WorldWideScience

Sample records for drawdown

  1. On the maximum drawdown during speculative bubbles

    Science.gov (United States)

    Rotundo, Giulia; Navarra, Mauro

    2007-08-01

    A taxonomy of large financial crashes proposed in the literature locates the burst of speculative bubbles due to endogenous causes in the framework of extreme stock market crashes, defined as falls of market prices that are outlier with respect to the bulk of drawdown price movement distribution. This paper goes on deeper in the analysis providing a further characterization of the rising part of such selected bubbles through the examination of drawdown and maximum drawdown movement of indices prices. The analysis of drawdown duration is also performed and it is the core of the risk measure estimated here.

  2. 24 CFR 891.830 - Drawdown.

    Science.gov (United States)

    2010-04-01

    ...) SUPPORTIVE HOUSING FOR THE ELDERLY AND PERSONS WITH DISABILITIES For-Profit Limited Partnerships and Mixed... and upon determining that such documents are satisfactory, and after the capital advance closing, HUD may approve the drawdown of capital advance funds in accordance with the HUD-approved drawdown...

  3. Simulated drawdown and rewetting of littoral sediments

    DEFF Research Database (Denmark)

    Klamt, Anna-Marie; Reitzel, Kasper; Andersen, Frede Østergaard

    2016-01-01

    This study aims to answer the question if temporary drawdowns could be a beneficial restoration measure for endangered Lobelia lakes. Intact littoral sediment cores with and without plants were used to simulate a drawdown over an almost 5 months period and a subsequent rewetting. During drawdown...... dying of plants. Upon rewetting effluxes of total dissolved phosphorus and dissolved organic carbon were observed which are most likely attributable to the degraded plant material. A phosphorus uptake experiment with dried and rewetted sediment cores without plants showed that the initial high P binding...

  4. Optimal drawdown patterns for strategic petroleum reserves

    Energy Technology Data Exchange (ETDEWEB)

    Kuenne, R E; Blankenship, J W; McCoy, P F

    1979-01-01

    An optimization model is described for determining optimal drawdown trajectories for strategic petroleum reserves during an embargo. Development of the model includes the derivation of a GNP response function which relates GNP (used as a measure of social welfare) and crude oil supply reductions. Two alternative forms of this function are used with the model. Simple algorithms are presented which give rapid solutions for the model. The pattern is one of saving some of the reserve to protect against a possible second embargo occurring beforee refill, and of allocating the remainder during the first embargo subperiod so as to equalize monthly marginal benefits. 6 references.

  5. Optimal Portfolio Strategy under Rolling Economic Maximum Drawdown Constraints

    Directory of Open Access Journals (Sweden)

    Xiaojian Yu

    2014-01-01

    Full Text Available This paper deals with the problem of optimal portfolio strategy under the constraints of rolling economic maximum drawdown. A more practical strategy is developed by using rolling Sharpe ratio in computing the allocation proportion in contrast to existing models. Besides, another novel strategy named “REDP strategy” is further proposed, which replaces the rolling economic drawdown of the portfolio with the rolling economic drawdown of the risky asset. The simulation tests prove that REDP strategy can ensure the portfolio to satisfy the drawdown constraint and outperforms other strategies significantly. An empirical comparison research on the performances of different strategies is carried out by using the 23-year monthly data of SPTR, DJUBS, and 3-month T-bill. The investment cases of single risky asset and two risky assets are both studied in this paper. Empirical results indicate that the REDP strategy successfully controls the maximum drawdown within the given limit and performs best in both return and risk.

  6. Effective return, risk aversion and drawdowns

    Science.gov (United States)

    Dacorogna, Michel M.; Gençay, Ramazan; Müller, Ulrich A.; Pictet, Olivier V.

    2001-01-01

    We derive two risk-adjusted performance measures for investors with risk averse preferences. Maximizing these measures is equivalent to maximizing the expected utility of an investor. The first measure, Xeff, is derived assuming a constant risk aversion while the second measure, Reff, is based on a stronger risk aversion to clustering of losses than of gains. The clustering of returns is captured through a multi-horizon framework. The empirical properties of Xeff, Reff are studied within the context of real-time trading models for foreign exchange rates and their properties are compared to those of more traditional measures like the annualized return, the Sharpe Ratio and the maximum drawdown. Our measures are shown to be more robust against clustering of losses and have the ability to fully characterize the dynamic behaviour of investment strategies.

  7. Numerical analysis of rapid drawdown: Applications in real cases

    Directory of Open Access Journals (Sweden)

    Eduardo E. Alonso

    2016-07-01

    Full Text Available In this study, rapid drawdown scenarios were analyzed by means of numerical examples as well as modeling of real cases with in situ measurements. The aim of the study was to evaluate different approaches available for calculating pore water pressure distributions during and after a drawdown. To do that, a single slope subjected to a drawdown was first analyzed under different calculation alternatives, and numerical results were discussed. Simple methods, such as undrained analysis and pure flow analysis, implicitly assuming a rigid soil skeleton, lead to significant errors in pore water pressure distributions when compared with coupled flow-deformation analysis. A similar analysis was performed for the upstream slope of the Glen Shira Dam, Scotland, and numerical results were compared with field measurements during a controlled drawdown. Field records indicate that classical undrained calculations are conservative but unrealistic. Then, a recent case of a major landslide triggered by a rapid drawdown in a reservoir was interpreted. A key aspect of the case was the correct characterization of permeability of a representative soil profile. This was achieved by combining laboratory test results and a back analysis of pore water pressure time records during a period of reservoir water level fluctuations. The results highlight the difficulty of predicting whether the pore water pressure is overestimated or underestimated when using simplified approaches, and it is concluded that predicting the pore water pressure distribution in a slope after a rapid drawdown requires a coupled flow-deformation analysis in saturated and unsaturated porous media.

  8. Effect of seasonal drawdown variations on groundwater quality in ...

    African Journals Online (AJOL)

    user

    2013-07-24

    Jul 24, 2013 ... Igbinosa and Okoh (2009) reported the damaging conse- quences of leachate infiltration into groundwater bodies on life expectancy of such water consumers, while Quinn et al. (2006) enumerated its effect and that of delayed drawdown on moist plant productivity and wetland ecology. Several studies have ...

  9. Maximum drawdown and the allocation to real estate

    NARCIS (Netherlands)

    Hamelink, F.; Hoesli, M.

    2004-01-01

    The role of real estate in a mixed-asset portfolio is investigated when the maximum drawdown (hereafter MaxDD), rather than the standard deviation, is used as the measure of risk. In particular, it is analysed whether the discrepancy between the optimal allocation to real estate and the actual

  10. Behaviour of levee on softsoil caused by rapid drawdown

    Science.gov (United States)

    Upomo, Togani Cahyadi; Effendi, Mahmud Kori; Kusumawardani, Rini

    2018-03-01

    Rapid Drawdown is a condition where the water elevation that has reached the peak suddenly drops. As the water level reaches the peak, hydrostatic pressure helps in the stability of the slope. When water elevation decreases there will be two effects. First, reduced hydrostatic pressure and second, modification of pore water pressure. Rapid draw down usually comon in hydraulic structure such as dam and levee. This study will discuss behaviour of levee on softsoil caused by rapid drawdown. The analysis based on method which developed by US Army Corps Engineer and modified method which developed by Duncan, Wright, dan Wong. Results of analysis show that in drawdown condition, at 1 m drop of water, safety factor obtained based on US Army Corps Engineer method was 1.16 and 0.976 while based on Duncan, Wright, and Wong methods were 1.244 and 1.117. At 0.5 m water level, safety factor based on US Army Corps Engineer method was 1.287 and 1.09 while Duncan, Wright, and Wong were 1.357 and 1.194.

  11. Antarctic sea ice losses drive gains in benthic carbon drawdown.

    Science.gov (United States)

    Barnes, D K A

    2015-09-21

    Climate forcing of sea-ice losses from the Arctic and West Antarctic are blueing the poles. These losses are accelerating, reducing Earth's albedo and increasing heat absorption. Subarctic forest (area expansion and increased growth) and ice-shelf losses (resulting in new phytoplankton blooms which are eaten by benthos) are the only significant described negative feedbacks acting to counteract the effects of increasing CO2 on a warming planet, together accounting for uptake of ∼10(7) tonnes of carbon per year. Most sea-ice loss to date has occurred over polar continental shelves, which are richly, but patchily, colonised by benthic animals. Most polar benthos feeds on microscopic algae (phytoplankton), which has shown increased blooms coincident with sea-ice losses. Here, growth responses of Antarctic shelf benthos to sea-ice losses and phytoplankton increases were investigated. Analysis of two decades of benthic collections showed strong increases in annual production of shelf seabed carbon in West Antarctic bryozoans. These were calculated to have nearly doubled to >2x10(5) tonnes of carbon per year since the 1980s. Annual production of bryozoans is median within wider Antarctic benthos, so upscaling to include other benthos (combined study species typically constitute ∼3% benthic biomass) suggests an increased drawdown of ∼2.9x10(6) tonnes of carbon per year. This drawdown could become sequestration because polar continental shelves are typically deeper than most modern iceberg scouring, bacterial breakdown rates are slow, and benthos is easily buried. To date, most sea-ice losses have been Arctic, so, if hyperboreal benthos shows a similar increase in drawdown, polar continental shelves would represent Earth's largest negative feedback to climate change. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. 24 CFR 570.513 - Lump sum drawdown for financing of property rehabilitation activities.

    Science.gov (United States)

    2010-04-01

    ... DEVELOPMENT BLOCK GRANTS Grant Administration § 570.513 Lump sum drawdown for financing of property... 24 Housing and Urban Development 3 2010-04-01 2010-04-01 false Lump sum drawdown for financing of property rehabilitation activities. 570.513 Section 570.513 Housing and Urban Development Regulations...

  13. GOTHIC MODEL OF BWR SECONDARY CONTAINMENT DRAWDOWN ANALYSES

    International Nuclear Information System (INIS)

    Hansen, P.N.

    2004-01-01

    This article introduces a GOTHIC version 7.1 model of the Secondary Containment Reactor Building Post LOCA drawdown analysis for a BWR. GOTHIC is an EPRI sponsored thermal hydraulic code. This analysis is required by the Utility to demonstrate an ability to restore and maintain the Secondary Containment Reactor Building negative pressure condition. The technical and regulatory issues associated with this modeling are presented. The analysis includes the affect of wind, elevation and thermal impacts on pressure conditions. The model includes a multiple volume representation which includes the spent fuel pool. In addition, heat sources and sinks are modeled as one dimensional heat conductors. The leakage into the building is modeled to include both laminar as well as turbulent behavior as established by actual plant test data. The GOTHIC code provides components to model heat exchangers used to provide fuel pool cooling as well as area cooling via air coolers. The results of the evaluation are used to demonstrate the time that the Reactor Building is at a pressure that exceeds external conditions. This time period is established with the GOTHIC model based on the worst case pressure conditions on the building. For this time period the Utility must assume the primary containment leakage goes directly to the environment. Once the building pressure is restored below outside conditions the release to the environment can be credited as a filtered release

  14. Effects of Drawdown and Structures on Bed-Load Transport in Pool 8 Navigation Channel

    National Research Council Canada - National Science Library

    Abraham, David; Hendrickson, Jon

    2003-01-01

    ... of a pool drawdown and structures on bed-load transport in the Pool 8 navigation channel. Work was conducted as part of the Monitoring of Completed Navigation Projects (MCNP) program. BACKGROUND...

  15. Detecting drawdowns masked by environmental stresses with water-level models

    Science.gov (United States)

    Garcia, C.A.; Halford, K.J.; Fenelon, J.M.

    2013-01-01

    Detecting and quantifying small drawdown at observation wells distant from the pumping well greatly expands the characterized aquifer volume. However, this detection is often obscured by water level fluctuations such as barometric and tidal effects. A reliable analytical approach for distinguishing drawdown from nonpumping water-level fluctuations is presented and tested here. Drawdown is distinguished by analytically simulating all pumping and nonpumping water-level stresses simultaneously during the period of record. Pumping signals are generated with Theis models, where the pumping schedule is translated into water-level change with the Theis solution. This approach closely matched drawdowns simulated with a complex three-dimensional, hypothetical model and reasonably estimated drawdowns from an aquifer test conducted in a complex hydrogeologic system. Pumping-induced changes generated with a numerical model and analytical Theis model agreed (RMS as low as 0.007 m) in cases where pumping signals traveled more than 1 km across confining units and fault structures. Maximum drawdowns of about 0.05 m were analytically estimated from field investigations where environmental fluctuations approached 0.2 m during the analysis period.

  16. Assessment of the Available Drawdowns for Oil Storage Caverns at the West Hackberry SPR Site

    Energy Technology Data Exchange (ETDEWEB)

    Sobolik, Steven R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Geotechnology and Engineering Dept.

    2016-03-01

    The Department of Energy, in response to requests from the U.S. Congress, wishes to maintain an up-to-date table documenting the number of available full drawdowns of each of the caverns owned by the Strategic Petroleum Reserve. This information is important for assessing the SPR’s ability to deliver oil to domestic oil companies expeditiously if national or world events dictate a rapid sale and deployment of the oil reserves. What factors go into assessing available drawdowns? The evaluation of drawdown risks require the consideration of several factors regarding cavern and wellbore integrity and stability, including stress states caused by cavern geometry and operations, salt damage caused by dilatant and tensile stresses, the effect on enhanced creep on wellbore integrity, the sympathetic stress effect of operations on neighboring caverns. Based on the work over the past several months, a consensus has been built regarding the assessment of drawdown capabilities and risks for the SPR caverns. This paper draws upon the recently West Hackberry model upgrade and analyses to reevaluate and update the available drawdowns for each of those caverns. Similar papers for the Bryan Mound, Big Hill, and Bayou Choctaw papers will be developed as the upgrades to those analyses are completed. The rationale and documentation of the methodology is described in the remainder of this report, as are the updated estimates of available drawdowns for the West Hackberry caverns.

  17. Transient drawdown solution for a constant pumping test in finite two-zone confined aquifers

    Directory of Open Access Journals (Sweden)

    C.-T. Wang

    2012-02-01

    Full Text Available The drawdown solution has been widely used to analyze pumping test data for the determination of aquifer parameters when coupled with an optimization scheme. The solution can also be used to predict the drawdown due to pumping and design the dewatering system. The drawdown solution for flow toward a finite-radius well with a skin zone in a confined aquifer of infinite extent in radial direction had been developed before. To our best knowledge, the drawdown solution in confined aquifers of finite extent with a skin zone so far has never before been presented in the groundwater literature. This article presents a mathematical model for describing the drawdown distribution due to a constant-flux pumping from a finite-radius well with a skin zone in confined aquifers of finite extent. The analytical solution of the model is developed by applying the methods of Laplace transforms, Bromwich contour integral, and residue theorem. This solution can be used to investigate the effects of finite boundary and conductivity ratio on the drawdown distribution. In addition, the inverse relationship between Laplace- and time-domain variables is used to develop the large time solution which can reduce to the Thiem solution if there is no skin zone.

  18. Ecological impacts of winter water level drawdowns on lake littoral zones: A review

    Science.gov (United States)

    Roy, Allison

    2017-01-01

    Freshwater littoral zones harbor diverse ecological communities and serve numerous ecosystem functions that are controlled, in part, by natural water level fluctuations. However, human alteration of lake hydrologic regimes beyond natural fluctuations threaten littoral zone ecological integrity. One type of hydrologic alteration in lakes is winter water level drawdowns, which are frequently employed for hydropower, flood control, and macrophyte control, among other purposes. Here, we synthesize the abiotic and biotic responses to annual and novel winter water level drawdowns in littoral zones of lakes and reservoirs. The dewatering, freezing, and increased erosion of exposed lakebeds drive changes in the littoral zone. Shoreline-specific physicochemical conditions such as littoral slope and shoreline exposure further induce modifications. Loss of fine sediment decreases nutrient availability over time, but desiccation may promote a temporary nutrient pulse upon re-inundation. Annual winter drawdowns can decrease taxonomic richness of macrophytes and benthic invertebrates and shift assemblage composition to favor taxa with r-selected life history strategies and with functional traits resistant to direct and indirect drawdown effects. Fish assemblages, though less directly affected by winter drawdowns (except where there is critically low dissolved oxygen), experience negative effects via indirect pathways like decreased food resources and spawning habitat. We identify eight general research gaps to guide future research that could improve our understanding about the complex effects of winter drawdowns on littoral zone ecology.

  19. Post audit of a numerical prediction of wellfield drawdown in a semiconfined aquifer system

    Science.gov (United States)

    Stewart, M.; Langevin, C.

    1999-01-01

    A numerical ground water flow model was created in 1978 and revised in 1981 to predict the drawdown effects of a proposed municipal wellfield permitted to withdraw 30 million gallons per day (mgd; 1.1 x 105 m3/day) of water from the semiconfined Floridan Aquifer system. The predictions are based on the assumption that water levels in the semiconfined Floridan Aquifer reach a long-term, steady-state condition within a few days of initiation of pumping. Using this assumption, a 75 day simulation without water table recharge, pumping at the maximum permitted rates, was considered to represent a worst-case condition and the greatest drawdowns that could be experienced during wellfield operation. This method of predicting wellfield effects was accepted by the permitting agency. For this post audit, observed drawdowns were derived by taking the difference between pre-pumping and post-pumping potentiometric surface levels. Comparison of predicted and observed drawdowns suggests that actual drawdown over a 12 year period exceeds predicted drawdown by a factor of two or more. Analysis of the source of error in the 1981 predictions suggests that the values used for transmissivity, storativity, specific yield, and leakance are reasonable at the wellfield scale. Simulation using actual 1980-1992 pumping rates improves the agreement between predicted and observed drawdowns. The principal source of error is the assumption that water levels in a semiconfined aquifer achieve a steady-state condition after a few days or weeks of pumping. Simulations using a version of the 1981 model modified to include recharge and evapotranspiration suggest that it can take hundreds of days or several years for water levels in the linked Surficial and Floridan Aquifers to reach an apparent steady-state condition, and that slow declines in levels continue for years after the initiation of pumping. While the 1981 'impact' model can be used for reasonably predicting short-term, wellfield

  20. Assessing Drawdown-at-Risk in Brazilian Real Foreign Exchange Rates

    Directory of Open Access Journals (Sweden)

    Vinicius Ratton Brandi

    2004-12-01

    Full Text Available The investigation of the stochastic behavior of financial series has become widespread over the literature. There is empirical and theoretical evidence that the total stock price change over a long period is usually concentrated in the a few hectic runs of trading days. The drawdown is a random variable which provides information on alternative characteristics of market behavior during these periods. In this work, we use distributions from extreme value theory to model the severity of drawdowns and drawups. We illustrate using nine currency exchange rates and gold.

  1. 75 FR 59284 - Notice of Submission of Proposed Information Collection to OMB Grant Drawdown Payment Request...

    Science.gov (United States)

    2010-09-27

    ... subject proposal. Public and Indian Housing Grant recipients use the payment vouchers to request funds... Information and Its Proposed Use: Public and Indian Housing Grant recipients use the payment vouchers to... Proposed Information Collection to OMB Grant Drawdown Payment Request/LOCCS/VRS Activated System AGENCY...

  2. A new active portfolio risk management for an electricity retailer based on a drawdown risk preference

    International Nuclear Information System (INIS)

    Charwand, Mansour; Gitizadeh, Mohsen; Siano, Pierluigi

    2017-01-01

    This paper addresses the deciding under uncertainty of an electricity retailer in order to maximise its total expected rate of return. The developed methodology is based on the modelling of the stochastic evolution of zonal prices that seeks to manage a portfolio of different contracts. Retailer's load and the price at each zone are forecasted using the seasonal autoregressive integrated moving average (SARIMA) model and a clustering technique is used for scenario reduction. Supply sources include the pool, self-production facilities, forward and bilateral contracts. The risk of cost fluctuation due to uncertainties is explicitly modelled using the multi-scenario drawdown methodology. This risk function quantifies in aggregated format the frequency and magnitude of the portfolio drawdowns over planning horizon. In-sample and out-of-sample runs are performed for a portfolio allocation problem. Carried out experimental results on the basis of realistic data, show that imposing risk constraints improve the “real” performance of a portfolio management in out-of-sample runs. - Highlights: • A new drawdown-based method is introduced to retailer deciding under uncertainty. • This tool is used to assess the risk levels regarding retailer midterm strategies. • The methodology is based on the modeling of the stochastic evolution of zonal prices. • The risk function quantifies the frequency and magnitude of the portfolio drawdowns. • In-sample and out-of-sample runs are performed for a portfolio allocation problem.

  3. POTENTIAL FOR THE DEVELOPMENT OF MARSH VEGETATION FROM THE SEED BANK AFTER A DRAWDOWN

    NARCIS (Netherlands)

    TERHEERDT, GNJ; DROST, HJ

    1994-01-01

    In the inundated part of the Oostvaardersplassen, a marsh in The Netherlands, most of the emergent vegetation disappeared due to herbivory and erosion, resulting in a shallow lake. The emergent vegetation was successfully re-established by means of a drawdown. A comparable flooded marsh was studied

  4. Historical and potential groundwater drawdown in the Bruneau area, Owyhee County, southwestern Idaho

    Science.gov (United States)

    Adkins, Candice B.; Bartolino, James R.

    2012-01-01

    Geothermal seeps and springs in the Bruneau area in southwestern Idaho provide a vital but disappearing habitat for the Bruneau hot springsnail (Pyrgulopsis bruneauensis). In order to aid in conservation efforts, a two-part study was conducted (1) to determine trends in groundwater levels over time and (2) to simulate drawdown in aquifers that contribute to the geothermal seeps and springs along the Bruneau River. Seasonal and Regional Kendall tests for trends were used to determine water-level trends over a 20-year monitoring (1990–2010) period. Seasonal Kendall tests were used to calculate trends in groundwater-levels in 22 monitoring wells and indicated statistically significant changes in water level with trends ranging from 0.21 to 1.0 feet per year. Regional Kendall tests were used to calculate drawdown in categories of wells based on five criteria (well depth, distance from Indian Bathtub Spring, geologic unit, regional topographic valley, and temperature). Results from Regional Kendall tests indicate that slope of the trend (in feet per year) increased as a function of well depth; trends in water level as a function of other categories did not exhibit an obvious pattern based on distance from Indian Bathtub Spring, geologic unit, topographic valley, or temperature. Analytical solutions were used to simulate drawdown and recovery in wells using the Theis equation and a range of hydraulic parameters. Drawdown effects were determined by changing the storativity, transmissivity, and flow values over a hypothetical timeline. For example, estimates projected that after 20 years of pumping (at an assumed storativity of 0.002, a transmissivity of 980,000 feet squared per day, and a flow of 100 acre-feet per year), 1 foot of drawdown in the volcanic-rock aquifers would not be detected; however, other estimates using the same time frame but different hydraulic parameters (storativity of 0.001, transmissivity of 13,000 feet squared per day, and 610 acre-feet per

  5. Influence of filling-drawdown cycles of the Vajont reservoir on Mt. Toc slope stability

    Science.gov (United States)

    Paronuzzi, Paolo; Rigo, Elia; Bolla, Alberto

    2013-06-01

    In the present work, the 1963 Vajont landslide has been back-analyzed in detail to examine the influence of reservoir operations (filling and drawdown) on Mt. Toc slope stability. The combined seepage-slope stability analyses carried out show that the main destabilizing factor that favored the 1963 Vajont landslide was the reservoir-induced water table that formed as a consequence of rapid seepage inflow within the submerged toe of the slope — decrease in the factor of safety (FOS) up to 12% compared to the initial slope stability condition, i.e., in the absence of the Vajont reservoir. Rainfall would only have been a decisive factor if the initial stability condition of the Mt. Toc slope had already been very close to failure (decrease in FOS caused by heavy or prolonged rainfall is about 3-4%, for the worst case scenario analyzed). The permeability of the shear zone material occurring at the base of the prehistoric Vajont rockslide has been evaluated at 5 × 10- 4 m/s, and back-calculated values of the friction angles Φ range from 17.5° to 27.5°. When considering mountain reservoirs, slope failures can occur during both filling and drawdown phases. In the Vajont case, owing to the highly permeable materials of the shear zone, slope stability decreased during filling and increased during drawdown. Another displacement-dependent phenomenon of a mechanical nature - progressive failure of the NE landslide constraint - has to be considered to understand the slope collapse that occurred during the last drawdown (26 September-9 October 1963). The results of the combined seepage-slope stability models indicate that permeability of bank-forming material and filling-drawdown rates of reservoirs can strongly influence slope stability. Slow lowering of the reservoir level is a necessary measure to reduce the occurrence of very dangerous transient negative peaks of FOS.

  6. Transient well flow in layered aquifer systems: the uniform well-face drawdown solution

    Science.gov (United States)

    Hemker, C. J.

    1999-11-01

    Previously a hybrid analytical-numerical solution for the general problem of computing transient well flow in vertically heterogeneous aquifers was proposed by the author. The radial component of flow was treated analytically, while the finite-difference technique was used for the vertical flow component only. In the present work the hybrid solution has been modified by replacing the previously assumed uniform well-face gradient (UWG) boundary condition in such a way that the drawdown remains uniform along the well screen. The resulting uniform well-face drawdown (UWD) solution also includes the effects of a finite diameter well, wellbore storage and a thin skin, while partial penetration and vertical heterogeneity are accommodated by the one-dimensional discretization. Solutions are proposed for well flow caused by constant, variable and slug discharges. The model was verified by comparing wellbore drawdowns and well-face flux distributions with published numerical solutions. Differences between UWG and UWD well flow will occur in all situations with vertical flow components near the well, which is demonstrated by considering: (1) partially penetrating wells in confined aquifers, (2) fully penetrating wells in unconfined aquifers with delayed response and (3) layered aquifers and leaky multiaquifer systems. The presented solution can be a powerful tool for solving many well-hydraulic problems, including well tests, flowmeter tests, slug tests and pumping tests. A computer program for the analysis of pumping tests, based on the hybrid analytical-numerical technique and UWG or UWD conditions, is available from the author.

  7. Monitoring strategies associated with the controlled drawdown of a hydropower reservoir

    Science.gov (United States)

    Hauer, Christoph; Haimann, Marlene; Habersack, Helmut; Haun, Stefan; Hammer, Andreas; Schletterer, Martin

    2017-04-01

    Reservoirs are important in context of an increased demand on renewable energy and water for irrigation and drinking water purposes. Thus reservoir management is an important task. Beside the technical and the economically feasibility ecological factors are important issues. Thus, an integrative monitoring concept was developed and applied during a controlled drawdown of the Gepatsch reservoir in the Austrian Alps.The controlled drawdown (December 2015 - March 2016) was done slowly, with the consequence of moderatesuspended sediment concentrations (SSCs) in the downstream Inn river. The water was released through the penstock towards the turbines and directly into the Inn River. However, to limit the erosional impact on turbines only one Twin-Pelton turbines was operated during the controlled drawdown. The monitoring program itself was subdivided into monitoring of the sediments in the penstock to determine the amount and the composition of sediments which were sluiced through the turbine, monitoring of the turbine itself to quantify the damages of the turbine and a monitoring related to SSCs in the downstream river reach. In order to detect possible changes, measured discharge and turbidity values were examined. In addition, the flow velocity was modelled (1D). The goal was to monitor the observed peaks concerning their temporal shift and to draw conclusions on the storage capacity of fine sediments in the river substrate. Moreover, detailed fine sediment depositions on gravel bars along the Inn river were monitored and the grain size distribution of the river bed was determined. The monitoring started already in April / November 2015 with the aim to survey and analyses the turbidity, suspended load and fine sediment deposits on gravel bars along the River Inn as well as its biota (macroinvertebrates and fish) for "undisturbed" conditions. The SSCs were measured in a pre-analysis and during the drawdown itself in the penstock and in the outlet channel with

  8. Fen ecohydrologic trajectories in response to groundwater drawdown with edaphic, floristic, and hydrologic feedbacks

    Science.gov (United States)

    Booth, E.; Steven, L. I.; Bart, D.

    2017-12-01

    Calcareous fens are unique and often isolated ecosystems of high conservation value worldwide because they provide habitat for many rare plant and animal species. Their identity is inextricably linked to an absolute dependence on a consistent discharge of groundwater that saturates the near surface for most of the growing season leading to the accumulation of carbon as peat or tufa and sequestration of nutrients. The stresses resulting from consistent saturation and low-nutrient availability result in high native plant diversity including very high rare species richness compared to other ecosystems. Decreases in the saturation stress by reduced groundwater inputs (e.g., from nearby pumping) can result in losses of native diversity, decreases in rare-species abundance, and increased invasion by non-native species. As such, fen ecosystems are particularly susceptible to changes in groundwater conditions including reduction in water levels due to nearby groundwater pumping. Trajectories of degradation are complex due to feedbacks between loss of soil organic carbon, changes in soil properties, and plant water use. We present a model of an archetype fen that couples a hydrological niche model with a variably-saturated groundwater flow model to predict changes in vegetation composition in response to different groundwater drawdown scenarios (step change, declining trend, and periodic drawdown during dry periods). The model also includes feedbacks among vegetation composition, plant water use, and soil properties. The hydrological niche models (using surface soil moisture as predictor) and relationships between vegetation composition, plant water use (via stomatal conductance and leaf-area index), and soil hydraulic properties (van Genuchten parameters) were determined based on data collected from six fens in Wisconsin under various states of degradation. Results reveal a complex response to drawdown and provide insight into other ecosystems with linkages between the

  9. Reservoir drawdown: Case study in flow changes to potentially improve fisheries

    International Nuclear Information System (INIS)

    Wik, S.J.

    1995-01-01

    Salmon populations in the Columbia River Basin have declined, and several species are now protected under the Endangered Species Act. Many factors have contributed to the decline, including overharvest, loss of habit, degradation of water quality, and construction of dams. Many measures have been implemented to reduce the impact of the dams, but additional measures are being considered. Lowering water-surface elevations behind four lower Snake River dams has been proposed as a measure to improve juvenile salmonid survival. The Corps of Engineers has determined preliminary costs, schedules, and required modifications for several drawdown alternatives. Initial estimates of the ability of this type of operation to improve salmonid survival are controversial

  10. Survival and behavior of Chinese mystery snails (Bellamya chinensis) in response to simulated water body drawdowns and extended air exposure

    Science.gov (United States)

    Unstad, Kody M.; Uden, Daniel R.; Allen, Craig R.; Chaine, Noelle M.; Haak, Danielle M.; Kill, Robert A.; Pope, Kevin L.; Stephen, Bruce J.; Wong, Alec

    2013-01-01

    Nonnative invasive mollusks degrade aquatic ecosystems and induce economic losses worldwide. Extended air exposure through water body drawdown is one management action used for control. In North America, the Chinese mystery snail (Bellamya chinensis) is an invasive aquatic snail with an expanding range, but eradication methods for this species are not well documented. We assessed the ability of B. chinensis to survive different durations of air exposure, and observed behavioral responses prior to, during, and following desiccation events. Individual B. chinensis specimens survived air exposure in a laboratory setting for > 9 weeks, and survivorship was greater among adults than juveniles. Several B. chinensis specimens responded to desiccation by sealing their opercula and/or burrowing in mud substrate. Our results indicate that drawdowns alone may not be an effective means of eliminating B. chinensis. This study lays the groundwork for future management research that may determine the effectiveness of drawdowns when combined with factors such as extreme temperatures, predation, or molluscicides.

  11. Finite Time Merton Strategy under Drawdown Constraint: A Viscosity Solution Approach

    International Nuclear Information System (INIS)

    Elie, R.

    2008-01-01

    We consider the optimal consumption-investment problem under the drawdown constraint, i.e. the wealth process never falls below a fixed fraction of its running maximum. We assume that the risky asset is driven by the constant coefficients Black and Scholes model and we consider a general class of utility functions. On an infinite time horizon, Elie and Touzi (Preprint, [2006]) provided the value function as well as the optimal consumption and investment strategy in explicit form. In a more realistic setting, we consider here an agent optimizing its consumption-investment strategy on a finite time horizon. The value function interprets as the unique discontinuous viscosity solution of its corresponding Hamilton-Jacobi-Bellman equation. This leads to a numerical approximation of the value function and allows for a comparison with the explicit solution in infinite horizon

  12. A Straight-Line Method for Analyzing Residual Drawdowns at an Observation Well

    Directory of Open Access Journals (Sweden)

    Mesut Çimen

    2015-01-01

    Full Text Available Determination of the hydraulic parameters (transmissivity and storage coefficients of a confined aquifer is important for effective groundwater resources. For this purpose, the residual drawdowns have been in use to estimate the aquifer parameters by the classical Theis recovery method. The proposed method of this paper depends on a straight-line through the field data and it helps to calculate the parameters quickly without any need for long-term pumping data. It is based on the expansion series of the Theis well function by consideration of three terms, and this approach is valid for the dimensionless time factor u′=S′r2/4Tt′≤0.2. The method can be applied reliably to extensive and homogeneous confined aquifers resulting in different storage coefficients during the pumping and recovery periods S≠S′. It presents a strength methodology for the parameters decision making from the residual data in the groundwater field of civil engineering.

  13. Estimation of Net Groundwater Recharge Using Natural Drawdown Events in Subtropical Isolated Wetland Ecosystems

    Science.gov (United States)

    Perkins, D. B.; Min, J.; Jawitz, J. W.

    2008-12-01

    Restoration of ditched and drained wetlands in the Lake Okeechobee basin, Florida, USA is currently under study for possible amelioration of anthropogenic phosphorus enrichment of the lake. To date most research in this area has focused on the biogeochemical role of these wetlands. Here we focus on the dynamic hydrology of these systems and the resulting control on biogeochemical cycling. Four depressional wetlands in the basin were monitored for approximately three years to understand the interaction between wetland surface water and adjacent upland groundwater system. A coupled hydrologic-biogeochemical model was created to evaluate restoration scenarios. Determining wetland-scale hydraulic conductivity was an important aspect of the hydrologic model. Based on natural drawdown events observed at wetland-upland well pairs, hydraulic conductivities of top sandy soil layers surrounding the isolated wetlands were calculated using the Dupuit equation under a constrained water budget framework. The drawdown-based hydraulic conductivity estimates of 1.1 to 18.7 m/d (geometric mean of 4.8 m/d) were about three times greater than slug test- based values (1.5 ± 1.1 m/d), which is consistent with scale-dependent expectations. Model-based net groundwater recharge rate at each depressional wetland was predicted based on the estimated hydraulic conductivities, which corresponded to 50 to 72% of rainfall in the same period. These variances appeared to be due to the relative difference of ditch bottom elevation controlling the surface runoff as well as the spatial heterogeneity of the sandy aquifer. Results from this study have implications for nutrient loads to Lake Okeechobee via groundwater as well as water quality monitoring and management strategies aimed to reduce solute export (especially P) from the upstream catchment area to Lake Okeechobee.

  14. Prediction of flow and drawdown for the site characterization and validation site in the Stripa Mine

    International Nuclear Information System (INIS)

    Long, J.C.S.; Mauldon, A.D.; Nelson, K.; Martel, S.; Fuller, P.; and Karasaki, K.

    1992-01-01

    Geophysical and hydrologic data from a location in the Stripa Mine in Sweden, called the Site Characterization and Validation (SCV) block, has been used to create a series of models for flow through the fracture network. The models can be characterized as ''equivalent discontinuum'' models. Equivalent discontinuum models are derived starting from a specified lattice or 6 ''template''. An inverse analysis called ''Simulated Annealing'' is used to make a random search through the elements of the lattice to find a configuration that can reproduce the measured responses. Evidence at Stripa points to hydrology which is dominated by fracture zones. These have been identified and located through extensive characterization efforts. Lattice templates were arranged to lie on the fracture zones identified by Black and Olsson. The fundamental goal of this project was to build a fracture flow model based an initial data set, and use this model to make predictions of the flow behavior during a new test. Then given data from the new test, predict a second test, etc. The first data set was an interference test called C1-2. Both a two-dimensional and a three-dimensional model were annealed to the C1-2 data and use this model to predict the behavior of the Simulated Drift Experiment (SDE). The SDE measured the flow into, and drawdown due to reducing the pressure in a group of 6 parallel boreholes. Then both the C1-2 and SDE data were used to predict the flow into and drawdown due to an excavation, the Validation Drift (VD), made through the boreholes. Finally, all the data was used to predict the hydrologic response to opening another hole, T1

  15. Annual nitrate drawdown observed by SOCCOM profiling floats and the relationship to annual net community production

    Science.gov (United States)

    Johnson, Kenneth S.; Plant, Joshua N.; Dunne, John P.; Talley, Lynne D.; Sarmiento, Jorge L.

    2017-08-01

    Annual nitrate cycles have been measured throughout the pelagic waters of the Southern Ocean, including regions with seasonal ice cover and southern hemisphere subtropical zones. Vertically resolved nitrate measurements were made using in situ ultraviolet spectrophotometer (ISUS) and submersible ultraviolet nitrate analyzer (SUNA) optical nitrate sensors deployed on profiling floats. Thirty-one floats returned 40 complete annual cycles. The mean nitrate profile from the month with the highest winter nitrate minus the mean profile from the month with the lowest nitrate yields the annual nitrate drawdown. This quantity was integrated to 200 m depth and converted to carbon using the Redfield ratio to estimate annual net community production (ANCP) throughout the Southern Ocean south of 30°S. A well-defined, zonal mean distribution is found with highest values (3-4 mol C m-2 yr-1) from 40 to 50°S. Lowest values are found in the subtropics and in the seasonal ice zone. The area weighted mean was 2.9 mol C m-2 yr-1 for all regions south of 40°S. Cumulative ANCP south of 50°S is 1.3 Pg C yr-1. This represents about 13% of global ANCP in about 14% of the global ocean area.Plain Language SummaryThis manuscript reports on 40 annual cycles of nitrate observed by chemical sensors on SOCCOM profiling floats. The annual drawdown in nitrate concentration by phytoplankton is used to assess the spatial variability of annual net community production in the Southern Ocean. This ANCP is a key component of the global carbon cycle and it exerts an important control on atmospheric carbon dioxide. We show that the results are consistent with our prior understanding of Southern Ocean ANCP, which has required decades of observations to accumulate. The profiling floats now enable annual resolution of this key process. The results also highlight spatial variability in ANCP in the Southern Ocean.

  16. Non-methane biogenic volatile organic compound emissions from boreal peatland microcosms under warming and water table drawdown

    DEFF Research Database (Denmark)

    Faubert, P; Tiiva, P; Nakam, TA

    2011-01-01

    assessed the combined effect of warming and water table drawdown on the BVOC emissions from boreal peatland microcosms. We also assessed the treatment effects on the BVOC emissions from the peat soil after the 7-week long experiment. Emissions of isoprene, monoterpenes, sesquiterpenes, other reactive VOCs...

  17. Evaluation of Low or High Permeability of Fractured Rock using Well Head Losses from Step-Drawdown Tests

    International Nuclear Information System (INIS)

    Kim, Byung Woo; Kim, Geon Young; Koh, Yong Kwon; Kim, Hyoung Soo

    2012-01-01

    The equation of the step-drawdown test 's w = BQ+CQ p ' written by Rorabaugh (1953) is suitable for drawdown increased non-linearly in the fractured rocks. It was found that value of root mean square error (RMSE) between observed and calculated drawdowns was very low. The calculated C (well head loss coefficient) and P (well head loss exponent) value of well head losses (CQ p ) ranged 3.689 x 10 -19 - 5.825 x 10 -7 and 3.459 - 8.290, respectively. It appeared that the deeper depth in pumping well the larger drawdowns due to pumping rate increase. The well head loss in the fractured rocks, unlike that in porous media, is affected by properties of fractures (fractures of aperture, spacing, and connection) around pumping well. The C and P value in the well head loss is very important to interpret turbulence interval and properties of high or low permeability of fractured rock. As a result, regression analysis of C and P value in the well head losses identified the relationship of turbulence interval and hydraulic properties. The relationship between C and P value turned out very useful to interpret hydraulic properties of the fractured rocks.

  18. 78 FR 63488 - 60-Day Notice of Proposed Information Collection: Grant Drawdown Payment Request/LOCCS/VRS Voice...

    Science.gov (United States)

    2013-10-24

    .... Public and Indian Housing Grant recipients use the payment vouchers to request funds from HUD through the... system. The information collected on the payment voucher will also be used as an internal control measure... Information Collection: Grant Drawdown Payment Request/LOCCS/VRS Voice Activated AGENCY: Office of the...

  19. Litter quality and its response to water level drawdown in boreal peatlands at plant species and community level

    Science.gov (United States)

    Straková, Petra; Anttila, Jani; Spetz, Peter; Kitunen, Veikko; Tapanila, Tarja; Laiho, Raija

    2010-05-01

    There is increasing evidence that changes in the species composition and structure of plant communities induced by global change will have much more impact on plant-mediated carbon cycling than any phenotypic responses. These impacts are largely mediated by shifts in litter quality. There are few documentations of these changes so far, due to the relatively long time scale required for their direct observation. Here, we examine the changes in litter inputs induced by persistent water-level drawdown in boreal peatland sites. Peatlands contain a major proportion of the terrestrial carbon pool, and it is thus important to be able to predict their behaviour and role in the global C cycle under different global change factors. We studied the effects of short-term (ca. 4 years) and long-term (ca. 40 years) persistent water level (WL) drawdown on the quantity and chemical quality of above-ground plant litter inputs at three sites: bog, oligotrophic fen and mesotrophic fen. The parameters used to characterize litter quality included various extractable substances, cellulose, holocellulose, composition of hemicellulose (neutral sugars, uronic acids), lignin, CuO oxidation phenolic products, and concentrations of C, nitrogen (N), phosphorus (P), potassium, magnesium, manganese and calcium. Four different groups of litter were clearly distinct based on their chemical quality: foliar litters, graminoids, mosses and woody litters. The pristine conditions were characterized by Sphagnum moss and graminoid litter. Following short-term WL drawdown, changes in the quality and quantity of litter inputs were small. Following long-term WL drawdown, total litter inputs dramatically increased, due to increased tree litter inputs, and the litter type composition greatly changed. These changes resulted in annual inputs of 1901-2010 kg•ha-1 C, 22-24 kg•ha-1 N, 1.5-2.2 kg•ha-1 P, 967-1235 kg•ha-1 lignin and lignin-like compounds and 254-300 kg•ha-1 water solubles after long-term WL

  20. Excess Diffuse Light Absorption in Upper Mesophyll Limits CO2 Drawdown and Depresses Photosynthesis.

    Science.gov (United States)

    Earles, J Mason; Théroux-Rancourt, Guillaume; Gilbert, Matthew E; McElrone, Andrew J; Brodersen, Craig R

    2017-06-01

    In agricultural and natural systems, diffuse light can enhance plant primary productivity due to deeper penetration into and greater irradiance of the entire canopy. However, for individual sun-grown leaves from three species, photosynthesis is actually less efficient under diffuse compared with direct light. Despite its potential impact on canopy-level productivity, the mechanism for this leaf-level diffuse light photosynthetic depression effect is unknown. Here, we investigate if the spatial distribution of light absorption relative to electron transport capacity in sun- and shade-grown sunflower ( Helianthus annuus ) leaves underlies its previously observed diffuse light photosynthetic depression. Using a new one-dimensional porous medium finite element gas-exchange model parameterized with light absorption profiles, we found that weaker penetration of diffuse versus direct light into the mesophyll of sun-grown sunflower leaves led to a more heterogenous saturation of electron transport capacity and lowered its CO 2 concentration drawdown capacity in the intercellular airspace and chloroplast stroma. This decoupling of light availability from photosynthetic capacity under diffuse light is sufficient to generate an 11% decline in photosynthesis in sun-grown but not shade-grown leaves, primarily because thin shade-grown leaves similarly distribute diffuse and direct light throughout the mesophyll. Finally, we illustrate how diffuse light photosynthetic depression could overcome enhancement in canopies with low light extinction coefficients and/or leaf area, pointing toward a novel direction for future research. © 2017 American Society of Plant Biologists. All Rights Reserved.

  1. The impact of water table drawdown and drying on subterranean aquatic fauna in in-vitro experiments.

    Directory of Open Access Journals (Sweden)

    Christine Stumpp

    Full Text Available The abstraction of groundwater is a global phenomenon that directly threatens groundwater ecosystems. Despite the global significance of this issue, the impact of groundwater abstraction and the lowering of groundwater tables on biota is poorly known. The aim of this study is to determine the impacts of groundwater drawdown in unconfined aquifers on the distribution of fauna close to the water table, and the tolerance of groundwater fauna to sediment drying once water levels have declined. A series of column experiments were conducted to investigate the depth distribution of different stygofauna (Syncarida and Copepoda under saturated conditions and after fast and slow water table declines. Further, the survival of stygofauna under conditions of reduced sediment water content was tested. The distribution and response of stygofauna to water drawdown was taxon specific, but with the common response of some fauna being stranded by water level decline. So too, the survival of stygofauna under different levels of sediment saturation was variable. Syncarida were better able to tolerate drying conditions than the Copepoda, but mortality of all groups increased with decreasing sediment water content. The results of this work provide new understanding of the response of fauna to water table drawdown. Such improved understanding is necessary for sustainable use of groundwater, and allows for targeted strategies to better manage groundwater abstraction and maintain groundwater biodiversity.

  2. The Eocene Arctic Azolla bloom: environmental conditions, productivity and carbon drawdown.

    Science.gov (United States)

    Speelman, E N; Van Kempen, M M L; Barke, J; Brinkhuis, H; Reichart, G J; Smolders, A J P; Roelofs, J G M; Sangiorgi, F; de Leeuw, J W; Lotter, A F; Sinninghe Damsté, J S

    2009-03-01

    Enormous quantities of the free-floating freshwater fern Azolla grew and reproduced in situ in the Arctic Ocean during the middle Eocene, as was demonstrated by microscopic analysis of microlaminated sediments recovered from the Lomonosov Ridge during Integrated Ocean Drilling Program (IODP) Expedition 302. The timing of the Azolla phase (approximately 48.5 Ma) coincides with the earliest signs of onset of the transition from a greenhouse towards the modern icehouse Earth. The sustained growth of Azolla, currently ranking among the fastest growing plants on Earth, in a major anoxic oceanic basin may have contributed to decreasing atmospheric pCO2 levels via burial of Azolla-derived organic matter. The consequences of these enormous Azolla blooms for regional and global nutrient and carbon cycles are still largely unknown. Cultivation experiments have been set up to investigate the influence of elevated pCO2 on Azolla growth, showing a marked increase in Azolla productivity under elevated (760 and 1910 ppm) pCO2 conditions. The combined results of organic carbon, sulphur, nitrogen content and 15N and 13C measurements of sediments from the Azolla interval illustrate the potential contribution of nitrogen fixation in a euxinic stratified Eocene Arctic. Flux calculations were used to quantitatively reconstruct the potential storage of carbon (0.9-3.5 10(18) gC) in the Arctic during the Azolla interval. It is estimated that storing 0.9 10(18) to 3.5 10(18) g carbon would result in a 55 to 470 ppm drawdown of pCO2 under Eocene conditions, indicating that the Arctic Azolla blooms may have had a significant effect on global atmospheric pCO2 levels through enhanced burial of organic matter.

  3. Diversity and above-ground biomass patterns of vascular flora induced by flooding in the drawdown area of China's Three Gorges Reservoir.

    Directory of Open Access Journals (Sweden)

    Qiang Wang

    Full Text Available Hydrological alternation can dramatically influence riparian environments and shape riparian vegetation zonation. However, it was difficult to predict the status in the drawdown area of the Three Gorges Reservoir (TGR, because the hydrological regime created by the dam involves both short periods of summer flooding and long-term winter impoundment for half a year. In order to examine the effects of hydrological alternation on plant diversity and biomass in the drawdown area of TGR, twelve sites distributed along the length of the drawdown area of TGR were chosen to explore the lateral pattern of plant diversity and above-ground biomass at the ends of growing seasons in 2009 and 2010. We recorded 175 vascular plant species in 2009 and 127 in 2010, indicating that a significant loss of vascular flora in the drawdown area of TGR resulted from the new hydrological regimes. Cynodon dactylon and Cyperus rotundus had high tolerance to short periods of summer flooding and long-term winter flooding. Almost half of the remnant species were annuals. Species richness, Shannon-Wiener Index and above-ground biomass of vegetation exhibited an increasing pattern along the elevation gradient, being greater at higher elevations subjected to lower submergence stress. Plant diversity, above-ground biomass and species distribution were significantly influenced by the duration of submergence relative to elevation in both summer and previous winter. Several million tonnes of vegetation would be accumulated on the drawdown area of TGR in every summer and some adverse environmental problems may be introduced when it was submerged in winter. We conclude that vascular flora biodiversity in the drawdown area of TGR has dramatically declined after the impoundment to full capacity. The new hydrological condition, characterized by long-term winter flooding and short periods of summer flooding, determined vegetation biodiversity and above-ground biomass patterns along the

  4. Aerobic carbon-cycle related microbial communities in boreal peatlands: responses to water-level drawdown

    Energy Technology Data Exchange (ETDEWEB)

    Peltoniemi, K

    2010-07-01

    Boreal peatlands represent a considerable portion of the global carbon (C) pool. Water-level drawdown (WLD) causes peatland drying and induces a vegetation change, which affects the decomposition of soil organic matter and the release of greenhouse gases (CO{sub 2} and CH{sub 4}). The objective of this thesis was to study the microbial communities related to the C cycle and their response to WLD in two boreal peatlands. Both sampling depth and site type had a strong impact on all microbial communities. In general, bacteria dominated the deeper layers of the nutrient-rich fen and the wettest surfaces of the nutrient-poor bog sites, whereas fungi seemed more abundant in the drier surfaces of the bog. WLD clearly affected the microbial communities but the effect was dependent on site type. The fungal and methane-oxidizing bacteria (MOB) community composition changed at all sites but the actinobacterial community response was apparent only in the fen after WLD. Microbial communities became more similar among sites after long-term WLD. Litter quality had a large impact on community composition, whereas the effects of site type and WLD were relatively minor. The decomposition rate of fresh organic matter was influenced slightly by actinobacteria, but not at all by fungi. Field respiration measurements in the northern fen indicated that WLD accelerates the decomposition of soil organic matter. In addition, a correlation between activity and certain fungal sequences indicated that community composition affects the decomposition of older organic matter in deeper peat layers. WLD had a negative impact on CH{sub 4} oxidation, especially in the oligotrophic fen. Fungal sequences were matched to taxa capable of utilizing a broad range of substrates. Most of the actinobacterial sequences could not be matched to characterized taxa in reference databases. This thesis represents the first investigation of microbial communities and their response to WLD among a variety of boreal

  5. Advanced methods for modeling water-levels and estimating drawdowns with SeriesSEE, an Excel add-in

    Science.gov (United States)

    Halford, Keith; Garcia, C. Amanda; Fenelon, Joe; Mirus, Benjamin B.

    2012-12-21

    Water-level modeling is used for multiple-well aquifer tests to reliably differentiate pumping responses from natural water-level changes in wells, or “environmental fluctuations.” Synthetic water levels are created during water-level modeling and represent the summation of multiple component fluctuations, including those caused by environmental forcing and pumping. Pumping signals are modeled by transforming step-wise pumping records into water-level changes by using superimposed Theis functions. Water-levels can be modeled robustly with this Theis-transform approach because environmental fluctuations and pumping signals are simulated simultaneously. Water-level modeling with Theis transforms has been implemented in the program SeriesSEE, which is a Microsoft® Excel add-in. Moving average, Theis, pneumatic-lag, and gamma functions transform time series of measured values into water-level model components in SeriesSEE. Earth tides and step transforms are additional computed water-level model components. Water-level models are calibrated by minimizing a sum-of-squares objective function where singular value decomposition and Tikhonov regularization stabilize results. Drawdown estimates from a water-level model are the summation of all Theis transforms minus residual differences between synthetic and measured water levels. The accuracy of drawdown estimates is limited primarily by noise in the data sets, not the Theis-transform approach. Drawdowns much smaller than environmental fluctuations have been detected across major fault structures, at distances of more than 1 mile from the pumping well, and with limited pre-pumping and recovery data at sites across the United States. In addition to water-level modeling, utilities exist in SeriesSEE for viewing, cleaning, manipulating, and analyzing time-series data.

  6. Effect of vegetation removal and water table drawdown on the non-methane biogenic volatile organic compound emissions in boreal peatland microcosms

    Science.gov (United States)

    Faubert, Patrick; Tiiva, Päivi; Rinnan, Åsmund; Räty, Sanna; Holopainen, Jarmo K.; Holopainen, Toini; Rinnan, Riikka

    2010-11-01

    Biogenic volatile organic compound (BVOC) emissions are important in the global atmospheric chemistry and their feedbacks to global warming are uncertain. Global warming is expected to trigger vegetation changes and water table drawdown in boreal peatlands, such changes have only been investigated on isoprene emission but never on other BVOCs. We aimed at distinguishing the BVOCs released from vascular plants, mosses and peat in hummocks (dry microsites) and hollows (wet microsites) of boreal peatland microcosms maintained in growth chambers. We also assessed the effect of water table drawdown (-20 cm) on the BVOC emissions in hollow microcosms. BVOC emissions were measured from peat samples underneath the moss surface after the 7-week-long experiment to investigate whether the potential effects of vegetation and water table drawdown were shown. BVOCs were sampled using a conventional chamber method, collected on adsorbent and analyzed with GC-MS. In hummock microcosms, vascular plants increased the monoterpene emissions compared with the treatment where all above-ground vegetation was removed while no effect was detected on the sesquiterpenes, other reactive VOCs (ORVOCs) and other VOCs. Peat layer from underneath the surface with intact vegetation had the highest sesquiterpene emissions. In hollow microcosms, intact vegetation had the highest sesquiterpene emissions. Water table drawdown decreased monoterpene and other VOC emissions. Specific compounds could be closely associated to the natural/lowered water tables. Peat layer from underneath the surface of hollows with intact vegetation had the highest emissions of monoterpenes, sesquiterpenes and ORVOCs whereas water table drawdown decreased those emissions. The results suggest that global warming would change the BVOC emission mixtures from boreal peatlands following changes in vegetation composition and water table drawdown.

  7. Force Drawdowns and Demographic Diversity: Investigating the Impact of Force Reductions on the Demographic Diversity of the U.S. Military

    Science.gov (United States)

    2015-01-01

    and After 2000s Drawdown: Air Force Officer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 D.1. Sample Legal Authorities and DoD...identify additional sources (i.e., snowball method). We also asked colleagues and interviewees if they could recommend other reports, articles, or...strategies, programs, and outcomes. We supplemented our electronic searches with snowball methods; we read reference lists of reports to identify other

  8. Carbon dynamics in peatlands under changing hydrology. Effects of water level drawdown on litter quality, microbial enzyme activities and litter decomposition rates

    Energy Technology Data Exchange (ETDEWEB)

    Strakova, P.

    2010-07-01

    Pristine peatlands are carbon (C) accumulating wetland ecosystems sustained by a high water level (WL) and consequent anoxia that slows down decomposition. Persistent WL drawdown as a response to climate and/or land-use change directly affects decomposition: increased oxygenation stimulates decomposition of the 'old C' (peat) sequestered under prior anoxic conditions. Responses of the 'new C' (plant litter) in terms of quality, production and decomposability, and the consequences for the whole C cycle of peatlands are not fully understood. WL drawdown induces changes in plant community resulting in shift in dominance from Sphagnum and graminoids to shrubs and trees. There is increasing evidence that the indirect effects of WL drawdown via the changes in plant communities will have more impact on the ecosystem C cycling than any direct effects. The aim of this study is to disentangle the direct and indirect effects of WL drawdown on the 'new C' by measuring the relative importance of (1) environmental parameters (WL depth, temperature, soil chemistry) and (2) plant community composition on litter production, microbial activity, litter decomposition rates and, consequently, on the C accumulation. This information is crucial for modelling C cycle under changing climate and/or land-use. The effects of WL drawdown were tested in a large-scale experiment with manipulated WL at two time scales and three nutrient regimes. Furthermore, the effect of climate on litter decomposability was tested along a north-south gradient. Additionally, a novel method for estimating litter chemical quality and decomposability was explored by combining Near infrared spectroscopy with multivariate modelling. WL drawdown had direct effects on litter quality, microbial community composition and activity and litter decomposition rates. However, the direct effects of WL drawdown were overruled by the indirect effects via changes in litter type composition and

  9. Large-scale Mass Transport Deposits in the Valencia Basin (Western Mediterranean): slope instability induced by rapid sea-level drawdown?

    Science.gov (United States)

    Cameselle, Alejandra L.; Urgeles, Roger; Llopart, Jaume

    2014-05-01

    The Messinian Salinity Crisis (MSC) strongly affected the physiography of the Mediterranean margins at the end of the Miocene. The sharp sea-level fall gave a new configuration to the Mediterranean basin and created dramatic morphological and sedimentological changes: margins have been largely eroded whereas the deep basins accumulated thick evaporitic and detrital units. Amongst these detrital units, there are evidences on seismic reflection data for major large-scale slope failure of the Mediterranean continental margins. About 2700 km of seismic reflection profiles in the southwestern part of the Valencia Basin (Western Mediterranean) have enabled us the detailed mapping of distinctive Messinian erosional surfaces, evaporites and deep detrital deposits. The detrital deposits occur in a distinct unit that is made of chaotic, roughly-bedded or transparent seismic bodies, which have been mainly mapped in the basin domain. Locally, the seismic unit shows discontinuous high-amplitude reflections and/or an imbricate internal structure. This unit is interpreted to be formed by a series of Mass Transport Deposits (MTDs). Rapid drawdown has long been recognized as one of the most severe loadings conditions that a slope can be subjected to. Several large historical slope failures have been documented to occur due to rapid drawdown in dams, riverbanks and slopes. During drawdown, the stabilizing effect of the water on the upstream face is lost, but the pore-water pressures within the slope may remain high. The dissipation of these pore pressures in the slope is controlled by the permeability and the storage characteristics of the slope sediments. We hypothesize that the MTDs observed in our data formed under similar conditions and represent a large-scale equivalent of this phenomenon. Therefore, these MTDs can be used to put some constraints on the duration of the drawdown phase of the MSC. We have performed a series of slope stability analysis under rapid Messinian sea

  10. Carbon dioxide generation and drawdown during active orogenesis of siliciclastic rocks in the Southern Alps, New Zealand

    Science.gov (United States)

    Menzies, Catriona D.; Wright, Sarah L.; Craw, Dave; James, Rachael H.; Alt, Jeffrey C.; Cox, Simon C.; Pitcairn, Iain K.; Teagle, Damon A. H.

    2018-01-01

    Collisional mountain building influences the global carbon cycle through release of CO2 liberated by metamorphic reactions and promoting mechanical erosion that in turn increases chemical weathering and drawdown of atmospheric CO2. The Southern Alps is a carbonate-poor, siliciclastic mountain belt associated with the active Australian Pacific plate boundary. On-going, rapid tectonic uplift, metamorphism and hydrothermal activity are mobilising carbon. Here we use carbon isotope measurements of hot spring fluids and gases, metamorphic host rocks, and carbonate veins to establish a metamorphic carbon budget. We identify three major sources for CO2 within the Southern Alps: (1) the oxidation of graphite; (2) consumption of calcite by metamorphic reactions at the greenschist-amphibolite facies boundary, and (3) the dissolution of groundmass and vein-hosted calcite. There is only a minor component of mantle CO2 arising on the Alpine Fault. Hot springs have molar HCO3-/Ca2+ ∼9, which is substantially higher than produced by the dissolution of calcite indicating that deeper metamorphic processes must dominate. The total CO2 flux to the near surface environment in the high uplift region of the Southern Alps is estimated to be ∼6.4 × 108 mol/yr. Approximately 87% of this CO2 is sourced from coupled graphite oxidation (25%) and disseminated calcite decarbonation (62%) reactions during prograde metamorphism. Dissolution of calcite and mantle-derived CO2 contribute ∼10% and ∼3% respectively. In carbonate-rich orogens CO2 production is dominated by metamorphic decarbonation of limestones. The CO2 flux to the atmosphere from degassing of hot springs in the Southern Alps is 1.9 to 3.2 × 108 mol/yr, which is 30-50% of the flux to the near surface environment. By contrast, the drawdown of CO2 through surficial chemical weathering ranges between 2.7 and 20 × 109 mol/yr, at least an order of magnitude greater than the CO2 flux to the atmosphere from this orogenic belt

  11. Amplification of drawdown and runup over Hawaii's insular shelves by tsunami N-waves from mega Aleutian earthquakes

    Science.gov (United States)

    Bai, Yefei; Yamazaki, Yoshiki; Cheung, Kwok Fai

    2018-04-01

    The latest tsunami evacuation maps of Hawaii include an extreme scenario triggered by an Mw 9.3 Aleutian earthquake with large near-trench rupture. The tectonic plate motion produces concentrated seafloor uplift toward the deepest part of the trench generating a tsunami with strong non-hydrostatic characters. A parametric study shows the skewed seafloor uplift produces a dispersive leading crest followed by a prominent trough in the form of an N-wave. The trough maintains its depth across the ocean in the absence of side lobes and dispersion. Shifting of the uplift toward the trench tends to deepen the trough, but has diminishing effects on the wave crest away from the source. While the attenuated leading crest produces relatively moderate runup on north-facing shores of the Hawaiian Islands, with matching of the N-wave and shelf resonance periods, the trough produces an impulsive drawdown followed by an energetic upswing with unprecedented runup for a far-field tsunami. A set of control computations without dispersion reaffirms that a non-hydrostatic model is essential to account for these complex wave processes from the source to the shore. This case study highlights the unique tsunami hazards posed by the Aleutians to Hawaii and the role of wave troughs in delineating the impacts for hazard assessment and engineering design.

  12. A framework for predicting global silicate weathering and CO2 drawdown rates over geologic time-scales.

    Science.gov (United States)

    Hilley, George E; Porder, Stephen

    2008-11-04

    Global silicate weathering drives long-time-scale fluctuations in atmospheric CO(2). While tectonics, climate, and rock-type influence silicate weathering, it is unclear how these factors combine to drive global rates. Here, we explore whether local erosion rates, GCM-derived dust fluxes, temperature, and water balance can capture global variation in silicate weathering. Our spatially explicit approach predicts 1.9-4.6 x 10(13) mols of Si weathered globally per year, within a factor of 4-10 of estimates of global silicate fluxes derived from riverine measurements. Similarly, our watershed-based estimates are within a factor of 4-18 (mean of 5.3) of the silica fluxes measured in the world's ten largest rivers. Eighty percent of total global silicate weathering product traveling as dissolved load occurs within a narrow range (0.01-0.5 mm/year) of erosion rates. Assuming each mol of Mg or Ca reacts with 1 mol of CO(2), 1.5-3.3 x 10(8) tons/year of CO(2) is consumed by silicate weathering, consistent with previously published estimates. Approximately 50% of this drawdown occurs in the world's active mountain belts, emphasizing the importance of tectonic regulation of global climate over geologic timescales.

  13. [Algal community structure and water quality assessment on drawdown area of Kaixian waters in Three Gorges Reservoir during winter storage period].

    Science.gov (United States)

    Guo, Jing-Song; Xie, Dan; Li, Zhe; Chen, Yuan; Sun, Zhi-Yu; Chen, Yong-Bo; Long, Man

    2012-04-01

    The old town area of Kaixian county was flooded and showed reservoir characteristics after the water level of Three Gorges Reservoir got 172. 8 m in December 2008. The aquatic ecology and nutritional status of Kaixian drawdown area after water storage are still rarely reported. To understand the current water environment and changes in algal community structure of Kaixian drawdown area after 172.8 m water level, the algal composition, abundance, biomass distribution and changes of its sampling spots including Hanfeng Lake were observed twice during winter storage period in January and December 2009. The trends in phytoplankton community structure were analyzed and the water quality assessment of nutritional status was carried out. The results indicated that 6 phylums, 37 genera, 69 species of phytoplankton in total were identified in the two sampling, and the dominant species were Dinophyta and Cryptophyta. The cell density and biomass in December 2009 were lower than those in January 2009. The evaluation results of algal population structure and pollution indicators showed that the nutrition level of Kaixian drawdown area during the winter storage period was mesotrophic to eutrophic type, while diversity analysis result indicated moderate pollution.

  14. Effects of seasonal drawdowns on fish assemblages in sections of an impounded river-canal system in upstate New York

    Science.gov (United States)

    George, Scott D.; Baldigo, Barry P.; Wells, Scott M

    2016-01-01

    The Mohawk River and New York State Barge Canal run together as a series of permanent and temporary impoundments for most of the distance between Rome and Albany, New York. The downstream or lower section is composed of two permanent impoundments, the middle section of a series of temporary (seasonal) impoundments, and the upper section of a series of permanent impoundments. In the middle section, movable dams are lifted from the water during winter and the wetted surface area decreases by 36–56%. We used boat electrofishing during spring 2014 and 2015 to compare the relative abundance of fish populations and the composition of fish assemblages between the permanently and seasonally impounded sections of the Barge Canal and to infer the effects of the two flow management practices. A total of 3,264 individuals from 38 species were captured, and total catch per unit effort (CPUE) ranged from 46.0 to 134.7 fish/h at sites in the seasonally impounded section, compared with 140.0–342.0 fish/h in the permanent lower section and 89.0–282.0 fish/h in the permanent upper section. The amount of drawdown explained 55% of the variation in total CPUE and was a highly significant predictor variable. Mean total CPUE in the seasonally impounded section was significantly lower (by about 50%) than that in either permanently impounded section, and the assemblage composition differed significantly between sections. The relative abundance of many lentic species was markedly lower in the seasonally impounded section, while the relative abundance of several native cyprinids and the percentage of individuals belonging to species that are native to the watershed was greater in this section. Overall, these findings suggest that winter dam removal in impounded rivers may reduce the abundance of fish but may also create more natural riverine conditions that favor some native species.

  15. Analytical Solution for Time-drawdown Response to Constant Pumping from a Homogeneous, Confined Horizontal Aquifer with Unidirectional Flow

    Science.gov (United States)

    Parrish, K. E.; Zhang, J.; Teasdale, E.

    2007-12-01

    An exact analytical solution to the ordinary one-dimensional partial differential equation is derived for transient groundwater flow in a homogeneous, confined, horizontal aquifer using Laplace transformation. The theoretical analysis is based on the assumption that the aquifer is homogeneous and one-dimensional (horizontal); confined between impermeable formations on top and bottom; and of infinite horizontal extent and constant thickness. It is also assumed that there is only a single pumping well penetrating the entire aquifer; flow is everywhere horizontal within the aquifer to the well; the well is pumping with a constant discharge rate; the well diameter is infinitesimally small; and the hydraulic head is uniform throughout the aquifer before pumping. Similar to the Theis solution, this solution is suited to determine transmissivity and storativity for a two- dimensional, vertically confined aquifer, such as a long vertically fractured zone of high permeability within low permeable rocks or a long, high-permeability trench inside a low-permeability porous media. In addition, it can be used to analyze time-drawdown responses to pumping and injection in similar settings. The solution can also be used to approximate the groundwater flow for unconfined conditions if (1) the variation of transmissivity is negligible (groundwater table variation is small in comparison to the saturated thickness); and (2) the unsaturated flow is negligible. The errors associated with the use of the solution to unconfined conditions depend on the accuracies of the above two assumptions. The solution can also be used to assess the impacts of recharge from a seasonal river or irrigation canal on the groundwater system by assuming uniform, time- constant recharge along the river or canal. This paper presents the details for derivation of the analytical solution. The analytical solution is compared to numerical simulation results with example cases. Its accuracy is also assessed and

  16. Carbon dioxide emissions from the flat bottom and shallow Nam Theun 2 Reservoir: drawdown area as a neglected pathway to the atmosphere

    Science.gov (United States)

    Deshmukh, Chandrashekhar; Guérin, Frédéric; Vongkhamsao, Axay; Pighini, Sylvie; Oudone, Phetdala; Sopraseuth, Saysoulinthone; Godon, Arnaud; Rode, Wanidaporn; Guédant, Pierre; Oliva, Priscia; Audry, Stéphane; Zouiten, Cyril; Galy-Lacaux, Corinne; Robain, Henri; Ribolzi, Olivier; Kansal, Arun; Chanudet, Vincent; Descloux, Stéphane; Serça, Dominique

    2018-03-01

    Freshwater reservoirs are a significant source of CO2 to the atmosphere. CO2 is known to be emitted at the reservoir surface by diffusion at the air-water interface and downstream of dams or powerhouses by degassing and along the river course. In this study, we quantified total CO2 emissions from the Nam Theun 2 Reservoir (Lao PDR) in the Mekong River watershed. The study started in May 2009, less than a year after flooding and just a few months after the maximum level was first reached and lasted until the end of 2013. We tested the hypothesis that soils from the drawdown area would be a significant contributor to the total CO2 emissions.Total inorganic carbon, dissolved and particulate organic carbon and CO2 concentrations were measured in 4 pristine rivers of the Nam Theun watershed, at 9 stations in the reservoir (vertical profiles) and at 16 stations downstream of the monomictic reservoir on a weekly to monthly basis. CO2 bubbling was estimated during five field campaigns between 2009 and 2011 and on a weekly monitoring, covering water depths ranging from 0.4 to 16 m and various types of flooded ecosystems in 2012 and 2013. Three field campaigns in 2010, 2011 and 2013 were dedicated to the soils description in 21 plots and the quantification of soil CO2 emissions from the drawdown area. On this basis, we calculated total CO2 emissions from the reservoir and carbon inputs from the tributaries. We confirm the importance of the flooded stock of organic matter as a source of carbon (C) fuelling emissions. We show that the drawdown area contributes, depending on the year, from 40 to 75 % of total annual gross emissions in this flat and shallow reservoir. Since the CO2 emissions from the drawdown zone are almost constant throughout the years, the large interannual variations result from the significant decrease in diffusive fluxes and downstream emissions between 2010 and 2013. This overlooked pathway in terms of gross emissions would require an in-depth evaluation

  17. Biochar from Biomass and its Potential Agronomic and Environmental Use in Washington: A Promising Alternative to Drawdown Carbon from the Atmosphere and Develop a New Industry

    Energy Technology Data Exchange (ETDEWEB)

    Amonette, James E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Garcia-Perez, Manuel [Washington State Univ., Pullman, WA (United States); Sjoding, David [Washington State Energy Program Office, Olympia, WA (United States); Fuchs, Mark R. [Washington Dept. of Ecology, Spokane, WA (United States)

    2016-03-04

    Climate change is one of the most serious issues facing the world today. Increasing concentrations of carbon dioxide (CO2) and other long-lived greenhouse gases (GHGs) in the atmosphere continue to warm the planet and destabilize the climate. It has been estimated that the impact from this warming could cost the state 10 billion per year by 2020, and 16 billion per year by 2040. Long-term solutions to the climate problem likely will require that large quantities of CO2 be removed from the atmosphere. In fact, massive CO2 drawdowns from the atmosphere have occurred in earth’s recent past from events occurring in our hemisphere. Studies of those analogs provide insight into the potential magnitude for specific actions to drawdown significant CO2 from the atmosphere. One of these potential actions is the large-scale production of biochar from abundant woody biomass waste and its storage in soils, where it remains stable for hundreds to thousands of years. Moreover, for the carbon emission intensity of Washington’s fuel mix, biochar production from biomass is twice as effective in offsetting GHG emissions as complete biomass combustion of the same biomass. Washington State has large quantities of wood waste biomass that could be purposed for production of combined heat/power/biochar (CHPB) through existing biomass boilers. We propose to 1) evaluate the quantities of Washington wood waste biomass, 2) inventory existing boiler capacity and assess the technical merits and challenges to repurpose the boilers to CHPB, and 3) apply literature values and analog biochar examples to better quantify the extent of CO2 drawdown that could be achieved in Washington State over the next century using engineered biochar. This white paper explores the potential to replicate the historical drawdowns of atmospheric CO2, a topic the authors think should be part of current climate-change mitigation discussions. This

  18. Carbon dioxide emissions from the flat bottom and shallow Nam Theun 2 Reservoir: drawdown area as a neglected pathway to the atmosphere

    Directory of Open Access Journals (Sweden)

    C. Deshmukh

    2018-03-01

    Full Text Available Freshwater reservoirs are a significant source of CO2 to the atmosphere. CO2 is known to be emitted at the reservoir surface by diffusion at the air–water interface and downstream of dams or powerhouses by degassing and along the river course. In this study, we quantified total CO2 emissions from the Nam Theun 2 Reservoir (Lao PDR in the Mekong River watershed. The study started in May 2009, less than a year after flooding and just a few months after the maximum level was first reached and lasted until the end of 2013. We tested the hypothesis that soils from the drawdown area would be a significant contributor to the total CO2 emissions.Total inorganic carbon, dissolved and particulate organic carbon and CO2 concentrations were measured in 4 pristine rivers of the Nam Theun watershed, at 9 stations in the reservoir (vertical profiles and at 16 stations downstream of the monomictic reservoir on a weekly to monthly basis. CO2 bubbling was estimated during five field campaigns between 2009 and 2011 and on a weekly monitoring, covering water depths ranging from 0.4 to 16 m and various types of flooded ecosystems in 2012 and 2013. Three field campaigns in 2010, 2011 and 2013 were dedicated to the soils description in 21 plots and the quantification of soil CO2 emissions from the drawdown area. On this basis, we calculated total CO2 emissions from the reservoir and carbon inputs from the tributaries. We confirm the importance of the flooded stock of organic matter as a source of carbon (C fuelling emissions. We show that the drawdown area contributes, depending on the year, from 40 to 75 % of total annual gross emissions in this flat and shallow reservoir. Since the CO2 emissions from the drawdown zone are almost constant throughout the years, the large interannual variations result from the significant decrease in diffusive fluxes and downstream emissions between 2010 and 2013. This overlooked pathway in terms of gross emissions would require

  19. [Concentrations and pollution assessment of soil heavy metals at different water-level altitudes in the draw-down areas of the Three Gorges Reservoir].

    Science.gov (United States)

    Wang, Ye-Chun; Lei, Bo; Yang, San-Ming; Zhang, Sheng

    2012-02-01

    To investigate the effect of 175 m trial impounding (2008 and 2009) of the Three Gorges Reservoir on soil heavy metals, three draw-down areas with similar geological environment and history of land-use in Zhongxian County were chosen. Altogether 36 surface soil samples (including 0-10 cm and 10-20 cm soil layer) from water-level altitude of 160 m and 170 m were obtained, and their heavy metals concentrations (As, Cd, Cr, Cu, Ni, Pb and Zn) were measured by the X-ray fluorescence spectrometric method. Geoaccumulation index (I(geo)) and Håkanson potential ecological risk index were applied to assess the heavy metals pollution status and potential ecological risk, respectively. Results indicated that although the inundation period of 160 m was 224 d longer than that of 170 m, significant difference in concentrations of heavy metals were not found between the two water-level altitudes. Except for Cd, most of the heavy metals highly related with each other positively. According to the geoaccumulation index, the pollution extent of the heavy metals followed the order: As > Cd > Cu > Ni > Zn = Pb > Cr. The I(geo) value of As, Cd and Cu were 0.45, 0.39 and 0.06, respectively, indicating that the soil was only lightly polluted by these heavy metals. Håkanson single potential ecological risk index followed the order: Cd > As > Cu > Pb > Ni > Cr > Zn. Cd with E(i) values of 59.10, had a medium potential for ecological risk,while As, Cr, Cu, Pb, Ni and Zn only had a light potential. Consequently, although As, Cd and Cu were the major heavy metals with potential ecological risk for surface soil pollution in the draw-down areas in Zhongxian County, the Three Gorges Reservoir.

  20. The influence of the ocean circulation state on ocean carbon storage and CO2 drawdown potential in an Earth system model

    Science.gov (United States)

    Ödalen, Malin; Nycander, Jonas; Oliver, Kevin I. C.; Brodeau, Laurent; Ridgwell, Andy

    2018-03-01

    During the four most recent glacial cycles, atmospheric CO2 during glacial maxima has been lowered by about 90-100 ppm with respect to interglacials. There is widespread consensus that most of this carbon was partitioned in the ocean. It is, however, still debated which processes were dominant in achieving this increased carbon storage. In this paper, we use an Earth system model of intermediate complexity to explore the sensitivity of ocean carbon storage to ocean circulation state. We carry out a set of simulations in which we run the model to pre-industrial equilibrium, but in which we achieve different states of ocean circulation by changing forcing parameters such as wind stress, ocean diffusivity and atmospheric heat diffusivity. As a consequence, the ensemble members also have different ocean carbon reservoirs, global ocean average temperatures, biological pump efficiencies and conditions for air-sea CO2 disequilibrium. We analyse changes in total ocean carbon storage and separate it into contributions by the solubility pump, the biological pump and the CO2 disequilibrium component. We also relate these contributions to differences in the strength of the ocean overturning circulation. Depending on which ocean forcing parameter is tuned, the origin of the change in carbon storage is different. When wind stress or ocean diapycnal diffusivity is changed, the response of the biological pump gives the most important effect on ocean carbon storage, whereas when atmospheric heat diffusivity or ocean isopycnal diffusivity is changed, the solubility pump and the disequilibrium component are also important and sometimes dominant. Despite this complexity, we obtain a negative linear relationship between total ocean carbon and the combined strength of the northern and southern overturning cells. This relationship is robust to different reservoirs dominating the response to different forcing mechanisms. Finally, we conduct a drawdown experiment in which we investigate

  1. The influence of the ocean circulation state on ocean carbon storage and CO2 drawdown potential in an Earth system model

    Directory of Open Access Journals (Sweden)

    M. Ödalen

    2018-03-01

    Full Text Available During the four most recent glacial cycles, atmospheric CO2 during glacial maxima has been lowered by about 90–100 ppm with respect to interglacials. There is widespread consensus that most of this carbon was partitioned in the ocean. It is, however, still debated which processes were dominant in achieving this increased carbon storage. In this paper, we use an Earth system model of intermediate complexity to explore the sensitivity of ocean carbon storage to ocean circulation state. We carry out a set of simulations in which we run the model to pre-industrial equilibrium, but in which we achieve different states of ocean circulation by changing forcing parameters such as wind stress, ocean diffusivity and atmospheric heat diffusivity. As a consequence, the ensemble members also have different ocean carbon reservoirs, global ocean average temperatures, biological pump efficiencies and conditions for air–sea CO2 disequilibrium. We analyse changes in total ocean carbon storage and separate it into contributions by the solubility pump, the biological pump and the CO2 disequilibrium component. We also relate these contributions to differences in the strength of the ocean overturning circulation. Depending on which ocean forcing parameter is tuned, the origin of the change in carbon storage is different. When wind stress or ocean diapycnal diffusivity is changed, the response of the biological pump gives the most important effect on ocean carbon storage, whereas when atmospheric heat diffusivity or ocean isopycnal diffusivity is changed, the solubility pump and the disequilibrium component are also important and sometimes dominant. Despite this complexity, we obtain a negative linear relationship between total ocean carbon and the combined strength of the northern and southern overturning cells. This relationship is robust to different reservoirs dominating the response to different forcing mechanisms. Finally, we conduct a drawdown experiment

  2. Drawdown flushing of a hydroelectric reservoir on the Rhône River: Impacts on the fish community and implications for the sediment management.

    Science.gov (United States)

    Grimardias, David; Guillard, Jean; Cattanéo, Franck

    2017-07-15

    Sediment flushings of hydropower reservoirs are commonly performed to maintain water resource uses and ecosystem services, but may have strong impacts on fish communities. Despite the worldwide scope of this issue, very few studies report quantitative in situ evaluations of these impacts. In June 2012, the drawdown flushing of the Verbois reservoir (Rhône River) was performed and subsequent impacts on the fish community were assessed, both inside the reservoir (fish densities by hydroacoustic surveys) and downstream (short-term movement and survival of radio tracked adult fish). Results showed that after the flushing fish acoustic density decreased by 57% in the reservoir, and no recolonization process was observed over the following 16 months. Downstream of the dam, the global apparent survival of fish to the flushing was estimated at 74%, but differed between species. The nine-year delay from the previous flushing and thus the amount of sediments to remove were too stressful for the low-resilience fish community of the Rhône River. Alternative flushing schedules are discussed to reduce these impacts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Rapid response of hydrological loss of DOC to water table drawdown and warming in Zoige peatland: results from a mesocosm experiment.

    Science.gov (United States)

    Lou, Xue-Dong; Zhai, Sheng-Qiang; Kang, Bing; Hu, Ya-Lin; Hu, Li-Le

    2014-01-01

    A large portion of the global carbon pool is stored in peatlands, which are sensitive to a changing environment conditions. The hydrological loss of dissolved organic carbon (DOC) is believed to play a key role in determining the carbon balance in peatlands. Zoige peatland, the largest peat store in China, is experiencing climatic warming and drying as well as experiencing severe artificial drainage. Using a fully crossed factorial design, we experimentally manipulated temperature and controlled the water tables in large mesocosms containing intact peat monoliths. Specifically, we determined the impact of warming and water table position on the hydrological loss of DOC, the exported amounts, concentrations and qualities of DOC, and the discharge volume in Zoige peatland. Our results revealed that of the water table position had a greater impact on DOC export than the warming treatment, which showed no interactive effects with the water table treatment. Both DOC concentration and discharge volume were significantly increased when water table drawdown, while only the DOC concentration was significantly promoted by warming treatment. Annual DOC export was increased by 69% and 102% when the water table, controlled at 0 cm, was experimentally lowered by -10 cm and -20 cm. Increases in colored and aromatic constituents of DOC (measured by Abs(254 nm), SUVA(254 nm), Abs(400 nm), and SUVA(400 nm)) were observed under the lower water tables and at the higher peat temperature. Our results provide an indication of the potential impacts of climatic change and anthropogenic drainage on the carbon cycle and/or water storage in a peatland and simultaneously imply the likelihood of potential damage to downstream ecosystems. Furthermore, our results highlight the need for local protection and sustainable development, as well as suggest that more research is required to better understand the impacts of climatic change and artificial disturbances on peatland degradation.

  4. Rapid response of hydrological loss of DOC to water table drawdown and warming in Zoige peatland: results from a mesocosm experiment.

    Directory of Open Access Journals (Sweden)

    Xue-Dong Lou

    Full Text Available A large portion of the global carbon pool is stored in peatlands, which are sensitive to a changing environment conditions. The hydrological loss of dissolved organic carbon (DOC is believed to play a key role in determining the carbon balance in peatlands. Zoige peatland, the largest peat store in China, is experiencing climatic warming and drying as well as experiencing severe artificial drainage. Using a fully crossed factorial design, we experimentally manipulated temperature and controlled the water tables in large mesocosms containing intact peat monoliths. Specifically, we determined the impact of warming and water table position on the hydrological loss of DOC, the exported amounts, concentrations and qualities of DOC, and the discharge volume in Zoige peatland. Our results revealed that of the water table position had a greater impact on DOC export than the warming treatment, which showed no interactive effects with the water table treatment. Both DOC concentration and discharge volume were significantly increased when water table drawdown, while only the DOC concentration was significantly promoted by warming treatment. Annual DOC export was increased by 69% and 102% when the water table, controlled at 0 cm, was experimentally lowered by -10 cm and -20 cm. Increases in colored and aromatic constituents of DOC (measured by Abs(254 nm, SUVA(254 nm, Abs(400 nm, and SUVA(400 nm were observed under the lower water tables and at the higher peat temperature. Our results provide an indication of the potential impacts of climatic change and anthropogenic drainage on the carbon cycle and/or water storage in a peatland and simultaneously imply the likelihood of potential damage to downstream ecosystems. Furthermore, our results highlight the need for local protection and sustainable development, as well as suggest that more research is required to better understand the impacts of climatic change and artificial disturbances on peatland degradation.

  5. Estimation of capture zones and drawdown at the Northwest and West Well Fields, Miami-Dade County, Florida, using an unconstrained Monte Carlo analysis: recent (2004) and proposed conditions

    Science.gov (United States)

    Brakefield, Linzy K.; Hughes, Joseph D.; Langevin, Christian D.; Chartier, Kevin

    2013-01-01

    Travel-time capture zones and drawdown for two production well fields, used for drinking-water supply in Miami-Dade County, southeastern Florida, were delineated by the U.S Geological Survey using an unconstrained Monte Carlo analysis. The well fields, designed to supply a combined total of approximately 250 million gallons of water per day, pump from the highly transmissive Biscayne aquifer in the urban corridor between the Everglades and Biscayne Bay. A transient groundwater flow model was developed and calibrated to field data to ensure an acceptable match between simulated and observed values for aquifer heads and net exchange of water between the aquifer and canals. Steady-state conditions were imposed on the transient model and a post-processing backward particle-tracking approach was implemented. Multiple stochastic realizations of horizontal hydraulic conductivity, conductance of canals, and effective porosity were simulated for steady-state conditions representative of dry, average and wet hydrologic conditions to calculate travel-time capture zones of potential source areas of the well fields. Quarry lakes, formed as a product of rock-mining activities, whose effects have previously not been considered in estimation of capture zones, were represented using high hydraulic-conductivity, high-porosity cells, with the bulk hydraulic conductivity of each cell calculated based on estimates of aquifer hydraulic conductivity, lake depths and aquifer thicknesses. A post-processing adjustment, based on calculated residence times using lake outflows and known lake volumes, was utilized to adjust particle endpoints to account for an estimate of residence-time-based mixing of lakes. Drawdown contours of 0.1 and 0.25 foot were delineated for the dry, average, and wet hydrologic conditions as well. In addition, 95-percent confidence intervals (CIs) were calculated for the capture zones and drawdown contours to delineate a zone of uncertainty about the median estimates

  6. Efeito de velocidades de rebaixamento do nível freático em diferentes períodos de desenvolvimento da cultura da alface Effect of water table drawdown velocities in different stages of lettuce crop

    Directory of Open Access Journals (Sweden)

    Rafael Mingoti

    2006-03-01

    Full Text Available Através deste trabalho objetivou-se determinar os efeitos do encharcamento do solo nas variáveis fenológicas e na produtividade da cultura da alface, identificar o estádio fenológico em que ocorre a maior diminuição da produtividade e obter uma relação entre a produtividade relativa da cultura e o índice diário de estresse. O delineamento experimental adotado foi inteiramente casualizado, arranjado em esquema fatorial [(3x4+1], com 3 repetições. Os tratamentos consistiram do período de inundação (12, 22 e 32 DAT, de velocidades de rebaixamento do nível freático (30 cm em 24, 48, 72 e 96 horas e uma testemunha, na qual não foi aplicado estresse por elevação do lençol freático. A alface apresentou-se como cultura sensível ao encharcamento; entretanto, não foi possível se definir um valor para o coeficiente de drenagem pois, mesmo com a maior velocidade de rebaixamento testada, ocorreu decréscimo de cerca de 50% da produção. Dentre os três períodos nos quais o estresse causado pela elevação do nível freático foi aplicado, o primeiro foi o que ocasionou maiores perdas. A produtividade das plantas de alface apresentou correlação linear negativa com o índice diário de estresse (IDS.The work had the objectives of determining the effect of water table drawdown velocities on the growth and yield of lettuce crop in a flooded soil, identifying the stage of the crop cycle with the highest reduction in the productivity and obtaining a relation between the crop relative productivity and the daily stress index. The statistical experimental design was completely randomized in factorial scheme [(3 x 4 + 1], with three replications. The water table was lowered at 3 stages of the crop cycle (12, 22 and 32 days after the transplanting, four drawdown velocities (30 cm during 24, 48, 72 and 96 h and a 13 treatment in which stress was not applied with the elevation of the water table. The lettuce presented as a sensible crop to

  7. Hollow Force, Hollow Metaphor: Assessing The Current Defense Drawdown

    Science.gov (United States)

    2016-04-04

    better prioritized. Army Readiness Secretary of the Army John McHugh and Chief of Staff of the Army (CSA), General Raymond Odierno, assessed in...forming the Army’s readiness narrative— Army leaders see the cuts as inconsistent with an uncertain and volatile strategic environment. McHugh and...John M. McHugh and Raymond T. Odierno, statement made on the Posture of the United States Army, on March 18, 2015, to the Senate Armed Services

  8. A generalised solution for step-drawdown tests including flow ...

    African Journals Online (AJOL)

    drinie

    2001-07-03

    Jul 3, 2001 ... interpreted as the theoretical solution of the groundwater flow equation for the .... and gravity force the water to flow from the rock matrix to the fracture. ..... Computational Mechanics Publications, Southampton. CLOOT AHJ ...

  9. Effect of seasonal drawdown variations on groundwater quality in ...

    African Journals Online (AJOL)

    user

    2013-07-24

    Jul 24, 2013 ... each of the 10 selected zones and special attention was given to two abattoirs in .... levels during the two seasons was also shown in Figure. 1. There were ..... Ground Water and Surface Water Pollution by. Open Refuse dump ...

  10. The Long Game: A Strategic Analysis of Military Drawdowns

    Science.gov (United States)

    2014-06-13

    government acts continually to define the dynamic relationship between the military and the population. Napoleon desired to, “make the French army the...nations. The UN and allied nations began to address the European food shortages, endemic diseases, widespread unemployment, a virtually non-existent...existent glorious past and promising a brighter future, Putin applied a proven formula for success. 78 The Russian annexation of Crimea went to a vote

  11. Military Retirement and Wealth Forecasting During DOD Manpower Drawdown

    Science.gov (United States)

    2013-09-01

    SHAPING 1. DoD Perspective With the national debt approaching $17 trillion, the federal government is under fire to find ways to curb the momentum ...opportunities using a Bernoulli distribution to represent success and failure. The sampled in-zone and above-zone promotion probabilities were used as

  12. Prey – Predator Model on the Interaction between the Drawdown ...

    African Journals Online (AJOL)

    ADOWIE PERE

    1,2,3 Department of Mathematics, Federal University of Technology, Niger State, Nigeria. E-mail: m.shehu@futminna.edu.ng. ABSTRACT: Groundwater is a major source of water for ..... Presented at the National Irrigation Seminar,. Bagauda Lake Hotel, Kano, Nigeria. Mudiare, E (2014). Depth to water table and Corn.

  13. Iran’s Influence in Afghanistan: Implications for the U.S. Drawdown

    Science.gov (United States)

    2014-01-01

    Rouhani’s Response to Messages of Congratulations from Prime Minister of India, Head of Indonesian Parliament, and President of Montenegro ”], Khabar...Parliament, and President of Montenegro ,” 2013. 70 Meena Singh Roy, “India and Iran Relations: Sustaining the Momentum,” ISDA issue brief...slated to supply India with liquefied natural gas (LNG) for 25 years, is in limbo because the deal stipulates that India build an LNG plant in Iran

  14. Five Methods to Determine the Fish Population in Lakes Evaluated by a Complete Drawdown

    DEFF Research Database (Denmark)

    Berg, S.; Jeppesen, E.; Lauridsen, T.

    Organised by Balaton Limnological Research Institute of the Hungarian Academy of Science, Tihany, and Institute of Biology, university of Veszprém......Organised by Balaton Limnological Research Institute of the Hungarian Academy of Science, Tihany, and Institute of Biology, university of Veszprém...

  15. Plant biomass carbon store after water-level drawdown of pine mires

    Energy Technology Data Exchange (ETDEWEB)

    Laiho, R; Laine, J [Helsinki Univ. (Finland). Dept. of Ecology

    1997-12-31

    Tall-sedge pine fen is the site type most commonly drained in Finland. In their natural undrained condition sites of this type are rather wet with sparse, Scots pine dominated forest growing on hummocks and with large lawns dominated by sedges, usually Carex rostrata and/or C. lasiocarpa. Most of the primary production takes place in the field and ground layers. The major pathway for carbon accumulation in the system is via Sphagna and sedge roots, carbon accumulation by the tree stand being very slow. After drainage the situation changes radically as the sedges die out and the tree stand growth increases considerably. The aim of this study is to produce means of estimating the post-drainage dynamics of the plant biomass carbon store. The study is based on the assumption that sites similar before drainage will change in a similar manner following drainage. (5 refs.)

  16. Transient well flow in layered aquifer systems: the uniform well-face drawdown solution.

    NARCIS (Netherlands)

    Hemker, C.J.

    1999-01-01

    Previously a hybrid analytical-numerical solution for the general problem of computing transient well flow in vertically heterogeneous aquifers was proposed by the author. The radial component of flow was treated analytically, while the finite-difference technique was used for the vertical flow

  17. Excess diffuse light absorption in upper mesophyll limits CO2 drawdown and depresses photosynthesis

    Science.gov (United States)

    Sun-grown and shade-grown leaves of some species absorb direct and diffuse light differently. Sun-grown leaves can photosynthesize ~10-15% less under diffuse compared to direct irradiance, while shade-grown leaves do not exhibit this sensitivity. In this study, we investigate if the spatial differen...

  18. Stability numerical analysis of soil cave in karst area to drawdown of underground water level

    Science.gov (United States)

    Mo, Yizheng; Xiao, Rencheng; Deng, Zongwei

    2018-05-01

    With the underground water level falling, the reliable estimates of the stability and deformation characteristics of soil caves in karst region area are required for analysis used for engineering design. Aimed at this goal, combined with practical engineering and field geotechnical test, detail analysis on vertical maximum displacement of top, vertical maximum displacement of surface, maximum principal stress and maximum shear stress were conducted by finite element software, with an emphasis on two varying factors: the size and the depth of soil cave. The calculations on the soil cave show that, its stability of soil cave is affected by both the size and depth, and only when extending a certain limit, the collapse occurred along with the falling of underground water; Additionally, its maximum shear stress is in arch toes, and its deformation curve trend of maximum displacement is similar to the maximum shear stress, which further verified that the collapse of soil cave was mainly due to shear-failure.

  19. 13 CFR 108.1230 - Draw-downs by NMVC Company under SBA's Leverage commitment.

    Science.gov (United States)

    2010-01-01

    ... the NMVC Company. (4) A statement that the proceeds are needed to fund one or more particular Small Businesses or to provide liquidity for your operations. If required by SBA, the statement must include the... Financing. (e) Reporting requirements after drawing funds. (1) Within 30 calendar days after the actual...

  20. 13 CFR 107.1230 - Draw-downs by Licensee under SBA's Leverage commitment.

    Science.gov (United States)

    2010-01-01

    ... general partner of the Licensee. (4) A statement that the proceeds are needed to fund one or more particular Small Businesses or to provide liquidity for your operations. If required by SBA, the statement... of each proposed Financing. (e) Reporting requirements after drawing funds. (1) Within 30 calendar...

  1. 7 CFR 4290.1230 - Draw-downs by RBIC under Leverage commitment.

    Science.gov (United States)

    2010-01-01

    ... are needed to fund one or more particular Enterprises or to provide liquidity for your operations. If... funds. (1) Within 30 calendar days after the actual closing date of each Financing funded with the...

  2. A highly oxidized atmosphere-ocean system and oceanic molybdenum drawdown during the Paleoproterozoic

    Science.gov (United States)

    Goto, K. T.; Ito, T.; Suzuki, K.; Anbar, A. D.; Gordon, G. W.; Kashiwabara, T.; Takaya, Y.; Shimoda, G.; Nozaki, T.; Kiyokawa, S.; Tetteh, G. M.; Nyame, F. K.

    2014-12-01

    Multiple lines of evidence suggest that the first major oxidation of the atmosphere-ocean system occurred during the Paleoproterozoic. However, the course of this redox transition remains elusive. A number of large Mn deposits are distributed in Paleoproterozoic sedimentary successions. As Mn is a redox-sensitive element characterized by high redox potential, knowledge of the Mn cycle in Paleoproterozoic seawater may provide insight into redox evolution during this period. Here, we investigate the Mn cycle in Paleoproterozoic seawater based on the Re-Os and Mo isotope compositions, and the abundance of major and trace elements, in Mn-rich sedimentary rocks from the Nsuta deposit of the Birimian Supergroup, Ghana. The Mn ore is composed mainly of rhodochrosite and is distributed at the boundaries between sedimentary rocks and tholeiitic volcanic rocks. The Re-Os isochron age (2217 ± 100 Ma) we obtained was consistent with U-Pb zircon ages of the volcanic rocks. The manganophile elements, except for Mo, show no enrichment, which is similar to modern hydrothermal Mn oxides. The PAAS-normalized REE compositions show positive Ce anomaly, indicative of Ce enrichment due to the oxidation of Ce(III) by Mn(IV). These findings suggest that Mn ore formed from primary precipitation of Mn oxides from hydrothermal fluids as they were mixed with bottom seawater at ~2.2 Ga. Thus, the bottom seawater would have been sufficiently oxygenated for the precipitation of Mn oxides at ~2.2 Ga. The Nsuta ore samples exhibit slight Mo enrichment, but Mo/Mn ratios are orders of magnitude lower than those in modern hydrothermal Mn oxides. We also found that the Mo isotopes in the Nsuta ore are ~0.7‰ heavier than those in modern hydrothermal and hydrogenous Mn oxides. As Mo in hydrothermal Mn oxides is sourced primarily from seawater (Goto et al., in prep), these results may reflect smaller oceanic Mo inventory and heavier seawater Mo isotope composition at 2.2 Ga than those of present-day. Our calculation using a simple mass balance model suggests that substantial removal of light Mo by Mn oxides may have caused such oceanic conditions. Our findings are consistent with the recently proposed 'oxygen overshoot' model (Bekker and Holland, 2012) and low Mo contents in ~2.2-Ga black shales and sedimentary pyrites (e.g., Scott et al., 2008).

  3. Plant biomass carbon store after water-level drawdown of pine mires

    Energy Technology Data Exchange (ETDEWEB)

    Laiho, R.; Laine, J. [Helsinki Univ. (Finland). Dept. of Ecology

    1996-12-31

    Tall-sedge pine fen is the site type most commonly drained in Finland. In their natural undrained condition sites of this type are rather wet with sparse, Scots pine dominated forest growing on hummocks and with large lawns dominated by sedges, usually Carex rostrata and/or C. lasiocarpa. Most of the primary production takes place in the field and ground layers. The major pathway for carbon accumulation in the system is via Sphagna and sedge roots, carbon accumulation by the tree stand being very slow. After drainage the situation changes radically as the sedges die out and the tree stand growth increases considerably. The aim of this study is to produce means of estimating the post-drainage dynamics of the plant biomass carbon store. The study is based on the assumption that sites similar before drainage will change in a similar manner following drainage. (5 refs.)

  4. Light responses of mire mosses - a key to survival after water-level drawdown?

    Czech Academy of Sciences Publication Activity Database

    Hájek, Tomáš; Tuittila, E. S.; Ilomets, M.; Laiho, R.

    2009-01-01

    Roč. 118, č. 2 (2009), s. 240-250 ISSN 0030-1299 R&D Projects: GA AV ČR KJB600050503 Institutional research plan: CEZ:AV0Z60050516 Keywords : Sphagnum * photosynthesis * light-respose curve Subject RIV: EF - Botanics Impact factor: 3.147, year: 2009

  5. Annuity choices and income drawdown: evidence from the decumulation phase of defined contribution pensions in England.

    Science.gov (United States)

    Banks, James; Crawford, Rowena; Tetlow, Gemma

    2015-10-01

    We provide new empirical evidence on the importance of defined contribution pension wealth in England, and the nature of annuitization decisions taken by older adults who retire with such sources of wealth. Other things equal, financial literacy, and numeracy in particular, are important factors governing individuals' choices over whether to shop around for an annuity as opposed to taking the 'path of least resistance' option and purchasing from their original pension fund provider. This has important policy and welfare implications given that buying an annuity on the open market has significant financial benefits for most people. In the context of the increasing reliance on private provision for retirement, the importance of individuals having the financial literacy to successfully navigate complex financial decisions late in life should not be underestimated.

  6. Environmental Assessment for Lake Ashtabula Winter Drawdown, Barnes County, North Dakota

    Science.gov (United States)

    2013-07-31

    as a candidate species. The Sprague’s Pipit may nest in some large native and planted grasslands in the area. 2.4.5 Reptiles and Amphibians ...portion of their life cycle near or in water, and many feed in aquatic areas. However, many reptiles and amphibians hibernate in uplands, away from...turtle are the only three amphibians or reptiles found in Barnes County that hibernate in shallow water. These species may be affected by winter

  7. Transcripts of Regional Hearings, St. Louis, Missouri. Annex L to Adjusting to the Drawdown. Report of the Defense Conversion Commission

    Science.gov (United States)

    1992-08-01

    entrepreneurship courses for laid-off McDonnell Douglas employees. Over 500 have participated in the classes. • McDonnell Douglas donated its lease-hold...international programs and organizations • Analysis of regional financing programs The St. Louis World Trade Center franchise was acquired for the region...averaged over the 1970’s, the defense cutbacks are likely contribute only a small part of that objective. 2 38 7 Figure 5.3 REAL GDP BASE VS

  8. Lower Snake River Juvenile Salmon Migration Feasibility Report/Environmental Impact Statement. Appendix D: Natural River Drawdown Engineering

    National Research Council Canada - National Science Library

    2002-01-01

    ... (collectively called the Lower Snake River Project) and their effects on four lower Snake River salmon and steelhead stocks listed for protection under the Endangered Species Act (ESA). The U.S...

  9. Analysis of historical and current drawdown and production data from the Boise geothermal system. Research technical completion report

    Energy Technology Data Exchange (ETDEWEB)

    Waag, C.J.; Wood, S.H.

    1987-08-01

    Since 1982 withdrawals from the Boise Geothermal aquifer system have increased from less than 300 million to over 600 million gals/yr. Prior to 1983 the system appears to have been in or near equilibrium. Current production levels exceed the ability of the system to recover on an annual basis. Potentiometric levels within the aquifer are declining at increasing rates and a new equilibrium level is not evident. Thus, exploitation of the geothermal aquifer is currently outstripping knowledge and understanding of the aquifer. It is time to give serious consideration to placing a temporary moratorium on further development and production from the system until a better understanding of its capacity is achieved.

  10. Transcripts of Regional Hearings, Seattle, Washington: Annex L to Adjusting to the Drawdown Report of the Defense Conversion Commission

    Science.gov (United States)

    1992-09-24

    26 Next, please. 27 MR. CHIRILLO: And showing you blocks being outfitted upside down, 28 much safer. In fact, Avondale was recognized by OSHA ...It received the OSHA Star 29 award for safety after four years of this type of operation. 30 Next, please. 31 (Slide) 32 MR. CHIRILLO: And also...Society AFSCME Union Locals 2083 and 2083C Consumer Federation of Malaysia Cornell University Class of 󈨁 25th Reunion Campus departments and

  11. A Simplified Solution for Calculating the Phreatic Line and Slope Stability during a Sudden Drawdown of the Reservoir Water Level

    Directory of Open Access Journals (Sweden)

    Guanhua Sun

    2018-01-01

    Full Text Available On the basis of the Boussinesq unsteady seepage differential equation, a new simplified formula for the phreatic line of slopes under the condition of decreasing reservoir water level is derived by means of the Laplacian matrix and its inverse transform. In this context, the expression of normal stress on the slip surface under seepage forces is deduced, and a procedure for obtaining the safety factors under hydrodynamic forces is proposed. A case study of the Three Gorges Reservoir is used to analyze the influences of the water level, decreasing velocity and the permeability coefficient on slope stability.

  12. Security Sector Reform in Liberia: Progress and Challenges Ahead of the United Nations Mission in Liberia (UNMIL) Drawdown

    Science.gov (United States)

    2017-06-09

    this long and challenging process. Thank you and may God bless you all. vi TABLE OF CONTENTS Page MASTER OF MILITARY ART AND SCIENCE THESIS...of UN Staff, facilities and civilians, support for humanitarian and human rights assistance, and support for security reform.30 According to the most...security assistance. Human Rights Promotion and Protection. This mainly discusses the promotion, protection, and monitoring of human rights in Liberia. It

  13. Effects of Pool Drawdown and Wing Dams (Pool 8), and Closure Damns (Pool 13), on Navigation Channel Sedimentation Processes, Upper Mississippi River

    National Research Council Canada - National Science Library

    Abraham, David D; Cowan, Mark A; Hendrickson, Jon S; Katzenmeyer, William M; Landwhr, Kevin J; Pratt, Thad C

    2006-01-01

    ... (upstream of Lock and Dam No. 8) near La Crosse, WI, during the summers of 2001 and 2002. Water levels were allowed to drop below normal minimum values to expose mud flats, promote seed germination, and benefit fish and wildlife...

  14. Assessment of ecosystem response to a temporary water level drawdown and subsequent refilling at Topock Marsh, Arizona—July 2011–October 2014

    Science.gov (United States)

    Daniels, Joan S.; Haegele, Jeanette C.

    2017-01-20

    Topock Marsh is a 1,637-hectare (4,045-acre) wetland adjacent to the Colorado River near Needles, California, and a main feature of Havasu National Wildlife Refuge (NWR). The U.S. Fish and Wildlife Service, in cooperation with the Bureau of Reclamation, began construction of an infrastructure improvement project in 2010 to increase the efficiency of water use and to help protect the habitats and species found within the Havasu NWR. During construction, normal water delivery from the Colorado River into Topock Marsh through the Inlet Canal was restricted, which resulted in unusually low water elevations  in 2011. The U.S. Geological Survey, commissioned by the U.S. Fish and Wildlife Service, undertook the investigation of the water quality and aquatic flora and fauna during the low water conditions. Subsequently, water elevations in the marsh returned to more normal elevations after the new concrete-lined Fire Break Canal became fully operational in January 2012.The U.S. Geological Survey made 11 field trips to the Havasu NWR between July 2011 and October 2014 to assess the effects of the temporary low water conditions and the change of inflow location (from the Inlet Canal to the Fire Break Canal) on water quality and aquatic habitat. The following conditions were monitored: water quality, sediment and plant chemistry, phytoplankton, zooplankton, aquatic macro-invertebrates, and emergent and submerged aquatic vegetation (SAV). Water-quality and biota data collected during 2013–14 were then compared with data collected during the 2011–12 low water period.Once the new Fire Break Canal became operational and Colorado River water flowed regularly into the marsh, concentrations of several water quality parameters decreased (for example, specific conductance, total dissolved solids, turbidity, chlorophyll a, and total and organic nitrogen), and phytoplankton abundance was reduced at the upstream sampling stations (TP-3, TP-2, and TP-6); the water flow pushed water with higher concentrations of these components downstream (measured at TP-8). The upstream sampling locations in 2013–14 had decreased turbidity, therefore more SAV biomass accumulated, especially in shallow areas with water depths of ≤1.0 meter (≤3.3 feet). However, the furthest downstream station had higher turbidity caused by both the suspension of autochthonous sediment and high phytoplankton density and biovolume. This higher turbidity resulted in minimal SAV growth, especially in the deeper water (>1.0 meter [>3.3 feet]). Emergent vegetation not only survived the low water conditions of 2011, but expanded its areal coverage and subsequently thrived in the higher water elevations. Overall, no immediate critically negative consequences were detected for aquatic fauna or flora that could be attributd unequivocally to the effect of low water levels. Concentrations of nutrient and trace elements in all water samples were below wildlife toxicity thresholds as established by Arizona Department of Environmental Quality. Three nonnative species were discovered shortly after the Fire Break Canal went into operation. Of the three, gizzard shad (Dorosoma cepedianum) and Eurasian watermilfoil (Myriophyllum spicatum) increased substantially in numbers from 2011–14, but quagga mussels (Dreissena bugensis) did not increase. Future monitoring will determine the long-term impact of the new flow regime

  15. Ground water in Fountain and Jimmy Camp Valleys, El Paso County, Colorado with a section on Computations of drawdowns caused by the pumping of wells in Fountain Valley

    Science.gov (United States)

    Jenkins, Edward D.; Glover, Robert E.

    1964-01-01

    The part of Fountain Valley considered in this report extends from Colorado Springs to the Pueblo County line. It is 23 miles long and has an area of 26 square miles. The part of Jimmy Camp Valley discussed is 11 miles long and has an area of 9 square miles. The topography is characterized by level flood plains and alluvial terraces that parallel the valley and by rather steep hills along the valley sides. The climate is semiarid, average annual precipitation being about 13 inches. Farming and stock raising are the principal occupations in the valleys; however, some of the agricultural land near Colorado Springs is being used for housing developments. The Pierre Shale and alluvium underlie most of the area, and mesa gravel caps the shale hills adjacent to Fountain Valley. The alluvium yields water to domestic, stock, irrigation, and public-supply wells and is capable of yielding large quantities of water for intermittent periods. Several springs issue along the sides of the valley at the contact of the mesa gravel and the underlying Pierre Shale. The water table ranges in depth from less than 10 feet along the bottom lands to about 80 feet along the sides of the valleys; the saturated thickness ranges from less than a foot to about 50 feet. The ground-water reservoir in Fountain Valley is recharged by precipitation that falls within the area, by percolation from Fountain Creek, which originates in the Pikes Peak, Monument Valley, and Rampart Range areas, and by seepage from irrigation water. This reservoir contains about 70,000 acre-feet of ground water in storage. The ground-water reservoir in Jimmy Camp Valley is recharged from precipitation that falls within the area, by percolation from Jimmy Camp Creek during periods of streamflow, and by seepage from irrigation water. The Jimmy Camp ground-water reservoir contains about 25,000 acre-feet of water in storage. Ground water is discharged from the area by movement to the south, by evaporation and transpiration in areas of shallow water table, by seepage into Fountain and Jimmy Camp Creeks, and through wells. About 3 to 4 mgd (million gallons per day) of ground water moves through the Fountain Valley alluvium at a velocity of about 15 feet per day. About 1 mgd of ground water moves through the Jimmy Camp Valley alluvium at a velocity of about 6 feet per day. Most of the wells in the area are drilled, but a few are dug. Many large-diameter wells are used for irrigation and public supply: one of the wells

  16. 78 FR 24315 - Drawdown Pursuant to Section 552(c)(2) of the Foreign Assistance Act of 1961 of up to $10 Million...

    Science.gov (United States)

    2013-04-24

    ... important to the security interests of the United States to furnish this assistance to the SOC and the SMC... emergency, the provision of assistance under chapter 6 of part II of the FAA in amounts in excess of funds otherwise available for such assistance is important to the national interests of the United States; and (2...

  17. Modulation of Late Cretaceous and Cenozoic climate by variable drawdown of atmospheric pCO2 from weathering of basaltic provinces on continents drifting through the equatorial humid belt

    Directory of Open Access Journals (Sweden)

    D. V. Kent

    2013-03-01

    Full Text Available The small reservoir of carbon dioxide in the atmosphere (pCO2 that modulates climate through the greenhouse effect reflects a delicate balance between large fluxes of sources and sinks. The major long-term source of CO2 is global outgassing from sea-floor spreading, subduction, hotspot activity, and metamorphism; the ultimate sink is through weathering of continental silicates and deposition of carbonates. Most carbon cycle models are driven by changes in the source flux scaled to variable rates of ocean floor production, but ocean floor production may not be distinguishable from being steady since 180 Ma. We evaluate potential changes in sources and sinks of CO2 for the past 120 Ma in a paleogeographic context. Our new calculations show that decarbonation of pelagic sediments by Tethyan subduction contributed only modestly to generally high pCO2 levels from the Late Cretaceous until the early Eocene, and thus shutdown of this CO2 source with the collision of India and Asia at the early Eocene climate optimum at around 50 Ma was inadequate to account for the large and prolonged decrease in pCO2 that eventually allowed the growth of significant Antarctic ice sheets by around 34 Ma. Instead, variation in area of continental basalt terranes in the equatorial humid belt (5° S–5° N seems to be a dominant factor controlling how much CO2 is retained in the atmosphere via the silicate weathering feedback. The arrival of the highly weatherable Deccan Traps in the equatorial humid belt at around 50 Ma was decisive in initiating the long-term slide to lower atmospheric pCO2, which was pushed further down by the emplacement of the 30 Ma Ethiopian Traps near the equator and the southerly tectonic extrusion of SE Asia, an arc terrane that presently is estimated to account for 1/4 of CO2 consumption from all basaltic provinces that account for ~1/3 of the total CO2 consumption by continental silicate weathering (Dessert et al., 2003. A negative climate-feedback mechanism that (usually inhibits the complete collapse of atmospheric pCO2 is the accelerating formation of thick cation-deficient soils that retard chemical weathering of the underlying bedrock. Nevertheless, equatorial climate seems to be relatively insensitive to pCO2 greenhouse forcing and thus with availability of some rejuvenating relief as in arc terranes or thick basaltic provinces, silicate weathering in this venue is not subject to a strong negative feedback, providing an avenue for ice ages. The safety valve that prevents excessive atmospheric pCO2 levels is the triggering of silicate weathering of continental areas and basaltic provinces in the temperate humid belt. Excess organic carbon burial seems to have played a negligible role in atmospheric pCO2 over the Late Cretaceous and Cenozoic.

  18. Assessment of the Water Quality Conditions at Ed Zorinsky Reservoir and the Zebra Mussel (Dreissena polymorpha) Population Emerged after the Drawdown of the Reservoir and Management Implications for the District’s Papillion and Salt Creek Reservoirs

    Science.gov (United States)

    2012-04-23

    Lansky, 2000). Where they have been surveyed in lentic enviroments , adult zebra mussels occurrence is less abundant at near surface depths (Mackie...be specified. Soft substrates (i.e., soil ) were surveyed less extensively. Since Zorinsky Lake experiences significant seasonal thermal...Riprap: 29.4% Soil : 5.0% Depicted aerial view of Area B1 showing the locations of found zebra mussel shells. (Red line indicates normal

  19. Moist Soil Management of Wetland Impoundments for Plants and Invertebrates

    Data.gov (United States)

    Department of the Interior — In year’s past an impoundment was drained (a drawdown) when floating-leaved plants covered more than 50% of the water area. Drawdowns encourage beneficial moist soil...

  20. Can frequent precipitation moderate drought impact on peatmoss carbon uptake in northern peatlands?

    NARCIS (Netherlands)

    Nijp, J.J.; Limpens, J.; Metselaar, K.; Zee, van der S.E.A.T.M.; Berendse, F.; Robroek, B.J.M.

    2015-01-01

    Northern peatlands represent a large global carbon store that potentially can be destabilised by summer water table drawdown. Precipitation can moderate negative impacts of water table drawdown by rewetting peatmoss (Sphagnum spp.), the ecosystems’ key species. Yet, the frequency for such rewetting

  1. Can frequent precipitation moderate the impact of drought on peatmoss carbon uptake in northern peatlands?

    NARCIS (Netherlands)

    Nijp, J.J.; Limpens, J.; Metselaar, K.; Zee, van der S.E.A.T.M.; Berendse, F.; Robroek, B.J.M.

    2014-01-01

    Northern peatlands represent a large global carbon store that can potentially be destabilized by summer water table drawdown. Precipitation can moderate the negative impacts of water table drawdown by rewetting peatmoss (Sphagnum spp.), the ecosystem's key species. Yet, the frequency of such

  2. Par Pond Fish, Water, and Sediment Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Paller, M.H. [Westinghouse Savannah River Company, AIKEN, SC (United States); Wike, L.D.

    1996-06-01

    The objectives of this report are to describe the Par Pond fish community and the impact of the drawdown and refill on the community, describe contaminant levels in Par Pond fish, sediments, and water and indicate how contaminant concentrations and distributions were affected by the drawdown and refill, and predict possible effects of future water level fluctuations in Par Pond.

  3. Par Pond Fish, Water, and Sediment Chemistry

    International Nuclear Information System (INIS)

    Paller, M.H.; Wike, L.D.

    1996-06-01

    The objectives of this report are to describe the Par Pond fish community and the impact of the drawdown and refill on the community, describe contaminant levels in Par Pond fish, sediments, and water and indicate how contaminant concentrations and distributions were affected by the drawdown and refill, and predict possible effects of future water level fluctuations in Par Pond

  4. 31 CFR 205.17 - Are funds transfers delayed by automated payment systems restrictions based on the size and...

    Science.gov (United States)

    2010-07-01

    ... automated payment systems restrictions based on the size and timing of the drawdown request subject to this... Treasury-State Agreement § 205.17 Are funds transfers delayed by automated payment systems restrictions... to payment processes that automatically reject drawdown requests that fall outside a pre-determined...

  5. Assessing the potential for using wetlands as intermediary storages to conjunctively maintain ecological values and support agricultural demands.

    Science.gov (United States)

    Ning, Nathan S P; Watkins, Susanne C; Gawne, Ben; Nielsen, Daryl L

    2012-09-30

    Water sharing to meet both agricultural and environmental demands is a critical issue affecting the health of many floodplain river systems around the world. This study explored the potential for using wetlands as temporary off-river storages to conjunctively maintain ecological values and support agricultural demands by assessing the effects of artificial drawdown on wetland aquatic plant communities. An initial experiment was undertaken in outdoor mesocosms in which four different treatments were compared over a 131 day duration: (1) natural drawdown where the water was left to drawdown naturally via evaporation; (2) partial drawdown where approximately half of the volume of water was pumped out after 42 days; (3) stepped drawdown where approximately half of the volume of water pumped out after 42 days, and then the remaining volume of water was pumped out after 117 days; and (4) total drawdown where all of the of water was pumped out after 117 days. A complementary field study was subsequently undertaken where two wetlands were left to drawdown naturally and two were partially drawn down artificially (i.e. had approximately half of their volume removed by pumping). Results from both of these studies indicated that neither aquatic plant abundance nor taxon richness were adversely affected by partial drawdown. Rather, both studies showed that aquatic plant communities subjected to a partial drawdown treatment became more species rich and diverse than communities subjected to a natural drawdown treatment. This suggests that it may be possible to use wetlands as intermediary storages for the dual purposes of maintaining ecological values and supporting agricultural demands. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  6. Hydrogeologic characteristics and water quality of a confined sand unit in the surficial aquifer system, Hunter Army Airfield, Chatham County, Georgia

    Science.gov (United States)

    Gonthier, Gerard

    2012-01-01

    An 80-foot-deep well (36Q397, U.S. Geological Survey site identification 320146081073701) was constructed at Hunter Army Airfield to assess the potential of using the surficial aquifer system as a water source to irrigate a ballfield complex. A 300-foot-deep test hole was drilled beneath the ballfield complex to characterize the lithology and water-bearing characteristics of sediments above the Upper Floridan aquifer. The test hole was then completed as well 36Q397 open to a 19-foot-thick shallow, confined sand unit contained within the surficial aquifer system. A single-well, 24-hour aquifer test was performed by pumping well 36Q397 at a rate of 50 gallons per minute during July 13-14, 2011, to characterize the hydrologic properties of the shallow, confined sand unit. Two pumping events prior to the aquifer test affected water levels. Drawdown during all three pumping events and residual drawdown during recovery periods were simulated using the Theis formula on multiple changes in discharge rate. Simulated drawdown and residual drawdown match well with measured drawdown and residual drawdown using values of horizontal hydraulic conductivity and specific storage, which are typical for a confined sand aquifer. Based on the hydrologic parameters used to match simulated drawdown and residual drawdown to measured drawdown and residual drawdown, the transmissivity of the sand was determined to be about 400 feet squared per day. The horizontal hydraulic conductivity of the sand was determined to be about 20 feet per day. Analysis of a water-quality sample indicated that the water is suitable for irrigation. Sample analysis indicated a calcium-carbonate type water having a total dissolved solids concentration of 39 milligrams per liter. Specific conductance and concentrations of all analyzed constituents were below those that would be a concern for irrigation, and were below primary and secondary water-quality criteria levels.

  7. Litter type affects the activity of aerobic decomposers in a boreal peatland more than site nutrient and water level regimes

    Science.gov (United States)

    Straková, P.; Niemi, R. M.; Freeman, C.; Peltoniemi, K.; Toberman, H.; Heiskanen, I.; Fritze, H.; Laiho, R.

    2011-02-01

    Peatlands are carbon (C) storage ecosystems sustained by a high water level (WL). High WL creates anoxic conditions that suppress the activity of aerobic decomposers and provide conditions for peat accumulation. Peatland function can be dramatically affected by WL drawdown caused by land-use and/or climate change. Aerobic decomposers are directly affected by WL drawdown through environmental factors such as increased oxygenation and nutrient availability. Additionally, they are indirectly affected via changes in plant community composition and litter quality. We studied the relative importance of direct and indirect effects of WL drawdown on aerobic decomposer activity in plant litter. We did this by profiling 11 extracellular enzymes involved in the mineralization of organic C, nitrogen, phosphorus and sulphur. Our study sites represented a three-stage chronosequence from pristine (undrained) to short-term (years) and long-term (decades) WL drawdown conditions under two nutrient regimes. The litter types included reflected the prevalent vegetation, i.e., Sphagnum mosses, graminoids, shrubs and trees. WL drawdown had a direct and positive effect on microbial activity. Enzyme allocation shifted towards C acquisition, which caused an increase in the rate of decomposition. However, litter type overruled the direct effects of WL drawdown and was the main factor shaping microbial activity patterns. Our results imply that changes in plant community composition in response to persistent WL drawdown will strongly affect the C dynamics of peatlands.

  8. Quarterly Financial Report for the period ending 30 June 2013

    International Development Research Centre (IDRC) Digital Library (Canada)

    Office 2004 Test Drive User

    2013-06-30

    Jun 30, 2013 ... drawdown strategy by the Centre, whereby seasonal variations in funding needs .... budget reflects the reduced use of professional services and less travel. ... equity decreased as a result of the funds for the African Adaptation.

  9. 76 FR 40709 - 36(b)(1) Arms Sales Notification

    Science.gov (United States)

    2011-07-11

    ..., and counter insurgency/counter-terrorism capabilities. As the drawdown of coalition forces continues..., New York; Alliant Techsystems in Magna, Utah; L-3 Communications in New York, New York; and...

  10. Groundwater flow to a horizontal or slanted well in an unconfined aquifer

    Science.gov (United States)

    Zhan, Hongbin; Zlotnik, Vitaly A.

    2002-07-01

    New semianalytical solutions for evaluation of the drawdown near horizontal and slanted wells with finite length screens in unconfined aquifers are presented. These fully three-dimensional solutions consider instantaneous drainage or delayed yield and aquifer anisotropy. As a basis, solution for the drawdown created by a point source in a uniform anisotropic unconfined aquifer is derived in Laplace domain. Using superposition, the point source solution is extended to the cases of the horizontal and slanted wells. The previous solutions for vertical wells can be described as a special case of the new solutions. Numerical Laplace inversion allows effective evaluation of the drawdown in real time. Examples illustrate the effects of well geometry and the aquifer parameters on drawdown. Results can be used to generate type curves from observations in piezometers and partially or fully penetrating observation wells. The proposed solutions and software are useful for the parameter identification, design of remediation systems, drainage, and mine dewatering.

  11. Building Line Officers into Financial Managers: An Analysis of the Process and Recommendations for Improvement

    National Research Council Canada - National Science Library

    Cutter, David

    2004-01-01

    .... If compared to the sales revenues of the Fortune 500, the Navy would rank sixth. After having weathered a prolonged drawdown through the 1990's, Naval leadership must recapitalize its aging legacy systems...

  12. Rapid groundwater-related land subsidence in Yemen observed by multi-temporal InSAR

    KAUST Repository

    Abdullin, Ayrat; Xu, Wenbin; Kosmicki,  Maximillian; Jonsson, Sigurjon

    2015-01-01

    Several basins in Yemen are suffering from a rapid drawdown of groundwater, which is the most important water source for agricultural irrigation, industry and domestic use. However, detailed geodetic measurements in the region have been lacking

  13. Averting the Train Wreck of Captain Attrition - A Leadership Solution

    National Research Council Canada - National Science Library

    Weafer, Thomas

    2001-01-01

    .... The cultural effects of the drawdown, doing more with less, political correctness, eroding benefits, and a booming economy are but some of the causes of rising dissatisfaction with military life...

  14. Deep carbon export from a Southern Ocean iron-fertilized diatom bloom

    Digital Repository Service at National Institute of Oceanography (India)

    Smetacek, V.; Klaas, C.; Strass, V.H.; Assmy, P.; Montresor, M.; Cisewski, B.; Savoye, N.; Webb, A.; d’Ovidio, F.; Arrieta, J.M.; Bathmann, U.; Bellerby, R.; Berg, G.M.; Croot, P.; Gonzalez, S.; Henjes, J.; Herndl, G.J.; Hoffmann, L.J.; Leach, H.; Losch, M.; Mills, M.M.; Neill, C.; Peeken, I.; Rottgers, R.; Sachs, O.; Sauter, E.; Schmidt, M.M.; Schwarz, J.; Terbruggen, A.; Wolf-Gladrow, D.

    Fertilization of the ocean by adding iron compounds has induced diatom-dominated phytoplankton blooms accompanied by considerable carbon dioxide drawdown in the ocean surface layer. However, because the fate of bloom biomass could not be adequately...

  15. aquifer in ajaokuta, southwestern nigeria

    African Journals Online (AJOL)

    2005-03-08

    Mar 8, 2005 ... (1969) straight line method (observation well) of draw-down analysis in an unconfined aquifer (B=1) yield ... April) and a short wet season (May-September). .... DECOMPOSED. GRANITIC ROCK WITH. QUARTZ VEINS. 13.

  16. COST AND PERFORMANCE REPORT: INNOVATIVE ACOUSTIC SENSOR TECHNOLOGIES FOR LEAK DETECTION IN CHALLENGING PIPE TYPES

    Science.gov (United States)

    2016-12-30

    to limit the drawdown of local water supplies . Implementation of improved leak detection technologies and the timely repair of water mains will...functions and to limit the drawdown of local water supplies . DoD installations lose significant amounts of water through leaking pipe systems that are near... Water Supply Practices M36: Water Audits and Loss Control Programs (2009), leak detection surveys should be conducted every three years. Therefore, it

  17. Late summer distribution and stoichiometry of dissolved N, Si and P in the Southern Ocean near Heard and McDonald Islands on the Kerguelen Plateau

    Science.gov (United States)

    Chase, Z.; Bowie, A. R.; Blain, S.; Holmes, T.; Rayner, M.; Sherrin, K.; Tonnard, M.; Trull, T. W.

    2016-12-01

    The Kerguelen plateau in the Southern Indian Ocean is a naturally iron-fertilised region surrounded by iron-limited, High Nutrient Low Chlorophyll waters. The Heard Earth Ocean Biosphere Interaction (HEOBI) project sampled waters south of the Polar Front in the vicinity of Heard and McDonald Islands (HIMI) in January and February 2016. Fe fertilised waters over the plateau generally exhibited high phytoplankton biomass and photosynthetic competency (as in previous studies and satellite observations), but interestingly, phytoplankton biomass was low near HIMI, though photosynthetic competency was high. In plateau waters away from HIMI, silicic acid (Si) concentrations were strongly depleted in surface waters, averaging 3 μM, while nitrate concentrations were close to 25 μM. Relative to the remnant winter water, this represents an average seasonal drawdown of 32 μM Si and only 8 μM nitrate. Though absolute drawdown was lower at an HNLC reference site south of Heard Island, the drawdown ratio was similarly high (ΔSi: ΔN 4-5). The average N:P drawdown ratio was 12, typical for a diatom-dominated system (Weber and Deutsch 2010). N:P drawdown was positively correlated with Si drawdown, perhaps indicative of an impact of Fe on both seasonal Si drawdown and diatom N:P uptake (Price 2005). In the well-mixed, shallow waters (McDonald Islands, despite the apparent lack of nutrient drawdown or biomass accumulation. Mixed layers deeper than the euphotic zone are one mechanism that retains these remineralization signatures and near the islands, tidal mixing also contributes.

  18. Characterization of large price variations in financial markets

    Science.gov (United States)

    Johansen, Anders

    2003-06-01

    Statistics of drawdowns (loss from the last local maximum to the next local minimum) plays an important role in risk assessment of investment strategies. As they incorporate higher (> two) order correlations, they offer a better measure of real market risks than the variance or other cumulants of daily (or some other fixed time scale) of returns. Previous results have shown that the vast majority of drawdowns occurring on the major financial markets have a distribution which is well represented by a stretched exponential, while the largest drawdowns are occurring with a significantly larger rate than predicted by the bulk of the distribution and should thus be characterized as outliers (Eur. Phys. J. B 1 (1998) 141; J. Risk 2001). In the present analysis, the definition of drawdowns is generalized to coarse-grained drawdowns or so-called ε-drawdowns and a link between such ε- outliers and preceding log-periodic power law bubbles previously identified (Quantitative Finance 1 (2001) 452) is established.

  19. The transboundary non-renewable Nubian Aquifer System of Chad, Egypt, Libya and Sudan: classical groundwater questions and parsimonious hydrogeologic analysis and modeling

    Science.gov (United States)

    Voss, Clifford I.; Soliman, Safaa M.

    2014-03-01

    Parsimonious groundwater modeling provides insight into hydrogeologic functioning of the Nubian Aquifer System (NAS), the world's largest non-renewable groundwater system (belonging to Chad, Egypt, Libya, and Sudan). Classical groundwater-resource issues exist (magnitude and lateral extent of drawdown near pumping centers) with joint international management questions regarding transboundary drawdown. Much of NAS is thick, containing a large volume of high-quality groundwater, but receives insignificant recharge, so water-resource availability is time-limited. Informative aquifer data are lacking regarding large-scale response, providing only local-scale information near pumps. Proxy data provide primary underpinning for understanding regional response: Holocene water-table decline from the previous pluvial period, after thousands of years, results in current oasis/sabkha locations where the water table still intersects the ground. Depletion is found to be controlled by two regional parameters, hydraulic diffusivity and vertical anisotropy of permeability. Secondary data that provide insight are drawdowns near pumps and isotope-groundwater ages (million-year-old groundwaters in Egypt). The resultant strong simply structured three-dimensional model representation captures the essence of NAS regional groundwater-flow behavior. Model forecasts inform resource management that transboundary drawdown will likely be minimal—a nonissue—whereas drawdown within pumping centers may become excessive, requiring alternative extraction schemes; correspondingly, significant water-table drawdown may occur in pumping centers co-located with oases, causing oasis loss and environmental impacts.

  20. Straddle-packer aquifer test analyses of the Snake River Plain aquifer at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Johnson, G.S.; Frederick, D.B.

    1997-01-01

    The State of Idaho INEL Oversight Program, with the University of Idaho, Idaho State University, Boise State University, and the Idaho Geologic Survey, used a straddle-packer system to investigate vertical variations in characteristics of the Snake River Plain aquifer at the Idaho National Engineering Laboratory in southeast Idaho. Sixteen single-well aquifer tests were conducted on.isolated intervals in three observation wells. Each of these wells has approximately 200 feet of open borehole below the water table, penetrating the E through G and I basalt flow groups and interbedded sediments of the Snake River Plain aquifer. The success of the aquifer tests was limited by the inability to induce measurable drawdown in several zones. Time-drawdown data from aquifer tests were matched to type curves for 8 of the 16 zones tested. A single aquifer test at the water table exhibited greater curvature than those at depth. The increased degree of curvature suggests an unconfined response and resulted in an estimate of specific yield of 0.03. Aquifer tests below the water table generally yielded time-drawdown graphs with a rapid initial response followed by constant drawdown throughout the duration of the tests; up to several hours in length. The rapid initial response implies that the aquifer responds as a confined system during brief pumping periods. The nearly constant drawdown suggests a secondary source of water, probably vertical flow from overlying and underlying aquifer layers. Three analytical models were applied for comparison to the conceptual model and to provide estimates of aquifer properties. This, Hantush-Jacob leaky aquifer, and the Moench double-porosity fractured rock models were fit to time-drawdown data. The leaky aquifer type curves of Hantush and Jacob generally provided the best match to observed drawdown. A specific capacity regression equation was also used to estimate hydraulic conductivity

  1. Leptokurtic portfolio theory

    Science.gov (United States)

    Kitt, R.; Kalda, J.

    2006-03-01

    The question of optimal portfolio is addressed. The conventional Markowitz portfolio optimisation is discussed and the shortcomings due to non-Gaussian security returns are outlined. A method is proposed to minimise the likelihood of extreme non-Gaussian drawdowns of the portfolio value. The theory is called Leptokurtic, because it minimises the effects from “fat tails” of returns. The leptokurtic portfolio theory provides an optimal portfolio for investors, who define their risk-aversion as unwillingness to experience sharp drawdowns in asset prices. Two types of risks in asset returns are defined: a fluctuation risk, that has Gaussian distribution, and a drawdown risk, that deals with distribution tails. These risks are quantitatively measured by defining the “noise kernel” — an ellipsoidal cloud of points in the space of asset returns. The size of the ellipse is controlled with the threshold parameter: the larger the threshold parameter, the larger return are accepted for investors as normal fluctuations. The return vectors falling into the kernel are used for calculation of fluctuation risk. Analogously, the data points falling outside the kernel are used for the calculation of drawdown risks. As a result the portfolio optimisation problem becomes three-dimensional: in addition to the return, there are two types of risks involved. Optimal portfolio for drawdown-averse investors is the portfolio minimising variance outside the noise kernel. The theory has been tested with MSCI North America, Europe and Pacific total return stock indices.

  2. Applications of the time-naught term in the Cooper and Jacob (1946) equation.

    Science.gov (United States)

    Edwards, David A

    2012-01-01

    The ability to manipulate analytical expressions for aquifer drawdown can provide insights into groundwater flow processes and assist with assessing strengths and weaknesses of aquifer parameter estimation methods. In the Cooper and Jacob (1946) parameter estimation method, the antilog of the horizontal-axis intercept in a plot of drawdown vs. log(time) is referred to as time naught (t(0)), which is used for estimating storativity. This article briefly reviews traditional uses of the time-naught concept and then spends time introducing new insights and applications involving (1) time-naught/distance relationships, including ways to compensate for certain missing data; (2) use of time naught in a simple method providing a quick visual check of which data in a Cooper-Jacob plot are suitable for use in linear regression; (3) application of time naught, as determined for one well, in estimating the later minimum time for which data from a distant well can be used in the Cooper-Jacob method; (4) development of relationships between drawdown and time naught; (5) use of time naught in a simple algebraic equation to estimate drawdown at smaller times than feasible using the Cooper-Jacob method; and (6) employment of time naught and a vertical-axis intercept on a plot of drawdown vs. log(time) for evaluating storativity. This information may be useful to new hydrogeologists or others interested in further developing their analytical well hydraulics skills. © 2011, The Author(s). Ground Water © 2011, National Ground Water Association.

  3. Application of Modflow in Groundwater Management and Evaluation of Artificial Recharge Project of Ab-barik Aquifer (Bam

    Directory of Open Access Journals (Sweden)

    Homayoun Katibeh

    2005-08-01

    Full Text Available This study is an attempt in groundwater modeling of Ab-barik aquifer (Bam, Iran, in order to asses the artificial recharge project and the future situation of the aquifer. Studies show that the discharge of the aquifer has exceeded the recharge, especially during the 1980-1990. The water table in March 1985 has dropped about 10m as compared with March 1973. Studies indicate that the drawdown of the free surface will continue in the future so that in March 2004, the drawdown will be about 18m as compared with the March 1973. Also it was found that despite the artificial recharge of the aquifer (started in 1996, the drawdown has been continuing. Modeling has showed that artificial recharge project has caused 12.6 mm3 recharge into the aquifer annually, during 1996-1999.

  4. Simple method for quick estimation of aquifer hydrogeological parameters

    Science.gov (United States)

    Ma, C.; Li, Y. Y.

    2017-08-01

    Development of simple and accurate methods to determine the aquifer hydrogeological parameters was of importance for groundwater resources assessment and management. Aiming at the present issue of estimating aquifer parameters based on some data of the unsteady pumping test, a fitting function of Theis well function was proposed using fitting optimization method and then a unitary linear regression equation was established. The aquifer parameters could be obtained by solving coefficients of the regression equation. The application of the proposed method was illustrated, using two published data sets. By the error statistics and analysis on the pumping drawdown, it showed that the method proposed in this paper yielded quick and accurate estimates of the aquifer parameters. The proposed method could reliably identify the aquifer parameters from long distance observed drawdowns and early drawdowns. It was hoped that the proposed method in this paper would be helpful for practicing hydrogeologists and hydrologists.

  5. Saturated-unsaturated flow to a partially penetrating well with storage in a compressible aquifer

    Science.gov (United States)

    Mishra, P. K.; Neuman, S. P.

    2010-12-01

    Mishra and Neuman [2010] developed an analytical solution for flow to a partially penetrating well of zero radius in a compressible unconfined aquifer that allows inferring its saturated and unsaturated hydraulic properties from responses recorded in the saturated and/or the unsaturated zone. We extend their solution to the case of a finite diameter pumping well with storage. Both solutions account for horizontal as well as vertical flows throughout the system. We investigate the effects of storage in the pumping well and delayed piezometer response on drawdowns in the saturated and unsaturated zones as functions of position and time; validate our solution against numerical simulations of drawdown in a synthetic aquifer having unsaturated properties described by the van Genuchten - Mualem constitutive model; and use our solution to analyze drawdown data from a pumping test conducted at the Borden site in Ontario, Canada.

  6. Assessment of groundwater potential based on aquifer properties of hard rock terrain in the Chittar-Uppodai watershed, Tamil Nadu, India

    Science.gov (United States)

    Kumar, T. Jeyavel Raja; Balasubramanian, A.; Kumar, R. S.; Dushiyanthan, C.; Thiruneelakandan, B.; Suresh, R.; Karthikeyan, K.; Davidraju, D.

    2016-06-01

    Aquifer performance was tested in 24 locations to assess the groundwater potential of the hard rock terrain in the Chittar-Uppodai watershed of the Tambaraparani River basin. Geologically, the area consists of biotite gneiss, charnockite, and quartzite. The aquifer characteristics, such as transmissivity ( T), the storage coefficient, specific capacity, optimum yield, and the recovery rate were calculated. The drawdown transmissivity was determined using Jacob's straight-line method, while the recovery transmissivity was determined by the Theis method. The drawdown transmissivity was low in the western areas, particularly at Kadayanallur, and was higher in the other areas. The recovery transmissivity was high in the western area, and, with the exception of Gangaikondan, was low at other locations. The assessment indicates that there is groundwater potential in the western part of the study area because of favorable results for recovery drawdown, aquifer thickness, and specific capacity.

  7. Simulated effects of Lower Floridan aquifer pumping on the Upper Floridan aquifer at Barbour Pointe, Chatham County, Georgia

    Science.gov (United States)

    Cherry, Gregory S.; Clarke, John S.

    2017-10-26

    Steady-state simulations using a revised regional groundwater-flow model based on MODFLOW were run to assess the potential long-term effects on the Upper Floridan aquifer (UFA) of pumping the Lower Floridan aquifer (LFA) at well 36Q398, located at Barbour Pointe in coastal Georgia near Savannah. Simulated pumping of well 36Q398 at a rate of 750 gallons per minute (gal/min; or 1.08 million gallons per day [Mgal/d]) indicated a maximum drawdown of about 2.19 feet (ft) in the UFA directly above the pumped well and at least 1 ft of drawdown within a nearly 190-square-mile area (scenario A). Induced vertical leakage from the UFA provided about 98 percent of the water to the pumped well. Simulated pumping of well 36Q398 caused increased downward leakage in all layers above the LFA, decreased upward leakage in all layers above the LFA, increased inflow to and decreased outflow from lateral specified-head boundaries in the UFA and LFA, and an increase in the volume of induced inflow from the general-head boundary representing outcrop units. Water budgets for scenario A indicated that changes in inflows and outflows through general-head boundaries would compose about 45 percent of the simulated pumpage from well 36Q398, with the remaining 55 percent of the pumped water derived from flow across lateral specified-head boundaries.Additional steady-state simulations were run to evaluate a pumping rate in the UFA of 240 gal/min (0.346 Mgal/d), which would produce an equivalent maximum drawdown in the UFA as pumping from well 36Q398 in the LFA at a rate of 750 gal/min (called the “drawdown offset”; scenario B). Simulated pumping in the UFA for the drawdown offset produced about 2.18 ft of drawdown, comparable to 2.19 ft of drawdown in the UFA simulated in scenario A. Water budgets for scenario B also provided favorable comparisons with scenario A, indicating that 42 percent of the drawdown-offset pumpage (0.346 Mgal/d) in the UFA originates as increased inflow and decreased

  8. Hydrogeological characterization, modelling and monitoring of the site of Canada's Underground Research Laboratory

    International Nuclear Information System (INIS)

    Davison, C.C.; Guvanasen, V.

    1985-01-01

    Atomic Energy of Canada Limited (AECL) is constructing an Underground Research Laboratory (URL) to a depth of 250 m in a previously undisturbed granitic pluton located near Lac du Bonnet, Manitoba, as one of the major research projects within the Canadian Nuclear Fuel Waste Management Program. This paper discusses the hydrogeological characterization of the URL site, the modelling approach used to represent this information, the hydrogeological monitoring system installed to monitor the actual drawdown conditions that develop in response to the excavation, and the procedures employed to calibrate the numerical model. Comparisons between the drawdown predictions made by the model prior to any excavation and the actual drawdowns that have been measured since shaft excavation began in May 1984 are also discussed

  9. New method of analyzing well tests in fractured wells using sandface pressure and rate data

    Energy Technology Data Exchange (ETDEWEB)

    Osman, M.; Almehaideb, R.; Abou-Kassem, J. [U.A.E. University, Al-Ain (United Arab Emirates)

    1998-05-01

    Analysis of variable flow rate tests has been of special interest recently because in many cases it is impractical to keep a flow rate constant long enough to perform a drawdown test. Further, in many other drawdown and buildup tests, the early data were influenced by wellbore storage effects, and the duration of these effects could be quite long for low-permeability reservoirs. This paper presents a mathematical model which describes drawdown and buildup tests in hydraulically fractured wells. This new method uses a specialized plot approach to analyze the linear flow data and combines it with the superposition of constant-rate solution method for the analysis of psuedoradial flow data. It does not require prior knowledge of the fracture type (uniform-flux or infinite-conductivity); in fact it predicts the fracture type. This method is useful for the analysis of simultaneously measured downhole pressure and sandface rate data. 12 refs., 11 figs., 3 tabs.

  10. Identification of groundwater flow parameters using reciprocal data from hydraulic interference tests

    Science.gov (United States)

    Marinoni, Marianna; Delay, Frederick; Ackerer, Philippe; Riva, Monica; Guadagnini, Alberto

    2016-08-01

    We investigate the effect of considering reciprocal drawdown curves for the characterization of hydraulic properties of aquifer systems through inverse modeling based on interference well testing. Reciprocity implies that drawdown observed in a well B when pumping takes place from well A should strictly coincide with the drawdown observed in A when pumping in B with the same flow rate as in A. In this context, a critical point related to applications of hydraulic tomography is the assessment of the number of available independent drawdown data and their impact on the solution of the inverse problem. The issue arises when inverse modeling relies upon mathematical formulations of the classical single-continuum approach to flow in porous media grounded on Darcy's law. In these cases, introducing reciprocal drawdown curves in the database of an inverse problem is equivalent to duplicate some information, to a certain extent. We present a theoretical analysis of the way a Least-Square objective function and a Levenberg-Marquardt minimization algorithm are affected by the introduction of reciprocal information in the inverse problem. We also investigate the way these reciprocal data, eventually corrupted by measurement errors, influence model parameter identification in terms of: (a) the convergence of the inverse model, (b) the optimal values of parameter estimates, and (c) the associated estimation uncertainty. Our theoretical findings are exemplified through a suite of computational examples focused on block-heterogeneous systems with increased complexity level. We find that the introduction of noisy reciprocal information in the objective function of the inverse problem has a very limited influence on the optimal parameter estimates. Convergence of the inverse problem improves when adding diverse (nonreciprocal) drawdown series, but does not improve when reciprocal information is added to condition the flow model. The uncertainty on optimal parameter estimates is

  11. Comparison of aquifer characteristics derived from local and regional aquifer tests.

    Science.gov (United States)

    Randolph, R.B.; Krause, R.E.; Maslia, M.L.

    1985-01-01

    A comparison of the aquifer parameter values obtained through the analysis of a local and a regional aquifer test involving the same area in southeast Georgia is made in order to evaluate the validity of extrapolating local aquifer-test results for use in large-scale flow simulations. Time-drawdown and time-recovery data were analyzed by using both graphical and least-squares fitting of the data to the Theis curve. Additionally, directional transmissivity, transmissivity tensor, and angle of anisotropy were computed for both tests. -from Authors Georgia drawdown transmissivity regional aquifer tests

  12. Endogenous versus Exogenous Crashes in Financial Markets

    OpenAIRE

    A. Johansen; D. Sornette

    2002-01-01

    We perform an extended analysis of the distribution of drawdowns in the two leading exchange markets (US dollar against the Deutsmark and against the Yen), in the major world stock markets, in the U.S. and Japanese bond market and in the gold market, by introducing the concept of ``coarse-grained drawdowns,'' which allows for a certain degree of fuzziness in the definition of cumulative losses and improves on the statistics of our previous results on the existence of ``outliers'' or ``kings.'...

  13. Litter type affects the activity of aerobic decomposers in a boreal peatland more than site nutrient and water table regimes

    Directory of Open Access Journals (Sweden)

    P. Straková

    2011-09-01

    Full Text Available Peatlands are carbon (C storage ecosystems sustained by a high water table (WT. High WT creates anoxic conditions that suppress the activity of aerobic decomposers and provide conditions for peat accumulation. Peatland function can be dramatically affected by WT drawdown caused by climate and/or land-use change. Aerobic decomposers are directly affected by WT drawdown through environmental factors such as increased oxygenation and nutrient availability. Additionally, they are indirectly affected via changes in plant community composition and litter quality. We studied the relative importance of direct and indirect effects of WT drawdown on aerobic decomposer activity in plant litter at two stages of decomposition (incubated in the field for 1 or 2 years. We did this by profiling 11 extracellular enzymes involved in the mineralization of organic C, nitrogen (N, phosphorus (P and sulphur. Our study sites represented a three-stage chronosequence from pristine to short-term (years and long-term (decades WT drawdown conditions under two nutrient regimes (bog and fen. The litter types included reflected the prevalent vegetation: Sphagnum mosses, graminoids, shrubs and trees.

    Litter type was the main factor shaping microbial activity patterns and explained about 30 % of the variation in enzyme activities and activity allocation. Overall, enzyme activities were higher in vascular plant litters compared to Sphagnum litters, and the allocation of enzyme activities towards C or nutrient acquisition was related to the initial litter quality (chemical composition. Direct effects of WT regime, site nutrient regime and litter decomposition stage (length of incubation period summed to only about 40 % of the litter type effect. WT regime alone explained about 5 % of the variation in enzyme activities and activity allocation. Generally, enzyme activity increased following the long-term WT drawdown and the activity allocation turned from P

  14. Litter type affects the activity of aerobic decomposers in a boreal peatland more than site nutrient and water table regimes

    Science.gov (United States)

    Straková, P.; Niemi, R. M.; Freeman, C.; Peltoniemi, K.; Toberman, H.; Heiskanen, I.; Fritze, H.; Laiho, R.

    2011-09-01

    Peatlands are carbon (C) storage ecosystems sustained by a high water table (WT). High WT creates anoxic conditions that suppress the activity of aerobic decomposers and provide conditions for peat accumulation. Peatland function can be dramatically affected by WT drawdown caused by climate and/or land-use change. Aerobic decomposers are directly affected by WT drawdown through environmental factors such as increased oxygenation and nutrient availability. Additionally, they are indirectly affected via changes in plant community composition and litter quality. We studied the relative importance of direct and indirect effects of WT drawdown on aerobic decomposer activity in plant litter at two stages of decomposition (incubated in the field for 1 or 2 years). We did this by profiling 11 extracellular enzymes involved in the mineralization of organic C, nitrogen (N), phosphorus (P) and sulphur. Our study sites represented a three-stage chronosequence from pristine to short-term (years) and long-term (decades) WT drawdown conditions under two nutrient regimes (bog and fen). The litter types included reflected the prevalent vegetation: Sphagnum mosses, graminoids, shrubs and trees. Litter type was the main factor shaping microbial activity patterns and explained about 30 % of the variation in enzyme activities and activity allocation. Overall, enzyme activities were higher in vascular plant litters compared to Sphagnum litters, and the allocation of enzyme activities towards C or nutrient acquisition was related to the initial litter quality (chemical composition). Direct effects of WT regime, site nutrient regime and litter decomposition stage (length of incubation period) summed to only about 40 % of the litter type effect. WT regime alone explained about 5 % of the variation in enzyme activities and activity allocation. Generally, enzyme activity increased following the long-term WT drawdown and the activity allocation turned from P and N acquisition towards C

  15. 24 CFR 941.612 - Disbursement of grant funds.

    Science.gov (United States)

    2010-04-01

    ... following requirements: (1) Front-end assistance may be used to pay for materials and services related to... Development (Continued) OFFICE OF ASSISTANT SECRETARY FOR PUBLIC AND INDIAN HOUSING, DEPARTMENT OF HOUSING AND... Development of Public Housing Units § 941.612 Disbursement of grant funds. (a) Front-end drawdowns. A PHA may...

  16. Browse Title Index

    African Journals Online (AJOL)

    Items 51 - 100 of 1254 ... Vol 27, No 3 (2001), A generalised solution for step-drawdown tests including ... Vol 27, No 3 (2001), A hydrological perspective of the February 2000 ... Vol 31, No 3 (2005):, A literature review of the twinning approach in ... root-zone soil moisture from time-series of surface soil moisture, Abstract PDF.

  17. Improved forward and inverse analyses of saturated-unsaturated flow toward a well in a compressible unconfined aquifer

    Science.gov (United States)

    Mishra, Phoolendra Kumar; Neuman, Shlomo P.

    2010-07-01

    We present an analytical solution for flow to a partially penetrating well in a compressible unconfined aquifer that allows inferring its saturated and unsaturated hydraulic properties from drawdowns recorded in the saturated and/or unsaturated zone. We improve upon a previous such solution due to Tartakovsky and Neuman (2007) by (1) adopting a more flexible representation of unsaturated zone constitutive properties and (2) allowing the unsaturated zone to have finite thickness. Both solutions account for horizontal as well as vertical flows throughout the system. We investigate the effects of unsaturated zone constitutive parameters and thickness on drawdowns in the saturated and unsaturated zones as functions of position and time; demonstrate the development of significant horizontal hydraulic gradients in the unsaturated zone in response to pumping; validate our solution against numerical simulations of drawdown in a synthetic aquifer having unsaturated properties described by the van Genuchten-Mualem constitutive model; use our solution to analyze drawdown data from a pumping test conducted by the U.S. Geological Survey at Cape Cod, Massachusetts; and compare our estimates of van Genuchten-Mualem parameters with laboratory values obtained for similar materials in the area.

  18. General well function for pumping from a confined, leaky, or unconfined aquifer

    Science.gov (United States)

    Perina, Tomas; Lee, Tien-Chang

    2006-02-01

    A general well function for groundwater flow toward an extraction well with non-uniform radial flux along the screen and finite-thickness skin, partially penetrating an unconfined, leaky-boundary flux, or confined aquifer is derived via the Laplace and generalized finite Fourier transforms. The mixed boundary condition at the well face is solved as the discretized Fredholm integral equation. The general well function reduces to a uniform radial flux solution as a special case. In the Laplace domain, the relation between the drawdown in the extraction well and flowrate is linear and the formulations for specified flowrate or specified drawdown pumping are interchangeable. The deviation in drawdown of the uniform from non-uniform radial flux solutions depends on the relative positions of the extraction and observation well screens, aquifer properties, and time of observation. In an unconfined aquifer the maximum deviation occurs during the period of delayed drawdown when the effect of vertical flow is most apparent. The skin and wellbore storage in an observation well are included as model parameters. A separate solution is developed for a fully penetrating well with the radial flux being a continuous function of depth.

  19. Evaluation of unconfined-aquifer parameters from pumping test data by nonlinear least squares

    Science.gov (United States)

    Heidari, Manoutchehr; Wench, Allen

    1997-05-01

    Nonlinear least squares (NLS) with automatic differentiation was used to estimate aquifer parameters from drawdown data obtained from published pumping tests conducted in homogeneous, water-table aquifers. The method is based on a technique that seeks to minimize the squares of residuals between observed and calculated drawdown subject to bounds that are placed on the parameter of interest. The analytical model developed by Neuman for flow to a partially penetrating well of infinitesimal diameter situated in an infinite, homogeneous and anisotropic aquifer was used to obtain calculated drawdown. NLS was first applied to synthetic drawdown data from a hypothetical but realistic aquifer to demonstrate that the relevant hydraulic parameters (storativity, specific yield, and horizontal and vertical hydraulic conductivity) can be evaluated accurately. Next the method was used to estimate the parameters at three field sites with widely varying hydraulic properties. NLS produced unbiased estimates of the aquifer parameters that are close to the estimates obtained with the same data using a visual curve-matching approach. Small differences in the estimates are a consequence of subjective interpretation introduced in the visual approach.

  20. Paleoredox chemistry of Cenomanian–Coniacian black shales at high paleolatitudes: Implications for the extent of anoxia during OAE2

    DEFF Research Database (Denmark)

    Lenniger, Marc; Nøhr-Hansen, Henrik; Hills, Len V

    2013-01-01

    was intermittently suboxic to anoxic (ferruginous) throughout most of the latest Cenomanian–Coniacian. Despite very high TOC (>10%) and hydrogen index values, molybdenum concentrations are relatively low during OAE2 but increase after the event. This suggests a global drawdown of the seawater molybdenum reservoir...

  1. Efficiency of carbon removal per added iron in ocean iron fertilization

    NARCIS (Netherlands)

    de Baar, Hein J. W.; Gerringa, Loes J. A.; Laan, Patrick; Timmermans, Klaas R.

    2008-01-01

    The major response to ocean iron fertilization is by large diatoms, which at Fe-replete ambient seawater show an optimum C:Fe elemental ratio of similar to 23 000 and a higher ratio of similar to 160 000 or more under Fe-limited conditions. The efficiency of CO2 drawdown during the several weeks of

  2. The use of vetivers in coastal engineering

    NARCIS (Netherlands)

    Verhagen, H.J.; Jaspers Focks, D.J.; Algera, A.; Vu, M.A.

    2008-01-01

    Vetiver grass is a sustainable and innovative solution for the protection of banks. It is shown that Vetiver grass is able to establish a full-stop of bank erosion caused by rapid drawdown. Therefore it provides us with strong indications that it is highly suitable as an anti-erosion measure. A

  3. Změny vodní vegetace NPR Břehyně – Pecopala v závislosti na rybářském hospodaření v letech 1997-2003

    Czech Academy of Sciences Publication Activity Database

    Adamec, Lubomír

    -, - (2003), s. 103-108 ISSN 1211-3603 R&D Projects: GA MŽP SE/610/10/00 Institutional research plan: CEZ:AV0Z6005908 Keywords : Myriophyllum spicatum * grass carp * fishpond drawdown Subject RIV: EF - Botanics

  4. Fishy business

    International Nuclear Information System (INIS)

    Prendergast, J.

    1994-01-01

    This article examines the possibility that better data on the effects of hydroelectric facilities on fish populations and new technologies can make it possible for fish and hydro facilities to share the nation's rivers. The topics and case histories include solutions at reasonable prices, Columbia River drawdown, monitoring rarely required, regional differences, and looking at new technologies

  5. Asymmetrical effects of mesophyll conductance on fundamental photosynthetic parameters and their relationships estimated from leaf gas exchange measurements

    Science.gov (United States)

    Most previous analyses of leaf gas exchange measurements assumed an infinite value of mesophyll conductance (gm) and thus equaled CO2 partial pressures in the substomatal cavity and chloroplast. Yet an increasing number of studies have recognized that gm is finite and there is a drawdown of CO2 part...

  6. 24 CFR 511.75 - Disbursement of rental rehabilitation grant amounts: Cash and Management Information System.

    Science.gov (United States)

    2010-04-01

    ... rehabilitation grant amounts: Cash and Management Information System. 511.75 Section 511.75 Housing and Urban... rehabilitation grant amounts: Cash and Management Information System. (a) General. Rental Rehabilitation grants.... Any drawdown is conditioned upon the submission of satisfactory information by the grantee or State...

  7. Sediment management of run-of-river hydroelectric power project in ...

    Indian Academy of Sciences (India)

    Neena Isaac

    2 Central Water and Power Research Station, Khadakwasla, Pune 411024, India e-mail: ... deposition hydraulically by drawdown flushing is one of the most effective methods for restoring the storage ... hydraulic flushing system, detailed hydraulic model studies ..... important tool during the decision making at all the stages.

  8. The Ecology and Environmental Impacts of Hydrilla

    Science.gov (United States)

    1992-10-15

    in the dewatered areas. The drawdown also encouraged the germination of waterhyacinth seeds in the dewatered areas. Plant Analysis The productivity of...controls hydrilla in most situations. Sonar is the DowElanco registered trademark for products containing the active ingredient fluridone . Sonar aquatic

  9. 44 CFR 206.45 - Loans of non-Federal share.

    Science.gov (United States)

    2010-10-01

    ... advance. Simple interest will be computed from the date of the disbursement of each drawdown of the loan... Assistant Administrator for the Disaster Assistance Directorate together with the Chief Financial Officer... to assume their financial responsibility under such cost sharing provisions: (i) As a result of...

  10. Transient well flow in vertically heterogeneous aquifers.

    NARCIS (Netherlands)

    Hemker, C.J.

    1999-01-01

    A solution for the general problem of computing well flow in vertically heterogeneous aquifers is found by an integration of both analytical and numerical techniques. The radial component of flow is treated analytically; the drawdown is a continuous function of the distance to the well. The

  11. 77 FR 11017 - Airworthiness Directives; Pratt & Whitney (PW) Models PW4074 and PW4077 Turbofan Engines

    Science.gov (United States)

    2012-02-24

    ... (BSI) or eddy current inspection (ECI) of the disk outer rim front rail for cracks prior to... person at the Docket Management Facility between 9 a.m. and 5 p.m., Monday through Friday, except Federal... this AD, using a drawdown plan that includes a BSI or ECI of the disk outer rim front rail for cracks...

  12. Decreased summer water table depth affects peatland vegetation

    NARCIS (Netherlands)

    Breeuwer, A.J.G.; Robroek, B.J.M.; Limpens, J.; Heijmans, M.M.P.D.; Schouten, M.G.C.; Berendse, F.

    2009-01-01

    Climate change can be expected to increase the frequency of summer droughts and associated low water tables in ombrotrophic peatlands. We studied the effects of periodic water table drawdown in a mesocosm experiment. Mesocosms were collected in Southern Sweden, and subsequently brought to an

  13. 17 CFR 4.35 - Performance disclosures.

    Science.gov (United States)

    2010-04-01

    ... began trading client accounts and the date when client funds began being traded pursuant to the trading... client funds and indicating the month and year of the draw-down (the capsule must include a definition of... commodity trading advisor presents the performance of such accounts in a manner that is balanced and is not...

  14. Sediment resuspension events induced by the wake wash of deep-draft vessels

    Science.gov (United States)

    Garel, Erwan; López Fernández, Laura; Collins, Mike

    2008-08-01

    Hydrodynamics and sediment resuspension events, induced at the shoreline by a deep-draft vessel passing nearby, are described. Measurements (pressure, currents and turbidity) were obtained at 4 Hz, on a lower beach ~50 m from a channel where large car ferries operate in Wootton Creek, Isle of Wight. The study focuses on a representative 8-min 32-s-long record, during which two large vessels passed the channel section. At the shore, the passage of each vessel induced a long-period water-level drawdown, followed by a water-level oscillation (seiche) of similar period, and the short-period waves of the wake. Both drawdowns were the main constituents of the prevailing wave pattern. The second drawdown was the largest in amplitude, in response to a higher speed of the ferry, and the influence of the seiche which had been activated during the preceding event. Two successive peaks of turbidity were observed shortly after this drawdown. Analyses of current velocity and direction indicate that the sediments resuspended originated from the shallower upper beach. Anthropogenically induced erosion of the foreshore is predicted at Wootton Creek.

  15. Developing a Repeatable Methodology to Calculate Retrograde Planning Factors

    Science.gov (United States)

    2015-01-01

    supply chain inefficiencies, changes in demand xiv rates, operational tempo, task force organization, drawdown, and redeployment, for which the...and its causes, most notably the effect of supply chain inefficiencies on serviceable retrograde. It should be noted that, because of data limitations... supplies and equipment, and housekeeping supplies and equipment Class IIIP Packaged petroleum products; includes fuel in collapsible containers less

  16. Hydrogeologic characterization of a fractured granitic rock aquifer, Raymond, California

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Andrew J.B. [Univ. of California, Berkeley, CA (United States)

    1993-10-01

    The hydrogeologic properties of a shallow, fractured granitic rock aquifer in the foothills of the Sierra Nevada, California were investigated via the analysis of borehole geophysical logs and pumping tests. The drawdowns produced during these tests are not indicative of any simple conceptual aquifer model, and borehole logs show that the granite is intensely fractured. These observations are suggestive of a complex fracture-flow geometry which is extremely difficult to decipher. However, through the measurement of orientations of individual subsurface fractures from acoustic televiewer logs, and correlation between particular fractures and electrical resistivity and thermal-pulse flowmeter logs, it was found that the aquifer is, in general, comprised of two subhorizontal and nearly parallel zones of unloading fractures. Downhole flowmeter measurements taken in several wells provide further evidence for the inferred dual-layer structure of the aquifer, as well as yield quantitative measures of the contribution of flow from each zone. Analysis of drawdowns in pumped wells reveals that there are zones of relatively high transmissivity immediately around them. It was found that these properties, as well as a nearby zone of lower transmissivity, can account for their observed drawdowns. A numerical model was constructed to test whether these major heterogeneities could also account for the drawdowns in observation wells. This stepwise analysis of both the geophysical and hydrological data resulted in the formulation of a conceptual model of the aquifer which is consistent with observations, and which can account for its behavior when subjected to pumping.

  17. Savannah River Ecology Laboratory annual technical progress report of ecological research, period ending July 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Vaitkus, M.R.; Wein, G.R. [eds.; Johnson, G.

    1993-11-01

    This progress report gives an overview of research programs at the Savannah River Site. Topics include; environmental operations support, wood stork foraging and breeding, defense waste processing, environmental stresses, alterations in the environment due to pollutants, wetland ecology, biodiversity, pond drawdown studies, and environmental toxicology.

  18. Temporal evolution of mechanisms controlling ocean carbon uptake during the last glacial cycle

    Science.gov (United States)

    Kohfeld, Karen E.; Chase, Zanna

    2017-08-01

    Many mechanisms have been proposed to explain the ∼85-90 ppm decrease in atmospheric carbon dioxide (CO2) during the last glacial cycle, between 127,000 and 18,000 yrs ago. When taken together, these mechanisms can, in some models, account for the full glacial-interglacial CO2 drawdown. Most proxy-based evaluations focus on the peak of the Last Glacial Maximum, 24,000-18,000 yrs ago, and little has been done to determine the sequential timing of processes affecting CO2 during the last glacial cycle. Here we use a new compilation of sea-surface temperature records together with time-sequenced records of carbon and Nd isotopes, and other proxies to determine when the most commonly proposed mechanisms could have been important for CO2 drawdown. We find that the initial major drawdown of 35 ppm 115,000 yrs ago was most likely a result of Antarctic sea ice expansion. Importantly, changes in deep ocean circulation and mixing did not play a major role until at least 30,000 yrs after the first CO2 drawdown. The second phase of CO2 drawdown occurred ∼70,000 yrs ago and was also coincident with the first significant influences of enhanced ocean productivity due to dust. Finally, minimum concentrations of atmospheric CO2 during the Last Glacial Maximum resulted from the combination of physical and biological factors, including the barrier effect of expanded Southern Ocean sea ice, slower ventilation of the deep sea, and ocean biological feedbacks.

  19. Probabilistic assessment of the impact of coal seam gas development on groundwater: Surat Basin, Australia

    Science.gov (United States)

    Cui, Tao; Moore, Catherine; Raiber, Matthias

    2018-05-01

    Modelling cumulative impacts of basin-scale coal seam gas (CSG) extraction is challenging due to the long time frames and spatial extent over which impacts occur combined with the need to consider local-scale processes. The computational burden of such models limits the ability to undertake calibration and sensitivity and uncertainty analyses. A framework is presented that integrates recently developed methods and tools to address the computational burdens of an assessment of drawdown impacts associated with rapid CSG development in the Surat Basin, Australia. The null space Monte Carlo method combined with singular value decomposition (SVD)-assisted regularisation was used to analyse the uncertainty of simulated drawdown impacts. The study also describes how the computational burden of assessing local-scale impacts was mitigated by adopting a novel combination of a nested modelling framework which incorporated a model emulator of drawdown in dual-phase flow conditions, and a methodology for representing local faulting. This combination provides a mechanism to support more reliable estimates of regional CSG-related drawdown predictions. The study indicates that uncertainties associated with boundary conditions are reduced significantly when expressing differences between scenarios. The results are analysed and distilled to enable the easy identification of areas where the simulated maximum drawdown impacts could exceed trigger points associated with legislative `make good' requirements; trigger points require that either an adjustment in the development scheme or other measures are implemented to remediate the impact. This report contributes to the currently small body of work that describes modelling and uncertainty analyses of CSG extraction impacts on groundwater.

  20. Desirable Strategic Petroleum Reserves policies in response to supply uncertainty: A stochastic analysis

    International Nuclear Information System (INIS)

    Bai, Yang; Zhou, Peng; Tian, Lixin; Meng, Fanyi

    2016-01-01

    Highlights: • A stochastic model is proposed to study Strategic Petroleum Reserves (SPR) policy. • The model aims to find desirable SPR size, acquisition, drawdown and refilling policy. • The impact of SPR policy and supply disruption on oil price has been examined. - Abstract: The paper proposes a survey on three issues related to Strategic Petroleum Reserves (SPR) policy. Firstly, what are the optimal SPR acquisition, drawdown and refilling policy in response to various market risks? Secondly, how SPR policy or actions will affect the market factors, i.e. oil demand or price. Thirdly, in what extend a disruption may induce price shock. For the purpose, the study proposed a Markov Decision Process model (SPR-MDP). In the model, oil supply, disruption size and duration are considered to be highly stochastic. Oil price is determined by market fundamentals exclusively. According to the empirical study, we come to some interesting conclusions. Firstly, oil price and disruption risk show different ways in influencing the desirable SPR size. It is found that the SPR size increases with the decrease of oil price while increase of disruption risk. Secondly, SPR acquisition may increase oil price slightly by influencing the basic fundamentals. In given case, we find acquisition of 7 million barrels per month increase the price by 2.6%. But the influence weakens with decrease of acquisition size. Thirdly, disruption duration shows significant impact on SPR drawdown policy. In a two-month disruption case, it is found that 51% of SPR should be released in the first month. Another 40% is released in the following month. The other 9% SPR is left for forthcoming disruptions. Meanwhile, SPR drawdown shows high efficient in damping oil price in the disruption. In given case, after drawdown of SPR, the oil prices only increases by 0.7% in the second month though continue disruption.

  1. Determining the hydraulic and fracture properties of the Coal Seam Gas well by numerical modelling and GLUE analysis

    Science.gov (United States)

    Askarimarnani, Sara; Willgoose, Garry; Fityus, Stephen

    2017-04-01

    Coal seam gas (CSG) is a form of natural gas that occurs in some coal seams. Coal seams have natural fractures with dual-porosity systems and low permeability. In the CSG industry, hydraulic fracturing is applied to increase the permeability and extract the gas more efficiently from the coal seam. The industry claims that it can design fracking patterns. Whether this is true or not, the public (and regulators) requires assurance that once a well has been fracked that the fracking has occurred according to plan and that the fracked well is safe. Thus defensible post-fracking testing methodologies for gas generating wells are required. In 2009 a fracked well HB02, owned by AGL, near Broke, NSW, Australia was subjected to "traditional" water pump-testing as part of this assurance process. Interpretation with well Type Curves and simple single phase (i.e. only water, no gas) highlighted deficiencies in traditional water well approaches with a systemic deviation from the qualitative characteristic of well drawdown curves (e.g. concavity versus convexity of drawdown with time). Accordingly a multiphase (i.e. water and methane) model of the well was developed and compared with the observed data. This paper will discuss the results of this multiphase testing using the TOUGH2 model and its EOS7C constitutive model. A key objective was to test a methodology, based on GLUE monte-carlo calibration technique, to calibrate the characteristics of the frack using the well test drawdown curve. GLUE involves a sensitivity analysis of how changes in the fracture properties change the well hydraulics through and analysis of the drawdown curve and changes in the cone of depression. This was undertaken by changing the native coal, fracture, and gas parameters to see how changing those parameters changed the match between simulations and the observed well drawdown. Results from the GLUE analysis show how much information is contained in the well drawdown curve for estimating field scale

  2. Simulated effects of Lower Floridan aquifer pumping on the Upper Floridan aquifer at Pooler, Chatham County, Georgia

    Science.gov (United States)

    Cherry, Gregory S.; Clarke, John S.

    2013-01-01

    A revised regional groundwater-flow model was used to assess the potential effects on the Upper Floridan aquifer (UFA) of pumping the Lower Floridan aquifer (LFA) from a new well (35Q069) located at the City of Pooler in coastal Georgia near Savannah. The spatial resolution of the original regional, steady-state, groundwater-flow model was increased to incorporate detailed hydrogeologic information resulting from field investigations at Pooler and existing wells in the area. Simulation results using the U.S. Geological Survey finite-difference code MODFLOW indicated that long-term pumping at a rate of 780 gallons per minute (gal/min) from the LFA well 35Q069 would cause a maximum drawdown of about 2.52 feet (ft) in the UFA (scenario A). This maximum drawdown in the UFA was greater than the observed draw-down of 0.9 ft in the 72-hour aquifer test, but this is expected because the steady-state simulated drawdown represents long-term pumping conditions. Model results for scenario A indicate that drawdown in the UFA exceeded 1 ft over a 163-square-mile (mi2) area. Induced vertical leakage from the UFA provided about 98 percent of the water to the LFA; the area within 1 mile of the pumped well contributed about 81 percent of the water pumped. Simulated pumping changed regional water-budget components slightly and redistributed flow among model layers, namely increasing downward leakage in all layers, decreasing upward leakage in all layers above the LFA, increasing inflow to and decreasing outflow from lateral specified-head boundaries in the UA and LFA, and increasing the volume of induced recharge from the general head boundary to outcrop units. An additional two groundwater-pumping scenarios were run to establish that a linear relation exists between pumping rates of the LFA well 35Q069 (varied from 390 to 1,042 gal/min) and amount of drawdown in the UFA and LFA. Three groundwater-pumping scenarios were run to evaluate the amount of UFA pumping (128 to 340 gal

  3. Effect of Unsaturated Flow on Delayed Response of Unconfined Aquifiers to Pumping

    Science.gov (United States)

    Tartakovsky, G.; Neuman, S. P.

    2005-12-01

    A new analytical solution is presented for the delayed response process characterizing flow to a partially penetrating well in an unconfined aquifer. The new solution generalizes that of Neuman [1972, 1974] by accounting for unsaturated flow above the water table. Axially symmetric three-dimensional flow in the unsaturated zone is described by a linearized version of Richards' equation in which hydraulic conductivity and water content vary exponentially with incremental capillary pressure head relative to its air entry value (defining the interface between the saturated and unsaturated zones). Unsaturated soil properties are characterized by an exponent κ having the dimension of inverse length and a dimensionless exponent κD = κb where b is initial saturated thickness. Our treatment of the unsaturated zone is similar to that of Kroszynski and Dagan [1975] who however have ignored internal (artesian) aquifer storage. It has been suggested by Boulton [1954, 1963, 1970] and Neuman [1972, 1974], and is confirmed by our solution, that internal storage is required to reproduce the early increase in drawdown characterizing delayed response to pumping in typical aquifers. According to our new solution such aquifers are characterized by relatively large κ_ D values, typically 10 or larger; in the limit as κD tends to infinity (the soil unsaturated water retention capacity becomes insignificant and/or aquifer thickness become large), unsaturated flow becomes unimportant and our solution reduces to that of Neuman. In typical cases corresponding to κD larger than or equal to 10, unsaturated flow is found to have little impact on early and late dimensionless time behaviors of drawdown measured wholly or in part at some distance below the water table; unsaturated flow causes drawdown to increase slightly at intermediate dimensionless time values that represent transition from an early artesian dominated to a late water-table dominated flow regime. The increase in drawdown

  4. Development, characterization and simulation of boundary lubricant functionalized hydrogels for use as a low-friction cartilage substitute

    Science.gov (United States)

    Blum, Michelle M.

    Canada is the second highest producer of hydroelectric energy in the world. Nearly 50 of the hydroelectric reservoirs in the country have a capacity larger than 1 billion m3. Despite the great number and extent of hydropower developments in Canada and around the world, relatively little is known about how dams and their operations influence terrestrial and semi-aquatic wildlife. Reservoirs at northern latitudes are characterized by large fluctuations in water level, which create modified shorelines called drawdown zones. To evaluate the impact of these disturbances on amphibians and reptiles, I conducted visual encounter surveys at two sites in the drawdown zone of Kinbasket Reservoir, near Valemount, B.C. From April to August of 2010 and 2011, I documented the habitat use, reproductive phenology, and body condition of two amphibian species (Anaxyrus boreas and Rana luteiventris) as well as the growth, movements, diet, and distribution of one species of garter snake (Thamnophis sirtalis). At two sites in the drawdown zone, A. boreas and R. luteiventris were present for the duration of the summer and utilized several ponds for reproduction. The presence and abundance of Rana luteiventris eggs were generally associated with ponds that had higher mean temperatures, higher mean pH, and the presence of fish. In 2010, there was sufficient time for amphibian breeding and metamorphosis to occur before the reservoir inundated the drawdown zone, but low precipitation levels in that year led to desiccation of many breeding ponds. In 2011, high rainfall and snowmelt led to early inundation of breeding ponds, and thousands of tadpoles were presumably swept into the reservoir. Gravid Thamnophis sirtalis were found at just one of two sites in the drawdown zone, but both sites were frequented by foraging individuals of this species. Anaxyrus boreas appears to be the primary prey of T. sirtalis in the drawdown zone. An improved understanding of how the amphibians and reptiles at

  5. Comparison of pressure transient response in intensely and sparsely fractured reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Johns, R.T.

    1989-04-01

    A comprehensive analytical model is presented to study the pressure transient behavior of a naturally fractured reservoir with a continuous matrix block size distribution. Geologically realistic probability density functions of matrix block size are used to represent reservoirs of varying fracture intensity and uniformity. Transient interporosity flow is assumed and interporosity skin is incorporated. Drawdown and interference pressure transient tests are investigated. The results show distinctions in the pressure response from intensely and sparsely fractured reservoirs in the absence of interporosity skin. Also, uniformly and nonuniformly fractured reservoirs exhibit distinct responses, irrespective of the degree of fracture intensity. The pressure response in a nonuniformly fractured reservoir with large block size variability, approaches a nonfractured (homogeneous) reservoir response. Type curves are developed to estimate matrix block size variability and the degree of fracture intensity from drawdown and interference well tests.

  6. Radial flow towards well in leaky unconfined aquifer

    Science.gov (United States)

    Mishra, P. K.; Kuhlman, K. L.

    2012-12-01

    An analytical solution is developed for three-dimensional flow towards a partially penetrating large- diameter well in an unconfined aquifer bounded below by a leaky aquitard of finite or semi-infinite extent. The analytical solution is derived using Laplace and Hankel transforms, then inverted numerically. Existing solutions for flow in leaky unconfined aquifers neglect the unsaturated zone following an assumption of instantaneous drainage due to Neuman. We extend the theory of leakage in unconfined aquifers by (1) including water flow and storage in the unsaturated zone above the water table, and (2) allowing the finite-diameter pumping well to partially penetrate the aquifer. The investigation of model-predicted results shows that aquitard leakage leads to significant departure from the unconfined solution without leakage. The investigation of dimensionless time-drawdown relationships shows that the aquitard drawdown also depends on unsaturated zone properties and the pumping-well wellbore storage effects.

  7. Saturated-unsaturated flow to a well with storage in a compressible unconfined aquifer

    Science.gov (United States)

    Mishra, Phoolendra Kumar; Neuman, Shlomo P.

    2011-05-01

    Mishra and Neuman (2010) developed an analytical solution for flow to a partially penetrating well of zero radius in a compressible unconfined aquifer that allows inferring its saturated and unsaturated hydraulic properties from responses recorded in the saturated and/or unsaturated zones. Their solution accounts for horizontal as well as vertical flows in each zone. It represents unsaturated zone constitutive properties in a manner that is at once mathematically tractable and sufficiently flexible to provide much improved fits to standard constitutive models. In this paper we extend the solution of [2010] to the case of a finite diameter pumping well with storage; investigate the effects of storage in the pumping well and delayed piezometer response on drawdowns in the saturated and unsaturated zones as functions of position and time; validate our solution against numerical simulations of drawdown in a synthetic aquifer having unsaturated properties described by the [1980]- [1976] model; use our solution to analyze 11 transducer-measured drawdown records from a seven-day pumping test conducted by University of Waterloo researchers at the Canadian Forces Base Borden in Ontario, Canada; validate our parameter estimates against manually-measured drawdown records in 14 other piezometers at Borden; and compare (a) our estimates of aquifer parameters with those obtained on the basis of all these records by [2008], (b) on the basis of 11 transducer-measured drawdown records by [2007], (c) our estimates of van Genuchten-Mualem parameters with those obtained on the basis of laboratory drainage data from the site by [1992], and (d) our corresponding prediction of how effective saturation varies with elevation above the initial water table under static conditions with a profile based on water contents measured in a neutron access tube at a radial distance of about 5 m from the center of the pumping well. We also use our solution to analyze 11 transducer-measured drawdown

  8. Saturated-unsaturated flow in a compressible leaky-unconfined aquifer

    Science.gov (United States)

    Mishra, Phoolendra K.; Vesselinov, Velimir V.; Kuhlman, Kristopher L.

    2012-06-01

    An analytical solution is developed for three-dimensional flow towards a partially penetrating large-diameter well in an unconfined aquifer bounded below by a leaky aquitard of finite or semi-infinite extent. The analytical solution is derived using Laplace and Hankel transforms, then inverted numerically. Existing solutions for flow in leaky unconfined aquifers neglect the unsaturated zone following an assumption of instantaneous drainage due to Neuman. We extend the theory of leakage in unconfined aquifers by (1) including water flow and storage in the unsaturated zone above the water table, and (2) allowing the finite-diameter pumping well to partially penetrate the aquifer. The investigation of model-predicted results shows that aquitard leakage leads to significant departure from the unconfined solution without leakage. The investigation of dimensionless time-drawdown relationships shows that the aquitard drawdown also depends on unsaturated zone properties and the pumping-well wellbore storage effects.

  9. Contribution of vegetation and water table on isoprene emission from boreal peatland microcosms

    DEFF Research Database (Denmark)

    Tiiva, Päivi; Faubert, Patrick; Räty, Sanna

    2009-01-01

    emission in these naturally wet ecosystems, although water table is predicted to decline due to climate warming. We studied the relative contribution of mosses vs. vascular plants to isoprene emission in boreal peatland microcosms in growth chambers by removing either vascular vegetation or both vascular...... hollows with intact vegetation, 45 ± 6 µg m-2 h-1, was decreased by 25% under water table drawdown. However, water table drawdown reduced net ecosystem carbon dioxide (CO2) exchange more dramatically than isoprene emission. Isoprene emission strongly correlated with both CO2 exchange and methane emission......Boreal peatlands are substantial sources of isoprene, a reactive hydrocarbon. However, it is not known how much mosses, vascular plants and peat each contribute to isoprene emission from peatlands. Furthermore, there is no information on the effects of declining water table depth on isoprene...

  10. Fracture distribution determined by borehole TV in the vicinity of the Koongarra uranium ore field and predictable groundwater flow

    International Nuclear Information System (INIS)

    Miyakawa, Kimio; Tanaka, Yasuharu

    1996-01-01

    To contribute good understanding of geo-hydrogeological structure in and around the Koongarra uranium deposit, the borehole TV logging and the three dimensional groundwater flow analysis were conducted. The results of the borehole TV measurement showed directional trends in the schistosity represented folds which were the most characteristic structure in the site scale. This fold structure was in accord with the directional trends in fracture and fracture frequency, and the axes of the interference test drawdown. The three dimensional groundwater flow analysis was taken into account the hydraulic anisotropy which derived from the assumption that the direction normal to schistosity agree with minimum hydraulic conductivity. The result of analysis showed that directions of ground water flow agreed with drawdown axes, and the conceptual model of hydrogeological structure governed the site scale fold was verified. (author)

  11. The interaction between the unsaturated zone, aquifer, and stream during a period of groundwater withdrawal

    DEFF Research Database (Denmark)

    Poulsen, Søren Erbs; Christensen, Steen; Rasmussen, Keld Rømer

    2011-01-01

    drainage responses to water-table drawdown. The responses can be sufficiently modeled by estimating the specific yield and five exponential time constants of a Moench/Boulton type model of delayed drainage. The average specific yield is thus estimated to 0.24 which is in agreement with previous small scale......; in the second case the estimate (0.17) is in better agreement with core and previous estimates (0.24). The analysis indicates that relatively fast drainage, and the existence of two drawdown dependent sources of groundwater recharge (the storage and the stream), complicates pumping test design to obtain unique...... parameter estimation. The analysis supports that an essential factor in parameter estimation by pumping test analysis for (at least some) unconfined aquifers is the use of a model that accounts for time-varying drainage from the vadose zone. Finally, when predicting stream depletion beyond 1. day of pumping...

  12. Three dimensional simulation for bayou choctaw strategic petroleum reserve (SPR).

    Energy Technology Data Exchange (ETDEWEB)

    Ehgartner, Brian L. (Sandia National Laboratories, Albuquerque, NM); Park, Byoung Yoon; Lee, Moo Yul

    2006-12-01

    Three dimensional finite element analyses were performed to evaluate the structural integrity of the caverns located at the Bayou Choctaw (BC) site which is considered a candidate for expansion. Fifteen active and nine abandoned caverns exist at BC, with a total cavern volume of some 164 MMB. A 3D model allowing control of each cavern individually was constructed because the location and depth of caverns and the date of excavation are irregular. The total cavern volume has practical interest, as this void space affects total creep closure in the BC salt mass. Operations including both cavern workover, where wellhead pressures are temporarily reduced to atmospheric, and cavern enlargement due to leaching during oil drawdowns that use water to displace the oil from the caverns, were modeled to account for as many as the five future oil drawdowns in the six SPR caverns. The impacts on cavern stability, underground creep closure, surface subsidence, infrastructure, and well integrity were quantified.

  13. Topographic Steering of Enhanced Ice Flow at the Bottleneck Between East and West Antarctica

    DEFF Research Database (Denmark)

    Winter, Kate; Ross, Neil; Ferraccioli, Fausto

    2018-01-01

    Hypothesized drawdown of the East Antarctic Ice Sheet through the “bottleneck” zone between East and West Antarctica would have significant impacts for a large proportion of the Antarctic Ice Sheet. Earth observation satellite orbits and a sparseness of radio echo sounding data have restricted...... investigations of basal boundary controls on ice flow in this region until now. New airborne radio echo sounding surveys reveal complex topography of high relief beneath the southernmost Weddell/Ross ice divide, with three subglacial troughs connecting interior Antarctica to the Foundation and Patuxent Ice...... Streams and Siple Coast ice streams. These troughs route enhanced ice flow through the interior of Antarctica but limit potential drawdown of the East Antarctic Ice Sheet through the bottleneck zone. In a thinning or retreating scenario, these topographically controlled corridors of enhanced flow could...

  14. Seismic risks at Elsie Lake Main Dam

    International Nuclear Information System (INIS)

    McCammon, N.R.; Momenzadeh, M.; Hawson, H.H.; Nielsen, N.M.

    1991-01-01

    The Elsie Lake dams are located on Vancouver Island in an area of high seismic risk. A safety review in 1986 indicated potential deficiencies in the earthfill main dam with respect to modern earthquake design standards. A detailed field investigation program comprising drilling and penetration tests was carried out and the results used in an assessment of seismic stability. A 0.8 m thick less dense layer in the granular shell of the dam, possibly caused by wet construction conditions, would likely liquefy in a major earthquake but sufficient residual strength would likely remain to prevent catastrophic failure. The dam shell might undergo some distortion, and an assessment was initiated to determine the requirements for reservoir drawdown following an extreme earthquake to ensure the timely lowering of the reservoir for inspection and repair. It was suggested that an adequate evacuation capability would be 25% and 50% drawdown in not more than 30 and 50 days, respectively. 9 refs., 11 figs., 1 tab

  15. Performing Pumping Test Data Analysis Applying Cooper-Jacob’s Method for Estimating of the Aquifer Parameters

    Directory of Open Access Journals (Sweden)

    Dana Khider Mawlood

    2016-06-01

    Full Text Available Single well test is more common than aquifer test with having observation well, since the advantage of single well test is that the pumping test can be conducted on the production well with the absence of observation well. A kind of single well test, which is step-drawdown test used to determine the efficiency and specific capacity of the well, however in case of single well test it is possible to estimate Transmissivity, but the other parameter which is Storativity is overestimated, so the aim of this study is to analyze four pumping test data located in KAWRGOSK area by using cooper-Jacob’s (1946 time drawdown approximation of Theis method to estimate the aquifer parameters, also in order to determine the reasons which are affecting the reliability of the Storativity value and obtain the important aspect behind that in practice.

  16. Galvanic reduction of uranium(III) chloride from LiCl-KCl eutectic salt using gadolinium metal

    Science.gov (United States)

    Bagri, Prashant; Zhang, Chao; Simpson, Michael F.

    2017-09-01

    The drawdown of actinides is an important unit operation to enable the recycling of electrorefiner salt and minimization of waste. A new method for the drawdown of actinide chlorides from LiCl-KCl molten salt has been demonstrated here. Using the galvanic interaction between the Gd/Gd(III) and U/U(III) redox reactions, it is shown that UCl3 concentration in eutectic LiCl-KCl can be reduced from 8.06 wt.% (1.39 mol %) to 0.72 wt.% (0.12 mol %) in about an hour via plating U metal onto a steel basket. This is a simple process for returning actinides to the electrorefiner and minimizing their loss to the salt waste stream.

  17. Field experiment and numerical simulation of coupling non-Darcy flow caused by curtain and pumping well in foundation pit dewatering

    Science.gov (United States)

    Wang, Jianxiu; Liu, Xiaotian; Wu, Yuanbin; Liu, Shaoli; Wu, Lingao; Lou, Rongxiang; Lu, Jiansheng; Yin, Yao

    2017-06-01

    High-velocity non-Darcy flow produced larger drawdown than Darcy flow under the same pumping rate. When the non-Darcy flow caused by curtain met non-Darcy flow caused by pumping wells, superposition and amplification effect occurred in the coupling area, the non-Darcy flow was defined as coupling non-Darcy flow. The coupling non-Darcy flow can be produced and controlled using different combination of curtain and pumping wells in foundation pit dewatering to obtain the maximum drawdown using the minimum pumping rate. The Qianjiang Century City Station foundation pit of Hangzhou subway, China, was selected as background. Field experiments were performed to observe the coupling non-Darcy flow in round gravel. A generalized conceptual model was established to study the coupling effect under different combination of curtain and pumping wells. Numerical simulations of the coupling non-Darcy flow in foundation pit dewatering were carried out based on the Forchheimer equation. The non-Darcy flow area and flow velocity were influenced by the coupling effect. Short filter tube, large pumping rate, small horizontal distance between filter tube and diaphragm wall, and small vertical distance between the filter tube and confined aquifer roof effectively strengthened the coupling effect and obtained a large drawdown. The pumping wells installed close to a curtain was an intentional choice designed to create coupling non-Darcy flow and obtain the maximize drawdown. It can be used in the dewatering of a long and narrow foundation pit, such as a subway foundation pit.

  18. Aquifer test interpretation using derivative analysis and diagnostic plots

    Science.gov (United States)

    Hernández-Espriú, Antonio; Real-Rangel, Roberto; Cortés-Salazar, Iván; Castro-Herrera, Israel; Luna-Izazaga, Gabriela; Sánchez-León, Emilio

    2017-04-01

    Pumping tests remain a method of choice to deduce fundamental aquifer properties and to assess well condition. In the oil and gas (O&G) industry, well testing has been the core technique in examining reservoir behavior over the last 50 years. The pressure derivative by Bourdet, it is perhaps, the most significant single development in the history of well test analysis. Recently, the so-called diagnostics plots (e.g. drawdown and drawdown derivative in a log-log plot) have been successfully tested in aquifers. However, this procedure is still underutilized by groundwater professionals. This research illustrates the applicability range, advantages and drawbacks (e.g. smoothing procedures) of diagnostic plots using field examples from a wide spectrum of tests (short/long tests, constant/variable flow rates, drawdown/buildup stages, pumping well/observation well) in dissimilar geological conditions. We analyze new and pre-existent aquifer tests in Mexico, USA, Canada, Germany, France and Saudi Arabia. In constant flow rate tests, our results show that derivative analysis is an easy, robust and powerful tool to assess near-borehole damage effects, formation heterogeneity, boundaries, flow regimes, infinite-acting radial stages, i.e., valid Theisian framework, and fracture-driven flow. In step tests, the effectiveness relies on high-frequency drawdown measurements. Moreover, we adapt O&G analytical solutions to cater for the conditions in groundwater systems. In this context, further parameters can be computed analytically from the plots, such as skin factor, head losses, wellbore storage, distance to the boundary, channel-aquifer and/or fracture zone width, among others. Therefore, diagnostic plots should be considered a mandatory tool for pumping tests analysis among hydrogeologists. This project has been supported by DGAPA (UNAM) under the research project PAPIIT IN-112815.

  19. Computer vision for continuous plankton monitoring

    OpenAIRE

    Damian Janusz Matuszewski

    2014-01-01

    Plankton microorganisms constitute the base of the marine food web and play a great role in global atmospheric carbon dioxide drawdown. Moreover, being very sensitive to any environmental changes they allow noticing (and potentially counteracting) them faster than with any other means. As such they not only influence the fishery industry but are also frequently used to analyze changes in exploited coastal areas and the influence of these interferences on local environment and climate. As a co...

  20. A reassessment of ground water flow conditions and specific yield at Borden and Cape Cod

    Science.gov (United States)

    Grimestad, Garry

    2002-01-01

    Recent widely accepted findings respecting the origin and nature of specific yield in unconfined aquifers rely heavily on water level changes observed during two pumping tests, one conducted at Borden, Ontario, Canada, and the other at Cape Cod, Massachusetts. The drawdown patterns observed during those tests have been taken as proof that unconfined specific yield estimates obtained from long-duration pumping tests should approach the laboratory-estimated effective porosity of representative aquifer formation samples. However, both of the original test reports included direct or referential descriptions of potential supplemental sources of pumped water that would have introduced intractable complications and errors into straightforward interpretations of the drawdown observations if actually present. Searches for evidence of previously neglected sources were performed by screening the original drawdown observations from both locations for signs of diagnostic skewing that should be present only if some of the extracted water was derived from sources other than main aquifer storage. The data screening was performed using error-guided computer assisted fitting techniques, capable of accurately sensing and simulating the effects of a wide range of non-traditional and external sources. The drawdown curves from both tests proved to be inconsistent with traditional single-source pumped aquifer models but consistent with site-specific alternatives that included significant contributions of water from external sources. The corrected pumping responses shared several important features. Unsaturated drainage appears to have ceased effectively at both locations within the first day of pumping, and estimates of specific yield stabilized at levels considerably smaller than the corresponding laboratory-measured or probable effective porosity. Separate sequential analyses of progressively later field observations gave stable and nearly constant specific yield estimates for each

  1. The Optimal Allocation for Capital Preservation: an Evidence Australian Portfolio

    Directory of Open Access Journals (Sweden)

    Riznaldi Akbar

    2018-05-01

    Full Text Available This study analyzes optimal asset mix for Australian portfolios with the main investment objective for capital preservation. An alternative measure of risk of annual maximum drawdown has been used to reflect investor preference for capital preservation as opposed to conventional risk measure of standard deviation and variance. The contribution of the study is two folds. First, this study has put different perspective to look at portfolio risk in the view of capital preservation. Second, the optimal weight for asset class mix that minimizes annual maximum drawdown has been analyzed for the case of Australian market. The results suggest that for capital preservation, investors should expect lower returns and need to put a greater allocation on less risky assets such as cash or bond. To this end, cash and bond have provided stable long term annual returns along with contained level of annual maximum drawdowns. In contrast, when investors demand higher expected return, they should increase asset allocation into stocks (equities market at the expense of higher maximum drawdowns. Bahasa Indonesia Abstrak: Studi ini menganalisis bauran aset optimal untuk portofolio Australia dengan tujuan investasi utama untuk pelestarian modal. Ukuran alternatif risiko penarikan maksimum tahunan telah digunakan untuk mencerminkan preferensi investor untuk pelestarian modal dibandingkan dengan ukuran risiko konvensional standar deviasi dan varians. Kontribusi dari penelitian ini adalah dua lipatan. Pertama, penelitian ini telah menempatkan perspektif yang berbeda untuk melihat risiko portofolio dalam pandangan pelestarian modal. Kedua, bobot optimal untuk campuran kelas aset yang meminimalkan penarikan maksimum tahunan telah dianalisis untuk kasus pasar Australia. Hasilnya menunjukkan bahwa untuk pelestarian modal, investor harus mengharapkan pengembalian yang lebih rendah dan perlu menempatkan alokasi yang lebih besar pada aset yang kurang berisiko seperti uang tunai

  2. Transient well flow in vertically heterogeneous aquifers

    Science.gov (United States)

    Hemker, C. J.

    1999-11-01

    A solution for the general problem of computing well flow in vertically heterogeneous aquifers is found by an integration of both analytical and numerical techniques. The radial component of flow is treated analytically; the drawdown is a continuous function of the distance to the well. The finite-difference technique is used for the vertical flow component only. The aquifer is discretized in the vertical dimension and the heterogeneous aquifer is considered to be a layered (stratified) formation with a finite number of homogeneous sublayers, where each sublayer may have different properties. The transient part of the differential equation is solved with Stehfest's algorithm, a numerical inversion technique of the Laplace transform. The well is of constant discharge and penetrates one or more of the sublayers. The effect of wellbore storage on early drawdown data is taken into account. In this way drawdowns are found for a finite number of sublayers as a continuous function of radial distance to the well and of time since the pumping started. The model is verified by comparing results with published analytical and numerical solutions for well flow in homogeneous and heterogeneous, confined and unconfined aquifers. Instantaneous and delayed drainage of water from above the water table are considered, combined with the effects of partially penetrating and finite-diameter wells. The model is applied to demonstrate that the transient effects of wellbore storage in unconfined aquifers are less pronounced than previous numerical experiments suggest. Other applications of the presented solution technique are given for partially penetrating wells in heterogeneous formations, including a demonstration of the effect of decreasing specific storage values with depth in an otherwise homogeneous aquifer. The presented solution can be a powerful tool for the analysis of drawdown from pumping tests, because hydraulic properties of layered heterogeneous aquifer systems with

  3. Just Do It Yourself: Implementing 3D Printing in a Deployed Environment

    Science.gov (United States)

    2017-04-01

    key-to-hypersonic- weapons-raytheon/. 14 Ibid. 15 Global Logistics & Supply Chain Strategies, “The U.S. Air Force Targets a Total Transformation...weapon designs. Overview of Air Force’s Supply Chain The Air Force manages one of the largest and most complex supply chains in the world.15 Its...DoD guidance 4140.1-R, describes supply chain management risk as “stock outages, stockpile drawdowns, shelf-life expiration, supplier financial

  4. Digital model analysis of the principal artesian aquifer, Savannah, Georgia area

    Science.gov (United States)

    Counts, H.B.; Krause, R.E.

    1977-01-01

    A digital model of the principal artesian aquifer has been developed for the Savannah, Georgia, area. The model simulates the response of the aquifer system to various hydrologic stresses. Model results of the water levels and water-level changes are shown on maps. Computations may be extended in time, indicating changes in pumpage were applied to the system and probable results calculated. Drawdown or water-level differences were computed, showing comparisons of different water management alternatives. (Woodard-USGS)

  5. Impact of temporary desiccation on the mobility of nutrients and metals from sediments of Loskop Reservoir, Olifants River

    CSIR Research Space (South Africa)

    Dabrowski, J

    2017-01-01

    Full Text Available (Crocodylus niloticus) and Mozambique tilapia (Oreochromis mossambicus) were diagnosed with pansteatitis (yellow fat disease; Dabrowski et al., 2013). Pansteatitis was responsible for > 180 crocodile deaths at around the same time downstream... that is rarely exposed to desiccation except in extreme drawdown events. Samples were stored in plastic bags and kept on ice while transported to the laboratory. At the laboratory, replicates were pooled, homogenised and then re-divided to ensure...

  6. Youth Attitudes Toward the Military: Poll Two

    Science.gov (United States)

    2002-04-01

    of new approaches for reaching the target market , and to adapt DoD’s advertising strategies to the existing environment. Since 1975, the...defense drawdown and the decrease of the veteran population. Like the recruitment environment, advertising approaches and marketing strategies are...the target market , and to adapt DoD’s advertising strategies to the existing environment. Since 1975, the Department of Defense has collected

  7. Quality of USMC Officers: Buildup Vs. Reduction in Forces

    Science.gov (United States)

    2016-03-01

    the system and difficult to remove. Bacolod (2007), analyzes the decline in teacher quality due to expanded access to professional jobs for women ...display diminishing returns or contributions to an officer’s quality , productivity, job performance, or output. The FITREP is designed for the RS to take...minus FY Average of RS Highs between the Buildup and Drawdown An alternative measure of officer quality based on their job performance is the difference

  8. Establishing Research and Management Priorities for Monoecious Hydrilla

    Science.gov (United States)

    2014-01-01

    this definition. Monoecious hydrilla is considered highly invasive in large reservoirs of the Mid- Atlantic states; however, widespread use of grass...drawdowns or fluctuations in water levels, high spring flows, and early spring turbidity (i.e. disturbance) as the dormant tuber bank is largely... West Virginia, Ohio, and Kentucky) are of particular concern, as these infestations may be a source of new and continuing introductions into

  9. Global warming causes sinkhole collapse – Case study in Florida, USA

    OpenAIRE

    Meng, Yan; Jia, Long

    2018-01-01

    The occurrence frequency and intensity of many natural geohazards, such as landslides, debris flows and earthquakes, have increased in response to global warming. However, the effects of such on development and spread of sinkholes has been largely overlooked. Most research shows that water pumping and related drawdown is the most important factor in sinkhole development, but in this paper evidence is presented which highlights the role played by global warming in causing sinkholes. The state ...

  10. A linear-flow interpretation of the H-3 multiwell pumping test conducted at the Waste Isolation Pilot Plant (WIPP) site

    International Nuclear Information System (INIS)

    Tomasko, D.; Jensen, A.L.

    1987-07-01

    Unlike previous interpretations of this test that used a double-porosity radial-flow model, this interpretation is based on a linear-flow process. Drawdowns in pumped well H-3b2 responded as if the Culebra Dolomite Member of the Rustler Formation were pumped from an elongated feature with a significantly higher permeability than the surrounding porous medium. Drawdowns in observation wells DOE-1 and H-11 exhibited nearly classic linear-flow behavior in specialty plots of drawdowns had excellent type-curve matches with a linear-flow type curve. The orientation of the linear feature using data from a multiwell interference test was found by minimizing the squared differences between field observations and linear flow calculations. A second technique was used to calculate the transmissivity and width of the feature. To calculate consistent system parameters, this technique required developing a least-squares fitting procedure to minimize the effects of noise in the drawdown measurements. While the underlying assumptions of the linear-flow model differ from those of a double-porosity radial-flow model, the properties calculated for the Culebra are similar to those previously presented and indicate a basic insensitivity to the system flow model. In addition to yielding hydrologic values that are approximately the same, the two models are complementary and provide unique information for characterizing the aquifer - double-porosity parameters from one model, and the orientation and width of a high-permeability elongated strip from the other. The two interpretations also provide a consistent picture of an extensively fractured porous medium in the vicinity of the H-3 hydropad. 24 refs., 27 figs., 3 tabs

  11. Strategic Reality and Tactical Mirages: Special Operations and the Iranian Hostage Rescue, 1979-1980

    Science.gov (United States)

    2017-06-01

    STRATEGIC REALITY & TACTICAL MIRAGES: SPECIAL OPERATIONS & THE IRANIAN HOSTAGE RESCUE, 1979-1980 BY MARK L. HAMILTON...remaining significant observations, such as technological capabilities,3 are not applicable to this thesis which focuses on decision making by government...not surviving the post–Vietnam drawdown.”9 While the Air Force reduced special operations personnel and equipment, the Army’s response was mixed

  12. Reliable yields of public water-supply wells in the fractured-rock aquifers of central Maryland, USA

    Science.gov (United States)

    Hammond, Patrick A.

    2018-02-01

    Most studies of fractured-rock aquifers are about analytical models used for evaluating aquifer tests or numerical methods for describing groundwater flow, but there have been few investigations on how to estimate the reliable long-term drought yields of individual hard-rock wells. During the drought period of 1998 to 2002, many municipal water suppliers in the Piedmont/Blue Ridge areas of central Maryland (USA) had to institute water restrictions due to declining well yields. Previous estimates of the yields of those wells were commonly based on extrapolating drawdowns, measured during short-term single-well hydraulic pumping tests, to the first primary water-bearing fracture in a well. The extrapolations were often made from pseudo-equilibrium phases, frequently resulting in substantially over-estimated well yields. The methods developed in the present study to predict yields consist of extrapolating drawdown data from infinite acting radial flow periods or by fitting type curves of other conceptual models to the data, using diagnostic plots, inverse analysis and derivative analysis. Available drawdowns were determined by the positions of transition zones in crystalline rocks or thin-bedded consolidated sandstone/limestone layers (reservoir rocks). Aquifer dewatering effects were detected by type-curve matching of step-test data or by breaks in the drawdown curves constructed from hydraulic tests. Operational data were then used to confirm the predicted yields and compared to regional groundwater levels to determine seasonal variations in well yields. Such well yield estimates are needed by hydrogeologists and water engineers for the engineering design of water systems, but should be verified by the collection of long-term monitoring data.

  13. The Potential Utility of Urinary Biomarkers for Risk Prediction in Combat Casualties: A Prospective Observational Cohort Study

    Science.gov (United States)

    2015-06-16

    Methods The study took place at Craig Joint Theater Hospital (CJTH) in Bagram Airfield, Afghanistan from October 2012 to December 2013. We included US...explain why we failed to observe an association be- tween KIM-1 and the combined outcome. There is evidence that elevated UBs even in the ab- sence of...several limitations. We had initially sought to enroll 226 subjects; however, the study took place during a drawdown of combat forces in Afghanistan

  14. Wetland Plant Guide for Assessing Habitat Impacts of Real-Time Salinity Management

    OpenAIRE

    Quinn, Nigel W.T.; Feldmann, Sara A.

    2004-01-01

    This wetland plant guide was developed to aid moist soil plant identification and to assist in the mapping of waterfowl and shorebird habitat in the Grassland Water District and surrounding wetland areas. The motivation for this habitat mapping project was a concern that real-time salinity management of wetland drainage might have long-term consequences for wildfowl habitat health -- changes in wetland drawdown schedules might, over the long term, lead to increased soil salinity and othe...

  15. The Strategic Petroleum Reserve: History, Perspectives, and Issues

    Science.gov (United States)

    2009-12-28

    Germany , Greece, Hungary, Ireland, Italy, Japan, Republic of Korea, Luxembourg, the Netherlands, New Zealand, Norway, Portugal, Spain, Sweden...Iran. Firms providing, or insuring tankers carrying, refined product to Iran would also be included in the prohibition. The Drawdown Authorities The...taking place in the operation of oil markets after the experiences of the 1970s, and deregulation of oil price and supply. Sales of SPR oil authorized

  16. Analysis of a multiple-well interference test in Miocene tuffaceous rocks at the C-Hole complex, May--June 1995, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Geldon, A.L.; Umari, A.M.A.; Earle, J.D.; Fahy, M.F.; Gemmell, J.M.; Darnell, J.

    1998-01-01

    A multiple-well interference (pumping) test was conducted in Miocene tuffaceous rocks at the C-hole complex at Yucca Mountain, Nev., from May 22 to June 12, 1995, by the US Geological Survey, in cooperation with the US Department of Energy. This pumping test was conducted as part of investigations to determine the suitability of Yucca Mountain as a potential site for the storage of high-level nuclear waste in a mined geologic repository. During the test, borehole UE-25 c number-sign 3 was pumped for 10 days at an average rate of 17.9 liters per second. Drawdown in 6 observation wells completed in Miocene tuffaceous rocks 29.0--3,525.6 meters from the pumping well ranged from 0 to 0.42 meters 14,000 minutes after pumping started. The spatial distribution of this drawdown indicates that a northwest-trending zone of discontinuous faults might be affecting ground-water movement in the Miocene tuffaceous rocks near the C-holes. No drawdown was observed in a borehole completed in a regional Paleozoic carbonate aquifer 630.0 meters from the pumping well. Consequently, it could not be determined during the pumping test if the Miocene tuffaceous rocks are connected hydraulically to the regional aquifer. Analyses of drawdown and recovery indicate that the Miocene tuffaceous rocks in the vicinity of the C-holes have transmissivity values of 1,600--3,200 meters squared per day, horizontal hydraulic conductivity values of 6.5--13 meters per day, vertical hydraulic conductivity values of 0.2--1.7 meters per day, storativity values of 0.001--0.003, and specific yield values of 0.01--0.2

  17. Innovative Acoustic Sensor Technologies for Leak Detection in Challenging Pipe Types

    Science.gov (United States)

    2016-12-30

    the level of water leakage within the water distribution system. Table 7-3. Cost Summary for LeakFinderRT LeakFinderRT Leak Detection Cost...and to limit the drawdown of local water supplies. Implementation of improved leak detection technologies and the timely repair of water mains will...6-5. Water -filled Valve Box in Vicinity of Leak Detected by ZoneScan Alpha System

  18. Land subsidence in Yunlin, Taiwan, due to Agricultural and Domestic Water Use

    Science.gov (United States)

    Hsu, K.; Lin, P.; Lin, Z.

    2013-12-01

    Subsidence in a layered aquifer is caused by groundwater excess extraction and results in complicated problems in Taiwan. Commonly, responsibility to subsidence for agricultural and domestic water users is difficulty to identify due to the lack of quantitative evidences. An integrated model was proposed to analyze subsidence problem. The flow field utilizes analytical solution for pumping in a layered system from Neuman and Witherspoon (1969) to calculate the head drawdown variation. The subsidence estimation applies Terzaghi (1943) one-dimensional consolidation theory to calculate the deformation in each layer. The proposed model was applied to estimate land subsidence and drawdown variation at the Yuanchang Township of Yunlin County in Taiwan. Groundwater data for dry-season periods were used for calibration and validation. Seasonal effect in groundwater variation was first filtered out. Dry-season pumping effect on land subsidence was analyzed. The results show that multi-layer pumping contributes more in subsidence than single-layer pumping on the response of drawdown and land subsidence in aquifer 2 with a contribution of 97% total change at Yuanchang station. Pumping in aquifer 2 contributes more significant than pumping in aquifer 3 to cause change in drawdown and land subsidence in aquifer 2 with a contribution of 70% total change at Yuanchang station. Larger area of subsidence in Yuanchang Township was attributed pumping at aquifer 2 while pumping at aquifer 3 results in significant subsidence near the well field. The single-layer user contributes most area of subsidence but the multi-layer user generates more serious subsidence.

  19. Deployment of wireless sensor network in pyrochemical processing of metallic fuels

    International Nuclear Information System (INIS)

    Baghyalakshmi, D.; Shrikrishnan, T.S.; Ebenezer, Jemimah; Madhusoodanan, K.; Satya Murty, S.A.V.; Vannia Perumal, S.; Venkatesh, P.; Prabhakara Reddy, B.

    2016-01-01

    With the advent of wireless sensor networking technology, industries started adapting the wireless monitoring systems in phases to measure and control various process parameters. To test the feasibility for implementing Wireless Sensor Network to measure the potentials of an electrochemical cell and the temperatures of actinide drawdown process at Pyrochemical process studies laboratory, at Chemistry Group, IGCAR, Kalpakkam, experiments have been carried out. An experimental setup with two Wireless Sensor Networking nodes has been deployed inside argon atmosphere glove boxes. The Electrorefining studies on U and U based alloys and the studies on actinide recovery from the electrolyte salt in actinide drawdown process are carried out in the glove box. The WSN measuring system was tested and validated by measuring the potentials of an electrochemical cell and the temperatures of actinide drawdown process. The WSN system is proposed to be installed in the hot cells of the Chemistry Group where irradiated U-Zr fuel is reprocessed. This paper briefs the need for remote measuring in pyrochemical reprocessing and validation of the remote signals by measuring the potentials of an electrochemical cell and the temperatures of the actinide draw down process. (author)

  20. Semi-analytical solution of flow to a well in an unconfined-fractured aquifer system separated by an aquitard

    Science.gov (United States)

    Sedghi, Mohammad M.; Samani, Nozar; Barry, D. A.

    2018-04-01

    Semi-analytical solutions are presented for flow to a well in an extensive homogeneous and anisotropic unconfined-fractured aquifer system separated by an aquitard. The pumping well is of infinitesimal radius and screened in either the overlying unconfined aquifer or the underlying fractured aquifer. An existing linearization method was used to determine the watertable drainage. The solution was obtained via Laplace and Hankel transforms, with results calculated by numerical inversion. The main findings are presented in the form of non-dimensional drawdown-time curves, as well as scaled sensitivity-dimensionless time curves. The new solution permits determination of the influence of fractures, matrix blocks and watertable drainage parameters on the aquifer drawdown. The effect of the aquitard on the drawdown response of the overlying unconfined aquifer and the underlying fractured aquifer was also explored. The results permit estimation of the unconfined and fractured aquifer hydraulic parameters via type-curve matching or coupling of the solution with a parameter estimation code. The solution can also be used to determine aquifer hydraulic properties from an optimal pumping test set up and duration.

  1. Three-dimensional semi-analytical solution to groundwater flow in confined and unconfined wedge-shaped aquifers

    Science.gov (United States)

    Sedghi, Mohammad Mahdi; Samani, Nozar; Sleep, Brent

    2009-06-01

    The Laplace domain solutions have been obtained for three-dimensional groundwater flow to a well in confined and unconfined wedge-shaped aquifers. The solutions take into account partial penetration effects, instantaneous drainage or delayed yield, vertical anisotropy and the water table boundary condition. As a basis, the Laplace domain solutions for drawdown created by a point source in uniform, anisotropic confined and unconfined wedge-shaped aquifers are first derived. Then, by the principle of superposition the point source solutions are extended to the cases of partially and fully penetrating wells. Unlike the previous solution for the confined aquifer that contains improper integrals arising from the Hankel transform [Yeh HD, Chang YC. New analytical solutions for groundwater flow in wedge-shaped aquifers with various topographic boundary conditions. Adv Water Resour 2006;26:471-80], numerical evaluation of our solution is relatively easy using well known numerical Laplace inversion methods. The effects of wedge angle, pumping well location and observation point location on drawdown and the effects of partial penetration, screen location and delay index on the wedge boundary hydraulic gradient in unconfined aquifers have also been investigated. The results are presented in the form of dimensionless drawdown-time and boundary gradient-time type curves. The curves are useful for parameter identification, calculation of stream depletion rates and the assessment of water budgets in river basins.

  2. General well function for soil vapor extraction

    Science.gov (United States)

    Perina, Tomas

    2014-04-01

    This paper develops a well function applicable to extraction of groundwater or soil vapor from a well under the most common field test conditions. The general well function (Perina and Lee, 2006) [12] is adapted to soil vapor extraction and constant head boundary at the top. For groundwater flow, the general well function now applies to an extraction well of finite diameter with uniform drawdown along the screen, finite-thickness skin, and partially penetrating an unconfined, confined, and leaky aquifer, or an aquifer underneath a reservoir. With a change of arguments, the model applies to soil vapor extraction from a vadose zone with no cover or with leaky cover at the ground surface. The extraction well can operate in specified drawdown (pressure for soil vapor) or specified flowrate mode. Frictional well loss is computed as flow-only dependent component of the drawdown inside the extraction well. In general case, the calculated flow distribution is not proportional to screen length for a multiscreen well.

  3. Carbon emission from global hydroelectric reservoirs revisited.

    Science.gov (United States)

    Li, Siyue; Zhang, Quanfa

    2014-12-01

    Substantial greenhouse gas (GHG) emissions from hydropower reservoirs have been of great concerns recently, yet the significant carbon emitters of drawdown area and reservoir downstream (including spillways and turbines as well as river reaches below dams) have not been included in global carbon budget. Here, we revisit GHG emission from hydropower reservoirs by considering reservoir surface area, drawdown zone and reservoir downstream. Our estimates demonstrate around 301.3 Tg carbon dioxide (CO2)/year and 18.7 Tg methane (CH4)/year from global hydroelectric reservoirs, which are much higher than recent observations. The sum of drawdown and downstream emission, which is generally overlooked, represents 42 % CO2 and 67 % CH4 of the total emissions from hydropower reservoirs. Accordingly, the global average emissions from hydropower are estimated to be 92 g CO2/kWh and 5.7 g CH4/kWh. Nonetheless, global hydroelectricity could currently reduce approximate 2,351 Tg CO2eq/year with respect to fuel fossil plant alternative. The new findings show a substantial revision of carbon emission from the global hydropower reservoirs.

  4. Origin of crashes in three US stock markets: shocks and bubbles

    Science.gov (United States)

    Johansen, Anders

    2004-07-01

    This paper presents an exclusive classification of the largest crashes in Dow Jones industrial average, SP500 and NASDAQ in the past century. Crashes are objectively defined as the top-rank filtered drawdowns (loss from the last local maximum to the next local minimum disregarding noise fluctuations), where the size of the filter is determined by the historical volatility of the index. It is shown that all crashes can be linked to either an external shock, e.g., outbreak of war, or a log-periodic power law (LPPL) bubble with an empirically well-defined complex value of the exponent. Conversely, with one sole exception all previously identified LPPL bubbles are followed by a top-rank drawdown. As a consequence, the analysis presented suggest a one-to-one correspondence between market crashes defined as top-rank filtered drawdowns on one hand and surprising news and LPPL bubbles on the other. We attribute this correspondence to the efficient market hypothesis effective on two quite different time scales depending on whether the market instability the crash represent is internally or externally generated.

  5. Reconstructing depositional processes and history from reservoir stratigraphy: Englebright Lake, Yuba River, northern California

    Science.gov (United States)

    Snyder, N.P.; Wright, S.A.; Alpers, Charles N.; Flint, L.E.; Holmes, C.W.; Rubin, D.M.

    2006-01-01

    Reservoirs provide the opportunity to link watershed history with its stratigraphic record. We analyze sediment cores from a northern California reservoir in the context of hydrologic history, watershed management, and depositional processes. Observations of recent depositional patterns, sediment-transport calculations, and 137CS geochronology support a conceptual model in which the reservoir delta progrades during floods of short duration (days) and is modified during prolonged (weeks to months) drawdowns that rework topset beds and transport sand from topsets to foresets. Sediment coarser than 0.25-0.5 mm. deposits in foresets and topsets, and finer material falls out of suspension as bottomset beds. Simple hydraulic calculations indicate that fine sand (0.063-0.5 mm) is transported into the distal bottomset area only during floods. The overall stratigraphy suggests that two phases of delta building occurred in the reservoir. The first, from dam construction in 1940 to 1970, was heavily influenced by annual, prolonged >20 m drawdowns of the water level. The second, built on top of the first, reflects sedimentation from 1970 to 2002 when the influence of drawdowns was less. Sedimentation rates in the central part of the reservoir have declined ???25% since 1970, likely reflecting a combination of fewer large floods, changes in watershed management, and winnowing of stored hydraulic mining sediment. Copyright 2006 by the American Geophysical Union.

  6. Change in surface SP caused by pressure buildup observed at the Nigorikawa geothermal area; Nigorikawa chiiki ni okeru atsuryoku buildup ji no shizen den`i henka

    Energy Technology Data Exchange (ETDEWEB)

    Yasukawa, K; Yano, Y; Matsushima, N; Ishido, T [Geological Survey of Japan, Tsukuba (Japan); Takahashi, M; Suzuki, I; Aoyama, K; Kuwano, T

    1996-10-01

    To examine the effect of change of subsurface flow system on the surface SP (self potential), SP measurements were carried out before and after the pressure buildup and drawdown during the periodic inspection at Nigorikawa area. Relation between the SP distribution and the observed data was also examined by 2-D numerical simulation. Tendency was found that the SP increased gradually with the production near the production well, decreased during the pressure buildup, and increased again during the drawdown. There were some points having the reverse tendency in the surrounding area. Behavior during the pressure buildup and drawdown was not clear. The resistivity near the ground surface was low ranging between 2 and 5 ohm/m within the Nigorikawa basin. The variation of SP was not so large when compared with the measuring error. The SP profiles on the secondary section passing in the center of caldera at the production stop and at one week after the production start were well corresponded with the profiles under natural conditions which were reproduces using the 2-D model. It was considered that the SP profile before the production stop was affected by the production. 12 refs., 6 figs., 1 tab.

  7. Expert Advisor (EA) Evaluation System Using Web-based ELECTRE Method in Foreign Exchange (Forex) Market

    Science.gov (United States)

    Satibi; Widodo, Catur Edi; Farikhin

    2018-02-01

    This research aims to optimize forex trading profit automatically using EA but its still keep considering accuracy and drawdown levels. The evaluation system will classify EA performance based on trading market sessions (Sydney, Tokyo, London and New York) to determine the right EA to be used in certain market sessions. This evaluation system is a web-based ELECTRE methods that interact in real-time with EA through web service and are able to present real-time charts performance dashboard using web socket protocol communications. Web applications are programmed using NodeJs. In the testing period, all EAs had been simulated 24 hours in all market sessions for three months, the best EA is valued by its profit, accuracy and drawdown criteria that calculated using web-based ELECTRE method. The ideas of this research are to compare the best EA on testing period with collaboration performances of each best classified EA by market sessions. This research uses three months historical data of EUR/USD as testing period and other 3 months as validation period. As a result, performance of collaboration four best EA classified by market sessions can increase profits percentage consistently in testing and validation periods and keep securing accuracy and drawdown levels.

  8. Expert Advisor (EA Evaluation System Using Web-based ELECTRE Method in Foreign Exchange (Forex Market

    Directory of Open Access Journals (Sweden)

    Satibi Satibi

    2018-01-01

    Full Text Available This research aims to optimize forex trading profit automatically using EA but its still keep considering accuracy and drawdown levels. The evaluation system will classify EA performance based on trading market sessions (Sydney, Tokyo, London and New York to determine the right EA to be used in certain market sessions. This evaluation system is a web-based ELECTRE methods that interact in real-time with EA through web service and are able to present real-time charts performance dashboard using web socket protocol communications. Web applications are programmed using NodeJs. In the testing period, all EAs had been simulated 24 hours in all market sessions for three months, the best EA is valued by its profit, accuracy and drawdown criteria that calculated using web-based ELECTRE method. The ideas of this research are to compare the best EA on testing period with collaboration performances of each best classified EA by market sessions. This research uses three months historical data of EUR/USD as testing period and other 3 months as validation period. As a result, performance of collaboration four best EA classified by market sessions can increase profits percentage consistently in testing and validation periods and keep securing accuracy and drawdown levels.

  9. Impact of model complexity and multi-scale data integration on the estimation of hydrogeological parameters in a dual-porosity aquifer

    Science.gov (United States)

    Tamayo-Mas, Elena; Bianchi, Marco; Mansour, Majdi

    2018-03-01

    This study investigates the impact of model complexity and multi-scale prior hydrogeological data on the interpretation of pumping test data in a dual-porosity aquifer (the Chalk aquifer in England, UK). In order to characterize the hydrogeological properties, different approaches ranging from a traditional analytical solution (Theis approach) to more sophisticated numerical models with automatically calibrated input parameters are applied. Comparisons of results from the different approaches show that neither traditional analytical solutions nor a numerical model assuming a homogenous and isotropic aquifer can adequately explain the observed drawdowns. A better reproduction of the observed drawdowns in all seven monitoring locations is instead achieved when medium and local-scale prior information about the vertical hydraulic conductivity (K) distribution is used to constrain the model calibration process. In particular, the integration of medium-scale vertical K variations based on flowmeter measurements lead to an improvement in the goodness-of-fit of the simulated drawdowns of about 30%. Further improvements (up to 70%) were observed when a simple upscaling approach was used to integrate small-scale K data to constrain the automatic calibration process of the numerical model. Although the analysis focuses on a specific case study, these results provide insights about the representativeness of the estimates of hydrogeological properties based on different interpretations of pumping test data, and promote the integration of multi-scale data for the characterization of heterogeneous aquifers in complex hydrogeological settings.

  10. Effect of the thickness of the anode electrode catalyst layers on the performance in direct methanol fuel cells

    Science.gov (United States)

    Glass, Dean E.; Olah, George A.; Prakash, G. K. Surya

    2017-06-01

    For the large scale fuel cell manufacture, the catalyst loading and layer thickness are critical factors affecting the performance and cost of membrane electrode assemblies (MEAs). The influence of catalyst layer thicknesses at the anode of a PEM based direct methanol fuel cell (DMFC) has been investigated. Catalysts were applied with the drawdown method with varied thicknesses ranging from 1 mil to 8 mils (1 mil = 25.4 μm) with a Pt/Ru anode loading of 0.25 mg cm-2 to 2.0 mg cm-2. The MEAs with the thicker individual layers (8 mils and 4 mils) performed better overall compared to the those with the thinner layers (1 mil and painted). The peak power densities for the different loading levels followed an exponential decrease of Pt/Ru utilization at the higher loading levels. The highest power density achieved was 49 mW cm-2 with the 4 mil layers at 2.0 mg cm-2 catalyst loading whereas the highest normalized power density was 116 mW mg-1 with the 8 mil layers at 0.25 mg cm-2 loading. The 8 mil drawdowns displayed a 50% and 23% increase in normalized power density compared to the 1 mil drawdowns at 0.25 mg cm-2 and 0.5 mg cm-2 loadings, respectively.

  11. Par Pond vegetation status summer 1995 - July survey descriptive summary

    International Nuclear Information System (INIS)

    Mackey, H.E. Jr.; Riley, R.S.

    1995-07-01

    A survey of the emergent shoreline aquatic plant, communities began in June 1995, three months after the refilling of Par Pond to approximately 200 feet (61 meters) above mean sea level, and continued with this July survey. Aquatic plant communities, similar to the pre-drawdown Par Pond communities, are becoming reestablished. Beds of maidencane (Panicum hemitomon), lotus (Nelumbo lutea), water lily (Nymphaea odorata), and watershield (Brasenia schreberi) are now extensive and well established. In addition, within isolated coves, extensive beds of water lilies and spike-rush (Eleocharis sp.) are common. Cattail occurrence has increased since refill, but large beds common to Par Pond prior to the drawdown have not formed. Invasion of willow (Salix sp.) and red maple (Acer rubrum) occurred along the lake shoreline during drawdown. The red maples along the present shoreline are beginning to show evidence of stress and mortality from flooding over the past four months. Some of the willows appear to be stressed as well. The loblolly pines (Pinus taeda), which were flooded in all but the shallow shoreline areas, are now dead. Future surveys are planned for the growing seasons of 1995, 1996, and 1997, along with the evaluation of satellite data for mapping the areal extent of the macrophyte beds of Par Pond

  12. A Novel Analytical Solution for Estimating Aquifer Properties and Predicting Stream Depletion Rates by Pumping from a Horizontally Anisotropic Aquifer

    Science.gov (United States)

    Huang, Y.; Zhan, H.; Knappett, P.

    2017-12-01

    Past studies modeling stream-aquifer interactions commonly account for vertical anisotropy, but rarely address horizontal anisotropy, which does exist in certain geological settings. Horizontal anisotropy is impacted by sediment deposition rates, orientation of sediment particles and orientations of fractures etc. We hypothesize that horizontal anisotropy controls the volume of recharge a pumped aquifer captures from the river. To test this hypothesis, a new mathematical model was developed to describe the distribution of drawdown from stream-bank pumping with a well screened across a horizontally anisotropic, confined aquifer, laterally bounded by a river. This new model was used to determine four aquifer parameters including the magnitude and directions of major and minor principal transmissivities and storativity based on the observed drawdown-time curves within a minimum of three non-collinear observation wells. By comparing the aquifer parameters values estimated from drawdown data generated known values, the discrepancies of the major and minor transmissivities, horizontal anisotropy ratio, storativity and the direction of major transmissivity were 13.1, 8.8, 4, 0 and managers to exploit groundwater resource reasonably while protecting stream ecosystem.

  13. Simulated effects of projected ground-water withdrawals in the Floridan aquifer system, greater Orlando metropolitan area, east-central Florida

    Science.gov (United States)

    Murray, Louis C.; Halford, Keith J.

    1999-01-01

    Ground-water levels in the Floridan aquifer system within the greater Orlando metropolitan area are expected to decline because of a projected increase in the average pumpage rate from 410 million gallons per day in 1995 to 576 million gallons per day in 2020. The potential decline in ground-water levels and spring discharge within the area was investigated with a calibrated, steady-state, ground-water flow model. A wetter-than-average condition scenario and a drought-condition scenario were simulated to bracket the range of water-levels and springflow that may occur in 2020 under average rainfall conditions. Pumpage used to represent the drought-condition scenario totaled 865 million gallons per day, about 50 percent greater than the projected average pumpage rate in 2020. Relative to average 1995 steady-state conditions, drawdowns simulated in the Upper Floridan aquifer exceeded 10 and 25 feet for wet and dry conditions, respectively, in parts of central and southwest Orange County and in north Osceola County. In Seminole County, drawdowns of up to 20 feet were simulated for dry conditions, compared with 5 to 10 feet simulated for wet conditions. Computed springflow was reduced by 10 percent for wet conditions and by 38 percent for dry conditions, with the largest reductions (28 and 76 percent) occurring at the Sanlando Springs group. In the Lower Floridan aquifer, drawdowns simulated in southwest Orange County exceeded 20 and 40 feet for wet and dry conditions, respectively.

  14. Three-dimensional saturated-unsaturated flow with axial symmetry to a partially penetrating well in a compressible unconfined aquifer

    Science.gov (United States)

    Tartakovsky, Guzel D.; Neuman, Shlomo P.

    2007-01-01

    A new analytical solution is presented for the delayed response process characterizing flow to a partially penetrating well in an unconfined aquifer. The new solution generalizes that of Neuman (1972, 1974) by accounting for unsaturated flow above the water table. Three-dimensional, axially symmetric flow in the unsaturated zone is described by a linearized version of Richards' equation in which hydraulic conductivity and water content vary exponentially with incremental capillary pressure head relative to its air entry value (defining the interface between the saturated and unsaturated zones). Unsaturated soil properties are characterized by an exponent κ having the dimension of inverse length or, equivalently, a dimensionless exponent κD = κb, where b is initial saturated thickness. Our treatment of the unsaturated zone is similar to that of Kroszynski and Dagan (1975), who, however, have ignored internal (artesian) aquifer storage. According to Kroszynski and Dagan, aquifers that are not excessively shallow have values of κD (their parameter a) much greater than 10. We find that in such typical cases, unsaturated flow has little impact on early and late dimensionless time drawdown a short distance below the water table. Unsaturated flow causes drawdown to increase slightly at intermediate dimensionless time values that represent transition from an early artesian-dominated to a late water-table-dominated flow regime. Delayed drainage from the unsaturated zone becomes less and less important as κD increases; as κD → ∞, this effect dies out, and drawdown is controlled entirely by delayed decline in the water table as in the model of Neuman. The unsaturated zone has a major impact on drawdown at intermediate time and a significant impact at early and late times, in the atypical case of κD ≤ 1, becoming the dominant factor as κD approaches zero (the soil water retention capacity becomes very large and/or saturated thickness becomes insignificant). Our

  15. Analysis of pumping tests: Significance of well diameter, partial penetration, and noise

    Science.gov (United States)

    Heidari, M.; Ghiassi, K.; Mehnert, E.

    1999-01-01

    The nonlinear least squares (NLS) method was applied to pumping and recovery aquifer test data in confined and unconfined aquifers with finite diameter and partially penetrating pumping wells, and with partially penetrating piezometers or observation wells. It was demonstrated that noiseless and moderately noisy drawdown data from observation points located less than two saturated thicknesses of the aquifer from the pumping well produced an exact or acceptable set of parameters when the diameter of the pumping well was included in the analysis. The accuracy of the estimated parameters, particularly that of specific storage, decreased with increases in the noise level in the observed drawdown data. With consideration of the well radii, the noiseless drawdown data from the pumping well in an unconfined aquifer produced good estimates of horizontal and vertical hydraulic conductivities and specific yield, but the estimated specific storage was unacceptable. When noisy data from the pumping well were used, an acceptable set of parameters was not obtained. Further experiments with noisy drawdown data in an unconfined aquifer revealed that when the well diameter was included in the analysis, hydraulic conductivity, specific yield and vertical hydraulic conductivity may be estimated rather effectively from piezometers located over a range of distances from the pumping well. Estimation of specific storage became less reliable for piezemeters located at distances greater than the initial saturated thickness of the aquifer. Application of the NLS to field pumping and recovery data from a confined aquifer showed that the estimated parameters from the two tests were in good agreement only when the well diameter was included in the analysis. Without consideration of well radii, the estimated values of hydraulic conductivity from the pumping and recovery tests were off by a factor of four.The nonlinear least squares method was applied to pumping and recovery aquifer test data in

  16. Construction, Geologic, and Hydrologic Data from Five Exploratory Wells on Rota, Commonwealth of the Northern Mariana Islands, 1999

    Science.gov (United States)

    Carruth, Rob

    2005-01-01

    Rota is the southernmost of the 14 small islands that make up the Commonwealth of the Northern Mariana Islands. Reduced springflow at Matan Hanom and As Onan springs occurred during a drought associated with the 1997-98 El Nino. Water from the two developed springs constituted the only municipal water source for the island at that time. In April 1998, reduced water supplies forced the Commonwealth Utilities Corporation to restrict water service in the principal villages of Songsong and Sinapalu for the duration of the dry season. In 1999, Five exploratory wells, EX-1 through EX-5 (CUC wells SP-MW1, SP-1, -2, -3, and SP-MW2), were drilled in the Sinapalu region of Rota to (1) assess the availability of fresh ground-water resources in an area where no other well information were available, and (2) to provide a new water source to help mitigate the impacts of drought associated with recurring El Nino weather events. The wells penetrated mainly light colored (dirty white to brownish), fragmental limestones containing abundant coral remains. Sustained-rate, recovery, and step-drawdown aquifer tests were attempted at each of the five exploratory wells to estimate aquifer properties in the vicinity of the wells and to assess the potential for new water sources. At wells EX-1 (CUC well SPMW1) and EX-5 (CUC well SP-MW2), attempts to conduct sustained-rate aquifer tests resulted in excessive drawdown to the pump intakes in the vicinity of the wells. At well EX-2 (CUC well SP-1), the maximum drawdown measured in the pumped well was 3.93 ft during 8 days of sustained pumping at an average rate of 187 gal/min. At well EX-3 (CUC well SP-2), the maximum drawdown measured in the pumped well was 2.31 ft during 8 days of sustained pumping at an average rate of 108 gal/min, and at well EX-4 (CUC well SP-3), the maximum drawdown measured in the pumped well was 3.27 ft during 8 days of sustained pumping at an average rate of 139 gal/min. Specific conductance at the end of 8 days of

  17. Hydrological and hydro-geological effects on wetlands and forest areas from the repository at Forsmark. Results from modelling with MIKE SHE; Hydrologiska och hydrogeologiska effekter paa vaatmarker och skogsomraaden av slutfoervarsanlaeggningen i Forsmark. Resultat fraan modellering med MIKE SHE

    Energy Technology Data Exchange (ETDEWEB)

    Maartensson, Erik; Gustafsson, Lars-Goeran; Gustafsson, Ann-Marie; Aneljung, Maria; Sabel, Ulrika (DHI Sverige AB, Goeteborg (Sweden))

    2010-06-15

    This report provides background material for investigations and associated impact assessments concerning water operations in terms of withdrawal of groundwater from the final repository for spent nuclear fuel at Forsmark. The report presents detailed modelling results in the form of supplementary sensitivity analyses and detailed hydrological and hydrogeological analyses of specific nature objects in Forsmark. The sensitivity analyses aim to investigate the sensitivity of the modelling results to i) the meteorological conditions, ii) impervious surfaces and iii) the model description of the present SFR (final repository for short-lived radioactive waste). A number of simulation cases aim to study cumulative effects of groundwater withdrawal from an extended SFR. The simulations are evaluated with respect to the groundwater table drawdown and head changes in the bedrock. The report analyses the hydrogeological and hydrological conditions for a number of selected wetland objects and forest objects. The selection of objects aims to cover different types of valuable nature objects at different geographical locations in relation to the influence area of the groundwater table drawdown. The analysis comprises groundwater levels at all nature objects, whereas wetlands with particularly high nature values have been studied in detail with respect to surface water levels, the need for water supply and object-specific water balances. These studies have been performed for different meteorological conditions in the form of a type (2006) and a statistically normal, dry and wet year, respectively, with a return period of 100 years for the dry- and wet years. All simulations for disturbed conditions with a fully open repository are done with a hydraulic conductivity of K{sub inj} = 10-7 or 10-8 m/s in the grouted zone. The results show that time-dependent precipitation and snow melt have large influence on the temporal variations of the depth to the groundwater table for

  18. [Nutrient Characteristics and Nitrogen Forms of Rhizosphere Soils Under Four Typical Plants in the Littoral Zone of TGR].

    Science.gov (United States)

    Wang, Xiao-feng; Yuan, Xing-zhong; Liu, Hong; Zhang, Lei; Yu, Jian-jun; Yue, Jun-sheng

    2015-10-01

    The Three Gorges Reservoir (TGR), which is the largest water conservancy project ever built in tne world, produced a drawdown area of about 348.93 km2 because of water level control. The biological geochemical cycle of the soil in the drawdown zone has been changed as the result of long-term winter flooding and summer drought and vegetation covering. The loss of soil nitrogen in the drawdown zone poses a threat to the water environmental in TGR. Pengxi river, is an important anabranch, which has the largest drawdown area has been selected in the present study. The four typical vegetation, contained Cynodon dactylon, Cyperus rotundus, Anthium sibiricum and Zea mays L. as the control, were studied to measure nutrient characteristics and nitrogen forms of rhizosphere and non-rhizosphere soils in three distribution areas with different soil types (paddy soil, purple soil and fluvo-aquic soils). The variables measured included organic matter (OM), total nitrogen (TN), total phosphorus (TP), total potassium (TK), hydrolysis N, available P and available K, pH, ion-exchangeable N (IEE-N), weak acid extractable N (CF-N) , iron-manganese oxides N (IMOF-N), organic matter sulfide N (OSF-N), added up four N forms for total transferable N (TF-N) and TN minus TF-N for non-transferable N (NTF-N). The results showed: (1) pH of rhizosphere soil was generally lower than that of non-rhizosphere soil under different vegetation in different type soils because the possible organic acid and H+ released form plant roots and cation absorption differences, and the OM, TP, TN and hydrolysis N of rhizosphere soil were generally higher than those of non-rhizosphere soil, and that the enrichment ratio (ER) of all the four nutrient indicators showed Cyperus rotundus > Cynodon dactylon > Zea mays L. > Anthium sibiricum. Available P showed enrichment in the rhizosphere of three natural vegetations but lose under corn, and available K, TK showed different ER in different conditions. (2) IEF-N CF

  19. Coupled eco-hydrology and biogeochemistry algorithms enable the simulation of water table depth effects on boreal peatland net CO2 exchange

    Science.gov (United States)

    Mezbahuddin, Mohammad; Grant, Robert F.; Flanagan, Lawrence B.

    2017-12-01

    Water table depth (WTD) effects on net ecosystem CO2 exchange of boreal peatlands are largely mediated by hydrological effects on peat biogeochemistry and the ecophysiology of peatland vegetation. The lack of representation of these effects in carbon models currently limits our predictive capacity for changes in boreal peatland carbon deposits under potential future drier and warmer climates. We examined whether a process-level coupling of a prognostic WTD with (1) oxygen transport, which controls energy yields from microbial and root oxidation-reduction reactions, and (2) vascular and nonvascular plant water relations could explain mechanisms that control variations in net CO2 exchange of a boreal fen under contrasting WTD conditions, i.e., shallow vs. deep WTD. Such coupling of eco-hydrology and biogeochemistry algorithms in a process-based ecosystem model, ecosys, was tested against net ecosystem CO2 exchange measurements in a western Canadian boreal fen peatland over a period of drier-weather-driven gradual WTD drawdown. A May-October WTD drawdown of ˜ 0.25 m from 2004 to 2009 hastened oxygen transport to microbial and root surfaces, enabling greater microbial and root energy yields and peat and litter decomposition, which raised modeled ecosystem respiration (Re) by 0.26 µmol CO2 m-2 s-1 per 0.1 m of WTD drawdown. It also augmented nutrient mineralization, and hence root nutrient availability and uptake, which resulted in improved leaf nutrient (nitrogen) status that facilitated carboxylation and raised modeled vascular gross primary productivity (GPP) and plant growth. The increase in modeled vascular GPP exceeded declines in modeled nonvascular (moss) GPP due to greater shading from increased vascular plant growth and moss drying from near-surface peat desiccation, thereby causing a net increase in modeled growing season GPP by 0.39 µmol CO2 m-2 s-1 per 0.1 m of WTD drawdown. Similar increases in GPP and Re caused no significant WTD effects on modeled

  20. Coupled eco-hydrology and biogeochemistry algorithms enable the simulation of water table depth effects on boreal peatland net CO2 exchange

    Directory of Open Access Journals (Sweden)

    M. Mezbahuddin

    2017-12-01

    Full Text Available Water table depth (WTD effects on net ecosystem CO2 exchange of boreal peatlands are largely mediated by hydrological effects on peat biogeochemistry and the ecophysiology of peatland vegetation. The lack of representation of these effects in carbon models currently limits our predictive capacity for changes in boreal peatland carbon deposits under potential future drier and warmer climates. We examined whether a process-level coupling of a prognostic WTD with (1 oxygen transport, which controls energy yields from microbial and root oxidation–reduction reactions, and (2 vascular and nonvascular plant water relations could explain mechanisms that control variations in net CO2 exchange of a boreal fen under contrasting WTD conditions, i.e., shallow vs. deep WTD. Such coupling of eco-hydrology and biogeochemistry algorithms in a process-based ecosystem model, ecosys, was tested against net ecosystem CO2 exchange measurements in a western Canadian boreal fen peatland over a period of drier-weather-driven gradual WTD drawdown. A May–October WTD drawdown of  ∼  0.25 m from 2004 to 2009 hastened oxygen transport to microbial and root surfaces, enabling greater microbial and root energy yields and peat and litter decomposition, which raised modeled ecosystem respiration (Re by 0.26 µmol CO2 m−2 s−1 per 0.1 m of WTD drawdown. It also augmented nutrient mineralization, and hence root nutrient availability and uptake, which resulted in improved leaf nutrient (nitrogen status that facilitated carboxylation and raised modeled vascular gross primary productivity (GPP and plant growth. The increase in modeled vascular GPP exceeded declines in modeled nonvascular (moss GPP due to greater shading from increased vascular plant growth and moss drying from near-surface peat desiccation, thereby causing a net increase in modeled growing season GPP by 0.39 µmol CO2 m−2 s−1 per 0.1 m of WTD drawdown. Similar increases in

  1. Insights on pumping well interpretation from flow dimension analysis: The learnings of a multi-context field database

    Science.gov (United States)

    Ferroud, Anouck; Chesnaux, Romain; Rafini, Silvain

    2018-01-01

    The flow dimension parameter n, derived from the Generalized Radial Flow model, is a valuable tool to investigate the actual flow regimes that really occur during a pumping test rather than suppose them to be radial, as postulated by the Theis-derived models. A numerical approach has shown that, when the flow dimension is not radial, using the derivative analysis rather than the conventional Theis and Cooper-Jacob methods helps to estimate much more accurately the hydraulic conductivity of the aquifer. Although n has been analysed in numerous studies including field-based studies, there is a striking lack of knowledge about its occurrence in nature and how it may be related to the hydrogeological setting. This study provides an overview of the occurrence of n in natural aquifers located in various geological contexts including crystalline rock, carbonate rock and granular aquifers. A comprehensive database is compiled from governmental and industrial sources, based on 69 constant-rate pumping tests. By means of a sequential analysis approach, we systematically performed a flow dimension analysis in which straight segments on drawdown-log derivative time series are interpreted as successive, specific and independent flow regimes. To reduce the uncertainties inherent in the identification of n sequences, we used the proprietary SIREN code to execute a dual simultaneous fit on both the drawdown and the drawdown-log derivative signals. Using the stated database, we investigate the frequency with which the radial and non-radial flow regimes occur in fractured rock and granular aquifers, and also provide outcomes that indicate the lack of applicability of Theis-derived models in representing nature. The results also emphasize the complexity of hydraulic signatures observed in nature by pointing out n sequential signals and non-integer n values that are frequently observed in the database.

  2. How effective is albedo modification (solar radiation management geoengineering) in preventing sea-level rise from the Greenland Ice Sheet?

    International Nuclear Information System (INIS)

    Applegate, Patrick J; Keller, Klaus

    2015-01-01

    Albedo modification (AM) is sometimes characterized as a potential means of avoiding climate threshold responses, including large-scale ice sheet mass loss. Previous work has investigated the effects of AM on total sea-level rise over the present century, as well as AM’s ability to reduce long-term (≫10 3 yr) contributions to sea-level rise from the Greenland Ice Sheet (GIS). These studies have broken new ground, but neglect important feedbacks in the GIS system, or are silent on AM’s effectiveness over the short time scales that may be most relevant for decision-making (<10 3 yr). Here, we assess AM’s ability to reduce GIS sea-level contributions over decades to centuries, using a simplified ice sheet model. We drive this model using a business-as-usual base temperature forcing scenario, as well as scenarios that reflect AM-induced temperature stabilization or temperature drawdown. Our model results suggest that (i) AM produces substantial near-term reductions in the rate of GIS-driven sea-level rise. However, (ii) sea-level rise contributions from the GIS continue after AM begins. These continued sea level rise contributions persist for decades to centuries after temperature stabilization and temperature drawdown begin, unless AM begins in the next few decades. Moreover, (iii) any regrowth of the GIS is delayed by decades or centuries after temperature drawdown begins, and is slow compared to pre-AM rates of mass loss. Combined with recent work that suggests AM would not prevent mass loss from the West Antarctic Ice Sheet, our results provide a nuanced picture of AM’s possible effects on future sea-level rise. (letter)

  3. Analysis of aquifer tests conducted in borehole USW G-2, 1996, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    O'Brien, G.M.

    1998-01-01

    Borehole USW G-2 is located north of Yucca Mountain in a large-hydraulic-gradient area. Two single-borehole aquifer tests were conducted in the borehole during 1996. A 54.9-hour pumping period was conducted February 6--8, 1996, and a 408-hour pumping period was conducted April 8--25, 1996. The purpose of testing was to obtain estimates of the aquifer-system transmissivity and to determine if perched water was affecting the observed water level in borehole USW G-2. This report presents and analyzes data collected between February 6 and December 17, 1996. Analysis of the aquifer-test data indicated that fracture flow, dual-porosity flow, and boundary-affected flow conditions were observed in the drawdown and recovery data. Transmissivity estimates ranged from 2.3 to 12 meters squared per day. The most representative transmissivity estimate for the interval tested is the early-time mean transmissivity of 9.4 meters squared per day. The Calico Hills Formation was the primary formation tested, but the top 3 meters of the nonpumping water column was within the overlying Topopah Spring Tuff. Persistent residual drawdown following pumping more than 6 million liters of water during aquifer testing may indicate that the bore-hole intersected a perched water body. After 236 days of recovery, residual drawdown was 0.5 meter. The quantitative effect of the perched water on the observed water level in borehole USW G-2, however, cannot be determined with the available data

  4. Natural regeneration and growth of Taxodium distichum (L.) rich. In Lake Chicot, Louisiana after 44 years of flooding

    Science.gov (United States)

    Keeland, B.D.; Conner, W.H.

    1999-01-01

    Lake Chicot, in south central Louisiana, USA, was created in 1943 by the impoundment of Chicot Bayou. Extensive establishment of woody seedling occurred in the lake during a 1.5 year period, including the growing seasons of both 1986 and 1987, when the reservoir was drained for repair work on the dam. Study plots were established in September 1986 to document woody vegetation establishment and to provide a baseline by which to monitor survival and growth after flooding resumed. Taxodium distichum seedlings were the dominant species after one growing season, with a maximum density of 50 seedlings/m2, an average of about 2/m2, and an average height of 75 cm. The lake was reflooded at the end of 1987, bringing water depths at the study plots up to about 1.4 m. Temporary drawdowns were again conducted during the fall of 1992 and 1996. In December 1992, the site was revisited, new plots established, and saplings counted and measured. There was an average of 2.1 T. distichum stems/m2, and the average height was 315 cm. After the 1996 growing season, there was still an average of about 1.9 stems/m2, and the average height had increased to 476 cm. Preservation of T. distichum forests in relatively shallow but continuously flooded areas such as Lake Chicot may be a simple matter of draining the lake after a good seed crop and maintaining the drawdown long enough for the seedlings to grow taller than the typical growing season water level. In the case of Lake Chicot, this period was two growing seasons. This action will mimic natural, drought-related drawdowns of the lake and will allow the seedlings to establish themselves and grow tall enough to survive normal lake water levels.

  5. Influence of the Golfito earthquake of 30 July 2002 (M_w 6,2) over a pumping test in the confined aquifer in dam site of Pirris Hydroelectric Project

    International Nuclear Information System (INIS)

    Vargas, Asdrubal G.

    2016-01-01

    A pumping test was carry out during 2560 minutes with an average flow rate of 1,9 l/s, using a submersible pump of 5,6 kW, in order to determine the hydrogeological parameters of the fractured confined aquifer founded in the dam site of the Pirris Hydroelectric Power. A significant change in the drawdowns values was observed in four piezometers, approximately 420 minutes after the beginning of the pumping test. This was caused by an earthquake with a magnitude of 6.2 M_w with an epicenter near the town of Golfito (133,7 km far away). After the event a recovery of the groundwater level in all piezometers were recorded, although the well continued with the extraction process. Five phases were identified using the recorded level and the time. Phase 1, a drawdown of groundwater level was caused by pumping with a 6-hour period; the second phase was shown a sharp recovery as a result of the earthquake. The third phase was related to stabilization levels after the earthquake, however then a new level recovery phase was occurred due to several aftershocks. Finally another period of small drawdown was presented. After the test the data were reviewed to determine the effect of various parameters. For example partial penetration of the well, and the dip of the aquifer. From this preliminary analysis it was concluded that these factors did not influence the traditional method for the estimation of hydrodynamic parameters, therefore it was decided to analyze the data by the method of Theis and Moench for confined and fractured aquifers respectively. (author) [es

  6. Three-dimensional imaging of aquifer and aquitard heterogeneity via transient hydraulic tomography at a highly heterogeneous field site

    Science.gov (United States)

    Zhao, Zhanfeng; Illman, Walter A.

    2018-04-01

    Previous studies have shown that geostatistics-based transient hydraulic tomography (THT) is robust for subsurface heterogeneity characterization through the joint inverse modeling of multiple pumping tests. However, the hydraulic conductivity (K) and specific storage (Ss) estimates can be smooth or even erroneous for areas where pumping/observation densities are low. This renders the imaging of interlayer and intralayer heterogeneity of highly contrasting materials including their unit boundaries difficult. In this study, we further test the performance of THT by utilizing existing and newly collected pumping test data of longer durations that showed drawdown responses in both aquifer and aquitard units at a field site underlain by a highly heterogeneous glaciofluvial deposit. The robust performance of the THT is highlighted through the comparison of different degrees of model parameterization including: (1) the effective parameter approach; (2) the geological zonation approach relying on borehole logs; and (3) the geostatistical inversion approach considering different prior information (with/without geological data). Results reveal that the simultaneous analysis of eight pumping tests with the geostatistical inverse model yields the best results in terms of model calibration and validation. We also find that the joint interpretation of long-term drawdown data from aquifer and aquitard units is necessary in mapping their full heterogeneous patterns including intralayer variabilities. Moreover, as geological data are included as prior information in the geostatistics-based THT analysis, the estimated K values increasingly reflect the vertical distribution patterns of permeameter-estimated K in both aquifer and aquitard units. Finally, the comparison of various THT approaches reveals that differences in the estimated K and Ss tomograms result in significantly different transient drawdown predictions at observation ports.

  7. Construction, Geology, and Aquifer Testing of the Maalo Road, Aahoaka Hill, and Upper Eleele Tank Monitor Wells, Kauai, Hawaii

    Science.gov (United States)

    Izuka, Scot K.

    2005-01-01

    The Maalo Road, Aahoaka Hill, and Upper Eleele Tank monitor wells were constructed using rotary drilling methods between July 1998 and August 2002 as part of a program of exploratory drilling, aquifer testing, and hydrologic analysis on Kauai. Aquifer tests were conducted in the uncased boreholes of the wells. The Maalo Road monitor well in the Lihue Basin penetrated 915 feet, mostly through mafic lava flows. Most of the rock samples from this well had chemical compositions similar to the Koloa Volcanics, but the deepest sample analyzed had a composition similar to the Waimea Canyon Basalt. Water temperature ranged from 25.6 to 27.4 degrees Celsius and specific conductance ranged from 303 to 627 microsiemens per centimeter during aquifer testing. Discharge rate ranged from 174 to 220 gallons per minute and maximum drawdown was 138.25 ft during a 7-day sustained-discharge test, but the test was affected by pump and generator problems. The Aahoaka Hill monitor well in the Lihue Basin penetrated 804 feet, mostly through mafic lava flows and possibly dikes. The well penetrated rocks having chemical compositions similar to the Waimea Canyon Basalt. During the first three hours of a sustained-discharge aquifer test in which the discharge rate varied between 92 and 117 gallons per minute, water temperature was 24.6 to 25.6 degrees Celsius, and specific conductance was 212 to 238 microsiemens per centimeter; this test was halted after a short period because drawdown was high. In a subsequent 7-day test, discharge was 8 to 23 gallons per minute, and maximum drawdown was 37.71 feet after 1,515 minutes of testing. The Upper Eleele Tank monitor well is near the Hanapepe River Valley. The well penetrated 740 feet through soil, sediment, mafic lava flows, volcanic ash, and scoria. Rocks above a depth of 345 feet had compositions similar to the Koloa Volcanics, but a sample from 720 to 725 feet had a composition similar to rocks of the Waimea Canyon Basalt. During a 7-day aquifer

  8. National Program for Inspection of Non-Federal Dams. Bearhole Reservoir (MA 00073), Westfield River Basin, West Springfield, Massachusetts. Phase I Inspection Report.

    Science.gov (United States)

    1981-06-01

    SAutomatic . Manual I . Operative Yes I , No Co~ents: All controls operable per Water Departxent oersonnel. I Drawdown present Yes I , No Operative Yes_ , No... controls a 6-inch valve for dewatering the raw water wet well. One raw water supply gate was fully opened; the other opened 1-inch, and the 24-inch outlet...development). ,B- I B-2 w J---.-.z-- OtL ’S: OT7LET CONTROLS AND DRADMN Westerly end of dam - conc. overflow D.I. sluiceway No. Location and T7pe:I2

  9. Compilation and analysis of hydrogeological pressure responses to field activities in Olkiluoto during 2010-2012

    Energy Technology Data Exchange (ETDEWEB)

    Pentti, E.; Penttinen, T.; Vaittinen, T. [Poeyry Finland Oy, Vantaa (Finland)

    2014-04-15

    Groundwater flow characteristics provide essential input for the construction and safety assessment of a disposal facility for spent nuclear fuel. On the Olkiluoto site flow connections have been studied in deep drillholes by means of long-term pumping tests, various interference tests, and by interpreting the measured hydraulic heads. This report focuses on the assessment of measured hydraulic heads during 2010-2012. Hydraulic heads have been measured both in open and in packed-off drillholes since 1991. The interpretation of the hydraulic connections is based on observed changes in hydraulic head distribution caused by certain investigation activities on the site. Field activities may increase the head, e.g. drilling, or more typically decrease the head, e.g. flush pumping after drilling, difference flow logging with pumping, and both temporary and currently stable inflows into underground facilities caused by the construction of ONKALO. Processing of the head observations has been developed by determining section-specific corrections for natural fluctuation of the groundwater. The objective of the corrections is to remove natural fluctuation of the groundwater table and sea level, tidal effect, and atmospheric pressure to improve detection of changes in hydraulic head caused by field activities. Time series of observations are compared to schedules of field activities and values for responses are calculated. In addition to temporary responses, head drawdown at the end of 2012 is estimated as well as reasons for changes in it during 2010-2012. The temporary drawdowns during the studied period were mainly related to leaks from pregrouting holes in the vertical shafts that penetrate the hydrogeological system HZ20. Drawdowns that have so far remained resulted from the raise boring of the exhaust air shaft through the HZ20 system and from connections of low-transmissivity structures to leaks in the ONKALO at repository depth. According to present understanding, the

  10. An analytical model for flow induced by a constant-head pumping in a leaky unconfined aquifer system with considering unsaturated flow

    Science.gov (United States)

    Lin, Ye-Chen; Li, Ming-Hsu; Yeh, Hund-Der

    2017-09-01

    A new mathematical model is developed to describe the flow in response to a constant-head pumping (or constant-head test, CHT) in a leaky unconfined aquifer system of infinite lateral extent with considering unsaturated flow. The model consists of an unsaturated zone on the top, an unconfined aquifer in the middle, and a second aquifer (aquitard) at the bottom. The unsaturated flow is described by Richard's equation, and the flows in unconfined aquifer and second layer are governed by the groundwater flow equation. The well partially penetrates the unconfined aquifer with a constant head in the well due to CHT. The governing equations of the model are linearized by the perturbation method and Gardner's exponential model is adopted to describe the soil retention curves. The solution of the model for drawdown distribution is obtained by applying the methods of Laplace transform and Weber transform. Then the solution for the wellbore flowrate is derived from the drawdown solution with Darcy's law. The issue of the equivalence of normalized drawdown predicted by the present solution for constant-head pumping and Tartakovsky and Neuman's (2007) solution for constant-rate pumping is discussed. On the basis of the wellbore flowrate solution, the results of the sensitivity analysis indicate that the wellbore flowrate is very sensitive to the changes in the radial hydraulic conductivity and the thickness of the saturated zone. Moreover, the results predicted from the present wellbore flowrate solution indicate that this new solution can reduce to Chang's et al. (2010a) solution for homogenous aquifers when the dimensionless unsaturated exponent approaches 100. The unsaturated zone can be considered as infinite extent in the vertical direction if the thickness ratio of the unsaturated zone to the unconfined aquifer is equal to or greater than one. As for the leakage effect, it can be ignored when the vertical hydraulic conductivity ratio (i.e., the vertical hydraulic

  11. Estimation of hydraulic parameters from an unconfined aquifer test conducted in a glacial outwash deposit, Cape Cod, Massachusetts

    Science.gov (United States)

    Moench, Allen F.; Garabedian, Stephen P.; LeBlanc, Denis R.

    2001-01-01

    An aquifer test conducted in a sand and gravel, glacial outwash deposit on Cape Cod, Massachusetts was analyzed by means of a model for flow to a partially penetrating well in a homogeneous, anisotropic unconfined aquifer. The model is designed to account for all significant mechanisms expected to influence drawdown in observation piezometers and in the pumped well. In addition to the usual fluid-flow and storage processes, additional processes include effects of storage in the pumped well, storage in observation piezometers, effects of skin at the pumped-well screen, and effects of drainage from the zone above the water table.

  12. South Africa after sanctions. Reentering the aerospace market

    Science.gov (United States)

    Anon

    1994-09-01

    South Africa has reentered the world market with a closely focused, aggressive series of industrial programs. Nowhere is this more evident than in aeronautics and space disciplines, particularly those in which the nation has long experience. The South African Air Force (SAAF), affected by the worldwide defense drawdown, has centered its efforts on bush war-fighting capability, an area where it has unique experience. In the same way Denel, one of South Africa's most secret defense companies, has opened its once classified doors, converted its military satellite program into Greensat, and is now looking for civilian customers.

  13. Beating plutonium swords into electrical plowshares

    International Nuclear Information System (INIS)

    Ofte, D.

    1993-01-01

    After decades of producing large quantities of weapons-grade plutonium, the United States and the Confederation of Independent States are faced with an unanticipated dilemma of a growing surplus of that material. This circumstance could not have been anticipated just a few years ago after living with a weapons program that from its inception in the United States was characterized by a chronic tight supply situation. The rapid drawdown of the nuclear weapons stockpile presents a near-term problem of storage capacity in the system until the United States makes a disposition decision for what may be in excess of 50 tonnes of weapons-grade plutonium

  14. Current Comparison of Advanced Nuclear Fuel Cycles

    International Nuclear Information System (INIS)

    Steven Piet; Trond Bjornard; Brent Dixon; Robert Hill; Gretchen Matthern; David Shropshire

    2007-01-01

    This paper compares potential nuclear fuel cycle strategies--once-through, recycling in thermal reactors, sustained recycle with a mix of thermal and fast reactors, and sustained recycle with fast reactors. Initiation of recycle starts the draw-down of weapons-usable material and starts accruing improvements for geologic repositories and energy sustainability. It reduces the motivation to search for potential second geologic repository sites. Recycle in thermal-spectrum nuclear reactors achieves several recycling objectives; fast nuclear reactors achieve all of them

  15. Interpretation of Nonlinear Well Loss Coefficients for Rorabaugh (1953) Method.

    Science.gov (United States)

    Kurtulus, B.; Yaylım, T. N.; Avşar

    2016-12-01

    Step drawdown test (SDT) are essential for hydrogeologist to determine aquifer loss and well loss parameters. In a SDT, different series of constant-discharges with incremental rates are conducted to obtain incremental drawdown into the pumping well. Pumping well efficiency (if the well is properly developed and designed), aquifer characteristics (transmissivity, storativity) and discharge-drawdown relationship can be derived from SDT. The well loss parameter directly associate with the well efficiency. The main problem is to determine the correct well loss parameter in order to estimate aquifer characteristics. Walton (1962) stated that the interpretation of the well efficiency is possible to determine the nonlinear head loss coefficient (C) with p equals to 2 and Walton (1962) presented a criteria that suggested the following terms: If C is less than 1800 m2/s5, the is properly developed and designed, If C is ranged from 1800 m2/s5 to 3600 m2/s5, the well has a mild deterioration, If C is greater than 3600 m2/s5, the well has a severe clogging. Until now, several well-known computer techniques such as Aqutesolv, AquiferWin32 , AquifertestPro can be found in the literature to evaluate well efficiency when exponential parameter (p) equals to 2. However, there exist a lack of information to evaluate well efficiency for different number of exponential parameter (p). Strategic Water Storage & Recovery (SWSR) Project in Liwa, Abu Dhabi is the leading and unique hydrogeology project in the world because of its both financial and scientific dimension. A total of 315 recovery wells have been drilled in pursuance of the scope of the SWSR project. A Universal Well Efficiency Criteria (UWEC) is developed using 315 Step Drawdown Test (SDT). UWEC is defined for different number of head loss equation coefficients. The results reveal that there is a strong correlation between non-linear well loss coefficient (C) and exponential parameter (p) up to a coefficient of determination

  16. Groundwater System of Sundarbans (Basanti), West Bengal, India

    DEFF Research Database (Denmark)

    Kopmann, Moritz; Binning, Philip John; Bregnhøj, Henrik

    2018-01-01

    In Basanti, a rural block in the Sundarbans, West Bengal, the water availability is vital for its inhabitants. Groundwater levels are decreasing, and a proper understanding of key factors influencing the water resource is required. In the following, a social review of Basanti is given followed...... by a geologic and hydrostratigraphic analysis. The main hydrologic flows, a water balance, and the trend of salinity in the groundwater are presented. Finally, available long- and short-term drawdown data of South 24 Parganas and Basanti to determine groundwater level and annual recharge trends. The assessment...

  17. Measurement of Lake Roosevelt biota in relation to reservoir operations. Final report 1993

    International Nuclear Information System (INIS)

    Voeller, A.C.

    1993-01-01

    The purpose of this study was to collect biological data from Lake Roosevelt to be used in the design of a computer model that will predict biological responses to reservoir operations as part of the System Operation Review Program. This study worked in conjunction with Lake Roosevelt Monitoring Project which investigated the effectiveness of two kokanee salmon hatcheries. This report summarized the data collected from Lake Roosevelt from 1993 and includes limnological, reservoir operation, zooplankton, benthic macroinvertebrate, experimental trawling, and net-pen rainbow trout tagging data. Major components of the Lake Roosevelt model include quantification of impacts to zooplankton, benthic macroinvertebrates, and fish caused by reservoir drawdowns and low water retention times

  18. Detecting change points in VIX and S&P 500: A new approach to dynamic asset allocation

    DEFF Research Database (Denmark)

    Nystrup, Peter; Hansen, Bo William; Madsen, Henrik

    2016-01-01

    to DAA that is based on detection of change points without fitting a model with a fixed number of regimes to the data, without estimating any parameters and without assuming a specific distribution of the data. It is examined whether DAA is most profitable when based on changes in the Chicago Board...... Options Exchange Volatility Index or change points detected in daily returns of the S&P 500 index. In an asset universe consisting of the S&P 500 index and cash, it is shown that a dynamic strategy based on detected change points significantly improves the Sharpe ratio and reduces the drawdown risk when...

  19. The total costs of corporate borrowing in the loan market : dont ignore the fees

    OpenAIRE

    Berg, Tobias; Saunders, Anthony; Steffen, Sascha

    2016-01-01

    More than 80% of US syndicated loans contain at least one fee type and contracts typically specify a menu of spread and different types of fees. We test the predictions of existing theories about the main purposes of fees and provide supporting evidence that: (1) fees are used to price options embedded in loan contracts such as the draw-down option for credit lines and the cancellation option in term loans; and (2) fees are used to screen borrowers about the likelihood of exerc...

  20. Urban Water Management Considering Reclaimed Wastewater and Runoff as a New Water Resource for City of Tehran, Iran

    Directory of Open Access Journals (Sweden)

    Abedeh Abdolghafoorian

    2012-12-01

    According to this study, improving wastewater treatment plants and control of water quality in canals and streams in order to substitute these two new resource for freshwater and groundwater have positive environmental and economic effects. The examples of environmental benefits are reducing pollution loads to receiving streams, adjusting increasing water demand and preventing groundwater level drawdown especially in the period of drought. In addition to the environmental benefits, although improving wastewater treatment plants and control of water quality in canals and streams need considerable investments, long usage of these two new recourses is more worthwhile.

  1. Base-line data analysis of a developing geothermal system, Boise, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Waag, C.J.; Wood, S.H.

    1985-09-01

    The report covers a geothermal system and calculated aquifer transmissivities in the Boise Warm Springs Water District portion of the geothermal system range from 3500-25,000 gals/day/ft. Withdrawals during the 1984-1985 heating season stabilized drawdown at the pumpbowls, and water levels approached stability in observation wells as distant as 1675 ft (507.6m). In the near steady-state condition, recharge, and water from storage beyond the observation wells provided a maximum Q of 840 gpm.

  2. Remedial Action Plan and Site Design for stabilization of the inactive Uranium Mill Tailings sites at Slick Rock, Colorado: Appendix C to Attachment 3, Calculations. Final

    International Nuclear Information System (INIS)

    1995-09-01

    This volume contains calculations for: Slick Rock processing sites background ground water quality; Slick Rock processing sites lysimeter water quality; Slick Rock processing sites on-site and downgradient ground water quality; Slick Rock disposal site background water quality; Burro Canyon disposal site, Slick Rock, Colorado, average hydraulic gradients and average liner ground water velocities in the upper, middle, and lower sandstone units of the Burro Canyon formation; Slick Rock--Burro Canyon disposal site, Burro Canyon pumping and slug tests--analyses; water balance and surface contours--Burro Canyon disposal cell; and analytical calculation of drawdown in a hypothetical well completed in the upper sandstone unit of the Burro Canyon formation

  3. Validation of groundwater flow model using the change of groundwater flow caused by the construction of AESPOE hard rock laboratory

    International Nuclear Information System (INIS)

    Hasegawa, Takuma; Tanaka, Yasuharu

    2004-01-01

    A numerical model based on results during pre-investigation phases was applied to the groundwater flow change caused by the construction of AEspoe HRL. The drawdowns and chloride concentration during tunnel construction were simulated to validate the numerical model. The groundwater flow was induced by inflow from the Baltic Sea to the tunnel through the hydraulic conductor domain (HCD). The time series of tunnel progress and inflow, boundaries of the Baltic Sea, transmissivity and geometry of HCD are therefore important in representing the groundwater flow. The numerical model roughly represented the groundwater flow during tunnel construction. These simulations were effective in validating the numerical model for groundwater flow and solute transport. (author)

  4. Tensile strength of solution-spun, ultradrawn ultrahigh-molecular-weight polyethylene fibers. 1. Influence of fiber diameter

    OpenAIRE

    Bastiaansen, C.W.M.

    1992-01-01

    The influence of fiber diam. on the tensile strength of soln.-spun, ultradrawn, ultrahigh-mol.-wt. polyethylene (UHMWPE, mol. wt. >103 kg/mol) fibers was studied. Fibers with a wide range of diams. were produced by varying the polymer concn. in soln. and by applying a drawdown to the fibers. The tensile strength of drawn fibers was compared at a const. Young's modulus in order to eliminate the influence of morphol. parameters, such as degree of chain orientation and extension, on the fracture...

  5. Edible Oil Barriers for Treatment of Chlorinated Solvent Contaminated Groundwater

    Science.gov (United States)

    2009-07-01

    to the depth to be sample. The rods were screened over an interval of 1.5 feet (45 em) with 0.020 inch (0.51 mm) slots. A polyethylene tube was...excessive drawdown. The water level inside the Geoprobe was allowed to come to equilibrium. A polyethylene tube was inserted in the well with the tip...routinely used to classify bacteria and fungi (19) and are one of the characteristics used to describe new bacterial species (25). Broad phylogenic

  6. Modeling the effects of longwall mining on the ground water system

    International Nuclear Information System (INIS)

    Matetic, R.J.; Liu, J.; Elsworth, D.

    1995-01-01

    The effects of longwall mining on the local ground water regime are determined through field monitoring and numerical modeling. Field displacement data were obtained from multiple-position borehole extensometer (MPBX's) and survey monuments, combined with hydraulic drawdown and recovery tests completed both pre- and post-mining. Despite the development of significant mining induced displacements, the resulting effect on long-term water budgets was surprisingly small. Coupled flow-deformation modeling of the site was able to adequately define the post-mining mechanical and hydraulic response, including resulting conductivity magnitudes and water budgets. 6 refs., 5 figs., 2 tabs

  7. Performing Pumping Test Data Analysis Applying Cooper-Jacob’s Method for Estimating of the Aquifer Parameters

    OpenAIRE

    Dana Khider Mawlood; Jwan Sabah Mustafa

    2016-01-01

    Single well test is more common than aquifer test with having observation well, since the advantage of single well test is that the pumping test can be conducted on the production well with the absence of observation well. A kind of single well test, which is step-drawdown test used to determine the efficiency and specific capacity of the well, however in case of single well test it is possible to estimate Transmissivity, but the other parameter which is Storativity is overestimated, so the a...

  8. Mathematical Modeling in Systems for Operational Evaluation of the Stress-Strain State of the Arch-Gravity Dam at the Sayano-Shushenskaya Hydroelectric Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Bellendir, E. N.; Gordon, L. A., E-mail: lev-gordon@mail.ru; Khrapkov, A. A.; Skvortsova, A. E., E-mail: SkvortsovaAE@vniig.ru [B. E. Vedeneev All-Russia Research Institute of Hydraulic Engineering (VNIIG) (Russian Federation)

    2017-01-15

    Current studies of the stress-strain state of the dam at the Sayano-Shushenskaya Hydroelectric Power Plant at VNIIG based on mathematical modeling including full scale and experimental data are described. Applications and programs intended for automatic operational evaluation of the stress-strain state of the dam for optimizing control of the upper race level in the course of the annual filling-drawdown cycle and during seismic events are examined. Improvements in systems for monitoring the stress-strain state of concrete dams are proposed.

  9. Analysis of potential saltwater intrusion at NEP I and II power station

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.W.

    1980-06-01

    The potential of adverse environmental impacts to groundwater availability and groundwater quality from construction dewatering of the coastal aquifer at a proposed New England Power site was examined with an analytical model. The drawdown zone and the extent of saltwater intrusion were predicted with and without the use of a slurry-wall barrier. The use of a slurry wall to mitigate any adverse impacts is feasible but the limited understanding of the coastal aquifer demands that monitoring requirements be included in the construction plan.

  10. Analysis of potential saltwater intrusion at NEP I and II power station

    International Nuclear Information System (INIS)

    Lee, D.W.

    1980-06-01

    The potential of adverse environmental impacts to groundwater availability and groundwater quality from construction dewatering of the coastal aquifer at a proposed New England Power site was examined with an analytical model. The drawdown zone and the extent of saltwater intrusion were predicted with and without the use of a slurry-wall barrier. The use of a slurry wall to mitigate any adverse impacts is feasible but the limited understanding of the coastal aquifer demands that monitoring requirements be included in the construction plan

  11. Was ocean acidification responsible for history's greatest extinction?

    Science.gov (United States)

    Schultz, Colin

    2011-11-01

    Two hundred fifty million years ago, the world suffered the greatest recorded extinction of all time. More than 90% of marine animals and a majority of terrestrial species disappeared, yet the cause of the Permian-Triassic boundary (PTB) dieoff remains unknown. Various theories abound, with most focusing on rampant Siberian volcanism and its potential consequences: global warming, carbon dioxide poisoning, ocean acidification, or the severe drawdown of oceanic dissolved oxygen levels, also known as anoxia. To narrow the range of possible causes, Montenegro et al. ran climate simulations for PTB using the University of Victoria Earth System Climate Model, a carbon cycle-climate coupled general circulation model.

  12. Measurement of residual CO2 saturation at a geological storage site using hydraulic tests

    Science.gov (United States)

    Rötting, T. S.; Martinez-Landa, L.; Carrera, J.; Russian, A.; Dentz, M.; Cubillo, B.

    2012-12-01

    Estimating long term capillary trapping of CO2 in aquifers remains a key challenge for CO2 storage. Zhang et al. (2011) proposed a combination of thermal, tracer, and hydraulic experiments to estimate the amount of CO2 trapped in the formation after a CO2 push and pull test. Of these three types of experiments, hydraulic tests are the simplest to perform and possibly the most informative. However, their potential has not yet been fully exploited. Here, a methodology is presented to interpret these tests and analyze which parameters can be estimated. Numerical and analytical solutions are used to simulate a continuous injection in a porous medium where residual CO2 has caused a reduction in hydraulic conductivity and an increase in storativity over a finite thickness (a few meters) skin around the injection well. The model results are interpreted using conventional pressure build-up and diagnostic plots (a plot of the drawdown s and the logarithmic derivative d s / d ln t of the drawdown as a function of time). The methodology is applied using the hydraulic parameters estimated for the Hontomin site (Northern Spain) where a Technology Demonstration Plant (TDP) for geological CO2 storage is planned to be set up. The reduction of hydraulic conductivity causes an increase in observed drawdowns, the increased storativity in the CO2 zone causes a delay in the drawdown curve with respect to the reference curve measured before CO2 injection. The duration (characteristic time) of these effects can be used to estimate the radius of the CO2 zone. The effects of reduced permeability and increased storativity are well separated from wellbore storage and natural formation responses, even if the CO2-brine interface is inclined (i.e. the CO2 forms a cone around the well). We find that both skin hydraulic conductivity and storativity (and thus residual CO2 saturation) can be obtained from the water injection test provided that water flow rate is carefully controlled and head build

  13. Pumping tests in nonuniform aquifers - The radially symmetric case

    Science.gov (United States)

    Butler, J.J.

    1988-01-01

    Traditionally, pumping-test-analysis methodology has been limited to applications involving aquifers whose properties are assumed uniform in space. This work attempts to assess the applicability of analytical methodology to a broader class of units with spatially varying properties. An examination of flow behavior in a simple configuration consisting of pumping from the center of a circular disk embedded in a matrix of differing properties is the basis for this investigation. A solution describing flow in this configuration is obtained through Laplace-transform techniques using analytical and numerical inversion schemes. Approaches for the calculation of flow properties in conditions that can be roughly represented by this simple configuration are proposed. Possible applications include a wide variety of geologic structures, as well as the case of a well skin resulting from drilling or development. Of more importance than the specifics of these techniques for analysis of water-level responses is the insight into flow behavior during a pumping test that is provided by the large-time form of the derived solution. The solution reveals that drawdown during a pumping test can be considered to consist of two components that are dependent and independent of near-well properties, respectively. Such an interpretation of pumping-test drawdown allows some general conclusions to be drawn concerning the relationship between parameters calculated using analytical approaches based on curve-matching and those calculated using approaches based on the slope of a semilog straight line plot. The infinite-series truncation that underlies the semilog analytical approaches is shown to remove further contributions of near-well material to total drawdown. In addition, the semilog distance-drawdown approach is shown to yield an expression that is equivalent to the Thiem equation. These results allow some general recommendations to be made concerning observation-well placement for pumping

  14. Hydrogeologic impacts of underground (Longwall) mining in the Illinois basin

    International Nuclear Information System (INIS)

    Booth, C.J.

    1992-01-01

    This paper reports that hydrogeological impacts of active longwall mining were studied at two sites in Illinois. At the site with the more transmissive sandstone aquifer, aquifer permeabilities increased an order of magnitude due to subsidence. Piezometric levels declined with subsidence due to increased porosity, and ahead of mining due to a transmitted drawdown. Levels recovered rapidly at first and fully over two years. At the site with the less transmissive aquifer, impacts were similar except that recovery has been limited. Local aquifer enhancement through increased yield can occur, but only where the aquifer is transmissive enough for recovery

  15. Can frequent precipitation moderate the impact of drought on peatmoss carbon uptake in northern peatlands?

    Science.gov (United States)

    Nijp, Jelmer J; Limpens, Juul; Metselaar, Klaas; van der Zee, Sjoerd E A T M; Berendse, Frank; Robroek, Bjorn J M

    2014-07-01

    Northern peatlands represent a large global carbon store that can potentially be destabilized by summer water table drawdown. Precipitation can moderate the negative impacts of water table drawdown by rewetting peatmoss (Sphagnum spp.), the ecosystem's key species. Yet, the frequency of such rewetting required for it to be effective remains unknown. We experimentally assessed the importance of precipitation frequency for Sphagnum water supply and carbon uptake during a stepwise decrease in water tables in a growth chamber. CO2 exchange and the water balance were measured for intact cores of three peatmoss species (Sphagnum majus, Sphagnum balticum and Sphagnum fuscum) representative of three hydrologically distinct peatland microhabitats (hollow, lawn and hummock) and expected to differ in their water table-precipitation relationships. Precipitation contributed significantly to peatmoss water supply when the water table was deep, demonstrating the importance of precipitation during drought. The ability to exploit transient resources was species-specific; S. fuscum carbon uptake increased linearly with precipitation frequency for deep water tables, whereas carbon uptake by S. balticum and S. majus was depressed at intermediate precipitation frequencies. Our results highlight an important role for precipitation in carbon uptake by peatmosses. Yet, the potential to moderate the impact of drought is species-specific and dependent on the temporal distribution of precipitation. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  16. Assessing hydraulic connections across a complex sequence of volcanic rocks - Analysis of U-20 WW multiple-well aquifer test, Pahute Mesa, Nevada National Security Site, Nevada

    Science.gov (United States)

    Garcia, C. Amanda; Fenelon, Joseph M.; Halford, Keith J.; Reiner, Steven R.; Laczniak, Randell J.

    2011-01-01

    Groundwater beneath Pahute Mesa flows through a complexly layered sequence of volcanic rock aquifers and confining units that have been faulted into distinct structural blocks. Hydraulic property estimates of rocks and structures in this flow system are necessary to assess radionuclide migration near underground nuclear testing areas. The U.S. Geological Survey (USGS) used a 12 month (October 1, 2008— October 1, 2009) intermittent pumping schedule of well U-20 WW and continuously monitored water levels in observation wells ER-20-6 #3, UE-20bh 1, and U-20bg as a multi-well aquifer test to evaluate hydraulic connections across structural blocks, bulk hydraulic properties of volcanic rocks, and the hydraulic significance of a major fault. Measured water levels were approximated using synthetic water levels generated from an analytical model. Synthetic water levels are a summation of environmental water-level fluctuations and a Theis (1935) transform of the pumping signal from flow rate to water-level change. Drawdown was estimated by summing residual differences between measured and synthetic water levels and the Theis-transformed pumping signal from April to September 2009. Drawdown estimates were used in a three‑dimensional numerical model to estimate hydraulic properties of distinct aquifers, confining units, and a major fault.

  17. Flood pulse influence and anthropic impact on the chemical composition and energy content of Oryza glumaepatula in an Amazonian lake

    Directory of Open Access Journals (Sweden)

    A. Enrich-Prast

    Full Text Available The aim of this research was to study the flood pulse influence and the anthropic impact caused by bauxite tailings on the chemical composition of O. glumaepatula in Batata lake (PA, Brazil. Sampling was carried out in stands of O. glumaepatula in the low-water, filling, high-water, and drawdown periods in impacted and natural areas of Batata lake. During the low-water and drawdown periods the stands of O. glumaepatula were exposed, and in the filling and high-water periods the water depth was respectively 1.4 and 3.8 m. The collected material was dried at 70ºC, ground, and concentrations of total phosphorus, total nitrogen, organic carbon, and energy content were determined. The results indicate that the biomass increase, caused by the rise in water level, has a dilution effect on nitrogen and phosphorus concentrations in O. glumaepatula. The energy contents did not present significant differences in any of the studied periods. The results suggest that from the low water to filling period, nitrogen becomes more limiting to O. glumaepatula in the impacted area, whereas phosphorus becomes more limiting in the natural area. The population of O. glumaepatula contributes to the recovery of the impacted area of Batata lake as the detritus from this species accumulates over the sediment. This accumulation impedes future re-suspension of the bauxite tailings and increases the organic matter and nutrient concentrations in the impacted sediment.

  18. Time-scales of hydrological forcing on the geochemistry and bacterial community structure of temperate peat soils

    Science.gov (United States)

    Nunes, Flavia L. D.; Aquilina, Luc; De Ridder, Jo; Francez, André-Jean; Quaiser, Achim; Caudal, Jean-Pierre; Vandenkoornhuyse, Philippe; Dufresne, Alexis

    2015-10-01

    Peatlands are an important global carbon reservoir. The continued accumulation of carbon in peatlands depends on the persistence of anoxic conditions, in part induced by water saturation, which prevents oxidation of organic matter, and slows down decomposition. Here we investigate how and over what time scales the hydrological regime impacts the geochemistry and the bacterial community structure of temperate peat soils. Peat cores from two sites having contrasting groundwater budgets were subjected to four controlled drought-rewetting cycles. Pore water geochemistry and metagenomic profiling of bacterial communities showed that frequent water table drawdown induced lower concentrations of dissolved carbon, higher concentrations of sulfate and iron and reduced bacterial richness and diversity in the peat soil and water. Short-term drought cycles (3-9 day frequency) resulted in different communities from continuously saturated environments. Furthermore, the site that has more frequently experienced water table drawdown during the last two decades presented the most striking shifts in bacterial community structure, altering biogeochemical functioning of peat soils. Our results suggest that the increase in frequency and duration of drought conditions under changing climatic conditions or water resource use can induce profound changes in bacterial communities, with potentially severe consequences for carbon storage in temperate peatlands.

  19. Predicted effects on ground water of construction of Divide Cut section, Tennessee-Tombigbee Waterway, northeastern Mississippi, using a digital model

    Science.gov (United States)

    McBride, Mark S.

    1981-01-01

    The Tennessee-Tombigbee Waterway, connecting the Tennessee River in northeastern Mississippi with the Gulf of Mexico, is currently (1980) under construction. The Divide Section, the northernmost 39 miles of the Waterway, will consist, from north to south, of (1) a dredged channel, (2) the Divide Cut, and (3) an artifical lake impounded by the Bay Springs Dam. In all three , water will be at Tennessee River level. A three-dimensional digital model covering 3,273 square miles was constructed to simulate ground-water flow in the Gordo and Eutaw Formations and the Coffee Sand in the vicinity of the Divide Section. The model was calibrated to preconstruction water levels, then used to simulate the effects of stresses imposed by the construction of the Divide Section. The model indicates that the system stabilizes after major changes in conditions within a few months. The Divide Cut acts as a drain, lowering water levels as much as 55 feet. Drawdowns of 5 feet occur as much as 8 miles from the Cut. The 80-foot-high Bay Springs Dam raises ground-water levels by 5 feet as far as 6 miles from its impoundment. Drawdown is not likely to affect public water supplies significantly, but probably will adversely affect a relatively small number of private wells. (USGS)

  20. Hydrological and hydrogeological effects of an open repository in Forsmark. Final MIKE SHE flow modelling results for the Environmental Impact Assessment

    International Nuclear Information System (INIS)

    Maartensson, Erik; Gustafsson, Lars-Goeran

    2010-07-01

    conditions show that the magnitude and the geographical extent of the groundwater-table drawdown are smaller than the hydraulic-head drawdown in the bedrock. The influence area for the groundwater-table drawdown primarily coincides with locations where the Quaternary deposits are in contact with bedrock containing fracture zones with high vertical hydraulic conductivity. The groundwater inflow to the repository, the groundwater-table drawdown and the drawdown of hydraulic heads in the bedrock were analysed for different values of the hydraulic conductivity of the grouted zone (K grout ) and also for layouts that aim to represent different repository-development phases. For a hypothetical case with a fully open repository, the model-calculated inflow is in the interval 15-47 L/s depending on the value of K grout . Using meteorological data and sea-level data for the year 2006, the associated influence area for the groundwater-table drawdown (annual average drawdown exceeding 0.3 m) has a size of 1.4 km 2 for K grout = 10 -7 m/s and less than half for K grout = 10 -9 m/s. According to the modelling results, the groundwater inflow to the repository has very small effects on water levels in lakes and discharges in streams. However, for K grout = 10 -7 m/s the annually accumulated discharge in the stream upstream from Lake Bolundsfjaerden is reduced by 13%, which is due to drawdown of the groundwater table within the catchment area of the stream. Sensitivity analyses show that the groundwater inflow to the repository and the size of the groundwater table influence area are not very sensitive to the tested variants concerning the hydrogeological properties of the upper 200 m of the bedrock and the boundary conditions (including the sea level). The model-calculated influence area demonstrates some sensitivity to the choice of methodology for modelling water flow in the unsaturated zone. Moreover, the influence area is larger if the hydrogeological properties in the upper 20 m of

  1. Estimation of hydraulic properties and development of a layered conceptual model for the Snake River plain aquifer at the Idaho National Engineering Laboratory, Idaho

    International Nuclear Information System (INIS)

    Frederick, D.B.; Johnson, G.S.

    1996-02-01

    The Idaho INEL Oversight Program, in association with the University of Idaho, Idaho Geological Survey, Boise State University, and Idaho State University, developed a research program to determine the hydraulic properties of the Snake River Plain aquifer and characterize the vertical distribution of contaminants. A straddle-packer was deployed in four observation wells near the Idaho Chemical Processing Plant at the Idaho National Engineering Laboratory. Pressure transducers mounted in the straddle-packer assembly were used to monitor the response of the Snake River Plain aquifer to pumping at the ICPP production wells, located 2600 to 4200 feet from the observation wells. The time-drawdown data from these tests were used to evaluate various conceptual models of the aquifer. Aquifer properties were estimated by matching time-drawdown data to type curves for partially penetrating wells in an unconfined aquifer. This approach assumes a homogeneous and isotropic aquifer. The hydraulic properties of the aquifer obtained from the type curve analyses were: (1) Storativity = 3 x 10 -5 , (2) Specific Yield = 0.01, (3) Transmissivity = 740 ft 2 /min, (4) Anisotropy (Kv:Kh)= 1:360

  2. Semi-analytical solutions for flow to a well in an unconfined-fractured aquifer system

    Science.gov (United States)

    Sedghi, Mohammad M.; Samani, Nozar

    2015-09-01

    Semi-analytical solutions of flow to a well in an unconfined single porosity aquifer underlain by a fractured double porosity aquifer, both of infinite radial extent, are obtained. The upper aquifer is pumped at a constant rate from a pumping well of infinitesimal radius. The solutions are obtained via Laplace and Hankel transforms and are then numerically inverted to time domain solutions using the de Hoog et al. algorithm and Gaussian quadrature. The results are presented in the form of dimensionless type curves. The solution takes into account the effects of pumping well partial penetration, water table with instantaneous drainage, leakage with storage in the lower aquifer into the upper aquifer, and storativity and hydraulic conductivity of both fractures and matrix blocks. Both spheres and slab-shaped matrix blocks are considered. The effects of the underlying fractured aquifer hydraulic parameters on the dimensionless drawdown produced by the pumping well in the overlying unconfined aquifer are examined. The presented solution can be used to estimate hydraulic parameters of the unconfined and the underlying fractured aquifer by type curve matching techniques or with automated optimization algorithms. Errors arising from ignoring the underlying fractured aquifer in the drawdown distribution in the unconfined aquifer are also investigated.

  3. Transient well flow in leaky multiple-aquifer systems

    Science.gov (United States)

    Hemker, C. J.

    1985-10-01

    A previously developed eigenvalue analysis approach to groundwater flow in leaky multiple aquifers is used to derive exact solutions for transient well flow problems in leaky and confined systems comprising any number of aquifers. Equations are presented for the drawdown distribution in systems of infinite extent, caused by wells penetrating one or more of the aquifers completely and discharging each layer at a constant rate. Since the solution obtained may be regarded as a combined analytical-numerical technique, a type of one-dimensional modelling can be applied to find approximate solutions for several complicating conditions. Numerical evaluations are presented as time-drawdown curves and include effects of storage in the aquitard, unconfined conditions, partially penetrating wells and stratified aquifers. The outcome of calculations for relatively simple systems compares very well with published corresponding results. The proposed multilayer solution can be a valuable tool in aquifer test evaluation, as it provides the analytical expression required to enable the application of existing computer methods to the determination of aquifer characteristics.

  4. Mid-depth South Atlantic Ocean circulation and chemical stratification during MIS-10 to 12: implications for atmospheric CO2

    Directory of Open Access Journals (Sweden)

    M. A. Maslin

    2008-12-01

    Full Text Available A detailed record of benthic foraminifera carbon isotopes from the intermediate-depth South East Atlantic margin shows little glacial-interglacial variability between MIS-12 to MIS-10, suggesting that Northern Atlantic deepwaters consistently penetrated to at least 30° S. Millennial-scale increases in either the mass or flux of northern-sourced deepwaters over the core site occurred alongside reductions in Lower North Atlantic Deep Water recorded in North Atlantic sediment cores and show that the lower and intermediate limb of the Atlantic deepwater convective cell oscillated in anti-phase during previous glacial periods. In addition, a 500 yr resolution record of the Cape Basin intermediate-deep δ13C gradient shows that a reduction in deep Southern Ocean ventilation at the end of MIS-11 was consistent with a modelled CO2 drawdown of ~21–30 ppm. Further increases in the Southern Ocean chemical divide during the transition into MIS-10 were completed before minimum CO2 levels were reached, suggesting that other mechanisms such as alkalinity changes were responsible for the remaining ~45 ppm drawdown.

  5. A complex process - transforming scientific research into regulatory rules for environmental protection

    International Nuclear Information System (INIS)

    Yan, J.J.; Goss, D.; Huffman, A.

    2002-01-01

    The protection of isolated wetlands from consumptive use withdrawals has been a policy in the South Florida Water Management District (SFWMD) for over 15 years. A guideline for protecting isolated wetlands was established in the mid-1980's for the consumptive water use permitting program administered by the SFWMD. The guideline specifies groundwater drawdown criteria associated with well field pumpage. In 1994, the SFWMD convened a panel of wetland scientists to review the existing groundwater drawdown criteria. The panel concluded there was insufficient information to determine if the criteria were either too restrictive or insufficient in protecting wetlands. The panel recommended that the SFWMD conduct research to answer related questions. Since that time, staff at the SFWMD have developed a research plan, selected 38 isolated wetland monitoring sites in seven study areas, collected over four years of data, and developed an integrated surface water and groundwater simulation model. However, the staff at the SFWMD has had difficulties in transforming the research results into regulatory rules. The nature of an isolated wetland is quite complicated. Its setting changes significantly from time to time depending on the variation of rainfall, hydro-geological conditions, and human activities. A regulatory rule requires simple and more easily measurable criteria. The regulatory staff need simple tools to evaluate many permit applications within a limited time frame. The tools used in the research process are often complicated and time consuming. This paper describes the wetland research, and the difficulties of transforming research results into regulatory rules. (author)

  6. On the coupled unsaturated–saturated flow process induced by vertical, horizontal, and slant wells in unconfined aquifers

    Directory of Open Access Journals (Sweden)

    X. Liang

    2017-03-01

    established with special consideration of the coupled unsaturated–saturated flow process and the well orientation. Groundwater flow in the saturated zone is described by a three-dimensional governing equation and a linearized three-dimensional Richards' equation in the unsaturated zone. A solution in the Laplace domain is derived by the Laplace–finite-Fourier-transform and the method of separation of variables, and the semi-analytical solutions are obtained using a numerical inverse Laplace method. The solution is verified by a finite-element numerical model. It is found that the effects of the unsaturated zone on the drawdown of a pumping test exist at any angle of inclination of the pumping well, and this impact is more significant in the case of a horizontal well. The effects of the unsaturated zone on the drawdown are independent of the length of the horizontal well screen. The vertical well leads to the largest water volume drained from the unsaturated zone (W during the early pumping time, and the effects of the well orientation on W values become insignificant at the later time. The screen length of the horizontal well does not affect W for the whole pumping period. The proposed solutions are useful for the parameter identification of pumping tests with a general well orientation (vertical, horizontal, and slant in unconfined aquifers affected from above by the unsaturated flow process.

  7. Analysis of aquifer tests conducted in boreholes USW WT-10, UE-25 WT No. 12, and USW SD-7, 1995-96, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    O'Brien, G.M.

    1997-01-01

    Single-borehole aquifer tests were conducted in three boreholes in the Yucca Mountain area between March 1995 and January 1996 to obtain estimates of borehole specific capacity and aquifer transmissivity. Analysis of aquifer testing in borehole USW SD-7 also resulted in an estimate of reservoir volume. Aquifer-test data were analyzed with the Cooper and Jacob straight-line method, two modified Theis nonequilibrium equation solutions, and a modified reservoir-limit solution. The highest estimates of transmissivity were in borehole USW WT-10, completed in the Topopah Spring Tuff. Mean transmissivity, based on the results of three drawdown tests, was 1,600 meters squared per day. Mean specific capacity in borehole USW WT-10 after 5 hours of pumping was 1,100 meters squared per day, and was estimated to be 740 meters squared per day after 24 hours of pumping. Aquifer testing in borehole UE-25 WT No. 12 appeared to be significantly affected by well losses. A mean transmissivity of 7 meters squared per day was obtained on the basis of analysis of three drawdown tests in borehole UE-25 WT No. 12. Mean specific capacity in borehole UE-25 WT No. 12, after 24 hours of pumping, was 7 meters squared per day. Borehole UE-25 WT No. 12 seemed to be producing water from fractures that could provide only a limited amount of water to the borehole

  8. Par Pond vegetation status Summer 1995 -- Summary

    International Nuclear Information System (INIS)

    Mackey, H.E. Jr.; Riley, R.S.

    1996-01-01

    The water level of Par Pond was lowered approximately 20 feet in mid-1991 in order to protect downstream residents from possible dam failure suggested by subsidence on the downstream slope of the dam and to repair the dam. This lowering exposed both emergent and nonemergent macrophyte beds to drying conditions resulting in extensive losses. A survey of the newly emergent, shoreline aquatic plant communities of Par Pond began in June 1995, three months after the refilling of Par Pond to approximately 200 feet above mean sea level. These surveys continued in July, September, and late October, 1995. Communities similar to the pre-drawdown, Par Pond aquatic plant communities are becoming re-established. Emergent beds of maidencane, lotus, waterlily, and watershield are extensive and well developed. Cattail occurrence continued to increase during the summer, but large beds common to Par Pond prior to the drawdown have not formed. Estimates from SPOT HRV, remote sensing satellite data indicated that as much as 120 hectares of emergent wetlands vegetation may have been present along the Par Pond shoreline by early October, 1995. To track the continued development of macrophytes in Par Pond, future surveys throughout 1996 and 1997, along with the continued evaluation of satellite data to map the areal extent of the macrophyte beds of Par Pond, are planned

  9. The evaluation of in-situ leaching hydrological-geologic condition in a sandstone-type uranium deposits of a low-grade and thick ledge

    International Nuclear Information System (INIS)

    Jiang Yan

    2014-01-01

    The ore aquifer of a sandstone-type uranium deposits is thick, the grade, and uranium amount per square meter is low. To demonstrate the economic rationality of the in-situ leaching deposit, the Pumping test on the spot, recovery of water levels test, Pumping test and Injection test, Injection test in a Drilling hole, the pumping and injection balance test are carried out. And the hydro geological parameters of mineral aquifer are acquired. The parameters includes coefficient of transmissibility, Coefficient of permeability, Specific discharge of a well and Water injection. Radius of influence etc. The relation between discharge of drilling and Drawdown is researched. The capability of pumping and injection by a drilling hole is determined. The Hydraulic between the aquifer with mineral and the upper and lower aquifer is researched. The reasonable Mining drawdown is testified, the hydrogeological conditions of in-Situ leaching of the mining deposit is found out, this provides necessary parameters and basis for this kind of Situ-leach uranium mining wells, the designing of Spacing of wells, and the economic evaluation of In-situ leaching technology. (author)

  10. The economics of heat mining

    International Nuclear Information System (INIS)

    Tester, J.W.; Herzog, H.J.

    1991-01-01

    A generalized economic model was developed to predict the break-even price of HDR generated electricity. Important parameters include: resource quality-average geothermal gradient (degrees C/km) and well depth, reservoir performance-effective productivity, flow, impedance, and lifetime (thermal drawdown rate), cost components-drilling, reservoir formation, and power plant costs, and economic factors-discount and interest rates, taxes, etc. Detailed cost correlations based on historical data and results of other studies are presented for drilling, stimulation, and power plant costs. Under a reasonable set of assumptions regarding reservoir impedance, accessible rock volumes and surface areas, and mass flow rates (to limit thermal drawdown rates to about 10 degrees C per year), predictions for HDR-produced electricity from a 50 MW e U.S.-based power plant result in competitive break-even prices in the range of 5 to 9 cents/kWh e (constant 1989 $) for resources having average gradients above 50 degrees C/km. Lower gradient areas require improved reservoir performance and/or lower well drilling costs. In this paper, these generalized model results are compared to the results of several published economic assessments

  11. Analysis of arsenic speciation in mine contaminated lacustrine sediment using selective sequential extraction, HR-ICPMS and TEM

    International Nuclear Information System (INIS)

    Haus, Kelly L.; Hooper, Robert L.; Strumness, Laura A.; Mahoney, J. Brian

    2008-01-01

    In order to determine how As speciation in lacustrine sediment changes as a function of local conditions, sediment cores were taken from three lakes with differing hydrologic regimes and subjected to extensive chemical and TEM analysis. The lakes (Killarney, Thompson and Swan Lakes) are located within the Coeur d' Alene River system (northern Idaho, USA), which has been contaminated with trace metals and As, from over 100 a of sulfide mining. Previous analyses of these lakebed sediments have shown an extensive amount of contaminant metals and As associated with sub-μm grains, making them extremely difficult to analyze using standard methods (scanning electron microscopy, X-ray diffraction). Transmission electron microscopy offers great advantages in spatial resolution and can be invaluable in determining As speciation when combined with other techniques. Data indicate that because of differences in local redox conditions, As speciation and stability is dramatically different in these lakes. Killarney and Thompson Lakes experience seasonal water-level fluctuations due to drawdown on a downstream dam, causing changes in O 2 content in sediment exposed during drawdown. Swan Lake has relatively constant water levels as its only inlet is dammed. Consequently, Killarney and Thompson Lakes show an increase in labile As-bearing phases with depth, while Swan Lake data indicate stable As hosts throughout the sediment profile. Based on these observations it can be stated that As in lakebed sediments is much less mobile, and therefore less bioavailable, when water is kept at a constant level

  12. Simulated effects of Lower Floridan aquifer pumping on the Upper Floridan aquifer at Rincon, Effingham County, Georgia

    Science.gov (United States)

    Cherry, Gregory S.; Clarke, John S.

    2015-01-01

    Steady-state simulations using a revised regional groundwater-flow model based on MODFLOW were run to assess the potential long-term effects on the Upper Floridan aquifer (UFA) of pumping the Lower Floridan aquifer (LFA) at well (36S048) near the City of Rincon in coastal Georgia near Savannah. Simulated pumping of well 36S048 at a rate of 1,000 gallons per minute (gal/min; or 1.44 million gallons per day [Mgal/d]) indicated a maximum drawdown of about 6.8 feet (ft) in the UFA directly above the pumped well and at least 1 ft of drawdown within a nearly 400-square-mile area (scenario A). Induced vertical leakage from the UFA provided about 99 percent of the water to the pumped well. Simulated pumping of well 36S048 indicated increased downward leakage in all layers above the LFA, decreased upward leakage in all layers above the LFA, increased inflow to and decreased outflow from lateral specified-head boundaries in the UFA and LFA, and an increase in the volume of induced inflow from the general-head boundary representing outcrop units. Water budgets for scenario A indicated that changes in inflows and outflows through general-head boundaries would compose about 72 percent of the simulated pumpage from well 36S048, with the remaining 28 percent of the pumped water derived from flow across lateral specified-head boundaries.

  13. Review of thermal recovery technologies for the Clearwater and lower Grand Rapids formations in the Cold Lake area in Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Q.; Thornton, B.; Houston, J.R.; Spence, S. [OSUM Oil Sands Corp., Calgary, AB (Canada)

    2009-07-01

    This paper described a performance review conducted to assess steam assisted gravity drainage (SAGD) and cyclic steam stimulation (CSS) projects in the Cold Lake region. Commercial and pilot plant projects in the region were discussed. The aim of the study was to design a development plan for achieving bitumen production rates of 35,000 barrels per day in the Taiga region. While relatively high pressure drawdowns are created between the wellbore and formation during CSS production phases, the CSS process has limited applications in fine grain sands reservoirs, or in reservoirs with thick bottom water. SAGD processes require a minimum pressure drawdown to drive reservoir fluids to the wellbore, making them ideal for reservoirs with top gas, or in formations with fine grain sands and bottom water. Selection criteria for CSS and SAGD technologies were reviewed. Simulations were conducted to assess the impacts of well placement, reservoir heterogeneity, and operating parameters on SAGD and CSS performance. Well configurations for optimal SAGD performance were also presented. 19 refs., 3 tabs., 20 figs.

  14. Par Pond vegetation status Summer 1995 -- September survey descriptive summary

    International Nuclear Information System (INIS)

    Mackey, H.E. Jr.; Riley, R.S.

    1995-09-01

    The water level of Par Pond was lowered approximately 20 feet in mid-1991 in order to protect downstream residents from possible dam failure suggested by subsidence on the downstream slope of the dam and to repair the dam. This lowering exposed both emergent and nonemergent macrophyte beds to drying conditions resulting in extensive losses. A survey of the emergent shoreline aquatic plant communities began in June 1995, three months after the refilling of Par Pond to approximately 200 feet above mean sea level and continued with this mid-September survey. Communities similar to the pre-drawdown Par Pond aquatic plant communities are becoming re-established; especially, beds of maidencane, lotus, waterlily, and watershield are now extensive and well established. Cattail occurrence continues to increase, but large beds common to Par Pond prior to the drawdown have not formed. Future surveys during the late growing seasons of 1995, and throughout 1996 and 1997, along with the evaluation of satellite data to map the areal extent of the macrophyte beds of Par Pond, are planned

  15. Par Pond vegetation status Summer 1995 -- October survey descriptive summary

    International Nuclear Information System (INIS)

    Mackey, H.E. Jr.; Riley, R.S.

    1995-11-01

    The water level of Par Pond was lowered approximately 20 feet in mid-1991 in order to protect downstream residents from possible dam failure suggested by subsidence on the downstream slope of the dam and to repair the dam. This lowering exposed both emergent and nonemergent macrophyte beds to drying conditions resulting in extensive losses. A survey of the emergent shoreline aquatic plant communities began in June 1995, three months after the refilling of Par Pond to approximately 200 feet above mean sea level and continued with this late October survey. Communities similar to the pre-drawdown Par Pond aquatic plant communities are becoming re-established; especially, beds of maiden cane, lotus, waterlily, and watershield are now extensive and well established. Cattail occurrence continues to increase, but large beds common to Par Pond prior to the drawdown have not formed. Future surveys throughout 1996 and 1997, along with the continued evaluation of satellite data to map the areal extent of the macrophyte beds of Par Pond, are planned

  16. Selected hydraulic test analysis techniques for constant-rate discharge tests

    International Nuclear Information System (INIS)

    Spane, F.A. Jr.

    1993-03-01

    The constant-rate discharge test is the principal field method used in hydrogeologic investigations for characterizing the hydraulic properties of aquifers. To implement this test, the aquifer is stressed by withdrawing ground water from a well, by using a downhole pump. Discharge during the withdrawal period is regulated and maintained at a constant rate. Water-level response within the well is monitored during the active pumping phase (i.e., drawdown) and during the subsequent recovery phase following termination of pumping. The analysis of drawdown and recovery response within the stress well (and any monitored, nearby observation wells) provides a means for estimating the hydraulic properties of the tested aquifer, as well as discerning formational and nonformational flow conditions (e.g., wellbore storage, wellbore damage, presence of boundaries, etc.). Standard analytical methods that are used for constant-rate pumping tests include both log-log type-curve matching and semi-log straight-line methods. This report presents a current ''state of the art'' review of selected transient analysis procedures for constant-rate discharge tests. Specific topics examined include: analytical methods for constant-rate discharge tests conducted within confined and unconfined aquifers; effects of various nonideal formation factors (e.g., anisotropy, hydrologic boundaries) and well construction conditions (e.g., partial penetration, wellbore storage) on constant-rate test response; and the use of pressure derivatives in diagnostic analysis for the identification of specific formation, well construction, and boundary conditions

  17. Engineering study: 105KE to 105KW Basin fuel and sludge transfer. Final report

    International Nuclear Information System (INIS)

    Gant, R.G.

    1994-01-01

    In the last five years, there have been three periods at the 105KE fuel storage basin (KE Basin) where the reported drawdown test rates were in excess of 25 gph. Drawdown rates in excess of this amount have been used during past operations as the primary indicators of leaks in the basin. The latest leak occurred in March, 1993. The reported water loss from the KE Basin was estimated at 25 gph. This engineering study was performed to identify and recommend the most feasible and practical method of transferring canisters of irradiated fuel and basin sludge from the KE Basin to the 105KW fuel storage basin (KW Basin). Six alternatives were identified during the performance of this study as possible methods for transferring the fuel and sludge from the KE Basin to the KW Basin. These methods were then assessed with regard to operations, safety, radiation exposure, packaging, environmental concerns, waste management, cost, and schedule; and the most feasible and practical methods of transfer were identified. The methods examined in detail in this study were based on shipment without cooling water except where noted: Transfer by rail using the previously used transfer system and water cooling; Transfer by rail using the previously used transfer system (without water cooling); Transfer by truck using the K Area fuel transfer cask (K Area cask); Transfer by truck using a DOE shipping cask; Transfer by truck using a commercial shipping cask; and Transfer by truck using a new fuel shipping cask

  18. Analysis of arsenic speciation in mine contaminated lacustrine sediment using selective sequential extraction, HR-ICPMS and TEM

    Energy Technology Data Exchange (ETDEWEB)

    Haus, Kelly L. [Department of Geology, Phillips 157, University of Wisconsin - Eau Claire, Eau Claire, WI 54702-4004 (United States)], E-mail: khaus@vt.edu; Hooper, Robert L.; Strumness, Laura A.; Mahoney, J. Brian [Department of Geology, Phillips 157, University of Wisconsin - Eau Claire, Eau Claire, WI 54702-4004 (United States)

    2008-04-15

    In order to determine how As speciation in lacustrine sediment changes as a function of local conditions, sediment cores were taken from three lakes with differing hydrologic regimes and subjected to extensive chemical and TEM analysis. The lakes (Killarney, Thompson and Swan Lakes) are located within the Coeur d' Alene River system (northern Idaho, USA), which has been contaminated with trace metals and As, from over 100 a of sulfide mining. Previous analyses of these lakebed sediments have shown an extensive amount of contaminant metals and As associated with sub-{mu}m grains, making them extremely difficult to analyze using standard methods (scanning electron microscopy, X-ray diffraction). Transmission electron microscopy offers great advantages in spatial resolution and can be invaluable in determining As speciation when combined with other techniques. Data indicate that because of differences in local redox conditions, As speciation and stability is dramatically different in these lakes. Killarney and Thompson Lakes experience seasonal water-level fluctuations due to drawdown on a downstream dam, causing changes in O{sub 2} content in sediment exposed during drawdown. Swan Lake has relatively constant water levels as its only inlet is dammed. Consequently, Killarney and Thompson Lakes show an increase in labile As-bearing phases with depth, while Swan Lake data indicate stable As hosts throughout the sediment profile. Based on these observations it can be stated that As in lakebed sediments is much less mobile, and therefore less bioavailable, when water is kept at a constant level.

  19. Bioventing feasibility study of low permeability soils for remediation of petroleum contamination

    International Nuclear Information System (INIS)

    Brackney, K.M.

    1994-01-01

    A site characterization of leaking underground gasoline and diesel storage tanks at the University of Idaho, West Farm Operations Center, identified approximately 800 cubic yards of petroleum-contaminated soil exceedingly regulatory action limits of 100 ppm TPH. Bioventing, a combination of in situ soil vapor extraction and microbial degradation, was selected as a remedial alternative on the basis of the presumably unsaturated paleo-soil with a 45-foot depth to groundwater, and a microbial study which concluded that indigenous petroleum-degrading microorganisms existed throughout the contamination. Soil vapor extraction tests were conducted by applying a 60-inch water column vacuum to a soil vapor extraction well and monitoring pneumatic pressure drawdown in 12 adjacent pneumatic piezometers and vertically distributed piezometer clusters. Pressure drawdown vs time data plots indicated that air permeability is inadequate everywhere at the site except at 20 feet below ground surface. Low soil permeability creates conditions for a perched water table that was documented during the investigation, resulting in unsatisfactory conditions for in situ bioventing. 8 refs., 14 figs

  20. Impact of excessive groundwater pumping on rejuvenation processes in the Bandung basin (Indonesia) as determined by hydrogeochemistry and modeling

    Science.gov (United States)

    Taufiq, Ahmad; Hosono, Takahiro; Ide, Kiyoshi; Kagabu, Makoto; Iskandar, Irwan; Effendi, Agus J.; Hutasoit, Lambok M.; Shimada, Jun

    2017-12-01

    In the Bandung basin, Indonesia, excessive groundwater pumping caused by rapid increases in industrialization and population growth has caused subsurface environmental problems, such as excessive groundwater drawdown and land subsidence. In this study, multiple hydrogeochemical techniques and numerical modeling have been applied to evaluate the recharge processes and groundwater age (rejuvenation). Although all the groundwater in the Bandung basin is recharged at the same elevation at the periphery of the basin, the water type and residence time of the shallow and deep groundwater could be clearly differentiated. However, there was significant groundwater drawdown in all the depression areas and there is evidence of groundwater mixing between the shallow and deep groundwater. The groundwater mixing was traced from the high dichlorodifluoromethane (CFC-12) concentrations in some deep groundwater samples and by estimating the rejuvenation ratio (R) in some representative observation wells. The magnitude of CFC-12 concentration, as an indicator of young groundwater, showed a good correlation with R, determined using 14C activity in samples taken between 2008 and 2012. These correlations were confirmed with the estimation of vertical downward flux from shallower to deeper aquifers using numerical modeling. Furthermore, the change in vertical flux is affected by the change in groundwater pumping. Since the 1970s, the vertical flux increased significantly and reached approximately 15% of the total pumping amount during the 2000s, as it compensated the groundwater pumping. This study clearly revealed the processes of groundwater impact caused by excessive groundwater pumping using a combination of hydrogeochemical methods and modeling.

  1. Hydrological and hydrogeological effects of an open repository in Forsmark. Final MIKE SHE flow modelling results for the Environmental Impact Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Maartensson, Erik; Gustafsson, Lars-Goeran (DHI Sverige AB (Sweden))

    2010-07-15

    conditions show that the magnitude and the geographical extent of the groundwater-table drawdown are smaller than the hydraulic-head drawdown in the bedrock. The influence area for the groundwater-table drawdown primarily coincides with locations where the Quaternary deposits are in contact with bedrock containing fracture zones with high vertical hydraulic conductivity. The groundwater inflow to the repository, the groundwater-table drawdown and the drawdown of hydraulic heads in the bedrock were analysed for different values of the hydraulic conductivity of the grouted zone (K{sub grout}) and also for layouts that aim to represent different repository-development phases. For a hypothetical case with a fully open repository, the model-calculated inflow is in the interval 15-47 L/s depending on the value of K{sub grout}. Using meteorological data and sea-level data for the year 2006, the associated influence area for the groundwater-table drawdown (annual average drawdown exceeding 0.3 m) has a size of 1.4 km2 for K{sub grout} = 10-7 m/s and less than half for K{sub grout} = 10-9 m/s. According to the modelling results, the groundwater inflow to the repository has very small effects on water levels in lakes and discharges in streams. However, for K{sub grout} = 10-7 m/s the annually accumulated discharge in the stream upstream from Lake Bolundsfjaerden is reduced by 13%, which is due to drawdown of the groundwater table within the catchment area of the stream. Sensitivity analyses show that the groundwater inflow to the repository and the size of the groundwater table influence area are not very sensitive to the tested variants concerning the hydrogeological properties of the upper 200 m of the bedrock and the boundary conditions (including the sea level). The model-calculated influence area demonstrates some sensitivity to the choice of methodology for modelling water flow in the unsaturated zone. Moreover, the influence area is larger if the hydrogeological properties in

  2. Characterization of geochemical constituents and bacterial populations associated with As mobilization in deep and shallow tube wells in Bangladesh.

    Science.gov (United States)

    Sutton, Nora B; van der Kraan, Geert M; van Loosdrecht, Mark C M; Muyzer, Gerard; Bruining, Johannes; Schotting, Ruud J

    2009-04-01

    While millions of people drink arsenic-contaminated tube well water across Bangladesh, there is no recent scientific explanation which is able to either comprehensively explain arsenic mobilization or to predict the spatial distribution of affected wells. Rather, mitigation strategies have focused on the sinking of deep tube wells into the currently arsenic-free Pleistocene aquifer. In this study, Bangladesh shallow tube wells identified as contaminated and uncontaminated, as well as deep tube wells, were analyzed for geochemical and in situ microbiological composition. Whereas arsenic was detected in all Holocene aquifer wells, no arsenic was found in wells accessing the Pleistocene aquifer. Bacterial genera, including Comamonadaceae, Acidovorax, Acinetobacter, and Hydrogenophaga, associated with tolerance of high arsenic concentrations, rather than dissimilatory Fe(III) or As(V) reduction, were identified in shallow tube wells, indicating that mobilization may not occur at depth, but is rather due to drawdown of surface contaminated water. Deep tube wells contained microbes indicative of aerobic conditions, including the genera Aquabacterium, Limnobacter, and Roseomonas. It is concluded that through drawdown of arsenic or organic matter, further utilization of the Pleistocene aquifer could result in contamination similar to that observed in the Holocene aquifer.

  3. Effects of groundwater pumping on the sustainability of a mountain wetland complex, Yosemite National Park, California

    Directory of Open Access Journals (Sweden)

    David J. Cooper

    2015-03-01

    Full Text Available Study Region: We analyzed the effects of groundwater pumping on a mountain wetland complex, Yosemite National Park, California, USA. Study Focus: Groundwater pumping from mountain meadows is common in many regions of the world. However, few quantitative analyses exist of the hydrologic or ecological effects of pumping. New Hydrological Insights for the Region: Daily hydraulic head and water table variations at sampling locations within 100 m of the pumping well were strongly correlated with the timing and duration of pumping. The effect of pumping varied by distance from the pumping well, depth of the water table when the pumping started, and that water year's snow water equivalent (SWE. Pumping in years with below average SWE and/or early melting snow pack, resulted in a water table decline to the base of the fen peat body by mid summer. Pumping in years with higher SWE and later melting snowpack, resulted in much less water level drawdown from the same pumping schedule. Predictive modeling scenarios showed that, even in a dry water year like 2004, distinct increases in fen water table elevation can be achieved with reductions in pumping. A high water table during summers following low snowpack water years had a more significant influence on vegetation composition than depth of water table in wet years or peat thickness, highlighting the impact of water level drawdown on vegetation. Keywords: Fen, Groundwater pumping, Modeling, Mountain meadow, Water table, Wetlands

  4. The isotope hydrology of the northern well field, Jwaneng diamond mine, Botswana

    International Nuclear Information System (INIS)

    Verhagen, B.Th.; Brook, M.C.

    1989-01-01

    The northern well field supplies the Jwaneng diamond mine with 4.8x10 6 m 3 /a of good quality ground water. Model predictions, based on hydraulic parameters obtained during initial development, were found to have overestimated well field drawdown and have been twice updated in the past seven years. Since 1983, various surveys of environmental isotope levels in the well field ground water were conducted. Over the period of observation, there has been very little change in the initial conclusion that part of the well field contains suprisingly recent ground water. Active recharge, which was suspected from the chemical composition of the ground water, was therefore confirmed, as well as the fact that the ground water body as a whole is dynamic. The isotopic data are discussed in terms of regional information from the surrounding Karoo aquifers. It is shown that earlier theories of remote recharge to the well field are untenable. More recent data on first strike and other water samples obtained during exploring drilling are incorporated. Estimates based on the hydrological picture presented by the isotope data, indicate economically significant local rain recharge. A simple analytical model of well field behaviour shows that this calculated recharge rate brings the modelled drawdowns into the range of actually observed values. 10 refs., 7 figs

  5. The Coupling Effect of Rainfall and Reservoir Water Level Decline on the Baijiabao Landslide in the Three Gorges Reservoir Area, China

    Directory of Open Access Journals (Sweden)

    Nenghao Zhao

    2017-01-01

    Full Text Available Rainfall and reservoir level fluctuation are two of the main factors contributing to reservoir landslides. However, in China’s Three Gorges Reservoir Area, when the reservoir water level fluctuates significantly, it comes at a time of abundant rainfall, which makes it difficult to distinguish which factor dominates the deformation of the landslide. This study focuses on how rainfall and reservoir water level decline affect the seepage and displacement field of Baijiabao landslide spatially and temporally during drawdown of reservoir water level in the Three Gorges Reservoir Area, thus exploring its movement mechanism. The monitoring data of the landslide in the past 10 years were analyzed, and the correlation between rainfall, reservoir water level decline, and landslide displacement was clarified. By the numerical simulation method, the deformation evolution mechanism of this landslide during drawdown of reservoir water level was revealed, respectively, under three conditions, namely, rainfall, reservoir water level decline, and coupling of the above two conditions. The results showed that the deformation of the Baijiabao landslide was the coupling effect of rainfall and reservoir water level decline, while the latter effect is more pronounced.

  6. WTAQ - A computer program for aquifer-test analysis of confined and unconfined aquifers

    Science.gov (United States)

    Barlow, P.M.; Moench, A.F.

    2004-01-01

    Computer program WTAQ was developed to implement a Laplace-transform analytical solution for axial-symmetric flow to a partially penetrating, finite-diameter well in a homogeneous and anisotropic unconfined (water-table) aquifer. The solution accounts for wellbore storage and skin effects at the pumped well, delayed response at an observation well, and delayed or instantaneous drainage from the unsaturated zone. For the particular case of zero drainage from the unsaturated zone, the solution simplifies to that of axial-symmetric flow in a confined aquifer. WTAQ calculates theoretical time-drawdown curves for the pumped well and observation wells and piezometers. The theoretical curves are used with measured time-drawdown data to estimate hydraulic parameters of confined or unconfined aquifers by graphical type-curve methods or by automatic parameter-estimation methods. Parameters that can be estimated are horizontal and vertical hydraulic conductivity, specific storage, and specific yield. A sample application illustrates use of WTAQ for estimating hydraulic parameters of a hypothetical, unconfined aquifer by type-curve methods. Copyright ASCE 2004.

  7. Safeguards in Pyroprocessing: an Integrated Model Development and Measurement Data Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jinsuo [The Ohio State Univ., Columbus, OH (United States). Nuclear Engineering Program, Dept. of Mechanical and Aerospace Engineering

    2017-10-01

    Pyroprocessing is an electrochemical method based on the molten salt electrolyte, mainly the LiCl-KCl eutectic molten salt, to recycle the used nuclear fuel. For a conceptual design of commercial pyroprocessing facility, tons of special nuclear materials, namely U and Pu, may be involved, which could be used for non-peaceful purposes if they are diverted. Effective safeguards approaches have to be developed prior to the development and construction of a pyroprocessing facility. Present research focused on two main objectives, namely calculating the properties of nuclear species in LiCl-KCl molten salt and developing integrated model to safeguard a pyroprocessing facility. Understanding the characteristics of special nuclear materials in LiCl-KCl eutectic salt is extremely important to understand their behaviors in an electrorefiner. The model development for the separation processes in the pyroprocessing, including electrorefining, actinide drawdown, and rare earth drawdown benefits the understanding of material transport and separation performance of these processes under various conditions. The output signals, such as potential, current, and species concentration contribute to the material balance closure and provide safeguards signatures to detect the scenarios of diversion. U and Pu are the two main elements concerned in this study due to our interest in safeguards.

  8. INTRAVAL Phase 2: Investigations into the influence of the density stratification on groundwater flow by the example of pumping test 'Weisses Moor'

    International Nuclear Information System (INIS)

    Wollrath, J.; Arens, G.

    1992-11-01

    After a short description of the pumping test the determination of the aquifer parameters permeability k, storage coefficient S and aquifer thickness b is described on the basis of the analytical THEIS-solution for the calculation of the drawdown of a well. The numerical computations with the computer codes SUTRA and ROCKFLOW based on this are described. The computations have led to the result that the drawdown values observed in the pumping test can be described with the assumptions based on the THEIS-solution. The computations considering the density stratification do not show significant differences compared to the freshwater computations. The influence of the arrangement of filter areas in the well or the distribution of the pumped water along that filter areas is greater than the influence of the computation as freshwater or salt-water model. However, the difference between the observed density of the pumped water and the computed density is in the range of 20 to 50% depending on the model variant. It can be concluded that the flow conditions for this pumping test cannot be validated with the simple approaches and models used. (orig.) [de

  9. Results of Hydraulic Tests in Miocene Tuffaceous Rocks at the C-Hole Complex, 1995 to 1997, Yucca Mountain, Nye County, Nevada

    Science.gov (United States)

    Geldon, Arthur L.; Umari, Amjad M.A.; Fahy, Michael F.; Earle, John D.; Gemmell, James M.; Darnell, Jon

    2002-01-01

    Four hydraulic tests were conducted by the U.S. Geological Survey at the C-hole complex at Yucca Mountain, Nevada, between May 1995 and November 1997. These tests were conducted as part of ongoing investigations to determine the hydrologic and geologic suitability of Yucca Mountain as a potential site for permanent underground storage of high-level nuclear waste. The C-hole complex consists of three 900-meter-deep boreholes that are 30.4 to 76.6 meters apart. The C-holes are completed in fractured, variably welded tuffaceous rocks of Miocene age. Six hydrogeologic intervals occur within the saturated zone in these boreholes - the Calico Hills, Prow Pass, Upper Bullfrog, Lower Bullfrog, Upper Tram, and Lower Tram intervals. The Lower Bullfrog and Upper Tram intervals contributed about 90 percent of the flow during hydraulic tests. The four hydraulic tests conducted from 1995 to 1997 lasted 4 to 553 days. Discharge from the pumping well, UE-25 c #3, ranged from 8.49 to 22.5 liters per second in different tests. Two to seven observation wells, 30 to 3,526 meters from the pumping well, were used in different tests. Observation wells included UE-25 c #1, UE-25 c #2, UE-25 ONC-1, USW H-4, UE-25 WT #14, and UE-25 WT #3 in the tuffaceous rocks and UE-25 p #1 in Paleozoic carbonate rocks. In all hydraulic tests, drawdown in the pumping well was rapid and large (2.9-11 meters). Attributable mostly to frictional head loss and borehole-skin effects, this drawdown could not be used to analyze hydraulic properties. Drawdown and recovery in intervals of UE-25 c #1 and UE-25 c #2 and in other observation wells typically was less than 51 centimeters. These data were analyzed. Hydrogeologic intervals in the C-holes have layered heterogeneity related to faults and fracture zones. Transmissivity, hydraulic conductivity, and storativity generally increase downhole. Transmissivity ranges from 4 to 1,600 meters squared per day; hydraulic conductivity ranges from 0.1 to 50 meters per day

  10. FINAL TECHNICAL REPORT-THE ECOLOGY AND GENOMICS OF CO2 FIXATIION IN OCEANIC RIVER PLUMES

    Energy Technology Data Exchange (ETDEWEB)

    PAUL, JOHN H

    2013-06-21

    Oceanic river plumes represent some of the most productive environments on Earth. As major conduits for freshwater and nutrients into the coastal ocean, their impact on water column ecosystems extend for up to a thousand km into oligotrophic oceans. Upon entry into the oceans rivers are tremendous sources of CO2 and dissolved inorganic carbon (DIC). Yet owing to increased light transmissivity from sediment deposition coupled with the influx of nutrients, dramatic CO2 drawdown occurs, and plumes rapidly become sinks for CO2. Using state-of-the-art gene expression technology, we have examined the molecular biodiversity of CO2 fixation in the Mississippi River Plume (MRP; two research cruises) and the Orinoco River Plume (ORP; one cruise). When the MRP extends far into the Gulf because of entrainment with the Loop Current, MRP production (carbon fixation) can account for up to 41% of the surface production in the Gulf of Mexico. Nearer-shore plume stations (“high plume,” salinity< 32 ppt) had tremendous CO2 drawdown that was correlated to heterokont (principally diatom) carbon fixation gene expression. The principal form of nitrogen for this production based upon 15N studies was urea, believed to be from anthropogenic origin (fertilizer) from the MRP watershed. Intermediate plume environments (salinity 34 ppt) were characterized by high levels of Synechococcuus carbon fixation that was fueled by regenerated ammonium. Non-plume stations were characterized by high light Prochlorococcus carbon fixation gene expression that was positively correlated with dissolved CO2 concentrations. Although data from the ORP cruise is still being analyzed, some similarities and striking differences were found between the ORP and MRP. High levels of heterokont carbon fixation gene expression that correlated with CO2 drawdown were observed in the high plume, yet the magnitude of this phenomenon was far below that of the MRP, most likely due to the lower levels of anthropogenic

  11. Fluctuation patterns of groundwater levels in Tokyo caused by the Great East Japan Earthquake

    Science.gov (United States)

    Kawamura, Akira; Ishihara, Shigeyuki; Amaguchi, Hideo; Takasaki, Tadakatsu

    2016-04-01

    The hourly groundwater levels have been observed at 42 sites in Tokyo Metropolis since 1952. The Great East Japan Earthquake occurred at 14:46 JST on March 11, 2011. It was the strongest earthquake on record with a magnitude of 9.0 (Mw) and large fluctuations of unconfined and confined groundwater levels were observed at 102 observation wells in Tokyo, around 400 km away from the epicenter. Abrupt rises and sharp drawdowns of groundwater levels were observed right after the earthquake for most of the wells, although some did not show a change. In this study, taking full advantage of the unique rare case data from the dense groundwater monitoring network in Tokyo, we investigate the fluctuation patterns of unconfined and confined groundwater levels caused by the Great East Japan Earthquake. The groundwater level data used in this study consist of one month time series in March 2011 with one-hour interval. The fluctuation patterns of groundwater levels caused by the earthquake were identified using Self-Organizing Maps (SOM). The SOM, developed by Kohonen, can project high-dimensional, complex target data onto a two-dimensional regularly arranged map in proportion to the degree of properties. In general, the objective of the SOM application is to obtain useful and informative reference vectors. These vectors can be acquired after iterative updates through the training of the SOM. Design of the SOM structure, selection of a proper initialization method, and data transformation methods were carried out in the SOM application process. The reference vectors obtained from the SOM application were fine-tuned using cluster analysis methods. The optimal number of clusters was selected by the Davies-Bouldin index (DBI) using the k-means algorithm. Using the optimal number of cluster, a final fine-tuning cluster analysis was carried out by Ward's method. As a result, the fluctuation patterns of the confined and unconfined groundwater level were classified into eight clusters

  12. Description and comparison of selected models for hydrologic analysis of ground-water flow, St Joseph River basin, Indiana

    Science.gov (United States)

    Peters, J.G.

    1987-01-01

    The Indiana Department of Natural Resources (IDNR) is developing water-management policies designed to assess the effects of irrigation and other water uses on water supply in the basin. In support of this effort, the USGS, in cooperation with IDNR, began a study to evaluate appropriate methods for analyzing the effects of pumping on ground-water levels and streamflow in the basin 's glacial aquifer systems. Four analytical models describe drawdown for a nonleaky, confined aquifer and fully penetrating well; a leaky, confined aquifer and fully penetrating well; a leaky, confined aquifer and partially penetrating well; and an unconfined aquifer and partially penetrating well. Analytical equations, simplifying assumptions, and methods of application are described for each model. In addition to these four models, several other analytical models were used to predict the effects of ground-water pumping on water levels in the aquifer and on streamflow in local areas with up to two pumping wells. Analytical models for a variety of other hydrogeologic conditions are cited. A digital ground-water flow model was used to describe how a numerical model can be applied to a glacial aquifer system. The numerical model was used to predict the effects of six pumping plans in 46.5 sq mi area with as many as 150 wells. Water budgets for the six pumping plans were used to estimate the effect of pumping on streamflow reduction. Results of the analytical and numerical models indicate that, in general, the glacial aquifers in the basin are highly permeable. Radial hydraulic conductivity calculated by the analytical models ranged from 280 to 600 ft/day, compared to 210 and 360 ft/day used in the numerical model. Maximum seasonal pumping for irrigation produced maximum calculated drawdown of only one-fourth of available drawdown and reduced streamflow by as much as 21%. Analytical models are useful in estimating aquifer properties and predicting local effects of pumping in areas with

  13. Using 67Cu to study the biogeochemical cycling of copper in the northeast subarctic Pacific Ocean

    Directory of Open Access Journals (Sweden)

    David M Semeniuk

    2016-06-01

    Full Text Available Microbial copper (Cu nutrition and dissolved Cu speciation were surveyed along Line P, a coastal to open ocean transect that extends from the coast of British Columbia, Canada, to the high-nutrient-low-chlorophyll (HNLC zone of the northeast subarctic Pacific Ocean. Steady-state size fractionated Cu uptake rates and Cu:C assimilation ratios were determined at in situ Cu concentrations and speciation using a 67Cu tracer method. The cellular Cu:C ratios that we measured (~30 µmol Cu mol C-1 are similar to recent estimates using synchrotron x-ray fluorescence (SXRF, suggesting that the 67Cu method can determine in situ metabolic Cu demands. We examined how environmental changes along the Line P transect influenced Cu metabolism in the sub-microplankton community. Cellular Cu:C assimilation ratios and uptake rates were compared with net primary productivity, bacterial abundance and productivity, total dissolved Cu, Cu speciation, and a suite of other chemical and biological parameters. Total dissolved Cu concentrations ([Cu]d were within a narrow range (1.46 to 2.79 nM, and Cu was bound to a ~5-fold excess of strong ligands with conditional stability constants ( of ~1014. Free Cu2+ concentrations were low (pCu 14.4 to 15.1, and total and size fractionated net primary productivity (NPPV; µg C L-1 d-1 were negatively correlated with inorganic Cu concentrations ([Cu′]. We suggest this is due to greater Cu′ drawdown by faster growing phytoplankton populations. Using the relationship between [Cu′] drawdown and NPPV, we calculated a regional photosynthetic Cu:C drawdown export ratio between 1.5 and 15 µmol Cu mol C-1, and a mixed layer residence time (2.5 to 8 years that is similar to other independent estimates (2-12 years. Total particulate Cu uptake rates were between 22 and 125 times faster than estimates of Cu export; this is possibly mediated by rapid cellular Cu uptake and efflux by phytoplankton and bacteria or the effects of grazers and

  14. Simulation of hydraulic disturbances caused by the underground rock characterisation facility in Olkiluoto

    International Nuclear Information System (INIS)

    Loefman, J.; Meszaros, F.

    2005-11-01

    The hydraulic disturbances that might result from the open ONKALO tunnel system were assessed by means of site-scale finite element simulations. The details of the construction and operation of the ONKALO was not taken into account in the simulations, but the entire tunnel system was instantly made hydraulically active at the beginning of the simulation and was assumed to be open for 100 years. The inflow of groundwater into the tunnels, the resulting drawdown of the water table, and the upconing of deep saline groundwater were analysed separately by using somewhat different modelling approaches and assumptions. The drawdown of the water table was simulated by employing the free surface approach, in which only the saturated part was included in the modelled volume and the sinking water table constituted the free surface. The tunnel inflows were obtained from the state of equilibrium. The evolution of the salinity distribution was simulated with a time-dependent and coupled (flow and salt transport) model. The simulations showed that without engineering measures (e.g., grouting) to limit inflow of groundwater into the open tunnels, the hydraulic disturbances would be significantly greater than with these measures implemented. The drifts that made up strong sinks in the model, draw groundwater from all directions in the bedrock. Most of inflow (330-1100 l/min) would come from the well-conductive subhorizontal fracture zones intersected by the access tunnel and the shaft. The water table might sink locally to a depth of about 200 metres and the depressed area extend over the Olkiluoto Island. The results also indicated that the salinity of the groundwater could gradually rise around and below the drifts, and locally concentration (TDS) may rise from 22 g/l up to over 50 g/l in the vicinity of the tunnels. The disturbances can significantly be reduced by the grouting of rock. In the case of tight grouting the depression of the water table was confined to the immediate

  15. INITIAL TEST WELL CONDITIONING AT NOPAL I URANIUM DEPOSIT, SIERRA PENA BLANCA, CHIHUAHUA, MEXICO

    Energy Technology Data Exchange (ETDEWEB)

    R.D. Oliver; J.C. Dinsmoor; S.J. Goldstein; I. Reyes; R. De La Garza

    2005-07-11

    Three test wells, PB-1, PB-2, and PB-3, were drilled at the Nopal I uranium deposit as part of a natural analogue study to evaluate radionuclide transport processes during March-April 2003. The initial pumping to condition the wells was completed during December 2003. The PB-1 well, drilled immediately adjacent to the Nopal I ore body, was continuously cored to a depth of 250 m, terminating 20 m below the top of the measured water level. The PB-2 and PB-3 wells, which were drilled on opposite sides of PB-1 at a radial distance of approximately 40 to 50 m outside of the remaining projected ore body, were also drilled to about 20 m below the top of the measured water level. Each test well was completed with 4-inch (10.2-cm) diameter PVC casing with a slotted liner below the water table. Initial conditioning of all three wells using a submersible pump at low pump rates [less than 1 gallon (3.8 1) per minute] resulted in measurable draw down and recoveries. The greatest drawdown ({approx}15 m) was observed in PB-2, whereas only minor (<1 m) drawdown occurred in PB-3. For PB-1 and PB-2, the water turbidity decreased as the wells were pumped and the pH values decreased, indicating that the contamination from the drilling fluid was reduced as the wells were conditioned. Test wells PB-1 and PB-2 showed increased inflow after several borehole volumes of fluid were removed, but their inflow rates remained less that the pumping rate. Test well PB-3 showed the smallest drawdown and least change in pH and conductivity during initial pumping and quickest recovery with a rise in measured water level after conditioning. The 195 gallons (750 l) of water pumped from PB-3 during conditioning was discharged through a household sponge. That sponge showed measurable gamma radiation, which decayed to background values in less than 12 hours. Preliminary interpretations include filtration of a radioisotope source with a short half-life or of a radioisotope that volatized as the sponge

  16. Percutaneous nephrolithotomy in patients with a solitary kidney

    Directory of Open Access Journals (Sweden)

    Tufan Süelözgen

    2014-12-01

    Full Text Available Material and method: The results of percutaneous nephrolithotomy applied to 716 patients in our clinic between January 2008 and January 2014 were retrospectively evaluated. Age, gender, urinary calculi size (mm2, urinary calculi localization, ESWL history, operation duration (min, fluoroscopy duration (sec, access type, reason of solitary kidney, hemoglobin drawdown (g/dl and operation success of the patients with a solitary kidney were recorded. The patients having no preoperative and postoperative non contrast abdominal tomography were excluded from the study. Results: Fifteen of nineteen patients (79% were men and 4 of them (21% were women. The average age of the patients was 42.52 ± 16.72 (14-72. Ten patients had anatomical solitary kidney and nine patients had physiological solitary kidney. In fact counter kidney was non functional in 9 patients (47% whereas there was agenesis in 2 (11% and outcome of nephrectomy in 8 (42% patients. In our study, presence of residual stone less than 4 mm at 1st month postoperative non contrast abdominal tomography was accepted as a successful result and accordingly our success rate was detected as 84%. Mean urinary calculi size was 405 ± 252.9 mm2; urinary calculi localization was pelvic, lower pole, upper-middle pole, middle-lower pole and staghorn in 11 (58%, 4 (21%, 1 (5%, 1 (5% and 1 (5% patients, respectively; previous ESWL history was 16%; operation duration was 55.47-± 28.1 min and fluoroscopy duration 131.10 ± 87.6 sec; access type was subcostal in 79%, supracostal in 10.5% and multiple in 10.5%; hemoglobin drawdown was 1.75 ± 0.97 mg/dl. Conclusions: PNL can be effectively and safely administered for the treatment of solitary kidney. In the treatment of large urinary calculi in patients with a solitary kidney, PNL has some advantages such as short surgery duration, less complication, acceptable hemoglobin drawdown and high success rates. According to our study, PNL operation in patients with a

  17. Hydraulic characterization of volcanic rocks in Pahute Mesa using an integrated analysis of 16 multiple-well aquifer tests, Nevada National Security Site, 2009–14

    Science.gov (United States)

    Garcia, C. Amanda; Jackson, Tracie R.; Halford, Keith J.; Sweetkind, Donald S.; Damar, Nancy A.; Fenelon, Joseph M.; Reiner, Steven R.

    2017-01-20

    An improved understanding of groundwater flow and radionuclide migration downgradient from underground nuclear-testing areas at Pahute Mesa, Nevada National Security Site, requires accurate subsurface hydraulic characterization. To improve conceptual models of flow and transport in the complex hydrogeologic system beneath Pahute Mesa, the U.S. Geological Survey characterized bulk hydraulic properties of volcanic rocks using an integrated analysis of 16 multiple-well aquifer tests. Single-well aquifer-test analyses provided transmissivity estimates at pumped wells. Transmissivity estimates ranged from less than 1 to about 100,000 square feet per day in Pahute Mesa and the vicinity. Drawdown from multiple-well aquifer testing was estimated and distinguished from natural fluctuations in more than 200 pumping and observation wells using analytical water-level models. Drawdown was detected at distances greater than 3 miles from pumping wells and propagated across hydrostratigraphic units and major structures, indicating that neither faults nor structural blocks noticeably impede or divert groundwater flow in the study area.Consistent hydraulic properties were estimated by simultaneously interpreting drawdown from the 16 multiple-well aquifer tests with an integrated groundwater-flow model composed of 11 well-site models—1 for each aquifer test site. Hydraulic properties were distributed across volcanic rocks with the Phase II Pahute Mesa-Oasis Valley Hydrostratigraphic Framework Model. Estimated hydraulic-conductivity distributions spanned more than two orders of magnitude in hydrostratigraphic units. Overlapping hydraulic conductivity ranges among units indicated that most Phase II Hydrostratigraphic Framework Model units were not hydraulically distinct. Simulated total transmissivity ranged from 1,600 to 68,000 square feet per day for all pumping wells analyzed. High-transmissivity zones exceeding 10,000 square feet per day exist near caldera margins and extend

  18. Pan-North Pacific comparison of long-term variation in Neocalanus copepods based on stable isotope analysis

    Science.gov (United States)

    Chiba, Sanae; Sugisaki, Hiroya; Kuwata, Akira; Tadokoro, Kazuaki; Kobari, Toru; Yamaguchi, Atsushi; Mackas, David L.

    2012-05-01

    Regional differences in the mechanisms of temporal variation in the lower trophic levels in the western, central, and eastern subarctic North Pacific were studied using the nitrogen stable isotope ratio (δ15N) of the major copepod species, Neocalanus cristatus, Neocalanus flemingeri, and Neocalanus plumchrus. We used formalin-preserved specimens collected in the Oyashio region (OY), three sections from north to south along the 180° longitudinal line (180LineSA, TN, and TS), off Vancouver Island (Off-Van), and at Sta. P, during the periods of 1960-2000, 1979-1997, 1981-2007, and 1996-2007, respectively. The regional mean δ15N of the three species roughly corresponded to the surface nitrate distribution and the extent of its drawdown from winter to spring; it was higher in regions of larger seasonal drawdown as observed in the coastal regions OY and Off-Van (7-10‰), but lower in regions with less seasonal drawdown, such as in the offshore regions at St. P and stations along the 180Line (3-6‰). Time series analysis revealed possible region-specific mechanisms for temporal variation in Neocalanus δ15N. First, δ15N indicated shifts in feeding strategies between herbivorous to omnivorous/carnivorous at OY and 180LineSA, where δ15N tended to be lower in the years with warmer winters, suggesting that Neocalanus took advantage of enhanced phytoplankton production under favorable light availability due to increased stratification. Conversely, wind-induced latitudinal advection of surface water was considered to be the initial cause of interannual variation in Neocalanus δ15N at 180LineTN, 180LineTS, and Off-Van, where δ15N was higher in the years with strong southerly or westerly winds at 180LineTN and TS, and the Off-Van site. This suggests that pole-ward transport of relatively oligotrophic, southern water might enhance the uptake of the heavier isotope by phytoplankton, which Neocalanus feed upon. Another possibility at the Off-Van site, where high δ15N was

  19. Analysis of cavern stability at the Bryan Mound SPR site.

    Energy Technology Data Exchange (ETDEWEB)

    Ehgartner, Brian L.; Sobolik, Steven Ronald

    2009-04-01

    This report presents computational analyses that simulate the structural response of caverns at the Strategic Petroleum Reserve Bryan Mound site. The cavern field comprises 20 caverns. Five caverns (1, 2, 4, and 5; 3 was later plugged and abandoned) were acquired from industry and have unusual shapes and a history dating back to 1946. The other 16 caverns (101-116) were leached according to SPR standards in the mid-1980s and have tall cylindrical shapes. The history of the caverns and their shapes are simulated in a 3-D geomechanics model of the site that predicts deformations, strains, and stresses. Future leaching scenarios due to oil drawdowns using fresh water are also simulated by increasing the volume of the caverns. Cavern pressures are varied in the model to capture operational practices in the field. The results of the finite element model are interpreted to provide information on the current and future status of subsidence, well integrity, and cavern stability. The most significant result in this report is relevant to caverns 1, 2, and 5. The caverns have non-cylindrical shapes and have potential regions where the surrounding salt may be damaged during workover procedures. During a workover the normal cavern operating pressure is lowered to service a well. At this point the wellhead pressures are atmospheric. When the workover is complete, the cavern is repressurized. The resulting elastic stresses are sufficient to cause tension and large deviatoric stresses at several locations. With time, these stresses relax to a compressive state due to salt creep. However, the potential for salt damage and fracturing exists. The analyses predict tensile stresses at locations with sharp-edges in the wall geometry, or in the case of cavern 5, in the neck region between the upper and lower lobes of the cavern. The effects do not appear to be large-scale, however, so the only major impact is the potential for stress-induced salt falls in cavern 5, potentially leading to

  20. Induced recharge of an artesian glacial-drift aquifer at Kalamazoo, Michigan

    Science.gov (United States)

    Reed, J.E.; Deutsch, Morris; Wiitala, S.W.

    1966-01-01

    As part of a program for managing its ground-water supply, the city of Kalamazoo has constructed induced-recharge facilities at the sites of several of its well fields. To determine the benefits of induced recharge in a water-management program, the U.S. Geological Survey, in cooperation with the city, conducted a series of field experiments at a city well field (Station 9). The 12 production wells at the test site penetrate about 160 feet of glacial drift, which can be separated into three general units a lower aquifer, an intervening confining layer, and an upper aquifer. Although the upper aquifer is not tapped by any of the municipal supply wells, it serves as a storage and transmission medium for water from the West Fork Portage Creek. The testing program consisted of four aquifer and three recharge tests. The aquifer tests show that the transmissibility of the upper and lower aquifers ranges from 50,000 to 100,000 gallons per day per foot and indicate that nearly 200 gpm (gallons per minute) leaks through the intervening aquiclude under nonpumping conditions. The object of the three recharge tests (tests 5, 6, and 7) was to observe the effects of induced recharge by varying conditions in the recharge channel. During the three recharge tests, 7 wells were pumped at a total rate averaging about 2,500 gpm. During test 5, inflow to the channel was shut off, and the water level in the channel was allowed to decline. Drawdowns measured during this test were used as a standard for comparison with drawdowns in tests 6 and 7. During test 6, the head in the recharge channel was maintained as constant as possible, and the inflow to the channel was measured. The rate of induced recharge, as indicated by the measured inflow, averaged about 300 gpm. Between tests 6 and 7, the area of the channel was increased from 27,000 to 143,000 square feet. During test 7, the head in the channel was again maintained as constant as possible, but the inflow to the larger channel

  1. INITIAL TEST WELL CONDITIONING AT NOPAL I URANIUM DEPOSIT, SIERRA PENA BLANCA, CHIHUAHUA, MEXICO

    International Nuclear Information System (INIS)

    Oliver, R.D.; Dinsmoor, J.C.; Goldstein, S.J.; Reyes, I.; De La Garza, R.

    2005-01-01

    Three test wells, PB-1, PB-2, and PB-3, were drilled at the Nopal I uranium deposit as part of a natural analogue study to evaluate radionuclide transport processes during March-April 2003. The initial pumping to condition the wells was completed during December 2003. The PB-1 well, drilled immediately adjacent to the Nopal I ore body, was continuously cored to a depth of 250 m, terminating 20 m below the top of the measured water level. The PB-2 and PB-3 wells, which were drilled on opposite sides of PB-1 at a radial distance of approximately 40 to 50 m outside of the remaining projected ore body, were also drilled to about 20 m below the top of the measured water level. Each test well was completed with 4-inch (10.2-cm) diameter PVC casing with a slotted liner below the water table. Initial conditioning of all three wells using a submersible pump at low pump rates [less than 1 gallon (3.8 1) per minute] resulted in measurable draw down and recoveries. The greatest drawdown (∼15 m) was observed in PB-2, whereas only minor (<1 m) drawdown occurred in PB-3. For PB-1 and PB-2, the water turbidity decreased as the wells were pumped and the pH values decreased, indicating that the contamination from the drilling fluid was reduced as the wells were conditioned. Test wells PB-1 and PB-2 showed increased inflow after several borehole volumes of fluid were removed, but their inflow rates remained less that the pumping rate. Test well PB-3 showed the smallest drawdown and least change in pH and conductivity during initial pumping and quickest recovery with a rise in measured water level after conditioning. The 195 gallons (750 l) of water pumped from PB-3 during conditioning was discharged through a household sponge. That sponge showed measurable gamma radiation, which decayed to background values in less than 12 hours. Preliminary interpretations include filtration of a radioisotope source with a short half-life or of a radioisotope that volatized as the sponge dried

  2. Will oscillating wave surge converters survive tsunamis?

    Directory of Open Access Journals (Sweden)

    L. O’Brien

    2015-07-01

    Full Text Available With an increasing emphasis on renewable energy resources, wave power technology is becoming one of the realistic solutions. However, the 2011 tsunami in Japan was a harsh reminder of the ferocity of the ocean. It is known that tsunamis are nearly undetectable in the open ocean but as the wave approaches the shore its energy is compressed, creating large destructive waves. The question posed here is whether an oscillating wave surge converter (OWSC could withstand the force of an incoming tsunami. Several tools are used to provide an answer: an analytical 3D model developed within the framework of linear theory, a numerical model based on the non-linear shallow water equations and empirical formulas. Numerical results show that run-up and draw-down can be amplified under some circumstances, leading to an OWSC lying on dry ground!

  3. Water activities in Forsmark. Ecological field inventory and classification of biodiversity values and description of forest production land

    International Nuclear Information System (INIS)

    Hamren, Ulrika; Collinder, Per

    2010-12-01

    In 2009, the Swedish Nuclear Fuel and Waste Management Co (SKB) chose Forsmark in the Municipality of Oesthammar as site for the final repository for spent nuclear fuel. This report describes nature values and forestry areas in Forsmark, and provides part of the background material for description of consequences due to groundwater diversion during construction and operation of the repository. The report describes results of map studies and comprehensive field investigations, in terms of geographical delineations, descriptions of characteristics and classifications of nature values for groundwater dependent or groundwater favoured nature objects in Forsmark. The nature objects are located in an investigation area, which contains the area that according to numerical flow modelling could be affected by groundwater-table drawdown due to groundwater diversion

  4. Dynamic portfolio optimization across hidden market regimes

    DEFF Research Database (Denmark)

    Nystrup, Peter; Madsen, Henrik; Lindström, Erik

    2017-01-01

    Regime-based asset allocation has been shown to add value over rebalancing to static weights and, in particular, reduce potential drawdowns by reacting to changes in market conditions. The predominant approach in previous studies has been to specify in advance a static decision rule for changing...... the allocation based on the state of financial markets or the economy. In this article, model predictive control (MPC) is used to dynamically optimize a portfolio based on forecasts of the mean and variance of financial returns from a hidden Markov model with time-varying parameters. There are computational...... than a buy-and-hold investment in various major stock market indices. This is after accounting for transaction costs, with a one-day delay in the implementation of allocation changes, and with zero-interest cash as the only alternative to the stock indices. Imposing a trading penalty that reduces...

  5. The problems of over exploitation of aquifers in semi-arid areas: characteristics and proposals for mitigation

    International Nuclear Information System (INIS)

    Rodriguez-Estrella, T.

    2014-01-01

    This article presents a general analysis of the problems arising from overexploited aquifers in semi-arid areas, based on research carried out in the Region of Murcia (one of the most over-exploited areas in Europe). Among the negative impacts of this over exploitation are: the drying up of springs, the continuous drawdown of water levels (up to 10 m/y), piezo metric drops (over 30 m in one year if it is a karstic aquifer), an increase in pumping costs (elevating water from a depth of more than 450 m), abandonment of wells, diminishing groundwater reserves, deteriorating water quality, presence of CO 2 , compartmentalizing of aquifers, etc. A series of internal measures is proposed to alleviate the over exploitation of the region. (Author)

  6. Magpie River Development: Environmental considerations

    International Nuclear Information System (INIS)

    Smythe, L.A.; Ashwood, K.R.

    1990-01-01

    The Magpie River development is located near Wawa, Ontario, 250 km north of Sault St. Marie. The unmanned and remotely controlled development consists of three power plants each with reservoir and associated control structures. The plants are equipped with identical single Kaplan units for a total installed capacity of 43 MW. Operation of the plants is automatic, and is governed by a set of Crown conditions, established by the government during project approval stage. The environmental assessment/approval process undertaken for the development is described. Concerns with the project included tourism impact at Magpie Falls, effects of drawdown at Esnagi Lake on recreational fisheries, water quality degradation, protection of riverine fisheries, and native rights. Mitigative measures to address these concerns are described. 7 tabs

  7. Nuclear techniques in industry

    International Nuclear Information System (INIS)

    Barnette, P.

    The long term development and successful utilization of the Tongonan geothermal field for electric power generation is ultimately a function of the response of the reservoir to extensive exploitation. A field drawdown test of several years duration has been planned to test this response. A number of nuclear chemical techniques have been incorporated into this to assist in quantitatively tracing the subsurface movements of both reservoir and reinjected fluids; and to provide an early warning of changes in the physical and chemical properties of the reservoir fluids with respect to natural recharge. The programme will be implemented by Philippine Atomic Energy Commission (PAEC) under contract to Philippine National Oil Company - Energy Development Corporation (PNOC-EDC). (author)

  8. Analysis of the pressure response of high angle multiple (HAM) fractures intersecting a welbore; Kokeisha multi fracture (HAM) kosei ni okeru atsuryoku oto kaiseki ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Ujo, S; Osato, K [Geothermal Energy Research and Development Co. Ltd., Tokyo (Japan); Arihara, N [Waseda University, Tokyo (Japan); Schroeder, R

    1996-05-01

    This paper reports pressure response analysis on wells piercing a high angle multi (HAM) fracture model. In this model which is defined on a three-dimensional space, a plurality of slanted fractures intersect with wells at high angles (however, intersection of fractures with each other is not considered). With respect to the pressure response analysis method using this model, the paper presents a basic differential equation on pressure drawdown and boundary conditions in the wells taking flows in the fractures pseudo-linear, as well as external boundary conditions in calculation regions (a reservoir spreads to an infinite distance, and its top and bottom are closed by non-water permeating beds). The paper also indicates that results of calculating a single vertical fracture model and a slanted fracture model by using a numerical computation program (MULFRAC) based on the above equations agree well respectively with the existing calculation results (calculations performed by Erlougher and Cinco et al). 5 refs., 6 figs.

  9. Characterization of leaky faults

    International Nuclear Information System (INIS)

    Shan, Chao.

    1990-05-01

    Leaky faults provide a flow path for fluids to move underground. It is very important to characterize such faults in various engineering projects. The purpose of this work is to develop mathematical solutions for this characterization. The flow of water in an aquifer system and the flow of air in the unsaturated fault-rock system were studied. If the leaky fault cuts through two aquifers, characterization of the fault can be achieved by pumping water from one of the aquifers, which are assumed to be horizontal and of uniform thickness. Analytical solutions have been developed for two cases of either a negligibly small or a significantly large drawdown in the unpumped aquifer. Some practical methods for using these solutions are presented. 45 refs., 72 figs., 11 tabs

  10. A time-lapse gravity survey of the Coso geothermal field, China Lake Naval Air Weapons Station, California

    Science.gov (United States)

    Phelps, Geoffrey; Cronkite-Ratcliff, Collin; Blake, Kelly

    2018-04-19

    We have conducted a gravity survey of the Coso geothermal field to continue the time-lapse gravity study of the area initiated in 1991. In this report, we outline a method of processing the gravity data that minimizes the random errors and instrument bias introduced into the data by the Scintrex CG-5 relative gravimeters that were used. After processing, the standard deviation of the data was estimated to be ±13 microGals. These data reveal that the negative gravity anomaly over the Coso geothermal field, centered on gravity station CER1, is continuing to increase in magnitude over time. Preliminary modeling indicates that water-table drawdown at the location of CER1 is between 65 and 326 meters over the last two decades. We note, however, that several assumptions on which the model results depend, such as constant elevation and free-water level over the study period, still require verification.

  11. Measurement of Lake Roosevelt biota in relation to reservoir operations. Appendices 1991

    International Nuclear Information System (INIS)

    Griffith, J.R.; McDowell, A.C.; Scholz, A.T.

    1991-01-01

    This report consists of appendices A-F containing the biological data which were collected from Lake Roosevelt, Washington. The data are to be used in the design of a computer model that would predict biological responses of reservoir operations as part of the System Operation Review program. Major components of the model included: Quantification of impacts to phytoplankton, zooplanktons, benthic invertebrates, and fish caused by reservoir drawdowns and low water retention times; quantification of number, distribution, and use of fish food organisms in the reservoir by season; determination of seasonal growth of fish species as related to reservoir operations, prey abundance and utilization; and quantification of entrainment levels of zooplankton and fish as related to reservoir operations and water retention times

  12. Analysis of flow near a dug well in an unconfined aquifer

    Science.gov (United States)

    Sridharan, K.; Sathyanarayana, D.; Reddy, A. Siva

    1990-11-01

    A numerical analysis of flow to a dug well in an unconfined aquifer is made, taking into account well storage, elastic storage release, gravity drainage, anisotropy, partial penetration, vertical flow and seepage surface at the well face, and treating the water table in the aquifer and water level in the well as unknown boundaries. The pumped discharge is maintained constant. The solution is obtained by a two-level iterative scheme. The effects of governing parameters on the drawdown, development of seepage surface and contribution from aquifer flow to the total discharge are discussed. The degree of anisotropy and partial penetration are found to be the parameters which affect the flow characteristics most significantly. The effect of anisotropy on the development of seepage surface is very pronounced.

  13. Deletion of groundwater from a disposal facility in Laxemar. Description of the consequences for nature values and production land; Bortledande av grundvatten fraan en slutfoervarsanlaeggning i Laxemar. Beskrivning av konsekvenser foer naturvaerden och produktionsmark

    Energy Technology Data Exchange (ETDEWEB)

    Hamren, Ulrika; Collinder, Per; Allmer, Johan (Ekologigruppen AB, Stockholm (Sweden))

    2010-10-15

    SKB has chosen Forsmark in the municipality of Oesthammar as site for the repository for spent nuclear fuel. This report describes consequences for nature values, agriculture and forestry due to groundwater diversion from a repository at the non-chosen Laxemar site in the municipality of Oskarshamn. The report concerns nature values that depend on, or are favoured by, a groundwater table close to or above the ground surface. Laxemar is a valuable area from a nature conservation point of view, primarily associated to the cultural- and forest landscape and its prior use for pasture and hay-making. Hence, these values depend on factors other than the level of the groundwater table. Except for old pastures and haymaking areas, many high nature values consist of hardwood-forest groves and old solitary deciduous trees. 67 groundwater-dependent or groundwater-favoured nature objects (wetlands, pieces of forest and surface water) are identified in the investigated area. No nature object is judged to have national value (class 1). 15 nature objects (pieces of forest) are judged to have regional value (class 2), 18 have municipal value (class 3) and 34 local value (class 4). It is judged that a drawdown of the groundwater table only would result in small consequences for the nature values of the area in its entirety. The nature objects that would be affected by the largest groundwater-table drawdown have relatively low nature values and consist of small wetlands with local value (class 4). The low nature values of these objects imply that the consequences of the groundwater diversion would be small. Nature objects with higher nature values (regional or municipal value) consist of forest key habitats and ancient pastures on previously argued land. The nature values of these objects are hence dependent on factors other than the level of the groundwater table, which implies that the consequences would be small also for these objects. The consequences would be largest

  14. A Block Iterative Finite Element Model for Nonlinear Leaky Aquifer Systems

    Science.gov (United States)

    Gambolati, Giuseppe; Teatini, Pietro

    1996-01-01

    A new quasi three-dimensional finite element model of groundwater flow is developed for highly compressible multiaquifer systems where aquitard permeability and elastic storage are dependent on hydraulic drawdown. The model is solved by a block iterative strategy, which is naturally suggested by the geological structure of the porous medium and can be shown to be mathematically equivalent to a block Gauss-Seidel procedure. As such it can be generalized into a block overrelaxation procedure and greatly accelerated by the use of the optimum overrelaxation factor. Results for both linear and nonlinear multiaquifer systems emphasize the excellent computational performance of the model and indicate that convergence in leaky systems can be improved up to as much as one order of magnitude.

  15. Monitoring the ground water level change during the pump test by using the Electric resistivity tomography

    Science.gov (United States)

    Hsu, H.; Chang, P. Y.; Yao, H. J.

    2017-12-01

    For hydrodynamics study of the unconfined aquifer in gravel formation, a pumping test was established to estimate the hydraulic conductivity in the midstream of Zhoushui River in Taiwan. The hydraulic parameters and the cone of depression could be estimated by monitoring the groundwater drawdown in an observation well which was in a short distance far from the pumping well. In this study we carried out the electric resistivity image monitoring during the whole pumping test. The electric resistivity data was measured with the surface and downhole electrodes which would produce a clear subsurface image of groundwater level through a larger distance than the distance between pumping and observation wells. The 2D electric image could also describe how a cone of depression truly created at subsurface. The continuous records could also show the change of groundwater level during the whole pumping test which could give a larger scale of the hydraulic parameters.

  16. Industrial production of RHIC magnets

    International Nuclear Information System (INIS)

    Anerella, M.D.; Fisher, D.H.; Sheedy, E.; McGuire, T.

    1995-01-01

    ''Doing more with less'' has always been the signature of the military man and is especially true of Air Force weapons handlers. However, as the military drawdown continues, the phase takes on new meaning and becomes an unmistakable way of life for many. Unfortunately, all the resourcefulness in the world cannot overcome some obstacles, forcing a review of utility and mission effectiveness. How can we continue to reduce our resources and still meet our requirements? This paper documents the efforts under way to create a new tool for high fidelity, dexterous, heavy payload manipulation tasks. The ultimate goal of the Next Generation Munitions Handler Advanced Technology Demonstrator (ATD) is the identification and integration of the enabling technologies necessary to produce a system that reduces weapon loading times and operator workload while addressing mobility requirements

  17. An Update of the Analytical Groundwater Modeling to Assess Water Resource Impacts at the Afton Solar Energy Zone

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, John J. [Argonne National Lab. (ANL), Argonne, IL (United States); Greer, Christopher B. [Argonne National Lab. (ANL), Argonne, IL (United States); Carr, Adrianne E. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-10-01

    The purpose of this study is to update a one-dimensional analytical groundwater flow model to examine the influence of potential groundwater withdrawal in support of utility-scale solar energy development at the Afton Solar Energy Zone (SEZ) as a part of the Bureau of Land Management’s (BLM’s) Solar Energy Program. This report describes the modeling for assessing the drawdown associated with SEZ groundwater pumping rates for a 20-year duration considering three categories of water demand (high, medium, and low) based on technology-specific considerations. The 2012 modeling effort published in the Final Programmatic Environmental Impact Statement for Solar Energy Development in Six Southwestern States (Solar PEIS; BLM and DOE 2012) has been refined based on additional information described below in an expanded hydrogeologic discussion.

  18. A water management strategy for balancing water uses in the Rideau Canal

    International Nuclear Information System (INIS)

    McClennan, B.; Rae, P.; McGonegal, K.

    1995-01-01

    Alternative water management policies for the Rideau Canal system in eastern Ontario were examined. The methodology of analysis and the impact of policy changes on hydro power production were also focussed on. A historical account of the construction and background of the canal system was providid. Water uses such as navigation, hydroelectric power generation, natural environment, flood abatement, recreation, and water supply were described. Current water management practice was outlined. Various single purpose water management policies were investigated. The impact of the most significant policies on hydroelectric power production were discussed. Integrated policy alternatives were presented and their general effects were described. No long term policy was finalized at the time of writing, but a number of short term operating practices were considered, among them to adjust spring flows for walleye, store flows in the Big Rideau for ice flushings, balance drawdown among reservoirs and raise navigation levels in certain lakes

  19. Water activities in Forsmark. Ecological field inventory and classification of biodiversity values and description of forest production land; Vattenverksamhet i Forsmark. Ekologisk faeltinventering och naturvaerdesklassificering samt beskrivning av skogsproduktionsmark

    Energy Technology Data Exchange (ETDEWEB)

    Hamren, Ulrika; Collinder, Per [Ekologigruppen AB (Sweden)

    2010-12-15

    In 2009, the Swedish Nuclear Fuel and Waste Management Co (SKB) chose Forsmark in the Municipality of Oesthammar as site for the final repository for spent nuclear fuel. This report describes nature values and forestry areas in Forsmark, and provides part of the background material for description of consequences due to groundwater diversion during construction and operation of the repository. The report describes results of map studies and comprehensive field investigations, in terms of geographical delineations, descriptions of characteristics and classifications of nature values for groundwater dependent or groundwater favoured nature objects in Forsmark. The nature objects are located in an investigation area, which contains the area that according to numerical flow modelling could be affected by groundwater-table drawdown due to groundwater diversion

  20. Impact of Rain Water Infiltration on the Stability of Earth Slopes

    Directory of Open Access Journals (Sweden)

    Muhammad Farooq Ahmed

    2016-12-01

    Full Text Available Slope failure occurs very often in natural and man-made slopes which are subjected to frequent changes in ground water level, rapid drawdown, rainfall and earthquakes. The current study discusses the significance of water infiltration, pore water pressure and degree of saturation that affect the stability of earth slopes. Rainwater infiltration not only mechanically reduces the shear strength of a slope material, but also chemically alters the mineral composition of the soil matrix. It results in the alteration of macro structures which in turn decreases the factor of safety. A few case studies are discussed in this paper to quantitatively observe the variation in factor of safety (FOS of various earth slopes by changing the degree of saturation. The results showed that most of the earth slopes get failed or become critical when the degree of saturation approaches to 50 % or more.

  1. Ocean fertilization with iron: effects on climate and air quality

    International Nuclear Information System (INIS)

    Liss, Peter; Chuck, Adele; Bakker, Dorothee; Turner, Suzanne

    2005-01-01

    It is well known that iron fertilization can increase primary production and hence CO 2 drawdown over a significant fraction of the oceans. What is less well established is the extent to which this leads to long-term sequestration of carbon to the deep oceans, and to feedbacks to the atmosphere arising from increased biological activity. In this note results for changes in trace gas concentrations during an iron addition experiment in the Southern Ocean are presented. They demonstrate that a complex situation exists; some gases (DMS, CH 3 I, CHBr 2 Cl) show increases in concentration following fertilization with iron while others show no change (CH 3 ONO 2 , CH 2 ClI) or even a decrease (CHBr 3 ). The concomitant effects on air/sea fluxes of these gases are potentially important for climate and atmospheric composition

  2. Potential Ecological Effects of Contaminants in the Exposed Par Pond Sediments

    International Nuclear Information System (INIS)

    Paller, M.H.; Wike, L.D.

    1996-08-01

    Sediment and small mammal samples were collected from the exposed sediments of Par Pond in early 1995, shortly before the reservoir was refilled after a 4-year drawdown. Sampling was confined to elevations between 58 and 61 meters (190 and 200 feet) above mean sea level, which includes the sediments likely to be exposed if the Par Pond water level is permitted to fluctuate naturally. Both soil and small mammal samples were analyzed for a number of radionuclides and metals. Some of the soil samples were also analyzed for organic contaminants. The objective of the study was to determine if contaminant levels in the Par Pond sediments were high enough to cause deleterious ecological effects

  3. Effects of bioirrigation on the spatial and temporal dynamics of oxygen above the sediment-water interface

    DEFF Research Database (Denmark)

    Murniati, E.; Gross, D.; Herlina, H.

    2017-01-01

    Burrow ventilation by tube-dwelling benthic animals affects solute exchange between sediments and water by 2 means. Drawing of O2-rich water into the burrow increases O2 availability in the sediment and stimulates biogeochemical and microbial processes, whereas flushing of the burrow creates a 3......-dimensional flow field above the burrow, which induces mixing. Previous studies have revealed the role of the diffusive boundary layer (DBL) thickness on the exchange of solutes between the sediment and overlying water. Mapping the O2 gradient within the DBL is a challenging task in the presence of benthic...... the outlet of the burrows and drawdown of O2-rich water above the inlet caused by peristaltic pumping of C. plumosus larvae. Vertical O2 gradients changed dynamically during burrow ventilation relative to in a control tank without animals. The advective transport of O2 above the opening caused by burrow...

  4. Groundwater flow modelling of the excavation and operational phases - Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Urban (Computer-aided Fluid Engineering AB, Lyckeby (Sweden)); Rhen, Ingvar (SWECO Environment AB, Falun (Sweden))

    2010-12-15

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different hydraulic conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. The modelling study reported here presents calculated inflow rates, drawdown of the groundwater table and upconing of deep saline water for different levels of grouting efficiency during the excavation and operational phases of a final repository at Laxemar. The inflow calculations were accompanied by a sensitivity study, which among other matters handled the impact of different deposition hole rejection criteria. The report also presents tentative modelling results for the duration of the saturation phase, which starts once the used parts of the repository are being backfilled

  5. Movement of gasified oil in an infinite stratum drained by a single well

    Energy Technology Data Exchange (ETDEWEB)

    Tomel' gas, V A

    1965-01-01

    This article presents a method of calculating the flow of gas and oil into a well, which drains a reservoir by the solution drive mechanism. The following conditions are assumed: (1) Initially, an infinite homogeneous reservoir is saturated with oil above the bubble point; (2) the well draining the reservoir is operated at constant pressure, below the bubble point; and (3) the reservoir contains 2 zones; the zone fartherest from the well contains only oil at a pressure above the bubble point, while the zone nearest the well contains both oil and gas. The pressure and oil saturation gradients around the well are calculated for a variety of conditions, and the results are shown graphically. As pressure drawdown increases, oil production increases and the gas factor at first decreases and then increases rapidly.

  6. Flow tests of the Willis Hulin Well. Volume III. Final report for the period October 1985--October 1990

    Energy Technology Data Exchange (ETDEWEB)

    Randolph, P.L.; Hayden, C.G.; Rogers, L.A.

    1992-02-01

    The initial flow test of the Hulin well was done to obtain brine and gas samples and to get a first measure of the reservoir properties. The 20,602 to 20,690-foot interval was perforated and tested in two short-term draw-down and buildup tests. This zone had an initial pressure of 17,308 psia and temperature of 339 F. The total dissolved solids of 207,000 mg/L (mostly sodium chloride) is higher than for previously tested Gulf Coast geopressured-geothermal wells. The gas content in the brine of 31 to 32 SCF/STB indicates that the brine is at or near saturation with natural gas. The permeability, as deduced from the draw-down and buildup tests, is 13 md for the lower 80-foot-thick sand member. The duration of the tests was too short to determine the lateral extent of the reservoir; but declining measured values for static bottomhole pressure prior to each flow test suggests a relatively small reservoir. When the uppermost interval in the zone of interest (20,220 to 20,260 feet) was perforated such that flow from this zone would commingle with flow from the lower zone, little to no free gas was observed. It had been speculated before the test that there might be free gas in this upper zone. These speculations were generally deduced from logs after assuming the formation contained brine that had a salinity between 70,000 and 100,000 mg/L. The actual salinity was more than twice that number. it is now apparent that the amount of free gas, if any, is too small to make a significant contribution to production in a short-term test. This does not preclude the possibility of mobilization of gas by higher drawdown or coning down from an offsetting gas cap in one or more of the sand members. However, there was no evidence that this was occurring in this test. No measurements of the reservoir parameters, such as permeability, were made for the shallowest interval tested. But substantially lower drawdown for the commingled zones suggests either higher permeability or lower skin

  7. Geoengineering and the blockchain: a near-complete solution to greenhouse emissions?

    Science.gov (United States)

    Lockley, A.; Coffman, D.

    2016-12-01

    Geoengineering has been proposed to deal partially with the consequences ofanthropogenic global warming. This is composed of two strands - fast acting,incomplete but inexpensive solar radiation management; and carbon dioxide removal,which (if enacted quickly) has the potential to be a complete solution. We propose asystem of smart contracts, executed and made transparent by the blockchain, toprovide an economically and environmentally complete solution to carbon emissions atthe point of combustion. This will integrate CDR futures contracts and SRM carboncredits to ensure that all emissions are fully and transactionally disposed of at themoment of release. Specifically, we suggest use of an SRM 'bridge' contract, tocounter the warming caused between CDR economic activity being undertaken, andthe resultant drawdown of carbon occurring.

  8. Parcperdue Geopressure--Geothermal Project: Appendix B

    Energy Technology Data Exchange (ETDEWEB)

    Sweezy, L.R.

    1981-10-05

    The reservoir models used to perform the drawdown and buildup pressure analyses consist of analytic forms in lieu of the finite difference or numeric simulator types. Analytic models are derived from solutions of the diffusion equation which relate a pressure response with time and distance in the reservoir for a specified flow system. Solutions of the diffusion equation are obtained through mathematical methods such as Laplace transforms, Fourier transforms, Neuman's product techniques and Green's functions. Before an analytic solution is derived, the diffusivity equation is expressed in terms of dimensionless potential (m{sub D}), dimensionless distance (r{sub D}) and dimensionless time (t{sub D}). For the cylindrical coordinate case, the diffusivity equation in dimensionless form for a geopressured system is given.

  9. The problems of over exploitation of aquifers in semi-arid areas: characteristics and proposals for mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Estrella, T.

    2014-06-01

    This article presents a general analysis of the problems arising from overexploited aquifers in semi-arid areas, based on research carried out in the Region of Murcia (one of the most over-exploited areas in Europe). Among the negative impacts of this over exploitation are: the drying up of springs, the continuous drawdown of water levels (up to 10 m/y), piezo metric drops (over 30 m in one year if it is a karstic aquifer), an increase in pumping costs (elevating water from a depth of more than 450 m), abandonment of wells, diminishing groundwater reserves, deteriorating water quality, presence of CO{sub 2}, compartmentalizing of aquifers, etc. A series of internal measures is proposed to alleviate the over exploitation of the region. (Author)

  10. Sea ice contribution to the air-sea CO(2) exchange in the Arctic and Southern Oceans

    DEFF Research Database (Denmark)

    Rysgaard...[], Søren; Bendtsen, Jørgen; Delille, B.

    2011-01-01

    Although salt rejection from sea ice is a key process in deep-water formation in ice-covered seas, the concurrent rejection of CO(2) and the subsequent effect on air-sea CO(2) exchange have received little attention. We review the mechanisms by which sea ice directly and indirectly controls the air......-sea CO(2) exchange and use recent measurements of inorganic carbon compounds in bulk sea ice to estimate that oceanic CO(2) uptake during the seasonal cycle of sea-ice growth and decay in ice-covered oceanic regions equals almost half of the net atmospheric CO(2) uptake in ice-free polar seas. This sea......-sea CO(2) exchange during winter, and (3) release of CO(2)-depleted melt water with excess total alkalinity during sea-ice decay and (4) biological CO(2) drawdown during primary production in sea ice and surface oceanic waters....

  11. Estimation of free-hydrocarbon recovery from dual-pump systems

    International Nuclear Information System (INIS)

    Charbeneau, R.J.

    1995-01-01

    Free-product hydrocarbon which floats on the water table may be recovered using single-pump and dual-pump systems. The factors that affect the long-term free-product recovery using dual-pump systems include the free-product thickness as measured in monitoring wells, the ground-water pumping rate, hydrocarbon density and viscosity, and the soil permeability. This paper presents a simple model for prediction of free-product recovery using dual-pump systems. The model predicts the long-term rather than short-term recovery rates, and lends itself to spreadsheet calculations on microcomputers. A particularly simple form arises for cases where the drawdown is small. An application for estimating recovery from a dual-pump system is presented, and limitations of the model are summarized

  12. Some basic business concepts

    International Nuclear Information System (INIS)

    Jones, D.R.

    1992-01-01

    This paper reports that recent history has shown that, even for industries in state-owned, centrally planned economies, the measurement of success must relate to making an economic profit or else the industry, and ultimately the entire economy, will fail spectacularly. In short, success must be measured by the KISS (keep it simple, stupid) principle that income must exceed outgo. Let's expand the KISS principle to a definition of success (profit or loss) for an enterprise of any size engaged in oil and gas exploration and development (including acquisition of producing properties): Profit = Income + Drawdown of cash reserves - Outgo. Note that this is not an accounting definition nor a tax definition nor even a business school definition. It is a survival definition. If this measure is negative at any time, the enterprise can continue to exist only at the forbearance of its creditors

  13. Williston Reservoir: Site preparation and post-flood cleanup

    International Nuclear Information System (INIS)

    Loose, J.A.

    1990-01-01

    Williston Reservoir is the second largest in Canada and ranks ninth on the world scale. It was formed by the construction of the W.A.C. Bennet Dam and is the most important hydroelectric storage reservoir and largest body of fresh water in British Columbia. Site preparation for the reservoir began in 1962, with pre-flood clearing involving salvage of merchantable timber, handfalling, machine downing, burning of slash and burial. Post-flood cleanup included timber salvage, bailing and burning debris, tractor piling and burning, crane piling in shallows, underwater cutting, and hand cutting during low drawdown. Various types of floating debris have presented problems for recreational use, log booming and transport, waterways and aviation. Protection of the spillway is accomplished with a floating boom upstream of the channel. Administration, funding, forest clearance, salvage methods, clearing standards, wood volumes, project costs, environmental concerns, and future priorities are discussed. 5 figs., 2 tabs

  14. Mass coral spawning: A natural large-scale nutrien t addition experiment

    DEFF Research Database (Denmark)

    Eyre, B.D.; Glud, Ronnie Nøhr; Patten, N.

    2008-01-01

    A mass coral spawning event on the Heron Island reef flat in 2005 provided a unique opportunity to examine the response of a coral reef ecosystem to a large episodic nutrient addition. A post-major spawning phytoplankton bloom resulted in only a small drawdown of dissolved inorganic phosphorus (DIP......), and dissolved organic phosphorus were used in the production of biomass, and mass balance calculations highlighted the importance of organic forms of N and P for benthic and pelagic production in tropical coral reef environments characterized by low inorganic N and P. The input of N and P via the deposition...... potential N limitation of benthic coral reef communities. For example, there was sufficient bioavailable P stored in the top 10 cm of the sediment column to sustain the prespawning rates of benthic production for over 200 d. Most of the change in benthic N cycling occurred via DON and N-2 pathways, driven...

  15. A preliminary report on the artesian water supply of Memphis, Tennessee

    Science.gov (United States)

    Wells, F.G.

    1932-01-01

    Memphis is located in the part of the Gulf Coastal Plain known as the Mississippi embayment. It is underlain by unconsolidated sand and clay formations of Tertiary and Cretaceous age. The Wilcox group, of Tertiary age, and the Ripley formation, of Cretaceous age, are excellent aquifers, and all the water consumed in Memphis is derived from them. The maximum pumpage from the Wilcox group was reached about 1920; in that year an estimated average of 37,575,000 gallons a day was pumped. In 1928 the average daily pumpage from the Wilcox group was about 33,984,000 gallons, and in addition to this the Memphis Artesian Water Department pumped an average of 4,616,000 gallons a day from the Ripley formation. The static level at Memphis varies with the pumpage and the stage of the Mississippi River. The original static level was about 235 feet above mean sea level. In 1928 the average static level at the Auction Avenue plant was 202 feet above mean sea level, which was about 33 feet lower than the original level. The yield is therefore about a million gallons a day for each foot of drawdown. The drawdown is not excessive, and additional pumpage can be developed without undue lowering of head. The water from both the Wilcox group and the Ripley formation is fairly soft and has a moderately low content of dissolved mineral matter. The iron content is sufficiently high to be objectionable, but the iron is easily removed by aeration followed by either settling or filtration for removal of sediment.

  16. A non-native prey mediates the effects of a shared predator on an ecosystem service.

    Directory of Open Access Journals (Sweden)

    James E Byers

    Full Text Available Non-native species can alter ecosystem functions performed by native species often by displacing influential native species. However, little is known about how ecosystem functions may be modified by trait-mediated indirect effects of non-native species. Oysters and other reef-associated filter feeders enhance water quality by controlling nutrients and contaminants in many estuarine environments. However, this ecosystem service may be mitigated by predation, competition, or other species interactions, especially when such interactions involve non-native species that share little evolutionary history. We assessed trophic and other interference effects on the critical ecosystem service of water filtration in mesocosm experiments. In single-species trials, typical field densities of oysters (Crassostrea virginica reduced water-column chlorophyll a more strongly than clams (Mercenaria mercenaria. The non-native filter-feeding reef crab Petrolisthes armatus did not draw down chlorophyll a. In multi-species treatments, oysters and clams combined additively to influence chlorophyll a drawdown. Petrolisthes did not affect net filtration when added to the bivalve-only treatments. Addition of the predatory mud crab Panopeus herbstii did not influence oyster feeding rates, but it did stop chlorophyll a drawdown by clams. However, when Petrolisthes was also added in with the clams, the clams filtered at their previously unadulterated rates, possibly because Petrolisthes drew the focus of predators or habituated the clams to crab stimuli. In sum, oysters were the most influential filter feeder, and neither predators nor competitors interfered with their net effect on water-column chlorophyll. In contrast, clams filtered less, but were more sensitive to predators as well as a facilitative buffering effect of Petrolisthes, illustrating that non-native species can indirectly affect an ecosystem service by aiding the performance of a native species.

  17. Hydrogeological pre-modelling exercises. Assessment of impact of the Aespoe Hard Rock Laboratory. Sensitivities of palaeo-hydrogeology. Development of a local near-surface Hydro-DFN for KLX09B-F. Site descriptive modelling SDM-Site Laxemar

    International Nuclear Information System (INIS)

    Hartley, Lee; Jackson, Peter; Joyce, Steve; Roberts, David; Shevelan, John; Swift, Ben; Gylling, Bjoern; Marsic, Niko; Hermanson, Jan; Oehman, Johan

    2007-12-01

    Numerical modelling has been used to investigate the potential impact of the Aespoe HRL on regional groundwater flow and hydro-geochemistry in the Laxemar study area. The numerical models have been adapted for this application from the ones use in the site-descriptive modelling (SDM) and SR-Can assessment modelling based on Laxemar version 1.2. In order to test the robustness of the simulation results, sensitivities were studied with respect to different flow boundary conditions and the hydraulic properties of the Quaternary deposits, particularly those beneath the sea around the Aespoe island. The simulations show that the Aespoe HRL has a local effect on the groundwater situation. Typically, in the simulations, the rock under the Aespoe island, the bays around it and the Aevroe area (mainly western part of the islands of Aevroe, Mjaelen and Haaloe) are influenced. In the sensitivity study, visualisations of the drawdown caused by the HRL tunnel system show small differences in the results for head versus flux top boundary conditions, little sensitivity to a change in the surface infiltration rate, but most sensitivity to the contact between the sea and the bedrock beneath the seabed sediments. For all simulation cases considered, results suggest that the Aespoe HRL has not been in operation sufficiently long to have affected the chemistry of samples collected at Laxemar and Simpevarp, though there is some possibility that Aevroe samples have been altered, at least for boreholes in the western part of Aevroe, Mjaelen and Haaloe. The distribution of flow and discharge areas around the bay at Aespoe is clearly affected by the HRL for all cases. Using the drawdown in percussion drilled boreholes around Aespoe as an interference test suggests that there is a partial reduction in the hydraulic contact between the sea and the groundwater system in the bedrock beneath. It is recommended that the conclusions about appropriate hydraulic properties for Quaternary sediments

  18. Model test on partial expansion in stratified subsidence during foundation pit dewatering

    Science.gov (United States)

    Wang, Jianxiu; Deng, Yansheng; Ma, Ruiqiang; Liu, Xiaotian; Guo, Qingfeng; Liu, Shaoli; Shao, Yule; Wu, Linbo; Zhou, Jie; Yang, Tianliang; Wang, Hanmei; Huang, Xinlei

    2018-02-01

    Partial expansion was observed in stratified subsidence during foundation pit dewatering. However, the phenomenon was suspected to be an error because the compression of layers is known to occur when subsidence occurs. A slice of the subsidence cone induced by drawdown was selected as the prototype. Model tests were performed to investigate the phenomenon. The underlying confined aquifer was generated as a movable rigid plate with a hinge at one end. The overlying layers were simulated with remolded materials collected from a construction site. Model tests performed under the conceptual model indicated that partial expansion occurred in stratified settlements under coordination deformation and consolidation conditions. During foundation pit dewatering, rapid drawdown resulted in rapid subsidence in the dewatered confined aquifer. The rapidly subsiding confined aquifer top was the bottom deformation boundary of the overlying layers. Non-coordination deformation was observed at the top and bottom of the subsiding overlying layers. The subsidence of overlying layers was larger at the bottom than at the top. The layers expanded and became thicker. The phenomenon was verified using numerical simulation method based on finite difference method. Compared with numerical simulation results, the boundary effect of the physical tests was obvious in the observation point close to the movable endpoint. The tensile stress of the overlying soil layers induced by the underlying settlement of dewatered confined aquifer contributed to the expansion phenomenon. The partial expansion of overlying soil layers was defined as inversed rebound. The inversed rebound was induced by inversed coordination deformation. Compression was induced by the consolidation in the overlying soil layers because of drainage. Partial expansion occurred when the expansion exceeded the compression. Considering the inversed rebound, traditional layer-wise summation method for calculating subsidence should be

  19. Simulation of hydraulic disturbances caused by the underground rock characterisation facility in Olkiluoto, Finland

    International Nuclear Information System (INIS)

    Loefman, J.; Ferenc, M.

    2004-01-01

    Spent fuel from the Finnish nuclear power plants will be disposed of in a repository to be excavated in crystalline bedrock at a depth of 400-700 metres in Olkiluoto. The extensive site investigations carried out since the early 1980's will next focus on the construction of an underground rock characterisation facility (ONKALO) in 2004-2010. The open tunnel system will constitute a major hydraulic disturbance for the site's groundwater conditions for hundreds of years. Especially, inflow of groundwater into the tunnels results in a drawdown of groundwater table and upcoming of deep saline groundwater, which the present study aimed to assess by means of a 3D finite element simulation. The modelled bedrock volume, which horizontally covered the whole Olkiluoto island, was conceptually divided into hydraulic units, planar fracture zones and sparsely fractured rock between the zones, which were both separately treated as porous media. The geometry of the fracture zones was based on the geological bedrock model. Simulations showed that without engineering measures (e.g. grouting) taken to limit inflow of groundwater into the open tunnels, the hydraulic disturbances could be drastic. The tunnels draw groundwater from all directions in the bedrock. A major part of inflow comes from the well-conductive subhorizontal fracture zones intersected by the access tunnel and the shaft. The simulations show that the resulting drawdown of groundwater table may be from tens to hundreds of metres and the depressed area may extend over the area of the island. The results also indicate that the salinity of groundwater is gradually rising around and below the tunnel system, and locally concentration (TDS) may rise rather high in the vicinity of the tunnels. However, the disturbances can significantly be reduced by the grouting of rock. (orig.)

  20. Multi-scale responses to warming in an experimental insect metacommunity.

    Science.gov (United States)

    Grainger, Tess Nahanni; Gilbert, Benjamin

    2017-12-01

    In metacommunities, diversity is the product of species interactions at the local scale and dispersal between habitat patches at the regional scale. Although warming can alter both species interactions and dispersal, the combined effects of warming on these two processes remains uncertain. To determine the independent and interactive effects of warming-induced changes to local species interactions and dispersal, we constructed experimental metacommunities consisting of enclosed milkweed patches seeded with five herbivorous milkweed specialist insect species. We treated metacommunities with two levels of warming (unwarmed and warmed) and three levels of connectivity (isolated, low connectivity, high connectivity). Based on metabolic theory, we predicted that if plant resources were limited, warming would accelerate resource drawdown, causing local insect declines and increasing both insect dispersal and the importance of connectivity to neighboring patches for insect persistence. Conversely, given abundant resources, warming could have positive local effects on insects, and the risk of traversing a corridor to reach a neighboring patch could outweigh the benefits of additional resources. We found support for the latter scenario. Neither resource drawdown nor the weak insect-insect associations in our system were affected by warming, and most insect species did better locally in warmed conditions and had dispersal responses that were unchanged or indirectly affected by warming. Dispersal across the matrix posed a species-specific risk that led to declines in two species in connected metacommunities. Combined, this scaled up to cause an interactive effect of warming and connectivity on diversity, with unwarmed metacommunities with low connectivity incurring the most rapid declines in diversity. Overall, this study demonstrates the importance of integrating the complex outcomes of species interactions and spatial structure in understanding community response to climate

  1. Remediation of a large contaminated reactor cooling reservoir: Resolving an environmental/regulatory paradox

    International Nuclear Information System (INIS)

    Marcy, B.C.; Doswell, A.C.; Bowers, J.A.; Gladden, J.B.; Hickey, H.M.; Jones, M.P.; Mackey, H.E.; Mayer, J.J.

    1994-01-01

    This is a case study of a former reactor cooling water reservoir, PAR Pond, located at the U.S. Department of Energy's (DOE) Savannah River Site (SRS) in South Carolina. PAR Pond, a 2,640 acre, man-made reservoir was built in 1958 and until 1988, received cooling water from two DOE nuclear production reactors, P and R. The lake sediments were contaminated with low levels of mercury accumulated in the sediments from pumping water from the Savannah River. PAR Ponds' stability, size, and nutrient content made a significant, unique, and highly studied ecological resource for fish and wildlife populations in the southeast until it was partially drained in 1991 for safety reasons, to about one-third of its historic volume. The drawdown created 1340 acres of exposed, radioactively contaminated sediments along 33 miles of shoreline. EPA declared PAR Pond as a CERCLA operable unit subject to remediation. The drawdown also raised concerns for the populations of aquatic plants, fish, alligators, and endangered species and increased the potential for off-site migration of contaminated wildlife. Because of the paradox of this ecologically valuable, yet contaminated ecosystem, the lake's future ecological and operational management is uncertain. Applicable regulations, such as NEPA and CERCLA, require wetland loss evaluations, human health and ecological risk assessments, and remediation feasibility studies. DOE is committed to spending several million dollars to repair the dam for safety reasons, even though the lake will probably not be used for cooling purposes. At the same time, DOE must make decisions whether to refill and expend additional public funds to maintain a full pool to reduce the risks defined under CERCLA or spend hundreds of millions in remediation costs. This case represents the types of issues and conflicts that will need to be addressed within the DOE complex and globally as nuclear production facilities are transitioned to inactive status

  2. Methane and CO2 emissions from China's hydroelectric reservoirs: a new quantitative synthesis.

    Science.gov (United States)

    Li, Siyue; Zhang, Quanfa; Bush, Richard T; Sullivan, Leigh A

    2015-04-01

    Controversy surrounds the green credentials of hydroelectricity because of the potentially large emission of greenhouse gases (GHG) from associated reservoirs. However, limited and patchy data particularly for China is constraining the current global assessment of GHG releases from hydroelectric reservoirs. This study provides the first evaluation of the CO2 and CH4 emissions from China's hydroelectric reservoirs by considering the reservoir water surface and drawdown areas, and downstream sources (including spillways and turbines, as well as river downstream). The total emission of 29.6 Tg CO2/year and 0.47 Tg CH4/year from hydroelectric reservoirs in China, expressed as CO2 equivalents (eq), corresponds to 45.6 Tg CO2eq/year, which is 2-fold higher than the current GHG emission (ca. 23 Tg CO2eq/year) from global temperate hydropower reservoirs. China's average emission of 70 g CO2eq/kWh from hydropower amounts to 7% of the emissions from coal-fired plant alternatives. China's hydroelectric reservoirs thus currently mitigate GHG emission when compared to the main alternative source of electricity with potentially far great reductions in GHG emissions and benefits possible through relatively minor changes to reservoir management and design. On average, the sum of drawdown and downstream emission including river reaches below dams and turbines, which is overlooked by most studies, represents the equivalent of 42% of the CO2 and 92% of CH4 that emit from hydroelectric reservoirs in China. Main drivers on GHG emission rates are summarized and highlight that water depth and stratification control CH4 flux, and CO2 flux shows significant negative relationships with pH, DO, and Chl-a. Based on our finding, a substantial revision of the global carbon emissions from hydroelectric reservoirs is warranted.

  3. A Semianalytical Model for Pumping Tests in Finite Heterogeneous Confined Aquifers With Arbitrarily Shaped Boundary

    Science.gov (United States)

    Wang, Lei; Dai, Cheng; Xue, Liang

    2018-04-01

    This study presents a Laplace-transform-based boundary element method to model the groundwater flow in a heterogeneous confined finite aquifer with arbitrarily shaped boundaries. The boundary condition can be Dirichlet, Neumann or Robin-type. The derived solution is analytical since it is obtained through the Green's function method within the domain. However, the numerical approximation is required on the boundaries, which essentially renders it a semi-analytical solution. The proposed method can provide a general framework to derive solutions for zoned heterogeneous confined aquifers with arbitrarily shaped boundary. The requirement of the boundary element method presented here is that the Green function must exist for a specific PDE equation. In this study, the linear equations for the two-zone and three-zone confined aquifers with arbitrarily shaped boundary is established in Laplace space, and the solution can be obtained by using any linear solver. Stehfest inversion algorithm can be used to transform it back into time domain to obtain the transient solution. The presented solution is validated in the two-zone cases by reducing the arbitrarily shaped boundaries to circular ones and comparing it with the solution in Lin et al. (2016, https://doi.org/10.1016/j.jhydrol.2016.07.028). The effect of boundary shape and well location on dimensionless drawdown in two-zone aquifers is investigated. Finally the drawdown distribution in three-zone aquifers with arbitrarily shaped boundary for constant-rate tests (CRT) and flow rate distribution for constant-head tests (CHT) are analyzed.

  4. Neodymium isotope ratios in fish debris as a tracer for a low oxygen water mass in the equatorial Pacific across the last glacial termination.

    Science.gov (United States)

    Reimi Sipala, M. A.; Marcantonio, F.

    2017-12-01

    The deep ocean has long been suggested as a potential sink of carbon during the LGM, providing storage for the drawdown of atmospheric CO2 observed in the climate record. However, the exact location, origin and pathway of this respired carbon pool remains largely unconstrained. The equatorial Pacific is an important player in the ocean biogeochemical cycling of carbon, with many researchers focusing on the changes in iron-limited systems and potential micronutrient supply changes throughout the Pleistocene glaciation. Here we attempt to isolate the role of deep water circulation changes that may be associated with changing bottom water oxygen conditions in the Central Equatorial Pacific during the last deglaciation. We measure the variability of the Nd isotopic composition of fish debris from three sites in the Central Equatorial Pacific (CEP) along a meridional transect at approximately 160° W -- 0° 28' N (ML1208-17PC), 4° 41' N (ML1208-31BB), and 7 ° 2'N (ML1208-31BB). Nd isotopic values in fish debris reflect the Nd isotopic composition of bottom water at the time of deposition and are insensitive to moderate changes in redox conditions or pore water oxygen levels. Nd isotope ratios can, therefore, be used as an effective deep-ocean water mass tracer. This work attempts to illuminate our current understanding of changes in bottom water oxygenation conditions throughout the Equatorial Pacific over the past 25 kyr. High authigenic U concentrations during peak glacial conditions have been attributed to deep-water suboxic conditions potentially associated with increased respired carbon storage. However, it is still unclear if these changes originate in the Southern Ocean, and propagate to the equatorial Pacific through an increased in penetration of Southern Ocean Intermediate water, or if they represent a change in the efficiency of the biological pump, permitting a drawdown of oxygen in bottom water without increased nutrient availability.

  5. Responses of non-methane biogenic volatile organic compound emissions to climate change in boreal and subarctic ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Faubert, P.

    2010-07-01

    Non-methane biogenic volatile organic compound emissions (BVOCs) have important roles in the global atmospheric chemistry but their feedbacks to climate change are still unknown. This thesis reports one of the first estimates of BVOC emissions from boreal and subarctic ecosystems. Most importantly, this thesis assesses the BVOC emission responses to four effects of climate change in these ecosystems: (1) the direct effect of warming, and its indirect effects via (2) water table drawdown, (3) change in the vegetation composition, and (4) enhanced UV-B radiation. BVOC emissions were measured using a conventional chamber method in which the compounds were collected on adsorbent and later analyzed by gas chromatography-mass spectrometry. On a subarctic heath, warming by only 1.9-2.5 degC doubled the monoterpene and sesquiterpene emissions. Such a high increase of BVOC emissions under a conservative warming cannot be predicted by the current models, which underlines the importance of a focus on BVOC emissions from the Subarctic under climate change. On a subarctic peatland, enhanced UV-B did not affect the BVOC emissions but the water table level exerted the major effect. The water table drawdown experimentally applied on boreal peatland microcosms decreased the emissions of monoterpenes and other VOCs (BVOCs with a lifetime>1 d) for the hollows (wet microsites) and that of all BVOC groups for the lawns (moderately wet microsites). The warming treatment applied on the lawn microcosms decreased the isoprene emission. The removal of vascular plants in the hummock (dry microsites) microcosms decreased the emissions of monoterpenes while the emissions between the microcosms covered with Sphagnum moss and bare peat were not different. In conclusion, the results presented in this thesis indicate that climate change has complex effects on the BVOC emissions. These results make a significant contribution to improving the modeling of BVOC emissions for a better understanding of

  6. Par Pond vegetation status Summer 1995 -- June survey descriptive summary

    International Nuclear Information System (INIS)

    Mackey, H.E. Jr.; Riley, R.S.

    1995-06-01

    The water level of Par Pond was lowered approximately 20 feet in mid-1991 in order to protect downstream residents from possible dam failure suggested by subsidence on the downstream slope of the dam and to repair the dam. This lowering exposed both emergent and nonemergent macrophyte beds to drying conditions resulting in extensive losses. A survey of the shoreline aquatic plant communities in June 1995, three months after the refilling of Par Pond to approximately 200 feet above mean sea level, indicated that much of the original plant communities and the intermediate shoreline communities present on the exposed sediments have been lost. The extensive old-field and emergent marsh communities that were present on the exposed shoreline during the drawdown have been flooded and much of the pre-drawdown Par Pond aquatic plant communities have not had sufficient time for re-establishment. The shoreline does, however, have extensive beds of maidencane which extend from the shoreline margin to areas as deep as 2 and perhaps 3 meters. Scattered individual plants of lotus and watershield are common and may indicate likely directions of future wetland development in Par Pond. In addition, within isolated coves, which apparently received ground water seepage and/or stream surface flows during the period of the Par Pond draw down, extensive beds of waterlilies and spike rush are common. Invasion of willow and red maple occurred along the lake shoreline as well. Although not absent from this survey, evidence of the extensive redevelopment of the large cattail and eel grass beds was not observed in this first survey of Par Pond. Future surveys during the growing seasons of 1995, 1996, and 1997 along with the evaluation of satellite date to map the areal extent of the macrophyte beds of Par Pond are planned

  7. Effects of coral reef benthic primary producers on dissolved organic carbon and microbial activity.

    Directory of Open Access Journals (Sweden)

    Andreas F Haas

    Full Text Available Benthic primary producers in marine ecosystems may significantly alter biogeochemical cycling and microbial processes in their surrounding environment. To examine these interactions, we studied dissolved organic matter release by dominant benthic taxa and subsequent microbial remineralization in the lagoonal reefs of Moorea, French Polynesia. Rates of photosynthesis, respiration, and dissolved organic carbon (DOC release were assessed for several common benthic reef organisms from the backreef habitat. We assessed microbial community response to dissolved exudates of each benthic producer by measuring bacterioplankton growth, respiration, and DOC drawdown in two-day dark dilution culture incubations. Experiments were conducted for six benthic producers: three species of macroalgae (each representing a different algal phylum: Turbinaria ornata--Ochrophyta; Amansia rhodantha--Rhodophyta; Halimeda opuntia--Chlorophyta, a mixed assemblage of turf algae, a species of crustose coralline algae (Hydrolithon reinboldii and a dominant hermatypic coral (Porites lobata. Our results show that all five types of algae, but not the coral, exuded significant amounts of labile DOC into their surrounding environment. In general, primary producers with the highest rates of photosynthesis released the most DOC and yielded the greatest bacterioplankton growth; turf algae produced nearly twice as much DOC per unit surface area than the other benthic producers (14.0±2.8 µmol h⁻¹ dm⁻², stimulating rapid bacterioplankton growth (0.044±0.002 log10 cells h⁻¹ and concomitant oxygen drawdown (0.16±0.05 µmol L⁻¹ h⁻¹ dm⁻². Our results demonstrate that benthic reef algae can release a significant fraction of their photosynthetically-fixed carbon as DOC, these release rates vary by species, and this DOC is available to and consumed by reef associated microbes. These data provide compelling evidence that benthic primary producers differentially influence

  8. Numerical modeling of Etla Valley aquifer, Oax., Mexico: Evolution and remediation scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Flores-Marquez, E. L; Martinez-Serrano, R. G; Chavez, R. E; Crusillo, Y [Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, Mexico D.F. (Mexico); Jimenez, G [Facultad de Ingenieria, Benemerita Universidad Autonoma de Puebla, Puebla (Mexico); Camops-Enriquez, O [Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, Mexico D.F. (Mexico)

    2008-01-15

    Short-term evolution (for 2001, 2005 and 2015) for the shallow aquifer of Etla Valley, Oaxaca, southern Mexico, was simulated based in a 3D hydrological model elaborated from the available geological, geophysical, geochemical, and hydrologic parameters. The numerical simulations were based on Visual MODFLOW code. These simulations indicate that, if the actual extraction regime is maintained, the drawdown of the potentiometric surface will get worse to the SE of the study area (i. e. beneath Oaxaca city). The prevailing aquifer flow direction favors the ground water pollution by fertilizers and leakage from the sewage network (dumped to the Atoyac river). According to the numerical simulation, remediation of this situation is possible if the wells located in the neighborhood of Oaxaca City are relocated at the recharge zones (i. e. at the feet from Sierra de Juarez). This remediation scenario will allow a recovery of the drawdown of the potentiometric surface. [Spanish] Se presenta un modelo geohidrologico evolutivo 3D a corto plazo (para los anos 2001, 2005 y 2015) del acuifero somero del Valle de Etla, Oaxaca, sureste de Mexico, basado en los parametros disponibles de geologia, geofisica, geoquimica e hidrologia. Las simulaciones numericas fueron realizadas en Visual MODFLOW. Estas simulaciones indican que, si el actual regimen de extraccion es mantenido, el abatimiento de la superficie potenciometrica puede ser mayor en el SE del area de estudio (i. e. cerca de la ciudad de Oaxaca). La contaminacion por fertilizantes y por las fugas de drenaje es favorecida por la direccion de flujo imperante en el acuifero (vaciandose en el rio Atoyac). De acuerdo a las simulaciones numericas, existe una posible remediacion de este proceso, relocalizando los pozos situados en la ciudad de Oaxaca en las zonas de recarga (i. e. en las faldas de la Sierra de Juarez). Este escenario de remediacion permitiria una recuperacion en el nivel de la superficie potenciometrica.

  9. Development of a decision support tool for water and resource management using biotic, abiotic, and hydrological assessments of Topock Marsh, Arizona

    Science.gov (United States)

    Holmquist-Johnson, Christopher; Hanson, Leanne; Daniels, Joan; Talbert, Colin; Haegele, Jeanette

    2016-05-23

    Topock Marsh is a large wetland adjacent to the Colorado River and the main feature of Havasu National Wildlife Refuge (Havasu NWR) in southern Arizona. In 2010, the U.S. Fish and Wildlife Service (FWS) and Bureau of Reclamation began a project to improve water management capabilities at Topock Marsh and protect habitats and species. Initial construction required a drawdown, which caused below-average inflows and water depths in 2010–11. U.S. Geological Survey Fort Collins Science Center (FORT) scientists collected an assemblage of biotic, abiotic, and hydrologic data from Topock Marsh during the drawdown and immediately after, thus obtaining valuable information needed by FWS.Building upon that work, FORT developed a decision support system (DSS) to better understand ecosystem health and function of Topock Marsh under various hydrologic conditions. The DSS was developed using a spatially explicit geographic information system package of historical data, habitat indices, and analytical tools to synthesize outputs for hydrologic time periods. Deliverables include high-resolution orthorectified imagery of Topock Marsh; a DSS tool that can be used by Havasu NWR to compare habitat availability associated with three hydrologic scenarios (dry, average, wet years); and this final report which details study results. This project, therefore, has addressed critical FWS management questions by integrating ecologic and hydrologic information into a DSS framework. This DSS will assist refuge management to make better informed decisions about refuge operations and better understand the ecological results of those decisions by providing tools to identify the effects of water operations on species-specific habitat and ecological processes. While this approach was developed to help FWS use the best available science to determine more effective water management strategies at Havasu NWR, technologies used in this study could be applied elsewhere within the region.

  10. Submergence Tolerance and Germination Dynamics of Roegneria nutans Seeds in Water-Level Fluctuation Zones with Different Water Rhythms in the Three Gorges Reservoir.

    Directory of Open Access Journals (Sweden)

    Feng Lin

    Full Text Available The Three Gorges Dam features two water-level fluctuation zones (WLFZs: the preupland drawdown zone (PU-DZ and the preriparian drawdown zone (PR-DZ. To investigate the vegetation potential of Roegneria nutans in WLFZs, we compared the submergence tolerance and germination dynamics in the natural riparian zone (NRZ, PU-DZ and PR-DZ. We found that the NRZ seeds maintained an 81.3% intactness rate and >91% germination rate. The final seed germination rate and germination dynamics were consistent with those of the controls. Meanwhile, the PU-DZ seeds submerged at 5 m, 10 m, 15 m, and 20 m exhibited intactness rates of 70.5%, 79.95%, 40.75%, and 39.87%, respectively, and >75% germination. Furthermore, the PR-DZ seeds exhibited intactness rates of 22.44%, 61.13%, 81.87%, and 15.36% at 5 m, 10 m, 15 m, and 17 m, respectively, and 80% germination. The germination rates of the intact seeds submerged >10 m were >80%. Finally, the intact seeds germinated quickly in all WLFZs. The high proportion of intact seeds, rapid germination capacity, and high germination rate permit R. nutans seeds to adapt to the complicated water rhythms of the PU-DZ and PR-DZ and indicate the potential for their use in vegetation restoration and recovery. Thus, perennial seeds can be used for vegetation restoration in the WLFZs of large reservoirs and in other regions with water rhythms similar to the Three Gorges Reservoir.

  11. Surrogate Model Application to the Identification of Optimal Groundwater Exploitation Scheme Based on Regression Kriging Method—A Case Study of Western Jilin Province

    Directory of Open Access Journals (Sweden)

    Yongkai An

    2015-07-01

    Full Text Available This paper introduces a surrogate model to identify an optimal exploitation scheme, while the western Jilin province was selected as the study area. A numerical simulation model of groundwater flow was established first, and four exploitation wells were set in the Tongyu county and Qian Gorlos county respectively so as to supply water to Daan county. Second, the Latin Hypercube Sampling (LHS method was used to collect data in the feasible region for input variables. A surrogate model of the numerical simulation model of groundwater flow was developed using the regression kriging method. An optimization model was established to search an optimal groundwater exploitation scheme using the minimum average drawdown of groundwater table and the minimum cost of groundwater exploitation as multi-objective functions. Finally, the surrogate model was invoked by the optimization model in the process of solving the optimization problem. Results show that the relative error and root mean square error of the groundwater table drawdown between the simulation model and the surrogate model for 10 validation samples are both lower than 5%, which is a high approximation accuracy. The contrast between the surrogate-based simulation optimization model and the conventional simulation optimization model for solving the same optimization problem, shows the former only needs 5.5 hours, and the latter needs 25 days. The above results indicate that the surrogate model developed in this study could not only considerably reduce the computational burden of the simulation optimization process, but also maintain high computational accuracy. This can thus provide an effective method for identifying an optimal groundwater exploitation scheme quickly and accurately.

  12. Evaluation difference between mass of received cargo and mass of handed over the cargo in the determination of the masses by draft survey

    Directory of Open Access Journals (Sweden)

    Yakuta I. V.

    2016-12-01

    Full Text Available The paper provides the analysis of problems associated with the evaluation of difference between the mass of received and handed over cargo in determining the masses by draft survey and due to the difference in the measurement conditions at the loading and unloading ports (due to the change errors in various stages of the measurement procedures. The errors that may arise in determining the mass of the cargo due to roughness when measuring draft, due to using the inclinometer to determine the draft from one of boards, due to instrumental errors in the determination of the density of seawater, due to other possible errors have been investigated and evaluated. To estimate the errors of draft due to heaving and errors of inclinometer some formula are to be applied, their derivation has been done in this paper. It has been recommended to use the traditional formula of high-speed drawdown with the replacement of vessel speed on current rate to calculate the error of precipitation arising from the drawdowns ship on a current. The value per unit displacement draft from loading scale has been used to evaluate the error of the displacement appearing in the presence of draft errors. As a result two similar criteria (rigorous and statistical of allowable discrepancies calculated by draft survey mass of cargo in the port of loading and port of discharge have been substantiated. These criteria require the calculation and accumulation in a table of all the errors and calculate the total error of displacement. Criteria will allow the consignee and the carrier come to a reasonable and agreed decision about the significance of differences of the masses taking into account the indifference of conditions and measuring instruments.

  13. Uncertainty Quantification and Global Sensitivity Analysis of Subsurface Flow Parameters to Gravimetric Variations During Pumping Tests in Unconfined Aquifers

    Science.gov (United States)

    Maina, Fadji Zaouna; Guadagnini, Alberto

    2018-01-01

    We study the contribution of typically uncertain subsurface flow parameters to gravity changes that can be recorded during pumping tests in unconfined aquifers. We do so in the framework of a Global Sensitivity Analysis and quantify the effects of uncertainty of such parameters on the first four statistical moments of the probability distribution of gravimetric variations induced by the operation of the well. System parameters are grouped into two main categories, respectively, governing groundwater flow in the unsaturated and saturated portions of the domain. We ground our work on the three-dimensional analytical model proposed by Mishra and Neuman (2011), which fully takes into account the richness of the physical process taking place across the unsaturated and saturated zones and storage effects in a finite radius pumping well. The relative influence of model parameter uncertainties on drawdown, moisture content, and gravity changes are quantified through (a) the Sobol' indices, derived from a classical decomposition of variance and (b) recently developed indices quantifying the relative contribution of each uncertain model parameter to the (ensemble) mean, skewness, and kurtosis of the model output. Our results document (i) the importance of the effects of the parameters governing the unsaturated flow dynamics on the mean and variance of local drawdown and gravity changes; (ii) the marked sensitivity (as expressed in terms of the statistical moments analyzed) of gravity changes to the employed water retention curve model parameter, specific yield, and storage, and (iii) the influential role of hydraulic conductivity of the unsaturated and saturated zones to the skewness and kurtosis of gravimetric variation distributions. The observed temporal dynamics of the strength of the relative contribution of system parameters to gravimetric variations suggest that gravity data have a clear potential to provide useful information for estimating the key hydraulic

  14. Hydrogeological pre-modelling exercises. Assessment of impact of the Aespoe Hard Rock Laboratory. Sensitivities of palaeo-hydrogeology. Development of a local near-surface Hydro-DFN for KLX09B-F. Site descriptive modelling SDM-Site Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, Lee; Jackson, Peter; Joyce, Steve; Roberts, David; Shevelan, John; Swift, Ben (Serco Assurance, Harwell (GB)); Gylling, Bjoern; Marsic, Niko (Kemakta Konsult AB, Stockholm (SE)); Hermanson, Jan; Oehman, Johan (Golders Associates (SE))

    2007-12-15

    Numerical modelling has been used to investigate the potential impact of the Aespoe HRL on regional groundwater flow and hydro-geochemistry in the Laxemar study area. The numerical models have been adapted for this application from the ones use in the site-descriptive modelling (SDM) and SR-Can assessment modelling based on Laxemar version 1.2. In order to test the robustness of the simulation results, sensitivities were studied with respect to different flow boundary conditions and the hydraulic properties of the Quaternary deposits, particularly those beneath the sea around the Aespoe island. The simulations show that the Aespoe HRL has a local effect on the groundwater situation. Typically, in the simulations, the rock under the Aespoe island, the bays around it and the Aevroe area (mainly western part of the islands of Aevroe, Mjaelen and Haaloe) are influenced. In the sensitivity study, visualisations of the drawdown caused by the HRL tunnel system show small differences in the results for head versus flux top boundary conditions, little sensitivity to a change in the surface infiltration rate, but most sensitivity to the contact between the sea and the bedrock beneath the seabed sediments. For all simulation cases considered, results suggest that the Aespoe HRL has not been in operation sufficiently long to have affected the chemistry of samples collected at Laxemar and Simpevarp, though there is some possibility that Aevroe samples have been altered, at least for boreholes in the western part of Aevroe, Mjaelen and Haaloe. The distribution of flow and discharge areas around the bay at Aespoe is clearly affected by the HRL for all cases. Using the drawdown in percussion drilled boreholes around Aespoe as an interference test suggests that there is a partial reduction in the hydraulic contact between the sea and the groundwater system in the bedrock beneath. It is recommended that the conclusions about appropriate hydraulic properties for Quaternary sediments

  15. Variability of nutrient and thermal structure in surface waters between New Zealand and Antarctica, October 2004–January 2005

    Directory of Open Access Journals (Sweden)

    Alessandra Campanelli

    2011-04-01

    Full Text Available We describe the upper ocean thermal structure and surface nutrient concentrations between New Zealand and Antarctica along five transects that cross the Subantarctic Front, the Polar Front (PF and the southern Antarctic Circumpolar Current (ACC front. The surface water thermal structure is coupled with variations in surface nutrient concentrations, making water masses identifiable by both temperature and nutrient ranges. In particular, a strong latitudinal gradient in orthosilicate concentration is centred at the PF. On the earlier sections that extend south-west from the Campbell Plateau, orthosilicate increases sharply southward from 10–15 to 50–55 µmol l−1 between 58° S and 60° S, while surface temperature drops from 7°C to 2°C. Nitrate increases more regularly toward the south, with concentrations ranging from 10–12 µmol l−1 at 54° S to 25–30 µmol l−1 at 66° S. The same features are observed during the later transects between New Zealand and the Ross Sea, but the sharp silica and surface temperature gradients are shifted between 60° S and 64° S. Both temporal and spatial factors may influence the observed variability. The January transect suggests an uptake of silica, orthophosphate and nitrate between 63° S and 70° S over the intervening month, with an average depletion near 37%, 44% and 29%, respectively. An N/P (nitrite + nitrate/orthophosphate apparent drawdown ratio of 8.8±4.1 and an Si/N (silicic acid/nitrite + nitrate apparent drawdown ratio >1 suggest this depletion results from a seasonal diatom bloom. A southward movement of the oceanic fronts between New Zealand and the Ross Sea relative to prior measurements is consistent with reports of recent warming and changes in the ACC.

  16. A semianalytical model to predict recovery of light, nonaqueous phase liquids from unconfined aquifers

    International Nuclear Information System (INIS)

    Waddill, D.W.

    1997-01-01

    This paper describes the development and testing of a semianalytical model that may be used to design LNAPL containment and recovery systems at spill sites. The objective of this study was to derive an enhanced semianalytical algorithm for calculating recovery and trapping of free phase oil. The enhancements were derived and evaluated by comparison with an established numerical model that describes transient flow of oil and water. The semianalytical model employs an analytical solution for steady-state drawdown in an unconfined aquifer due to water pumping. When pumping rates are sufficient to contain the separate phase plume, the model calculates recoverable and residual oil volumes based on the initial free oil distribution. Refinements were implemented to calculate the water-table drawdown and the maximum unsaturated zone residual saturation (S og ) as functions of soil type. Also the influence of hysteresis on the oil-water capillary fringe was incorporated into the calculation of oil trapping below a rising oil-water interface. A method was derived to reduce saturated zone trapping to account for oil recovery that occurs while pumping proceeds. The above enhancements yielded close agreement between the semianalytical model and the transient model predictions of recoverable oil and residua oil in the unsaturated and saturated zones. The models were compared for hypothetical gasoline spills in a sandy and a silt loam soil, using a range of pumping rates and regional water-table fluctuations. Field data from a pipeline leak were evaluated by the semianalytical model for hypothetical scenarios involving oil recovery from three wells and a falling regional water table

  17. Remediation of a large contaminated reactor cooling reservoir: Resolving and environmental/regulatory paradox

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, J.A.: Gladden, J.B.; Hickey, H.M.; Jones, M.P.; Mackey, H.E.; Mayer, J.J. [Westinghouse Savannah River Co., Aiken, SC (United States); Doswell, A. [USDOE, Washington, DC (United States)

    1994-05-01

    This paper presents a case study of a former reactor cooling water reservoir, PAR Pond, located Savannah River Site. PAR Pond, a 2640 acre, man-made reservoir was built in 1958 and until 1988, received cooling water from two DOE nuclear production reactors, P and R. The lake sediments were contaminated with low levels of radiocesium (CS-137) and transuranics in the late 1950s and early 1960s because of leaking fuel elements. Elevated levels of mercury accumulated in the sediments from pumping water from the Savannah River to maintain a full pool. PAR Ponds` stability, size, and nutrient content made a significant, unique, and highly studied ecological resource for fish and wildlife populations until it was partially drained in 1991 due to a depression in the downslope of the earthen dam. The drawdown, created 1340 acres of exposed, radioactively contaminated sediments along 33 miles of shoreline. This led US EPA to declare PAR Pond as a CERCLA operable unit subject to remediation. The drawdown also raised concerns for the populations of aquatic plants, fish, alligators, and endangered species and increased the potential for off-site migration of contaminated wildlife from contact with the exposed sediments. Applicable regulations, such as NEPA and CERCLA, require wetland loss evaluations, human health and ecological risk assessments, and remediation feasibility studies. DOE is committed to spending several million dollars to repair the dam for safety reasons, even though the lake will probably not be used for cooling purposes. At the same time, DOE must make decisions whether to refill and expend additional public funds to maintain a full pool to reduce the risks defined under CERCLA or spend hundreds of millions in remediation costs to reduce the risks of the exposed sediments.

  18. A novel analytical solution for estimating aquifer properties within a horizontally anisotropic aquifer bounded by a stream

    Science.gov (United States)

    Huang, Yibin; Zhan, Hongbin; Knappett, Peter S. K.

    2018-04-01

    Past studies modeling stream-aquifer interaction commonly account for vertical anisotropy in hydraulic conductivity, but rarely address horizontal anisotropy, which may exist in certain sedimentary environments. If present, horizontal anisotropy will greatly impact stream depletion and the amount of recharge a pumped aquifer captures from the river. This scenario requires a different and somewhat more sophisticated mathematical approach to model and interpret pumping test results than previous models used to describe captured recharge from rivers. In this study, a new mathematical model is developed to describe the spatiotemporal distribution of drawdown from stream-bank pumping with a well screened across a horizontally anisotropic, confined aquifer, laterally bounded by a river. This new model is used to estimate four aquifer parameters including the magnitude and directions of major and minor principal transmissivities and storativity based on the observed drawdown-time curves within a minimum of three non-collinear observation wells. In order to approve the efficacy of the new model, a MATLAB script file is programmed to conduct a four-parameter inversion to estimate the four parameters of concern. By comparing the results of analytical and numerical inversions, the accuracy of estimated results from both inversions is acceptable, but the MATLAB program sometimes becomes problematic because of the difficulty of separating the local minima from the global minima. It appears that the new analytical model of this study is applicable and robust in estimating parameter values for a horizontally anisotropic aquifer laterally bounded by a stream. Besides that, the new model calculates stream depletion rate as a function of stream-bank pumping. Unique to horizontally anisotropic and homogeneous aquifers, the stream depletion rate at any given pumping rate depends closely on the horizontal anisotropy ratio and the direction of the principle transmissivities relative to

  19. Upgrade to MODFLOW-GUI; addition of MODPATH, ZONEBDGT, and additional MODFLOW packages to the U.S. Geological Survey MODFLOW-96 Graphical-User Interface

    Science.gov (United States)

    Winston, R.B.

    1999-01-01

    This report describes enhancements to a Graphical-User Interface (GUI) for MODFLOW-96, the U.S. Geological Survey (USGS) modular, three-dimensional, finitedifference ground-water flow model, and MOC3D, the USGS three-dimensional, method-ofcharacteristics solute-transport model. The GUI is a plug-in extension (PIE) for the commercial program Argus ONEe. The GUI has been modified to support MODPATH (a particle tracking post-processing package for MODFLOW), ZONEBDGT (a computer program for calculating subregional water budgets), and the Stream, Horizontal-Flow Barrier, and Flow and Head Boundary packages in MODFLOW. Context-sensitive help has been added to make the GUI easier to use and to understand. In large part, the help consists of quotations from the relevant sections of this report and its predecessors. The revised interface includes automatic creation of geospatial information layers required for the added programs and packages, and menus and dialog boxes for input of parameters for simulation control. The GUI creates formatted ASCII files that can be read by MODFLOW-96, MOC3D, MODPATH, and ZONEBDGT. All four programs can be executed within the Argus ONEe application (Argus Interware, Inc., 1997). Spatial results of MODFLOW-96, MOC3D, and MODPATH can be visualized within Argus ONEe. Results from ZONEBDGT can be visualized in an independent program that can also be used to view budget data from MODFLOW, MOC3D, and SUTRA. Another independent program extracts hydrographs of head or drawdown at individual cells from formatted MODFLOW head and drawdown files. A web-based tutorial on the use of MODFLOW with Argus ONE has also been updated. The internal structure of the GUI has been modified to make it possible for advanced users to easily customize the GUI. Two additional, independent PIE?s were developed to allow users to edit the positions of nodes and to facilitate exporting the grid geometry to external programs.

  20. Mid-depth respired carbon storage and oxygenation of the eastern equatorial Pacific over the last 25,000 years

    Science.gov (United States)

    Umling, Natalie E.; Thunell, Robert C.

    2018-06-01

    A growing body of evidence suggests that respired carbon was stored in mid-depth waters (∼1-3 km) during the last glacial maximum (LGM) and released to the atmosphere from upwelling regions during deglaciation. Decreased ventilation, enhanced productivity, and enhanced carbonate dissolution are among the mechanisms that have been cited as possible drivers of glacial CO2 drawdown. However, the relative importance of each of these mechanisms is poorly understood. New approaches to quantitatively constrain bottom water carbonate chemistry and oxygenation provide methods for estimating historic changes in respired carbon storage. While increased CO2 drawdown during the LGM should have resulted in decreased oxygenation and a shift in dissolved inorganic carbon (DIC) speciation towards lower carbonate ion concentrations, this is complicated by the interplay of carbonate compensation, export productivity, and circulation. To disentangle these processes, we use a multiproxy approach that includes boron to calcium (B/Ca) ratios of the benthic foraminifera Cibicidoides wuellerstorfi to reconstruct deep-water carbonate ion concentrations ([CO32-]) and the uranium to calcium (U/Ca) ratio of foraminiferal coatings in combination with benthic foraminiferal carbon isotopes to reconstruct changes in bottom water oxygen concentrations ([O2]) and organic carbon export. Our records indicate that LGM [CO32-] and [O2] was reduced at mid water depths of the eastern equatorial Pacific (EEP), consistent with increased respired carbon storage. Furthermore, our results suggest enhanced mixing of lower Circumpolar Deep Water (LCDW) to EEP mid water depths and provide evidence for the importance of circulation for oceanic-atmospheric CO2 exchange.

  1. Geopressured-Geothermal Drilling and Testing Plan, Volume II, Testing Plan; Dow Chemical Co. - Dept. of Energy Dow-DOE Sweezy No. 1 Well, Vermilion Parish, Louisiana

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-02-01

    The Dow/D.O.E. L. R. Sweezy No. 1 geopressured geothermal production well was completed in August of 1981. The well was perforated and gravel packed in approximately 50 feet of sand from 13,344 feet to 13,395 feet. Permeabilities of 6 to 914 millidarcies were measured with porosity of 25 to 36%. Static surface pressure after well clean-up was 5000 psi. At 1000 B/D flow rate the drawdown was 50 psi. The water produced in clean-up contained 100,000 ppm TDS. This report details the plan for testing this well with the goal of obtaining sufficient data to define the total production curve of the small, 939 acre, reservoir. A production time of six to nine months is anticipated. The salt water disposal well is expected to be completed and surface equipment installed such that production testing will begin by April 1, 1982. The program should be finished and reports written by February 28, 1983. The brine will be produced from the No.1 well, passed through a separator where the gas is removed, then reinjected into the No.2 (SWD) well under separator pressure. Flow rates of up to 25,000 B/D are expected. The tests are divided into a two-week short-term test and six to nine-month long-term tests with periodic downhole measurement of drawdown and buildup rates. Data obtained in the testing will be relayed by phoneline computer hookup to Otis Engineering in Dallas, Texas, where the reservoir calculations and modeling will be done. At the point where sufficient data has been obtained to reach the objectives of the program, production will be ended, the wells plugged and abandoned, and a final report will be issued.

  2. Influence of water level fluctuation on the mortality and aboveground biomass of the aquatic macrophyte Eleocharis interstincta (VAHL roemer et schults

    Directory of Open Access Journals (Sweden)

    Santos Anderson Medeiros dos

    2004-01-01

    Full Text Available The goal of this study was to study the biometric alterations of Eleocharis interstincta in response to water level fluctuations in Cabiúnas Lagoon, located on the northern coast of the state of Rio de Janeiro, in the municipality of Macaé. Three quadrats of 0.0625 m² were harvested every two weeks from June/1997 to June/1998; samples were separated into stems, dead stems (detritus and rhizome; lenghted, dried and weighted. The water level fluctuated seasonally in the macrophyte stand with two periods of drawdown. The first period occurred naturally at the end of winter and beginning of spring, when rainfall in the area was normally lowest. The second period of drawdown was the result of an artificial breaching of the sandbar that isolate the lagoon from the sea. The breach was made in the summer, at the time of highest rainfall, when the water level in the lagoon reached the maximum value recorded during the study (1.35 m. There was a strongly positive correlation of the water level with stems mean height and aboveground biomass, indicating that water level played an important role in the determination of these parameters. There was a significant difference between stem height (ANOVA; p < 0.001 and biomass (ANOVA; p < 0.001 in each sampling period, ranging from 143.9 cm and 338.8 g dry wt.m-2, before the sandbar opening, to 16.3 cm and 20.2 g dry wt.m-2 respectively after the sandbar breaching. The drastic variation of the water level, leading mass mortality of the stems, together with the lowest mean biomass/stem (0.057 g dry wt.individual-1, recorded after the sandbar breaching, did not represent a strong disturbance for E. interstincta, since the resilience time estimated for this population was about 30 days.

  3. Inverse modelling of aquifer parameters in basaltic rock with the help of pumping test method using MODFLOW software

    Directory of Open Access Journals (Sweden)

    Kanak Moharir

    2017-11-01

    The present study of estimation of aquifer factors such as transmissivity (T and storativity (S are vital for the evaluation of groundwater resources. There are several methods to estimate the accurate aquifer parameters (i.e. hydrograph analysis, pumping test, etc.. In initial days, these parameters are projected either by means of in-situ test or execution test on aquifer well samples carried in the laboratory. The simultaneous information on the hydraulic behavior of the well (borehole that provides on this method, the reservoir and the reservoir boundaries, are important for efficient aquifer and well data management and analysis. The most common in-situ test is pumping test performed on wells, which involves the measurement of the fall and increase of groundwater level with respect to time. The alteration in groundwater level (drawdown/recovery is caused due to pumping of water from the well. Theis (1935 was first to propose method to evaluate aquifer parameters from the pumping test on a bore well in a confined aquifer. It is essential to know the transmissivity (T = Kb, where b is the aquifer thickness; pumping flow rate, Q = TW (dh/dl flow through an aquifer and storativity (confined aquifer: S = bSs, unconfined: S = Sy, for the characterization of the aquifer parameters in an unknown area so as to predict the rate of drawdown of the groundwater table/potentiometric surface throughout the pumping test of an aquifer. The determination of aquifer's parameters is an important basis for groundwater resources evaluation, numerical simulation, development and protection as well as scientific management. For determining aquifer's parameters, pumping test is a main method. A case study shows that these techniques have been fast speed and high correctness. The results of parameter's determination are optimized so that it has important applied value for scientific research and geology engineering preparation.

  4. Impact of Water Use by Utility-Scale Solar on Groundwater Resources of the Chuckwalla Basin, CA: Final Modeling Report

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Chaopeng [Pennsylvania State Univ., University Park, PA (United States). Civil and Environmental Engineering; Fang, Kuai [US Forest Services, Mt. Baker-Snoqualmie, WA (United States); Ludwig, Noel [S Forest Services, Mt. Baker-Snoqualmie, WA (United States); Godfrey, Peter [Bureau of Land Management, WY (United States). Wyoming State Office; Doughty, Christine A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth and Environmental Sciences

    2017-06-01

    The DOE and BLM identified 285,000 acres of desert land in the Chuckwalla valley in the western U.S., for solar energy development. In addition to several approved solar projects, a pumped storage project was recently proposed to pump nearly 8000 acre-ft-yr of groundwater to store and stabilize solar energy output. This study aims at providing estimates of the amount of naturally-occurring recharge, and to estimate the impact of the pumping on the water table. To better provide the locations and intensity of natural recharge, this study employs an integrated, physically-based hydrologic model, PAWS+CLM, to calculate recharge. Then, the simulated recharge is used in a parameter estimation package to calibrate spatially-distributed K field. This design is to incorporate all available observational data, including soil moisture monitoring stations, groundwater head, and estimates of groundwater conductivity, to constrain the modeling. To address the uncertainty of the soil parameters, an ensemble of simulations are conducted, and the resulting recharges are either rejected or accepted based on calibrated groundwater head and local variation of the K field. The results indicate that the natural total inflow to the study domain is between 7107 and 12,772 afy. During the initial-fill phase of pumped storage project, the total outflow exceeds the upper bound estimate of the inflow. If the initial-fill is annualized to 20 years, the average pumping is more than the lower bound of inflows. The results indicate after adding the pumped storage project, the system will nearing, if not exceeding, its maximum renewable pumping capacity. The accepted recharges lead to a drawdown range of 24 to 45 ft for an assumed specific yield of 0.05. However, the drawdown is sensitive to this parameter, whereas there is insufficient data to adequately constrain this parameter.

  5. Prediction Uncertainty and Groundwater Management: Approaches to get the Most out of Probabilistic Outputs

    Science.gov (United States)

    Peeters, L. J.; Mallants, D.; Turnadge, C.

    2017-12-01

    Groundwater impact assessments are increasingly being undertaken in a probabilistic framework whereby various sources of uncertainty (model parameters, model structure, boundary conditions, and calibration data) are taken into account. This has resulted in groundwater impact metrics being presented as probability density functions and/or cumulative distribution functions, spatial maps displaying isolines of percentile values for specific metrics, etc. Groundwater management on the other hand typically uses single values (i.e., in a deterministic framework) to evaluate what decisions are required to protect groundwater resources. For instance, in New South Wales, Australia, a nominal drawdown value of two metres is specified by the NSW Aquifer Interference Policy as trigger-level threshold. In many cases, when drawdowns induced by groundwater extraction exceed two metres, "make-good" provisions are enacted (such as the surrendering of extraction licenses). The information obtained from a quantitative uncertainty analysis can be used to guide decision making in several ways. Two examples are discussed here: the first of which would not require modification of existing "deterministic" trigger or guideline values, whereas the second example assumes that the regulatory criteria are also expressed in probabilistic terms. The first example is a straightforward interpretation of calculated percentile values for specific impact metrics. The second examples goes a step further, as the previous deterministic thresholds do not currently allow for a probabilistic interpretation; e.g., there is no statement that "the probability of exceeding the threshold shall not be larger than 50%". It would indeed be sensible to have a set of thresholds with an associated acceptable probability of exceedance (or probability of not exceeding a threshold) that decreases as the impact increases. We here illustrate how both the prediction uncertainty and management rules can be expressed in a

  6. Measurements of radionuclide in Par Pond sediments with an underwater HPGe detector

    International Nuclear Information System (INIS)

    Winn, W.G.

    1993-01-01

    Savannah River Site (SRS) effluent gamma emitting radionuclides in Par Pond sediment were examined in situ with an underwater HPGe detector prior to and following a 19 ft drawdown of the pond in 1991 to address dam repairs. These measurements provide a map of the 137 Cs concentrations of the pond sediment, indicating that 9.4 ± 1.5 Ci is exposed by the drawdown and that 46.6 ± 7.2 Ci is the entire pond inventory. The highest individual 137 Cs concentration was 25 μCi/m 2 for the exposed sediment and 50 μCi/m 2 for the entire pond. The results are consistent with parallel studies conducted by SREL, as well as historical data. Aside from 137 Cs, the only other SRS-produced isotope observed was 60 Co, with activity of only about 1% of that for 137 Cs. This observation was also confirmed in grab samples of pond sediment and vegetation, which were returned to the laboratory for ultra-low-level gamma spectrometry analysis. A special effort was required to calibrate the underwater HPGe detector, where both measurements and calculational models were used. The effects of sediment depth profiles for density and 137 Cs concentration were addressed in the calibration. Calibration factors for sediment surface concentrations (μCi/m 2 /cpm) and sediment mass concentrations (pCi/kg/cpm) were obtained. In general, the μCi/m 2 /cpm factor is recommended, as the pCi/kg/cpm factor depends on the depth location of the sediment of interest. However, a pCi/kg/cpm factor, which is dependent on the depth within the sediment is presented to address dose calculations that require it

  7. Geochemistry of great Salt Lake, Utah II: Pleistocene-Holocene evolution

    Science.gov (United States)

    Spencer, R.J.; Eugster, H.P.; Jones, B.F.

    1985-01-01

    Sedimentologic and biostratigraphic evidence is used to develop a geochemical model for Great Salt Lake, Utah, extending back some 30,000 yrs. B.P. Hydrologie conditions as defined by the water budget equation are characterized by a lake initially at a low, saline stage, rising by about 17,000 yrs. B.P. to fresh water basin-full conditions (Bonneville level) and then, after about 15,000 yrs. B.P., dropping rapidly to a saline stage again, as exemplified by the present situation. Inflow composition has changed through time in response to the hydrologie history. During fresh-water periods high discharge inflow is dominated by calcium bicarbonate-type river waters; during saline stages, low discharge, NaCl-rich hydrothermal springs are significant solute sources. This evolution in lake composition to NaCl domination is illustrated by the massive mirabilite deposition, free of halite, following the rapid drawdown until about 8,000 years ago, while historic droughts have yielded principally halite. Hydrologic history can be combined with inferred inflow composition to derive concentration curves with time for each major solute in the lake. Calcium concentrations before the drawdown were controlled by calcite solubility, and afterwards by aragonite. Significant amounts of solutes are removed from the lake by diffusion into the sediments. Na+, Cl- and SO42- are also involved in salt precipitation. By including pore fluid data, a surprisingly good fit has been obtained between solute input over the time period considered and the amounts actually found in lake brines, pore fluids, salt beds and sediments. Excess amounts are present for calcium, carbonate and silica, indicating detrital input. ?? 1985.

  8. Hydrogeology and water quality of the Floridan aquifer system and effects of Lower Floridan aquifer pumping on the Upper Floridan aquifer at Fort Stewart, Georgia

    Science.gov (United States)

    Clarke, John S.; Cherry, Gregory C.; Gonthier, Gerard

    2011-01-01

    Test drilling, field investigations, and digital modeling were completed at Fort Stewart, GA, during 2009?2010, to assess the geologic, hydraulic, and water-quality characteristics of the Floridan aquifer system and evaluate the effect of Lower Floridan aquifer (LFA) pumping on the Upper Floridan aquifer (UFA). This work was performed pursuant to the Georgia Environmental Protection Division interim permitting strategy for new wells completed in the LFA that requires simulation to (1) quantify pumping-induced aquifer leakage from the UFA to LFA, and (2) identify the equivalent rate of UFA pumping that would produce the same maximum drawdown in the UFA that anticipated pumping from LFA well would induce. Field investigation activities included (1) constructing a 1,300-foot (ft) test boring and well completed in the LFA (well 33P028), (2) constructing an observation well in the UFA (well 33P029), (3) collecting drill cuttings and borehole geophysical logs, (4) collecting core samples for analysis of vertical hydraulic conductivity and porosity, (5) conducting flowmeter and packer tests in the open borehole within the UFA and LFA, (6) collecting depth-integrated water samples to assess basic ionic chemistry of various water-bearing zones, and (7) conducting aquifer tests in new LFA and UFA wells to determine hydraulic properties and assess interaquifer leakage. Using data collected at the site and in nearby areas, model simulation was used to assess the effects of LFA pumping on the UFA. Borehole-geophysical and flowmeter data indicate the LFA at Fort Stewart consists of limestone and dolomitic limestone between depths of 912 and 1,250 ft. Flowmeter data indicate the presence of three permeable zones at depth intervals of 912-947, 1,090-1,139, and 1,211?1,250 ft. LFA well 33P028 received 50 percent of the pumped volume from the uppermost permeable zone, and about 18 and 32 percent of the pumped volume from the middle and lowest permeable zones, respectively. Chemical

  9. Sources of water to wells in updip areas of the Wenonah-Mount Laurel aquifer, Gloucester and Camden Counties, New Jersey

    Science.gov (United States)

    Watt, Martha K.; Voronin, Lois M.

    2006-01-01

    Since 1996, when the New Jersey Department of Environmental Protection (NJDEP) restricted ground-water withdrawals from the Potomac-Raritan-Magothy aquifer system in the southern New Jersey Coastal Plain as a result of excessive drawdown, Coastal Plain communities have been interested in developing alternate sources of water supply for their residents. The use of ground water from areas near the updip parts of the overlying confined aquifers where withdrawals are not restricted is being considered to meet the demand for drinking water. Concerns have arisen, however, regarding the potential effects of increased withdrawals from these areas on ground-water flow to streams and wetlands as well as to the deeper, confined parts of the aquifers. Therefore, the U.S. Geological Survey, in cooperation with the NJDEP, conducted a study to investigate the sources of water to currently inactive wells in the updip part of the Wenonah-Mount Laurel aquifer in Gloucester and Camden Counties, New Jersey. Of particular interest is whether the primary source of the increased withdrawals is likely to be the aquifer outcrop or the downdip, confined part of the aquifer. The outcrop of the Wenonah-Mount Laurel aquifer covers nearly 8 mi2 (square miles), or about 46 percent of Deptford Township's 17.56-mi2 area. The Deptford Township Municipal Utilities Authority owns six currently (2005) inactive wells in the Wenonah-Mount Laurel aquifer at the southeastern boundary of Deptford Township, 1.25 mi (miles) from the outcrop. For the purposes of this study, an existing ground-water-flow model of the New Jersey Coastal Plain aquifers was used to simulate ground-water-flow conditions in Gloucester and Camden Counties in 1998. Two alternative withdrawal scenarios were superimposed on the results of the 1998 simulation. In the first (the 'full-allocation' scenario), full-allocation withdrawal rates established by the NJDEP were applied to 45 existing wells in the Deptford Township area. In the

  10. Geohydrology, geochemistry, and groundwater simulation (1992-2011) and analysis of potential water-supply management options, 2010-60, of the Langford Basin, California

    Science.gov (United States)

    Voronin, Lois M.; Densmore, Jill N.; Martin, Peter; Brush, Charles F.; Carlson, Carl S.; Miller, David M.

    2013-01-01

    the NTC. Measured groundwater-level declines since the initiation of withdrawals (1992–2011) were used to calibrate the groundwater-flow model. The simulated recharge was about 46 acre-feet per year, including approximately 6 acre-feet per year of natural recharge derived from precipitation runoff and as much as 40 acre-feet per year of underflow from the Irwin Basin. Between April 1992 and December 2010, an average of about 650 acre-feet per year of water was withdrawn from the Langford Basin. Groundwater withdrawals in excess of natural recharge resulted in a net loss of 11,670 acre-feet of groundwater storage within the basin for the simulation period. The Fort Irwin NTC is considering various groundwater-management options to address the limited water resources in the Langford Basin. The calibrated Langford Basin groundwater-flow model was used to evaluate the hydrologic effects of four groundwater-withdrawal scenarios being considered by the Fort Irwin NTC over the next 50 years (January 2011 through December 2060). Continuation of the 2010 withdrawal rate in the three existing production wells will result in 70 feet of additional drawdown in the central part of the basin. Redistributing the 2010 withdrawal rate equally to the three existing wells and two proposed new wells in the northern and southern parts of the basin would result in about 10 feet less drawdown in the central part of the basin but about 100 feet of additional drawdown in the new well in the northern part of the basin and about 50 feet of additional drawdown in the new well in the southern part of the basin. Reducing the withdrawals from the three existing production wells in the central part of the basin from about 45,000 acre-feet to about 32,720 acre-feet would result in about 40 feet of additional drawdown in the central basin near the pumping wells, about 25 feet less than if withdrawals were not reduced. The combination of reducing and redistributing the cumulative withdrawals to the

  11. Impacts of Water Level Fluctuations on Kokanee Reproduction in Flathead Lake, 1984 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Decker-Hess, Janet; Clancey, Patrick (Montana Department of Fish, Wildlife and Parks, Kalispell, MT)

    1984-03-01

    This study was initiated in the fall of 1981 to delineate the extent of successful shoreline spawning of kokanee salmon in Flathead Lake and determine the impacts of the historic and present operations of Kerr and Hungry Horse dams. An investigation of the quantity and quality of groundwater and other factors affecting kokanee reproductive success in Flathead Lake began in the spring of 1982. A total of 719 redds were counted in 17 shoreline areas of Flathead Lake in1983 compared to 592 in 1981 and 1,029 in 1982. Shoreline spawning contributed three percent to the total kokanee spawning in the Flathead drainage in 1983. Fifty-nine percent of the redds were located above 2883 ft, the operational minimum pool. The majority of those redds were constructed between 2885 and 2889 ft. In areas above minimum pool, intergravel dissolved oxygen concentrations were adequate for embryo survival and exhibited a decrease with depth. Limited data indicated apparent velocity may be the key in determining redd distribution. Seventy-five percent of the redds located below minimum pool were constructed in a zone between 2869 and 2883 ft. In individual areas, apparent velocity measurements and intergravel dissolved oxygen concentrations were related to redd density. The variation in intergravel dissolved oxygen concentrations in the Yellow Bay spawning area was partially explained by lake stage fluctuation. As lake stage declined, groundwater apparent velocity increased which increased intergravel dissolved oxygen concentrations. Mean survival to the eyed stage in the three areas below minimum pool was 43 percent. Prior to exposure by lake drawdown, mean survival to the eyed stage in spawning areas above minimum pool was 87 percent. This indicated habitat most conducive to successful embryo survival was in gravels above 2883 ft. prior to significant exposure. Survival in redds exposed to either extended periods of drawdown or to temperatures less than -10% was significantly reduced to

  12. Effect of the Operation of Kerr and Hungry Horse Dams on the Reproduction Success of Kokanee in the Flathead River System, 1986 Annual Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Beattie, Will; Clancey, Patrick

    1987-03-01

    The 1985 kokanee spawning run in the Flathead system was the strongest in five years. Escapement to the Flathead River system was 147,000 fish, including 123,000 in McDonald Creek and an estimated 20,000 in the main stem. Enumeration of spawners and redds in the Flathead River was hindered by high fall flows and early freezing in November. The upstream spawning migration from Flathead Lake began in late August. Schools of kokanee were seen six miles above the lake on September 4. We counted 1,156 redds in Flathead Lake, distributed primarily along the southeastern shore. An unusually high proportion (90 percent) of lakeshore spawning occurred in the zone above minimum pool, where egg mortality is very high because of exposure from drawdown. Escapement to the Swan River was 1,350 fish. Four year old (III+) fish comprised 95 percent of the spawning run in the Flathead system. This continues a five-year trend toward dominance of the III+ year class. The age composition of spawners has varied considerably for the past 15 years. The average size of spawning fish was 365 mm, which is identical to the average size of the parent year class in 1981. One of the goals of managing Flathead kokanee is to produce mature fish 300-330 mm in length. In the main stem Flathead River, pre-emergent survival was 80 percent. Survival in McDonald Creek, unaffected by hydroelectric operations, was 83 percent. Sampling showed few hatched alevins, probably due to unusually cold winter temperatures. Egg survival at Blue Bay, a spawning area on Flathead Lake where redds are concentrated below minimum pool, varied in relation to depth and dissolved oxygen concentration in the substrate. Eggs survived 78 days at 2,880 feet where dissolved oxygen was 5.7 mg/l. Eggs survived 35 days at 2,870 feet where dissolved oxygen concentration averaged 2.9 mg/l. Low dissolved oxygen contributed to poor survival to emergence at all elevations in Blue Ray. Experiments in Skidoo Bay confirmed that survival of

  13. Evaluation of alternative groundwater-management strategies for the Bureau of Reclamation Klamath Project, Oregon and California

    Science.gov (United States)

    Wagner, Brian J.; Gannett, Marshall W.

    2014-01-01

    The water resources of the upper Klamath Basin, in southern Oregon and northern California, are managed to achieve various complex and interconnected purposes. Since 2001, irrigators in the Bureau of Reclamation Klamath Irrigation Project (Project) have been required to limit surface-water diversions to protect habitat for endangered freshwater and anadromous fishes. The reductions in irrigation diversions have led to an increased demand for groundwater by Project irrigators, particularly in drought years. The potential effects of sustained pumping on groundwater and surface-water resources have caused concern among Federal and state agencies, Indian tribes, wildlife groups, and groundwater users. To aid in the development of a viable groundwater-management strategy for the Project, the U.S. Geological Survey, in collaboration with the Klamath Water and Power Agency and the Oregon Water Resources Department, developed a groundwater-management model that links groundwater simulation with techniques of constrained optimization. The overall goal of the groundwater-management model is to determine the patterns of groundwater pumping that, to the extent possible, meet the supplemental groundwater demands of the Project. To ensure that groundwater development does not adversely affect groundwater and surface-water resources, the groundwater-management model includes constraints to (1) limit the effects of groundwater withdrawal on groundwater discharge to streams and lakes that support critical habitat for fish listed under the Endangered Species Act, (2) ensure that drawdowns do not exceed limits allowed by Oregon water law, and (3) ensure that groundwater withdrawal does not adversely affect agricultural drain flows that supply a substantial portion of water for irrigators and wildlife refuges in downslope areas of the Project. Groundwater-management alternatives were tested and designed within the framework of the Klamath Basin Restoration Agreement (currently [2013

  14. Exploring the Effect of Climate Perturbations on Water Availability for Renewable Energy Development in the Indian Wells Valley, California

    Science.gov (United States)

    Rey, David M.

    Energy and water are connected through the water-use cycle (e.g. obtaining, transporting, and treating water) and thermoelectric energy generation, which converts heat to electricity via steam-driven turbines. As the United States implements more renewable energy technologies, quantifying the relationships between energy, water, and land-surface impacts of these implementations will provide policy makers the strengths and weaknesses of different renewable energy options. In this study, a MODFLOW model of the Indian Wells Valley (IWV), in California, was developed to capture the water, energy, and land-surface impacts of potential proposed 1) solar, 2) wind, and 3) biofuel implementations. The model was calibrated to pre-existing groundwater head data from 1985 to present to develop a baseline model before running two-year predictive scenarios for photovoltaic (PV), concentrating solar power (CSP), wind, and biofuel implementations. Additionally, the baseline model was perturbed by decreasing mountain front recharge values by 5%, 10%, and 15%, simulating potential future system perturbations under a changing climate. These potential future conditions were used to re-run each implementation scenario. Implementation scenarios were developed based on population, typical energy use per person, existing land-use and land-cover type within the IWV, and previously published values for water use, surface-area use, and energy-generation potential for each renewable fuel type. The results indicate that the quantity of water needed, localized drawdown from pumping water to meet implementation demands, and generation efficiency are strongly controlled by the fuel type, as well as the energy generating technology and thermoelectric technologies implemented. Specifically, PV and wind-turbine (WT) implementations required less than 1% of the estimated annual aquifer recharge, while technologies such as biofuels and CSP, which rely on thermoelectric generation, ranged from 3% to 20

  15. Design and Implementation of Energized Fracture Treatment in Tight Gas Sands

    Energy Technology Data Exchange (ETDEWEB)

    Mukul Sharma; Kyle Friehauf

    2009-12-31

    Hydraulic fracturing is essential for producing gas and oil at an economic rate from low permeability sands. Most fracturing treatments use water and polymers with a gelling agent as a fracturing fluid. The water is held in the small pore spaces by capillary pressure and is not recovered when drawdown pressures are low. The un-recovered water leaves a water saturated zone around the fracture face that stops the flow of gas into the fracture. This is a particularly acute problem in low permeability formations where capillary pressures are high. Depletion (lower reservoir pressures) causes a limitation on the drawdown pressure that can be applied. A hydraulic fracturing process can be energized by the addition of a compressible, sometimes soluble, gas phase into the treatment fluid. When the well is produced, the energized fluid expands and gas comes out of solution. Energizing the fluid creates high gas saturation in the invaded zone, thereby facilitating gas flowback. A new compositional hydraulic fracturing model has been created (EFRAC). This is the first model to include changes in composition, temperature, and phase behavior of the fluid inside the fracture. An equation of state is used to evaluate the phase behavior of the fluid. These compositional effects are coupled with the fluid rheology, proppant transport, and mechanics of fracture growth to create a general model for fracture creation when energized fluids are used. In addition to the fracture propagation model, we have also introduced another new model for hydraulically fractured well productivity. This is the first and only model that takes into account both finite fracture conductivity and damage in the invaded zone in a simple analytical way. EFRAC was successfully used to simulate several fracture treatments in a gas field in South Texas. Based on production estimates, energized fluids may be required when drawdown pressures are smaller than the capillary forces in the formation. For this field

  16. Regional groundwater-flow model of the Lake Michigan Basin in support of Great Lakes Basin water availability and use studies

    Science.gov (United States)

    Feinstein, D.T.; Hunt, R.J.; Reeves, H.W.

    2010-01-01

    A regional groundwater-flow model of the Lake Michigan Basin and surrounding areas has been developed in support of the Great Lakes Basin Pilot project under the U.S. Geological Survey's National Water Availability and Use Program. The transient 2-million-cell model incorporates multiple aquifers and pumping centers that create water-level drawdown that extends into deep saline waters. The 20-layer model simulates the exchange between a dense surface-water network and heterogeneous glacial deposits overlying stratified bedrock of the Wisconsin/Kankakee Arches and Michigan Basin in the Lower and Upper Peninsulas of Michigan; eastern Wisconsin; northern Indiana; and northeastern Illinois. The model is used to quantify changes in the groundwater system in response to pumping and variations in recharge from 1864 to 2005. Model results quantify the sources of water to major pumping centers, illustrate the dynamics of the groundwater system, and yield measures of water availability useful for water-resources management in the region. This report is a complete description of the methods and datasets used to develop the regional model, the underlying conceptual model, and model inputs, including specified values of material properties and the assignment of external and internal boundary conditions. The report also documents the application of the SEAWAT-2000 program for variable-density flow; it details the approach, advanced methods, and results associated with calibration through nonlinear regression using the PEST program; presents the water-level, drawdown, and groundwater flows for various geographic subregions and aquifer systems; and provides analyses of the effects of pumping from shallow and deep wells on sources of water to wells, the migration of groundwater divides, and direct and indirect groundwater discharge to Lake Michigan. The report considers the role of unconfined conditions at the regional scale as well as the influence of salinity on groundwater flow

  17. Olkiluoto surface and near-surface hydrological modelling in 2010

    International Nuclear Information System (INIS)

    Karvonen, T.

    2011-08-01

    The modeling approaches carried out with the Olkiluoto surface hydrological model (SHYD) include palaeohydrological evolution of the Olkiluoto Island, examination of the boundary condition at the geosphere-biosphere interface zone, simulations related to infiltration experiment, prediction of the influence of ONKALO on hydraulic head in shallow and deep bedrock and optimisation of the shallow monitoring network. A so called short-term prediction system was developed for continuous updating of the estimated drawdowns caused by ONKALO. The palaeohydrological simulations were computed for a period starting from the time when the highest hills on Olkiluoto Island rose above sea level around 2 500 years ago. The input data needed in the model were produced by the UNTAMO-toolbox. The groundwater flow evolution is primarily driven by the postglacial land uplift and the uncertainty in the land uplift model is the biggest single factor that influences the accuracy of the results. The consistency of the boundary condition at the geosphere-biosphere interface zone (GBIZ) was studied during 2010. The comparison carried out during 2010 showed that pressure head profiles computed with the SHYD model and deep groundwater flow model FEFTRA are in good agreement with each other in the uppermost 100 m of the bedrock. This implies that flux profiles computed with the two approaches are close to each other and hydraulic heads computed at level z=0 m with the SHYD can be used as head boundary condition in the deep groundwater flow model FEFTRA. The surface hydrological model was used to analyse the results of the infiltration experiment. Increase in bedrock recharge inside WCA explains around 60-63 % from the amount of water pumped from OL-KR14 and 37-40 % of the water pumped from OL-KR14 flows towards pumping section via the hydrogeological zones. Pumping from OL-KR14 has only a minor effect on heads and fluxes in zones HZ19A and HZ19C compared to responses caused by leakages into

  18. Estimation of the groundwater resources of the bedrock aquifers at the Kettle Moraine Springs State Fish Hatchery, Sheboygan County, Wisconsin

    Science.gov (United States)

    Dunning, Charles; Feinstein, Daniel T.; Buchwald, Cheryl A.; Hunt, Randall J.; Haserodt, Megan J.

    2017-10-12

    (COAS) near the Kettle Moraine Springs State Fish Hatchery.Three groundwater-flow models were used to estimate the water resources available to the hatchery from bedrock aquifers under selected scenarios of well placement and seasonal water requirements and subject to constraints on the effects of pumping on neighboring wells, local springs, and creeks. Model input data (recharge, water withdrawal, and boundary conditions) for these models were compiled from a number of data and information sources.The first model, named the “KMS model,” (KMS stands for Kettle Moraine Springs) is an inset model derived from a published USGS regional Lake Michigan Basin model and was constructed to simulate groundwater pumping from the semiconfined Silurian aquifer. The second model, named the “Pumping Test model,” was constructed to evaluate an aquifer pumping test conducted in the COAS as part of this project. The Pumping Test model was also used to simulate the local effects of 20 years of groundwater pumping from this deep bedrock aquifer for future hatchery operations. The third model, named the “LMB modified model,” is a version of the published Lake Michigan Basin (LMB) model that was modified with aquifer parameters refined in an area around the hatchery (approximately a 5-mile radius circle, corresponding to the area stressed by the aquifer pumping test). This LMB modified model was applied to evaluate regional effects of pumping from the confined COAS.The available Silurian aquifer groundwater resource was estimated using the KMS model with three scenarios—named “AllConstraints,” “Constraints2,” and “Constraints3”—that specified local water-level and flow constraints such as drawdown at nearby household wells, water levels inside pumping well boreholes, and flow in local streams and springs. Each scenario utilized the MODFLOW Groundwater Management Process (GWM) to select three locations from six candidate locations that provided the greatest

  19. Simulation of groundwater flow and hydrologic effects of groundwater withdrawals from the Kirkwood-Cohansey aquifer system in the Pinelands of southern New Jersey

    Science.gov (United States)

    Charles, Emmanuel; Nicholson, Robert S.

    2012-01-01

    flow. Pumping stresses at aquifer-test sites resulted in measurable drawdown in each observation well installed for the tests. The magnitude of drawdown in shallow wetland observation wells at the end of pumping ranged from 5.5 to 16.7 centimeters (cm). The stresses induced by the respective tests reduced the flow of the smallest stream (McDonalds Branch) by 75 percent and slightly reduced flow in a side channel of Morses Mill Stream, but did not measurably affect the flow of Morses Mill Stream or Albertson Brook. Results of aquifer-test simulations were used to refine the estimates of hydraulic properties used in the models and to confirm the ability of the model to replicate observed hydrologic responses to pumping. Steady-state sensitivity simulation results for a variety of single well locations and depths were used to define overall “best-case” (smallest effect on wetland water levels and base flow) and “worst-case” (greatest effect on wetland water levels and base flow) groundwater withdrawal configurations. “Best-case” configurations are those for which the extent of the wetland areas within a 1-kilometer (km) radius of the withdrawal well is minimized, the well is located at least 100 m and as far from wetland boundaries as possible, and the withdrawal is from a deep well (50–90 m deep). “Worst-case” configurations are those for which the extent of wetlands within a 1-km radius of the withdrawal well is maximized, the well is located 100 m or less from a wetland boundary, and the withdrawal is from a relatively shallow well (30–67 m deep). “Best-” and “worst-case” simulations were applied by locating hypothetical wells across the study areas and assigning groundwater withdrawals so that the sum of the withdrawals for the basin is equal to 5, 10, 15, and 30 percent of overall recharge. The results were compared to the results of simulations of no groundwater withdrawals. Results for withdrawals of 5 percent of recharge show that the

  20. Introduction of the 2007-2008 JOGMEC/NRCan/Aurora Mallik Gas Hydrate Production Research Program, NWT, Canada

    Science.gov (United States)

    Yamamoto, K.; Dallimore, S. R.; Numasawa, M.; Yasuda, M.; Fujii, T.; Fujii, K.; Wright, J.; Nixon, F.

    2007-12-01

    Japan Oil, Gas and Metals National Corporation (JOGMEC) and Natural Resource Canada (NRCan) have embarked on a new research program to study the production potential of gas hydrates. The program is being carried out at the Mallik gas hydrate field in the Mackenzie Delta, a location where two previous scientific investigations have been carried in 1998 and 2002. In the 2002 program that was undertaken by seven partners from five countries, 468m3 of gas flow was measured during 124 hours of thermal stimulation using hot warm fluid. Small-scale pressure drawdown tests were also carried out using Schlumberger's Modular Dynamics Tester (MDT) wireline tool, gas flow was observed and the inferred formation permeabilities suggested the possible effectiveness of the simple depressurization method. While the testing undertaken in 2002 can be cited as the first well constrained gas production from a gas hydrate deposit, the results fell short of that required to fully calibrate reservoir simulation models or indeed establish the technical viability of long term production from gas hydrates. The objectives of the current JOGMEC/NRCan/Aurora Mallik production research program are to undertake longer term production testing to further constrain the scientific unknowns and to demonstrate the technical feasibility of sustained gas hydrate production using the depressurization method. A key priority is to accurately measure water and gas production using state-of-art production technologies. The primary production test well was established during the 2007 field season with the re-entry and deepening of JAPEX/JNOC/GSC Mallik 2L-38 well, originally drilled in 1998. Production testing was carried out in April of 2007 under a relatively low drawdown pressure condition. Flow of methane gas was measured from a 12m perforated interval of gas-hydrate-saturated sands from 1093 to 1105m. The results establish the potential of the depressurization method and provide a basis for future

  1. Hydrogeological impact of fault zones on a fractured carbonate aquifer, Semmering (Austria)

    Science.gov (United States)

    Mayaud, Cyril; Winkler, Gerfried; Reichl, Peter

    2015-04-01

    Fault zones are the result of tectonic processes and are geometrical features frequently encountered in carbonate aquifer systems. They can hamper the fluid migration (hydrogeological barriers), propagate the movement of fluid (draining conduits) or be a combination of both processes. Numerical modelling of fractured carbonate aquifer systems is strongly bound on the knowledge of a profound conceptual model including geological and tectonic settings such as fault zones. In further consequence, numerical models can be used to evaluate the conceptual model and its introduced approximations. The study was conducted in a fractured carbonate aquifer built up by permomesozoic dolo/limestones of the Semmering-Wechsel complex in the Eastern Alps (Austria). The aquifer has an assumed thickness of about 200 m and dips to the north. It is covered by a thin quartzite layer and a very low permeable layer of quartz-phyllite having a thickness of up to several hundred meters. The carbonate layer crops out only in the southern part of the investigation area, where it receives autogenic recharge. The geological complexity affects some uncertainties related to the extent of the model area, which was determined to be about 15 km². Three vertical fault zones cross the area approximately in a N-S direction. The test site includes an infrastructural pilot tunnel gallery of 4.3 km length with two pumping stations, respectively active since August 1997 and June 1998. The total pumping rate is about 90 l/s and the drawdown data were analysed analytically, providing a hydraulic conductivity of about 5E-05 m/s for the carbonate layer. About 120 m drawdown between the initial situation and situation with pumping is reported by piezometers. This led to the drying up of one spring located at the southern border of the carbonates. A continuum approach using MODFLOW-2005 was applied to reproduce numerically the observed aquifer behaviour and investigate the impact of the three fault zones. First

  2. GIS-based model of groundwater occurrence using geological and hydrogeological data in Precambrian Oban Massif southeastern Nigeria

    Science.gov (United States)

    Sikakwe, Gregory Udie

    2018-06-01

    This research modeled geological and hydrogeological controls on groundwater occurrence in Oban Massif and environs southeastern Nigeria. Topographical, hydrogeological, and structural maps, including lithology samples from drilled bores, well completion, and pumping test data in the study area were procured. Collection of coordinates of rock sample locations and structural data on strike and dip of rock exposures was collected. Geological and structural information collected was overlaid on the topographical, hydrogeological and structural map and digitized to produce the geological map of the study area. Thematic map on geological groundwater prospect map of the study was prepared using multicriteria evaluation. Relative weights were assigned to various rock types based on their relative contribution to groundwater occurrence and the map was reclassified using geographic information system (ArcGIS10.1) analysis. Depth ranges of the various lithologic units from drilled boreholes were used to construct lithologic correlation section of the boreholes across the study area using RockWorks16 Program software. Hydrogeological parameters such as storativity, specific capacity, transmissivity, drawdown, pumping rate, static water level, total depth, and well yield were computed from well completion reports and aquifer test. Results shows that the geologic groundwater prospect map was categorized into very good (28.73 m2), good (9.66 m2), moderate (35.08 m2), fair (49.38 m2), and poor (77.63 m2) zones. Aquifer parameters showed ranges such as (specific capacity (1.81-31.16 m2/day/m), transmissivity (0.0033-12 m2/day), storativity (9.4 × 10-3-2.3), drawdown (2.2-17.65 m), pumping rate (0.75-3.57 l/s), static water level (0-20.5 m), and total depth (3.3-61 m). Borehole depths obtained in the basement are shallower than those in the sedimentary area. Aquifer test parameters obtained from boreholes across the study indicate better correspondence with zones identified as

  3. Water Quality and Algal Data for the North Umpqua River Basin, Oregon, 2005

    Science.gov (United States)

    Tanner, Dwight Q.; Arnsberg, Andrew J.; Anderson, Chauncey W.; Carpenter, Kurt D.

    2006-01-01

    The upper North Umpqua River Basin has experienced a variety of water-quality problems since at least the early 1990's. Several reaches of the North Umpqua River are listed as water-quality limited under section 303(d) of the Clean Water Act. Diamond Lake, a eutrophic lake that is an important source of water and nutrients to the upper North Umpqua River, is also listed as a water-quality limited waterbody (pH, nuisance algae). A draft Total Maximum Daily Load (TMDL) was proposed for various parameters and is expected to be adopted in full in 2006. Diamond Lake has supported potentially toxic blue-green algae blooms since 2001 that have resulted in closures to recreational water contact and impacts to the local economy. Increased populations of the invasive tui chub fish are reportedly responsible, because they feed on zooplankton that would otherwise control the algal blooms. The Final Environmental Impact Statement (FEIS) for the Diamond Lake Restoration Project advocates reduced fish biomass in Diamond Lake in 2006 as the preferred alternative. A restoration project scheduled to reduce fish biomass for the lake includes a significant water-level drawdown that began in January 2006. After the drawdown of Diamond Lake, the fish toxicant rotenone was applied to eradicate the tui chub. The lake will be refilled and restocked with game fish in 2007. Winter exports of nutrients from Diamond Lake during the restoration project could affect the summer trophic status of the North Umpqua River if retention and recycling in Lemolo Lake are significant. The FEIS includes comprehensive monitoring to assess the water quality of the restored Diamond Lake and the effects of that restoration downstream. One component of the monitoring is the collection of baseline data, in order to observe changes in the river's water quality and algal conditions resulting from the restoration of Diamond Lake. During July 2005, the USGS, in cooperation with Douglas County, performed a synoptic

  4. Monitoring and modelling of pumping-induced self-potentials for transmissivity estimation within a heterogeneous confined aquifer

    Science.gov (United States)

    DesRoches, Aaron J.; Butler, Karl E.

    2016-12-01

    Variations in self-potentials (SP) measured at surface during pumping of a heterogeneous confined fractured rock aquifer have been monitored and modelled in order to investigate capabilities and limitations of SP methods in estimating aquifer hydraulic properties. SP variations were recorded around a pumping well using an irregular grid of 31 non-polarizing Pb-PbCl2 that were referenced to a remote electrode and connected to a commercial multiplexer and digitizer/data logger through a passive lowpass filter on each channel. The lowpass filter reduced noise by a factor of 10 compared to levels obtained using the data logger's integration-based sampling method for powerline noise suppression alone. SP signals showed a linear relationship with water levels observed in the pumping and monitoring wells over the pumping period, with an apparent electrokinetic coupling coefficient of -3.4 mV · m-1. Following recent developments in SP methodology, variability of the SP response between different electrodes is taken as a proxy for lateral variations in hydraulic head within the aquifer and used to infer lateral variations in the aquifer's apparent transmissivity. In order to demonstrate the viability of this approach, SP is modelled numerically to determine its sensitivity to (i) lateral variations in the hydraulic conductivity of the confined aquifer and (ii) the electrical conductivity of the confining layer and conductive well casing. In all cases, SP simulated on the surface still varies linearly with hydraulic head modelled at the base on the confining layer although the apparent coupling coefficient changes to varying degrees. Using the linear relationship observed in the field, drawdown curves were inferred for each electrode location using SP variations observed over the duration of the pumping period. Transmissivity estimates, obtained by fitting the Theis model to inferred drawdown curves at all 31 electrodes, fell within a narrow range of (2.0-4.2) × 10-3 m2

  5. Groundwater levels and water-quality observations pertaining to the Austin Group, Bexar County, Texas, 2009-11

    Science.gov (United States)

    Banta, J.R.; Clark, Allan K.

    2012-01-01

    The U.S. Geological Survey, in cooperation with the San Antonio Water System, examined groundwater-level altitudes (groundwater levels) and water-quality data pertaining to the Austin Group in Bexar County, Texas, during 2009–11. Hydrologic data collected included daily mean groundwater levels collected at seven sites in the study area. Water-quality samples were collected at six sites in the study area and analyzed for major ions, nutrients, trace elements, organic carbon, and stable isotopes. The resulting datasets were examined for similarities between sites as well as similarities to data from the Edwards aquifer in Bexar County, Tex. Similarities in the groundwater levels between sites completed in the Austin Group and site J (State well AY-68-37-203; hereafter referred to as the “Bexar County index well”) which is completed in the Edwards aquifer might be indicative of groundwater interactions between the two hydrologic units as a result of nearby faulting or conduit flow. The groundwater levels measured at the sites in the study area exhibited varying degrees of similarity to the Bexar County index well. Groundwater levels at site A (State well AY-68-36-136) exhibited similar patterns as those at the Bexar County index well, but the hydrographs of groundwater levels were different in shape and magnitude in response to precipitation and groundwater pumping, and at times slightly offset in time. The groundwater level patterns measured at sites C, D, and E (State wells AY-68-29-513, AY-68-29-514, and AY-68-29-512, respectively) were not similar to those measured at the Bexar County index well. Groundwater levels at site F (State well AY-68-29-819) exhibited general similarities as those observed at the Bexar County index well; however, there were several periods of notable groundwater-level drawdowns at site F that were not evident at the Bexar County index well. These drawdowns were likely because of pumping from the well at site F. The groundwater

  6. Pumping Test Determination of Unsaturated Aquifer Properties

    Science.gov (United States)

    Mishra, P. K.; Neuman, S. P.

    2008-12-01

    Tartakovsky and Neuman [2007] presented a new analytical solution for flow to a partially penetrating well pumping at a constant rate from a compressible unconfined aquifer considering the unsaturated zone. In their solution three-dimensional, axially symmetric unsaturated flow is described by a linearized version of Richards' equation in which both hydraulic conductivity and water content vary exponentially with incremental capillary pressure head relative to its air entry value, the latter defining the interface between the saturated and unsaturated zones. Both exponential functions are characterized by a common exponent k having the dimension of inverse length, or equivalently a dimensionless exponent kd=kb where b is initial saturated thickness. The authors used their solution to analyze drawdown data from a pumping test conducted by Moench et al. [2001] in a Glacial Outwash Deposit at Cape Cod, Massachusetts. Their analysis yielded estimates of horizontal and vertical saturated hydraulic conductivities, specific storage, specific yield and k . Recognizing that hydraulic conductivity and water content seldom vary identically with incremental capillary pressure head, as assumed by Tartakovsky and Neuman [2007], we note that k is at best an effective rather than a directly measurable soil parameter. We therefore ask to what extent does interpretation of a pumping test based on the Tartakovsky-Neuman solution allow estimating aquifer unsaturated parameters as described by more common constitutive water retention and relative hydraulic conductivity models such as those of Brooks and Corey [1964] or van Genuchten [1980] and Mualem [1976a]? We address this question by showing how may be used to estimate the capillary air entry pressure head k and the parameters of such constitutive models directly, without a need for inverse unsaturated numerical simulations of the kind described by Moench [2003]. To assess the validity of such direct estimates we use maximum

  7. Flow to partially penetrating wells in unconfined heterogeneous aquifers: Mean head and interpretation of pumping tests

    Science.gov (United States)

    Dagan, G.; Lessoff, S. C.

    2011-06-01

    A partially penetrating well of length Lw and radius Rw starts to pump at constant discharge Qw at t = 0 from an unconfined aquifer of thickness D. The aquifer is of random and stationary conductivity characterized by KG (geometric mean), σY2 (log conductivity variance), and I and Iv (the horizontal and vertical integral scales). The flow problem is solved under a few simplifying assumptions commonly adopted in the literature for homogeneous media: Rw/Lw ≪ 1, linearization of the free surface condition, and constant drainable porosity n. Additionally, it is assumed that Rw/I well boundary conditions) and that a first-order approximation in σY2 (extended to finite σY2 on a conjectural basis) is adopted. The solution is obtained for the mean head field and the associated water table equation. The main result of the analysis is that the flow domain can be divided into three zones for : (1) the neighborhood of the well R ≪ I, where = (Qw/LwKA)h0(R, z, tKefuv/nD), with h0 being the zero-order solution pertaining to a homogeneous and isotropic aquifer, KA being the conductivity arithmetic mean, and Kefuv being the effective vertical conductivity in mean uniform flow, (2) an exterior zone R ⪆ I in which ?H? = (Qw/LwKefuh)h0(R?, z, tKefuv/nD), with Kefuh being the horizontal effective conductivity, and (3) an intermediate zone in which the solution requires a few numerical quadratures, not carried out here. The application to pumping tests reveals that identification of the aquifer parameters for homogeneous and anisotropic aquifers by commonly used methods can be applied for the drawdown measured in an observation well of length Low?Iv (to ensure exchange of space and ensemble head averages) in the second zone in order to identify Kefuh, Kefuv, and n. In contrast, the use of the drawdown in the well (first zone) leads to an overestimation of Kefuh by the factor KA/Kefuh.

  8. Interpretation of Flow Logs from Nevada Test Site Boreholes to Estimate Hydraulic conductivity Using Numerical Simulations Constrained by Single-Well Aquifer Tests

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, C. Amanda; Halford, Keith J.; Laczniak, Randell J.

    2010-02-12

    Hydraulic conductivities of volcanic and carbonate lithologic units at the Nevada Test Site were estimated from flow logs and aquifer-test data. Borehole flow and drawdown were integrated and interpreted using a radial, axisymmetric flow model, AnalyzeHOLE. This integrated approach is used because complex well completions and heterogeneous aquifers and confining units produce vertical flow in the annular space and aquifers adjacent to the wellbore. AnalyzeHOLE simulates vertical flow, in addition to horizontal flow, which accounts for converging flow toward screen ends and diverging flow toward transmissive intervals. Simulated aquifers and confining units uniformly are subdivided by depth into intervals in which the hydraulic conductivity is estimated with the Parameter ESTimation (PEST) software. Between 50 and 150 hydraulic-conductivity parameters were estimated by minimizing weighted differences between simulated and measured flow and drawdown. Transmissivity estimates from single-well or multiple-well aquifer tests were used to constrain estimates of hydraulic conductivity. The distribution of hydraulic conductivity within each lithology had a minimum variance because estimates were constrained with Tikhonov regularization. AnalyzeHOLE simulated hydraulic-conductivity estimates for lithologic units across screened and cased intervals are as much as 100 times less than those estimated using proportional flow-log analyses applied across screened intervals only. Smaller estimates of hydraulic conductivity for individual lithologic units are simulated because sections of the unit behind cased intervals of the wellbore are not assumed to be impermeable, and therefore, can contribute flow to the wellbore. Simulated hydraulic-conductivity estimates vary by more than three orders of magnitude across a lithologic unit, indicating a high degree of heterogeneity in volcanic and carbonate-rock units. The higher water transmitting potential of carbonate-rock units relative

  9. The collision that changed the world

    Directory of Open Access Journals (Sweden)

    Wally Broecker

    2015-07-01

    Full Text Available Abstract In connection with the Anthropocene, one might ask how climate is likely to evolve in the absence of man’s intervention and whether humans will be able to purposefully alter this course. In this commentary, I deal with the situation for very long time scales. I make a case that fifty million years ago, the collision between the northward drifting Indian land mass and Asia set the Earth’s climate on a new course. Ever since then, it has cooled. In the absence of some other dramatic disruption in the movement of the plates which make up our planet’s crust, on the time scale of tens of millions of years, this drift would cause the Earth to freeze over as it did during the late Precambrian. Evidence for this change in course comes from records of oxygen and lithium isotopic composition of foraminifer shells. It is reinforced by records of Mg to Ca in halite-hosted fluid inclusions and in marine CaCO3. In addition, the collision appears to have created abrupt changes in the sulfur isotope composition of marine barite and the carbon isotope composition of amber. Not only did this collision create the Himalaya, but more important, it led to a reorganization of the crustal plate motions. Through some combination of the building of mountains and lowering of sea level, these changes generated a mismatch between the supply of CO2 by planetary outgassing and that of calcium by the weathering of silicate rock. The tendency toward an oversupply of calcium has been compensated by a drawdown of the atmosphere’s CO2 content. This drawdown cooled the Earth, slowing down the supply of calcium. Although we are currently inadvertently compensating for this cooling by burning fossil fuels, the impacts of this CO2 on Earth climate will last no more than a tenth of a million years. So, if humans succeed in avoiding extinction, there will likely be a long-term effort to warm the planet.

  10. Assessment of seawater intrusion and nitrate contamination on the groundwater quality in the Korba coastal plain of Cap-Bon (North-east of Tunisia)

    Science.gov (United States)

    Zghibi, Adel; Tarhouni, Jamila; Zouhri, Lahcen

    2013-11-01

    In recent years, seawater intrusion and nitrate contamination of groundwater have become a growing concern for people in rural areas in Tunisia where groundwater is always used as drinking water. The coastal plain of Korba (north-east of Tunisia) is a typical area where the contamination of the aquifer in the form of saltwater intrusion and high nitrate concentrations is very developed and represents the major consequence of human activities. The objective of this study is to evaluate groundwater resource level, to determine groundwater quality and to assess the risk of NO3- pollution in groundwater using hydrogeochemical tools. Groundwater were sampled and analyzed for physic-chemical parameters: Ca2+, Mg2+, Na+, K+, Cl-, SO42-, HCO3-, NO3-, Total Dissolved Solid and of the physical parameters (pH, electrical conductivity and the temperature). The interpretation of the analytical results is shown numerically and graphically through the ionic deviations, Piper Diagram, seawater fractions and binary diagrams. Moreover, electrical conductivity investigations have been used to identify the location of the major intrusion plumes in this coastal area and to obtain new information on the spatial scales and dynamics of the fresh water-seawater interface. Those processes can be used as indicators of seawater intrusion progression. First, the hydrogeochemical investigation of this aquifer reveals the major sources of contamination, represented by seawater intrusion. Thus, the intensive extraction of groundwater from aquifer reduces freshwater outflow to the sea, creates several drawdown cones and lowering of the water table to as much as 12 m below mean sea level in the center part of the study area especially between Diarr El Hojjej and Tafelloun villages, causing seawater migration inland and rising toward the wells. Moreover, the results of this study revealed the presence of direct cation exchange linked to seawater intrusion and dissolution processes associated with

  11. Ensemble Streamflow Forecast Improvements in NYC's Operations Support Tool

    Science.gov (United States)

    Wang, L.; Weiss, W. J.; Porter, J.; Schaake, J. C.; Day, G. N.; Sheer, D. P.

    2013-12-01

    Like most other water supply utilities, New York City's Department of Environmental Protection (DEP) has operational challenges associated with drought and wet weather events. During drought conditions, DEP must maintain water supply reliability to 9 million customers as well as meet environmental release requirements downstream of its reservoirs. During and after wet weather events, DEP must maintain turbidity compliance in its unfiltered Catskill and Delaware reservoir systems and minimize spills to mitigate downstream flooding. Proactive reservoir management - such as release restrictions to prepare for a drought or preventative drawdown in advance of a large storm - can alleviate negative impacts associated with extreme events. It is important for water managers to understand the risks associated with proactive operations so unintended consequences such as endangering water supply reliability with excessive drawdown prior to a storm event are minimized. Probabilistic hydrologic forecasts are a critical tool in quantifying these risks and allow water managers to make more informed operational decisions. DEP has recently completed development of an Operations Support Tool (OST) that integrates ensemble streamflow forecasts, real-time observations, and a reservoir system operations model into a user-friendly graphical interface that allows its water managers to take robust and defensible proactive measures in the face of challenging system conditions. Since initial development of OST was first presented at the 2011 AGU Fall Meeting, significant improvements have been made to the forecast system. First, the monthly AR1 forecasts ('Hirsch method') were upgraded with a generalized linear model (GLM) utilizing historical daily correlations ('Extended Hirsch method' or 'eHirsch'). The development of eHirsch forecasts improved predictive skill over the Hirsch method in the first week to a month from the forecast date and produced more realistic hydrographs on the tail

  12. Modeling the Acceleration of Global Surface Temperture

    Science.gov (United States)

    Jones, B.

    2017-12-01

    A mathematical projection focusing on the changing rate of acceleration of Global Surface Temperatures. Using historical trajectory and informed expert near-term prediction, it is possible to extend this further forward drawing a reference arc of acceleration. Presented here is an example of this technique based on data found in the Summary of Findings of A New Estimate of the Average Earth Surface Land Temperature Spanning 1753 to 2011 and that same team's stated prediction to 2050. With this, we can project a curve showing future acceleration: Decade (midpoint) Change in Global Land Temp Degrees C Known Slope Projected Trend 1755 0.000 1955 0.600 0.0030 2005 1.500 0.0051 2045 3.000 0.0375 2095 5.485 0.0497 2145 8.895 0.0682 2195 13.488 0.0919 Observations: Slopes are getting steeper and doing so faster in an "acceleration of the acceleration" or an "arc of acceleration". This is consistent with the non-linear accelerating feedback loops of global warming. Such projected temperatures threaten human civilization and human life. This `thumbnail' projection is consistent with the other long term predictions based on anthropogenic greenhouse gases. This projection is low when compared to those whose forecasts include greenhouse gases released from thawing permafrost and clathrate hydrates. A reference line: This curve should be considered a point of reference. In the near term and absent significant drawdown of greenhouse gases, my "bet" for this AGU session is that future temperatures will generally be above this reference curve. For example, the decade ending 2020 - more than 1.9C and the decade ending 2030 - more than 2.3C - again measured from the 1750 start point. *Caveat: The long term curve and prediction assumes that mankind does not move quickly away from high cost fossil fuels and does not invent, mobilize and take actions drawing down greenhouse gases. Those seeking a comprehensive action plan are directed to drawdown.org

  13. Interpretation of Flow Logs from Nevada Test Site Boreholes to Estimate Hydraulic Conductivity Using Numerical Simulations Constrained by Single-Well Aquifer Tests

    Science.gov (United States)

    Garcia, C. Amanda; Halford, Keith J.; Laczniak, Randell J.

    2010-01-01

    Hydraulic conductivities of volcanic and carbonate lithologic units at the Nevada Test Site were estimated from flow logs and aquifer-test data. Borehole flow and drawdown were integrated and interpreted using a radial, axisymmetric flow model, AnalyzeHOLE. This integrated approach is used because complex well completions and heterogeneous aquifers and confining units produce vertical flow in the annular space and aquifers adjacent to the wellbore. AnalyzeHOLE simulates vertical flow, in addition to horizontal flow, which accounts for converging flow toward screen ends and diverging flow toward transmissive intervals. Simulated aquifers and confining units uniformly are subdivided by depth into intervals in which the hydraulic conductivity is estimated with the Parameter ESTimation (PEST) software. Between 50 and 150 hydraulic-conductivity parameters were estimated by minimizing weighted differences between simulated and measured flow and drawdown. Transmissivity estimates from single-well or multiple-well aquifer tests were used to constrain estimates of hydraulic conductivity. The distribution of hydraulic conductivity within each lithology had a minimum variance because estimates were constrained with Tikhonov regularization. AnalyzeHOLE simulated hydraulic-conductivity estimates for lithologic units across screened and cased intervals are as much as 100 times less than those estimated using proportional flow-log analyses applied across screened intervals only. Smaller estimates of hydraulic conductivity for individual lithologic units are simulated because sections of the unit behind cased intervals of the wellbore are not assumed to be impermeable, and therefore, can contribute flow to the wellbore. Simulated hydraulic-conductivity estimates vary by more than three orders of magnitude across a lithologic unit, indicating a high degree of heterogeneity in volcanic and carbonate-rock units. The higher water transmitting potential of carbonate-rock units relative

  14. Analysis of cavern stability at the West Hackberry SPR site.

    Energy Technology Data Exchange (ETDEWEB)

    Ehgartner, Brian L.; Sobolik, Steven Ronald

    2009-05-01

    This report presents computational analyses that simulate the structural response of caverns at the Strategic Petroleum Reserve (SPR) West Hackberry site. The cavern field comprises 22 caverns. Five caverns (6, 7, 8, 9, 11) were acquired from industry and have unusual shapes and a history dating back to 1946. The other 17 caverns (101-117) were leached according to SPR standards in the mid-1980s and have tall cylindrical shapes. The history of the caverns and their shapes are simulated in a three-dimensional geomechanics model of the site that predicts deformations, strains, and stresses. Future leaching scenarios corresponding to oil drawdowns using fresh water are also simulated by increasing the volume of the caverns. Cavern pressures are varied in the model to capture operational practices in the field. The results of the finite element model are interpreted to provide information on the current and future status of subsidence, well integrity, and cavern stability. The most significant results in this report are relevant to Cavern 6. The cavern is shaped like a bowl with a large ceiling span and is in close proximity to Cavern 9. The analyses predict tensile stresses at the edge of the ceiling during repressuization of Cavern 6 following workover conditions. During a workover the cavern is at low pressure to service a well. The wellhead pressures are atmospheric. When the workover is complete, the cavern is repressurized. The resulting elastic stresses are sufficient to cause tension around the edge of the large ceiling span. With time, these stresses relax to a compressive state because of salt creep. However, the potential for salt fracture and propagation exists, particularly towards Cavern 9. With only 200 ft of salt between the caverns, the operational consequences must be examined if the two caverns become connected. A critical time may be during a workover of Cavern 9 in part because of the operational vulnerabilities, but also because dilatant damage is

  15. Simulation of geothermal water extraction in heterogeneous reservoirs using dynamic unstructured mesh optimisation

    Science.gov (United States)

    Salinas, P.; Pavlidis, D.; Jacquemyn, C.; Lei, Q.; Xie, Z.; Pain, C.; Jackson, M.

    2017-12-01

    It is well known that the pressure gradient into a production well increases with decreasing distance to the well. To properly capture the local pressure drawdown into the well a high grid or mesh resolution is required; moreover, the location of the well must be captured accurately. In conventional simulation models, the user must interact with the model to modify grid resolution around wells of interest, and the well location is approximated on a grid defined early in the modelling process.We report a new approach for improved simulation of near wellbore flow in reservoir scale models through the use of dynamic mesh optimisation and the recently presented double control volume finite element method. Time is discretized using an adaptive, implicit approach. Heterogeneous geologic features are represented as volumes bounded by surfaces. Within these volumes, termed geologic domains, the material properties are constant. Up-, cross- or down-scaling of material properties during dynamic mesh optimization is not required, as the properties are uniform within each geologic domain. A given model typically contains numerous such geologic domains. Wells are implicitly coupled with the domain, and the fluid flows is modelled inside the wells. The method is novel for two reasons. First, a fully unstructured tetrahedral mesh is used to discretize space, and the spatial location of the well is specified via a line vector, ensuring its location even if the mesh is modified during the simulation. The well location is therefore accurately captured, the approach allows complex well trajectories and wells with many laterals to be modelled. Second, computational efficiency is increased by use of dynamic mesh optimization, in which an unstructured mesh adapts in space and time to key solution fields (preserving the geometry of the geologic domains), such as pressure, velocity or temperature, this also increases the quality of the solutions by placing higher resolution where required

  16. The inventions technology on water resources to support environmental engineering based infrastructure

    Science.gov (United States)

    Sunjoto, S.

    2017-03-01

    Since the Stockholm Declaration, declared on the United Nation Conference on the Human Environment in Sweden on 5-16 June 1972 and attended the 113 country delegations, all the infrastructure construction should comply the sustainable development. As a consequence, almost research and studies were directing to the environmental aspect of construction including on water resources engineering. This paper will present the inventions which are very useful for the design of infrastructure, especially on the Groundwater engineering. This field has been rapidly developed since the publication of the well known law of flow through porous materials by Henri Darcy in 1856 on his book "Les fontaine publiques de la ville de Dijon". This law states that the discharge through porous media is proportional to the product of the hydraulic gradient, the cross-sectional area normal to the flow and the coefficient of permeability of the material. Forchheimer in 1930 developed a breakthrough formula by simplifying solution in a steady state flow condition especially in the case of radial flow to compute the permeability coefficient of casing hole or tube test with zero inflow discharge. The outflow discharge on the holes is equal to shape factor of tip of casing (F) multiplied by coefficient of permeability of soils (K) and multiplied by hydraulic head (H). In 1988, Sunjoto derived an equation in unsteady state flow condition based on this formula. In 2002, Sunjoto developed several formulas of shape factor as the parameters of the equation. In the beginning this formula is implemented to compute for the dimension of recharge well as the best method of water conservation for the urban area. After a long research this formula can be implemented to compute the drawdown on pumping or coefficient of permeability of soil by pumping test. This method can substitute the former methods like Theis (1935), Cooper-Jacob (1946), Chow (1952), Glover (1966), Papadopulos-Cooper (1967), Todd (1980

  17. The Last Interglacial in the Levant: Perspective from the ICDP Dead Sea Deep Drill Core

    Science.gov (United States)

    Goldstein, S. L.; Torfstein, A.; Stein, M.; Kushnir, Y.; Enzel, Y.; Haug, G. H.

    2014-12-01

    Sediments recovered by the ICDP Dead Sea Deep Drilling Project provide a new perspective on the climate history of the Levant during the last interglacial period MIS5. They record the extreme impacts of an intense interglacial characterized by stronger insolation, warmer mean global temperatures, and higher sea-levels than the Holocene. Results show both extreme hyper-aridity during MIS5e, including an unprecedented drawdown of Dead Sea water levels, and the impacts of a strong precession-driven African monsoon responsible for a major sapropel event (S5) in the eastern Mediterranean. Hyper-arid conditions at the beginning of MIS5e prior to S5 (~132-128 ka) are evidenced by halite deposition, indicating declining Dead Sea lake levels. Surprisingly, the hyper-arid phase is interrupted during the MIS5e peak (~128-120 ka), coinciding with the S5 sapropel, which is characterized by a thick (23 m) section of silty detritus (without any halite) whose provenance indicates southern-sourced wetness in the watershed. Upon weakening of the S5 monsoon (~120-115 ka), the return of extreme aridity resulted in an unprecedented lake level drawdown, reflected by massive salt deposition, and followed by a sediment hiatus (~115-100 ka) indicating prolonged low lake level. The resumption of section follows classic Levant patterns with more wetness during cooler MIS5b and hyper-aridity during warmer MIS5a. The ICDP core provides the first evidence for a direct linkage between an intense precession-driven African monsoon and wetness at the high subtropical latitude (~30N) of the Dead Sea watershed. Combined with coeval deposition of Negev speleothems and travertines, and calcitification of Red Sea corals, the evidence indicates a wet climatic corridor that could facilitate homo sapiens migration out of Africa during the MIS5e peak. In addition, the MIS 5e hyper-arid intervals may provide an important cautionary analogue for the impact of future warming on regional water resources.

  18. Analysis of cavern and well stability at the West Hackberry SPR site using a full-dome model.

    Energy Technology Data Exchange (ETDEWEB)

    Sobolik, Steven R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-08-01

    This report presents computational analyses that simulate the structural response of caverns at the Strategic Petroleum Reserve (SPR) West Hackberry site. The cavern field comprises 22 caverns. Five caverns (6, 7, 8, 9, 11) were acquired from industry and have unusual shapes and a history dating back to 1946. The other 17 caverns (101-117) were leached according to SPR standards in the mid-1980s and have tall cylindrical shapes. The history of the caverns and their shapes are simulated in a three-dimensional geomechanics model of the site that predicts deformations, strains, and stresses. Future leaching scenarios corresponding to oil drawdowns using fresh water are also simulated by increasing the volume of the caverns. Cavern pressures are varied in the model to capture operational practices in the field. The results of the finite element model are interpreted to provide information on the current and future status of subsidence, well integrity, and cavern stability. The most significant results in this report are relevant to Cavern 6. The cavern is shaped like a bowl with a large ceiling span and is in close proximity to Cavern 9. The analyses predict tensile stresses at the edge of the ceiling during repressurization of Cavern 6 following workover conditions. During a workover the cavern is at low pressure to service a well. The wellhead pressures are atmospheric. When the workover is complete, the cavern is repressurized. The resulting elastic stresses are sufficient to cause tension around the edge of the large ceiling span. With time, these stresses relax to a compressive state because of salt creep. However, the potential for salt fracture and propagation exists, particularly towards Cavern 9. With only 200 feet of salt between the caverns, the operational consequences must be examined if the two caverns become connected. A critical time may be during a workover of Cavern 9 in part because of the operational vulnerabilities, but also because dilatant damage

  19. Mine water supply assessment and evaluation of the system response to the designed demand in a desert region, central Saudi Arabia.

    Science.gov (United States)

    Yihdego, Yohannes; Drury, Len

    2016-11-01

    The efficient use of water resources in arid region has become highly relevant in the evaluation and mining planning, since the exploration phase to closure. The objective of the numerical groundwater model was to assess the potential for groundwater extraction to meet mine water demand from one of the driest area in the world. Numerical groundwater models were used to assess groundwater resource. Modelling was undertaken using MODFLOW-SURFACT code, an advanced MODFLOW based code, within the framework of Visual MODFLOW version 4.6. A steady state model was developed to assess the regional groundwater flow pattern and to calibrate the recharge and hydraulic conductivity parameters in the model. The model was calibrated with a correlation of coefficient of 0.997, and root-mean-squared error is 0.3 m. A transient simulation model was used to predict the impact of 1.5 million cubic metre/year extraction for 10 years on the main aquifer hydrogeological regime, including after cession of pumping. Modelling simulated four hydrogeological scenarios. Model results for the 'worst case' scenario suggested that the Saq Sandstone aquifer should be capable of supplying the mine water demand (1.5 million cubic metre (MCM)/year) for 10 years. However, the long-term water-level drawdown shows a continuous decrease without achieving steady state conditions; thus, the majority of water is being taken from aquifer storage, and in the long term, there will be a mutual interference from a borefield located to the north of the model area. In this area, the hydraulic gradient is relatively steep and over-pumped for more than 28 years. Other scenario shows that there will be a recovery of around 8 m out of the 11.6-m drawdown, after 18 years of cession of pumping, implying that the aquifer will be stressed and a large percentage of water taken from aquifer storage. To minimise hydrogeological impacts, it is recommended to laterally spread out production bores, bores should be located

  20. Effect of the Ordovician paleogeography on the (instability of the climate

    Directory of Open Access Journals (Sweden)

    A. Pohl

    2014-11-01

    Full Text Available The Ordovician Period (485–443 Ma is characterized by abundant evidence for continental-sized ice sheets. Modeling studies published so far require a sharp CO2 drawdown to initiate this glaciation. They mostly used non-dynamic slab mixed-layer ocean models. Here, we use a general circulation model with coupled components for ocean, atmosphere, and sea ice to examine the response of Ordovician climate to changes in CO2 and paleogeography. We conduct experiments for a wide range of CO2 (from 16 to 2 times the preindustrial atmospheric CO2 level (PAL and for two continental configurations (at 470 and at 450 Ma mimicking the Middle and the Late Ordovician conditions. We find that the temperature-CO2 relationship is highly non-linear when ocean dynamics are taken into account. Two climatic modes are simulated as radiative forcing decreases. For high CO2 concentrations (≥ 12 PAL at 470 Ma and ≥ 8 PAL at 450 Ma, a relative hot climate with no sea ice characterizes the warm mode. When CO2 is decreased to 8 PAL and 6 PAL at 470 and 450 Ma, a tipping point is crossed and climate abruptly enters a runaway icehouse leading to a cold mode marked by the extension of the sea ice cover down to the mid-latitudes. At 450 Ma, the transition from the warm to the cold mode is reached for a decrease in atmospheric CO2 from 8 to 6 PAL and induces a ~9 °C global cooling. We show that the tipping point is due to the existence of a 95% oceanic Northern Hemisphere, which in turn induces a minimum in oceanic heat transport located around 40° N. The latter allows sea ice to stabilize at these latitudes, explaining the potential existence of the warm and of the cold climatic modes. This major climatic instability potentially brings a new explanation to the sudden Late Ordovician Hirnantian glacial pulse that does not require any large CO2 drawdown.

  1. Sustainability analysis of the Ahuachapan geothermal field: management and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Monterrosa, Manuel; Montalvo Lopez, Francisco E. [LaGeo S.A. de C.V., Reservoir Engineering, 15 Av. Sur, Colonia Utila, Santa Tecla, La Libertad (El Salvador)

    2010-12-15

    The Ahuachapan geothermal field (AGF) is located in north western El Salvador. To date, 53 wells (20 producers and 8 injectors) have been drilled in the Ahuachapan geothermal field and the adjacent Chipilapa area. Over the past 33 years, 550 Mtonnes have been extracted from the reservoir, and the reservoir pressure has declined by more than 15 bars. By 1985, the large pressure drawdown due to over-exploitation of the resource reduced the power generation capacity to only 45 MW{sub e}. Several activities were carried out in the period 1997-2005 as part of ''stabilization'' and ''optimization'' projects to increase the electric energy generation to 85 MW{sub e}, with a total mass extraction of 850 kg/s. LaGeo is assessing the sustainability of geothermal reservoir utilization. Preliminary results indicate the planned power production and mass extraction (95 MW, 900 kg/s) cannot be sustained for more than 50 years using current power plant technology. To sustain the exploitation for at least 100 years, the following changes should be implemented: (1) improve the gathering system using large-diameter steam pipelines, (2) expand the exploitation area to the southeast and southwest, and (3) reduce the inlet pressure of the turbines to less than 4 bars. (author)

  2. Simulated 21st century's increase in oceanic suboxia by CO2-enhanced biotic carbon export

    Science.gov (United States)

    Oschlies, Andreas; Schulz, Kai G.; Riebesell, Ulf; Schmittner, Andreas

    2008-12-01

    The primary impacts of anthropogenic CO2 emissions on marine biogeochemical cycles predicted so far include ocean acidification, global warming induced shifts in biogeographical provinces, and a possible negative feedback on atmospheric CO2 levels by CO2-fertilized biological production. Here we report a new potentially significant impact on the oxygen-minimum zones of the tropical oceans. Using a model of global climate, ocean circulation, and biogeochemical cycling, we extrapolate mesocosm-derived experimental findings of a pCO2-sensitive increase in biotic carbon-to-nitrogen drawdown to the global ocean. For a simulation run from the onset of the industrial revolution until A.D. 2100 under a "business-as-usual" scenario for anthropogenic CO2 emissions, our model predicts a negative feedback on atmospheric CO2 levels, which amounts to 34 Gt C by the end of this century. While this represents a small alteration of the anthropogenic perturbation of the carbon cycle, the model results reveal a dramatic 50% increase in the suboxic water volume by the end of this century in response to the respiration of excess organic carbon formed at higher CO2 levels. This is a significant expansion of the marine "dead zones" with severe implications not only for all higher life forms but also for oxygen-sensitive nutrient recycling and, hence, for oceanic nutrient inventories.

  3. Measurements of hydraulic conductivity in deep bedrock at Palmottu, Outokumpu, Pori and Ylivieska

    International Nuclear Information System (INIS)

    Ahonen, L.

    1992-01-01

    Hydraulic conductivity of the bedrock was studied using a double packer equipment fitting the small-diameter drillholes (46 mm). Test method was a slug test, in which the pressure of the test section is reduced by removing water from a tube connected to the test section and, subsequently, monitoring the recovery of the original pressure. In the work, methods of interpretation suitable for the test method are examined, and compared by means of graphical simulations. Their relevance in the case of measurements in fractured crystalline bedrock are discussed. In the method of Hvorslev, the recovery rate is assumed to be directly proportional to residual drawdown and to the hydraulic conductivity of the test section and, consequently, the effect of specific storage is neglected. In other methods of interpretations (e.g. 'Cooper'- method), assuming radial flow from porous aquifer, specific storage is taken into consideration. Different methods of interpretation lead to dissimilar theoretical responses on recovery vs. time graphics. Skin-effect and outer boundary effects also have an influence on the shape of recovery curve. There is no major differences in K-values obtained by different methods of interpretation. The study sites represent different lithological environments, comprising migmatitic gneisses with granitic interlayers (Palmottu); a complex association of serpentine, black schist, quartzite, dolomite and scram (Outokumpu); arkosic sandstone (Pori); and mafic/ultramafic intrusion (Ylivieska)

  4. Sensitivity analysis of coupled processes and parameters on the performance of enhanced geothermal systems.

    Science.gov (United States)

    Pandey, S N; Vishal, Vikram

    2017-12-06

    3-D modeling of coupled thermo-hydro-mechanical (THM) processes in enhanced geothermal systems using the control volume finite element code was done. In a first, a comparative analysis on the effects of coupled processes, operational parameters and reservoir parameters on heat extraction was conducted. We found that significant temperature drop and fluid overpressure occurred inside the reservoirs/fracture that affected the transport behavior of the fracture. The spatio-temporal variations of fracture aperture greatly impacted the thermal drawdown and consequently the net energy output. The results showed that maximum aperture evolution occurred near the injection zone instead of the production zone. Opening of the fracture reduced the injection pressure required to circulate a fixed mass of water. The thermal breakthrough and heat extraction strongly depend on the injection mass flow rate, well distances, reservoir permeability and geothermal gradients. High permeability caused higher water loss, leading to reduced heat extraction. From the results of TH vs THM process simulations, we conclude that appropriate coupling is vital and can impact the estimates of net heat extraction. This study can help in identifying the critical operational parameters, and process optimization for enhanced energy extraction from a geothermal system.

  5. Multilevel soil-vapor extraction test for heterogeneous soil

    International Nuclear Information System (INIS)

    Widdowson, M.A.; Haney, O.R.; Reeves, H.W.

    1997-01-01

    The design, performance, and analysis of a field method for quantifying contaminant mass-extraction rates and air-phase permeability at discrete vertical locations of the vadose zones are presented. The test configuration consists of a multiscreen extraction well and multilevel observation probes located in soil layers adjacent to the extraction well. For each level tested an inflatable packer system is used to pneumatically isolate a single screen in the extraction well, and a vacuum is applied to induce air flow through the screen. Test data include contaminant concentration and flow characteristics at the extraction well, and transient or steady-state pressure drawdown data at observation probes located at variable radii from the extraction well. The test method is applicable to the design of soil-vapor extraction (SVE) and bioventing remediation systems in a variety of geologic settings, particularly stratified soils. Application of the test method at a gasoline-polluted site located in the Piedmont physiographic region is described. Contaminant mass-extraction rates, expressed in terms of volatile hydrocarbons, varied from 0.16 to 14 kg/d

  6. Geohydrologic data for test well USW H-5, Yucca Mountain area, Nye County, Nevada

    International Nuclear Information System (INIS)

    Bentley, C.B.; Robison, J.H.; Spengler, R.W.

    1983-01-01

    This report presents data on drilling operations, lithology, borehold geophysics, water-level monitoring, core analysis, ground-water chemistry, pumping tests, and packer-injection tests for test well USW H-5. The well is one of a series of test wells drilled in and near the southwestern part of the Nevada Test Site, Nye County, Nevada, in cooperation with the US Department of Energy. These test wells are part of the Nevada Nuclear Waste Storage Investigations to identify suitable sites for storage of high-level radioactive wastes. Test well USW H-5 was drilled to a total depth of 1219 meters through volcanic rocks consisting mostly of ash-flow tuff. Depth to water in the well ranged between 703.8 and 707.2 meters below land surface, at an approximate altitude of 704 meters above sea level. Drawdown in the well exceeded 6 meters after test pumping more than 3000 minutes at a rate of 10 liters per second. Borehole-flow surveys showed that about 90 percent of the water in the well is contributed by the zone between 707 and about 820 meters below land surface. Two composite water samples collected after well completion contained 206 and 220 milligrams per liter of dissolved solids. Sodium and bicarbonate were the predominant dissolved anion and cation. The concentration of dissolved silica was 48 milligrams per liter in both samples, which is a relatively large concentration for most natural waters. 6 references, 19 figures, 6 tables

  7. Improving large-scale groundwater models by considering fossil gradients

    Science.gov (United States)

    Schulz, Stephan; Walther, Marc; Michelsen, Nils; Rausch, Randolf; Dirks, Heiko; Al-Saud, Mohammed; Merz, Ralf; Kolditz, Olaf; Schüth, Christoph

    2017-05-01

    Due to limited availability of surface water, many arid to semi-arid countries rely on their groundwater resources. Despite the quasi-absence of present day replenishment, some of these groundwater bodies contain large amounts of water, which was recharged during pluvial periods of the Late Pleistocene to Early Holocene. These mostly fossil, non-renewable resources require different management schemes compared to those which are usually applied in renewable systems. Fossil groundwater is a finite resource and its withdrawal implies mining of aquifer storage reserves. Although they receive almost no recharge, some of them show notable hydraulic gradients and a flow towards their discharge areas, even without pumping. As a result, these systems have more discharge than recharge and hence are not in steady state, which makes their modelling, in particular the calibration, very challenging. In this study, we introduce a new calibration approach, composed of four steps: (i) estimating the fossil discharge component, (ii) determining the origin of fossil discharge, (iii) fitting the hydraulic conductivity with a pseudo steady-state model, and (iv) fitting the storage capacity with a transient model by reconstructing head drawdown induced by pumping activities. Finally, we test the relevance of our approach and evaluated the effect of considering or ignoring fossil gradients on aquifer parameterization for the Upper Mega Aquifer (UMA) on the Arabian Peninsula.

  8. Evaluation of uncertainty in dam-break analysis resulting from dynamic representation of a reservoir; Evaluation de l'incertitude due au modele de representation du reservoir dans les analyses de rupture de barrage

    Energy Technology Data Exchange (ETDEWEB)

    Tchamen, G.W.; Gaucher, J. [Hydro-Quebec Production, Montreal, PQ (Canada). Direction Barrage et Environnement, Unite Barrages et Hydraulique

    2010-08-15

    Owners and operators of high capacity dams in Quebec have a legal obligation to conduct dam break analysis for each of their dams in order to ensure public safety. This paper described traditional hydraulic methodologies and models used to perform dam break analyses. In particular, it examined the influence of the reservoir drawdown submodel on the numerical results of a dam break analysis. Numerical techniques from the field of fluid mechanics and aerodynamics have provided the basis for developing effective hydrodynamic codes that reduce the level of uncertainties associated with dam-break analysis. A static representation that considers the storage curve was compared with a dynamic representation based on Saint-Venant equations and the real bathymetry of the reservoir. The comparison was based on breach of reservoir, maximum water level, flooded area, and wave arrival time in the valley downstream. The study showed that the greatest difference in attained water level was in the vicinity of the dam, and the difference decreased as the distance from the reservoir increased. The analysis showed that the static representation overestimated the maximum depth and inundated area by as much as 20 percent. This overestimation can be reduced by 30 to 40 percent by using dynamic representation. A dynamic model based on a synthetic trapezoidal reconstruction of the storage curve was used, given the lack of bathymetric data for the reservoir. It was concluded that this model can significantly reduce the uncertainty associated with the static model. 7 refs., 9 tabs., 7 figs.

  9. Groundwater flow modelling of the excavation and operational phases - Forsmark

    International Nuclear Information System (INIS)

    Svensson, Urban; Follin, Sven

    2010-07-01

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different climate conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. The modelling study reported here presents calculated inflow rates, drawdown of the groundwater table and upconing of deep saline water for different levels of grouting efficiency during the excavation and operational phases of a final repository at Forsmark. The inflow calculations are accompanied by a sensitivity study, which among other matters handles the impact of parameter heterogeneity, different deposition hole rejection criteria, and the SFR facility (the repository for short-lived radioactive waste located approximately 1 km to the north of the investigated candidate area for a final repository at Forsmark). The report also presents tentative modelling results for the duration of the saturation phase, which starts once the used parts of the repository are being backfilled

  10. Weakening temperature control on the interannual variations of spring carbon uptake across northern lands

    Energy Technology Data Exchange (ETDEWEB)

    Piao, Shilong [Chinese Academy of Sciences (CAS), Beijing (China); Peking Univ., Beijing (China); Liu, Zhuo [Peking Univ., Beijing (China); Wang, Tao [Chinese Academy of Sciences (CAS), Beijing (China); Peng, Shushi [Peking Univ., Beijing (China); Ciais, Philippe [Alternative Energies and Atomic Energy Commission (CEA), Gif-sur-Yvette (France); Huang, Mengtian [Peking Univ., Beijing (China); Ahlstrom, Anders [Stanford Univ., CA (United States); Burkhart, John F. [Univ. of Oslo (Norway); Chevallier, Frédéric [Alternative Energies and Atomic Energy Commission (CEA), Gif-sur-Yvette (France); Janssens, Ivan A. [Univ. of Antwerp, Wilrijk (Belgium); Jeong, Su-Jong [South Univ. of Science and Technology of China, Shenzhen (China); Lin, Xin [Alternative Energies and Atomic Energy Commission (CEA), Gif-sur-Yvette (France); Mao, Jiafu [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Miller, John [National Oceanic and Atmospheric Administration Earth Systems Research Lab., Boulder, CO (United States); Univ. of Colorado, Boulder, CO (United States); Mohammat, Anwar [Chinese Academy of Sciences (CAS), Beijing (China); Myneni, Ranga B. [Boston Univ., MA (United States); Peñuelas, Josep [Centre for Ecological Research and Forestry Applications (CREAF), Barcelona (Spain); Shi, Xiaoying [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Stohl, Andreas [Norwegian Institute for Air Research (NILU), Kjeller (Norway); Yao, Yitong [Peking Univ., Beijing (China); Zhu, Zaichun [Peking Univ., Beijing (China); Tans, Pieter P. [National Oceanic and Atmospheric Administration Earth Systems Research Lab., Boulder, CO (United States)

    2017-04-24

    Ongoing spring warming allows the growing season to begin earlier, enhancing carbon uptake in northern ecosystems. We use 34 years of atmospheric CO2 concentration measurements at Barrow, Alaska (BRW, 71° N) to show that the interannual relationship between spring temperature and carbon uptake has recently shifted. Here, we use two indicators: the spring zero-crossing date of atmospheric CO2 (SZC) and the magnitude of CO2 drawdown between May and June (SCC). The previously reported strong correlation between SZC, SCC and spring land temperature (ST) was found in the first 17 years of measurements, but disappeared in the last 17 years. As a result, the sensitivity of both SZC and SCC to warming decreased. Simulations with an atmospheric transport model coupled to a terrestrial ecosystem model suggest that the weakened interannual correlation of SZC and SCC with ST in the last 17 years is attributable to the declining temperature response of spring net primary productivity (NPP) rather than to changes in heterotrophic respiration or in atmospheric transport patterns. Reduced chilling during dormancy and emerging light limitation are possible mechanisms that may have contributed to the loss of NPP response to ST. These results thus challenge the ‘warmer spring–bigger sink’ mechanism.

  11. Elements of an environmental decision support system for seasonal wetland salt management in a river basin subjected to water quality regulation

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, N.W.T.

    2009-06-01

    Seasonally managed wetlands in the Grasslands Basin on the west-side of California's San Joaquin Valley provide food and shelter for migratory wildfowl during winter months and sport for waterfowl hunters during the annual duck season. Surface water supply to these wetlands contain salt which, when drained to the San Joaquin River during the annual drawdown period, can negatively impact water quality and cause concern to downstream agricultural riparian water diverters. Recent environmental regulation, limiting discharges salinity to the San Joaquin River and primarily targeting agricultural non-point sources, now also targets return flows from seasonally managed wetlands. Real-time water quality management has been advocated as a means of continuously matching salt loads discharged from agricultural, wetland and municipal operations to the assimilative capacity of the San Joaquin River. Past attempts to build environmental monitoring and decision support systems (EDSS's) to implement this concept have enjoyed limited success for reasons that are discussed in this paper. These reasons are discussed in the context of more general challenges facing the successful implementation of a comprehensive environmental monitoring, modelling and decision support system for the San Joaquin River Basin.

  12. Wetland Flow and Salinity Budgets and Elements of a Decision Support System toward Implementation of Real-Time Seasonal Wetland Salinity Management

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, N.W.T.; Ortega, R.; Rahilly, P.; Johnson, C.B.

    2011-12-17

    The project has provided science-based tools for the long-term management of salinity in drainage discharges from wetlands to the San Joaquin River. The results of the project are being used to develop best management practices (BMP) and a decision support system to assist wetland managers adjust the timing of salt loads delivered to the San Joaquin River during spring drawdown. Adaptive drainage management scheduling has the potential to improve environmental compliance with salinity objectives in the Lower San Joaquin River by reducing the frequency of violation of Vernalis salinity standards, especially in dry and critically dry years. The paired approach to project implementation whereby adaptively managed and traditional practices were monitored in a side-by-side fashion has provided a quantitative measure of the impacts of the project on the timing of salt loading to the San Joaquin River. The most significant accomplishments of the project has been the technology transfer to wetland biologists, ditch tenders and water managers within the Grasslands Ecological Area. This “learning by doing” has build local community capacity within the Grassland Water District and California Department of Fish and Game providing these institutions with new capability to assess and effectively manage salinity within their wetlands while simultaneously providing benefits to salinity management of the San Joaquin River.

  13. Seasonally-managed wetland footprint delineation using Landsat ETM+ satellite imagery

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, Nigel W. T. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Epshtein, Olga [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Arizona State Univ., Tempe, AZ (United States). School of Sustainable Engineering and the Built Environment

    2014-01-09

    One major challenge in water resource management is the estimation of evapotranspiration losses from seasonally managed wetlands. Quantifying these losses is complicated by the dynamic nature of the wetlands' areal footprint during the periods of flood-up and drawdown. In this paper, we present a data-lean solution to this problem using an example application in the San Joaquin Basin, California. Through analysis of high-resolution Landsat Enhanced Thematic Mapper Plus (ETM+) satellite imagery, we develop a metric to better capture the extent of total flooded wetland area. The procedure is validated using year-long, continuously-logged field datasets for two wetlands within the study area. The proposed classification which uses a Landsat ETM + Band 5 (mid-IR wavelength) to Band 2 (visible green wavelength) ratio improves estimates by 30–50% relative to previous wetland delineation studies. Finally, requiring modest ancillary data, the study results provide a practical and efficient option for wetland management in data-sparse regions or un-gauged watersheds.

  14. Geohydrological simulation of a deep coastal repository

    International Nuclear Information System (INIS)

    Follin, S.

    1995-12-01

    This conceptual-numerical study treats the dewatering and resaturation phases associated with the construction, use and closure of a coastal nuclear waste repository located at depth in sparsely fractured Baltic Shield rocks. The main objective is to simulate the extent and duration of saline intrusion for a reasonable set of geohydrological assumptions. Long-term changes in the chemical environment associated with saline intrusion may affect the properties of the buffer zone material (bentonite). The first part of the study deals with history matching of a simple model geometry and the second part treats the dewatering and resaturation phases of the simulated repository. The history matching supports the standpoint that the occurrence of saline ground water reflects an ongoing but incomplete Holocene flushing of the Baltic Shield. The drawdown after fifty years of dewatering is highly dependent on the permeability of the excavated damaged zone. If the permeability close the repository is unaltered the entire region between the top side of the model and the repository is more or less partially saturated at the end of the simulation period. The simulations of a fifty year long recovery period suggest that the distribution between fresh and saline ground waters may be quite close to the conditions prior to the dewatering phase already after fifty years of closure despite an incomplete pressure recovery, which is an interesting result considering the objective of the study. 12 refs

  15. Sequestration of arsenic in ombrotrophic peatlands

    Science.gov (United States)

    Rothwell, James; Hudson-Edwards, Karen; Taylor, Kevin; Polya, David; Evans, Martin; Allott, Tim

    2014-05-01

    Peatlands can be important stores of arsenic but we are lacking spectroscopic evidence of the sequestration pathways of this toxic metalloid in peatland environments. This study reports on the solid-phase speciation of anthropogenically-derived arsenic in atmospherically contaminated peat from the Peak District National Park (UK). Surface and sub-surface peat samples were analysed by synchrotron X-ray absorption spectroscopy on B18 beamline at Diamond Light Source (UK). The results suggest that there are contrasting arsenic sequestration mechanisms in the peat. The bulk arsenic speciation results, in combination with strong arsenic-iron correlations at the surface, suggest that iron (hydr)oxides are key phases for the immobilisation of arsenic at the peat surface. In contrast, the deeper peat samples are dominated by arsenic sulphides (arsenopyrite, realgar and orpiment). Given that these peats receive inputs solely from the atmosphere, the presence of these sulphide phases suggests an in-situ authigenic formation. Redox oscillations in the peat due to a fluctuating water table and an abundant store of legacy sulphur from historic acid rain inputs may favour the precipitation of arsenic sequestering sulphides in sub-surface horizons. Oxidation-induced loss of these arsenic sequestering sulphur species by water table drawdown has important implications for the mobility of arsenic and the quality of waters draining peatlands.

  16. Ground water in Dale Valley, New York

    Science.gov (United States)

    Randall, Allan D.

    1979-01-01

    Dale Valley is a broad valley segment, enlarged by glacial erosion, at the headwaters of Little Tonawanda Creek near Warsaw , New York. A thin, shallow alluvial aquifer immediately underlies the valley floor but is little used. A deeper gravel aquifer, buried beneath many feet of lake deposits, is tapped by several industrial wells. A finite-difference digital model treated the deep aquifer as two-dimensional with recharge and discharge through a confining layer. It was calibrated by simulating (1) natural conditions, (2) an 18-day aquifer test, and (3) 91 days of well-field operation. Streamflow records and model simulations suggest that in moderately wet years such as 1974, a demand of 750 gallons per minute could be met by withdrawal from the creek and from the aquifer without excessive drawdown at production wells or existing domestic wells. With reasonable but unverified model adjustments to simulate an unusually dry year, the model predicts that a demand of 600 gallons per minute could be met from the same sources. Water high in chloride has migrated from bedrock into parts of the deep aquifer. Industrial pumpage, faults in the bedrock, and the natural flow system may be responsible. (Woodard-USGS)

  17. Quantification of Libby Reservoir Levels Needed to Maintain or Enhance Reservoir Fisheries, 1983-1987 Methods and Data Summary.

    Energy Technology Data Exchange (ETDEWEB)

    Chisholm, Ian

    1989-12-01

    Libby Reservoir was created under an International Columbia River Treaty between the United States and Canada for cooperative water development of the Columbia River Basin. The authorized purpose of the dam is to provide power, flood control, and navigation and other benefits. Research began in May 1983 to determine how operations of Libby dam impact the reservoir fishery and to suggest ways to lessen these impacts. This study is unique in that it was designed to accomplish its goal through detailed information gathering on every trophic level in the reservoir system and integration of this information into a quantitative computer model. The specific study objectives are to: quantify available reservoir habitat, determine abundance, growth and distribution of fish within the reservoir and potential recruitment of salmonids from Libby Reservoir tributaries within the United States, determine abundance and availability of food organisms for fish in the reservoir, quantify fish use of available food items, develop relationships between reservoir drawdown and reservoir habitat for fish and fish food organisms, and estimate impacts of reservoir operation on the reservoir fishery. 115 refs., 22 figs., 51 tabs.

  18. Positive Alpha and Negative Beta (A Strategy for Counteracting Systematic Risk

    Directory of Open Access Journals (Sweden)

    Erik Sonne Noddeboe

    2015-09-01

    Full Text Available Undiversifiable (or systematic risk has long been an enemy of investors. Many countercyclical strategies have been developed to counter this. However, like all insurance types, these strategies are generally costly to implement, and over time can significantly reduce portfolio returns in long and extended bull markets. In this paper, we discuss an alternative technique, founded on the premise of physiological bias and risk-aversion. We take a behavioral discussion in order to contextualize the insurance like characteristics of option pricing and discuss how this can lead to a mispricing of the asymmetric relationship between the VIX and the S&P 500. To test this, we perform studies in which we find statistical inefficiencies, thereby making it possible to implement a method of hedging index option premium in a way that has displayed no monthly drawdowns in bullish periods, while still providing large returns in major sell-offs. The three versions of the strategy discussed have negative betas to the S&P 500, while exhibiting similar risk-adjusted excess returns over both bull and bear markets. Further, the performance generated over the entire period, for all three strategies, is highly statistically significant. The results challenge the weak form of the Efficient Market Hypothesis and provide evidence that the methods of hedging could be a valuable addition to an equity rich portfolio for the purpose of counteracting systematic risk.

  19. Aquifer Characterization and Groundwater Potential Evaluation in Sedimentary Rock Formation

    Science.gov (United States)

    Ashraf, M. A. M.; Yusoh, R.; Sazalil, M. A.; Abidin, M. H. Z.

    2018-04-01

    This study was conducted to characterize the aquifer and evaluate the ground water potential in the formation of sedimentary rocks. Electrical resistivity and drilling methods were used to develop subsurface soil profile for determining suitable location for tube well construction. The electrical resistivity method was used to infer the subsurface soil layer by use of three types of arrays, namely, the pole–dipole, Wenner, and Schlumberger arrays. The surveys were conducted using ABEM Terrameter LS System, and the results were analyzed using 2D resistivity inversion program (RES2DINV) software. The survey alignments were performed with maximum electrode spreads of 400 and 800 m by employing two different resistivity survey lines at the targeted zone. The images were presented in the form of 2D resistivity profiles to provide a clear view of the distribution of interbedded sandstone, siltstone, and shale as well as the potential groundwater zones. The potential groundwater zones identified from the resistivity results were confirmed using pumping, step drawdown, and recovery tests. The combination among the three arrays and the correlation between the well log and pumping test are reliable and successful in identifying potential favorable zones for obtaining groundwater in the study area.

  20. Tsunamis induced by submarine slumpings off the coast of Israel

    International Nuclear Information System (INIS)

    Striem, H.; Miloh, T.

    1975-07-01

    The historical description of tsunamis or seismic sea waves at the coast of Israel is related. It is found that such an event was followed more often by a sea recession than by a shore flooding. A quantitative evaluation based on data of actual submarine scars, which may have been caused by slumpings on the continental slope, is carried out. It was found that the slumping of a mass 6 km long, 2 km wide and about 50 m deep would cause the formation of a shock-induced solitary wave of about 10 m in height at the edge of the continental slope. The accompanying draw-down of the sea level at the coast would last about 1/2 - 1.5 hours and lay the sea floor bare for a distance of about 1/2 - 1.5 km in agreement with some of the historical descriptions. Though possibly occurring only once or twice in a millenium, earthquake-induced slumpings may constitute a danger to nuclear power plants. (B.G.)

  1. The results of air treatment process modeling at the location of the air curtain in the air suppliers and ventilation shafts

    Directory of Open Access Journals (Sweden)

    Nikolaev Aleksandr

    2017-01-01

    Full Text Available In the existing shaft air heater installations (AHI, that heat the air for air suppliers in cold seasons, a heater channel is used. Some parts of the air from the heater go to the channel, other parts are sucked through a pithead by the general shaft pressure drawdown formed by the main ventilation installation (MVI. When this happens, a mix of two air flows leads to a shaft heat regime violation that can break pressurization of intertubular sealers. The problem of energy saving while airing underground mining enterprises is also very important. The proposed solution of both tasks due to the application of an air curtain is described in the article. In cold seasons the air treatment process should be used and it is offered to place an air curtain in the air suppliers shaft above the place of interface of the calorifer channel to a trunk in order to avoid an infiltration (suction of air through the pithead. It’s recommended to use an air curtain in a ventilation shaft because it reduces external air leaks thereby improving energy efficiency of the MVI work. During the mathematical modeling of ventilation and air preparation process (in SolidWorks Flowsimulation software package it was found out that the use of the air curtain in the air supply shaft can increase the efficiency of the AHI, and reduce the electricity consumption for ventilation in the ventilation shaft.

  2. Net ecosystem exchange and energy fluxes measured with the eddy covariance technique in a western Siberian bog

    Directory of Open Access Journals (Sweden)

    P. Alekseychik

    2017-08-01

    Full Text Available Very few studies of ecosystem–atmosphere exchange involving eddy covariance data have been conducted in Siberia, with none in the western Siberian middle taiga. This work provides the first estimates of carbon dioxide (CO2 and energy budgets in a typical bog of the western Siberian middle taiga based on May–August measurements in 2015. The footprint of measured fluxes consisted of a homogeneous mixture of tree-covered ridges and hollows with the vegetation represented by typical sedges and shrubs. Generally, the surface exchange rates resembled those of pine-covered bogs elsewhere. The surface energy balance closure approached 100 %. Net CO2 uptake was comparatively high, summing up to 202 gC m−2 for the four measurement months, while the Bowen ratio was seasonally stable at 28 %. The ecosystem turned into a net CO2 source during several front passage events in June and July. The periods of heavy rain helped keep the water table at a sustainably high level, preventing a usual drawdown in summer. However, because of the cloudy and rainy weather, the observed fluxes might rather represent the special weather conditions of 2015 than their typical magnitudes.

  3. Legal protection of the Guarani aquifer in Ribeirao Preto (Sao Paulo State, Brasil); Tutela juridica do Aquifero Guarani em Ribeirao Preto (Estado de Sao Paulo, Brasil)

    Energy Technology Data Exchange (ETDEWEB)

    Pedroso Goulart, M.; Cavalheiro Navajas Sampaio Campos, H.; Nepomuceno, O.

    2012-11-01

    The Guarani aquifer is one of the largest reservoirs of groundwater in the world and represents a strategic reserve for the four countries of South America where it occurs: Argentina, Brazil, Paraguay and Uruguay. The municipality of Ribeirao Preto, located in the north-east region of Sao Paulo, with a population of over 600,000 inhabitants, is supplied entirely by water from this aquifer. Hydrogeological studies reveal the existence of a large cone of drawdown in the centre of the city due to the intensive and indiscriminate use of water pumped out by wells for decades. In rural areas, where many of the rocky outcrops of the aquifer occur and which affords direct recharge by rain water, the risk of contamination by pesticides is of some concern. Over the years the Public Ministry of Sao Paulo in Ribeirao Preto has provided guidelines for actions and initiatives in environmental protection, especially with regard to the Guarani aquifer. These actions and initiatives are based mainly on the principle of the supremacy of public interest over private interest and the principle of caution. On the basis of these premises the prosecutor works with the government and the private sector to monitor and readmitted environmental liabilities that threaten the aquifer (landfills, diffuse contamination etc.) and to maintain due discipline within the activities that take place within the recharge zone (agriculture, industry and urbanization) including those of regulation and territorial planning. (Author)

  4. Fast-track aquifer characterization and bioremediation of groundwater

    International Nuclear Information System (INIS)

    Owen, S.B.; Erskine, J.A.; Adkisson, C.

    1995-01-01

    A short duration step-drawdown pumping test has been used to characterize a highly permeable aquifer contaminated with petroleum hydrocarbons in support of an in situ, closed loop extraction and reinjection bioremediation system for groundwater. The short-term pumping test produces a manageable quantity of contaminated groundwater while yielding a range of values for transmissivity and specific yield parameters. This range of aquifer coefficients is used in an analytical model to estimate a range of groundwater extraction rates that provide a suitable radius of influence for the extraction and reinjection system. A multi-enzyme complex catalyzed bioremediation process has been used to aerobically degrade petroleum hydrocarbons. Enzymes, amino acids, and biosurfactants are supplied to the extracted groundwater to significantly speed up the degradation by naturally occurring bacteria. During the process, amino acids promote the rapid growth of the microbial population while enzymes and bacteria attach to hydrocarbons forming a transformation state complex that degrades to fatty acids, carbon dioxide, and water. This paper presents a case study of a fast-track bioremediation using pumping test data, analytical modeling, and an enzyme technology

  5. Water-resources investigations in Dinosaur National Monument, Utah-Colorado, fiscal year 1970

    Science.gov (United States)

    Sumsion, C.T.

    1971-01-01

    Water-resources data were acquired during fiscal year 1970 by the U.S. Geological Survey at Dinosaur National Monument, Utah-Colorado, for the U.S. National Park Service as part of a continuing project. The data provide a basis for planning the development, management, and use of the available water resources to provide adequate water supplies. Thirty-one springs, 19 in relatively inaccessible areas, were evaluated as sources of water supplies. Seven potential well sites were evaluated for drilling depths in specific aquifers. A well drilled in Echo Park near the confluence of the Green and Yampa Rivers was tested. The pumping test showed the well to yield 130 gallons per minute with a drawdown of 1.96 feet; specific capacity of the well at 130 gallons per minute is 66 gallons per minute per foot. Water samples for chemical analysis were - collected from nine springs and one well; all except that from Disappointment Spring, were of good chemical quality.

  6. Long-term Water Table Monitoring of Rio Grande Riparian Ecosystems for Restoration Potential Amid Hydroclimatic Challenges

    Science.gov (United States)

    Thibault, James R.; Cleverly, James R.; Dahm, Clifford N.

    2017-12-01

    Hydrological processes drive the ecological functioning and sustainability of cottonwood-dominated riparian ecosystems in the arid southwestern USA. Snowmelt runoff elevates groundwater levels and inundates floodplains, which promotes cottonwood germination. Once established, these phreatophytes rely on accessible water tables (WTs). In New Mexico's Middle Rio Grande corridor diminished flooding and deepening WTs threaten native riparian communities. We monitored surface flows and riparian WTs for up to 14 years, which revealed that WTs and surface flows, including peak snowmelt discharge, respond to basin climate conditions and resource management. WT hydrographs influence the composition of riparian communities and can be used to assess if potential restoration sites meet native vegetation tolerances for WT depths, rates of recession, and variability throughout their life stages. WTs were highly variable in some sites, which can preclude native vegetation less adapted to deep drawdowns during extended droughts. Rates of WT recession varied between sites and should be assessed in regard to recruitment potential. Locations with relatively shallow WTs and limited variability are likely to be more viable for successful restoration. Suitable sites have diminished greatly as the once meandering Rio Grande has been constrained and depleted. Increasing demands on water and the presence of invasive vegetation better adapted to the altered hydrologic regime further impact native riparian communities. Long-term monitoring over a range of sites and hydroclimatic extremes reveals attributes that can be evaluated for restoration potential.

  7. Data quality objectives summary report for the 105-n basin liquid disposition

    International Nuclear Information System (INIS)

    Duncan, G.M.; Miller, M.S.; Carlson, D.K.

    1997-01-01

    During stabilization of the 105-N Basin, basin waters (1 million gallons) will be filtered and transported to the 200 Area Effluent Treatment Facility (ETF) for treatment and disposal. Hazardous chemicals are not considered to be present in the water; filtration is planned to reduce the suspended solids load and radionuclide concentrations. ETF has provided the Environmental Restoration Contractor with a list of constituents that must be analyzed in the 105-N Basin water; however, there are no specific concentration criteria established for these constituents. Analysis is required primarily to establish treatment parameters and to monitor radionuclide activity. A sampling program is required that will: (1) characterize the water quality in the 105-N Basin for the identified parameters, and (2) verifies that water quality does not change due to intrusive activities being performed concurrent with water drawdown. The Data Quality Objectives Process for the 105-N Basin water is being used to establish an approach for characterizing the water and monitoring the parameters of concern for water sent to the ETF

  8. Nocturnal accumulation of CO2 underneath a tropical forest canopy along a topographical gradient.

    Science.gov (United States)

    de Araújo, Alessandro C; Kruijt, Bart; Nobre, Antonio D; Dolman, Albertus J; Waterloo, Maarten J; Moors, Eddy J; de Souza, Juliana S

    2008-09-01

    Flux measurements of carbon dioxide and water vapor above tropical rain forests are often difficult to interpret because the terrain is usually complex. This complexity induces heterogeneity in the surface but also affects lateral movement of carbon dioxide (CO2) not readily detected by the eddy covariance systems. This study describes such variability using measurements of CO2 along vertical profiles and along a toposequence in a tropical rain forest near Manaus, Brazil. Seasonal and diurnal variation was recorded, with atmospheric CO2 concentration maxima around dawn, generally higher CO2 build-up in the dry season and stronger daytime CO2 drawdown in the wet season. This variation was reflected all along the toposequence, but the slope and valley bottom accumulated clearly more CO2 than the plateaus, depending on atmospheric stability. Particularly during stable nights, accumulation was along lines of equal altitude, suggesting that large amounts of CO2 are stored in the valleys of the landscape. Flushing of this store only occurs during mid-morning, when stored CO2 may well be partly transported back to the plateaus. It is clear that, for proper interpretation of tower fluxes in such complex and actively respiring terrain, the horizontal variability of storage needs to be taken into account not only during the night but also during the mornings.

  9. Water activities in Laxemar-Simpevarp. Organic field inventory, nature values classification and description of production land; Vattenverksamhet i Laxemar-Simpevarp. Ekologisk faeltinventering, naturvaerdesklassificering samt beskrivning av produktionsmark

    Energy Technology Data Exchange (ETDEWEB)

    Hamren, Ulrika; Collinder, Per (Ekologigruppen AB, Stockholm (Sweden))

    2010-10-15

    This report describes nature values, agricultural areas and forestry areas in Laxemar, for which there could be negative consequences due to groundwater diversion during construction and operation of a repository for spent nuclear fuel in the rock. In 2009, the Swedish Nuclear Fuel and Waste Management Co (SKB) chose Forsmark as site for the repository. This report hence concerns the non-chosen Laxemar site. The report describes results from map studies and comprehensive field investigations, in terms of geographical delineations, descriptions of characteristics and classifications of nature values for groundwater dependent of -favoured nature objects. The nature objects are located in an investigation area, which according to numerical flow modelling could be affected by groundwater-table drawdown due to groundwater diversion. The investigation area contains a number of valuable nature habitats, but no protected areas in the form of nature reserves or Natura 2000 areas. In the investigation area 67 nature objects have been identified, geographically delineated and classified according to their nature values. Of these nature objects, 32 consist of forest objects (including moist forests), 26 consist of wetland objects, and nine consist of surface waters (streams, lakes and ponds). The nature-value classifications of objects are primarily based on habitat rareness and worth of protection on a national scale, and their importance as habitats for rare and threatened species. None of the identified nature objects is judged to be of national value (class 1). 15 nature objects (forest objects) are judged to be of regional value (class 2), 18 objects of municipal value (class 3) and 34 objects are judged to be of local value (class 4). Most of the nature objects contain nature values that are associated to factors other than the level of the groundwater table, primarily previous land uses in the form of grazing and hay cutting. There are also values associated to valuable

  10. Uranium Isotopes as a Tracer of Groundwater Evolution in the Complexe Terminal Aquifer of Southern Tunisia

    Energy Technology Data Exchange (ETDEWEB)

    Hadj Ammar, F. [Laboratory of Radio-Analysis and Environment, National School of Engineering of Sfax, Sfax (Tunisia); Centre Europeen de Recherche et d' Enseignement de Geosciences de l' Environnement, Aix en Provence (France); Deschamps, P.; Hamelin, B. [Centre Europeen de Recherche et d' Enseignement de Geosciences de l' Environnement, Aix en Provence (France); Chkir, N.; Zouari, K. [Laboratory of Radio-Analysis and Environment, National School of Engineering of Sfax, Sfax (Tunisia)

    2013-07-15

    The Complexe Terminal (CT) aquifer system is the main water supply for remote areas of southern Tunisia. Its exploitation has resulted in significant draw-down of the water table. The CT aquifer is a multilayered aquifer lodged in Miocene sand deposits, Senonian limestones and Turonian carbonates. Little is known about the relationships and exchanges between the different layers. Here, uranium isotopic measurements carried out in groundwater samples from the CT aquifer are presented in order to constrain models for mixing of water masses, water-rock interaction and groundwater flow. Analyses were performed using a VG54 (TIMS) at the CEREGE. Results indicate a range in {sup 238}U concentration and {sup 234}U/{sup 238}U activity ratios of 1.5 to 8 ppb and 1.1 to 3.2 respectively. Together with major and trace analyses, uranium isotopic compositions provide important insights into the factors controlling the chemical evolution of groundwater and shows very distinct patterns between carbonate and sandstone layers. (author)

  11. Plant consumption by grizzly bears reduces biomagnification of salmon-derived polychlorinated biphenyls, polybrominated diphenyl ethers, and organochlorine pesticides.

    Science.gov (United States)

    Christensen, Jennie R; Yunker, Mark B; MacDuffee, Misty; Ross, Peter S

    2013-04-01

    The present study characterizes the uptake and loss of persistent organic pollutants (POPs) in grizzly bears (Ursus arctos horribilis) by sampling and analyzing their terrestrial and marine foods and fecal material from a remote coastal watershed in British Columbia, Canada. The authors estimate that grizzly bears consume 341 to 1,120 µg of polychlorinated biphenyls (PCBs) and 3.9 to 33 µg of polybrominated diphenyl ethers daily in the fall when they have access to an abundant supply of returning salmon. The authors also estimate that POP elimination by grizzly bears through defecation is very low following salmon consumption (typically 100% for PCBs and organochlorine pesticides). Excretion of individual POPs is largely driven by a combination of fugacity (differences between bear and food concentrations) and the digestibility of the food. The results of the present study are substantiated by a principal components analysis, which also demonstrates a strong role for log KOW in governing the excretion of different POPs in grizzly bears. Collectively, the present study's results reveal that grizzly bears experience a vegetation-associated drawdown of POPs previously acquired through the consumption of salmon, to such an extent that net biomagnification is reduced. Copyright © 2013 SETAC.

  12. Effects of seagrass bed removal for tourism purposes in a Mauritian bay

    International Nuclear Information System (INIS)

    Daby, D.

    2003-01-01

    Tourism affects marine environments adversely and these effects may be a major threat to the future of tourism. - Stresses and shocks are increasing on the main natural assets in Mauritius (Western Indian Ocean) by tourism (marine-based) development activities. Seagrasses are removed by hotels in the belief that they are unsightly or harbour organisms causing injury to bathers. Environmental changes (e.g. sediment characteristics and infauna distribution, water quality, seagrass biomass) resulting from clearing of a seagrass bed to create an aesthetically pleasant swimming zone for clients of a hotel were monitored during June 2000-July 2001, and compared to conditions prevailing in an adjacent undisturbed area. Key observations in the disturbed area were: highly turbid water overlying a destabilized lagoon seabed, complete loss of sediment infauna, and dramatic dry weight biomass declines (e.g. 72 and 65% in S. isoetifolium and H. uninervis, respectively). Such disruptions draw-down resilience rendering the marine habitats less robust and more vulnerable to environmental change and extreme events, with higher risks of chaos and ecological collapse, and constitute a major threat to the industry itself

  13. NW Pacific mid-depth ventilation changes during the Holocene

    Science.gov (United States)

    Rella, S.; Uchida, M.

    2010-12-01

    During the last 50 years the oxygen content of North Pacific Intermediate Water primarily originating in the Okhotsk Sea has declined suggesting decreased mid-depth water circulation, likely leading to changes in biological productivity in the NW Pacific realm and a decrease in CO2 drawdown. It is therefore of high interest to elucidate the climate-oceanic interconnections of the present interglacial period (Holocene) in the NW Pacific, in order to predict possible future climate and surface productivity changes associated with a decrease in mid-depth ventilation in this ecologically sensitive region. However, such efforts have been hampered so far by the lack of appropriate sediment cores with fast sedimentation rates during the Holocene. Core CK05-04 that was recovered in 2005 from off Shimokita peninsula, Japan, at ~1000 m depth shows sedimentation rates of ~80 cm/kyr during the Holocene and therefore presents an ideal opportunity to reconstruct for the first time the Holocene ventilation history of the NW Pacific Ocean. We employ Accelerator Mass Spectroscopy (NIES-TERRA, Tsukuba) radiocarbon analysis of co-existing benthic and planktonic foraminifera to conclude on the ventilation age of the mid-depth water using benthic-planktonic radiocarbon age differences. At the conference we would like to present the results.

  14. Over half a century of Messinian salinity crisis

    Energy Technology Data Exchange (ETDEWEB)

    Battista Vai, G.

    2016-10-01

    Did the Mediterranean ever become a desert during Messinian or was it a huge hyperhaline water body? According to Selli, the introduction of the concept and name of the Messinian Salinity Crisis in 1954, the second hypothesis was correct, but he did not succeed in preventing the rapid growth of popularity of the first hypothesis, triggered by the DSD Mediterranean campaign during the 1970s. The ensuing desiccation theory became popular enough to be included in elementary text books. The controversy has been revived in the new millennium and much former proof of the theory is now in doubt. The Mediterranean was not totally isolated, but often supplied with normal marine water. Instead of km-deep drawdown, shallower-to-absent level drop is favoured. Exposed canyons at the mouth of major Mediterranean rivers have turned into submarine channels filled by clastic sulphates. The mega-catastrophic potential of the desiccation theory has turned out to be less worrying. Perhaps the text books of our grandchildren should be updated. Within the frame of new evidence regarding normal water supply, even from the Indian Ocean, are discussed, based on two new palinspastic Messinian maps. However, reduced sharpness in the controversy and increasing consensus reached among specialists depend on ongoing inferred correlations between on-land and deep-marine Messinian evaporites. Only drilling across the whole, deep Mediterranean evaporite sequences can back-up the reliability of the correlation and validity of these new views. (Author)

  15. Synthesis of common management concerns associated with dam removal

    Science.gov (United States)

    Tullos, Desiree D.; Collins, Mathias J.; Bellmore, J. Ryan; Bountry, Jennifer A.; Connolly, Patrick J.; Shafroth, Patrick B.; Wilcox, Andrew C.

    2016-01-01

    Managers make decisions regarding if and how to remove dams in spite of uncertainty surrounding physical and ecological responses, and stakeholders often raise concerns about certain negative effects, regardless of whether or not these concerns are warranted at a particular site. We used a dam-removal science database supplemented with other information sources to explore seven frequently-raised concerns, herein Common Management Concerns (CMCs). We investigate the occurrence of these concerns and the contributing biophysical controls. The CMCs addressed are: degree and rate of reservoir sediment erosion, excessive channel incision upstream of reservoirs, downstream sediment aggradation, elevated downstream turbidity, drawdown impacts on local water infrastructure, colonization of reservoir sediments by non-native plants, and expansion of invasive fish. Biophysical controls emerged for some of the concerns, providing managers with information to assess whether a given concern is likely to occur at a site. To fully assess CMC risk, managers should concurrently evaluate site conditions and identify the ecosystem or human uses that will be negatively affected if the biophysical phenomenon producing the CMC occurs. We show how many CMCs have one or more controls in common, facilitating the identification of multiple risks at a site, and demonstrate why CMC risks should be considered in the context of other factors like natural watershed variability and disturbance history.

  16. Flow Generated by a Partially Penetrating Well in a Leaky Two-Aquifer System with a Storative Semiconfining Layer

    Science.gov (United States)

    Sepulveda, N.; Rohrer, K.

    2008-05-01

    The permeability of the semiconfining layers of the highly productive Floridan Aquifer System may be large enough to invalidate the assumptions of the leaky aquifer theory. These layers are the intermediate confining and the middle semiconfining units. The analysis of aquifer-test data with analytical solutions of the ground-water flow equation developed with the approximation of a low hydraulic conductivity ratio between the semiconfining layer and the aquifer may lead to inaccurate hydraulic parameters. An analytical solution is presented here for the flow in a confined leaky aquifer, the overlying storative semiconfining layer, and the unconfined aquifer, generated by a partially penetrating well in a two-aquifer system, and allowing vertical and lateral flow components to occur in the semiconfining layer. The equations describing flow caused by a partially penetrating production well are solved analytically to provide a method to accurately determine the hydraulic parameters in the confined aquifer, semiconfining layer, and unconfined aquifer from aquifer-test data. Analysis of the drawdown data from an aquifer test performed in central Florida showed that the flow solution presented here for the semiconfining layer provides a better match and a more unique identification of the hydraulic parameters than an analytical solution that considers only vertical flow in the semiconfining layer.

  17. Three-Dimensional Flow Generated by a Partially Penetrating Well in a Two-Aquifer System

    Science.gov (United States)

    Sepulveda, N.

    2007-12-01

    An analytical solution is presented for three-dimensional (3D) flow in a confined aquifer and the overlying storative semiconfining layer and unconfined aquifer. The equation describing flow caused by a partially penetrating production well is solved analytically to provide a method to accurately determine the hydraulic parameters in the confined aquifer, semiconfining layer, and unconfined aquifer from aquifer-test data. Previous solutions for a partially penetrating well did not account for 3D flow or storativity in the semiconfining unit. The 3D and two- dimensional (2D) flow solutions in the semiconfining layer are compared for various hydraulic conductivity ratios between the aquifer and the semiconfining layer. Analysis of the drawdown data from an aquifer test in central Florida showed that the 3D solution in the semiconfining layer provides a more unique identification of the hydraulic parameters than the 2D solution. The analytical solution could be used to analyze, with higher accuracy, the effect that pumping water from the lower aquifer in a two-aquifer system has on wetlands.

  18. Improved solution for saturated-unsaturated flow to a partially penetrating well in a compressible unconfined aquifer

    Science.gov (United States)

    Mishra, P. K.; Neuman, S. P.

    2009-12-01

    Tartakovsky and Neuman [2007] developed an analytical solution for flow to a partially penetrating well pumping at a constant rate from a compressible unconfined aquifer considering an unsaturated zone of infinite thickness. In their solution three-dimensional, axially symmetric unsaturated flow was described by a linearized version of Richards’ equation in which both relative hydraulic conductivity and water content vary exponentially with incremental capillary pressure head relative to its air entry value. Both exponential functions were characterized by a common exponent. We present an improved solution in which relative hydraulic conductivity and water content are characterized by separate parameters and the unsaturated zone has finite thickness. Our four-parameter representation of these functions is more flexible than the three-parameter version of Mathias and Butler [2006], who consider flow in the unsaturated zone to be strictly vertical and the pumping well to be fully penetrating. We investigate the effects of unsaturated zone thickness and constitutive parameters on drawdown in the unsaturated and saturated zones as functions of position and time. We then use our new solution to analyze data from synthetic and real pumping tests.

  19. An analytic, approximate method for modeling steady, three-dimensional flow to partially penetrating wells

    Science.gov (United States)

    Bakker, Mark

    2001-05-01

    An analytic, approximate solution is derived for the modeling of three-dimensional flow to partially penetrating wells. The solution is written in terms of a correction on the solution for a fully penetrating well and is obtained by dividing the aquifer up, locally, in a number of aquifer layers. The resulting system of differential equations is solved by application of the theory for multiaquifer flow. The presented approach has three major benefits. First, the solution may be applied to any groundwater model that can simulate flow to a fully penetrating well; the solution may be superimposed onto the solution for the fully penetrating well to simulate the local three-dimensional drawdown and flow field. Second, the approach is applicable to isotropic, anisotropic, and stratified aquifers and to both confined and unconfined flow. Third, the solution extends over a small area around the well only; outside this area the three-dimensional effect of the partially penetrating well is negligible, and no correction to the fully penetrating well is needed. A number of comparisons are made to existing three-dimensional, analytic solutions, including radial confined and unconfined flow and a well in a uniform flow field. It is shown that a subdivision in three layers is accurate for many practical cases; very accurate solutions are obtained with more layers.

  20. SITE-94. Discrete-feature modelling of the Aespoe site: 2. Development of the integrated site-scale model

    Energy Technology Data Exchange (ETDEWEB)

    Geier, J.E. [Golder Associates AB, Uppsala (Sweden)

    1996-12-01

    A 3-dimensional, discrete-feature hydrological model is developed. The model integrates structural and hydrologic data for the Aespoe site, on scales ranging from semi regional fracture zones to individual fractures in the vicinity of the nuclear waste canisters. Hydrologic properties of the large-scale structures are initially estimated from cross-hole hydrologic test data, and automatically calibrated by numerical simulation of network flow, and comparison with undisturbed heads and observed drawdown in selected cross-hole tests. The calibrated model is combined with a separately derived fracture network model, to yield the integrated model. This model is partly validated by simulation of transient responses to a long-term pumping test and a convergent tracer test, based on the LPT2 experiment at Aespoe. The integrated model predicts that discharge from the SITE-94 repository is predominantly via fracture zones along the eastern shore of Aespoe. Similar discharge loci are produced by numerous model variants that explore uncertainty with regard to effective semi regional boundary conditions, hydrologic properties of the site-scale structures, and alternative structural/hydrological interpretations. 32 refs.

  1. Performance evaluation testing of wells in the gradient control system at a federally operated Confined Disposal Facility using single well aquifer tests, East Chicago, Indiana

    Science.gov (United States)

    Lampe, David C.; Unthank, Michael D.

    2016-12-08

    The U.S. Geological Survey (USGS) performed tests to evaluate the hydrologic connection between the open interval of the well and the surrounding Calumet aquifer in response to fouling of extraction well pumps onsite. Two rounds of air slug testing were performed on seven monitoring wells and step drawdown and subsequent recovery tests on three extraction wells on a U.S. Army Corps of Engineers Confined Disposal Facility (CDF) in East Chicago, Indiana. The wells were tested in 2014 and again in 2015. The extraction and monitoring wells are part of the gradient control system that establishes an inward gradient around the perimeter of the facility. The testing established a set of protocols that site personnel can use to evaluate onsite well integrity and develop a maintenance procedure to evaluate future well performance.The results of the slug test analysis data indicate that the hydraulic connection of the well screen to the surrounding aquifer material in monitoring wells on the CDF and the reliability of hydraulic conductivity estimates of the surrounding geologic media could be increased by implementing well development maintenance. Repeated air slug tests showed increasing hydraulic conductivity until, in the case of the monitoring wells located outside of the groundwater cutoff wall (MW–4B, MW–11B, MW–14B), the difference in hydraulic conductivity from test to test decreased, indicating the results were approaching the optimal hydraulic connection between the aquifer and the well screen. Hydraulic conductivity values derived from successive tests in monitoring well D40, approximately 0.25 mile south of the CDF, were substantially higher than those derived from wells on the CDF property. Also, values did not vary from test to test like those measured in monitoring wells located on the CDF property, which indicated that a process may be affecting the connectivity of the wells on the CDF property to the Calumet aquifer. Derived hydraulic conductivity

  2. Hydrochemistry and Isotope Hydrology for Groundwater Sustainability of the Coastal Multilayered Aquifer System (Zhanjiang, China

    Directory of Open Access Journals (Sweden)

    Pengpeng Zhou

    2017-01-01

    Full Text Available Groundwater sustainability has become a critical issue for Zhanjiang (China because of serious groundwater level drawdown induced by overexploitation of its coastal multilayered aquifer system. It is necessary to understand the origins, material sources, hydrochemical processes, and dynamics of the coastal groundwater in Zhanjiang to support its sustainable management. To this end, an integrated analysis of hydrochemical and isotopic data of 95 groundwater samples was conducted. Hydrochemical analysis shows that coastal groundwater is fresh; however, relatively high levels of Cl−, Mg2+, and total dissolved solid (TDS imply slight seawater mixing with coastal unconfined groundwater. Stable isotopes (δ18O and δ2H values reveal the recharge sources of groundwater in the multilayered aquifer system. The unconfined groundwater originates from local modern precipitation; the confined groundwater in mainland originates from modern precipitation in northwestern mountain area, and the confined groundwater in Donghai and Leizhou is sourced from rainfall recharge during an older period with a colder climate. Ionic relations demonstrate that silicate weathering, carbonate dissolutions, and cation exchange are the primary processes controlling the groundwater chemical composition. Declining trends of groundwater level and increasing trends of TDS of the confined groundwater in islands reveal the landward extending tendency of the freshwater-seawater mixing zone.

  3. Reservoir Operating Rule Optimization for California's Sacramento Valley

    Directory of Open Access Journals (Sweden)

    Timothy Nelson

    2016-03-01

    Full Text Available doi: http://dx.doi.org/10.15447/sfews.2016v14iss1art6Reservoir operating rules for water resource systems are typically developed by combining intuition, professional discussion, and simulation modeling. This paper describes a joint optimization–simulation approach to develop preliminary economically-based operating rules for major reservoirs in California’s Sacramento Valley, based on optimized results from CALVIN, a hydro-economic optimization model. We infer strategic operating rules from the optimization model results, including storage allocation rules to balance storage among multiple reservoirs, and reservoir release rules to determine monthly release for individual reservoirs. Results show the potential utility of considering previous year type on water availability and various system and sub-system storage conditions, in addition to normal consideration of local reservoir storage, season, and current inflows. We create a simple simulation to further refine and test the derived operating rules. Optimization model results show particular insights for balancing the allocation of water storage among Shasta, Trinity, and Oroville reservoirs over drawdown and refill seasons, as well as some insights for release rules at major reservoirs in the Sacramento Valley. We also discuss the applicability and limitations of developing reservoir operation rules from optimization model results.

  4. Aquifer test results, 200-UP-1 operable unit IRM plume: Wells 299-W19-39 and 299-W19-36

    International Nuclear Information System (INIS)

    Swanson, L.C.

    1996-03-01

    An aquifer test was conducted at 200-UP-1 extraction well 299-W19-39 from September 6 to 8, 1995. The testing process consisted of pumping groundwater from the extraction well, using the surface treatment system to purify the water, and reinjecting the water through well 299-W19-36. Multiple observation wells were used to measure the response of the aquifer during the pumping and recovery phases of the test. Tables 1 and 2 list each well monitored and give well location and configuration information. Pretest monitoring initiated on August 31, 1995 was used to establish water-level trends and barometric pressure responses in the extraction, injection, and observation wells. Water-level monitoring continued for about 2 weeks after pumping ceased. The objectives of the aquifer test were to determine large-scale aquifer properties to confirm hydraulic conductivity input values used in previous numerical modeling work, to evaluate the long-term performance of the extraction and monitoring wells, and to estimate the radial extent of the drawdown cone (i.e., the expected capture area and depth). All of the test objectives were met. A discussion of the test results follows

  5. Elucidating Carbon Exchange at the Regional Scale Via Airborne Eddy Covariance Flux Measurements

    Science.gov (United States)

    Hannun, R. A.; Wolfe, G. M.; Kawa, S. R.; Newman, P. A.; Hanisco, T. F.; Diskin, G. S.; DiGangi, J. P.; Nowak, J. B.; Barrick, J. D. W.; Thornhill, K. L., II; Noormets, A.; Vargas, R.; Clark, K. L.; Kustas, W. P.

    2017-12-01

    Direct flux observations from aircraft provide a unique tool for probing greenhouse gas (GHG) sources and sinks on a regional scale. Airborne eddy covariance, which relies on high-frequency, simultaneous measurements of fluctuations in concentration and vertical wind speed, is a robust method for quantifying surface-atmosphere exchange. We have assembled and flown an instrument payload onboard the NASA C-23 Sherpa aircraft capable of measuring CO2, CH4, H2O, and heat fluxes. Flights for the Carbon Airborne Flux Experiment (CARAFE) took place during September 2016 and May 2017 based out of Wallops Flight Facility, VA. Flight tracks covered a variety of ecosystems and land-use types in the Mid-Atlantic, including forests, croplands, and wetlands. Carbon fluxes are derived using eddy covariance and wavelet analysis. Our results show a strong drawdown of CO2 and near-zero CH4 emissions from crops and dry-land forest, but seasonally strong CH4 flux from wetland forest. CARAFE flux data will also be compared with observations from several flux towers along the flight path to complement the airborne measurements. We will further assess the effects of land surface type and seasonal variability in carbon exchange. Regional-scale flux observations from CARAFE supply a useful constraint for improving top-down and bottom up estimates of carbon sources and sinks.

  6. Analysis of Seasonal Variability in Gulf of Alaska Glacier Mass Balance using GRACE

    Science.gov (United States)

    Arendt, A. A.; Luthcke, S. B.; Oneel, S.; Gardner, A. S.; Hill, D. F.

    2011-12-01

    Mass variations of glaciers in Alaska/northwestern Canada must be quantified in order to assess impacts on ecosystems, human infrastructure, and global sea level. Here we combine Gravity Recovery and Climate Experiment (GRACE) observations with a wide range of satellite and field data to investigate drivers of these recent changes, with a focus on seasonal variations. Our central focus will be the exceptionally high mass losses of 2009, which do not correlate with weather station temperature and precipitation data, but may be linked to ash fall from the March 31, 2009 eruption of Mt. Redoubt. The eruption resulted in a significant decrease in MODIS-derived surface albedo over many Alaska glacier regions, and likely contributed to some of the 2009 anomalous mass loss observed by GRACE. We also focus on the Juneau and Stikine Icefield regions that are far from the volcanic eruption but experienced the largest mass losses of any region in 2009. Although rapid drawdown of tidewater glaciers was occurring in southeast Alaska during 2009, we show these changes were probably not sufficiently widespread to explain all of the GRACE signal in those regions. We examine additional field and satellite datasets to quantify potential errors in the climate and GRACE fields that could result in the observed discrepancy.

  7. Long-term pumping test in borehole KR24 flow measurements

    Energy Technology Data Exchange (ETDEWEB)

    Rouhiainen, P.; Poellaenen, J. [PRG-Tec Oy, Espoo (Finland)

    2005-09-15

    The Difference Flow method can be used for the relatively fast determination of transmissivity and hydraulic head in fractures or fractured zones in cored boreholes. In this study, the Difference Flow method was used for hydraulic crosshole interference tests. The tests were performed in boreholes KR24 (pumped borehole) KR4, KR7, KR8, KRlO, KR14, KR22, KR22B, KR26, KR27, KR27B, KR28 and KR28B at Olkiluoto during the first and second quarters of 2004. The distance between the boreholes varies from approximately tens of meters to hundreds of meters. All the measurements were carried out in open boreholes, i.e. no packers were used. For interpretation, a normal single hole test was first performed in each borehole. Flow rates and drawdown were first measured both without pumping and with pumping the borehole under test. For practical reasons, the data set is neither complete nor similar in all tested boreholes. Connected flow to borehole KR24 was detected in all these boreholes. These flow responses were concentrated on a few zones. (orig.)

  8. How Jordan and Saudi Arabia are avoiding a tragedy of the commons over shared groundwater

    Science.gov (United States)

    Müller, Marc F.; Müller-Itten, Michèle C.; Gorelick, Steven M.

    2017-07-01

    Transboundary aquifers are ubiquitous and strategically important to global food and water security. Yet these shared resources are being depleted at an alarming rate. Focusing on the Disi aquifer, a key nonrenewable source of groundwater shared by Jordan and Saudi Arabia, this study develops a two-stage game that evaluates optimal transboundary strategies of common-pool resource exploitation under various assumptions. The analysis relies on estimates of agricultural water use from satellite imagery, which were obtained using three independent remote sensing approaches. Drawdown response to pumping is simulated using a 2-D regional aquifer model. Jordan and Saudi Arabia developed a buffer-zone strategy with a prescribed minimum distance between each country's pumping centers. We show that by limiting the marginal impact of pumping decisions on the other country's pumping costs, this strategy will likely avoid an impeding tragedy of the commons for at least 60 years. Our analysis underscores the role played by distance between wells and disparities in groundwater exploitation costs on common-pool overdraft. In effect, if pumping centers are distant enough, a shared aquifer no longer behaves as a common-pool resource and a tragedy of the commons can be avoided. The 2015 Disi aquifer pumping agreement between Jordan and Saudi Arabia, which in practice relies on a joint technical commission to enforce exclusion zones, is the first agreement of this type between sovereign countries and has a promising potential to avoid conflicts or resolve potential transboundary groundwater disputes over comparable aquifer systems elsewhere.

  9. Study on the petroleum recovery technology: well testing analysis

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Dae Gee; Kim, Se Joon; Kim, Hyun Tae [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of)

    1995-12-01

    Well testing is one of the most widely used tools to characterize reservoirs throughout the entire life of petroleum exploration and production. In this study, we first try to set up a procedure of computer aided well test analysis and then attempt to characterize potential reservoirs by performing well test analysis for some of the exploratory wells in the Korean continental shelf. A couple of gas well testing data already published in the literature were also analyzed and compared. First task was to analyze the drill stem test(DST) in KCS-1 gas well. The second analysis was also DST data on multi-rate gas wells. The third case is a Devonian shale reservoir. The final problem is a multi-rate drawdown test without early time pressure data. It is now possible to analyze insufficient well test data with less accuracy. One remark should be pointed out on multi-rate gas well testing. It is recommended to have variable skins rather than a constant skin because rate dependent skins due to turbulence of gas flow must be considered in addition to the mechanical skin. (author). 14 refs.

  10. Integrated methods and scenario development for urban groundwater management and protection during tunnel road construction: a case study of urban hydrogeology in the city of Basel, Switzerland

    Science.gov (United States)

    Epting, J.; Huggenberger, P.; Rauber, M.

    2008-05-01

    In the northwestern area of Basel, Switzerland, a tunnel highway connects the French highway A35 (Mulhouse Basel) with the Swiss A2 (Basel Gotthard Milano). The subsurface highway construction was associated with significant impacts on the urban groundwater system. Parts of this area were formerly contaminated by industrial wastes, and groundwater resources are extensively used by industry. During some construction phases, considerable groundwater drawdown was necessary, leading to major changes in the groundwater flow regime. Sufficient groundwater supply for industrial users and possible groundwater pollution due to interactions with contaminated areas had to be taken into account. A groundwater management system is presented, comprising extensive groundwater monitoring, high-resolution numerical groundwater modeling, and the development and evaluation of different scenarios. This integrated approach facilitated the evaluation of the sum of impacts, and their interaction in time and space with changing hydrological boundary conditions. For all project phases, changes of the groundwater system had to be evaluated in terms of the various goals and requirements. Although the results of this study are case-specific, the overall conceptual approach and methodologies applied may be directly transferred to other urban areas.

  11. Determining subnanomolar iron concentrations in oceanic seawater using a siderophore-modified film analyzed by infrared spectroscopy.

    Science.gov (United States)

    Roy, Eric G; Jiang, Cuihong; Wells, Mark L; Tripp, Carl

    2008-06-15

    Iron is a bioactive trace element in seawater that regulates photosynthetic carbon dioxide drawdown and export from surface waters by phytoplankton in upward of 40% of the world's oceans. While autonomous sensor arrays are beginning to provide high-resolution data on temporal and spatial scales for some key oceanographic parameters, current analytical methods for iron are not amenable to autonomous platforms because of the need for user involvement and wet chemistry-based approaches. As a result, very large gaps remain in our understanding of iron distribution and chemistry in seawater. Here we present a straightforward nanostructure-based method to measure dissolved iron in natural seawater. The device comprises an iron-specific chelating biomolecule, desferrioxamine B (DFB), covalently immobilized on a mesoporous silica film. Changes in infrared spectral signatures of the immobilized DFB upon Fe(III) complexation provide an accurate and precise measure of iron on the surface of a chip exposed to seawater. The current system has a detection limit of approximately 50 pM for a 1-L sample at pH 1.7 and was used to measure dissolved iron in subarctic Pacific waters without interference from other elements in seawater. This technology provides a major step toward obtaining accurate iron measurements on autonomous research platforms.

  12. The ocean response to volcanic iron fertilisation after the eruption of Kasatochi volcano: a regional-scale biogeochemical ocean model study

    Directory of Open Access Journals (Sweden)

    A. Lindenthal

    2013-06-01

    Full Text Available In high-nutrient–low-chlorophyll regions, phytoplankton growth is limited by the availability of water-soluble iron. The eruption of Kasatochi volcano in August 2008 led to ash deposition into the iron-limited NE Pacific Ocean. Volcanic ash released iron upon contact with seawater and generated a massive phytoplankton bloom. Here we investigate this event with a one-dimensional ocean biogeochemical column model to illuminate the ocean response to iron fertilisation by volcanic ash. The results indicate that the added iron triggered a phytoplankton bloom in the summer of 2008. Associated with this bloom, macronutrient concentrations such as nitrate and silicate decline and zooplankton biomass is enhanced in the ocean mixed layer. The simulated development of the drawdown of carbon dioxide and increase of pH in surface seawater is in good agreement with available observations. Sensitivity studies with different supply dates of iron to the ocean emphasise the favourable oceanic conditions in the NE Pacific to generate massive phytoplankton blooms in particular during July and August in comparison to other months. By varying the amount of volcanic ash and associated bio-available iron supplied to the ocean, model results demonstrate that the NE Pacific Ocean has higher, but limited capabilities to consume CO2 after iron fertilisation than those observed after the volcanic eruption of Kasatochi.

  13. Foods of breeding pintails in North Dakota

    Science.gov (United States)

    Krapu, G.L.

    1974-01-01

    Food habits of breeding pintails (Anas acuta) were studied relative to sex, land use, and reproductive condition during the spring and summer of 1969, 1970, and 1971 in eastern North Dakota. Hens and drakes, respectively, consumed 79.2 percent and 30.0 percent animal matter on nontilled wetlands and consumed 16.6 percent and 1.1 percent animal matter on tilled wetlands. Aquatic dipterans (primarily larval forms), snails, fairy shrimp, and earthworms accounted for 71 percent of the diet of hens on nontilled wetlands, while barnyard grass (Echinochloa crusgalli) seeds formed 71 percent of the diet of hens on tilled wetlands. Cereal grain seeds formed 84 percent of the diet of 10 hens feeding on cropland. The diet of hens was influenced by reproductive status. Animal foods were predominant during the laying period (77.1 percent) but were less important in the postlaying diet (28.9 percent). Invertebrates formed 83.9 percent of the diet of renesting hens, 61.0 percent were dipteran larvae and snails. High consumption of animal foods during egg formation presumably is related to invertebrates being superior to plants in providing certain nutrients required for production of viable eggs. Research findings suggest that food requirements of prairie-nesting pintails can be met most effectively by providing pairs access to shallow, nontilled wetland habitat subject to periodic drawdowns.

  14. Measurement of Lake Roosevelt biota in relation to reservoir operations. 1991 Annual report

    International Nuclear Information System (INIS)

    Griffith, J.R.; McDowell, A.C.; Scholz, A.T.

    1991-01-01

    The purpose of this study was to collect biological data from Lake Roosevelt to be used in the design of a computer model that would predict biological responses to reservoir operations as part of the System Operation Review program. Major components of the Lake Roosevelt model included: quantification of impacts to phytoplankton, zooplanktons, benthic invertebrates, and fish caused by reservoir drawdowns and low water retention times; quantification of number, distribution, and use of fish food organisms in the reservoir by season; determination of seasonal growth of fish species as related to reservoir operations, prey abundance and utilization; and quantification of entrainment levels of zooplankton and fish as related to reservoir operations and water retention times. This report summarized the data collected on Lake Roosevelt for 1991 and includes limnological, zooplankton, benthic macroinvertebrate, fishery, and reservoir operation data. Discussions cover reservoir operation affect upon zooplankton, benthic macroinvertebrates, and fish. Reservoir operations brought reservoir elevations to a low of 1,221.7 in April, the result of power operations and a flood control shift from Dworshak Dam, in Idaho, to Grand Coulee Dam. Water retention times were correspondingly low reaching a minimum of 14.7 days on April 27th

  15. Oil-Impregnated Polyethylene Films

    Science.gov (United States)

    Mukherjee, Ranit; Habibi, Mohammad; Rashed, Ziad; Berbert, Otacilio; Shi, Shawn; Boreyko, Jonathan

    2017-11-01

    Slippery liquid-infused porous surfaces (SLIPS) minimize the contact angle hysteresis of a wide range of liquids and aqueous food products. Although hydrophobic polymers are often used as the porous substrate for SLIPS, the choice of polymer has been limited to silicone-based or fluorine-based materials. Hydrocarbon-based polymers, such as polyethylene, are cost effective and widely used in food packaging applications where SLIPS would be highly desirable. However, to date there have been no reports on using polyethylene as a SLIPS substrate, as it is considered highly impermeable. Here, we show that thin films of low-density polyethylene can be stably impregnated with carbon-based oils without requiring any surface modification. Wicking tests reveal that oils with sufficient chemical compatibility follow Washburn's equation. The nanometric effective pore size of the polyethylene does result in a very low wicking speed, but by using micro-thin films and a drawdown coater, impregnation can still be completed in under one second. The oil-impregnated polyethylene films promoted ultra-slippery behavior for water, ketchup, and yogurt while remaining durable even after being submerged in ketchup for over one month. This work was supported by Bemis North America (AT-23981).

  16. Arsenic pollution of groundwater in Vietnam exacerbated by deep aquifer exploitation for more than a century

    Science.gov (United States)

    Winkel, Lenny H. E.; Trang, Pham Thi Kim; Lan, Vi Mai; Stengel, Caroline; Amini, Manouchehr; Ha, Nguyen Thi; Viet, Pham Hung; Berg, Michael

    2011-01-01

    Arsenic contamination of shallow groundwater is among the biggest health threats in the developing world. Targeting uncontaminated deep aquifers is a popular mitigation option although its long-term impact remains unknown. Here we present the alarming results of a large-scale groundwater survey covering the entire Red River Delta and a unique probability model based on three-dimensional Quaternary geology. Our unprecedented dataset reveals that ∼7 million delta inhabitants use groundwater contaminated with toxic elements, including manganese, selenium, and barium. Depth-resolved probabilities and arsenic concentrations indicate drawdown of arsenic-enriched waters from Holocene aquifers to naturally uncontaminated Pleistocene aquifers as a result of > 100 years of groundwater abstraction. Vertical arsenic migration induced by large-scale pumping from deep aquifers has been discussed to occur elsewhere, but has never been shown to occur at the scale seen here. The present situation in the Red River Delta is a warning for other As-affected regions where groundwater is extensively pumped from uncontaminated aquifers underlying high arsenic aquifers or zones. PMID:21245347

  17. Water Activities in Laxemar Simpevarp. The final disposal facility for spent nuclear fuel - removal of groundwater and water activities above ground; Vattenverksamhet i Laxemar-Simpevarp. Slutfoervarsanlaeggning foer anvaent kaernbraensle - bortledande av grundvatten samt vattenverksamheter ovan mark

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Kent (EmpTec (Sweden)); Hamren, Ulrika; Collinder, Per (Ekologigruppen AB (Sweden))

    2010-12-15

    This report concerns water operations (Chapter 11 in the Environmental Code) below and above ground associated with construction, operation, and decommissioning of a repository for spent nuclear fuel in Laxemar in the municipality of Oskarshamn. SKB has chosen Forsmark in the municipality of Oesthammar as site for the repository, and the report hence describes a non-chosen alternative. The report provides a comprehensive description of how the water operations would be executed, their hydrogeological and hydrological effects and the resulting consequences. The description is a background material for comparisons between the two sites in terms of water operations. The underground part of a repository in Laxemar would, among other things, consist of an access ramp and a repository area at a depth of approximately 500 metres. The construction, operation, and decommissioning phases would in total comprise a time period of 60-70 years. Inflowing groundwater would be diverted during construction and operation. The modelling tool MIKE SHE has been used to assess the effects of the groundwater diversion, for instance in terms of groundwater levels and stream discharges. According to MIKE SHE calculations for a hypothetical case with a fully open repository, the total groundwater inflow would be in the order of 55-90 litres per second depending on the permeability of the grouted zone around ramp, shafts and tunnels. In reality, the whole repository would not be open simultaneously, and the inflow would therefore be less. The groundwater diversion would cause groundwater- level drawdown in the rock, which in turn would lead to drawdown of the groundwater table in relatively large areas above and around the repository. According to model calculations, there would be an insignificant drawdown of the water level in Lake Frisksjoen, the largest lake in the area. The discharge in the most important stream of the area (Laxemaraan) would be reduced by less than ten percent

  18. Savannah River Ecology Laboratory. Annual technical progress report of ecological research, period ending July 31, 1994

    International Nuclear Information System (INIS)

    1994-01-01

    The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA) that is managed in conjunction with the University's Institute of Ecology. The laboratory's overall mission is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under an M ampersand O contract with the US Department of Energy at the Savannah River Site. Significant accomplishments were made during the year ending July 31, 1994 in the areas of research, education and service. Reviewed in this document are research projects in the following areas: Environmental Operations Support (impacted wetlands, streams, trace organics, radioecology, database synthesis, wild life studies, zooplankton, safety and quality assurance); wood stork foraging and breeding ecology; defence waste processing facility; environmental risk assessment (endangered species, fish, ash basin studies); ecosystem alteration by chemical pollutants; wetlands systems; biodiversity on the SRS; Environmental toxicology; environmental outreach and education; Par Pond drawdown studies in wildlife and fish and metals; theoretical ecology; DOE-SR National Environmental Research Park; wildlife studies. Summaries of educational programs and publications are also give

  19. Groundwater flow modelling of the excavation and operational phases - Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Urban (Computer-aided Fluid Engineering AB, Lyckeby (Sweden)); Follin, Sven (SF GeoLogic AB, Taeby (Sweden))

    2010-07-15

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different climate conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. The modelling study reported here presents calculated inflow rates, drawdown of the groundwater table and upconing of deep saline water for different levels of grouting efficiency during the excavation and operational phases of a final repository at Forsmark. The inflow calculations are accompanied by a sensitivity study, which among other matters handles the impact of parameter heterogeneity, different deposition hole rejection criteria, and the SFR facility (the repository for short-lived radioactive waste located approximately 1 km to the north of the investigated candidate area for a final repository at Forsmark). The report also presents tentative modelling results for the duration of the saturation phase, which starts once the used parts of the repository are being backfilled.

  20. Another comeback for uranium

    International Nuclear Information System (INIS)

    Boyden, T.A.

    1983-01-01

    The uranium market has been unstable since private industry entered the nuclear power generating business in the early 1960s. Uranium supply has always exceeded demand throughout the Free World. In 1982, production was 106 million pounds U308 and accumulated inventory totaled over 400 million pounds; consumption was only 63 million pounds. Recent inventory selling, production cutbacks and producers buying from consumers, have led to decreasing prices and further market instability. It now appears that the market is beginning to change to a more stable situation. Current forecasts indicate that Free World demand will double by 1996, led by Europe and the US. Annual production will average about 100 million pounds during the same period. A closer balance between supply and demand should allow market prices to improve between now and 1990. The situation in the US is more complex. Consumption will increase to 35 million pounds through the 1990s while annual production is expected to decrease to about 12 million pounds, (down from a 1980 high of almost 44 million pounds) before higher prices allow a recovery to an annual production level of about 16 million pounds. The balance of US consumption will be met with imports and inventory drawdowns. Higher prices in the latter part of the decade will support a number of new solution mining projects, and allow the development of high-grade ore deposits by conventional methods. The US producer industry will survive, but will be secondary to those in Canada, South Africa and probably Australia

  1. The Irrigation Effect: How River Regulation Can Promote Some Riparian Vegetation

    Science.gov (United States)

    Gill, Karen M.; Goater, Lori A.; Braatne, Jeffrey H.; Rood, Stewart B.

    2018-04-01

    River regulation impacts riparian ecosystems by altering the hydrogeomorphic conditions that support streamside vegetation. Obligate riparian plants are often negatively impacted since they are ecological specialists with particular instream flow requirements. Conversely, facultative riparian plants are generalists and may be less vulnerable to river regulation, and could benefit from augmented flows that reduce drought stress during hot and dry periods. To consider this `irrigation effect' we studied the facultative shrub, netleaf hackberry ( Celtis reticulata), the predominant riparian plant along the Hells Canyon corridor of the Snake River, Idaho, USA, where dams produce hydropeaking, diurnal flow variation. Inventories of 235 cross-sectional transects revealed that hackberry was uncommon upstream from the reservoirs, sparse along the reservoir with seasonal draw-down and common along two reservoirs with stabilized water levels. Along the Snake River downstream, hackberry occurred in fairly continuous, dense bands along the high water line. In contrast, hackberry was sparsely scattered along the free-flowing Salmon River, where sandbar willow ( Salix exigua), an obligate riparian shrub, was abundant. Below the confluence of the Snake and Salmon rivers, the abundance and distribution of hackberry were intermediate between the two upstream reaches. Thus, river regulation apparently benefited hackberry along the Snake River through Hells Canyon, probably due to diurnal pulsing that wets the riparian margin. We predict similar benefits for some other facultative riparian plants along other regulated rivers with hydropeaking during warm and dry intervals. To analyze the ecological impacts of hydropeaking we recommend assessing daily maxima, as well as daily mean river flows.

  2. In vivo quantification of plant starch reserves at micrometer resolution using X-ray microCT imaging and machine learning.

    Science.gov (United States)

    Earles, J Mason; Knipfer, Thorsten; Tixier, Aude; Orozco, Jessica; Reyes, Clarissa; Zwieniecki, Maciej A; Brodersen, Craig R; McElrone, Andrew J

    2018-03-08

    Starch is the primary energy storage molecule used by most terrestrial plants to fuel respiration and growth during periods of limited to no photosynthesis, and its depletion can drive plant mortality. Destructive techniques at coarse spatial scales exist to quantify starch, but these techniques face methodological challenges that can lead to uncertainty about the lability of tissue-specific starch pools and their role in plant survival. Here, we demonstrate how X-ray microcomputed tomography (microCT) and a machine learning algorithm can be coupled to quantify plant starch content in vivo, repeatedly and nondestructively over time in grapevine stems (Vitis spp.). Starch content estimated for xylem axial and ray parenchyma cells from microCT images was correlated strongly with enzymatically measured bulk-tissue starch concentration on the same stems. After validating our machine learning algorithm, we then characterized the spatial distribution of starch concentration in living stems at micrometer resolution, and identified starch depletion in live plants under experimental conditions designed to halt photosynthesis and starch production, initiating the drawdown of stored starch pools. Using X-ray microCT technology for in vivo starch monitoring should enable novel research directed at resolving the spatial and temporal patterns of starch accumulation and depletion in woody plant species. No claim to original US Government works New Phytologist © 2018 New Phytologist Trust.

  3. Hydro-mechanically coupled finite-element analysis of the stability of a fractured-rock slope using the equivalent continuum approach: a case study of planned reservoir banks in Blaubeuren, Germany

    Science.gov (United States)

    Song, Jie; Dong, Mei; Koltuk, Serdar; Hu, Hui; Zhang, Luqing; Azzam, Rafig

    2017-12-01

    Construction works associated with the building of reservoirs in mountain areas can damage the stability of adjacent valley slopes. Seepage processes caused by the filling and drawdown operations of reservoirs also affect the stability of the reservoir banks over time. The presented study investigates the stability of a fractured-rock slope subjected to seepage forces in the lower basin of a planned pumped-storage hydropower (PSH) plant in Blaubeuren, Germany. The investigation uses a hydro-mechanically coupled finite-element analyses. For this purpose, an equivalent continuum model is developed by using a representative elementary volume (REV) approach. To determine the minimum required REV size, a large number of discrete fracture networks are generated using Monte Carlo simulations. These analyses give a REV size of 28 × 28 m, which is sufficient to represent the equivalent hydraulic and mechanical properties of the investigated fractured-rock mass. The hydro-mechanically coupled analyses performed using this REV size show that the reservoir operations in the examined PSH plant have negligible effect on the adjacent valley slope.

  4. Contrasting controls on arsenic and lead budgets for a degraded peatland catchment in Northern England

    International Nuclear Information System (INIS)

    Rothwell, James J.; Taylor, Kevin G.; Evans, Martin G.; Allott, Timothy E.H.

    2011-01-01

    Atmospheric deposition of trace metals and metalloids from anthropogenic sources has led to the contamination of many European peatlands. To assess the fate and behaviour of previously deposited arsenic and lead, we constructed catchment-scale mass budgets for a degraded peatland in Northern England. Our results show a large net export of both lead and arsenic via runoff (282 ± 21.3 gPb ha -1 y -1 and 60.4 ± 10.5 gAs ha -1 y -1 ), but contrasting controls on this release. Suspended particulates account for the majority of lead export, whereas the aqueous phase dominates arsenic export. Lead release is driven by geomorphological processes and is a primary effect of erosion. Arsenic release is driven by the formation of a redox-dynamic zone in the peat associated with water table drawdown, a secondary effect of gully erosion. Degradation of peatland environments by natural and anthropogenic processes has the potential to release the accumulated pool of legacy contaminants to surface waters. - Highlights: → The fluvial outputs of arsenic and lead in the degraded peatland are an order-of-magnitude greater than atmospheric inputs. → The particulate phase dominates fluvial lead export, whereas the aqueous phase dominates fluvial arsenic export. → Lead export is a primary effect of peat erosion, whereas arsenic export is a secondary effect of peat erosion. - Degraded peatlands can be significant sources of previously deposited arsenic and lead

  5. Discussion on the Safety Factors of Slopes Recommended for Small Dams

    Directory of Open Access Journals (Sweden)

    Jan Vrubel

    2017-01-01

    Full Text Available The design and assessment of the slope stability of small embankment dams is usually not carried out using slope stability calculations but rather by the comparison of proposed or existing dam slopes with those recommended by technical standards or guidelines. Practical experience shows that in many cases the slopes of small dams are steeper than those recommended. However, most of such steeper slopes at existing dams do not exhibit any visible signs of instability, defects or sliding. For the dam owner and also for dam stability engineers, the safety of the slope, expressed e.g. via a factor of safety, is crucial. The aim of this study is to evaluate the safety margin provided by recommended slopes. The factor of safety was evaluated for several dam shape and layout variants via the shear strength reduction method using PLAXIS software. The study covers various dam geometries, dam core and shoulder positions and parameter values of utilised soils. Three load cases were considered: one with a steady state seepage condition and two with different reservoir water level drawdown velocities – standard and critical. As numerous older small dams lack a drainage system, variants with and without a toe drain were assessed. Calculated factors of safety were compared with required values specified by national standards and guidelines.

  6. Fish assemblages, connectivity, and habitat rehabilitation in a diked Great Lakes coastal wetland complex

    Science.gov (United States)

    Kowalski, Kurt P.; Wiley, Michael J.; Wilcox, Douglas A.

    2014-01-01

    Fish and plant assemblages in the highly modified Crane Creek coastal wetland complex of Lake Erie were sampled to characterize their spatial and seasonal patterns and to examine the implications of the hydrologic connection of diked wetland units to Lake Erie. Fyke netting captured 52 species and an abundance of fish in the Lake Erie–connected wetlands, but fewer than half of those species and much lower numbers and total masses of fish were captured in diked wetland units. Although all wetland units were immediately adjacent to Lake Erie, there were also pronounced differences in water quality and wetland vegetation between the hydrologically isolated and lake-connected wetlands. Large seasonal variations in fish assemblage composition and biomass were observed in connected wetland units but not in disconnected units. Reestablishment of hydrologic connectivity in diked wetland units would allow coastal Lake Erie fish to use these vegetated habitats seasonally, although connectivity does appear to pose some risks, such as the expansion of invasive plants and localized reductions in water quality. Periodic isolation and drawdown of the diked units could still be used to mimic intermediate levels of disturbance and manage invasive wetland vegetation.

  7. Microbial ecology in a future climate: effects of temperature and moisture on microbial communities of two boreal fens.

    Science.gov (United States)

    Peltoniemi, Krista; Laiho, Raija; Juottonen, Heli; Kiikkilä, Oili; Mäkiranta, Päivi; Minkkinen, Kari; Pennanen, Taina; Penttilä, Timo; Sarjala, Tytti; Tuittila, Eeva-Stiina; Tuomivirta, Tero; Fritze, Hannu

    2015-07-01

    Impacts of warming with open-top chambers on microbial communities in wet conditions and in conditions resulting from moderate water-level drawdown (WLD) were studied across 0-50 cm depth in northern and southern boreal sedge fens. Warming alone decreased microbial biomass especially in the northern fen. Impact of warming on microbial PLFA and fungal ITS composition was more obvious in the northern fen and linked to moisture regime and sample depth. Fungal-specific PLFA increased in the surface peat in the drier regime and decreased in layers below 10 cm in the wet regime after warming. OTUs representing Tomentella and Lactarius were observed in drier regime and Mortierella in wet regime after warming in the northern fen. The ectomycorrhizal fungi responded only to WLD. Interestingly, warming together with WLD decreased archaeal 16S rRNA copy numbers in general, and fungal ITS copy numbers in the northern fen. Expectedly, many results indicated that microbial response on warming may be linked to the moisture regime. Results indicated that microbial community in the northern fen representing Arctic soils would be more sensitive to environmental changes. The response to future climate change clearly may vary even within a habitat type, exemplified here by boreal sedge fen. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Effect of forest drainage on the carbon balance and greenhouse impact of Finnish peatlands

    Energy Technology Data Exchange (ETDEWEB)

    Laine, J.; Minkkinen, K.; Laiho, R. [Helsinki Univ. (Finland). Dept. of Forest Ecology

    1996-12-31

    The aim of this project is to produce an estimate of the change in the biomass and peat carbon stores arising from the drainage of peatlands for forestry, and of the change of greenhouse impact of these ecosystems. The study shows that the subsidence of mire surfaces due to drainage has been relatively small, on average about 20 cm. The observed increase in bulk density after drainage is caused by the physical compression of peat and the post-drainage input of organic material in the form of litter production from the above and below ground parts of the tree layer. Oxidative decay of organic matter may have further increased the compaction of peat, especially in fertile sites. When the changes in peat and vegetation carbon stores are summed up, it seems that, within the site types studied, the total impact of drainage to the ecosystem carbon store is close to zero on the nutrient rich sites and clearly positive on the poorer types. Water level drawdown in peatlands after drainage for forestry appears to decrease the greenhouse impact at least for a few hundred years. The estimated changes in all three emission components (CH{sub 4} emissions, CO{sub 2} sink from peatland and CO{sub 2} sequestered in trees) reduce the radiative forcing by approximately similar amounts

  9. Water resources in the Blackstone River basin, Massachusetts

    Science.gov (United States)

    Walker, Eugene H.; Krejmas, Bruce E.

    1983-01-01

    The Blackstone River heads in brooks 6 miles northwest of Worcester and drains about 330 square miles of central Massachusetts before crossing into Rhode Island at Woonsocket. The primary source of the Worcester water supply is reservoirs, but for the remaining 23 communities in the basin, the primary source is wells. Bedrock consists of granitic and metamorphic rocks. Till mantles the uplands and extends beneath stratified drift in the valleys. Stratified glacial drift, consisting of clay, silt, and fine sand deposited in lakes and coarse-textured sand and gravel deposited by streams, is found in lowlands and valleys. The bedrock aquifer is capable of sustaining rural domestic supplies throughout the Blackstone River basin. Bedrock wells yield an average of 10 gallons per minute, but some wells, especially those in lowlands where bedrock probably contains more fractures and receives more recharge than in the upland areas, yield as much as 100 gallons per minute. Glacial sand and gravel is the principal aquifer. It is capable of sustaining municipal supplies. Average daily pumpage from this aquifer in the Blackstone River basin was 10.4 million gallons per day in 1978. The median yield of large-diameter wells in the aquifer is 325 gallons per minute. The range of yields from these wells is 45 to 3,300 gallons per minute. The median specific capacity is about 30 gallons per minute per foot of drawdown.

  10. Approximate solutions for radial travel time and capture zone in unconfined aquifers.

    Science.gov (United States)

    Zhou, Yangxiao; Haitjema, Henk

    2012-01-01

    Radial time-of-travel (TOT) capture zones have been evaluated for unconfined aquifers with and without recharge. The solutions of travel time for unconfined aquifers are rather complex and have been replaced with much simpler approximate solutions without significant loss of accuracy in most practical cases. The current "volumetric method" for calculating the radius of a TOT capture zone assumes no recharge and a constant aquifer thickness. It was found that for unconfined aquifers without recharge, the volumetric method leads to a smaller and less protective wellhead protection zone when ignoring drawdowns. However, if the saturated thickness near the well is used in the volumetric method a larger more protective TOT capture zone is obtained. The same is true when the volumetric method is used in the presence of recharge. However, for that case it leads to unreasonableness over the prediction of a TOT capture zone of 5 years or more. © 2011, The Author(s). Ground Water © 2011, National Ground Water Association.

  11. Great Lakes clams find refuge from zebra mussels in restored, lake-connected marsh (Ohio)

    Science.gov (United States)

    Nichols, S. Jerrine; Wilcox, Douglas A.

    2004-01-01

    Since the early 1990s, more than 95 percent of the freshwater clams once found in Lake Erie have died due to the exotic zebara mussel (Dreissena polymorpha). Zebra mussels attach themselves to native clams in large numbers, impeding the ability of the clams to eat and burrow. However, in 1996, we discovered a population of native clams in Metzger Marsh in western Lake Erie (about 50 miles [80 km] east of Toledo) that were thriving despite the longtime presence of zebra mussel in surrounding waters. At that time, Metzger Marsh was undergoing extensive restoration, including construction of a dike to replace the eroded barrier beach and of a water-control structure to maintain hydrologic connections with the lake (Wilcox and Whillans 1999). The restoration plan called for a drawdown of water levels to promote plant growth from the seedbank -- a process that would also destroy most of the clam population. State and federal resource managers recommended removing as many clams as possible to a site that was isolated from zebra mussels, and then returning them to the marsh after it was restored. We removed about 7,000 native clams in 1996 and moved them back to Metzger Marsh in 1999.

  12. Boreal forests and atmosphere - Biosphere exchange of carbon dioxide

    Science.gov (United States)

    D'Arrigo, Rosanne; Jacoby, Gordon C.; Fung, Inez Y.

    1987-01-01

    Two approaches to investigating the role of boreal forests in the global carbon cycle are presented. First, a tracer support model which incorporates the normalized-difference vegetation index obtained from advanced, very high resolution radiometer radiances was used to simulate the annual cycle of CO2 in the atmosphere. Results indicate that the seasonal growth of the combined boreal forests of North America and Eurasia accounts for about 50 percent of the mean seasonal CO2 amplitude recorded at Pt. Barrow, Alaska and about 30 percent of the more globally representative CO2 signal at Mauna Loa, Hawaii. Second, tree-ring width data from four boreal treeline sites in northern Canada were positively correlated with Pt. Barrow CO2 drawdown for the period 1971-1982. These results suggest that large-scale changes in the growth of boreal forests may be contributing to the observed increasing trend in CO2 amplitude. They further suggest that tree-ring data may be applicable as indices for CO2 uptake and remote sensing estimates of photosynthetic activity.

  13. DInSAR-Based Detection of Land Subsidence and Correlation with Groundwater Depletion in Konya Plain, Turkey

    Directory of Open Access Journals (Sweden)

    Fabiana Caló

    2017-01-01

    Full Text Available In areas where groundwater overexploitation occurs, land subsidence triggered by aquifer compaction is observed, resulting in high socio-economic impacts for the affected communities. In this paper, we focus on the Konya region, one of the leading economic centers in the agricultural and industrial sectors in Turkey. We present a multi-source data approach aimed at investigating the complex and fragile environment of this area which is heavily affected by groundwater drawdown and ground subsidence. In particular, in order to analyze the spatial and temporal pattern of the subsidence process we use the Small BAseline Subset DInSAR technique to process two datasets of ENVISAT SAR images spanning the 2002–2010 period. The produced ground deformation maps and associated time-series allow us to detect a wide land subsidence extending for about 1200 km2 and measure vertical displacements reaching up to 10 cm in the observed time interval. DInSAR results, complemented with climatic, stratigraphic and piezometric data as well as with land-cover changes information, allow us to give more insights on the impact of climate changes and human activities on groundwater resources depletion and land subsidence.

  14. Enhanced weathering strategies for stabilizing climate and averting ocean acidification

    Science.gov (United States)

    Taylor, Lyla L.; Quirk, Joe; Thorley, Rachel M. S.; Kharecha, Pushker A.; Hansen, James; Ridgwell, Andy; Lomas, Mark R.; Banwart, Steve A.; Beerling, David J.

    2016-04-01

    Chemical breakdown of rocks, weathering, is an important but very slow part of the carbon cycle that ultimately leads to CO2 being locked up in carbonates on the ocean floor. Artificial acceleration of this carbon sink via distribution of pulverized silicate rocks across terrestrial landscapes may help offset anthropogenic CO2 emissions. We show that idealized enhanced weathering scenarios over less than a third of tropical land could cause significant drawdown of atmospheric CO2 and ameliorate ocean acidification by 2100. Global carbon cycle modelling driven by ensemble Representative Concentration Pathway (RCP) projections of twenty-first-century climate change (RCP8.5, business-as-usual; RCP4.5, medium-level mitigation) indicates that enhanced weathering could lower atmospheric CO2 by 30-300 ppm by 2100, depending mainly on silicate rock application rate (1 kg or 5 kg m-2 yr-1) and composition. At the higher application rate, end-of-century ocean acidification is reversed under RCP4.5 and reduced by about two-thirds under RCP8.5. Additionally, surface ocean aragonite saturation state, a key control on coral calcification rates, is maintained above 3.5 throughout the low latitudes, thereby helping maintain the viability of tropical coral reef ecosystems. However, we highlight major issues of cost, social acceptability, and potential unanticipated consequences that will limit utilization and emphasize the need for urgent efforts to phase down fossil fuel emissions.

  15. WAC Bennett Dam - the characterization of a crest sinkhole

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, R.A.; Gaffran, P.C. [British Columbia Hydro, Burnaby, BC (Canada); Watts, B.D. [Klohn-Crippen Consultants Ltd., Richmond, BC (Canada); Sobkowicz, J.C. [Thurber Engineering Ltd., Vancouver, BC (Canada); Kupper, A.G. [AGRA Earth and Environmental, Edmonton, AB (Canada)

    1998-11-01

    In June, 1996, a small hole was discovered in the asphaltic concrete road on the crest of the 183 m high WAC Bennett Dam on the Peace River in northeastern British Columbia. Examination of the hole resulted in a sinkhole on the dam crest. The sinkhole was 2.5 m in diameter and 7 m deep. Speculation was that the cavity was likely associated in some way with a buried survey benchmark tube. An investigation was immediately planned and executed to characterize the sinkhole, to determine the extent of damage and the safety status of this very large dam. British Columbia`s Dam Safety Regulator made the decision to lower the reservoir level. During the reservoir drawdown, various surface geophysical techniques were used to investigate the condition of the dam beyond the sinkholes. Intrusive investigations of the sinkhole were also planned. This involved trial drilling and downhole geophysical surveys in intact portions of the core at locations far from the sinkhole. The objectives and criteria developed for the investigation program are summarized. Scope of key activities at the sinkhole and important lessons learned during the investigation are also described. 9 refs., 15 figs.

  16. Mechanics of vacuum-enhanced recovery of hydrocarbons

    International Nuclear Information System (INIS)

    Barnes, D.L.; McWhorter, D.B.

    1995-01-01

    A growing body of field data demonstrates the enhancement of product recovery that can be achieved by applying a partial vacuum to recovery wells. Typical explanations for the observed improvement in performance invoke an increased slope of the cone of depression created in the water-table surface. Explanations related to water-table slope do not consider the gradient induced in the hydrocarbon by virtue of the airflow. Also, the airflow may induce a gradient in the aqueous phase that is not reflected in a water-table drawdown. The equations for steady-state flow of three immiscible fluids elucidate the fundamental mechanics of vacuum-enhanced recovery or bioslurping. Airflow to the recovery well causes hydrocarbon to migrate toward the well, independent of any gravity effects that may be created. Also, the relative permeability to hydrocarbon is affected by both water and airflow in the vicinity of the recovery well. Two critical airflow rates delineate the conditions for which only air is recovered, air and hydrocarbon are recovered, and all three phases are recovered

  17. Quantifying the clay content with borehole depth and impact on reservoir flow

    Science.gov (United States)

    Sarath Kumar, Aaraellu D.; Chattopadhyay, Pallavi B.

    2017-04-01

    This study focuses on the application of reservoir well log data and 3D transient numerical model for proper optimization of flow dynamics and hydrocarbon potential. Fluid flow through porous media depends on clay content that controls porosity, permeability and pore pressure. The pressure dependence of permeability is more pronounced in tight formations. Therefore, preliminary clay concentration analysis and geo-mechanical characterizations have been done by using wells logs. The assumption of a constant permeability for a reservoir is inappropriate and therefore the study deals with impact of permeability variation for pressure-sensitive formation. The study started with obtaining field data from available well logs. Then, the mathematical models are developed to understand the efficient extraction of oil in terms of reservoir architecture, porosity and permeability. The fluid flow simulations have been done using COMSOL Multiphysics Software by choosing time dependent subsurface flow module that is governed by Darcy's law. This study suggests that the reservoir should not be treated as a single homogeneous structure with unique porosity and permeability. The reservoir parameters change with varying clay content and it should be considered for effective planning and extraction of oil. There is an optimum drawdown for maximum production with varying permeability in a reservoir.

  18. Using tunable diode laser spectroscopy to measure carbon isotope discrimination and mesophyll conductance to CO₂ diffusion dynamically at different CO₂ concentrations.

    Science.gov (United States)

    Tazoe, Youshi; VON Caemmerer, Susanne; Estavillo, Gonzalo M; Evans, John R

    2011-04-01

    In C₃ leaves, the mesophyll conductance to CO₂ diffusion, g(m) , determines the drawdown in CO₂ concentration from intercellular airspace to the chloroplast stroma. Both g(m) and stomatal conductance limit photosynthetic rate and vary in response to the environment. We investigated the response of g(m) to changes in CO₂ in two Arabidopsis genotypes (including a mutant with open stomata, ost1), tobacco and wheat. We combined measurements of gas exchange with carbon isotope discrimination using tunable diode laser absorption spectroscopy with a CO₂ calibration system specially designed for a range of CO₂ and O₂ concentrations. CO₂ was initially increased from 200 to 1000 ppm and then decreased stepwise to 200 ppm and increased stepwise back to 1000 ppm, or the sequence was reversed. In 2% O₂ a step increase from 200 to 1000 ppm significantly decreased g(m) by 26-40% in all three species, whereas following a step decrease from 1000 to 200 ppm, the 26-38% increase in g(m) was not statistically significant. The response of g(m) to CO₂ was less in 21% O₂. Comparing wild type against the ost1 revealed that mesophyll and stomatal conductance varied independently in response to CO₂. We discuss the effects of isotope fractionation factors on estimating g(m) . © 2011 Blackwell Publishing Ltd.

  19. A Review of Distributed Parameter Groundwater Management Modeling Methods

    Science.gov (United States)

    Gorelick, Steven M.

    1983-04-01

    Models which solve the governing groundwater flow or solute transport equations in conjunction with optimization techniques, such as linear and quadratic programing, are powerful aquifer management tools. Groundwater management models fall in two general categories: hydraulics or policy evaluation and water allocation. Groundwater hydraulic management models enable the determination of optimal locations and pumping rates of numerous wells under a variety of restrictions placed upon local drawdown, hydraulic gradients, and water production targets. Groundwater policy evaluation and allocation models can be used to study the influence upon regional groundwater use of institutional policies such as taxes and quotas. Furthermore, fairly complex groundwater-surface water allocation problems can be handled using system decomposition and multilevel optimization. Experience from the few real world applications of groundwater optimization-management techniques is summarized. Classified separately are methods for groundwater quality management aimed at optimal waste disposal in the subsurface. This classification is composed of steady state and transient management models that determine disposal patterns in such a way that water quality is protected at supply locations. Classes of research missing from the literature are groundwater quality management models involving nonlinear constraints, models which join groundwater hydraulic and quality simulations with political-economic management considerations, and management models that include parameter uncertainty.

  20. Estimation of Bank Erosion Due To Reservoir Operation in Cascade (Case Study: Citarum Cascade Reservoir

    Directory of Open Access Journals (Sweden)

    Sri Legowo

    2009-11-01

    Full Text Available Sedimentation is such a crucial issue to be noted once the accumulated sediment begins to fill the reservoir dead storage, this will then influence the long-term reservoir operation. The sediment accumulated requires a serious attention for it may influence the storage capacity and other reservoir management of activities. The continuous inflow of sediment to the reservoir will decrease the capacity of reservoir storage, the reservoir value in use, and the useful age of reservoir. Because of that, the rate of the sediment needs to be delayed as possible. In this research, the delay of the sediment rate is considered based on the rate of flow of landslide of the reservoir slope. The rate of flow of the sliding slope can be minimized by way of each reservoir autonomous efforts. This effort can be performed through; the regulation of fluctuating rate of reservoir surface current that does not cause suddenly drawdown and upraising as well. The research model is compiled using the searching technique of Non Linear Programming (NLP.The rate of bank erosion for the reservoir variates from 0.0009 to 0.0048 MCM/year, which is no sigrificant value to threaten the life time of reservoir.Mean while the rate of watershed sediment has a significant value, i.e: 3,02 MCM/year for Saguling that causes to fullfill the storage capacity in 40 next years (from years 2008.

  1. Brownfield management opportunities to reduce the back pressure effects on the gas wells

    Directory of Open Access Journals (Sweden)

    Stefanescu Dan-Paul

    2017-01-01

    Full Text Available Gas mature fields are associated with challenges to optimize the hydrocarbon flow from reservoir to the sales point in a cost effective manner due to declining well productivity. Laslau Mare field is a mature gas field in Transylvanian basin (Mures County developed in 1970s and is producing∼99% methane with low water-gas ratio. As any brown field, the state of depleted reservoir will generate several constraints for gas flow from formation to surface facilities and further to delivery point. During the exploitation has been observed that the operation conditions are facing with unstable pressure in the system due to low demand. Therefore, the back pressure effect will affect the wells in terms of inability to unload the bottomhole accumulated liquids and the reservoir will suffer a higher pressure drawdown. The best fit-for-purpose solution to overcome the above challenges is represented by installation of group compressor. Laslau Mare field has 3 group compressors running and shows positive results, especially when external pressure fluctuates continuously. This paper explain the challenges seen in 2016 in Laslau Mare field with back pressure effects and how the compression overcome them, and also other solutions that should be considered to optimize the well production.

  2. Dissolved Fe in the Deep and Upper Arctic Ocean With a Focus on Fe Limitation in the Nansen Basin

    Directory of Open Access Journals (Sweden)

    Micha J. A. Rijkenberg

    2018-03-01

    Full Text Available Global warming resulting from the release of anthropogenic carbon dioxide is rapidly changing the Arctic Ocean. Over the last decade sea ice declined in extent and thickness. As a result, improved light availability has increased Arctic net primary production, including in under-ice phytoplankton blooms. During the GEOTRACES cruise PS94 in the summer of 2015 we measured dissolved iron (DFe, nitrate and phosphate throughout the central part of the Eurasian Arctic. In the deeper waters concentrations of DFe were higher, which we relate to resuspension on the continental slope in the Nansen Basin and hydrothermal activity at the Gakkel Ridge. The main source of DFe in the surface was the Trans Polar Drift (TPD, resulting in concentrations up to 4.42 nM. Nevertheless, using nutrient ratios we show that a large under-ice bloom in the Nansen basin was limited by Fe. Fe limitation potentially prevented up to 54% of the available nitrate and nitrite from being used for primary production. In the Barents Sea, Fe is expected to be the first nutrient to be depleted as well. Changes in the Arctic biogeochemical cycle of Fe due to retreating ice may therefore have large consequences for primary production, the Arctic ecosystem and the subsequent drawdown of carbon dioxide.

  3. Organic carbon budget for the eastern boundary of the North Atlantic subtropical gyre: major role of DOC in mesopelagic respiration.

    Science.gov (United States)

    Santana-Falcón, Yeray; Álvarez-Salgado, Xosé Antón; Pérez-Hernández, María Dolores; Hernández-Guerra, Alonso; Mason, Evan; Arístegui, Javier

    2017-08-31

    Transports of suspended particulate (POC susp ) and dissolved (DOC) organic carbon are inferred from a box-model covering the eastern boundary of the North Atlantic subtropical gyre. Corresponding net respiration rates (R) are obtained from a net organic carbon budget that is based on the transport estimates, and includes both vertical and lateral fluxes. The overall R in the mesopelagic layer (100-1500 m) is 1.6 ± 0.4 mmol C m -2 d -1 . DOC accounts for up to 53% of R as a result of drawdown of organic carbon within Eastern North Atlantic Central Water (ENACW) that is entrained into sinking Mediterranean Overflow Water (MOW) that leads to formation of Mediterranean water (MW) at intermediate depths (~900 m). DOC represents 90% of the respired non-sinking organic carbon. When converted into oxygen units, the computed net respiration rate represents less than half the oxygen utilization rates (OUR) reported for the mesopelagic waters of the subtropical North Atlantic. Mesoscale processes in the area, not quantified with our approach, could account in part for the OUR differences observed between our carbon budget and other published studies from the North Atlantic, although seasonal or interannual variability could also be responsible for the difference in the estimates.

  4. Territorial approach to increased energy consumption of water extraction from depletion of a highlands Mexican aquifer.

    Science.gov (United States)

    Fonseca, Carlos Roberto; Esteller, María Vicenta; Díaz-Delgado, Carlos

    2013-10-15

    This work proposes a method to estimate increased energy consumption of pumping caused by a drawdown of groundwater level and the equivalent energy consumption of the motor-pump system in an aquifer under intensive exploitation. This method has been applied to the Valley of Toluca aquifer, located in the Mexican highlands, whose intensive exploitation is reflected in a decline in the groundwater level of between 0.10 and 1.6 m/year. Results provide a summary of energy consumption and a map of energy consumption isopleths showing the areas that are most susceptible to increases in energy consumption due to pumping. The proposed method can be used to estimate the effect of the intensive exploitation of the Valley of Toluca aquifer on the energy consumption of groundwater extraction. Finding reveals that, for the year 2006, groundwater extraction in the urban zone required 2.39 times more energy than the conditions observed 38 years earlier. In monetary terms, this reflects an increase of USD$ 3 million annually, according to 2005 energy production costs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Effects of seagrass bed removal for tourism purposes in a Mauritian bay

    Energy Technology Data Exchange (ETDEWEB)

    Daby, D

    2003-10-01

    Tourism affects marine environments adversely and these effects may be a major threat to the future of tourism. - Stresses and shocks are increasing on the main natural assets in Mauritius (Western Indian Ocean) by tourism (marine-based) development activities. Seagrasses are removed by hotels in the belief that they are unsightly or harbour organisms causing injury to bathers. Environmental changes (e.g. sediment characteristics and infauna distribution, water quality, seagrass biomass) resulting from clearing of a seagrass bed to create an aesthetically pleasant swimming zone for clients of a hotel were monitored during June 2000-July 2001, and compared to conditions prevailing in an adjacent undisturbed area. Key observations in the disturbed area were: highly turbid water overlying a destabilized lagoon seabed, complete loss of sediment infauna, and dramatic dry weight biomass declines (e.g. 72 and 65% in S. isoetifolium and H. uninervis, respectively). Such disruptions draw-down resilience rendering the marine habitats less robust and more vulnerable to environmental change and extreme events, with higher risks of chaos and ecological collapse, and constitute a major threat to the industry itself.

  6. Advances in LWD pressure measurements: smart, time optimized pretests and on demand real-time transmission applications

    Energy Technology Data Exchange (ETDEWEB)

    Serafim, Robson; Ferraris, Paolo [Schlumberger, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The StethoScope Logging While Drilling (LWD) Pressure Measurement, introduced in Brazil in 2005, has been extensively used in deep water environment to provide reservoir pressure and mobility in real-time. In the last three years the StethoScope service was further enhanced to allow better real time monitoring using a larger transmission rate, higher RT data resolution and remote visualization. In order to guarantee stable formation pressures with a limited test duration under a wide range of conditions, Time Optimized Pretests (TOP) were developed. These tests adjust automatically drawdown and buildup parameters as a function of formation characteristics (pressure/mobility) without requiring any input from the operator. On-demand frame (ODF), an advanced telemetry triggered automatically during the pressure tests, allowed to increase equivalent transmission rate and resolution and to include quality indices computed downhole. This paper is focused on the TOP and ODF Field Test results in Brazil, which proved to be useful and reliable options for better real-time decisions together with remote monitoring visualization implemented by the RTMonitor program. (author)

  7. Hydro-mechanically coupled finite-element analysis of the stability of a fractured-rock slope using the equivalent continuum approach: a case study of planned reservoir banks in Blaubeuren, Germany

    Science.gov (United States)

    Song, Jie; Dong, Mei; Koltuk, Serdar; Hu, Hui; Zhang, Luqing; Azzam, Rafig

    2018-05-01

    Construction works associated with the building of reservoirs in mountain areas can damage the stability of adjacent valley slopes. Seepage processes caused by the filling and drawdown operations of reservoirs also affect the stability of the reservoir banks over time. The presented study investigates the stability of a fractured-rock slope subjected to seepage forces in the lower basin of a planned pumped-storage hydropower (PSH) plant in Blaubeuren, Germany. The investigation uses a hydro-mechanically coupled finite-element analyses. For this purpose, an equivalent continuum model is developed by using a representative elementary volume (REV) approach. To determine the minimum required REV size, a large number of discrete fracture networks are generated using Monte Carlo simulations. These analyses give a REV size of 28 × 28 m, which is sufficient to represent the equivalent hydraulic and mechanical properties of the investigated fractured-rock mass. The hydro-mechanically coupled analyses performed using this REV size show that the reservoir operations in the examined PSH plant have negligible effect on the adjacent valley slope.

  8. Vacuum horizontal drainage for depressurization of uranium tailings

    International Nuclear Information System (INIS)

    Pakalnis, R.; Chedsey, G.; Robertson, A.M.; Follin, S.

    1985-01-01

    A recent advance in tailings slope depressurization is the application of vacuum assist horizontal drainage. Horizontal drains have been used for several decades to reduce water pressures in slopes in order to improve stability. The benefit from vacuum assist arises from an increased hydraulic gradient caused by induced negative atmospheric pressures. The vacuum assist system has, since its inception in 1982, been successfully employed at two soil and four rock slope projects located in Western Canada. This paper describes the first application of this system in the United States. The technical feasibility of employing vacuum assisted horizontal drains to depressurize a uranium tailings dam near Riverton, Wyoming has been evaluated. Two horizontal drains (300 ft.) were installed and their effect monitored by nine piezometers. The study was conducted over a three-week internal with vacuum being applied for three and four day periods. The drawdowns achieved through vacuum drainage was found to be approximately double that obtained by gravity alone. The volume of water exhausted under vacuum during the seven day interval was approximately double that obtained by gravity alone

  9. Modeling the effects of longwall mining on the ground water system

    International Nuclear Information System (INIS)

    Matetic, R.J.; Liu, J.; Elsworth, D.

    1995-01-01

    The objective of this US Bureau of Mines hydrologic-subsidence investigation was to evaluate the effects of longwall mining on the local ground water regime through field monitoring and numerical modeling. Field data were obtained from multiple-position borehole extensometers (MPBXs) that were used to measure subsurface displacements. Survey monuments were installed to measure mining-induced surface deformations. Numerous drawdown and recovery tests were performed to characterized hydrologic properties of the overburden strata. Coreholes were drilled above the study area to determine lithologic and strength characteristics of the overburden strata using the rock samples collected. Electronic recorders were installed on all monitoring wells to continuously monitor ground water levels in coordination with mining of the longwall panels. A combined finite element model of the deformation of overlying strata, and its influence on ground water flow was used to define the change in local and regional water budgets. The predicted effects of the postmining ground water system determined by the model correlated well with field data collected from the fieldsite. Without an infiltration rate added to the model, a static decrease of 3.0 m (10 ft) in water level would occur due to mining of both longwall panels and if an infiltration rate was inputted in the model, no predicted long-term effects would occur to the ground water system

  10. A Data Base of Nutrient Use, Water Use, CO2 Exchange, and Ethylene Production by Soybeans in a Controlled Environment

    Science.gov (United States)

    Wheeler, R. M.; Mackowiak, C. L.; Peterson, B. V.; Sager, J. C.; Knott, W. M.; Berry, W. L.; Sharifi, M. R.

    1998-01-01

    A data set is given describing daily nutrient and water uptake, carbon dioxide (CO2) exchange, ethylene production, and carbon and nutrient partitioning from a 20 sq m stand of soybeans (Glycine max (L.) Merr. cv. McCall] for use in bioregenerative life support systems. Stand CO2 exchange rates were determined from nocturnal increases in CO2 (respiration) and morning drawdowns (net photosynthesis) to a set point of 1000 micromol/ mol each day (i.e., a closed system approach). Atmospheric samples were analyzed throughout growth for ethylene using gas chromatography with photoionization detection (GC/PH)). Water use was monitored by condensate production from the humidity control system, as well as water uptake from the nutrient solution reservoirs each day. Nutrient uptake data were determined from daily additions of stock solution and acid to maintain an EC of 0.12 S/m and pH of 5.8. Dry mass yields of seeds, pods (without seeds), leaves, stems, and roots are provided, as well as elemental and proximate nutritional compositions of the tissues. A methods section is included to qualify any assumptions that might be required for the use of the data in plant growth models, along with a daily event calendar documenting set point adjustments and the occasional equipment or sensor failure.

  11. Used nuclear fuel separations process simulation and testing

    International Nuclear Information System (INIS)

    Pereira, C.; Krebs, J.F.; Copple, J.M.; Frey, K.E.; Maggos, L.E.; Figueroa, J.; Willit, J.L.; Papadias, D.D.

    2013-01-01

    Recent efforts in separations process simulation at Argonne have expanded from the traditional focus on solvent extraction flowsheet design in order to capture process dynamics and to simulate other components, processing and systems of a used nuclear fuel reprocessing plant. For example, the Argonne Model for Universal Solvent Extraction (AMUSE) code has been enhanced to make it both more portable and more readily extensible. Moving away from a spreadsheet environment makes the addition of new species and processes simpler for the expert user, which should enable more rapid implementation of chemical models that simulate evolving processes. The dyAMUSE (dynamic AMUSE) version allows the simulation of transient behavior across an extractor. Electrochemical separations have now been modeled using spreadsheet codes that simulate the electrochemical recycle of fast reactor fuel. The user can follow the evolution of the salt, products, and waste compositions in the electro-refiner, cathode processors, and drawdown as a function of fuel batches treated. To further expand capabilities in integrating multiple unit operations, a platform for linking mathematical models representing the different operations that comprise a reprocessing facility was adapted to enable systems-level analysis and optimization of facility functions. (authors)

  12. Hydrogeochemistry and reservoir model of Fuzhou geothermal field, China

    Science.gov (United States)

    Huang, H. F.; Goff, Fraser

    1986-03-01

    Fuzhou geothermal field is a low- to intermediate-temperature geothermal system consisting of meteoric water that circulates deeply along faults. The area of the field is about 9 km 2 but it is elongated in a NNW-trending direction. Fluids in the field are controlled by a series of four NNW extensional faults in Cretaceous granitic basement (Fuzhou fault zone). These faults feed warm waters into overlying permeable Quaternary sediments. The hydrothermal system consists of north and south parts whose chemical compositions are subtly different. In the northern part the system discharges sulfate/chloride waters with relatively low chloride concentrations, but in the south the system discharges chloride waters having relatively high chloride concentrations. Maximum wellhead temperatures are 97°C, which agrees with the chalcedony geothermometer in many cases. Based on the solubility of quartz, the deep-reservoir temperature cannot exceed 123 to 131°C. From heat and mass balance calculations, we conclude that the present total extracted capacity of fluid from the reservoir (20,000 tons/day) could be doubled without noticeable drawdown. We estimate the recoverable heat in the reservoir to be about 1.71 × 10 11 MJ.

  13. Brittle and Ductile Behavior in Deep-Seated Landslides: Learning from the Vajont Experience

    Science.gov (United States)

    Paronuzzi, Paolo; Bolla, Alberto; Rigo, Elia

    2016-06-01

    This paper analyzes the mechanical behavior of the unstable Mt. Toc slope before the 1963 catastrophic collapse, considering both the measured data (surface displacements and microseismicity) and the updated geological model of the prehistoric rockslide. From February 1960 up to 9 October 1963, the unstable mass behaved as a brittle-ductile `mechanical system,' characterized by remarkable microseismicity as well as by considerable surface displacements (up to 4-5 m). Recorded microshocks were the result of progressive rock fracturing of distinct resisting stiff parts made up of intact rock (indentations, undulations, and rock bridges). The main resisting stiff part was a large rock indentation located at the NE extremity of the unstable mass that acted as a mechanical constraint during the whole 1960-1963 period, inducing a progressive rototranslation toward the NE. This large constraint failed in autumn 1960, when an overall slope failure took place, as emphasized by the occurrence of the large perimetrical crack in the upper slope. In this circumstance, the collapse was inhibited by a reblocking phenomenon of the unstable mass that had been previously destabilized by the first reservoir filling. Progressive failure of localized intact rock parts progressively propagated westwards as a consequence of the two further filling-drawdown cycles of the reservoir (1962 and 1963). The characteristic brittle-ductile behavior of the Vajont landslide was made possible by the presence of a very thick (40-50 m) and highly deformable shear zone underlying the upper rigid rock mass (100-120 m thick).

  14. Iron Fertilization of the Southern Ocean: Regional Simulation and Analysis of C-Sequestration in the Ross Sea

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Arrigo

    2012-03-13

    A modified version of the dynamic 3-dimensional mesoscale Coupled Ice, Atmosphere, and Ocean model (CIAO) of the Ross Sea ecosystem has been used to simulate the impact of environmental perturbations upon primary production and biogenic CO2 uptake. The Ross Sea supports two taxonomically, and spatially distinct phytoplankton populations; the haptophyte Phaeocystis antarctica and diatoms. Nutrient utilization ratios predict that P. antarctica and diatoms will be driven to nitrate and phosphate limitation, respectively. Model and field data have confirmed that the Ross Sea is iron limited with only two-thirds of the macronutrients consumed by the phytoplankton by the end of the growing season. In this study, the CIAO model was improved to simulate a third macronutrient (phosphate), dissolved organic carbon, air-sea gas exchange, and the carbonate system. This enabled us to effectively model pCO2 and subsequently oceanic CO2 uptake via gas exchange, allowing investigations into the affect of alleviating iron limitation on both pCO2 and nutrient drawdown.

  15. Quarterly coal report, April--June 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-26

    In the second quarter of 1993, the United States produced 235 million short tons of coal. This brought the total for the first half of 1993 to 477 million short tons, a decrease of 4 percent (21 million short tons) from the amount produced during the first half of 1992. The decrease was due to a 26-million-short-ton decline in production east of the Mississippi River, which was partially offset by a 5-million-short-ton increase in coal production west of the Mississippi River. Compared with the first 6 months of 1992, all States east of the Mississippi River had lower coal production levels, led by West Virginia and Illinois, which produced 9 million short tons and 7 million short tons less coal, respectively. The principal reasons for the drop in coal output for the first 6 months of 1993 compared to a year earlier were: a decrease in demand for US coal in foreign markets, particularly the steam coal markets; a draw-down of electric utility coal stocks to meet the increase in demand for coal-fired electricity generation; and a lower producer/distributor stock build-up. Distribution of US coal in the first half of 1993 was 15 million short tons lower than in the first half of 1992, with 13 million short tons less distributed to overseas markets and 2 million short tons less distributed to domestic markets.

  16. Down-Side Risk Metrics as Portfolio Diversification Strategies across the Global Financial Crisis

    Directory of Open Access Journals (Sweden)

    David E. Allen

    2016-06-01

    Full Text Available This paper features an analysis of the effectiveness of a range of portfolio diversification strategies, with a focus on down-side risk metrics, as a portfolio diversification strategy in a European market context. We apply these measures to a set of daily arithmetically-compounded returns, in U.S. dollar terms, on a set of ten market indices representing the major European markets for a nine-year period from the beginning of 2005 to the end of 2013. The sample period, which incorporates the periods of both the Global Financial Crisis (GFC and the subsequent European Debt Crisis (EDC, is a challenging one for the application of portfolio investment strategies. The analysis is undertaken via the examination of multiple investment strategies and a variety of hold-out periods and backtests. We commence by using four two-year estimation periods and a subsequent one-year investment hold out period, to analyse a naive 1/N diversification strategy and to contrast its effectiveness with Markowitz mean variance analysis with positive weights. Markowitz optimisation is then compared to various down-side investment optimisation strategies. We begin by comparing Markowitz with CVaR, and then proceed to evaluate the relative effectiveness of Markowitz with various draw-down strategies, utilising a series of backtests. Our results suggest that none of the more sophisticated optimisation strategies appear to dominate naive diversification.

  17. Radiation Dose Assessment For The Biota Of Terrestrial Ecosystems In The Shoreline Zone Of The Chernobyl Nuclear Power Plant Cooling Pond

    International Nuclear Information System (INIS)

    Farfan, E.; Jannik, T.

    2011-01-01

    Radiation exposure of the biota in the shoreline area of the Chernobyl Nuclear Power Plant Cooling Pond was assessed to evaluate radiological consequences from the decommissioning of the Cooling Pond. The article addresses studies of radioactive contamination of the terrestrial faunal complex and radionuclide concentration ratios in bodies of small birds, small mammals, amphibians, and reptiles living in the area. The data were used to calculate doses to biota using the ERICA Tool software. Doses from 90 Sr and 137 Cs were calculated using the default parameters of the ERICA Tool and were shown to be consistent with biota doses calculated from the field data. However, the ERICA dose calculations for plutonium isotopes were much higher (2-5 times for small mammals and 10-14 times for birds) than the doses calculated using the experimental data. Currently, the total doses for the terrestrial biota do not exceed maximum recommended levels. However, if the Cooling Pond is allowed to drawdown naturally and the contaminants of the bottom sediments are exposed and enter the biological cycle, the calculated doses to biota may exceed the maximum recommended values. The study is important in establishing the current exposure conditions such that a baseline exists from which changes can