Online (AJOL)

    phase of this subject is the analysis of the situation in the local church. The purpose of the analysis is to syste matically ... planned carefully. This study gives attention to a plan ned situation-analysis of the local church. 1. ...... 6.1.2.5 Die dinkskrum en 'swot'-analise. 'n Dinkskrum is 'n tegniek waar 'n groep soveel as moontlik ...

  16. Machine Shop I. Learning Activity Packets (LAPs). Section D--Power Saws and Drilling Machines.

    Science.gov (United States)

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document contains two learning activity packets (LAPs) for the "power saws and drilling machines" instructional area of a Machine Shop I course. The two LAPs cover the following topics: power saws and drill press. Each LAP contains a cover sheet that describes its purpose, an introduction, and the tasks included in the LAP; learning…

  17. Environmental Measurement-While-Drilling System and Horizontal Directional Drilling Technology Demonstration, Hanford Site

    International Nuclear Information System (INIS)

    Williams, C.V.; Lockwood, G.J.; Normann, R.A.; Myers, D.A.; Gardner, M.G.; Williamson, T.; Huffman, J.

    1999-01-01

    The Environmental Measurement-While-Drilling (EMWD) system and Horizontal Directional Drilling (HDD) were successfully demonstrated at the Mock Tank Leak Simulation Site and the Drilling Technology Test Site, Hanford, Washington. The use of directional drilling offers an alternative to vertical drilling site characterization. Directional drilling can develop a borehole under a structure, such as a waste tank, from an angled entry and leveling off to horizontal at the desired depth. The EMWD system represents an innovative blend of new and existing technology that provides the capability of producing real-time environmental and drill bit data during drilling operations. The technology demonstration consisted of the development of one borehole under a mock waste tank at a depth of approximately minus8 m (minus27 ft.), following a predetermined drill path, tracking the drill path to within a radius of approximately1.5 m (5 ft.), and monitoring for zones of radiological activity using the EMWD system. The purpose of the second borehole was to demonstrate the capability of drilling to a depth of ∼ -21 m (-70 ft.), the depth needed to obtain access under the Hanford waste tanks, and continue drilling horizontally. This report presents information on the HDD and EMWD technologies, demonstration design, results of the demonstrations, and lessons learned

  18. Western Canada drilling cycle optimization

    International Nuclear Information System (INIS)

    2003-06-01

    The oil and gas industry in western Canada operates in annual and seasonal cycles with peak activity periods that require a large skilled labour force for short periods of time. This study examines why seismic and drilling activity is greatest during the first quarter of the year instead of being distributed evenly over the year. The objective of the study was to provide recommendations that would help optimize the industry cycle. The study includes an analysis of historical trends that validate the industry first quarter peaking activity. It also includes interviews with 36 industry representatives and provides insight and validation of trends. The final phase of the report includes recommendations that both industry and governments may wish to implement. The study includes financial, operational and environmental considerations. It was shown that natural gas directed drilling activity is strongly correlated with changes in natural gas prices. In the case of oil drilling activity, peak activity responds to oil prices from the prior quarter. In general, drilling and seismic costs are higher in the winter months because of increased demand for equipment and services. In addition winter drilling operations require a diesel fired boiler to generate steam. 36 refs., 2 tabs., 52 figs

  19. Advanced Drilling through Diagnostics-White-Drilling

    International Nuclear Information System (INIS)

    FINGER, JOHN T.; GLOWKA, DAVID ANTHONY; LIVESAY, BILLY JOE; MANSURE, ARTHUR J.; PRAIRIE, MICHAEL R.

    1999-01-01

    A high-speed data link that would provide dramatically faster communication from downhole instruments to the surface and back again has the potential to revolutionize deep drilling for geothermal resources through Diagnostics-While-Drilling (DWD). Many aspects of the drilling process would significantly improve if downhole and surface data were acquired and processed in real-time at the surface, and used to guide the drilling operation. Such a closed-loop, driller-in-the-loop DWD system, would complete the loop between information and control, and greatly improve the performance of drilling systems. The main focus of this program is to demonstrate the value of real-time data for improving drilling. While high-rate transfer of down-hole data to the surface has been accomplished before, insufficient emphasis has been placed on utilization of the data to tune the drilling process to demonstrate the true merit of the concept. Consequently, there has been a lack of incentive on the part of industry to develop a simple, low-cost, effective high-speed data link. Demonstration of the benefits of DWD based on a high-speed data link will convince the drilling industry and stimulate the flow of private resources into the development of an economical high-speed data link for geothermal drilling applications. Such a downhole communication system would then make possible the development of surface data acquisition and expert systems that would greatly enhance drilling operations. Further, it would foster the development of downhole equipment that could be controlled from the surface to improve hole trajectory and drilling performance. Real-time data that would benefit drilling performance include: bit accelerations for use in controlling bit bounce and improving rock penetration rates and bit life; downhole fluid pressures for use in the management of drilling hydraulics and improved diagnosis of lost circulation and gas kicks; hole trajectory for use in reducing directional

  20. Optimizing drilling performance using a selected drilling fluid

    Science.gov (United States)

    Judzis, Arnis [Salt Lake City, UT; Black, Alan D [Coral Springs, FL; Green, Sidney J [Salt Lake City, UT; Robertson, Homer A [West Jordan, UT; Bland, Ronald G [Houston, TX; Curry, David Alexander [The Woodlands, TX; Ledgerwood, III, Leroy W.

    2011-04-19

    To improve drilling performance, a drilling fluid is selected based on one or more criteria and to have at least one target characteristic. Drilling equipment is used to drill a wellbore, and the selected drilling fluid is provided into the wellbore during drilling with the drilling equipment. The at least one target characteristic of the drilling fluid includes an ability of the drilling fluid to penetrate into formation cuttings during drilling to weaken the formation cuttings.

  1. Appreciation of environmental risks analysis methodologies in the offshore well drilling activities; Analise de metodologias na avaliacao de riscos ambientais relacionados as atividades de perfuracao de pocos maritimos

    Energy Technology Data Exchange (ETDEWEB)

    Zampolli, Daniella M. [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil); Morooka, Celso K. [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Engenharia de Petroleo

    2004-07-01

    Nowadays, the projects of products and processes are supposed to integrate environmental risks criteria, in addition to their inherent operation impacts. Industrial activities, in general, generate risks to the environment, and, in case of incidents occurrence, many of the possible consequences can be translated into serious impacts. The Risk Analysis is destined to act as a decision tool in the environmental area, and therefore, the use of one of these during the project phase of an enterprise becomes important, aiming the guarantee of the system reliability. The present article has the purpose of analyzing methodologies that are being employed for the environmental risk analysis, as well as usual procedures applied in the oil industry, specially for the offshore wells drilling, evaluating and discussing their peculiarities and possible improvement. It was intended to obtain a general overview of risk analysis methodologies, with the objective of verifying the existence of some characteristics that would positively contribute for the knowledge of the inherent risks in the activities of petroleum installations, where this kind of learning is something extremely technically necessary and legally mandatory. (author)

  2. A self propelled drilling system for hard-rock, horizontal and coiled tube drilling

    Energy Technology Data Exchange (ETDEWEB)

    Biglin, D.; Wassell, M.

    1997-12-31

    Several advancements are needed to improve the efficiency and reliability of both hard rock drilling and extended reach drilling. This paper will present a Self Propelled Drilling System (SPDS) which can grip the borehole wall in order to provide a stable platform for the application of weight on bit (WOB) and resisting the reactive torque created by the downhole drilling motor, bit and formation interaction. The system will also dampen the damaging effects of drill string vibration. This tool employs two hydraulically activated anchors (front and rear) to grip the borehole wall, and a two-way thrust mandrel to apply both the drilling force to the bit, and a retraction force to pull the drill string into the hole. Forward drilling motion will commence by sequencing the anchor pistons and thrust mandrel to allow the tool to walk in a stepping motion. The SPDS has a microprocessor to control valve timing, sensing and communication functions. An optional Measurement While Drilling (MWD) interface can provide two-way communication of critical operating parameters such as hydraulic pressure and piston location. This information can then be telemetered to the surface, or used downhole to autonomously control system parameters such as anchor and thrust force or damping characteristics.

  3. U.S. drilling contractors could face stiff challenges

    International Nuclear Information System (INIS)

    Simmons, M.R.

    1993-01-01

    Although the outlook for most segments of the contract drilling business is now more optimistic than in the past decade, the increased activity has brought several problems: the availability of fully trained crews, the need for new capital, and the limited number of quality drillstrings. These problems will grow in importance if natural gas deliverability begins to decline visibly and once the scramble to correct this decline begins. As the drilling recovery unfolds, the most important lesson to remember, based on worldwide activity in the past year, is how rapidly conditions can change and how quickly excess capacity can turn into chronic shortages. The various segments of the world wide contract drilling industry's prospects have changed dramatically during the past 12 months, and oddly, some market sectors have improved while others have become worse. These quick changes highlight the unpredictable and volatile nature of the markets for contract drilling and other services needed to drill and complete oil and gas wells. The paper describes the business of well drilling onshore and offshore in the US, drilling activities in Canada, international markets, capacity, the supplies of natural gas, Gulf of Mexico activities, drill pipe shortages, manpower shortages, and challenges offshore

  4. Well drilling by rotary percussive drill above ground

    International Nuclear Information System (INIS)

    Sabatier, G.

    1987-01-01

    Originally, the Well Drilling Section of Cogema used only the diamond core drilling technique. The appearance of independent rotation for compressed air rock drills has led to the use and to the development of this drilling system, as a drill core is not indispensable, when the material of the search is radioactive. During the last few years, hydraulic drills have replaced the compressed air drills and have resulted in a very marked improvement: - of the penetration rates; - of the depth achieved. The Well Drilling Section of Cogema has to drill about 400 km per year with rock drills above ground and holds also the record for depth achieved with this technique, i.e. 400 m in granite. In France, the costs of these types of drilling are for the same depth of the order of one-quarter of the core drilling and half of the drilling with a down-the-hole drill. Cogema has greatly developed the types of well logging which now permits the extension of this type of drilling to the search for other materials than uranium [fr

  5. Economic environmental management of drilling operations

    International Nuclear Information System (INIS)

    Longwell, H.J.; Akers, T.J.

    1992-01-01

    This paper presents significant environmental and regulatory initiatives developed by Exxon's New Orleans Drilling Organization. Specifically, the paper will cover drilling waste minimization techniques and disposal options, recycling of drilling waste streams, and environmentally managed drilling location design considerations. The implementation of some of these initiatives at Exxon's Chalkley field land locations have resulted in a fifty percent reduction in drilling location waste management costs. Some of these same initiatives have been successfully applied to Exxon's barge drilling locations. For operations at the environmentally sensitive Mobile Bay, Exxon contracted with a local company and assisted in the development of an economically and environmentally superior drilling waste disposal and treatment system. In summary, it is possible for drilling operators to pro-actively manage escalating environmental and regulatory challenges through the implementation of economic and practical initiatives

  6. Drilling supervision procedure for the Exploratory Shaft Facility: Final draft

    International Nuclear Information System (INIS)

    1986-11-01

    Drilling supervision will be undertaken in the Exploratory Shaft Facility (ESF) for boreholes drilled primarily for the purpose of hydrologic testing, downhole mechanical/thermal testing, sampling for laboratory testing, and for the placement of instrumentation. The primary purpose of this procedure is documentation of drilling activities prescribed by other procedures. Supervision of drilling includes designation of positions of authority, lines of communication, and methodology of supervising, monitoring, and documenting drilling and associated activities. The rationale for the specific applications of core drilling is provided by the test procedures for each activity. 2 figs

  7. Study for increasing micro-drill reliability by vibrating drilling

    International Nuclear Information System (INIS)

    Yang Zhaojun; Li Wei; Chen Yanhong; Wang Lijiang

    1998-01-01

    A study for increasing micro-drill reliability by vibrating drilling is described. Under the experimental conditions of this study it is observed, from reliability testing and the fitting of a life-distribution function, that the lives of micro-drills under ordinary drilling follow the log-normal distribution and the lives of micro-drills under vibrating drilling follow the Weibull distribution. Calculations for reliability analysis show that vibrating drilling can increase the lives of micro-drills and correspondingly reduce the scatter of drill lives. Therefore, vibrating drilling increases the reliability of micro-drills

  8. Review of casing while drilling technology

    Directory of Open Access Journals (Sweden)

    Pavković Bojan

    2016-01-01

    Full Text Available Conventional drilling methods have been plagued with huge operational and financial challenges, such as cost of purchasing, inspecting, handling, transporting the drill equipment and most importantly, tripping in-and-out of the drill string whenever the Bottom Hole Assembly (BHA needs a replacement, needs of wiper trip or when total depth is reached. The tripping in-and-out of the drill string not only contributes to Non Productive Time (NPT but also leads to well control difficulties including wellbore instability and lost circulation. All this has led Oil and Gas industry, as well as any other engineering industry, to seek for new ways and methods in order to reduce these problems. Thanks to the advances in technical solutions and constant improvements of conventional drilling methods, a new drilling method - casing while drilling has been developed. Casing Drilling encompasses the process of simultaneously drilling and casing a well, using the active casing and thus optimizes the production. This paper presents a review of casing while drilling method (CwD and its practical usage in drilling wells. The comparison of conventional drilling method and casing while drilling is also presented. The CwD method achieves significantly better results than conventional drilling method.

  9. Probabilistic risk analysis of casing drilling operation for an onshore Brazilian well; Analise probabilistica de risco de uma operacao de casing drilling para um poco terrestre no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Jacinto, Carlos M.C.; Petersen, Flavia C.; Placido, Joao C.R. [PETROBRAS, Rio de Janeiro, RJ (Brazil); Garcia, Pauli A.A. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil)

    2008-07-01

    In the present paper, one presents an approach to hazard identification and risks quantification concerning the use of retrievable BHA, of a casing drilling system, in 12 1/4 phase of an onshore well. The adopted approach can be subdivided as: execution of a hazard and operability study; prioritization of critical deviance; modeling of critical deviance by mean of event sequence diagram, fault tree and Bayesian network; modeling and simulation of a dynamic decision tree and experts' opinion analysis. As results, one has obtained: the time distribution to achieve the different ends modeled in the decision tree, i.e., sidetrack, or operation canceling, or success; the probabilities to achieve each modeled end and all recommendation to improve the success probability. The approach proved to be efficient in order that it presents significant results to support the decisions involving the casing drilling operations. (author)

  10. Drilling for scientific purpose

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Shoichi

    1987-09-01

    Drilling for scientific purpose is a process of conducting geophysical exploration at deep underground and drilling for collecting crust samples directly. This is because earth science has advanced to get a good understanding about the top of the crust and has shifted its main interest to the lower layer of the crust in land regions. The on-land drilling plan in Japan has just started, and the planned drilling spots are areas around the Minami River, Hidaka Mts., kinds of the Mesozoic and Cenozoic granite in outside zone, the extension of Japan Sea, Ogasawara Is., Minami-Tori Is., and active volcanos. The paper also outlines the present situation of on-land drilling in the world, focusing on the SG-3rd super-deep well SG-3 on the Kola Peninsula, USSR, Satori SG-1st well SG-1 in Azerbaidzhan S.S.R, V.S.S.R, Sweden's wells, Cyprus' wells, Bayearn well Plan in West Germany, and Salton Sea Scientific Drilling Program in the U.S. At its end, the paper explains the present situation and the future theme of the Japanese drilling technique and points out the necessity of developing equipment, and techniques. (14 figs, 5 tabs, 26 refs)

  11. The Swedish Deep Drilling Program - an emerging scientific drilling program and new infrastructure.

    Science.gov (United States)

    Lorenz, Henning; Juhlin, Christopher

    2010-05-01

    Arc Systems" (PaMVAS), "Concentric Impact Structures in the Palaeozoic - the Lockne and Siljan craters" (CISP), and "Svecofennian accretion, an example of the early Structural Evolution in a Large Hot Orogen" (SELHO). More information on each drilling project is available at SDDP's website (http://www.sddp.se/'projectabbreviation'), where also the Science & Technology Plan is publicly available. The Nordic perspective: Recently, the researchers network "Scientific Drilling in the Nordic Countries" has been funded for three years by NordForsk, the Nordic Council of Minister's advisory board on research strategy (http://www.nordforsk.org). The aim of the network is to consolidate the competence and experience from past and present (and future) scientific drilling projects in the Nordic countries, and to propagate it to the scientific community. Within the scope of the researchers network, workshops and excursions will be tightly coupled to on-going scientific projects and bring together experts, experienced scientists and novices for knowledge exchange and transfer. The participation of all the Nordic countries and the ambitious drilling projects in their diverse geological settings - from the Archaean shield to active volcanoes - form an ideal basis for engaging and successful collaboration over many years to come.

  12. Geothermal wells: a forecast of drilling activity

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G.L.; Mansure, A.J.; Miewald, J.N.

    1981-07-01

    Numbers and problems for geothermal wells expected to be drilled in the United States between 1981 and 2000 AD are forecasted. The 3800 wells forecasted for major electric power projects (totaling 6 GWe of capacity) are categorized by type (production, etc.), and by location (The Geysers, etc.). 6000 wells are forecasted for direct heat projects (totaling 0.02 Quads per year). Equations are developed for forecasting the number of wells, and data is presented. Drilling and completion problems in The Geysers, The Imperial Valley, Roosevelt Hot Springs, the Valles Caldera, northern Nevada, Klamath Falls, Reno, Alaska, and Pagosa Springs are discussed. Likely areas for near term direct heat projects are identified.

  13. Technology strategy for cost-effective drilling and intervention; Technology Target Areas; TTA4 - Cost effective drilling and intervention

    Energy Technology Data Exchange (ETDEWEB)

    2007-07-01

    The main goals of the OG21 initiative are to (1) develop new technology and knowledge to increase the value creation of Norwegian oil and gas resources and (2) enhance the export of Norwegian oil and gas technology. The OG21 Cost-effective Drilling and Intervention (CEDI) Technology Target Area (TTA) has identified some key strategic drilling and well intervention needs to help meet the goals of OG21. These key strategic drilling and well intervention needs are based on a review of present and anticipated future offshore-Norway drilling and well intervention conditions and the Norwegian drilling and well intervention industry. A gap analysis has been performed to assess the extent to which current drilling and well intervention research and development and other activities will meet the key strategic needs. Based on the identified strategic drilling and well intervention needs and the current industry res each and development and other activities, the most important technology areas for meeting the OG21 goals are: environment-friendly and low-cost exploration wells; low-cost methods for well intervention/sidetracks; faster and extended-reach drilling; deep water drilling, completion and intervention; offshore automated drilling; subsea and sub-ice drilling; drilling through basalt and tight carbonates; drilling and completion in salt formation. More specific goals for each area: reduce cost of exploration wells by 50%; reduce cost for well intervention/sidetracks by 50%; increase drilling efficiency by 40%; reduce drilling cost in deep water by 40 %; enable offshore automated drilling before 2012; enable automated drilling from seabed in 2020. Particular focus should be placed on developing new technology for low-cost exploration wells to stem the downward trends in the number of exploration wells drilled and the volume of discovered resources. The CEDI TTA has the following additional recommendations: The perceived gaps in addressing the key strategic drilling and

  14. Study on a Mechanical Semi-Active Heave Compensation System of Drill String for Use on Floating Drilling Platform

    Science.gov (United States)

    Liu, Qingyou; Tang, Yang; Huang, Chongjun; Xie, Chong

    2015-01-01

    There are some disadvantages for existing heave compensation systems of drill string used for the Floating Drilling Platform (FDP), including high energy consumption, large and complex structure, and expensive manufacturing and maintenance costs. In view of the above, we present a streamlined mechanical semi-active heave compensation system (MSAHC) in this study. This system consists of active compensation part with the pinion and rack and passive compensation part. In order to evaluate system performance of the MSAHC, we establish its simulation model with AMEsim software. In the process of simulation, displacement of rotary hook and energy consumption is regarded as performance parameters of the system. And the change rule of two performance parameters are analyzed by changing these design parameters including gear radius of the pinion and rack, scale coefficient of PID, rotary hook load, heave height and heave period of the FDP, and accumulator volume. Then, based on the simulation results of the MSAHC system performance, we have selected out a best set of design parameters from them. Moreover, the feasibility of the design scheme of the MSAHC is effectively verified by comparison with the existing three heave compensation system. The result shows that the energy consumption of the MSAHC is lower than the active heave compensation system (AHC) and the semi-active heave compensation system (SAHC) when achieving a same compensation effect as well as the accumulator volume of MSAHC is half of the passive heave compensation system (PHC). Therefore, the new designed MSAHC not only ensure compensation effect but also lower energy consumption, and its structure is simplified by adopting the simple mechanical structure to decrease manufacturing cost, maintenance cost and floor space. PMID:26186620

  15. Automatic real time drilling support on Ekofisk utilizing eDrilling

    Energy Technology Data Exchange (ETDEWEB)

    Rommetveit, Rolv; Bjorkevoll, Knut S.; Halsey, George W.; Kluge, Roald; Molde, Dag Ove; Odegard, Sven Inge [SINTEF Petroleum Research, Trondheim (Norway); Herbert, Mike [HITEC Products Drilling, Stavanger (Norway); ConocoPhillips Norge, Stavanger (Norway)

    2008-07-01

    eDrilling is a new and innovative system for real time drilling simulation, 3D visualization and control from a remote drilling expert centre. The concept uses all available real time drilling data (surface and downhole) in combination with real time modelling to monitor and optimize the drilling process. This information is used to visualize the wellbore in 3D in real time. eDrilling has been implemented in an Onshore Drilling Center in Norway. The system is composed of the following elements, some of which are unique and ground-breaking: an advanced and fast Integrated Drilling Simulator which is capable to model the different drilling sub-processes dynamically, and also the interaction between these sub-processes in real time; automatic quality check and corrections of drilling data; making them suitable for processing by computer models; real time supervision methodology for the drilling process using time based drilling data as well as drilling models / the integrated drilling simulator; methodology for diagnosis of the drilling state and conditions. This is obtained from comparing model predictions with measured data. Advisory technology for more optimal drilling. A Virtual Wellbore, with advanced visualization of the downhole process. Dat low and computer infrastructure. e-Drilling has been implemented in an Onshore Drilling Center on Ekofisk in Norway. The system is being used on drilling operations, and experiences from its use are presented. The supervision and diagnosis functionalities have been useful in particular, as the system has given early warnings on ECD and friction related problems. This paper will present the eDrilling system as well as experiences from its use. (author)

  16. Drilling history of core hole DB-15

    International Nuclear Information System (INIS)

    Diediker, L.D.; Ledgerwood, R.K.

    1980-09-01

    This core hole was drilled to obtain hydrologic and chemical data on the permeable zones of the Saddle Mountains and Wanapum Formations. These data were obtained by testing the zones that were penetrated during drilling. This testing-as-drilled method reduced the potential problems of interflow and water contamination. This report summarizes the drilling and coring operations; geologic logging, hydrologic testing, and geophysical logging activities; and cementing operations of DB-15 during drilling. The successful completion of DB-15 demonstrated that hydrologic testing can be conducted during core drilling operations. More reliable head measurements and uncontaminated representative water samples from isolated permeable zones, which have not been exposed to potential open borehole cross-flow and head equilibration problems, were benefits derived from the testing-as-drilled method. Disadvantages of the technique were a longer time to complete the borehole caused by time required for testing and increased drilling costs due to rig standby time during testing. Extension of the testing-as-drilled method to the drilling of future core holes is recommended. An evaluation should be made of the required hydrologic data and expected borehole stratigraphy before and during drilling to allow uninterrupted drilling in zones of low permeability that can be tested after drilling is complete

  17. New drilling optimization technologies make drilling more efficient

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D.C.-K. [Halliburton Energy Services, Calgary, AB (Canada). Sperry Division

    2004-07-01

    Several new technologies have been adopted by the upstream petroleum industry in the past two decades in order to optimize drilling operations and improve drilling efficiency. Since financial returns from an oil and gas investment strongly depend on drilling costs, it is important to reduce non-productive time due to stuck pipes, lost circulation, hole cleaning and well bore stability problems. The most notable new technologies are the use of computer-based instrumentation and data acquisition systems, integrated rig site systems and networks, and Measurement-While-Drilling and Logging-While-Drilling (MWD/LWD) systems. Drilling optimization should include solutions for drillstring integrity, hydraulics management and wellbore integrity. New drilling optimization methods emphasize information management and real-time decision making. A recent study for drilling in shallow water in the Gulf of Mexico demonstrates that trouble time accounts for 25 per cent of rig time. This translates to about $1.5 MM U.S. per well. A reduction in trouble time could result in significant cost savings for the industry. This paper presents a case study on vibration prevention to demonstrate how the drilling industry has benefited from new technologies. 13 refs., 10 figs.

  18. Casing drilling

    Energy Technology Data Exchange (ETDEWEB)

    Heenan, D. [Tesco Corp., Calgary, AB (Canada)

    2003-07-01

    This paper reviewed the experience that Tesco has gained by drilling several wells using only casings as the drill stem. Tesco has manufactured a mobile and compact hydraulic drilling rig called the Casing Drilling {sup TM} system. The system could be very effective and efficient for exploration and development of coalbed methane (CBM) reserves which typically require extensive coring. Continuous coring while drilling ahead, along wire line retrieval, can offer time savings and quick core recovery of large diameter core which is typically required for exploration core desorption tests. The proposed system may also have the potential to core or drill typically tight gas sands or underbalanced wells with air or foam. This would reduce drilling fluid damage while simultaneously finding gas. Compared to conventional drill pipes, Casing Drilling {sup TM} could also be effective with water production from shallow sands because of the smaller annual clearance which requires less air volumes to lift any produced water. 9 figs.

  19. Drilling in troubled waters. For an international regulation on offshore gas and oil activities

    International Nuclear Information System (INIS)

    Rochette, Julien

    2014-01-01

    Due to an increased energy demand, offshore activities are being extended to deep and ultra-deep waters: nearly one third of consumed oil and one quarter of consumed gas come from offshore drilling. This development threatens the environment and natural resources, and may have an impact on human activities which depend on the concerned ecosystems. As some accident had cross-border consequences, the relevance of the international regulatory framework is put into question again. This article first outlines the incomplete character of the legal framework for the safety of offshore activities: uncoordinated national systems, lack of an international convention, fragmented regional initiatives (some agreements exist for some specific regions: Arctic Sea, Baltic Sea, Mediterranean Sea, North-Eastern Atlantic, Persic Gulf and Oman Sea, Africa, western Indian Ocean). The author outlines that there is no international rules regarding responsibility and compensations. While highlighting the risks of a status-quo on these different issues, the author proposes and discusses a set of recommendations aimed at strengthening the regulation of offshore drilling activities

  20. Coalbed natural gas exploration, drilling activities, and geologic test results, 2007-2010

    Science.gov (United States)

    Clark, Arthur C.

    2014-01-01

    The U.S. Geological Survey, in partnership with the U.S. Bureau of Land Management, the North Slope Borough, and the Arctic Slope Regional Corporation conducted a four-year study designed to identify, define, and delineate a shallow coalbed natural gas (CBNG) resource with the potential to provide locally produced, affordable power to the community of Wainwright, Alaska. From 2007 through 2010, drilling and testing activities conducted at three sites in or near Wainwright, identified and evaluated an approximately 7.5-ft-thick, laterally continuous coalbed that contained significant quantities of CBNG. This coalbed, subsequently named the Wainwright coalbed, was penetrated at depths ranging from 1,167 ft to 1,300 ft below land surface. Core samples were collected from the Wainwright coalbed at all three drill locations and desorbed-gas measurements were taken from seventeen 1-ft-thick sections of the core. These measurements indicate that the Wainwright coalbed contains enough CBNG to serve as a long-term energy supply for the community. Although attempts to produce viable quantities of CBNG from the Wainwright coalbed proved unsuccessful, it seems likely that with proper well-field design and by utilizing currently available drilling and reservoir stimulation techniques, this CBNG resource could be developed as a long-term economically viable energy source for Wainwright.

  1. A vision for drilling

    Energy Technology Data Exchange (ETDEWEB)

    Millheim, K. [Montanuniversitaet Leoben (Austria)

    1995-12-31

    The future of drilling lies in its relationship with the oil and gas industry. This paper examines how the future of drilling is seen from the view point of the exploration manager, the drilling contractor, the drilling engineer and the company president or managing director. The various pressures on the oil and gas industry are examined, such as environmental issues, alternative energy sources, and the price of oil which determines how companies are run. Exploration activity is driven by the price of oil and gas. The development of wells with multiple horizontal wells or multiple horizontal wells with tributaries will reduce the cost of exploration. Companies will rely less and less on reservoir simulation and more on cheap well-bores, multi-lateral well-bores and will exploit oil that could not be exploited before. The cost of exploratory drilling will need to be kept down so that in the future the industry will get better at economically finding fields at the 10 million to 20 million barrel range that would not have been possible before. The future is expected to see drilling contractors tunnelling, making sewerage lines and drilling 10,000 foot wells with purpose built rigs. Franchising will become a feature of the industry as will the use of databases to answer key technical questions. Offshore platforms will be built to be moveable and disposable. The industry is capable of solving problems, meeting challenges and making ideas work, providing much hope for the future. 10 figs., 1 photo.

  2. Importance of drill string assembly swivel in horizontal drilling

    Directory of Open Access Journals (Sweden)

    Edmund Tasak

    2006-10-01

    Full Text Available A part of the drill string – the swivel (rotational connector – accomplishes an important task in the horizontal drilling. Its malfunctioning makes it impossible to draw in ( install large diameter and length pipelines. The causes of the connector break-down during the horizontal drilling are investigated in the paper. The drilling has been made for twenty inches gas pipeline installation during reaming operations. A trouble was encountered making good work conditions of a system consisting of the drilling machine drill string reamer swivel tube shield of Cardan joint and the gas pipeline 500 m long. In this case, the swivel brokes down and the planned operation was not finished. The assessment of improper drilling conditions, selection of operation system components, and drilling parameters and the insufficient technological supervising have created an excessive risk of failure. A proper application of technical analysis would considerably decrease the hazard of failure which cause large costs, delays and decrease of confidence to the drilling contractor and pipeline installation.

  3. Drilling comparison in "warm ice" and drill design comparison

    DEFF Research Database (Denmark)

    Augustin, L.; Motoyama, H.; Wilhelms, F.

    2007-01-01

    For the deep ice-core drilling community, the 2005/06 Antarctic season was an exciting and fruitful one. In three different Antarctic locations, Dome Fuji, EPICA DML and Vostok, deep drillings approached bedrock (the ice-water interface in the case of Vostok), emulating what had previously been...... achieved at NorthGRIP, Greenland, (summer 2003 and 2004) and at EPICA Dome C2, Antarctica (season 2004/05). For the first time in ice-core drilling history, three different types of drill (KEMS, JARE and EPICA) simultaneously reached the depth of 'warm ice' under high pressure. After excellent progress...... at each site, the drilling rate dropped and the drilling teams had to deal with refrozen ice on cutters and drill heads. Drills have different limits and perform differently. In this comparative study, we examine depth, pressure, temperature, pump flow and cutting speed. Finally, we compare a few...

  4. Development of vertical drilling apparatus (Terra-Drill); Entwicklung eines Vertikal-Bohrgeraets (Terra-Drill) - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Jenne, D.

    2009-05-15

    This well-illustrated final report for the Swiss Federal Office of Energy (SFOE) reports on the development of a vertical drilling apparatus named Terra-Drill. The various stages of the development of the apparatus, which is based on earlier designs, is discussed. New norms issued in Germany for the size of boreholes for buried vertical heat-exchangers and the appropriate linings to be used are discussed. The new Terra Drill 4407 V drilling apparatus and its testing are discussed. The drill is quoted as being particularly suitable for cramped locations. Technical details are presented and a comprehensive collection of photographs is included. Various preliminary reports and development documentation are included.

  5. Drilling bits for deep drilling and process for their manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Rhode, H.; Juergens, R.; Feenstra, R.; Busking, B.E.

    1978-11-30

    The invention concerns a drilling head or a drilling bit for use in deep drilling in underground formations and particularly concerns a drilling bit with a drilling bit body, which has a shank and a hollow space, which is connected with a duct extending through the shank. The drilling bit body has several separate cutting elements for removing material from the floor of a borehole and hydraulic devices for cooling and/or cleaning the cutting elements are provided.

  6. Study of the radon released from open drill holes

    International Nuclear Information System (INIS)

    Pacer, J.C.

    1981-06-01

    The radon emanating from three open drill holes was measured at a site of known uranium mineralization in the Red Desert of south central Wyoming. The radon flux from the soil and drill holes was measured by the accumulator method with activated charcoal cartridges. The surface soil was found to release radon at an average rate of 0.41 atoms/cm 2 /sec; the radon emanating from the holes was more variable than that from the soil. The three holes studied released an average of 47 atoms/cm 2 /sec of radon. This average is equivalent to the radon released to the atmosphere by 14.5 ft 2 of soil. The data indicate that the radon emanated from an open drill hole is not as significant as other possible activities at a drill site (i.e. digging a trench or drilling a hole) or from household activities involving the usage of water

  7. U.S. drilling: Solid reasons for optimism

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    One year ago, it was apparent that 1996 would be a better year for drilling in the US, primarily because 1995 performance was lower than expected due to low oil and natural gas prices in mid-year during the peak drilling season. Improving energy prices last year did spur more drilling, and a 2.9% increase to a total 23,560 wells is estimated for 1996. This year should show an even stronger increase, as the US gas market remains attractive and industry's perception is that crude prices are stabilizing at higher levels, i.e., $20--25, instead of $15--20. The US rotary rig count followed the price up, from a low near 700 in January/February to slightly over 850 in December. To drill the expected wells this year will require an average number at the 850 level. Operators are investing more in their established oil producing areas to take advantage of improved cast flows. This will generate higher activity nearly everywhere. Gas drilling activity will be more geographical, depending on transport availability to surging winter markets and Canadian competition. The US, and world, hot spot is the Gulf of Mexico led by renewed activity on the shelf and an exciting new deepwater play. The expected activity surge has already taxed a service industry that has not yet upgraded its capacity from the long downturn. And spot shortages will temper the activity rise, particularly offshore. The following discussion and six statistical presentations detail these basic concepts and other key factors

  8. Method for monitoring drilling materials for gamma ray activity

    International Nuclear Information System (INIS)

    Smith, H.D. Jr.; Arnold, D.M.; Schultz, W.E.

    1985-01-01

    In the preferred and illustrated embodiment taught herein, method steps for monitoring of raw materials to be used in drilling mud are disclosed. The materials are monitored for radioactivity. Procedures for taking such measurements are disclosed, and the extent of gamma radioactivity in the raw materials used in drilling mud is, determined. This is correlated to the increased radiation attributable to mud made from these materials and the effect the mud would have on gamma ray measuring logs. An alternate procedure for testing drilling mud, typically at the well site, is also disclosed. The method detects mud radioactivity from any additives including barite, potassium chloride, well cuttings or others. Excessive background levels due to mud gamma radioactivity in a well may very well mask the data obtained by various logging procedures dependent on gamma radiation. Procedures are also described for either rejecting mud which is too radioactive or correcting the log measurements for mud effects

  9. Development of a probe by neutron activation for chemical analysis in drillings

    International Nuclear Information System (INIS)

    Baron, J.P.; Carriou, J.; Alexandre, J.; Pinault, J.L.; Dumas, A.; Huet, D.; Collins, V.

    1983-01-01

    Laboratory studies on simulated drillings have been made and compared to calculations on mathematical models. A probe design has been developed with the Laboratory of Ponts et Chaussees. The probe has been tested in-situ on polymetallic sulfide mineralization. The study of the activation gamma allowed to log copper, iron, silicon and potassium. A very feasibility of neutronic activation has been proved during these three years. At the end of this optimization phase, the mining operators will have a device able to give them in real time informations necessary to control their operations [fr

  10. Drilling and testing hot, high-pressure wells

    Energy Technology Data Exchange (ETDEWEB)

    MacAndrew, R. (Ranger Oil Ltd, Aberdeen (United Kingdom)); Parry, N. (Phillips Petroleum Company United Kingdom Ltd, Aberdeen (United Kingdom)); Prieur, J.M. (Conoco UK Ltd, Aberdeen (United Kingdom)); Wiggelman, J. (Shell UK Exploration and Production, Aberdeen (United Kingdom)); Diggins, E. (Brunei Shell Petroleum (Brunei Darussalam)); Guicheney, P. (Sedco Forex, Montrouge (France)); Cameron, D.; Stewart, A. (Dowell Schlumberger, Aberdeen (United Kingdom))

    Meticulous planning and careful control of operations are needed to safely drill and test high-temperature, high-pressure (HTHP) wells. Techniques, employed in the Central Graben in the UK sector of the North Sea, where about 50 HTHP wells have been drilled, are examined. Three main areas of activity are covered in this comprehensive review: drilling safety, casing and cementation, and testing. The three issues at the heart of HTHP drilling safety are kick prevention, kick detection and well control. Kicks are influxes of reservoir fluid into the well. Test equipment and operations are divided into three sections: downhole, subsea and surface. Also details are given of how this North Sea experience has been used to help plan a jackup rig modification for hot, high-pressure drilling off Brunei. 16 figs., 32 refs.

  11. Drilling and testing specifications for the McGee well

    International Nuclear Information System (INIS)

    Patterson, J.K.

    1982-01-01

    The McGee Well is a part of the Basalt Waste Isolation Project's subsurface site selection and characterization activities. Information from the McGee Well support site hydrologic characterization and repository design. These test specifications include details for the drilling and testing of the McGee. It includes the predicted stratigraphy, the drilling requirements, description of tests to be conducted, intervals selected for hydrologic testing, and a schedule of the drilling and testing activities. 19 refs., 10 figs., 7 tabs

  12. CASING DRILLING TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    2005-12-01

    Full Text Available Casing drilling is an alternative option to conventional drilling and uses standard oilfield casing instead of drillstring. This technology is one of the greatest developments in drilling operations. Casing drilling involves drilling and casing a well simultaneously. In casing driling process, downhole tools can be retrieved, through the casing on wire-line, meaning tool recovery or replacement of tools can take minutes versus hours under conventional methods. This process employs wireline-retrievable tools and a drill-lock assembly, permitting bit and BHA changes, coring, electrical logging and even directional or horizontal drilling. Once the casing point is reached, the casing is cemented in place without tripping pipe.

  13. HIGH-POWER TURBODRILL AND DRILL BIT FOR DRILLING WITH COILED TUBING

    Energy Technology Data Exchange (ETDEWEB)

    Robert Radtke; David Glowka; Man Mohan Rai; David Conroy; Tim Beaton; Rocky Seale; Joseph Hanna; Smith Neyrfor; Homer Robertson

    2008-03-31

    Commercial introduction of Microhole Technology to the gas and oil drilling industry requires an effective downhole drive mechanism which operates efficiently at relatively high RPM and low bit weight for delivering efficient power to the special high RPM drill bit for ensuring both high penetration rate and long bit life. This project entails developing and testing a more efficient 2-7/8 in. diameter Turbodrill and a novel 4-1/8 in. diameter drill bit for drilling with coiled tubing. The high-power Turbodrill were developed to deliver efficient power, and the more durable drill bit employed high-temperature cutters that can more effectively drill hard and abrasive rock. This project teams Schlumberger Smith Neyrfor and Smith Bits, and NASA AMES Research Center with Technology International, Inc (TII), to deliver a downhole, hydraulically-driven power unit, matched with a custom drill bit designed to drill 4-1/8 in. boreholes with a purpose-built coiled tubing rig. The U.S. Department of Energy National Energy Technology Laboratory has funded Technology International Inc. Houston, Texas to develop a higher power Turbodrill and drill bit for use in drilling with a coiled tubing unit. This project entails developing and testing an effective downhole drive mechanism and a novel drill bit for drilling 'microholes' with coiled tubing. The new higher power Turbodrill is shorter, delivers power more efficiently, operates at relatively high revolutions per minute, and requires low weight on bit. The more durable thermally stable diamond drill bit employs high-temperature TSP (thermally stable) diamond cutters that can more effectively drill hard and abrasive rock. Expectations are that widespread adoption of microhole technology could spawn a wave of 'infill development' drilling of wells spaced between existing wells, which could tap potentially billions of barrels of bypassed oil at shallow depths in mature producing areas. At the same time, microhole

  14. Drilling unit

    Energy Technology Data Exchange (ETDEWEB)

    Umanchik, N P; Demin, A V; Khrustalev, N N; Linnik, G N; Lovchev, S V; Rozin, M M; Sidorov, R V; Sokolov, S I; Tsaregradskiy, Yu P

    1981-01-01

    A drilling unit is proposed which includes a hydraulic lifter, hydraulic multiple-cylinder pump with valve distribution and sectional drilling pump with separators of the working and flushing fluid. In order to reduce metal consumption and the overall dimensions of the drilling unit, the working cavity of each cylinder of the hydraulic multiple-cylinder pump is equipped with suction and injection valves and is hydraulically connected to the working cavity by one of the sections of the drilling pump.

  15. Method for monitoring drilling materials for gamma ray activity

    International Nuclear Information System (INIS)

    Smith, H.D. Jr.; Arnold, D.M.; Schultz, W.E.

    1985-01-01

    This invention relates to a method of verifying the radioactivity levels in raw barite prior to its use in drilling mud. Certain gamma ray measurements are taken of the raw barite and extrapolated to a well bore environment using the projected drilling mud weight made from this barite and the dimensions of the well bore. The natural radioactivity occurring in the formations in the vicinity of the well bore is then compared with the projected levels to enable a determination of whether or not the barite has sufficient radioactive trace elements to forbid its use in a well. Alternatively, the method indicates the ratios by which such additives containing radioactive trace elements must be diluted with non-radioactive additives before use in the drilling mud. A second use of the method involves mud testing at the well site for radioactivity from mud additives, including barite, potassium chloride, and well cuttings. Additional uses include testing other weight materials prior to or subsequent to addition to the mud, and methods for correcting observed gamma ray measurements for the mud-induced background

  16. Effects of drilling fluids on marine organisms

    International Nuclear Information System (INIS)

    Parrish, P.R.; Duke, T.W.

    1990-01-01

    This paper reports on drilling fluids, also called drilling muds, which are essential to drilling processes in the exploration and production of oil and gas from the U.S. Outer Continental Shelf (OCS). These fluids are usually discharged from drilling platforms into surrounding waters of the OCS and are regulated by the U.S. Environmental Protection Agency (EPA). In a program carried out by the EPA Environmental research Laboratory at Gulf Breeze, Florida, diverse marine species as well as microbiotic and macrobiotic communities were studied. Drilling fluids were toxic to marine organisms in certain concentrations and exposure regimes. Furthermore, the fluids adversely affected the benthos physically by burying them or by altering the substrates. Toxicity of the drilling-fluid components, used drilling fluids from active Gulf of Mexico sites, and laboratory-prepared drilling fluids varied considerably. for example 96-h LC 50 s were from 25 μ liter -1 to > 1500 μl liter -1 for clams, larval lobsters, mysids, and grass shrimp. In most instances, mortality was significantly (α = 0.05) correlated with the diesel-oil content of the fluids collected from the Gulf of Mexico. Data and model simulations suggest a rapid dilution of drilling fluids released into OCS waters, resulting in concentrations below the acute-effect concentration for the water column organisms tested

  17. A new drilling method-Earthworm-like vibration drilling.

    Science.gov (United States)

    Wang, Peng; Ni, Hongjian; Wang, Ruihe

    2018-01-01

    The load transfer difficulty caused by borehole wall friction severely limits the penetration rate and extended-reach limit of complex structural wells. A new friction reduction technology termed "earthworm-like drilling" is proposed in this paper to improve the load transfer of complex structural wells. A mathematical model based on a "soft-string" model is developed and solved. The results show that earthworm-like drilling is more effective than single-point vibration drilling. The amplitude and frequency of the pulse pressure and the installation position of the shakers have a substantial impact on friction reduction and load transfer. An optimization model based on the projection gradient method is developed and used to optimize the position of three shakers in a horizontal well. The results verify the feasibility and advantages of earthworm-like drilling, and establish a solid theoretical foundation for its application in oil field drilling.

  18. Drilling reorganizes

    Science.gov (United States)

    Richman, Barbara T.

    As the first in a proposed series of steps that would move scientific ocean drilling from its own niche within the National Science Foundation's (NSF) Directorate for Astronomical, Atmospheric, Earth, and Ocean Sciences (AAEO) into the agency's Division of Ocean Sciences, Grant Gross, division director, has been appointed acting director of the Office of Scientific Ocean Drilling (OSOD). Gross will retain the directorship of the division, which also is part of AAEO. Allen M. Shinn, Jr., OSOD director for nearly 2 years, has been reassigned effective July 10 to a position in NSF's Office of Planning and Resource Management.The move aims to tie drilling operations more closely to the science with which it is associated, Gross said. This first step is an organizational response to the current leaning toward using a commercial drilling vessel as the drilling platform, he said. Before the market for such commercial drill ships opened (Eos, February 22, 1983, p . 73), other ship options for scientific ocean drilling included refurbishing the aging Glomar Challenger or renovating, at great expense, the Glomar Explorer. A possible next step in the reorganization is to make OSOD the third section within the Ocean Sciences Division. Currently, the division is divided into the Oceanographic Facilities and Support Section and the Ocean Sciences Research Section.

  19. Research borehole drilling activity for boreholes DH-18, DH-19, DC-12, DC-13, DC-14, DC-15, and deepening of existing borehole DC-7

    International Nuclear Information System (INIS)

    1979-09-01

    This report is an environmental evaluation of the impacts of proposed borehole drilling activities at the Hanford Site, northwest of Richland, Washington. The proposed action is to drill six research boreholes ranging in depth from 137 to 1372 meters (m) [250 to 4500 +- feet (ft)]. In addition, an existing borehole (DC-7) will be extended from 1249 to 1524 m (4099 to 5000 +- ft). The purpose of the US Department of Energy's (DOE) borehole drilling activities is to collect data on in situ rock formations that are considered potentialy suitable for nuclear waste repositories. The technical program efforts necessary to identify and qualify specific underground waste facility sites in candidate rock formations include geologic and hydrologic studies (seismicity and tectonics, rock structure and stratigraphy, lithology, etc.). Borehole drilling is an integral part of the geological studies and is essential to a thorough understanding of potentially suitable geologic formations. The purpose of the proposed drilling activities is to obtain data for evaluating Columbia River basalts that are being evaluated by the National Waste Terminal Storage (NWTS) Program to determine their suitability potential for nuclear waste repositories. Unavoidable impact to the environment is limited primarily to the clearing of land needed for access and drilling operations. Considerations exercised during site preparation, drilling, and subsequent site restoration will limit modification of the natural environment to the minimum required for accomplishment of test objectives

  20. Characterization of Under-Building Contamination at Rocky Flats Implementing Environmental-Measurement While Drilling Process with Horizontal Directional Drilling

    International Nuclear Information System (INIS)

    WILLIAMS, CECELIA V.; LOCKWOOD, GRANT J.; NORMANN, RANDY A.; LINDSAY, THOMAS

    2001-01-01

    Characterization is required on thirty-one buildings at Rocky Flats Environmental Technology Site (RFETS or the Site) with known or suspected under building contamination. The Site has teamed with Sandia National Laboratory (SNL) to deploy Environmental Measure-While-Drilling (EMWD) in conjunction with horizontal directional drilling (HDD) to characterize under building contamination and to evaluate the performance and applicability for future characterization efforts. The Environmental Measurement-While-Drilling-Gamma Ray Spectrometer (EMWD-GRS) system represents an innovative blend of new and existing technology that provides the capability of producing real-time environmental drill bit data during drilling operations. The project investigated two locations, Building 886 and Building 123. Building 886 is currently undergoing D and D activities. Building 123 was demolished in 1998; however, the slab is present with under building process waste lines and utilities. This report presents the results of the EMWD Gamma Ray Spectrometer logging of boreholes at these two sites. No gamma emitting contamination was detected at either location.(author)

  1. Effects of a Short Drilling Implant Protocol on Osteotomy Site Temperature and Drill Torque.

    Science.gov (United States)

    Mihali, Sorin G; Canjau, Silvana; Cernescu, Anghel; Bortun, Cristina M; Wang, Hom-Lay; Bratu, Emanuel

    2018-02-01

    To establish a protocol for reducing the drilling sequence during implant site preparation based on temperature and insertion torque. The traditional conventional drilling sequence (used several drills with 0.6-mm increment each time) was compared with the proposed short drilling protocol (only used 2 drills: initial and final drill). One hundred drilling osteotomies were performed in bovine and porcine bones. Sets of 2 osteotomy sites were created in 5 bone densities using 2 types of drilling protocols. Thermographic pictures were captured throughout all drilling procedures and analyzed using ThermaCAM Researcher Professional 2.10. Torque values were determined during drilling by measuring electrical input and drill speed. There were statistically significant differences in bone temperature between the conventional and short drilling protocols during implant site preparation (analysis of variance P = 0.0008). However, there were no significant differences between the 2 types of drilling protocols for both implant diameters. Implant site preparation time was significantly reduced when using the short drilling protocol compared with the conventional drilling protocol (P drilling protocol proposed herein may represent a safe approach for implant site preparation.

  2. A case study on riser analysis of a drilling riser in deep waters; Estudo de caso: analises estruturais e hidrodinamicas de um riser de perfuracao em aguas profundas

    Energy Technology Data Exchange (ETDEWEB)

    Roveri, Francisco E.; Pestana, Rafael G. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    2008-07-01

    This paper presents a set of structural and hydrodynamic analyses of a connected marine riser, in 1900 meter water depth. Operating windows are determined for one year return period environmental conditions and for a set of drilling fluid weight density values. Parametric analyses are carried out to study the riser response sensitivity to variations in environmental conditions, drilling fluid weight density, upper and lower flex joint rotational stiffness and vessel motion phase angles. Current, drilling fluid weight density and vessel motion phase angle changes affect significantly the system response, whereas the response is not significantly affected by changes in wave height, wave period and flex joint rotational stiffness. (author)

  3. Seed drill depth control system for precision seeding

    DEFF Research Database (Denmark)

    Kirkegaard Nielsen, Søren; Munkholm, Lars Juhl; Lamandé, Mathieu

    2018-01-01

    acting on the drill coulters, which generates unwanted vibrations and, consequently, a non-uniform seed placement. Therefore, a proof-of-concept dynamic coulter depth control system for a low-cost seed drill was developed and studied in a field experiment. The performance of the active control system...... depth control system this variability was reduced to±2 mm. The system with the active control system operated more accurately at an operational speed of 12 km h−1 than at 4 km h−1 without the activated control system.......An adequate and uniform seeding depth is crucial for the homogeneous development of a crop, as it affects time of emergence and germination rate. The considerable depth variations observed during seeding operations - even for modern seed drills - are mainly caused by variability in soil resistance...

  4. The oil and gas industry in Alberta: drilling and production

    International Nuclear Information System (INIS)

    Anon

    2001-11-01

    This document outlined the impacts of drilling and production on the forest structure and integrity. The cumulative impact of all 11,898 wells drilled in 2000 in Alberta, coupled with previously drilled wells that is of primary concern. It is estimated that an 886 square kilometres area of the boreal forest has been cleared as a result of well drilling, based on an assumption of 1 hectare cleared per well site. No regulations govern the reforestation of the areas once the activities have been terminated, and nothing to regulate the cumulative road densities or pipeline densities. A progressive loss and fragmentation of habitat, increased access, and damage to aquatic systems are all consequences of the drilling and production activities. These activities also lead to the contamination of soil and water. Reductions in air quality are associated with drilling and production activities, mainly through the release of various gases in the atmosphere, such as sulphur dioxide and nitrogen dioxide, both responsible for acid rain deposition. Explicit limits on cumulative densities of well sites, pipelines and access roads are part of best practices that can result in a minimization of the negative environmental impacts. Integrated planning with the forest industry, the development and implementation of new operating practices, and a reduction in the pace of development would also go a long way toward the reduction of the ecological footprint

  5. An analysis of relative costs in drilling deep wells

    International Nuclear Information System (INIS)

    Anderson, E.E.; Cooper, G.A.; Maurer, W.C.; Westcott, P.A.

    1991-01-01

    The search for new sources of oil, and particularly gas, is leading the industry to drill ever deeper wells. A depth of 15,000 ft was first passed in 1938, 20,000 ft was reached in 1939, followed by 25,000 ft in 1958, and 30,000 ft in 1972. The current US record depth is 31,441 ft. As the total depth increases, not only does the rock to be drilled become stronger, but increasing pressure and temperature induce plasticity and chip hold-down effects that make it more difficult to remove cuttings from the workfront. In addition to the reduction in rate of the drilling process itself, other activities become more complex and time-consuming, for example, tripping, running and cementing casing, and logging and coring activities. This paper analyzes the different tasks involved in drilling deep wells, in order to identify those activities that contribute most to the overall cost. These are therefore expected to be the activities where future efforts in research and development should provide the greatest reductions in total cost

  6. Surgical drill system and surgical drill bit to be used therein

    NARCIS (Netherlands)

    Margallo Balbas, E.; Wieringa, P.A.; French, P.J.; Lee, R.A.; Breedveld, P.

    2007-01-01

    Surgical drill system comprising a mechanical drill bit and means for imaging the vicinity of the drill bit tip, said means comprising: at least one optical fiber having a distal end and a proximal end, said distal end being located adjacent said drill bit tip, an optical processing unit, said

  7. Determination of the neutron activation profile of core drill samples by gamma-ray spectrometry.

    Science.gov (United States)

    Gurau, D; Boden, S; Sima, O; Stanga, D

    2018-04-01

    This paper provides guidance for determining the neutron activation profile of core drill samples taken from the biological shield of nuclear reactors using gamma spectrometry measurements. Thus, it provides guidance for selecting a model of the right form to fit data and using least squares methods for model fitting. The activity profiles of two core samples taken from the biological shield of a nuclear reactor were determined. The effective activation depth and the total activity of core samples along with their uncertainties were computed by Monte Carlo simulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Slow drilling speeds for single-drill implant bed preparation. Experimental in vitro study.

    Science.gov (United States)

    Delgado-Ruiz, R A; Velasco Ortega, E; Romanos, G E; Gerhke, S; Newen, I; Calvo-Guirado, J L

    2018-01-01

    To evaluate the real-time bone temperature changes during the preparation of the implant bed with a single-drill protocol with different drill designs and different slow drilling speeds in artificial type IV bone. For this experimental in vitro study, 600 implant bed preparations were performed in 10 bovine bone disks using three test slow drilling speeds (50/150/300 rpm) and a control drilling speed (1200 rpm). The temperature at crestal and apical areas and time variations produced during drilling with three different drill designs with similar diameter and length but different geometry were recorded with real-life thermographic analysis. Statistical analysis was performed by two-way analysis of variance. Multiple comparisons of temperatures and time with the different drill designs and speeds were performed with the Tukey's test. T Max values for the control drilling speed with all the drill designs (D1 + 1200; D2 + 1200; D3 + 1200) were higher compared to those for the controls for 11 ± 1.32 °C (p drilling at 50 rpm resulted in the lowest temperature increment (22.11 ± 0.8 °C) compared to the other slow drilling speeds of 150 (24.752 ± 1.1 °C) and 300 rpm (25.977 ± 1.2 °C) (p drilling speeds compared to that for the control drilling speed. Slow drilling speeds required significantly more time to finish the preparation of the implant bed shown as follows: 50 rpm > 150 rpm > 300 rpm > control (p drill protocol with slow drilling speeds (50, 150, and 300 rpm) without irrigation in type IV bone increases the temperature at the coronal and apical levels but is below the critical threshold of 47 °C. The drill design in single-drill protocols using slow speeds (50, 150, and 300 rpm) does not have an influence on the thermal variations. The time to accomplish the implant bed preparation with a single-drill protocol in type IV bone is influenced by the drilling speed and not by the drill design. As the speed decreases, then

  9. Reduced abrasion drilling fluid

    NARCIS (Netherlands)

    2010-01-01

    A reduced abrasion drilling fluid system and method of drilling a borehole by circulating the reduced abrasion drilling fluid through the borehole is disclosed. The reduced abrasion drilling fluid comprises a drilling fluid, a first additive and a weighting agent, wherein the weighting agent has a

  10. Reduced abrasion drilling fluid

    NARCIS (Netherlands)

    2012-01-01

    A reduced abrasion drilling fluid system and method of drilling a borehole by circulating the reduced abrasion drilling fluid through the borehole is disclosed. The reduced abrasion drilling fluid comprises a drilling fluid, a first additive and a weighting agent, wherein the weighting agent has a

  11. Case drilling - an innovative approach to reducing drilling costs

    Energy Technology Data Exchange (ETDEWEB)

    Madell, G.; Tessari, R. M. [Tesco Corp., Calgary, AB (Canada); Warren, T. [Tesco Drilling Technology, Calgary, AB (Canada)

    1999-11-01

    Casing drilling is introduced as a new drilling technique that uses standard oil field casing to simultaneously drill and case the well. The technology includes both rig and downhole equipment, customized to function effectively as an integrated drilling system. This paper describes the testing program designed to identify and overcome technical challenges. Although not fully optimized, it appears that the system is functional. Test results indicate the need for improvements in the pump down cement float equipment and the tools and procedures for drilling up the cement plugs. The pump down latch and retrieval system also needs to be further developed and tested for high angle directional applications. Cost savings in the range of 10 to 15 per cent are expected for trouble-free wells. By eliminating the cost of unscheduled events encountered in troublesome wells, cost savings may reach as high as 30 per cent. 3 refs., 7 figs.

  12. Drilling cost analysis

    International Nuclear Information System (INIS)

    Anand, A.B.

    1992-01-01

    Drilling assumes greater importance in present day uranium exploration which emphasizes to explore more areas on the basis of conceptual model than merely on surface anomalies. But drilling is as costly as it is important and consumes a major share (50% to 60%) of the exploration budget. As such the cost of drilling has great bearing on the exploration strategy as well as on the overall cost of the project. Therefore, understanding the cost analysis is very much important when planning or intensifying an exploration programme. This not only helps in controlling the current operations but also in planning the budgetary provisions for future operations. Also, if the work is entrusted to a private party, knowledge of in-house cost analysis helps in fixing the rates of drilling in different formations and areas to be drilled. Under this topic, various factors that contribute to the cost of drilling per meter as well as ways to minimize the drilling cost for better economic evaluation of mineral deposits are discussed. (author)

  13. Increased traffic accident rates associated with shale gas drilling in Pennsylvania.

    Science.gov (United States)

    Graham, Jove; Irving, Jennifer; Tang, Xiaoqin; Sellers, Stephen; Crisp, Joshua; Horwitz, Daniel; Muehlenbachs, Lucija; Krupnick, Alan; Carey, David

    2015-01-01

    We examined the association between shale gas drilling and motor vehicle accident rates in Pennsylvania. Using publicly available data on all reported vehicle crashes in Pennsylvania, we compared accident rates in counties with and without shale gas drilling, in periods with and without intermittent drilling (using data from 2005 to 2012). Counties with drilling were matched to non-drilling counties with similar population and traffic in the pre-drilling period. Heavily drilled counties in the north experienced 15-23% higher vehicle crash rates in 2010-2012 and 61-65% higher heavy truck crash rates in 2011-2012 than control counties. We estimated 5-23% increases in crash rates when comparing months with drilling and months without, but did not find significant effects on fatalities and major injury crashes. Heavily drilled counties in the southwest showed 45-47% higher rates of fatal and major injury crashes in 2012 than control counties, but monthly comparisons of drilling activity showed no significant differences associated with drilling. Vehicle accidents have measurably increased in conjunction with shale gas drilling. Copyright © 2014. Published by Elsevier Ltd.

  14. Robotic Planetary Drill Tests

    Science.gov (United States)

    Glass, Brian J.; Thompson, S.; Paulsen, G.

    2010-01-01

    Several proposed or planned planetary science missions to Mars and other Solar System bodies over the next decade require subsurface access by drilling. This paper discusses the problems of remote robotic drilling, an automation and control architecture based loosely on observed human behaviors in drilling on Earth, and an overview of robotic drilling field test results using this architecture since 2005. Both rotary-drag and rotary-percussive drills are targeted. A hybrid diagnostic approach incorporates heuristics, model-based reasoning and vibration monitoring with neural nets. Ongoing work leads to flight-ready drilling software.

  15. Data analysis & probability drill sheets : grades 6-8

    CERN Document Server

    Forest, Chris

    2011-01-01

    For grades 6-8, our Common Core State Standards-based resource meets the data analysis & probability concepts addressed by the NCTM standards and encourages your students to review the concepts in unique ways. Each drill sheet contains warm-up and timed drill activities for the student to practice data analysis & probability concepts.

  16. Drilling trends in the nineties

    International Nuclear Information System (INIS)

    1993-01-01

    At a conference on various aspects of well drilling in the 1990s, papers were presented on drilling waste management, well completion and workovers, drilling fluids, drilling rig equipment and design, drilling mechanics, drill stem testing and materials, cementing, business management, health and safety, environmental issues, and directional drilling technology. Separate abstracts have been prepared for 46 papers from this conference

  17. Scientific Drilling with the Sea Floor Drill Rig MeBo

    Directory of Open Access Journals (Sweden)

    Gerold Wefer

    2007-09-01

    Full Text Available In March 2007 the sea floor drill rig MeBo (short for “Meeresboden-Bohrgerät”, ‘sea floor drill rig’ in German returned from a 17-day scientific cruise with the new German research vessel Maria S. Merian. Four sites between 350 m and 1700 m water depth were sampled at the continental slope off Morocco by push coring and rotary drilling. Up to 41.5-m-long sediment cores were recovered from Miocene, Pliocene, and Pleistocene marls. MeBo bridges the gapbetween conventional sampling methods from standard multipurpose research vessels (gravity corer, piston corer, dredges and drill ships. Most bigger research vessels will be able to support deployment of the MeBo. Since the drill system can be easily transported within 20-ft containers, worldwide operation from vessels of opportunity is possible. With the MeBo a new system is available for marine geosciences that allows the recovery of high quality samples from soft sediments and hard rock from the deep sea withoutrelying on the services of expensive drilling vessels.

  18. Drilling contract issues

    International Nuclear Information System (INIS)

    Davison, G.B.; Worden, D.R.; Borbridge, G.K.D.

    1997-01-01

    Some selected issues which are facing both operators and contractors in drilling for oil and gas, such as the allocation of risk by contract and by statute and the implementation of new technologies, were discussed. There are three varieties of written drilling contracts used in Canada: (1) day work and meterage contracts, (2) master drilling agreements, and (3) contracts that are used in construction projects that do not specifically relate to drilling. Issues relevant to the contractual allocation of risk, to implementing new drilling technologies, to reconciling contract and statute liability, and the formation of strategic alliances for mutual benefit, and the factors contributing to the success of such alliances were explored. 12 refs

  19. 30 CFR 816.15 - Casing and sealing of drilled holes: Permanent.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Casing and sealing of drilled holes: Permanent...-SURFACE MINING ACTIVITIES § 816.15 Casing and sealing of drilled holes: Permanent. When no longer needed... exploration hole, other drilled hole or borehole, well, and other exposed underground opening shall be capped...

  20. South African drilling

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    According to the president of the South African Drilling Association, the drilling industry is meeting head-on the challenges created by the worldwide recession. The paper is a synopsis of several of the papers presented at the SADA symposium and a look at several mining-related drilling projects in South Africa. These papers include grouting techniques, the use of impregnated bits in hard rock drilling, tunnel boring for mines, surveying improvement methods and the use of explosives to increase groundwater yield

  1. A new drilling method—Earthworm-like vibration drilling

    Science.gov (United States)

    Wang, Peng; Wang, Ruihe

    2018-01-01

    The load transfer difficulty caused by borehole wall friction severely limits the penetration rate and extended-reach limit of complex structural wells. A new friction reduction technology termed “earthworm-like drilling” is proposed in this paper to improve the load transfer of complex structural wells. A mathematical model based on a “soft-string” model is developed and solved. The results show that earthworm-like drilling is more effective than single-point vibration drilling. The amplitude and frequency of the pulse pressure and the installation position of the shakers have a substantial impact on friction reduction and load transfer. An optimization model based on the projection gradient method is developed and used to optimize the position of three shakers in a horizontal well. The results verify the feasibility and advantages of earthworm-like drilling, and establish a solid theoretical foundation for its application in oil field drilling. PMID:29641615

  2. New optimized drill pipe size for deep-water, extended reach and ultra-deep drilling

    Energy Technology Data Exchange (ETDEWEB)

    Jellison, Michael J.; Delgado, Ivanni [Grant Prideco, Inc., Hoston, TX (United States); Falcao, Jose Luiz; Sato, Ademar Takashi [PETROBRAS, Rio de Janeiro, RJ (Brazil); Moura, Carlos Amsler [Comercial Perfuradora Delba Baiana Ltda., Rio de Janeiro, RJ (Brazil)

    2004-07-01

    A new drill pipe size, 5-7/8 in. OD, represents enabling technology for Extended Reach Drilling (ERD), deep water and other deep well applications. Most world-class ERD and deep water wells have traditionally been drilled with 5-1/2 in. drill pipe or a combination of 6-5/8 in. and 5-1/2 in. drill pipe. The hydraulic performance of 5-1/2 in. drill pipe can be a major limitation in substantial ERD and deep water wells resulting in poor cuttings removal, slower penetration rates, diminished control over well trajectory and more tendency for drill pipe sticking. The 5-7/8 in. drill pipe provides a significant improvement in hydraulic efficiency compared to 5-1/2 in. drill pipe and does not suffer from the disadvantages associated with use of 6-5/8 in. drill pipe. It represents a drill pipe assembly that is optimized dimensionally and on a performance basis for casing and bit programs that are commonly used for ERD, deep water and ultra-deep wells. The paper discusses the engineering philosophy behind 5-7/8 in. drill pipe, the design challenges associated with development of the product and reviews the features and capabilities of the second-generation double-shoulder connection. The paper provides drilling case history information on significant projects where the pipe has been used and details results achieved with the pipe. (author)

  3. The Hans Tausen drill

    DEFF Research Database (Denmark)

    Johnsen, Sigfus Johann; Dahl-Jensen, Dorthe; Steffensen, Jørgen Peder

    2007-01-01

    In the mid-1990s, excellent results from the GRIP and GISP2 deep drilling projects in Greenland opened up funding for continued ice-coring efforts in Antarctica (EPICA) and Greenland (NorthGRIP). The Glaciology Group of the Niels Bohr Institute, University of Copenhagen, was assigned the task...... of providing drilling capability for these projects, as it had done for the GRIP project. The group decided to further simplify existing deep drill designs for better reliability and ease of handling. The drill design decided upon was successfully tested on Hans Tausen Ice Cap, Peary Land, Greenland, in 1995....... The 5.0 m long Hans Tausen (HT) drill was a prototype for the ~11 m long EPICA and NorthGRIP versions of the drill which were mechanically identical to the HT drill except for a much longer core barrel and chips chamber. These drills could deliver up to 4 m long ice cores after some design improvements...

  4. Fifty Years of Soviet and Russian Drilling Activity in Polar and Non-Polar Ice: A Chronological History

    Science.gov (United States)

    2007-10-01

    cable being separated from the drill, and further drilling ceased. The drilling operation consisted of three men working one shift. They achieved a...thickness is 160–180 m according to radio-echo sounding data. A 93-m-deep hole was drilled by two men over 127 hours (the total penetration time of...TR-07-20 89 Figure 31. KEMS-112 electro-mechanical core drill: (1) drill head, (2) core barrel, (3) nipple , (4) barrel, (5) chip filter, (6

  5. Drilling contracts and incentives

    International Nuclear Information System (INIS)

    Osmundsen, Petter; Sorenes, Terje; Toft, Anders

    2008-01-01

    Shortages of rigs and personnel have encouraged discussion of designing incentive contracts in the drilling sector. However, for the drilling contracts, there are not a large variety of contract types in use. This article describes and analyses incentives for drilling contractors. These are directly represented by the compensation formats utilised in the present and in the consecutive drilling contracts. Indirectly, incentives are also provided by the evaluation criteria that oil companies use for awarding drilling assignments. Changes in contract format pose a number of relevant questions relating to resource management, and the article takes an in-depth look at some of these. Do evaluation criteria for awarding drilling assignments encourage the development of new technology and solutions? How will a stronger focus on drilling efficiency influence reservoir utilisation?

  6. Study on drilling induced delamination of woven kenaf fiber reinforced epoxy composite using carbide drills

    Science.gov (United States)

    Suhaily, M.; Hassan, C. H. Che; Jaharah, A. G.; Azmi, H.; Afifah, M. A.; Khairusshima, M. K. Nor

    2018-04-01

    In this research study, it presents the influences of drilling parameters on the delamination factor during the drilling of woven kenaf fiber reinforced epoxy composite laminates when using the carbide drill bits. The purpose of this study is to investigate the influence of drilling parameters such as cutting speed, feed rate and drill sizes on the delamination produced when drilling woven kenaf reinforced epoxy composite using the non-coated carbide drill bits. The damage generated on the woven kenaf reinforced epoxy composite laminates were observed both at the entrance and exit surface during the drilling operation. The experiments were conducted according to the Box Behnken experimental designs. The results indicated that the drill diameter has a significant influence on the delamination when drilling the woven kenaf fiber reinforced epoxy composites.

  7. Drilling Performance of Rock Drill by High-Pressure Water Jet under Different Configuration Modes

    Directory of Open Access Journals (Sweden)

    Songyong Liu

    2017-01-01

    Full Text Available In the rock drilling progress, the resistant force results in tools failure and the low drilling efficiency; thus, it is necessary to reduce the tools failure and enhance the drilling efficiency. In this paper, different configuration modes of drilling performance assisted with water jet are explored based on the mechanism and experiment analysis of rock drilling assisted with water jet. Moreover, the rotary sealing device with high pressure is designed to achieve the axial and rotation movement simultaneously as well as good sealing effect under high-pressure water jet. The results indicate that the NDB and NFB have better effects on drilling performance compared with that of NSB. Moreover, the high-pressure water jet is helpful not only to reduce the drill rod deflection, but also to reduce the probability of drill rod bending and improve the drill rod service life.

  8. Drilling technologies in hydrogeological survey

    OpenAIRE

    Vorlíček, Petr

    2014-01-01

    This work deals with the drilling technologies used in hydrogeology. The main aim of the work is to explore types of drilling technologies used at hydrogeological drilling wells and modern technologies that could potentially be used in the future. The work also summarizes a historical development of drilling techniques, a drilling process procedure, information obtained from boreholes and the most common types of drilling fluids.

  9. Design and Exploitation Problems of Drill String in Directional Drilling

    Directory of Open Access Journals (Sweden)

    Bednarz Stanislaw

    2004-09-01

    Full Text Available Drill string design for directional drilling requires accounting for a number of factors. First, types and expected values of loads should be determined. Then, elements of the drill string should be so selected as to enable realization of the plan at specified loads. Some of additional factors, e. g. purchase, exploitation cost, geological conditions in the bore-hole, washing of the bore-hole, stability, trajectory, rig parameters, accuracy of gauges, pumps parameters remain in conflict. Drill pipes are made of rolled pipes, upset and welded with tool joints to 9,5 m long; the shorter ones can be made of hot forged rods. Exploitation requirements, being a result of practical experience supported by theoretical and laboratory analyses should be a part of syllabuses of technical staff educational programs. Apart from designing the string, it is also vital to lower the risk of a drilling failure. The significance of these aspects seems to be unquestionable.

  10. Diagnostic System of Drill Condition in Laminated Chipboard Drilling Process

    Directory of Open Access Journals (Sweden)

    Swiderski Bartosz

    2017-01-01

    Full Text Available The paper presents an on-line automatic system for recognition of the drill condition in a laminated chipboard drilling process. Two states of the drill are considered: the sharp enough (still able to drill holes acceptable for processing quality and worn out (excessive drill wear, not satisfactory from the quality point of view of the process. The automatic system requires defining the diagnostic features, which are used as the input attributes to the classifier. The features have been generated from 5 registered signals: feed force, cutting torque, noise, vibration and acoustic emission. The statistical parameters defined on the basis of the auto regression model of these signals have been used as the diagnostic features. The sequential step-wise feature selection is applied for choosing the most discriminative set of features. The final step of recognition is done by support vector machine classifier working in leave one out mode. The results of numerical experiments have confirmed good quality of the proposed diagnostic system.

  11. Horizontal drilling under Lake Erie

    Energy Technology Data Exchange (ETDEWEB)

    Meller, R.

    2001-07-01

    Drilling oil wells under Lake Erie calls for horizontal drilling wells to be drilled from shore out into the pay-zone under the lake. The nature and characteristics of horizontal wells as compared to vertical wells are explored. Considerations that have to be taken into account in drilling horizontal wells are explained (the degree of curvature, drilling fluid quality, geosteering in the pay-zone, steering instrumentation, measurements while drilling (MWD), logging while drilling (LWD)). The concept and reasons for extended reach wells are outlined, along with characteristic features of multilateral wells.

  12. 30 CFR 816.13 - Casing and sealing of drilled holes: General requirements.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Casing and sealing of drilled holes: General...-SURFACE MINING ACTIVITIES § 816.13 Casing and sealing of drilled holes: General requirements. Each exploration hole, other drill or borehole, well, or other exposed underground opening shall be cased, sealed...

  13. Alteration in the IRDP drill hole compared with other drill holes in Iceland

    Science.gov (United States)

    Kristmannsdóttir, Hrefna

    1982-08-01

    The overall alteration pattern in the drill hole at Reydarfjördur is very similar to alteration patterns observed in Icelandic geothermal areas and in low-grade metamorphosed basalts in deep crustal sections elsewhere in Iceland. However more detail is obtained by the study of the IRDP drill core than by study of drill cuttings sampled in previous drill holes in Iceland. A comparatively high fossil thermal gradient is obtained at Reydarfjördur by a combination of mineral stability data and the observed occurence of secondary minerals. This high gradient is consistent with the measured dike dilation at the drill site and the location of the drill site adjacent to a central volcano.

  14. The effects of drilling muds on marine invertebrate larvae and adults

    International Nuclear Information System (INIS)

    Raimondi, P.T.; Barnett, A.M.; Krause, P.R.

    1997-01-01

    A series of laboratory experiments tested the effects of drilling muds from an active platform off southern California on larvae and adults of marine invertebrates. Red abalone (Haliotis rufescens) were used to determine effects of drilling muds on fertilization, early development, survivorship, and settlement, and experiments on adult brown cup corals (Paracyathus stearnsii) tested effects on adult survivorship, viability, and tissue loss. Exposures to drilling muds did not have an effect on abalone fertilization or early development. However, several exposures to drilling muds resulted in weak, but significant, positive effects of drilling muds on settlement of competent larvae. In contrast, settlement of red abalone larvae on natural coralline algal crusts decreased with increasing concentrations of drilling muds. This suggests that drilling muds affect either the abalone's ability to detect natural settlement inducers, or they affect the inducer itself. Exposure of brown cup corals to concentrations of drilling muds adversely impacted their survivorship and viability. These effects were likely caused by increased tissue mortality of the coral polyps

  15. Modeling pellet impact drilling process

    Science.gov (United States)

    Kovalyov, A. V.; Ryabchikov, S. Ya; Isaev, Ye D.; Ulyanova, O. S.

    2016-03-01

    The paper describes pellet impact drilling which could be used to increase the drilling speed and the rate of penetration when drilling hard rocks. Pellet impact drilling implies rock destruction by metal pellets with high kinetic energy in the immediate vicinity of the earth formation encountered. The pellets are circulated in the bottom hole by a high velocity fluid jet, which is the principle component of the ejector pellet impact drill bit. The experiments conducted has allowed modeling the process of pellet impact drilling, which creates the scientific and methodological basis for engineering design of drilling operations under different geo-technical conditions.

  16. REQUIREMENTS FOR DRILLING CUTTINGS AND EARTH-BASED BUILDING MATERIALS

    Directory of Open Access Journals (Sweden)

    Chertes Konstantin L'vovich

    2017-08-01

    Full Text Available In this article, the problem of utilization of drilling cuttings by means of scavenging, is researched. The product received could be used for the restoration of lands disturbed during construction and economic activities. When assessing technogenic formations, the binary approach was used, as a system of two components. The purpose of the study is to assess the state and possibility of utilizing drilling cuttings as raw materials in order to produce technogenic building materials; to study the effect of the degree of homogeneity of initial mixtures based on drilling cuttings, on kinetics of their hardening which leads to obtaining final products for various applications . As a result of research, relations of hardening and subsequent strengthening of slurry-cement mixtures were obtained; the plan of the process area for treatment of drilling cuttings is presented on the spot of demolished drilling pit.

  17. Study on the ocean drilling program

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jae Ho; Han, Hyun Chul; Chin, Jae Wha; Lee, Sung Rok; Park, Kwan Soon; Lee, Young Joo; Park, Young Soo [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1996-12-01

    Geoscience research trend of the world nations is focusing on the study of climate changes and preventing people from the natural hazards such as earthquakes and volcanic activities. For this study, it is necessary for scientists to interpret ancient climate changes preserved in ocean sediments, and to observe plate motions. Thus, geological and geophysical studies should be proceeded for the core samples recovered from the deep sea sediments and basement. It is essential to join the ODP(Ocean Drilling Program) that drills ocean basins and crusts using the drilling vessel with the ability of deploying almost 9 km of drilling string. The first year (1995) was focused on the analyzing the appropriateness Korea to join the ODP. The second year (1996) has been stressed on being an ODP member country based on results of the first year study, and planning the future activities as a member. The scope of study is joining the ODP as a Canada-Australia Consortium member and to set up the Korean ODP organization and future activities. The results and suggestions are as follows. 1) Necessities of Korea joining the ODP: If Korea becomes a member of the ODP, the benefits could be obtained based on the activities of other ODP members through academic, social and economic sectors. 2) Korean membership of ODP: Korea becomes a member of the Australia-Canada Consortium for ODP. AGSO (Austrian Geological Survey Organization), GSC (Geological Survey of Canada), and KIGAM (Korea Institute of Geology, Mining and Materials) on behalf of their own countries will each pay a share of the full member financial contribution to the ODP. AGSO and GSC will pay one third of the full member financial contribution, and KIGAM will pay one twelfth. 3) Korean ODP structure and future activities: To enhance the efficiency of initial activities after joining the ODP, it has been decided to have a relatively simple organization. The primary governing arm of the Korean ODP organizations is the Korean ODP

  18. Drilling a better pair : new technologies in SAGD directional drilling

    Energy Technology Data Exchange (ETDEWEB)

    Zimmer, C.; Richter, D. [Statoil Canada Ltd., Calgary, AB (Canada); Person, J.; Tilley, J.; Bittar, M. [Halliburton Energy Services, Calgary, AB (Canada)

    2010-07-01

    The Leismer Demonstration Project (LDP) is the first of 8 proposed major steam assisted gravity drainage (SAGD) projects for Statoil's Kai Kos Dehseh (KKD) asset in the Athabasca oil sands deposit. The bitumen resources are expected to produce approximately 2.2 billion barrels of oil over approximately 35 years with a peak production of 220,000 bbl/day. To date, 23 well pairs have been drilled on 4 drilling pads. The precise placement of well pairs is among the most important factors in a successful SAGD drilling program. The producer well must be placed in relation to the reservoir boundaries. It must also be accurately twinned with the injector well. A strong focus on technological innovation is needed in order to deliver on these high expectations in unconsolidated formations, such as the McMurray oil sands. Lateral SAGD pairs are often drilled with conventional steerable mud motors and logging-while-drilling (LWD) resistivity measurements, but this combination imposes certain limitations in terms of wellbore quality and placement. Several industry firsts were successfully implemented at the Statoil LDP, including a combination of the newest and most cutting-edge directional, measurement, and LWD technology. The keystone of these industry firsts was the use of a soft formation modified, point-the-bit rotary steerable system (RSS), used on 20 horizontal wells. The RRS was combined with an ultra deep azimuthal resistivity sensor to provide precise geosteering along the bottom bed boundary in the producer wells, resulting in improved reservoir capture and reservoir characterization. This paper described the new drilling system and its impact on the progressive future of directional drilling in SAGD. 8 refs., 1 tab., 22 figs.

  19. Application of Grid Planning Method in Drilling-Blasting Operations

    OpenAIRE

    Dambov, Risto; Spasovski, Orce

    2012-01-01

    The problem occurs almost every day in operation and causes troubles to mining engineers. The right performance of drilling-blasting work is important for the successful operation of the entire excavation. The aim of the paper is to point out the importance of planning and how it can contribute to the right organization and make drilling-blasting and other mining activities in mine operations easier. Defining the activities and practical example that has been given are carried out by the u...

  20. Methods to ensure optimal off-bottom and drill bit distance under pellet impact drilling

    Science.gov (United States)

    Kovalyov, A. V.; Isaev, Ye D.; Vagapov, A. R.; Urnish, V. V.; Ulyanova, O. S.

    2016-09-01

    The paper describes pellet impact drilling which could be used to increase the drilling speed and the rate of penetration when drilling hard rock for various purposes. Pellet impact drilling implies rock destruction by metal pellets with high kinetic energy in the immediate vicinity of the earth formation encountered. The pellets are circulated in the bottom hole by a high velocity fluid jet, which is the principle component of the ejector pellet impact drill bit. The paper presents the survey of methods ensuring an optimal off-bottom and a drill bit distance. The analysis of methods shows that the issue is topical and requires further research.

  1. Ultrasonically assisted drilling of rocks

    Science.gov (United States)

    Mikhailova, N. V.; Onawumi, P. Y.; Roy, A.; Silberschmidt, V. V.

    2018-05-01

    Conventional drilling of rocks can generate significant damage in the drilled material; a material layer is often split off a back surface of a sample during drilling, negatively affecting its strength. To improve finish quality, ultrasonically assisted drilling (UAD) was employed in two rocks - sandstone and marble. Damage areas in both materials were reduced in UAD when compared to conventional drilling. Reductions in a thrust force and a torque reduction were observed only for UAD in marble; ultrasonic assistance in sandstone drilling did not result in improvements in this regard.

  2. Drill string gas data

    Energy Technology Data Exchange (ETDEWEB)

    Siciliano, E.R.

    1998-05-12

    Data and supporting documentation were compiled and analyzed for 26 cases of gas grab samples taken during waste-tank core sampling activities between September 1, 1995 and December 31, 1997. These cases were tested against specific criteria to reduce uncertainties associated with in-tank sampling location and conditions. Of the 26 possible cases, 16 qualified as drill-string grab samples most likely to represent recently released waste gases. The data from these 16 ``confirmed`` cases were adjusted to remove non-waste gas contributions from core-sampling activities (argon or nitrogen purge), the atmospheric background, and laboratory sampler preparation (helium). The procedure for subtracting atmospheric, laboratory, and argon purge gases was unambiguous. No reliable method for determining the exact amount of nitrogen purge gas was established. Thus, the final set of ``Adjusted`` drill string gas data for the 6 nitrogen-purged cases had a greater degree of uncertainty than the final results for the 10 argon-purged cases. Including the appropriate amounts of uncertainty, this final set of data was added to the set of high-quality results from the Retained Gas Sampler (RGS), and good agreement was found for the N{sub 2}, H{sub 2}, and N{sub 2}O mole fractions sampled from common tanks. These results indicate that under favorable sampling conditions, Drill-String (DS) grab samples can provide reasonably accurate information about the dominant species of released gas. One conclusion from this set of total gas data is that the distribution of the H{sub 2} mole fractions is bimodal in shape, with an upper bound of 78%.

  3. Impacts on seafloor geology of drilling disturbance in shallow waters.

    Science.gov (United States)

    Corrêa, Iran C S; Toldo, Elírio E; Toledo, Felipe A L

    2010-08-01

    This paper describes the effects of drilling disturbance on the seafloor of the upper continental slope of the Campos Basin, Brazil, as a result of the project Environmental Monitoring of Offshore Drilling for Petroleum Exploration--MAPEM. Field sampling was carried out surrounding wells, operated by the company PETROBRAS, to compare sediment properties of the seafloor, including grain-size distribution, total organic carbon, and clay mineral composition, prior to drilling with samples obtained 3 and 22 months after drilling. The sampling grid used had 74 stations, 68 of which were located along 7 radials from the well up to a distance of 500 m. The other 6 stations were used as reference, and were located 2,500 m from the well. The results show no significant sedimentological variation in the area affected by drilling activity. The observed sedimentological changes include a fining of grain size, increase in total organic carbon, an increase in gibbsite, illite, and smectite, and a decrease in kaolinite after drilling took place.

  4. Exploratory borehole Schafisheim: constructional- and environmental aspects, drilling technique

    International Nuclear Information System (INIS)

    1991-04-01

    The Schafisheim borehole was the fourth borehole in the Nagra deep drilling programme in Northern Switzerland. The drilling work began on the 26th of November 1983. The final depth of 2000.6 m was reached on June 29th, 1984 and this was followed by a transition to a test phase which lasted until 25th February 1985. To reach the final depth, the borehole passed through around 1500 m of sediments and 500 m of crystalline rock. More than 50% of the drilled section, including more or less all of the crystalline rock, was cored. This report describes the drilling activities, the construction work relating to the Schafisheim site and the measures taken to ensure environmental protection. The report closes with a chapter dealing with the supervisory commission consisting of members of the federal, cantonal and local authorities and with the report series on the drilling work. (author) figs., tabs

  5. Application of the Drilling Impact Study (DIS) to Forsmark groundwaters

    International Nuclear Information System (INIS)

    Gascoyne, Mel; Gurban, Ioana

    2008-01-01

    Characterisation of a geological formation as a repository for nuclear fuel waste requires deep drilling into the bedrock to gain an understanding of the geological structure, rock types, groundwater flow and the chemical composition of groundwater and the adjacent rock. The methods of characterisation from a hydrogeochemical point of view, might be affected by the various drilling activities and techniques for determining groundwater composition have been employed so that the composition can be corrected for these activities. SKB has developed and supported the Drilling Impact Study (DIS) project in which a tracer is used as an indicator of contamination to attempt to correct the groundwater composition for dilution or contamination by surface waters. The project began about five years ago with the intention of developing a routine method for determining the extent of contamination of borehole groundwater by drilling water. The main objectives of this work were: 1. Determine the extent of drilling water contamination in permeable zones in a test borehole on the Forsmark site. 2. Correct measured chemical compositions of the groundwaters based on contamination results. 3. Provide a workable methodology for routine correction of groundwater composition. 4. Apply the modified DIS model to suitable borehole zones at the Forsmark site in a systematic fashion 5. Determine uncertainties in DIS modelling. A memorandum was prepared by describing the characteristics of borehole KFM06 and its drilling history. Estimates were made of the amount of drilling water in permeable zones in the borehole and the various approaches to applying results of DIS were described and recommendations made, with an example calculation

  6. W. Canada boom to outshine second half U.S. drilling rise

    International Nuclear Information System (INIS)

    Petzet, G.A.; Beck, R.J.

    1994-01-01

    Drilling in the US will pick up slightly during second half 1994, but the first half to second half increase proportionally will not be as large as in Canada. Operators appear likely to drill nearly half as many wells this year in western Canada as they will drill in the US. Oil and Gas Journal estimates that drilling and completion spending will total $9.511 billion in the US this year, up about one third of 1% from spending in 1993. This steady investment is forecast despite a 2.3% drop in expected wellhead revenue to $72.53 billion. Highlights to OGJ's midyear drilling forecast for 1994 include: operators will drill 24,705 wells, compared with the 26,840 OGJ estimated in its early year forecast before the slump in crude oil prices; the active rotary rig count will average 810 rigs, 7% higher than in 1993; operators will drill about 3,684 wildcats, down from the 4,170 that OGJ predicted in January; the surveyed group of major operators will drill 3,091 wells in the US, including 246 exploratory wells; and drilling in western Canada will total a year record 11,531 wells, dwarfing the 4,654 wells drilled in 1992

  7. Deep drilling KLX 02. Drilling and documentation of a 1700 m deep borehole at Laxemar, Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, O [VBB VIAK AB, Malmoe (Sweden)

    1994-08-01

    In this report the preparation and execution of the deep core drilling KLX 02 is described. The hole was drilled with the wireline methods, NQ dimension (diameter 76 mm), to a final depth of 1700.5 m. Prior to core drilling a diameter 215 mm pilot hole was pre drilled to 200 m with controlled hammer drilling (DTH). In this hole casing and air-lift equipment was installed with the aim to support the circulation of drilling fluid. During core drilling there was a measurement of major drilling parameters and drilling fluid in and out of hole. As a fluid tracer uranine was used. Each 300 m of core drilling air-lift pump tests were performed. After completion a flow-meter log was run to finalize the project phase. It can be concluded that both the pre drilling and core drilling methods used proved to be successful. No severe technical problem occurred. However, potential risks have been pointed at in the report. The air-lift system functioned only partly and has to be modified for further use. Also the technique for monitoring of drilling parameters needs improvement as does the method for air-lift pump tests with packer. The organisation model for planning and realization functioned satisfactory and can be recommended for similar future projects. 9 refs, numerous tabs and figs.

  8. Deep drilling KLX 02. Drilling and documentation of a 1700 m deep borehole at Laxemar, Sweden

    International Nuclear Information System (INIS)

    Andersson, O.

    1994-08-01

    In this report the preparation and execution of the deep core drilling KLX 02 is described. The hole was drilled with the wireline methods, NQ dimension (diameter 76 mm), to a final depth of 1700.5 m. Prior to core drilling a diameter 215 mm pilot hole was pre drilled to 200 m with controlled hammer drilling (DTH). In this hole casing and air-lift equipment was installed with the aim to support the circulation of drilling fluid. During core drilling there was a measurement of major drilling parameters and drilling fluid in and out of hole. As a fluid tracer uranine was used. Each 300 m of core drilling air-lift pump tests were performed. After completion a flow-meter log was run to finalize the project phase. It can be concluded that both the pre drilling and core drilling methods used proved to be successful. No severe technical problem occurred. However, potential risks have been pointed at in the report. The air-lift system functioned only partly and has to be modified for further use. Also the technique for monitoring of drilling parameters needs improvement as does the method for air-lift pump tests with packer. The organisation model for planning and realization functioned satisfactory and can be recommended for similar future projects. 9 refs, numerous tabs and figs

  9. Drilling subsurface wellbores with cutting structures

    Science.gov (United States)

    Mansure, Arthur James; Guimerans, Rosalvina Ramona

    2010-11-30

    A system for forming a wellbore includes a drill tubular. A drill bit is coupled to the drill tubular. One or more cutting structures are coupled to the drill tubular above the drill bit. The cutting structures remove at least a portion of formation that extends into the wellbore formed by the drill bit.

  10. SALTON SEA SCIENTIFIC DRILLING PROJECT: SCIENTIFIC PROGRAM.

    Science.gov (United States)

    Sass, J.H.; Elders, W.A.

    1986-01-01

    The Salton Sea Scientific Drilling Project, was spudded on 24 October 1985, and reached a total depth of 10,564 ft. (3. 2 km) on 17 March 1986. There followed a period of logging, a flow test, and downhole scientific measurements. The scientific goals were integrated smoothly with the engineering and economic objectives of the program and the ideal of 'science driving the drill' in continental scientific drilling projects was achieved in large measure. The principal scientific goals of the project were to study the physical and chemical processes involved in an active, magmatically driven hydrothermal system. To facilitate these studies, high priority was attached to four areas of sample and data collection, namely: (1) core and cuttings, (2) formation fluids, (3) geophysical logging, and (4) downhole physical measurements, particularly temperatures and pressures.

  11. To drill or not to drill? An econometric analysis of US public opinion

    International Nuclear Information System (INIS)

    Mukherjee, Deep; Rahman, Mohammad Arshad

    2016-01-01

    Offshore drilling in the United States (US) has been the subject of public and political discourse due to multiple reasons which include economic impact, energy security, and environmental hazard. Consequently, several polls have been conducted over time to gauge public attitude towards offshore drilling. Nevertheless, the economic literature on this issue is sparse. This paper contributes to the literature and analyzes support for offshore drilling based on demographic, economic, social, belief, and shock (e.g. spill) factors. The data is taken from ten nationwide surveys conducted before, during and after the British Petroleum (BP) oil spill and analyzed within the framework of discrete choice model. The results from an ordinal probit model demonstrate that age, annual household income, affiliation to Republican Party, and residence in oil-rich states positively affect the probability of strong support and reduce the probability of strong opposition for offshore drilling. In contrast, the female gender, higher education, association to Democratic Party, and environmental concern affect opinion in opposite direction. Marginal effects show that belief about environmental consequences of drilling has the highest impact on opinion. Binary probit model also yields a similar result and suggests that BP oil disaster resulted in a transient decrease in support for offshore drilling. - Highlights: •US public opinion on offshore drilling is analyzed based on ten national polls. •Ordinal and binary probit models are utilized to identify the underlying factors that shape public opinion. •Belief about environmental cost of drilling and educational attainment have the highest negative impact on opinion. •Age, income, affiliation to Republican party and oil-rich states positively affect support for drilling. •BP oil spill resulted in a transient decrease in support for offshore drilling.

  12. Chesapeake Bay Impact Structure Deep Drilling Project Completes Coring

    Directory of Open Access Journals (Sweden)

    the Scientific Staff of the Chesapeake Bay Impact Structure Deep Drilling Project

    2006-09-01

    Full Text Available The Chesapeake Bay Impact Structure Deep Drilling Project (CBIS Project completed its coring operations during September–December 2005 and April–May 2006. Cores were collected continuously to a total depth of 1766 m. The recovered section consists of 1322 m of impactites beneath 444 m of post-impact continental shelf sediments.The CBIS Project is a joint venture of the International Continental Scientifi c Drilling Program (ICDP and the U.S. Geological Survey (USGS. Project activities began with a planning workshop in September 2003 attended by sixtythree scientists from ten countries. Field operations began with site preparation in July 2005, and coring began in September 2005. Drilling, Observation and Sampling of theEarth’s Continental Crust (DOSECC was the general contractor for the drilling operations throughout 2005.

  13. Percussive Augmenter of Rotary Drills for Operating as a Rotary-Hammer Drill

    Science.gov (United States)

    Aldrich, Jack Barron (Inventor); Bar-Cohen, Yoseph (Inventor); Sherrit, Stewart (Inventor); Badescu, Mircea (Inventor); Bao, Xiaoqi (Inventor); Scott, James Samson (Inventor)

    2014-01-01

    A percussive augmenter bit includes a connection shaft for mounting the bit onto a rotary drill. In a first modality, an actuator percussively drives the bit, and an electric slip-ring provides power to the actuator while being rotated by the drill. Hammering action from the actuator and rotation from the drill are applied directly to material being drilled. In a second modality, a percussive augmenter includes an actuator that operates as a hammering mechanism that drives a free mass into the bit creating stress pulses that fracture material that is in contact with the bit.

  14. In-process and post-process measurements of drill wear for control of the drilling process

    Science.gov (United States)

    Liu, Tien-I.; Liu, George; Gao, Zhiyu

    2011-12-01

    Optical inspection was used in this research for the post-process measurements of drill wear. A precision toolmakers" microscope was used. Indirect index, cutting force, is used for in-process drill wear measurements. Using in-process measurements to estimate the drill wear for control purpose can decrease the operation cost and enhance the product quality and safety. The challenge is to correlate the in-process cutting force measurements with the post-process optical inspection of drill wear. To find the most important feature, the energy principle was used in this research. It is necessary to select only the cutting force feature which shows the highest sensitivity to drill wear. The best feature selected is the peak of torque in the drilling process. Neuro-fuzzy systems were used for correlation purposes. The Adaptive-Network-Based Fuzzy Inference System (ANFIS) can construct fuzzy rules with membership functions to generate an input-output pair. A 1x6 ANFIS architecture with product of sigmoid membership functions can in-process measure the drill wear with an error as low as 0.15%. This is extremely important for control of the drilling process. Furthermore, the measurement of drill wear was performed under different drilling conditions. This shows that ANFIS has the capability of generalization.

  15. EIA completes corrections to drilling estimates series

    International Nuclear Information System (INIS)

    Trapmann, W.; Shambaugh, P.

    1998-01-01

    The Energy Information Administration (EIA) has published monthly and annual estimates of US oil and gas drilling activity since 1978. These data are key information for many industry analysts, serving as a leading indicator of trends in the industry and a barometer of general industry status. They are assessed directly for trends, as well as in combination with other measures to assess the productivity and profitability of upstream industry operations. They are major reference points for federal and state policymakers. EIA does not itself collect drilling activity data. Instead, it relies on an external source for data on oil, bas, and dry well completions. These data are provided to EIA monthly on an as reported basis. During a recent effort to enhance EIA's well completion data system, the detection of unusual patterns in the well completion data as received led to an expanded examination of these data. Substantial discrepancies between the data as received by EIA and correct record counts since 1987 were identified. For total wells by year, the errors ranged up to more than 2,300 wells, 11% of the 1995 total, and the impact of these errors extended backward in time to at least the early 1980s. When the magnitude and extent of the as reported well completion data problem were confirmed, EIA suspended its publication and distribution of updated drilling data. EIA staff proceeded to acquire replacement files with the as reported records and then revise the statistical portion of its drilling data system to reflect the new information. The replacement files unfortunately also included erroneous data based on the improper allocation of wells between exploration and development. EIA has now resolved the two data problems and generated revised time series estimates for well completions and footage drilled. The paper describes the problems in the data, differences between the series, and maintaining future data quality

  16. Statistical Analysis for Subjective and Objective Evaluations of Dental Drill Sounds.

    Directory of Open Access Journals (Sweden)

    Tomomi Yamada

    Full Text Available The sound produced by a dental air turbine handpiece (dental drill can markedly influence the sound environment in a dental clinic. Indeed, many patients report that the sound of a dental drill elicits an unpleasant feeling. Although several manufacturers have attempted to reduce the sound pressure levels produced by dental drills during idling based on ISO 14457, the sound emitted by such drills under active drilling conditions may negatively influence the dental clinic sound environment. The physical metrics related to the unpleasant impressions associated with dental drill sounds have not been determined. In the present study, psychological measurements of dental drill sounds were conducted with the aim of facilitating improvement of the sound environment at dental clinics. Specifically, we examined the impressions elicited by the sounds of 12 types of dental drills in idling and drilling conditions using a semantic differential. The analysis revealed that the impressions of dental drill sounds varied considerably between idling and drilling conditions and among the examined drills. This finding suggests that measuring the sound of a dental drill in idling conditions alone may be insufficient for evaluating the effects of the sound. We related the results of the psychological evaluations to those of measurements of the physical metrics of equivalent continuous A-weighted sound pressure levels (LAeq and sharpness. Factor analysis indicated that impressions of the dental drill sounds consisted of two factors: "metallic and unpleasant" and "powerful". LAeq had a strong relationship with "powerful impression", calculated sharpness was positively related to "metallic impression", and "unpleasant impression" was predicted by the combination of both LAeq and calculated sharpness. The present analyses indicate that, in addition to a reduction in sound pressure level, refining the frequency components of dental drill sounds is important for creating a

  17. Ultrasonic rotary-hammer drill

    Science.gov (United States)

    Bar-Cohen, Yoseph (Inventor); Badescu, Mircea (Inventor); Sherrit, Stewart (Inventor); Bao, Xiaoqi (Inventor); Kassab, Steve (Inventor)

    2010-01-01

    A mechanism for drilling or coring by a combination of sonic hammering and rotation. The drill includes a hammering section with a set of preload weights mounted atop a hammering actuator and an axial passage through the hammering section. In addition, a rotary section includes a motor coupled to a drive shaft that traverses the axial passage through the hammering section. A drill bit is coupled to the drive shaft for drilling by a combination of sonic hammering and rotation. The drill bit includes a fluted shaft leading to a distal crown cutter with teeth. The bit penetrates sampled media by repeated hammering action. In addition, the bit is rotated. As it rotates the fluted bit carries powdered cuttings helically upward along the side of the bit to the surface.

  18. Magma-Hydrothermal Transition: Basalt Alteration at Supercritical Conditions in Drill Core from Reykjanes, Iceland, Iceland Deep Drilling Project.

    Science.gov (United States)

    Zierenberg, R. A.; Fowler, A. P.; Schiffman, P.; Fridleifsson, G. Ó.; Elders, W. A.

    2017-12-01

    The Iceland Deep Drilling Project well IDDP-2, drilled to 4,659 m in the Reykjanes geothermal system, the on-land extension of the Mid Atlantic Ridge, SW Iceland. Drill core was recovered, for the first time, from a seawater-recharged, basalt-hosted hydrothermal system at supercritical conditions. The well has not yet been allowed to heat to in situ conditions, but temperature and pressure of 426º C and 340 bar was measured at 4500 m depth prior to the final coring runs. Spot drill cores were recovered between drilling depths of 3648.00 m and 4657.58 m. Analysis of the core is on-going, but we present the following initial observations. The cored material comes from a basaltic sheeted dike complex in the brittle-ductile transition zone. Felsic (plagiogranite) segregation veins are present in minor amounts in dikes recovered below 4300 m. Most core is pervasively altered to hornblende + plagioclase, but shows only minor changes in major and minor element composition. The deepest samples record the transition from the magmatic regime to the presently active hydrothermal system. Diabase near dike margins has been locally recrystallized to granoblastic-textured orthopyroxene-clinopyroxe-plagioclase hornfels. High temperature hydrothermal alteration includes calcic plagioclase (up to An100) and aluminous hornblende (up to 11 Wt. % Al2O3) locally intergrown with hydrothermal biotite, clinopyroxene, orthopyroxene and/or olivine. Hydrothermal olivine is iron-rich (Mg # 59-64) compared to expected values for igneous olivine. Biotite phenocrysts in felsic segregation veins have higher Cl and Fe compared to hydrothermal biotites. Orthopyroxene-clinopyroxene pairs in partially altered quench dike margins give temperature of 955° to 1067° C. Orthopyroxene-clinopyroxene pairs from hornfels and hydrothermal veins and replacements give temperature ranging from 774° to 888° C. Downhole fluid sampling is planned following thermal equilibration of the drill hole. Previous work

  19. 30 CFR 57.7052 - Drilling positions.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drilling positions. 57.7052 Section 57.7052... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface and Underground § 57.7052 Drilling positions. Persons shall not drill...

  20. Environmental assessment of exploration drilling off Nova Scotia: executive summary

    International Nuclear Information System (INIS)

    2000-01-01

    The environmental assessment project of drilling offshore Nova Scotia covers year-around drilling conducted from jackup rigs, semi-submersible rigs, and drill ships that use the methods described in the project description on the Scotian Shelf, the Laurentian Channel and St, Pierre Bank. The assessment was sponsored by all the oil companies active in the area, namely Mobil Oil Canada, Shell Canada, Imperial Oil Resources, Gulf Canada Resources, Chevron Canada Resources, PanCanadian Petroleum, Murphy Oil Company and Norsk Hydro Canada Oil and Gas. This summary describes the impact assessment methodology used, provides a description of the project, reviews the cumulative impact, and the impacts of discrete activities such as noise and disturbances, operational discharges of oil, disruption of the benthos, garbage and waste disposal, and accidental oil spills, and outlines mitigation and monitoring activities to deal with the impacts. Mitigation measures encompass routine discharges, accidental oil spills, spill response, monitoring activities, contingency plans and an overall environmental protection plan. In addition to this generic assessment, the consultants recommend that individual exploration drilling programs that fall outside of the parameters outlined in the generic environmental assessment document, be required to undergo a program-specific assessment that focuses on those aspects of the proposed program that differ from the parameters prescribed in the present document. 9 refs

  1. HYDRATE CORE DRILLING TESTS

    Energy Technology Data Exchange (ETDEWEB)

    John H. Cohen; Thomas E. Williams; Ali G. Kadaster; Bill V. Liddell

    2002-11-01

    The ''Methane Hydrate Production from Alaskan Permafrost'' project is a three-year endeavor being conducted by Maurer Technology Inc. (MTI), Noble, and Anadarko Petroleum, in partnership with the U.S. DOE National Energy Technology Laboratory (NETL). The project's goal is to build on previous and ongoing R&D in the area of onshore hydrate deposition. The project team plans to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope includes drilling and coring one well on Anadarko leases in FY 2003 during the winter drilling season. A specially built on-site core analysis laboratory will be used to determine some of the physical characteristics of the hydrates and surrounding rock. Prior to going to the field, the project team designed and conducted a controlled series of coring tests for simulating coring of hydrate formations. A variety of equipment and procedures were tested and modified to develop a practical solution for this special application. This Topical Report summarizes these coring tests. A special facility was designed and installed at MTI's Drilling Research Center (DRC) in Houston and used to conduct coring tests. Equipment and procedures were tested by cutting cores from frozen mixtures of sand and water supported by casing and designed to simulate hydrate formations. Tests were conducted with chilled drilling fluids. Tests showed that frozen core can be washed out and reduced in size by the action of the drilling fluid. Washing of the core by the drilling fluid caused a reduction in core diameter, making core recovery very difficult (if not impossible). One successful solution was to drill the last 6 inches of core dry (without fluid circulation). These tests demonstrated that it will be difficult to capture core when drilling in permafrost or hydrates without implementing certain safeguards. Among the coring tests was a simulated hydrate

  2. Slight rise possible in U.S. drilling; Canadian action sags

    International Nuclear Information System (INIS)

    Petzet, G.A.; Beck, R.J.

    1996-01-01

    The low level of US drilling evident in 1995 is likely to continue into 1996. Anticipated increases in the average prices of crude oil and natural gas will sustain only about a 2% increase in the number of wells drilled year to year in the US. A second year of decline can be expected in Canada from 1993's historic high, but total drilling will remain above the average of well counts for the past 10 years. Here are the main points of OGJ's early year drilling forecast for 1996: (1) Operators will drill 21,800 wells, compared with the 21,300 OGJ estimates they drilled in 1995. (2) The active rotary rig count will average 750, up 14% from 1995. (3) Operators will drill 3,300 exploratory wells of all types, up from 3,119 last year. (4) A surveyed group of major operators will drill 2,551 wells during the year, down from the 2,920 wells the same group operated in 1995. The 1996 figures includes 245 exploratory wells of all types, up from 219 last year. Meanwhile, drilling in western Canada will total 9,375 wells, down 12% from 1995 but still a healthy number historically. This paper provides exploration statistics for both the US and Canada and is broken down by state and province. It gives data on both exploratory and development wells. Data is also broken down by specific field

  3. 30 CFR 56.7052 - Drilling positions.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drilling positions. 56.7052 Section 56.7052... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7052 Drilling positions. Persons shall not drill from— (a) Positions which hinder...

  4. Horizontal drilling assessment in Western Canada

    International Nuclear Information System (INIS)

    Catania, Peter; Wilson, Malcolm

    1999-01-01

    The first horizontal well was drilled in Saskatchewan in 1987. Since then, the number of horizontal wells drilled has escalated rapidly, averaging approximately 500 per year since 1993. When combined with horizontal wells drilled in Alberta, the major Canadian oil-producing province, the total number drilled in 1995 was 978. This total exceeds the National Energy Board (NEB) projected maximum of 816 wells per year. The NEB projections were based on a break-even point for the drilling of horizontal wells of a return of CDN $285,000 using a discount rate of 15%. This corresponded to a cumulative production from each individual well of some 11,000 m 3 . The introduction of a royalty-free production volume of 12,000 m 3 per horizontal well in Saskatchewan was instrumental in stimulating the rapid expansion in the use of horizontal wells and helping Canada to exceed the forecasted drilling level. Within Saskatchewan, daily production from 1964 active horizontal wells is in excess of 20,000 m 3 . Comparative analysis indicates that the average daily production per well has increased from approximately by 40% with the advent of horizontal wells. In total production terms, provincial production has increased from 11.7 million cubic metres in 1989 to 20.9 million m 3 in 1996. This represents an increase of almost 79% based primarily on the extensive use of horizontal wells. In 1996, horizontal wells produced 36% of the province's oil from 12% of the active wells. In the southeastern producing areas of Saskatchewan, the Williston Basin, declining oil-production has jumped 100%, with horizontal wells accounting for approximately 50% of total regional production. Pay zones in this areas, as in most of the province, tend to be relatively thin, with net pay frequently less that 5 m. The modest investment of some CDN $5 million in government research funding 10 years ago to stimulate the development of horizontal wells, combined with a favourable royalty structure, has been at

  5. Drill-specific head impact exposure in youth football practice.

    Science.gov (United States)

    Campolettano, Eamon T; Rowson, Steven; Duma, Stefan M

    2016-11-01

    OBJECTIVE Although 70% of football players in the United States are youth players (6-14 years old), most research on head impacts in football has focused on high school, collegiate, or professional populations. The objective of this study was to identify the specific activities associated with high-magnitude (acceleration > 40g) head impacts in youth football practices. METHODS A total of 34 players (mean age 9.9 ± 0.6 years) on 2 youth teams were equipped with helmet-mounted accelerometer arrays that recorded head accelerations associated with impacts in practices and games. Videos of practices and games were used to verify all head impacts and identify specific drills associated with each head impact. RESULTS A total of 6813 impacts were recorded, of which 408 had accelerations exceeding 40g (6.0%). For each type of practice drill, impact rates were computed that accounted for the length of time that teams spent on each drill. The tackling drill King of the Circle had the highest impact rate (95% CI 25.6-68.3 impacts/hr). Impact rates for tackling drills (those conducted without a blocker [95% CI 14.7-21.9 impacts/hr] and those with a blocker [95% CI 10.5-23.1 impacts/hr]) did not differ from game impact rates (95% CI 14.2-21.6 impacts/hr). Tackling drills were observed to have a greater proportion (between 40% and 50%) of impacts exceeding 60g than games (25%). The teams in this study participated in tackling or blocking drills for only 22% of their overall practice times, but these drills were responsible for 86% of all practice impacts exceeding 40g. CONCLUSIONS In youth football, high-magnitude impacts occur more often in practices than games, and some practice drills are associated with higher impact rates and accelerations than others. To mitigate high-magnitude head impact exposure in youth football, practices should be modified to decrease the time spent in drills with high impact rates, potentially eliminating a drill such as King of the Circle

  6. Sandia's Geothermal Advanced Drill Rig Instrumentation Assists Critical Oil and Gas Drilling Operation

    International Nuclear Information System (INIS)

    Staller, George E.; Whitlow, Gary

    1999-01-01

    On November 23, 1998, an 18,000-foot-deep wild-cat natural gas well being drilled near Bakersfield, CA blew out and caught fire. All attempts to kill this well failed, and the well continues to flow under limited control, producing large volumes of natural gas, salt water, and some oil. The oil and some of the water is being separated and trucked off site, and the remaining gas and water is being burned at the well head. A relief well is being drilled approximately one-quarter mile away in an attempt to intercept the first well. If the relief well is successful, it will be used to cement in and kill the first well. Epoch Wellsite Services, Inc., the mud-logging company for the initial well and the relief well, requested Sandia's rolling float meter (RFM) for these critical drilling operations. The RFM is being used to measure the mud outflow rate and detect kicks while drilling the relief well, which will undoubtedly encounter reservoir conditions similar to those responsible for the blow out. Based on its prior experience with the RFM, Epoch believes that it is the only instrument capable of providing the level of accuracy and response to mudflow needed to quickly detect kicks and minimize the risk of a blowout on this second critical well. In response to the urgent request from industry, Sandia and Epoch technicians installed the RFM on the relief well return line, and completed its initial calibration. The data from the RFM is displayed in real-time for the driller, the companyman, and the toolpusher via Epochs RIGWATCH Drilling Instmmentation System. The RFM has already detected several small kicks while drilling toward the annulus of the blown out well. A conventional paddle meter is located downstream of the RFM to provide redundancy and the opportunity to compare the two meters in an actual drilling operation, The relief well is nearing 14,000 feet deep, targeting an intercept of the first well near 17,600 feet. The relief well is expected to be completed in

  7. 30 CFR 33.34 - Drilling test.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drilling test. 33.34 Section 33.34 Mineral... MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES Test Requirements § 33.34 Drilling test. (a) A drilling test shall consist of drilling a set of 10 test holes, without...

  8. Monitoring radionuclides in subsurface drinking water sources near unconventional drilling operations: a pilot study

    International Nuclear Information System (INIS)

    Nelson, Andrew W.; Knight, Andrew W.; Eitrheim, Eric S.; Schultz, Michael K.

    2015-01-01

    Unconventional drilling (the combination of hydraulic fracturing and horizontal drilling) to extract oil and natural gas is expanding rapidly around the world. The rate of expansion challenges scientists and regulators to assess the risks of the new technologies on drinking water resources. One concern is the potential for subsurface drinking water resource contamination by naturally occurring radioactive materials co-extracted during unconventional drilling activities. Given the rate of expansion, opportunities to test drinking water resources in the pre- and post-fracturing setting are rare. This pilot study investigated the levels of natural uranium, lead-210, and polonium-210 in private drinking wells within 2000 m of a large-volume hydraulic fracturing operation – before and approximately one-year following the fracturing activities. Observed radionuclide concentrations in well waters tested did not exceed maximum contaminant levels recommended by state and federal agencies. No statistically-significant differences in radionuclide concentrations were observed in well-water samples collected before and after the hydraulic fracturing activities. Expanded monitoring of private drinking wells before and after hydraulic fracturing activities is needed to develop understanding of the potential for drinking water resource contamination from unconventional drilling and gas extraction activities. - Highlights: • Natural radionuclides in ground water near unconventional drilling operations were investigated. • Natural uranium ( nat U), lead-210 ( 210 Pb), and polonium-210 ( 210 Po) levels are described. • No statistically significant increases in natural radioactivity post-drilling were observed

  9. Newberry exploratory slimhole: Drilling and testing

    Energy Technology Data Exchange (ETDEWEB)

    Finger, J.T.; Jacobson, R.D.; Hickox, C.E.

    1997-11-01

    During July--November, 1995, Sandia National Laboratories, in cooperation with CE Exploration, drilled a 5,360 feet exploratory slimhole (3.895 inch diameter) in the Newberry Known Geothermal Resource Area (KGRA) near Bend, Oregon. This well was part of Sandia`s program to evaluate slimholes as a geothermal exploration tool. During and after drilling the authors performed numerous temperature logs, and at the completion of drilling attempted to perform injection tests. In addition to these measurements, the well`s data set includes: over 4,000 feet of continuous core (with detailed log); daily drilling reports from Sandia and from drilling contractor personnel; daily drilling fluid record; and comparative data from other wells drilled in the Newberry KGRA. This report contains: (1) a narrative account of the drilling and testing, (2) a description of equipment used, (3) a brief geologic description of the formation drilled, (4) a summary and preliminary interpretation of the data, and (5) recommendations for future work.

  10. 30 CFR 816.14 - Casing and sealing of drilled holes: Temporary.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Casing and sealing of drilled holes: Temporary. 816.14 Section 816.14 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT...-SURFACE MINING ACTIVITIES § 816.14 Casing and sealing of drilled holes: Temporary. Each exploration hole...

  11. Microgravity Drill and Anchor System

    Science.gov (United States)

    Parness, Aaron; Frost, Matthew A.; King, Jonathan P.

    2013-01-01

    This work is a method to drill into a rock surface regardless of the gravitational field or orientation. The required weight-on-bit (WOB) is supplied by a self-contained anchoring mechanism. The system includes a rotary percussive coring drill, forming a complete sampling instrument usable by robot or human. This method of in situ sample acquisition using micro - spine anchoring technology enables several NASA mission concepts not currently possible with existing technology, including sampling from consolidated rock on asteroids, providing a bolt network for astronauts visiting a near-Earth asteroid, and sampling from the ceilings or vertical walls of lava tubes and cliff faces on Mars. One of the most fundamental parameters of drilling is the WOB; essentially, the load applied to the bit that allows it to cut, creating a reaction force normal to the surface. In every drilling application, there is a minimum WOB that must be maintained for the system to function properly. In microgravity (asteroids and comets), even a small WOB could not be supported conventionally by the weight of the robot or astronaut. An anchoring mechanism would be needed to resist the reactions, or the robot or astronaut would push themselves off the surface and into space. The ability of the system to anchor itself to a surface creates potential applications that reach beyond use in low gravity. The use of these anchoring mechanisms as end effectors on climbing robots has the potential of vastly expanding the scope of what is considered accessible terrain. Further, because the drill is supported by its own anchor rather than by a robotic arm, the workspace is not constrained by the reach of such an arm. Yet, if the drill is on a robotic arm, it has the benefit of not reflecting the forces of drilling back to the arm s joints. Combining the drill with the anchoring feet will create a highly mobile, highly stable, and highly reliable system. The drilling system s anchor uses hundreds of

  12. Development of a YouTube videos feelings analiser = Desarrollo de un analizador de sentimientos de videos de Youtube

    OpenAIRE

    Valle Salas, José Miguel del

    2018-01-01

    Nowadays, Youtube is one of the most successful social networks, therefore it has more and more impact in our society. Due to this it's quite useful to know the sentiments that this platform videos produces. This project has been focused in the development of a tool able to analise this sentiments, which could be used for di�erent purposes like Market studies or emotional learning for people who has some functional diversity. The technologies used during the project development has b...

  13. Influence of Drilling Parameters on Torque during Drilling of GFRP Composites Using Response Surface Methodology

    Science.gov (United States)

    Mohan, N. S.; Kulkarni, S. M.

    2018-01-01

    Polymer based composites have marked their valuable presence in the area of aerospace, defense and automotive industry. Components made of composite, are assembled to main structure by fastener, which require accurate, precise high quality holes to be drilled. Drilling the hole in composite with accuracy require control over various processes parameters viz., speed, feed, drill bit size and thickens of specimen. TRIAC VMC machining center is used to drill the hole and to relate the cutting and machining parameters on the torque. MINITAB 14 software is used to analyze the collected data. As a function of cutting and specimen parameters this method could be useful for predicting torque parameters. The purpose of this work is to investigate the effect of drilling parameters to get low torque value. Results show that thickness of specimen and drill bit size are significant parameters influencing the torque and spindle speed and feed rate have least influence and overlaid plot indicates a feasible and low region of torque is observed for medium to large sized drill bits for the range of spindle speed selected. Response surface contour plots indicate the sensitivity of the drill size and specimen thickness to the torque.

  14. Control procedure for well drilling operations

    Energy Technology Data Exchange (ETDEWEB)

    Bourdon, J C

    1988-09-09

    A control procedure of rotary drilling operations is proposed. It uses the Drill off test. The drill-off test permits to determine the rock drill speed variation as a function of the wright applied on the top of the pipe. We can deduce from that a rock drill wear parameter. The method permits to prevent a rupture and its grave economic consequences.

  15. Multi-state autonomous drilling for lunar exploration

    Directory of Open Access Journals (Sweden)

    Chen Chongbin

    2016-10-01

    Full Text Available Due to the lack of information of subsurface lunar regolith stratification which varies along depth, the drilling device may encounter lunar soil and lunar rock randomly in the drilling process. To meet the load safety requirements of unmanned sampling mission under limited orbital resources, the control strategy of autonomous drilling should adapt to the indeterminable lunar environments. Based on the analysis of two types of typical drilling media (i.e., lunar soil and lunar rock, this paper proposes a multi-state control strategy for autonomous lunar drilling. To represent the working circumstances in the lunar subsurface and reduce the complexity of the control algorithm, lunar drilling process was categorized into three drilling states: the interface detection, initiation of drilling parameters for recognition and drilling medium recognition. Support vector machine (SVM and continuous wavelet transform were employed for the online recognition of drilling media and interface, respectively. Finite state machine was utilized to control the transition among different drilling states. To verify the effectiveness of the multi-state control strategy, drilling experiments were implemented with multi-layered drilling media constructed by lunar soil simulant and lunar rock simulant. The results reveal that the multi-state control method is capable of detecting drilling state variation and adjusting drilling parameters timely under vibration interferences. The multi-state control method provides a feasible reference for the control of extraterrestrial autonomous drilling.

  16. Optimum fluid design for drilling and cementing a well drilled with coil tubing technology

    Energy Technology Data Exchange (ETDEWEB)

    Swendsen, O.; Saasen, A.; Vassoy, B. [Statoil (Norway); Skogen, E.; Mackin, F.; Normann, S. H.

    1998-12-31

    The strategy, design and drilling fluid and cementing operations in the first two wells drilled with coil tubing technology in the Gullfaks field in the Tampen Spur Area of the Norwegian sector of the North Sea are discussed. The drilling fluid use was a solids-free potassium formate/polymer brine-based fluid with a density of 1,50-1.56 g/cc, with flow properties characterized by very low fluid loss due to high extensional viscosity, a low viscosity at all shear rates, and a low degree of shear-thinning. The low viscous drilling fluid is considered to have been the major contributing factor in achieving excellent hole cleaning, no differential sticking, successful setting of cement kick-off plugs, problem-free running of the liner, and excellent zonal isolation when cementing the liner. These experiences led the authors to conclude that it is possible to formulate a brine-based solids-free drilling fluid with low viscosity and fluid loss properties for most formation pressure regimes, and that such a drilling fluid is well suited to drilling highly deviated slim hole wells where hole cleaning and differential sticking present special challenges. 12 refs., 2 tabs., 3 figs.

  17. Heat generated by dental implant drills during osteotomy-a review: heat generated by dental implant drills.

    Science.gov (United States)

    Mishra, Sunil Kumar; Chowdhary, Ramesh

    2014-06-01

    Osseointegration is the more stable situation and results in a high success rate of dental implants. Heat generation during rotary cutting is one of the important factors influencing the development of osseointegration. To assess the various factors related to implant drills responsible for heat generation during osteotomy. To identify suitable literature, an electronic search was performed using Medline and Pubmed database. Articles published in between 1960 to February 2013 were searched. The search is focused on heat generated by dental implant drills during osteotomy. Various factors related to implant drill such effect of number of blades; drill design, drill fatigue, drill speed and force applied during osteotomies which were responsible for heat generation were reviewed. Titles and abstracts were screened, and literature that fulfilled the inclusion criteria was selected for a full-text reading. The initial literature search resulted in 299 articles out of which only 70 articles fulfils the inclusion criteria and were included in this systematic review. Many factors related to implant drill responsible for heat generation were found. Successful preparation of an implant cavity with minimal damage to the surrounding bone depends on the avoidance of excessive temperature generation during surgical drilling. The relationship between heat generated and implant drilling osteotomy is multifactorial in nature and its complexity has not been fully studied. Lack of scientific knowledge regarding this issue still exists. Further studies should be conducted to determine the various factors which generate less heat while osteotomy such as ideal ratio of force and speed in vivo, exact time to replace a drill, ideal drill design, irrigation system, drill-bone contact area.

  18. Construction of blind shafts with the PVS 3500 planetary full shaft drilling machine

    International Nuclear Information System (INIS)

    Glogowski, P.; Kolditz, H.

    1992-01-01

    The PVS 3500 planetary full shaft drilling machine has proved as a prototype in the construction of two blind shafts. The drilling rate of 8 m/shift or 25.6 m 3 /MS is outstanding for the initial use of this drilling machine. Blind shafts were cut from the solid by a dry drilling method for the first time. It opens up the possibility of making available storage boreholes for larger quantities of radioactive waste with low activity and for toxic waste materials. (orig.)

  19. Georges Bank drilling moratorium gets extended until 2015

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2010-07-15

    A moratorium on oil and gas exploration and drilling on the Georges Bank will continue until the end of 2015. Governments require a full public review and research concerning the potential environmental impacts of the project before lifting the moratorium. Canada's federal and provincial governments have agreed to gather information related to the region's fragile ecosystem, and investigate the potential impacts that petroleum-related activities may have in the area. Preliminary reviews are being conducted to study the socio-economic impacts of offshore petroleum activities and to assess new technologies and drilling practices that may be used to reduce the impacts of oil and gas operations. 1 fig.

  20. The Auto-Gopher Deep Drill

    Science.gov (United States)

    Badescu, Mircea

    2014-01-01

    Subsurface penetration by coring, drilling or abrading is of great importance for a large number of space and earth applications. An Ultrasonic/Sonic Drill/Corer (USDC) has been in development at JPL's Nondestructive Evaluation and Advanced Actuators (NDEAA) lab as an adaptable tool for many of these applications. The USDC uses a novel drive mechanism to transform the high frequency ultrasonic or sonic vibrations of the tip of a horn into a lower frequency sonic hammering of a drill bit through an intermediate free-flying mass. The USDC device idea has been implemented at various scales from handheld drills to large diameter coring devices. A series of computer programs that model the function and performance of the USDC device were developed and were later integrated into an automated modeling package. The USDC has also evolved from a purely hammering drill to a rotary hammer drill as the design requirements increased form small diameter shallow drilling to large diameter deep coring. A synthesis of the Auto-Gopher development is presented in this paper.

  1. Environmental Measurement While Drilling System for Real-Time Field Screening of Contaminants

    International Nuclear Information System (INIS)

    Lockwood, G.J.; Normann, R.A.; Williams, C.V.

    1999-01-01

    Sampling during environmental drilling is essential to fully characterize the spatial distribution and migration of subsurface contaminants. However, analysis of the samples is expensive and time-consuming: off-site laboratory analysis can take weeks or months. Real-time information on environmental conditions, drill bit location and temperature during drilling is valuable in many environmental restoration operations. This type of information can be used to provide field screening data and improved efficiency of site characterization activities. The Environmental Measurement-While-Drilling (EMWD) System represents an innovative blending of new and existing technology in order to obtain real-time data during drilling. The system consists of two subsystems. The down-hole subsystem (at the drill bit) consists of sensors, a power supply, a signal conditioning and transmitter board, and a radio-frequency (RF) coaxial cable. The up-hole subsystem consists of a battery pack/coil, pickup coil, receiver, and personal computer. The system is compatible with fluid miser drill pipe, a directional drilling technique that uses minimal drilling fluids and generates little to no secondary waste. In EMWD, downhole sensors are located behind the drill bit and linked by a high-speed data transmission system to a computer at the surface. Sandia-developed Windowstrademark-based software is used for data display and storage. As drilling is conducted, data is collected on the nature and extent of contamination, enabling on-the-spot decisions regarding drilling and sampling strategies. Initially, the downhole sensor consisted of a simple gamma radiation detector, a Geiger-Mueller tube (GMT). The design includes data assurance techniques to increase safety by reducing the probability of giving a safe indication when an unsafe condition exists. The EMWD system has been improved by the integration of a Gamma Ray Spectrometer (GRS) in place of the GMT. The GRS consists of a sodium iodide

  2. Effect of anionic polyelectrolytes on the flow of activated sodium bentonite drilling mud

    Directory of Open Access Journals (Sweden)

    Chalah Kaci

    2018-01-01

    Full Text Available Bentonite is often used in water-based drilling fluids. The xanthan gum is widely used as to increase the viscosity of the bentonite suspension. For the stabilization of the drilled layers, we use filtrate reducers: sodium carboxymethylcellulose low viscosity and cellulose polyanionic low viscosity. The objective of this work is to explain the effect of the polymers on the rheological behavior of the 5% bentonite suspensions. These results will provide practical recommendations for the rational use of different types of additives in water-based drilling muds. Our work is based on rheological trials on a viscometer. The results obtained on the bentonite 5%-xanthane suspension show a rheofluidifying behavior with yield stress conform to the Herschel-bulckly modal. While increasing the concentration of filtrate reducer decreases the yield stress and reduces the viscosity. The effect of CMC LV is more pronounced than PAC L.

  3. Evacuation drill at CMS

    CERN Multimedia

    Niels Dupont-Sagorin and Christoph Schaefer

    2012-01-01

    Training personnel, including evacuation guides and shifters, checking procedures, improving collaboration with the CERN Fire Brigade: the first real-life evacuation drill at CMS took place on Friday 3 February from 12p.m. to 3p.m. in the two caverns located at Point 5 of the LHC.   CERN personnel during the evacuation drill at CMS. Evacuation drills are required by law and have to be organized periodically in all areas of CERN, both above and below ground. The last drill at CMS, which took place in June 2007, revealed some desiderata, most notably the need for a public address system. With this equipment in place, it is now possible to broadcast audio messages from the CMS control room to the underground areas.   The CMS Technical Coordination Team and the GLIMOS have focused particularly on preparing collaborators for emergency situations by providing training and organizing regular safety drills with the HSE Unit and the CERN Fire Brigade. This Friday, the practical traini...

  4. Stakeholder acceptance analysis ResonantSonic drilling

    International Nuclear Information System (INIS)

    Peterson, T.

    1995-12-01

    This report presents evaluations, recommendations, and requirements concerning ResonantSonic Drilling (Sonic Drilling), derived from a three-year program of stakeholder involvement. Sonic Drilling is an innovative method to reach contamination in soil and groundwater. The resonant sonic drill rig uses counter-rotating weights to generate energy, which causes the drill pipe to vibrate elastically along its entire length. In the resonant condition, forces of up to 200,000 pounds are transmitted to the drill bit face to create a cutting action. The resonant energy causes subsurface materials to move back into the adjacent formation, permitting the drill pipe to advance. This report is for technology developers and those responsible for making decisions about the use of technology to remediate contamination by volatile organic compounds. Stakeholders' perspectives help those responsible for technology deployment to make good decisions concerning the acceptability and applicability of sonic drilling to the remediation problems they face

  5. Drilling of bone: A comprehensive review

    Science.gov (United States)

    Pandey, Rupesh Kumar; Panda, S.S.

    2013-01-01

    Background Bone fracture treatment usually involves restoring of the fractured parts to their initial position and immobilizing them until the healing takes place. Drilling of bone is common to produce hole for screw insertion to fix the fractured parts for immobilization. Orthopaedic drilling during surgical process causes increase in the bone temperature and forces which can cause osteonecrosis reducing the stability and strength of the fixation. Methods A comprehensive review of all the relevant investigations carried on bone drilling is conducted. The experimental method used, results obtained and the conclusions made by the various researchers are described and compared. Result Review suggests that the further improvement in the area of bone drilling is possible. The systematic review identified several consequential factors (drilling parameters and drill specifications) affecting bone drilling on which there no general agreement among investigators or are not adequately evaluated. These factors are highlighted and use of more advanced methods of drilling is accentuated. The use of more precise experimental set up which resembles the actual situation and the development of automated bone drilling system to minimize human error is addressed. Conclusion In this review, an attempt has been made to systematically organize the research investigations conducted on bone drilling. Methods of treatment of bone fracture, studies on the determination of the threshold for thermal osteonecrosis, studies on the parameters influencing bone drilling and methods of the temperature measurement used are reviewed and the future work for the further improvement of bone drilling process is highlighted. PMID:26403771

  6. Influence of drill helical direction on exit damage development in drilling carbon fiber reinforced plastic

    Science.gov (United States)

    Bai, Y.; Jia, Z. Y.; Wang, F. J.; Fu, R.; Guo, H. B.; Cheng, D.; Zhang, B. Y.

    2017-06-01

    Drilling is inevitable for CFRP components’ assembling process in the aviation industry. The exit damage frequently occurs and affects the load carrying capacity of components. Consequently, it is of great urgency to enhance drilling exit quality on CFRP components. The article aims to guide the reasonable choice of drill helical direction and effectively reduce exit damage. Exit observation experiments are carried out with left-hand helical, right-hand helical and straight one-shot drill drilling T800S CFRP laminates separately. The development rules of exit damage and delamination factor curves are obtained. Combined with loading conditions and fracture modes of push-out burrs, and thrust force curves, the influence of drill helical direction on exit damage development is derived. It is found that the main fracture modes for left-hand helical, right-hand helical, and straight one-shot drill are mode I, extrusive fracture, mode III respectively. Among them, mode III has the least effect on exit damage development. Meanwhile, the changing rate of thrust force is relative slow for right-hand helical and straight one-shot drill in the thrust force increasing phase of stage II, which is disadvantaged for exit damage development. Therefore, straight one-shot drill’s exit quality is the best.

  7. Heat accumulation during sequential cortical bone drilling.

    Science.gov (United States)

    Palmisano, Andrew C; Tai, Bruce L; Belmont, Barry; Irwin, Todd A; Shih, Albert; Holmes, James R

    2016-03-01

    Significant research exists regarding heat production during single-hole bone drilling. No published data exist regarding repetitive sequential drilling. This study elucidates the phenomenon of heat accumulation for sequential drilling with both Kirschner wires (K wires) and standard two-flute twist drills. It was hypothesized that cumulative heat would result in a higher temperature with each subsequent drill pass. Nine holes in a 3 × 3 array were drilled sequentially on moistened cadaveric tibia bone kept at body temperature (about 37 °C). Four thermocouples were placed at the center of four adjacent holes and 2 mm below the surface. A battery-driven hand drill guided by a servo-controlled motion system was used. Six samples were drilled with each tool (2.0 mm K wire and 2.0 and 2.5 mm standard drills). K wire drilling increased temperature from 5 °C at the first hole to 20 °C at holes 6 through 9. A similar trend was found in standard drills with less significant increments. The maximum temperatures of both tools increased from drill sizes was found to be insignificant (P > 0.05). In conclusion, heat accumulated during sequential drilling, with size difference being insignificant. K wire produced more heat than its twist-drill counterparts. This study has demonstrated the heat accumulation phenomenon and its significant effect on temperature. Maximizing the drilling field and reducing the number of drill passes may decrease bone injury. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  8. Quality in drilling operations

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, E; Gervais, I [Sedco Forex Jacintoport Facility, Channelview, TX (United States); Le Moign, Y; Pangarkar, S; Stibbs, B [Sedco Forex, Montrouge (France); McMorran, P [Sedco Forex, Pau (France); Nordquist, E [Dubai Petroleum Company, Dubai (United Arab Emirates); Pittman, T [Sedco Forex, Perth (Australia); Schindler, H [Sedco Forex, Dubai (United Arab Emirates); Scott, P [Woodside Offshore Petroleum Pty. Ltd., Perth (Australia)

    1997-12-31

    Driven by cost and profitability pressures, quality has taken on new meaning and importance in the oil field during the past decade. In drilling operations, new initiatives have led to cooperative team efforts between operators and drilling contractors to enhance quality. In this article examples are given of how one drilling contractor, by adopting a quality culture, is reaping major benefits for its clients as well as its employees. 22 figs., 19 refs.

  9. Quality in drilling operations

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, E.; Gervais, I. [Sedco Forex Jacintoport Facility, Channelview, TX (United States); Le Moign, Y.; Pangarkar, S.; Stibbs, B. [Sedco Forex, Montrouge (France); McMorran, P. [Sedco Forex, Pau (France); Nordquist, E. [Dubai Petroleum Company, Dubai (United Arab Emirates); Pittman, T. [Sedco Forex, Perth (Australia); Schindler, H. [Sedco Forex, Dubai (United Arab Emirates); Scott, P. [Woodside Offshore Petroleum Pty. Ltd., Perth (Australia)

    1996-12-31

    Driven by cost and profitability pressures, quality has taken on new meaning and importance in the oil field during the past decade. In drilling operations, new initiatives have led to cooperative team efforts between operators and drilling contractors to enhance quality. In this article examples are given of how one drilling contractor, by adopting a quality culture, is reaping major benefits for its clients as well as its employees. 22 figs., 19 refs.

  10. Learning by strategies and learning by drill--evidence from an fMRI study.

    Science.gov (United States)

    Delazer, M; Ischebeck, A; Domahs, F; Zamarian, L; Koppelstaetter, F; Siedentopf, C M; Kaufmann, L; Benke, T; Felber, S

    2005-04-15

    The present fMRI study investigates, first, whether learning new arithmetic operations is reflected by changing cerebral activation patterns, and second, whether different learning methods lead to differential modifications of brain activation. In a controlled design, subjects were trained over a week on two new complex arithmetic operations, one operation trained by the application of back-up strategies, i.e., a sequence of arithmetic operations, the other by drill, i.e., by learning the association between the operands and the result. In the following fMRI session, new untrained items, items trained by strategy and items trained by drill, were assessed using an event-related design. Untrained items as compared to trained showed large bilateral parietal activations, with the focus of activation along the right intraparietal sulcus. Further foci of activation were found in both inferior frontal gyri. The reverse contrast, trained vs. untrained, showed a more focused activation pattern with activation in both angular gyri. As suggested by the specific activation patterns, newly acquired expertise was implemented in previously existing networks of arithmetic processing and memory. Comparisons between drill and strategy conditions suggest that successful retrieval was associated with different brain activation patterns reflecting the underlying learning methods. While the drill condition more strongly activated medial parietal regions extending to the left angular gyrus, the strategy condition was associated to the activation of the precuneus which may be accounted for by visual imagery in memory retrieval.

  11. Deep-Time drilling in the Australian Archean: the Agouron Institute geobiological drilling project. (Invited)

    Science.gov (United States)

    Buick, R.

    2010-12-01

    The Agouron Institute has sponsored deep-time drilling across the South African Archean-Proterozoic boundary, investigating the rise of oxygen over an onshore-offshore environmental transect. It is now supporting a drilling program in the Australian Archean of the Pilbara Craton, addressing a similar theme but with the added goal of resolving controversy over the age and origin of hydrocarbon biomarker molecules in ancient kerogenous shales. As these have been claimed to provide evidence for the evolution of oxygenic photosynthesis long before the rise of atmospheric oxygen to persistently high levels during the ~2.3 Ga “Great Oxidation Event”, their syngenesis with their host shales is thus of critical importance for the interpretation of Earth’s early oxygenation history. During the first drilling season, 3 holes were drilled using techniques and equipment to minimize organic geochemical contamination (new drill-string components cleaned before drilling potentially biomarker-bearing rocks, pre-contamination of drilling fluid with a synthetic organic compound of similar geochemical characteristics to biomarkers, sterile cutting and storage of samples immediately upon retrieval from the core-barrel). The initial hole was a blank control for organic geochemistry, drilled into rocks too metamorphosed to retain biomarker molecules. These rocks, cherts, carbonates and pelites of the 3.52 Ga Coucal Formation, Coonterunah Group, have been metamorphosed to upper greenschist facies at temperatures near 500°C and so should have had any ancient soluble hydrocarbons destroyed. However, because they contain both carbonate and organic carbon, these rocks can instead provide isotopic information about the earliest evolution of biological metabolism as they possess residues of both the reactant and product sides of the carbon-fixation reaction. The second hole sampled an on-shore section of carbonates and kerogenous shales in the ~2.65 Ga Carawine Dolomite and Lewin Shale

  12. Drilling miniature holes, Part III

    Energy Technology Data Exchange (ETDEWEB)

    Gillespie, L.K.

    1978-07-01

    Miniature components for precision electromechanical mechanisms such as switches, timers, and actuators typically require a number of small holes. Because of the precision required, the workpiece materials, and the geometry of the parts, most of these holes must be produced by conventional drilling techniques. The use of such techniques is tedious and often requires considerable trial and error to prevent drill breakage, minimize hole mislocation and variations in hole diameter. This study of eight commercial drill designs revealed that printed circuit board drills produced better locational and size repeatability than did other drills when centerdrilling was not used. Boring holes 1 mm in dia, or less, as a general rule did not improve hole location in brass or stainless steel. Hole locations of patterns of 0.66-mm holes can be maintained within 25.4-..mu..m diametral positional tolerance if setup misalignments can be eliminated. Size tolerances of +- 3.8 ..mu..m can be maintained under some conditions when drilling flat plates. While these levels of precision are possible with existing off-the-shelf drills, they may not be practical in many cases.

  13. Avoiding pollution in scientific ocean drilling

    International Nuclear Information System (INIS)

    Francis, T.J.G.

    1999-01-01

    Scientific ocean drilling has been carried out in the world's oceans since the nineteen sixties. From 1968-83 the Deep Sea Drilling Project (DSDP), managed by the Scripps Institution of Oceanography in California under a contract with the US National Science Foundation, employed the drilling vessel Glomar Challenger for this purpose. In January 1985 the Ocean Drilling Program (GDP), operated by Texas A and M University, began operations with the drillship JOIDES Resolution which continue to this day. The principal funding agency remains the US National Science Foundation, but since its inception GDP has been an international program and currently receives financial support from 21 countries. The ODP operates globally and, as with DSDP before it, drills without a riser or blowout preventer in a wide range of geological environments. Water depths at GDP drill sites have ranged from 38 m to 5969 m, but are typically within the range 1000-5000 m. Depths of penetration at GDP drill sites, while generally less than 1000 m, have ranged up to 2111 m below the sea floor. The drilling fluid is seawater, although occasional slugs of mud are circulated to clean or condition the hole. Thus drilling is carried out without well control, i.e. without the ability to control pressures within the well. Because of the absence of well control, it is vital to ensure that the drillship does not drill into an accumulation of oil or gas. Drilling into a charged reservoir and causing oil or gas to escape into the marine environment is recognised as the main pollution hazard in scientific ocean drilling

  14. Exploration drilling and ecology. A contribution to the MER (Environmental Effect Report) of the NAM (Netherlands Petroleum Company) for the benefit of exploration drilling for natural gas in the Waddenzee and the North Sea coastal area

    International Nuclear Information System (INIS)

    Dankers, N.; Wintermans, G.J.M.

    1996-01-01

    Within the framework of the title drilling activities the NAM carries out a MER. Several research institutes were asked to contribute to the MER. The authors' institute was asked to describe the ecology of the exploration areas in the Wadden Sea, as well as the possible effects of the exploration drilling on the ecology. In this report only the impact for the Wadden Sea is dealt with. In chapter 1 the ecology of the Wadden Sea is discussed in detail for the subjects primary production (photosynthesis), secondary production (consumption of vegetable organic materials), birds, seals, and societal functions. In chapter 2 specific aspects of specific sites are outlined. In chapter 3 an overview (the so-called factor train) is given of the activities around the exploration drilling of the NAM in the Wadden Sea and the disturbances that can be the result of those activities. In chapter 4 the possible effects of exploration drilling on birds and seals are discussed for each drilling site

  15. Horizontal Directional Drilling-Length Detection Technology While Drilling Based on Bi-Electro-Magnetic Sensing

    Directory of Open Access Journals (Sweden)

    Yudan Wang

    2017-04-01

    Full Text Available The drilling length is an important parameter in the process of horizontal directional drilling (HDD exploration and recovery, but there has been a lack of accurate, automatically obtained statistics regarding this parameter. Herein, a technique for real-time HDD length detection and a management system based on the electromagnetic detection method with a microprocessor and two magnetoresistive sensors employing the software LabVIEW are proposed. The basic principle is to detect the change in the magnetic-field strength near a current coil while the drill stem and drill-stem joint successively pass through the current coil forward or backward. The detection system consists of a hardware subsystem and a software subsystem. The hardware subsystem employs a single-chip microprocessor as the main controller. A current coil is installed in front of the clamping unit, and two magneto resistive sensors are installed on the sides of the coil symmetrically and perpendicular to the direction of movement of the drill pipe. Their responses are used to judge whether the drill-stem joint is passing through the clamping unit; then, the order of their responses is used to judge the movement direction. The software subsystem is composed of a visual software running on the host computer and a software running in the slave microprocessor. The host-computer software processes, displays, and saves the drilling-length data, whereas the slave microprocessor software operates the hardware system. A combined test demonstrated the feasibility of the entire drilling-length detection system.

  16. Effects of implant drilling parameters for pilot and twist drills on temperature rise in bone analog and alveolar bones.

    Science.gov (United States)

    Chen, Yung-Chuan; Hsiao, Chih-Kun; Ciou, Ji-Sih; Tsai, Yi-Jung; Tu, Yuan-Kun

    2016-11-01

    This study concerns the effects of different drilling parameters of pilot drills and twist drills on the temperature rise of alveolar bones during dental implant procedures. The drilling parameters studied here include the feed rate and rotation speed of the drill. The bone temperature distribution was analyzed through experiments and numerical simulations of the drilling process. In this study, a three dimensional (3D) elasto-plastic dynamic finite element model (DFEM) was proposed to investigate the effects of drilling parameters on the bone temperature rise. In addition, the FE model is validated with drilling experiments on artificial human bones and porcine alveolar bones. The results indicate that 3D DFEM can effectively simulate the bone temperature rise during the drilling process. During the drilling process with pilot drills or twist drills, the maximum bone temperature occurred in the region of the cancellous bones close to the cortical bones. The feed rate was one of the important factors affecting the time when the maximum bone temperature occurred. Our results also demonstrate that the elevation of bone temperature was reduced as the feed rate increased and the drill speed decreased, which also effectively reduced the risk region of osteonecrosis. These findings can serve as a reference for dentists in choosing drilling parameters for dental implant surgeries. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  17. Applicability of petroleum horizontal drilling technology to hazardous waste site characterization and remediation

    International Nuclear Information System (INIS)

    Goranson, C.

    1992-09-01

    Horizontal wells have the potential to become an important tool for use in characterization, remediation and monitoring operations at hazardous waste disposal, chemical manufacturing, refining and other sites where subsurface pollution may develop from operations or spills. Subsurface pollution of groundwater aquifers can occur at these sites by leakage of surface disposal ponds, surface storage tanks, underground storage tanks (UST), subsurface pipelines or leakage from surface operations. Characterization and remediation of aquifers at or near these sites requires drilling operations that are typically shallow, less than 500-feet in depth. Due to the shallow nature of polluted aquifers, waste site subsurface geologic formations frequently consist of unconsolidated materials. Fractured, jointed and/or layered high compressive strength formations or compacted caliche type formations can also be encountered. Some formations are unsaturated and have pore spaces that are only partially filled with water. Completely saturated underpressured aquifers may be encountered in areas where the static ground water levels are well below the ground surface. Each of these subsurface conditions can complicate the drilling and completion of wells needed for monitoring, characterization and remediation activities. This report describes some of the equipment that is available from petroleum drilling operations that has direct application to groundwater characterization and remediation activities. A brief discussion of petroleum directional and horizontal well drilling methodologies is given to allow the reader to gain an understanding of the equipment needed to drill and complete horizontal wells. Equipment used in river crossing drilling technology is also discussed. The final portion of this report is a description of the drilling equipment available and how it can be applied to groundwater characterization and remediation activities

  18. The effect of drilling parameters for surface roughness in drilling of AA7075 alloy

    Directory of Open Access Journals (Sweden)

    Yaşar Nafiz

    2017-01-01

    Full Text Available AA7075 aluminum alloy has been very popular significantly interest in the production of structural components in automotive and aviation applications due to its high strength, low density, good plasticity and better machinability comparable to many metals. Particularly, final products must have uniformly high quality to ensure essential safety standards in the aircraft industry. The optimization of hole quality which can variable according to tool geometry and drilling parameters is important in spite of high machinability rate of AA7075 alloy. In this study, the effects of drilling parameters on average surface roughness (Ra has been investigated in drilling of AA7075 with tungsten carbide drills. Machining experiments were performed with three different drill point angles and three different levels of cutting parameters (feed rate, cutting speed. The effects of drilling parameters on thrust force has been determined with ANOVA in %95 confidence level. Feed rate was determined as the most important factor on Ra according to ANOVA results. Moreover, it was shown that increasing feed rate leads to increase of Ra while increasing drill point angle leads to decrease of Ra. The optimum surface roughness was obtained with point angle of 130°, cutting speed of 40 m/min and feed rate of 0.1 mm/rev, thereby the validity of optimization was confirmed with Taguchi method.

  19. Trace elements in a North Sea drill core

    DEFF Research Database (Denmark)

    Kunzendorf, Helmar; Gwozdz, R.; Svendsen, N.

    1986-01-01

    , V, Sr, Dy, Mg, Ti, Ba and Eu. The major elements Ca and Al could be related to petrophysical parameters, particularly Al which shows a correlation with the silicification/argillaceous content. Na (and Cl) has a low content in the hydrocarbon-bearing section of the drill core suggesting that the pore......Chalk samples, systematically taken along a drill core from one of the hydrocarbon producing fields of the North Sea (Tyra field), were analysed by a neutron activation technique involving measurement of radioisotopes with relatively short half-lives. Elements determined include Na, Al, Cl, Ca, Mn...... space is filled mainly by hydrocarbons. A significant decrease of Mn with depth probably suggests diagenesis of chalk prior to, or with, hydrocarbon emplacement. Investigations of drilling fluids and cuttings reveal a strong contamination of the latter, mainly by Ba. Chalk data from comparable onshore...

  20. Long-term impacts of unconventional drilling operations on human and animal health.

    Science.gov (United States)

    Bamberger, Michelle; Oswald, Robert E

    2015-01-01

    Public health concerns related to the expansion of unconventional oil and gas drilling have sparked intense debate. In 2012, we published case reports of animals and humans affected by nearby drilling operations. Because of the potential for long-term effects of even low doses of environmental toxicants and the cumulative impact of exposures of multiple chemicals by multiple routes of exposure, a longitudinal study of these cases is necessary. Twenty-one cases from five states were followed longitudinally; the follow-up period averaged 25 months. In addition to humans, cases involved food animals, companion animals and wildlife. More than half of all exposures were related to drilling and hydraulic fracturing operations; these decreased slightly over time. More than a third of all exposures were associated with wastewater, processing and production operations; these exposures increased slightly over time. Health impacts decreased for families and animals moving from intensively drilled areas or remaining in areas where drilling activity decreased. In cases of families remaining in the same area and for which drilling activity either remained the same or increased, no change in health impacts was observed. Over the course of the study, the distribution of symptoms was unchanged for humans and companion animals, but in food animals, reproductive problems decreased and both respiratory and growth problems increased. This longitudinal case study illustrates the importance of obtaining detailed epidemiological data on the long-term health effects of multiple chemical exposures and multiple routes of exposure that are characteristic of the environmental impacts of unconventional drilling operations.

  1. DOE/Fossil Energy`s drilling, completion, and stimulation RD&D: A technologies/products overview

    Energy Technology Data Exchange (ETDEWEB)

    Duda, J.R.; Yost, A.B. II

    1995-12-31

    An overview of natural gas drilling, completion, and stimulation RD&D sponsored by the US Department of Energy is reported in this paper. Development of high rate-of-penetration drilling systems and underbalanced drilling technologies are detailed among other RD&D activities. The overview serves as a technology transfer medium and is intended to accelerate the deployment of the products and technologies described.

  2. Identification and characterization of the active hydrothermal deposits in Okinawa Trough, SW Japan: Estimates from logging-while-drilling

    Science.gov (United States)

    Saito, S.; Sanada, Y.; Moe, K.; Kido, Y. N.; Hamada, Y.; Kumagai, H.; Nozaki, T.; Takai, K.; Suzuki, K.

    2015-12-01

    A scientific drilling expedition was conducted at an active hydrothermal field on the Iheya-North Knoll by D/V Chikyu in 2014 (Expedition 907) as a part of "Next-generation Technology for Ocean Resources Survey" of the Cross-ministerial Strategic Innovation Promotion Program. During the expedition logging while drilling (LWD) was deployed to constrain the area of the fluid reservoir beneath seafloor followed by three coring holes down to 150 meter below the seafloor (mbsf). The LWD system is composed of arcVISION for resistivity and natural gamma ray measurement and TeleScope for real-time transmission of drilling parameters and arcVISION data. Five sites (C9011-15) at the Iheya-North Original Site and one site (C9016) at Aki Site were drilled with LWD. At C9012 and C9016, the arcVISION detected temperature anomaly up to 84℃ at 234 mbsf and up to 39℃ at 80 mbsf, respectively. The temperature quickly increases at that depth and it would reflect the existence of high-temperature heat source along borehole. Due to the continuous fluid circulation during drilling, the measured temperature does not indicate in-situ temperature, but it reflects the heat disturbed by the cold circulated water instead. High quality resistivity and natural gamma ray data were acquired at six sites. The log curves at Site C9016 show characteristic response; the natural gamma ray log exhibits extremely high radiation (>500 gAPI) at 7-13 and 23-31 mbsf (Zone A). In the underlying interval of 31-40 mbsf, the resistivity log exhibits extremely low value (LWD-based lithological interpretation was confirmed by the following core description. Zones A and B can be correlated to altered clay zone and sulfide zone including sphalerite, galena, chalcopyrite, and pyrite. Our results show that LWD is a powerful tool for the identification and characterization of submarine hydrothermal deposits and LWD survey enhances the successful recovery of sulfide samples.

  3. ENGINEERING CONTROL PRACTICES FOR REDUCING EMISSIONS DURING DRILLING OF ASBESTOS-CONTAINING FLOORING MATERIALS

    Science.gov (United States)

    This report describes the implementation and testing of control measures to reduce airborne asbestos generated by the drilling of asbestos-containing flooring materials, an OSHA Class III asbestos maintenance activity. Bosch 11224 and 11222 rotary drills were fitted with shrouds ...

  4. 3D Model Optimization of Four-Facet Drill for 3D Drilling Simulation

    Directory of Open Access Journals (Sweden)

    Buranský Ivan

    2016-09-01

    Full Text Available The article is focused on optimization of four-facet drill for 3D drilling numerical modelling. For optimization, the process of reverse engineering by PowerShape software was used. The design of four-facet drill was created in NumrotoPlus software. The modified 3D model of the drill was used in the numerical analysis of cutting forces. Verification of the accuracy of 3D models for reverse engineering was implemented using the colour deviation maps. The CAD model was in the STEP format. For simulation software, 3D model in the STEP format is ideal. STEP is a solid model. Simulation software automatically splits the 3D model into finite elements. The STEP model was therefore more suitable than the STL model.

  5. Drilling technology advances on four fronts

    Energy Technology Data Exchange (ETDEWEB)

    Budd, G.

    2002-01-01

    Trends and advances in drilling technology are discussed. Four different major trends have been identified. One of these is proprietary case drilling which is said to allow operators to simultaneously drill, case, and evaluate oil and gas wells. In proprietary case drilling, the well is drilled with standard oil field casing which remains in the hole all the time, eliminating the need for tripping. Drill bits and other downhole tools are lowered via wireline inside the casing and latched to the last joint of casing. Wells are drilled either by rotating the casing or by using a downhole mud motor for steering, using conventional directional tools. This technology was introduced by Tesco and is marketed in 25 countries along with a full range of drilling products and services. Super single rigs are an other trend which, owing to their versatility, combined with relatively small environmental footprint have become the rig of choice in a growing number of drilling programs. Super single rigs use 45-ft. joints of drill pipe, more versatile top drives and they have an automated pipe handling system. Super singles can be used on both vertical and slant wells and offer advantages of lower costs, higher efficiencies and greater drilling depths. Given their low environmental impact hydraulic capability, super singles also find application where zero disturbance rules are in effect, as for example, in some parts of southern Alberta. Directional drilling and MWD are most associated with SAGD projects but they also have been used and made significant difference in other spheres of oil recovery as well. The fact is that about 35 percent of wells drilled today are drilled with some form of directional drilling; this will stimulate the growth of ever more advanced MWD technology. Northern rigs are in a class of their own in that here the emphasis is on keeping the crew warm, as opposed to lots of gadgets. The most immediately-visible heat-conserving modification is the 60-ft wind

  6. Drillings at Veitsivaara in Hyrynsalmi

    International Nuclear Information System (INIS)

    Hinkkanen, H.; Oehberg, A.

    1990-04-01

    According to Governmen's decision in principle Teollisuuden Voima Oy is obliged to make bedrock investigations for the final disposal of the spent fuel produced by its power plant in Olkiluoto. Areas in Kuhmo, Hyrynsalmi, Sievi, Konginkangas and Olkiluoto were selected for the preliminary site investigations to be carried out during years 1987-1992. In Veitsivaara, Hyrynsalmi the investigation program was started in April 1987. During years 1987-1988 a deep borehole (1002 m) and 4 and 500 m deep additional boreholes were core drilled in the area. Various parameters were measured from the flushing water during the drilling. Corelogging included collecting detailed data of fractures and determining the weathering degree and petrographical properties. Rock mechanical properties, uniaxial compressive strength, Young's modulus and Poisso's ratio were measured from core samples. The flushing water needed in the drillings was pumped from 100 m deep borehole wells drilled with down-the-hole method in the vicinity of the borehole. The water was labeled with 2 tracers before use. About 75 m deep hole was percussion drilled near the borehole KR1. The spreading of the flushing water in the upper part of bedrock and the quality off the ground of the groundwater were studied by taking watersamples from the hole. 30 vertical holes were core drilled down to the depth of 10 m in bedrock with a light drilling unit. Drilling was carried out in order to determine the thickness of the overburden, to investigate the geophysical anomaly sources and to support geological mapping in areas covered with overburden. Groundwater hydraulics is one of the main subjects during the preliminary site investigation phase. For that reason 7 multilevel piezometers were installed on the site to monitore hydraulic head in 3 levels in the uppermost part of bedrock. The work consisted of borehole drillings to the depth of 100 m, geophysical borehole loggings and installation of piezometers. In addition

  7. Urban gas drilling and distance ordinances in the Texas Barnett Shale

    International Nuclear Information System (INIS)

    Fry, Matthew

    2013-01-01

    Newly accessible shale deposits and other unconventional sources of natural gas have dramatically increased global gas reserves and are regarded as major future energy sources. Shale gas drilling began in Texas and is expanding throughout the U.S. and globally. In Texas and other regions, large population centers overlie these deposits. As a result, city residents increasingly come into contact with extraction activities. The proximity of drilling activities to residential areas raises a number of concerns, including noise, dust and emissions hazards, public safety, diminished quality of life, and effects on neighborhood aesthetics and property values. Cities in Texas address these concerns through setback ordinances that regulate the distance between gas wells and residences, schools, floodplains, etc. Although the state of Texas permits drilling 200 ft (61 m) from residences, many municipalities in the Dallas–Fort Worth Metroplex (DFW) have established longer setback distances. This paper analyzes the purpose and basis for setback distances among 26 municipalities in DFW. Findings show that there is no uniform setback distance, distances have increased over time, and, rather than technically-based, setbacks are political compromises. For policy makers confronted with urban shale gas drilling, deriving setback distances from advanced emissions monitoring could decrease setback distance ambiguity. -- Highlights: •Urban shale gas drilling is expanding across the globe. •Municipal distance regulations address many concerns associated with urban drilling. •In Texas, setbacks have no empirical basis, but are political compromises. •Advanced monitoring methods could be used to standardize setback distances

  8. Casing drilling - first experience in Brazil; Casing drilling - primeira experiencia no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Placido, Joao Carlos Ribeiro; Medeiros, Fernando; Lucena, Humberto; Medeiros, Joao Carlos Martins de; Costa, Vicente Abel Soares Rosa da; Silva, Paulo Roberto Correa da [PETROBRAS, Rio de Janeiro, RJ (Brazil); Alves, Renato J.M. [Tesco, London (United Kingdom)

    2004-07-01

    This paper describes the 'Casing Drilling' technology and its first experience in Brazil. This new process of casing while drilling was first developed to reduce costs. This system integrates the drilling process and casing running in one operation, promoting a more efficient well construction system, reducing trip time and costs of drill pipes and their transportation. Besides, this methodology intends to eliminate hole problems related to trouble zones with abnormal pressure with loss circulation, to overcome zones with wellbore instabilities, and to facilitate well control. Two companies have been identified using this technology: Tesco and Weatherford. However, there are differences between the techniques used by these companies, which are described in this paper. In the first experience in Brazil, it was decided to field test the technology developed by Tesco. This paper describes the preparation, the operation and the results of this first test. (author)

  9. Slant rigs offer big payoffs in shallow drilling

    International Nuclear Information System (INIS)

    Smith, J.; Edwards, B.

    1992-01-01

    Slant hole drilling technology can result in considerable savings over conventionally drilled deviated holes because mud motors and deviation control with measurement while drilling tools are usually unnecessary. The benefits of using slant hole rigs for development drilling improve after the bit walk tendencies and the correct bottom hole assemblies have been determined for a particular area. This article discusses three recent drilling operations that successfully used slant drilling technology on land-based projects: drilling for heavy oil in Alberta, drilling for gas in Alberta, and drilling a river crossing for a gas pipeline in British Columbia. These examples demonstrate the flexibility of slant drilling technology

  10. Drillings at Kivetty in Konginkangas

    International Nuclear Information System (INIS)

    Hinkkanen, H.; Oehberg, A.

    1990-05-01

    According to Government's decision in principle Teollisuuden Voima Oy is obliged to make bedrock investigations for the final disposal of the spent fuel produced by its power plant in Olkiluoto. Areas in Kuhmo, Hyrynsalmi, Sievi, Konginkangas and Olkiluoto were selected for the preliminary site investigations to be carried out during years 1987-1992. In Kivetty, Konginkangas the investigation program was started in spring 1988. During years 1988-1989 a deep borehole (1019 m) and 4 about 500 m deep additional boreholes were core drilled in the area. The structure of the holes makes it possible to carry out many investigations in the holes. Various parameters were measured from the flushing water during the drilling. Corelogging included collecting detailed data of fractures and determining the weathering degree and petrographical properties. Rock mechanical properties, uniaxial compressive strength, Young's modulus and Poisson's ratio were measured from core samples. The flushing water needed in the drillings was pumped from 100 m deep borehole wells drilled with down-the-hole method in the vicinity of the borehole. The water was labeled with 2 tracers before use. 30 vertical holes were core drilled down to the depth of 10 m in bedrock with a light drilling unit. Drilling was carried out in order to determine the thickness of the overburden to investigate the geophysical anomaly sources and to support geological mapping in areas covered with overburden. Groundwater hydraulics is one of the main subjects during the preliminary site investigation phase. For that reason 7 multilevel piezometers were installed on the site to monitore hydraulic head in 3 levels in the uppermost part of bedrock. The work consisted of borehole drillings to the depth of 100 m, geophysical borehole loggings and installation of piezometers. In addition about 65 shotholes were drilled for VSP-, tubewave and seismic measurements

  11. Drillings at Syyry in Sievi

    International Nuclear Information System (INIS)

    Hinkkanen, H.; Oehberg, A.

    1990-10-01

    According to Government's decision in principle Teollisuuden Voima Oy is obliged to make bedrock investigations for the final disposal of the spent fuel produced by its power plant in Olkiluoto. Areas in Kuhmo, Hyrynsalmi, Sievi, Konginkangas and Olkiluoto were selected for the preliminary site investigations to be carried out during years 1987-1992. In Syyry, Sievi the investigation program was started in spring 1988. During years 1988-1989 a deep borehole (1022 m) and 4 about 500-700 m deep additional boreholes were core drilled in the area. The structure of the holes makes it possible to carry out many investigations in the holes. Various parameters were measured from the flushing water during the drilling. Corelogging included collecting detailed data of fractures and determining the weathering degree and petrographical properties. Rock mechanical properties, uniaxial compressive strength, Young's modulus and Poisson's ratio were measured from core samples. The flushing water needed in the drillings was pumped from 100 m deep borehole wells drilled with down-the-hole method in the vicinity of the borehole. The water was labeled with 2 tracers before use. 35 vertical holes were core drilled down to the depth of 10-20 m in bedrock with a light drilling unit. Drilling was carried out in order to determine the thickness of the overburden, to investigate the geophysical anomaly sources and to support geological mapping in areas covered with overburden. Groundwater hydraulics is one of the main subjects during the preliminary site investigation phase. For that reason 7 multilevel piezometers were installed on the site to monitore hydraulic head in 3 levels in the uppermost part of bedrock. The work consisted of borehole drillings to the depth of 100 m, geophysical borehole loggings and installation of piezometers. In addition about 85 shotholes were drilled for VSP-, tubewave and seismic measurements

  12. Drilling rig

    Energy Technology Data Exchange (ETDEWEB)

    Galiopa, A A; Yegorov, E K

    1981-01-04

    A drilling rig is proposed which contains a tower, lifter in the form of n infinite chain, and mobile rotator with holding device connected to the chain, and pipe holder. In order to accelerate the auxiliary operations to move the drilling string and unloaded rotator, the rotator is equipped with a clamp with means for transverse connection of it to both branches of the chain, while the pipe holders equipped with a clamp with means of connecting it to one of the branches of the chain.

  13. Pressured drilling riser design for drilling in ultra deep water with surface bop

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J.; Morrison, D.; Efthymiou, M.; Lo, K.H. [Shell Global Solutions, 78 - Velizy Villacoublay (France); Magne, E.; Leach, C. [Shell Internationale Exploration and Production (Netherlands)

    2002-12-01

    In conventional drilling with a semi-submersible rig valuable rig time is used to run and retrieve the BOP and its accessories on the seabed, and this time increases with water depth. Furthermore, use of the conventional sub-sea BOP requires a large-diameter riser, which requires substantial rig storage and deck load capacity prior to installation. It also requires high riser-tensioning capacity or additional buoyancy. Thus as the water depth increases, it leads to a need for heavy duty 4. and 5. generation rigs with escalation in costs. The high cost of deep-water drill rigs is leading to the development of Surface BOP technology. In this development, the BOP is placed above sea level and the riser is simply a continuation of the casing (typical diameter 13-3/8''). This eliminates the need for a heavy 21'' riser and for running the BOP to the sea bed and retrieving it. Moreover, the reduced tension requirement for the smaller riser extends the water depth capability of 3. generation drilling semi-submersibles, enabling them to drill in deeper waters. A critical success factor for this development is the ability to design the riser/casing to withstand high internal pressures due to well kicks, in addition to environmental loads, and to restrict vessel offsets within certain limits so as not to overload the riser under the prevailing weather conditions. This paper addresses the design considerations of a pressured drilling riser that can be used with a surface BOP in deep-water. Key design issues that are sensitive to ultra-deep-water applications are discussed. The technical aspects of using (disposable) standard casing with threaded connector for the drilling riser are discussed, with a particular emphasis on the connector fatigue-testing program to quantify the stress concentration factor for fatigue design. Emerging composite material offers some alternatives to the steel riser when drilling in ultra-deep water Design issues related to the

  14. Kaisten exploration well. Civil construction work, environemntal protection and drilling techniques

    International Nuclear Information System (INIS)

    Anon.

    1986-02-01

    The exploration well at Kaisten was realized as the fifth well within the Nagra Deep Drilling Program in Northern Switzerland. The drilling work was startet February 13, 1984. Having reached the final depth of 1305.8 m on June 27, 1984, the test phase was initiated and completed by May 3, 1985. The well drilled approx. 300 m of sediments and approx. 1000 m of crystalline rock. Oriented cores were taken over the whole length of the well. The present report presents the drilling activities, civil construction work related to the site and precautions taken to account for environmental protection aspects. A chapter dealing with the commission representing members of the federal, cantonal and local authorities and about reporting is given at the end of this report. (author)

  15. Neurosurgical robotic arm drilling navigation system.

    Science.gov (United States)

    Lin, Chung-Chih; Lin, Hsin-Cheng; Lee, Wen-Yo; Lee, Shih-Tseng; Wu, Chieh-Tsai

    2017-09-01

    The aim of this work was to develop a neurosurgical robotic arm drilling navigation system that provides assistance throughout the complete bone drilling process. The system comprised neurosurgical robotic arm navigation combining robotic and surgical navigation, 3D medical imaging based surgical planning that could identify lesion location and plan the surgical path on 3D images, and automatic bone drilling control that would stop drilling when the bone was to be drilled-through. Three kinds of experiment were designed. The average positioning error deduced from 3D images of the robotic arm was 0.502 ± 0.069 mm. The correlation between automatically and manually planned paths was 0.975. The average distance error between automatically planned paths and risky zones was 0.279 ± 0.401 mm. The drilling auto-stopping algorithm had 0.00% unstopped cases (26.32% in control group 1) and 70.53% non-drilled-through cases (8.42% and 4.21% in control groups 1 and 2). The system may be useful for neurosurgical robotic arm drilling navigation. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Drilling history core hole DC-8

    International Nuclear Information System (INIS)

    1978-10-01

    Core hole DC-8 was completed in August, 1978 by Boyles Brothers Drilling Company, Spokane, Washington, under subcontract to Fenix and Scission, Inc. The hole was cored for the US Department of Energy and the Rockwell Hanford Operations' Basalt Waste Isolation Program. Fenix and Scisson, Inc. furnished the engineering, daily supervision of the core drilling activities, and geologic core logging for hole DC-8. Core hole DC-8 is located on the Hanford Site near the Wye Barricade and 50 feet northwest of rotary hole DC-7. The Hanford Site vation coordinates for DC-8 are North 14,955.94 feet and West 14,861.92 coordinates for DC-8 are North 14,955.94 feet and West 14,861.92 mean sea level. The purpose of core hole DC-8 was to core drill vertically through the basalt and interbed units for stratigraphic depth determination and core collection, and to provide a borehole for hydrologic testing and cross-hole seismic shear and pressure wave velocity studies with rotary hole DC-7. The total depth of core hole DC-8 was 4100.5 feet. Core recovery exceeded 97 percent of the total footage cored

  17. Drilling history core hole DC-8

    Energy Technology Data Exchange (ETDEWEB)

    1978-10-01

    Core hole DC-8 was completed in August, 1978 by Boyles Brothers Drilling Company, Spokane, Washington, under subcontract to Fenix and Scission, Inc. The hole was cored for the US Department of Energy and the Rockwell Hanford Operations' Basalt Waste Isolation Program. Fenix and Scisson, Inc. furnished the engineering, daily supervision of the core drilling activities, and geologic core logging for hole DC-8. Core hole DC-8 is located on the Hanford Site near the Wye Barricade and 50 feet northwest of rotary hole DC-7. The Hanford Site vation coordinates for DC-8 are North 14,955.94 feet and West 14,861.92 coordinates for DC-8 are North 14,955.94 feet and West 14,861.92 mean sea level. The purpose of core hole DC-8 was to core drill vertically through the basalt and interbed units for stratigraphic depth determination and core collection, and to provide a borehole for hydrologic testing and cross-hole seismic shear and pressure wave velocity studies with rotary hole DC-7. The total depth of core hole DC-8 was 4100.5 feet. Core recovery exceeded 97 percent of the total footage cored.

  18. Extended Reach Drilling on the example of Reelwell Drilling Method: Influence examination of different drill pipes on drilling performance on Idun field on the Norwegian Continental Shelf by PGNiG Norway AS.

    OpenAIRE

    Krol, Dariusz Pawel

    2011-01-01

    Master's thesis in Petroleum engineering Horizontal or extended reach drilling is incredibly fast growing technology. Although in some areas of the world ERD is still novelty, most of oil companies have been using the technology reliably and successfully for dozens of years. And those companies want to improve well-worn solutions to obtain better performance, thereby reducing costs. One of the main aspects that affects drilling performance and efficiency is adequate choice of drill pipe...

  19. Trends in the Drilling Waste Management

    Directory of Open Access Journals (Sweden)

    Lucyna Czekaj

    2006-10-01

    Full Text Available Petroleum Industry is trying to achieve sustainable development goals. Each year new solutions are implemented to minimize the environmental impact of drilling operations. The paper presents trends in the drilling waste management caused by introducing the sustainable development into the petroleum industry. Old solutions such as the drilling waste disposal at the waste dump or dumping ground are not acceptable from the environmental point of view. The paper presents an analysis of new solutions as the sustainable solutions. The most important problem is the chemical pollution in cuttings and the waste drilling mud. The industrial solutions as well as the laboratory research on the pollution removing from drilling wastes are analysed. The most promising method seems to be the recycling and design for the environment of drilling mud.

  20. CFPL installs products pipeline with directional drilling

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    Central Florida Pipeline Company (CFPL), a subsidiary of GATX Terminals Corp., Tampa, FL, has used directional drilling under seven water bodies in Hillsborough, Polk and Osceola Counties in constructing its new pipeline from Tampa to Orlando. Primary reason for using directional drilling is to protect the environment by minimizing water turbidity while the 16-inch diameter, 109-mile refined petroleum products pipeline is being installed. Total cost of the project is pegged at $68.5 million. Directional drilling enabled the pipe to be placed about 20 feet below the bottom of: The Alafia River in Riverview with 999 feet drilled; Port Sutton Channel near the Port of Tampa with 2,756 feet drilled; Reedy Creek Swamp at the intersection of Interstate 4 and Highway 192 which had 1,111 feet drilled; Wetland number-sign 70 southwest of Lake Wales with 1,575 feet drilled; Peace River south of Bartow had 2,470 feet drilled; Bonnet Creek west of Kissimmee had 693 feet drilled. Shingle Creek near the borders of Osceola and Orange Counties with 1,700 feet drilled. This paper reviews the design plans for construction and the emergency response plans should a rupture occur in the line

  1. Aerated drilling cutting transport analysis in geothermal well

    Science.gov (United States)

    Wakhyudin, Aris; Setiawan, Deni; Dwi Marjuan, Oscar

    2017-12-01

    Aeratad drilling widely used for geothermal drilling especially when drilled into predicted production zone. Aerated drilling give better performance on preventing lost circulation problem, improving rate of penetration, and avoiding drilling fluid invasion to productive zone. While well is drilled, cutting is produced and should be carried to surface by drilling fluid. Hole problem, especially pipe sticking will occur while the cutting is not lifted properly to surface. The problem will effect on drilling schedule; non-productive time finally result more cost to be spent. Geothermal formation has different characteristic comparing oil and gas formation. Geothermal mainly has igneous rock while oil and gas mostly sedimentary rock. In same depth, formation pressure in geothermal well commonly lower than oil and gas well while formation temperature geothermal well is higher. While aerated drilling is applied in geothermal well, Igneous rock density has higher density than sedimentary rock and aerated drilling fluid is lighter than water based mud hence minimum velocity requirement to transport cutting is larger than in oil/gas well drilling. Temperature and pressure also has impact on drilling fluid (aerated) density. High temperature in geothermal well decrease drilling fluid density hence the effect of pressure and temperature also considered. In this paper, Aerated drilling cutting transport performance on geothermal well will be analysed due to different rock and drilling fluid density. Additionally, temperature and pressure effect on drilling fluid density also presented to merge.

  2. Waste drilling-fluid-utilising microorganisms in a tropical mangrove swamp oilfield location

    Energy Technology Data Exchange (ETDEWEB)

    Benka-Coker, M.O.; Olumagin, A. [Benin Univ. (Nigeria). Dept. of Microbiology

    1995-12-31

    Waste drilling-fluid-utilising microorganisms were isolated from drilling-mud cuttings, soil and creek water from a mangrove swamp oilfield location in the Delta area of Nigeria using waste drilling-fluid as the substrate. Eighteen bacterial isolates obtained were identified as species of Staphylococcus, Acinetobacter, Alcaligenes, Serratia, Clostridium, Enterobacter, Klebsiella, Nocardia, Bacillus, Actinomyces, Micrococcus and Pseudomonas, while the genera of fungi isolated were Penicillium, Cladosporium and Fusarium. Even though drilling-fluid-utilising genera were in higher numbers in the soil than in the two other sources examined, the percentages of the total heterotrophic bacteria that utilised waste drilling-fluid were 6.02 in the drilling-mud cuttings, 0.83 in creek water and 0.42 in soil. The screen tests for biodegradation potential of the bacterial isolates showed that, even though all the isolates were able to degrade and utilise the waste fluid for growth, species of Alcaligenes and Micrococcus were more active degraders of the waste. The significance of the results in environmental management in oil-producing areas of Nigeria is discussed. (Author)

  3. Waste drilling-fluid-utilising microorganisms in a tropical mangrove swamp oilfield location

    International Nuclear Information System (INIS)

    Benka-Coker, M.O.; Olumagin, A.

    1995-01-01

    Waste drilling-fluid-utilising microorganisms were isolated from drilling-mud cuttings, soil and creek water from a mangrove swamp oilfield location in the Delta area of Nigeria using waste drilling-fluid as the substrate. Eighteen bacterial isolates obtained were identified as species of Staphylococcus, Acinetobacter, Alcaligenes, Serratia, Clostridium, Enterobacter, Klebsiella, Nocardia, Bacillus, Actinomyces, Micrococcus and Pseudomonas, while the genera of fungi isolated were Penicillium, Cladosporium and Fusarium. Even though drilling-fluid-utilising genera were in higher numbers in the soil than in the two other sources examined, the percentages of the total heterotrophic bacteria that utilised waste drilling-fluid were 6.02 in the drilling-mud cuttings, 0.83 in creek water and 0.42 in soil. The screen tests for biodegradation potential of the bacterial isolates showed that, even though all the isolates were able to degrade and utilise the waste fluid for growth, species of Alcaligenes and Micrococcus were more active degraders of the waste. The significance of the results in environmental management in oil-producing areas of Nigeria is discussed. (Author)

  4. Field Testing of Environmentally Friendly Drilling System

    Energy Technology Data Exchange (ETDEWEB)

    David Burnett

    2009-05-31

    The Environmentally Friendly Drilling (EFD) program addresses new low-impact technology that reduces the footprint of drilling activities, integrates light weight drilling rigs with reduced emission engine packages, addresses on-site waste management, optimizes the systems to fit the needs of a specific development sites and provides stewardship of the environment. In addition, the program includes industry, the public, environmental organizations, and elected officials in a collaboration that addresses concerns on development of unconventional natural gas resources in environmentally sensitive areas. The EFD program provides the fundamentals to result in greater access, reasonable regulatory controls, lower development cost and reduction of the environmental footprint associated with operations for unconventional natural gas. Industry Sponsors have supported the program with significant financial and technical support. This final report compendium is organized into segments corresponding directly with the DOE approved scope of work for the term 2005-2009 (10 Sections). Each specific project is defined by (a) its goals, (b) its deliverable, and (c) its future direction. A web site has been established that contains all of these detailed engineering reports produced with their efforts. The goals of the project are to (1) identify critical enabling technologies for a prototype low-impact drilling system, (2) test the prototype systems in field laboratories, and (3) demonstrate the advanced technology to show how these practices would benefit the environment.

  5. The GIN legal problems of multi-parties at the drill site

    International Nuclear Information System (INIS)

    Case, C.W.

    1991-01-01

    The presence of multiple parties working at a drilling site complicates the application of the environmental laws, rules and regulations. A critical decision prior to any physical activities needs to be made as to which person (i.e., company, partnership) will be charged with the obligation of being the designated Generator of hazardous waste for that site. This critical decision is dictated by the refusal of the EPA to assign more than one EPA Generator Identification Number (GIN) to a single drilling site. The decision as to which member of the multiple parties presence at the drill site will obtain the GIN has liability ramifications when a mistake is made in the cleanup of spilled hazardous waste or hazardous substances; an improper situation arises as to the transportation, storage, treatment and disposal of hazardous waste; the waste is improperly classified, or the biennial reporting of hazardous waste activities does not occur. Liability issues arise that go far beyond the ordinary contractual disputes seen in the past arising from drilling activities, with liability in some situations well in excess of any damage claims normally allowed under common law or statutory law in the State of Texas for non-environmental disputes. This paper reviews the liabilities and responsibilities of oil and gas drillers under the Resource Conservation and Recovery Act and the Comprehensive Environmental Response, Compensation and Liability Act

  6. Propagation of Measurement-While-Drilling Mud Pulse during High Temperature Deep Well Drilling Operations

    OpenAIRE

    Li, Hongtao; Meng, Yingfeng; Li, Gao; Wei, Na; Liu, Jiajie; Ma, Xiao; Duan, Mubai; Gu, Siman; Zhu, Kuanliang; Xu, Xiaofeng

    2013-01-01

    Signal attenuates while Measurement-While-Drilling (MWD) mud pulse is transmited in drill string during high temperature deep well drilling. In this work, an analytical model for the propagation of mud pulse was presented. The model consists of continuity, momentum, and state equations with analytical solutions based on the linear perturbation analysis. The model can predict the wave speed and attenuation coefficient of mud pulse. The calculated results were compared with the experimental dat...

  7. Level best : drilling seasonal load leveling business case : final report

    International Nuclear Information System (INIS)

    2005-10-01

    Drilling and seismic costs in Western Canada are as much as 35 per cent higher during winter months. Favourable commodity pricing has prompted aggressive expansion of drilling programs in the Western Canada Sedimentary Basin (WCSB), and capacity is becoming a significant issue. Many operators are turning to load leveling in order to secure rigs and crew availability. However, many operators still adhere to the traditional view that drilling of oil and gas wells is best accomplished during the winter. The purpose of the project discussed in this paper was to develop and present a business case for greater seasonal load leveling in the WCSB and spreading it more evenly throughout the year. Using calendar year quarters, publicly available data for a 5 year period from 2000-2004 for drilling activity, safety, weather, and environmental restrictions were examined. A list of candidate fields with high levels of activity and a good representation of well depths was selected. Well cost and rig data from 14 different companies was used. A variety of industry participants, drilling contractors, load leveling technology suppliers and provincial agencies were consulted to supplement well cost analyses. The financial impacts of load leveling were examined. Benefits included lower well costs; advanced production; avoided rig construction; reduced incident rates; and reduced turnover. While the focus of the business case for load leveling was based on hard cost data, many indirect benefits were identified, including First Nations sustainability and greater job security and comfort for workers. Various policies and incentives that encouraged load leveling in British Columbia and Alberta were reviewed. 57 figs

  8. Cortical bone drilling: An experimental and numerical study.

    Science.gov (United States)

    Alam, Khurshid; Bahadur, Issam M; Ahmed, Naseer

    2014-12-16

    Bone drilling is a common surgical procedure in orthopedics, dental and neurosurgeries. In conventional bone drilling process, the surgeon exerts a considerable amount of pressure to penetrate the drill into the bone tissue. Controlled penetration of drill in the bone is necessary for safe and efficient drilling. Development of a validated Finite Element (FE) model of cortical bone drilling. Drilling experiments were conducted on bovine cortical bone. The FE model of the bone drilling was based on mechanical properties obtained from literature data and additionally conducted microindentation tests on the cortical bone. The magnitude of stress in bone was found to decrease exponentially away from the lips of the drill in simulations. Feed rate was found to be the main influential factor affecting the force and torque in the numerical simulations and experiments. The drilling thrust force and torque were found to be unaffected by the drilling speed in numerical simulations. Simulated forces and torques were compared with experimental results for similar drilling conditions and were found in good agreement.CONCLUSIONS: FE schemes may be successfully applied to model complex kinematics of bone drilling process.

  9. Numerical Modeling of Foam Drilling Hydraulics

    Directory of Open Access Journals (Sweden)

    Ozcan Baris

    2007-12-01

    Full Text Available The use of foam as a drilling fluid was developed to meet a special set of conditions under which other common drilling fluids had failed. Foam drilling is defined as the process of making boreholes by utilizing foam as the circulating fluid. When compared with conventional drilling, underbalanced or foam drilling has several advantages. These advantages include: avoidance of lost circulation problems, minimizing damage to pay zones, higher penetration rates and bit life. Foams are usually characterized by the quality, the ratio of the volume of gas, and the total foam volume. Obtaining dependable pressure profiles for aerated (gasified fluids and foam is more difficult than for single phase fluids, since in the former ones the drilling mud contains a gas phase that is entrained within the fluid system. The primary goal of this study is to expand the knowledge-base of the hydrodynamic phenomena that occur in a foam drilling operation. In order to gain a better understanding of foam drilling operations, a hydrodynamic model is developed and run at different operating conditions. For this purpose, the flow of foam through the drilling system is modeled by invoking the basic principles of continuum mechanics and thermodynamics. The model was designed to allow gas and liquid flow at desired volumetric flow rates through the drillstring and annulus. Parametric studies are conducted in order to identify the most influential variables in the hydrodynamic modeling of foam flow.

  10. Chemical Speciation of Chromium in Drilling Muds

    International Nuclear Information System (INIS)

    Taguchi, Takeyoshi; Yoshii, Mitsuru; Shinoda, Kohzo

    2007-01-01

    Drilling muds are made of bentonite and other clays, and/or polymers, mixed with water to the desired viscosity. Without the drilling muds, corporations could not drill for oil and gas and we would have hardly any of the fuels and lubricants considered essential for modern industrial civilization. There are hundreds of drilling muds used and some kinds of drilling muds contain chromium. The chemical states of chromium in muds have been studied carefully due to concerns about the environmental influence. However it is difficult to determine the chemical state of chromium in drilling muds directly by conventional analytical methods. We have studied the chemical form of chromium in drilling muds by using a laboratory XAFS system and a synchrotron facility

  11. Accuracy of linear drilling in temporal bone using drill press system for minimally invasive cochlear implantation.

    Science.gov (United States)

    Dillon, Neal P; Balachandran, Ramya; Labadie, Robert F

    2016-03-01

    A minimally invasive approach for cochlear implantation involves drilling a narrow linear path through the temporal bone from the skull surface directly to the cochlea for insertion of the electrode array without the need for an invasive mastoidectomy. Potential drill positioning errors must be accounted for to predict the effectiveness and safety of the procedure. The drilling accuracy of a system used for this procedure was evaluated in bone surrogate material under a range of clinically relevant parameters. Additional experiments were performed to isolate the error at various points along the path to better understand why deflections occur. An experimental setup to precisely position the drill press over a target was used. Custom bone surrogate test blocks were manufactured to resemble the mastoid region of the temporal bone. The drilling error was measured by creating divots in plastic sheets before and after drilling and using a microscope to localize the divots. The drilling error was within the tolerance needed to avoid vital structures and ensure accurate placement of the electrode; however, some parameter sets yielded errors that may impact the effectiveness of the procedure when combined with other error sources. The error increases when the lateral stage of the path terminates in an air cell and when the guide bushings are positioned further from the skull surface. At contact points due to air cells along the trajectory, higher errors were found for impact angles of [Formula: see text] and higher as well as longer cantilevered drill lengths. The results of these experiments can be used to define more accurate and safe drill trajectories for this minimally invasive surgical procedure.

  12. Drilling-and-blasting method of demolition

    Directory of Open Access Journals (Sweden)

    Sinitsyn Denis

    2018-01-01

    Full Text Available This article analyzes the experience and gives the examples of dismantling and demolition of the construction structures of the buildings and facilities using the drilling-and-blasting method. The drilling-and-blasting method is widely used in construction and reconstruction. The demolition means may be classified according to impact on a material of structures to be demolished and to forces application, where, by virtue of an impact energy type, we choose the blasting method. This method is used during the complete demolition or fragmentation of concrete, reinforced concrete, masonry structures, of old buildings and facilities demolition to their base or in the intended direction. Blasting method may be used as well during the steel and reinforced concrete structures demolition to the smaller easy-to-move parts. Reviewed are the organizational-process activities, which are performed during the various structures dismantling. Given are the areas of application for the various methods of structures demolition. Given is the example of demolition of “Sevemaya” boiler house brick chimney at the territory of Murmansk DSK using the blast in confined spaces of the operating company. Subject of research: methods of construction structures demolition in alarm situations and acts of God. Objects: determination of the most efficient demolition methods in the present conditions of construction operations development. Materials and methods: the developed activities on the construction structures dismantling are given. Results: the most efficient methods and ways of construction structures demolition are defined. Conclusions: it is required for improvement of methods and ways of the structures drilling-and-blasting demolition.

  13. Emission of pesticides during drilling and deposition in adjacent areas

    Directory of Open Access Journals (Sweden)

    Heimbach, Udo

    2014-02-01

    Full Text Available In seven experiments seeds of maize, oil seed rape and barley, treated with neonicotinoids, were sown using pneumatic drilling equipment with deflectors attached in case of pneumatic suction systems. Directly adjacent to the drilled area of usually about 50 m width were replicated areas with bare soil as well as with crops. During maize (Zea mays drilling flowering oil seed rape (Brassica napus and during drilling of barley (Hordeum vulgare and oil seed rape flowering white mustard (Sinapis alba was adjacent. The amount of residues in the adjacent non crop areas in Petri dishes being distributed on the bare soil declined only slowly from 1 to 20 m distance from the area drilled. Seed batches with more abrasion and higher content of active substances in the dust resulted in higher residues off crop. After drilling of maize in four experiments in Petri dishes in adjacent non crop areas in 1-5 m distance between 0.02 and 0.40 g a.s./ha of neonicotinoids and in the adjacent oil seed rape a total of 0.05–0.80 g a.s./ha were detected. After drilling oil seed rape or barley these values were only 0.02–0.06 g a.s./ha in Petri dishes in non crop areas and 0.03-0.08 g a.s./ha in total in adjacent white mustard. In gauze net samplers installed vertically in 3 m distance in non crop areas up to seven times higher values were detected compared to Petri dishes.

  14. Seismic Prediction While Drilling (SPWD: Looking Ahead of the Drill Bit by Application of Phased Array Technology

    Directory of Open Access Journals (Sweden)

    Marco Groh

    2010-04-01

    Full Text Available Geophysical exploration is indispensable for planning deep drilling. Usually 2D- or 3D-seismics investigations are applied and, depending on the resulting geologic model for the underground, the drill site and drilling path are determined. In recent years the focus of exploration has shifted towards small-scale geological structures such as local layers and faults. Depending on the source frequencies and the target depth, 2D- or 3D-seismics from surface cannot always resolve such structures in particular at larger depths. In general, signal frequencies of about 30–70 Hz are typical for surface seismic methods. The deeper and smaller the sought-after structures are, the worse will be the resolution. Therefore, borehole seismic measurements like Vertical Seismic Profile (VSP or Seismic While Drilling (SWD have been developed (Fig. 1. For the VSP method geophones are normally integrated in the borehole, while the seismicsource generates seismic waves at the surface. The SWD method uses the drill bit as the seismic source. Hence, the quality of the seismic signals is highly dependent on the drilled rock and the type of drill bit, but even well-suited rock conditions and adequate drilling may not provide sufficient data quality.

  15. Experimental Analysis of Temperature Differences During Implant Site Preparation: Continuous Drilling Technique Versus Intermittent Drilling Technique.

    Science.gov (United States)

    Di Fiore, Adolfo; Sivolella, Stefano; Stocco, Elena; Favero, Vittorio; Stellini, Edoardo

    2018-02-01

    Implant site preparation through drilling procedures may cause bone thermonecrosis. The aim of this in vitro study was to evaluate, using a thermal probe, overheating at implant sites during osteotomies through 2 different drilling methods (continuous drilling technique versus intermittent drilling technique) using irrigation at different temperatures. Five implant sites 13 mm in length were performed on 16 blocks (fresh bovine ribs), for a total of 80 implant sites. The PT-100 thermal probe was positioned 5 mm from each site. Two physiological refrigerant solutions were used: one at 23.7°C and one at 6.0°C. Four experimental groups were considered: group A (continuous drilling with physiological solution at 23.7°C), group B (intermittent drilling with physiological solution at 23.7°C), group C (continuous drilling with physiological solution at 6.0°C), and group D (intermittent drilling with physiological solution at 6.0°C). The Wilcoxon rank-sum test (2-tailed) was used to compare groups. While there was no difference between group A and group B (W = 86; P = .45), statistically significant differences were observed between experimental groups A and C (W = 0; P =.0001), B and D (W = 45; P =.0005), and C and D (W = 41; P = .003). Implant site preparation did not affect the overheating of the bone. Statistically significant differences were found with the refrigerant solutions. Using both irrigating solutions, bone temperature did not exceed 47°C.

  16. Developmental test report, assessment of XT-70E percussion drill rig operation in tank farms

    International Nuclear Information System (INIS)

    Dougherty, L.F.

    1996-01-01

    The following report documents the testing of the XT-70E percussion drill rig for use in the 241-SX Tank Farm. The test is necessary to support evaluation of the safety and authorization level of the proposed activity of installing up to three new drywells in the 241- SX Tank Farm. The proposed activity plans to install drywells by percussion drilling 7 inch O.D./6 inch I.D. pipe in close proximity of underground storage tanks and associated equipment. The load transmitted from the drill rig's percussion hammer through the ground to the tank structure and equipment is not known and therefore testing is required to ensure the activity is safe and authorized

  17. Drilling rig mast

    Energy Technology Data Exchange (ETDEWEB)

    Bulgakov, E.S.; Barashkov, V.A.; Lebedev, A.I.; Panin, N.M.; Sirotkin, N.V.

    1981-01-07

    A drilling rig mast is proposed that contains a portal with a carrier shaft hinged to it and struts with stays. In order to decrease the time expended in the assembly and dessembly of the drilling rig, the portal is constructed from mobile and immobile parts that are connected together by a ball pivot; the immobile section of the portal has a T-shaped recess for directing the mobile section.

  18. The Marskhod Egyptian Drill Project

    Science.gov (United States)

    Shaltout, M. A. M.

    We describe a possible participation of Egypt in a future Mars rover Mission. It was suggested that Egypt participate through involvement in the design, building and testing of a drill to obtain sub-surface samples. The Space Research Institute of the Russian Academy of Sciences (IKI), formally invited the Egyptian Ministry of Scientific Research to study the concept for potential use on the Russian Mars 2001 Mission. As one of the objectives of the Marskhod mission was the analysis of sub-surface samples, a drilling mechanism in the payload would be essential. The Egyptian expertise in drill development is associated with the archaeological exploration of the Pyramids. A sophisticated drilling system perforated limestone to a depth of 2 m without the use of lubricants or cooling fluids that might have contaminated the Pit's environment. This experience could have been applied to a drill development Mars 2001 mission, which was unfortunately canceled due to economic problems.

  19. Drilling mud

    Energy Technology Data Exchange (ETDEWEB)

    Rusayev, A A; Bibikov, K V; Simonenkov, I D; Surkova, K I

    1982-01-01

    Drilling mud is proposed which contains clay, water, water output reducer, pH regulator, viscosity reducer and hydrogen sulfide absorber. In order to improve the absorbing capacity of the drilling mud with pH 8-11 and simultaneously preservation of the technological properties of the mud, it contains as the absorber of hydrogen sulfide pyrite cinders with the following ratio of components, % by mass: clay 5.0-35.0; water output reducer 0.2-2.0; pH regulator 0.05-0.25; viscosity reducer 0.1-1.0; pyrite cinders 0.5-4.0; water--the rest.

  20. Drilling history core hole DC-6 Hanford, Washington

    International Nuclear Information System (INIS)

    1978-06-01

    Core hole DC-6 was completed in May 1978 by Boyles Brothers Drilling Company, Spokane, Washington, under subcontract to Fenix and Scisson, Inc. The hole was cored for the US Department of Energy and the Rockwell Hanford Operations' Basalt Waste Isolation Program. Fenix and Scisson, Inc. furnished the engineering, daily supervision of the core drilling activities, and geologic core logging for hole DC-6. Core hole DC-6 is located within the boundary of the Hanford Site at the old Hanford town site. The Hanford Site coordinates for DC-6 are North 54,127.17 feet and West 17,721.00 feet. The surface elevation is approximately 402 feet above sea level. The purpose of core hole DC-6 was to core drill vertically through the basalt and interbed units for stratigraphic depth determination and core collection and to provide a borehole for hydrologic testing. The total depth of core hole DC-6 was 4336 feet. Core recovery was 98.4% of the total footage cored

  1. Drilling and testing specifications for RRL-6, RRL-14, RRL-15 and DC-3

    International Nuclear Information System (INIS)

    Moak, D.J.

    1982-07-01

    RRL-6, RRL-14, RRL-15, and DC-3 will provide data for characterization of the stratigraphy and intraflow structures in the Reference Repository Location. This test specification includes details for the drilling and testing of the boreholes. It includes the predicted stratigraphy, the drilling requirements, description of tests to be conducted, intervals selected for hydrologic testing and a schedule of the drilling and testing activities. 14 refs., 8 figs., 12 tabs

  2. High Temperature 300°C Directional Drilling System

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Kamalesh [Baker Hughes Oilfield Operations, Houston, TX (United States); Aaron, Dick [Baker Hughes Oilfield Operations, Houston, TX (United States); Macpherson, John [Baker Hughes Oilfield Operations, Houston, TX (United States)

    2015-07-31

    Many countries around the world, including the USA, have untapped geothermal energy potential. Enhanced Geothermal Systems (EGS) technology is needed to economically utilize this resource. Temperatures in some EGS reservoirs can exceed 300°C. To effectively utilize EGS resources, an array of injector and production wells must be accurately placed in the formation fracture network. This requires a high temperature directional drilling system. Most commercial services for directional drilling systems are rated for 175°C while geothermal wells require operation at much higher temperatures. Two U.S. Department of Energy (DOE) Geothermal Technologies Program (GTP) projects have been initiated to develop a 300°C capable directional drilling system, the first developing a drill bit, directional motor, and drilling fluid, and the second adding navigation and telemetry systems. This report is for the first project, “High Temperature 300°C Directional Drilling System, including drill bit, directional motor and drilling fluid, for enhanced geothermal systems,” award number DE-EE0002782. The drilling system consists of a drill bit, a directional motor, and drilling fluid. The DOE deliverables are three prototype drilling systems. We have developed three drilling motors; we have developed four roller-cone and five Kymera® bits; and finally, we have developed a 300°C stable drilling fluid, along with a lubricant additive for the metal-to-metal motor. Metal-to-metal directional motors require coatings to the rotor and stator for wear and corrosion resistance, and this coating research has been a significant part of the project. The drill bits performed well in the drill bit simulator test, and the complete drilling system has been tested drilling granite at Baker Hughes’ Experimental Test Facility in Oklahoma. The metal-to-metal motor was additionally subjected to a flow loop test in Baker Hughes’ Celle Technology Center in Germany, where it ran for more than 100

  3. HORIZONTAL WELL DRILL-IN FLUIDS

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    1998-12-01

    Full Text Available Main objective of horizontal driling is to place a drain-hole for a long distance within the pay zone to enhance productivity or injectivity. In drilling horizontal wells, more serious problems appear than in drilling vertical wells. These problems are: poor hole cleaning, excessive torque and drag, hole filling, pipe stucking, wellbore instability, loss of circulation, formation damage, poor cement job, and difficulties at logging jobs. From that reason, successful drilling and production of horizontal well depends largely on the fluid used during drilling and completion phases. Several new fluids, that fulfill some or all of required properties (hole cleaning, cutting suspension, good lubrication, and relative low formation damage, are presented in this paper.

  4. 30 CFR 250.1605 - Drilling requirements.

    Science.gov (United States)

    2010-07-01

    ... deposit. (2) Inclinational surveys shall be obtained on all vertical wells at intervals not exceeding 1... to that leaseholder. (f) Fixed drilling platforms. Applications for installation of fixed drilling... removed or have been otherwise immobilized are classified as fixed bottom founded drilling platforms. (g...

  5. Trial to active seismic while drilling; Jinko shingen wo mochiita SWD eno kokoromi

    Energy Technology Data Exchange (ETDEWEB)

    Tsuru, T; Kozawa, T [Japan National Oil Corp., Tokyo (Japan). Technology Research Center

    1996-10-01

    This paper describes the development of a more stable SWD system with larger energy by adding an artificial seismic source near the bit. SWD is a technique by which the seismic wave generated while drilling of rocks by bit can be observed on the ground surface and the records equivalent to the reverse VSP can be obtained. For this system, a shell with a vibrator was fixed immediately on the bit as a sub-generator, and total energy of usual impact by the bit and vibration by the vibrator was used as a seismic source for SWD. For the seismic wave generation mechanism of this vibrator, the shell was resonated by the magnetostrictive element, and vibration was given to the bit and drilling pipe. When this seismic source is used, only single frequency is obtained for each vibration due to the utilization of resonance of shell. Therefore, the generation patterns should be made, by which wide band energy can be obtained after the interaction. Since the survey was conducted using this bottom hole seismic source at the drilling depth more than 3,000 m, it was necessary to enhance the vibration energy. 2 refs., 2 figs.

  6. Device for storing drilling pipes

    Energy Technology Data Exchange (ETDEWEB)

    Kolasinski, A; Wedrychowicz, J

    1981-02-16

    The patented device contains a profiled arch 14 (see figure) installed in the upper part of the drilling rig 15. On base 16 of the drilling unit, there is bin 1 which is installed on frame 2 to which it is hinge connected with the help of pin 3. On the other side, the bin rests on rollers 4 which are attached to lever 5 of lifting mechanism 6. Bin 1 is a series of parallel-arranged guides rigidly connected by transverse beams. Frame 2 contains the collapsible support 10. During operation of the device, the hydraulic lifter 6 with the help of frame 5 and rollers 4 lifts bin 1 with drilling pipes installed on it, giving it an angle of 4/sup 0/ in relation to the plane of frame 2. The collapsible support 10 is installed in a vertical position and holds bin 1. This position of bin 1 is the most suitable for movement of the vertically installed drilling pipes on the guides. The distinguishing feature of the patented device is the possibility of convenient arrangement of the drilling pipes on the guides of bin 1. Because of this, the time spent on lifting and lowering the drill apparatus is considerably reduced.

  7. Rock melting technology and geothermal drilling

    Science.gov (United States)

    Rowley, J. C.

    1974-01-01

    National awareness of the potential future shortages in energy resources has heightened interest in exploration and utilization of a variety of geothermal energy (GTE) reservoirs. The status of conventional drilling of GTE wells is reviewed briefly and problem areas which lead to higher drilling costs are identified and R and D directions toward solution are suggested. In the immediate future, an expanded program of drilling in GTE formations can benefit from improvements in drilling equipment and technology normally associated with oil or gas wells. Over a longer time period, the new rock-melting drill bits being developed as a part of the Los Alamos Scientific Laboratory's Subterrene Program offer new solutions to a number of problems which frequently hamper GTE drilling, including the most basic problem - high temperature. Two of the most favorable characteristics of rock-melting penetrators are their ability to operate effectively in hot rock and produce glass linings around the hole as an integral part of the drilling process. The technical advantages to be gained by use of rock-melting penetrators are discussed in relation to the basic needs for GTE wells.

  8. Rotary steerable motor system for underground drilling

    Science.gov (United States)

    Turner, William E [Durham, CT; Perry, Carl A [Middletown, CT; Wassell, Mark E [Kingwood, TX; Barbely, Jason R [Middletown, CT; Burgess, Daniel E [Middletown, CT; Cobern, Martin E [Cheshire, CT

    2008-06-24

    A preferred embodiment of a system for rotating and guiding a drill bit in an underground bore includes a drilling motor and a drive shaft coupled to drilling motor so that drill bit can be rotated by the drilling motor. The system further includes a guidance module having an actuating arm movable between an extended position wherein the actuating arm can contact a surface of the bore and thereby exert a force on the housing of the guidance module, and a retracted position.

  9. Innovative techniques cut costs in wetlands drilling

    International Nuclear Information System (INIS)

    Navarro, A.R.

    1991-01-01

    This paper reports on an approach to drilling oil and gas wells in sensitive wetlands areas contributed to a savings of over $1.2 million on a three-well, $3 million drilling project in south Louisiana. ARCO Oil and Gas Co. drilled a three-well project in the Bayou Sale field with a truck-mounted workover rig and a modified solids-control system. This smaller equipment eliminated the need to build a large location in the marsh. Traditional drilling techniques require a large drillsite to accommodate all the equipment of a modern drilling complex. However, recently imposed environmental regulations substantially limit, and in some cases prohibit, the use of these conventional techniques for drilling wells in wetlands areas. Based on the potentially huge economic and operational impact on the drilling industry because of these stricter regulations, alternatives to these traditional practices are essential

  10. Coiled tubing drilling with supercritical carbon dioxide

    Science.gov (United States)

    Kolle , Jack J.

    2002-01-01

    A method for increasing the efficiency of drilling operations by using a drilling fluid material that exists as supercritical fluid or a dense gas at temperature and pressure conditions existing at a drill site. The material can be used to reduce mechanical drilling forces, to remove cuttings, or to jet erode a substrate. In one embodiment, carbon dioxide (CO.sub.2) is used as the material for drilling within wells in the earth, where the normal temperature and pressure conditions cause CO.sub.2 to exist as a supercritical fluid. Supercritical carbon dioxide (SC--CO.sub.2) is preferably used with coiled tube (CT) drilling equipment. The very low viscosity SC--CO.sub.2 provides efficient cooling of the drill head, and efficient cuttings removal. Further, the diffusivity of SC--CO.sub.2 within the pores of petroleum formations is significantly higher than that of water, making jet erosion using SC--CO.sub.2 much more effective than water jet erosion. SC--CO.sub.2 jets can be used to assist mechanical drilling, for erosion drilling, or for scale removal. A choke manifold at the well head or mud cap drilling equipment can be used to control the pressure within the borehole, to ensure that the temperature and pressure conditions necessary for CO.sub.2 to exist as either a supercritical fluid or a dense gas occur at the drill site. Spent CO.sub.2 can be vented to the atmosphere, collected for reuse, or directed into the formation to aid in the recovery of petroleum.

  11. Scientific Ocean Drilling to Assess Submarine Geohazards along European Margins

    Science.gov (United States)

    Ask, M. V.; Camerlenghi, A.; Kopf, A.; Morgan, J. K.; Ocean DrillingSeismic Hazard, P. E.

    2008-12-01

    Submarine geohazards are some of the most devastating natural events in terms of lives lost and economic impact. Earthquakes pose a big threat to society and infrastructure, but the understanding of their episodic generation is incomplete. Tsunamis are known for their potential of striking coastlines world-wide. Other geohazards originating below the sea surface are equally dangerous for undersea structures and the coastal population: submarine landslides and volcanic islands collapse with little warning and devastating consequences. The European scientific community has a strong focus on geohazards along European and nearby continental margins, especially given their high population densities, and long historic and prehistoric record of hazardous events. For example, the Mediterranean is surrounded by very densely-populated coastline and is the World's leading holiday destination, receiving up 30% of global tourism. In addition, its seafloor is criss-crossed by hydrocarbon pipelines and telecommunication cables. However, the governing processes and recurrence intervals of geohazards are still poorly understood. Examples include, but are not limited to, earthquakes and volcanic eruptions along the active tectonic margins of the Mediterranean and Sea of Marmara, landslides on both active and passive margins, and tsunamites and seismites in the sedimentary record that suggest a long history of similar events. The development of geophysical networks, drilling, sampling and long-term monitoring are crucial to the understanding of earthquake, landslide, and tsunami processes, and to mitigate the associated risks in densely populated and industrialized regions such as Europe. Scientific drilling, particularly in the submarine setting, offers a unique tool to obtain drill core samples, borehole measurements and long-term observations. Hence, it is a critical technology to investigate past, present, and possible future influences of hazardous processes in this area. The

  12. 21 CFR 872.4130 - Intraoral dental drill.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Intraoral dental drill. 872.4130 Section 872.4130...) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4130 Intraoral dental drill. (a) Identification. An intraoral dental drill is a rotary device intended to be attached to a dental handpiece to drill holes in...

  13. Effect of radiation on the health of workers associated with oil drilling

    International Nuclear Information System (INIS)

    Khan, M.A.; Zafar, M.M.; Zafar, M.S.

    1996-01-01

    Study of the radiation effects on the health of employees involved in the oil drilling are reported in this paper. The data obtained from different oil fields of Pakistan shows that some of the workers activity engaged in oil drilling suffer from vomiting fever, leukemia and lung cancer, most probably due to the effects of radiation on the body. (author)

  14. Hydraulic and acoustic properties of the active Alpine Fault, New Zealand: Laboratory measurements on DFDP-1 drill core

    Science.gov (United States)

    Carpenter, B. M.; Kitajima, H.; Sutherland, R.; Townend, J.; Toy, V. G.; Saffer, D. M.

    2014-03-01

    We report on laboratory measurements of permeability and elastic wavespeed for a suite of samples obtained by drilling across the active Alpine Fault on the South Island of New Zealand, as part of the first phase of the Deep Fault Drilling Project (DFDP-1). We find that clay-rich cataclasite and principal slip zone (PSZ) samples exhibit low permeabilities (⩽10-18 m), and that the permeability of hanging-wall cataclasites increases (from c. 10-18 m to 10-15 m) with distance from the fault. Additionally, the PSZ exhibits a markedly lower P-wave velocity and Young's modulus relative to the wall rocks. Our laboratory data are in good agreement with in situ wireline logging measurements and are consistent with the identification of an alteration zone surrounding the PSZ defined by observations of core samples. The properties of this zone and the low permeability of the PSZ likely govern transient hydrologic processes during earthquake slip, including thermal pressurization and dilatancy strengthening.

  15. Drilling mortar

    Energy Technology Data Exchange (ETDEWEB)

    Theodorescu, V; Ditulescu, E

    1979-01-30

    A method is proposed for producing stable drilling mortar from drilled rock which makes it possible to stabilize the walls of the borehole and to maintain producing horizons of oil and gas wells in an undisturbed state. The proposed drilling mortar includes 5-12 wt.-% dry modified calcium lignosulfonate in the form of a solution containing about 30% dry matter with the addition of 0.1 wt.-% anti-foaming agent consisting of C/sub 19/-C/sub 20/ alcohol dissolved in a light petroleum product; cream of milk with about 10 wt.-% Ca(OH)/sub 2/ in a quantity sufficient for reducing the pH value of the ions down to 10.5; sodium chloride in amounts from 5 mg to 100 ml (aqueous phase); ordinarily used agents for ensuring the necessary density, viscosity, and filterability. For example, the preparation of the drilling fluid begins with the processing under laboratory conditions of lignosulfonic pulp obtained in the production of yeast fodder with the following characteristics: specific density, 1.15 kgf/dm/sup 3/; water content, 67% (according to the Dean and Stark method); pH 4.0. In the vessel is placed 1000 cm/sup 3/ lignosulfonic pulp containing 33% dry matter, and the pulp is heated to 90-95/sup 0/C by means of a water bath. To the heated pulp 33 cm/sup 3/ formic acid at a 40-% concentration is added by mixing. The specific temperature of the pulp is maintained in the constant mixing process for two hours. Then the cream of milk containing 10 wt.-% Ca(OH)/sub 2/ is added to raise the pH to 10.5. The cooled product is calcium lignosulfonate. To produce a stable form of the drilling mortar, 750 g clay and 10 g trass gel are added to a vessel containing 1500 cm/sup 3/ fresh water by means of mixing. The resulting dispersed mass remains at rest for 12 hours for purposes of hydration. Then 2 g of an anti-foaming agent dissolved in 6 cm/sup 3/ benzene is introduced to 1000 cm/sup 3/ modified calcium lignosulfonate produced by the above method.

  16. Semisubmersible rigs attractive for tender-assisted drilling

    Energy Technology Data Exchange (ETDEWEB)

    Tranter, P. (Sedco Forex, Aberdeen (United Kingdom))

    1994-09-19

    Tender-assisted drilling (TAD) involves the use of tender support vessel (TSV) during the drilling phase of platform development to provide drilling utilities to the platform-mounted drilling package. The TSV provides facilities such as mud mixing, storage, pumping, bulk storage, hotel accommodations, and power. Thus, the platform topsides and jacket weight and size can be smaller and less expensive. The paper discusses the advantages and disadvantages of TAD, then describes the TAD vessel, semisubmersible, platform cost savings, accommodations, drilling and workovers, and field experience.

  17. Synthesis of engineering designs of drilling facilities

    Science.gov (United States)

    Porozhsky, K.

    2018-03-01

    The article sets forth key principles of engineering of drilling equipment based on successive analysis of the goals of the production method, technologies of its implementation and conditions of mineral mining using a new approach to systematization of drilling methods. Potential advancement in the technologies and equipment of drilling is illustrated in terms of oil-well drilling.

  18. 30 CFR 256.71 - Directional drilling.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Directional drilling. 256.71 Section 256.71... drilling. In accordance with an approved exploration plan or development and production plan, a lease may be maintained in force by directional wells drilled under the leased area from surface locations on...

  19. Drilling history core hole DC-4

    International Nuclear Information System (INIS)

    1978-12-01

    Core hole DC-4 was completed at a depth of 3998 feet in December, 1978 by Boyles Brothers Drilling Company, Spokane, Washington, under subcontract to Fenix and Scission, Inc. The hole was cored for the US Department of Energy and the Rockwell Hanford Operations' Basalt Waste Isolation Program. Fenix and Sicsson, Inc. furnished the engineering, daily supervision of the cable tool and core drilling activities, and geological core logging for DC-4. Core hole DC-4 is located on the Hanford Site about 3 miles east of the Yakima Barricade and approximately 103 feet southwest of rotary hole DC-5, which was completed to 3990 feet in February, 1978. Hanford Site coordinates reported for hole DC-4 are north 49,385.62 feet and west 85,207.63 feet, and Washington State coordinates are north 454,468.73 feet and east 2,209,990.87 feet. No elevation survey is available for hole DC-4, but it is approximately 745 feet above mean sea level based upon the survey of hole DC-5, which has a reported elevation of 745.16 feet on the top of the 3-inch flange. The purpose of core hole DC-4 was to core drill vertically through the basalt and interbed units for stratigraphic depth determination and core collection, and to provide a borehole for hydrologic testing, cross-hole seismic shear, and pressure wave velocity studies with rotary hole DC-5. Hole DC-4 was drilled through the overburden into basalt bedrock by cable tool methods (0-623 feet) and continuously cored through the final interval (623 to 3998 feet).Core recovery was 95.8 percent of the total footage cored

  20. Advanced control strategies for a drill rig

    International Nuclear Information System (INIS)

    Banerjee, A.; Hiller, M.; Fink, B.

    1996-01-01

    The construction of tunnels is usually undertaken using a combination of blasting and drilling to achieve rock excavation. Easy handling and high accuracy, and thus greater efficiency, in drilling rigs is an essential ingredient of successful competition in the market place. This article describes a cartesian control concept used for a twin boom drill rig. This simplifies the handling of a drilling boom, reduces the duration of a working cycle and increases security. A remote control system has been added to the drill rig to support the operator working in complicated environments. (UK)

  1. Recycling stabilised/solidified drill cuttings for forage production in acidic soils.

    Science.gov (United States)

    Kogbara, Reginald B; Dumkhana, Bernard B; Ayotamuno, Josiah M; Okparanma, Reuben N

    2017-10-01

    Stabilisation/solidification (S/S), which involves fixation and immobilisation of contaminants using cementitious materials, is one method of treating drill cuttings before final fate. This work considers reuse of stabilised/solidified drill cuttings for forage production in acidic soils. It sought to improve the sustainability of S/S technique through supplementation with the phytoremediation potential of plants, eliminate the need for landfill disposal and reduce soil acidity for better plant growth. Drill cuttings with an initial total petroleum hydrocarbon (TPH) concentration of 17,125 mg kg -1 and low concentrations of metals were treated with 5%, 10%, and 20% cement dosages. The treated drill cuttings were reused in granular form for growing a forage, elephant grass (Pennisetum purpureum), after mixing with uncontaminated soil. The grasses were also grown in uncontaminated soil. The phytoremediation and growth potential of the plants was assessed over a 12-week period. A mix ratio of one part drill cuttings to three parts uncontaminated soil was required for active plant growth. The phytoremediation ability of elephant grass (alongside abiotic losses) reduced the TPH level (up to 8795 mg kg -1 ) in the soil-treated-drill cuttings mixtures below regulatory (1000 mg kg -1 ) levels. There were also decreased concentrations of metals. The grass showed better heights and leaf lengths in soil containing drill cuttings treated with 5% cement dosage than in uncontaminated soil. The results suggest that recycling S/S treated drill cuttings for forage production may be a potential end use of the treated waste. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. A Fast Inspection of Tool Electrode and Drilling Depth in EDM Drilling by Detection Line Algorithm.

    Science.gov (United States)

    Huang, Kuo-Yi

    2008-08-21

    The purpose of this study was to develop a novel measurement method using a machine vision system. Besides using image processing techniques, the proposed system employs a detection line algorithm that detects the tool electrode length and drilling depth of a workpiece accurately and effectively. Different boundaries of areas on the tool electrode are defined: a baseline between base and normal areas, a ND-line between normal and drilling areas (accumulating carbon area), and a DD-line between drilling area and dielectric fluid droplet on the electrode tip. Accordingly, image processing techniques are employed to extract a tool electrode image, and the centroid, eigenvector, and principle axis of the tool electrode are determined. The developed detection line algorithm (DLA) is then used to detect the baseline, ND-line, and DD-line along the direction of the principle axis. Finally, the tool electrode length and drilling depth of the workpiece are estimated via detected baseline, ND-line, and DD-line. Experimental results show good accuracy and efficiency in estimation of the tool electrode length and drilling depth under different conditions. Hence, this research may provide a reference for industrial application in EDM drilling measurement.

  3. Crump Geyser Exploration and Drilling Project. High Precision Geophysics and Detailed Structural Exploration and Slim Well Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Fairbank, Brian D. [Nevada Geothermal Power Company, Vancouver (Canada); Smith, Nicole [Nevada Geothermal Power Company, Vancouver (Canada)

    2015-06-10

    The Crump Geyser Exploration and Drilling Project – High Precision Geophysics and Detailed Structural Exploration and Slim Well Drilling ran from January 29, 2010 to September 30, 2013. During Phase 1 of the project, collection of all geophysical surveys was completed as outlined in the Statement of Project Objectives. In addition, a 5000-foot full sized exploration well was drilled by Ormat, and preexisting drilling data was discovered for multiple temperature gradient wells within the project area. Three dimensional modeling and interpretation of results from the geophysical surveys and drilling data gave confidence to move to the project into Phase 2 drilling. Geological and geophysical survey interpretations combined with existing downhole temperature data provided an ideal target for the first slim-hole drilled as the first task in Phase 2. Slim-hole 35-34 was drilled in September 2011 and tested temperature, lithology, and permeability along the primary range-bounding fault zone near its intersection with buried northwest-trending faults that have been identified using geophysical methods. Following analysis of the results of the first slim-hole 35-34, the second slim hole was not drilled and subsequent project tasks, including flowing differential self-potential (FDSP) surveys that were designed to detail the affect of production and injection on water flow in the shallow aquifer, were not completed. NGP sold the Crump project to Ormat in August 2014, afterwards, there was insufficient time and interest from Ormat available to complete the project objectives. NGP was unable to continue managing the award for a project they did not own due to liability issues and Novation of the award was not a viable option due to federal award timelines. NGP submitted a request to mutually terminate the award on February 18, 2015. The results of all of the technical surveys and drilling are included in this report. Fault interpretations from surface geology, aeromag

  4. GRAIN-SCALE FAILURE IN THERMAL SPALLATION DRILLING

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, S C; Lomov, I; Roberts, J J

    2012-01-19

    Geothermal power promises clean, renewable, reliable and potentially widely-available energy, but is limited by high initial capital costs. New drilling technologies are required to make geothermal power financially competitive with other energy sources. One potential solution is offered by Thermal Spallation Drilling (TSD) - a novel drilling technique in which small particles (spalls) are released from the rock surface by rapid heating. While TSD has the potential to improve drilling rates of brittle granitic rocks, the coupled thermomechanical processes involved in TSD are poorly described, making system control and optimization difficult for this drilling technology. In this paper, we discuss results from a new modeling effort investigating thermal spallation drilling. In particular, we describe an explicit model that simulates the grain-scale mechanics of thermal spallation and use this model to examine existing theories concerning spalling mechanisms. We will report how borehole conditions influence spall production, and discuss implications for macro-scale models of drilling systems.

  5. 25 CFR 226.33 - Line drilling.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Line drilling. 226.33 Section 226.33 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF OSAGE RESERVATION LANDS FOR OIL AND GAS MINING Requirements of Lessees § 226.33 Line drilling. Lessee shall not drill within 300 feet...

  6. Stinger Enhanced Drill Bits For EGS

    Energy Technology Data Exchange (ETDEWEB)

    Durrand, Christopher J. [Novatek International, Inc., Provo, UT (United States); Skeem, Marcus R. [Novatek International, Inc., Provo, UT (United States); Crockett, Ron B. [Novatek International, Inc., Provo, UT (United States); Hall, David R. [Novatek International, Inc., Provo, UT (United States)

    2013-04-29

    The project objectives were to design, engineer, test, and commercialize a drill bit suitable for drilling in hard rock and high temperature environments (10,000 meters) likely to be encountered in drilling enhanced geothermal wells. The goal is provide a drill bit that can aid in the increased penetration rate of three times over conventional drilling. Novatek has sought to leverage its polycrystalline diamond technology and a new conical cutter shape, known as the Stinger®, for this purpose. Novatek has developed a fixed bladed bit, known as the JackBit®, populated with both shear cutter and Stingers that is currently being tested by major drilling companies for geothermal and oil and gas applications. The JackBit concept comprises a fixed bladed bit with a center indenter, referred to as the Jack. The JackBit has been extensively tested in the lab and in the field. The JackBit has been transferred to a major bit manufacturer and oil service company. Except for the attached published reports all other information is confidential.

  7. MRI-guided percutaneous retrograde drilling of osteochondritis dissecans of the knee

    Energy Technology Data Exchange (ETDEWEB)

    Ojala, Risto; Kerimaa, Pekka; Tervonen, Osmo; Blanco-Sequeiros, Roberto [Oulu University Hospital, Department of Radiology, Oulu (Finland); Lakovaara, Martti [Oulu Deaconess Institute, Department of Surgery, Oulu (Finland); Hyvoenen, Pekka; Lehenkari, Petri [Oulu University Hospital, Department of Surgery, Oulu (Finland)

    2011-06-15

    The purpose of this study was to evaluate the feasibility of a new method for osteochondritis dissecans (OCD) treatment. Ten OCD lesions of the knee unresponsive to conservative management were treated with MRI-guided percutaneous retrograde drilling to reduce symptoms and promote ossification of the lesion. All lesions were located in distal femoral condyles. Only stable OCD lesions were included (preprocedural MRI grade I or II). Five lesions were of juvenile type and five lesions were of adult type OCD. All the patients had severe limitation of activity due to the OCD-related pain. By using a 0.23 T open MRI scanner and spinal anesthesia, percutaneous retrograde drilling of the OCD lesions was performed (3 mm cylindrical drill, one to three channels). Optical tracking and MRI imaging were used to guide instruments during the procedure. Mean postprocedural clinical follow-up time was 3 years. Eight patients had a post-procedural follow-up MRI within 1 year. All the OCD lesions were located and drilled using the 0.23 T open MRI scanner without procedural complications. All the patients had pain relief, mean visual analog score (VAS) declined from 6 to 2. Follow-up MRI showed ossification in all lesions. Eight patients could return to normal physical activity with no or minor effect on function (Hughston score 3-4). Treatment failed in two cases where the continuation of symptoms led to arthroscopy and transchondral fixation. MR-guided retrograde OCD lesion drilling is an accurate, feasible, and effective cartilage-sparing techique in OCD management. (orig.)

  8. MRI-guided percutaneous retrograde drilling of osteochondritis dissecans of the knee

    International Nuclear Information System (INIS)

    Ojala, Risto; Kerimaa, Pekka; Tervonen, Osmo; Blanco-Sequeiros, Roberto; Lakovaara, Martti; Hyvoenen, Pekka; Lehenkari, Petri

    2011-01-01

    The purpose of this study was to evaluate the feasibility of a new method for osteochondritis dissecans (OCD) treatment. Ten OCD lesions of the knee unresponsive to conservative management were treated with MRI-guided percutaneous retrograde drilling to reduce symptoms and promote ossification of the lesion. All lesions were located in distal femoral condyles. Only stable OCD lesions were included (preprocedural MRI grade I or II). Five lesions were of juvenile type and five lesions were of adult type OCD. All the patients had severe limitation of activity due to the OCD-related pain. By using a 0.23 T open MRI scanner and spinal anesthesia, percutaneous retrograde drilling of the OCD lesions was performed (3 mm cylindrical drill, one to three channels). Optical tracking and MRI imaging were used to guide instruments during the procedure. Mean postprocedural clinical follow-up time was 3 years. Eight patients had a post-procedural follow-up MRI within 1 year. All the OCD lesions were located and drilled using the 0.23 T open MRI scanner without procedural complications. All the patients had pain relief, mean visual analog score (VAS) declined from 6 to 2. Follow-up MRI showed ossification in all lesions. Eight patients could return to normal physical activity with no or minor effect on function (Hughston score 3-4). Treatment failed in two cases where the continuation of symptoms led to arthroscopy and transchondral fixation. MR-guided retrograde OCD lesion drilling is an accurate, feasible, and effective cartilage-sparing techique in OCD management. (orig.)

  9. Polyethylene glycol drilling fluid for drilling in marine gas hydrates-bearing sediments: an experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, G.; Liu, T.; Ning, F.; Tu, Y.; Zhang, L.; Yu, Y.; Kuang, L. [China University of Geosciences, Faculty of Engineering, Wuhan (China)

    2011-07-01

    Shale inhibition, low-temperature performance, the ability to prevent calcium and magnesium-ion pollution, and hydrate inhibition of polyethylene glycol drilling fluid were each tested with conventional drilling-fluid test equipment and an experimental gas-hydrate integrated simulation system developed by our laboratory. The results of these tests show that drilling fluid with a formulation of artificial seawater, 3% bentonite, 0.3% Na{sub 2}CO{sub 3}, 10% polyethylene glycol, 20% NaCl, 4% SMP-2, 1% LV-PAC, 0.5% NaOH and 1% PVP K-90 performs well in shale swelling and gas hydrate inhibition. It also shows satisfactory rheological properties and lubrication at temperature ranges from -8 {sup o}C to 15 {sup o}C. The PVP K-90, a kinetic hydrate inhibitor, can effectively inhibit gas hydrate aggregations at a dose of 1 wt%. This finding demonstrates that a drilling fluid with a high addition of NaCl and a low addition of PVP K-90 is suitable for drilling in natural marine gas-hydrate-bearing sediments. (authors)

  10. Polyethylene Glycol Drilling Fluid for Drilling in Marine Gas Hydrates-Bearing Sediments: An Experimental Study

    Directory of Open Access Journals (Sweden)

    Lixin Kuang

    2011-01-01

    Full Text Available Shale inhibition, low-temperature performance, the ability to prevent calcium and magnesium-ion pollution, and hydrate inhibition of polyethylene glycol drilling fluid were each tested with conventional drilling-fluid test equipment and an experimental gas-hydrate integrated simulation system developed by our laboratory. The results of these tests show that drilling fluid with a formulation of artificial seawater, 3% bentonite, 0.3% Na2CO3, 10% polyethylene glycol, 20% NaCl, 4% SMP-2, 1% LV-PAC, 0.5% NaOH and 1% PVP K-90 performs well in shale swelling and gas hydrate inhibition. It also shows satisfactory rheological properties and lubrication at temperature ranges from −8 °C to 15 °C. The PVP K-90, a kinetic hydrate inhibitor, can effectively inhibit gas hydrate aggregations at a dose of 1 wt%. This finding demonstrates that a drilling fluid with a high addition of NaCl and a low addition of PVP K-90 is suitable for drilling in natural marine gas-hydrate-bearing sediments.

  11. Real Time Seismic Prediction while Drilling

    Science.gov (United States)

    Schilling, F. R.; Bohlen, T.; Edelmann, T.; Kassel, A.; Heim, A.; Gehring, M.; Lüth, S.; Giese, R.; Jaksch, K.; Rechlin, A.; Kopf, M.; Stahlmann, J.; Gattermann, J.; Bruns, B.

    2009-12-01

    Efficient and safe drilling is a prerequisite to enhance the mobility of people and goods, to improve the traffic as well as utility infrastructure of growing megacities, and to ensure the growing energy demand while building geothermal and in hydroelectric power plants. Construction within the underground is often building within the unknown. An enhanced risk potential for people and the underground building may arise if drilling enters fracture zones, karsts, brittle rocks, mixed solid and soft rocks, caves, or anthropogenic obstacles. Knowing about the material behavior ahead of the drilling allows reducing the risk during drilling and construction operation. In drilling operations direct observations from boreholes can be complemented with geophysical investigations. In this presentation we focus on “real time” seismic prediction while drilling which is seen as a prerequisite while using geophysical methods in modern drilling operations. In solid rocks P- and S-wave velocity, refraction and reflection as well as seismic wave attenuation can be used for the interpretation of structures ahead of the drilling. An Integrated Seismic Imaging System (ISIS) for exploration ahead of a construction is used, where a pneumatic hammer or a magnetostrictive vibration source generate repetitive signals behind the tunneling machine. Tube waves are generated which travel along the tunnel to the working face. There the tube waves are converted to mainly S- but also P-Waves which interact with the formation ahead of the heading face. The reflected or refracted waves travel back to the working front are converted back to tube waves and recorded using three-component geophones which are fit into the tips of anchor rods. In near real time, the ISIS software allows for an integrated 3D imaging and interpretation of the observed data, geological and geotechnical parameters. Fracture zones, heterogeneities, and variations in the rock properties can be revealed during the drilling

  12. 78 FR 23276 - Agency Information Collection Activities; Proposed Collection; Comment Request: Community Drill...

    Science.gov (United States)

    2013-04-18

    ... Secretary of Homeland Security to ``coordinate a comprehensive campaign to build and sustain national... future outreach strategies related to participation in Community Drill Day. Affected Public: Individuals...

  13. Deepwater drilling; Jakten paa de store dyp

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    Recent technological development has made it possible to drill for oil and gas at the impressive depth of 3000 metres. An increasing part of the world's oil and gas discoveries are made in deep or ultra deep waters. Ultra deep waters are those exceeding 1500 metres. Since drilling at more than 500 metres started at the end of the 1970s, 32 discoveries of about 500 million barrels of extractable oil or gas have been made. These finds amount to almost 60 thousand millions barrels of oil equivalents. Most of the effort has been made in the coasts between Brazil, West Africa and the Gulf of Mexico. Deepwater projects have been a field of priority for Norwegian oil companies in their search for international commissions. It is frequently time-consuming, expensive and technologically challenging to drill at great depths. The article describes the Atlantis concept, which may reduce the complexities and costs of deepwater activities. This involves making an artificial sea bottom, which in the form of an air-filled buoy is anchored at a depth of 200 - 300 metres. Production wells or exploration wells and risers are extended from the real bottom to the artificial one.

  14. Drilling and well technology

    Energy Technology Data Exchange (ETDEWEB)

    Milheim, K. [Mining University Leoben Institute for Drilling Technology, (Austria)

    1996-12-31

    Over a billion dollars a year is lost by exploration and production companies drilling wells because of the lack of learn curve management (LMC) practices. This paper presents the importance of the LMC concept, what it is, why LMC has not yet been recognized as a major initiative for improving drilling cost performance. The paper discusses the different types of planning, problems with implementation of plans, the use and misuse of drilling results and data bases, and the lack of post analysis practices. The major point of the paper is to show the massive savings that can be achieved by valuing LMC, learning LMC and successfully implementing LMC. . 2 refs., 5 figs.

  15. Thermal numerical assessment of jawbone drilling factor during implantology

    Directory of Open Access Journals (Sweden)

    Adel Pirjamali Neisiani

    2016-03-01

    Full Text Available Background and Aims: Optimization drilling parameters in order to temperature decrease during creation of hole in the bone is an interested issue. The aim of this study was to achieve optimum values of drilling parameters based on the creation of minimum temperature during jawbone drilling. Materials and Methods: In this study two models of mandible and maxilla was created and teeth 2, 5 and 8 from maxilla and teeth 25, 28 and 31 from mandible were removed. The drilling operation was performed under different conditions on jawbone models using finite element analysis and the maximum temperatures were measured in adjacent of holes. Results: Drill bit head angle of 70 degrees was created the lowest maximum temperature during drilling operation. The lowest maximum temperatures were observed in the drill bit rotational speed, drill bit feed rate and the force exerted on the drill bit equal to 200 rpm, 120 mm/min and 60 N, respectively. The use of irrigation can decrease the maximum bone temperature about 7ºC. The maximum temperature differences in various regions of mandible and maxilla were approximately about 1ºC. Conclusion: Sharpness of drill bit head angle, reduction of drill bit rotational speed, increasing drill bit feed rate and exerted force on drill bit and also the use of irrigation played effective roles in temperature decrease during jawbone drilling. Drilling site did not have important effect on the temperature changes during jawbone drilling.

  16. Drilling Automation Demonstrations in Subsurface Exploration for Astrobiology

    Science.gov (United States)

    Glass, Brian; Cannon, H.; Lee, P.; Hanagud, S.; Davis, K.

    2006-01-01

    This project proposes to study subsurface permafrost microbial habitats at a relevant Arctic Mars-analog site (Haughton Crater, Devon Island, Canada) while developing and maturing the subsurface drilling and drilling automation technologies that will be required by post-2010 missions. It builds on earlier drilling technology projects to add permafrost and ice-drilling capabilities to 5m with a lightweight drill that will be automatically monitored and controlled in-situ. Frozen cores obtained with this drill under sterilized protocols will be used in testing three hypotheses pertaining to near-surface physical geology and ground H2O ice distribution, viewed as a habitat for microbial life in subsurface ice and ice-consolidated sediments. Automation technologies employed will demonstrate hands-off diagnostics and drill control, using novel vibrational dynamical analysis methods and model-based reasoning to monitor and identify drilling fault states before and during faults. Three field deployments, to a Mars-analog site with frozen impact crater fallback breccia, will support science goals, provide a rigorous test of drilling automation and lightweight permafrost drilling, and leverage past experience with the field site s particular logistics.

  17. Optimizing Geothermal Drilling: Oil and Gas Technology Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Tilley, Mitch; Eustes, Alfred; Visser, Charles; Baker, Walt; Bolton, Dan; Bell, Jason; Nagandran, Uneshddarann; Quick, Ralph

    2015-01-26

    There is a significant amount of financial risk associated with geothermal drilling; however, there are opportunities to improve upon current practices and technologies used. The scope of this drilling operational study included 21 geothermal wells and 21 oil and gas wells. The goal was to determine a 'perfect well' using historical data to compare the best oil and gas well to the best geothermal well. Unfortunately, limitations encountered in the study included missing data (bit records, mud information, etc.), poor data collection, and difficult to ascertain handwriting. An online software database was used to format drilling data to IADC coded daily drilling reports and generate analysis figures. Six major issues have been found in geothermal drilling operations. These problems include lost circulation, rig/equipment selection, cementing, penetration rate, drilling program, and time management. As a result of these issues, geothermal drilling averages 56.4 days longer than drilling comparable oil and gas wells in the wells in this study. Roughly $13.9 million would be lost due to non-productive time in the 21 geothermal wells and only $1.3 million in the oil and gas wells, assuming a cost of $50,000 per day. Comparable events such as drilling the same sized hole, tripping in/out, cementing, and running the same size casing took substantially less time in the oil and gas wells. Geothermal wells were drilled using older and/or less advanced technology to depths less than 10,000 feet, while oil and gas wells reached 12,500 feet faster with purpose built rigs. A new approach is now underway that will optimize drilling programs throughout the drilling industry. It is the use of Mechanical Specific Energy (MSE) as a tool to realize efficient drilling processes. However, a work-flow must also be established in order for there to be an efficient drilling program. Potential improvements for current geothermal operations are: the use of electronic records, real

  18. Taking aim : particle impact drilling targets ROP gains

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, J.

    2005-11-01

    Details of a new drilling technique developed by Particle Drilling Technologies Inc. were presented. Particle impact drilling uses buckshot-like steel particles entrained with ordinary drilling mud that are accelerated through a specially-designed drill bit to bombard hard-rock formations at rapid-fire velocities of up to 4 million times a minute. Conventional drill bits rely on mechanical energy from some 50,000 pounds of weight on bit and torque to break or fracture the formation, whereas particle impact drilling relies on hydraulic energy to blast the steel particles from the bit's jetting nozzles in order to repeatedly fracture the formation. It was suggested that the new technology will accelerate the drilling process. Tests have shown that the new device out-performs conventional bits in hard formations by utilizing the hydraulics of the rig to drill with particles. In field tests, drilling was 4 times faster than conventional methods. It was anticipated that the bit will be up to 150 per cent faster in softer rock formations. In order to avoid clogging, the system uses a shot trap to remove the steel balls, which are roughly one-tenth of an inch in diameter, from the drilling fluid before it enters the shale shaker. The shot is recycled after each well. During drilling, mud circulation must be continuous for the system to work. If the system can't circulate cleanly out of a hole, there is a disruption in the process and drilling fluid may move up the annulus at 350 feet per minute when it leaves bottomhole. It was suggested that circulation issues can be resolved by increasing mud viscosity. A less than optimal performance during a recent test at Catoosa was attributed to a lack of control over drilling fluid parameters and to the use of an overly-large well casing. It was concluded that the new system will likely greatly reduce the number of days it takes to drill a well. 2 figs.

  19. Results from Testing of Two Rotary Percussive Drilling Systems

    Science.gov (United States)

    Kriechbaum, Kristopher; Brown, Kyle; Cady, Ian; von der Heydt, Max; Klein, Kerry; Kulczycki, Eric; Okon, Avi

    2010-01-01

    The developmental test program for the MSL (Mars Science Laboratory) rotary percussive drill examined the e ect of various drill input parameters on the drill pene- tration rate. Some of the input parameters tested were drill angle with respect to gravity and percussive impact energy. The suite of rocks tested ranged from a high strength basalt to soft Kaolinite clay. We developed a hole start routine to reduce high sideloads from bit walk. The ongoing development test program for the IMSAH (Integrated Mars Sample Acquisition and Handling) rotary percussive corer uses many of the same rocks as the MSL suite. An additional performance parameter is core integrity. The MSL development test drill and the IMSAH test drill use similar hardware to provide rotation and percussion. However, the MSL test drill uses external stabilizers, while the IMSAH test drill does not have external stabilization. In addition the IMSAH drill is a core drill, while the MSL drill uses a solid powdering bit. Results from the testing of these two related drilling systems is examined.

  20. Mars Drilling Status

    Science.gov (United States)

    Mandell, Humboldt, C., Jr.

    2002-01-01

    This slide presentation reviews the current status of work to explore Mars beneath the surface of planet. One of the objective of this work is to enable further exploration of Mars by humans. One of the requirements for this is to find water on Mars. The presences of water is critical for Human Exploration and a permanent presence on Mars. If water is present beneath the surface it is the best chance of finding life on Mars. The presentation includes a timeline showing the robotic missions, those that have already been on Mars, and planned missions, an explanation of why do we want to drill on Mars, and some of the challenges, Also include are reviews of a missions that would drill 200 and 4,000 to 6,000 meters into the Martian bedrock, and a overview description of the drill. There is a view of some places where we have hopes of finding water.

  1. Advantages and limitations of remotely operated sea floor drill rigs

    Science.gov (United States)

    Freudenthal, T.; Smith, D. J.; Wefer, G.

    2009-04-01

    A variety of research targets in marine sciences including the investigation of gas hydrates, slope stability, alteration of oceanic crust, ore formation and palaeoclimate can be addressed by shallow drilling. However, drill ships are mostly used for deep drillings, both because the effort of building up a drill string from a drill ship to the deep sea floor is tremendous and control on drill bit pressure from a movable platform and a vibrating drill string is poor especially in the upper hundred meters. During the last decade a variety of remotely operated drill rigs have been developed, that are deployed on the sea bed and operated from standard research vessels. These developments include the BMS (Bentic Multicoring System, developed by Williamson and Associates, operated by the Japanese Mining Agency), the PROD (Portable Remotely Operated Drill, developed and operated by Benthic Geotech), the Rockdrill 2 (developed and operated by the British geological Survey) and the MeBo (German abbreviation for sea floor drill rig, developed and operated by Marum, University of Bremen). These drill rigs reach drilling depths between 15 and 100 m. For shallow drillings remotely operated drill rigs are a cost effective alternative to the services of drill ships and have the major advantage that the drilling operations are performed from a stable platform independent of any ship movements due to waves, wind or currents. Sea floor drill rigs can be deployed both in shallow waters and the deep sea. A careful site survey is required before deploying the sea floor drill rig. Slope gradient, small scale topography and soil strength are important factors when planning the deployment. The choice of drill bits and core catcher depend on the expected geology. The required drill tools are stored on one or two magazines on the drill rig. The MeBo is the only remotely operated drill rig world wide that can use wire line coring technique. This method is much faster than conventional

  2. Using Deep-Sea Scientific Drilling to Enhance Ocean Science Literacy

    Science.gov (United States)

    Passow, Michael; Cooper, Sharon; Kurtz, Nicole; Burgio, Marion; Cicconi, Alessia

    2017-04-01

    Beginning with confirmation of sea floor spreading in Leg 3 of the Deep Sea Drilling Project in 1968, scientific ocean drilling has provided much of the evidence supporting modern understanding of the Earth System, global climate changes, and many other important concepts. But for more than three decades, results of discoveries were published primarily in scientific journals and cruise volumes. On occasion, science journalists would write articles for the general public, but organized educational outreach efforts were rare. Starting about a decade ago, educators were included in the scientific party aboard the JOIDES Resolution. These "teachers-at-sea" developed formats to translate the technical and scientific activities into language understandable to students, teachers, and the public. Several "Schools of Rock" have enabled groups of teachers and informal science educators to experience what happens aboard the JOIDES Resolution. Over the past few years, educational outreach efforts based on scientific drilling expanded to create a large body of resources that promote Ocean Science Literacy. Partnerships between scientists and educators have produced a searchable database of inquiry-centered classroom and informal science activities. These are available for free through the JOIDES Resolution website, joidesresolution.org. Activities are aligned with the Ocean Literacy Principles (http://oceanliteracy.wp2.coexploration.org/) and Science Education Standards. In addition to a suite of lessons based on the science behind scientific drilling, participants have developed a range of educational resources that include graphic novels ("Tales of the Resolution" (http://joidesresolution.org/node/263) ; children's books ("Uncovering Earth's Secrets" and "Where the Wild Microbes Grow" http://joidesresolution.org/node/2998); posters, videos, and other materials. Cooper and Kurtz are currently overseeing improvements and revisions to the JR education website pages. The

  3. Changing the fundamentals[Drill technology

    Energy Technology Data Exchange (ETDEWEB)

    Flatern, R. von

    2003-02-01

    Evolution of the science of drilling oil and gas wells has evolved in fits and starts. From drilling with cables to rotary tables to top drives, from straight holes to horizontal, it has been a process interrupted occasionally by flashes of revolutionary brilliance. In this article the author looks at the state of just a few of the technologies that define or threaten to change how drillers go about their business. In the early days of deepwater exploration drillers responded more to technical challenges than financial ones, primarily with immense semisubmersibles and drillships, together with all he necessary ancillary items. The goal of getting deeper faster is not a new one, better performance bits, muds, LWD and MWD, together with numerous other developments all emerged as a result of the desire to shorten the time between spud and TD. But whereas saving a day or two drilling onshore or nearshore is desirable, it has never before been possible to realize the kind of substantial financial benefits from relatively small time savings. Research and development into these type of savings with the design and improvement of different types drill bits and casing drilling is described.

  4. Recent drilling activities at the earth power resources Tuscarora geothermal power project's hot sulphur springs lease area.

    Energy Technology Data Exchange (ETDEWEB)

    Goranson, Colin

    2005-03-01

    Earth Power Resources, Inc. recently completed a combined rotary/core hole to a depth of 3,813 feet at it's Hot Sulphur Springs Tuscarora Geothermal Power Project Lease Area located 70-miles north of Elko, Nevada. Previous geothermal exploration data were combined with geologic mapping and newly acquired seismic-reflection data to identify a northerly tending horst-graben structure approximately 2,000 feet wide by at least 6,000 feet long with up to 1,700 feet of vertical offset. The well (HSS-2) was successfully drilled through a shallow thick sequence of altered Tertiary Volcanic where previous exploration wells had severe hole-caving problems. The ''tight-hole'' drilling problems were reduced using drilling fluids consisting of Polymer-based mud mixed with 2% Potassium Chloride (KCl) to reduce Smectite-type clay swelling problems. Core from the 330 F fractured geothermal reservoir system at depths of 2,950 feet indicated 30% Smectite type clays existed in a fault-gouge zone where total loss of circulation occurred during coring. Smectite-type clays are not typically expected at temperatures above 300 F. The fracture zone at 2,950 feet exhibited a skin-damage during injection testing suggesting that the drilling fluids may have caused clay swelling and subsequent geothermal reservoir formation damage. The recent well drilling experiences indicate that drilling problems in the shallow clays at Hot Sulphur Springs can be reduced. In addition, average penetration rates through the caprock system can be on the order of 25 to 35 feet per hour. This information has greatly reduced the original estimated well costs that were based on previous exploration drilling efforts. Successful production formation drilling will depend on finding drilling fluids that will not cause formation damage in the Smectite-rich fractured geothermal reservoir system. Information obtained at Hot Sulphur Springs may apply to other geothermal systems developed in

  5. Drilling Fluids Using Multiwall Carbon Nanotube (MWCNT

    Directory of Open Access Journals (Sweden)

    Mostafa Sedaghatzadeh

    2012-11-01

    Full Text Available Designing drilling fluids for drilling in deep gas reservoirs and geothermal wells is a major challenge. Cooling drilling fluids and preparing stable mud with high thermal conductivity are of great concern. Drilling nanofluids, i.e. a low fraction of carbon nanotube (CNT well dispersed in mud, may enhance the mixture thermal conductivity compared to the base fluids. Thus, they are potentially useful for advanced designing high temperature and high pressure (HTHP drilling fluids. In the present study, the impacts of CNT volume fraction, ball milling time, functionalization, temperature, and dispersion quality (by means of scanning electron microscopy, SEM on the thermal and rheological properties of water-based mud are experimentally investigated. The thermal conductivities of the nano-based drilling fluid are measured with a transient hot wire method. The experimental results show that the thermal conductivity of the water-based drilling fluid is enhanced by 23.2% in the presence of 1 vol% functionalized CNT at room temperature; it increases by 31.8% by raising the mud temperature to 50 °C. Furthermore, significant improvements are seen in the rheological properties—such as yield point, filtration properties, and annular viscosity—of the CNTmodified drilling fluid compared to the base mud, which pushes forward their future development.

  6. Bucket drill

    Energy Technology Data Exchange (ETDEWEB)

    Bezverkhiy, V.M.; Nabokov, I.M.; Podoksik, D.Z.; Sadovskiy, S.S.; Shanyukevich, V.A.

    1983-01-01

    The bucket drill including a cylindrical housing with bottom, ground intake windows and cutting knives is hinged to the housing, the mechanism of rotation of the cutting knives including rods connected by the cutter knives, and drive shaft is distinguished by the fact that in order to improve the effectiveness of drilling by automatic change in the angle of cutting depending on the strength of the drillable rock, the drill is equipped with elastic elements and cap with annular slits in which there are elastic elements. The mechanism of rotation of the cutting knives is equipped with levers hinged to the housing, pins with shaft and rocker arm. The rods are made with a slit and from one end are rigidly connected to the cutting knives, and from the other end to the levers by means of pins which are arranged in slits of the rod with the possibility of movement. The upper ends of the levers are installed with the possibility of movement in the pins whose shafts are arranged with the possibility of rotation in the rocker arm rigidly connected to the drive shaft. The drive shaft is equipped with cantilevers installed in the cap with the possibility of rotation and interaction with the elastic elements.

  7. Roundness and taper of holes during drilling composites of various thickness by HSS drill bit under dry condition

    Science.gov (United States)

    Sakib, M. S.; Rahman, Motiur; Ferdous, M.; Dhar, N. R.

    2017-12-01

    Polymer Matrix Composites are extending a wide range of applications in aviation in recent eras because of their better economics, well established processing, high temperature properties, high resistance to corrosion and fatigue. Directional properties of composites are dependent on the fibre orientation. Composites being anisotropic in nature are difficult to drill and machining and tooling of the composites remained a great challenge over time. This paper addresses the issues of various machining problems such as delamination, fibre pull-out, cracks on varying drilling parameters like feed rate and drilling speed. Experimental drilling was carried out on Fibre Reinforced Plastic composites with HSS drill bit. Results reveal that as the number of holes increases the entry and exit diameter and tapper of holes vary and also varying composite thickness results in a difference in hole roundness and tapper. This experiment summarizes that for achieving acceptable tool life and hole quality demands a drill designed with composites.

  8. APLICAÇÃO DO METODO DE ANÁLISE HIERARQUICA (MAH NA ANALISE E AVALIAÇÃO DE IMPACTOS AMBIENTAIS DOS SISTEMAS DE TRANSPORTES URBANOS

    Directory of Open Access Journals (Sweden)

    Dominique Mouette

    2010-04-01

    Full Text Available

    O estudo de impacto ambiental envolve uma grande quantidade de critérios e parâmetros, sendo necessário o trabalho conjunto de uma equipe multidisciplinar. A complexidade dos impactos decorrentes dos sistemas de transporte urbanos que possuem características e magnitudes muito diferentes, somada a não obrigatoriedade do estudo, fizeram com que poucos estudos fossem efetuados e tornou evidente a necessidade de metodologias de avaliação dos mesmos. Este estudo aborda a utilização do Método de Analise Hierárquica, um procedimento multicriterial na analise e avaliação dos impactos ambientais dos sistemas de transportes urbanos.

    ABSTRACT

    The study of environmental impacts involves a large amount of criteria and parameters being necessary to work with a multisciplinary team. The impacts due to urban transportation are very complex having different characteristics and magnitude, besides that, in Brazil, these studies are not obliged by law. These facts leads to few studies of the environmental impacts and evidences the necessity of developing methodologies which makes possible the impact's evaluation. This study refers to the utilization of the Analytical Hierarchy Process, a multicriteria procedure in the evaluation and analysis of environmental impacts in urban transportation.

  9. Biological Evaluation of Implant Drill Made from Zirconium Dioxide.

    Science.gov (United States)

    Akiba, Yosuke; Eguchi, Kaori; Akiba, Nami; Uoshima, Katsumi

    2017-04-01

    Zirconia is a good candidate material in the dental field. In this study, we evaluated biological responses against a zirconia drill using a bone cavity healing model. Zirconia drills, stainless steel drills, and the drilled bone surface were observed by scanning electron microscopy (SEM), before and after cavity preparation. For the bone cavity healing model, the upper first and second molars of Wistar rats were extracted. After 4 weeks, cavities were prepared with zirconia drills on the left side. As a control, a stainless steel drill was used on the right side. At 3, 7, and 14 days after surgery, micro-CT images were taken. Samples were prepared for histological staining. SEM images revealed that zirconia drills maintained sharpness even after 30 drilling procedures. The bone surface was smoother with the zirconia drill. Micro-CT images showed faster and earlier bone healing in the zirconia drill cavity. On H-E staining, at 7 days, the zirconia drill defect had a smaller blank lacunae area. At 14 days, the zirconia drill defect was filled with newly formed bone. The zirconia drill induces less damage during cavity preparation and is advantageous for bone healing. (197 words). © 2016 The Authors Clinical Implant Dentistry and Related Research Published by Wiley Periodicals, Inc.

  10. The national drill for deterrence and fighting nuclear terrorism

    International Nuclear Information System (INIS)

    Cioflan, Constantin

    2006-01-01

    Full text: National Commission for Nuclear Activities Control (CNCAN) in cooperation with the Romanian Intelligence Service (SRI) organized the 'National Drill for Deterrence and Fighting the Nuclear Terrorism' which took place on May 10, 2006 in Cheile Rasnoavei, Brasov county, Romania. This event continues the activities undertaken by CNCAN, in its capacity of a national center ensuring the nuclear safeguards, physical protection of nuclear materials as well as for preventing and fighting against illicit traffic with radioactive nuclear materials and deterring the terrorist actions menacing the security and nuclear safety of the nation. The drill consisted in simulating a terrorist attack against a shipment of nuclear fuel (made available by the Nuclear Fuel Plant at Pitesti). It was a good opportunity for testing the reacting and organizing technical capacity of the national institutions committed with physical protection in emergency situations generated by terrorist actions. The objectives of the drill was the deployment of a counter-terrorist intervention in case of a terrorist attack intending to hijack a special expedition of dangerous materials. Hostages were seized and the demand was issued for clearing the traffic up to the national boundary. The anti-terrorist brigade (SRI) organized an ambush on the route of displacement in order to capture and annihilate the terrorist unit and re-establishing the legal order. CNCAN participated in this drill with its mobile intervention unit which is a team of experts correspondingly equipped with specific instruments for detecting the nuclear materials, special equipment for communication and locating as well as with two marked vehicles. The SRI employed a number higher than 80 officers and military technicians from anti-terrorist brigade, constituted in negotiators, storming squads, paratroopers, pyrotechnic experts, communication technicians. PUMA and Alouette helicopters for launching air attacks were employed

  11. Westinghouse GOCO conduct of casualty drills

    International Nuclear Information System (INIS)

    Ames, C.P.

    1996-02-01

    Purpose of this document is to provide Westinghouse Government Owned Contractor Operated (GOCO) Facilities with information that can be used to implement or improve drill programs. Elements of this guide are highly recommended for use when implementing a new drill program or when assessing an existing program. Casualty drills focus on response to abnormal conditions presenting a hazard to personnel, environment, or equipment; they are distinct from Emergency Response Exercises in which the training emphasis is on site, field office, and emergency management team interaction. The DOE documents which require team training and conducting drills in nuclear facilities and should be used as guidance in non-nuclear facilities are: DOE 5480.19 (Chapter 1 of Attachment I) and DOE 5480.20 (Chapter 1, paragraphs 7 a. and d. of continuing training). Casualty drills should be an integral part of the qualification and training program at every DOE facility

  12. Heave disturbance attenuation in managed pressure drilling from a floating platform using model predictive control

    OpenAIRE

    Hatlevik, Edvin

    2014-01-01

    Since a large part of the Norwegian oil shelf has been active for over a generation, many fields begin to be depleted and the drilling operations requires tight down hole pressure margins. And by improving the pressure control for the drilling operations former undrillable wells becomes drillable. Which will make the the oilfields more profitable, and extend their life expectancy. It will also make drilling operations safer by preventing kicks and preventing environmental damages caused by mu...

  13. Big-hole drilling - the state of the art

    International Nuclear Information System (INIS)

    Lackey, M.D.

    1983-01-01

    The art of big-hole drilling has been in a continual state of evolution at the Nevada Test Site since the start of underground testing in 1961. Emplacement holes for nuclear devices are still being drilled by the rotary-drilling process, but almost all the hardware and systems have undergone many changes during the intervening years. The current design of bits, cutters, and other big-hole-drilling hardware results from contributions of manufacturers and Test Site personnel. The dual-string, air-lift, reverse-circulation system was developed at the Test Site. Necessity was really the Mother of this invention, but this circulation system is worthy of consideration under almost any condition. Drill rigs for big-hole drilling are usually adaptations of large oil-well drill rigs with minor modifications required to handle the big bits and drilling assemblies. Steel remains the favorite shaft lining material, but a lot of thought is being given to concrete linings, especially precast concrete

  14. Optimizing Geothermal Drilling: Oil and Gas Technology Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Denninger, Kate; Eustes, Alfred; Visser, Charles; Baker, Walt; Bolton, Dan; Bell, Jason; Bell, Sean; Jacobs, Amelia; Nagandran, Uneshddarann; Tilley, Mitch; Quick, Ralph

    2015-09-02

    There is a significant amount of financial risk associated with geothermal drilling. This study of drilling operations seeks opportunities to improve upon current practices and technologies. The scope of this study included analyzing 21 geothermal wells and 21 oil and gas wells. The goal was to determine a 'Perfect Well' using historical data to compare the best oil and gas well to the best geothermal well. Unfortunately, limitations encountered in the study included missing data (bit records, mud information, etc.) and poor data collection practices An online software database was used to format drilling data to IADC coded daily drilling reports and generate figures for analysis. Six major issues have been found in geothermal drilling operations. These problems include lost circulation, rig/ equipment selection, cementing, penetration rate, drilling program, and time management. As a result of these issues, geothermal drilling averaged 56.4 days longer than drilling comparable oil and gas wells in the wells in this study. Roughly $13.9 million was spent on non-productive time in the 21 geothermal wells, compared with only $1.3 million in the oil and gas wells, assuming a cost of $50,000 per day. Comparable events such as drilling the same sized hole, tripping in/out, cementing, and running the same size casing took substantially less time in the oil and gas wells. Geothermal wells were drilled using older and/or less advanced technology to depths less than 10,000 feet, while oil and gas wells reached 12,500 feet faster with purpose built rigs. A new approach is now underway that will optimize drilling programs throughout the drilling industry using Mechanical Specific Energy (MSE) as a tool to realize efficient drilling processes. Potential improvements for current geothermal operations are: the use of electronic records, real time services, and official glossary terms to describe rig operations, and advanced drilling rigs/technology.

  15. Study on Monitoring Rock Burst through Drill Pipe Torque

    Directory of Open Access Journals (Sweden)

    Zhonghua Li

    2015-01-01

    Full Text Available This paper presents a new method to identify the danger of rock burst from the response of drill pipe torque during drilling process to overcome many defects of the conventional volume of drilled coal rubble method. It is based on the relationship of rock burst with coal stress and coal strength. Through theoretic analysis, the change mechanism of drill pipe torque and the relationship of drill pipe torque with coal stress, coal strength, and drilling speed are investigated. In light of the analysis, a new device for testing drill pipe torque is developed and a series of experiments is performed under different conditions; the results show that drill pipe torque linearly increases with the increase of coal stress and coal strength; the faster the drilling speed, the larger the drill pipe torque, and vice versa. When monitoring rock burst by drill pipe torque method, the index of rock burst is regarded as a function in which coal stress index and coal strength index are principal variables. The results are important for the forecast of rock burst in coal mine.

  16. Drilling Experiments of Dummy Fuel Rods Using a Mock-up Drilling Device and Detail Design of Device for Drilling of Irradiated Nuclear Fuel Rods

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Yong; Lee, H. K.; Chun, Y. B.; Park, S. J.; Kim, B. G

    2007-07-15

    KAERI are developing the safety evaluation method and the analysis technology for high burn-up nuclear fuel rod that is the project, re-irradiation for re-instrumented fuel rod. That project includes insertion of a thermocouple in the center hole of PWR nuclear fuel rod with standard burn-up, 3,500{approx}4,000MWD/tU and then inspection of the nuclear fuel rod's heat performance during re-irradiation. To re-fabricate fuel rod, two devices are needed such as a drilling machine and a welding machine. The drilling machine performs grinding a center hole, 2.5 mm in diameter and 50 mm in depth, for inserting a thermocouple. And the welding machine is used to fasten a end plug on a fuel rod. Because these two equipment handle irradiated fuel rods, they are operated in hot cell blocked radioactive rays. Before inserting any device into hot cell, many tests with that machine have to be conducted. This report shows preliminary experiments for drilling a center hole on dummy of fuel rods and optimized drilling parameters to lessen operation time and damage of diamond dills. And the design method of a drilling machine for irradiated nuclear fuel rods and detail design drawings are attached.

  17. DOE HIGH-POWER SLIM-HOLE DRILLING SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Dr. William C. Maurer; John H. Cohen; J. Chris Hetmaniak; Curtis Leitko

    1999-09-01

    This project used a systems approach to improve slim-hole drilling performance. A high power mud motor, having a double-length power section, and hybrid PDC/TSP drill bit were developed to deliver maximum horsepower to the rock while providing a long life down hole. This high-power slim-hole drilling system drills much faster than conventional slim-hole motor and bit combinations and holds significant potential to reduce slim-hole drilling costs. The oil and gas industries have been faced with downward price pressures since the 1980s. These pressures are not expected to be relieved in the near future. To maintain profitability, companies have had to find ways to reduce the costs of producing oil and gas. Drilling is one of the more costly operations in the production process. One method to reduce costs of drilling is to use smaller more mobile equipment. Slim holes have been drilled in the past using this principle. These wells can save money not only from the use of smaller drilling equipment, but also from reduced tubular costs. Stepping down even one casing size results in significant savings. However, slim holes have not found wide spread use for three reasons. First, until recently, the price of oil has been high so there were no forces to move the industry in this direction. Second, small roller bits and motors were not very reliable and they drilled slowly, removing much of the economic benefit. The third and final reason was the misconception that large holes were needed everywhere to deliver the desired production. Several factors have changed that will encourage the use of slim holes. The industry now favors any method of reducing the costs of producing oil and gas. In addition, the industry now understands that large holes are not always needed. Gas, in particular, can have high production rates in smaller holes. New materials now make it possible to manufacture improved bits and motors that drill for long periods at high rates. All that remains is to

  18. Reinforcement and Drill by Microcomputer.

    Science.gov (United States)

    Balajthy, Ernest

    1984-01-01

    Points out why drill work has a role in the language arts classroom, explores the possibilities of using a microcomputer to give children drill work, and discusses the characteristics of a good software program, along with faults found in many software programs. (FL)

  19. PDVSA INTEVEP Technologies in oil well drilling

    International Nuclear Information System (INIS)

    Bolivar, C.; Rafael, A.; Davila, Manuel A.

    1998-01-01

    The orimulsion, the generation of catalytic technologies and the development of HDH (process which transform heavy crudes in light crudes), are examples of some of the well known technologies developed by PDVSA INTEVEP. But the drilling oil wells technologies developed by the same entreprise, even though are very important, are less known all around the world. This document describes some products developed through those technologies: THIXOGAS T M which is an antimigratory aditive; INTEFLOW T M which is a fluid for drilling, complementation and rehabilitation of oil drills; INTERCAB T M which is an aditive for fluids in drilling; orimatita which is a denser for drilling fluids; CARBOLIG T M which is an aditive for drilling fluids; and many other products and technologies in development, impacted considerably the venezuelan economy by preserving the environment and saving quite an important amount of money in 1997 (Bs. 3.000 M M)

  20. Development plan for an advanced drilling system with real-time diagnostics (Diagnostics-While-Drilling)

    Energy Technology Data Exchange (ETDEWEB)

    FINGER,JOHN T.; MANSURE,ARTHUR J.; PRAIRIE,MICHAEL R.; GLOWKA,D.A.

    2000-02-01

    This proposal provides the rationale for an advanced system called Diagnostics-while-drilling (DWD) and describes its benefits, preliminary configuration, and essential characteristics. The central concept is a closed data circuit in which downhole sensors collect information and send it to the surface via a high-speed data link, where it is combined with surface measurements and processed through drilling advisory software. The driller then uses this information to adjust the drilling process, sending control signals back downhole with real-time knowledge of their effects on performance. The report presents background of related previous work, and defines a Program Plan for US Department of Energy (DOE), university, and industry cooperation.

  1. ATUCHA I NPP - Emergency drill practice

    International Nuclear Information System (INIS)

    Sanda, Alejandro; Rosales, Gabriel

    2008-01-01

    Full text: Atucha I NPP performs an Emergency Drill Practice once a year. Its main goals are: -) Fulfill the requirements of the Argentine Nuclear Regulatory Authority (ARN) regarding Atucha I NPP's Operating License; -) Fulfill the commitment with the community regarding the safe and reliable operation Atucha I NPP; -) Verify the response of the Civil Organizations, Security Forces, and Armed Forces, as well as the correct application of the Emergency Plan; -) Perform the 'General Alarm Drill' periodic control; -) Perform a re-training of the members of the Security Advisor Internal Committee (CIAS) on the Internal and External Aspects of the Emergency Plan and on the related procedures; -) Test the Emergency Communications System. New goals are added every year, considering the Drill's scope. This drill comprises two different kinds of practices: Internal practices (practices in the station, with our personnel) and external practices (practices outside the station with governmental organizations). Internal practices comprise: -) Internal and external communications practices; -) Acoustic alarms; -) Personnel gathering in the Meeting Points; -) Safety of selected Meeting Points; -) Personnel count, selective evacuation; -) Iodide Potassium pills distribution; -) CICE (Internal Group for Emergency Control) Coordination. External practices comprise: -) Nuclear Regulatory Authority; -) Argentine Navy, Comando Area Naval Fluvial, Base Naval Zarate; -) Lima firemen; -) Zarate firemen; -) Municipal Civil Defense (Zarate and Lima); -) National Guard, Escuadron Atucha; -) Zarate Regional Hospital; -) Lima Police Department; -) Zarate Police Department; -) Argentine Coast Guard, Zarate; -) Local radios: Radio FM Libre, FM El Sitio; -) First Aid clinic. The following activities are performed together with the aforementioned organizations: -) Formation of an 'Operative committee'; -) Evacuation of citizens in a 3 km radio; -) Control of every access to Lima; -) Control of

  2. Experimental evaluation of training accelerators for surgical drilling

    Directory of Open Access Journals (Sweden)

    Gosselin Florian

    2011-12-01

    Full Text Available In some specific maxillo-facial surgeries, like the Epker, the cortical part of the lower maxilla must be drilled with minimum penetration into the spongy bone to avoid the trigeminal nerve. The result of the surgery is highly dependent on the quality of the drill. Drilling must therefore be mastered by students before acting as surgeon. The study compares the efficiency of two punctual drilling training programs developed on a virtual reality platform with non medical participants. The results show better benefit of training on relevant haptic aspects of the task before introducing multimodal drilling over repeated multimodal simulated drilling exercises.

  3. Environment-friendly drilling operation technology

    Science.gov (United States)

    Luo, Huaidong; Jing, Ning; Zhang, Yanna; Huang, Hongjun; Wei, Jun

    2017-01-01

    Under the circumstance that international safety and environmental standards being more and more stringent, drilling engineering is facing unprecedented challenges, the extensive traditional process flow is no longer accepted, the new safe and environment-friendly process is more suitable to the healthy development of the industry. In 2015, CNPCIC adopted environment-friendly drilling technology for the first time in the Chad region, ensured the safety of well control, at the same time increased the environmental protection measure, reduced the risk of environmental pollution what obtain the ratification from local government. This technology carries out recovery and disposal of crude oil, cuttings and mud without falling on the ground. The final products are used in road and well site construction, which realizes the reutilization of drilling waste, reduces the operating cost, and provides a strong technical support for cost-cutting and performance-increase of drilling engineering under low oil price.

  4. Geothermal drilling in Cerro Prieto

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez A., Bernardo

    1982-08-10

    The number of characteristics of the different wells that have been drilled in the Cerro Prieto geothermal field to date enable one to summarize the basic factors in the applied technology, draw some conclusions, improve systems and procedures, and define some problems that have not yet been satisfactorily solved, although the existing solution is the best now available. For all practical purposes, the 100 wells drilled in the three areas or blocks into which the Cerro Prieto field has been divided have been completed. Both exploratory and production wells have been drilled; problems of partial or total lack of control have made it necessary to abandon some of these wells, since they were unsafe to keep in production or even to be used for observation and/or study. The wells and their type, the type of constructed wells and the accumulative meters that have been drilled for such wells are summarized.

  5. Drilling series. 4. ; Planning geothermal drilling (rotary type). Kussaku series. 4. ; Chinetsusei no kussaku keikaku (shutoshite rotary gata)

    Energy Technology Data Exchange (ETDEWEB)

    Ito, T. (S.K. Engineering Co. Ltd., Tokyo (Japan))

    1994-01-31

    The present report explained how to plan the drilling of geothermal well, and select the easing, drilling mud water and drilling rig in order to obtain the steam and hot water. The geothermal wells can be generally classified into exploration wells, production wells and reduction wells. The exploration well is a well to survey the underground strata, geological structure, and existence of steam and hot water, while the production well is a well to produce the steam and hot water. The reduction well is a well to condense the hot water produced by the production well and steam having passed through the power-generating turbine, and return them as condensate underground. The geothermal well is characterized by its high temperature, mud leakage, corrosive matter and scale, all of which make its drilling difficult and its management troublesome for the production and reduction. To plan the drilling, the order of processing are distinct conditioning of drilling differently by type of well, collection of geological survey data, programing for the casing and selection of drilling rig. The present report also gave the stress to affect the casing and standard of steel pipes to be used for the casing. 3 figs., 4 tabs.

  6. Preliminary Research on Possibilities of Drilling Process Robotization

    Science.gov (United States)

    Pawel, Stefaniak; Jacek, Wodecki; Jakubiak, Janusz; Zimroz, Radoslaw

    2017-12-01

    Nowadays, drilling & blasting is crucial technique for deposit excavation using in hard rock mining. Unfortunately, such approach requires qualified staff to perform, and consequently there is a serious risk related to rock mechanics when using explosives. Negative influence of explosives usage on safety issues of underground mine is a main cause of mining demands related to elimination of people from production area. Other aspects worth taking into consideration are drilling precision according to drilling pattern, blasting effectiveness, improvement of drilling tool reliability etc. In the literature different drilling support solutions are well-known in terms of positioning support systems, anti-jamming systems or cavity detection systems. For many years, teleoperation of drilling process is also developed. Unfortunately, available technologies have so far not fully met the industries expectation in hard rock. Mine of the future is expected to incorporate robotic system instead of current approaches. In this paper we present preliminary research related to robotization of drilling process and possibilities of its application in underground mine condition. A test rig has been proposed. To simulate drilling process several key assumptions have been accepted. As a result, algorithms for automation of drilling process have been proposed and tested on the test rig. Experiences gathered so far underline that there is a need for further developing robotic system for drilling process.

  7. Ultrasonic/Sonic Rotary-Hammer Drills

    Science.gov (United States)

    Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph; Bao, Xiaoqi; Kassab, Steve

    2010-01-01

    Ultrasonic/sonic rotary-hammer drill (USRoHD) is a recent addition to the collection of apparatuses based on ultrasonic/sonic drill corer (USDC). As described below, the USRoHD has several features, not present in a basic USDC, that increase efficiency and provide some redundancy against partial failure. USDCs and related apparatuses were conceived for boring into, and/or acquiring samples of, rock or other hard, brittle materials of geological interest. They have been described in numerous previous NASA Tech Briefs articles. To recapitulate: A USDC can be characterized as a lightweight, lowpower, piezoelectrically driven jackhammer in which ultrasonic and sonic vibrations are generated and coupled to a tool bit. A basic USDC includes a piezoelectric stack, an ultrasonic transducer horn connected to the stack, a free mass ( free in the sense that it can bounce axially a short distance between hard stops on the horn and the bit), and a tool bit. The piezoelectric stack creates ultrasonic vibrations that are mechanically amplified by the horn. The bouncing of the free mass between the hard stops generates the sonic vibrations. The combination of ultrasonic and sonic vibrations gives rise to a hammering action (and a resulting chiseling action at the tip of the tool bit) that is more effective for drilling than is the microhammering action of ultrasonic vibrations alone. The hammering and chiseling actions are so effective that unlike in conventional twist drilling, little applied axial force is needed to make the apparatus advance into the material of interest. There are numerous potential applications for USDCs and related apparatuses in geological exploration on Earth and on remote planets. In early USDC experiments, it was observed that accumulation of cuttings in a drilled hole causes the rate of penetration of the USDC to decrease steeply with depth, and that the rate of penetration can be increased by removing the cuttings. The USRoHD concept provides for

  8. The Newberry Deep Drilling Project (NDDP)

    Science.gov (United States)

    Bonneville, A.; Cladouhos, T. T.; Petty, S.; Schultz, A.; Sorle, C.; Asanuma, H.; Friðleifsson, G. Ó.; Jaupart, C. P.; Moran, S. C.; de Natale, G.

    2017-12-01

    We present the arguments to drill a deep well to the ductile/brittle transition zone (T>400°C) at Newberry Volcano, central Oregon state, U.S.A. The main research goals are related to heat and mass transfer in the crust from the point of view of natural hazards and geothermal energy: enhanced geothermal system (EGS supercritical and beyond-brittle), volcanic hazards, mechanisms of magmatic intrusions, geomechanics close to a magmatic system, calibration of geophysical imaging techniques and drilling in a high temperature environment. Drilling at Newberry will bring additional information to a very promising field of research initiated by ICDP in the Deep Drilling project in Iceland with IDDP-1 on Krafla in 2009, followed by IDDP-2 on the Reykjanes ridge in 2016, and the future Japan Beyond-Brittle project and Krafla Magma Testbed. Newberry Volcano contains one of the largest geothermal heat reservoirs in the western United States, extensively studied for the last 40 years. All the knowledge and experience collected make this an excellent choice for drilling a well that will reach high temperatures at relatively shallow depths (< 5000 m). The large conductive thermal anomaly (320°C at 3000 m depth), has already been well-characterized by extensive drilling and geophysical surveys. This will extend current knowledge from the existing 3000 m deep boreholes at the sites into and through the brittle-ductile transition approaching regions of partial melt like lateral dykes. The important scientific questions that will form the basis of a full drilling proposal, have been addressed during an International Continental Drilling Program (ICDP) workshop held in Bend, Oregon in September 2017. They will be presented and discussed as well as the strategic plan to address them.

  9. 30 CFR 57.7050 - Tool and drill steel racks.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tool and drill steel racks. 57.7050 Section 57... Rotary Jet Piercing Drilling-Surface and Underground § 57.7050 Tool and drill steel racks. Receptacles or racks shall be provided for drill steel and tools stored or carried on drills. ...

  10. High cost for drilling ships

    International Nuclear Information System (INIS)

    Hooghiemstra, J.

    2007-01-01

    Prices for the rent of a drilling ship are very high. Per day the rent is 1% of the price for building such a ship, and those prices have risen as well. Still, it is attractive for oil companies to rent a drilling ship [nl

  11. Two-riser system improves drilling at Auger prospect

    International Nuclear Information System (INIS)

    Gonzalez, R.; Marsh, G.L.; Ritter, P.B.; Mendel, P.E.

    1992-01-01

    This paper reports on a two-rise system (TRS) for drilling deepwater development wells which eliminates some of the limitations of conventional subsea technology and allows flexibility in well programs. Shell Offshore Inc.'s deep exploratory wells in Garden Banks 426 and 471 have encountered drilling problems that were attributed to limitations in casing sizes imposed by conventional subsea drilling systems. These problems are not uncommon in exploratory deepwater, deep well drilling in the Gulf of Mexico. Reservoir depths of up to 19,500 ft true vertical depth (TVD) and 7-in. production casing requirements led to potentially troublesome and expensive well plans. Because of the constraints placed on the development drilling program by completion requirements and directional drilling, a two-riser system was designed and fabricated. Solving such significant drilling problems has reduced overall development costs

  12. A novel drill design for photoacoustic guided surgeries

    Science.gov (United States)

    Shubert, Joshua; Lediju Bell, Muyinatu A.

    2018-02-01

    Fluoroscopy is currently the standard approach for image guidance of surgical drilling procedures. In addition to the harmful radiation dose to the patient and surgeon, fluoroscopy fails to visualize critical structures such as blood vessels and nerves within the drill path. Photoacoustic imaging is a well-suited imaging method to visualize these structures and it does not require harmful ionizing radiation. However, there is currently no clinical system available to deliver light to occluded drill bit tips. To address this challenge, a prototype drill was designed, built, and tested using an internal light delivery system that allows laser energy to be transferred from a stationary laser source to the tip of a spinning drill bit. Photoacoustic images were successfully obtained with the drill bit submerged in water and with the drill tip inserted into a thoracic vertebra from a human cadaver.

  13. Dewatering cuts drilling mud and disposal costs

    International Nuclear Information System (INIS)

    West, G.; Pharis, B.

    1991-01-01

    This paper reports on rig site dewatering of drilling fluids with recycling of processed water that can help an operator to comply with environmental rules by reducing volumes of waste and reducing long term liabilities. It can also reduce disposal costs and provide a cleaner drill site overall. Rig site dewatering is the process of injecting coagulants or flocculating chemicals into the mud entering a large clarifying centrifuge. This coagulates the fine, drilled particles allowing them to be separated from the fluid which can then be handled separately. Most of the environmental concerns during the 1980s involved hazardous materials and toxic wastes. Drilling fluids, many of which are chemically benign, have escaped many of the difficult-to-comply-with rules and regulations. During the 1990s, however, operators may be required to submit a written plan for liquid waste reduction for even nonhazardous materials. Many states and local agencies may institute total bans on oil field wastes. Drilling rigs typically produce about 1 bbl of liquid waste for every 1 ft of hole drilled. Thus, a typical drilling operation can produce a large quantity of waste

  14. Estimating Drilling Cost and Duration Using Copulas Dependencies Models

    Directory of Open Access Journals (Sweden)

    M. Al Kindi

    2017-03-01

    Full Text Available Estimation of drilling budget and duration is a high-level challenge for oil and gas industry. This is due to the many uncertain activities in the drilling procedure such as material prices, overhead cost, inflation, oil prices, well type, and depth of drilling. Therefore, it is essential to consider all these uncertain variables and the nature of relationships between them. This eventually leads into the minimization of the level of uncertainty and yet makes a "good" estimation points for budget and duration given the well type. In this paper, the copula probability theory is used in order to model the dependencies between cost/duration and MRI (mechanical risk index. The MRI is a mathematical computation, which relates various drilling factors such as: water depth, measured depth, true vertical depth in addition to mud weight and horizontal displacement. In general, the value of MRI is utilized as an input for the drilling cost and duration estimations. Therefore, modeling the uncertain dependencies between MRI and both cost and duration using copulas is important. The cost and duration estimates for each well were extracted from the copula dependency model where research study simulate over 10,000 scenarios. These new estimates were later compared to the actual data in order to validate the performance of the procedure. Most of the wells show moderate - weak relationship of MRI dependence, which means that the variation in these wells can be related to MRI but to the extent that it is not the primary source.

  15. An elevator for locked drilling pipes

    Energy Technology Data Exchange (ETDEWEB)

    Gurbanov, R.S.; Abbasov, E.M.; Ismailov, A.A.; Mamedov, Yu.S.; Safarov, A.A.

    1983-01-01

    An elevator is proposed, which includes a body with a door. To reduce the probability of gas shows in a well with high speed lowering and lifting of the column of locked drilling pipes through providing the possibility of feeding a drilling mud in this case into the mine, the elevator is equipped with a pneumatic cylinder with a two way hollow rod, on one face of which a sealing element is mounted for sealing the drilling pipe and on the other, an adapter for feeding the drilling mud. The rod is linked with the sleeve of the pneumatic cylinder, which is rigidly linked with the body with the capability of axial movement without rotation.

  16. Development and Manufacture of Cost-Effective Composite Drill Pipe

    Energy Technology Data Exchange (ETDEWEB)

    James C. Leslie

    2008-12-31

    Advanced Composite Products and Technology, Inc. (ACPT) has developed composite drill pipe (CDP) that matches the structural and strength properties of steel drill pipe, but weighs less than 50 percent of its steel counterpart. Funding for the multiyear research and development of CDP was provided by the U.S. Department of Energy Office of Fossil Energy through the Natural Gas and Oil Projects Management Division at the National Energy Technology Laboratory (NETL). Composite materials made of carbon fibers and epoxy resin offer mechanical properties comparable to steel at less than half the weight. Composite drill pipe consists of a composite material tube with standard drill pipe steel box and pin connections. Unlike metal drill pipe, composite drill pipe can be easily designed, ordered, and produced to meet specific requirements for specific applications. Because it uses standard joint connectors, CDP can be used in lieu of any part of or for the entire steel drill pipe section. For low curvature extended reach, deep directional drilling, or ultra deep onshore or offshore drilling, the increased strength to weight ratio of CDP will increase the limits in all three drilling applications. Deceased weight will reduce hauling costs and increase the amount of drill pipe allowed on offshore platforms. In extreme extended reach areas and high-angle directional drilling, drilling limits are associated with both high angle (fatigue) and frictional effects resulting from the combination of high angle curvature and/or total weight. The radius of curvature for a hole as small as 40 feet (12.2 meters) or a build rate of 140 degrees per 100 feet is within the fatigue limits of specially designed CDP. Other properties that can be incorporated into the design and manufacture of composite drill pipe and make it attractive for specific applications are corrosion resistance, non-magnetic intervals, and abrasion resistance coatings. Since CDP has little or no electromagnetic force

  17. Development of a Mine Rescue Drilling System (MRDS)

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, David W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gaither, Katherine N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Polsky, Yarom [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Knudsen, Steven D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Broome, Scott Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Su, Jiann-Cherng [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Blankenship, Douglas A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Costin, Laurence S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-06-01

    Sandia National Laboratories (Sandia) has a long history in developing compact, mobile, very high-speed drilling systems and this technology could be applied to increasing the rate at which boreholes are drilled during a mine accident response. The present study reviews current technical approaches, primarily based on technology developed under other programs, analyzes mine rescue specific requirements to develop a conceptual mine rescue drilling approach, and finally, proposes development of a phased mine rescue drilling system (MRDS) that accomplishes (1) development of rapid drilling MRDS equipment; (2) structuring improved web communication through the Mine Safety & Health Administration (MSHA) web site; (3) development of an improved protocol for employment of existing drilling technology in emergencies; (4) deployment of advanced technologies to complement mine rescue drilling operations during emergency events; and (5) preliminary discussion of potential future technology development of specialized MRDS equipment. This phased approach allows for rapid fielding of a basic system for improved rescue drilling, with the ability to improve the system over time at a reasonable cost.

  18. Evaluation of an air drilling cuttings containment system

    Energy Technology Data Exchange (ETDEWEB)

    Westmoreland, J.

    1994-04-01

    Drilling at hazardous waste sites for environmental remediation or monitoring requires containment of all drilling fluids and cuttings to protect personnel and the environment. At many sites, air drilling techniques have advantages over other drilling methods, requiring effective filtering and containment of the return air/cuttings stream. A study of. current containment methods indicated improvements could be made in the filtering of radionuclides and volatile organic compounds, and in equipment like alarms, instrumentation or pressure safety features. Sandia National Laboratories, Dept. 61 11 Environmental Drilling Projects Group, initiated this work to address these concerns. A look at the industry showed that asbestos abatement equipment could be adapted for containment and filtration of air drilling returns. An industry manufacturer was selected to build a prototype machine. The machine was leased and put through a six-month testing and evaluation period at Sandia National Laboratories. Various materials were vacuumed and filtered with the machine during this time. In addition, it was used in an actual air drive drilling operation. Results of these tests indicate that the vacuum/filter unit will meet or exceed our drilling requirements. This vacuum/filter unit could be employed at a hazardous waste site or any site where drilling operations require cuttings and air containment.

  19. Drilling azimuth gamma embedded design

    Directory of Open Access Journals (Sweden)

    Zhou Yi Ren

    2016-01-01

    Full Text Available Embedded drilling azimuth gamma design, the use of radioactive measuring principle embedded gamma measurement while drilling a short section analysis. Monte Carlo method, in response to the density of horizontal well logging numerical simulation of 16 orientation, the orientation of horizontal well analysed, calliper, bed boundary location, space, different formation density, formation thickness, and other factors inclined strata dip the impact by simulating 137Cs sources under different formation conditions of the gamma distribution, to determine the orientation of drilling density tool can detect window size and space, draw depth of the logging methods. The data 360° azimuth imaging, image processing method to obtain graph, display density of the formation, dip and strata thickness and other parameters, the logging methods obtain real-time geo-steering. To establish a theoretical basis for the orientation density logging while drilling method implementation and application of numerical simulation in-depth study of the MWD azimuth and density log response factors of horizontal wells.

  20. Near-Infrared Monitoring of Volatiles in Frozen Lunar Simulants While Drilling

    Science.gov (United States)

    Roush, Ted L.; Colaprete, Anthony; Elphic, Richard C.; Forgione, Joshua; White, Bruce; McMurray, Robert; Cook, Amanda M.; Bielawski, Richard; Fritzler, Erin L.; Thompson, Sarah J.; hide

    2016-01-01

    In Situ Resource Utilization (ISRU) focuses on using local resources for mission consumables. The approach can reduce mission cost and risk. Lunar polar volatiles, e.g. water ice, have been detected via remote sensing measurements and represent a potential resource for both humans and propellant. The exact nature of the horizontal and depth distribution of the ice remains to be documented in situ. NASA's Resource Prospector mission (RP) is intended to investigate the polar volatiles using a rover, drill, and the RESOLVE science package. RP component level hardware is undergoing testing in relevant lunar conditions (cryovacuum). In March 2015 a series of drilling tests were undertaken using the Honeybee Robotics RP Drill, Near-Infrared Volatile Spectrometer System (NIRVSS), and sample capture mechanisms (SCM) inside a 'dirty' thermal vacuum chamber at the NASA Glenn Research Center. The goal of these tests was to investigate the ability of NIRVSS to monitor volatiles during drilling activities and assess delivery of soil sample transfer to the SCMs in order to elucidate the concept of operations associated with this regolith sampling method.

  1. Controlled drilling technology for HLW management. Directional drilling and mechanics/stress measurements in the borehole

    International Nuclear Information System (INIS)

    Kiho, Kenzo; Shin, Koichi; Okada, Tetsuji; Obuchi, Yasuyoshi; Sunaga, Takayuki; Hase, Kazunori

    2013-01-01

    Since 2000, Central Research Institute of Electric Power Industry (CRIEPI) has been conducting the project on controlled drilling and the logging/measurement technologies in its boreholes. Especially borehole pressure meter and bore hole stress measurement apparatus which can apply to the controlled drilling system was developed. The bore hole was drilled to the 1000 m long in order to intersect the Omagari fault located at Horonobe town in Hokkaido and its core recovery was 99.8% as of FY. 2011. Using borehole logging/measurement/survey, the geological, hydrological, geo-mechanical, geophysical and geochemical data were collected and the Omagari fault was characterized. (author)

  2. Effect of surgical drill guide and irrigans temperature on thermal bone changes during drilling implant sites - thermographic analysis on bovine ribs.

    Science.gov (United States)

    Marković, Aleksa; Lazić, Zoran; Mišić, Tijana; Šćepanović, Miodrag; Todorović, Aleksandar; Thakare, Kaustubh; Janjić, Bojan; Vlahović, Zoran; Glišić, Mirko

    2016-08-01

    During drilling implant sites, mechanical energy is converted into thermal one resulting in transient rise in temperature of surrounding bone. The temperature of 47°C exeeding one minute impairs osseointegration, compromises mechanical properties of the local bone and could cause early implant failure. This in vitro study aimed to assess the effect of surgical drill guide and temperature of irrigans on thermal changes of the local bone during drilling implant sites, and to test the influence of irrigans temperature on the temperature of surgical drill guide. A total of 48 specimens obtained from bovine ribs were randomly allocated to four experimental conditions according to the 2 x 2 factorial design: drill guide (with or without) and saline (at 25°C or 5°C). Real-time infrared thermography was used as a method for temperature measurement. The primary outcome was bone temperature change during drilling implant sites measured at 3 osteotomy depths, whereas the second one was change in the temperature of the drill guide. Data were analyzed by Brunner and Langer nonparametric analysis and Wilcoxon test. The effect of drill guide on the changes of bone temperature was significant at the entrance of osteotomy, whereas the effect of saline temperature was significant at all osteotomy levels (p 0.05). Guided surgery and irrigation with saline at 25°C were associated with the highest bone temperature increase. Increase in drill guide temperature was significantly higher when saline at 25°C was used (p < 0.001). Guided implant site preparation generates higher temperature of the local bone than conventional drilling, not exceeding the threshold for thermal bone necrosis. Although saline at room temperature provides sufficient heat control during drilling, cooled saline is more effective regardless the use of surgical drill guide.

  3. Effect of surgical drill guide and irrigans temperature on thermal bone changes during drilling implant sites - thermographic analysis on bovine ribs

    Directory of Open Access Journals (Sweden)

    Marković Aleksa

    2016-01-01

    Full Text Available Background/Aim. During drilling implant sites, mechanical energy is converted into thermal one resulting in transient rise in temperature of surrounding bone. The temperature of 47°C exeeding one minute impairs osseointegration, compromises mechanical properties of the local bone and could cause early implant failure. This in vitro study aimed to assess the effect of surgical drill guide and temperature of irrigans on thermal changes of the local bone during drilling implant sites, and to test the influence of irrigans temperature on the temperature of surgical drill guide. Methods. A total of 48 specimens obtained from bovine ribs were randomly allocated to four experimental conditions according to the 2 x 2 factorial design: drill guide (with or without and saline (at 25°C or 5°C. Real-time infrared thermography was used as a method for temperature measurement. The primary outcome was bone temperature change during drilling implant sites measured at 3 osteotomy depths, whereas the second one was change in the temperature of the drill guide. Data were analyzed by Brunner and Langer nonparametric analysis and Wilcoxon test. Results. The effect of drill guide on the changes of bone temperature was significant at the entrance of osteotomy, whereas the effect of saline temperature was significant at all osteotomy levels (p 0.05. Guided surgery and irrigation with saline at 25°C were associated with the highest bone temperature increase. Increase in drill guide temperature was significantly higher when saline at 25°C was used (p < 0.001. Conclusion. Guided implant site preparation generates higher temperature of the local bone than conventional drilling, not exceeding the threshold for thermal bone necrosis. Although saline at room temperature provides sufficient heat control during drilling, cooled saline is more effective regardless the use of surgical drill guide.

  4. Study on Monitoring Rock Burst through Drill Pipe Torque

    OpenAIRE

    Zhonghua Li; Liyuan Zhu; Wanlei Yin; Yanfang Song

    2015-01-01

    This paper presents a new method to identify the danger of rock burst from the response of drill pipe torque during drilling process to overcome many defects of the conventional volume of drilled coal rubble method. It is based on the relationship of rock burst with coal stress and coal strength. Through theoretic analysis, the change mechanism of drill pipe torque and the relationship of drill pipe torque with coal stress, coal strength, and drilling speed are investigated. In light of the a...

  5. Coated carbide drill performance under soluble coconut oil lubricant and nanoparticle enhanced MQL in drilling AISI P20

    Science.gov (United States)

    Jamil, N. A. M.; Azmi, A. I.; Fairuz, M. A.

    2016-02-01

    This research experimentally investigates the performance of a TiAlN coated carbide drill bit in drilling AISI P20 through two different kinds of lubricants, namely; soluble coconut oil (SCO) and nanoparticle-enhanced coconut oil (NECO) under minimum quantity lubrication system. The tool life and tool wear mechanism were studied using various cutting speeds of 50, 100 and 150 m/min with a constant feed of 0.01 mm/rev. Since the flank wear land was not regular along the cutting edge, the average flank wear (VB) was measured at several points using image analysis software. The drills were inspected using a scanning electron microscope to further elucidate the wear mechanism. The result indicates that drilling with the nanoparticle- enhanced lubricant was better in resisting the wear and improving the drill life to some extent

  6. Drilling Automation Tests At A Lunar/Mars Analog Site

    Science.gov (United States)

    Glass, B.; Cannon, H.; Hanagud, S.; Lee, P.; Paulsen, G.

    2006-01-01

    Future in-situ lunar/martian resource utilization and characterization, as well as the scientific search for life on Mars, will require access to the subsurface and hence drilling. Drilling on Earth is hard - an art form more than an engineering discipline. The limited mass, energy and manpower in planetary drilling situations makes application of terrestrial drilling techniques problematic. The Drilling Automation for Mars Exploration (DAME) project is developing drilling automation and robotics for projected use in missions to the Moon and Mars in the 2011-15 period. This has been tested recently, drilling in permafrost at a lunar/martian analog site (Haughton Crater, Devon Island, Canada).

  7. Percussive drilling application of translational motion permanent magnet machine

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shujun

    2012-07-01

    It is clear that percussive drills are very promising since they can increase the rate of penetration in hard rock formations. Any small improvements on the percussive drills can make a big contribution to lowering the drilling costs since drilling a well for the oil and gas industry is very costly. This thesis presents a percussive drilling system mainly driven by a tubular reciprocating translational motion permanent magnet synchronous motor (RTPMSM), which efficiently converts electric energy to kinetic energy for crushing the hard rock since there is no mechanical media. The thesis starts from state-of-the-art of percussive drilling techniques, reciprocating translational motion motors, and self-sensing control of electric motors and its implementation issues. The following chapters present modeling the hard rock, modeling the drill, the design issues of the drill, the RTPMSM and its control. A single-phase RTPMSM prototype is tested for the hard rock drilling. The presented variable voltage variable frequency control is also validated on it. The space vector control and self-sensing control are also explored on a three-phase RTPMSM prototype. The results show that the percussive drill can be implemented to the hard rock drilling applications. A detailed summarisation of contributions and future work is presented at the end of the thesis.(Author)

  8. Evaluation by design of experiments of active clay specimens behavior in the presence of distilled water, saline solutions and cationic inhibitors; Avaliacao por analise estatistica experimental do comportamento de corpos de prova de argila aditivada na presenca de agua destilada, solucoes salinas e inibidores cationicos

    Energy Technology Data Exchange (ETDEWEB)

    Vidal, Emanuella Layne Ferreira; Araujo, Bruno Alysson Barbosa Duarte; Borges, Mauricio Rodrigues; Garcia, Rosangela Balaban [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2008-07-01

    During the drilling, in general, there are layers of clays which water absorption easily as smectites. In drilling with clays swelling when is applied water-base fluid there is necessary the use of the clay inhibitors to avoid the incorporation of the cutting to the drilling fluid. The most used chemical inhibitors in drilling fluids are sodium and potassium chlorides. However, the cationic inhibitors have been used as alternative form to increase the inhibition power of the drilling fluids. In this work was evaluated the behaviour of the activated clay test bodies in the presence of distilled water, aqueous solution potassium chlorides, and cationic inhibitors. The solutions were submitted at Capillary Suction Timer tests to evaluation the capacity of the water retention in activated clay samples. At the interpretation of the results was used Design of Experiments (DOE) by Response Surface Methodology (RSM), using Umetrics MODDE 7.0{sup TM} programme. It was observed that the clay samples when in contact with the solutions presented lower water retention than in the presence of distilled water only. This result indicates that the clay was inhibited. (author)

  9. Rotary core drills

    Energy Technology Data Exchange (ETDEWEB)

    1967-11-30

    The design of a rotary core drill is described. Primary consideration is given to the following component parts of the drill: the inner and outer tube, the core bit, an adapter, and the core lifter. The adapter has the form of a downward-converging sleeve and is mounted to the lower end of the inner tube. The lifter, extending from the adapter, is split along each side so that it can be held open to permit movement of a core. It is possible to grip a core by allowing the lifter to assume a closed position.

  10. 30 CFR 77.1011 - Drill holes; guarding.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drill holes; guarding. 77.1011 Section 77.1011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Control § 77.1011 Drill holes; guarding. Drill holes large enough to constitute a hazard shall be covered...

  11. Drilling and Production Testing the Methane Hydrate Resource Potential Associated with the Barrow Gas Fields

    Energy Technology Data Exchange (ETDEWEB)

    Steve McRae; Thomas Walsh; Michael Dunn; Michael Cook

    2010-02-22

    In November of 2008, the Department of Energy (DOE) and the North Slope Borough (NSB) committed funding to develop a drilling plan to test the presence of hydrates in the producing formation of at least one of the Barrow Gas Fields, and to develop a production surveillance plan to monitor the behavior of hydrates as dissociation occurs. This drilling and surveillance plan was supported by earlier studies in Phase 1 of the project, including hydrate stability zone modeling, material balance modeling, and full-field history-matched reservoir simulation, all of which support the presence of methane hydrate in association with the Barrow Gas Fields. This Phase 2 of the project, conducted over the past twelve months focused on selecting an optimal location for a hydrate test well; design of a logistics, drilling, completion and testing plan; and estimating costs for the activities. As originally proposed, the project was anticipated to benefit from industry activity in northwest Alaska, with opportunities to share equipment, personnel, services and mobilization and demobilization costs with one of the then-active exploration operators. The activity level dropped off, and this benefit evaporated, although plans for drilling of development wells in the BGF's matured, offering significant synergies and cost savings over a remote stand-alone drilling project. An optimal well location was chosen at the East Barrow No.18 well pad, and a vertical pilot/monitoring well and horizontal production test/surveillance well were engineered for drilling from this location. Both wells were designed with Distributed Temperature Survey (DTS) apparatus for monitoring of the hydrate-free gas interface. Once project scope was developed, a procurement process was implemented to engage the necessary service and equipment providers, and finalize project cost estimates. Based on cost proposals from vendors, total project estimated cost is $17.88 million dollars, inclusive of design work

  12. Maximizing productivity of horizontal drilling and completion techniques

    Energy Technology Data Exchange (ETDEWEB)

    Schein, G. [BJ Services Company, Calgary, AB (Canada)

    2007-07-01

    There are currently 160 active drilling rigs in the Barnett shale play, and small early developments have now become large-scale operations. This presentation outlined methods currently used to improve the productivity of directional drilling and completion techniques in gas shale plays. Horizontal completions are used to control height growth and increase contact areas. A typical horizontal well casing program was described along with details of cement liner treatment programs. Charts of optimum and non-optimum azimuth wells were included. Increased reservoir contact has been achieved by using limited-entry designs and acid stages with ball-sealers and abrasive jet-cutters. Pump rates have been increased during various stages, and larger fluid and sand volumes were used. A mineralogy comparison was provided, as well as details of the general design criteria for vertical wells in the region. It was concluded that drilling in the Barnett shale play has been successful as a result of using 3-dimensional seismic mapping as well as by initiating multiple, simultaneous fracs. The presentation also included charts of the Arkoma-Woodford play, the Arkoma-Fayetteville play, and the Delaware Basin. tabs., figs.

  13. Rapid Development of Drilling Technology and Market of China

    Institute of Scientific and Technical Information of China (English)

    Wang Guanqing; Ni Rongfu

    1994-01-01

    @@ China's developing drilling market Now, CNPC is the owner of more than 1 000 rigs of large and medium size, including imported electric-drive rigs with 6 000 to 9 000 m drilling capacity, imported mechanical drive rigs with 5 000 to 6 000 m drilling capacity, imported mobile rigs with 1 500 to 3 000 m drilling capacity and a lot of home-made mechanical rigs with 2 000,3 200, 4 500 and 6 000m drilling capacity, which can meet the requirement of the domestic and foreign drilling market.

  14. Managing Geothermal Exploratory Drilling Risks Drilling Geothermal Exploration and Delineation Wells with Small-Footprint Highly Portable Diamond Core Drills

    Science.gov (United States)

    Tuttle, J.; Listi, R.; Combs, J.; Welch, V.; Reilly, S.

    2012-12-01

    Small hydraulic core rigs are highly portable (truck or scow-mounted), and have recently been used for geothermal exploration in areas such as Nevada, California, the Caribbean Islands, Central and South America and elsewhere. Drilling with slim diameter core rod below 7,000' is common, with continuous core recovery providing native-state geological information to aid in identifying the resource characteristics and boundaries; this is a highly cost-effective process. Benefits associated with this innovative exploration and delineation technology includes the following: Low initial Capital Equipment Cost and consumables costs Small Footprint, reducing location and road construction, and cleanup costs Supporting drill rod (10'/3meter) and tools are relatively low weight and easily shipped Speed of Mobilization and rig up Reduced requirements for support equipment (cranes, backhoes, personnel, etc) Small mud systems and cementing requirements Continuous, simplified coring capability Depth ratings comparable to that of large rotary rigs (up to ~10,000'+) Remote/small-location accessible (flown into remote areas or shipped in overseas containers) Can be scow or truck-mounted This technical presentation's primary goal is to share the technology of utilizing small, highly portable hydraulic coring rigs to provide exploratory drilling (and in some cases, production drilling) for geothermal projects. Significant cost and operational benefits are possible for the Geothermal Operator, especially for those who are pursuing projects in remote locations or countries, or in areas that are either inaccessible or in which a small footprint is required. John D. Tuttle Sinclair Well Products jtuttle@sinclairwp.com

  15. Helicopter-supported drilling operation in Papua New Guinea

    International Nuclear Information System (INIS)

    Wagner, E.R.; Juneau, M.S.

    1991-01-01

    This paper reports on drilling cost per foot of Chevron's helilift drilling operation in the remote Southern Highlands of Papua New Guinea, reduced from 1360 to 267 S/ft (4462 to 876$/m) during the period from 1985 to 1989. The operation provides many challenges, as it is thousands of miles from major oil-field supply centers. This requires advanced will-planning and logistical management of drilling materials so that they arrive at the drilling rig in a timely manner. The wells are also drilled into structurally complex geology without the aid of seismic data which can lead to unexpected results

  16. Vital signs: drilling rush accelerates, led by stellar B.C. natural gas discoveries

    International Nuclear Information System (INIS)

    Lunan, D.

    2001-01-01

    A recent survey of drilling activity in the Western Canadian Sedimentary Basin provide clear evidence of intensified efforts to match the aggressive forecast of 17,500 well completions in 2001, forecast by the Petroleum Services Association of Canada, or the 18,500 new wells forecast by the Canadian Association of Oilwell Drilling Contractors, and satisfy the expected strong natural gas demand. The rush for drilling properties boosted first-quarter land sale bonus payments by 78 per cent to more than $500 million, or about $356 per hectare from $282 million or $256 per hectare in the first three months of 2000. Land acquisition is most robust in northeastern British Columbia, where a series of 50-million-cubic feet-per-day discoveries in the Ladyfern region has ignited the hottest exploration play of this year, resulting in a 400 per cent increase in first quarter bonus payments to $212 million, or $613 per hectare. Overall Western Canada rig count peaked at 614 active units in late February, declining since to 264 rigs in April, due to the onset of spring breakup. Success rate in the first quarter of 2001 for exploratory drilling peaked at 72 per cent, up from 53 per cent a year ago. Industry-wide success rate jumped to 83 per cent from 75 per cent in 2000. Average depth in BC in the first quarter of 2001 reached 1,700 metres, the highest in Western Canada, compared to about 1,300 metres a year ago. Industry-wide, the average depth slipped from 1,143 metres to 1,134 metres, reflecting the continuing reliance on shallow gas drilling in an effort to attach known reserves as quickly as possible. Offshore drilling on East Coast provides a different picture: drilling depth averages climbed to 10,339 metres from 7,131 metres in 2000. Discovery of the Deep Panuke field by PanCanadian Petroleum is considered partly responsible for the sudden increase in well depth. tabs., 2 photos

  17. Replacement team of mining drilling rigs

    OpenAIRE

    Hamodi, Hussan; Lundberg, Jan

    2014-01-01

    This paper presents a practical model to calculate the optimal replacement time (ORT) of drilling rigs used in underground mining. As a case study, cost data for drilling rig were collected over four years from a Swedish mine. The cost data include acquisition, operating, maintenance and downtime costs when using a redundant rig. A discount rate is used to determine the value of these costs over time. The study develops an optimisation model to identify the ORT of a mining drilling rig which ...

  18. ResonantSonic drilling. Innovative technology summary report

    International Nuclear Information System (INIS)

    1995-04-01

    The technology of ResonantSonic drilling is described. This technique has been demonstrated and deployed as an innovative tool to access the subsurface for installation of monitoring and/or remediation wells and for collection of subsurface materials for environmental restoration applications. The technology uses no drilling fluids, is safe and can be used to drill slant holes

  19. Logging-while-drilling (LWD) pressure test

    Energy Technology Data Exchange (ETDEWEB)

    Thirud, Aase P.

    2003-07-01

    Statoil and Halliburton have completed a successful test of a new ground-breaking formation evaluation technology on the Norwegian shelf. An LWD formation tester, the GeoTapTM sensor, was used to quantify formation pressure during drilling operations. The inaugural job was completed by Halliburton's Sperry-Sun product service line onboard the Bideford Dolphin at the Borg Field while drilling a horizontal production well in the Vigdis Extension development. The GeoTap tool, part of Sperry-Sun's StellarTM MWD/LWT suite, was run in combination with a complete logging-while-drilling sensor package and the Geo-Pilot rotary steerable drilling system. Repeat formation pressures were taken and successfully transmitted to surface. This is the first time this type of technology has been successfully applied on the Norwegian shelf.

  20. Robotic and Human-Tended Collaborative Drilling Automation for Subsurface Exploration

    Science.gov (United States)

    Glass, Brian; Cannon, Howard; Stoker, Carol; Davis, Kiel

    2005-01-01

    Future in-situ lunar/martian resource utilization and characterization, as well as the scientific search for life on Mars, will require access to the subsurface and hence drilling. Drilling on Earth is hard - an art form more than an engineering discipline. Human operators listen and feel drill string vibrations coming from kilometers underground. Abundant mass and energy make it possible for terrestrial drilling to employ brute-force approaches to failure recovery and system performance issues. Space drilling will require intelligent and autonomous systems for robotic exploration and to support human exploration. Eventual in-situ resource utilization will require deep drilling with probable human-tended operation of large-bore drills, but initial lunar subsurface exploration and near-term ISRU will be accomplished with lightweight, rover-deployable or standalone drills capable of penetrating a few tens of meters in depth. These lightweight exploration drills have a direct counterpart in terrestrial prospecting and ore-body location, and will be designed to operate either human-tended or automated. NASA and industry now are acquiring experience in developing and building low-mass automated planetary prototype drills to design and build a pre-flight lunar prototype targeted for 2011-12 flight opportunities. A successful system will include development of drilling hardware, and automated control software to operate it safely and effectively. This includes control of the drilling hardware, state estimation of both the hardware and the lithography being drilled and state of the hole, and potentially planning and scheduling software suitable for uncertain situations such as drilling. Given that Humans on the Moon or Mars are unlikely to be able to spend protracted EVA periods at a drill site, both human-tended and robotic access to planetary subsurfaces will require some degree of standalone, autonomous drilling capability. Human-robotic coordination will be important

  1. Locating scatterers while drilling using seismic noise due to tunnel boring machine

    Science.gov (United States)

    Harmankaya, U.; Kaslilar, A.; Wapenaar, K.; Draganov, D.

    2018-05-01

    Unexpected geological structures can cause safety and economic risks during underground excavation. Therefore, predicting possible geological threats while drilling a tunnel is important for operational safety and for preventing expensive standstills. Subsurface information for tunneling is provided by exploratory wells and by surface geological and geophysical investigations, which are limited by location and resolution, respectively. For detailed information about the structures ahead of the tunnel face, geophysical methods are applied during the tunnel-drilling activity. We present a method inspired by seismic interferometry and ambient-noise correlation that can be used for detecting scatterers, such as boulders and cavities, ahead of a tunnel while drilling. A similar method has been proposed for active-source seismic data and validated using laboratory and field data. Here, we propose to utilize the seismic noise generated by a Tunnel Boring Machine (TBM), and recorded at the surface. We explain our method at the hand of data from finite-difference modelling of noise-source wave propagation in a medium where scatterers are present. Using the modelled noise records, we apply cross-correlation to obtain correlation gathers. After isolating the scattered arrivals in these gathers, we cross-correlate again and invert for the correlated traveltime to locate scatterers. We show the potential of the method for locating the scatterers while drilling using noise records due to TBM.

  2. Drilling fluid technologies : what goes in must come out

    International Nuclear Information System (INIS)

    Polczer, S.

    1998-01-01

    The treatment of drilling wastes contaminated with invert drilling muds was discussed. The tight emulsion properties which make invert drilling muds useful are the same properties that make their disposal so difficult. Potential long-term liability associated with inverts is another reason for reluctance to use these products. Inverts are toxic and highly mobile in the environment, and must therefore be handled with care. Often the costs associated with their disposal are greater than their potential benefits. Petro-Canada Lubricants has formulated a new, non-diesel based product called Drill Mud Oil HT40N which completely eliminates toxic aromatic molecules. It is composed of 98 per cent plus of cyclic and branched isoparaffins with an average carbon number of C16. The level of polynuclear aromatics is reduced to parts per billion levels. Drill Mud Oil HT40N was being used at Hibernia until an even newer product, IPAR3 synthetic drill mud oil, was developed exclusively for offshore use. Drill Mud Oil HT40N is less prone to flash fires, is odourless and is more likely to be used in places such as the Western Canada Sedimentary Basin. Drill Mud Oil HT40N works almost exactly the same as a diesel-based drill mud oil but has many advantages in terms of safety and ease of disposal, particularly in landfarming operations. Drill Mud Oil HT40N does not irritate the skin or release toxic fumes. The cost of Drill Mud Oil HT40N is higher than conventional diesel-based drilling muds. 2 figs

  3. Space weather effects on drilling accuracy in the North Sea

    Directory of Open Access Journals (Sweden)

    S. J. Reay

    2005-11-01

    Full Text Available The oil industry uses geomagnetic field information to aid directional drilling operations when drilling for oil and gas offshore. These operations involve continuous monitoring of the azimuth and inclination of the well path to ensure the target is reached and, for safety reasons, to avoid collisions with existing wells. Although the most accurate method of achieving this is through a gyroscopic survey, this can be time consuming and expensive. An alternative method is a magnetic survey, where measurements while drilling (MWD are made along the well by magnetometers housed in a tool within the drill string. These MWD magnetic surveys require estimates of the Earth's magnetic field at the drilling location to correct the downhole magnetometer readings. The most accurate corrections are obtained if all sources of the Earth's magnetic field are considered. Estimates of the main field generated in the core and the local crustal field can be obtained using mathematical models derived from suitable data sets. In order to quantify the external field, an analysis of UK observatory data from 1983 to 2004 has been carried out. By accounting for the external field, the directional error associated with estimated field values at a mid-latitude oil well (55° N in the North Sea is shown to be reduced by the order of 20%. This improvement varies with latitude, local time, season and phase of the geomagnetic activity cycle. By accounting for all sources of the field, using a technique called Interpolation In-Field Referencing (IIFR, directional drillers have access to data from a "virtual" magnetic observatory at the drill site. This leads to an error reduction in positional accuracy that is close to matching that of the gyroscopic survey method and provides a valuable independent technique for quality control purposes.

  4. Superhot Drilling in Iceland, the Experience of the Iceland Deep Drilling Project.

    Science.gov (United States)

    Elders, W. A.; Friðleifsson, G. Ó.; Zierenberg, R. A.; Fowler, A. P.

    2017-12-01

    The Iceland Deep Drilling Project aims to improve geothermal economics by producing supercritical fluids (www.iddp.is). Supercritical wells could yield an order of magnitude more usable energy than that from conventional geothermal wells because of higher enthalpy and enhanced flow properties. In 2009, the IDDP-1 well failed to reach supercritical conditions in the Krafla caldera in NE Iceland, after encountering rhyolite magma at only 2.1 km depth. The completed geothermal well became the world's hottest and produced superheated steam with a wellhead temperature of 452°C and flow sufficient to generate 35 MWe. The IDDP next moved SW to the Reykjanes Peninsula, the landward extension of the Mid-Atlantic Ridge, where it is possible to study an analog of the roots of a black smoker. Reykjanes is unique among Icelandic geothermal systems in being recharged by seawater, which has a critical point of 406°C at 298 bars. Drilling began by deepening an existing 2.5 km deep production well to 3 km depth, and then angling it towards the main upflow zone of the system, for a total slant depth of 4,659 m. Total circulation losses were encountered below 3 km that could not be cured by lost circulation materials or by multiple cement jobs. Accordingly, drilling continued to total depth without return of drill cuttings. We attempted 13 core runs below 3 km depth, only half of which recovered core. The cores are basalts and dolerites with alteration ranging from lower greenschist facies to lower amphibolite facies, suggesting formation temperatures >450°C. After the end of drilling in January 2017, following only six days of heating, supercritical conditions (426°C at 340 bars) were measured in the well at a depth of 4.5 km. The well has not yet been allowed to equilibrate to full in situ temperature. A perforated liner was inserted to 4,570 m, depth to facilitate temperature cycling to enhance permeability at depth through thermal cracking. In 2018 this will be followed by a

  5. Propagation of Measurement-While-Drilling Mud Pulse during High Temperature Deep Well Drilling Operations

    Directory of Open Access Journals (Sweden)

    Hongtao Li

    2013-01-01

    Full Text Available Signal attenuates while Measurement-While-Drilling (MWD mud pulse is transmited in drill string during high temperature deep well drilling. In this work, an analytical model for the propagation of mud pulse was presented. The model consists of continuity, momentum, and state equations with analytical solutions based on the linear perturbation analysis. The model can predict the wave speed and attenuation coefficient of mud pulse. The calculated results were compared with the experimental data showing a good agreement. Effects of the angular frequency, static velocity, mud viscosity, and mud density behavior on speed and attenuation coefficients were included in this paper. Simulated results indicate that the effects of angular frequency, static velocity, and mud viscosity are important, and lower frequency, viscosity, and static velocity benefit the transmission of mud pulse. Influenced by density behavior, the speed and attenuation coefficients in drill string are seen to have different values with respect to well depth. For different circulation times, the profiles of speed and attenuation coefficients behave distinctly different especially in lower section. In general, the effects of variables above on speed are seen to be small in comparison.

  6. Drilling, Coring and Sampling Using Piezoelectric Actuated Mechanisms: From the USDC to a Piezo-Rotary-Hammer Drill

    Science.gov (United States)

    Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Bao, Xiaoqi

    2012-01-01

    NASA exploration missions are increasingly including sampling tasks but with the growth in engineering experience (particularly, Phoenix Scout and MSL) it is now very much recognized that planetary drilling poses many challenges. The difficulties grow significantly with the hardness of sampled material, the depth of drilling and the harshness of the environmental conditions. To address the requirements for samplers that could be operated at the conditions of the various bodies in the solar system, a number of piezoelectric actuated drills and corers were developed by the Advanced Technologies Group of JPL. The basic configuration that was conceived in 1998 is known as the Ultrasonic/Sonic Driller/Corer (USDC), and it operates as a percussive mechanism. This drill requires as low preload as 10N (important for operation at low gravity) allowing to operate with as low-mass device as 400g, use an average power as low as 2- 3W and drill rocks as hard as basalt. A key feature of this drilling mechanism is the use of a free-mass to convert the ultrasonic vibrations generated by piezoelectric stack to sonic impacts on the bit. Using the versatile capabilities f the USDC led to the development of many configurations and device sizes. Significant improvement of the penetration rate was achieved by augmenting the hammering action by rotation and use of a fluted bit to remove cuttings. To reach meters deep in ice a wireline drill was developed called the Ultrasonic/Sonic Gopher and it was demonstrated in 2005 to penetrate about 2-m deep at Antarctica. Jointly with Honeybee Robotics, this mechanism is currently being modified to incorporate rotation and inchworm operation forming Auto-Gopher to reach meters deep in rocks. To take advantage of the ability of piezoelectric actuators to operate over a wide temperatures range, piezoelectric actuated drills were developed and demonstrated to operate at as cold as -200oC and as hot as 500oC. In this paper, the developed mechanisms

  7. Engineering task plan for the development of a high pressure water drill system for BY-105 saltwell screen installation

    International Nuclear Information System (INIS)

    RITTER, G.A.

    1999-01-01

    This engineering task plan identifies the activities required for developing an ultra high pressure water drill system for installation of a saltwell screen in Tank BY-105. A water drill system is needed to bore through the hard waste material in this tank because of the addition of Portland cement in the 1960s and/or 1970s. The activities identified in this plan include the design, procurement, and qualification testing of the water drill along with readiness preparations including developing operating procedures, training Operations personnel, and conducting an assessment of readiness

  8. Hydraulic lifter of a drilling unit

    Energy Technology Data Exchange (ETDEWEB)

    Velikovskiy, L S; Demin, A V; Shadchinov, L M

    1979-01-08

    The invention refers to drilling equipment, in particular, devices for lowering and lifting operations during drilling. A hydraulic lifter of the drilling unit is suggested which contains a hydraulic cylinder, pressure line and hollow plunger whose cavities are hydraulically connected. In order to improve the reliability of the hydraulic lifter by balancing the forces of compression in the plunger of the hydraulic cylinder, a closed vessel is installed inside the plunger and rigidly connected to its ends. Its cavity is hydraulically connected to the pressure line.

  9. Diamond-set drill bits: savings achieved at Cominak

    International Nuclear Information System (INIS)

    Artru, P.; Bibert, F.X.; Croisat, G.

    1988-01-01

    Rotary instead of percussion adoption of drilling in the underground Akouta mine (Niger) has been the cause of important savings in blasting and bolting operations. Other savings affect capital expenditures and indirect savings are coming from better working conditions. For blast holes drilling and bolting, spare parts expenditures are 2.4 times lower with rotary drilling. Drilling rods are cheaper and last longer with rotary drilling. A rotary equipped Jumbos fleet is cheaper to maintain and is 18% more available, due to less mechanical and other breakdowns. Total savings for the mine owner and operator Cominak reach more than a billion of CFA francs [fr

  10. Drill-string design for directional wells

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, R; Corbett, K T [Exxon Production Research Co., Houston, TX (USA)

    1983-01-01

    This paper is concerned with predicting the tension and torsion loads on drill strings in directional wells and with adjusting the string design or well plan to provide adequate strength. Drill-string drag is the incremental force that is required to move the pipe up or down in the hole; torque is the moment required to rotate the pipe. Drag forces are usually given relative to the string weight measured with the string roating but not reciprocating. Measured from the roating string weight, the pick-up drag is usually slightly greater than the slack-off drag. The magnitudes of torque and drag are related in any particular well; high drag forced and exessive torque loads normally occur together. There are a number of phenomena wich contribute to torque and drag. Included are tight hole conditions, sloughing hole, keyseats, differential sticking, cuttings build up due to poor hole cleaning and sliding wellbore friction. With the exception of sliding friction, these causes are associated with problem conditions in the wellbore. Conversely, in wells with good hole conditions, the primary source of torque and drag is sliding friction. This paper is only concerned with the torque and drag caused by sliding friction. The cabability to predict frictional loads on drill pipe has two main benefits. First, more complete knowledge of drill-string loading allows use of improved drill-string design techniques. Drill-string components can be chosen using a systematic approach considering the force involved. Second, deep, highly-deviated wells can be planned to minimize torque and drag. Use of torque and drag as a criteria to select the most appropriate well path will help ensure successful drilling operations to total depth. 1 fig., 2 tabs. (Author).

  11. 30 CFR 250.463 - Who establishes field drilling rules?

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Who establishes field drilling rules? 250.463... GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Other Drilling Requirements § 250.463 Who establishes field drilling rules? (a) The District Manager may...

  12. Investigation of PDC bit failure base on stick-slip vibration analysis of drilling string system plus drill bit

    Science.gov (United States)

    Huang, Zhiqiang; Xie, Dou; Xie, Bing; Zhang, Wenlin; Zhang, Fuxiao; He, Lei

    2018-03-01

    The undesired stick-slip vibration is the main source of PDC bit failure, such as tooth fracture and tooth loss. So, the study of PDC bit failure base on stick-slip vibration analysis is crucial to prolonging the service life of PDC bit and improving ROP (rate of penetration). For this purpose, a piecewise-smooth torsional model with 4-DOF (degree of freedom) of drilling string system plus PDC bit is proposed to simulate non-impact drilling. In this model, both the friction and cutting behaviors of PDC bit are innovatively introduced. The results reveal that PDC bit is easier to fail than other drilling tools due to the severer stick-slip vibration. Moreover, reducing WOB (weight on bit) and improving driving torque can effectively mitigate the stick-slip vibration of PDC bit. Therefore, PDC bit failure can be alleviated by optimizing drilling parameters. In addition, a new 4-DOF torsional model is established to simulate torsional impact drilling and the effect of torsional impact on PDC bit's stick-slip vibration is analyzed by use of an engineering example. It can be concluded that torsional impact can mitigate stick-slip vibration, prolonging the service life of PDC bit and improving drilling efficiency, which is consistent with the field experiment results.

  13. Supervisory control of drilling of composite materials

    Science.gov (United States)

    Ozaki, Motoyoshi

    Composite materials have attractive features, such as high ratios of strength-to-weight and stiffness-to-weight. However, they are easily damaged when they are machined. A typical damage is delamination, which can occur when fiber reinforced composite laminates are drilled. The objective of this research is to study the drilling processes of carbon fiber reinforced laminates, and to develop and test a supervisory control strategy for their delamination-free drilling. Characterization of thrust force and torque is achieved through constant feedrate drilling experiments. The average values of thrust force and torque during the full engagement of the drill are utilized to obtain the Shaw's equations' parameters. The thrust force profile just before exit is given special attention. The Hocheng-Dharan equations, which give conservative values of delamination at the entrance and at the exit, are modified to express the influence of one lamina thickness explicitly. They are utilized not only for the characterization of thrust force but also for the determination of the thrust force reference for force control. In the design of the controllers of thrust force and torque, both thrust force and torque are assumed to be proportional to FPHR (Feed Per Half Revolution). A discrete-time dynamic model is established for the case when the time interval for a half revolution of the drill is divided by the sampling time, and the model is extended to the case of general spindle speeds. PI controllers are designed for the dynamic models of thrust force and torque. Root-locus techniques are used in the analysis. The phases of the drilling process are introduced and the control strategy at each phase is explained. The supervisory controller chooses not only the best control strategy for each phase, but also the reference value and the controller gain that are suitable at each drill position. Drilling experiments are conducted to show the usefulness of the concepts introduced in this

  14. A Comprehensive Prediction Model of Hydraulic Extended-Reach Limit Considering the Allowable Range of Drilling Fluid Flow Rate in Horizontal Drilling.

    Science.gov (United States)

    Li, Xin; Gao, Deli; Chen, Xuyue

    2017-06-08

    Hydraulic extended-reach limit (HERL) model of horizontal extended-reach well (ERW) can predict the maximum measured depth (MMD) of the horizontal ERW. The HERL refers to the well's MMD when drilling fluid cannot be normally circulated by drilling pump. Previous model analyzed the following two constraint conditions, drilling pump rated pressure and rated power. However, effects of the allowable range of drilling fluid flow rate (Q min  ≤ Q ≤ Q max ) were not considered. In this study, three cases of HERL model are proposed according to the relationship between allowable range of drilling fluid flow rate and rated flow rate of drilling pump (Q r ). A horizontal ERW is analyzed to predict its HERL, especially its horizontal-section limit (L h ). Results show that when Q min  ≤ Q r  ≤ Q max (Case I), L h depends both on horizontal-section limit based on rated pump pressure (L h1 ) and horizontal-section limit based on rated pump power (L h2 ); when Q min  drilling fluid flow rate, while L h2 keeps decreasing as the drilling fluid flow rate increases. The comprehensive model provides a more accurate prediction on HERL.

  15. Comparative study of conventional and ultrasonically-assisted bone drilling.

    Science.gov (United States)

    Alam, K; Ahmed, Naseer; Silberschmidt, V V

    2014-01-01

    Bone drilling is a well-known surgical procedure in orthopaedics and dentistry for fracture treatment and reconstruction. Advanced understanding of the mechanics of the drill-bone interaction is necessary to overcome challenges associated with the process and related postoperative complications. The aim of this study was to explore the benefits of a novel drilling technique, ultrasonically-assisted drilling (UAD), and its possible utilization in orthopaedic surgeries. The study was performed by conducting experiments to understand the basic mechanics of the drilling process using high speed filming of the drilling zone followed by measurements to quantify thrust force, surface roughness and cracking of the bone near the immediate vicinity of the hole with and without ultrasonic assistance. Compared to the spiral chips produced during conventional drilling (CD), UAD was found to break the chips in small pieces which facilitated their fast evacuation from the cutting region. In UAD, lower drilling force and better surface roughness was measured in drilling in the radial and longitudinal axis of the bone. UAD produced crack-free holes which will enhance postoperative performance of fixative devices anchoring the bone. UAD may be used as a possible substitute for CD in orthopaedic clinics.

  16. 30 CFR 56.7013 - Covering or guarding drill holes.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Covering or guarding drill holes. 56.7013 Section 56.7013 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Rotary Jet Piercing Drilling § 56.7013 Covering or guarding drill holes. Drill holes large enough to...

  17. 30 CFR 57.7013 - Covering or guarding drill holes.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Covering or guarding drill holes. 57.7013 Section 57.7013 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... and Rotary Jet Piercing Drilling-Surface Only § 57.7013 Covering or guarding drill holes. Drill holes...

  18. Drilled shaft resistance based on diameter, torque and crowd (drilling resistance vs. rock strength) phase II [summary].

    Science.gov (United States)

    2016-05-01

    Over the past 20 years, drilled shafts have demonstrated increasing popularity over driven : precast piles. Drilled shafts can accommodate a wider range of sizes, and noise and vibration : during construction are significantly reduced. On the other h...

  19. Oil drilling gets more dangerous; Oljeboring blir farligere

    Energy Technology Data Exchange (ETDEWEB)

    Helgesen, Ole K.

    2010-07-01

    The government calls for accelerating the development of new drilling technologies. Incredible value may be lost if drilling is not made safer. But when public funding will be awarded, one of the world's major drilling facilities is far behind in the queue. Statoil has placed a big part of their research to the drilling rig Ullrig and the results from this has resulted in significant value creation for Norway and the oil and gas industry. (AG)

  20. A drilling tool design and in situ identification of planetary regolith mechanical parameters

    Science.gov (United States)

    Zhang, Weiwei; Jiang, Shengyuan; Ji, Jie; Tang, Dewei

    2018-05-01

    The physical and mechanical properties as well as the heat flux of regolith are critical evidence in the study of planetary origin and evolution. Moreover, the mechanical properties of planetary regolith have great value for guiding future human planetary activities. For planetary subsurface exploration, an inchworm boring robot (IBR) has been proposed to penetrate the regolith, and the mechanical properties of the regolith are expected to be simultaneously investigated during the penetration process using the drilling tool on the IBR. This paper provides a preliminary study of an in situ method for measuring planetary regolith mechanical parameters using a drilling tool on a test bed. A conical-screw drilling tool was designed, and its drilling load characteristics were experimentally analyzed. Based on the drilling tool-regolith interaction model, two identification methods for determining the planetary regolith bearing and shearing parameters are proposed. The bearing and shearing parameters of lunar regolith simulant were successfully determined according to the pressure-sinkage tests and shear tests conducted on the test bed. The effects of the operating parameters on the identification results were also analyzed. The results indicate a feasible scheme for future planetary subsurface exploration.

  1. Test plan for core drilling ignitability testing

    International Nuclear Information System (INIS)

    Witwer, K.S.

    1996-01-01

    The objective of this testing is to determine if ignition occurs while core drilling in a flammable gas environment. Drilling parameters are chosen so as to provide bounding conditions for the core sampling environment. If ignition does not occur under the conditions set forth in this test, then a satisfactory level of confidence will be obtained which would allow field operations under the normal drilling conditions

  2. Tesco's Bob Tessari: launching a drilling revolution

    Energy Technology Data Exchange (ETDEWEB)

    Budd, G.

    2002-07-01

    The 'Casing Drilling' technology, patented by Tesco, which allows operators to simultaneously drill, case and evaluate oil and gas wells, is described. The system is claimed to substantially reduce the amount of lost circulation, loss of well control and bore hole instability problems that have been documented to account for about 25 per cent of total rig time on a well, and at least $4 billion (or 10 per cent of the $40 billion annual global drilling tab) spent on 'unscheduled events' associated with tripping drill pipe. With the Casing Drilling process, wells are drilled using standard oilfield casing instead of drill pipe. The host of downhole problems associated with tripping in and out of the hole are avoided, as the casing pipe is never removed. Instead, drill bits and other downhole tools are tripped through the casing with wireline at a rate of about 500 ft per minute, drastically reducing tripping time. Tesco also developed the portable top drive, the manufacture and rental of which constitutes a large part of the company's business, besides helping technologically to make Casing Drilling possible. Much of the company's success is attributed to the tenacity and zest for innovative approaches of the company's CEO, Bob Tessari, who is largely responsible for the company finding itself at the centre of a drilling technology revolution.

  3. Drilling rate for the Cerro Prieto stratigraphic sequence

    Energy Technology Data Exchange (ETDEWEB)

    Prian C, R.

    1981-01-01

    Drilling practice at the field has been modified in several ways as better information is being obtained. The stratigraphic sequence of the area is made up of three sedimentary rock units of deltaic origin having different densities. These units have been named non-consolidated, semi-consolidated, and consolidated rocks; the thermal reservoirs are located in the latter. To investigate how the drilling rates are affected by the three rock units, plots of drilling advance versus time were made for a large number of wells. A typical plot is shown and drilling rates are practically constant in three different zones; that is, the drilling rate has only two breaks or changes in slope.

  4. Automatic identification of otologic drilling faults: a preliminary report.

    Science.gov (United States)

    Shen, Peng; Feng, Guodong; Cao, Tianyang; Gao, Zhiqiang; Li, Xisheng

    2009-09-01

    A preliminary study was carried out to identify parameters to characterize drilling faults when using an otologic drill under various operating conditions. An otologic drill was modified by the addition of four sensors. Under consistent conditions, the drill was used to simulate three important types of drilling faults and the captured data were analysed to extract characteristic signals. A multisensor information fusion system was designed to fuse the signals and automatically identify the faults. When identifying drilling faults, there was a high degree of repeatability and regularity, with an average recognition rate of >70%. This study shows that the variables measured change in a fashion that allows the identification of particular drilling faults, and that it is feasible to use these data to provide rapid feedback for a control system. Further experiments are being undertaken to implement such a system.

  5. Emplacement hole drill evaluation and specification study. Volume I

    International Nuclear Information System (INIS)

    1977-01-01

    Results of a conceptual design program are presented for mine floor drilling in preparation for radioactive waste disposal. Two classes of drills can be used to drill emplacement holes in salt. Both are sufficiently rugged and reliable. Raise borers have a higher capital cost and require more modifications, but are more flexible in other applications and require less labor. The life cycle cost for the raise borers and for the auger rigs are about the same, while the life cycle costs of bucket drills are much higher. As long as the hole is 36 inches in diameter or less and 40 feet deep or less in salt, then the auger rig is recommended because of the lower capital cost and lower operating cost. This recommended system represents what is thought to be the best combination of available drill components assembled into a drill rig which will provide at least adequate performance. Furthermore, this drill system can be procured from at least three manufacturers. If the facility criteria change significantly, however, then the drill rig recommendations will have to be reassessed on the merits of the changes. The drill rig manufacturers can be quite flexible in combining components provided the buyer is willing to accept components with which the manufacturer has had experience. If this condition can be met, then most drill rig manufacturers will include the associated design cost as part of the drill cost. If special components are required, however, then the number of manufacturers willing to participate in a procurement may be severely reduced

  6. Investigating Created Properties of Nanoparticles Based Drilling Mud

    Science.gov (United States)

    Ghasemi, Nahid; Mirzaee, Mojtaba; Aghayari, Reza; Maddah, Heydar

    2018-05-01

    The success of drilling operations is heavily dependent on the drilling fluid. Drilling fluids cool down and lubricate the drill bit, remove cuttings, prevent formation damage, suspend cuttings and also cake off the permeable formation, thus retarding the passage of fluid into the formation. Typical micro or macro sized loss circulation materials (LCM) show limited success, especially in formations dominated by micropores, due to their relatively large sizes. Due to unique characteristics of nanoparticles such as their size and high surface area to volume ratio, they play an effective role in solving problems associated with the drilling fluid. In this study, we investigate the effect of adding Al2O3 and TiO2 nanoparticles into the drilling mud. Al2O3 and TiO2 nanoparticles were used in 20 and 60 nm of size and 0.05 wt% in concentration. Investigating the effects of temperature and pressure has shown that an increase in temperature can reduce the drilling mud rheological properties such as plastic viscosity, while an increase in pressure can enhance these properties. Also, the effects of pressure in high temperatures were less than those in low temperatures. Studying the effects of adding nanoparticles has shown that they can reduce the drilling mud rheological properties. Moreover, they can increase gel strength, reduce capillary suction time and decrease formation damage.

  7. Reaching 1 m deep on Mars: the Icebreaker drill.

    Science.gov (United States)

    Zacny, K; Paulsen, G; McKay, C P; Glass, B; Davé, A; Davila, A F; Marinova, M; Mellerowicz, B; Heldmann, J; Stoker, C; Cabrol, N; Hedlund, M; Craft, J

    2013-12-01

    The future exploration of Mars will require access to the subsurface, along with acquisition of samples for scientific analysis and ground-truthing of water ice and mineral reserves for in situ resource utilization. The Icebreaker drill is an integral part of the Icebreaker mission concept to search for life in ice-rich regions on Mars. Since the mission targets Mars Special Regions as defined by the Committee on Space Research (COSPAR), the drill has to meet the appropriate cleanliness standards as requested by NASA's Planetary Protection Office. In addition, the Icebreaker mission carries life-detection instruments; and in turn, the drill and sample delivery system have to meet stringent contamination requirements to prevent false positives. This paper reports on the development and testing of the Icebreaker drill, a 1 m class rotary-percussive drill and triple redundant sample delivery system. The drill acquires subsurface samples in short, approximately 10 cm bites, which makes the sampling system robust and prevents thawing and phase changes in the target materials. Autonomous drilling, sample acquisition, and sample transfer have been successfully demonstrated in Mars analog environments in the Arctic and the Antarctic Dry Valleys, as well as in a Mars environmental chamber. In all environments, the drill has been shown to perform at the "1-1-100-100" level; that is, it drilled to 1 m depth in approximately 1 hour with less than 100 N weight on bit and approximately 100 W of power. The drilled substrate varied and included pure ice, ice-rich regolith with and without rocks and with and without 2% perchlorate, and whole rocks. The drill is currently at a Technology Readiness Level (TRL) of 5. The next-generation Icebreaker drill weighs 10 kg, which is representative of the flightlike model at TRL 5/6.

  8. Develop tele-controls for self thrusting percussion drilling machine and associated interface.

    CSIR Research Space (South Africa)

    Ottermann, RW

    2000-10-01

    Full Text Available for the interest and technical input of the SIMRAC Technical Committee. To Dr. Valery Kononov and his team at CSIR Miningtek our sincere appreciation for their technical input and co-operation in making the project a success. 4 TABLE OF CONTENTS 1..., and involves the following sequence: Drill valve On, Forward valve On, front limit switch activated, Stop, Reverse valve On. Since the controller knows the selected drill steel length, the controller issues the final stop command at reaching the correct...

  9. Study of environmental concerns: offshore oil and gas drilling and production

    Energy Technology Data Exchange (ETDEWEB)

    Baker, R

    1978-01-01

    Material on the environmental concerns associated with offshore drilling and production activities has been synthesized with Department of Fisheries and Environment files on specific projects, these being the primary information source. Recommendations to resolve these concerns have also been provided. Most of the environmental concerns identified in this study are traceable to specific weaknesses in offshore drilling and production procedures and management systems. Hardware weaknesses are seldom of central importance. Areas of concern include the gradual deposition of pollutants from rigs, underwater pipelines and onshore ancillary structures, and the quality of the following: action plans to deal with oil spills, standards for safety and anti-pollution equipment, information provided on the environmental hazards in offshore drilling and production areas, environmental impact assessments, and communication links between those having environmental concerns and expertise (including the public-at-large) and those who make the decisions regarding offshore oil and gas development.

  10. Anti-collapse mechanism of CBM fuzzy-ball drilling fluid

    Directory of Open Access Journals (Sweden)

    Lihui Zheng

    2016-03-01

    Full Text Available Although fuzzy-ball drilling fluid has been successfully applied in CBM well drilling, it is necessary to study its anti-collapse mechanism so that adjustable coalbed sealing effects, controllable sealing strength, rational sealing cost and controllable reservoir damage degree can be realized. In this paper, laboratory measurement was performed on the uniaxial compressive strength of the plungers of No. 3 coalbed in the Qinshui Basin and the inlet pressure of Ø38 mm coal plunger displacement. The strengths of coal plungers were tested and compared after 2% potassium chloride solution, low-solids polymer drilling fluid and fuzzy-ball drilling fluid were injected into the coal plungers respectively. It is shown that coal strength rises by 38.46% after the fuzzy-ball drilling fluid is injected (in three groups; and that no fuzzy-ball drilling fluid is lost at the displacement pressures of 20.73 and 21.46 MPa, nor 2% potassium chloride solution is leaked at such pressures of 24.79 and 25.64 MPa after the plunger was sealed by the fuzzy-ball drilling fluid. This indicates that the fuzzy-ball drilling fluid can increase the formation resistance to fluid. Indoor microscopic observation was conducted on the sealing process of the fuzzy-ball drilling fluid in sand packs with coal cuttings of three grain sizes (60–80, 80–100 and 100–120 mesh. It is shown that the leakage pathways of different sizes are sealed by the vesicles in the form of accumulation, stretch and blockage. And there are vesicles at the inlet ends of the flowing pathways in the shape of beaded blanket. The impact force of drilling tools on the sidewalls is absorbed by the vesicles due to their elasticity and tenacity, so the sidewall instability caused by drilling tools is relieved. It is concluded that the main anti-collapse mechanisms of the CBM fuzzy-ball drilling fluid are to raise the coal strength, increase the formation resistance to fluid, and buffer the impact of

  11. Stabilization/solidification of synthetic Nigerian drill cuttings | Opete ...

    African Journals Online (AJOL)

    Stabilization/solidification of synthetic Nigerian drill cuttings. SEO Opete, IA Mangibo, ET Iyagba. Abstract. In the Nigerian oil and gas industry, large quantities of oily and synthetic drill cuttings are produced annually. These drill cuttings are heterogeneous wastes which comprises of hydrocarbons, heavy metals and ...

  12. Development of controlled drilling system

    International Nuclear Information System (INIS)

    Kiho, Kenzo; Miyakawa, Kimio; Suzuki, Koichi; Sunaga, Takayuki

    2008-01-01

    In Japan, the soft sedimentary rock of the Neogene tertiary is being focused as a host rock for the High Level Radioactive Waste (HLW) disposal. Especially, the soft sedimentary rock at the offshore, region is thought to be one of the best candidates, since there is no driving force of the underground water. The measurement and logging in the bore hole in order to check the hydro-geological and geomechanical conditions of the host rock is a very important way to examine the potentially of the disposal candidates. The CRIEPI (Central Research Institute of Electric Power Industry) has been conducting the project about the controlled drilling technology and the measurement and logging technologies in its borehole. In 2000, as the beginning year of the project, we made the conceptual design of the drilling and measuring systems, and made key tools concerning each technology on an experimental basis. We have been developing sub tools constructing drilling and measuring systems since 2000, and applying these systems to the Horonobe site recent 5 years. We will briefly report the outline of the system and the results of drilling and measurement that were carried out at the Horonobe site. (author)

  13. Test report for core drilling ignitability testing

    International Nuclear Information System (INIS)

    Witwer, K.S.

    1996-01-01

    Testing was carried out with the cooperation of Westinghouse Hanford Company and the United States Bureau of Mines at the Pittsburgh Research Center in Pennsylvania under the Memorandum of Agreement 14- 09-0050-3666. Several core drilling equipment items, specifically those which can come in contact with flammable gasses while drilling into some waste tanks, were tested under conditions similar to actual field sampling conditions. Rotary drilling against steel and rock as well as drop testing of several different pieces of equipment in a flammable gas environment were the specific items addressed. The test items completed either caused no ignition of the gas mixture, or, after having hardware changes or drilling parameters modified, produced no ignition in repeat testing

  14. Progress in reducing the environmental impacts of offshore drilling wastes

    International Nuclear Information System (INIS)

    Flemming, D; Candler, J.E.

    2002-01-01

    Full text:Over the past several years, great progress has been made in understanding and reducing the environmental impacts of offshore drilling wastes. Our understanding of sea floor impacts has been helped along by new environmental assessment tools such us computer modeling of sea floor deposition of drilling discharges, sediment profile imaging, and in situ sediment toxicity bioassays. To further reduce environmental impacts, new pollution prevention technologies have been developed that can shrink the environmental footprint of offshore drilling. These technologies reduce the total amount of drilling wastes discharged and include cuttings dryers and centrifuges that can reduce the drilling fluid content of drill cuttings to below 10 percent. In conclusion, the oil and gas industry is adopting more environmentally compatible drilling fluids, new environmental assessment tools and pollution prevention technologies that dramatically reduce the amount of drilling wastes discharged. Together, all of these elements have the potential to reduce environmental impacts of offshore drilling

  15. 46 CFR 15.520 - Mobile offshore drilling units.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Mobile offshore drilling units. 15.520 Section 15.520... REQUIREMENTS Manning Requirements; Inspected Vessels § 15.520 Mobile offshore drilling units. (a) The requirements in this section for mobile offshore drilling units (MODUs) supplement other requirements in this...

  16. 21 CFR 882.4370 - Pneumatic cranial drill motor.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pneumatic cranial drill motor. 882.4370 Section 882.4370 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... drill motor. (a) Identification. A pneumatic cranial drill motor is a pneumatically operated power...

  17. 21 CFR 882.4360 - Electric cranial drill motor.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electric cranial drill motor. 882.4360 Section 882...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4360 Electric cranial drill motor. (a) Identification. An electric cranial drill motor is an electrically operated power source used...

  18. In the zone - first rotary steerable liner-while-drilling system; Drilling technology

    Energy Technology Data Exchange (ETDEWEB)

    2010-07-01

    Statoil recently successfully tested the world's first rotary steerable liner-while-drilling system from its Brage platform in the Norwegian sector of the North Sea. This innovative technology - with applications in new and mature fields - was jointly developed by Statoil and Baker Hughes Incorporated. The concept of a rotary steerable system that gives operators the ability to accurately drill and log three-dimensional well profiles with a liner attached directly to the drillstring is entirely new. The system is designed to withstand high circulation rates and high torque loads while providing liner connect and disconnect capabilities. (Author)

  19. Environmental effects of exploratory drilling offshore Canada : environmental effects monitoring data and literature review : final report

    International Nuclear Information System (INIS)

    Hurley, G.; Ellis, J.

    2004-10-01

    This study examined pertinent environmental effects monitoring (EEM) information and data associated with offshore exploratory and development drilling in Canada. Two approaches were used: (1) a review of scientific literature was conducted to provide a synthesis of knowledge concerning interactions between exploratory drilling and the environment; and (2) a review of pertinent Canadian EEM data was conducted to evaluate interactions between exploratory drilling and the environment. Virtually all the east coast Canadian data reviewed in the study related to the effects of multiple wells. Although the effects of drilling waste were a primary focus, the effects of accidental discharges, lights and flaring, atmospheric emissions and noise emissions were also considered. Changes in the diversity and abundance of benthic organisms were detected within 1000 metres of many drill sites. The fine particles in drilling wastes contributed to the environmental effects observed around drilling platforms, and elevated body burden concentrations of drill waste indicators were detected over larger scales in a wide range of taxonomic groups. The results of laboratory and field studies suggested a lower potential for toxicity on commercial finfish and shellfish species. However, it was observed that measuring the effects of elevated concentrations of contaminants remained a challenge due to high levels variability in literature studies. A precautionary approach to the management of seismic surveys was recommended. It was concluded that the potential cumulative impacts of exploration drilling should be considered in the context of other anthropogenic activities. 138 refs., 6 tabs.

  20. 30 CFR 77.1902 - Drilling and mucking operations.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drilling and mucking operations. 77.1902... COAL MINES Slope and Shaft Sinking § 77.1902 Drilling and mucking operations. Diesel-powered equipment used in the drilling, mucking, or other excavation of any slope or shaft shall be permissible, and such...

  1. Rapid Response Fault Drilling Past, Present, and Future

    Directory of Open Access Journals (Sweden)

    Demian M. Saffer

    2009-09-01

    Full Text Available New information about large earthquakes can be acquired by drilling into the fault zone quickly following a large seismic event. Specifically, we can learn about the levels of friction and strength of the fault which determine the dynamic rupture, monitor the healing process of the fault, record the stress changes that trigger aftershocks and capture important physical and chemical properties of the fault that control the rupture process. These scientific and associated technical issues were the focus of a three-day workshop on Rapid Response Fault Drilling: Past, Present, and Future, sponsored by the International Continental Scientific Drilling Program (ICDP and the Southern California Earthquake Center (SCEC. The meeting drewtogether forty-four scientists representing ten countries in Tokyo, Japan during November 2008. The group discussed the scientific problems and how they could be addressed through rapid response drilling. Focused talks presented previous work on drilling after large earthquakes and in fault zones in general, as well as the state of the art of experimental techniques and measurement strategies. Detailed discussion weighed the tradeoffs between rapid drilling andthe ability to satisfy a diverse range of scientific objectives. Plausible drilling sites and scenarios were evaluated. This is a shortened summary of the workshop report that discusses key scientific questions, measurement strategies, and recommendations. This report can provide a starting point for quickly mobilizing a drilling program following future large earthquakes. The full report can be seen at http://www.pmc.ucsc.edu/~rapid/.

  2. Automated Kick Control Procedure for an Influx in Managed Pressure Drilling Operations

    Directory of Open Access Journals (Sweden)

    Jing Zhou

    2016-01-01

    Full Text Available Within drilling of oil and gas wells, the Managed Pressure Drilling (MPD method with active control of wellbore pressure during drilling has partly evolved from conventional well control procedures. However, for MPD operations the instrumentation is typically more extensive compared to conventional drilling. Despite this, any influx of formation fluids (commonly known as a kick during MPD operations is typically handled by conventional well control methods, at least if the kick is estimated to be larger than a threshold value. Conventional well control procedures rely on manual control of the blow out preventer, pumps, and choke valves and do not capitalize on the benefits from the instrumentation level associated with MPD. This paper investigates two alternative well control procedures specially adapted to backpressure MPD: the dynamic shut-in (DSI procedure and the automatic kick control (AKC procedure. Both methods capitalize on improvements in Pressure While Drilling (PWD technology. A commercially available PWD tool buffers high-resolution pressure measurements, which can be used in an automated well control procedure. By using backpressure MPD, the choke valve opening is tuned automatically using a feedback-feedforward control method. The two procedures are evaluated using a high fidelity well flow model and cases from a North Sea drilling operation are simulated. The results show that using AKC procedure reduces the time needed to establish control of the well compared to DSI procedure. It also indicates that the AKC procedure reduces the total kick size compared to the DSI procedure, and thereby reduces the risk of lost circulation.

  3. Slimhole drilling and directional drilling for on-site inspections under a Comprehensive Test Ban - An initial assessment

    International Nuclear Information System (INIS)

    Heuze, F.E.

    1995-07-01

    It appears that a short list of four suppliers should be further evaluated to formulate OSI-applicable packages. They are Baker-Hughes ESTTEQ, SLIMDRIL International, Halliburton Energy/ENSCO Technology, and Schlumberger-Dowell/Anadrill. It is noteworthy that all of them are headquartered in Houston, TX, making it a logical place to present the OSI requirements to a community of expert drillers. We have requested from these companies that they let us know of operations with coiled tubing to be conducted in California, so as to use such opportunities to view the systems in action. On such job was just completed by Schlumberger-Dowell near Bakersfield, and they have another one coming up in late July in Long Beach. An example of the 'footprint' of such a C-T drilling operation is shown. The Verification community also can take advantage of drilling conferences to keep up with the state-of-the-art. The next such meeting, co-sponsored by the International Association of Drilling Contractors (IADC) and the Society of Petroleum Engineers (SPE), is scheduled for March 12-15, 1996, in New Orleans. The next step in this study should be to determine an optimal combination of the new drilling methods with the health and safety procedures and the diagnostics which are required when drilling in a radioactive environment. This will involve bringing together the expertise of the NTS/National Laboratories with those of the exploration/production drillers. The final outcome will be the formulation of drilling systems which have significant cost and weight advantages over those of the equipment previously used at NTS

  4. Induction of Fish Biomarkers by Synthetic-Based Drilling Muds

    Science.gov (United States)

    Gagnon, Marthe Monique; Bakhtyar, Sajida

    2013-01-01

    The study investigated the effects of chronic exposure of pink snapper (Pagrus auratus Forster), to synthetic based drilling muds (SBMs). Fish were exposed to three mud systems comprised of three different types of synthetic based fluids (SBFs): an ester (E), an isomerized olefin (IO) and linear alpha olefin (LAO). Condition factor (CF), liver somatic index (LSI), hepatic detoxification (EROD activity), biliary metabolites, DNA damage and stress proteins (HSP-70) were determined. Exposure to E caused biologically significant effects by increasing CF and LSI, and triggered biliary metabolite accumulation. While ester-based SBFs have a rapid biodegradation rate in the environment, they caused the most pronounced effects on fish health. IO induced EROD activity and biliary metabolites and LAO induced EROD activity and stress protein levels. The results demonstrate that while acute toxicity of SBMs is generally low, chronic exposure to weathering cutting piles has the potential to affect fish health. The study illustrates the advantages of the Western Australian government case-by-case approach to drilling fluid management, and highlights the importance of considering the receiving environment in the selection of SBMs. PMID:23894492

  5. Casing drilling TM : a viable technology for coal bed methane?

    Energy Technology Data Exchange (ETDEWEB)

    Madell, G.; Muqeem, M. [Tesco Corp., Calgary, AB (Canada)

    2001-07-01

    This paper highlighted the experience that Tesco has gained by drilling more than 30 wells using only casings as the drill stem, suggesting that such technology could be advantageous for Coal Bed Methane (CBM) exploration and development. Tesco has manufactured a mobile and compact hydraulic drilling rig that is ideal to meet the great demand for CBM development in Canada. The Casing Drilling TM system, when used in conjunction with the drilling rig, could be very effective and efficient for exploration and development of CBM reserves which typically require extensive coring. Continuous coring while drilling ahead and wire line retrieval can offer time savings and quick core recovery of large diameter core required for exploration core desorption tests. The proposed system may also have the potential to core or drill typically tight gas sands or coal beds under balanced with air or foam. This would reduce drilling fluid damage while finding gas at the same time. Compared to conventional drill pipes, Casing Drilling TM could also be effective with water production from shallow sands because of the smaller annual clearance which requires less air volumes to lift any produced water. 8 refs., 3 tabs., 9 figs.

  6. A Review of the Evaluation, Control, and Application Technologies for Drill String Vibrations and Shocks in Oil and Gas Well

    Directory of Open Access Journals (Sweden)

    Guangjian Dong

    2016-01-01

    Full Text Available Drill string vibrations and shocks (V&S can limit the optimization of drilling performance, which is a key problem for trajectory optimizing, wellbore design, increasing drill tools life, rate of penetration, and intelligent drilling. The directional wells and other special trajectory drilling technologies are often used in deep water, deep well, hard rock, and brittle shale formations. In drilling these complex wells, the cost caused by V&S increases. According to past theories, indoor experiments, and field studies, the relations among ten kinds of V&S, which contain basic forms, response frequency, and amplitude, are summarized and discussed. Two evaluation methods are compared systematically, such as theoretical and measurement methods. Typical vibration measurement tools are investigated and discussed. The control technologies for drill string V&S are divided into passive control, active control, and semiactive control. Key methods for and critical equipment of three control types are compared. Based on the past development, a controlling program of drill string V&S is devised. Application technologies of the drill string V&S are discussed, such as improving the rate of penetration, controlling borehole trajectory, finding source of seismic while drilling, and reducing the friction of drill string. Related discussions and recommendations for evaluating, controlling, and applying the drill string V&S are made.

  7. Arctic industrial activities compilation

    International Nuclear Information System (INIS)

    1991-01-01

    Most industrial activities in the Beaufort Sea region are directly or indirectly associated with the search for oil and gas. Activities in marine areas include dredging, drilling, seismic and sounding surveys, island/camp maintenance, vessel movements, helicoptor and fixed-wind flights, and ice-breaking. This inventory contains a summary of chemical usage at 119 offshore drilling locations in the Beaufort Sea, Arctic Islands and Davis Straight of the Canadian Arctic between 1973 and 1987. Data are graphically displayed for evaluating patterns of drill waste discharge in the three offshore drilling areas. These displays include a comparison of data obtained from tour sheets and well history records, summaries of drilling mud chemicals used by year, well and oil company, frequency of wells drilled as a function of water depth, and offshore drilling activity by year, company, and platform. 21 refs., 104 figs., 2 tabs

  8. ResonantSonic drilling: History, progress, and advances in environmental restoration programs

    International Nuclear Information System (INIS)

    Moak, D.J.

    1995-01-01

    ResonantSonic drilling is being used in the environmental industry to drill faster, cheaper, and safer than conventional drilling methodologies. The ResonantSonic drilling method requires no mud, air, or water for rapid penetration through geologic materials ranging from rock and clay to sand and boulders. A specialized drill head imparts high frequency vibrations into steel drill pipe and creates a drilling action which allows the retrieval of continuous, undisturbed cores. An added benefit is that the method can be used for angle drilling. The ResonantSonic method has been used in the past for projects ranging from pile driving to horizontal drilling. Current programs utilize the technique as a valuable tool for obtaining in situ, pristine environmental samples. In the future, this drilling technology could be used for remote, automated sampling at hazardous waste sites

  9. Well control during the drilling and testing of high pressure offshore wells

    Energy Technology Data Exchange (ETDEWEB)

    1992-05-01

    This Code has been prepared for use as a guide to safe practice for those concerned with well control during the drilling and testing of high pressure offshore wells. It is intended to provide information and guidance on those well control activities associated with high pressure wells which have an impact on safety offshore, and therefore require detailed care and attention. The Code has been produced in a United Kingdom Continental Shelf (UKCS) context, but the principles and recommendations have general relevance to similar operations elsewhere. Each chapter of the Code covers an important aspect of well control and has an introduction which describes the part each activity plays in the drilling and testing of high pressure offshore wells. (Author)

  10. A new NMR measuring instrument for logging while drilling; Ein neues Logging While Drilling Kernspinresonanz-Messgeraet

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, D.M.; Thern, H.F.; Kruspe, T.; Blanz, M. [Baker Hughes INTEQ GmbH, Celle (Germany); Strobel, J. [RWE Dea AG, Hamburg (Germany)

    2003-07-01

    Since 1990, commercial wireline MR measurements are carried out in boreholes. Logging while drilling is a comparatively new technique, in which a MR sensor is integrated in the drilling equipment so that the measured data are available more quickly. Problems may be caused by movement of the drilling rig. The resulting vibrations may distort the MR signal. Current development activities therefore focus on design optimization for higher vibration stability. The contribution explains vibration-induced wrong measuring signals and presents measures to reduce the effects of vibration. Further, a new LWD-MR measuring instrument is presented, the so-called MagTrak{sup TM} which combines the quality and advantages of cable MR-T{sub 2} measurements with a minimum of vibration effects, as is shown by MR data from a commercial borehole. [German] Seit 1990 werden Wireline-MR-Messungen kommerziell im Bohrloch durchgefuehrt. In den letzten Jahren wird an Messgeraeten gearbeitet, die bereits waehrend des Bohrens MR-Daten aufzeichnen (Logging While Drilling, LWD). Dazu wird ein MR-Sensor in den Bohrstrang integriert. Neben der schnelleren Verfuegbarkeit der MR-Daten besteht ein grosser Vorteil der LWD-MR-Messung darin, dass die Daten bereits kurz nach dem Bohren gemessen werden. Die Invasion von Bohrlochspuelung in die Formation dauert dann noch nicht lange an, und die MR-Messung findet im relativ unveraenderten Gestein statt. Probleme beim Einsatz von MR-Messgeraeten waehrend des Bohrens werden vor allem durch die Bewegungen des Bohrstranges verursacht. Vibrationen des MR-Sensors fuehren zu veraenderten Messbedingungen waehrend des Messvorgangs, was zu Verzerrungen im MR-Signal fuehren kann. Den Aufbau des Messgeraetes so zu optimieren, dass Vibrationen einen moeglichst kleinen Einfluss auf die Messung haben, ist ein aktuelles Ziel der heutigen LWD-MR-Entwicklung. In diesem Artikel werden vibrationsverursachte Signalfehler erklaert und Massnahmen genannt, die die

  11. Characterization of rotary-percussion drilling as a seismic-while-drilling source

    Science.gov (United States)

    Xiao, Yingjian; Hurich, Charles; Butt, Stephen D.

    2018-04-01

    This paper focuses on an evaluation of rotary-percussion drilling (RPD) as a seismic source. Two field experiments were conducted to characterize seismic sources from different rocks with different strengths, i.e. weak shale and hard arkose. Characterization of RPD sources consist of spectral analysis and mean power measurements, along with field measurements of the source radiation patterns. Spectral analysis shows that increase of rock strength increases peak frequency and widens bandwidth, which makes harder rock more viable for seismic-while-drilling purposes. Mean power analysis infers higher magnitude of body waves in RPD than in conventional drillings. Within the horizontal plane, the observed P-wave energy radiation pattern partially confirms the theoretical radiation pattern under a single vertical bit vibration. However a horizontal lobe of energy is observed close to orthogonal to the axial bit vibration. From analysis, this lobe is attributed to lateral bit vibration, which is not documented elsewhere during RPD. Within the horizontal plane, the observed radiation pattern of P-waves is generally consistent with a spherically-symmetric distribution of energy. In addition, polarization analysis is conducted on P-waves recorded at surface geophones for understanding the particle motions. P-wave particle motions are predominantly in the vertical direction showing the interference of the free-surface.

  12. Toxicity of invert drilling muds composted with wood/bark chips

    Energy Technology Data Exchange (ETDEWEB)

    Bessie, K. [EBA Engineering Consultants Ltd., Calgary, AB (Canada)

    2006-07-01

    Since the early to mid 1990s, many companies have composted invert (diesel) drilling muds with wood chips/bark chips in the green (forestry) zone as a method of drilling mud treatment. This presentation addressed the toxicity of invert drilling muds composted with wood/bark chips and provided some background on composted invert drilling mud (CIDM). EBA Engineering monitored 22 third-party sites in 2002, some of which were biopiles, and others land treatment areas (LTAs). Active treatment started between 1995 and 1999 and some LTAs were seeded with varying degrees of success. Composted materials had hydrocarbon odour and staining and were very moist. Materials exceeded Alberta Environment guidelines for petroleum hydrocarbons (PHCs) and sometimes barium. Most sites were within areas that had forestry production/wildlife as end land use. Receptors included plants, soil invertebrates by soil contact, and wildlife by ingestion. Stakeholder meetings were held for their input and an ecotoxicity study was developed. Material tested, tests and species used as well as results of the ecotoxicity study were presented. A comparison of results to other EBA composting studies was also given. It was concluded that CIDM affects the reproduction of earthworms and springtails, and plant growth; wood/barks chips themselves can be ecotoxic; and, other compost studies with finely ground sawdust and no bark chips had less ecotoxicity. tabs., figs.

  13. What you should know about contract core drilling

    Energy Technology Data Exchange (ETDEWEB)

    Koontz, J.

    1985-07-01

    Most core drilling jobs are on the basis of so much per foot drilled. The driller pays for his crew's wages and overtime pay. He assumes the cost of all necessary supplies and has responsibility for unexpected problems. The customer is responsible for a water supply and must provide access roads to drill sites and prepare the sites. The following are important in selecting a driller; how long they have been in business, how many rigs they have and what condition the rigs are in and their financial condition. Detailed discussions with the driller before he starts the job and a daily drill report are important. A best possible core recovery should be expected. Communication with the driller is the most important factor when involved in a core drilling project.

  14. Tribological characterization of the drill collars and casing friction couples

    Science.gov (United States)

    Ripeanu, R. G.; Badicioiu, M.; Caltaru, M.; Dinita, A.; Laudacescu, E.

    2018-01-01

    Drill collars are special pipes used in the drilling of wells for weighting the drill bit, enabling it to drill through the rock. In the drilling process, the drill collars are exposed to an intensive wear due to friction on inner surface of casing wall. In order to evaluate the tribological behaviour of this friction couple, paper presents the drill collars parent material, reconditioned and casing pipe chemical composition, microstructures, hardness and friction tests. For friction tests were prepared samples extracted from new and reconditioned drill collars and from casing pipes and tested on a universal tribometer. Were used plane-on-disk surface friction couples and tests were conducted at two sliding speeds and three normal loads for each materials couple. Plane static partner samples were extracted from casing pipes and disks samples were extracted from new and reconditioned drill collars. Were obtained friction coefficients values and also the temperatures increasing values due to friction working tests parameters. The temperature increasing values were obtained by measuring it with an infrared thermographic camera.

  15. Technical report for a fluidless directional drilling system demonstrated at Solid Waste Storage Area 6 shallow buried waste sites

    International Nuclear Information System (INIS)

    1995-09-01

    The purpose of the research was to demonstrate a fluidless directional drilling and monitoring system (FDD) specifically tailored to address environmental drilling concerns for shallow buried wasted. The major concerns are related to worker exposure, minimizing waste generation, and confining the spread of contamination. The FDD is potentially applicable to Environmental Restoration (ER) activities for the Oak Ridge National Laboratory Waste Area Grouping 6 (WAG 6) shallow buried waste disposed in unlined trenches. Major ER activities for directional drilling are to develop a drilling system for leachate collection directly beneath trenches, and to provide localized control over leachate release to the environment. Other ER FDD activities could include vadose zone and groundwater monitoring of contaminant transport. The operational constraints pointed the research in the direction of purchasing a steerable impact hammer, or mole, manufactured by Steer-Rite Ltd. of Racine, Wisconsin. This drill was selected due to the very low cost ($25,000) associated with procuring the drill, steering module, instrumentation and service lines. The impact hammer is a self propelled drill which penetrates the soil by compacting cut material along the sidewalls of the borehole. Essentially, it forces its way through the subsurface. Although the pneumatic hammer exhausts compressed air which must be handled at the borehole collar, it does not generate soil cuttings or liquids. This is the basis for the term fluidless. A stub casing muffler was attached to the entrance hole for controlling exhaust gas and any airborne releases. Other environmental compliance modifications made to the equipment included operating the tool without lubrication, and using water instead of hydraulic fluid to actuate the steering fins on the tool

  16. 25 CFR 226.9 - Rental and drilling obligations.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Rental and drilling obligations. 226.9 Section 226.9... RESERVATION LANDS FOR OIL AND GAS MINING Leasing Procedure, Rental and Royalty § 226.9 Rental and drilling... in the lease terms, or 12 months from the date the Superintendent consents to drilling on any...

  17. Tragacanth gum: an effective oil well drilling fluid additive

    Energy Technology Data Exchange (ETDEWEB)

    Mahto, V.; Sharma, V. [Indian School of Mines, Dhanbad (India). Department of Petroleum Engineering

    2005-02-15

    The low penetration rate, excessive torque and drag, poor hole cleaning and formation damage are major impediments in drilling oil and gas well. These have a major impact on drilling efficiency and well economics. Keeping these in mind, an attempt was made to design a water based drilling fluid system using Indian bentonite clays and tragacanth gum. The effect of tragacanth gum on rheological behavior of three different Indian bentonite water suspensions was studied and a drilling fluid system was developed. The filtrates of these drilling fluids were subjected to formation damage study on the field core using Ruska Liquid Permeameter. The laboratory investigation furnishes that tragacanth gum acts as a good viscosifier and fluid loss control agent. The drilling fluid filtrate also has less effect on formation damage. (author)

  18. Experimental Analysis of the Influence of Drill Point Angle and Wear on the Drilling of Woven CFRPs

    Directory of Open Access Journals (Sweden)

    Norberto Feito

    2014-05-01

    Full Text Available This paper focuses on the effect of the drill geometry on the drilling of woven Carbon Fiber Reinforced Polymer composite (CFRPs. Although different geometrical effects can be considered in drilling CFRPs, the present work focuses on the influence of point angle and wear because they are the important factors influencing hole quality and machining forces. Surface quality was evaluated in terms of delamination and superficial defects. Three different point angles were tested representative of the geometries commonly used in the industry. Two wear modes were considered, being representative of the wear patterns commonly observed when drilling CFRPs: flank wear and honed cutting edge. It was found that the crossed influence of the point angle and wear were significant to the thrust force. Delamination at the hole entry and exit showed opposite trends with the change of geometry. Also, cutting parameters were checked showing the feed’s dominant influence on surface damage.

  19. Drilling Information System (DIS and Core Scanner

    Directory of Open Access Journals (Sweden)

    Ronald Conze

    2016-04-01

    Full Text Available The Drilling Information System is a modular structure of databases, tailored user applications as well as web services and instruments including appropriate interfaces to DIS. This tool set has been developed for geoscientific drilling projects but is applicable to other distributed scientific operations. The main focuses are the data acquisition on drill sites (ExpeditionDIS, and the curation of sample material e.g., in core repositories (CurationDIS. Due to the heterogeneity of scientific drilling projects, a project-specific DIS is arranged and adjusted from a collection of existing templates and modules according to the user requirements during a one week training course. The collected data are provided to the Science Team of the drilling project by secured Web services, and stored in long-term archives hosted at GFZ. At the end the data sets and sample material are documented in an Operational Report (e.g., Lorenz et al., 2015 and published with assigned DOI (Digital Object Identifier and IGSN (International Geo Sample Number; for physical samples by GFZ Data Services.

  20. Fatigue analysis of aluminum drill pipes

    Directory of Open Access Journals (Sweden)

    João Carlos Ribeiro Plácido

    2005-12-01

    Full Text Available An experimental program was performed to investigate the fundamental fatigue mechanisms of aluminum drill pipes. Initially, the fatigue properties were determined through small-scale tests performed in an optic-mechanical fatigue apparatus. Additionally, full-scale fatigue tests were carried out with three aluminum drill pipe specimens under combined loading of cyclic bending and constant axial tension. Finally, a finite element model was developed to simulate the stress field along the aluminum drill pipe during the fatigue tests and to estimate the stress concentration factors inside the tool joints. By this way, it was possible to estimate the stress values in regions not monitored during the fatigue tests.

  1. Possible use of a computer for processing technological information of daily reports on drilling in order to optimize the drilling regimes

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, V B; Kovalev, A A; Rezchikov, A V; Sukhanova, L G; Vyazenkin, S N; Zakolyuzhnyy, V D

    1982-01-01

    It is suggested that a computer be used for processing technological information of data reports on drilling. This will permit solution in the future to the task of monitoring the observation of the assigned regime-technological parameters of drilling wells by compiling planning recommendations and factual information about their fulfillment. Comprehensive analysis of the factual data regarding the regimes of making wells based on the information of daily reports on drilling using a computer in the OAIS system of drilling of the Ministry of the Gas Industry at the existing stage of technical support of the associations with a computer will permit in the near future production of exhaustive regime-technological information regarding the operation of bits in each well and development of RTK for drilling future wells by intervals of the same drillability.

  2. Systems and Methods for Gravity-Independent Gripping and Drilling

    Science.gov (United States)

    Parness, Aaron (Inventor); Frost, Matthew A. (Inventor); Thatte, Nitish (Inventor); King, Jonathan P. (Inventor)

    2016-01-01

    Systems and methods for gravity independent gripping and drilling are described. The gripping device can also comprise a drill or sampling devices for drilling and/or sampling in microgravity environments, or on vertical or inverted surfaces in environments where gravity is present. A robotic system can be connected with the gripping and drilling devices via an ankle interface adapted to distribute the forces realized from the robotic system.

  3. Effects of specialized drill bits on hole defects of CFRP laminates

    Science.gov (United States)

    Li, Chao; Xu, Jinyang; Chen, Ming

    2018-05-01

    Drilling is a conventional machining process widely applied to carbon fiber reinforced plastics (CFRP) for the riveting and fastening purposes in the aerospace and automotive industries. However, the machining mechanism of CFRP composites differ significantly from that of homogeneous metal alloys owing to their prominent anisotropy and heterogeneity. Serious hole defects such as fiber pullout, matrix debonding and delamination are generally produced during the hole-making process, resulting in the poor machined surface quality, low fatigue durability or even the part rejections. In order to minimize the defects especially the delamination damage in composites drilling, specialized drill bits are often a primary choice being widely adopted in a real production. This paper aims to study the effects of two drills differing in geometrical characteristics during the drilling of CFRP laminates. A number of drilling experiments were carried out with the aim to evaluate the drilling performance of different drill bits. A scanning electron microscope (SEM) was used to observe the drilled surfaces to study the surface roughness. A high frequency scanning acoustic microscope (SAM) was applied to characterize the drilled hole morphologies with a particular focus on the delamination damage occurring in the CFRP laminates. The obtained results indicate that the fiber orientation relative to the cutting direction is a key factor affecting hole morphology and hole wall defects can be reduced by utilizing specialized drill geometries. Moreover, the dagger drill was confirmed outperforming the brad spur drill from the aspect of reducing drilling-induced delamination.

  4. Drill cuttings mount formation study

    Science.gov (United States)

    Teh, Su Yean; Koh, Hock Lye

    2014-07-01

    Oil, Gas and Energy sector has been identified as an essential driving force in the Malaysian Economic Transformation Programs (ETP). Recently confirmed discovery of many offshore oil and gas deposits in Malaysian waters has ignited new confidence in this sector. However, this has also spurred intense interest on safeguarding the health and environment of coastal waters in Malaysia from adverse impact resulting from offshore oil and gas production operation. Offshore discharge of spent drilling mud and rock cuttings is the least expensive and simplest option to dispose of large volumes of drilling wastes. But this onsite offshore disposal may have adverse environmental impacts on the water column and the seabed. It may also pose occupational health hazards to the workers living in the offshore platforms. It is therefore important to model the transport and deposition of drilling mud and rock cuttings in the sea to enable proper assessment of their adverse impacts on the environment and the workers. Further, accumulation of drill particles on the seabed may impede proper operation of pipelines on the seabed. In this paper, we present an in-house application model TUNA-PT developed to cater to local oil and gas industry needs to simulate the dispersion and mount formation of drill cuttings by offshore oil and gas exploration and production platforms. Using available data on Malaysian coastal waters, simulation analyses project a pile formation on the seabed with a maximum height of about 1 m and pile radius of around 30 to 50 m. Simulated pile heights are not sensitive to the heights of release of the cuttings as the sensitivity has been mitigated by the depth of water.

  5. 30 CFR 250.458 - What quantities of drilling fluids are required?

    Science.gov (United States)

    2010-07-01

    ... OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations... the daily inventories of drilling fluid and drilling fluid materials, including weight materials and... drilling fluid material to maintain well control, you must suspend drilling operations. [68 FR 8423, Feb...

  6. ResonantSonic drilling: History, progress and advances in environmental restoration programs

    International Nuclear Information System (INIS)

    Volk, B.W.; McLellan, G.W.; Moak, D.J.; Lerch, R.E.; Thompson, K.M.; Barrow, J.C.

    1993-01-01

    ResonantSonic SM drilling is being used in the environmental industry to drill faster, cheaper, and safer than conventional drilling methodologies. ResonantSonic is a registered service mark of the Water Development Corporation, Woodland, California. The ResonantSonic drilling method, requires no mud, air or water for rapid penetration through geologic materials ranging from rock and clay to sand and boulders. The specialized drill head imparts high frequency vibrations into a steel drill pipe creating a drilling action which allows the retrieval of continuous, undisturbed cores. An added benefit is that the method can be used for angle drilling. The ReasonantSonic method has been used in the past for projects ranging from pile driving to horizontal drilling. Current programs are utilizing the technique as a valuable tool for obtaining in situ, pristine environmental samples. In the future, this drilling technology could be used for remote, automated sampling at hazardous waste sites

  7. A drilling mud for drilling wells in collapsing rocks

    Energy Technology Data Exchange (ETDEWEB)

    Bochkarev, G P; Anderson, B A; Minkhayrov, K A; Sharipov, A U

    1982-01-01

    In a known drilling mud for drilling wells in collapsing rocks, which contains clay, sodium silicate and polyacrylamide (PAA), in order to increase its specific electrical resistance and to increase the strengthening properties, a silicoorganic liquid is additionally introduced into its composition with the following component ratio (percent): clay, 5 to 7; sodium silicate, 5 to 7; polyacrylamide, 0.3 to 0.5; silicoorganic liquid, GKZh-94, 0.5 to 1.5 and water, the remainder. The GKZh-94 is a chemical compound based on alkylphenylchlorsilanes and substituted ethers of orthosilicic acid, used for waterproofing fabrics and soils. The addition of GKZh-94 provides the required values of the specific electric resistance of the mud and does not distort the gas logging indications. The proposed mud has low water production (4 to 6 cubic centimeters), optimal viscosity (25 to 31 seconds) and high structural and mechanical properties. Its strengthening properties are substantially above those of the known mud.

  8. New method speeds drilling, attracts takeover

    Energy Technology Data Exchange (ETDEWEB)

    Brimble, S.

    2000-06-12

    Plains Energy Services Ltd is currently building a prototype drilling rig known as the Cisco 2000. It is expected to extend the limit of coiled tubing applications into deeper formations and in so doing challenge conventional drilling methods to match its performance in terms of speed and pricing. An indication of the seriousness of this challenge is the uninvited takeover bid by Precision Drilling Corporation, the largest Canadian oilfield contractor. The Cisco 2000 is said to have a pulling capacity of 120,000 lbs in bench tests, twice as much as existing rigs, and is capable of drilling to 7,200 feet using a 3.5 inch coil. Plain Energy's existing units are capable of penetrating only about 4,900 feet. The new technology involves a modified injector design which will resemble a conveyor belt with the gripper blocks located on top. This allows the tubing to be gripped from all four sides which accounts for the increased pulling power. The advantage of coiled tube drilling lies in the speed with which the operation can be completed and the corresponding cost reductions which result from the reduced rental cost of support equipment. Plains Energy urged its shareholders to reject the takeover offer in its present form, but is said to be open to better offers.

  9. Multi-sensor measurement system for robotic drilling

    OpenAIRE

    Frommknecht, Andreas; Kühnle, Jens; Pidan, Sergej; Effenberger, Ira

    2015-01-01

    A multi-sensor measurement system for robotic drilling is presented. The system enables a robot to measure its 6D pose with respect to the work piece and to establish a reference coordinate system for drilling. The robot approaches the drill point and performs an orthogonal alignment with the work piece. Although the measurement systems are readily capable of achieving high position accuracy and low deviation to perpendicularity, experiments show that inaccuracies in the robot's 6D-pose and e...

  10. Project Deep Drilling KLX02 - Phase 2. Methods, scope of activities and results. Summary report

    International Nuclear Information System (INIS)

    Ekman, L.

    2001-04-01

    Geoscientific investigations performed by SKB, including those at the Aespoe Hard Rock Laboratory, have so far comprised the bedrock horizon down to about 1000 m. The primary purposes with the c. 1700 m deep, φ76 mm, sub vertical core borehole KLX02, drilled during the autumn 1992 at Laxemar, Oskarshamn, was to test core drilling technique at large depths and with a relatively large diameter and to enable geoscientific investigations beyond 1000 m. Drilling of borehole KLX02 was fulfilled very successfully. Results of the drilling commission and the borehole investigations conducted in conjunction with drilling have been reported earlier. The present report provides a summary of the investigations made during a five year period after completion of drilling. Results as well as methods applied are described. A variety of geoscientific investigations to depths exceeding 1600 m were successfully performed. However, the investigations were not entirely problem-free. For example, borehole equipment got stuck in the borehole at several occasions. Special investigations, among them a fracture study, were initiated in order to reveal the mechanisms behind this problem. Different explanations seem possible, e.g. breakouts from the borehole wall, which may be a specific problem related to the stress situation in deep boreholes. The investigation approach for borehole KLX02 followed, in general outline, the SKB model for site investigations, where a number of key issues for site characterization are studied. For each of those, a number of geoscientific parameters are investigated and determined. One important aim is to erect a lithological-structural model of the site, which constitutes the basic requirement for modelling mechanical stability, thermal properties, groundwater flow, groundwater chemistry and transport of solutes. The investigations in borehole KLX02 resulted in a thorough lithological-structural characterization of the rock volume near the borehole. In order to

  11. Project Deep Drilling KLX02 - Phase 2. Methods, scope of activities and results. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Ekman, L. [GEOSIGMA AB/LE Geokonsult AB, Uppsala (Sweden)

    2001-04-01

    Geoscientific investigations performed by SKB, including those at the Aespoe Hard Rock Laboratory, have so far comprised the bedrock horizon down to about 1000 m. The primary purposes with the c. 1700 m deep, {phi}76 mm, sub vertical core borehole KLX02, drilled during the autumn 1992 at Laxemar, Oskarshamn, was to test core drilling technique at large depths and with a relatively large diameter and to enable geoscientific investigations beyond 1000 m. Drilling of borehole KLX02 was fulfilled very successfully. Results of the drilling commission and the borehole investigations conducted in conjunction with drilling have been reported earlier. The present report provides a summary of the investigations made during a five year period after completion of drilling. Results as well as methods applied are described. A variety of geoscientific investigations to depths exceeding 1600 m were successfully performed. However, the investigations were not entirely problem-free. For example, borehole equipment got stuck in the borehole at several occasions. Special investigations, among them a fracture study, were initiated in order to reveal the mechanisms behind this problem. Different explanations seem possible, e.g. breakouts from the borehole wall, which may be a specific problem related to the stress situation in deep boreholes. The investigation approach for borehole KLX02 followed, in general outline, the SKB model for site investigations, where a number of key issues for site characterization are studied. For each of those, a number of geoscientific parameters are investigated and determined. One important aim is to erect a lithological-structural model of the site, which constitutes the basic requirement for modelling mechanical stability, thermal properties, groundwater flow, groundwater chemistry and transport of solutes. The investigations in borehole KLX02 resulted in a thorough lithological-structural characterization of the rock volume near the borehole. In order

  12. DEVELOPMENT OF QUARRY SOLUTION VERSION 1.0 FOR QUICK COMPUTATION OF DRILLING AND BLASTING PARAMETERS

    Directory of Open Access Journals (Sweden)

    B. ADEBAYO

    2014-10-01

    Full Text Available Computation of drilling cost, quantity of explosives and blasting cost are routine procedure in Quarry and all these parameters are estimated manually in most of the quarries in Nigeria. This paper deals with the development of application package QUARRY SOLUTION Version 1.0 for quarries using Visual Basic 6.0. In order to achieve this data were obtained from the quarry such as drilling and blasting activities. Also, empirical formulae developed by different researchers were used for computation of the required parameters viz: practical burden, spacing, length of hole, cost of drilling consumables, drilling cost, powder factor, quantity of column charge, total quantity of explosives, volume of blast and blasting cost. The output obtained from the software QUARRY SOLUTION Version 1.0 for length of drilling, drilling cost, total quantity of explosives, volume of blast and blasting cost were compared with the results manually computed for these routine parameters estimated during drilling and blasting operation in quarry, it was then discovered that they followed the same trend. The computation from the application package revealed that 611 blast-holes require 3326.71 kg of high explosives (166 cartons of explosives and 20147.2 kg of low explosives (806 bags of explosives. The total cost was computed to be N 5133999:50 ($ 32087.49. Moreover, the output showed that these routine parameters estimated during drilling and blasting could be computed within a short time frame using this QUARRY SOLUTION, therefore, improving productivity and efficiency. This application package is recommended for use in open-pit and quarries when all necessary inputs are supplied.

  13. 30 CFR 250.414 - What must my drilling prognosis include?

    Science.gov (United States)

    2010-07-01

    ...) Projected plans for logging; (c) Planned safe drilling margin between proposed drilling fluid weights and... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What must my drilling prognosis include? 250... OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations...

  14. Pulsed Nd:YAG laser beam drilling: A review

    Science.gov (United States)

    Gautam, Girish Dutt; Pandey, Arun Kumar

    2018-03-01

    Laser beam drilling (LBD) is one of non contact type unconventional machining process that are employed in machining of stiff and high-strength materials, high strength temperature resistance materials such as; metal alloys, ceramics, composites and superalloys. Most of these materials are difficult-to-machine by using conventional machining methods. Also, the complex and precise holes may not be obtained by using the conventional machining processes which may be obtained by using unconventional machining processes. The laser beam drilling in one of the most important unconventional machining process that may be used for the machining of these materials with satisfactorily. In this paper, the attention is focused on the experimental and theoretical investigations on the pulsed Nd:YAG laser drilling of different categories of materials such as ferrous materials, non-ferrous materials, superalloys, composites and Ceramics. Moreover, the review has been emphasized by the use of pulsed Nd:YAG laser drilling of different materials in order to enhance productivity of this process without adverse effects on the drilled holes quality characteristics. Finally, the review is concluded with the possible scope in the area of pulsed Nd:YAG laser drilling. This review work may be very useful to the subsequent researchers in order to give an insight in the area of pulsed Nd:YAG laser drilling of different materials and research gaps available in this area.

  15. 30 CFR 77.1007 - Drilling; general.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drilling; general. 77.1007 Section 77.1007 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Control § 77.1007 Drilling; general. (a) Equipment that is to be used during a shift shall be inspected...

  16. Novel annular flow electromagnetic measurement system for drilling engineering.

    OpenAIRE

    Ge, L.; Wei, G. H.; Wang, Q.; Hu, Z.; Li, J. L.

    2017-01-01

    Downhole micro-flux control drilling technology can effectively solve drilling accidents, such as kick and loss in narrow density window drilling scenarios. Using a downhole annular flow measurement system to obtain real-time information of downhole annular flow is the core and foundation of downhole micro-flux control drilling technology. The research work of electromagnetic flowmeters in recent years creates a challenge for downhole annular flow measurement. This paper proposes a new method...

  17. Drilling and blasting parameters in sublevel caving in Sheregesh mine

    Science.gov (United States)

    Eremenko, AA; Filippov, VN; Konurin, AI; Khmelinin, AP; Baryshnikov, DV; Khristolyubov, EA

    2018-03-01

    The factors that influence geomechanical state of rock mass in Sheregesh Mine are determined. The authors discuss a variant of geotechnology with fan drilling. The drill-hole patterns and drilling-and-blasting parameters are presented. The revealed causes of low-quality fragmentation of rocks include the presence of closed and open fractures at different distances from drill-hole mouths, both in case of rings and fans, as well as the blocking of drill-holes with rocks.

  18. Study on super-long deep-hole drilling of titanium alloy.

    Science.gov (United States)

    Liu, Zhanfeng; Liu, Yanshu; Han, Xiaolan; Zheng, Wencui

    2018-01-01

    In this study, the super-long deep-hole drilling of a titanium alloy was investigated. According to material properties of the titanium alloy, an experimental approach was designed to study three issues discovered during the drilling process: the hole-axis deflection, chip morphology, and tool wear. Based on the results of drilling experiments, crucial parameters for the super-long deep-hole drilling of titanium alloys were obtained, and the influences of these parameters on quality of the alloy's machining were also evaluated. Our results suggest that the developed drilling process is an effective method to overcome the challenge of super-long deep-hole drilling on difficult-to-cut materials.

  19. A Force Sensorless Method for CFRP/Ti Stack Interface Detection during Robotic Orbital Drilling Operations

    Directory of Open Access Journals (Sweden)

    Qiang Fang

    2015-01-01

    Full Text Available Drilling carbon fiber reinforced plastics and titanium (CFRP/Ti stacks is one of the most important activities in aircraft assembly. It is favorable to use different drilling parameters for each layer due to their dissimilar machining properties. However, large aircraft parts with changing profiles lead to variation of thickness along the profiles, which makes it challenging to adapt the cutting parameters for different materials being drilled. This paper proposes a force sensorless method based on cutting force observer for monitoring the thrust force and identifying the drilling material during the drilling process. The cutting force observer, which is the combination of an adaptive disturbance observer and friction force model, is used to estimate the thrust force. An in-process algorithm is developed to monitor the variation of the thrust force for detecting the stack interface between the CFRP and titanium materials. Robotic orbital drilling experiments have been conducted on CFRP/Ti stacks. The estimate error of the cutting force observer was less than 13%, and the stack interface was detected in 0.25 s (or 0.05 mm before or after the tool transited it. The results show that the proposed method can successfully detect the CFRP/Ti stack interface for the cutting parameters adaptation.

  20. Excavation and drilling at a spent-fuel test facility in granitic rock

    Energy Technology Data Exchange (ETDEWEB)

    Patrick, W.C.; Mayr, M.C.

    1981-10-01

    Funding for a project to test the feasibility of safe and reliable storage and retrieval of spent fuel from a commercial nuclear reactor was approved by the Department of Energy on June 2, 1978. By May 28, 1980, 11 spent-fuel assemblies had been emplaced 420 m below the surface in the Climax granitic stock at the Nevada Test Site. Design and construction of the Spent Fuel Test-Climax, including fuel emplacement, had taken less than two years, at a total cost of $18.4 million. Construction activities were preceded by geologic exploration using four cored holes and existing underground workings. The sinking of a 0.76-m-diam shaft to the 420-m level initiated construction at the site. Effective rates of sinking varied from 0.16 m/h with a rotary tricone drill to 0.5 m/h with a hammer drill. Underground excavation included a central canister-storage drift 4.6 x 6.1 x 64 m long, two parallel 3.4 x 3.4-m heater drifts, and a tail drift. About 6700 m{sup 3} were excavated at an average rate of 2 m{sup 3}/h, and 178 cored holes, with diameters from 38 to 152 mm, were drilled. A total length of nearly 1100 m was drilled at rates ranging from 0.4 m/h to 1 m/h, depending on hole size and drilling equipment. Eighteen 610-mm-diam canister emplacement holes were hammer-drilled at an average rate of 1.4 m/h. The use of the critical path method, integrated contractors, and close cooperation between project participants facilitated completion of the project on schedule.

  1. Excavation and drilling at a spent-fuel test facility in granitic rock

    International Nuclear Information System (INIS)

    Patrick, W.C.; Mayr, M.C.

    1981-10-01

    Funding for a project to test the feasibility of safe and reliable storage and retrieval of spent fuel from a commercial nuclear reactor was approved by the Department of Energy on June 2, 1978. By May 28, 1980, 11 spent-fuel assemblies had been emplaced 420 m below the surface in the Climax granitic stock at the Nevada Test Site. Design and construction of the Spent Fuel Test-Climax, including fuel emplacement, had taken less than two years, at a total cost of $18.4 million. Construction activities were preceded by geologic exploration using four cored holes and existing underground workings. The sinking of a 0.76-m-diam shaft to the 420-m level initiated construction at the site. Effective rates of sinking varied from 0.16 m/h with a rotary tricone drill to 0.5 m/h with a hammer drill. Underground excavation included a central canister-storage drift 4.6 x 6.1 x 64 m long, two parallel 3.4 x 3.4-m heater drifts, and a tail drift. About 6700 m 3 were excavated at an average rate of 2 m 3 /h, and 178 cored holes, with diameters from 38 to 152 mm, were drilled. A total length of nearly 1100 m was drilled at rates ranging from 0.4 m/h to 1 m/h, depending on hole size and drilling equipment. Eighteen 610-mm-diam canister emplacement holes were hammer-drilled at an average rate of 1.4 m/h. The use of the critical path method, integrated contractors, and close cooperation between project participants facilitated completion of the project on schedule

  2. Transphyseal ACL Reconstruction in Skeletally Immature Patients: Does Independent Femoral Tunnel Drilling Place the Physis at Greater Risk Compared With Transtibial Drilling?

    Science.gov (United States)

    Cruz, Aristides I; Lakomkin, Nikita; Fabricant, Peter D; Lawrence, J Todd R

    2016-06-01

    Most studies examining the safety and efficacy of transphyseal anterior cruciate ligament (ACL) reconstruction for skeletally immature patients utilize transtibial drilling. Independent femoral tunnel drilling may impart a different pattern of distal femoral physeal involvement. To radiographically assess differences in distal femoral physeal disruption between transtibial and independent femoral tunnel drilling. We hypothesized that more oblique tunnels associated with independent drilling involve a significantly larger area of physeal disruption compared with vertically oriented tunnels. Cross-sectional study; Level of evidence, 3. We analyzed skeletally immature patients aged between 10 and 15 years who underwent transphyseal ACL reconstruction utilizing an independent femoral tunnel drilling technique between January 1, 2008, and March 31, 2011. These patients were matched with a transtibial technique cohort based on age and sex. Radiographic measurements were recorded from preoperative magnetic resonance imaging and postoperative radiographs. Ten patients in each group were analyzed. There were significant differences between independent drilling and transtibial drilling cohorts in the estimated area of physeal disruption (1.64 vs 0.74 cm(2); P drilling technique disrupt a larger area of the distal femoral physis and create more eccentric tunnels compared with a transtibial technique. As most studies noting the safety of transphyseal ACL reconstruction have utilized a central, vertical femoral tunnel, surgeons should be aware that if an independent femoral tunnel technique is utilized during transphyseal ACL reconstruction, more physeal tissue is at risk and tunnels are more eccentrically placed across the physis when drilling at more horizontal angles. Prior studies have shown that greater physeal involvement and eccentric tunnels may increase the risk of growth disturbance.

  3. Electric motor for laser-mechanical drilling

    Science.gov (United States)

    Grubb, Daryl L.; Faircloth, Brian O.; Zediker, Mark S.

    2015-07-07

    A high power laser drilling system utilizing an electric motor laser bottom hole assembly. A high power laser beam travels within the electric motor for advancing a borehole. High power laser drilling system includes a down hole electrical motor having a hollow rotor for conveying a high power laser beam through the electrical motor.

  4. Mud pressure simulation on large horizontal directional drilling

    Energy Technology Data Exchange (ETDEWEB)

    Placido, Rafael R.; Avesani Neto, Jose O.; Martins, Pedro R.R.; Rocha, Ronaldo [Instituto de Pesquisas Tecnologicas do Estado de Sao Paulo (IPT), Sao Paulo, SP (Brazil)

    2009-07-01

    Horizontal Directional Drilling (HDD) is being extensively used in Brazil for installation of oil and gas pipelines. This trenchless technology is currently used in crossings of water bodies, environmental sensitive areas, densely populated areas, areas prone to mass movement and anywhere the traditional technology is not suitable because of the risks. One of the unwanted effects of HDD is collapsing of the soil surrounding the bore-hole, leading to loss of fluid. This can result in problems such as reducing the drilling efficiency, ground heave, structures damage, fluid infiltration and other environmental problems. This paper presents four simulations of down-hole fluid pressures which represents two different geometrical characteristics of the drilling and two different soils. The results showed that greater depths are needed in longer drillings to avoid ground rupture. Thus the end section of the drilling often represents the critical stage. (author)

  5. Regulation of Water Pollution from Hydraulic Fracturing in Horizontally-Drilled Wells in the Marcellus Shale Region, USA

    Directory of Open Access Journals (Sweden)

    Heather Hatzenbuhler

    2012-12-01

    Full Text Available Hydraulic fracturing is an industrial process used to extract fossil fuel reserves that lie deep underground. With the introduction of horizontal drilling, new commercial sources of energy have become available. Wells are drilled and injected with large quantities of water mixed with specially selected chemicals at high pressures that allow petroleum reserves to flow to the surface. While the increased economic activities and the outputs of domestic energy are welcomed, there is growing concern over negative environmental impacts from horizontal drilling in shale formations. The potential for water contamination, land destruction, air pollution, and geologic disruption has raised concerns about the merits of production activities used during extraction. This paper looks at the impacts of horizontal drilling using hydraulic fracturing on water supplies and takes a comprehensive look at legislative and regulatory approaches to mitigate environmental risks in the Marcellus shale region. The overview identifies shortcomings associated with regulatory controls by local and state governments and offers two policy suggestions to better protect waters of the region.

  6. A field investigation to determine the impact of offshore drilling activities on natural larval settlement

    International Nuclear Information System (INIS)

    Barnett, A.; Krause, P.R.; Raimondi, P.T.

    1995-01-01

    The authors used a manipulative field experiment to test the effects of offshore drilling activities on the natural settlement of invertebrate larvae in the deep ocean (180 m) off southern California. This experiment was conducted in conjunction with other in situ experiments at a series of three drilling rigs and three reference sites between Pt. Arguello and Pt. Conception. At each study site the authors exposed settling plates to the natural environment on moorings at each of two depths near the sea floor. The two mooring depths were used to simulate differences in natural relief found in the study area. These plates were covered with a mesh to allow only natural bacterial ''filming'' to occur and prevent settlement of larger invertebrate larvae. After filming the plates were transplanted to all sites near the bottom such that each site had plates filmed at all other sites. Sterile plates (without filming) were also placed at each site. Plates were left uncovered for periods up to three years. Settling plates were retrieved at specific intervals over the length of the experiment. Upon retrieval some plates were photographed and returned to the bottom, others were returned to the laboratory. The results showed that the overall settlement rate was very slow with little settlement occurring in the first 6 months of exposure. Settlement was higher in periods of exposure lasting between one and two years. The authors also found significant effects on the number and type of larvae that settled on the plates with respect to the location of the plates (rig vs. reference), and the height from the bottom where they were located

  7. MDS system increases drilling safety and efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Chevallier, J.; Turner, L. (Sedco Forex, Paris (FR))

    1989-09-01

    There's a great deal of data recorded during drilling operations on rigs these days, but it is seldom well utilized. The operator's company person relies upon mud loggers for collecting and recording most information. The methods used to process and display this information are often inadequate for those who need it the most the driller and toolpusher. Drilling contractor personnel usually have only rudimentary displays of drilling parameters, and practically no serious method of analysis except for daily paper reports. These are cumbersome to use and provide only incomplete data, after the fact. The MDS system, presented in this article, is a new information and alarm network, which rectifies this situation by bringing to the rig, for the first time, the latest in sensor and computer technologies. This system acquires key drilling data on the rig floor, pump room, and return line, and displays it in a clear graphical format to both the driller and the toolpusher in real time. It also provides the toolpusher with a workstation for easy access to the same information for evaluation and planning of the drilling program.

  8. 18 CFR 430.11 - Advance notice of exploratory drilling.

    Science.gov (United States)

    2010-04-01

    ... exploratory drilling. 430.11 Section 430.11 Conservation of Power and Water Resources DELAWARE RIVER BASIN... exploratory drilling. The Commission encourages consultation with any project sponsor who is considering... project and prior to initiation of exploratory drilling. (a) Any person, firm corporation or other entity...

  9. Comparison of peri-implant bone loss between conventional drilling with irrigation versus low-speed drilling without irrigation.

    Science.gov (United States)

    Pellicer-Chover, H; Peñarrocha-Oltra, D; Aloy-Prosper, A; Sanchis-Gonzalez, J-C; Peñarrocha-Diago, M-A; Peñarrocha-Diago, M

    2017-11-01

    To compare the technique of high speed drilling with irrigation and low speed drilling without irrigation in order to evaluate the success rate and peri-implant bone loss at 12 months of follow-up. A randomized, controlled, parallel-group clinical trial was carried out in patients requiring dental implants to rehabilitate their unitary edentulism. Patients were recruited from the Oral Surgery Unit of the University of Valencia (Spain) between September 2014 and August 2015. Patients who met the inclusion criteria were randomized to two groups: group A (high-speed drilling with irrigation) and group B (low-speed drilling without irrigation). The success rate and peri-implant bone loss were recorded at 12 months of follow-up. Twenty-five patients (9 men and 16 women) with 30 implants were enrolled in the study: 15 implants in group A and 15 implants in group B. The mean bone loss of the implants in group A and group B was 0.83 ± 0.73 mm and 0.62 ± 0.70 mm, respectively (p> 0.05). In the maxilla, the bone loss was 1.04 ± 0.63 mm in group A and 0.71 ± 0.36 mm in group B (p> 0.05), while bone loss in the mandible was 0.59 ± 0.80 mm in group A and 0.69 ± 0.77 mm in group B (p> 0.05). The implant success rate at 12 months was 93.3% in group A and 100% in group B. Within the limitations of the study, the low-speed drilling technique presented peri-implant bone loss outcomes similar to those of the conventional drilling technique at 12 months of follow-up.

  10. The use of drilling by the U.S. Antarctic program

    Energy Technology Data Exchange (ETDEWEB)

    Wade, M.C.; Webb, J.W.; Hedberg, W.H.

    1994-08-01

    This report on drilling in the Antarctic has been prepared by the U.S. National Science Foundation (NSF) to assist principal investigators and others in complying with the National Environmental Policy Act (NEPA) and the Antarctic Treaty of 1961. Implementing regulations for NEPA are spelled out in 40 CFR 1500-1508. Environmental protection under the Antarctic Treaty is addressed in the Protocol on Environmental Protection to the Antarctic Treaty (hereafter referred to as the Protocol), which was adopted by 26 countries in 1991. In the United States, responsibility for compliance with these requirements rests with the NSF Office of Polar Programs (OPP), which manages the U.S. Antarctic Program (USAP). The USAP recognizes the potentially profound impacts that its presence and activities can have on the antarctic environment. In its extensive support of operations and research in Antarctica, the USAP uses all practical means to foster and maintain natural conditions while supporting scientific endeavors in a safe and healthful manner. Reducing human impacts on the antarctic environment is a major goal of the USAP. The USAP`s operating philosophy is based on broad yet reasonable and practical assumptions concerning environmental protection. The USAP maintains three year-round stations on the continent to support scientific research. Research and associated support operations at these stations and camps sometimes involve drilling into ice, soil, or ocean sediments. In order to comply with NEPA and the Protocol, it is necessary for principal investigators and others to assess the environmental effects of drilling. This report has been prepared to assist in this process by describing various drilling technologies currently available for use in Antarctica, generally characterizing the potential environmental impacts associated with these drilling techniques, and identifying possible mitigation measures to reduce impacts.

  11. Drill machine guidance using natural occurring radiation

    International Nuclear Information System (INIS)

    Dahl, H.D.; Schroeder, R.L.; Williams, B.J.

    1980-01-01

    A drilling machine guidance system is described which uses only the naturally occuring radiation within the seam or stratum of interest. The apparatus can be used for guiding horizontal drilling machines through coal seams and the like. (U.K.)

  12. Catamaran type semisubmersible platform for offshore drilling

    Energy Technology Data Exchange (ETDEWEB)

    Pouget, G; Chevallier, J; Hampton, G

    1988-06-10

    A semi-submersible oil rig which allows the vertical storage of drilling tubes and drill pipes is presented. The structure which links the floaters to the bridge consists of hollow columns forming caissons and containing means for storing tubes.

  13. The LITA Drill and Sample Delivery System

    Science.gov (United States)

    Paulsen, G.; Yoon, S.; Zacny, K.; Wettergreeng, D.; Cabrol, N. A.

    2013-12-01

    The Life in the Atacama (LITA) project has a goal of demonstrating autonomous roving, sample acquisition, delivery and analysis operations in Atacama, Chile. To enable the sample handling requirement, Honeybee Robotics developed a rover-deployed, rotary-percussive, autonomous drill, called the LITA Drill, capable of penetrating to ~80 cm in various formations, capturing and delivering subsurface samples to a 20 cup carousel. The carousel has a built-in capability to press the samples within each cup, and position target cups underneath instruments for analysis. The drill and sample delivery system had to have mass and power requirements consistent with a flight system. The drill weighs 12 kg and uses less than 100 watt of power to penetrate ~80 cm. The LITA Drill auger has been designed with two distinct stages. The lower part has deep and gently sloping flutes for retaining powdered sample, while the upper section has shallow and steep flutes for preventing borehole collapse and for efficient movement of cuttings and fall back material out of the hole. The drill uses the so called 'bite-sampling' approach that is samples are taken in short, 5-10 cm bites. To take the first bite, the drill is lowered onto the ground and upon drilling of the first bite it is then retracted into an auger tube. The auger with the auger tube are then lifted off the ground and positioned next to the carousel. To deposit the sample, the auger is rotated and retracted above the auger tube. The cuttings retained on the flutes are either gravity fed or are brushed off by a passive side brush into the cup. After the sample from the first bite has been deposited, the drill is lowered back into the same hole to take the next bite. This process is repeated until a target depth is reached. The bite sampling is analogous to peck drilling in the machining process where a bit is periodically retracted to clear chips. If there is some fall back into the hole once the auger has cleared the hole, this

  14. Future scientific drilling in the Arctic Ocean: Key objectives, areas, and strategies

    Science.gov (United States)

    Stein, R.; Coakley, B.; Mikkelsen, N.; O'Regan, M.; Ruppel, C.

    2012-04-01

    In spite of the critical role of the Arctic Ocean in climate evolution, our understanding of the short- and long-term paleoceanographic and paleoclimatic history through late Mesozoic-Cenozoic times, as well as its plate-tectonic evolution, remains behind that from the other world's oceans. This lack of knowledge is mainly caused by the major technological/logistic problems in reaching this permanently ice-covered region with normal research vessels and in retrieving long and undisturbed sediment cores. With the Arctic Coring Expedition - ACEX (or IODP Expedition 302), the first Mission Specific Platform (MSP) expedition within IODP, a new era in Arctic research began (Backman, Moran, Mayer, McInroy et al., 2006). ACEX proved that, with an intensive ice-management strategy, successful scientific drilling in the permanently ice-covered central Arctic Ocean is possible. ACEX is certainly a milestone in Arctic Ocean research, but - of course - further drilling activities are needed in this poorly studied ocean. Furthermore, despite the success of ACEX fundamental questions related to the long- and short-term climate history of the Arctic Ocean during Mesozoic-Cenozoic times remain unanswered. This is partly due to poor core recovery during ACEX and, especially, because of a major mid-Cenozoic hiatus in this single record. Since ACEX, a series of workshops were held to develop a scientific drilling strategy for investigating the tectonic and paleoceanographic history of the Arctic Ocean and its role in influencing the global climate system: - "Arctic Ocean History: From Speculation to Reality" (Bremerhaven/Germany, November 2008); - "Overcoming barriers to Arctic Ocean scientific drilling: the site survey challenge" (Copenhagen/Denmark, November 2011); - Circum-Arctic shelf/upper continental slope scientific drilling workshop on "Catching Climate Change in Progress" (San Francisco/USA, December 2011); - "Coordinated Scientific Drilling in the Beaufort Sea: Addressing

  15. An Inexpensive Way of Teaching Uncertainty and Mineral Exploration Drilling in the Classroom

    Science.gov (United States)

    Aquino, J. S.

    2014-12-01

    This presentation is all about inexpensive ways of teaching uncertainty and mineral exploration drilling in the classroom. These labs were developed as an off-shoot of my years of mineral industry experience before I transitioned to geoscience education. I have developed several classroom lab exercises that relate to the role of modeling, uncertainty and prediction in mineral exploration. These lessons are mostly less expensive ($Early in the semester, modeling is explored through the cube and toilet paper roll puzzle lab. This is then immediately followed by the penny experiment that gives a physical meaning to the concept of uncertainty. However, it is the end-of-semester shoebox drilling lab that serves as the culminating activity for modeling, uncertainty and prediction. An object (orebody) is hidden inside a shoebox and the students are challenged to design a drilling program to predict the location and topology of a "mineral deposit". The students' decision on the location of the first few drill holes will be based on how they analyze, synthesize and evaluate simple surface topographic, geologic and geochemical +/- geophysical data overlain on top of the box. Before drilling, students are required to construct several geologic sections that will "model" the shape of the hidden orebody. Using bamboo skewers as their drilling equipment, students then commence their drilling and along the way learn the importance of drill spacing in decreasing uncertainty or increasing confidence. Lastly, the mineral separation lab gives them an opportunity to design another experiment that mimics mineral processing and learns a valuable lesson on the difficulties in recovery and how it relates to entropy (no such thing as 100% recoverability). The last two labs can be further enhanced with economic analysis through incorporation of drilling and processing costs. Students further appreciate the world of of mineral exploration with several YouTube videos on the use of 3D and 4D

  16. 2000 Western Canada activity forecast

    International Nuclear Information System (INIS)

    Kuntz, D.L.

    1999-10-01

    All wells drilled in Western Canada during the first nine months of 1999 are listed and sorted into 12 geographical areas used in the Petroleum Services Association of Canada (PSAC) well cost study. Each area represents wells of common drilling, production and depth characteristics. Area totals for well counts and meters drilled were determined from the sorting process. Previous years' activities are reviewed and various operators and PSAC members contacted to review upcoming programs. In addition, trends and other projections were consulted to develop an estimate of drilling activity for the rest of 1999 as well as a projection of drilling activity for 2000. The historical and projected drilling activities were tabulated and plotted for each area. Average drilling costs for each area were determined, and the total expenditures were calculated for each area by multiplying the the projected meterage by the adjusted drilling costs. All costs were allocated to various services and products utilizing percentages determined in the Well Cost Study. During the sorting process, a list was developed of the major operators in each area, which list is included in the report along with average depths and types of wells drilled by the various operators in each area. The costs included in the report include only drilling and completion operations, starting with the building of the location prior to drilling, and ending with the installation of the wellhead after construction. 5 tabs

  17. DALI - drilling advisor with logic interpretations: methodological issues for designing underbalanced drilling operations. Improving efficiency using case-based reasonic

    Energy Technology Data Exchange (ETDEWEB)

    Santana, Gustavo A.; Velazquez C, David [Mexican Oil Institute, Mexico DF (Mexico)

    2004-07-01

    A system that applies a method of knowledge-intensive case-based reasoning, for repair and prevention of unwanted events in the domain of offshore oil well drilling, has been developed in cooperation with an oil company. From several reoccurring problems during oil well drilling the problem of 'lost circulation', i.e. loss of circulating drilling fluid into the geological formation, was picked out as a pilot problem. An extensive general knowledge model was developed for the domain of oil well drilling. Different cases were created on the basis of information from one Mexican Gulf operator. When the completed CBR-system was tested against a new case, cases with descending similarity were selected by the tool. In an informal evaluation, the two best fitting cases proved to give the operator valuable advise on how to go about solving the new case (author)

  18. Single Piezo-Actuator Rotary-Hammering (SPaRH) Drill

    Science.gov (United States)

    Sherrit, Stewart (Inventor); Bao, Xiaoqi (Inventor); Badescu, Mircea (Inventor); Bar-Cohen, Yoseph (Inventor)

    2014-01-01

    A Single Piezo-Actuator Rotary-Hammering (SPaRH) Drill includes a horn actuator having high power piezoelectric materials and a flexure pre-stress to increase the actuators effectiveness. The drill is a low mass, low power, compact coring drill measuring 20-cm high by 7-cm diameter and having a total weight of 2 kg including drive electronics. Using an average power of 50-Watts, the drill basalt is expected to cut basalt at a rate of 0.2 cm/min down to depth of 10-cm and create cuttings and an intact core. The drill is expected to operate under different environments including Martian ambient (6 Torr and down to -50 degree C), and liquid nitrogen temperatures (77 K) and low pressure (<<1 Torr) to simulate lunar polar and Europa conditions. Materials expected to be sampled include Kaolinite, Saddleback Basalt, Limestone, Volcanic Breccia, Siltstone, ice, permafrost and layered rocks with different hardness.

  19. Advancing Understanding of Earthquakes by Drilling an Eroding Convergent Margin

    Science.gov (United States)

    von Huene, R.; Vannucchi, P.; Ranero, C. R.

    2010-12-01

    perhaps geologically than the Nankai margin. The developing Central American countries do not have the resources to contribute to IODP but this should not deter acquiring the scientific insights proposed in CRISP considering the broader scientific benefits. Such benefits include the first sampling and instrumentation of an actively eroding plate interface and drilling near or into an earthquake asperity. Drilling an eroding margin should significantly advance understanding of subduction zone fault mechanisms and help improve assessment of future hazardous earthquakes and tsunamis.

  20. Advanced Mud System for Microhole Coiled Tubing Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth Oglesby

    2008-12-01

    An advanced mud system was designed and key components were built that augment a coiled tubing drilling (CTD) rig that is designed specifically to drill microholes (less than 4-inch diameter) with advanced drilling techniques. The mud system was tailored to the hydraulics of the hole geometries and rig characteristics required for microholes and is capable of mixing and circulating mud and removing solids while being self contained and having zero discharge capability. Key components of this system are two modified triplex mud pumps (High Pressure Slurry Pumps) for advanced Abrasive Slurry Jetting (ASJ) and a modified Gas-Liquid-Solid (GLS) Separator for well control, flow return and initial processing. The system developed also includes an additional component of an advanced version of ASJ which allows cutting through most all materials encountered in oil and gas wells including steel, cement, and all rock types. It includes new fluids and new ASJ nozzles. The jetting mechanism does not require rotation of the bottom hole assembly or drill string, which is essential for use with Coiled Tubing (CT). It also has low reactive forces acting on the CT and generates cuttings small enough to be easily cleaned from the well bore, which is important in horizontal drilling. These cutting and mud processing components and capabilities compliment the concepts put forth by DOE for microhole coiled tubing drilling (MHTCTD) and should help insure the reality of drilling small diameter holes quickly and inexpensively with a minimal environmental footprint and that is efficient, compact and portable. Other components (site liners, sump and transfer pumps, stacked shakers, filter membranes, etc.. ) of the overall mud system were identified as readily available in industry and will not be purchased until we are ready to drill a specific well.

  1. Ellog Auger Drilling -"3-in-one" method for hydrogeological data collection

    DEFF Research Database (Denmark)

    Sørensen, Kurt; Larsen, Flemming

    1999-01-01

    The Ellog auger drilling method is an integrated approach for hydrogeological data collection during auger drilling in unconsolidated sediments. The drill stem is a continuous flight, hollow-stem auger with integrated electrical and gamma logging tools. The geophysical logging is performed...... continuously while drilling. Data processing is carried out in the field, and recorded log features are displayed as drilling advances. A slotted section in the stem, above the cutting head, allows anaerobic water and soil-gas samples to be taken at depth intervals of approximately 0.2 m. The logging, water......, and gas sampling instrumentation in the drill stem is removable; therefore, when the drill stem is pulled back, piezometers can be installed through the hollow stem. Cores of sediments can subsequently be taken continuously using a technique in which the drill bit can be reinserted after each coring...

  2. Enhancing down-the-hole air hammer capacity in directional drilling

    Science.gov (United States)

    Klishin, V. I.; Timonin, V. V.; Kokoulin, D. I.; Alekseev, S. E.; Kubanychbek, B.

    2017-09-01

    The authors discuss the issue connected with drilling trajectory deviation and present the technique of rotary-percussion drilling with a down-the-hole air hammer. The article describes pilot testing of the air hammer drill PNB76 in Berezovskaya Mine. The ways of improving the air hammer drill are identified, and the basic diagram and R&D test data are given.

  3. Hole quality and burr reduction in drilling aluminium sheets

    DEFF Research Database (Denmark)

    Pilny, Lukas; De Chiffre, Leonardo; Piska, Miroslav

    2011-01-01

    Optimization of the metal drilling process requires creation of minimum amount of burrs and uniform appearance of the drilled holes. In this paper, an experimental investigation was performed on 2 mm sheets of wrought aluminium alloy Al99.7Mg0.5Cu-H24, using 1.6 and 2 mm diameter drills. Cutting...... data, clamping conditions, and drill geometry were varied in order to optimize the process and reach the desired quality. The results revealed possible reduction of burr occurrence on both the entry and exit side of the sheet, requiring no additional deburring. The demand on the uniform appearance...... of drilled holes was fulfilled as well as high productivity achieved. Such optimized process results in a noticeable production cost reduction....

  4. Hole quality and burr reduction in drilling aluminium sheets

    DEFF Research Database (Denmark)

    Pilny, Lukas; De Chiffre, Leonardo; Piska, Miroslav

    2012-01-01

    Optimization of the metal drilling process requires creation of minimum amount of burrs and uniform appearance of the drilled holes. In this paper, an experimental investigation was performed on 2 mm sheets of wrought aluminium alloy Al99.7Mg0.5Cu-H24, using 1.6 and 2 mm diameter drills. Cutting...... data, clamping conditions, and drill geometry were varied in order to optimize the process and reach the desired quality. The results revealed possible reduction of burr occurrence on both the entry and exit side of the sheet, requiring no additional deburring. The demand on the uniform appearance...... of drilled holes was fulfilled as well as high productivity achieved. Such optimized process results in a noticeable production cost reduction....

  5. Downhole drilling hammer. Marteau de forage

    Energy Technology Data Exchange (ETDEWEB)

    Techy, M.

    1987-07-28

    This invention concerns a drilling hammer of the downhole type, comprising a tubular body fed by compressed air, a drilling cutter and a hammer piston set into movement inside an interior cylinder by a compressed air distribution mechanism alternately above and below the piston. The hammer includes a gas-oil injection device in the chamber above the piston and a mechanism for initiating the injection during the rising of the piston; the additional compression provokes the combustion of the gas-oil-air mixture, which hurls the piston towards the cutter. This type of apparatus permits an important reduction in costs of materials and of operation, and permits at the same time an increase in drilling power and a reduction in energy consumption. 8 figs.

  6. Initial report on drilling into seismogenic zones of M2.0 - M5.5 earthquakes from deep South African gold mines (DSeis)

    Science.gov (United States)

    Ogasawara, Hiroshi; Durrheim, Raymond; Yabe, Yasuo; Ito, Takatoshi; van Aswegen, Gerrie; Grobbelaar, Michelle; Funato, Akio; Ishida, Akimasa; Ogasawara, Hiroyuki; Mngadi, Siyanda; Manzi, Musa; Ziegler, Martin; Ward, Tony; Moyer, Pamela; Boettcher, Margaret; Ellsworth, Bill; Liebenberg, Bennie; Wechsler, Neta; Onstott, Tullis; Berset, Nicolas

    2017-04-01

    other holes at the M3.5 seismogenic zone. As we successfully conducted DCDA with the above-mentioned drilled core, we look forward to shedding light on spatial variations of stress in the seismogenic zones following our ICDP DSeis drilling. A M5.5 earthquake which took place near Orkney, South Africa on 5 August 2014, offers a special opportunity to compare seismically inverted spatio-temporal evolution of both the main rupture and the aftershock activity with the information directly probed by the ICDP DSeis project. Moyer et al. (2016 Seismol. Res. Lett. submitted) calls for comparing seismic source models as part of a workshop proposed to the Southern California Earthquake Center for Fall 2017. In addition, the upper edge of the M5.5 rupture is located hundreds of meters below the mining horizon, sufficiently away from anthropogenic activity. This allows geomicrobiologists to investigate deep microbiological activity fueled by H2 from seismic rupture to address questions about Earth's early life. Drilling machines are being rigged underground soon to kick off our ICDP DSeis drilling in early 2017.

  7. Perturbation of seafloor bacterial community structure by drilling waste discharge.

    Science.gov (United States)

    Nguyen, Tan T; Cochrane, Sabine K J; Landfald, Bjarne

    2018-04-01

    Offshore drilling operations result in the generation of drill cuttings and localized smothering of the benthic habitats. This study explores bacterial community changes in the in the upper layers of the seafloor resulting from an exploratory drilling operation at 1400m water depth on the Barents Sea continental slope. Significant restructurings of the sediment microbiota were restricted to the sampling sites notably affected by the drilling waste discharge, i.e. at 30m and 50m distances from the drilling location, and to the upper 2cm of the seafloor. Three bacterial groups, the orders Clostridiales and Desulfuromonadales and the class Mollicutes, were almost exclusively confined to the upper two centimeters at 30m distance, thereby corroborating an observed increase in anaerobicity inflicted by the drilling waste deposition. The potential of these phylogenetic groups as microbial bioindicators of the spatial extent and persistence of drilling waste discharge should be further explored. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Articulated elevator links for top drive drill rig

    Energy Technology Data Exchange (ETDEWEB)

    Krasnov, I.

    1988-12-27

    This patent describes for a drill rig having a derrick, a drive head assembly suspended in the derrick having a drive stem for connection to and for rotating a string of drill pipe, an improved means for connecting a stand of the drill pipe to the drive stem, comprising in combination: a pair of upper link sections, each pivotally suspended from the drive head assembly and having a lower end; a pair of lower link sections, each having an upper end pivotally connected to one of the lower ends of the upper link sections and each having a lower end; a set of elevators mounted to lower ends of the lower link sections for clamping about the stand of drill pipe; upper lifting means connected between the upper link sections and the drive head assembly for pivoting the upper link sections relative to the drive head assembly; and lowering lifting means connected between the upper and lower link sections for pivoting the lower link sections relative to the upper link sections for lifting the elevators upward relative to the drive head assembly to engage the stand of drill pipe with the drive stem. The patent also describes a method for connecting a stand of the drill pipe to the drive stem.

  9. Growth in the measurement-while-drilling sector continues

    International Nuclear Information System (INIS)

    Hall, G.T.

    1991-01-01

    This book reports that the measurement while drilling (MWD) market is showing some of the most impressive growth in the oil field. Tremendous improvements in the reliability and capability of MWD tools have spurred the expansion of this market. During 1990, the worldwide MWD market expanded by 48%, rising from $250 million in 1989 to $370 million in 1990. The MWD market should expand 15-20% to exceed $430 million in 1991. Although an expansion of 15-20% is considered good, further growth will be impeded by the slowdown of drilling in the Gulf of Mexico. Total market growth should return to greater than 20% per year in 1992 and 1993. MWD technology is in the midst of a rapid adaptation phase, led by expansion of formation evaluation and other logs and by international expansion in long-reach directional and horizontal drilling. The formation evaluation-while- drilling market will have minimal impact on the size and growth of the wire line market. Customers will increasingly employ teams which include drilling and petrophysics personnel to make MWD purchase decisions. Integration of performance drilling systems including all bottom hole components will accelerate because of increases in automation and the need for cost reduction

  10. 46 CFR 111.105-33 - Mobile offshore drilling units.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Mobile offshore drilling units. 111.105-33 Section 111... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous Locations § 111.105-33 Mobile offshore drilling units. (a) Applicability. This section applies to each mobile offshore drilling unit. (b) Definitions. As used in this...

  11. Crosswell Imaging Technology & Advanced DSR Navigation for Horizontal Directional Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Larry Stolarczyk

    2008-08-08

    The objective of Phase II is to develop and demonstrate real-time measurement-while-drilling (MWD) for guidance and navigation of drill strings during horizontal drilling operations applicable to both short and long holes. The end product of Phase II is a functional drill-string assembly outfitted with a commercial version of Drill String Radar (DSR). Project Objectives Develop and demonstrate a dual-phase methodology of in-seam drilling, imaging, and structure confirmation. This methodology, illustrated in Figure 1, includes: (1) Using RIM to image between drill holes for seam thickness estimates and in-seam structures detection. Completed, February 2005; and (2) Using DSR for real-time MWD guidance and navigation of drillstrings during horizontal drilling operations. Completed, November 2008. As of November 2008, the Phase II portion of Contract DE-FC26-04NT42085 is about 99% complete, including milestones and tasks original outlined as Phase II work. The one percent deficiency results from MSHA-related approvals which have yet to be granted (at the time of reporting). These approvals are pending and are do not negatively impact the scope of work or project objectives.

  12. Modelling and monitoring of drilling discharges in the Barents Sea

    International Nuclear Information System (INIS)

    Lie, H.N.; Hasle, J.R.; Thorbjoernsen, K.

    1994-01-01

    The conference paper deals with the modelling and monitoring of seabed distribution of drill cuttings and drilling mud has being performed as part of the environmental programme for exploration in the Western Barents Sea in 1992. Modelling prior to drilling was based on experience well data and historical current measurement from the region. The modelling was repeated after drilling, based on measured discharge quantities and particle sizes, and measured current during the drilling period, giving less local sedimentation and distribution over a much wider area. According to the modelling only 1% of the drilling mud baryte would settle within 1000 m from the drilling platform, resulting in a very thin sediment layer (0.05 μm). 53% of the baryte would spread more than 10 km. The modelling results were confirmed by sediment analyses, which showed that the drilling discharges increased the sediment barium content by 10% at distance 250 to 1000 m from the platform, corresponding to a 0.5 μm baryte top layer. Reason for the wide distribution and limited local sedimentation may be tidal current dominance and large water depth (373 m). 9 refs., 5 figs., 4 tabs

  13. Exploring thermal anisotropy of cortical bone using temperature measurements in drilling.

    Science.gov (United States)

    Alam, Khurshid

    2016-05-12

    Bone drilling is widely used in orthopaedics for fracture treatment, reconstructive surgery and bone biopsy. Heat generation in bone drilling can cause rise in bone temperature resulting in prolonged healing time or loosening of fixation. The purpose of this study was to investigate thermal anisotropy of bone by measuring the level of temperature in bone drilling with and without cooling conditions in two anatomical directions. Drilling tests were performed on bovine cortical bone. A total of fifteen specimens were used to obtain data for statistical analysis. Temperature near the cutting zone was measured in two anatomical directions. i.e. along the longitudinal and circumferential direction. Temperature distribution was also found in the two prescribed directions. Analysis of variance (ANOVA) was used to identify significant drilling parameter affecting bone temperature. Drilling speed, feed rate and drill size were found influential parameters affecting bone temperature. Higher drilling speed, feed rate, and large drill size were found to cause elevated temperature in bone. Much lower temperature was measured in bone when cooling fluid was supplied to the drilling region. Experimental results revealed lower temperatures in the circumferential direction compared to the longitudinal direction. Thermal anisotropy for heat transport was found in the bone. This study recommends lower drilling speed and feed rate and cooling for controlling rise in bone temperature.

  14. Influence of drilling muds on the primary chemosensory neurons in walking legs of the lobster, Homarus americanus

    Energy Technology Data Exchange (ETDEWEB)

    Derby, C D; Atema, J

    1981-01-01

    The effects of whole drilling muds on the normal activity of walking leg chemosensory neurons of the lobster, Homarus americanus, were examined using extracellular neurophysiological recording techniques. Exposure of legs for 3-5 min to 10 mg/L drilling mud suspended in seawater altered responses to food odors of 29% of the chemoreceptors examined (data pooled for the two drilling muds tested); similar exposure to 100 mg/L drilling mud resulted in interference with 44% of all receptors studied. The effects of both of these concentrations are statistically significant, although they are not different from each other. Interference was usually manifested as a marked reduction in the number of action potentials in a response. In one preparation, the exposure to drilling mud caused a change in the temporal pattern of the spikes without affecting the total number of spikes. Other chemosensory neurons were excited by 10 mg/L drilling mud itself. However, not all chemoreceptors are inhibited by these drilling muds since responses to feeding stimuli were recorded from the legs of lobsters that had been exposed to drilling mud for 4-8 d before the neurophysiological experiments. Antennular and leg chemoreceptors are important in eliciting normal feeding behavior in lobsters. Although behavioral assays have demonstrated that feeding behavior is altered following exposure to drilling muds and petroleum fractions, there is no conclusive proof for a causal relationship between chemoreceptor interference and behavior deficits. The two techniques complement each other as pollution detection assays, perhaps reflecting a common interference mechanism. 42 references, 4 figures, 2 tables.

  15. Development of a jet-assisted polycrystalline diamond drill bit

    Energy Technology Data Exchange (ETDEWEB)

    Pixton, D.S.; Hall, D.R.; Summers, D.A.; Gertsch, R.E.

    1997-12-31

    A preliminary investigation has been conducted to evaluate the technical feasibility and potential economic benefits of a new type of drill bit. This bit transmits both rotary and percussive drilling forces to the rock face, and augments this cutting action with high-pressure mud jets. Both the percussive drilling forces and the mud jets are generated down-hole by a mud-actuated hammer. Initial laboratory studies show that rate of penetration increases on the order of a factor of two over unaugmented rotary and/or percussive drilling rates are possible with jet-assistance.

  16. Addressing submarine geohazards through scientific drilling

    Science.gov (United States)

    Camerlenghi, A.

    2009-04-01

    Natural submarine geohazards (earthquakes, volcanic eruptions, landslides, volcanic island flank collapses) are geological phenomena originating at or below the seafloor leading to a situation of risk for off-shore and on-shore structures and the coastal population. Addressing submarine geohazards means understanding their spatial and temporal variability, the pre-conditioning factors, their triggers, and the physical processes that control their evolution. Such scientific endeavour is nowadays considered by a large sector of the international scientific community as an obligation in order to contribute to the mitigation of the potentially destructive societal effects of submarine geohazards. The study of submarine geohazards requires a multi-disciplinary scientific approach: geohazards must be studied through their geological record; active processes must be monitored; geohazard evolution must be modelled. Ultimately, the information must be used for the assessment of vulnerability, risk analysis, and development of mitigation strategies. In contrast with the terrestrial environment, the oceanic environment is rather hostile to widespread and fast application of high-resolution remote sensing techniques, accessibility for visual inspection, sampling and installation of monitoring stations. Scientific Drilling through the IODP (including the related pre site-survey investigations, sampling, logging and in situ measurements capability, and as a platform for deployment of long term observatories at the surface and down-hole) can be viewed as the centre of gravity of an international, coordinated, multi-disciplinary scientific approach to address submarine geohazards. The IODP Initial Science Plan expiring in 2013 does not address openly geohazards among the program scientific objectives. Hazards are referred to mainly in relation to earthquakes and initiatives towards the understanding of seismogenesis. Notably, the only drilling initiative presently under way is the

  17. In-vitro analysis of forces in conventional and ultrasonically assisted drilling of bone.

    Science.gov (United States)

    Alam, K; Hassan, Edris; Imran, Syed Husain; Khan, Mushtaq

    2016-05-12

    Drilling of bone is widely performed in orthopaedics for repair and reconstruction of bone. Current paper is focused on the efforts to minimize force generation during the drilling process. Ultrasonically Assisted Drilling (UAD) is a possible option to replace Conventional Drilling (CD) in bone surgical procedures. The purpose of this study was to investigate and analyze the effect of drilling parameters and ultrasonic parameters on the level of drilling thrust force in the presence of water irrigation. Drilling tests were performed on young bovine femoral bone using different parameters such as spindle speeds, feed rates, coolant flow rates, frequency and amplitudes of vibrations. The drilling force was significantly dropped with increase in drill rotation speed in both types of drilling. Increase in feed rate was more influential in raising the drilling force in CD compared to UAD. The force was significantly dropped when ultrasonic vibrations up to 10 kHz were imposed on the drill. The drill force was found to be unaffected by the range of amplitudes and the amount of water supplied to the drilling region in UAD. Low frequency vibrations with irrigation can be successfully used for safe and efficient drilling in bone.

  18. Radon/radium detection increases uranium drilling effectiveness

    International Nuclear Information System (INIS)

    Morse, R.H.; Cook, L.M.

    1979-01-01

    The use of portable radon detectors has become routine in reconnaissance uranium surveys where water and sediment samples are analyzed in field labs for radon and radium, and in detailed work where drill hole locations are pinpointed by field determinations of radon in soil gas from shallow holes. During the drilling program itself, however, very few operators are taking advantage of radon and radium analyses to decide whether a barren drill hole was a near miss or whether the immediate area can be written off. The technique, which is outlined here, is effective both above and below the water table

  19. Integrated core-log interpretation of Wenchuan earthquake Fault Scientific Drilling project borehole 4 (WFSD-4)

    Science.gov (United States)

    Konaté, Ahmed Amara; Pan, Heping; Ma, Huolin; Qin, Zhen; Traoré, Alhouseiny

    2017-08-01

    Understanding slip behavior of active fault is a fundamental problem in earthquake investigations. Well logs and cores data provide direct information of physical properties of the fault zones at depth. The geological exploration of the Wenchuan earthquake Scientific Fault drilling project (WFSD) targeted the Yingxiu-Beichuan fault and the Guanxian Anxian fault, respectively. Five boreholes (WFSD-1, WFSD-2, WFSD-3P WFSD-3 and WFSD-4) were drilled and logged with geophysical tools developed for the use in petroleum industry. WFSD-1, WFSD-2 and WFSD-3 in situ logging data have been reported and investigated by geoscientists. Here we present for the first time, the integrated core-log studies in the Northern segment of Yingxiu-Beichuan fault (WFSD-4) thereby characterizing the physical properties of the lithologies(original rocks), fault rocks and the presumed slip zone associated with the Wenchuan earthquake. We also present results from the comparison of WFSD-4 to those obtained from WFSD-1, WFSD-3 and other drilling hole in active faults. This study show that integrated core-log study would help in understanding the slip behavior of active fault.

  20. 30 CFR 56.7050 - Tool and drill steel racks.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tool and drill steel racks. 56.7050 Section 56.7050 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Jet Piercing Drilling § 56.7050 Tool and drill steel racks. Receptacles or racks shall be provided for...

  1. Usefulness of temporal bone prototype for drilling training: A prospective study.

    Science.gov (United States)

    Aussedat, C; Venail, F; Nguyen, Y; Lescanne, E; Marx, M; Bakhos, D

    2017-12-01

    Dissection of cadaveric temporal bones (TBs) is considered the gold standard for surgical training in otology. For many reasons, access to the anatomical laboratory and cadaveric TBs is difficult for some facilities. The aim of this prospective and comparative study was to evaluate the usefulness of a physical TB prototype for drilling training in residency. Prospective study. Tertiary referral centre. Thirty-four residents were included. Seventeen residents (mean age 26.7±1.6) drilled on only cadaveric TBs ("traditional" group), in the traditional training method, while seventeen residents (mean age 26.5±1.7) drilled first on a prototype and then on a cadaveric TB ("prototype" group). Drilling performance was assessed using a validated scale. Residents completed a mastoid image before and after each drilling to enable evaluation of mental representations of the mastoidectomy. No differences were observed between the groups with respect to age, drilling experience and level of residency. Regarding drilling performance, we found a significant difference across the groups, with a better score in the prototype group (P=.0007). For mental representation, the score was statistically improved (P=.0003) after drilling in both groups, suggesting that TB drilling improves the mental representation of the mastoidectomy whether prototype or cadaveric TB is used. The TB prototype improves the drilling performance and mental representation of the mastoidectomy in the young resident population. A drilling simulation with virtual or physical systems seems to be a beneficial tool to improve TB drilling. © 2017 John Wiley & Sons Ltd.

  2. Accounting for the temperature conditions during deep prospecting hole drilling

    Energy Technology Data Exchange (ETDEWEB)

    Shcherban, A N; Cheniak, V P; Zolotarenko, U P

    1977-01-01

    A methodology is described for calculating and controlling the temperature in inclined holes in order to establish a non-steady-state heat exchange between the medium circulating in the hole, and the construction components and rock. In order to verify the proposed methodology, the temperature of the drilling fluid is measured directly during the drilling process using a specially-designed automatic device which is lowered into the hole with the drilling string and turned on automatically at a given depth. This device makes it possible to record the drilling fluid temperature on magnetic tape, and convert the sensor signals arriving from the drilling string and the annular space. A comparison of calculation and experimental data confirmed the sufficiently high accuracy of the methods for predicting the thermal conditions in drilling deep prospecting holes.

  3. Polymer Drilling Fluid with Micron-Grade Cenosphere for Deep Coal Seam

    Directory of Open Access Journals (Sweden)

    Peng Xu

    2015-01-01

    Full Text Available Traditional shallow coal seam uses clean water, solid-free system, and foam system as drilling fluid, while they are not suitable for deep coal seam drilling due to mismatching density, insufficient bearing capacity, and poor reservoir protection effect. According to the existing problems of drilling fluid, micron-grade cenosphere with high bearing capacity and ultralow true density is selected as density regulator; it, together with polymer “XC + CMC” and some other auxiliary agents, is jointly used to build micron-grade polymer drilling fluid with cenosphere which is suitable for deep coal seam. Basic performance test shows that the drilling fluid has good rheological property, low filtration loss, good density adjustability, shear thinning, and thixotropy; besides, drilling fluid flow is in line with the power law rheological model. Compared with traditional drilling fluid, dispersion stability basically does not change within 26 h; settlement stability evaluated with two methods only shows a small amount of change; permeability recovery rate evaluated with Qinshui Basin deep coal seam core exceeds 80%. Polymer drilling fluid with cenosphere provides a new thought to solve the problem of drilling fluid density and pressure for deep coal seam drilling and also effectively improves the performance of reservoir protection ability.

  4. Built-up edge investigation in vibration drilling of Al2024-T6.

    Science.gov (United States)

    Barani, A; Amini, S; Paktinat, H; Fadaei Tehrani, A

    2014-07-01

    Adding ultrasonic vibrations to drilling process results in an advanced hybrid machining process, entitled "vibration drilling". This study presents the design and fabrication of a vibration drilling tool by which both rotary and vibrating motions are applied to drill simultaneously. High frequency and low amplitude vibrations were generated by an ultrasonic transducer with frequency of 19.65 kHz. Ultrasonic transducer was controlled by a MPI ultrasonic generator with 3 kW power. The drilling tool and workpiece material were HSS two-flute twist drill and Al2024-T6, respectively. The aim of this study was investigating on the effect of ultrasonic vibrations on built-up edge, surface quality, chip morphology and wear mechanisms of drill edges. Therefore, these factors were studied in both vibration and ordinary drilling. Based on the achieved results, vibration drilling offers less built-up edge and better surface quality compared to ordinary drilling. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Insights into the radial water jet drilling technology – Application in a quarry

    Directory of Open Access Journals (Sweden)

    Thomas Reinsch

    2018-04-01

    Full Text Available In this context, we applied the radial water jet drilling (RJD technology to drill five horizontal holes into a quarry wall of the Gildehaus quarry close to Bad Bentheim, Germany. For testing the state-of-the-art jetting technology, a jetting experiment was performed to investigate the influence of geological heterogeneity on the jetting performance and the hole geometry, the influence of nozzle geometry and jetting pressure on the rate of penetration, and the possibility of localising the jetting nozzle utilizing acoustic activity. It is observed that the jetted holes can intersect fractures under varying angles, and the jetted holes do not follow a straight path when jetting at ambient surface condition. Cuttings from the jetting process retrieved from the holes can be used to estimate the reservoir rock permeability. Within the quarry, we did not observe a change in the rate of penetration due to jetting pressure variations. Acoustic monitoring was partially successful in estimating the nozzle location. Although the experiments were performed at ambient surface conditions, the results can give recommendations for a downhole application in deep wells. Keywords: Acoustic monitoring, Drilling performance, Trajectory, Permeability, Rock properties, Radial water jet drilling (RJD

  6. Geologic and geophysical data for wells drilled at Raft River Valley, Cassia County, Idaho, in 1977-1978 and data for wells drilled previously

    Science.gov (United States)

    Nathenson, Manuel; Urban, Thomas C.; Covington, Harry R.

    2014-01-01

    In order to better define the size of the thermal anomaly in the Raft River Valley, Idaho, the U.S. Geological Survey drilled a series of intermediate-depth (nominal 500-ft depth) wells in 1977 and 1978.  This report presents geologic, geophysical, and temperature data for these drill holes, along with data for five wells drilled by the Idaho National Engineering Laboratory with U.S. Department of Energy Funding.  Data previously reported for other drill holes are also included in order to make them available as digital files.

  7. Drilling electrode for real-time measurement of electrical impedance in bone tissues.

    Science.gov (United States)

    Dai, Yu; Xue, Yuan; Zhang, Jianxun

    2014-03-01

    In order to prevent possible damages to soft tissues, reliable monitoring methods are required to provide valuable information on the condition of the bone being cut. This paper describes the design of an electrical impedance sensing drill developed to estimate the relative position between the drill and the bone being drilled. The two-electrode method is applied to continuously measure the electrical impedance during a drill feeding movement: two copper wire brushes are used to conduct electricity in the rotating drill and then the drill is one electrode; a needle is inserted into the soft tissues adjacent to the bone being drilled and acts as another electrode. Considering that the recorded electrical impedance is correlated with the insertion depth of the drill, we theoretically calculate the electrode-tissue contact impedance and prove that the rate of impedance change varies considerably when the drill bit crosses the boundary between two different bone tissues. Therefore, the rate of impedance change is used to determine whether the tip of the drill is located in one of cortical bone, cancellous bone, and cortical bone near a boundary with soft tissue. In vitro experiments in porcine thoracic spines were performed to demonstrate the feasibility of the impedance sensing drill. The experimental results indicate that the drill, used with the proposed data-processing method, can provide accurate and reliable breakthrough detection in the bone-drilling process.

  8. Response of Nitrobacter to toxicity of drilling chemicals

    International Nuclear Information System (INIS)

    Okpokwasili, Gideon C.; Odokuma, Lucky O.

    1996-01-01

    The effect of drilling chemicals on nitrate utilization and logarithmic rate of growth of Nitrobacter was investigated using varying concentrations of the chemicals. Results indicated that all the drilling chemicals tested were inhibitory to nitrate utilization and caused decrease in growth rate of Nitrobacter. An increase in nitrite utilization by Nitrobacter with increase in exposure time to the chemicals was observed. Nitrite utilization decreased with increase in concentration of the chemicals. Some concentrations of drilling chemicals stimulated the growth rate of Nitrobacter as exposure time increased. Inhibition of nitrite utilization was greatest with Carbotrol and least with Chaux (lime) and Huile-clean. These results showed that drilling chemicals inhibit an aspect of nitrification in the biosphere thereby negatively affecting soil and water fertility

  9. Seismic Prediction While Drilling (SPWD): Seismic exploration ahead of the drill bit using phased array sources

    Science.gov (United States)

    Jaksch, Katrin; Giese, Rüdiger; Kopf, Matthias

    2010-05-01

    In the case of drilling for deep reservoirs previous exploration is indispensable. In recent years the focus shifted more on geological structures like small layers or hydrothermal fault systems. Beside 2D- or 3D-seismics from the surface and seismic measurements like Vertical Seismic Profile (VSP) or Seismic While Drilling (SWD) within a borehole these methods cannot always resolute this structures. The resolution is worsen the deeper and smaller the sought-after structures are. So, potential horizons like small layers in oil exploration or fault zones usable for geothermal energy production could be failed or not identified while drilling. The application of a device to explore the geology with a high resolution ahead of the drill bit in direction of drilling would be of high importance. Such a device would allow adjusting the drilling path according to the real geology and would minimize the risk of discovery and hence the costs for drilling. Within the project SPWD a device for seismic exploration ahead of the drill bit will be developed. This device should allow the seismic exploration to predict areas about 50 to 100 meters ahead of the drill bit with a resolution of one meter. At the GFZ a first prototype consisting of different units for seismic sources, receivers and data loggers has been designed and manufactured. As seismic sources four standard magnetostrictive actuators and as receivers four 3-component-geophones are used. Every unit, actuator or geophone, can be rotated in steps of 15° around the longitudinal axis of the prototype to test different measurement configurations. The SPWD prototype emits signal frequencies of about 500 up to 5000 Hz which are significant higher than in VSP and SWD. An increased radiation of seismic wave energy in the direction of the borehole axis allows the view in areas to be drilled. Therefore, every actuator must be controlled independently of each other regarding to amplitude and phase of the source signal to

  10. The Iceland Deep Drilling Project (IDDP): (I) Status and Future Plans.

    Science.gov (United States)

    Elders, W. A.; Fridleifsson, G. O.; Bird, D. K.; Schiffman, P.; Zierenberg, R.; Reed, M. H.

    2006-12-01

    The IDDP represents a challenging step forward in the worldwide development of geothermal energy by assessing the potential of power production from natural supercritical fluids. A feasibility study in 2003 concluded that in order to reach fluids at temperatures of >400°C drilling to depths of 4 to 5 km is necessary, but the resultant superheated steam should have a power output ten times that of conventional subcritical steam with the same volumetric flow rate. A consortium of leading Icelandic energy companies together with a government agency, the Icelandic Energy Authority, is carrying out the IDDP. In late 2003 a member of the consortium offered a planned exploratory well to the IDDP for deepening. This is in a geothermal system that produces hydrothermally modified seawater on the Reykjanes peninsula, in southern Iceland, where the Mid-Atlantic Ridge comes on land. Processes at depth at Reykjanes should be similar to those responsible for black smokers on ocean spreading centers. This well reached 3.1 km in February 2005, and research on the downhole samples began. Unfortunately the well became plugged during a flow test and was abandoned in February 2006 after attempts to recondition it failed. This led to the IDDP deciding to move the site for the first deep borehole to Krafla, near the northern end of the central rift zone of Iceland, within a volcanic caldera that has had recent volcanic activity. The Krafla geothermal system has higher temperature gradients than at Reykjanes but produces hydrothermally modified meteoric water with magmatic gases. The drill site chosen is near an existing well that encountered 340°C at only 2.5 km depth. It will be rotary drilled with spot coring to 3.5 km depth, and then deepened to ~4.5 km, using continuous wireline coring for scientific purposes. However, given the competition for drilling rigs internationally, and the year-long lead times in obtaining specialized well casings, it will be a year before IDDP begins

  11. Hydraulics calculation in drilling simulator

    Science.gov (United States)

    Malyugin, Aleksey A.; Kazunin, Dmitry V.

    2018-05-01

    The modeling of drilling hydraulics in the simulator system is discussed. This model is based on the previously developed quasi-steady model of an incompressible fluid flow. The model simulates the operation of all parts of the hydraulic drilling system. Based on the principles of creating a common hydraulic model, a set of new elements for well hydraulics was developed. It includes elements that correspond to the in-drillstring and annular space. There are elements controlling the inflow from the reservoir into the well and simulating the lift of gas along the annulus. New elements of the hydrosystem take into account the changing geometry of the well, loss in the bit, characteristics of the fluids including viscoplasticity. There is an opportunity specify the complications, the main one of which is gas, oil and water inflow. Correct work of models in cases of complications makes it possible to work out various methods for their elimination. The coefficients of the model are adjusted on the basis of incomplete experimental data provided by operators of drilling platforms. At the end of the article the results of modeling the elimination of gas inflow by a continuous method are presented. The values displayed in the simulator (drill pipe pressure, annulus pressure, input and output flow rates) are in good agreement with the experimental data. This exercise took one hour, which is less than the time on a real rig with the same configuration of equipment and well.

  12. Numerical modelling of cuttings transport in horizontal wells using conventional drilling fluids

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.; Bjorndalen, E.; Kuru, E. [Alberta Univ., Edmonton, AB (Canada)

    2004-07-01

    Some of the problems associated with poor wellbore cleaning include high drag or torque, slower rate of penetration, formation fractures and difficulty in wellbore steering. Some of the factors that affect cuttings transport include drilling fluid velocity, inclination angle, drilling fluid viscosity and drilling rate. The general practice is to stop drilling when necessary to clean boreholes with viscous pills, pipe rotation or drilling fluid circulation. It is important to predict when drilling should be stopped for remedial wellbore cleaning. This can be accomplished with a transient cuttings transport model which can improve drilling hydraulics, particularly in long horizontal well sections and extended reach (ERD) wells. This paper presents a newly developed 1-dimensional transient mechanistic model of cuttings transport with conventional (incompressible) drilling fluids in horizontal wells. The numerically solved model predicts the height of cutting beds as a function of different drilling operational parameters such as fluid flow rate and rheological characteristics, drilling rates, wellbore geometry and drillpipe eccentricity. Sensitivity analysis has demonstrated the effects of these parameters on the efficiency of solids transport. The proposed model can be used in the creation of computer programs designed to optimize drilling fluid rheology and flow rates for horizontal well drilling. 29 refs., 3 tabs., 12 figs.

  13. DEVELOPMENT OF QUARRY SOLUTION VERSION 1.0 FOR QUICK COMPUTATION OF DRILLING AND BLASTING PARAMETERS

    OpenAIRE

    B. ADEBAYO; A. W. BELLO

    2014-01-01

    Computation of drilling cost, quantity of explosives and blasting cost are routine procedure in Quarry and all these parameters are estimated manually in most of the quarries in Nigeria. This paper deals with the development of application package QUARRY SOLUTION Version 1.0 for quarries using Visual Basic 6.0. In order to achieve this data were obtained from the quarry such as drilling and blasting activities. Also, empirical formulae developed by different researchers were used for computat...

  14. ROP MATHEMATICAL MODEL OF ROTARY-ULTRASONIC CORE DRILLING OF BRITTLE MATERIAL

    Directory of Open Access Journals (Sweden)

    Mera Fayez Horne

    2017-03-01

    Full Text Available The results from the Phoenix mission led scientists to believe it is possible that primitive life exists below the Martian surface. Therefore, drilling in Martian soil in search for organisms is the next logical step. Drilling on Mars is a major engineering challenge due to the drilling depth requirement and extreme environment condition. Mars lacks a thick atmosphere and a continuous magnetic field that shield the planet’s surface from solar radiation and solar flares. As a result, the Martian surface is sterile and if life ever existed, it must be found below the surface. NASA’s Mars Exploration Payload Advisory Group proposed that drilling should be considered as a priority investigation on Mars in an effort of finding evidence of extinct or extant life. The results from the Curiosity mission suggested drilling six meters deep in the red planet in search for life. Excavation tools deployed to Mars so far have been able to drill to a maximum depth of 6.5 cm. Thus, the drilling capabilities need to be increased by a factor of approximately 100 to achieve the goal of drilling six meters deep. This requirement puts a demand on developing new and more effective technologies to reach this goal. Previous research shows evidence of a promising drilling mechanism in rotary-ultrasonic for what it offers in terms of high surface quality, faster rate of penetration and higher material removal rate. This research addresses the need to understand the mechanics of the drill bit tip and rock interface in rotary-ultrasonic drilling performance of one drill bit at a time drilling in three types of rocks that vary in strength. A mathematical model identifying all contributing independent parameters, such as drill bit design parameters, drilling process parameters, ultrasonic wave amplitude and rocks’ material properties, that have effect on rate of penetration is developed. Analytical and experimental results under ambient condition are presented to show

  15. Parameter definition using vibration prediction software leads to significant drilling performance improvements

    Energy Technology Data Exchange (ETDEWEB)

    Amorim, Dalmo; Hanley, Chris Hanley; Fonseca, Isaac; Santos, Juliana [National Oilwell Varco, Houston TX (United States); Leite, Daltro J.; Borella, Augusto; Gozzi, Danilo [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    The understanding and mitigation of downhole vibration has been a heavily researched subject in the oil industry as it results in more expensive drilling operations, as vibrations significantly diminish the amount of effective drilling energy available to the bit and generate forces that can push the bit or the Bottom Hole Assembly (BHA) off its concentric axis of rotation, producing high magnitude impacts with the borehole wall. In order to drill ahead, a sufficient amount of energy must be supplied by the rig to overcome the resistance of the drilling system, including the reactive torque of the system, drag forces, fluid pressure losses and energy dissipated by downhole vibrations, then providing the bit with the energy required to fail the rock. If the drill string enters resonant modes of vibration, not only does it decreases the amount of available energy to drill, but increases the potential for catastrophic downhole equipment and drilling bit failures. In this sense, the mitigation of downhole vibrations will result in faster, smoother, and cheaper drilling operations. A software tool using Finite Element Analysis (FEA) has been developed to provide better understanding of downhole vibration phenomena in drilling environments. The software tool calculates the response of the drilling system at various input conditions, based on the design of the wellbore along with the geometry of the Bottom Hole Assembly (BHA) and the drill string. It identifies where undesired levels of resonant vibration will be driven by certain combinations of specific drilling parameters, and also which combinations of drilling parameters will result in lower levels of vibration, so the least shocks, the highest penetration rate and the lowest cost per foot can be achieved. With the growing performance of personal computers, complex software systems modeling the drilling vibrations using FEA has been accessible to a wider audience of field users, further complimenting with real time

  16. Clean subglacial access: prospects for future deep hot-water drilling

    Science.gov (United States)

    Pearce, David; Hodgson, Dominic A.; Smith, Andrew M.; Rose, Mike; Ross, Neil; Mowlem, Matt; Parnell, John

    2016-01-01

    Accessing and sampling subglacial environments deep beneath the Antarctic Ice Sheet presents several challenges to existing drilling technologies. With over half of the ice sheet believed to be resting on a wet bed, drilling down to this environment must conform to international agreements on environmental stewardship and protection, making clean hot-water drilling the most viable option. Such a drill, and its water recovery system, must be capable of accessing significantly greater ice depths than previous hot-water drills, and remain fully operational after connecting with the basal hydrological system. The Subglacial Lake Ellsworth (SLE) project developed a comprehensive plan for deep (greater than 3000 m) subglacial lake research, involving the design and development of a clean deep-ice hot-water drill. However, during fieldwork in December 2012 drilling was halted after a succession of equipment issues culminated in a failure to link with a subsurface cavity and abandonment of the access holes. The lessons learned from this experience are presented here. Combining knowledge gained from these lessons with experience from other hot-water drilling programmes, and recent field testing, we describe the most viable technical options and operational procedures for future clean entry into SLE and other deep subglacial access targets. PMID:26667913

  17. 46 CFR 199.180 - Training and drills.

    Science.gov (United States)

    2010-10-01

    ... problems of hypothermia, first aid treatment for hypothermia, and other appropriate first aid procedures... 46 Shipping 7 2010-10-01 2010-10-01 false Training and drills. 199.180 Section 199.180 Shipping... LIFESAVING SYSTEMS FOR CERTAIN INSPECTED VESSELS Requirements for All Vessels § 199.180 Training and drills...

  18. Second half work to boost 1991 drilling in the U.S

    International Nuclear Information System (INIS)

    Petzet, G.A.

    1991-01-01

    This paper reports that U.S. well completions in 1991 will increase about 8% compared with 1990 if operators stick with present spending plans during the second half. Operators are expected to realize $76.4 billion in wellhead revenues this year, 10.7% less than the 1990 estimate. However, they are expected to invest a larger share of those revenues in drilling this year than they did in 1990. With less than half the year remaining, here is Oil and Gas Journal's updated look at 1991 U.S. drilling: The rotary rig count will average 1,050, up from last year's average of 1,010. Operators will drill about 31,654 oil wells, gas wells, and dry holes compared with an estimated 29,170 drilled in 1990. Exploratory drilling will decline to 5,711 wildcats. Total footage drilled will exceed 152 million ft of hole; average well depth is expected to be about 4,805 ft. Major oil companies drilled 2,602 wells in the U.S. during first half 1991 and plan to drill 2,569 the rest of this year. Meanwhile, drilling in western Canada will likely total 5,900 wells this year

  19. Computer-Supplemented Structural Drill Practice Versus Computer-Supplemented Semantic Drill Practice by Beginning College German Students: A Comparative Experiment

    Science.gov (United States)

    1979-01-01

    610p ,/ VERSU OLEV EV, COMPUTER-SUPPLEMENTED STRUCTURAL DRILL PRACTICE OVERSUS -0MPUTER-SUPPLEMENTED SEMANTIC DRILL PRACTICE BY BEGINNING COLLGE ...refine a student’s capabilities to do specific mental/or physical performance" (p. 26). The same statement of purpose would obviously apply if the terms

  20. How do jet time, pressure and bone volume fraction influence the drilling depth when waterjet drilling in porcine bone?

    NARCIS (Netherlands)

    den Dunnen, Steven; Dankelman, Jenny; Kerkhoffs, Gino M. M. J.; Tuijthof, Gabrielle J. M.

    2016-01-01

    Using water jets for orthopedic procedures that require bone drilling can be beneficial due to the absence of thermal damage and the always sharp cut. Previously, the influence of the water jet diameter and bone architectural properties on the drilling depth have been determined. To develop water

  1. Method and apparatus for determining fluid circulation conditions in well drilling operations

    Energy Technology Data Exchange (ETDEWEB)

    Gehrig, G.F.; Speers, J.M.

    1986-09-09

    A system is described for monitoring the delta flow-rate of drilling fluid in the course of circulating drilling fluid through a well from a drilling rig, comprising: an inflow flowmeter adapted for establishing a first signal representing the rate at which drilling fluid is injected into the well from the drilling rig; an outflow flowmeter adapted for establishing a second signal representing the rate at which drilling fluid is returned to the drilling rig from the well; and a signal processing system adapted for receiving the first and second signals and calculating a third signal representing the filtered difference between the first and second signals, the signal processing system being adapted to repeatedly update the degree of filtering applied in calculating the third signal in accordance with a relation serving to increase the degree of filtering in response to an increase in the magnitude of the cyclical variations in the rate at which drilling fluid is returned to the drilling rig and to decrease the degree of filtering in response to a decrease in the magnitude of the cyclical variations in the rate at which drilling fluid is returned to the drilling rig.

  2. Research on technical and technological parameters of inclined drilling

    Directory of Open Access Journals (Sweden)

    М. В. Двойников

    2017-03-01

    Analysis of investigation results showed that the main source of oscillations is linked to bending and compressing stresses, caused by well deviations as well as rigidity of the drilling tool. In effect, in the bottom-hole assembly occur auto-oscillations, making it impossible to correct azimuth and zenith angles. Alteration of rigidity in the bottom part of the tool and drilling parameters, implying reduced rotation speed of the drill string and regulation of drill bit pressure, can partially solve this problem, though increase in rotation speed is limited by technical characteristics of existing top drive systems.

  3. 30 CFR 250.462 - What are the requirements for well-control drills?

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What are the requirements for well-control... Other Drilling Requirements § 250.462 What are the requirements for well-control drills? You must conduct a weekly well-control drill with each drilling crew. Your drill must familiarize the crew with its...

  4. A reagent for processing drilling muds

    Energy Technology Data Exchange (ETDEWEB)

    Polyakov, G.A.; Khon-Pak, A.T.; Khon, A.V.; Normatov, L.N.; Telegin, B.V.

    1983-01-01

    A reagent is proposed for processing drilling muds. It contains an acrylic polymer and potassium permanganate. The reagent is distinguished by the fact that in order to improve the quality of the drilling muds by increasing their salt resistance, the reagent contains hydrolized nitron fiber as the acrylic polymer with the following component relationship (in percent by weight): potassium permanganate, 0.015 to 0.065 and hydrolyzed nitron fiber, the remainder.

  5. Hydraulic lifter for an underwater drilling rig

    Energy Technology Data Exchange (ETDEWEB)

    Garan' ko, Yu L

    1981-01-15

    A hydraulic lifter is suggested for an underwater drilling rig. It includes a base, hydraulic cylinders for lifting the drilling pipes connected to the clamp holder and hydraulic distributor. In order to simplify the design of the device, the base is made with a hollow chamber connected to the rod cavities and through the hydraulic distributor to the cavities of the hydraulic cylinders for lifting the drilling pipes. The hydraulic distributor is connected to the hydrosphere through the supply valve with control in time or by remote control. The base is equipped with reverse valves whose outlets are on the support surface of the base.

  6. Monitoring of drilling process with the application of acoustic signal

    Directory of Open Access Journals (Sweden)

    Labaš Milan

    2000-09-01

    Full Text Available Monitoring of rock disintegration process at drilling, scanning of input quantities: thrust F, revolution n and the course of some output quantities: the drilling rate v and the power input P are needed for the control of this process. We can calculate the specific volume work of rock disintegration w and ϕ - quotient of drilling rate v and the specific volume work of disintegration w from the presented quantities.Works on an expertimental stand showed that the correlation relationships between the input and output quantities can be found by scanning the accompanying sound of the drilling proces.Research of the rock disintegration with small-diameter diamond drill tools and different rock types is done at the Institute of Geotechnics. The aim of this research is the possibility of monitoring and controlling the rock disintegration process with the application of acoustic signal. The acoustic vibrations accompanying the drilling process are recorded by a microphone placed in a defined position in the acoustic space. The drilling device (drilling stand, the drilling tool and the rock are the source of sound. Two basic sound states exist in the drilling stand research : the noise at no-load running and the noise at the rotary drilling of rock. Suitable quantities for optimizing the rock disintegration process are searched by the study of the acoustic signal. The dominant frequencies that characterize the disintegration process for the given rock and tool are searched by the analysis of the acoustic signal. The analysis of dominant frequencies indicates the possibility of determining an optimal regime for the maximal drilling rate. Extreme of the specific disintegration energy is determinated by the dispersion of the dominant frequency.The scanned acoustic signal is processed by the Fourier transformation. The Fourier transformation facilitates the distribution of the general non-harmonic periodic process into harmonic components. The harmonic

  7. A method for automated processing of measurement information during mechanical drilling

    Energy Technology Data Exchange (ETDEWEB)

    Samonenko, V.I.; Belinkov, V.G.; Romanova, L.A.

    1984-01-01

    An algorithm is cited for a developed method for automated processing of measurement information during mechanical drilling. Its use in conditions of operation of an automated control system (ASU) from drilling will make it possible to precisely identify a change in the lithology, the physical and mechanical and the abrasive properties, in the stratum (pore) pressure in the rock being drilled out during mechanical drilling, which along with other methods for testing the drilling process will increase the reliability of the decisions made.

  8. Benchmarking Distance Control and Virtual Drilling for Lateral Skull Base Surgery.

    Science.gov (United States)

    Voormolen, Eduard H J; Diederen, Sander; van Stralen, Marijn; Woerdeman, Peter A; Noordmans, Herke Jan; Viergever, Max A; Regli, Luca; Robe, Pierre A; Berkelbach van der Sprenkel, Jan Willem

    2018-01-01

    Novel audiovisual feedback methods were developed to improve image guidance during skull base surgery by providing audiovisual warnings when the drill tip enters a protective perimeter set at a distance around anatomic structures ("distance control") and visualizing bone drilling ("virtual drilling"). To benchmark the drill damage risk reduction provided by distance control, to quantify the accuracy of virtual drilling, and to investigate whether the proposed feedback methods are clinically feasible. In a simulated surgical scenario using human cadavers, 12 unexperienced users (medical students) drilled 12 mastoidectomies. Users were divided into a control group using standard image guidance and 3 groups using distance control with protective perimeters of 1, 2, or 3 mm. Damage to critical structures (sigmoid sinus, semicircular canals, facial nerve) was assessed. Neurosurgeons performed another 6 mastoidectomy/trans-labyrinthine and retro-labyrinthine approaches. Virtual errors as compared with real postoperative drill cavities were calculated. In a clinical setting, 3 patients received lateral skull base surgery with the proposed feedback methods. Users drilling with distance control protective perimeters of 3 mm did not damage structures, whereas the groups using smaller protective perimeters and the control group injured structures. Virtual drilling maximum cavity underestimations and overestimations were 2.8 ± 0.1 and 3.3 ± 0.4 mm, respectively. Feedback methods functioned properly in the clinical setting. Distance control reduced the risks of drill damage proportional to the protective perimeter distance. Errors in virtual drilling reflect spatial errors of the image guidance system. These feedback methods are clinically feasible. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. GEO-ECOLOGICAL PROBLEMS OF DRILLING WASTE DISPOSAL IN THE YAMAL PENINSULA

    Directory of Open Access Journals (Sweden)

    Oreshkin Dmitrij Vladimirovich

    2012-10-01

    Full Text Available Crude oil and gas fields are located in remote areas known for their severe geological and climatic conditions that are aggravated by the presence of the paleocrystic frozen rock. Borehole drilling causes generation of the substantial amount of drilling waste. The sludge weighs millions of tons. Any rock is to remain frozen at any drilling site in the Yamal peninsula. Semifluid drilling waste occupies extensive areas around drilling sites; they prevent development of the surface infrastructure, they interfere with the work of drilling technicians and contribute to hazardous working conditions, they are a challenge to the local ecology. The above factors produce a negative impact on the environment and prevent sustainable development of the region. For example, disposal of drilling waste at condensed gas fields operated in the Yamal peninsula represents a substantial problem. Drilling waste contains drilling fluid used in the process of borehole drilling. It was discovered in the course of the preliminary research that drilling fluids were composite suspensions that contained bentonite, heavy spar, caustic soda, dilutants, and polymers. It was found out that the sludge was composed of silica, calcite, dolomite, aragonite, magnesite, some feldspars, heavy spar, gypsum and anhydrite, micas, hydromicas, clay minerals. Projections provided in the paper say that pre-neutralized sludge may be used in the manufacturing of building materials, such as bricks, claydite, small-size building units, etc. The authors argue that further research of the sludge elements and microstructure, as well as its chemical, mineral, granulometric and X-ray phase analyses need to be performed.

  10. Core drilling of drillholes OL-PP66-69 at Olkiluoto 2008

    International Nuclear Information System (INIS)

    Kuusirati, J.; Tarvainen, A.-M.

    2009-04-01

    Suomen Malmi Oy (Smoy) core drilled four 24.88 - 25.39 m long investigation drillholes at Olkiluoto in June 2008. The identification numbers of the holes are OL-PP66, OL-PP67, OL-PP68 and OL-PP69. The drillholes are 75.7 mm by diameter. Drillholes were core drilled with the diamond drill rig Diamec 1000. The drilling water was taken from the ONKALO drilling water pipeline and premixed sodium fluorescein was used as a label agent in the drilling water. The labelled drilling water was driven to the drilling places in a tank. In addition to drilling the drill cores were logged and reported by geologist. During geological investigation the following parameters were logged: lithology, foliation, fracture parameters, fractured zones, core loss, weathering, fracture frequency, RQD and rock quality. The main rock types in the drillholes are diatexitic and veined gneisses and pegmatitic granite. The average fracture frequency in holes varied from 3.9 pcs/m to 5.8 pcs/m. The average RQD values varied from 84 % to 93 %. In the drillhole OL-PP66 two fractured zones were penetrated and in OL-PP69 one fractured zone. The drill cores OL-PP67 and OL-PP68 showed no fractured zones. Smoy also carried out optical imaging of the drillholes. The assignment included the field work and the data processing. This report describes the field operation, the equipment as well as the processing procedures and shows the obtained results and their quality. The raw and processed data are delivered digitally in WellCAD and PDF format. (orig.)

  11. Drilling in tempered glass – modelling and experiments

    DEFF Research Database (Denmark)

    Nielsen, Jens Henrik

    The present paper reports experimentally and numerically obtained results for the process of drilling in tempered glass. The experimental results are drilling depths on the edge in 19mm tempered glass with a known residual stress state measured by a scattered light polariscope. The experiments have...... been modelled using a state-of-the-art model and compared with satisfying result to the performed experiments. The numerical model has been used for a parametric study, investigating the redistribution of residual stresses during the process of drilling. This is done for investigating the possibility...... of applying forces in such holes and thereby being able to mechanically assemble tempered glass without the need of drilling holes before the tempering process. The paper is the result of currently ongoing research and the results should be treated as so....

  12. Investigation on the Effect of a Pre-Center Drill Hole and Tool Material on Thrust Force, Surface Roughness, and Cylindricity in the Drilling of Al7075.

    Science.gov (United States)

    Ghasemi, Amir Hossein; Khorasani, Amir Mahyar; Gibson, Ian

    2018-01-16

    Drilling is one of the most useful metal cutting processes and is used in various applications, such as aerospace, electronics, and automotive. In traditional drilling methods, the thrust force, torque, tolerance, and tribology (surface roughness) are related to the cutting condition and tool geometry. In this paper, the effects of a pre-center drill hole, tool material, and drilling strategy (including continuous and non-continuous feed) on thrust force, surface roughness, and dimensional accuracy (cylindricity) have been investigated. The results show that using pre-center drill holes leads to a reduction of the engagement force and an improvement in the surface quality and cylindricity. Non-continuous drilling reduces the average thrust force and cylindricity value, and High Speed Steels HSS-Mo (high steel speed + 5-8% Mo) reduces the maximum quantity of cutting forces. Moreover, cylindricity is directly related to cutting temperature and is improved by using a non-continuous drilling strategy.

  13. Investigation on the Effect of a Pre-Center Drill Hole and Tool Material on Thrust Force, Surface Roughness, and Cylindricity in the Drilling of Al7075

    Directory of Open Access Journals (Sweden)

    Amir Hossein Ghasemi

    2018-01-01

    Full Text Available Drilling is one of the most useful metal cutting processes and is used in various applications, such as aerospace, electronics, and automotive. In traditional drilling methods, the thrust force, torque, tolerance, and tribology (surface roughness are related to the cutting condition and tool geometry. In this paper, the effects of a pre-center drill hole, tool material, and drilling strategy (including continuous and non-continuous feed on thrust force, surface roughness, and dimensional accuracy (cylindricity have been investigated. The results show that using pre-center drill holes leads to a reduction of the engagement force and an improvement in the surface quality and cylindricity. Non-continuous drilling reduces the average thrust force and cylindricity value, and High Speed Steels HSS-Mo (high steel speed + 5–8% Mo reduces the maximum quantity of cutting forces. Moreover, cylindricity is directly related to cutting temperature and is improved by using a non-continuous drilling strategy.

  14. Automatic identification of otological drilling faults: an intelligent recognition algorithm.

    Science.gov (United States)

    Cao, Tianyang; Li, Xisheng; Gao, Zhiqiang; Feng, Guodong; Shen, Peng

    2010-06-01

    This article presents an intelligent recognition algorithm that can recognize milling states of the otological drill by fusing multi-sensor information. An otological drill was modified by the addition of sensors. The algorithm was designed according to features of the milling process and is composed of a characteristic curve, an adaptive filter and a rule base. The characteristic curve can weaken the impact of the unstable normal milling process and reserve the features of drilling faults. The adaptive filter is capable of suppressing interference in the characteristic curve by fusing multi-sensor information. The rule base can identify drilling faults through the filtering result data. The experiments were repeated on fresh porcine scapulas, including normal milling and two drilling faults. The algorithm has high rates of identification. This study shows that the intelligent recognition algorithm can identify drilling faults under interference conditions. (c) 2010 John Wiley & Sons, Ltd.

  15. Uniaxial Compressive Strengths of Rocks Drilled at Gale Crater, Mars

    Science.gov (United States)

    Peters, G. H.; Carey, E. M.; Anderson, R. C.; Abbey, W. J.; Kinnett, R.; Watkins, J. A.; Schemel, M.; Lashore, M. O.; Chasek, M. D.; Green, W.; Beegle, L. W.; Vasavada, A. R.

    2018-01-01

    Measuring the physical properties of geological materials is important for understanding geologic history. Yet there has never been an instrument with the purpose of measuring mechanical properties of rocks sent to another planet. The Mars Science Laboratory (MSL) rover employs the Powder Acquisition Drill System (PADS), which provides direct mechanical interaction with Martian outcrops. While the objective of the drill system is not to make scientific measurements, the drill's performance is directly influenced by the mechanical properties of the rocks it drills into. We have developed a methodology that uses the drill to indicate the uniaxial compressive strengths of rocks through comparison with performance of an identically assembled drill system in terrestrial samples of comparable sedimentary class. During this investigation, we utilize engineering data collected on Mars to calculate the percussive energy needed to maintain a prescribed rate of penetration and correlate that to rock strength.

  16. Simulation of friction stir drilling process

    Science.gov (United States)

    Vijayabaskar, P.; Hynes, N. Rajesh Jesudoss

    2018-05-01

    The project is the study of the thermal drilling process. The process is a hole forming process in the sheet metals using the heat generated by means of friction. The main advantage of the process over the conventional drilling process is that the holes formed using this process does not need any backing arrangements such as weld nuts, rivet nuts etc. Because the extruded bush itself acts as a supporting structure for the fasteners. This eliminates the need for the access to the backside of the work material for fastening operations. The major factors contributing the thermal drilling operation are the spindle speed and the thrust force required for forming a hole. The process of finding out the suitable thrust force and the speed for drilling a particular material with particular thickness is a tedious process. The process can be simplified by forming a mathematical model by combining the empirical formulae from the literature. These formulae were derived in the literature from the experimental trials by following certain assumptions. In this paper a suitable mathematical model is formed by replicating the experiments and tried to be validated by the results from numerical analysis. The numerical analysis of the model is done using the ANSYS software.

  17. Basic Land Drills for Swimming Stroke Acquisition

    Science.gov (United States)

    Zhang, Peng

    2014-01-01

    Teaching swimming strokes can be a challenging task in physical education. The purpose of the article is to introduce 12 on land drills that can be utilized to facilitate the learning of swimming strokes, including elementary back stroke, sidestroke, front crawl, back stroke, breaststroke, and butterfly. Each drill consists of four components…

  18. Small subchondral drill holes improve marrow stimulation of articular cartilage defects.

    Science.gov (United States)

    Eldracher, Mona; Orth, Patrick; Cucchiarini, Magali; Pape, Dietrich; Madry, Henning

    2014-11-01

    Subchondral drilling is an established marrow stimulation technique. Osteochondral repair is improved when the subchondral bone is perforated with small drill holes, reflecting the physiological subchondral trabecular distance. Controlled laboratory study. A rectangular full-thickness chondral defect was created in the trochlea of adult sheep (n = 13) and treated with 6 subchondral drillings of either 1.0 mm (reflective of the trabecular distance) or 1.8 mm in diameter. Osteochondral repair was assessed after 6 months in vivo by macroscopic, histological, and immunohistochemical analyses and by micro-computed tomography. The application of 1.0-mm subchondral drill holes led to significantly improved histological matrix staining, cellular morphological characteristics, subchondral bone reconstitution, and average total histological score as well as significantly higher immunoreactivity to type II collagen and reduced immunoreactivity to type I collagen in the repair tissue compared with 1.8-mm drill holes. Analysis of osteoarthritic changes in the cartilage adjacent to the defects revealed no significant differences between treatment groups. Restoration of the microstructure of the subchondral bone plate below the chondral defects was significantly improved after 1.0-mm compared to 1.8-mm drilling, as shown by higher bone volume and reduced thickening of the subchondral bone plate. Likewise, the microarchitecture of the drilled subarticular spongiosa was better restored after 1.0-mm drilling, indicated by significantly higher bone volume and more and thinner trabeculae. Moreover, the bone mineral density of the subchondral bone in 1.0-mm drill holes was similar to the adjacent subchondral bone, whereas it was significantly reduced in 1.8-mm drill holes. No significant correlations existed between cartilage and subchondral bone repair. Small subchondral drill holes that reflect the physiological trabecular distance improve osteochondral repair in a translational

  19. Drilling hazards inventory: The key to safer -and cheaper- wells

    NARCIS (Netherlands)

    Hoetz, G.; Jaarsma, B.; Kortekaas, M.

    2013-01-01

    Safety and cost control are critical success factors in the realm of drilling. Actual well costs frequently exceed planned costs due to unexpected drilling incidents related to potentially avoidable geohazards. It is estimated that - in the Netherlands on average - around 20% of drilling time is

  20. Drilling mud

    Energy Technology Data Exchange (ETDEWEB)

    Babets, M A; Nechayev, N D; Vinogradova, G P

    1982-01-01

    A drilling mud is proposed which contains clay, alkali, water and stabilizer reagent. It is distinguished by the fact that in order to improve the viscosity and static shear stress, the stabilizer reagent contained is composted solid general wastes with the following ratio of components (% by weight): clay 10-15, alkali 0.1-0.2; composted solid general wastes 2-5; water--the rest.

  1. Contamination tracer testing with seabed drills: IODP Expedition 357

    Science.gov (United States)

    Orcutt, Beth N.; Bergenthal, Markus; Freudenthal, Tim; Smith, David; Lilley, Marvin D.; Schnieders, Luzie; Green, Sophie; Früh-Green, Gretchen L.

    2017-11-01

    IODP Expedition 357 utilized seabed drills for the first time in the history of the ocean drilling program, with the aim of collecting intact sequences of shallow mantle core from the Atlantis Massif to examine serpentinization processes and the deep biosphere. This novel drilling approach required the development of a new remote seafloor system for delivering synthetic tracers during drilling to assess for possible sample contamination. Here, we describe this new tracer delivery system, assess the performance of the system during the expedition, provide an overview of the quality of the core samples collected for deep biosphere investigations based on tracer concentrations, and make recommendations for future applications of the system.

  2. Finite element modeling and experimentation of bone drilling forces

    International Nuclear Information System (INIS)

    Lughmani, W A; Bouazza-Marouf, K; Ashcroft, I

    2013-01-01

    Bone drilling is an essential part of many orthopaedic surgery procedures, including those for internal fixation and for attaching prosthetics. Estimation and control of bone drilling forces are critical to prevent drill breakthrough, excessive heat generation, and mechanical damage to the bone. This paper presents a 3D finite element (FE) model for prediction of thrust forces experienced during bone drilling. The model incorporates the dynamic characteristics involved in the process along with the accurate geometrical considerations. The average critical thrust forces and torques obtained using FE analysis, for set of machining parameters are found to be in good agreement with the experimental results

  3. Parameters affecting mechanical and thermal responses in bone drilling: A review.

    Science.gov (United States)

    Lee, JuEun; Chavez, Craig L; Park, Joorok

    2018-04-11

    Surgical bone drilling is performed variously to correct bone fractures, install prosthetics, or for therapeutic treatment. The primary concern in bone drilling is to extract donor bone sections and create receiving holes without damaging the bone tissue either mechanically or thermally. We review current results from experimental and theoretical studies to investigate the parameters related to such effects. This leads to a comprehensive understanding of the mechanical and thermal aspects of bone drilling to reduce their unwanted complications. This review examines the important bone-drilling parameters of bone structure, drill-bit geometry, operating conditions, and material evacuation, and considers the current techniques used in bone drilling. We then analyze the associated mechanical and thermal effects and their contributions to bone-drilling performance. In this review, we identify a favorable range for each parameter to reduce unwanted complications due to mechanical or thermal effects. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Acoustic Emission Measurements for Tool Wear Evaluation in Drilling

    Science.gov (United States)

    Gómez, Martín P.; Migliori, Julio; Ruzzante, José E.; D'Attellis, Carlos E.

    2009-03-01

    In this work, the tool condition in a drilling process of SAE 1040 steel samples was studied by means of acoustic emission. The studied drill bits were modified with artificial and real failures, such as different degrees of wear in the cutting edge and in the outer corner. Some correlation between mean power of the acoustic emission parameters and the drill bit wear condition was found.

  5. Electric drill-string telemetry

    CERN Document Server

    Carcione, J M

    2003-01-01

    We design a numerical algorithm for simulation of low-frequency electric-signal transmission through a drill string. This is represented by a transmission line with varying geometrical and electromagnetic properties versus depth, depending on the characteristics of the drill-string/formation system. These properties are implicitly modeled by the series impedance and the shunt admittance of the transmission line. The differential equations are parabolic, since at low frequencies the wave field is diffusive. We use an explicit scheme for the solution of parabolic problems, based on a Chebyshev expansion of the evolution operator and the Fourier pseudospectral method to compute the spatial derivatives. The results are verified by comparison to analytical solutions obtained for the initial-value problem with a voltage source.

  6. Effects of drilling parameters in numerical simulation to the bone temperature elevation

    Science.gov (United States)

    Akhbar, Mohd Faizal Ali; Malik, Mukhtar; Yusoff, Ahmad Razlan

    2018-04-01

    Drilling into the bone can produce significant amount of heat which can cause bone necrosis. Understanding the drilling parameters influence to the heat generation is necessary to prevent thermal necrosis to the bone. The aim of this study is to investigate the influence of drilling parameters on bone temperature elevation. Drilling simulations of various combinations of drill bit diameter, rotational speed and feed rate were performed using finite element software DEFORM-3D. Full-factorial design of experiments (DOE) and two way analysis of variance (ANOVA) were utilised to examine the effect of drilling parameters and their interaction influence on the bone temperature. The maximum bone temperature elevation of 58% was demonstrated within the range in this study. Feed rate was found to be the main parameter to influence the bone temperature elevation during the drilling process followed by drill diameter and rotational speed. The interaction between drill bit diameter and feed rate was found to be significantly influence the bone temperature. It is discovered that the use of low rotational speed, small drill bit diameter and high feed rate are able to minimize the elevation of bone temperature for safer surgical operations.

  7. Case study : environmental considerations of horizontal directional drills

    International Nuclear Information System (INIS)

    Slade, D.A.

    2000-01-01

    A pipeline construction project by Enbridge Pipelines (Toledo) Inc. which relied on horizontal directional drilling (HDD) techniques to install the pipe was analyzed with particular focus on the environmental benefits and risks of using directional drills compared to open cut installation. The construction of the 35-mile, 16-inch crude petroleum pipeline from Stockbridge to Freedom Junction in Michigan involved the use of 11 separate directional drills to cross through wetlands, streams and state recreational areas. The role that HDD played in route selection and environmental permit considerations was discussed along with some of the problems encountered with directional drilling. A successful HDD program must have adequate geotechnical information to properly design and plan the crossings. It was recommended that geotechnical borings should be conducted every 300 to 500 feet across the HDD alignment. It was also recommended that a frac-out contingency plan should be developed and to be prepared for the temporary shut down of the HDD rig if a frac-out occurs. Frac-outs must be investigated, contained and any released fluid should be removed. Some recommendations from past experiences were also presented as a guide for future planning of pipeline projects that include HDD techniques, particularly in wetland areas. Appendix A to this presentation included a contingency plan for illustrative purposes only. The plan was developed for the above project and was included as an example only. It described the planning, prevention and control measures to minimize impacts resulting from inadvertent spill of drilling mud during directional drilling in wetlands. It also included a drilling mud 'Containment, Response and Notification Plan' to be implemented as determined by the contractor under the supervision of Enbridge Pipelines (Toledo) Inc. 5 refs., 2 tabs., 1 fig., 1 appendix

  8. Studi Pengaruh Gerak Semi-submersible Drilling Rig dengan Variasi Pre-tension Mooring Line terhadap Keamanan Drilling Riser

    Directory of Open Access Journals (Sweden)

    Arda Arda

    2012-09-01

    Full Text Available Analisis terhadap sistem tambat pada anjungan pengeboran semi-submersible drilling rig perlu dilakukan sebelum dilakukannya operasi di lapangan untuk mengetahui perencanaan sistem tambat yang tepat dan aman. Dalam penelitian ini dilakukan analisa perilaku gerak semi-submersible dengan variasi pre-tension mooring line untuk mengetahui berapa besar pre-tension minimal yang harus digunakan agar operasi pengeboran di lingkungan laut Natuna dapat berjalan dengan aman. Variasi pre-tension yang digunakan adalah sebesar 400kN-2000kN dengan penambahan sebesar 400kN. Karakteristik gerakan semi-submersible diprediksi dengan menghitung RAO free floating dengan pemodelan numerik dalam domain frekuensi. Kemudian dilakukan analisa simulasi sistem lengkap (platform, mooring dan drilling riser dengan pemodelan numerik dalam domain waktu. Hasil yang didapat yakni nilai maksimum tegangan mooring line memenuhi batas kriteria API-RP2SK untuk semua variasi pre-tension dengan safety factor terkecil 2.44. Sudut flex joint drilling riser yang terjadi melewati batas kriteria API-RP16Q pada pre-tension 400kN-800kN yang mencapai 6.20 untuk sudut maksimum dan 4.80 untuk sudut rata-rata. Tegangan von Mises yang terjadi pada drilling riser melebihi kriteria API-RP16Q pada pre-tension 400kN-1200kN karena nilainya mencapai 369 MPa (0.82 yield stress.

  9. Offset drilling obligations

    International Nuclear Information System (INIS)

    Boyd, K.D.; Kalmakoff, J.J.

    1998-01-01

    A review of the 'offset well' clause found in freehold and Crown natural gas and petroleum leases was presented. The objective was to provide lessors and lessees with a clear understanding of the rights and obligations associated with offset wells. It was noted that offset well obligations vary according to the form of lease used, the type of offsetting well, the regulatory regime and the geophysical characteristics of the producing formation. Some suggestions were made as to how current versions of the offset well clause can be amended to overcome some of the problems encountered in applying the clause to an offset horizontal well that has been drilled on adjoining lands. Failure to resolve the new issues presented by horizontal drilling technology in terms of documentation, which records respective rights and obligations on the basis of generally accepted principles, will result in large numbers of conflicts and unnecessary litigation. 144 refs., 1 fig

  10. Formation evaluation using measurements recorded while drilling

    International Nuclear Information System (INIS)

    Coope, D.F.; Hendricks, W.E.

    1984-01-01

    Two of the measurements recorded while drilling (MWD), gamma ray and resistivity, are traditionally formation evaluation measurements. However, their primary user thus far has been the drilling engineer. The authors believe that MWD will have increasing importance in formation evaluation, and that a good understanding of MWD resistivity and gamma ray logs will be needed by the log analyst. MWD gamma ray and resistivity logs are similar to their wireline counterparts, but there are significant differences. The differences stem from different invasion (or lack of invasion) development for MWD as opposed to open hole wireline; drill collar influence on both the resistivity and gamma ray (GR) measurements - this influence is both positive and negative; and logging speed (drilling rate for MWD) is much slower for MWD and can vary erratically. The MWD logs presented in this paper demonstrate the value of using MWD logs. Emphasis is placed on both the qualitative and quantitative techniques available to the log analyst to help him get maximum benefit from the MWD logs

  11. Modeling the time and cost to drill an offshore well

    International Nuclear Information System (INIS)

    Kaiser, Mark J.

    2009-01-01

    The objective in drilling a hydrocarbon well is to make hole as quickly as possible subject to the technological, operational, quality, and safety constraints associated with the process. These objectives are frequently conflicting and depend on factors that are subject to significant private and market uncertainty. There is no way to identify all of the relevant characteristics of drilling operations, but through use of statistical analysis and empirical modeling, it is possible to develop relations that characterize and benchmark drilling performance under a suitable set of assumptions. The purpose of this paper is to develop the conceptual framework to model the time and cost to drill an offshore well and to illustrate the methodology on a test set of wells in the Gulf of Mexico. The physical characteristics of the wellbore and operational aspects of drilling, including variables such as the drilled interval, horizontal displacement, aspect ratio, number of casing strings, and mud weight, serve as the primary descriptive factors in the functional relations constructed.

  12. Exploring frontiers of the deep biosphere through scientific ocean drilling

    Science.gov (United States)

    Inagaki, F.; D'Hondt, S.; Hinrichs, K. U.

    2015-12-01

    Since the first deep biosphere-dedicated Ocean Drilling Program (ODP) Leg 201 using the US drill ship JOIDES Resolution in 2002, scientific ocean drilling has offered unique opportunities to expand our knowledge of the nature and extent of the deep biosphere. The latest estimate of the global subseafloor microbial biomass is ~1029cells, accounting for 4 Gt of carbon and ~1% of the Earth's total living biomass. The subseafloor microbial communities are evolutionarily diverse and their metabolic rates are extraordinarily slow. Nevertheless, accumulating activity most likely plays a significant role in elemental cycles over geological time. In 2010, during Integrated Ocean Drilling Program (IODP) Expedition 329, the JOIDES Resolutionexplored the deep biosphere in the open-ocean South Pacific Gyre—the largest oligotrophic province on our planet. During Expedition 329, relatively high concentrations of dissolved oxygen and significantly low biomass of microbial populations were observed in the entire sediment column, indicating that (i) there is no limit to life in open-ocean sediment and (ii) a significant amount of oxygen reaches through the sediment to the upper oceanic crust. This "deep aerobic biosphere" inhabits the sediment throughout up to ~37 percent of the world's oceans. The remaining ~63 percent of the oceans is comprised of higher productivity areas that contain the "deep anaerobic biosphere". In 2012, during IODP Expedition 337, the Japanese drill ship Chikyu explored coal-bearing sediments down to 2,466 meters below the seafloor off the Shimokita Peninsula, Japan. Geochemical and microbiological analyses consistently showed the occurrence of methane-producing communities associated with the coal beds. Cell concentrations in deep sediments were notably lower than those expected from the global regression line, implying that the bottom of the deep biosphere is approached in these beds. Taxonomic composition of the deep coal-bearing communities profoundly

  13. Laser Drilling - Drilling with the Power of Light

    Energy Technology Data Exchange (ETDEWEB)

    Iraj A. Salehi; Brian C. Gahan; Samih Batarseh

    2007-02-28

    Gas Technology Institute (GTI) has been the leading investigator in the field of high power laser applications research for well construction and completion applications. Since 1997, GTI (then as Gas Research Institute- GRI) has investigated several military and industrial laser systems and their ability to cut and drill into reservoir type rocks. In this report, GTI continues its investigation with a 5.34 kW ytterbium-doped multi-clad high power fiber laser (HPFL). When compared to its competitors; the HPFL represents a technology that is more cost effective to operate, capable of remote operations, and requires considerably less maintenance and repair. Work performed under this contract included design and implementation of laboratory experiments to investigate the effects of high power laser energy on a variety of rock types. All previous laser/rock interaction tests were performed on samples in the lab at atmospheric pressure. To determine the effect of downhole pressure conditions, a sophisticated tri-axial cell was designed and tested. For the first time, Berea sandstone, limestone and clad core samples were lased under various combinations of confining, axial and pore pressures. Composite core samples consisted of steel cemented to rock in an effort to represent material penetrated in a cased hole. The results of this experiment will assist in the development of a downhole laser perforation or side tracking prototype tool. To determine how this promising laser would perform under high pressure in-situ conditions, GTI performed a number of experiments with results directly comparable to previous data. Experiments were designed to investigate the effect of laser input parameters on representative reservoir rock types of sandstone and limestone. The focus of the experiments was on laser/rock interaction under confining pressure as would be the case for all drilling and completion operations. As such, the results would be applicable to drilling, perforation, and

  14. Influence of the motion of drill-pipestring and drilling mud on the pressure in the well

    Energy Technology Data Exchange (ETDEWEB)

    Lucki, Z

    1965-10-01

    While running drill stem into a well, the pressure in the borehole is not constant. Its variation depends on the piston-cylinder action of the pipe and the borehole. It has been shown (by mathematical analyses) that the magnitude of hydrodynamic pressure does not depend on whether or not the drill stem column has a check valve. Equations are deduced to calculate the hydrodynamic pressure in the borehole from the studies of displacement of a cylindrical body in a plastic dispersal system. The factors which most influence the hydrodynamic pressure are the properties of the drilling mud. Since variations in the hydrostatic pressure are governed by the hydrodynamic pressure, in order to avoid any difficulty in the borehole, the operation has to be carried out in such a way that the pressure varies between 2 limits; the lower one being defined by the formation pressure, and the upper one by the fracturing pressure.

  15. Single Piezo-Actuator Rotary-Hammering Drill

    Science.gov (United States)

    Sherrit, Stewart; Bao, Xiaoqi; Badescu, Mircea; Bar-Cohen, Yoseph

    2011-01-01

    This innovation comprises a compact drill that uses low-axial preload, via vibrations, that fractures the rock under the bit kerf, and rotates the bit to remove the powdered cuttings while augmenting the rock fracture via shear forces. The vibrations fluidize the powered cuttings inside the flutes around the bit, reducing the friction with the auger surface. These combined actions reduce the consumed power and the heating of the drilled medium, helping to preserve the pristine content of the produced samples. The drill consists of an actuator that simultaneously impacts and rotates the bit by applying force and torque via a single piezoelectric stack actuator without the need for a gearbox or lever mechanism. This reduces the development/fabrication cost and complexity. The piezoelectric actuator impacts the surface and generates shear forces, fragmenting the drilled medium directly under the bit kerf by exceeding the tensile and/or shear strength of the struck surface. The percussive impact action of the actuator leads to penetration of the medium by producing a zone of finely crushed rock directly underneath the struck location. This fracturing process is highly enhanced by the shear forces from the rotation and twisting action. To remove the formed cuttings, the bit is constructed with an auger on its internal or external surface. One of the problems with pure hammering is that, as the teeth become embedded in the sample, the drilling efficiency drops unless the teeth are moved away from the specific footprint location. By rotating the teeth, they are moved to areas that were not fragmented, and thus the rock fracturing is enhanced via shear forces. The shear motion creates ripping or chiseling action to produce larger fragments to increase the drilling efficiency, and to reduce the required power. The actuator of the drill consists of a piezoelectric stack that vibrates the horn. The stack is compressed by a bolt between the backing and the horn in order to

  16. Status Report A Review of Slimhole Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Tao; Carroll, Herbert B.

    1994-09-01

    This 1994 report reviews the various applications of slimhole technology including for exploration in remote areas, low-cost development wells, reentering existing wells, and horizontal and multilateral drilling. Advantages of slimholes to regular holes are presented. Limitations and disadvantages of slimholes are also discussed. In 1994, slimhole drilling was still an ongoing development technology. (DJE 2005)

  17. Potential environmental benefits from regulatory consideration of synthetic drilling muds

    International Nuclear Information System (INIS)

    Burke, C.J.; Veil, J.A.

    1995-02-01

    When drilling exploration and production wells for oil and gas, drillers use specialized drilling fluids, referred to as muds, to help maintain well control and to remove drill cuttings from the hole. Historically, either water-based muds (WBMs) or oil-based muds (OBMs) have been used for offshore wells. Recently, in response to US Environmental Protection Agency (EPA) regulations and drilling-waste discharge requirements imposed by North Sea nations, the drilling industry has developed several types of synthetic-based muds (SBMs) that combine the desirable operating qualities of OBMs with the lower toxicity and environmental impact qualities of WBMs. This report describes the operational, environmental, and economic features of all three types of muds and discusses potential EPA regulatory barriers to wider use of SBMs

  18. THE EFFECT OF SUPPORT PLATE ON DRILLING-INDUCED DELAMINATION

    Directory of Open Access Journals (Sweden)

    Navid Zarif Karimi

    2016-02-01

    Full Text Available Delamination is considered as a major problem in drilling of composite materials, which degrades the mechanical properties of these materials. The thrust force exerted by the drill is considered as the major cause of delamination; and one practical approach to reduce delamination is to use a back-up plate under the specimen. In this paper, the effect of exit support plate on delamination in twist drilling of glass fiber reinforced composites is studied. Firstly, two analytical models based on linear fracture mechanics and elastic bending theory of plates are described to find critical thrust forces at the beginning of crack growth for drilling with and without back-up plate. Secondly, two series of experiments are carried out on glass fiber reinforced composites to determine quantitatively the effect of drilling parameters on the amount of delamination. Experimental findings verify a large reduction in the amount of delaminated area when a back-up plate is placed under the specimen.

  19. The art of drilling; L'art de forer

    Energy Technology Data Exchange (ETDEWEB)

    Charlez, Ph. [Total, La Defense 6, Exploration-Production, Recherche et Developpement, 92 - Courbevoie (France)

    2003-06-01

    Since about 15 years, the well drilling techniques have undergone an unprecedented technological revolution. A few deviated or horizontal wells only are needed today to reach oil resources 10 km away while many vertical wells were needed in the past for the same operation. These techniques multiply the possibilities of reaching oil reservoirs in complex geological areas but they also have to adapt to more and more severe conditions (high water depths, high pressures and temperatures) which raise new problems. This article treats of the new geometries of wells with multi-drains and of the data acquisition and treatment tools for the control of the drilling progression (measurement while drilling (MWD), logging while drilling (LWD), seismic while drilling (SWD)) and for the real-time visualisation of the well profile inside the geologic formations (3-D imaging). Intelligent completion systems with remote controlled valves are used to selectively control the production of the different branches of the well in the case of a multi-layer reservoir. (J.S.)

  20. Confined compressive strength model of rock for drilling optimization

    Directory of Open Access Journals (Sweden)

    Xiangchao Shi

    2015-03-01

    Full Text Available The confined compressive strength (CCS plays a vital role in drilling optimization. On the basis of Jizba's experimental results, a new CCS model considering the effects of the porosity and nonlinear characteristics with increasing confining pressure has been developed. Because the confining pressure plays a fundamental role in determining the CCS of bottom-hole rock and because the theory of Terzaghi's effective stress principle is founded upon soil mechanics, which is not suitable for calculating the confining pressure in rock mechanics, the double effective stress theory, which treats the porosity as a weighting factor of the formation pore pressure, is adopted in this study. The new CCS model combined with the mechanical specific energy equation is employed to optimize the drilling parameters in two practical wells located in Sichuan basin, China, and the calculated results show that they can be used to identify the inefficient drilling situations of underbalanced drilling (UBD and overbalanced drilling (OBD.

  1. An experimental system for coiled tubing partial underbalanced drilling (CT-PUBD) technique

    Science.gov (United States)

    Shi, H. Z.; Ji, Z. S.; Zhao, H. Q.; Chen, Z. L.; Zhang, H. Z.

    2018-05-01

    To improve the rate of penetration (ROP) in hard formations, a new high-speed drilling technique called Coiled Tubing Partial Underbalanced Drilling (CT-PUBD) is proposed. This method uses a rotary packer to realize an underbalanced condition near the bit by creating a micro-annulus and an overbalanced condition at the main part of the annulus. A new full-scale laboratory experimental system is designed and set up to study the hydraulic characteristics and drilling performance of this method. The system is composed of a drilling system, circulation system, and monitor system, including three key devices, namely, cuttings discharge device, rotary packer, and backflow device. The experimental results showed that the pressure loss increased linearly with the flow rate of the drilling fluid. The high drilling speed of CT-PUBD proved it a better drilling method than the conventional drilling. The experimental system may provide a fundamental basis for the research of CT-PUBD, and the results proved that this new method is feasible in enhancing ROP and guaranteeing the drilling safety.

  2. Techniques Employed to Conduct Postshot Drilling at the former Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Dekin, W D

    2011-04-14

    Postshot drilling provided essential data on the results of the underground nuclear tests conducted at the Nevada Test Site (NTS), now identified as the Nevada National Security Site (NNSS). It was the means by which samples from the zone of interest were obtained for radiochemical analysis. This handbook describes how Lawrence Livermore National Laboratory (LLNL) conducted postshot drilling operations at the NTS, and it provides a general understanding of the process. Postshot drilling is a specialized application of rotary drilling. Accordingly, this handbook gives a brief description of rotary drilling in Section 2 to acquaint the reader with the general subject before proceeding to the specialized techniques used in postshot drilling. In Section 3, the handbook describes the typical postshot drilling situation at the former NTS and the drilling methods used. Section 4 describes the typical sequence of operations in postshot drilling at the former NTS. Detailed information on special equipment and techniques is given in a series of appendices (A through F) at the end of the handbook.

  3. Test plan for sonic drilling at the Hanford Site in FY 1993

    International Nuclear Information System (INIS)

    McLellan, G.W.

    1993-01-01

    This test plan describes the field demonstration of the sonic drilling system being conducted as a coordinated effort between the VOC-Arid ID (Integrated Demonstration) and the 200 West Area Carbon Tetrachloride ERA (Expedited Response Action) programs at Hanford. The purpose of this test is to evaluate the Water Development Corporation's drilling system, modify components as necessary and determine compatible drilling applications for the sonic drilling method for use at facilities in the DOE complex. The sonic demonstration is being conducted as the first field test under the Cooperative Research and Development Agreement (CRADA) which involves the US Department of Energy, Pacific Northwest Laboratory, Westinghouse Hanford Company and Water Development Corporation. The sonic drilling system will be used to drill a 45 degree vadose zone well, two vertical wells at the VOC-Arid ID site, and several test holes at the Drilling Technology Test Site north of the 200 Area fire station. Testing at other locations will depend on the performance of the drilling method. Performance of this technology will be compared to the baseline drilling method (cable-tool)

  4. Proceedings of the conference on shaft drilling technology

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    This book contains the following topics, Market analysis, World-wide operations, Innovative drilling and boring, Raise boring, Shaft lining and fittings, Entry considerations for the Yucca Mountain exploratory shaft facility for potential Radioactive Waste Disposal, Drilling rigs in the coal industry

  5. Optimization of Drilling Resistance Measurement (DRM) user-controlled variables

    OpenAIRE

    Tudor, Dumitrescu; Pesce, Giovanni; Ball, Richard

    2017-01-01

    Drilling Resistance Measurement (DRM) is recognised as an important on-site micro-invasive procedure for assessment of construction materials. This paper presents a detailed investigation of user-controlled variables and their influence on drilling resistance. The study proves that the ratio of penetration rate/rotational speed (PR/RPM) is proportional to drilling resistance. Data from Bath stone and an artificial reference stone demonstrates how different materials can be compared using thei...

  6. Making Safe Surgery Affordable: Design of a Surgical Drill Cover System for Scale.

    Science.gov (United States)

    Buchan, Lawrence L; Black, Marianne S; Cancilla, Michael A; Huisman, Elise S; Kooyman, Jeremy J R; Nelson, Scott C; OʼHara, Nathan N; OʼBrien, Peter J; Blachut, Piotr A

    2015-10-01

    Many surgeons in low-resource settings do not have access to safe, affordable, or reliable surgical drilling tools. Surgeons often resort to nonsterile hardware drills because they are affordable, robust, and efficient, but they are impossible to sterilize using steam. A promising alternative is to use a Drill Cover system (a sterilizable fabric bag plus surgical chuck adapter) so that a nonsterile hardware drill can be used safely for surgical bone drilling. Our objective was to design a safe, effective, affordable Drill Cover system for scale in low-resource settings. We designed our device based on feedback from users at Mulago Hospital (Kampala, Uganda) and focused on 3 main aspects. First, the design included a sealed barrier between the surgical field and hardware drill that withstands pressurized fluid. Second, the selected hardware drill had a maximum speed of 1050 rpm to match common surgical drills and reduce risk of necrosis. Third, the fabric cover was optimized for ease of assembly while maintaining a sterile technique. Furthermore, with the Drill Cover approach, multiple Drill Covers can be provided with a single battery-powered drill in a "kit," so that the drill can be used in back-to-back surgeries without requiring immediate sterilization. The Drill Cover design presented here provides a proof-of-concept for a product that can be commercialized, produced at scale, and used in low-resource settings globally to improve access to safe surgery.

  7. Environmental Assessment: Geothermal Energy Geopressure Subprogram. Gulf Coast Well Drilling and Testing Activity (Frio, Wilcox, and Tuscaloosa Formations, Texas and Louisiana)

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-09-01

    The Department of Energy (DOE) has initiated a program to evaluate the feasibility of developing the geothermal-geopressured energy resources of the Louisiana-Texas Gulf Coast. As part of this effort, DOE is contracting for the drilling of design wells to define the nature and extent of the geopressure resource. At each of several sites, one deep well (4000-6400 m) will be drilled and flow tested. One or more shallow wells will also be drilled to dispose of geopressured brines. Each site will require about 2 ha (5 acres) of land. Construction and initial flow testing will take approximately one year. If initial flow testing is successful, a continuous one-year duration flow test will take place at a rate of up to 6400 m{sup 3} (40,000 bbl) per day. Extensive tests will be conducted on the physical and chemical composition of the fluids, on their temperature and flow rate, on fluid disposal techniques, and on the reliability and performance of equipment. Each project will require a maximum of three years to complete drilling, testing, and site restoration.

  8. Environmental aspect of oil and water-based drilling muds and ...

    African Journals Online (AJOL)

    Administrator

    2010-03-19

    Mar 19, 2010 ... both oil based and water-based drilling wastes collected from the same depth were analyzed for metals. (iron, copper ... include well cuttings, drilling muds, formation water, cement slurry ..... in the drill wastes (2.38 mg/kg) (Figure 3d). The water .... Organization, International Programme on Chemical Safety.

  9. Mathematical model of bone drilling for virtual surgery system

    Science.gov (United States)

    Alaytsev, Innokentiy K.; Danilova, Tatyana V.; Manturov, Alexey O.; Mareev, Gleb O.; Mareev, Oleg V.

    2018-04-01

    The bone drilling is an essential part of surgeries in ENT and Dentistry. A proper training of drilling machine handling skills is impossible without proper modelling of the drilling process. Utilization of high precision methods like FEM is limited due to the requirement of 1000 Hz update rate for haptic feedback. The study presents a mathematical model of the drilling process that accounts the properties of materials, the geometry and the rotation rate of a burr to compute the removed material volume. The simplicity of the model allows for integrating it in the high-frequency haptic thread. The precision of the model is enough for a virtual surgery system targeted on the training of the basic surgery skills.

  10. Problem analysis of geotechnical well drilling in complex environment

    International Nuclear Information System (INIS)

    Kasenov, A K; Biletskiy, M T; Ratov, B T; Korotchenko, T V

    2015-01-01

    The article examines primary causes of problems occurring during the drilling of geotechnical wells (injection, production and monitoring wells) for in-situ leaching to extract uranium in South Kazakhstan. Such a drilling problem as hole caving which is basically caused by various chemical and physical factors (hydraulic, mechanical, etc.) has been thoroughly investigated. The analysis of packing causes has revealed that this problem usually occurs because of insufficient amount of drilling mud being associated with small cross section downward flow and relatively large cross section upward flow. This is explained by the fact that when spear bores are used to drill clay rocks, cutting size is usually rather big and there is a risk for clay particles to coagulate

  11. A Study of Specific Fracture Energy at Percussion Drilling

    Science.gov (United States)

    A, Shadrina; T, Kabanova; V, Krets; L, Saruev

    2014-08-01

    The paper presents experimental studies of rock failure provided by percussion drilling. Quantification and qualitative analysis were carried out to estimate critical values of rock failure depending on the hammer pre-impact velocity, types of drill bits and cylindrical hammer parameters (weight, length, diameter), and turn angle of a drill bit. Obtained data in this work were compared with obtained results by other researchers. The particle-size distribution in granite-cutting sludge was analyzed in this paper. Statistical approach (Spearmen's rank-order correlation, multiple regression analysis with dummy variables, Kruskal-Wallis nonparametric test) was used to analyze the drilling process. Experimental data will be useful for specialists engaged in simulation and illustration of rock failure.

  12. Superhard nanophase cutter materials for rock drilling applications; FINAL

    International Nuclear Information System (INIS)

    Voronov, O.; Tompa, G.; Sadangi, R.; Kear, B.; Wilson, C.; Yan, P.

    2000-01-01

    The Low Pressure-High Temperature (LPHT) System has been developed for sintering of nanophase cutter and anvil materials. Microstructured and nanostructured cutters were sintered and studied for rock drilling applications. The WC/Co anvils were sintered and used for development of High Pressure-High Temperature (HPHT) Systems. Binderless diamond and superhard nanophase cutter materials were manufactured with help of HPHT Systems. The diamond materials were studied for rock machining and drilling applications. Binderless Polycrystalline Diamonds (BPCD) have high thermal stability and can be used in geothermal drilling of hard rock formations. Nanophase Polycrystalline Diamonds (NPCD) are under study in precision machining of optical lenses. Triphasic Diamond/Carbide/Metal Composites (TDCC) will be commercialized in drilling and machining applications

  13. A Study of Specific Fracture Energy at Percussion Drilling

    International Nuclear Information System (INIS)

    Shadrina A; Krets V; Saruev L; Kabanova T

    2014-01-01

    The paper presents experimental studies of rock failure provided by percussion drilling. Quantification and qualitative analysis were carried out to estimate critical values of rock failure depending on the hammer pre-impact velocity, types of drill bits and cylindrical hammer parameters (weight, length, diameter), and turn angle of a drill bit. Obtained data in this work were compared with obtained results by other researchers. The particle-size distribution in granite-cutting sludge was analyzed in this paper. Statistical approach (Spearmen's rank-order correlation, multiple regression analysis with dummy variables, Kruskal-Wallis nonparametric test) was used to analyze the drilling process. Experimental data will be useful for specialists engaged in simulation and illustration of rock failure

  14. Contamination tracer testing with seabed drills: IODP Expedition 357

    Directory of Open Access Journals (Sweden)

    B. N. Orcutt

    2017-11-01

    Full Text Available IODP Expedition 357 utilized seabed drills for the first time in the history of the ocean drilling program, with the aim of collecting intact sequences of shallow mantle core from the Atlantis Massif to examine serpentinization processes and the deep biosphere. This novel drilling approach required the development of a new remote seafloor system for delivering synthetic tracers during drilling to assess for possible sample contamination. Here, we describe this new tracer delivery system, assess the performance of the system during the expedition, provide an overview of the quality of the core samples collected for deep biosphere investigations based on tracer concentrations, and make recommendations for future applications of the system.

  15. Environmental effects monitoring for exploration drilling

    International Nuclear Information System (INIS)

    Buchanan, R.A.; Cook, J.A.; Mathieu, A.

    2003-01-01

    Strategies for monitoring the environmental effects of single exploratory offshore wells on the east coast of Canada were evaluated. The report was compiled from consultations with scientists, regulators and stakeholders as well as a review of regulatory regimes and toxicity results. The aim of the report was to develop a decision tree for determining when to conduct environmental effects monitoring (EEM). Respondents evinced lower levels of concern for single exploratory wells than for production developments. A number of scientists argued for full statistical treatment of all data, and many people argued that more assurance was needed that the marine environment was not being unduly harmed. Respondents also considered that biological effects should be a primary focus, rather than the occurrence of trace chemical signals, and that seabirds and mammals should be monitored. Concern was expressed over the value of data collected from monitoring the effects of exploratory drilling activities. It was suggested that local and site-specific issues should be considered in the design of EEM programs. Respondents expressed strong concern about potential cumulative effects with other industrial activities, and suggested that test cases should be established and monitored to develop a scientific rationale for the inclusion or exclusion of specific variables in future EEM programs. A decision tree was developed based on 3 scenarios: (1) compliance monitoring only in well known areas with no sensitive issues; opportunistic EEM surveys of sediments, benthos, seabirds and marine mammals in shallow or deep areas with no known sensitive issues; and (3) custom EEM surveys for sensitive areas. Currently, there are EEM requirements for drilling exploratory wells offshore Canada's east coast. 58 refs., 2 tabs., 7 figs

  16. Notched K-wire for low thermal damage bone drilling.

    Science.gov (United States)

    Liu, Yao; Belmont, Barry; Wang, Yiwen; Tai, Bruce; Holmes, James; Shih, Albert

    2017-07-01

    The Kirschner wire (K-wire) is a common bone drilling tool in orthopedic surgery to affix fractured bone. Significant heat is produced due to both the cutting and the friction between the K-wire and the bone debris during drilling. Such heat can result in high temperatures, leading to osteonecrosis and other secondary injuries. To reduce thermal injury and other high-temperature associated complications, a new K-wire design with three notches along the three-plane trocar tip fabricated using a thin micro-saw tool is studied. These notches evacuate bone debris and reduce the clogging and heat generation during bone drilling. A set of four K-wires, one without notches and three notched, with depths of 0.5, 0.75, and 1mm, are evaluated. Bone drilling experiments conducted on bovine cortical bone show that notched K-wires could effectively decrease the temperature, thrust force, and torque during bone drilling. K-wires with notches 1mm deep reduced the thrust force and torque by approximately 30%, reduced peak temperatures by 43%, and eliminated blackened burn marks in bone. This study demonstrates that a simple modification of the tip of K-wires can effectively reduce bone temperatures during drilling. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  17. Recommendations of the workshop on advanced geothermal drilling systems

    Energy Technology Data Exchange (ETDEWEB)

    Glowka, D.A.

    1997-12-01

    At the request of the U.S. Department of Energy, Office of Geothermal Technologies, Sandia National Laboratories convened a group of drilling experts in Berkeley, CA, on April 15-16, 1997, to discuss advanced geothermal drilling systems. The objective of the workshop was to develop one or more conceptual designs for an advanced geothermal drilling system that meets all of the criteria necessary to drill a model geothermal well. The drilling process was divided into ten essential functions. Each function was examined, and discussions were held on the conventional methods used to accomplish each function and the problems commonly encountered. Alternative methods of performing each function were then listed and evaluated by the group. Alternative methods considered feasible or at least worth further investigation were identified, while methods considered impractical or not potentially cost-saving were eliminated from further discussion. This report summarizes the recommendations of the workshop participants. For each of the ten functions, the conventional methods, common problems, and recommended alternative technologies and methods are listed. Each recommended alternative is discussed, and a description is given of the process by which this information will be used by the U.S. DOE to develop an advanced geothermal drilling research program.

  18. Nuclear Tools For Oilfield Logging-While-Drilling Applications

    International Nuclear Information System (INIS)

    Reijonen, Jani

    2011-01-01

    Schlumberger is an international oilfield service company with nearly 80,000 employees of 140 nationalities, operating globally in 80 countries. As a market leader in oilfield services, Schlumberger has developed a suite of technologies to assess the downhole environment, including, among others, electromagnetic, seismic, chemical, and nuclear measurements. In the past 10 years there has been a radical shift in the oilfield service industry from traditional wireline measurements to logging-while-drilling (LWD) analysis. For LWD measurements, the analysis is performed and the instruments are operated while the borehole is being drilled. The high temperature, high shock, and extreme vibration environment of LWD imposes stringent requirements for the devices used in these applications. This has a significant impact on the design of the components and subcomponents of a downhole tool. Another significant change in the past few years for nuclear-based oilwell logging tools is the desire to replace the sealed radioisotope sources with active, electronic ones. These active radiation sources provide great benefits compared to the isotopic sources, ranging from handling and safety to nonproliferation and well contamination issues. The challenge is to develop electronic generators that have a high degree of reliability for the entire lifetime of a downhole tool. LWD tool testing and operations are highlighted with particular emphasis on electronic radiation sources and nuclear detectors for the downhole environment.

  19. Dome-shaped PDC cutters drill harder rock effectively

    International Nuclear Information System (INIS)

    Moran, D.P.

    1992-01-01

    This paper reports that rock mechanics and sonic travel time log data indicate that bits with convex-shaped polycrystalline diamond compact (PDC) cutters can drill harder rock formations than comparable bits with flat PDC cutters. The Dome-shaped cutters have drilled carbonate formations with sonic travel times as small as 50 μsec/ft, compared to the standard cutoff of 75 μsec/ft for flat PCD cutters. Recent field data from slim hole wells drilled in the Permian basin have shown successful applications of the 3/8-in. Dome cutter in the Grayburg dolomite with its sonic travel times as low as 50-55 μsec/ft and compressive strengths significantly greater than the standard operating range for PDC bit applications. These field data indicate that the Dome cutters can successfully drill hard rock. The convex cutter shape as good impact resistance, cuttings removal, heat dissipation, and wear resistance

  20. Refined images of the crust around the SAFOD drill site derived from combined active and passive seismic experiment data

    Science.gov (United States)

    Roecker, S.; Thurber, C.; Shuler, A.; Liu, Y.; Zhang, H.; Powell, L.

    2005-12-01

    Five years of effort collecting and analyzing earthquake and explosion data in the vicinity of the SAFOD drill site culminated in the determination of the final trajectory for summer 2005's Phase 2 drilling. The trajectory was defined to optimize the chance of reaching one of two adjacent M2 "target earthquake" fault patches, whose centroids are separated horizontally by about 50 meters, with one or more satellite coreholes planned for Phase 3 drilling in summer 2007. Some of the most critical data for the final targeting were explosion data recorded on a Paulsson Geophysical Services, Inc., 80-element 3-component borehole string and earthquake data recorded on a pair of 3-component Duke University geophones in the SAFOD borehole. We are now utilizing the full 5-year dataset to refine our knowledge of three-dimensional (3D) crustal structure, wave propagation characteristics, and earthquake locations around SAFOD. These efforts are proceeding in parallel in several directions. Improved picks from a careful reanalysis of shear waves observed on the PASO array will be used in deriving an improved tomographic 3D wavespeed model. We are using finite-difference waveform modeling to investigate waveform complexity for earthquakes in and near the target region, including fault-zone head waves and strong secondary S-wave arrivals. A variety of waveform imaging methods are being applied to image fine-scale 3D structure and subsurface scatterers, including fault zones. In the process, we aim to integrate geophysical logging and geologic observations with our models to try to associate the target region earthquake activity, which is occurring on two fault strands about 280 meters apart, with shear zones encountered in the SAFOD Phase-2 borehole. These observations will be agumented and the target earthquake locations further refined over the next 2 years through downhole and surface recording of natural earthquakes and surface shots conducted at PASO station locations.