WorldWideScience

Sample records for drao 26-m telescope

  1. The DAG project, a 4m class telescope: the telescope main structure performances

    Science.gov (United States)

    Marchiori, G.; Busatta, A.; Ghedin, L.; Marcuzzi, E.; Manfrin, C.; Battistel, C.; Pirnay, O.; Flebus, Carlo; Yeşilyaprak, C.; Keskin, O.; Yerli, S.

    2016-07-01

    Dogu Anatolu Gözlemevi (DAG-Eastern Anatolia Observatory) Project is a 4m class optical, near-infrared Telescope and suitable enclosure which will be located at an altitude of 3.170m in Erzurum, Turkey. The DAG telescope is a project fully funded by Turkish Ministry of Development and the Atatürk University of Astrophysics Research Telescope - ATASAM. The Project is being developed by the Belgian company AMOS (project leader), which is also the optics supplier and EIE GROUP, the Telescope Main Structure supplier and responsible for the final site integration. The design of the Telescope Main Structure fits in the EIE TBO Program which aims at developing a Dome/Telescope systemic optimization process for both performances and competitive costs based on previous project commitments like NTT, VLT, VST and ASTRI. The optical Configuration of the DAG Telescope is a Ritchey-Chretien with two Nasmyth foci and a 4m primary thin mirror controlled in shape and position by an Active Optic System. The main characteristics of the Telescope Main Structure are an Altitude-Azimuth light and rigid structure system with Direct Drive Systems for both axis, AZ Hydrostatic Bearing System and Altitude standard bearing system; both axes are equipped with Tape Encoder System. An innovative Control System characterizes the telescope performance.

  2. A 16-m Telescope for the Advanced Technology Large Aperture Telescope (ATLAST) Mission

    Science.gov (United States)

    Lillie, Charles F.; Dailey, D. R.; Polidan, R. S.

    2010-01-01

    Future space observatories will require increasingly large telescopes to study the earliest stars and galaxies, as well as faint nearby objects. Technologies now under development will enable telescopes much larger than the 6.5-meter diameter James Webb Space Telescope (JWST) to be developed at comparable costs. Current segmented mirror and deployable optics technology enables the 6.5 meter JWST telescope to be folded for launch in the 5-meter diameter Ariane 5 payload fairing, and deployed autonomously after reaching orbit. Late in the next decade, when the Ares V Cargo Launch Vehicle payload fairing becomes operational, even larger telescope can be placed in orbit. In this paper we present our concept for a 16-meter JWST derivative, chord-fold telescope which could be stowed in the 10-m diameter Ares V fairing, plus a description of the new technologies that enable ATLAST to be developed at an affordable price.

  3. Undergraduate Education with the WIYN 0.9-m Telescope

    Science.gov (United States)

    Pilachowski, Catherine A.

    2017-01-01

    Several models have been explored at Indiana University Bloomington for undergraduate student engagement in astronomy using the WIYN 0.9-m telescope at Kitt Peak. These models include individual student research projects using the telescope, student observations as part of an observational techniques course for majors, and enrichment activities for non-science majors in general education courses. Where possible, we arrange for students to travel to the telescope. More often, we are able to use simple online tools such as Skype and VNC viewers to give students an authentic observing experience. Experiences with the telescope motivate students to learn basic content in astronomy, including the celestial sphere, the electromagnetic spectrum, telescopes and detectors, the variety of astronomical objects, date reduction processes, image analysis, and color image creation and appreciation. The WIYN 0.9-m telescope is an essential tool for our program at all levels of undergraduate education

  4. Development of the Phase-up Technology of the Radio Telescopes: 6.7 GHz Methanol Maser Observations with Phased Hitachi 32 m and Takahagi 32 m Radio Telescopes

    Science.gov (United States)

    Takefuji, K.; Sugiyama, K.; Yonekura, Y.; Saito, T.; Fujisawa, K.; Kondo, T.

    2017-11-01

    For the sake of high-sensitivity 6.7 GHz methanol maser observations, we developed a new technology for coherently combining the two signals from the Hitachi 32 m radio telescope and the Takahagi 32 m radio telescope of the Japanese Very long baseline interferometer Network (JVN), where the two telescopes were separated by about 260 m. After the two telescopes were phased as a twofold larger single telescope, the mean signal-to-noise ratio (S/N) of the 6.7 GHz methanol masers observed by the phased telescopes was improved to 1.254-fold higher than that of the single dish, through a very long baseline interferometry (VLBI) experiment on the 50 km baseline of the Kashima 34 m telescope and the 1000 km baseline of the Yamaguchi 32 m telescope. Furthermore, we compared the S/Ns of the 6.7 GHz maser spectra for two methods. One is a VLBI method and the other is the newly developed digital position switching that is a similar technology to that used in noise-canceling headphones. Finally, we confirmed that the mean S/N of method of the digital position switching (ON-OFF) was 1.597-fold higher than that of the VLBI method.

  5. OVERVIEW OF THE ATACAMA COSMOLOGY TELESCOPE: RECEIVER, INSTRUMENTATION, AND TELESCOPE SYSTEMS

    International Nuclear Information System (INIS)

    Swetz, D. S.; Devlin, M. J.; Dicker, S. R.; Ade, P. A. R.; Amiri, M.; Battistelli, E. S.; Burger, B.; Halpern, M.; Hasselfield, M.; Appel, J. W.; Essinger-Hileman, T.; Fisher, R. P.; Fowler, J. W.; Hincks, A. D.; Jarosik, N.; Chervenak, J.; Doriese, W. B.; Hilton, G. C.; Irwin, K. D.; Duenner, R.

    2011-01-01

    The Atacama Cosmology Telescope was designed to measure small-scale anisotropies in the cosmic microwave background and detect galaxy clusters through the Sunyaev-Zel'dovich effect. The instrument is located on Cerro Toco in the Atacama Desert, at an altitude of 5190 m. A 6 m off-axis Gregorian telescope feeds a new type of cryogenic receiver, the Millimeter Bolometer Array Camera. The receiver features three 1000-element arrays of transition-edge sensor bolometers for observations at 148 GHz, 218 GHz, and 277 GHz. Each detector array is fed by free space millimeter-wave optics. Each frequency band has a field of view of approximately 22' x 26'. The telescope was commissioned in 2007 and has completed its third year of operations. We discuss the major components of the telescope, camera, and related systems, and summarize the instrument performance.

  6. Overview of the Atacama Cosmology Telescope: Receiver, Instrumentation, and Telescope Systems

    Science.gov (United States)

    Swetz, D. S.; Ade, P. A. R.; Amiri, M.; Appel, J. W.; Battistelli, E. S.; Burger, B.; Chervenak, J.; Devlin, M. J.; Dicker, S. R.; Doriese, W. B.; Dünner, R.; Essinger-Hileman, T.; Fisher, R. P.; Fowler, J. W.; Halpern, M.; Hasselfield, M.; Hilton, G. C.; Hincks, A. D.; Irwin, K. D.; Jarosik, N.; Kaul, M.; Klein, J.; Lau, J. M.; Limon, M.; Marriage, T. A.; Marsden, D.; Martocci, K.; Mauskopf, P.; Moseley, H.; Netterfield, C. B.; Niemack, M. D.; Nolta, M. R.; Page, L. A.; Parker, L.; Staggs, S. T.; Stryzak, O.; Switzer, E. R.; Thornton, R.; Tucker, C.; Wollack, E.; Zhao, Y.

    2011-06-01

    The Atacama Cosmology Telescope was designed to measure small-scale anisotropies in the cosmic microwave background and detect galaxy clusters through the Sunyaev-Zel'dovich effect. The instrument is located on Cerro Toco in the Atacama Desert, at an altitude of 5190 m. A 6 m off-axis Gregorian telescope feeds a new type of cryogenic receiver, the Millimeter Bolometer Array Camera. The receiver features three 1000-element arrays of transition-edge sensor bolometers for observations at 148 GHz, 218 GHz, and 277 GHz. Each detector array is fed by free space millimeter-wave optics. Each frequency band has a field of view of approximately 22' × 26'. The telescope was commissioned in 2007 and has completed its third year of operations. We discuss the major components of the telescope, camera, and related systems, and summarize the instrument performance.

  7. 3.6-m Devasthal Optical Telescope Project: Completion and first results

    Science.gov (United States)

    Kumar, Brijesh; Omar, Amitesh; Maheswar, Gopinathan; Pandey, Anil Kumar; Sagar, Ram; Uddin, Wahab; Sanwal, Basant Ballabh; Bangia, Tarun; Kumar, Tripurari Satyanarayana; Yadav, Shobhit; Sahu, Sanjit; Pant, Jayshreekar; Reddy, Bheemireddy Krishna; Gupta, Alok Chandra; Chand, Hum; Pandey, Jeewan Chandra; Joshi, Mohit Kumar; Jaiswar, Mukeshkuma; Nanjappa, Nandish; Purushottam; Yadav, Rama Kant Singh; Sharma, Saurabh; Pandey, Shashi Bhushan; Joshi, Santosh; Joshi, Yogesh Chandra; Lata, Sneh; Mehdi, Biman Jyoti; Misra, Kuntal; Singh, Mahendra

    2018-04-01

    We present an update on the 3.6-m aperture optical telescope, which has been installed at Devasthal in the year 2016. In this paper, a brief overview of installation activities at site and first results are presented. The 3.6-m Devasthal Optical Telescope project was initiated in 2007 by the Aryabhatta Research Institute of Observational Sciences (ARIES; Nainital, India) in partnership with Belgium. The telescope has Ritchey-Chretien optics, an alt-azimuth mount, an active control of the primary and a corrected science field of view of 30' at the Cassegrain focus. The construction of the telescope enclosure building was completed in June 2014 and after successful installation of the telescope. The first engineering light was obtained on 22 March 2015. The on-sky performance of the telescope was carried out till February 2016.

  8. Deployment of a Pair of 3 M telescopes in Utah

    Energy Technology Data Exchange (ETDEWEB)

    Finnegan, G; Adams, B; Butler, K; Cardoza, J; Colin, P; Hui, C M; Kieda, D; Kirkwood, D; Kress, D; Kress, M; LeBohec, S; McGuire, C; Newbold, M; Nunez, P; Pham, K [University of Utah, Department of Physics, Salt Lake City, Utah 84112 (United States)

    2008-12-24

    Two 3 m telescopes are being installed in Grantsville Utah. They are intended for the testing of various approaches to the implementation of intensity interferometry using Cherenkov Telescopes in large arrays as receivers as well as for the testing of novel technology cameras and electronics for ground based gamma-ray astronomy.

  9. A 25 m Live Optics Telescope

    DEFF Research Database (Denmark)

    Ardeberg, Arne; Andersen, Torben; Owner-Petersen, Mette

    1996-01-01

    A 25 m four mirror live optics telescope is studied. M1 is spherical with 141 segments and f/0.96. M1 is reimaged onto M4 also with 141 segments. Image FWHM is 20 arc min. A horseshoe solution with a simple azimuth platform is applied. M1 segments are supported by a fine...... meniscus form truss structure, tied to the horseshoe by a coarser mesh. A FEM with 10^4 dof was developed and applied. Live optics control M1 and M4 segments (the latter with potential high bandwidth). Correction signals in tilt, coma and defocus are traced. A correlation tracker and a lase guide star...... dynamic effects and image quality resulting from the 141 segment spots. Automatic segment control at a bandwidth of only 1 Hz gives excellent image quality. We foresee to reach a bandwidth > 50 Hz, securing a system partly adaptive, with effects of atmospheric wave front tilt removed through M4 segment...

  10. The Liverpool Telescope: rapid follow-up observation of targets of opportunity with a 2 m robotic telescope

    International Nuclear Information System (INIS)

    Gomboc, Andreja; Bode, Michael F.; Carter, David; Mundell, Carol G.; Newsam, Andrew; Smith, Robert J.; Steele, Iain A.

    2004-01-01

    The Liverpool Telescope, situated at Roque de los Muchachos Observatory, La Palma, Canaries, is the first 2-m, fully instrumented robotic telescope. It recently began observations. Among Liverpool Telescope's primary scientific goals is to monitor variable objects on all timescales from seconds to years. An additional benefit of its robotic operation is rapid reaction to unpredictable phenomena and their systematic follow up, simultaneous or coordinated with other facilities. The Target of Opportunity Programme of the Liverpool Telescope includes the prompt search for and observation of GRB and XRF counterparts. A special over-ride mode implemented for GRB/XRF follow-up enables observations commencing less than a minute after the alert, including optical and near infrared imaging and spectroscopy. In particular, the moderate aperture and rapid automated response make the Liverpool Telescope excellently suited to help solving the mystery of optically dark GRBs and for the investigation of currently unstudied short bursts and XRFs

  11. Development of the optical system for the SST-1M telescope of the Cherenkov Telescope Array observatory

    CERN Document Server

    Ostrowski, Michael; Błocki, J.; Bogacz, L.; Bulik, T.; Cadoux, F.; Christov, A.; Curyło, M.; della Volpe, D.; Dyrda, M.; Favre, Y.; Frankowski, A.; Grudnik, Ł.; Grudzińska, M.; Heller, M.; Idźkowski, B.; Jamrozy, M.; Janiak, M.; Kasperek, J.; Lalik, K.; Lyard, E.; Mach, E.; Mandat, D.; Marszałek, A.; Michałowski, J.; Moderski, R.; Montaruli, T.; Neronov, A.; Niemiec, J.; Paśko, P.; Pech, M.; Porcelli, A.; Prandini, E.; Pueschel, E.; Rajda, P.; Rameez, M.; Schioppa, E. jr; Schovanek, P.; Skowron, K.; Sliusar, V.; Sowiński, M.; Stawarz, Ł.; Stodulska, M.; Stodulski, M.; Toscano, S.; Troyano Pujadas, I.; Walter, R.; Wiȩcek, M.; Zagdański, A.; Ziȩtara, K.; Żychowski, P.; Barciński, T.; Karczewski, M.; Kukliński, J. Nicolau; Płatos, Ł.; Rataj, M.; Wawer, P.; Wawrzaszek, R.

    2016-01-01

    The prototype of a Davies-Cotton small size telescope (SST-1M) has been designed and developed by a consortium of Polish and Swiss institutions and proposed for the Cherenkov Telescope Array (CTA) observatory. The main purpose of the optical system is to focus the Cherenkov light emitted by extensive air showers in the atmosphere onto the focal plane detectors. The main component of the system is a dish consisting of 18 hexagonal mirrors with a total effective collection area of 6.47 m2 (including the shadowing and estimated mirror reflectivity). Such a solution was chosen taking into account the analysis of the Cherenkov light propagation and based on optical simulations. The proper curvature and stability of the dish is ensured by the mirror alignment system and the isostatic interface to the telescope structure. Here we present the design of the optical subsystem together with the performance measurements of its components.

  12. The optical system of the proposed Chinese 12-m optical/infrared telescope

    Science.gov (United States)

    Su, Ding-qiang; Liang, Ming; Yuan, Xiangyan; Bai, Hua; Cui, Xiangqun

    2017-08-01

    The lack of a large-aperture optical/infrared telescope has seriously affected the development of astronomy in China. In 2016, the authors published their concept study and suggestions for a 12-m telescope optical system. This article presents the authors' further research and some new results. Considering that this telescope should be a general-purpose telescope for a wide range of scientific goals and could be used for frontier scientific research in the future, the authors studied and designed a variety of 12-m telescope optical systems for comparison and final decision-making. In general, we still adopt our previous configuration, but the Nasmyth and prime-focus corrector systems have been greatly improved. In this article, the adaptive optics is given special attention. Ground-layer adaptive optics (GLAO) is adopted. It has a 14-arcmin field of view. The secondary mirror is used as the adaptive optical deformable mirror. Obviously, not all the optical systems in this telescope configuration will be used or constructed at the same stage. Some will be for the future and some are meant for research rather than for construction.

  13. M Dwarf Exoplanet Survey by the Falcon Telescope Network

    Science.gov (United States)

    Carlson, Randall E.

    2016-10-01

    The Falcon Telescope Network (FTN) consists of twelve automated 20-inch telescopes located around the globe. We control it at the US Air Force Academy in Colorado Springs, Colorado from the Cadet Space Operations Center. We have installed 10 of the 12 sites and anticipate full operational capability by the beginning of 2017. The network's worldwide geographic distribution provides advantages. The primary mission of the FTN is Space Situational Awareness and studying Near Earth Objects. However, we are employing the FTN with its 11' x 11' field-of-view for a five-year, M dwarf exoplanet survey. Specifically, we are searching for Earth-radius exoplanets. We describe the FTN, design considerations going into the FTN's M dwarf exoplanet survey including automated operations, and initial results of the survey.

  14. Information and Communications Technology (ICT) Infrastructure for the ASTRI SST-2M telescope prototype for the Cherenkov Telescope Array

    Science.gov (United States)

    Gianotti, F.; Tacchini, A.; Leto, G.; Martinetti, E.; Bruno, P.; Bellassai, G.; Conforti, V.; Gallozzi, S.; Mastropietro, M.; Tanci, C.; Malaguti, G.; Trifoglio, M.

    2016-08-01

    The Cherenkov Telescope Array (CTA) represents the next generation of ground-based observatories for very high energy gamma-ray astronomy. The CTA will consist of two arrays at two different sites, one in the northern and one in the southern hemisphere. The current CTA design foresees, in the southern site, the installation of many tens of imaging atmospheric Cherenkov telescopes of three different classes, namely large, medium and small, so defined in relation to their mirror area; the northern hemisphere array would consist of few tens of the two larger telescope types. The Italian National Institute for Astrophysics (INAF) is developing the Cherenkov Small Size Telescope ASTRI SST- 2M end-to-end prototype telescope within the framework of the International Cherenkov Telescope Array (CTA) project. The ASTRI prototype has been installed at the INAF observing station located in Serra La Nave on Mt. Etna, Italy. Furthermore a mini-array, composed of nine of ASTRI telescopes, has been proposed to be installed at the Southern CTA site. Among the several different infrastructures belonging the ASTRI project, the Information and Communication Technology (ICT) equipment is dedicated to operations of computing and data storage, as well as the control of the entire telescope, and it is designed to achieve the maximum efficiency for all performance requirements. Thus a complete and stand-alone computer centre has been designed and implemented. The goal is to obtain optimal ICT equipment, with an adequate level of redundancy, that might be scaled up for the ASTRI mini-array, taking into account the necessary control, monitor and alarm system requirements. In this contribution we present the ICT equipment currently installed at the Serra La Nave observing station where the ASTRI SST-2M prototype will be operated. The computer centre and the control room are described with particular emphasis on the Local Area Network scheme, the computing and data storage system, and the

  15. TALC, a new deployable concept for a 20 m far-infrared space telescope

    International Nuclear Information System (INIS)

    Durand, Gilles; Sauvage, Marc; Rodriguez, Louis; Ronayette, Samuel; Reveret, Vincent; Aussel, Herve; Pantin, Eric; Berthe, Michel; Martignac, Jerome; Motte, Frederique; Talvard, Michel; Minier, Vincent; Scola, Loris; Carty, Michael

    2014-01-01

    TALC, Thin Aperture Light Collector is a 20 m space observatory project exploring some unconventional optical solutions (between the single dish and the interferometer) allowing the resolving power of a classical 27 m telescope. With TALC, the principle is to remove the central part of the prime mirror dish, cut the remaining ring into 24 sectors and store them on top of one-another. The aim of this far infrared telescope is to explore the 600 μm to 100 μm region. With this approach we have shown that we can store a ring-telescope of outer diameter 20 m and ring thickness of 3 m inside the fairing of Ariane 5 or Ariane 6. The general structure is the one of a bicycle wheel, whereas the inner sides of the segments are in compression to each other and play the rule of a rim. The segments are linked to each other using a pantograph scissor system that let the segments extend from a pile of dishes to a parabolic ring keeping high stiffness at all time during the deployment. The inner corners of the segments are linked to a central axis using spokes as in a bicycle wheel. The secondary mirror and the instrument box are built as a solid unit fixed at the extremity of the main axis. The tensegrity analysis of this structure shows a very high stiffness to mass ratio, resulting into 3 Hz Eigen frequency. The segments will consist of two composite skins and honeycomb CFRP structure build by replica process. Solid segments will be compared to deformable segments using the controlled shear of the rear surface. The adjustment of the length of the spikes and the relative position of the side of neighbor segments let control the phasing of the entire primary mirror. The telescope is cooled by natural radiation. It is protected from sun radiation by a large inflatable solar screen, loosely linked to the telescope. The orientation is performed by inertia-wheels. This telescope carries a wide field bolometer camera using cryo-cooler at 0.3 K as one of the main instruments. This

  16. TALC: a new deployable concept for a 20m far-infrared space telescope

    Science.gov (United States)

    Durand, Gilles; Sauvage, Marc; Bonnet, Aymeric; Rodriguez, Louis; Ronayette, Samuel; Chanial, Pierre; Scola, Loris; Révéret, Vincent; Aussel, Hervé; Carty, Michael; Durand, Matthis; Durand, Lancelot; Tremblin, Pascal; Pantin, Eric; Berthe, Michel; Martignac, Jérôme; Motte, Frédérique; Talvard, Michel; Minier, Vincent; Bultel, Pascal

    2014-08-01

    TALC, Thin Aperture Light Collector is a 20 m space observatory project exploring some unconventional optical solutions (between the single dish and the interferometer) allowing the resolving power of a classical 27 m telescope. With TALC, the principle is to remove the central part of the prime mirror dish, cut the remaining ring into 24 sectors and store them on top of one-another. The aim of this far infrared telescope is to explore the 600 μm to 100 μm region. With this approach we have shown that we can store a ring-telescope of outer diameter 20m and ring thickness of 3m inside the fairing of Ariane 5 or Ariane 6. The general structure is the one of a bicycle wheel, whereas the inner sides of the segments are in compression to each other and play the rule of a rim. The segments are linked to each other using a pantograph scissor system that let the segments extend from a pile of dishes to a parabolic ring keeping high stiffness at all time during the deployment. The inner corners of the segments are linked to a central axis using spokes as in a bicycle wheel. The secondary mirror and the instrument box are built as a solid unit fixed at the extremity of the main axis. The tensegrity analysis of this structure shows a very high stiffness to mass ratio, resulting into 3 Hz Eigen frequency. The segments will consist of two composite skins and honeycomb CFRP structure build by replica process. Solid segments will be compared to deformable segments using the controlled shear of the rear surface. The adjustment of the length of the spikes and the relative position of the side of neighbor segments let control the phasing of the entire primary mirror. The telescope is cooled by natural radiation. It is protected from sun radiation by a large inflatable solar screen, loosely linked to the telescope. The orientation is performed by inertia-wheels. This telescope carries a wide field bolometer camera using cryocooler at 0.3K as one of the main instruments. This

  17. Automation of the Lowell Observatory 0.8-m Telescope

    Science.gov (United States)

    Buie, M. W.

    2001-11-01

    In the past year I have converted the Lowell Observatory 0.8-m telescope from a classically scheduled and operated telescope to an automated facility. The new setup uses an existing CCD camera and the existing telescope control system. The key steps in the conversion were writing a new CCD control and data acquisition module plus writing communication and queue control software. The previous CCD control program was written for DOS and much of the code was reused for this project. The entire control system runs under Linux and consists of four daemons: MOVE, PCCD, CMDR, and PCTL. The MOVE daemon is a process that communciates with the telescope control system via an RS232 port, keeping track of its state and forwarding commands from other processes to the telescope. The PCCD daemon controls the CCD camera and collects data. The CMDR daemon maintains a FIFO queue of commands to be executed during the night. The PCTL daemon receives notification from any other deamon of execution failures and sends an error code to the on-duty observer via a numeric pager. This system runs through the night much as you would traditionally operate a telescope. However, this system permits queuing up all the commands for a night and they execute one after another in sequence. Additional commands are needed to replace the normal human interaction during observing (ie., target acquisition, field registration, focusing). Also, numerous temporal synchronization commands are required so that observations happen at the right time. The system was used for this year's photometric monitoring of Pluto and Triton and is in general use for 2/3 of time on the telescope. Pluto observations were collected on 30 nights out of a potential pool of 90 nights. Detailed system design and capabilites plus sample observations will be presented. Also, a live demonstration will be provided if the weather is good. This work was supported by NASA Grant NAG5-4210 and the NSF REU Program grant to NAU.

  18. A 4-m evolvable space telescope configured for NASA's HabEx Mission: the initial stage of LUVOIR

    Science.gov (United States)

    Lillie, Charles F.; MacEwen, Howard A.; Polidan, Ronald S.; Breckinridge, James B.

    2017-09-01

    Previous papers have described our concept for a large telescope that would be assembled in space in several stages (in different configurations) over a period of fifteen to 20 years. Spreading the telescope development, launch and operations cost over 20 years would minimize the impact on NASA's annual budget and drastically shorten the time between program start and "first light" for this space observatory. The first Stage of this Evolvable Space Telescope (EST) would consist of an instrument module located at the prime focus of three 4-meter hexagonal mirrors arranged in a semi-circle to form one-half of a 12-m segmented mirror. After several years three additional 4-m mirrors would be added to create a 12-m filled aperture. Later, twelve more 4-m mirrors will be added to this Stage 2 telescope to create a 20-m filled aperture space telescope. At each stage the telescope would have an unparalleled capability for UVOIR observations, and the results of these observations will guide the evolution of the telescope and its instruments. In this paper we describe our design concept for an initial configuration of our Evolvable Space Telescope that can meet the requirements of the 4-m version of the HabEx spacecraft currently under consideration by NASA's Habitable Exoplanet Science and Technology Definition Team. This "Stage Zero" configuration will have only one 4-m mirror segment with the same 30-m focal length and a prime focus coronagraph with normal incidence optics to minimize polarization effects. After assembly and checkout in cis-lunar space, the telescope would transfer to a Sun-Earth L2 halo orbit and obtain high sensitivity, high resolution, high contrast UVOIR observations that address the scientific objectives of the Habitable-Exoplanet Imaging Missions.

  19. HUBBLE SPACE TELESCOPE PHOTOMETRY OF GLOBULAR CLUSTERS IN M81

    International Nuclear Information System (INIS)

    Nantais, Julie B.; Huchra, John P.; Zezas, Andreas; Gazeas, Kosmas; Strader, Jay

    2011-01-01

    We perform aperture photometry and profile fitting on 419 globular cluster (GC) candidates with m V ≤ 23 mag identified in Hubble Space Telescope/Advanced Camera for Surveys BVI imaging, and estimate the effective radii of the clusters. We identify 85 previously known spectroscopically confirmed clusters, and newly identify 136 objects as good cluster candidates within the 3σ color and size ranges defined by the spectroscopically confirmed clusters, yielding a total of 221 probable GCs. The luminosity function peak for the 221 probable GCs with estimated total dereddening applied is V ∼ (20.26 ± 0.13) mag, corresponding to a distance of ∼3.7 ± 0.3 Mpc. The blue and red GC candidates, and the metal-rich and metal-poor spectroscopically confirmed clusters, respectively, are similar in half-light radius. Red confirmed clusters are about 6% larger in median half-light radius than blue confirmed clusters, and red and blue good GC candidates are nearly identical in half-light radius. The total population of confirmed and 'good' candidates shows an increase in half-light radius as a function of galactocentric distance.

  20. The design of 1-wire net meteorological observatory for 2.4 m telescope

    Science.gov (United States)

    Zhu, Gao-Feng; Wei, Ka-Ning; Fan, Yu-Feng; Xu, Jun; Qin, Wei

    2005-03-01

    The weather is an important factor to affect astronomical observations. The 2.4 m telescope can not work in Robotic Mode without the weather data input. Therefore it is necessary to build a meteorological observatory near the 2.4 m telescope. In this article, the design of the 1-wire net meteorological observatory, which includes hardware and software systems, is introduced. The hardware system is made up of some kinds of sensors and ADC. A suited power station system is also designed. The software system is based on Windows XP operating system and MySQL data management system, and a prototype system of browse/server model is developed by JAVA and JSP. After being tested, the meteorological observatory can register the immediate data of weather, such as raining, snowing, and wind speed. At last, the data will be stored for feature use. The product and the design can work well for the 2.4 m telescope.

  1. SALTICAM: $0.5M acquisition camera: every big telescope should have one

    Science.gov (United States)

    O'Donoghue, Darragh; Bauermeister, Etienne; Carter, David B.; Evans, Geoffrey P.; Koorts, Willie P.; O'Connor, James; Osman, Faranah; van der Merwe, Stan; Bigelow, Bruce C.

    2003-03-01

    The Southern African Large Telescope (SALT) is a 10-m class telescope presently under construction at Sutherland in South Africa. It is designed along the lines of the Hobby-Eberly Telescope (HET) at McDonald Observatory in West Texas. SALTICAM will be the Acquisition Camera and simple Science Imager (ACSI) for this telescope. It will also function as the Verification Instrument (VI) to check the performance of the telescope during commissioning. In VI mode, SALTICAM will comprise a filter unit, shutter and cryostat with a 2x1 mosaic of 2k x 4k x 15 micron pixel CCDs. It will be mounted at the f/4.2 corrected prime focus of the telescope. In ACSI mode it will be fed by a folding flat located close to the exit pupil of the telescope. ACSI mode will have the same functional components as VI mode but it will in addition be garnished with focal conversion lenses to re-image the corrected prime focal plane at f/2. The lenses will be made from UV transmitting crystals as the wavelength range for which the instrument is designed will span 320 to 950 nm. In addition to acting as Verification Instrument and Acquisition Camera, SALTICAM will perform simple science imaging in support of other instruments, but will also have a high time resolution capability which is not widely available on large telescopes. This paper will describe the design of the instrument, emphasizing features of particular interest.

  2. MuSICa image slicer prototype at 1.5-m GREGOR solar telescope

    Science.gov (United States)

    Calcines, A.; López, R. L.; Collados, M.; Vega Reyes, N.

    2014-07-01

    Integral Field Spectroscopy is an innovative technique that is being implemented in the state-of-the-art instruments of the largest night-time telescopes, however, it is still a novelty for solar instrumentation. A new concept of image slicer, called MuSICa (Multi-Slit Image slicer based on collimator-Camera), has been designed for the integral field spectrograph of the 4-m European Solar Telescope. This communication presents an image slicer prototype of MuSICa for GRIS, the spectrograph of the 1.5-m GREGOR solar telescope located at the Observatory of El Teide. MuSICa at GRIS reorganizes a 2-D field of view of 24.5 arcsec into a slit of 0.367 arcsec width by 66.76 arcsec length distributed horizontally. It will operate together with the TIP-II polarimeter to offer high resolution integral field spectropolarimetry. It will also have a bidimensional field of view scanning system to cover a field of view up to 1 by 1 arcmin.

  3. Active remote observing system for the 1-m telescope at Tonantzintla Observatory

    Science.gov (United States)

    Bernal, Abel; Martínez, Luis A.; Hernández, Héctor; Garfias, Fernando; Ángeles, Fernando

    2006-06-01

    We have designed and installed a new active remote observing system for the 1-m, f/15 telescope at the Tonantzintla Observatory. This remote system is operated in real-time through the Internet, allowing an observer to control the building, the telescope (pointing, guiding and focusing) and the CCD image acquisition at the main and finder telescopes from the Instituto de Astronomia headquarters in Mexico City (150 KM away). The whole system was modeled within the Unified Modeling Language (UML) and the design has proved to be versatile enough for a variety of astronomical instruments. We describe the system architecture and how different subsystems (telescope control, main telescope and finder image acquisition, weather station, videoconference, etc.) that are based on different operative system platforms (Linux, Windows, uIP) have been integrated. We present the first results of an IPv6 over IPv4 tunnel. Recent remote direct imaging and spectroscopic observations have been used to test the astronomical site. We conclude that this remote system is an excellent tool for supporting research and graduated observational astronomy programs.

  4. Probing the central engine and environment of AGN using ARIES 1.3-m and 3.6-m telescopes

    Science.gov (United States)

    Chand, Hum; Rakshit, Suvendu; Jalan, Priyanka; Ojha, Vineet; Srianand, Raghunathan; Vivek, Mariappan; Mishra, Sapna; Omar, Amitesh; Kumar, Parveen; Joshi, Ravi; Gopal-Krishna; Kumar, Rathna

    2018-04-01

    We discuss three long term observational programmes to probe the central engine and environment of active galactic nuclei (AGN) using the recently installed ARIES 1.3-m and 3.6-m telescopes. The first programme is on the photometric reverberation mapping of low luminosity AGN by mainly using the ARIES 1.3-m telescope. The major impact of this programme other than to estimate the black hole mass will be to extend the broad line region (BLR) radius-luminosity (RBLR-LAGN) relation to the unexplored low luminosity regime, and to constrain the AGN broad line region geometry. The second programme is to use long slit spectroscopy on the ARIES 3.6-m telescope to discover new high redshift quasar pairs with angular separation less than 1-arcmin. Here, the background QSOs sight-line will be used to probe the environment of the foreground QSOs at kpc-Mpc scales. The major impact of this programme will be on the discovery of new pairs which have been missed in the SDSS survey due to fiber collision below 1-arcmin separation, and use them to understand about any excess overdensity around the QSO, any anisotropic emission of QSOs, and/or any episodic activity of QSOs. The third programme is related to spectral variability studies of the C IV broad absorption line (BAL) QSOs, based on low resolution spectroscopy using the ARIES 3.6-m telescope. Here, those most interesting cases will be monitored, where the BAL flow emerges afresh or disappears completely in the C IV trough of BAL QSOs sample as seen in SDSS multi-epoch observations. Continuous monitoring of such a sample will be important for our understanding of the nature and origin of the flow, along with their stability and dynamical evolution.

  5. The image camera of the 17 m diameter air Cherenkov telescope MAGIC

    CERN Document Server

    Ostankov, A P

    2001-01-01

    The image camera of the 17 m diameter MAGIC telescope, an air Cherenkov telescope currently under construction to be installed at the Canary island La Palma, is described. The main goal of the experiment is to cover the unexplored energy window from approx 10 to approx 300 GeV in gamma-ray astrophysics. In its first phase with a classical PMT camera the MAGIC telescope is expected to reach an energy threshold of approx 30 GeV. The operational conditions, the special characteristics of the developed PMTs and their use with light concentrators, the fast signal transfer scheme using analog optical links, the trigger and DAQ organization as well as image reconstruction strategy are described. The different paths being explored towards future camera improvements, in particular the constraints in using silicon avalanche photodiodes and GaAsP hybrid photodetectors in air Cherenkov telescopes are discussed.

  6. Conceptual design and structural analysis for an 8.4-m telescope

    Science.gov (United States)

    Mendoza, Manuel; Farah, Alejandro; Ruiz Schneider, Elfego

    2004-09-01

    This paper describes the conceptual design of the optics support structures of a telescope with a primary mirror of 8.4 m, the same size as a Large Binocular Telescope (LBT) primary mirror. The design goal is to achieve a structure for supporting the primary and secondary mirrors and keeping them joined as rigid as possible. With this purpose an optimization with several models was done. This iterative design process includes: specifications development, concepts generation and evaluation. Process included Finite Element Analysis (FEA) as well as other analytical calculations. Quality Function Deployment (QFD) matrix was used to obtain telescope tube and spider specifications. Eight spiders and eleven tubes geometric concepts were proposed. They were compared in decision matrixes using performance indicators and parameters. Tubes and spiders went under an iterative optimization process. The best tubes and spiders concepts were assembled together. All assemblies were compared and ranked according to their performance.

  7. Analysis of polarization introduced due to the telescope optics of the Thirty Meter Telescope

    Science.gov (United States)

    Anche, Ramya Manjunath; Sen, Asoke Kumar; Anupama, Gadiyara Chakrapani; Sankarasubramanian, Kasiviswanathan; Skidmore, Warren

    2018-01-01

    An analytical model has been developed to estimate the polarization effects, such as instrumental polarization (IP), crosstalk (CT), and depolarization, due to the optics of the Thirty Meter Telescope. These are estimated for the unvignetted field-of-view and the wavelengths of interest. The model estimates an IP of 1.26% and a CT of 44% at the Nasmyth focus of the telescope at the wavelength of 0.6 μm at field angle zero with the telescope pointing to zenith. Mueller matrices have been estimated for the primary, secondary, and Nasmyth mirrors. It is found that some of the Mueller matrix elements of the primary and secondary mirrors show a fourfold azimuthal antisymmetry, which indicates that the polarization at the Cassegrain focus is negligible. At the inclined Nasmyth mirror, there is no azimuthal antisymmetry in the matrix elements, and this results in nonzero values for IP and CT, which would negatively impact the polarization measurements at the telescope focus. The averaged Mueller matrix is estimated at the Nasmyth focus at different instrument ports and various zenith angles of the telescope. The variation in the Mueller matrix elements for different coatings is also estimated. The impact of this polarization effect on the science case requirements has been discussed. This analysis will help in achieving precise requirements for future instruments with polarimetric capability.

  8. The control, monitor, and alarm system for the ICT equipment of the ASTRI SST-2M telescope prototype for the Cherenkov Telescope Array

    Science.gov (United States)

    Gianotti, Fulvio; Fioretti, Valentina; Tanci, Claudio; Conforti, Vito; Tacchini, Alessandro; Leto, Giuseppe; Gallozzi, Stefano; Bulgarelli, Andrea; Trifoglio, Massimo; Malaguti, Giuseppe; Zoli, Andrea

    2014-07-01

    ASTRI is an Italian flagship project whose first goal is the realization of an end-to-end telescope prototype, named ASTRI SST-2M, for the Cherenkov Telescope Array (CTA). The prototype will be installed in Italy during Fall 2014. A second goal will be the realization of the ASTRI/CTA mini-array which will be composed of seven SST-2M telescopes placed at the CTA Southern Site. The Information and Communication Technology (ICT) equipment necessary to drive the infrastructure for the ASTRI SST-2M prototype is being designed as a complete and stand-alone computer center. The design goal is to obtain basic ICT equipment that might be scaled, with a low level of redundancy, for the ASTRI/CTA mini-array, taking into account the necessary control, monitor and alarm system requirements. The ICT equipment envisaged at the Serra La Nave observing station in Italy, where the ASTRI SST-2M telescope prototype will operate, includes computers, servers and workstations, network devices, an uninterruptable power supply system, and air conditioning systems. Suitable hardware and software tools will allow the parameters related to the behavior and health of each item of equipment to be controlled and monitored. This paper presents the proposed architecture and technical solutions that integrate the ICT equipment in the framework of the Observatory Control System package of the ASTRI/CTA Mini- Array Software System, MASS, to allow their local and remote control and monitoring. An end-toend test case using an Internet Protocol thermometer is reported in detail.

  9. Spectroscopic Classifications of Optical Transients with the Lick Shane 3-m telescope

    Science.gov (United States)

    Dimitriadis, G.; Foley, R. J.

    2018-05-01

    We report the following classifications of optical transients from spectroscopic observations with the Kast spectrograph on the Shane 3-m telescope. Targets were supplied by ATLAS, ASAS-SN, and the KEGS K2 SN search.

  10. Large Binocular Telescope Observations of Europa Occulting Io's Volcanoes at 4.8 μm

    Science.gov (United States)

    Skrutskie, Michael F.; Conrad, Albert; Resnick, Aaron; Leisenring, Jarron; Hinz, Phil; de Pater, Imke; de Kleer, Katherine; Spencer, John; Skemer, Andrew; Woodward, Charles E.; Davies, Ashley Gerard; Defrére, Denis

    2015-11-01

    On 8 March 2015 Europa passed nearly centrally in front of Io. The Large Binocular Telescope observed this event in dual-aperture AO-corrected Fizeau interferometric imaging mode using the mid-infrared imager LMIRcam operating behind the Large Binocular Telescope Interferometer (LBTI) at a broadband wavelength of 4.8 μm (M-band). Occultation light curves generated from frames recorded every 123 milliseconds show that both Loki and Pele/Pillan were well resolved. Europa's center shifted by 2 kilometers relative to Io from frame-to-frame. The derived light curve for Loki is consistent with the double-lobed structure reported by Conrad et al. (2015) using direct interferometric imaging with LBTI.

  11. Characterization and commissioning of the SST-1M camera for the Cherenkov Telescope Array

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, J.A. [Université Libre Bruxelles, Faculté des Sciences, Avenue Franklin Roosevelt 50, 1050 Brussels (Belgium); DPNC - Université de Genéve, 24 Quai Ernest Ansermet, Genéve (Switzerland); Department of Information Technologies, Jagiellonian University, ul. prof. Stanisława Łojasiewicza 11, 30–348 Kraków (Poland); Bilnik, W. [AGH University of Science and Technology, al.Mickiewicza 30, Kraków (Poland); Department of Information Technologies, Jagiellonian University, ul. prof. Stanisława Łojasiewicza 11, 30–348 Kraków (Poland); Błocki, J. [Instytut Fizyki Jadrowej im. H. Niewodniczańskiego Polskiej Akademii Nauk, ul. Radzikowskiego 152, 31–342 Kraków (Poland); Department of Information Technologies, Jagiellonian University, ul. prof. Stanisława Łojasiewicza 11, 30–348 Kraków (Poland); Bogacz, L. [Astronomical Observatory, Jagiellonian University, ul. Orla 171, 30–244 Kraków (Poland); Department of Information Technologies, Jagiellonian University, ul. prof. Stanisława Łojasiewicza 11, 30–348 Kraków (Poland); and others

    2017-02-11

    The Cherenkov Telescope Array (CTA), the next generation very high energy gamma-rays observatory, will consist of three types of telescopes: large (LST), medium (MST) and small (SST) size telescopes. The SSTs are dedicated to the observation of gamma-rays with energy between a few TeV and a few hundreds of TeV. The SST array is expected to have 70 telescopes of different designs. The single-mirror small size telescope (SST-1 M) is one of the proposed telescope designs under consideration for the SST array. It will be equipped with a 4 m diameter segmented mirror dish and with an innovative camera based on silicon photomultipliers (SiPMs). The challenge is not only to build a telescope with exceptional performance but to do it foreseeing its mass production. To address both of these challenges, the camera adopts innovative solutions both for the optical system and readout. The Photo-Detection Plane (PDP) of the camera is composed of 1296 pixels, each made of a hollow, hexagonal light guide coupled to a hexagonal SiPM designed by the University of Geneva and Hamamatsu. As no commercial ASIC would satisfy the CTA requirements when coupled to such a large sensor, dedicated preamplifier electronics have been designed. The readout electronics also use an innovative approach in gamma-ray astronomy by adopting a fully digital approach. All signals coming from the PDP are digitized in a 250 MHz Fast ADC and stored in ring buffers waiting for a trigger decision to send them to the pre-processing server where calibration and higher level triggers will decide whether the data are stored. The latest generation of FPGAs is used to achieve high data rates and also to exploit all the flexibility of the system. As an example each event can be flagged according to its trigger pattern. All of these features have been demonstrated in laboratory measurements on realistic elements and the results of these measurements will be presented in this contribution.

  12. Customized overhead cranes for installation of India's largest 3.6m optical telescope at Devasthal, Nainital, India

    Science.gov (United States)

    Bangia, Tarun; Yadava, Shobhit; Kumar, Brijesh; Ghanti, A. S.; Hardikar, P. M.

    2016-07-01

    India's largest 3.6 m aperture optical telescope facility has been recently established at Devasthal site by Aryabhatta Research Institute of Observation Sciences (ARIES), an autonomous Institute under Department of Science and Technology, Government of India. The telescope is equipped with active optics and it is designed to be used for seeinglimited observations at visible and near-infrared wavelengths. A steel building with rotating cylindrical steel Dome was erected to house 3.6m telescope and its accessories at hilltop of Devasthal site. Customized cranes were essentially required inside the building as there were space constraints around the telescope building for operating big external heavy duty cranes from outside, transportation constraints in route for bringing heavy weight cranes, altitude of observatory, and sharp bends etc. to site. To meet the challenge of telescope installation from inside the telescope building by lifting components through its hatch, two Single Girder cranes and two Under Slung cranes of 10 MT capacity each were specifically designed and developed. All the four overhead cranes were custom built to achieve the goal of handling telescope mirror and its various components during installation and assembly. Overhead cranes were installed in limited available space inside the building and tested as per IS 3177. Cranes were equipped with many features like VVVFD compatibility, provision for tandem operation, digital load display, anti-collision mechanism, electrical interlocks, radio remote, low hook height and compact carriage etc. for telescope integration at site.

  13. The RCT 1.3 m robotic telescope: broadband color transformation and extinction calibration

    Energy Technology Data Exchange (ETDEWEB)

    Strolger, L.-G.; Gott, A. M.; Carini, M.; Gelderman, R.; Laney, C. D.; McGruder, C. [Western Kentucky University, Bowling Green, KY 42101 (United States); Engle, S.; Guinan, E. [Villanova University, Villanova, PA 19085 (United States); Treffers, R. R. [Starman Systems, LLC, Alamo, CA 94507 (United States); Walter, D. K., E-mail: strolger@stsci.edu [South Carolina State University, Orangeburg, SC 29117 (United States)

    2014-03-01

    The Robotically Controlled Telescope (RCT) 1.3 m telescope, formerly known as the Kitt Peak National Observatory (KPNO) 50 inch telescope, has been refurbished as a fully robotic telescope, with an autonomous scheduler to take full advantage of the observing site without the requirement of a human presence. Here we detail the current configuration of the RCT and present, as a demonstration of its high-priority science goals, the broadband UBVRI photometric calibration of the optical facility. In summary, we find the linear color transformation and extinction corrections to be consistent with similar optical KPNO facilities, to within a photometric precision of 10% (at 1σ). While there were identified instrumental errors that likely added to the overall uncertainty, associated with since-resolved issues in engineering and maintenance of the robotic facility, a preliminary verification of this calibration gave a good indication that the solution is robust, perhaps to a higher precision than this initial calibration implies. The RCT has been executing regular science operations since 2009 and is largely meeting the science requirements set during its acquisition and redesign.

  14. Camera calibration strategy of the SST-1M prototype of the Cherenokov Telescope Array

    CERN Document Server

    Prandini, E; Lyard, E.; Schioppa, E. jr.; Neronov, A.; Bilnik, W.; Błocki, J.; Bogacz, L.; Bulik, T.; Cadoux, F.; Christov, A.; Curyło, M.; della Volpe, D.; Dyrda, M.; Favre, Y.; Frankowski, A.; Grudnik, Ł.; Grudzińska, M.; Idźkowski, B.; Jamrozy, M.; Janiak, M.; Kasperek, J.; Lalik, K.; Mach, E.; Mandat, D.; Marszałek, A.; Michałowski, J.; Moderski, R.; Montaruli, T.; Niemiec, J.; Ostrowski, M.; Paśko, P.; Pech, M.; Porcelli, A.; Rameez, M.; Rajda, P.; Schovanek, P.; Seweryn, K.; Skowron, K.; Sliusar, V.; Sowiński, M.; Stawarz, Ł.; Stodulska, M.; Stodulski, M.; Toscano, S.; Pujadas, I. Troyano; Walter, R.; Więcek, M.; Zagdański, A.; Ziętara, K.; Żychowski, P.

    2015-01-01

    The SST-1M telescope is one of the prototypes under construction proposed to be part of the future Cherenkov Telescope Array. It uses a standard Davis-Cotton design for the optics and telescope structure, with a dish diameter of 4 meters and a large field-of-view of 9 degrees. The innovative camera design is composed of a photo-detection plane with 1296 pixels including entrance window, light concentrators, Silicon Photomultipliers (SiPMs), and pre-amplifier stages together with a fully digital readout and trigger electronics, DigiCam. In this contribution we give a general description of the analysis chain designed for the SST-1M prototype. In particular we focus on the calibration strategy used to convert the SiPM signals registered by DigiCam to the quantities needed for Cherenkov image analysis. The calibration is based on an online feedback system to stabilize the gain of the SiPMs, as well as dedicated events (dark count, pedestal, and light flasher events) to be taken during the normal operation of the...

  15. Structural design considerations for an 8-m space telescope

    Science.gov (United States)

    Arnold, William r., Sr.; Stahl, H. Philip

    2009-08-01

    NASA's upcoming ARES V launch vehicle, with its' immense payload capacities (both volume and mass) has opened the possibilities for a whole new paradigm of space observatories. It becomes practical to consider a monolith mirror of sufficient size to permit significant scientific advantages, both in collection area and smoothness or figure at a reasonable price. The technologies and engineering to manufacture and test 8 meter class monoliths is mature, with nearly a dozen of such mirrors already in operation around the world. This paper will discuss the design requirements to adapt an 8m meniscus mirror into a Space Telescope System, both launch and operational considerations are included. With objects this massive and structurally sensitive, the mirror design must include all stages of the process. Based upon the experiences of the Hubble Space Telescope, testing and verification at both component and integrated system levels are considered vital to mission success. To this end, two different component level test methods for gravity sag (the so call zero- gravity simulation or test mount) are proposed, with one of these methods suitable for the full up system level testing as well.

  16. The large binocular telescope.

    Science.gov (United States)

    Hill, John M

    2010-06-01

    The Large Binocular Telescope (LBT) Observatory is a collaboration among institutions in Arizona, Germany, Italy, Indiana, Minnesota, Ohio, and Virginia. The telescope on Mount Graham in Southeastern Arizona uses two 8.4 m diameter primary mirrors mounted side by side. A unique feature of the LBT is that the light from the two Gregorian telescope sides can be combined to produce phased-array imaging of an extended field. This cophased imaging along with adaptive optics gives the telescope the diffraction-limited resolution of a 22.65 m aperture and a collecting area equivalent to an 11.8 m circular aperture. This paper describes the design, construction, and commissioning of this unique telescope. We report some sample astronomical results with the prime focus cameras. We comment on some of the technical challenges and solutions. The telescope uses two F/15 adaptive secondaries to correct atmospheric turbulence. The first of these adaptive mirrors has completed final system testing in Firenze, Italy, and is planned to be at the telescope by Spring 2010.

  17. Evaluating the Solar Slowly Varying Component at C-Band Using Dual- and Single-Polarization Weather Radars in Europe

    Directory of Open Access Journals (Sweden)

    M. Gabella

    2017-01-01

    Full Text Available Six C-band weather radars located in Europe (Finland, Netherlands, and Switzerland have been used to monitor the slowly varying solar emission, which is an oscillation with an amplitude of several decibels and a period of approximately 27 days. It is caused by the fact that the number of active regions that enhance the solar radio emission with respect to the quiet component, as seen from Earth, varies because of the Sun’s rotation about its axis. The analysis is based on solar signals contained in the polar volume data produced during the operational weather scan strategy. This paper presents hundreds of daily comparisons between radar estimates and the Sun’s reference signal, during the current active Sun period (year 2014. The Sun’s reference values are accurately measured by the Dominion Radio Astrophysical Observatory (DRAO at S-band and converted to C-band using a standard DRAO formula. Vertical and horizontal polarization receivers are able to capture the monthly oscillation of the solar microwave signal: the standard deviation of the log-transformed ratio between radars and the DRAO reference ranges from 0.26 to 0.4 dB. A larger coefficient (and a different value for the quiet Sun component in the standard formula improves the agreement.

  18. First-light instrument for the 3.6-m Devasthal Optical Telescope: 4Kx4K CCD Imager

    Science.gov (United States)

    Pandey, Shashi Bhushan; Yadav, Rama Kant Singh; Nanjappa, Nandish; Yadav, Shobhit; Reddy, Bheemireddy Krishna; Sahu, Sanjit; Srinivasan, Ramaiyengar

    2018-04-01

    As a part of in-house instrument developmental activity at ARIES, the 4Kx4K CCD Imager is designed and developed as a first-light instrument for the axial port of the 3.6-m Devasthal Optical Telescope (DOT). The f/9 beam of the telescope having a plate-scale of 6.4"/mm is utilized to conduct deeper photom-etry within the central 10' field of view. The pixel size of the blue-enhanced liquid nitrogen cooled STA4150 4Kx4K CCD chip is 15 μm, with options to select gain and speed values to utilize the dynamic range. Using the Imager, it is planned to image the central 6.5'x6.5' field of view of the telescope for various science goals by getting deeper images in several broad-band filters for point sources and objects with low surface brightness. The fully assembled Imager along with automated filter wheels having Bessel UBV RI and SDSS ugriz filters was tested in late 2015 at the axial port of the 3.6-m DOT. This instrument was finally mounted at the axial port of the 3.6-m DOT on 30 March 2016 when the telescope was technically activated jointly by the Prime Ministers of India and Belgium. It is expected to serve as a general purpose multi-band deep imaging instrument for a variety of science goals including studies of cosmic transients, active galaxies, star clusters and optical monitoring of X-ray sources discovered by the newly launched Indian space-mission called ASTROSAT, and follow-up of radio bright objects discovered by the Giant Meterwave Radio Telescope.

  19. The 1.3-m Robotically Controlled Telescope (RCT) at Kitt Peak - A Fifty year old dream Realized: Telescope Characteristics, Current Research and Education Progr

    Science.gov (United States)

    Guinan, Edward; Gelderman, Richard; Strolger, Louis-Gregory; Carini, Michael T.; McGruder, Charles, III; Campbell, Rachel; Walter, Donald K.; Davis, Donald R.; Tedesco, Edward F.; Engle, Scott G.

    2011-03-01

    The 1.3 m Robotically Controlled Telescope (RCT) on Kitt Peak has a rich history, including its role as a prototype for remotely controlled telescopes during the 1960s. As such, the RCT could be considered one of the first - Telescopes from Afar. The telescope, originally called the Remotely Controlled Telescope, has been renamed the Robotically Controlled Telescope to reflect the change in operational control and mode of use. The RCT was a conceptual precursor of today's robotic telescopes, but the actual operation of a remotely controlled telescope was technologically premature for its time, and was subsequently manually operated primarily to conduct optical and infrared observations as well being used as a test bed for new spectroscopic and photometric instruments. In 1995 budget constraints forced the closing of the telescope as part of the Kitt Peak National Observatory (KPNO), following nearly 30 years of distinguished service to KPNO. A request for proposals to operate this telescope was issued to the science community. The RCT consortium, lead by Western Kentucky University, was the successful proposer for operation of the telescope. After several difficult years of retrofitting, refurbishing, and automating the telecope and observatory dome, the telescope has returned to routine science operations in November 2009. The RCT has operated smoothly since that time, with no major interruptions. Observations of objects of interest to the consortium partners (including: comets & asteroids, variable & binary stars, exoplanets, supernovae, quasars & blazars) are being routinely obtained and evaluated. One of the distinguishing features of the RCT is that it is an autonomous observatory designed to handle diverse optical imaging and photometry programs. These include being able to automatically deal with a wide range of observing parameters such as -integration time, sky conditions, repetitions, return visits, filters, air mass, non-sidereal objects, transients etc

  20. Construction of 3.6m ARIES telescope enclosure with eccentric pier at Devasthal, Nainital

    Science.gov (United States)

    Bangia, Tarun

    Space optimized enclosure with eccentric pier for 3.6m ARIES telescope presents construction challenges at the unique observing site of Devasthal, Nainital, India. Enclosure comprises of about 16.5m diameter and 14m high insulated steel framed cylindrical dome rotating on a 14m high stationery dome supporting structure and a 24m × 12m extension structure building for accommodating aluminizing plant and ventilation system etc. Great deal of manual and mechanical excavation was carried out at the rocky site using rock breaking and JCB machines. Foundation bolts for columns of dome supporting structure and extension structure building were grouted after alignment with total station. A 7m diameter hollow cylindrical pier isolated from other structures and 1.85m eccentric with dome center designed due to space limitation at site is being casted for mounting 150 MT mass of the largest 3.6m telescope in the country. A 7m diameter template was fabricated for 3.6m pier top. Most of enclosure components are manufactured and tested in works before assembly/erection at site. Dome drive was tested with dummy loads using VVVF drive with 6 drive and 12 idler wheel assemblies at works to simulate dome weight and smooth operation before erection at site. A 4.2m wide motorized windscreen is being manufactured with a special grade synthetic fabric to withstand wind speed up to 15m/s.

  1. PEPSI-feed: linking PEPSI to the Vatican Advanced Technology Telescope using a 450m long fibre

    Science.gov (United States)

    Sablowski, D. P.; Weber, M.; Woche, M.; Ilyin, I.; Järvinen, A.; Strassmeier, K. G.; Gabor, P.

    2016-07-01

    Limited observing time at large telescopes equipped with the most powerful spectrographs makes it almost impossible to gain long and well-sampled time-series observations. Ditto, high-time-resolution observations of bright targets with high signal-to-noise are rare. By pulling an optical fibre of 450m length from the Vatican Advanced Technology Telescope (VATT) to the Large Binocular Telescope (LBT) to connect the Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) to the VATT, allows for ultra-high resolution time-series measurements of bright targets. This article presents the fibre-link in detail from the technical point-of-view, demonstrates its performance from first observations, and sketches current applications.

  2. Alignment and phasing of deployable telescopes

    Science.gov (United States)

    Woolf, N. J.; Ulich, B. L.

    1983-01-01

    The experiences in coaligning and phasing the Multi-Mirror Telescope (MMT), together with studies in setting up radio telescopes, are presented. These experiences are discussed, and on the basis they furnish, schemes are suggested for coaligning and phasing four large future telescopes with complex primary mirror systems. These telescopes are MT2, a 15-m-equivalent MMT, the University of California Ten Meter Telescope, the 10 m sub-mm wave telescope of the University of Arizona and the Max Planck Institute for Radioastronomy, and the Large Deployable Reflector, a future space telescope for far-IR and sub-mm waves.

  3. 26Al/sup g,m/ production cross sections from the 23Na(α,n)26Al reaction

    International Nuclear Information System (INIS)

    Norman, E.B.; Chupp, T.E.; Lesko, K.T.; Schwalbach, P.; Grant, P.J.

    1981-01-01

    Cross sections have been determined for the production of 26 Al/sup g,m/ from the 23 Na(α,n) reaction. Total 26 Al production cross sections were obtained from measurements of the thick-target neutron yield. 26 Al/sup m/ cross sections were measured using an activation technique. 26 Al/sup g/ cross sections were deduced by subtracting the 26 Al/sup m/ cross sections from the total (α,n) cross sections. The principle of detailed balance has been applied to the low energy data to obtain cross sections for the astrophysically interesting 26 Al/sup g/(n,α 0 ) 23 Na reaction. These results are compared with the results of Hauser-Feshbach calculations

  4. Design and Expected Performance of GISMO-2, a Two Color Millimeter Camera for the IRAM 30 m Telescope

    Science.gov (United States)

    Staguhn, Johannes G.; Benford, Dominic J.; Dwek, Eli; Hilton, Gene; Fixsen, Dale J.; Irwin, Kent; Jhabvala, Christine; Kovacs, Attila; Leclercq, Samuel; Maher, Stephen F.; hide

    2014-01-01

    We present the main design features for the GISMO-2 bolometer camera, which we build for background-limited operation at the IRAM 30 m telescope on Pico Veleta, Spain. GISMO-2 will operate simultaneously in the 1 and 2 mm atmospherical windows. The 1 mm channel uses a 32 × 40 TES-based backshort under grid (BUG) bolometer array, the 2 mm channel operates with a 16 × 16 BUG array. The camera utilizes almost the entire full field of view provided by the telescope. The optical design of GISMO-2 was strongly influenced by our experience with the GISMO 2mm bolometer camera, which is successfully operating at the 30 m telescope. GISMO is accessible to the astronomical community through the regularIRAMcall for proposals.

  5. Early GRB optical and infrared afterglow observations with the 2-m robotic Liverpool Telescope

    International Nuclear Information System (INIS)

    Gomboc, A.; Ljubljana Univ., Ljubljana; Mundell, C.G.; Guidorzi, C.

    2005-01-01

    We present the first optical observations of a Gamma Ray Burst IGRB) afterglow using the 2-m robotic Liverpool Telescope (LT), which is owned and operated by Liverpool John Moores University and situated on La Palma. We briefly discuss the capabilities of LT and its suitability for rapid follow-up observations of early optical and infrared GRB light curves. In particular, the combination of aperture, site, instrumentation and rapid response (robotic over-ride mode aided by telescope's rapid slew and fully-opening enclosure) makes the LT ideal for investigating the nature of short bursts, optically-dark bursts, and GRB blast-wave physics in general. We briefly describe the LT's key position in the RoboNet-1.0 network of robotic telescopes. We present the LT observations of GRB041006 and use its gamma-ray properties to predict the time of the break in optical light curve, a prediction consistent with the observations

  6. TIFR Near Infrared Imaging Camera-II on the 3.6 m Devasthal Optical Telescope

    Science.gov (United States)

    Baug, T.; Ojha, D. K.; Ghosh, S. K.; Sharma, S.; Pandey, A. K.; Kumar, Brijesh; Ghosh, Arpan; Ninan, J. P.; Naik, M. B.; D’Costa, S. L. A.; Poojary, S. S.; Sandimani, P. R.; Shah, H.; Krishna Reddy, B.; Pandey, S. B.; Chand, H.

    Tata Institute of Fundamental Research (TIFR) Near Infrared Imaging Camera-II (TIRCAM2) is a closed-cycle Helium cryo-cooled imaging camera equipped with a Raytheon 512×512 pixels InSb Aladdin III Quadrant focal plane array (FPA) having sensitivity to photons in the 1-5μm wavelength band. In this paper, we present the performance of the camera on the newly installed 3.6m Devasthal Optical Telescope (DOT) based on the calibration observations carried out during 2017 May 11-14 and 2017 October 7-31. After the preliminary characterization, the camera has been released to the Indian and Belgian astronomical community for science observations since 2017 May. The camera offers a field-of-view (FoV) of ˜86.5‧‧×86.5‧‧ on the DOT with a pixel scale of 0.169‧‧. The seeing at the telescope site in the near-infrared (NIR) bands is typically sub-arcsecond with the best seeing of ˜0.45‧‧ realized in the NIR K-band on 2017 October 16. The camera is found to be capable of deep observations in the J, H and K bands comparable to other 4m class telescopes available world-wide. Another highlight of this camera is the observational capability for sources up to Wide-field Infrared Survey Explorer (WISE) W1-band (3.4μm) magnitudes of 9.2 in the narrow L-band (nbL; λcen˜ 3.59μm). Hence, the camera could be a good complementary instrument to observe the bright nbL-band sources that are saturated in the Spitzer-Infrared Array Camera (IRAC) ([3.6] ≲ 7.92 mag) and the WISE W1-band ([3.4] ≲ 8.1 mag). Sources with strong polycyclic aromatic hydrocarbon (PAH) emission at 3.3μm are also detected. Details of the observations and estimated parameters are presented in this paper.

  7. Improving pointing of Toruń 32-m radio telescope: effects of rail surface irregularities

    Science.gov (United States)

    Lew, Bartosz

    2018-03-01

    Over the last few years a number of software and hardware improvements have been implemented to the 32-m Cassegrain radio telescope located near Toruń. The 19-bit angle encoders have been upgraded to 29-bit in azimuth and elevation axes. The control system has been substantially improved, in order to account for a number of previously-neglected, astrometric effects that are relevant for milli-degree pointing. In the summer 2015, as a result of maintenance works, the orientation of the secondary mirror has been slightly altered, which resulted in worsening of the pointing precision, much below the nominal telescope capabilities. In preparation for observations at the highest available frequency of 30-GHz, we use One Centimeter Receiver Array (OCRA), to take the most accurate pointing data ever collected with the telescope, and we analyze it in order to improve the pointing precision. We introduce a new generalized pointing model that, for the first time, accounts for the rail irregularities, and we show that the telescope can have root mean square pointing accuracy at the level < 8″ and < 12″ in azimuth and elevation respectively. Finally, we discuss the implemented pointing improvements in the light of effects that may influence their long-term stability.

  8. A Jet Source of Event Horizon Telescope Correlated Flux in M87

    Science.gov (United States)

    Punsly, Brian

    2017-12-01

    Event Horizon Telescope (EHT) observations at 230 GHz are combined with Very Long Baseline Interferometry (VLBI) observations at 86 GHz and high-resolution Hubble Space Telescope optical observations in order to constrain the broadband spectrum of the emission from the base of the jet in M87. The recent VLBI observations of Hada et al. provide much stricter limits on the 86 GHz luminosity and component acceleration in the jet base than were available to previous modelers. They reveal an almost hollow jet on sub-mas scales. Thus, tubular models of the jet base emanating from the innermost accretion disk are considered within the region responsible for the EHT correlated flux. There is substantial synchrotron self-absorbed opacity at 86 GHz. A parametric analysis indicates that the jet dimensions and power depend strongly on the 86 GHz flux density and the black hole spin, but depend weakly on other parameters, such as jet speed, 230 GHz flux density, and optical flux. The entire power budget of the M87 jet, ≲ {10}44 {erg} {{{s}}}-1, can be accommodated by the tubular jet. No invisible, powerful spine is required. Even though this analysis never employs the resolution of the EHT, the spectral shape implies a dimension transverse to the jet direction of 12-21 μ {as} (˜ 24{--}27 μ {as}) for 0.99> a/M> 0.95 (a/M˜ 0.7), where M is the mass and a is the angular momentum per unit mass of the central black hole.

  9. CLIC Telescope optimization with ALLPIX simulation

    CERN Document Server

    Qi, Wu

    2015-01-01

    A simulation study of CLIC-EUDET telescope resolution with MIMOSA 26 as reference sensors under DESY (5.6 GeV electron beam) and CERN-SPS (120-180 GeV pion^{-} beam) conditions. During the study, a virtual DUT sensor with cylindrical sensing area was defined and used with ALLPIX software. By changing the configuration of telescope, some results for DESY's setup were found agreeing with the theoretical calculation.

  10. Development of a mid-sized Schwarzschild-Couder Telescope for the Cherenkov Telescope Array

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, Robert A.

    2012-06-28

    The Cherenkov Telescope Array (CTA) is a ground-based observatory for very high-energy (10 GeV to 100 TeV) gamma rays, planned for operation starting in 2018. It will be an array of dozens of optical telescopes, known as Atmospheric Cherenkov Telescopes (ACTs), of 8 m to 24 m diameter, deployed over an area of more than 1 square km, to detect flashes of Cherenkov light from showers initiated in the Earth's atmosphere by gamma rays. CTA will have improved angular resolution, a wider energy range, larger fields of view and an order of magnitude improvement in sensitivity over current ACT arrays such as H.E.S.S., MAGIC and VERITAS. Several institutions have proposed a research and development program to eventually contribute 36 medium-sized telescopes (9 m to 12 m diameter) to CTA to enhance and optimize its science performance. The program aims to construct a prototype of an innovative, Schwarzschild-Couder telescope (SCT) design that will allow much smaller and less expensive cameras and much larger fields of view than conventional Davies-Cotton designs, and will also include design and testing of camera electronics for the necessary advances in performance, reliability and cost. We report on the progress of the mid-sized SCT development program.

  11. ATST telescope mount: telescope of machine tool

    Science.gov (United States)

    Jeffers, Paul; Stolz, Günter; Bonomi, Giovanni; Dreyer, Oliver; Kärcher, Hans

    2012-09-01

    The Advanced Technology Solar Telescope (ATST) will be the largest solar telescope in the world, and will be able to provide the sharpest views ever taken of the solar surface. The telescope has a 4m aperture primary mirror, however due to the off axis nature of the optical layout, the telescope mount has proportions similar to an 8 meter class telescope. The technology normally used in this class of telescope is well understood in the telescope community and has been successfully implemented in numerous projects. The world of large machine tools has developed in a separate realm with similar levels of performance requirement but different boundary conditions. In addition the competitive nature of private industry has encouraged development and usage of more cost effective solutions both in initial capital cost and thru-life operating cost. Telescope mounts move relatively slowly with requirements for high stability under external environmental influences such as wind buffeting. Large machine tools operate under high speed requirements coupled with high application of force through the machine but with little or no external environmental influences. The benefits of these parallel development paths and the ATST system requirements are being combined in the ATST Telescope Mount Assembly (TMA). The process of balancing the system requirements with new technologies is based on the experience of the ATST project team, Ingersoll Machine Tools who are the main contractor for the TMA and MT Mechatronics who are their design subcontractors. This paper highlights a number of these proven technologies from the commercially driven machine tool world that are being introduced to the TMA design. Also the challenges of integrating and ensuring that the differences in application requirements are accounted for in the design are discussed.

  12. Science Programs for a 2-m Class Telescope at Dome C, Antarctica: PILOT, the Pathfinder for an International Large Optical Telescope

    Science.gov (United States)

    Burton, M. G.; Lawrence, J. S.; Ashley, M. C. B.; Bailey, J. A.; Blake, C.; Bedding, T. R.; Bland-Hawthorn, J.; Bond, I. A.; Glazebrook, K.; Hidas, M. G.; Lewis, G.; Longmore, S. N.; Maddison, S. T.; Mattila, S.; Minier, V.; Ryder, S. D.; Sharp, R.; Smith, C. H.; Storey, J. W. V.; Tinney, C. G.; Tuthill, P.; Walsh, A. J.; Walsh, W.; Whiting, M.; Wong, T.; Woods, D.; Yock, P. C. M.

    2005-08-01

    The cold, dry, and stable air above the summits of the Antarctic plateau provides the best ground-based observing conditions from optical to sub-millimetre wavelengths to be found on the Earth. Pathfinder for an International Large Optical Telescope (PILOT) is a proposed 2m telescope, to be built at Dome C in Antarctica, able to exploit these conditions for conducting astronomy at optical and infrared wavelengths. While PILOT is intended as a pathfinder towards the construction of future grand-design facilities, it will also be able to undertake a range of fundamental science investigations in its own right. This paper provides the performance specifications for PILOT, including its instrumentation. It then describes the kinds of projects that it could best conduct. These range from planetary science to the search for other solar systems, from star formation within the Galaxy to the star formation history of the Universe, and from gravitational lensing caused by exo-planets to that produced by the cosmic web of dark matter. PILOT would be particularly powerful for wide-field imaging at infrared wavelengths, achieving near diffraction-limited performance with simple tip-tilt wavefront correction. PILOT would also be capable of near diffraction-limited performance in the optical wavebands, as well be able to open new wavebands for regular ground-based observation, in the mid-IR from 17 to 40μm and in the sub-millimetre at 200μm.

  13. Optical design and performance analysis of a 25 m class telescope with a segmented spherical primary

    DEFF Research Database (Denmark)

    Owner-Petersen, Mette

    1996-01-01

    The basic design and an analysis of the performance possibilities of a 25 m class optical telescope are presented here. The configuration consists of a 28 m segmented spherical primary M1 followed by three highly aspherical corrective mirrors M2, M3 and M4 which also deviate from cartesian shape...... sag and windbuffeting. Several types of aspherical figuring of M2, M3 and M4 all resulting in a field performance better than characterized by a RMS spotradius smaller than 0.1 arcseconds within a full FOV of 21 arcminutes are presented....

  14. Mosaic3: a red-sensitive upgrade for the prime focus camera at the Mayall 4m telescope

    Science.gov (United States)

    Dey, Arjun; Rabinowitz, David; Karcher, Armin; Bebek, Chris; Baltay, Charles; Sprayberry, David; Valdes, Frank; Stupak, Bob; Donaldson, John; Emmet, Will; Hurteau, Tom; Abareshi, Behzad; Marshall, Bob; Lang, Dustin; Fitzpatrick, Mike; Daly, Phil; Joyce, Dick; Schlegel, David; Schweiker, Heidi; Allen, Lori; Blum, Bob; Levi, Michael

    2016-08-01

    The Dark Energy Spectroscopic Instrument (DESI) is under construction and will be used to measure the expansion history of the Universe using the Baryon Acoustic Oscillation (BAO) technique and the growth of structure using redshift-space distortions (RSD). The spectra of 30 million galaxies over 14000 sq deg will be measured over the course of the experiment. In order to provide spectroscopic targets for the DESI survey, we are carrying out a three-band (g,r,z ) imaging survey of the sky using the NOAO 4-m telescopes at Kitt Peak National Observatory (KPNO) and the Cerro Tololo Interamerican Observatory (CTIO). At KPNO, we will use an upgraded version of the Mayall 4m telescope prime focus camera, Mosaic3, to carry out a z-band survey of the Northern Galactic Cap at declinations δ>=+30 degrees. By equipping an existing Dewar with four 4kx4k fully depleted CCDs manufactured by the Lawrence Berkeley National Laboratory (LBNL), we increased the z-band throughput of the system by a factor of 1.6. These devices have the thickest active area fielded at a telescope. The Mosaic3 z-band survey will be complemented by g-band and r-band observations using the Bok telescope and 90 Prime imager on Kitt Peak. We describe the upgrade and performance of the Mosaic3 instrument and the scope of the northern survey.

  15. Performance of the EUDET-type beam telescopes

    International Nuclear Information System (INIS)

    Jansen, H.; Spannagel, S.; Behr, J.

    2016-05-01

    Test beam measurements at the test beam facilities of DESY have been conducted to characterise the performance of the EUDET-type beam telescopes originally developed within the EUDET project. The beam telescopes are equipped with six sensor planes using MIMOSA26 monolithic active pixel devices. A programmable Trigger Logic Unit provides trigger logic and time stamp information on particle passage. Both data acquisition framework and offline reconstruction software packages are available. User devices are easily integrable into the data acquisition framework via predefined interfaces. The biased residual distribution is studied as a function of the beam energy, plane spacing and sensor threshold. Its standard deviation at the two centre pixel planes using all six planes for tracking in a 6 GeV electron/positron-beam is measured to be (2.88±0.08) μm. Iterative track fits using the formalism of General Broken Lines are performed to estimate the intrinsic resolution of the individual pixel planes. The mean intrinsic resolution over the six sensors used is found to be (3.24±0.09) μm. With a 5 GeV electron/positron beam, the track resolution halfway between the two inner pixel planes using an equidistant plane spacing of 20 mm is estimated to (1.83±0.03) μm assuming the measured intrinsic resolution. Towards lower beam energies the track resolution deteriorates due to increasing multiple scattering. Threshold studies show an optimal working point of the MIMOSA26 sensors at a sensor threshold of between five and six times their RMS noise. Measurements at different plane spacings are used to calibrate the amount of multiple scattering in the material traversed and allow for corrections to the predicted angular scattering for electron beams.

  16. Performance of the EUDET-type beam telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, Hendrik; Spannagel, Simon; Behr, Joerg; Dreyling-Eschweiler, Jan; Eckstein, Doris; Eichhorn, Thomas; Gregor, Ingrid Maria; Muhl, Carsten; Perrey, Hanno; Peschke, Richard; Roloff, Philipp; Rubinskiy, Igor [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Bulgheroni, Antonio [INFN, Milano (Italy); EC - Joint Research Centre, Karlsruhe (Germany); Claus, Gilles; Goffe, Mathieu; Winter, Marc [IPHC, Strasbourg (France); Corrin, Emlyn; Haas, Daniel [University of Geneva, DPNC, Geneva (Switzerland); Cussans, David [University of Bristol, Bristol (United Kingdom)

    2016-12-15

    Test beam measurements at the test beam facilities of DESY have been conducted to characterise the performance of the EUDET-type beam telescopes originally developed within the EUDET project. The beam telescopes are equipped with six sensor planes using MIMOSA 26 monolithic active pixel devices. A programmable Trigger Logic Unit provides trigger logic and time stamp information on particle passage. Both data acquisition framework and offline reconstruction software packages are available. User devices are easily integrable into the data acquisition framework via predefined interfaces. The biased residual distribution is studied as a function of the beam energy, plane spacing and sensor threshold. Its standard deviation at the two centre pixel planes using all six planes for tracking in a 6 GeV electron/positron-beam is measured to be (2.88 ± 0.08) μm. Iterative track fits using the formalism of General Broken Lines are performed to estimate the intrinsic resolution of the individual pixel planes. The mean intrinsic resolution over the six sensors used is found to be (3.24 ± 0.09) μm. With a 5 GeV electron/positron beam, the track resolution halfway between the two inner pixel planes using an equidistant plane spacing of 20 mm is estimated to (1.83 ± 0.03) μm assuming the measured intrinsic resolution. Towards lower beam energies the track resolution deteriorates due to increasing multiple scattering. Threshold studies show an optimal working point of the MIMOSA 26 sensors at a sensor threshold of between five and six times their RMS noise. Measurements at different plane spacings are used to calibrate the amount of multiple scattering in the material traversed and allow for corrections to the predicted angular scattering for electron beams. (orig.)

  17. 26Al(n,p)26Mg and 26Al(n,α)23Na cross sections from thermal energy to approximately 50 keV

    International Nuclear Information System (INIS)

    Koehler, P.E.; Gledenov, Yu.M.; Popov, Yu.P.

    1993-01-01

    Understanding the origin of 26 Al is important because it is one of the very few radioactive products of stellar nucleosynthesis to be observed directly by γ-ray telescopes. 26 Al has also been observed indirectly as a 26 Mg anomaly in some meterorites. The 26 Al(n,p) 26 Mg and 26 Al(n,α) 23 Na reactions are thought to be the major means for the destruction of 26 Al in some astrophysical environments, so a knowledge of the cross sections for these reactions is important for a better understanding of the origin of 26 Al. The authors have measured the 26 Al(n,p 1 ) 26 Mg and 26 Al(n,α 0 ) 23 Na cross sections from thermal energy to approximately 50 keV. Most of this energy range has not been explored by previous measurements. The measurements were made at the white neutron source of the Manuel Lujan, Jr. Neutron Scattering Center (LANSCE) using a ΔE-E solid-state detector telescope. Several resonances were observed. This data will be compared to previous measurements and the effect of the new data on the calculated nucleosynthesis of 26 Al will be discussed

  18. Maintenance and testing of anodized aluminum mirrors on the Whipple 10 m Whipple Telescope

    Science.gov (United States)

    Badran, H. M.; Weekes, T. C.

    2001-08-01

    Threshold energy sensitivity depends not only on the high reflectivity of the mirrors used in atmospheric Cherenkov telescopes but also on the maintenance of this reflectivity over months/years. The successful application of a mirror maintenance technique depends on the type of mirror coating and the contamination that must be removed. The uncovered mirrors in use on the 10-m Whipple gamma-ray telescope are anodized aluminum mirrors. A standard cleaning technique for such mirrors is not available. With the aim of extending the life of the aluminum coating exposed to the Mt ˙Hopkins environment, several cleaning procedures were tested on mirrors that had been exposed for three years. Evaluation of the most effective cleaners is presented. Preliminary results are also presented from a long-term experiment using newly coated mirrors at the proposed VERITAS site and at the current 10 m site. This experiment is designed to reveal the rates at which the reflectance degrades as a function of time, depth of anodization, storage direction, degree of covering, and maintenance procedures.

  19. Observing the Sun with Coronado telescopes telescopes

    CERN Document Server

    Pugh, Philip

    2007-01-01

    The Sun provides amateur astronomers with one of the few opportunities for daytime astronomy. In order to see the major features of our nearest star, special telescopes that have a very narrow visible bandwidth are essential. The bandwidth has to be as narrow as 1 A- 10-10 m (1 Angstrom) and centred on the absorption line of neutral hydrogen. This makes many major features of the Suna (TM)s chromosphere visible to the observer. Such narrow-band "Fabry-Perot etalon filters" are high technology, and until the introduction of the Coronado range of solar telescopes, were too expensive for amateur use. The entry-level Coronado telescope, the PST (Personal Solar Telescope) costs under 500. Solar prominences (vast columns of plasma, best seen at the edge of the solar disk), filaments, flares, sunspots, plage and active regions are all visible and can be imaged to produce spectacular solar photographs. Philip Pugh has assembled a team of contributors who show just how much solar work can be done with Coronado telesco...

  20. Review of lunar telescope studies at MSFC

    Science.gov (United States)

    Hilchey, John D.; Nein, Max E.

    1993-09-01

    In the near future astronomers can take advantage of the lunar surface as the new 'high ground' from which to study the universe. Optical telescopes placed and operated on the lunar surface would be successors to NASA's Great Observatories. Four telescopes, ranging in aperture from a 16-m, IR/Vis/UV observatory down to a 1-m, UV 'transit' instrument, have been studied by the Lunar Telescope Working Group and the LUTE (lunar telescope ultraviolet experiment) Task Team of the Marshall Space Flight Center (MSFC). This paper presents conceptual designs of the telescopes, provides descriptions of the telescope subsystem options selected for each concept, and outlines the potential evolution of their science capabilities.

  1. San Pedro Martir Telescope: Mexican design endeavor

    Science.gov (United States)

    Toledo-Ramirez, Gengis K.; Bringas-Rico, Vicente; Reyes, Noe; Uribe, Jorge; Lopez, Aldo; Tovar, Carlos; Caballero, Xochitl; Del-Llano, Luis; Martinez, Cesar; Macias, Eduardo; Lee, William; Carramiñana, Alberto; Richer, Michael; González, Jesús; Sanchez, Beatriz; Lucero, Diana; Manuel, Rogelio; Segura, Jose; Rubio, Saul; Gonzalez, German; Hernandez, Obed; García, Mary; Lazaro, Jose; Rosales-Ortega, Fabian; Herrera, Joel; Sierra, Gerardo; Serrano, Hazael

    2016-08-01

    The Telescopio San Pedro Martir (TSPM) is a new ground-based optical telescope project, with a 6.5 meters honeycomb primary mirror, to be built in the Observatorio Astronomico Nacional on the Sierra San Pedro Martir (OAN-SPM) located in Baja California, Mexico. The OAN-SPM has an altitude of 2830 meters above sea level; it is among the best location for astronomical observation in the world. It is located 1830 m higher than the atmospheric inversion layer with 70% of photometric nights, 80% of spectroscopic nights and a sky brightness up to 22 mag/arcsec2. The TSPM will be suitable for general science projects intended to improve the knowledge of the universe established on the Official Mexican Program for Science, Technology and Innovation 2014-2018. The telescope efforts are headed by two Mexican institutions in name of the Mexican astronomical community: the Universidad Nacional Autonoma de Mexico and the Instituto Nacional de Astrofisica, Optica y Electronica. The telescope has been financially supported mainly by the Consejo Nacional de Ciencia y Tecnologia (CONACYT). It is under development by Mexican scientists and engineers from the Center for Engineering and Industrial Development. This development is supported by a Mexican-American scientific cooperation, through a partnership with the University of Arizona (UA), and the Smithsonian Astrophysical Observatory (SAO). M3 Engineering and Technology Corporation in charge of enclosure and building design. The TSPM will be designed to allow flexibility and possible upgrades in order to maximize resources. Its optical and mechanical designs are based upon those of the Magellan and MMT telescopes. The TSPM primary mirror and its cell will be provided by the INAOE and UA. The telescope will be optimized from the near ultraviolet to the near infrared wavelength range (0.35-2.5 m), but will allow observations up to 26μm. The TSPM will initially offer a f/5 Cassegrain focal station. Later, four folded Cassegrain and

  2. The SARA Consortium: Providing Undergraduate Access to a 0.9-m Telescope at Kitt Peak National Observatory

    Science.gov (United States)

    Wood, M. A.

    2003-12-01

    The Southeastern Research for Astronomy (SARA) operates a 0.9-m telescope at Kitt Peak National Observatory (KPNO). The member institutions are Florida Institute of Technology, East Tennessee State University, Florida International University, The University of Georgia at Athens, Valdosta State University, and Clemson University. The NSF awarded the KPNO #1 0.9-m telescope to the SARA Consortium in 1990. We built a new facility and began routine on-site observations in 1995. We began routine remote observations in 1999 using VNC to export the telescope and CCD control screens, and a web-cam in the dome to provide critical visual feedback on the status of the telescope and dome. The mission of the SARA Consortium is to foster astronomical research and education in the Southeastern United States. Although only two of the member institutions have no graduate programs, all six have a strong emphasis on undergraduate research and education. By pooling our resources, we are able to operate a research-grade facility that none of the individual schools could manage by itself, and in the process we can offer our undergraduate students the opportunity to assist in our research projects as well as to complete their own independent research projects using a facility at a premier site. The SARA Consortium also hosts a NSF REU Summer Intern Program in Astronomy, in which we support 11-12 students that work one-on-one with a SARA faculty mentor. Most of these interns are selected from primarily undergraduate institutions, and have not had significant previous research experience. As part of the program, interns and mentors travel to KPNO for a 4-5 night observing run at the telescope. The SARA NSF REU Program is funded through NSF grant AST-0097616.

  3. Spectroscopic Classification of Nine Optical Transients with the 2.5-m du Pont Telescope

    Science.gov (United States)

    Bose, Subhash; Holoien, Tom; Prieto, Jose L.; Dong, Subo; Chen, P.; Stanek, K. Z.

    2018-04-01

    We report spectroscopic observations and classifications of optical transients using the du Pont 2.5-m telescope (+ WFCCD) at Las Campanas Observatory. Targets were discovered by the All-Sky Automated Survey for Supernovae (ASAS-SN, Shappee et al. 2014) (ATel #11391, ATel #11343, ATel #11459), Gaia Alerts (http://gsaweb.ast.cam.ac.uk/alerts/alertsindex) and A. Rest et al. (for 2018agk).

  4. 26 CFR 1.401(m)-2 - ACP test.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 5 2010-04-01 2010-04-01 false ACP test. 1.401(m)-2 Section 1.401(m)-2 Internal... TAXES Pension, Profit-Sharing, Stock Bonus Plans, Etc. § 1.401(m)-2 ACP test. (a) Actual contribution percentage (ACP) test—(1) In general—(i) ACP test formula. A plan satisfies the ACP test for a plan year only...

  5. The Coude spectrograph and echelle scanner of the 2.7 m telescope at McDonald observatory

    Science.gov (United States)

    Tull, R. G.

    1972-01-01

    The design of the Coude spectrograph of the 2.7 m McDonald telescope is discussed. A description is given of the Coude scanner which uses the spectrograph optics, the configuration of the large echelle and the computer scanner control and data systems.

  6. Operation of Small Radio Telescope (SRT) recorded 21 cm spectral line of Hydrogen at VATLY Laboratory

    International Nuclear Information System (INIS)

    Pham Ngoc Dong; Pham Tuan Anh; Pham Ngoc Diep; Pham Thi Tuyet Nhung; Nguyen Van Hiep

    2013-01-01

    A small radio telescope (SRT) has been installed on the roof of the Hanoi astrophysics laboratory VATLY. It is equipped with a 2.6 m diameter mobile parabolic dish remotely controlled in elevation and azimuth and with super-heterodyne detection around the 21 cm hydrogen line. They demonstrate the high quality of the telescope performance and are used to evaluate lobe size, signal to noise ratios, anthropogenic interferences and measurement accuracies. Particular attention is given to the measurement of the pointing accuracy. First results of observations of the Sun and of the centre of the Milky Way are presented. (author)

  7. [Transanal laparoscopic radical resection with telescopic anastomosis for low rectal cancer].

    Science.gov (United States)

    Li, Shiyong; Chen, Gang; Du, Junfeng; Chen, Guang; Wei, Xiaojun; Cui, Wei; Yuan, Qiang; Sun, Liang; Bai, Xue; Zuo, Fuyi; Yu, Bo; Dong, Xing; Ji, Xiqing

    2015-06-01

    To assess the safety, feasibility and clinical outcome of laparoscopic radical resection for low rectal cancer with telescopic anastomosis or with colostomy by stapler through transanal resection without abdominal incisions. From January 2010 to September 2014, 37 patients underwent laparoscopic radical resection for low rectal cancer through transanal resection without abdominal incisions. The tumors were 4-7 cm above the anal verge. On preoperative assessment, 26 cases were T1N0M0 and 11 were T2N0M0. For all cases, successful surgery was performed. In telescopic anastomosis group, the mean operative time was (178±21) min, with average blood loss of (76±11) ml and (13±7) lymph nodes harvested. Return of bowel function was (3.0±1.2) d and the hospital stay was (12.0±4.2) d without postoperative complications. Patients were followed up for 3-45 months. Twelve months after surgery, 94.6%(35/37) patients achieved anal function Kirwan grade 1, indicating that their anal function returned to normal. Laparoscopic radical resection for low rectal cancer with telescopic anastomosis or colostomy by stapler through transanal resection without abdominal incisions is safe and feasible. Satisfactory clinical outcome can be achieved mini-invasively.

  8. SCIENTIFIC EFFICIENCY OF GROUND-BASED TELESCOPES

    International Nuclear Information System (INIS)

    Abt, Helmut A.

    2012-01-01

    I scanned the six major astronomical journals of 2008 for all 1589 papers that are based on new data obtained from ground-based optical/IR telescopes worldwide. Then I collected data on numbers of papers, citations to them in 3+ years, the most-cited papers, and annual operating costs. These data are assigned to four groups by telescope aperture. For instance, while the papers from telescopes with an aperture >7 m average 1.29 more citations than those with an aperture of 2 to 7 m) telescopes. I wonder why the large telescopes do so relatively poorly and suggest possible reasons. I also found that papers based on archival data, such as the Sloan Digital Sky Survey, produce 10.6% as many papers and 20.6% as many citations as those based on new data. Also, the 577.2 papers based on radio data produced 36.3% as many papers and 33.6% as many citations as the 1589 papers based on optical/IR telescopes.

  9. Identification of Aquifex aeolicus tRNA (m2(2G26) methyltransferase gene.

    Science.gov (United States)

    Takeda, Hiroshi; Hori, Hiroyuki; Endo, Yaeta

    2002-01-01

    The modifications of N2,N2-dimethylguanine (m2(2)G) are found in tRNAs and rRNAs from eukarya and archaea. In tRNAs, modification at position G26 is generated by tRNA (m2(2)G26) methyltransferase, which is encoded by the corresponding gene, trm1. This enzyme catalyzes the methyl-transfer from S-adenosyl-L-methionine to the semi-conserved residue, G26, via the intermediate modified base, m2G26. Recent genome sequencing project has been reported that the putative trm1 is encoded in the genome of Aquifex aeolicus, a hyper-thermophilic eubacterium as only one exception among eubacteria. In order to confirm whether this bacterial trm1 gene product is a real tRNA (m2(2)G26) methyltransferase or not, we expressed this protein by wheat germ in vitro cell-free translation system. Our biochemical analysis clearly showed that this gene product possessed tRNA (m2(2)G26) methyltransferase activity.

  10. Production of the 4.1-m Zerodur mirror blank for the VISTA Telescope

    Science.gov (United States)

    Doehring, Thorsten; Jedamzik, Ralf; Wittmer, Volker; Thomas, Armin

    2004-09-01

    VISTA (Visible and Infrared Survey Telescope for Astronomy) is designed to be the world's largest wide field telescope. After finishing of the construction the telescope will be part of ESO and located in Chile close to the VLT observatory at Cerro Paranal. In November 2001 SCHOTT was selected by the VISTA project office at the Royal Observatory of Edinburgh to deliver the 4.1 m diameter primary mirror blank. The manufacturing of the mirror blank made from the zero expansion material Zerodur was challenging especially due to the f/1 design. Several tons of the glass ceramic material were removed during the grinding operation. A meniscus blank with a diameter of 4100 mm and a thickness of 171.5 mm was generated, having a large central hole of 1200 mm and an aspherical shape of the concave surface. Also the handling and turning operations needed special effort and were performed by a skilled team. This paper presents details and pictures of the corresponding production and inspection sequence at SCHOTT. The geometrical parameters were measured during manufacturing by help of a laser tracker system and the achieved parameters were compared with the initial technical specification. The final quality inspection verified the excellent quality of the mirror blank. The close co-operation between the astronomers and industry resulted in a project management without problems. In April 2003 the VISTA blank was delivered successfully within a ceremony dedicated to the anniversary of "100 years of astronomical mirror blanks from SCHOTT."

  11. Ideas for future large single dish radio telescopes

    Science.gov (United States)

    Kärcher, Hans J.; Baars, Jacob W. M.

    2014-07-01

    The existing large single dish radio telescopes of the 100m class (Effelsberg, Green Bank) were built in the 1970s and 1990s. With some active optics they work now down to 3 millimeter wavelength where the atmospheric quality of the site is also a limiting factor. Other smaller single dish telescopes (50m LMT Mexico, 30m IRAM Spain) are located higher and reach sub-millimeter quality, and the much smaller 12m antennas of the ALMA array reach at a very high site the Terahertz region. They use advanced technologies as carbon fiber structures and flexible body control. We review natural limits to telescope design and use the examples of a number of telescopes for an overview of the available state-of-the-art in design, engineering and technologies. Without considering the scientific justification we then offer suggestions to realize ultimate performance of huge single dish telescopes (up to 160m). We provide an outlook on design options, technological frontiers and cost estimates.

  12. GISOT: a giant solar telescope

    Science.gov (United States)

    Hammerschlag, Robert H.; von der Lühe, Oskar F.; Bettonvil, Felix C.; Jägers, Aswin P.; Snik, Frans

    2004-10-01

    A concept is presented for an extremely large high-resolution solar telescope with an aperture of 11 m and diffraction limited for visual wavelengths. The structure of GISOT will be transparent to wind and placed on a transparent stiff tower. For efficient wind flushing, all optics, including the primary mirror, will be located above the elevation axis. The aperture will be of the order of 11 m, not rotatively symmetrical, but of an elongated shape with dimensions 11 x 4 m. It consists of a central on-axis 4 m mirror with on both sides 3 pieces of 2 m mirrors. The optical layout will be kept simple to guarantee quality and minimize stray light. A Coudé room for instruments is planned below the telescope. The telescope will not be housed in a dome-like construction, which interferes with the open principle. Instead the telescope will be protected by a foldable tent construction with a diameter of the order of 30 m, which doesn"t form any obstruction during observations, but can withstand the severe weather circumstances on mountain sites. Because of the nature of the solar scene, extremely high resolution in only one dimension is sufficient to solve many exciting problems in solar physics and in this respect the concept of GISOT is very promising.

  13. KMTNET: A Network of 1.6 m Wide-Field Optical Telescopes Installed at Three Southern Observatories

    Science.gov (United States)

    Kim, Seung-Lee; Lee, Chung-Uk; Park, Byeong-Gon; Kim, Dong-Jin; Cha, Sang-Mok; Lee, Yongseok; Han, Cheongho; Chun, Moo-Young; Yuk, Insoo

    2016-02-01

    The Korea Microlensing Telescope Network (KMTNet) is a wide-field photometric system installed by the Korea Astronomy and Space Science Institute (KASI). Here, we present the overall technical specifications of the KMTNet observation system, test observation results, data transfer and image processing procedure, and finally, the KMTNet science programs. The system consists of three 1.6 m wide-field optical telescopes equipped with mosaic CCD cameras of 18k by 18k pixels. Each telescope provides a 2.0 by 2.0 square degree field of view. We have finished installing all three telescopes and cameras sequentially at the Cerro-Tololo Inter-American Observatory (CTIO) in Chile, the South African Astronomical Observatory (SAAO) in South Africa, and the Siding Spring Observatory (SSO) in Australia. This network of telescopes, which is spread over three different continents at a similar latitude of about -30 degrees, enables 24-hour continuous monitoring of targets observable in the Southern Hemisphere. The test observations showed good image quality that meets the seeing requirement of less than 1.0 arcsec in I-band. All of the observation data are transferred to the KMTNet data center at KASI via the international network communication and are processed with the KMTNet data pipeline. The primary scientific goal of the KMTNet is to discover numerous extrasolar planets toward the Galactic bulge by using the gravitational microlensing technique, especially earth-mass planets in the habitable zone. During the non-bulge season, the system is used for wide-field photometric survey science on supernovae, asteroids, and external galaxies.

  14. A virtual reality environment for telescope operation

    Science.gov (United States)

    Martínez, Luis A.; Villarreal, José L.; Ángeles, Fernando; Bernal, Abel

    2010-07-01

    Astronomical observatories and telescopes are becoming increasingly large and complex systems, demanding to any potential user the acquirement of great amount of information previous to access them. At present, the most common way to overcome that information is through the implementation of larger graphical user interfaces and computer monitors to increase the display area. Tonantzintla Observatory has a 1-m telescope with a remote observing system. As a step forward in the improvement of the telescope software, we have designed a Virtual Reality (VR) environment that works as an extension of the remote system and allows us to operate the telescope. In this work we explore this alternative technology that is being suggested here as a software platform for the operation of the 1-m telescope.

  15. Open principle for large high-resolution solar telescopes

    NARCIS (Netherlands)

    Hammerschlag, R.H.; Bettonvil, F.C.M.; Jägers, A.P.L.; Sliepen, G.

    2009-01-01

    Vacuum solar telescopes solve the problem of image deterioration inside the telescope due to refractive index fluctuations of the air heated by the solar light. However, such telescopes have a practical diameter limit somewhat over 1 m. The Dutch Open Telescope (DOT) was the pioneering demonstrator

  16. Results of geometrical optical investigations of a 'nonobjective' prism and a uvby photometer for the Danish 1.5 M telescope

    International Nuclear Information System (INIS)

    Andersen, T.

    1979-01-01

    Raytracing methods have been used to show that the geometrical aberrations of a direct-vision prism situated in front of the focal plane in the converging beam of the Danish 1.5 m f/8.76 Ritchey-Chretien telescope and yielding a dispersion of 497 A/mm at Hγ are of the same size as the seeing disc in the wavelength range lambda 3500 - lambda 6000 A over a 40 mm field. Furthermore, raytracing methods have been used to determine the positions of the slot edges for a simultaneous uvby spectrograph-photometer for the Danish 1.5 m telescope. A theoretical sensitivity function for the photometer is presented. (Auth.)

  17. The Atacama Cosmology Telescope: The Receiver and Instrumentation

    Science.gov (United States)

    Swetz, D. S.; Ade, P. A. R.; Amiri, M.; Appel, J. W.; Burger, B.; Devlin, M. J.; Dicker, S. R.; Doriese, W. B.; Essinger-Hileman, T.; Fisher, R. P.; hide

    2010-01-01

    The Atacama Cosmology Telescope was designed to measure small-scale anisotropies in the Cosmic Microwave Background and detect galaxy clusters through the Sunyaev-Zel'dovich effect. The instrument is located on Cerro Taco in the Atacama Desert, at an altitude of 5190 meters. A six-met.er off-axis Gregorian telescope feeds a new type of cryogenic receiver, the Millimeter Bolometer Array Camera. The receiver features three WOO-element arrays of transition-edge sensor bolometers for observations at 148 GHz, 218 GHz, and 277 GHz. Each detector array is fed by free space mm-wave optics. Each frequency band has a field of view of approximately 22' x 26'. The telescope was commissioned in 2007 and has completed its third year of operations. We discuss the major components of the telescope, camera, and related systems, and summarize the instrument performance.

  18. Large fully retractable telescope enclosures still closable in strong wind

    Science.gov (United States)

    Bettonvil, Felix C. M.; Hammerschlag, Robert H.; Jägers, Aswin P. L.; Sliepen, Guus

    2008-07-01

    Two prototypes of fully retractable enclosures with diameters of 7 and 9 m have been built for the high-resolution solar telescopes DOT (Dutch Open Telescope) and GREGOR, both located at the Canary Islands. These enclosures protect the instruments for bad weather and are fully open when the telescopes are in operation. The telescopes and enclosures also operate in hard wind. The prototypes are based on tensioned membrane between movable but stiff bows, which fold together to a ring when opened. The height of the ring is small. The prototypes already survived several storms, with often snow and ice, without any damage, including hurricane Delta with wind speeds up to 68 m/s. The enclosures can still be closed and opened with wind speeds of 20 m/s without any problems or restrictions. The DOT successfully demonstrated the open, wind-flushing concept for astronomical telescopes. It is now widely recognized that also large future telescopes benefit from wind-flushing and retractable enclosures. These telescopes require enclosures with diameters of 30 m until roughly 100 m, the largest sizes for the ELTs (Extreme Large Telescopes), which will be built in the near future. We discuss developments and required technology for the realization of these large sizes.

  19. The ASTRI SST-2M prototype for the Cherenkov Telescope Array: prototype technologies goals and strategies for the future SST

    Science.gov (United States)

    Marchiori, Gianpietro; Busatta, Andrea; Giacomel, Stefano; Folla, Ivan; Valsecchi, Marco; Canestrari, Rodolfo; Bonnoli, Giacomo; Cascone, Enrico; Conconi, Paolo; Fiorini, Mauro; Giro, Enrico; La Palombara, Nicola; Pareschi, Giovanni; Perri, Luca; Rodeghiero, Gabriele; Sironi, Giorgia; Stringhetti, Luca; Toso, Giorgio; Tosti, Gino; Pellicciari, Carlo

    2014-07-01

    The Cherenkov Telescope Array (CTA) observatory will represent the next generation of Imaging Atmospheric Cherenkov Telescope. Using a combination of large-, medium-, and small-scale telescopes (LST, MST, SST, respectively), it will explore the Very High Energy domain from a few tens of GeVup to about few hundreds of TeV with unprecedented sensitivity, angular resolution and imaging quality. In this framework, the Italian ASTRI program, led by the Italian National Institute of Astrophysics (INAF) developed a 4-meter class telescope, which will adopt an aplanatic, wide-field, double-reflection optical layout in a Schwarzschild- Couder configuration. Within this program INAF assigned to the consortium between Galbiati Group and EIE Group the construction, assembly and tests activities of the prototype named ASTRI SST-2M. On the basis of the lesson learnt from the prototype, other telescopes will be produced, starting from a re-design phase, in order to optimize performances and the overall costs and production schedule for the CTA-SST telescope. This paper will firstly give an overview of the concept for the SST prototype mount structure. In this contest, the technologies adopted for the design, manufacturing and tests of the entire system will be presented. Moreover, a specific focus on the challenges of the prototype and the strategies associated with it will be provided, in order to outline the near future performance goals for this type of Cherenkov telescopes employed for Gamma ray science.

  20. Status of the MAGIC telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Colin, Pierre; Carmona, Emiliano; Schweizer, Thomas; Sitarek, Julian [Max-Planck-Institut fuer Physik, Werner-Heisenberg Institut, Muenchen (Germany)

    2010-07-01

    MAGIC is a system of two 17-m Cherenkov telescopes located on La Palma (Canary islands),sensitive to gamma-rays above 30 GeV. It has been recently upgraded by a second telescope which strongly improves the sensitivity, particularly at low energy. Here we present the status of the MAGIC telescopes and an overview of the recent results obtained in single or stereoscopic mode. We also discuss the real performance of the new stereoscopic system based on Crab Nebula observations.

  1. A Millimeter Polarimeter for the 45-m Telescope at Nobeyama

    Science.gov (United States)

    Shinnaga, Hiroko; Tsuboi, Masato; Kasuga, Takashi

    1999-04-01

    We have designed and constructed a tunable polarimeter to cover frequencies from 35 GHz to 250 GHz (8.6 mm and 1.2 mm in wavelength) for the 45-m telescope at Nobeyama Radio Observatory. Both circular and linear polarizations can be measured by the polarimeter. The insertion loss was measured to be 0.14 +/- 0.05 dB in the 100-GHz band. The overall instrumental polarization of the system in the 100 GHz band is as low as VY Canis Majoris. The observation revealed that the J = 2--1 emission in the v = 0 state of the object is highly linear polarized, which suggests that the emission originates through maser action in the circumstellar region. The details of the design, construction, and tests are presented. Nobeyama Radio Observatory is a branch of the National Astronomical Observatory, operated by the Ministry of Education, Science, Sports and Culture.

  2. The first telescope of the HEGRA air Cherenkov imaging telescope array

    International Nuclear Information System (INIS)

    Mirzoyan, R.; Kankanian, R.; Krennrich, F.; Mueller, N.; Sander, H.; Sawallisch, P.; Aharonian, F.; Akhperjanian, A.; Beglarian, A.; Fernandez, J.; Fonseca, V.; Grewe, W.; Heusler, A.; Konopelko, A.K.; Lorenz, E.; Merck, M.; Plyasheshnikov, A.V.; Renker, D.; Samorski, M.; Sauerland, K.; Smarsch, E.; Stamm, W.; Ulrich, M.; Wiedner, C.A.; Wirth, H.

    1994-01-01

    In search of VHE γ ray emission from cosmic point sources a system of imaging Cherenkov telescopes is constructed at present on the Canarian island of La Palma; the first telescope has been operational since 1992. The Cherenkov light from air shower particles is collected by a 5 m 2 reflector. The camera at the focus contains 37 photomultipliers which sample the images of the Cherenkov flashes. The subsequent image analysis allows the discrimination of γ ray induced events from the much more abundant charged cosmic ray induced showers. The telescope has an effective energy threshold for γ showers of about 1.5 TeV. During the first year of operation a signal from the Crab nebula was detected. ((orig.))

  3. A search for radio pulsars and fast transients in M31 using the Westerbork Synthesis Radio Telescope

    NARCIS (Netherlands)

    Rubio-Herrera, E.; Stappers, B.W.; Hessels, J.W.T.; Braun, R.

    2013-01-01

    We present the results of the most sensitive and comprehensive survey yet undertaken for radio pulsars and fast transients in the Andromeda galaxy (M31) and its satellites, using the Westerbork Synthesis Radio Telescope (WSRT) at a central frequency of 328 MHz. We used the WSRT in a special

  4. A decade of cost-reduction in very large telescopes - The SST as prototype of special-purpose telescopes

    Science.gov (United States)

    Smith, Harlan J.

    1989-10-01

    Many design and technical innovations over the past ten or fifteen years have reduced the costs of very large telescopes by nearly an order of magnitude over those of classical designs. Still a further order of magnitude reduction is possible if the telescope is specialized for on-axis spectroscopy, giving up especially the luxuries of wide field, multiple focal positions, and access to all the sky at will. The SST (Spectroscopic Survey Telescope) will use eighty-five 1-m circular mirrors mounted in a steel frame composed of hundreds of interlocking tetrahedrons, keeping a fixed elevation angle of 60 deg with rotation only in azimuth. Using an optical fiber it will feed as much light to spectrographs as can be done by a conventional 8-m telescope, yet has a target basic completion cost of only $6 million.

  5. VLT 8.2-m Unit Telescope no. 1 (as on September 7, 1995)

    Science.gov (United States)

    1995-09-01

    will carry two Nasmyth platforms, each measuring 6 x 4 metres and situated 5.8 metres above the azimuth platform (here covered by plastic sheets). ESO Press Photo 29/95 [52K] [232K] shows the centre piece of the telescope tube which provides the attachment points to the primary and secondary mirrors and has the shafts for the telescope altitude axis. It is 10.5 metres wide and 10 metres long and weighs about 56 t. To the shafts, here lying on the altitude hydrostatic bearing system, are attached the direct drives, which provide a maximum torque of 72 kNm. The associated encoder system is specified to deliver an absolute accuracy of 0.1 arcsec (rms). The third view, ESO Press Photo 30/95 [61K] [280K] shows the top ring of the main strucure mounted and aligned, already painted in its definitive silver color (the interior part that faces the optical path will later be painted black to minimize internal optical reflections). This top ring holds the secondary mirror unit. The inner diameter is 8.7 metres and it weighs 7.5 t. Following a careful study, it has been given a rounded shape in order to minimise the wind forces which are expected during the night at Paranal (an average of 10 to 15 m/s) without compromising the strict requirements for mechanical stiffness. Please consult ESO Press Photos 17-20/95 for a recent view of the construction activities at Cerro Paranal in Chile. ESO Press Photos 28/95, 29/95 and 30/95 may be reproduced, if credit is given to the European Southern Observatory.

  6. Spectroscopic Classifications of PSN J20372558+6607115 with Lick 3-m Reflector

    Science.gov (United States)

    Foley, R. J.; Zheng, W.; Filippenko, A. V.; van Dyk, S. D.

    2015-03-01

    We report the classifications of PSN J20372558+6607115 (discovered by K. Shima and announced on the CBAT TOCP) from a spectrum obtained with the Kast dual-beam spectrograph on the Lick 3-m Shane telescope on 2015 March 26 UT.

  7. Scientific Performance Analysis of the SYZ Telescope Design versus the RC Telescope Design

    Science.gov (United States)

    Ma, Donglin; Cai, Zheng

    2018-02-01

    Recently, Su et al. propose an innovative design, referred as the “SYZ” design, for China’s new project of a 12 m optical-infrared telescope. The SYZ telescope design consists of three aspheric mirrors with non-zero power, including a relay mirror below the primary mirror. SYZ design yields a good imaging quality and has a relatively flat field curvature at Nasmyth focus. To evaluate the science-compatibility of this three-mirror telescope, in this paper, we thoroughly compare the performance of SYZ design with that of Ritchey–Chrétien (RC) design, a conventional two-mirror telescope design. Further, we propose the Observing Information Throughput (OIT) as a metric for quantitatively evaluating the telescopes’ science performance. We find that although a SYZ telescope yields a superb imaging quality over a large field of view, a two-mirror (RC) telescope design holds a higher overall throughput, a better diffraction-limited imaging quality in the central field of view (FOV < 5‧) which is better for the performance of extreme Adaptive Optics (AO), and a generally better scientific performance with a higher OIT value. D. Ma & Z. Cai contributed equally to this paper.

  8. 8 Meter Advanced Technology Large-Aperture Space Telescope (ATLAST-8m)

    Science.gov (United States)

    Stahl, H. Philip

    2010-01-01

    ATLAST-8m (Advanced Technology Large Aperture Space Telescope) is a proposed 8-meter monolithic UV/optical/NIR space observatory (wavelength range 110 to 2500 nm) to be placed in orbit at Sun-Earth L2 by NASA's planned Ares V heavy lift vehicle. Given its very high angular resolution (15 mas @ 500 nm), sensitivity and performance stability, ATLAST-8m is capable of achieving breakthroughs in a broad range of astrophysics including: Is there life elsewhere in the Galaxy? An 8-meter UVOIR observatory has the performance required to detect habitability (H2O, atmospheric column density) and biosignatures (O2, O3, CH4) in terrestrial exoplanet atmospheres, to reveal the underlying physics that drives star formation, and to trace the complex interactions between dark matter, galaxies, and intergalactic medium. The ATLAST Astrophysics Strategic Mission Concept Study developed a detailed point design for an 8-m monolithic observatory including optical design; structural design/analysis including primary mirror support structure, sun shade and secondary mirror support structure; thermal analysis; spacecraft including structure, propulsion, GN&C, avionics, power systems and reaction wheels; mass and power budgets; and system cost. The results of which were submitted by invitation to NRC's 2010 Astronomy & Astrophysics Decadal Survey.

  9. An EUDET/AIDA Pixel Beam Telescope for Detector Development

    CERN Document Server

    Perrey, Hanno

    2013-01-01

    A high resolution ($\\sigma 2 \\sim \\mu$) beam telescope based on monolithic active pixel sensors (MAPS) was developed within the EUDET collaboration. The telescope consists of six sensor planes using Mimosa26 MAPS with a pixel pitch of $18.4 \\mu$ and thinned down to $50 \\mu$. The excellent resolution, readout rate and DAQ integration capabilities made the telescope a primary test beam tool for many groups including several CERN based experiments. Within the new European detector infrastructure project AIDA the test beam telescope will be further extended in terms of cooling infrastructure, readout speed and precision. In order to provide a system optimized for the different requirements by the user community, a combination of various pixel technologies is foreseen. In this report the design of this even more flexible telescope with three different pixel technologies (TimePix, Mimosa, ATLAS FE-I4) will be presented. First test beam results with the HitOR signal provided by the FE-I4 integrated into the trigger...

  10. Overdenture dengan Pegangan Telescopic Crown

    Directory of Open Access Journals (Sweden)

    Pambudi Santoso

    2014-06-01

    Full Text Available Kaitan presisi merupakan alat retensi mekanis yang menghubungkan antara satu atau lebih pegangan gigi tiruan, yang bertujuan untuk menambah retensi dan/atau stabilisasi. Kaitan presisi dapat digunakan secara luas pada gigi tiruan cekat, gigi tiruan sebagian lepasan, overdenture, implant untuk retensi overdenture, dan protesa maksilo fasial. Overdenture dengan kaitan presisi dapat membantu dalam pembagian beban kunyah, meminimalkan trauma pada gigi pegangan dan jaringan lunak, meminimalkan resorbsi tulang, dan meningkatkan estetik dan pengucapan suara. Salah satu jenis dari kaitan presisi adalah telescopic crown, terdiri dari 2 macam mahkota, yaitu mahkota primer yang melekat secara permanen pada gigi penyangga, dan mahkota sekunder yang melekat pada gigi tiruan. Tujuan pemaparan kasus ini adalah untuk memberikan informasi tentang rehabilitasi pasien edentulous sebagian rahang atas dengan telescopic crown..  Pasien wanita berusia 45 tahun datang ke klinik prostodonsia RSGM Prof.Soedomo dengan keluhan ingin dibuatkan gigi tiruan. Pasien kehilangan gigi 11 12 15 16 17 21 22 24 25 26 dan 27 yang diindikasikan untuk pembuatan overdenture gigi tiruan sebagian lepasan (GTS kerangka logam dengan pegangan telescopic crown pada gigi 13 dan 14 dengan sistem parallel-sided crown. Tahap-tahap pembuatan telescopic crown yaitu mencetak model study dengan catatan gigit pendahuluan. Perawatan saluran dilakukan pada akar gigi 13, dilanjutkan pemasangan pasak fiber serta rewalling dinding bukal. Gigi 13 dan 14 dilakukan preparasi mahkota penuh, dilanjutkan dengan pencetakan model kerja untuk coping primer dan kerangka logam dengan metode double impression. Coping primer disementasi pada gigi penyangga, dilanjutkan pasang coba coping sekunder beserta kerangka logam. Selanjutnya dilakukan pencatatan gigit, pencetakan model kerja, penyusunan gigi dan pasang coba penyusunan gigi pada pasien. Prosedur dilanjutkan dengan proses di laboratorium, serta insersi pada

  11. European Extremely Large Telescope: progress report

    Science.gov (United States)

    Tamai, R.; Spyromilio, J.

    2014-07-01

    The European Extremely Large Telescope is a project of the European Southern Observatory to build and operate a 40-m class optical near-infrared telescope. The telescope design effort is largely concluded and construction contracts are being placed with industry and academic/research institutes for the various components. The siting of the telescope in Northern Chile close to the Paranal site allows for an integrated operation of the facility providing significant economies. The progress of the project in various areas is presented in this paper and references to other papers at this SPIE meeting are made.

  12. Software design and code generation for the engineering graphical user interface of the ASTRI SST-2M prototype for the Cherenkov Telescope Array

    Science.gov (United States)

    Tanci, Claudio; Tosti, Gino; Antolini, Elisa; Gambini, Giorgio F.; Bruno, Pietro; Canestrari, Rodolfo; Conforti, Vito; Lombardi, Saverio; Russo, Federico; Sangiorgi, Pierluca; Scuderi, Salvatore

    2016-08-01

    ASTRI is an on-going project developed in the framework of the Cherenkov Telescope Array (CTA). An end- to-end prototype of a dual-mirror small-size telescope (SST-2M) has been installed at the INAF observing station on Mt. Etna, Italy. The next step is the development of the ASTRI mini-array composed of nine ASTRI SST-2M telescopes proposed to be installed at the CTA southern site. The ASTRI mini-array is a collaborative and international effort carried on by Italy, Brazil and South-Africa and led by the Italian National Institute of Astrophysics, INAF. To control the ASTRI telescopes, a specific ASTRI Mini-Array Software System (MASS) was designed using a scalable and distributed architecture to monitor all the hardware devices for the telescopes. Using code generation we built automatically from the ASTRI Interface Control Documents a set of communication libraries and extensive Graphical User Interfaces that provide full access to the capabilities offered by the telescope hardware subsystems for testing and maintenance. Leveraging these generated libraries and components we then implemented a human designed, integrated, Engineering GUI for MASS to perform the verification of the whole prototype and test shared services such as the alarms, configurations, control systems, and scientific on-line outcomes. In our experience the use of code generation dramatically reduced the amount of effort in development, integration and testing of the more basic software components and resulted in a fast software release life cycle. This approach could be valuable for the whole CTA project, characterized by a large diversity of hardware components.

  13. Soft X-ray Focusing Telescope Aboard AstroSat: Design, Characteristics and Performance

    DEFF Research Database (Denmark)

    Singh, K; Stewart, G.; Westergaard, Niels Jørgen Stenfeldt

    2017-01-01

    The Soft X-ray focusing Telescope (SXT), India’s first X-ray telescope based on the principle of grazing incidence, was launched aboard the AstroSat and made operational on October 26, 2015. X-rays in the energy band of 0.3–8.0 keV are focussed on to a cooled charge coupled device thus providing ...

  14. UNC SKYNET adds NRAO 20m Radio Telescope: Dynamic Research and Funding

    Science.gov (United States)

    Langston, Glen; Hosmer, L.; Heatherly, S.; Towner, A. P.; Reichart, D.; Haipslip, J.

    2013-01-01

    The University of North Carolina (UNC) and NRAO have teamed up to deliver dynamic, realtime optical and Radio observations of the universe, using the web-based SKYNET queuing system developed at UNC. A 20m telescope is outfitted with cryogenically cooled receivers and a reprogrammable spectrometer. To get started see: http://www.gb.nrao.edu/20m/fantastic/ for connections to the observing system, educational activities and opportunities to purchase observing time. The SKYNET goal is to provide the finest research tools to high schools, colleges and independent researchers. This is accomplished through the capabilities to use existing observing modes and through reprogram the University of California, Berkeley's Field Programmable Gate Array (FPGA) systems for custom digital hardware development. This provides a door for engineering and computer science students to create real-time, high capability data acquisition and processing tools. We will demo the 20m observing system and its capabilities. The NSF funded this construction project with the goal of making the network self funding. We are looking for collaborators with targeted research projects wanting to take advantage of the powerful observing tools.

  15. Lunar-based optical telescopes: Planning astronomical tools of the twenty-first century

    Science.gov (United States)

    Hilchey, J. D.; Nein, M. E.

    1995-02-01

    A succession of optical telescopes, ranging in aperture from 1 to 16 m or more, can be deployed and operated on the lunar surface over the next half-century. These candidates to succeed NASA's Great Observatories would capitalize on the unique observational advantages offered by the Moon. The Lunar Telescope Working Group and the LUTE Task Team of the George C. Marshall Space Flight Center (MSFC) have assessed the feasibility of developing and deploying these facilities. Studies include the 16-m Large Lunar Telescope (LLT); the Lunar Cluster Telescope Experiment (LCTE), a 4-m precursor to the LLT; the 2-m Lunar Transit Telescope (LTT); and its precursor, the 1-m Lunar Ultraviolet Telescope Experiment (LUTE). The feasibility of developing and deploying each telescope was assessed and system requirements and options for supporting technologies, subsystems, transportation, and operations were detailed. Influences of lunar environment factors and site selection on telescope design and operation were evaluated, and design approaches and key tradeoffs were established. This paper provides an overview of the study results. Design concepts and brief system descriptions are provided, including subsystem and mission options selected for the concepts.

  16. Wide Field Infrared Survey Telescope [WFIRST]: telescope design and simulated performance

    Science.gov (United States)

    Goullioud, R.; Content, D. A.; Kuan, G. M.; Moore, J. D.; Chang, Z.; Sunada, E. T.; Villalvazo, J.; Hawk, J. P.; Armani, N. V.; Johnson, E. L.; Powell, C. A.

    2012-09-01

    The Wide Field Infrared Survey Telescope (WFIRST) mission concept was ranked first in new space astrophysics missions by the Astro2010 Decadal Survey, incorporating the Joint Dark Energy Mission payload concept and multiple science white papers. This mission is based on a space telescope at L2 studying exoplanets [via gravitational microlensing], probing dark energy, and surveying the near infrared sky. Since the release of the Astro2010 Decadal Survey, the team has been working with the WFIRST Science Definition Team to refine mission and payload concepts. We present the current interim reference mission point design of the payload, based on the use of a 1.3m unobscured aperture three mirror anastigmat form, with focal imaging and slit-less spectroscopy science channels. We also present the first results of Structural/Thermal/Optical performance modeling of the telescope point design.

  17. Optical Property Retention Methods for the T-170M Space Telescope Mirrors Surface in the Project «Spektr-UF» at the Preflight Preparation Stage

    Directory of Open Access Journals (Sweden)

    F L. Chubarov

    2017-01-01

    Full Text Available Astrophysical observations in the ultraviolet band have many advantages. At present, the «Spektr-UF» project is under implementation to create a large space observatory for operation in the ultraviolet spectrum.Requirements for the ultraviolet telescope optics quality are extremely high. Therefore, both to manufacture such a large space telescope as the T-170M and to transport it to the launch complex are rather difficult challenges in terms of technology.When manufacturing optical elements of the telescope T-170M, a combination of Al+MgF2 coatings has been preferred. At the same time, atmospheric oxygen penetrates through the pores in the magnesium fluoride, thereby forming a Al2O3 oxide layer on the sputtered aluminum, which significantly degrades the UV reflectivity of the mirror surface. It is also necessary to fulfill the requirements for surface cleanliness of optical system elements of the telescope during the finished product transportation and its storage and to provide for the autonomous operation of the system that maintains atmosphere control.To solve the set tasks:1    a dust-proof-and-moisture-proof sheath (DPAMPS was designed to prevent the optical system mirror surfaces of the telescope from coming in contact with atmosphere;2    to provide a controlled atmosphere inside the DPAMPS the need is justified to blow gaseous nitrogen of special purity (grade 1 in accordance with GOST 9293-74 with a dew point temperature of -50°С, at most, inside the telescope; calculations have proved that charging with the super-atmospheric pressure of 10 kPa provides the optimal conditions for maintaining the optical properties of the space telescope mirrors surface, and also minimizes the loads on the easily damaging elements of the telescope;3    to ensure the required cleanliness of the optical system elements surfaces of the telescope inside the DPAMPS, a class of purity Class 7 ISO, at worst, is established in accordance with GOST

  18. PALM-3000: EXOPLANET ADAPTIVE OPTICS FOR THE 5 m HALE TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Dekany, Richard; Bouchez, Antonin; Baranec, Christoph; Hale, David; Zolkower, Jeffry; Henning, John; Croner, Ernest; McKenna, Dan; Hildebrandt, Sergi; Milburn, Jennifer [Caltech Optical Observatories, California Institute of Technology, 1200 East California Boulevard, MC 11-17, Pasadena, CA 91125 (United States); Roberts, Jennifer; Burruss, Rick; Truong, Tuan; Guiwits, Stephen; Angione, John; Trinh, Thang; Shelton, J. Christopher; Palmer, Dean; Troy, Mitchell; Tesch, Jonathan, E-mail: rgd@astro.caltech.edu [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Boulevard, Pasadena, CA 91109 (United States)

    2013-10-20

    We describe and report first results from PALM-3000, the second-generation astronomical adaptive optics (AO) facility for the 5.1 m Hale telescope at Palomar Observatory. PALM-3000 has been engineered for high-contrast imaging and emission spectroscopy of brown dwarfs and large planetary mass bodies at near-infrared wavelengths around bright stars, but also supports general natural guide star use to V ≈ 17. Using its unique 66 × 66 actuator deformable mirror, PALM-3000 has thus far demonstrated residual wavefront errors of 141 nm rms under ∼1'' seeing conditions. PALM-3000 can provide phase conjugation correction over a 6.''4 × 6.''4 working region at λ = 2.2 μm, or full electric field (amplitude and phase) correction over approximately one-half of this field. With optimized back-end instrumentation, PALM-3000 is designed to enable 10{sup –7} contrast at 1'' angular separation, including post-observation speckle suppression processing. While continued optimization of the AO system is ongoing, we have already successfully commissioned five back-end instruments and begun a major exoplanet characterization survey, Project 1640.

  19. A monolithic silicon detector telescope

    International Nuclear Information System (INIS)

    Cardella, G.; Amorini, F.; Cabibbo, M.; Di Pietro, A.; Fallica, G.; Franzo, G.; Figuera, P.; Papa, M.; Pappalardo, G.; Percolla, G.; Priolo, F.; Privitera, V.; Rizzo, F.; Tudisco, S.

    1996-01-01

    An ultrathin silicon detector (1 μm) thick implanted on a standard 400 μm Si-detector has been built to realize a monolithic telescope detector for simultaneous charge and energy determination of charged particles. The performances of the telescope have been tested using standard alpha sources and fragments emitted in nuclear reactions with different projectile-target colliding systems. An excellent charge resolution has been obtained for low energy (less than 5 MeV) light nuclei. A multi-array lay-out of such detectors is under construction to charge identify the particles emitted in reactions induced by low energy radioactive beams. (orig.)

  20. LSST telescope and site status

    Science.gov (United States)

    Gressler, William J.

    2016-07-01

    The Large Synoptic Survey Telescope (LSST) Project1 received its construction authorization from the National Science Foundation in August 2014. The Telescope and Site (T and S) group has made considerable progress towards completion in subsystems required to support the scope of the LSST science mission. The LSST goal is to conduct a wide, fast, deep survey via a 3-mirror wide field of view optical design, a 3.2-Gpixel camera, and an automated data processing system. The summit facility is currently under construction on Cerro Pachón in Chile, with major vendor subsystem deliveries and integration planned over the next several years. This paper summarizes the status of the activities of the T and S group, tasked with design, analysis, and construction of the summit and base facilities and infrastructure necessary to control the survey, capture the light, and calibrate the data. All major telescope work package procurements have been awarded to vendors and are in varying stages of design and fabrication maturity and completion. The unique M1M3 primary/tertiary mirror polishing effort is completed and the mirror now resides in storage waiting future testing. Significant progress has been achieved on all the major telescope subsystems including the summit facility, telescope mount assembly, dome, hexapod and rotator systems, coating plant, base facility, and the calibration telescope. In parallel, in-house efforts including the software needed to control the observatory such as the scheduler and the active optics control, have also seen substantial advancement. The progress and status of these subsystems and future LSST plans during this construction phase are presented.

  1. Isomer beam elastic scattering: 26mAl(p, p) for astrophysics

    Science.gov (United States)

    Kahl, D.; Shimizu, H.; Yamaguchi, H.; Abe, K.; Beliuskina, O.; Cha, S. M.; Chae, K. Y.; Chen, A. A.; Ge, Z.; Hayakawa, S.; Imai, N.; Iwasa, N.; Kim, A.; Kim, D. H.; Kim, M. J.; Kubono, S.; Kwag, M. S.; Liang, J.; Moon, J. Y.; Nishimura, S.; Oka, S.; Park, S. Y.; Psaltis, A.; Teranishi, T.; Ueno, Y.; Yang, L.

    2018-01-01

    The advent of radioactive ground-state beams some three decades ago ultimately sparked a revolution in our understanding of nuclear physics. However, studies with radioactive isomer beams are sparse and have often required sophisticated apparatuses coupled with the technologies of ground-state beams due to typical mass differences on the order of hundreds of keV and vastly different lifetimes for isomers. We present an application of a isomeric beam of 26mAl to one of the most famous observables in nuclear astrophysics: galactic 26Al. The characteristic decay of 26Al in the Galaxy was the first such specific radioactivity to be observed originating from outside the Earth some four decades ago. We present a newly-developed, novel technique to probe the structure of low-spin states in 27Si. Using the Center for Nuclear Study low-energy radioisotope beam separator (CRIB), we report on the measurement of 26mAl proton resonant elastic scattering conducted with a thick target in inverse kinematics. The preliminary results of this on-going study are presented.

  2. Prospects for the CERN Axion Solar Telescope Sensitivity to 14.4 keV Axions

    CERN Document Server

    Jakovcic, K; Aune, S; Avignone, F T; Barth, K; Belov, A; Beltrn, B; Bruninger, H; Carmona, J M; Cebrin, S; Collar, J I; Dafni, T; Davenport, M; Di Lella, L; Eleftheriadis, C; Fanourakis, G K; Ferrer-Ribas, E; Fischer, H; Franz, J; Friedrich, P; Geralis, T; Giomataris, Ioanis; Gninenko, S; Hasinoff, M D; Heinsius, F H; Hoffmann, Dieter H H; Irastorza, I G; Jacoby, J; Kang, D; Knigsmann, K; Kotthaus, R; Krcmar, M; Kousouris, a K; Kuster, M; Laki, B; Lasseur, C; Liolios, A; Ljubici, A; Lutz, G; Luzn, G; Miller, D W; Morales, A; Morales, J; Ortiz, A; Papaevangelou, T; Placci, A; Raffelt, G; Ruz, J; Riege, H; Semertzidis, Y K; Serpico, Pasquale Dario; Stewart, o L; Vieira, J D; Villar, J; Vogel, J; Walckiers, L; Zioutas, K; Jakovcic, Kresimir

    2007-01-01

    The CERN Axion Solar Telescope (CAST) is searching for solar axions using the 9.0 T strong and 9.26 m long transverse magnetic field of a twin aperture LHC test magnet, where axions could be converted into X-rays via reverse Primakoff process. Here we explore the potential of CAST to search for 14.4 keV axions that could be emitted from the Sun in M1 nuclear transition between the first, thermally excited state, and the ground state of 57Fe nuclide. Calculations of the expected signals, with respect to the axion-photon coupling, axion-nucleon coupling and axion mass, are presented in comparison with the experimental sensitivity.

  3. Optical and mechanical design and characterization of the new baffle for the 2.4-m Thai National Telescope

    Science.gov (United States)

    Buisset, Christophe; Prasit, Apirat; Lépine, Thierry; Poshyajinda, Saran

    2015-09-01

    The first astronomical images obtained at the 2.4 m Thai National Telescope (TNT) during observations in bright moon conditions were contaminated by high levels of light scattered by the telescope structure. We identified that the origins of this scattered light were the M3 folding mirror baffle and the tube placed inside the fork between the M3 and the M4 mirrors. We thus decided to design and install a new baffle. In a first step, we calculated the optical and mechanical inputs needed to define the baffle optical design. These inputs were: the maximum length of the baffle, the maximum dimensions of the vanes and the incident beam diameter between M3 and M4 mirrors. In a second step, we defined the number, the position and the diameter of the vanes to remove the critical objects from the detector's FOV by using a targeted method. Then, we verified that the critical objects were moved away from the detector's view. In a third step, we designed and manufactured the baffle. The mechanical design is made of 21 sections (1 section for each vane) and comprises an innovative mechanism for the adjustment of the baffle position. The baffle installation and adjustment is performed in less than 20 minutes by 2 operators. In a fourth step, we installed and characterized the baffle by using a pinhole camera. We quantified the performance improvement and we identified the baffle areas at the origin of the residual stray light signal. Finally, we performed targeted on-sky observations to test the baffle in real conditions.

  4. First lunar occultation results from the 2.4 m Thai national telescope equipped with ULTRASPEC

    Energy Technology Data Exchange (ETDEWEB)

    Richichi, A.; Irawati, P.; Soonthornthum, B. [National Astronomical Research Institute of Thailand, 191 Siriphanich Building, Huay Kaew Road, Suthep, Muang, Chiang Mai 50200 (Thailand); Dhillon, V. S. [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom); Marsh, T. R., E-mail: andrea4work@gmail.com [Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL (United Kingdom)

    2014-11-01

    The recently inaugurated 2.4 m Thai National Telescope (TNT) is equipped with, among other instruments, the ULTRASPEC low-noise, frame-transfer EMCCD camera. At the end of its first official observing season, we report on the use of this facility to record high time resolution imaging using small detector subarrays with a sampling as fast as several 10{sup 2} Hz. In particular, we have recorded lunar occultations of several stars that represent the first contribution to this area of research made from Southeast Asia with a telescope of this class. Among the results, we discuss an accurate measurement of α Cnc, which has been reported previously as a suspected close binary. Attempts by several authors to resolve this star have so far met with a lack of unambiguous confirmation. With our observation we are able to place stringent limits on the projected angular separation (<0.''003) and brightness (Δm > 5) of a putative companion. We also present a measurement of the binary HR 7072, which extends considerably the time coverage available for its yet undetermined orbit. We discuss our precise determination of the flux ratio and projected separation in the context of other available data. We conclude by providing an estimate of the performance of ULTRASPEC at TNT for lunar occultation work. This facility can help to extend the lunar occultation technique in a geographical area where no comparable resources were available until now.

  5. “An Instrument for the Frontiers of Modern Astronomy”: An Exhibit for the Harlan J. Smith 2.7-m Telescope Lobby at McDonald Observatory

    Science.gov (United States)

    Preston, Sandra; Cianciolo, F.; Jones, T.; Wetzel, M.; Mace, K.; Barrick, R.; Kelton, P.; Cochran, A.; Johnson, R.

    2007-05-01

    Of the 100,000 visitors that come to McDonald Observatory each year, about half of them visit the Harlan J. Smith 2.7-m Telescope. Visitors experience the 2.7-m telescope as part of a guided tour, a self-guided tour, and during the once-a-month special viewing nights, that are unique to a telescope this size. Recent safety requirements limiting visitor access to the dome-floor level and a need to modernize out-of-date displays in the 2.7-m lobby area, motivated us to do this new exhibit. A planning team consisting of McDonald Observatory personnel from Outreach & Education, Physical Plant, and Administration came together via videoconferences (between Austin and Fort Davis) to develop an exhibit for the lobby area of this telescope. As the planning process unfolded, the team determined that a mix of static displays and modern technology such as flat panel displays and DVD video were key to presenting the history of the facility, introducing basic concepts about the telescope and current research, as well as giving virtual access to the dome floor for visitors on the self-guided tour. This approach also allows for content development and much of production to be done in-house, which was important from both a cost and maintenance standpoint. A representative of the Smith family was also consulted throughout the development of the exhibit to insure that the exhibit plan was seen as an acceptable memorial to the late director. The exhibit was installed in January 2007.

  6. DESTINY, The Dark Energy Space Telescope

    Science.gov (United States)

    Pasquale, Bert A.; Woodruff, Robert A.; Benford, Dominic J.; Lauer, Tod

    2007-01-01

    We have proposed the development of a low-cost space telescope, Destiny, as a concept for the NASA/DOE Joint Dark Energy Mission. Destiny is a 1.65m space telescope, featuring a near-infrared (0.85-1.7m) survey camera/spectrometer with a moderate flat-field field of view (FOV). Destiny will probe the properties of dark energy by obtaining a Hubble diagram based on Type Ia supernovae and a large-scale mass power spectrum derived from weak lensing distortions of field galaxies as a function of redshift.

  7. Development and Performances of the Magic Telescope

    Science.gov (United States)

    Bastieri, D.; Bigongiari, C.; Dazzi, F.; Mariotti, M.; Moralejo, A.; Peruzzo, L.; Saggion, A.; Tonello, N.

    2002-11-01

    The MAGIC Collaboration is building an imaging Čerenkov telescope at La Palma site (2200 m a.s.l.), in the Canary Islands, to observe gamma rays in the hundred-GeV region. The MAGIC telescope, with its reflecting parabolic dish, 17 m in diameter, and a two-level pattern trigger designed to cope with severe trigger rates, is the Čerenkov telescope with the lowest envisaged energy threshold. Due to its lightweight alto-azimuthal mounting, MAGIC can be repositioned in less than 30 seconds, becoming the only detector, with an adequate effective area, capable to observe GRB phenomena above 30 GeV. MAGIC telescope is characterised by a 30 GeV energy threshold and a sensitivity of 6×l0-11 cm-2s-1 for a 5σ-detection in 50-hours of observation. In this report, some future scientific goals for MAGIC will be highlighted and the technical development for the main elements of the telescope will be detailed. Special emphasis will be given to the construction of the individual metallic mirrors which form the reflecting surface and the development of the fast pattern-recognition trigger.

  8. Liverpool Telescope and Liverpool Telescope 2

    Science.gov (United States)

    Copperwheat, C. M.; Steele, I. A.; Barnsley, R. M.; Bates, S. D.; Clay, N. R.; Jermak, H.; Marchant, J. M.; Mottram, C. J.; Piascik, A.; Smith, R. J.

    2016-12-01

    The Liverpool Telescope is a fully robotic optical/near-infrared telescope with a 2-metre clear aperture, located at the Observatorio del Roque de los Muchachos on the Canary Island of La Palma. The telescope is owned and operated by Liverpool John Moores University, with financial support from the UK's Science and Technology Facilities Council. The telescope began routine science operations in 2004 and is a common-user facility with time available through a variety of committees via an open, peer reviewed process. Seven simultaneously mounted instruments support a broad science programme, with a focus on transient follow-up and other time domain topics well suited to the characteristics of robotic observing. Development has also begun on a successor facility, with the working title `Liverpool Telescope 2', to capitalise on the new era of time domain astronomy which will be brought about by the next generation of survey facilities such as LSST. The fully robotic Liverpool Telescope 2 will have a 4-metre aperture and an improved response time. In this paper we provide an overview of the current status of both facilities.

  9. Las Cumbres Observatory 1-Meter Global Science Telescope Network

    Science.gov (United States)

    Pickles, Andrew; Dubberley, M.; Haldeman, B.; Haynes, R.; Posner, V.; Rosing, W.; staff, LCOGT

    2009-05-01

    We present the optical, mechanical and electronic design of the LCOGT 1-m telescope. These telescopes are planned to go in pairs to each of 6 sites worldwide, complementing 0.4m telescopes and 2-m telescopes at two existing sites. This science network is designed to provide continuously available photometric monitoring and spectroscopy of variable sources. The 1-m optical design is an f/8 quasi-RC system, with a doublet corrector and field flattener to provide good image quality out to 0.8 degrees. The field of view of the Fairchild 4K science CCD is 27 arcmin, with 0.39 arcsec pixels. The mechanical design includes a stiff C-ring equatorial mount and friction drive rollers, mounted on a triangular base that can be adjusted for latitude. Another friction drive is coupled at the Declination axis to the M1 mirror cell, that forms the main Optical Tube Assembly (OTA) structural element. The OTA design includes a stiff carbon fiber truss assembly, with offset vanes to an M2 drive that provides remote focus, tilt and collimation. The tube assembly weighs about 600 Kg, including Hextek mirrors, 4K science CCD, filter wheel, autoguiders and medium resolution spectrograph pick-off fiber. The telescopes will be housed in domes at existing observatory sites. They are designed to operate remotely and reliably under centralized control for automatic, optimized scheduling of observations with available hardware.

  10. MROI Array telescopes: the relocatable enclosure domes

    Science.gov (United States)

    Marchiori, G.; Busatta, A.; Payne, I.

    2016-07-01

    The MROI - Magdalena Ridge Interferometer is a project which comprises an array of up to 10 1.4m diameter mirror telescopes arranged in a "Y" configuration. Each of these telescopes will be housed inside a Unit Telescope Enclosure (UTE) which are relocatable onto any of 28 stations. EIE GROUP Srl, Venice - Italy, was awarded the contract for the design, the construction and the erection on site of the MROI by the New Mexico Institute of Mining and Technology. The close-pack array of the MROI - including all 10 telescopes, several of which are at a relative distance of less than 8m center to center from each other - necessitated an original design for the Unit Telescope Enclosure (UTE). This innovative design enclosure incorporates a unique dome/observing aperture system to be able to operate in the harsh environmental conditions encountered at an altitude of 10,460ft (3,188m). The main characteristics of this Relocatable Enclosure Dome are: a Light insulated Steel Structure with a dome made of composites materials (e.g. glass/carbon fibers, sandwich panels etc.), an aperture motorized system for observation, a series of louvers for ventilation, a series of electrical and plants installations and relevant auxiliary equipment. The first Enclosure Dome is now under construction and the completion of the mounting on site id envisaged by the end of 2016. The relocation system utilizes a modified reachstacker (a transporter used to handle freight containers) capable of maneuvering between and around the enclosures, capable of lifting the combined weight of the enclosure with the telescope (30tons), with minimal impacts due to vibrations.

  11. The science case and data processing strategy for the Thinned Aperture Light Collector (TALC): a project for a 20 m far-infrared space telescope

    International Nuclear Information System (INIS)

    Sauvage, Marc; Durand, Gilles A.; Rodriguez, Louis R.; Starck, Jean-Luc; Ronayette, Samuel; Aussel, Herve; Minier, Vincent; Motte, Frederique; Pantin, Eric J.; Sureau, Florent

    2014-01-01

    The future of far-infrared observations rests on our capacity to reach sub-arc-second angular resolution around 100 μm, in order to achieve a significant advance with respect to our current capabilities. Furthermore, by reaching this angular resolution we can bridge the gap between capacities offered by the JWST in the near infrared and those allowed by ALMA in the submillimeter, and thus benefit from similar resolving capacities over the whole wavelength range where interstellar dust radiates and where key atomic and molecular transitions are found. In an accompanying paper, we present a concept of a deployable annular telescope, named TALC for Thinned Aperture Light Collector, reaching 20 m in diameter. Being annular, this telescope features a main beam width equivalent to that of a 27 m telescope, i.e. an angular resolution of 0.92'' at 100 μm. In this paper we focus on the science case of such a telescope as well on the aspects of unconventional data processing that come with this unconventional optical configuration. The principal science cases of TALC revolve around its imaging capacities, that allow resolving the Kuiper belt in extra-solar planetary systems, or the filamentary scale in star forming clouds all the way to the Galactic Center, or the Narrow Line Region in Active Galactic Nuclei of the Local Group, or breaking the confusion limit to resolve the Cosmic Infrared Background. Equipping this telescope with detectors capable of imaging polarimetry offers as well the extremely interesting perspective to study the influence of the magnetic field in structuring the interstellar medium. We will then present simulations of the optical performance of such a telescope. The main feature of an annular telescope is the small amount of energy contained in the main beam, around 30% for the studied configuration, and the presence of bright diffraction rings. Using simulated point spread functions for realistic broad-band filters, we study the observing

  12. Ghost telescope and ghost Fourier telescope with thermal light

    International Nuclear Information System (INIS)

    Gong Wenlin; Han Shensheng

    2011-01-01

    As important observation tools, telescopes are very useful in remote observations. We report a proof-of-principle experimental demonstration of ghost telescope scheme and show that, by measuring the intensity correlation of two light fields and only changing the position of the detector in the reference path, ghost telescope and ghost Fourier telescope can be obtained even if a single-pixel detector is fixed in Fresnel region of the object. Differences between conventional telescope and ghost telescope are also discussed.

  13. The Timepix3 Telescope for LHCb Upgrade RD 1 measurements

    CERN Document Server

    Saunders, Daniel Martin

    2016-01-01

    The Timepix3 telescope is a high rate, data driven beam telescope created for LHCb upgrade studies, such as sensor performance for prototypes of the vertex locator (VELO) upgrade. When testing VELO prototypes the readout is identical to the telescope, and additionally, a simple way to integrate triggers from other detectors is also provided, allowing tracks to be synchronised offline with other devices under test. Examples of LHCb upgrade detectors which have been qualified with the Timepix3 telescope are the Upstream Tracker (UT), Scintillating Fibres (SciFi), Ring Imaging CHerenkov (RICH), and Time Of internally Reflected CHerenkov light (TORCH). The telescope was installed in the SPS North hall at CERN. It consists of 8 planes with 300 μ m p-on-n silicon sensors read out by Timepix3 ASICs. Tracks measured with the telescope have excellent temporal ( ∼ 1 ns) and spatial resolution ( 2 μ m). The telescope has been operated with a rate of tracks written to disk up to 5 MHz - limited only by conditions at ...

  14. Technological Aspects of Creating Large-size Optical Telescopes

    Directory of Open Access Journals (Sweden)

    V. V. Sychev

    2015-01-01

    Full Text Available A concept of the telescope creation, first of all, depends both on a choice of the optical scheme to form optical radiation and images with minimum losses of energy and information and on a choice of design to meet requirements for strength, stiffness, and stabilization characteristics in real telescope operation conditions. Thus, the concept of creating large-size telescopes, certainly, involves the use of adaptive optics methods and means.The level of technological capabilities to realize scientific and engineering ideas define a successful development of large-size optical telescopes in many respects. All developers pursue the same aim that is to raise an amount of information by increasing a main mirror diameter of the telescope.The article analyses the adaptive telescope designs developed in our country. Using a domestic ACT-25 telescope as an example, it considers creation of large-size optical telescopes in terms of technological aspects. It also describes the telescope creation concept features, which allow reaching marginally possible characteristics to ensure maximum amount of information.The article compares a wide range of large-size telescopes projects. It shows that a domestic project to create the adaptive ACT-25 super-telescope surpasses its foreign counterparts, and there is no sense to implement Euro50 (50m and OWL (100m projects.The considered material gives clear understanding on a role of technological aspects in development of such complicated optic-electronic complexes as a large-size optical telescope. The technological criteria of an assessment offered in the article, namely specific informational content of the telescope, its specific mass, and specific cost allow us to reveal weaknesses in the project development and define a reserve regarding further improvement of the telescope.The analysis of results and their judgment have shown that improvement of optical largesize telescopes in terms of their maximum

  15. Far Sidelobes Measurement of the Atacama Cosmology Telescope

    Science.gov (United States)

    Duenner, Rolando; Gallardo, Patricio; Wollack, Ed; Henriquez, Fernando; Jerez-Hanckes, Carlos

    2012-01-01

    The Atacama Cosmology Telescope (ACT) is a 6m telescope designed to map the Cosmic Microwave Background (CMB) simultaneously at 145GHz, 220 GHz and 280 GHz. Its off-axis Gregorian design is intended to minimize and control the off-axis sidelobe response, which is critical for scientific purposes. The expected sidelobe level for this kind of design is less than -50 dB and can be challenging to measure. Here we present a measurement of the 145 GHz far sidelobes of ACT done on the near-field of the telescope. We used a 1 mW microwave source placed 13 meters away from the telescope and a chopper wheel to produce a varying signal that could be detected by the camera for different orientations of the telescope. The source feed was designed to produce a wide beam profile. Given that the coupling is expected to be dominated by diffraction over the telescope shielding structure, when combined with a measurements of the main beam far field response, these measurement can be used to validate elements of optical design and constrain the level of spurious coupling at large angles. Our results show that the diffractive coupling beyond the ground screen is consistently below -75 dB, satisfying the design expectations.

  16. The Submillimeter Telescope (SMT) project

    International Nuclear Information System (INIS)

    Martin, R.N.; Baars, J.W.M.

    1990-01-01

    To exploit the potential of submillimeter astronomy, the Submillimeter Telescope (SMT) will be located at an altitude of 3178 meters on Emerald Peak 75 miles northeast of Tucson in Southern Arizona. The instrument is an altazimuth mounted f/13.8 Cassegrain homology telescope with two Nasmyth and bent Cassegrain foci. It will have diffraction limited performance at a wavelength of 300 microns and an operating overall figure accuracy of 15 microns rms. An important feature of the SMT is the construction of the primary and secondary reflectors out of aluminum-core CFRP face sheet sandwich panels, and the reflector backup structure and secondary support out of CFRP structural elements. This modern technology provides both a means for reaching the required precision of the SMT for both night and day operation (basically because of the low coefficient of thermal expansion and high strength-to-weight ratio of CFRP) and a potential route for the realization of lightweight telescopes of even greater accuracy in the future. The SMT will be the highest accuracy radio telescope ever built (at least a factor of 2 more accurate than existing telescopes). In addition, the SMT will be the first 10 m-class submillimeter telescope with a surface designed for efficient measurements at the important 350 microns wavelength atmospheric window. 9 refs

  17. The Polatron: A Millimeter-Wave Cosmic Microwave Background Polarimeter for the OVRO 5.5 m Telescope

    OpenAIRE

    Philhour, B. J.; Keating, B. G.; Ade, P. A. R.; Bhatia, R. S.; Bock, J. J.; Church, S. E.; Glenn, J.; Hinderks, J. R.; Hristov, V. V.; Jones, W. C.; Kamionkowski, M.; Kumar, D. E.; Lange, A. E.; Leong, J. R.; Marrone, D. P.

    2001-01-01

    We describe the development of a bolometric receiver designed to measure the arcminute-scale polarization of the cosmic microwave background (CMB). The Polatron will be mounted at the Cassegrain focus of the 5.5 m telescope at the Owens Valley Radio Observatory (OVRO). The receiver will measure both the Q and U Stokes parameters over a 20% pass-band centered near 100 GHz, with the input polarization signal modulated at ~0.6 Hz by a rotating, birefringent, quartz half-wave plate. In six months...

  18. The control system of the 12-m medium-size telescope prototype: a test-ground for the CTA array control

    Science.gov (United States)

    Oya, I.; Anguner, E. A.; Behera, B.; Birsin, E.; Fuessling, M.; Lindemann, R.; Melkumyan, D.; Schlenstedt, S.; Schmidt, T.; Schwanke, U.; Sternberger, R.; Wegner, P.; Wiesand, S.

    2014-07-01

    The Cherenkov Telescope Array (CTA) will be the next generation ground-based very-high energy -ray observatory. CTA will consist of two arrays: one in the Northern hemisphere composed of about 20 telescopes, and the other one in the Southern hemisphere composed of about 100 telescopes, both arrays containing telescopes of different sizes and types and in addition numerous auxiliary devices. In order to provide a test-ground for the CTA array control, the steering software of the 12-m medium size telescope (MST) prototype deployed in Berlin has been implemented using the tools and design concepts under consideration to be used for the control of the CTA array. The prototype control system is implemented based on the Atacama Large Millimeter/submillimeter Array (ALMA) Common Software (ACS) control middleware, with components implemented in Java, C++ and Python. The interfacing to the hardware is standardized via the Object Linking and Embedding for Process Control Unified Architecture (OPC UA). In order to access the OPC UA servers from the ACS framework in a common way, a library has been developed that allows to tie the OPC UA server nodes, methods and events to the equivalents in ACS components. The front-end of the archive system is able to identify the deployed components and to perform the sampling of the monitoring points of each component following time and value change triggers according to the selected configurations. The back-end of the archive system of the prototype is composed by two different databases: MySQL and MongoDB. MySQL has been selected as storage of the system configurations, while MongoDB is used to have an efficient storage of device monitoring data, CCD images, logging and alarm information. In this contribution, the details and conclusions on the implementation of the control software of the MST prototype are presented.

  19. The Southern African Large Telescope project

    Science.gov (United States)

    Buckley, David A. H.; Charles, Philip A.; Nordsieck, Kenneth H.; O'Donoghue, Darragh

    The recently completed Southern African Large Telescope (SALT) is a low cost, innovative, 10 m class optical telescope, which began limited scientific operations in August 2005, just 5 years after ground-breaking. This paper describes the design and construction of SALT, including the first-light instruments, SALTICAM and the Robert Stobie Spectrograph (RSS). A rigorous systems engineering approach has ensured that SALT was built to specification, on budget, close to the original schedule and using a relatively small project team. The design trade-offs, which include an active spherical primary mirror array and a fixed altitude telescope with a prime focus tracker, although restrictive in comparison to conventional telescopes, have resulted in an affordable 10 m class telescope for South Africa and its ten partners. Coupled with an initial set of two seeing-limited instruments that concentrate on the UV-visible region (320 - 900 nm) and featuring some niche observational capabilities, SALT will have an ability to conduct some unique science. This includes high time resolution studies, for which some initial results have already been obtained. Many of the versatile modes available with the RSS - which is currently being commissioned - are unique and provide unparallelled opportunities for imaging polarimetry and spectropolarimetry. Likewise, Multi-Object Spectroscopy (with slit masks) and imaging spectroscopy with the RSS, the latter using Fabry-Perot étalons and interference filters, will extend the multiplex advantage over resolutions from 300 to 9000 and fields of view of 2 to 8 arcminutes. Future instrumentation plans include an extremely stable, fibre-fed, high resolution échelle spectrograph and a near-IR (to between 1.5 to 1.7 μm) extension to the RSS. Future development possibilities include phasing the primary mirror and AO. Finally, extrapolations of the SALT/HET designs to ELT proportions remain viable and are surely more affordable than conventional

  20. Modular Orbital Demonstration of an Evolvable Space Telescope (MODEST)

    Science.gov (United States)

    Baldauf, Brian; Conti, Alberto

    2016-01-01

    The "Search for Life" via imaging of exoplanets is a mission that requires extremely stable telescopes with apertures in the 10 m to 20 m range. The High Definition Space Telescope (HDST) envisioned for this mission would have an aperture >10 m, which is a larger payload than what can be delivered to space using a single launch vehicle. Building and assembling the mirror segments enabling large telescopes will likely require multiple launches and assembly in space. Space-based telescopes with large apertures will require major changes to system architectures.The Optical Telescope Assembly (OTA) for HDST is a primary mission cost driver. Enabling and affordable solutions for this next generation of large aperture space-based telescope are needed.This paper reports on the concept for the Modular Orbital Demonstration of an Evolvable Space Telescope (MODEST), which demonstrates on-orbit robotic and/or astronaut assembly of a precision optical telescope in space. It will also facilitate demonstration of active correction of phase and mirror shape. MODEST is proposed to be delivered to the ISS using standard Express Logistics Carriers (ELCs) and can mounted to one of a variety of ISS pallets. Post-assembly value includes space, ground, and environmental studies, and a testbed for new instruments. This demonstration program for next generation mirror technology provides significant risk reduction and demonstrates the technology in a six-mirror phased telescope. Other key features of the demonstration include the use of an active primary optical surface with wavefront feedback control that allows on-orbit optimization and demonstration of precise surface control to meet optical system wavefront and stability requirements.MODEST will also be used to evaluate advances in lightweight mirror and metering structure materials such as SiC or Carbon Fiber Reinforced Polymer that have excellent mechanical and thermal properties, e.g. high stiffness, high modulus, high thermal

  1. The South Pole Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Ruhl, J.E.; Ade, P.A.R.; Carlstrom, J.E.; Cho, H.M.; Crawford,T.; Dobbs, M.; Greer, C.H.; Halverson, N.W.; Holzapfel, W.L.; Lanting,T.M.; Lee, A.T.; Leitch, E.M.; Leong, J.; Lu, W.; Lueker, M.; Mehl, J.; Meyer, S.S.; Mohr, J.J.; Padin, S.; Plagge, T.; Pryke, C.; Runyan, M.C.; Schwan, D.; Sharp, M.K.; Spieler, H.; Staniszewski, Z.; Stark, A.A.

    2004-11-04

    A new 10 meter diameter telescope is being constructed for deployment at the NSF South Pole research station. The telescope is designed for conducting large-area millimeter and sub-millimeter wave surveys of faint, low contrast emission, as required to map primary and secondary anisotropies in the cosmic microwave background. To achieve the required sensitivity and resolution, the telescope design employs an off-axis primary with a 10 m diameter clear aperture. The full aperture and the associated optics will have a combined surface accuracy of better than 20 microns rms to allow precision operation in the submillimeter atmospheric windows. The telescope will be surrounded with a large reflecting ground screen to reduce sensitivity to thermal emission from the ground and local interference. The optics of the telescope will support a square degree field of view at 2mm wavelength and will feed a new 1000-element micro-lithographed planar bolometric array with superconducting transition-edge sensors and frequency-multiplexed readouts. The first key project will be to conduct a survey over 4000 degrees for galaxy clusters using the Sunyaev-Zeldovich Effect. This survey should find many thousands of clusters with a mass selection criteria that is remarkably uniform with redshift. Armed with redshifts obtained from optical and infrared follow-up observations, it is expected that the survey will enable significant constraints to be placed on the equation of state of the dark energy.

  2. Required Technologies for A 10-16 m UV-Visible-IR Telescope on the Moon

    Science.gov (United States)

    Johnson, Stewart W.; Wetzel, John P.

    1989-01-01

    A successor to the Hubble Space Telescope, incorporating a 10 to 16 meter mirror, and operating in the UV-Visible-IR is being considered for emplacement on the Moon in the 21st Century. To take advantage of the characteristics of the lunar environment, such a telescope requires appropriate advances in technology. These technologies are in the areas of contamination/interference control, test and evaluation, manufacturing, construction, autonomous operations and maintenance, power and heating/cooling, stable precision structures, optics, parabolic antennas, and communications/control. This telescope for the lunar surface needs to be engineered to operate for long periods with minimal intervention by humans or robots. What is essential for lunar observatory operation is enforcement of a systems engineering approach that makes compatible all lunar operations associated with habitation, resource development, and science.

  3. Construction of the Advanced Technology Solar Telescope

    Science.gov (United States)

    Rimmele, T. R.; Keil, S.; McMullin, J.; Knölker, M.; Kuhn, J. R.; Goode, P. R.; Rosner, R.; Casini, R.; Lin, H.; Tritschler, A.; Wöger, F.; ATST Team

    2012-12-01

    The 4m Advance Technology Solar Telescope (ATST) will be the most powerful solar telescope and the world's leading ground-based resource for studying solar magnetism that controls the solar wind, flares, coronal mass ejections and variability in the Sun's output. The project has entered its construction phase. Major subsystems have been contracted. As its highest priority science driver ATST shall provide high resolution and high sensitivity observations of the dynamic solar magnetic fields throughout the solar atmosphere, including the corona at infrared wavelengths. With its 4m aperture, ATST will resolve features at 0.″03 at visible wavelengths and obtain 0.″1 resolution at the magnetically highly sensitive near infrared wavelengths. A high order adaptive optics system delivers a corrected beam to the initial set of state-of-the-art, facility class instrumentation located in the Coudé laboratory facility. The initial set of first generation instruments consists of five facility class instruments, including imagers and spectro-polarimeters. The high polarimetric sensitivity and accuracy required for measurements of the illusive solar magnetic fields place strong constraints on the polarization analysis and calibration. Development and construction of a four-meter solar telescope presents many technical challenges, including thermal control of the enclosure, telescope structure and optics and wavefront control. A brief overview of the science goals and observational requirements of the ATST will be given, followed by a summary of the design status of the telescope and its instrumentation, including design status of major subsystems, such as the telescope mount assembly, enclosure, mirror assemblies, and wavefront correction

  4. Neutrino telescopes sensitivity to dark matter

    International Nuclear Information System (INIS)

    Albuquerque, I.F.M.; Lamoureux, J.; Smoot, G.F.

    2002-01-01

    The nature of the dark matter of the Universe is yet unknown and most likely is connected with new physics. The search for its composition is underway through direct and indirect detection. Fundamental physical aspects such as energy threshold, geometry and location are taken into account to investigate proposed neutrino telescopes of km3 volume sensitivities to dark matter. These sensitivities are just sufficient to test a few weakly interacting massive particle scenarios. Telescopes of km3 volume, such as IceCube, can definitely discover or exclude superheavy (M>1010 GeV) strong interacting massive particles (simpzillas). Smaller neutrino telescopes such as ANTARES, AMANDA-II and NESTOR can probe a large region of simpzilla parameter space

  5. Analysis of the GPS Observations of the Site Survey at Sheshan 25-m Radio Telescope in August 2008

    Science.gov (United States)

    Liu, L.; Cheng, Z. Y.; Li, J. L.

    2010-01-01

    The processing of the GPS observations of the site survey at Sheshan 25-m radio telescope in August 2008 is reported. Because each session in this survey is only about six hours, not allowing the subdaily high frequency variations in the station coordinates to be reasonably smoothed, and because there are serious cycle slips in the observations and a large volume of data would be rejected during the software automatic adjustment of slips, the ordinary solution settings of GAMIT needed to be adjusted by loosening the constraints in the a priori coordinates to 10 m, adopting the "quick" mode in the solution iteration, and combining Cview manual operation with GAMIT automatic fixing of cycle slips. The resulting coordinates of the local control polygon in ITRF2005 are then compared with conventional geodetic results. Due to large rotations and translations in the two sets of coordinates (geocentric versus quasi-topocentric), the seven transformation parameters cannot be solved for directly. With various trial solutions it is shown that with a partial pre-removal of the large parameters, high precision transformation parameters can be obtained with post-fit residuals at the millimeter level. This analysis is necessary to prepare the follow-on site and transformation survey of the VLBI and SLR telescopes at Sheshan

  6. Coronagraphic Wavefront Control for the ATLAST-9.2m Telescope

    Science.gov (United States)

    Lyon, RIchard G.; Oegerle, William R.; Feinberg, Lee D.; Bolcar, Matthew R.; Dean, Bruce H.; Mosier, Gary E.; Postman, Marc

    2010-01-01

    The Advanced Technology for Large Aperture Space Telescope (ATLAST) concept was assessed as one of the NASA Astrophysics Strategic Mission Concepts (ASMC) studies. Herein we discuss the 9.2-meter diameter segmented aperture version and its wavefront sensing and control (WFSC) with regards to coronagraphic detection and spectroscopic characterization of exoplanets. The WFSC would consist of at least two levels of sensing and control: (i) an outer coarser level of sensing and control to phase and control the segments and secondary mirror in a manner similar to the James Webb Space Telescope but operating at higher temporal bandwidth, and (ii) an inner, coronagraphic instrument based, fine level of sensing and control for both amplitude and wavefront errors operating at higher temporal bandwidths. The outer loop would control rigid-body actuators on the primary and secondary mirrors while the inner loop would control one or more segmented deformable mirror to suppress the starlight within the coronagraphic field-of view. Herein we discuss the visible nulling coronagraph (VNC) and the requirements it levies on wavefront sensing and control and show the results of closed-loop simulations to assess performance and evaluate the trade space of system level stability versus control bandwidth.

  7. Coronagraphic wavefront control for the ATLAST 9.2m telescope

    Science.gov (United States)

    Lyon, Richard G.; Oegerle, William R.; Feinberg, Lee D.; Bolcar, Matthew R.; Dean, Bruce H.; Mosier, Gary E.; Postman, Marc

    2010-07-01

    The Advanced Technology for Large Aperture Space Telescope (ATLAST) concept was assessed as one of the NASA Astrophysics Strategic Mission Concepts (ASMC) studies. Herein we discuss the 9.2-meter diameter segmented aperture version and its wavefront sensing and control (WFSC) with regards to coronagraphic detection and spectroscopic characterization of exoplanets. The WFSC would consist of at least two levels of sensing and control: (i) an outer coarser level of sensing and control to phase and control the segments and secondary mirror in a manner similar to the James Webb Space Telescope but operating at higher temporal bandwidth, and (ii) an inner, coronagraphic instrument based, fine level of sensing and control for both amplitude and wavefront errors operating at higher temporal bandwidths. The outer loop would control rigid-body actuators on the primary and secondary mirrors while the inner loop would control one or more segmented deformable mirror to suppress the starlight within the coronagraphic field-of-view. Herein we discuss the visible nulling coronagraph (VNC) and the requirements it levies on wavefront sensing and control and show the results of closed-loop simulations to assess performance and evaluate the trade space of system level stability versus control bandwidth.

  8. Summary and Conclusions of the 'JRA Beam Telescope 2025'-Forum at the 6th Beam Telescopes and Test Beams Workshop arXiv

    CERN Document Server

    Dreyling-Eschweiler, J.; Amjad, M.S.; Arling, J.-H.; Coates, T.; Dätwyler, A.; Dannheim, D.; van Dijk, M.W. U.; Eichhorn, T.; Gerbershagen, A.; Girard, O.; Gkotse, B.; Iguaz, F.J.; Kroll, J.; Ravotti, F.; Rossi, E.; Rummler, A.; Salvatore, F.; Spannagel, S.; Weers, M.; Weingarten, J.

    On January 17th 2018, a forum on a possible Joint Research Activity on a future common Beam Telescope was held during the 6th Beam Telescopes and Test Beams Workshop (BTTB) in Zurich, Switzerland. The BTTB workshop aims at bringing together the community involved in beam tests. It therefore offers a suitable platform to induce community-wide discussions. The forum and its discussions were well received and the participants concluded that appropriate actions should be undertaken promptly. Specific hardware and software proposals were discussed, with an emphasis on improving current common EUDET-type telescopes based on Mimosa26 sensors towards higher trigger rate capabilities in convolution with considerably improved time resolution. EUDAQ as a common top level DAQ and its modular structure is ready for future hardware. EUTelescope fulfils many requirements of a common reconstruction framework, but has also various drawbacks. Thus, requirements for a new common reconstruction framework were collected. A new co...

  9. DETECTION OF GAMMA-RAY EMISSION FROM THE STARBURST GALAXIES M82 AND NGC 253 WITH THE LARGE AREA TELESCOPE ON FERMI

    International Nuclear Information System (INIS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Bloom, E. D.; Borgland, A. W.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bonamente, E.; Brigida, M.; Bruel, P.; Burnett, T. H.

    2010-01-01

    We report the detection of high-energy γ-ray emission from two starburst galaxies using data obtained with the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. Steady point-like emission above 200 MeV has been detected at significance levels of 6.8σ and 4.8σ, respectively, from sources positionally coincident with locations of the starburst galaxies M82 and NGC 253. The total fluxes of the sources are consistent with γ-ray emission originating from the interaction of cosmic rays with local interstellar gas and radiation fields and constitute evidence for a link between massive star formation and γ-ray emission in star-forming galaxies.

  10. VizieR Online Data Catalog: Space telescope RM project. V. NGC5548 sp. monitoring (Pei+, 2017)

    Science.gov (United States)

    Pei, L.; Fausnaugh, M. M.; Barth, A. J.; Peterson, B. M.; Bentz, M. C.; De Rosa, G.; Denney, K. D.; Goad, M. R.; Kochanek, C. S.; Korista, K. T.; Kriss, G. A.; Pogge, R. W.; Bennert, V. N.; Brotherton, M.; Clubb, K. I.; Dalla Bonta, E.; Filippenko, A. V.; Greene, J. E.; Grier, C. J.; Vestergaard, M.; Zheng, W.; Adams, S. M.; Beatty, T. G.; Bigley, A.; Brown, J. E.; Brown, J. S.; Canalizo, G.; Comerford, J. M.; Coker, C. T.; Corsini, E. M.; Croft, S.; Croxall, K. V.; Deason, A. J.; Eracleous, M.; Fox, O. D.; Gates, E. L.; Henderson, C. B.; Holmbeck, E.; Holoien, T. W.-S.; Jensen, J. J.; Johnson, C. A.; Kelly, P. L.; Kim, S.; King, A.; Lau, M. W.; Li, M.; Lochhaas, C.; Ma, Z.; Manne-Nicholas, E. R.; Mauerhan, J. C.; Malkan, M. A.; McGurk, R.; Morelli, L.; Mosquera, A.; Mudd, D.; Sanchez, F. M.; Nguyen, M. L.; Ochner, P.; Ou-Yang, B.; Pancoast, A.; Penny, M. T.; Pizzella, A.; Poleski, R.; Runnoe, J.; Scott, B.; Schimoia, J. S.; Shappee, B. J.; Shivvers, I.; Simonian, G. V.; Siviero, A.; Somers, G.; Stevens, D. J.; Strauss, M. A.; Tayar, J.; Tejos, N.; Treu, T.; van Saders, J.; Vican, L.; Villanueva, S.; Yuk, H.; Zakamska, N. L.; Zhu, W.; Anderson, M. D.; Arevalo, P.; Bazhaw, C.; Bisogni, S.; Borman, G. A.; Bottorff, M. C.; Brandt, W. N.; Breeveld, A. A.; Cackett, E. M.; Carini, M. T.; Crenshaw, D. M.; de Lorenzo-Caceres, A.; Dietrich, M.; Edelson, R.; Efimova, N. V.; Ely, J.; Evans, P. A.; Ferland, G. J.; Flatland, K.; Gehrels, N.; Geier, S.; Gelbord, J. M.; Grupe, D.; Gupta, A.; Hall, P. B.; Hicks, S.; Horenstein, D.; Horne, K.; Hutchison, T.; Im, M.; Joner, M. D.; Jones, J.; Kaastra, J.; Kaspi, S.; Kelly, B. C.; Kennea, J. A.; Kim, M.; Kim, S. C.; Klimanov, S. A.; Lee, J. C.; Leonard, D. C.; Lira, P.; Macinnis, F.; Mathur, S.; McHardy, I. M.; Montouri, C.; Musso, R.; Nazarov, S. V.; Netzer, H.; Norris, R. P.; Nousek, J. A.; Okhmat, D. N.; Papadakis, I.; Parks, J. R.; Pott, J.-U.; Rafter, S. E.; Rix, H.-W.; Saylor, D. A.; Schnulle, K.; Sergeev, S. G.; Siegel, M.; Skielboe, A.; Spencer, M.; Starkey, D.; Sung, H.-I.; Teems, K. G.; Turner, C. S.; Uttley, P.; Villforth, C.; Weiss, Y.; Woo, J.-H.; Yan, H.; Young, S.; Zu, Y.

    2017-10-01

    Spectroscopic data were obtained from five telescopes: the McGraw-Hill 1.3m telescope at the MDM Observatory (4225-5775Å; median S/N=118), the Shane 3m telescope at the Lick Observatory (Kast Double Spectrograph: 3250-7920Å; median S/N=194), the 1.22m Galileo telescope at the Asiago Astrophysical Observatory (3250-7920Å; median S/N=160), the 3.5m telescope at Apache Point Observatory (APO; Dual Imaging Spectrograph: 4180-5400Å, median S/N =160), and the 2.3m telescope at the Wyoming Infrared Observatory (WIRO; 5599-4399Å; median S/N=217). The optical spectroscopic monitoring targeting NGC 5548 began on 2014 January 4 and continued through 2014 July 6 with approximately daily cadence. MDM contributed the largest number of spectra with 143 epochs. (1 data file).

  11. LYCORIS - A Large Area Strip Telescope

    CERN Document Server

    Krämer, U; Stanitzki, M; Wu, M

    2018-01-01

    The LYCORIS Large Area Silicon Strip Telescope for the DESY II Test Beam Facility is presented. The DESY II Test Beam Facility provides elec- tron and positron beams for beam tests of up to 6 GeV. A new telescope with a large 10 × 20 cm2 coverage area based on a 25 μm pitch strip sensor is to be installed within the PCMAG 1 T solenoid. The current state of the system is presented.

  12. Green Bank Telescope Observations of HI in the circumgalactic medium of M31

    Science.gov (United States)

    Denny, Lucas; Early, Laura; Berg, Michelle; Howk, Chris; Lehner, Nicolas; Lockman, Felix; wotta, Christopher

    2018-01-01

    The nearby spiral galaxy M31 contains an extensive gaseous circumgalactic medium (CGM) that is being studied in project AMIGA, a large HST program to obtain UV spectroscopy of the CGM in absorption against background AGN. As part of this project, sensitive HI 21cm emission observations were made using the Robert C. Byrd Green Bank Telescope (GBT) toward 48 AGN at impact parameters between 25 kpc and 340 kpc. No emission was detected to a 5-sigma limit on log(NHI) of 17.6 cm-2 (Howk et al 2017, ApJ, 846, 141). We now report on a search for HI emission in 1x1 degree fields around 8 of the AGN to 5-sigma limits on log(NHI) of 17.9 cm-2. The new observations cover ~10 times the area of the M31 CGM covered by the Howk et al pointings, though at somewhat reduced sensitivity. Again, no HI emission was detected with the exception of the "Davies Cloud", a high-velocity cloud of M31 that has been known for some time. We will discuss the absence of significant HI emission in the context of the COS-Halos study of 44 galaxies at z~0.2, and how this finding may relate to the existence of HI clouds between M31 and M33 (Wolfe et al. 2016, ApJ, 816, 81).The GBT is a facility of the National Science Foundation, operated under a cooperative agreement by Associated Universities, Inc.

  13. Optical and thermal design of 1.5-m aperture solar UV visible and IR observing telescope for Solar-C mission

    Science.gov (United States)

    Suematsu, Y.; Katsukawa, Y.; Shimizu, T.; Ichimoto, K.; Horiuchi, T.; Matsumoto, Y.; Takeyama, N.

    2017-11-01

    The next Japanese solar mission, SOLAR-C, which has been envisaged after successful science operation of Hinode (SOLAR-B) mission, is perusing two plans: plan-A and plan-B, and under extensive study from science objectives as well as engineering point of view. The plan-A aims at performing out-of-ecliptic observations for investigating, with helioseismic approach, internal structure and dynamo mechanisms of the Sun. It also explores polar regions where fast solar wind is believed to originate. A baseline orbit for plan-A is a circular orbit of 1 AU distance from the Sun with its inclination at around or greater than 40 degrees. The plan-B aims to study small-scale plasma processes and structures in the solar atmosphere which attract researchers' growing interest, followed by many Hinode discoveries [1], for understanding fully dynamism and magnetic nature of the atmosphere. With plan-B, high-angular-resolution investigation of the entire solar atmosphere (from the photosphere to the corona, including their interface layers, i.e., chromosphere and transition region) is to be performed with enhanced spectroscopic and spectro-polarimetric capability as compared with Hinode, together with enhanced sensitivity towards ultra-violet wavelengths. The orbit of plan-B is either a solar synchronous polar orbit of altitude around 600 km or a geosynchronous orbit to ensure continuous solar observations. After the decision of any one of the two plans, the SOLAR-C will be proposed for launch in mid-2010s. In this paper, we will present a basic design of one of major planned instrumental payload for the plan-B: the Solar Ultra-violet Visible and near IR observing Telescope (hereafter referred to as SUVIT). The basic concept in designing the SUVIT is to utilize as much as possible a heritage of successful telescope of the Solar Optical Telescope (SOT) aboard Hinode [2]. Major differences of SUVIT from SOT are the three times larger aperture of 1.5 m, which enables to collect one

  14. An EUDET/AIDA Pixel Beam Telescope for Detector Development

    CERN Document Server

    Rubinskiy, I

    2015-01-01

    Ahigh resolution(σ< 2 μm) beam telescope based on monolithic active pixel sensors (MAPS) was developed within the EUDET collaboration. EUDET was a coordinated detector R&D programme for the future International Linear Collider providing test beam infrastructure to detector R&D groups. The telescope consists of six sensor planes with a pixel pitch of either 18.4 μm or 10 μmand canbe operated insidea solenoidal magnetic fieldofupto1.2T.Ageneral purpose cooling, positioning, data acquisition (DAQ) and offine data analysis tools are available for the users. The excellent resolution, readout rate andDAQintegration capabilities made the telescopea primary beam tests tool also for several CERN based experiments. In this report the performance of the final telescope is presented. The plans for an even more flexible telescope with three differentpixel technologies(ATLASPixel, Mimosa,Timepix) withinthenew European detector infrastructure project AIDA are presented.

  15. Potential of the McMath-Pierce 1.6-Meter Solar Telescope for Speckle Interferometry

    Science.gov (United States)

    Harshaw, Richard; Jones, Gregory; Wiley, Edward; Boyce, Patrick; Branston, Detrick; Rowe, David; Genet, Russell

    2015-09-01

    We explored the aiming and tracking accuracy of the McMath-Pierce 1.6 m solar telescope at Kitt Peak National Observatory as part of an investigation of using this telescope for speckle interferometry of close visual double stars. Several slews of various lengths looked for hysteresis in the positioning system (we found none of significance) and concluded that the 1.6 m telescope would make a useful telescope for speckle interferometry.

  16. Observations of VHE γ-Ray Sources with the MAGIC Telescope

    Science.gov (United States)

    Bartko, H.

    2008-10-01

    The MAGIC telescope with its 17m diameter mirror is today the largest operating single-dish Imaging Air Cherenkov Telescope (IACT). It is located on the Canary Island La Palma, at an altitude of 2200m above sea level, as part of the Roque de los Muchachos European Northern Observatory. The MAGIC telescope detects celestial very high energy γ-radiation in the energy band between about 50 GeV and 10 TeV. Since Autumn of 2004 MAGIC has been taking data routinely, observing various objects like supernova remnants (SNRs), γ-ray binaries, Pulsars, Active Galactic Nuclei (AGN) and Gamma-ray Bursts (GRB). We briefly describe the observational strategy, the procedure implemented for the data analysis, and discuss the results for individual sources. An outlook to the construction of the second MAGIC telescope is given.

  17. UV/Visible Telescope with Hubble Disposal

    Science.gov (United States)

    Benford, Dominic J.

    2013-01-01

    Submission Overview: Our primary objective is to convey a sense of the significant advances possible in astrophysics investigations for major Cosmic Origins COR program goals with a 2.4m telescope asset outfitted with one or more advanced UV visible instruments. Several compelling science objectives were identified based on community meetings these science objectives drove the conceptual design of instruments studied by the COR Program Office during July September 2012. This RFI submission encapsulates the results of that study, and suggests that a more detailed look into the instrument suite should be conducted to prove viability and affordability to support the demonstrated scientific value. This study was conducted in the context of a larger effort to consider the options available for a mission to dispose safely of Hubble hence, the overall architecture considered for the mission we studied for the 2.4m telescope asset included resource sharing. This mitigates combined cost and risk and provides naturally for a continued US leadership role in astrophysics with an advanced, general-purpose UV visible space telescope.

  18. A development roadmap for critical technologies needed for TALC: a deployable 20m annular space telescope

    Science.gov (United States)

    Sauvage, Marc; Amiaux, Jérome; Austin, James; Bello, Mara; Bianucci, Giovanni; Chesné, Simon; Citterio, Oberto; Collette, Christophe; Correia, Sébastien; Durand, Gilles A.; Molinari, Sergio; Pareschi, Giovanni; Penfornis, Yann; Sironi, Giorgia; Valsecchi, Giuseppe; Verpoort, Sven; Wittrock, Ulrich

    2016-07-01

    Astronomy is driven by the quest for higher sensitivity and improved angular resolution in order to detect fainter or smaller objects. The far-infrared to submillimeter domain is a unique probe of the cold and obscured Universe, harboring for instance the precious signatures of key elements such as water. Space observations are mandatory given the blocking effect of our atmosphere. However the methods we have relied on so far to develop increasingly larger telescopes are now reaching a hard limit, with the JWST illustrating this in more than one way (e.g. it will be launched by one of the most powerful rocket, it requires the largest existing facility on Earth to be qualified). With the Thinned Aperture Light Collector (TALC) project, a concept of a deployable 20 m annular telescope, we propose to break out of this deadlock by developing novel technologies for space telescopes, which are disruptive in three aspects: • An innovative deployable mirror whose topology, based on stacking rather than folding, leads to an optimum ratio of collecting area over volume, and creates a telescope with an eight times larger collecting area and three times higher angular resolution compared to JWST from the same pre-deployed volume; • An ultra-light weight segmented primary mirror, based on electrodeposited Nickel, Composite and Honeycomb stacks, built with a replica process to control costs and mitigate the industrial risks; • An active optics control layer based on piezo-electric layers incorporated into the mirror rear shell allowing control of the shape by internal stress rather than by reaction on a structure. We present in this paper the roadmap we have built to bring these three disruptive technologies to technology readiness level 3. We will achieve this goal through design and realization of representative elements: segments of mirrors for optical quality verification, active optics implemented on representative mirror stacks to characterize the shape correction

  19. Measurement of the d({sup 26}Al{sup m},p){sup 27}Al reaction for nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Roeder, B.T.; Trache, L.; Iacob, V.E.; McCleskey, M.; Simmons, E.; Spiridon, A.; Tribble, R.E. [Texas A and M Univ., TX (United States); Davinson, T.; Lotay, G.; Woods, P.J. [University of Edinburgh (United Kingdom); La Cognata, M.; Pizzone, R.G.; Rapisarda, G.G.; Sparta, R.; Spitaleri, C. [Istituto Nazionale di Fisica Nucleare (LNS/INFN), Catania (Italy). Lab. Nazionali del Sud

    2012-07-01

    Full text: The detection of gamma rays from the decay of the {sup 26}Al ground state in the galaxy gives evidence that nucleosynthesis is occurring in present-day stars, but its origin is not yet clear. This implies that reactions involving {sup 26}Al are important for astrophysical processes. In a recent experiment at the Cyclotron Institute at Texas A and M University, reactions with the ground state and isomeric state of {sup 26}Al were investigated with the Texas A and M-Edinburgh-Catania Silicon detector Array (TECSA). TECSA is a collaborative effort to build a high-efficiency detector Si array useful for measuring reactions of interest for nuclear astrophysics and nuclear structure. The array consists of up to 16 Micron Semiconductor YY1 detectors that are each 300 μm thick. Each detector has 16 annular ring sectors to measure the energy and the scattering angle of the detected particles. Using TECSA, we measured d({sup 26}Al{sup g},p){sup 27}Al and d({sup 26}Al{sup m},p){sup 27}Al with a {sup 26}Al secondary beam prepared in-flight with the MARS spectrometer. First, the composition of the {sup 26}Al beam was determined by measuring the ratio of beta-decays to {sup 26}Al ions produced. It was found that at different spectrometer rigidities, beams of 2/3 isomer to ground state ratio or vice-versa could be obtained. Then, in the second part of the experiment, angular distributions were measured for both reactions at backward angles with TECSA. The protons were measured in TECSA in coincidence with timing signals from the beam detected by a scintillator and with the cyclotron radio-frequency. Details of the experiment and preliminary results from the analysis of the d({sup 26}Al{sup m},p){sup 27}Al and d({sup 26}Al{sup g},p){sup 27}Al data will be presented. They will give information about the proton capture reactions {sup 26}Al{sup m}(p,γ){sup 27}Si and {sup 26}Al{sup g}(p,γ){sup 27}Si taking place in stars. (author)

  20. Completion of the Southern African Large Telescope

    Science.gov (United States)

    Buckley, D. A. H.; Charles, P. A.; O'Donoghue, D.; Nordsieck, K. H.

    2006-08-01

    The Southern African Large Telescope (SALT) is a low cost (19.7M), innovative, 10-m class optical telescope, which was inaugurated on 10 November 2005, just 5 years after ground-breaking. SALT and its first-light instruments are currently being commissioned, and full science operations are expected to begin later this year. This paper describes the design and construction of SALT, including the first-light instruments, SALTICAM and the Robert Stobie Spectrograph (RSS). A rigorous Systems Engineering approach was adopted to ensure that SALT was built to specification, on budget, close to the original schedule and using a relatively small project team. The design trade-offs, which include an active spherical primary mirror array in a fixed altitude telescope with a prime focus tracker, although restrictive in comparison to conventional telescopes, have resulted in an affordable and capable 10-m class telescope for South Africa and its ten partners. Coupled with an initial set of two seeing-limited instruments that concentrate on the UV-visible region (320 - 900nm) and featuring some unique observational capabilities, SALT will have an ability to conduct a wide range of science programs. These will include high time resolution studies, for which some initial results have already been obtained and are presented here. Many of the versatile modes available with the RSS will provide unparalleled opportunities for imaging polarimetry and spectropolarimetry. Likewise, Multi-Object Spectroscopy (using laser cut graphite slit masks) and imaging spectroscopy with the RSS, the latter using Fabry-Perot etalons and interference filters, will extend the multiplex advantage over resolutions from R = 300 to 9000 over fields of view of 2 to 8 arcminutes. Future instrumentation plans include an extremely stable, fibre-fed, high resolution échelle spectrograph and a near-IR (possibly to 1.7 μm) extension to the RSS. Future development possibilities include phasing the primary mirror

  1. Radio telescope reflectors historical development of design and construction

    CERN Document Server

    Baars, Jacob W M

    2018-01-01

    This book demonstrates how progress in radio astronomy is intimately linked to the development of reflector antennas of increasing size and precision. The authors describe the design and construction of major radio telescopes as those in Dwingeloo, Jodrell Bank, Parkes, Effelsberg and Green Bank since 1950 up to the present as well as millimeter wavelength telescopes as the 30m MRT of IRAM in Spain, the 50m LMT in Mexico and the ALMA submillimeter instrument. The advances in methods of structural design and coping with environmental influences (wind, temperature, gravity) as well as application of new materials are explained in a non-mathematical, descriptive and graphical way along with the story of the telescopes. Emphasis is placed on the interplay between astronomical and electromagnetic requirements and structural, mechanical and control solutions. A chapter on management aspects of large telescope projects closes the book. The authors address a readership with interest in the progress of engineering sol...

  2. NEW OBSERVATIONAL CONSTRAINTS ON THE υ ANDROMEDAE SYSTEM WITH DATA FROM THE HUBBLE SPACE TELESCOPE AND HOBBY-EBERLY TELESCOPE

    International Nuclear Information System (INIS)

    McArthur, Barbara E.; Benedict, G. Fritz.; Martioli, Eder; Barnes, Rory; Korzennik, Sylvain; Nelan, Ed; Butler, R. Paul

    2010-01-01

    We have used high-cadence radial velocity (RV) measurements from the Hobby-Eberly Telescope with existing velocities from the Lick, Elodie, Harlan J. Smith, and Whipple 60'' telescopes combined with astrometric data from the Hubble Space Telescope Fine Guidance Sensors to refine the orbital parameters and determine the orbital inclinations and position angles of the ascending node of components υ And A c and d. With these inclinations and using M * = 1.31M sun as a primary mass, we determine the actual masses of two of the companions: υ And A c is 13.98 +2.3 -5.3 M JUP , and υ And A d is 10.25 +0.7 -3.3 M JUP . These measurements represent the first astrometric determination of mutual inclination between objects in an extrasolar planetary system, which we find to be 29. 0 9 ± 1 0 . The combined RV measurements also reveal a long-period trend indicating a fourth planet in the system. We investigate the dynamic stability of this system and analyze regions of stability, which suggest a probable mass of υ And A b. Finally, our parallaxes confirm that υ And B is a stellar companion of υ And A.

  3. Radio telescope control

    CERN Document Server

    Schraml, J

    1972-01-01

    An on-line computer control process developed for the 100-m radio telescope of the Max-Planck-Institut fur Radioastronomie in Bonn is described. The instrument is the largest fully steerable antenna in the world. Its operation started on May 31st 1972. It is controlled by a Ferranti Argus 500 on-line computer. The first part of the paper deals with the process itself, the radio telescope and its operation, and the demands resulting for the control program. The second part briefly describes the computer and its hardware. The final part introduces the architecture of the executive program in general, which has been tailored to meet the demands of the process and the hardware. The communication between the observer and the system, the format of data on magnetic tape and an on-line reduction of position measurements are considered. (0 refs).

  4. The Green Bank Telescope: A radio telescope for the twenty-first century: Final proposal June 1989

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    The scientific goals, design, and projected performance of a 100-m-aperture steerable radio telescope to be built at Green Bank, WV are discussed in a proposal to the NSF. The goals considered include observations of pulsars, stars and the solar system; studies of Galactic and extragalactic H I, spectroscopic studies, measurements of continuum radiation; and VLBI observations. Detailed attention is given to the antenna, electronics, control and monitor system, data processing, operational factors, the telescope site, and cost estimates. Drawings, diagrams, sample images, and tables of numerical data are provided

  5. Progress in Suppressing Scattered Light into the Optical Beam Path of the NAO Rozhen 2m Telescope

    Science.gov (United States)

    Ovcharov, E. P.; Petrov, N.; Markov, H.; Bonev, T.; Donchev, Z.

    2010-09-01

    In this poster paper we present a summary of the published analysis of the spatial dependence of the magnitudes derived from images obtained in the RC focal plane of the 2m RCC NAO Rozhen telescope. An alert for the possible reason was the unusually curved flat-field images taken as a part of the standard CCD calibration procedure. The reasons for the problem are described and a solution is presented, which consists modification of the mirror baffles and mounting of special diaphragm at the entrance of the filter wheel.

  6. Ultra-High Precision Half-Life Measurement for the Superallowed &+circ; Emitter ^26Al^m

    Science.gov (United States)

    Finlay, P.; Demand, G.; Garrett, P. E.; Leach, K. G.; Phillips, A. A.; Sumithrarachchi, C. S.; Svensson, C. E.; Triambak, S.; Grinyer, G. F.; Leslie, J. R.; Andreoiu, C.; Cross, D.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D.; Djongolov, M.; Ettenauer, S.; Hackman, G.; Pearson, C. J.; Williams, S. J.

    2009-10-01

    The calculated nuclear structure dependent correction for ^26Al^m (δC-δNS= 0.305(27)% [1]) is smaller by nearly a factor of two than the other twelve precision superallowed cases, making it an ideal case to pursue a reduction in the experimental errors contributing to the Ft value. An ultra-high precision half-life measurement for the superallowed &+circ; emitter ^26Al^m has been made at the Isotope Separator and Accelerator (ISAC) facility at TRIUMF in Vancouver, Canada. A beam of ˜10^5 ^26Al^m/s was delivered in October 2007 and its decay was observed using a 4π continuous gas flow proportional counter as part of an ongoing experimental program in superallowed Fermi β decay studies. With a statistical precision of ˜0.008%, the present work represents the single most precise measurement of any superallowed half-life to date. [4pt] [1] I.S. Towner and J.C. Hardy, Phys. Rev. C 79, 055502 (2009).

  7. Wide Field Infra-Red Survey Telescope (WFIRST) 2.4-Meter Mission Study

    Science.gov (United States)

    Content, D.; Aaron, K.; Alplanalp, L.; Anderson, K.; Capps, R.; Chang, Z.; Dooley, J.; Egerman, R.; Goullioud, R.; Klein, D.; hide

    2013-01-01

    The most recent study of the Wide Field Infrared Survey Telescope (WFIRST) mission is based on reuse of an existing 2.4m telescope. This study was commissioned by NASA to examine the potential science return and cost effectiveness of WFIRST by using this significantly larger aperture telescope. We review the science program envisioned by the WFIRST 2012-2013 Science Definition Team (SDT), an overview of the mission concept, and the telescope design and status. Comparisons against the previous 1.3m and reduced cost 1.1m WFIRST design concepts are discussed. A significant departure from past point designs is the option for serviceability and the geostationary orbit location which enables servicing and replacement instrument insertion later during mission life. Other papers at this conference provide more in depth discussion of the wide field instrument and the optional exoplanet imaging coronagraph instrument.

  8. Performance evaluation of the Antares Reference Telescope System

    International Nuclear Information System (INIS)

    Parker, J.R.; Woodfin, G.L.; Viswanathan, V.K.

    1985-01-01

    The Antares Reference Telescope System is a complicated electro-optical-mechanical system whose main purpose is to enable positioning of targets used in the Antares Laser System to within 10 μm of a selected nominal position. To date, it has been used successfully to position targets ranging in size from 300 μm to 2 mm. The system consists of two electro-optical systems positioned in a nearly orthogonal manner. This ''cross telescope'' configuration facilitates accurate positioning in three planes. The results obtained so far in resolution and positioning of targets using this system are discussed. It is shown that a resolution of 200 lp/mm and a positioning precision of 25 μm can be obtained

  9. Rise to SUMMIT: the Sydney University Multiple-Mirror Telescope

    Science.gov (United States)

    Moore, Anna M.; Davis, John

    2000-07-01

    The Sydney University Multiple Mirror Telescope (SUMMIT) is a medium-sized telescope designed specifically for high resolution stellar spectroscopy. Throughout the design emphasis has been placed on high efficiency at low cost. The telescope consists of four 0.46 m diameter mirrors mounted on a single welded steel frame. Specially designed mirror cells support and point each mirror, allowing accurate positioning of the images on optical fibers located at the foci of the mirrors. Four fibers convey the light to the future location of a high resolution spectrograph away from the telescope in a stable environment. An overview of the commissioning of the telescope is presented, including the guidance and automatic mirror alignment and focussing systems. SUMMIT is located alongside the Sydney University Stellar Interferometer at the Paul Wild Observatory, near Narrabri, Northern New South Wales.

  10. Britain Approaches ESO about Installation of Major New Telescope at Paranal

    Science.gov (United States)

    2000-02-01

    interesting celestial objects which can then be studied in much more detail with the many specialised instruments at the powerful VLT Unit Telescopes." ESO, the European Southern Observatory, has eight member states, Belgium, Denmark, France, Germany, Italy, the Netherlands, Sweden and Switzerland. The United Kingdom participated actively in the early discussions in the 1950's about the establishment of ESO, but later elected not to join, mainly because of its access to other southern astronomical facilities in Australia and South Africa. ESO already possesses a smaller survey instrument at the La Silla Observatory (Chile), with the optical Wide-Field Imager at the ESO/MPG 2.2-m telescope. In addition, the 2.6-m VLT Survey Telescope (VST) with the 16kx16k OmegaCam camera will be installed at Paranal in 2002. It will operate in the visual region of the spectrum and, together with VISTA's infrared capability, ensure unequalled sky- and wavelength coverage from one observing site. Notes [1] The announcement was made in a PPARC Press Release, available at http://www.pparc.ac.uk and at the AlphaGalileo site. [2] Universities in the VISTA Consortium are (in alphabetical order) Birmingham, Cambridge, Cardiff, Durham, Edinburgh, Hertfordshire, Keele, Central Lancashire, Leicester, Liverpool John Moores, Nottingham, Oxford, Queen Mary & Westfield College, Queen's University Belfast, St Andrews, Southampton, Sussex, University College London.

  11. Possible GRB Observation with the MAGIC Telescope

    Science.gov (United States)

    Bastieri, D.; Bigongiari, C.; Mariotti, M.; Peruzzo, L.; Saggion, A.

    2001-08-01

    The MAGIC Telescope, with its reflecting parabolic dish of 17 m of diameter and its careful design of a robust, lightweight, alto-azimuthal mount, is an ideal detector for GRB phenomena. The telescope is an air Cherenkov telescope that, even in the first phase, equipped with standard PMTs, can reach an energy threshold below 30 GeV. The threshold is going to drop well below 10 GeV in the envisaged second phase, when chamber PMTs will be substituted by high quantum efficiency APDs. The telescope can promptly respond to GRB alerts coming, for instance, from GCN, and can reposition itself in less than 30 seconds, 20 seconds being the time to turn half a round for the azimuth bearing. In this report, the effective area of the detector as a function of energy and zenith angle is taken into account, in order to evaluate the expected yearly occurrence and the response to different kinds of GRBs.

  12. Burst Alert Robotic Telescope and Optical Afterglows

    Czech Academy of Sciences Publication Activity Database

    Nekola, Martin; Hudec, René; Jelínek, M.; Kubánek, P.; Polášek, Cyril; Štrobl, Jan

    2009-01-01

    Roč. 18, 3/4 (2009), s. 374-378 ISSN 1392-0049. [INTEGRAL/BART workshop 2009. Karlovy Vary, 26.03.2009-29.03.2009] R&D Projects: GA ČR GA205/08/1207 Grant - others:ESA(XE) ESA-PECS project No. 98023; Spanish Ministry of Education and Science(ES) AP2003-1407 Institutional research plan: CEZ:AV0Z10030501 Keywords : gamma rays bursts, * observations * robotic telescopes Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.032, year: 2009

  13. Intra-night Optical Variability Monitoring of Fermi Blazars: First Results from 1.3 m J. C. Bhattacharya Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Paliya, Vaidehi S.; Ajello, M.; Kaur, A. [Department of Physics and Astronomy, Clemson University, Kinard Lab of Physics, Clemson, SC 29634-0978 (United States); Stalin, C. S., E-mail: vpaliya@g.clemson.edu [Indian Institute of Astrophysics, Block II, Koramangala, Bangalore-560034 (India)

    2017-07-20

    We report the first results obtained from our campaign to characterize the intra-night-optical variability (INOV) properties of Fermi detected blazars, using the observations from the recently commissioned 1.3 m J. C. Bhattacharya telescope (JCBT). During the first run, we were able to observe 17 blazars in the Bessel R filter for ∼137 hr. Using C- and scaled F -statistics, we quantify the extent of INOV and derive the duty cycle (DC), which is the fraction of time during which a source exhibits a substantial flux variability. We find a high DC of 40% for BL Lac objects and the flat spectrum radio quasars are relatively less variable (DC ∼ 15%). However, when estimated for blazars sub-classes, a high DC of ∼59% is found in low synchrotron peaked (LSP) blazars, whereas, intermediate and high synchrotron peaked objects have a low DC of ∼11% and 13%, respectively. We find evidence of the association of the high amplitude INOV with the γ -ray flaring state. We also notice a high polarization during the elevated INOV states (for the sources that have polarimetric data available), thus supporting the jet based origin of the observed variability. We plan to enlarge the sample and utilize the time availability from the small telescopes, such as 1.3 m JCBT, to strengthen/verify the results obtained in this work and those existing in the literature.

  14. Inexpensive Demonstration of Diffraction-Limited Telescope from NASA Stratospheric Balloons

    Science.gov (United States)

    Young, Elliot

    NASA s Balloon Program often flies payloads to altitudes of 120,000 ft or higher, above 99.5% of the atmosphere. At those altitudes, the imaging degradation due to atmospheric- induced wavefront errors is virtually zero. In 2009, the SUNRISE balloon mission quantified the wavefront errors with a Shack-Hartmann array and found no evidence of wavefront errors. This means that a large telescope on a balloon should be able to achieve diffraction-limited performance, provided it can be stabilized at a level that is finer than the diffraction limit. At visible wavelengths, the diffraction limit of a 1 or 2 m telescope is 0.1 arcsec or 0.05 arcsec, respectively. NASA recently demonstrated WASP (the Wallops Arc-Second Pointing system) on a balloon flight in October 2011, a coarse pointing system that kept a dummy telescope (24 ft long, 1500 lbs) stabilized at the 0.25 arcsec level. We propose to use an orthogonal transfer CCD (OTCCD) from MIT Lincoln Laboratory to improve the pointing to 0.05 arcsec, an order of magnitude better than the coarse pointing alone and sufficient to provide long integrations at the diffraction limit of a 2-m telescope. Imaging in visible wavelengths is an important new capability. Ground-based adaptive optics (AO) systems on 8-m and 10-m class telescope cannot effectively correct for atmospheric turbulence at wavelengths shorter than 1 μm; the atmospheric wavefront errors are larger at these wavelengths than in the infrared J-H-K bands. At present, only the Hubble Space Telescope can achieve 0.05 arcsec resolution images in visible wavelengths, a capability that is dramatically oversubscribed. With a camera based on an MIT/LL OTCCD, a 2-m balloon-borne telescope could match the spatial resolution of HST. Under this project (and in conjunction with a SWRI Internal Research proposal), we will perform ground tests of a motion-compensation camera based on an MIT/LL Orthogonal Transfer CCD (OTCCD). This device can shift charge in four directions

  15. Unique properties of multiple tandem copies of the M26 recombination hotspot in mitosis and meiosis in Schizosaccharomyces pombe.

    Science.gov (United States)

    Steiner, Walter W; Recor, Chelsea L; Zakrzewski, Bethany M

    2016-11-15

    The M26 hotspot of the fission yeast Schizosaccharomyces pombe is one of the best-characterized eukaryotic hotspots of recombination. The hotspot requires a seven bp sequence, ATGACGT, that serves as a binding site for the Atf1-Pcr1 transcription factor, which is also required for activity. The M26 hotspot is active in meiosis but not mitosis and is active in some but not all chromosomal contexts and not on a plasmid. A longer palindromic version of M26, ATGACGTCAT, shows significantly greater activity than the seven bp sequence. Here, we tested whether the properties of the seven bp sequence were also true of the longer sequence by placing one, two, or three copies of the sequence into the ade6 gene, where M26 was originally discovered. These constructs were tested for activity when located on a plasmid or on a chromosome in mitosis and meiosis. We found that two copies of the 10bp M26 motif on a chromosome were significantly more active for meiotic recombination than one, but no further increase was observed with three copies. However, three copies of M26 on a chromosome created an Atf1-dependent mitotic recombination hotspot. When located on a plasmid, M26 also appears to behave as a mitotic recombination hotspot; however, this behavior most likely results from Atf1-dependent inter-allelic complementation between the plasmid and chromosomal ade6 alleles. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Deep space telescopes

    CERN Multimedia

    CERN. Geneva

    2006-01-01

    The short series of seminars will address results and aims of current and future space astrophysics as the cultural framework for the development of deep space telescopes. It will then present such new tools, as they are currently available to, or imagined by, the scientific community, in the context of the science plans of ESA and of all major world space agencies. Ground-based astronomy, in the 400 years since Galileo’s telescope, has given us a profound phenomenological comprehension of our Universe, but has traditionally been limited to the narrow band(s) to which our terrestrial atmosphere is transparent. Celestial objects, however, do not care about our limitations, and distribute most of the information about their physics throughout the complete electromagnetic spectrum. Such information is there for the taking, from millimiter wavelengths to gamma rays. Forty years astronomy from space, covering now most of the e.m. spectrum, have thus given us a better understanding of our physical Universe then t...

  17. The EMIR multi-band mm-wave receiver for the IRAM 30-m telescope

    Science.gov (United States)

    Carter, M.; Lazareff, B.; Maier, D.; Chenu, J.-Y.; Fontana, A.-L.; Bortolotti, Y.; Boucher, C.; Navarrini, A.; Blanchet, S.; Greve, A.; John, D.; Kramer, C.; Morel, F.; Navarro, S.; Peñalver, J.; Schuster, K. F.; Thum, C.

    2012-02-01

    Aims: The prime motivation of this project was to design and build a state-of-art mm-wave heterodyne receiver system to enhance the observing throughput of the IRAM 30-m radiotelescope. More specifically, the requirements were i) state-of-art noise performance for spectroscopic observations; ii) simultaneous dual polarization and dual-frequency observing; iii) coverage of the atmospheric transmission windows from 83 to 360 GHz; iv) compact footprint and minimal maintenance. Methods: Key elements for low noise performance of heterodyne mixers are the superconducting Niobium junctions, operating at ≃4 K. These junctions are embedded in carefully designed coupling structures; furthermore, since atmospheric radiation is a significant contributor to the system noise budget, all mixers are either sideband separating or sideband rejecting. To achieve low noise, it is also essential to maximize the coupling of the receiver to the astronomical source, and to minimize the coupling to thermal radiation from the ground-based environment; this is achieved through mirror optics that realize a wavelength-independent coupling to the telescope. A flexible configuration of mirrors and frequency selective surfaces permits various combinations of frequency bands, as well as dual-load radiometric calibration. Low noise intermediate frequency amplifiers and bias electronics also play an important role in the system performance. Results: The EMIR receiver in operation at the 30 m telescope offers four frequency bands: B1: 83-117 GHz, B2: 129-174 GHz, B3: 200-267 GHz, and B4: 260-360 GHz. In each band, the two orthogonal polarizations are observed simultaneously. Dual-band combinations B1/2 B1/3, and B2/4 are available. Bands 1 and 4 (also 3 as of Nov.-2011) feature sideband separation. In dual-band configuration, including sideband separation and polarization diplexing, up to eight IF channels are delivered to the spectrometers, totaling up to 64 GHz of signal bandwidth (of which 32

  18. Performance of the EUDET-type beam telescopes

    CERN Document Server

    Jansen, H; Bulgheroni, A.; Claus, G.; Corrin, E.; Cussans, D.G.; Dreyling-Eschweiler, J.; Eckstein, D.; Eichhorn, T.; Goffe, M.; Gregor, I.M.; Haas, D.; Muhl, C.; Perrey, H.; Peschke, R.; Roloff, P.; Rubinskiy, I.; Winter, M.

    2016-01-01

    Test beam measurements at the test beam facilities of DESY have been conducted to characterise the performance of the EUDET-type beam telescopes originally developed within the EUDET project. The beam telescopes are equipped with six sensor planes using MIMOSA26 monolithic active pixel devices. A programmable Trigger Logic Unit provides trigger logic and time stamp information on particle passage. Both data acquisition framework and offline reconstruction software packages are available. User devices are easily integrable into the data acquisition framework via predefined interfaces. The biased residual distribution is studied as a function of the beam energy, plane spacing and sensor threshold. Its width at the two centre pixel planes using all six planes for tracking in a 6 GeV electron/positron-beam is measured to be $(2.88\\,\\pm\\,0.08)\\,\\upmu\\meter$. Iterative track fits using the formalism of General Broken Lines are performed to estimate the intrinsic resolution of the individual pixel planes. The mean i...

  19. The readout and control system of the mid-size telescope prototype of the Cherenkov telescope array

    International Nuclear Information System (INIS)

    Oya, I; Anguner, O; Birsin, E; Schwanke, U; Behera, B; Melkumyan, D; Schmidt, T; Sternberger, R; Wegner, P; Wiesand, S; Fuessling, M

    2014-01-01

    The Cherenkov Telescope Array (CTA) is one of the major ground-based astronomy projects being pursued and will be the largest facility for ground-based y-ray observations ever built. CTA will consist of two arrays: one in the Northern hemisphere composed of about 20 telescopes, and the other one in the Southern hemisphere composed of about 100 telescopes, both arrays containing telescopes of different type and size. A prototype for the Mid-Size Telescope (MST) with a diameter of 12 m has been installed in Berlin and is currently being commissioned. This prototype is composed of a mechanical structure, a drive system and mirror facets mounted with powered actuators to enable active control. Five Charge-Coupled Device (CCD) cameras, and a wide set of sensors allow the evaluation of the performance of the instrument. The design of the control software is following concepts and tools under evaluation within the CTA consortium in order to provide a realistic test-bed for the middleware: 1) The readout and control system for the MST prototype is implemented with the Atacama Large Millimeter/submillimeter Array (ALMA) Common Software (ACS) distributed control middleware; 2) the OPen Connectivity-Unified Architecture (OPC UA) is used for hardware access; 3) the document oriented MongoDB database is used for an efficient storage of CCD images, logging and alarm information: and 4) MySQL and MongoDB databases are used for archiving the slow control monitoring data and for storing the operation configuration parameters. In this contribution, the details of the implementation of the control system for the MST prototype telescope are described.

  20. The readout and control system of the mid-size telescope prototype of the Cherenkov Telescope Array

    Science.gov (United States)

    Oya, I.; Anguner, O.; Behera, B.; Birsin, E.; Fuessling, M.; Melkumyan, D.; Schmidt, T.; Schwanke, U.; Sternberger, R.; Wegner, P.; Wiesand, S.; Cta Consortium,the

    2014-06-01

    The Cherenkov Telescope Array (CTA) is one of the major ground-based astronomy projects being pursued and will be the largest facility for ground-based y-ray observations ever built. CTA will consist of two arrays: one in the Northern hemisphere composed of about 20 telescopes, and the other one in the Southern hemisphere composed of about 100 telescopes, both arrays containing telescopes of different type and size. A prototype for the Mid-Size Telescope (MST) with a diameter of 12 m has been installed in Berlin and is currently being commissioned. This prototype is composed of a mechanical structure, a drive system and mirror facets mounted with powered actuators to enable active control. Five Charge-Coupled Device (CCD) cameras, and a wide set of sensors allow the evaluation of the performance of the instrument. The design of the control software is following concepts and tools under evaluation within the CTA consortium in order to provide a realistic test-bed for the middleware: 1) The readout and control system for the MST prototype is implemented with the Atacama Large Millimeter/submillimeter Array (ALMA) Common Software (ACS) distributed control middleware; 2) the OPen Connectivity-Unified Architecture (OPC UA) is used for hardware access; 3) the document oriented MongoDB database is used for an efficient storage of CCD images, logging and alarm information: and 4) MySQL and MongoDB databases are used for archiving the slow control monitoring data and for storing the operation configuration parameters. In this contribution, the details of the implementation of the control system for the MST prototype telescope are described.

  1. The Performance of the Robo-AO Laser Guide Star Adaptive Optics System at the Kitt Peak 2.1 m Telescope

    Science.gov (United States)

    Jensen-Clem, Rebecca; Duev, Dmitry A.; Riddle, Reed; Salama, Maïssa; Baranec, Christoph; Law, Nicholas M.; Kulkarni, S. R.; Ramprakash, A. N.

    2018-01-01

    Robo-AO is an autonomous laser guide star adaptive optics (AO) system recently commissioned at the Kitt Peak 2.1 m telescope. With the ability to observe every clear night, Robo-AO at the 2.1 m telescope is the first dedicated AO observatory. This paper presents the imaging performance of the AO system in its first 18 months of operations. For a median seeing value of 1.″44, the average Strehl ratio is 4% in the i\\prime band. After post processing, the contrast ratio under sub-arcsecond seeing for a 2≤slant i\\prime ≤slant 16 primary star is five and seven magnitudes at radial offsets of 0.″5 and 1.″0, respectively. The data processing and archiving pipelines run automatically at the end of each night. The first stage of the processing pipeline shifts and adds the rapid frame rate data using techniques optimized for different signal-to-noise ratios. The second “high-contrast” stage of the pipeline is eponymously well suited to finding faint stellar companions. Currently, a range of scientific programs, including the synthetic tracking of near-Earth asteroids, the binarity of stars in young clusters, and weather on solar system planets are being undertaken with Robo-AO.

  2. LCOGT: A World-Wide Network of Robotic Telescopes

    Science.gov (United States)

    Brown, T.

    2013-05-01

    Las Cumbres Observatory Global Telescope (LCOGT) is an organization dedicated to time-domain astronomy. To carry out the necessary observations in fields such as supernovae, extrasolar planets, small solar-system bodies, and pulsating stars, we have developed and are now deploying a set of robotic optical telescopes at sites around the globe. In this talk I will concentrate on the core of this network, consisting of up to 15 identical 1m telescopes deployed across multiple sites in both the northern and southern hemispheres. I will summarize the technical and performance aspect of these telescopes, including both their imaging and their anticipated spectroscopic capabilities. But I will also delve into the network organization, including communication among telescopes (to assure that observations are properly carried out), interactions among the institutions and scientists who will use the network (to optimize the scientific returns), and our funding model (which until now has relied entirely on one private donor, but will soon require funding from outside sources, if the full potential of the network is to be achieved).

  3. A project of a two meter telescope in North Africa

    Science.gov (United States)

    Benkhaldoun, Zouhair

    2015-03-01

    Site testing undertaken during the last 20 years by Moroccan researchers through international studies have shown that the Atlas mountains in Morocco has potentialities similar to those sites which host the largest telescopes in world. Given the quality of the sites and opportunities to conduct modern research, we believe that the installation of a 2m diameter telescope will open new horizons for Astronomy in Morocco and north Africa allowing our region to enter definitively into the very exclusive club of countries possessing an instrument of that size. A state of the art astrophysical observatory on any good astronomical observation site should be equipped with a modern 2m-class, robotic telescope and some smaller telescopes. Our plan should be to operate one of the most efficient robotic 2m class telescopes worldwide in order to offer optimal scientific opportunities for researchers and maintain highest standards for the education of students. Beside all categories of astronomical research fields, students will have the possibility to be educated intensively on the design, manufacturing and operating of modern state of the art computer controlled instruments. In the frame of such education and observation studies several PhD and dissertational work packages are possible. Many of the observations will be published in articles worldwide and a number of guest observers from other countries will have the possibility to take part in collaborations. This could be a starting point of an international reputation of our region in the field of modern astronomy.

  4. Simbol-X Telescope Scientific Calibrations: Requirements and Plans

    International Nuclear Information System (INIS)

    Malaguti, G.; Raimondi, L.; Trifoglio, M.; Angelini, L.; Moretti, A.

    2009-01-01

    The Simbol-X telescope characteristics and the mission scientific requirements impose a challenging calibration plan with a number of unprecedented issues. The 20 m focal length implies for the incoming X-ray beam a divergence comparable to the incidence angle of the mirror surface also for 100 m-long facilities. Moreover this is the first time that a direct focussing X-ray telescope will be calibrated on an energy band covering about three decades, and with a complex focal plane. These problems require a careful plan and organization of the measurements, together with an evaluation of the calibration needs in terms of both hardware and software.

  5. Simbol-X Telescope Scientific Calibrations: Requirements and Plans

    Science.gov (United States)

    Malaguti, G.; Angelini, L.; Raimondi, L.; Moretti, A.; Trifoglio, M.

    2009-05-01

    The Simbol-X telescope characteristics and the mission scientific requirements impose a challenging calibration plan with a number of unprecedented issues. The 20 m focal length implies for the incoming X-ray beam a divergence comparable to the incidence angle of the mirror surface also for 100 m-long facilities. Moreover this is the first time that a direct focussing X-ray telescope will be calibrated on an energy band covering about three decades, and with a complex focal plane. These problems require a careful plan and organization of the measurements, together with an evaluation of the calibration needs in terms of both hardware and software.

  6. Support optimization of the ring primary mirror of a 2m solar telescope

    Science.gov (United States)

    Yang, Dehua; Jin, Zhenyu; Liu, Zhong

    2016-08-01

    A special 2-m Ring Solar Telescope (2-m RST) is to be built by YNAO-Yunnan Astronomical Observatory, Kunming, China. Its distinct primary mirror is distinctively shaped in a ring with an outer diameter of 2.02 m and a ring width of 0.35 m. Careful calculation and optimization of the mirror support pattern have been carried out first of all to define optimum blank parameters in view of performance balance of support design, fabrication and cost. This paper is to review the special consideration and optimization of the support design for the unique ring mirror. Schott zerodur is the prevailing candidate for the primary mirror blank. Diverse support patterns with various blank thicknesses have been discussed by extensive calculation of axial support pattern of the mirror. We reached an optimum design of 36 axial supports for a blank thickness of 0.15 m with surface error of 5 nm RMS. Afterwards, lateral support scheme was figured out for the mirror with settled parameters. A classical push-and-pull scheme was used. Seeing the relative flexibility of the ring mirror, special consideration was taken to unusually set the acting direction of the support forces not in the mirror gravity plane, but along the gravity of the local virtual slices of the mirror blank. Nine couples of the lateral push-pull force are considered. When pointing to horizon, the mirror surface exhibits RMS error of 5 nm with three additional small force couples used to compensate for the predominant astigmatism introduced by lateral supports. Finally, error estimation has been performed to evaluate the surface degradation with introduced errors in support force and support position, respectively, for both axial and lateral supports. Monte Carlo approach was applied using unit seeds for amplitude and position of support forces. The comprehensive optimization and calculation suggests the support systems design meet the technic requirements of the ring mirror of the 2-m RST.

  7. Antares Reference Telescope System

    International Nuclear Information System (INIS)

    Viswanathan, V.K.; Kaprelian, E.; Swann, T.; Parker, J.; Wolfe, P.; Woodfin, G.; Knight, D.

    1983-01-01

    Antares is a 24-beam, 40-TW carbon-dioxide laser-fusion system currently nearing completion at the Los Alamos National Laboratory. The 24 beams will be focused onto a tiny target (typically 300 to 1000 μm in diameter) located approximately at the center of a 7.3-m-diameter by 9.3-m-long vacuum (10 - 6 torr) chamber. The design goal is to position the targets to within 10 μm of a selected nominal position, which may be anywhere within a fixed spherical region 1 cm in diameter. The Antares Reference Telescope System is intended to help achieve this goal for alignment and viewing of the various targets used in the laser system. The Antares Reference Telescope System consists of two similar electro-optical systems positioned in a near orthogonal manner in the target chamber area of the laser. Each of these consists of four subsystems: (1) a fixed 9X optical imaging subsystem which produces an image of the target at the vidicon; (2) a reticle projection subsystem which superimposes an image of the reticle pattern at the vidicon; (3) an adjustable front-lighting subsystem which illuminates the target; and (4) an adjustable back-lighting subsystem which also can be used to illuminate the target. The various optical, mechanical, and vidicon design considerations and trade-offs are discussed. The final system chosen (which is being built) and its current status are described in detail

  8. Hubble Space Telescope-NICMOS Observations of M31'S Metal-Rich Globular Clusters and Their Surrounding Fields. I. Techniques

    Science.gov (United States)

    Stephens, Andrew W.; Frogel, Jay A.; Freedman, Wendy; Gallart, Carme; Jablonka, Pascale; Ortolani, Sergio; Renzini, Alvio; Rich, R. Michael; Davies, Roger

    2001-05-01

    Astronomers are always anxious to push their observations to the limit-basing results on objects at the detection threshold, spectral features barely stronger than the noise, or photometry in very crowded regions. In this paper we present a careful analysis of photometry in crowded regions and show how image blending affects the results and interpretation of such data. Although this analysis is specifically for our NICMOS observations in M31, the techniques we develop can be applied to any imaging data taken in crowded fields; we show how the effects of image blending will limit even the Next Generation Space Telescope. We have obtained HST-NICMOS observations of five of M31's most metal-rich globular clusters. These data allow photometry of individual stars in the clusters and their surrounding fields. However, to achieve our goals-obtain accurate luminosity functions to compare with their Galactic counterparts, determine metallicities from the slope of the giant branch, identify long-period variables, and estimate ages from the AGB tip luminosity-we must be able to disentangle the true properties of the population from the observational effects associated with measurements made in very crowded fields. We thus use three different techniques to analyze the effects of crowding on our data, including the insertion of artificial stars (traditional completeness tests) and the creation of completely artificial clusters. These computer simulations are used to derive threshold- and critical-blending radii for each cluster, which determine how close to the cluster center reliable photometry can be achieved. The simulations also allow us to quantify and correct for the effects of blending on the slope and width of the RGB at different surface brightness levels. We then use these results to estimate the limits blending will place on future space-based observations. Based on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science

  9. Modal vibration testing of the DVA-1 radio telescope

    Science.gov (United States)

    Byrnes, Peter W. G.; Lacy, Gordon

    2016-07-01

    The Dish Verification Antenna 1 (DVA-1) is a 15m aperture offset Gregorian radio telescope featuring a rim-supported single piece molded composite primary reflector on an altitude-azimuth pedestal mount. Vibration measurements of the DVA-1 telescope were conducted over three days in October 2014 by NSI Herzberg engineers. The purpose of these tests was to measure the first several natural frequencies of the DVA-1 telescope. This paper describes the experimental approach, in particular the step-release method, and summarizes some interesting results, including unexpectedly high damping of the first mode over a narrow range of zenith angles.

  10. Hubble Space Telescope: The Telescope, the Observations & the Servicing Mission

    Science.gov (United States)

    1999-11-01

    the way for other space-based observatories. How the mission was named Hubble Space Telescope is named after Edwin Powell Hubble (1889-1953), who was one of the great pioneers of modern astronomy. Industrial Involvement The ESA contribution to HST included the Solar Panels and the Faint Object Camera (FOC). Prime contractors for the FOC were Dornier (now DaimlerChrysler Aerospace, Germany), and Matra (France); for the Solar Panels British Aerospace (UK). Launch date: April 25, 1990 Launcher: Space Shuttle Discovery (STS-31) Launch mass: 11 110 kg Dimensions Length: 15.9 m, diameter: 4.2 m. In addition two solar panels each 2.4 x 12.1 m. Payload (current) A 2.4 m f/24 Ritchey-Chretien telescope with four main instruments, currently WFPC2, STIS, NICMOS and FOC. In addition the three fine-guidance sensors are used for astrometric observations (positional astronomy). WFPC2 - Wide Field/Planetary Camera 2 is an electronic camera working at two magnifications. It has four CCD detectors with 800 x 800 pixels. One of these (called Planetary Camera) has a higher resolution (Costs ESA's financial contribution to the Hubble Space Telescope amounts to EUR 593m at 1999 economic conditions (including development of the Faint Object Camera and the Solar Arrays, participation in operations and in servicing missions).

  11. STS-93 M.S. Hawley suits up for launch

    Science.gov (United States)

    1999-01-01

    During final launch preparations in the Operations and Checkout Building, STS-93 Mission Specialist Steven A. Hawley (Ph.D.)gets help donning his launch and entry suit from a suit tech. After Space Shuttle Columbia's July 20 launch attempt was scrubbed at the T-7 second mark in the countdown, the launch was rescheduled for Thursday, July 22, at 12:28 a.m. EDT. The target landing date is July 26, 1999, at 11:24 p.m. EDT. STS-93 is a five-day mission primarily to release the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. The new telescope is 20 to 50 times more sensitive than any previous X- ray telescope and is expected unlock the secrets of supernovae, quasars and black holes. The STS-93 crew numbers five: Commander Eileen M. Collins, Pilot Jeffrey S. Ashby, and Mission Specialists Hawley, Catherine G. Coleman (Ph.D.) and Michel Tognini of France, with the Centre National d'Etudes Spatiales (CNES). Collins is the first woman to serve as commander of a shuttle mission.

  12. Portable triple silicon detector telescope spectrometer for skin dosimetry

    DEFF Research Database (Denmark)

    Helt-Hansen, J.; Larsen, H.E.; Christensen, P.

    1999-01-01

    The features of a newly developed portable beta telescope spectrometer are described. The detector probe uses three silicon detectors with the thickness: 50 mu m/150 mu m/7000 mu m covered by a 2 mu m thick titanium window. Rejection of photon contributions from mixed beta/photon exposures...... is achieved by coincidence requirements between the detector signals. The silicon detectors, together with cooling aggregate, bias supplies, preamplifiers and charge generation for calibration are contained in a handy detector probe. Through a 3- or 10-m cable the detector unit is connected to a compact...... detectors. The LabVIEW(TM) software distributed by National Instruments was used for all program developments for the spectrometer, comprising also the capability of evaluating the absorbed dose rates from the measured beta spectra. The report describes the capability of the telescope spectrometer...

  13. Secondary mirror system for the European Solar Telescope (EST)

    Science.gov (United States)

    Cavaller, L.; Siegel, B.; Prieto, G.; Hernandez, E.; Casalta, J. M.; Mercader, J.; Barriga, J.

    2010-07-01

    The European Solar Telescope (EST) is a European collaborative project to build a 4m class solar telescope in the Canary Islands, which is now in its design study phase. The telescope will provide diffraction limited performance for several instruments observing simultaneously at the Coudé focus at different wavelengths. A multi-conjugated adaptive optics system composed of a tip-tilt mirror and several deformable mirrors will be integrated in the telescope optical path. The secondary mirror system is composed of the mirror itself (Ø800mm), the alignment drives and the cooling system needed to remove the solar heat load from the mirror. During the design study the feasibility to provide fast tip-tilt capabilities at the secondary mirror to work as the adaptive optics tip-tilt mirror is also being evaluated.

  14. Performance of a beam telescope using double sided silicon microstrip detectors

    International Nuclear Information System (INIS)

    Fischer, P.; Menke, S.; Wermes, N.

    1995-04-01

    A beam telescope consisting of four double sided, DC coupled microstrip detectors with VLSI readout electronics has been built and tested in a 70 GeV μ - beam at CERN. A signal to noise ratio of 53:1 and a spatial resolution of 2.7 μm (junction side) and 4.8 μm (ohmic side) have been observed on the best detectors. A telescope performance for a particle track of σ xy =2-3 μm and σ slope =2-3 μrad on the front face of a test object was achieved. (orig.)

  15. Status, performance and scientific highlights from the MAGIC telescope system

    Energy Technology Data Exchange (ETDEWEB)

    Doert, Marlene [Technische Universitaet Dortmund (Germany); Ruhr-Universitaet Bochum (Germany); Collaboration: MAGIC-Collaboration

    2015-07-01

    The MAGIC telescopes are a system of two 17 m Imaging Air Cherenkov Telescopes, which are located at 2200 m above sea level at the Roque de Los Muchachos Observatory on the Canary Island of La Palma. In this presentation, we report on recent scientific highlights gained from MAGIC observations in the galactic and the extragalactic regime. We also present the current status and performance of the MAGIC system after major hardware upgrades in the years 2011 to 2014 and give an overview of future plans.

  16. The Swift Ultra-Violet/Optical Telescope

    International Nuclear Information System (INIS)

    Roming, Peter; Hunsberger, S.D.; Nousek, John; Mason, Keith

    2001-01-01

    The Ultra-Violet/Optical Telescope (UVOT) provides the Swift Gamma-Ray Burst Explorer with the capability of quickly detecting and characterizing the optical and ultraviolet properties of gamma ray burst counterparts. The UVOT design is based on the design of the Optical Monitor on XMM-Newton. It is a Ritchey-Chretien telescope with microchannel plate intensified charged-coupled devices (MICs) that deliver sub-arcsecond imaging. These MICs are photon-counting devices, capable of detecting low intensity signal levels. When flown above the atmosphere, the UVOT will have the sensitivity of a 4m ground based telescope, attaining a limiting magnitude of 24 for a 1000 second observation in the white light filter. A rotating filter wheel allows sensitive photometry in six bands spanning the UV and visible, which will provide photometric redshifts of objects in the 1-3.5z range. For bright counterparts, such as the 9th magnitude GRB990123, or for fainter objects down to 17th magnitude, two grisms provide low-resolution spectroscopy

  17. Template analysis for the MAGIC telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Menzel, Uta [Max-Planck-Institut fuer Physik, Muenchen (Germany); Collaboration: MAGIC-Collaboration

    2016-07-01

    The MAGIC telescopes are two 17-m-diameter Imaging Air Cherenkov Telescopes located on the Canary island of La Palma. They record the Cherenkov light from air showers induced by very high energy photons. The current data analysis uses a parametrization of the two shower images (including Hillas parameters) to determine the characteristics of the primary particle. I am implementing an advanced analysis method that compares shower images on a pixel basis with template images based on Monte Carlo simulations. To reduce the simulation effort the templates contain only pure shower images that are convolved with the telescope response later in the analysis. The primary particle parameters are reconstructed by maximizing the likelihood of the template. By using all the information available in the shower images, the performance of MAGIC is expected to improve. In this presentation I will explain the general idea of a template-based analysis and show the first results of the implementation.

  18. A Hubble Space Telescope Survey of the Disk Cluster Population of M31. II. Advanced Camera for Surveys Pointings

    Science.gov (United States)

    Krienke, O. K.; Hodge, P. W.

    2008-01-01

    This paper reports on a survey of star clusters in M31 based on archival images from the Hubble Space Telescope. Paper I reported results from images obtained with the Wide Field Planetary Camera 2 (WFPC2) and this paper reports results from the Advanced Camera for Surveys (ACS). The ACS survey has yielded a total of 339 star clusters, 52 of which—mostly globular clusters—were found to have been cataloged previously. As for the previous survey, the luminosity function of the clusters drops steeply for absolute magnitudes fainter than MV = -3 the implied cluster mass function has a turnover for masses less than a few hundred solar masses. The color-integrated magnitude diagram of clusters shows three significant features: (1) a group of very red, luminous objects: the globular clusters, (2) a wide range in color for the fainter clusters, representing a considerable range in age and reddening, and (3) a maximum density of clusters centered approximately at V = 21, B - V = 0.30, V - I = 0.50, where there are intermediate-age, intermediate-mass clusters with ages close to 500 million years and masses of about 2000 solar masses. We give a brief qualitative interpretation of the distribution of clusters in the CMDs in terms of their formation and destruction rates. Based on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for research in astronomy, Inc., under NASA contract NAS 5-26555.

  19. Autonomous Dome for a Robotic Telescope

    Science.gov (United States)

    Kumar, A.; Sengupta, A.; Ganesh, S.

    2016-12-01

    The Physical Research Laboratory operates a 50 cm robotic observatory at Mount Abu (Rajsthan, India). This Automated Telescope for Variability Studies (ATVS) makes use of the Remote Telescope System 2 (RTS2) for autonomous operations. The observatory uses a 3.5 m dome from Sirius Observatories. We have developed electronics using Arduino electronic circuit boards with home grown logic and software to control the dome operations. We are in the process of completing the drivers to link our Arduino based dome controller with RTS2. This document is a short description of the various phases of the development and their integration to achieve the required objective.

  20. First results of high energy particle measurements with the TUENDE-M telescopes on board the S/C VEGA-1 and -2

    International Nuclear Information System (INIS)

    Somogyi, A.J.; Erdoes, G.; Eroe, J.

    1986-02-01

    VEGA-1 and VEGA-2 space probes launched to comet Halley are equipped with identical TUENDE-M high energy particle detectors. Each TUENDE-M instrument consists of two particle telescopes viewing in the ecliptic plane at an angle of deg 55 and deg 90, respectively, to the east of the Sun. Technical data of the detectors are tabulated. In the period Dec 1984 - Apr 1985 several cases of interplanetary acceleration of charged particles up to MeV energies and a large solar flare event (27.Jan 1985) were observed by the TUENDE-M instruments. The latter event is described in detail and observation results (intensity profiles of different channels of various energies) are presented. (D.Gy.)

  1. Single-Dish Radio Polarimetry in the F-GAMMA Program with the Effelsberg 100-m Radio Telescope

    Directory of Open Access Journals (Sweden)

    Beuchert Tobias

    2013-12-01

    Full Text Available Studying the variability of polarized AGN jet emission in the radio band is crucial for understanding the dynamics of moving shocks as well as the structure of the underlying magnetic field. The 100-m Effelsberg Telescope is a high-quality instrument for studying the long-term variability of both total and polarized intensity as well as the electric-vector position angle. Since 2007, the F-GAMMA program has been monitoring the linear polarized emission of roughly 60 blazars at 11 frequencies between 2.7 and 43 GHz. Here, we describe the calibration of the polarimetric data at 5 and 10 GHz and the resulting F-GAMMA full-Stokes light curves for the exemplary case of the radio galaxy 3C 111.

  2. Probing quantum gravity using photons from a flare of the active galactic nucleus Markarian 501 observed by the MAGIC telescope

    CERN Document Server

    Albert, J; Anderhub, H; Antonelli, L A; Antoranz, P; Backes, M; Baixeras, C; Barrio, J A; Bartko, H; Bastieri, D; Becker, J K; Bednarek, W; Berger, K; Bernardini, E; Bigongiari, C; Biland, A; Bock, R K; Bordas, P; Bosch-Ramon, V; Bretz, T; Britvitch, I; Camara, M; Carmona, E; Chilingarian, A; Commichau, S; Contreras, J L; Cortina, J; Costado, M T; Covino, S; Dazzi, F; De Angelis, A; De Cea del Pozo, E; Delgado Mendez, C; de los Reyes, R; De Lotto, B; De Maria, M; De Sabata, F; Dominguez, A; Dorner, D; Doro, M; Errando, M; Fagiolini, M; Ferenc, D; Fernández, E; Firpo, R; Fonseca, M V; Font, L; Galante, N; García-López, R J; Garczarczyk, M; Gaug, M; Göbel, F; Hayashida, M; Herrero, A; Höhne, D; Hose, J; Hsu, C C; Huber, S; Jogler, T; Kranich, D; La Barbera, A; Laille, A; Leonardo, E; Lindfors, E; Lombardi, S; Longo, F; López, M; Lorenz, E; Majumdar, P; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Mariotti, M; Martínez, M; Mazin, D; Meucci, M; Meyer, M; Miranda, J M; Mirzoyan, R; Moles, M; Moralejo, A; Nieto, D; Nilsson, K; Ninkovic, J; Otte, N; Oya, I; Panniello, M; Paoletti, R; Paredes, J M; Pasanen, M; Pascoli, D; Pauss, F; Pegna, R; Pérez-Torres, M A; Persic, M; Peruzzo, L; Piccioli, A; Prada, F; Puchades, N; Raymers, A; Ribó, M; Rico, J; Rissi, M; Robert, A; Rügamer, S; Saggion, A; Saitô, T; Salvati, M; Sanchez-Conde, M; Sartori, P; Satalecka, K; Scalzotto, V; Scapin, V; Schmitt, R; Schweizer, T; Shayduk, M; Shinozaki, K; Sidro, N; Sierpowska-Bartosik, A; Sillanpää, A; Spanier, F; Stamerra, A; Stark, L S; Takalo, L; Tavecchio, F; Temnikov, P; Tescaro, D; Teshima, M; Tluczykont, M; Torres, D F; Turini, N; Vankov, H; Venturini, A; Vitale, V; Wagner, R M; Wittek, W; Zabalza, M; Zandanel, F; Zanin, R; Ellis, Jonathan Richard; Mavromatos, N E; Nanopoulos, D V; Sakharov, Alexander S; Sarkisyan-Grinbaum, E

    2008-01-01

    We use the timing of photons observed by the MAGIC gamma-ray telescope during a flare of the active galaxy Markarian 501 to probe a vacuum refractive index ~ 1-(E/M_QGn)^n, n = 1,2, that might be induced by quantum gravity. The peaking of the flare is found to maximize for quantum-gravity mass scales M_QG1 ~ 0.4x10^18 GeV or M_QG2 ~ 0.6x10^11 GeV, and we establish lower limits M_QG1 > 0.26x10^18 GeV or M_QG2 > 0.39x10^11 GeV at the 95% C.L. Monte Carlo studies confirm the MAGIC sensitivity to propagation effects at these levels. Thermal plasma effects in the source are negligible, but we cannot exclude the importance of some other source effect.

  3. IPS observation system for the Miyun 50 m radio telescope and its commissioning observation

    International Nuclear Information System (INIS)

    Zhu Xinying; Zhang Xizhen; Zhang Hongbo; Kong Deqing; Qu Huipeng

    2012-01-01

    Ground-based observation of Interplanetary Scintillation (IPS) is an important approach for monitoring solar wind. A ground-based IPS observation system has been newly implemented on a 50 m radio telescope at Miyun station, managed by the National Astronomical Observatories, Chinese Academy of Sciences. This observation system has been constructed for the purpose of observing solar wind speed and the associated scintillation index by using the normalized cross-spectrum of a simultaneous dual-frequency IPS measurement. The system consists of a universal dual-frequency front-end and a dual-channel multi-function back-end specially designed for IPS. After careful calibration and testing, IPS observations on source 3C 273B and 3C 279 have been successfully carried out. The preliminary observation results show that this newly-developed observation system is capable of performing IPS observation. The system's sensitivity for IPS observation can reach over 0.3 Jy in terms of an IPS polarization correlator with 4 MHz bandwidth and 2 s integration time. (research papers)

  4. PROMPT: Panchromatic Robotic Optical Monitoring and Polarimetry Telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Reichart, D.; Nysewander, M.; Moran, J. [North Carolina Univ., Chapel Hill (United States). Department of Physics and Astronomy] (and others)

    2005-07-15

    Funded by $1.2M in grants and donations, we are now building PROMPT at CTIO. When completed in late 2005, PROMPT will consist of six 0.41-meter diameter Ritchey-Chretien telescopes on rapidly slewing mounts that respond to GRB alerts within seconds, when the afterglow is potentially extremely bright. Each mirror and camera coating is being optimized for a different wavelength range and function, including a NIR imager, two red-optimized imager, a blue-optimized imager, an UV-optimized imager, and an optical polarimeter. PROMPT will be able to identify high-redshift events by dropout and distinguish these events from the similar signatures of extinction. In this way, PROMPT will act a distance-finder scope for spectroscopic follow up on the larger 4.1-meter diameter SOAR telescope, which is also located at CTIO. When not chasing GRBs, PROMPT serves broader educational objectives across the state of north Carolina. Enclosure construction and the first two telescopes are now complete and functioning: PROMPT observed Swift's first GRB in December 2004. We upgrade from two to four telescope in February 2005 and from four to six telescopes in mid-2005.

  5. Sub-millimeter science with the Heinrich-Hertz-Telescope

    Science.gov (United States)

    Dumke, Michael

    The Heinrich-Hertz-Telescope on Mt. Graham, Arizona, is a state-of-the-art single-dish radio telescope for observations in the sub-millimeter wavelength range. It is operated by the Sub-Millimeter Telescope Observatory (SMTO), which is a collaboration between the University of Arizona, Tucson, and the Max-Planck-Institut für Radioastronomie, Bonn. In this talk I give an overview over the telescope and its instrumentation, and show some examples of forefront research performed by astronomers from both the U.S. and Europe using this instrument. The telescope is located on Mt. Graham, Arizona, at an altitude of 3178 m, which ensures sub-mm weather conditions during a significant amount of available observing time. It has a primary reflector of 10 m diameter, mounted on a carbon fiber backup structure, and is equipped with a corotating enclosure. The surface accuracy of the primary reflector is 12 microns rms, what makes the HHT the most accurate radio telescope ever built. For spectral line observations, SIS receivers covering the frequency range from 200 to 500 GHz are available. Furthermore, a Hot-Electron-Bolometer, developed at the CfA, can be used for spectral line observations above 800 GHz. The continuum receivers are a 4-color bolometer, observing at 1300, 870, 450, and 350 microns, and a 19-channel bolometer array, developed at the MPIfR, which is sensitive around 850 microns. In the last few years, the HHT has been used by several groups to perform astronomical research. The most notable result was the measurement of the CO(9--8) line in Orion at 1.037 THz with the Hot-Electron Bolometer -- the first radioastronomical observation above 1 THz from a ground-based telescope. Several galactic molecular line sources have been mapped in the CO(7--6) line at 806 GHz, and in two fine-structure lines of atomic carbon. A continuum map of the galactic center at 850 microns could be produced using the new 19-channel bolometer array. Even external galaxies, where

  6. Asteroid Observations with NCSFCT’s AZT-8 Telescope

    Directory of Open Access Journals (Sweden)

    Kozhukhov, O.M.

    2017-01-01

    Full Text Available The asteroid observations of the small Solar System bodies were carried out with the AZT-8 telescope (D=0.7 m, f/4 of the National Center of Space Facilities Control and Testing (NCSFCT during 2010-2013. The telescope is located near Yevpatoria, the observatory code according IAU is B17. The observational program included perturbed main belt asteroids and NEO’s for the GAIA FUN-SSO Company. The MPC database contains more than 4500 asteroids positions and magnitudes obtained during this period at AZT-8 telescope. The article presents analysis of the positional accuracy of B17 observations obtained from the comparison with the JPL HORIZONS ephemeris, and data from AstDyS-2 and NEODyS-2 web services.

  7. Design drivers for a wide-field multi-object spectrograph for the William Herschel Telescope

    NARCIS (Netherlands)

    Balcells, Marc; Benn, Chris R.; Carter, David; Dalton, Gavin B.; Trager, Scott C.; Feltzing, Sofia; Verheijen, M.A.W.; Jarvis, Matt; Percival, Will; Abrams, Don C.; Agocs, Tibor; Brown, Anthony G. A.; Cano, Diego; Evans, Chris; Helmi, Amina; Lewis, Ian J.; McLure, Ross; Peletier, Reynier F.; Pérez-Fournon, Ismael; Sharples, Ray M.; Tosh, Ian A. J.; Trujillo, Ignacio; Walton, Nic; Westhall, Kyle B.

    Wide-field multi-object spectroscopy is a high priority for European astronomy over the next decade. Most 8-10m telescopes have a small field of view, making 4-m class telescopes a particularly attractive option for wide-field instruments. We present a science case and design drivers for a

  8. The TACTIC atmospheric Cherenkov imaging telescope

    International Nuclear Information System (INIS)

    Koul, R.; Tickoo, A.K.; Kaul, S.K.; Kaul, S.R.; Kumar, N.; Yadav, K.K.; Bhatt, N.; Venugopal, K.; Goyal, H.C.; Kothari, M.; Chandra, P.; Rannot, R.C.; Dhar, V.K.; Koul, M.K.; Kaul, R.K.; Kotwal, S.; Chanchalani, K.; Thoudam, S.; Chouhan, N.; Sharma, M.; Bhattacharyya, S.; Sahayanathan, S.

    2007-01-01

    The TACTIC (TeV Atomospheric Cherenkov Telescope with Imaging Camera) γ-ray telescope, equipped with a light collector of area ∼9.5m 2 and a medium resolution imaging camera of 349 pixels, has been in operation at Mt. Abu, India, since 2001. This paper describes the main features of its various subsystems and its overall performance with regard to (a) tracking accuracy of its two-axes drive system, (b) spot size of the light collector, (c) back-end signal processing electronics and topological trigger generation scheme, (d) data acquisition and control system and (e) relative and absolute gain calibration methodology. Using a trigger field-of-view of 11x11 pixels (∼3.4 a tx3.4 a t), the telescope records a cosmic ray event rate of ∼2.5Hz at a typical zenith angle of 15 a t. Monte Carlo simulation results are also presented in the paper for comparing the expected performance of the telescope with actual observational results. The consistent detection of a steady signal from the Crab Nebula above ∼1.2TeV energy, at a sensitivity level of ∼5.0σ in ∼25h, along with excellent matching of its energy spectrum with that obtained by other groups, reassures that the performance of the TACTIC telescope is quite stable and reliable. Furthermore, encouraged by the detection of strong γ-ray signals from Mrk 501 (during 1997 and 2006 observations) and Mrk 421 (during 2001 and 2005-2006 observations), we believe that there is considerable scope for the TACTIC telescope to monitor similar TeV γ-ray emission activity from other active galactic nuclei on a long-term basis

  9. 26 CFR 1.401(m)-4 - Special rules for mergers, acquisitions and similar events. [Reserved

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 5 2010-04-01 2010-04-01 false Special rules for mergers, acquisitions and similar events. [Reserved] 1.401(m)-4 Section 1.401(m)-4 Internal Revenue INTERNAL REVENUE SERVICE... Bonus Plans, Etc. § 1.401(m)-4 Special rules for mergers, acquisitions and similar events. [Reserved] ...

  10. The Atmospheric Monitoring Strategy for the Cherenkov Telescope Array

    Science.gov (United States)

    Daniel, M. K.; CTA Consortium

    2015-04-01

    The Imaging Atmospheric Cherenkov Technique (IACT) is unusual in astronomy as the atmosphere actually forms an intrinsic part of the detector system, with telescopes indirectly detecting very high energy particles by the generation and transport of Cherenkov photons deep within the atmosphere. This means that accurate measurement, characterisation and monitoring of the atmosphere is at the very heart of successfully operating an IACT system. The Cherenkov Telescope Array (CTA) will be the next generation IACT observatory with an ambitious aim to improve the sensitivity of an order of magnitude over current facilities, along with corresponding improvements in angular and energy resolution and extended energy coverage, through an array of Large (23 m), Medium (12 m) and Small (4 m) sized telescopes spread over an area of order ~km2. Whole sky coverage will be achieved by operating at two sites: one in the northern hemisphere and one in the southern hemisphere. This proceedings will cover the characterisation of the candidate sites and the atmospheric calibration strategy. CTA will utilise a suite of instrumentation and analysis techniques for atmospheric modelling and monitoring regarding pointing forecasts, intelligent pointing selection for the observatory operations and for offline data correction.

  11. Optical telescope BIRT in ORIGIN for gamma ray burst observing

    DEFF Research Database (Denmark)

    Content, Robert; Content, Robert; Sharples, Ray

    2012-01-01

    The ORIGIN concept is a space mission with a gamma ray, an X-ray and an optical telescope to observe the gamma ray bursts at large Z to determine the composition and density of the intergalactic matter in the line of sight. It was an answer to the ESA M3 call for proposal. The optical telescope i...... length. All 3 instruments use the same 2k x 2k detector simultaneously so that telescope pointing and tip-tilt control of a fold mirror permit to place the gamma ray burst on the desired instrument without any other mechanism. © 2012 SPIE....

  12. A low cost, high performance, 1.2m off-axis telescope built with NG-Xinetics silicon carbide

    Science.gov (United States)

    Rey, Justin J.; Wellman, John A.; Egan, Richard G.; Wollensak, Richard J.

    2011-09-01

    The search for extrasolar habitable planets is one of three major astrophysics priorities identified for the next decade. These missions demand very high performance visible-wavelength optical imaging systems. Such high performance space telescopes are typically extremely expensive and can be difficult for government agencies to afford in today's economic climate, and most lower cost systems offer little benefit because they fall short on at least one of the following three key performance parameters: imaging wavelength, total system-level wavefront error and aperture diameter. Northrop Grumman Xinetics has developed a simple, lightweight, low-cost telescope design that will address the near-term science objectives of this astrophysics theme with the required optical performance, while reducing the telescope cost by an order of magnitude. Breakthroughs in SiC mirror manufacturing, integrated wavefront sensing, and high TRL deformable mirror technology have finally been combined within the same organization to offer a complete end-to-end telescope system in the lower end of the Class D cost range. This paper presents the latest results of real OAP polishing and metrology data, an optimized optical design, and finite element derived WFE

  13. γ astrophysics above 10-30 GeV with the MAGIC telescope

    International Nuclear Information System (INIS)

    Mirzoyan, Razmick

    1999-01-01

    The project on the 17 m oe telescope, dubbed MAGIC (Major Atmospheric Gamma Imaging Cherenkov Telescope), is dedicated for γ astrophysics in the energy range from 10-30 GeV till 50-100 TeV. MAGIC will for the first time allow to explore with very high sensitivity the energy range 10-300 GeV and to bridge the existing energy gap between satellite and ground-based air Cherenkov measurements. We believe MAGIC will serve as a prototype for future multi-telescope γ ray observatories

  14. The MAGIC gamma-ray telescope: status and first results

    International Nuclear Information System (INIS)

    Fernandez, Enrique

    2006-01-01

    MAGIC, a 17 m diameter Cherenkov telescope for gamma ray astronomy, has recently been commissioned at the Roque de los Muchachos site in the Island of La Palma, of the Canary Islands. The telescope was proposed in 1998 with the goal of lowering the threshold of observation of gamma rays by ground detectors to 20-30 GeV energies. This paper describes its main design features, its physics objectives and its first operations

  15. The first GCT camera for the Cherenkov Telescope Array

    CERN Document Server

    De Franco, A.; Allan, D.; Armstrong, T.; Ashton, T.; Balzer, A.; Berge, D.; Bose, R.; Brown, A.M.; Buckley, J.; Chadwick, P.M.; Cooke, P.; Cotter, G.; Daniel, M.K.; Funk, S.; Greenshaw, T.; Hinton, J.; Kraus, M.; Lapington, J.; Molyneux, P.; Moore, P.; Nolan, S.; Okumura, A.; Ross, D.; Rulten, C.; Schmoll, J.; Schoorlemmer, H.; Stephan, M.; Sutcliffe, P.; Tajima, H.; Thornhill, J.; Tibaldo, L.; Varner, G.; Watson, J.; Zink, A.

    2015-01-01

    The Gamma Cherenkov Telescope (GCT) is proposed to be part of the Small Size Telescope (SST) array of the Cherenkov Telescope Array (CTA). The GCT dual-mirror optical design allows the use of a compact camera of diameter roughly 0.4 m. The curved focal plane is equipped with 2048 pixels of ~0.2{\\deg} angular size, resulting in a field of view of ~9{\\deg}. The GCT camera is designed to record the flashes of Cherenkov light from electromagnetic cascades, which last only a few tens of nanoseconds. Modules based on custom ASICs provide the required fast electronics, facilitating sampling and digitisation as well as first level of triggering. The first GCT camera prototype is currently being commissioned in the UK. On-telescope tests are planned later this year. Here we give a detailed description of the camera prototype and present recent progress with testing and commissioning.

  16. VLTI First Fringes with Two Auxiliary Telescopes at Paranal

    Science.gov (United States)

    2005-03-01

    World's Largest Interferometer with Moving Optical Telescopes on Track Summary The Very Large Telescope Interferometer (VLTI) at Paranal Observatory has just seen another extension of its already impressive capabilities by combining interferometrically the light from two relocatable 1.8-m Auxiliary Telescopes. Following the installation of the first Auxiliary Telescope (AT) in January 2004 (see ESO PR 01/04), the second AT arrived at the VLT platform by the end of 2004. Shortly thereafter, during the night of February 2 to 3, 2005, the two high-tech telescopes teamed up and quickly succeeded in performing interferometric observations. This achievement heralds an era of new scientific discoveries. Both Auxiliary Telescopes will be offered from October 1, 2005 to the community of astronomers for routine observations, together with the MIDI instrument. By the end of 2006, Paranal will be home to four operational ATs that may be placed at 30 different positions and thus be combined in a very large number of ways ("baselines"). This will enable the VLTI to operate with enormous flexibility and, in particular, to obtain extremely detailed (sharp) images of celestial objects - ultimately with a resolution that corresponds to detecting an astronaut on the Moon. PR Photo 07a/05: Paranal Observing Platform with AT1 and AT2 PR Photo 07b/05: AT1 and AT2 with Open Domes PR Photo 07c/05: Evening at Paranal with AT1 and AT2 PR Photo 07d/05: AT1 and AT2 under the Southern Sky PR Photo 07e/05: First Fringes with AT1 and AT2 PR Video Clip 01/05: Two ATs at Paranal (Extract from ESO Newsreel 15) A Most Advanced Device ESO PR Video 01/05 ESO PR Video 01/05 Two Auxiliary Telescopes at Paranal [QuickTime: 160 x 120 pix - 37Mb - 4:30 min] [QuickTime: 320 x 240 pix - 64Mb - 4:30 min] ESO PR Photo 07a/05 ESO PR Photo 07a/05 [Preview - JPEG: 493 x400 pix - 44k] [Normal - JPEG: 985 x 800 pix - 727k] [HiRes - JPEG: 5000 x 4060 pix - 13.8M] Captions: ESO PR Video Clip 01/05 is an extract from

  17. New Constraints on ΩM, ΩΛ, and w from an Independent Set of 11 High-Redshift Supernovae Observed with the Hubble Space Telescope

    Science.gov (United States)

    Knop, R. A.; Aldering, G.; Amanullah, R.; Astier, P.; Blanc, G.; Burns, M. S.; Conley, A.; Deustua, S. E.; Doi, M.; Ellis, R.; Fabbro, S.; Folatelli, G.; Fruchter, A. S.; Garavini, G.; Garmond, S.; Garton, K.; Gibbons, R.; Goldhaber, G.; Goobar, A.; Groom, D. E.; Hardin, D.; Hook, I.; Howell, D. A.; Kim, A. G.; Lee, B. C.; Lidman, C.; Mendez, J.; Nobili, S.; Nugent, P. E.; Pain, R.; Panagia, N.; Pennypacker, C. R.; Perlmutter, S.; Quimby, R.; Raux, J.; Regnault, N.; Ruiz-Lapuente, P.; Sainton, G.; Schaefer, B.; Schahmaneche, K.; Smith, E.; Spadafora, A. L.; Stanishev, V.; Sullivan, M.; Walton, N. A.; Wang, L.; Wood-Vasey, W. M.; Yasuda, N.

    2003-11-01

    We report measurements of ΩM, ΩΛ, and w from 11 supernovae (SNe) at z=0.36-0.86 with high-quality light curves measured using WFPC2 on the Hubble Space Telescope (HST). This is an independent set of high-redshift SNe that confirms previous SN evidence for an accelerating universe. The high-quality light curves available from photometry on WFPC2 make it possible for these 11 SNe alone to provide measurements of the cosmological parameters comparable in statistical weight to the previous results. Combined with earlier Supernova Cosmology Project data, the new SNe yield a measurement of the mass density ΩM=0.25+0.07-0.06(statistical)+/-0.04 (identified systematics), or equivalently, a cosmological constant of ΩΛ=0.75+0.06-0.07(statistical)+/-0.04 (identified systematics), under the assumptions of a flat universe and that the dark energy equation-of-state parameter has a constant value w=-1. When the SN results are combined with independent flat-universe measurements of ΩM from cosmic microwave background and galaxy redshift distortion data, they provide a measurement of w=-1.05+0.15-0.20(statistical)+/-0.09 (identified systematic), if w is assumed to be constant in time. In addition to high-precision light-curve measurements, the new data offer greatly improved color measurements of the high-redshift SNe and hence improved host galaxy extinction estimates. These extinction measurements show no anomalous negative E(B-V) at high redshift. The precision of the measurements is such that it is possible to perform a host galaxy extinction correction directly for individual SNe without any assumptions or priors on the parent E(B-V) distribution. Our cosmological fits using full extinction corrections confirm that dark energy is required with P(ΩΛ>0)>0.99, a result consistent with previous and current SN analyses that rely on the identification of a low-extinction subset or prior assumptions concerning the intrinsic extinction distribution. Based in part on

  18. Launch Will Create a Radio Telescope Larger than Earth

    Science.gov (United States)

    Baseline Interferometry project at JPL. "Observations of cosmic masers -- naturally-occurring microwave radio amplifiers -- will tell us new things about the process of star formation and activity in the heart of other galaxies." "By the 1980s, radio astronomers were observing the universe with assemblages of radio telescopes whose resolving power was limited only by the size of the Earth. Now, through a magnificent international effort, we will be able to break this barrier and see fine details of celestial objects that are beyond the reach of a purely ground-based telescope array. We anticipate a rich harvest of new scientific knowledge from VSOP," said Dr. Paul Vanden Bout, Director of NRAO. In the first weeks after launch, scientists and engineers will "test the deployment of the reflecting mesh telescope in orbit, the wide-band data link from the satellite to the ground, the performance of the low noise amplifiers in orbit, and the high-precision orbit determination and attitude control necessary for VLBI observations with an orbiting telescope," according to Dr. Joel Smith, manager of the U.S. Space VLBI project at JPL. Scientific observations are expected to begin in May. The 26-foot diameter orbiting radio telescope will observe celestial radio sources in concert with a number of the world's ground-based radio telescopes. The 1,830-pound satellite will be launched from ISAS' Kagoshima Space Center, at the southern tip of Kyushu, one of Japan's main islands, and will be the first launch with ISAS' new M-5 series rocket. The satellite will go into an elliptical orbit, varying between 620 to 12,400 miles above the Earth's surface. This orbit provides a wide range of distances between the satellite and ground-based telescopes, which is important for producing a high-quality image of the radio source being observed. One orbit of the Earth will take about six hours. The satellite's observations will concentrate on some of the most distant and intriguing objects in the

  19. Nanometre-accurate form measurement machine for E-ELT M1 segments

    NARCIS (Netherlands)

    Bos, A.; Henselmans, R.; Rosielle, P.C.J.N.; Steinbuch, M.

    2015-01-01

    To enable important scientific discoveries, ESO has defined a new ground-based telescope: the European Extremely Large Telescope (E-ELT). The baseline design features a telescope with a 39-m-class primary mirror (M1), making it the largest and most powerful telescope in the world. The M1 consists of

  20. Transmission of light in deep sea water at the site of the ANTARES neutrino telescope

    Science.gov (United States)

    ANTARES Collaboration; Aguilar, J. A.; Albert, A.; Amram, P.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardellier-Desages, F. E.; Aslanides, E.; Aubert, J.-J.; Azoulay, R.; Bailey, D.; Basa, S.; Battaglieri, M.; Becherini, Y.; Bellotti, R.; Beltramelli, J.; Bertin, V.; Billault, M.; Blaes, R.; Blanc, F.; Bland, R. W.; de Botton, N.; Boulesteix, J.; Bouwhuis, M. C.; Brooks, C. B.; Bradbury, S. M.; Bruijn, R.; Brunner, J.; Bugeon, F.; Burgio, G. F.; Cafagna, F.; Calzas, A.; Caponetto, L.; Carmona, E.; Carr, J.; Cartwright, S. L.; Cecchini, S.; Charvis, P.; Circella, M.; Colnard, C.; Compère, C.; Croquette, J.; Cooper, S.; Coyle, P.; Cuneo, S.; Damy, G.; van Dantzig, R.; Deschamps, A.; de Marzo, C.; Destelle, J.-J.; de Vita, R.; Dinkelspiler, B.; Dispau, G.; Drougou, J.-F.; Druillole, F.; Engelen, J.; Favard, S.; Feinstein, F.; Ferry, S.; Festy, D.; Fopma, J.; Fuda, J.-L.; Gallone, J.-M.; Giacomelli, G.; Girard, N.; Goret, P.; Gournay, J.-F.; Hallewell, G.; Hartmann, B.; Heijboer, A.; Hello, Y.; Hernández-Rey, J. J.; Herrouin, G.; Hößl, J.; Hoffmann, C.; Hubbard, J. R.; Jaquet, M.; de Jong, M.; Jouvenot, F.; Kappes, A.; Karg, T.; Karkar, S.; Karolak, M.; Katz, U.; Keller, P.; Kooijman, P.; Korolkova, E. V.; Kouchner, A.; Kretschmer, W.; Kudryavtsev, V. A.; Lafoux, H.; Lagier, P.; Lamare, P.; Languillat, J.-C.; Laubier, L.; Legou, T.; Le Guen, Y.; Le Provost, H.; Le van Suu, A.; Lo Nigro, L.; Lo Presti, D.; Loucatos, S.; Louis, F.; Lyashuk, V.; Magnier, P.; Marcelin, M.; Margiotta, A.; Maron, C.; Massol, A.; Mazéas, F.; Mazeau, B.; Mazure, A.; McMillan, J. E.; Michel, J.-L.; Millot, C.; Milovanovic, A.; Montanet, F.; Montaruli, T.; Morel, J.-P.; Moscoso, L.; Nezri, E.; Niess, V.; Nooren, G. J.; Ogden, P.; Olivetto, C.; Palanque-Delabrouille, N.; Payre, P.; Petta, C.; Pineau, J.-P.; Poinsignon, J.; Popa, V.; Potheau, R.; Pradier, T.; Racca, C.; Randazzo, N.; Real, D.; van Rens, B. A. P.; Réthoré, F.; Ripani, M.; Roca-Blay, V.; Romeyer, A.; Rollin, J.-F.; Romita, M.; Rose, H. J.; Rostovtsev, A.; Ruppi, M.; Russo, G. V.; Sacquin, Y.; Saouter, S.; Schuller, J.-P.; Schuster, W.; Sokalski, I.; Suvorova, O.; Spooner, N. J. C.; Spurio, M.; Stolarczyk, T.; Stubert, D.; Taiuti, M.; Thompson, L. F.; Tilav, S.; Usik, A.; Valdy, P.; Vallage, B.; Vaudaine, G.; Vernin, P.; Virieux, J.; Vladimirsky, E.; de Vries, G.; de Witt Huberts, P.; de Wolf, E.; Zaborov, D.; Zaccone, H.; Zakharov, V.; Zavatarelli, S.; de Zornoza, J. D.; Zúñiga, J.

    2005-02-01

    The ANTARES neutrino telescope is a large photomultiplier array designed to detect neutrino-induced upward-going muons by their Cherenkov radiation. Understanding the absorption and scattering of light in the deep Mediterranean is fundamental to optimising the design and performance of the detector. This paper presents measurements of blue and UV light transmission at the ANTARES site taken between 1997 and 2000. The derived values for the scattering length and the angular distribution of particulate scattering were found to be highly correlated, and results are therefore presented in terms of an absorption length λabs and an effective scattering length λscteff. The values for blue (UV) light are found to be λabs ≃ 60(26) m, λscteff≃265(122)m, with significant (˜15%) time variability. Finally, the results of ANTARES simulations showing the effect of these water properties on the anticipated performance of the detector are presented.

  1. A concept for a thirty-meter telescope

    Science.gov (United States)

    Burgarella, Denis; Zamkotsian, Frederic; Dohlen, Kjetil; Ferrari, Marc; Hammer, Francois; Sayede, Frederic; Rigaud, Francois

    2004-07-01

    In May 2000, the Canada-France-Hawaii (CFHT) Telescope Science Advisory Committee solicited the Canadian, Hawaiian and French communities to propose concepts to replace the present CFH telescope by a larger telescope. Three groups were selected: Carlberg et al. (2001) in Canada, Khun et al. (2001) in Hawaii and Burgarella et al. (2001a) in France. The reports were delivered to CFHT in May 2001 and are now available throughout the CFHT website. One of the main constraints was due to the fact that the new and larger telescope should use as much as possible the existing site and be compliant with the Mauna Kea Science reserve Master Plan (2000). This plan analyses all aspects of the Mauna Kea summit but most of them are related to the facts that the mountain must be considered as a sacred area for indigenous Hawaiian people and that the ecosystem is fragile. But in addition, the plan also tries to account for the fact that the summit of Mauna Kea is a world famous site for astronomy. The points that we can highlight in the context of our project are of two types. Since then, the project evolved and Hawaii is not considered as the one and only site to build an Extremely Large Telescope (ELT). Moreover, the size of the primary mirror, which was strongly dependent on the above constraints, is no more limited to the 16 - 20 m which was our conclusion at this time. Nevertheless, the three points of the resolution are still valid and since then, we have kept on working on the concept by launching differnt follow-up studies that are necessary to start such a project. Of course, the main point is the Science Objectives which drive the main specifications for an ELT. But related technical studies are also mandatory e.g. Adaptive Optics, Building of a primary mirror larger than 30 m in diameter, Image Quality as a function of the segment size and shape.

  2. A 18 m 2 cylindrical tracking detector made of 2.6 m long, stereo mylar straw tubes with 100 μm resolution

    Science.gov (United States)

    Benussi, L.; Bertani, M.; Bianco, S.; Fabbri, F. L.; Gianotti, P.; Giardoni, M.; Ghezzo, A.; Guaraldo, C.; Lanaro, A.; Locchi, P.; Lu, J.; Lucherini, V.; Mecozzi, A.; Pace, E.; Passamonti, L.; Qaisar, N.; Ricciardi, A.; Sarwar, S.; Serdyouk, V.; Trasatti, L.; Volkov, A.; Zia, A.

    1998-12-01

    An array of 2424 2.6 m-long, 15 mm-diameter mylar straw tubes, arranged in two axial and four stereo layers, has been assembled. The array covers a cylindrical tracking surface of 18 m 2 and provides coordinate measurement in the drift direction and along the wire. A correction of the systematic effects which are introduced by gravitational sag and electrostatics, thus dominating the detector performance especially with long straws, allows to determine wire position from drift-time distribution. The correction has been applied to reach a space resolution of 40 μm with DME, 100 μm with Ar+C 2H 6, and 100-200 μm with CO 2. Such a resolution is the best ever obtained for straws of these dimensions. A study of the gas leakage for the straw system has been performed, and results are reported. The array is being commissioned as a subdetector of the FINUDA spectrometer, and tracking performances are being studied with cosmic rays.

  3. A 18 m2 cylindrical tracking detector made of 2,6 m long, stereo mylar straw tubes with 100 μm resolution

    International Nuclear Information System (INIS)

    Benussi, L.; Bertani, M.; Bianco, S.; Fabbri, F.L.; Gianotti, P.; Giardoni, M.; Ghezzo, A.; Guaraldo, C.; Lanaro, A.; Locchi, P.; Lu, J.; Lucherini, V.; Mecozzi, A.; Pace, E.; Passamonti, L.; Qaisar, N.; Ricciardi, A.; Sarwar, S.; Serdyouk, V.; Trasatti, L.; Volkov, A.; Zia, A.

    1998-01-01

    An array of 2424 2.6 m-long, 15 mm-diameter mylar straw tubes, arranged in two axial and four stereo layers, has been assembled. The array covers a cylindrical tracking surface of 18 m 2 and provides coordinate measurement in the drift direction and along the wire. An under-standing of the systematic effects which are introduced by gravitational sag and electrostatics, thus dominating the detector performance especially with long straws, allows to determine wire position from drift-time distribution. The correction has been applied to reach a space resolution of 40 μm with DME, 100 μm with Ar + C 2 H 6 , and 100-200 μm with CO 2 . Such a resolution is the best ever obtained for straws of these dimensions. A study of the gas leakage for the straw system has been performed, and results are reported. The array is being commissioned as a subdetector of the FINUDA spectrometer, and tracking performances are being studied with cosmic rays. (author)

  4. Modernization of the Mayall Telescope control system: design, implementation, and performance

    Science.gov (United States)

    Sprayberry, David; Dunlop, Patrick; Evatt, Matthew; Reddell, Larry; Gott, Shelby; George, James R.; Donaldson, John; Stupak, Robert J.; Marshall, Robert; Abareshi, Behzad; Stover, Deanna; Warner, Michael; Cantarutti, Rolando E.; Probst, Ronald G.

    2016-08-01

    Motivated by a desire to improve the KPNO Mayall 4m telescope's pointing and tracking performance prior to the start of the DESI installation and by a need to improve the maintainability of its telescope control system (TCS), we recently completed a major modernization of that system based heavily on recent changes made at the CTIO Blanco 4m, as described by Warner et al (2012). We describe here the things we did differently from the Blanco upgrade. We also present results from the as-built performance of the new servo and pointing systems.

  5. The NIKA2 large-field-of-view millimetre continuum camera for the 30 m IRAM telescope

    Science.gov (United States)

    Adam, R.; Adane, A.; Ade, P. A. R.; André, P.; Andrianasolo, A.; Aussel, H.; Beelen, A.; Benoît, A.; Bideaud, A.; Billot, N.; Bourrion, O.; Bracco, A.; Calvo, M.; Catalano, A.; Coiffard, G.; Comis, B.; De Petris, M.; Désert, F.-X.; Doyle, S.; Driessen, E. F. C.; Evans, R.; Goupy, J.; Kramer, C.; Lagache, G.; Leclercq, S.; Leggeri, J.-P.; Lestrade, J.-F.; Macías-Pérez, J. F.; Mauskopf, P.; Mayet, F.; Maury, A.; Monfardini, A.; Navarro, S.; Pascale, E.; Perotto, L.; Pisano, G.; Ponthieu, N.; Revéret, V.; Rigby, A.; Ritacco, A.; Romero, C.; Roussel, H.; Ruppin, F.; Schuster, K.; Sievers, A.; Triqueneaux, S.; Tucker, C.; Zylka, R.

    2018-01-01

    Context. Millimetre-wave continuum astronomy is today an indispensable tool for both general astrophysics studies (e.g. star formation, nearby galaxies) and cosmology (e.g. cosmic microwave background and high-redshift galaxies). General purpose, large-field-of-view instruments are needed to map the sky at intermediate angular scales not accessible by the high-resolution interferometers (e.g. ALMA in Chile, NOEMA in the French Alps) and by the coarse angular resolution space-borne or ground-based surveys (e.g. Planck, ACT, SPT). These instruments have to be installed at the focal plane of the largest single-dish telescopes, which are placed at high altitude on selected dry observing sites. In this context, we have constructed and deployed a three-thousand-pixel dual-band (150 GHz and 260 GHz, respectively 2 mm and 1.15 mm wavelengths) camera to image an instantaneous circular field-of-view of 6.5 arcmin in diameter, and configurable to map the linear polarisation at 260 GHz. Aims: First, we are providing a detailed description of this instrument, named NIKA2 (New IRAM KID Arrays 2), in particular focussing on the cryogenics, optics, focal plane arrays based on Kinetic Inductance Detectors, and the readout electronics. The focal planes and part of the optics are cooled down to the nominal 150 mK operating temperature by means of an adhoc dilution refrigerator. Secondly, we are presenting the performance measured on the sky during the commissioning runs that took place between October 2015 and April 2017 at the 30-m IRAM telescope at Pico Veleta, near Granada (Spain). Methods: We have targeted a number of astronomical sources. Starting from beam-maps on primary and secondary calibrators we have then gone to extended sources and faint objects. Both internal (electronic) and on-the-sky calibrations are applied. The general methods are described in the present paper. Results: NIKA2 has been successfully deployed and commissioned, performing in-line with expectations. In

  6. The Breadboard model of the LISA telescope assembly

    Science.gov (United States)

    Lucarelli, S.; Scheulen, D.; Kemper, D.; Sippel, R.; Verlaan, A.; Hogenhuis, H.; Ende, D.

    2017-11-01

    The primary goal of the LISA mission is the detection of gravitational waves from astronomical sources in a frequency range of 10-4 to 1 Hz. This requires operational stabilities in the picometer range as well as highly predictable mechanical distortions upon cooling down, outgassing in space, and gravity release. In March 2011 ESA announced a new way forward for the Lclass candidate missions, including LISA. ESA and the scientific community are now studying options for European-only missions that offer a significant reduction of the costs, while maintaining their core science objectives. In this context LISA has become the New Gravitational wave Observatory (NGO). Despite this reformulation, the need for dimensional stability in the picometer range remains valid, and ESA have continued the corresponding LISA Technology Development Activities (TDA's) also in view of NGO. In such frame Astrium GmbH and xperion (Friedrichshafen, Germany) have designed and manufactured an ultra-stable CFRP breadboard of the LISA telescope in order to experimentally demonstrate that the structure and the M1 & M2 mirror mounts are fulfilling the LISA requirements in the mission operational thermal environment. Suitable techniques to mount the telescope mirrors and to support the M1 & M2 mirrors have been developed, with the aim of measuring a system CTE of less than 10-7 K-1 during cooling down to -80°C. Additionally to the stringent mass and stiffness specifications, the required offset design makes the control of relative tilts and lateral displacements between the M1 and M2 mirrors particularly demanding. The thermo-elastic performance of the telescope assembly is going to be experimentally verified by TNO (Delft, The Netherlands) starting from the second half of 2012. This paper addresses challenges faced in the design phase, shows the resulting hardware and present first outcomes of the test campaign performed at TNO.

  7. SETI OBSERVATIONS OF EXOPLANETS WITH THE ALLEN TELESCOPE ARRAY

    Energy Technology Data Exchange (ETDEWEB)

    Harp, G. R.; Richards, Jon; Tarter, Jill C.; Dreher, John; Jordan, Jane; Shostak, Seth; Smolek, Ken; Kilsdonk, Tom; Wilcox, Bethany R.; Wimberly, M. K. R.; Ross, John; Barott, W. C.; Ackermann, R. F.; Blair, Samantha [SETI Institute, Mountain View, CA 94043 (United States)

    2016-12-01

    We report radio SETI observations on a large number of known exoplanets and other nearby star systems using the Allen Telescope Array (ATA). Observations were made over about 19000 hr from 2009 May to 2015 December. This search focused on narrowband radio signals from a set totaling 9293 stars, including 2015 exoplanet stars and Kepler objects of interest and an additional 65 whose planets may be close to their habitable zones. The ATA observations were made using multiple synthesized beams and an anticoincidence filter to help identify terrestrial radio interference. Stars were observed over frequencies from 1 to 9 GHz in multiple bands that avoid strong terrestrial communication frequencies. Data were processed in near-real time for narrowband (0.7–100 Hz) continuous and pulsed signals with transmitter/receiver relative accelerations from −0.3 to 0.3 m s{sup −2}. A total of 1.9 × 10{sup 8} unique signals requiring immediate follow-up were detected in observations covering more than 8 × 10{sup 6} star-MHz. We detected no persistent signals from extraterrestrial technology exceeding our frequency-dependent sensitivity threshold of 180–310 × 10{sup −26} W m{sup −2}.

  8. The zenithal 4-m International Liquid Mirror Telescope: a unique facility for supernova studies

    Science.gov (United States)

    Kumar, Brajesh; Pandey, Kanhaiya L.; Pandey, S. B.; Hickson, P.; Borra, E. F.; Anupama, G. C.; Surdej, J.

    2018-05-01

    The 4-m International Liquid Mirror Telescope (ILMT) will soon become operational at the newly developed Devasthal observatory near Nainital (Uttarakhand, India). Coupled with a 4k × 4k pixels CCD detector and TDI optical corrector, it will reach approximately 22.8, 22.3, and 21.4 mag in the g΄, r΄, and i΄ spectral bands, respectively, in a single scan. The limiting magnitudes can be further improved by co-adding the consecutive night images in particular filters. The uniqueness to observe the same sky region by looking towards the zenith direction every night makes the ILMT a unique instrument to detect new supernovae (SNe) by applying the image subtraction technique. High cadence (˜24 h) observations will help to construct dense sampling multi-band SNe light curves. We discuss the importance of the ILMT facility in the context of SNe studies. Considering the various plausible cosmological parameters and observational constraints, we perform detailed calculations of the expected SNe rate that can be detected with the ILMT in different spectral bands.

  9. HUBBLE AND KECK TELESCOPE OBSERVATIONS OF ACTIVE ASTEROID 288P/300163 (2006 VW139)

    International Nuclear Information System (INIS)

    Agarwal, Jessica; Jewitt, David; Weaver, Harold; Mutchler, Max; Larson, Stephen

    2016-01-01

    We present Hubble Space Telescope (HST) and Keck 10 m telescope observations of active asteroid 288P/300163 (2006 VW139) taken to examine ejected dust. The nucleus is a C-type object with absolute magnitude H V = 17.0 ± 0.1 and estimated diameter ∼2.6 km (for assumed visual geometric albedo p V = 0.04). Variations in the brightness of the nucleus at the 10%–15% level are significant in both 2011 December and 2012 October but we possess too few data to distinguish variations caused by activity from those caused by rotation. The dust scattering cross-section in 2011 December is ∼40 km 2 , corresponding to a dust mass ∼9 × 10 6 kg (88 μm mean particle radius assumed). The FWHM of the debris sheet varies from ∼100 km near the nucleus to ∼1000 km 30″ (40,000 km) east of it. Dust dynamical models indicate ejection speeds between 0.06 and 0.3 m s −1 , particle sizes between 10 and 300 μm and an inverse square-root relation between particle size and velocity. Overall, the data are most simply explained by prolonged, low velocity ejection of dust, starting in or before 2011 July and continuing until at least 2011 October. These properties are consistent with the sublimation of near-surface ice aided by centrifugal forces. The high spatial resolution of our HST images (52 km pixel −1 ) reveals details that remained hidden in previous ground-based observations, such as the extraordinarily small vertical extent of the dust sheet, ejection speeds well below the nucleus escape speed, and the possibility of a binary nucleus

  10. HUBBLE AND KECK TELESCOPE OBSERVATIONS OF ACTIVE ASTEROID 288P/300163 (2006 VW139)

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Jessica [Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Jewitt, David [Department Earth, Planetary and Space Sciences, UCLA, 595 Charles Young Drive East, Box 951567 Los Angeles, CA 90095-1567 (United States); Weaver, Harold [The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); Mutchler, Max [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Larson, Stephen, E-mail: agarwal@mps.mpg.de [Lunar and Planetary Laboratory, University of Arizona, 1629 E. University Blvd. Tucson AZ 85721-0092 (United States)

    2016-01-15

    We present Hubble Space Telescope (HST) and Keck 10 m telescope observations of active asteroid 288P/300163 (2006 VW139) taken to examine ejected dust. The nucleus is a C-type object with absolute magnitude H{sub V} = 17.0 ± 0.1 and estimated diameter ∼2.6 km (for assumed visual geometric albedo p{sub V} = 0.04). Variations in the brightness of the nucleus at the 10%–15% level are significant in both 2011 December and 2012 October but we possess too few data to distinguish variations caused by activity from those caused by rotation. The dust scattering cross-section in 2011 December is ∼40 km{sup 2}, corresponding to a dust mass ∼9 × 10{sup 6} kg (88 μm mean particle radius assumed). The FWHM of the debris sheet varies from ∼100 km near the nucleus to ∼1000 km 30″ (40,000 km) east of it. Dust dynamical models indicate ejection speeds between 0.06 and 0.3 m s{sup −1}, particle sizes between 10 and 300 μm and an inverse square-root relation between particle size and velocity. Overall, the data are most simply explained by prolonged, low velocity ejection of dust, starting in or before 2011 July and continuing until at least 2011 October. These properties are consistent with the sublimation of near-surface ice aided by centrifugal forces. The high spatial resolution of our HST images (52 km pixel{sup −1}) reveals details that remained hidden in previous ground-based observations, such as the extraordinarily small vertical extent of the dust sheet, ejection speeds well below the nucleus escape speed, and the possibility of a binary nucleus.

  11. The afocal telescope optical design and tolerance analysis for the ESA ARIEL mission

    Science.gov (United States)

    Da Deppo, Vania; Middleton, Kevin; Focardi, Mauro; Morgante, Gianluca; Grella, Samuele; Claudi, Riccardo; Pace, Emanuele; Ficai Veltroni, Iacopo; Micela, Giuseppina

    2017-11-01

    ARIEL (Atmospheric Remote-sensing Infrared Exoplanet Large-survey) is one of the three present candidates for the next ESA medium-class science mission (M4) to be launched in 2026. During its 3.5 years of scientific operations from L2 orbit, this mission will observe spectroscopically in the infrared (IR) a large population of known transiting planets in the neighbourhood of the Solar System. The aim is to enable a deep understanding of the physics and chemistry of these exoplanets. ARIEL is based on a 1-m class telescope ahead of a suite of instruments: two spectrometer channels covering the band 1.95 to 7.80 µm and four photometric channels (two wide and two narrow band) in the range 0.5 to 1.9 μm. The ARIEL optical design is conceived as a fore-module common afocal telescope that will feed the spectrometer and photometric channels. The telescope optical design is based on an eccentric pupil two-mirror classic Cassegrain configuration coupled to a tertiary paraboloidal mirror. An all-aluminum structure has been considered for the telescope layout, and a detailed tolerance analysis has been conducted to assess the telescope feasibility. This analysis has been done including the different parts of the realization and life of the instrument, from integration on-ground to in-flight stability during the scientific acquisitions. The primary mirror (M1) temperature will be monitored and finely tuned via an active thermal control system based on thermistors and heaters. The heaters will be switched on and off to maintain the M1 temperature within ±1K thanks to a proportional-integral-derivative (PID) controller.

  12. Methods for the performance enhancement and the error characterization of large diameter ground-based diffractive telescopes.

    Science.gov (United States)

    Zhang, Haolin; Liu, Hua; Lizana, Angel; Xu, Wenbin; Caompos, Juan; Lu, Zhenwu

    2017-10-30

    This paper is devoted to the improvement of ground-based telescopes based on diffractive primary lenses, which provide larger aperture and relaxed surface tolerance compared to non-diffractive telescopes. We performed two different studies devised to thoroughly characterize and improve the performance of ground-based diffractive telescopes. On the one hand, we experimentally validated the suitability of the stitching error theory, useful to characterize the error performance of subaperture diffractive telescopes. On the other hand, we proposed a novel ground-based telescope incorporated in a Cassegrain architecture, leading to a telescope with enhanced performance. To test the stitching error theory, a 300 mm diameter, 2000 mm focal length transmissive stitching diffractive telescope, based on a three-belt subaperture primary lens, was designed and implemented. The telescope achieves a 78 cy/mm resolution within 0.15 degree field of view while the working wavelength ranges from 582.8 nm to 682.8 nm without any stitching error. However, the long optical track (35.49 m) introduces air turbulence that reduces the final images contrast in the ground-based test. To enhance this result, a same diameter compacted Cassegrain ground-based diffractive (CGD) telescope with the total track distance of 1.267 m, was implemented within the same wavelength. The ground-based CGD telescope provides higher resolution and better contrast than the transmissive configuration. Star and resolution tests were experimentally performed to compare the CGD and the transmissive configurations, providing the suitability of the proposed ground-based CGD telescope.

  13. Operating performance of the gamma-ray Cherenkov telescope: An end-to-end Schwarzschild–Couder telescope prototype for the Cherenkov Telescope Array

    Energy Technology Data Exchange (ETDEWEB)

    Dournaux, J.L., E-mail: jean-laurent.dournaux@obspm.fr [GEPI, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Paris Cité, Université Paris Diderot, Place J. Janssen, 92190 Meudon (France); De Franco, A. [Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Laporte, P. [GEPI, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Paris Cité, Université Paris Diderot, Place J. Janssen, 92190 Meudon (France); White, R. [Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Greenshaw, T. [University of Liverpool, Oliver Lodge Laboratory, P.O. Box 147, Oxford Street, Liverpool L69 3BX (United Kingdom); Sol, H. [LUTH, Observatoire de Paris, PSL Research University, CNRS, Université Paris Diderot, Place J. Janssen, 92190 Meudon (France); Abchiche, A. [CNRS, Division technique DT-INSU, 1 Place Aristide Briand, 92190 Meudon (France); Allan, D. [Department of Physics and Centre for Advanced Instrumentation, Durham University, South Road, Durham DH1 3LE (United Kingdom); Amans, J.P. [GEPI, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Paris Cité, Université Paris Diderot, Place J. Janssen, 92190 Meudon (France); Armstrong, T.P. [Department of Physics and Centre for Advanced Instrumentation, Durham University, South Road, Durham DH1 3LE (United Kingdom); Balzer, A.; Berge, D. [GRAPPA, University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Boisson, C. [LUTH, Observatoire de Paris, PSL Research University, CNRS, Université Paris Diderot, Place J. Janssen, 92190 Meudon (France); and others

    2017-02-11

    The Cherenkov Telescope Array (CTA) consortium aims to build the next-generation ground-based very-high-energy gamma-ray observatory. The array will feature different sizes of telescopes allowing it to cover a wide gamma-ray energy band from about 20 GeV to above 100 TeV. The highest energies, above 5 TeV, will be covered by a large number of Small-Sized Telescopes (SSTs) with a field-of-view of around 9°. The Gamma-ray Cherenkov Telescope (GCT), based on Schwarzschild–Couder dual-mirror optics, is one of the three proposed SST designs. The GCT is described in this contribution and the first images of Cherenkov showers obtained using the telescope and its camera are presented. These were obtained in November 2015 in Meudon, France.

  14. The advanced cosmic microwave explorer - A millimeter-wave telescope and stabilized platform

    Science.gov (United States)

    Meinhold, P. R.; Chingcuanco, A. O.; Gundersen, J. O.; Schuster, J. A.; Seiffert, M. D.; Lubin, P. M.; Morris, D.; Villela, T.

    1993-01-01

    We have developed and flown a 1 m diameter Gregorian telescope system for measurements of anisotropy in the Cosmic Background Radiation (CBR). The telescope is incorporated in a balloon-borne stabilized platform with arcminute stabilization capability. To date, the system has flown four times and observed from the ground at the South Pole twice. The telescope has used both coherent and incoherent detectors. We describe the development of the telescope, pointing platform, and one of the receivers employed in making measurements of the CBR. Performance of the system during the first flight and operation on the ground at the South Pole are described, and the quality of the South Pole as a millimeter wave observing site is discussed.

  15. Hydrodynamic experiments on dacryoconarid shell telescoping

    Czech Academy of Sciences Publication Activity Database

    Hladil, Jindřich; Šimčík, Miroslav; Růžička, Marek; Kulaviak, Lukáš; Lisý, Pavel

    2014-01-01

    Roč. 47, č. 3 (2014), s. 376-396 ISSN 0024-1164 R&D Projects: GA ČR GAP210/10/2351 Institutional support: RVO:67985831 ; RVO:67985858 Keywords : dacryoconarid shells * experimental fluid mechanics * narrow cones * Palaeozoic * telescoping Subject RIV: DB - Geology ; Mineralogy; CI - Industrial Chemistry, Chemical Engineering (UCHP-M) Impact factor: 1.454, year: 2014

  16. Study of astrophysically important resonant states in 26Si by the 28Si(4He,6He)26Si reaction

    Science.gov (United States)

    Kwon, Young Kwan; Lee, C. S.; Moon, J. Y.; Lee, J. H.; Kim, J. Y.; Kubono, S.; Iwasa, N.; Inafiki, K.; Yamaguchi, H.; He, J. J.; Saito, A.; Wakabayashi, Y.; Fukijawa, H.; Amadio, G.; Khiem, L. H.; Tanaka, M.; Chen, A.; Kato, S.

    PoS(NIC-IX)024 , b, H. Yamaguchia, J. J. Hea , A. Saitoa , Y. Wakabayashia, H. Fujikawaa, G. The emission of 1.809 MeV gamma-ray from the first excited state of 26 Mg followed by beta- decay of 26 Al in its ground state (denoted as 26 Alg.s. ) has been identified by gamma-ray telescopes such the Compton Gamma-Ray Observatory (CGRO) [1]. To resolve controversy over the pos- sible sources of the observational 1.809 MeV gamma-rays, one needs accurate knowledge of the production rate of 26 Al. The 25 Al(p,γ)26Si reaction which is the competition reaction for produc- tion of 26 Alg.s. is one of the important subjects to be investigated. In this work, the astrophysically important 26 Si states above the proton threshold were studied via the 28 Si(4 He,6 He)26 Si reaction. We have preformed an angular distribution measurement using the high resolution QDD spectro- graph (PA) at Center for Nuclear Study (CNS), University of Tokyo. The experimental results and data analysis will be presented.

  17. Where size does matter: foldable telescope design for microsat application

    Science.gov (United States)

    Segert, Tom; Danziger, Björn; Lieder, Matthias

    2017-11-01

    The DOBSON SPACE TELESCOPE Project (DST) at the Technical University of Berlin (TUB) believes that micro satellites can be a challenging competitor in the high resolution remote sensing market. Using a micro satellite as basis for a remote sensing platform will dramatically reduce the cost for the end users thereby initiating the predicted remote sensing boom. The Challenging task is that an optic required for a GSD smaller than 1m is much bigger than the given room for secondary payload. In order to break the volume limits of hitchhiker payloads the DST team develops an optical telescope with deployable structures. The core piece of DST is a 20 inch modified Cassegrain optic. Stored during ascend the instrument fits in a box measuring 60 x 60 x 30cm (including telescope and optical plane assembly). After the satellite was released into free space the telescope unfolds and collimates automatically.

  18. An afocal telescope configuration for the ESA Ariel mission

    Science.gov (United States)

    Da Deppo, V.; Middleton, K.; Focardi, M.; Morgante, G.; Pace, E.; Claudi, R.; Micela, G.

    2017-09-01

    ARIEL (Atmospheric Remote-sensing Infrared Exoplanet Large-survey) is one of the three candidates for the next ESA medium-class science mission (M4) expected to be launched in 2026. This mission will be devoted to observing spectroscopically in the infrared (IR) a large population of known transiting planets in the neighborhood of the Solar System, opening a new discovery space in the field of extrasolar planets and enabling the understanding of the physics and chemistry of these far away worlds. ARIEL is based on a 1-m class telescope ahead of two spectrometer channels covering the band 1.95 to 7.8 microns. In addition there are four photometric channels: two wide band, also used as fine guidance sensors, and two narrow band. During its 3.5 years of operations from L2 orbit, ARIEL will continuously observe exoplanets transiting their host star. The ARIEL optical design is conceived as a fore-module common afocal telescope that will feed the spectrometer and photometric channels. The telescope optical design is composed of an off-axis portion of a two-mirror classic Cassegrain coupled to a tertiary off-axis paraboloidal mirror. The telescope and optical bench operating temperatures, as well as those of some subsystems, will be monitored and fine tuned/stabilised mainly by means of a thermal control subsystem (TCU-Telescope Control Unit) working in closed-loop feedback and hosted by the main Payload electronics unit, the Instrument Control Unit (ICU). Another important function of the TCU will be to monitor the telescope and optical bench thermistors when the Payload decontamination heaters will be switched on (when operating the instrument in Decontamination Mode) during the Commissioning Phase and cyclically, if required. Then the thermistors data will be sent by the ICU to the On Board Computer by means of a proper formatted telemetry. The latter (OBC) will be in charge of switching on and off the decontamination heaters on the basis of the thermistors readout

  19. An innovative telescope control system architecture for SST-GATE telescopes at the CTA Observatory

    Science.gov (United States)

    Fasola, Gilles; Mignot, Shan; Laporte, Philippe; Abchiche, Abdel; Buchholtz, Gilles; Jégouzo, Isabelle

    2014-07-01

    SST-GATE (Small Size Telescope - GAmma-ray Telescope Elements) is a 4-metre telescope designed as a prototype for the Small Size Telescopes (SST) of the Cherenkov Telescope Array (CTA), a major facility for the very high energy gamma-ray astronomy of the next three decades. In this 100-telescope array there will be 70 SSTs, involving a design with an industrial view aiming at long-term service, low maintenance effort and reduced costs. More than a prototype, SST-GATE is also a fully functional telescope that shall be usable by scientists and students at the Observatoire de Meudon for 30 years. The Telescope Control System (TCS) is designed to work either as an element of a large array driven by an array controller or in a stand-alone mode with a remote workstation. Hence it is built to be autonomous with versatile interfacing; as an example, pointing and tracking —the main functions of the telescope— are managed onboard, including astronomical transformations, geometrical transformations (e.g. telescope bending model) and drive control. The core hardware is a CompactRIO (cRIO) featuring a real-time operating system and an FPGA. In this paper, we present an overview of the current status of the TCS. We especially focus on three items: the pointing computation implemented in the FPGA of the cRIO —using CORDIC algorithms— since it enables an optimisation of the hardware resources; data flow management based on OPCUA with its specific implementation on the cRIO; and the use of an EtherCAT field-bus for its ability to provide real-time data exchanges with the sensors and actuators distributed throughout the telescope.

  20. Pathways Towards Habitable Planets: Capabilities of the James Webb Space Telescope

    Science.gov (United States)

    Clampin, Mark

    2009-01-01

    The James Webb Space Telescope (JWST) is a large aperture (6.5 meter), cryogenic space telescope with a suite of near and mid-infrared instruments covering the wavelength range of 0.6 m to 28 m. JWST s primary science goal is to detect and characterize the first galaxies. It will also study the assembly of galaxies, star formation, and the formation of evolution of planetary systems. We also review the expected scientific performance of the observatory for observations of exosolar planets by means of transit photometry and spectroscopy, and direct coronagraphic imaging and address its role in the search for habitable planets.

  1. The X-ray Telescope of the CAST Experiment

    CERN Document Server

    Kotthaus, Rainer; Friedrich, P.; Kang, D.; Hartmann, R.; Kuster, M.; Lutz, G.; Strüder, L.

    2005-01-01

    The CERN Axion Solar Telescope (CAST) searches for solar axions employing a 9 Tesla superconducting dipole magnet equipped with 3 independent detection systems for X-rays from axion-photon conversions inside the 10 m long magnetic field. Results of the first 6 months of data taking in 2003 imply a 95 % CL upper limit on the axion-photon coupling constant of 1.16x10(-10) GeV(-1) for axion masses < 0.02 eV. The most sensitive detector of CAST is a X-ray telescope consisting of a Wolter I type mirror system and a fully depleted pn-CCD as focal plane detector. Exploiting the full potential of background suppression by focussing X-rays emerging from the magnet bore, the axion sensitivity obtained with telescope data taken in 2004, for the first time in a controlled laboratory experiment, will supersede axion constraints derived from stellar energy loss arguments.

  2. Classic Telescopes A Guide to Collecting, Restoring, and Using Telescopes of Yesteryear

    CERN Document Server

    English, Neil

    2013-01-01

    Classic Telescopes explores the exciting world of telescopes past, as well as the possibilities involved in acquiring these instruments. What are classic telescopes? First, the book takes a look at the more traditional telescopes built by the great instrument makers of the eighteenth and nineteenth centuries and the dynastic houses founded by the likes of John Dollond, Alvan Clark, Thomas Cooke & Sons and Carl Zeiss, plus some lesser-known luminaries, including John Brashear, John Calver, and Henry Fitz. Instruments constructed from the 1950s until as recently as the early 1990s are now also considered 'classic.' There is thus a very active market for buying and selling these 'modern' classics. The author examines some of the most talked about instruments on the amateur Internet forums, including the Unitron refractors, the Questar 90, a classic 6-inch reflector, the RV-6; a 3-inch F/15 achromat by Fullerscopes; the time-honored AstroScan Richfield reflector; and many, many more. Classic telescopes are of...

  3. Innovative enclosure dome/observing aperture system design for the MROI Array Telescopes

    Science.gov (United States)

    Busatta, A.; Marchiori, G.; Mian, S.; Payne, I.; Pozzobon, M.

    2010-07-01

    The close-pack array of the MROI necessitated an original design for the Unit Telescope Enclosure (UTE) at Magdalena Ridge Observatory. The Magdalena Ridge Observatory Interferometer (MROI) is a project which comprises an array of up to ten (10) 1.4m diameter mirror telescopes arranged in a "Y" configuration. Each of these telescopes will be housed inside a Unit Telescope Enclosure (UTE) which are relocatable onto any of 28 stations. The most compact configuration includes all ten telescopes, several of which are at a relative distance of less than 8m center to center from each other. Since the minimum angle of the field of regard is 30° with respect to the horizon, it is difficult to prevent optical blockage caused by adjacent UTEs in this compact array. This paper presents the design constraints inherent in meeting the requirement for the close-pack array. An innovative design enclosure was created which incorporates an unique dome/observing aperture system. The description of this system focuses on how the field of regard requirement led to an unique and highly innovative concept that had to be able to operate in the harsh environmental conditions encountered at an altitude of 10,460ft (3,188m). Finally, we describe the wide use of composites materials and structures (e.g. glass/carbon fibres, sandwich panels etc.) on the aperture system which represents the only way to guarantee adequate thermal and environmental protection, compactness, structural stability and limited power consumption due to reduced mass.

  4. High-precision photometry by telescope defocusing - I. The transiting planetary system WASP-5

    DEFF Research Database (Denmark)

    Southworth, J.; Hinse, T. C.; Jørgensen, U. G.

    2009-01-01

    We present high-precision photometry of two transit events of the extrasolar planetary system WASP-5, obtained with the Danish 1.54-m telescope at European Southern Obseratory La Silla. In order to minimize both random and flat-fielding errors, we defocused the telescope so its point spread...

  5. Design Evolution of the Wide Field Infrared Survey Telescope Using Astrophysics Focused Telescope Assets (WFIRST-AFTA) and Lessons Learned

    Science.gov (United States)

    Peabody, Hume L.; Peters, Carlton V.; Rodriguez-Ruiz, Juan E.; McDonald, Carson S.; Content, David A.; Jackson, Clifton E.

    2015-01-01

    The design of the Wide Field Infrared Survey Telescope using Astrophysics Focused Telescope Assets (WFIRST-AFTA) continues to evolve as each design cycle is analyzed. In 2012, two Hubble sized (2.4 m diameter) telescopes were donated to NASA from elsewhere in the Federal Government. NASA began investigating potential uses for these telescopes and identified WFIRST as a mission to benefit from these assets. With an updated, deeper, and sharper field of view than previous design iterations with a smaller telescope, the optical designs of the WFIRST instruments were updated and the mechanical and thermal designs evolved around the new optical layout. Beginning with Design Cycle 3, significant analysis efforts yielded a design and model that could be evaluated for Structural-Thermal-Optical-Performance (STOP) purposes for the Wide Field Imager (WFI) and provided the basis for evaluating the high level observatory requirements. Development of the Cycle 3 thermal model provided some valuable analysis lessons learned and established best practices for future design cycles. However, the Cycle 3 design did include some major liens and evolving requirements which were addressed in the Cycle 4 Design. Some of the design changes are driven by requirements changes, while others are optimizations or solutions to liens from previous cycles. Again in Cycle 4, STOP analysis was performed and further insights into the overall design were gained leading to the Cycle 5 design effort currently underway. This paper seeks to capture the thermal design evolution, with focus on major design drivers, key decisions and their rationale, and lessons learned as the design evolved.

  6. A segmented subreflector with electroformed nickel laminated panels for the Large Millimeter Telescope

    Science.gov (United States)

    Valsecchi, G.; Banham, R.; Bianucci, G.; Eder, J.; Ghislanzoni, R.; Ritucci, A.; Terraneo, M.; Zocchi, F. E.; Smith, D.; Gale, D.; Hughes, D.

    2016-07-01

    The Large Millimeter Telescope (LMT) Alfonso Serrano is a 50 m diameter single-dish radio telescope optimized for astronomical observations at wavelengths of about a millimeter. Built and operated by the Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE) in collaboration with the University of Massachusetts (UMASS), the telescope is located at the 4600 m summit of volcano Sierra Negra, Mexico. Anticipating the completion of the main reflector, currently operating over a 32 m subaperture, INAOE has contracted Media Lario for the design and manufacturing of a new 2.63 m subreflector that will enable higher efficiency astronomical observations with the entire main reflector surface. The new subreflector manufactured by Media Lario is segmented in 9 smaller panels, one central dome and eight identical petals, assembled and precisely aligned on a steel truss structure that will be connected to the hexapod mounted on the tetrapod head. Each panel was fabricated with Media Lario's unique laminated technology consisting of front and rear Nickel skins, electroformed from precise molds and bonded to a lightweight Aluminum honeycomb core. The reflecting surface of each panel was given a thin galvanic Rhodium coating that ensures that the reflector survives the harsh environmental conditions at the summit of Sierra Negra during the 30 year lifetime of the telescope. Finally, the 2.63 m subreflector produced by Media Lario was qualified for typical cold night through hot day observation conditions with a maximum RMS error of 24.8 μm, which meets INAOE's requirements.

  7. Polish and European SST Assets: the Solaris-Panoptes Global Network of Robotic Telescopes and the Borowiec Satellite Laser Ranging System

    Science.gov (United States)

    Konacki, M.; Lejba, P.; Sybilski, P.; Pawłaszek, R.; Kozłowski, S.; Suchodolski, T.; Litwicki, M.; Kolb, U.; Burwitz, V.; Baader, J.; Groot, P.; Bloemen, S.; Ratajczak, M.; Helminiak, K.; Borek, R.; Chodosiewicz, P.

    2016-09-01

    We present the assets of the Nicolaus Copernicus Astronomical Center, Space Research Center (both of the Polish Academy of Sciences), two Polish companies Sybilla Technologies, Cillium Engineering and a non-profit research foundation Baltic Institute of Technology. These assets are enhanced by telescopes belonging to The Open University (UK), the Max Planck Institute for Extraterrestrial Physics and in the future the Radboud University. They consist of the Solaris-Panoptes global network of optical robotic telescopes and the satellite laser ranging station in Borowiec, Poland. These assets will contribute to the Polish and European Space Surveillance and Tracking (SST) program. The Solaris component is composed of four autonomous observatories in the Southern Hemisphere. Solaris nodes are located at the South African Astronomical Observatory (Solaris-1 and Solaris-2), Siding Spring Observatory, Australia (Solaris-3) and Complejo Astronomico El Leoncito, Argentina (Solaris-4). They are equipped with 0.5-m telescopes on ASA DDM-160 direct drive mounts, Andor iKon-L cameras and housed in 3.5-m Baader Planetarium (BP) clamshell domes. The Panoptes component is a network of telescopes operated by software from Sybilla Technologies. It currently consists of 4 telescopes at three locations, all on GM4000 mounts. One 0.36-m (Panoptes-COAST, STL- 1001E camera, 3.5 BP clamshell dome) and one 0.43-m (Panoptes-PIRATE, FLI 16803 camera, 4.5-m BP clamshell dome, with planned exchange to 0.63-m) telescope are located at the Teide Observatory (Tenerfie, Canary Islands), one 0.6-m (Panoptes-COG, SBIG STX 16803 camera, 4.5-m BP clamshell dome) telescope in Garching, Germany and one 0.5-m (Panoptes-MAM, FLI 16803 camera, 4.5-m BP slit dome) in Mammendorf, Germany. Panoptes-COAST and Panoptes-PIRATE are owned by The Open University (UK). Panoptes-COG is owned by the Max Planck Institute

  8. Active telescope systems; Proceedings of the Meeting, Orlando, FL, Mar. 28-31, 1989

    Science.gov (United States)

    Roddier, Francois J.

    1989-09-01

    The present conference discusses topics in the fundamental limitations of adaptive optics in astronomical telescopy, integrated telescope systems designs, novel components for adaptive telescopes, active interferometry, flexible-mirror and segmented-mirror telescopes, and various aspects of the NASA Precision Segmented Reflectors Program. Attention is given to near-ground atmospheric turbulence effects, a near-IR astronomical adaptive optics system, a simplified wavefront sensor for adaptive mirror control, excimer laser guide star techniques for adaptive astronomical imaging, active systems in long-baseline interferometry, mirror figure control primitives for a 10-m primary mirror, and closed-loop active optics for large flexible mirrors subject to wind buffet deformations. Also discussed are active pupil geometry control for a phased-array telescope, extremely lightweight space telescope mirrors, segmented-mirror manufacturing tolerances, and composite deformable mirror design.

  9. Imaging extrasolar planets with the European Extremely Large Telescope

    Directory of Open Access Journals (Sweden)

    Jolissaint L.

    2011-07-01

    Full Text Available The European Extremely Large Telescope (E-ELT is the most ambitious of the ELTs being planned. With a diameter of 42 m and being fully adaptive from the start, the E-ELT will be more than one hundred times more sensitive than the present-day largest optical telescopes. Discovering and characterising planets around other stars will be one of the most important aspects of the E-ELT science programme. We model an extreme adaptive optics instrument on the E-ELT. The resulting contrast curves translate to the detectability of exoplanets.

  10. Probing active-edge silicon sensors using a high precision telescope

    NARCIS (Netherlands)

    Akiba, K.; Artuso, M.; van Beveren, V.; van Beuzekom, M.; Boterenbrood, H.; Buytaert, J.; Collins, P.; Dumps, R.; van der Heijden, B.; Hombach, C.; Hynds, D.; Hsu, D.; John, M.; Koffeman, E.; Leflat, A.; Li, Y.; Longstaff, I.; Morton, A.; PérezTrigo, E.; Plackett, R.; Reid, M.M.; Rodríguez Perez, P.; Schindler, H.; Tsopelas, P.; Vázquez Sierra, C.; Wysokiński, M.

    2015-01-01

    The performance of prototype active-edge VTT sensors bump-bonded to the Timepix ASIC is presented. Non-irradiated sensors of thicknesses 100-200 μm and pixel-to-edge distances of 50 μm and 100 μm were probed with a beam of charged hadrons with sub-pixel precision using the Timepix telescope

  11. Development of Optical System for ARGO-M

    Directory of Open Access Journals (Sweden)

    Jakyoung Nah

    2013-03-01

    Full Text Available ARGO-M is a satellite laser ranging (SLR system developed by the Korea Astronomy and Space Science Institute with the consideration of mobility and daytime and nighttime satellite observation. The ARGO-M optical system consists of 40 cm receiving telescope, 10 cm transmitting telescope, and detecting optics. For the development of ARGO-M optical system, the structural analysis was performed with regard to the optics and optomechanics design and the optical components. To ensure the optical performance, the quality was tested at the level of parts using the laser interferometer and ultra-high-precision measuring instruments. The assembly and alignment of ARGO-M optical system were conducted at an auto-collimation facility. As the transmission and reception are separated in the ARGO-M optical system, the pointing alignment between the transmitting telescope and receiving telescope is critical for precise target pointing. Thus, the alignment using the ground target and the radiant point observation of transmitting laser beam was carried out, and the lines of sight for the two telescopes were aligned within the required pointing precision. This paper describes the design, structural analysis, manufacture and assembly of parts, and entire process related with the alignment for the ARGO-M optical system.

  12. VizieR Online Data Catalog: Solar neighborhood. XXXVII. RVs for M dwarfs (Benedict+, 2016)

    Science.gov (United States)

    Benedict, G. F.; Henry, T. J.; Franz, O. G.; McArthur, B. E.; Wasserman, L. H.; Jao, W.-C.; Cargile, P. A.; Dieterich, S. B.; Bradley, A. J.; Nelan, E. P.; Whipple, A. L.

    2017-05-01

    , National optical astronomy observatory (WIYN) 3.5m (Horch et al. 2012, Cat. J/AJ/143/10). Where available, we use astrometric observations from HST instruments other than the FGSs, including the Faint Object Camera (FOC; Barbieri et al. 1996A&A...315..418B), the Faint Object Spectrograph (FOS; Schultz et al. 1998PASP..110...31S), the Near-Infrared Camera and Multi-Object Spectrometer (NICMOS; Golimowski et al. 2004AJ....128.1733G), and the Wide-Field Planetary Camera 2 (WFPC2; Schroeder et al. 2000AJ....119..906S; Dieterich et al. 2012, Cat. J/AJ/144/64). Our radial velocity measurements, listed in table3, are from two sources. We obtained most radial velocity data with the McDonald 2.1m Struve telescope and the Sandiford Cassegrain Echelle spectrograph, hereafter CE. The CE delivers a dispersion equivalent to 2.5km/s/pix (R=λ/Δλ=60000) with a wavelength range of 5500{<=}λ{<=}6700Å spread across 26 orders (apertures). The McDonald data were collected during 33 observing runs from 1995 to 2009. Some GJ 623 AB velocities came from the Hobby-Eberly Telescope (HET) using the Tull Spectrograph. (3 data files).

  13. Alt-Az Spacewatch Telescope

    Science.gov (United States)

    Gehrels, Tom

    1997-01-01

    This grant funded about one third of the cost of the construction of a telescope with an aperture 1.8 meters in diameter to discover asteroids and comets and investigate the statistics of their populations and orbital distributions. This telescope has been built to the PI's specifications and installed in a dome on Kitt Peak mountain in Arizona. Funds for the dome and building were provided entirely by private sources. The dome building and telescope were dedicated in a ceremony at the site on June 7, 1997. The attached abstract describes the parameters of the telescope. The telescope is a new item of capital property. It is permanently located in University of Arizona building number 910 in the Steward Observatory compound on Kitt Peak mountain in the Tohono O'odham Nation, Arizona. fts property tag number is A252107. This grant did not include funds for the coma corrector lens, instrument derotator, CCD detector, detector electronics, or computers to acquire or process the data. It also did not include funds to operate the telescope or conduct research with it. Funds for these items and efforts are pending from NASA and other sources.

  14. A Scientific Revolution: The Hubble and James Webb Space Telescopes

    Science.gov (United States)

    Gardner, Jonathan P.

    2010-01-01

    Astronomy is going through a scientific revolution, responding to a flood of data from the Hubble Space Telescope, other space missions, and large telescopes on the ground. In this talk, I will discuss some of the important discoveries of the last decade, from dwarf planets in the outer Solar System to the mysterious dark energy that overcomes gravity to accelerate the expansion of the Universe. The next decade will be equally bright with the newly refurbished Hubble and the promise of its successor, the James Webb Space Telescope. An infrared-optimized 6.5m space telescope, Webb is designed to find the first galaxies that formed in the early universe and to peer into the dusty gas clouds where stars and planets are born. With MEMS technology, a deployed primary mirror and a tennis-court sized sunshield, the mission presents many technical challenges. I will describe Webb's scientific goals, its design and recent progress in constructing the observatory. Webb is scheduled for launch in 2014.

  15. System of the optic-electronic sensors for control position of the radio telescope elements

    Science.gov (United States)

    Konyakhin, Igor; Stepashkin, Ivan; Petrochenko, Andrey

    2016-04-01

    A promising area of modern astronomy is the study of the field of millimeter waves. The use of this band is due to a large extent the spectrum characteristics of the propagation of waves in the atmosphere, short wavelength. Currently, Russia jointly with Uzbekistan is implementing a project to build a radio astronomy observatory on the Suffa plateau (Uzbekistan). The main instrument of the observatory is fully steerable radio telescope RT-70 type. Main mirror telescope is a fragment of an axisymmetric parabolic with a focal length of 21 m, consisting of 1200 reflecting panels; main mirror diameter - 70 m; diameter of counter reflector - 3 m. A feature of the radio telescope as a means of research in the millimeter wavelength range are high for the quality requirements parabolic surface of the primary mirror (standard deviation of points on the surface of the theoretical parabolic is not more than 0.05 mm), to the stability of the mutual arrangement of the primary mirror and the counter reflector (not more than 0, 07 mm) for precision guidance in the corners of the mirror system azimuth and elevation (margin of error 1.5-2"). Weight of structure, temperature changes and air shock result in significant deformation elements radio telescope construction (progressive linear displacements of points of the surface of the main mirror), reaching in the marginal zone of 30 mm; counter reflector shift of up to 60 mm; Unlike the angular position of the axis of the beam pattern of the radio telescope of the measured angle transducers can reach 10 ". Therefore, to ensure the required quality of the reflective elements RT-70 systems, as well as the implementation of precision-guided munitions needs complex measuring deformation elements telescope design. This article deals with the construction of opto-electronic system of remote optoelectronic displacement sensor control elements mirror telescope system.

  16. A flat array large telescope concept for use on the moon, earth, and in space

    Science.gov (United States)

    Woodgate, Bruce E.

    1991-01-01

    An astronomical optical telescope concept is described which can provide very large collecting areas, of order 1000 sq m. This is an order of magnitude larger than the new generation of telescopes now being designed and built. Multiple gimballed flat mirrors direct the beams from a celestial source into a single telescope of the same aperture as each flat mirror. Multiple images of the same source are formed at the telescope focal plane. A beam combiner collects these images and superimposes them into a single image, onto a detector or spectrograph aperture. This telescope could be used on the earth, the moon, or in space.

  17. The great Melbourne telescope

    CERN Document Server

    Gillespie, Richard

    2011-01-01

    Erected at Melbourne Observatory in 1869, the telescope was the second largest in the world, designed to explore the nature of the nebulae in the southern skies. Richard Gillespie, head of the History and Technology department at the Melbourne museum has written an entertaining account of the telescope's extraordinary history and tells the story through an amazing cast of characters whose lives intersected with the telescope.

  18. Moving toward queue operations at the Large Binocular Telescope Observatory

    Science.gov (United States)

    Edwards, Michelle L.; Summers, Doug; Astier, Joseph; Suarez Sola, Igor; Veillet, Christian; Power, Jennifer; Cardwell, Andrew; Walsh, Shane

    2016-07-01

    The Large Binocular Telescope Observatory (LBTO), a joint scientific venture between the Instituto Nazionale di Astrofisica (INAF), LBT Beteiligungsgesellschaft (LBTB), University of Arizona, Ohio State University (OSU), and the Research Corporation, is one of the newest additions to the world's collection of large optical/infrared ground-based telescopes. With its unique, twin 8.4m mirror design providing a 22.8 meter interferometric baseline and the collecting area of an 11.8m telescope, LBT has a window of opportunity to exploit its singular status as the "first" of the next generation of Extremely Large Telescopes (ELTs). Prompted by urgency to maximize scientific output during this favorable interval, LBTO recently re-evaluated its operations model and developed a new strategy that augments classical observing with queue. Aided by trained observatory staff, queue mode will allow for flexible, multi-instrument observing responsive to site conditions. Our plan is to implement a staged rollout that will provide many of the benefits of queue observing sooner rather than later - with more bells and whistles coming in future stages. In this paper, we outline LBTO's new scientific model, focusing specifically on our "lean" resourcing and development, reuse and adaptation of existing software, challenges presented from our one-of-a-kind binocular operations, and lessons learned. We also outline further stages of development and our ultimate goals for queue.

  19. An afocal telescope configuration for the ESA ARIEL mission

    Science.gov (United States)

    Da Deppo, Vania; Focardi, Mauro; Middleton, Kevin; Morgante, Gianluca; Pascale, Enzo; Grella, Samuele; Pace, Emanuele; Claudi, Riccardo; Amiaux, Jérôme; Colomé Ferrer, Josep; Hunt, Thomas; Rataj, Miroslaw; Sierra-Roig, Carles; Ficai Veltroni, Iacopo; Eccleston, Paul; Micela, Giuseppina; Tinetti, Giovanna

    2017-12-01

    Atmospheric Remote-Sensing Infrared Exoplanet Large Survey (ARIEL) is a candidate as an M4 ESA mission to launch in 2026. During its 3.5 years of scientific operations, ARIEL will observe spectroscopically in the infrared (IR) a large population of known transiting planets in the neighbourhood of the solar system. ARIEL aims to give a breakthrough in the observation of exoplanet atmospheres and understanding of the physics and chemistry of these far-away worlds. ARIEL is based on a 1 m class telescope feeding a collimated beam into two separate instrument modules: a spectrometer module covering the waveband between 1.95 and 7.8 μm and a combined fine guidance system/visible photometer/NIR spectrometer. The telescope configuration is a classic Cassegrain layout used with an eccentric pupil and coupled to a tertiary off-axis paraboloidal mirror. To constrain the thermo-mechanically induced optical aberrations, the primary mirror (M1) temperature will be monitored and finely tuned using an active thermal control system based on thermistors and heaters. They will be switched on and off to maintain the M1 temperature within ± 1 K by the telescope control unit (TCU). The TCU is a payload electronics subsystem also responsible for the thermal control of the spectrometer module detectors as well as the secondary mirror mechanism and IR calibration source management. The TCU, being a slave subsystem of the instrument control unit, will collect the housekeeping data from the monitored subsystems and will forward them to the master unit. The latter will run the application software, devoted to the main spectrometer management and to the scientific data on-board processing.

  20. ANTARES: An Undersea Neutrino telescope

    CERN Multimedia

    2002-01-01

    The ANTARES (Astronomy with a Neutrino Telescope and ${Abyss}$ environmental RESearch) deep-sea neutrino telescope is designed to search for neutrinos of astrophysical origin. Neutrinos are unique probes of the high energy universe; being neutral they are not deflected by magnetic fields and interacting weakly they can readily escape from the densest regions of the universe. Potential sources of neutrino are galactic (e.g supernova remnants, micro-quasars) and extra-galactic (e.g active galactic nuclei, gamma-ray bursters). Annihilation of dark matter particles in the Sun or Galactic Centre is another well motivated potential source of extra terrestrial neutrinos. The ANTARES detector is located 40 km off the coast of Toulon (France) at a depth of 2475m in the Mediterranean Sea. Being located in the Northern hemisphere it studies the Southern sky and in particular has the Galactic Centre in its field of view. Since 2006, the detector has operated continuously in a partial configuration. The detector was compl...

  1. The UK Infrared Telescope M33 monitoring project - I. Variable red giant stars in the central square kiloparsec

    Science.gov (United States)

    Javadi, Atefeh; van Loon, Jacco Th.; Mirtorabi, Mohammad Taghi

    2011-02-01

    We have conducted a near-infrared monitoring campaign at the UK Infrared Telescope (UKIRT), of the Local Group spiral galaxy M33 (Triangulum). The main aim was to identify stars in the very final stage of their evolution, and for which the luminosity is more directly related to the birth mass than the more numerous less-evolved giant stars that continue to increase in luminosity. The most extensive data set was obtained in the K band with the UIST instrument for the central 4 × 4 arcmin2 (1 kpc2) - this contains the nuclear star cluster and inner disc. These data, taken during the period 2003-2007, were complemented by J- and H-band images. Photometry was obtained for 18 398 stars in this region; of these, 812 stars were found to be variable, most of which are asymptotic giant branch (AGB) stars. Our data were matched to optical catalogues of variable stars and carbon stars and to mid-infrared photometry from the Spitzer Space Telescope. In this first of a series of papers, we present the methodology of the variability survey and the photometric catalogue - which is made publicly available at the Centre de Données astronomiques de Strasbourg - and discuss the properties of the variable stars. The most dusty AGB stars had not been previously identified in optical variability surveys, and our survey is also more complete for these types of stars than the Spitzer survey.

  2. FOREST Unbiased Galactic plane Imaging survey with the Nobeyama 45 m telescope (FUGIN): Molecular clouds toward W 33; possible evidence for a cloud-cloud collision triggering O star formation

    Science.gov (United States)

    Kohno, Mikito; Torii, Kazufumi; Tachihara, Kengo; Umemoto, Tomofumi; Minamidani, Tetsuhiro; Nishimura, Atsushi; Fujita, Shinji; Matsuo, Mitsuhiro; Yamagishi, Mitsuyoshi; Tsuda, Yuya; Kuriki, Mika; Kuno, Nario; Ohama, Akio; Hattori, Yusuke; Sano, Hidetoshi; Yamamoto, Hiroaki; Fukui, Yasuo

    2018-05-01

    We observed molecular clouds in the W 33 high-mass star-forming region associated with compact and extended H II regions using the NANTEN2 telescope as well as the Nobeyama 45 m telescope in the J = 1-0 transitions of 12CO, 13CO, and C18O as part of the FOREST Unbiased Galactic plane Imaging survey with the Nobeyama 45 m telescope (FUGIN) legacy survey. We detected three velocity components at 35 km s-1, 45 km s-1, and 58 km s-1. The 35 km s-1 and 58 km s-1 clouds are likely to be physically associated with W 33 because of the enhanced 12CO J = 3-2 to J = 1-0 intensity ratio as R_3-2/1-0} > 1.0 due to the ultraviolet irradiation by OB stars, and morphological correspondence between the distributions of molecular gas and the infrared and radio continuum emissions excited by high-mass stars. The two clouds show complementary distributions around W 33. The velocity separation is too large to be gravitationally bound, and yet not explained by expanding motion by stellar feedback. Therefore, we discuss whether a cloud-cloud collision scenario likely explains the high-mass star formation in W 33.

  3. The afocal telescope of the ESA ARIEL mission: analysis of the layout

    Science.gov (United States)

    Da Deppo, Vania; Middleton, Kevin; Focardi, Mauro; Morgante, Gianluca; Corso, Alain Jody; Pace, Emanuele; Claudi, Riccardo; Micela, Giuseppina

    2017-09-01

    ARIEL (Atmospheric Remote-sensing Infrared Exoplanet Large-survey) is one of the three present candidates as an M4 ESA mission to be launched in 2026. During its foreseen 3.5 years operation, it will observe spectroscopically in the infrared a large population of known transiting planets in the neighborhood of the Solar System. The aim is to enable a deep understanding of the physics and chemistry of these exoplanets. ARIEL is based on a 1-m class telescope ahead of a suite of instruments: two spectrometer channels covering the band 1.95 to 7.8 μm and four photometric channels (two wide and two narrow band) in the range 0.5 to 1.9 μm. The ARIEL optical design is conceived as a fore-module common afocal telescope that will feed the spectrometer and photometric channels. The telescope optical design is based on an eccentric pupil two-mirror classic Cassegrain configuration coupled to a tertiary paraboloidal mirror. The temperature of the primary mirror (M1) will be monitored and finely tuned by means of an active thermal control system based on thermistors and heaters. They will be switched on and off to maintain the M1 temperature within ±1 K thanks to a proportional-integral-derivative (PID) controller implemented within the Telescope Control Unit (TCU), a Payload electronics subsystem mainly in charge of the active thermal control of the two detectors owning to the spectrometer. TCU will collect the housekeeping data of the controlled subsystems and will forward them to the spacecraft (S/C) by means of the Instrument Control Unit (ICU), the main Payload's electronic Unit linked to the S/C On Board Computer (OBC).

  4. Preliminary design study of the TMT Telescope structure system: overview

    Science.gov (United States)

    Usuda, Tomonori; Ezaki, Yutaka; Kawaguchi, Noboru; Nagae, Kazuhiro; Kato, Atsushi; Takaki, Junji; Hirano, Masaki; Hattori, Tomoya; Tabata, Masaki; Horiuchi, Yasushi; Saruta, Yusuke; Sofuku, Satoru; Itoh, Noboru; Oshima, Takeharu; Takanezawa, Takashi; Endo, Makoto; Inatani, Junji; Iye, Masanori; Sadjadpour, Amir; Sirota, Mark; Roberts, Scott; Stepp, Larry

    2014-07-01

    We present an overview of the preliminary design of the Telescope Structure System (STR) of Thirty Meter Telescope (TMT). NAOJ was given responsibility for the TMT STR in early 2012 and engaged Mitsubishi Electric Corporation (MELCO) to take over the preliminary design work. MELCO performed a comprehensive preliminary design study in 2012 and 2013 and the design successfully passed its Preliminary Design Review (PDR) in November 2013 and April 2014. Design optimizations were pursued to better meet the design requirements and improvements were made in the designs of many of the telescope subsystems as follows: 1. 6-legged Top End configuration to support secondary mirror (M2) in order to reduce deformation of the Top End and to keep the same 4% blockage of the full aperture as the previous STR design. 2. "Double Lower Tube" of the elevation (EL) structure to reduce the required stroke of the primary mirror (M1) actuators to compensate the primary mirror cell (M1 Cell) deformation caused during the EL angle change in accordance with the requirements. 3. M1 Segment Handling System (SHS) to be able to make removing and installing 10 Mirror Segment Assemblies per day safely and with ease over M1 area where access of personnel is extremely difficult. This requires semi-automatic sequence operation and a robotic Segment Lifting Fixture (SLF) designed based on the Compliance Control System, developed for controlling industrial robots, with a mechanism to enable precise control within the six degrees of freedom of position control. 4. CO2 snow cleaning system to clean M1 every few weeks that is similar to the mechanical system that has been used at Subaru Telescope. 5. Seismic isolation and restraint systems with respect to safety; the maximum acceleration allowed for M1, M2, tertiary mirror (M3), LGSF, and science instruments in 1,000 year return period earthquakes are defined in the requirements. The Seismic requirements apply to any EL angle, regardless of the

  5. Revisiting the Effectiveness of Large Optical Telescopes

    Directory of Open Access Journals (Sweden)

    V. V. Sychev

    2015-01-01

    . Once again the conclusion drawn by the author in March, 2000 [11] is confirmed: there is no common sense to create telescopes of land basing with a diameter of the main mirror more than 25 m to register images of extremely remote astronomical objects. And creation of telescopes with diameters from 30 to 100 m, as it is seen from calculations, does not give any advantages over telescopes of smaller diameter, and only extremely complicates and raises the price of a problem.It is shown that introduction of new concept of an invariant of informational content for large-size optical telescopes will allow to have a new look at the development process of complicated optic-electronic complexes. The informational content invariant as a criterion of efficiency enables an assessment and comparison of various technical solutions at the stage of search for optimum ways of increasing informational content of telescopes.Besides, and it is quite essential, the invariant of informational content will disable the misapprehension regarding a possibility to increase amount of information by increasing a mirror diameter of the telescope and will prevent the scientific-and technological community from unsuccessful projects and unjustified material inputs.In the early 1990’s when design and implementation of the fourth generation of optical telescopes of a 10-meter class were under development scientists and engineers already started being engaged in problems of creating the super telescopes of the 5-th generation (25-meter and more. In recent years of the XX century when implementation of the main projects of telescopes of the fourth generation entered the finishing phase, these researches started extending and going deep. Despite the complicated problems the offers of 25-meter telescopes were followed by the avant-projects of telescopes with an aperture of 50 meters, and even 100 meters:- influence of laser radiation on design elements and propagation medium and, as consequence, the

  6. Observation of Galactic Sources of Very High Energy γ-RAYS with the Magic Telescope

    Science.gov (United States)

    Bartko, H.

    The MAGIC telescope with its 17m diameter mirror is today the largest operating single-dish Imaging Air Cherenkov Telescope (IACT). It is located on the Canary Island La Palma, at an altitude of 2200 m above sea level, as part of the Roque de los Muchachos European Northern Observatory. The MAGIC telescope detects celestial very high energy γ-radiation in the energy band between about 50 GeV and 10 TeV. Since the autumn of 2004 MAGIC has been taking data routinely, observing various objects, like supernova remnants (SNRs), γ-ray binaries, Pulsars, Active Galactic Nuclei (AGN) and Gamma-ray Bursts (GRB). We briefly describe the observational strategy, the procedure implemented for the data analysis, and discuss the results of observations of Galactic Sources.

  7. Virtual Telescope Alignment System

    Data.gov (United States)

    National Aeronautics and Space Administration — Next-generation space telescopes require two spacecraft to fly in a coordinated fashion in space forming a virtual telescope. Achieving and maintaining this precise...

  8. Developments of next generation monitor and control systems for radio telescopes

    Science.gov (United States)

    Kodilkar, J.; Uprade, R.; Nayak, S.; Wadadekar, Y.; Chengalur, J.; Gupta, Y.

    2013-04-01

    As part of the ongoing upgrade of the GMRT observatory, the monitor and control (M&C) system is being upgraded to a modern specification driven system. The basic building block of the proposed M&C framework is a SACE node which provides command, response and event data streaming interfaces to the child and parent nodes running locally or remotely in a heterogeneous operating system environment. A prototype M&C system formed by hierarchically composing SACE nodes at different levels has been successfully tested at the GMRT. For the recently built 15m antenna at NCRA, a generic, web based M&C system has been developed which allows remote, authenticated operation. We discuss issues relevant to the development of the next generation M&C systems for radio telescopes using the lessons learned from these two systems. We also summarize flexible, reusable and cost-effective approaches using off the shelf packages and technologies used in generic frameworks, which can contribute to form the basis for M&C systems of very large radio telescopes like the SKA.

  9. Developments of next generation monitor and control systems for radio telescopes

    International Nuclear Information System (INIS)

    Kodilkar, J; Uprade, R; Nayak, S; Wadadekar, Y; Chengalur, J; Gupta, Y

    2013-01-01

    As part of the ongoing upgrade of the GMRT observatory, the monitor and control (M and C) system is being upgraded to a modern specification driven system. The basic building block of the proposed M and C framework is a SACE node which provides command, response and event data streaming interfaces to the child and parent nodes running locally or remotely in a heterogeneous operating system environment. A prototype M and C system formed by hierarchically composing SACE nodes at different levels has been successfully tested at the GMRT. For the recently built 15m antenna at NCRA, a generic, web based M and C system has been developed which allows remote, authenticated operation. We discuss issues relevant to the development of the next generation M and C systems for radio telescopes using the lessons learned from these two systems. We also summarize flexible, reusable and cost-effective approaches using off the shelf packages and technologies used in generic frameworks, which can contribute to form the basis for M and C systems of very large radio telescopes like the SKA.

  10. The positioning system of the ANTARES Neutrino Telescope

    NARCIS (Netherlands)

    Adrián-Martínez, S.; Kooijman, P.|info:eu-repo/dai/nl/068449542; Zúñiga, J.

    2012-01-01

    The ANTARES neutrino telescope, located 40 km off the coast of Toulon in the Mediterranean Sea at a mooring depth of about 2475 m, consists of twelve detection lines equipped typically with 25 storeys. Every storey carries three optical modules that detect Cherenkov light induced by charged

  11. James Webb Space Telescope Optical Telescope Element Mirror Development History and Results

    Science.gov (United States)

    Feinber, Lee D.; Clampin, Mark; Keski-Kuha, Ritva; Atkinson, Charlie; Texter, Scott; Bergeland, Mark; Gallagher, Benjamin B.

    2012-01-01

    In a little under a decade, the James Webb Space Telescope (JWST) program has designed, manufactured, assembled and tested 21 flight beryllium mirrors for the James Webb Space Telescope Optical Telescope Element. This paper will summarize the mirror development history starting with the selection of beryllium as the mirror material and ending with the final test results. It will provide an overview of the technological roadmap and schedules and the key challenges that were overcome. It will also provide a summary or the key tests that were performed and the results of these tests.

  12. Silicon pore optics for future x-ray telescopes

    Science.gov (United States)

    Wille, Eric; Bavdaz, Marcos; Wallace, Kotska; Shortt, Brian; Collon, Maximilien; Ackermann, Marcelo; Günther, Ramses; Olde Riekerink, Mark; Koelewijn, Arenda; Haneveld, Jeroen; van Baren, Coen; Erhard, Markus; Kampf, Dirk; Christensen, Finn; Krumrey, Michael; Freyberg, Michael; Burwitz, Vadim

    2017-11-01

    Lightweight X-ray Wolter optics with a high angular resolution will enable the next generation of X-ray telescopes in space. The candidate mission ATHENA (Advanced Telescope for High Energy Astrophysics) required a mirror assembly of 1 m2 effective area (at 1 keV) and an angular resolution of 10 arcsec or better. These specifications can only be achieved with a novel technology like Silicon Pore Optics, which is being developed by ESA together with a consortium of European industry. Silicon Pore Optics are made of commercial Si wafers using process technology adapted from the semiconductor industry. We present the recent upgrades made to the manufacturing processes and equipment, ranging from the manufacture of single mirror plates towards complete focusing mirror modules mounted in flight configuration, and results from first vibration tests. The performance of the mirror modules is tested at X-ray facilities that were recently extended to measure optics at a focal distance up to 20 m.

  13. Hubble space telescope servicing mission joint ESA/BAE UK technical press briefing Wednesday 10 March 1993

    Science.gov (United States)

    1993-02-01

    On Wednesday 10 March 1993 astronauts from ESA and NASA will be at British Aerospace Space Systems Limited, Filton, Bristol, UK, training on the replacement set of solar arrays which they are scheduled to fit to the Hubble Space Telescope at year end. You are invited to attend a technical briefing on that day, which will be given by senior representatives of the European Space Agency and British Aerospace. The briefing will include details of the design modifications and status of the solar arrays, together with a brief overview of the scientific results already achieved by the teams of astronomers using the telescope. There will be an opportunity for interviews with the mission specialists in the crew of NASA's Space Shuttle flight STS-61, who will be carrying out the servicing mission for the Hubble Space Telescope in a series of "Extra-Vehicular Activities - EVA' (space-walks). Five astronauts are expected : Story Musgrave, Colonel Tom Akers, Jeffrey A. Hoffman, Kathryn C. Thornton from NASA and Claude Nicollier from ESA. There will also be a chance to view the solar arrays in the British Aerospace clean room area where the astronauts are working on their familiarisation programme. The briefing will take place on Wednesday 10 March 1993 at British Aerospace Space Systems, Filton, Bristol, UK (on the northern outskirts of the city of Bristol). The event will begin at 10h30 a.m. and end with a buffet lunch running from approximately 01h30 p.m. to 02h30 p.m. In order to assists with arrangements for travel to and from bristol, British Aerospace proposes to run a free coach from and to London Victoria Coach Station - if there proves to be sufficient press interest. This coach would depart from London at approximately 07h50 a.m. and arrive back at around 05h30 p.m. Further details will be available on request when numbers are known. In order to gain access to the site and the briefing it is essential that all attendees are expected and their names are provided in

  14. SNAP Telescope Latest Developments

    Science.gov (United States)

    Lampton, M.; SNAP Collaboration

    2004-12-01

    The coming era of precision cosmology imposes new demands on space telescopes with regard to spectrophotometric accuracy and image stability. To meet these requirements for SNAP we have developed an all reflecting two-meter-class space telescope of the three-mirror anastigmat type. Our design features a large flat annular field (1.5 degrees = 580mm diameter) and a telephoto advantage of 6, delivering a 22m focal length within an optical package length of only 3.5 meters. The use of highly stable materials (Corning ULE glass and carbon-fiber reinforced cyanate ester resin for the metering structure) combined with agressive distributed thermal control and an L2 orbit location will lead to unmatched figure stability. Owing to our choice of rigid structure with nondeployable solar panels, finite-element models show no structural resonances below 10Hz. An exhaustive stray light study has been completed. Beginning in 2005, two industry studies will develop plans for fabrication, integration and test, bringing SNAP to a highly realistic level of definition. SNAP is supported by the Office of Science, US DoE, under contract DE-AC03-76SF00098.

  15. Real-time vibration compensation for large telescopes

    Science.gov (United States)

    Böhm, M.; Pott, J.-U.; Sawodny, O.; Herbst, T.; Kürster, M.

    2014-08-01

    We compare different strategies for minimizing the effects of telescope vibrations to the differential piston (optical pathway difference) for the Near-InfraRed/Visible Adaptive Camera and INterferometer for Astronomy (LINC-NIRVANA) at the Large Binocular Telescope (LBT) using an accelerometer feedforward compensation approach. We summarize, why this technology is important for LINC-NIRVANA, and also for future telescopes and already existing instruments. The main objective is outlining a solution for the estimation problem in general and its specifics at the LBT. Emphasis is put on realistic evaluation of the used algorithms in the laboratory, such that predictions for the expected performance at the LBT can be made. Model-based estimation and broad-band filtering techniques can be used to solve the estimation task, and the differences are discussed. Simulation results and measurements are shown to motivate our choice of the estimation algorithm for LINC-NIRVANA. The laboratory setup is aimed at imitating the vibration behaviour at the LBT in general, and the M2 as main contributor in particular. For our measurements, we introduce a disturbance time series which has a frequency spectrum comparable to what can be measured at the LBT on a typical night. The controllers' ability to suppress vibrations in the critical frequency range of 8-60 Hz is demonstrated. The experimental results are promising, indicating the ability to suppress differential piston induced by telescope vibrations by a factor of about 5 (rms), which is significantly better than any currently commissioned system.

  16. Present status of the 4-m ILMT data reduction pipeline: application to space debris detection and characterization

    Science.gov (United States)

    Pradhan, Bikram; Delchambre, Ludovic; Hickson, Paul; Akhunov, Talat; Bartczak, Przemyslaw; Kumar, Brajesh; Surdej, Jean

    2018-04-01

    The 4-m International Liquid Mirror Telescope (ILMT) located at the ARIES Observatory (Devasthal, India) has been designed to scan at a latitude of +29° 22' 26" a band of sky having a width of about half a degree in the Time Delayed Integration (TDI) mode. Therefore, a special data-reduction and analysis pipeline to process online the large amount of optical data being produced has been dedicated to it. This requirement has led to the development of the 4-m ILMT data reduction pipeline, a new software package built with Python in order to simplify a large number of tasks aimed at the reduction of the acquired TDI images. This software provides astronomers with specially designed data reduction functions, astrometry and photometry calibration tools. In this paper we discuss the various reduction and calibration steps followed to reduce TDI images obtained in May 2015 with the Devasthal 1.3m telescope. We report here the detection and characterization of nine space debris present in the TDI frames.

  17. Asteroseismology of the Transiting Exoplanet Host HD 17156 with Hubble Space Telescope Fine Guidance Sensor

    DEFF Research Database (Denmark)

    Gilliland, Ronald L.; McCullough, Peter R.; Nelan, Edmund P.

    2011-01-01

    light curve. Using the density constraint from asteroseismology, and stellar evolution modeling results in M * = 1.285 ± 0.026 M sun, R * = 1.507 ± 0.012 R sun, and a stellar age of 3.2 ± 0.3 Gyr. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science......Observations conducted with the Fine Guidance Sensor on the Hubble Space Telescope (HST) providing high cadence and precision time-series photometry were obtained over 10 consecutive days in 2008 December on the host star of the transiting exoplanet HD 17156b. During this time, 1.0 × 1012 photons...... Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555....

  18. High-precision photometry by telescope defocussing - VI. WASP-24, WASP-25 and WASP-26

    DEFF Research Database (Denmark)

    Southworth, John; Hinse, T. C.; Burgdorf, M.

    2014-01-01

    We present time series photometric observations of 13 transits in the planetary systems WASP-24, WASP-25 and WASP-26. All three systems have orbital obliquity measurements, WASP-24 and WASP-26 have been observed with Spitzer, and WASP-25 was previously comparatively neglected. Our light curves we...

  19. UNIFORM INFALL TOWARD THE COMETARY H II REGION IN THE G34.26+0.15 COMPLEX?

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tie; Wu, Yuefang; Zhang, Huawei, E-mail: liutiepku@gmail.com, E-mail: ywu@pku.edu.cn [Department of Astronomy, Peking University, 100871 Beijing (China)

    2013-10-10

    Gas accretion is a key process in star formation. However, gas infall detections in high-mass, star-forming regions with high spatial resolution observations are rare. Here, we report the detection of gas infall toward a cometary ultracompact H II region ({sup C)} in the G34.26+0.15 complex. The observations were made with the IRAM 30 m, the James Clerk Maxwell Telescope 15 m telescope, and the Submillimeter Array (SMA). The hot core associated with 'C' has a mass of ∼76 ± 11 M{sub ☉} and a volume density of (1.1 ± 0.2) × 10{sup 8} cm{sup –3}. The HCN (3-2) and HCO{sup +} (1-0) lines observed by single dishes and the CN (2-1) lines observed by the SMA show redshifted absorption features, indicating gas infall. We found a linear relationship between the line width and optical depth of the CN (2-1) lines. Those transitions with larger optical depths and line widths have larger absorption areas. However, the infall velocities measured from different lines seem to be constant, indicating that the gas infall is uniform. We also investigated the evolution of gas infall in high-mass, star-forming regions. A tight relationship was found between the infall velocity and the total dust/gas mass. At stages prior to the hot core phase, the typical infall velocity and mass infall rate are ∼1 km s{sup –1} and ∼10{sup –4} M{sub ☉} yr{sup –1}, respectively. While in more evolved regions, the infall velocity and mass infall rates can reach as high as several km s{sup –1} and ∼10{sup –3}-10{sup –2} M{sub ☉} yr{sup –1}, respectively. Accelerated infall has been detected toward some hypercompact H II and ultracompact H II regions. However, the acceleration phenomenon is not seen in more evolved ultracompact H II regions (e.g., G34.26+0.15)

  20. UNIFORM INFALL TOWARD THE COMETARY H II REGION IN THE G34.26+0.15 COMPLEX?

    International Nuclear Information System (INIS)

    Liu, Tie; Wu, Yuefang; Zhang, Huawei

    2013-01-01

    Gas accretion is a key process in star formation. However, gas infall detections in high-mass, star-forming regions with high spatial resolution observations are rare. Here, we report the detection of gas infall toward a cometary ultracompact H II region ( C) in the G34.26+0.15 complex. The observations were made with the IRAM 30 m, the James Clerk Maxwell Telescope 15 m telescope, and the Submillimeter Array (SMA). The hot core associated with 'C' has a mass of ∼76 ± 11 M ☉ and a volume density of (1.1 ± 0.2) × 10 8 cm –3 . The HCN (3-2) and HCO + (1-0) lines observed by single dishes and the CN (2-1) lines observed by the SMA show redshifted absorption features, indicating gas infall. We found a linear relationship between the line width and optical depth of the CN (2-1) lines. Those transitions with larger optical depths and line widths have larger absorption areas. However, the infall velocities measured from different lines seem to be constant, indicating that the gas infall is uniform. We also investigated the evolution of gas infall in high-mass, star-forming regions. A tight relationship was found between the infall velocity and the total dust/gas mass. At stages prior to the hot core phase, the typical infall velocity and mass infall rate are ∼1 km s –1 and ∼10 –4 M ☉ yr –1 , respectively. While in more evolved regions, the infall velocity and mass infall rates can reach as high as several km s –1 and ∼10 –3 -10 –2 M ☉ yr –1 , respectively. Accelerated infall has been detected toward some hypercompact H II and ultracompact H II regions. However, the acceleration phenomenon is not seen in more evolved ultracompact H II regions (e.g., G34.26+0.15)

  1. HPF: The Habitable Zone Planet Finder at the Hobby-Eberly Telescope

    Science.gov (United States)

    Wright, Jason T.; Mahadevan, Suvrath; Hearty, Fred; Monson, Andy; Stefansson, Gudmundur; Ramsey, Larry; Ninan, Joe; Bender, Chad; Kaplan, Kyle; Roy, Arpita; Terrien, Ryan; Robertson, Paul; Halverson, Sam; Schwab, Christian; Kanodia, Shubham

    2018-01-01

    The Habitable Zone Planet Finder (HPF) is an ultra-stable NIR (ZYJ) high resolution echelle spectrograph on the 10-m Hobby-Eberly Telescope capable of 1-3 m/s Doppler velocimetry on nearby late M dwarfs (M4-M9). This precision is sufficient to detect terrestrial planets in the Habitable Zones of these relatively unexplored stars. Here we present its capabilities and early commissioning results.

  2. THE CANADA-FRANCE-HAWAII TELESCOPE LEGACY SURVEY: STACKED IMAGES AND CATALOGS

    International Nuclear Information System (INIS)

    Gwyn, Stephen D. J.

    2012-01-01

    This paper describes the image stacks and catalogs of the Canada-France-Hawaii Telescope Legacy Survey produced using the MegaPipe data pipeline at the Canadian Astronomy Data Centre. The Legacy Survey is divided into two parts. The Deep Survey consists of four fields each of 1 deg 2 , with magnitude limits (50% completeness for point sources) of u = 27.5, g = 27.9, r = 27.7, i = 27.4, and z = 26.2. It contains 1.6 × 10 6 sources. The Wide Survey consists of 150 deg 2 split over four fields, with magnitude limits of u = 26.0, g = 26.5, r = 25.9, i = 25.7, and z = 24.6. It contains 3 × 10 7 sources. This paper describes the calibration, image stacking, and catalog generation process. The images and catalogs are available on the web through several interfaces: normal image and text file catalog downloads, a 'Google Sky' interface, an image cutout service, and a catalog database query service.

  3. A planetary telescope at the ISS

    Science.gov (United States)

    Korablev, O.; Moroz, V.; Avanesov, G.; Rodin, V.; Bellucci, G.; Vid Machenko, A.; Tejfel, V.

    We present the development of a 40-cm telescope to be deployed at the Russian segment of International Space Station (ISS) dedicated to the observations of planets of Solar system, which primary goal will be tracking climate-related changes and other variable phenomena on planets. The most effective will be the observations of Venus, Mars, Jupiter, Saturn, and comets, while other interesting targets will be certainly considered. This space-based observatory will perform monitoring of Solar System objects on regular basis The observatory includes the 40-cm narrow-field (f:20) telescope at a pointing platform with guidance system assuring pointing accuracy of ~10", and an internal tracking system with an accuracy inferior to 1" during tens of minutes. Four focal plane instruments, a camera, two spectrometers and a spectropolarimeter, will perform imaging and spectral observations in the range from ~200 nm to ~3 μm.

  4. Mechanical design of SST-GATE, a dual-mirror telescope for the Cherenkov Telescope Array

    Science.gov (United States)

    Dournaux, Jean-Laurent; Huet, Jean-Michel; Amans, Jean-Philippe; Dumas, Delphine; Laporte, Philippe; Sol, Hélène; Blake, Simon

    2014-07-01

    The Cherenkov Telescope Array (CTA) project aims to create the next generation Very High Energy (VHE) gamma-ray telescope array. It will be devoted to the observation of gamma rays over a wide band of energy, from a few tens of GeV to more than 100 TeV. Two sites are foreseen to view the whole sky where about 100 telescopes, composed of three different classes, related to the specific energy region to be investigated, will be installed. Among these, the Small Size class of Telescopes, SSTs, are devoted to the highest energy region, to beyond 100 TeV. Due to the large number of SSTs, their unit cost is an important parameter. At the Observatoire de Paris, we have designed a prototype of a Small Size Telescope named SST-GATE, based on the dual-mirror Schwarzschild-Couder optical formula, which has never before been implemented in the design of a telescope. Over the last two years, we developed a mechanical design for SST-GATE from the optical and preliminary mechanical designs made by the University of Durham. The integration of this telescope is currently in progress. Since the early stages of mechanical design of SST-GATE, finite element method has been used employing shape and topology optimization techniques to help design several elements of the telescope. This allowed optimization of the mechanical stiffness/mass ratio, leading to a lightweight and less expensive mechanical structure. These techniques and the resulting mechanical design are detailed in this paper. We will also describe the finite element analyses carried out to calculate the mechanical deformations and the stresses in the structure under observing and survival conditions.

  5. Southern Fireworks above ESO Telescopes

    Science.gov (United States)

    1999-05-01

    - the PLANET observers turned their telescope and quickly obtained a series of CCD images in visual light of the sky region where the gamma-ray burst was detected, then shipped them off electronically to their Dutch colleagues [3]. Comparing the new photos with earlier ones in the digital sky archive, Vreeswijk, Galama and Rol almost immediately discovered a new, relatively bright visual source in the region of the gamma-ray burst, which they proposed as the optical counterpart of the burst, cf. their dedicated webpage at http://www.astro.uva.nl/~titus/grb990510/. The team then placed a message on the international Gamma-Ray Burster web-noteboard ( GCN Circular 310), thereby alerting their colleagues all over the world. One hour later, the narrow-field instruments on BeppoSax identified a new X-Ray source at the same location ( GCN Circular 311), thus confirming the optical identification. All in all, a remarkable synergy of human and satellite resources! Observations of GRB 990510 at ESO Vreeswijk, Galama and Rol, in collaboration with Nicola Masetti, Eliana Palazzi and Elena Pian of the BeppoSAX GRB optical follow-up team (led by Filippo Frontera ) and the Huntsville optical follow-up team (led by Chryssa Kouveliotou ), also contacted the European Southern Observatory (ESO). Astronomers at this Organization's observatories in Chile were quick to exploit this opportunity and crucial data were soon obtained with several of the main telescopes at La Silla and Paranal, less than 14 hours after the first detection of this event by the satellite. ESO PR Photo 22a/99 ESO PR Photo 22a/99 [Preview - JPEG: 211 x 400 pix - 72k] [Normal - JPEG: 422 x 800 pix - 212k] [High-Res - JPEG: 1582 x 3000 pix - 2.6M] ESO PR Photo 22b/99 ESO PR Photo 22b/99 [Preview - JPEG: 400 x 437 pix - 297k] [Normal - JPEG: 800 x 873 pix - 1.1M] [High-Res - JPEG: 2300 x 2509 pix - 5.9M] Caption to PR Photo 22a/99 : This wide-field photo was obtained with the Wide-Field Imager (WFI) at the MPG/ESO 2.2-m

  6. The positioning system of the ANTARES Neutrino Telescope

    NARCIS (Netherlands)

    Adrian-Martinez, S.; Ageron, M.; Aguilar, J. A.; Al Samarai, I.; Albert, A.; Andre, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Jesus, A. C. Assis; Astraatmadja, T.; Aubert, J. -J.; Baret, B.; Basa, S.; Bertin, V.; Biagi, S.; Bigi, A.; Bigongiari, C.; Bogazzi, C.; Bou-Cabo, M.; Bouhou, B.; Bouwhuis, M. C.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Carloganu, C.; Carminati, G.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, Ph.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Coyle, P.; Curtil, C.; De Bonis, G.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Eberl, T.; Emanuele, U.; Enzenhoefer, A.; Ernenwein, J. -P.; Escoffier, S.; Fermani, P.; Ferri, M.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J. -L.; Galata, S.; Gay, P.; Giacomelli, G.; Giordano, V.; Gomez-Gonzalez, J. P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Hartman, J.; Heijboer, A. J.; Hello, Y.; Hernandez-Rey, J. J.; Herold, B.; Hoessl, J.; Hsu, C. C.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kavatsyuk, O.; Keller, P.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lamare, P.; Larosa, G.; Lattuada, D.; Lefevre, D.; Le Van Suu, A.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Meli, A.; Montaruli, T.; Moscoso, L.; Motz, H.; Neff, M.; Nezri, E.; Niess, V.; Palioselitis, D.; Pavalas, G. E.; Payet, K.; Payre, P.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Real, D.; Reed, C.; Riccobene, G.; Richardt, C.; Richter, R.; Riviere, C.; Robert, A.; Roensch, K.; Rostovtsev, A.; Ruiz-Rivas, J.; Rujoiu, M.; Russo, G. V.; Salesa, F.; Samtleben, D. F. E.; Schoeck, F.; Schuller, J. -P.; Schuessler, F.; Seitz, T.; Shanidze, R.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Sanchez-Losa, A.; Taiuti, M.; Tamburini, C.; Toscano, S.; Vallage, B.; Van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Wagner, S.; Wijnker, G.; Wilms, J.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zuniga, J.

    The ANTARES neutrino telescope, located 40km off the coast of Toulon in the Mediterranean Sea at a mooring depth of about 2475m, consists of twelve detection lines equipped typically with 25 storeys. Every storey carries three optical modules that detect Cherenkov light induced by charged secondary

  7. The positioning system of the ANTARES Neutrino Telescope

    NARCIS (Netherlands)

    Adrian-Martinez, S.; Ageron, M.; Aguilar, J.A.; Al Samarai, I.; Albert, A.; Andre, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Jesus, A.C.A.; Astraatmadja, T.; Aubert, J.J.; Baret, B.; Basa, S.; Bertin, V.; Biagi, S.; Bigi, A.; Bigongiari, C.; Bogazzi, C.; Bou-Cabo, M.; Bouhou, B.; Bouwhuis, M.C.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Carloganu, C.; Carminati, G.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, P.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Coyle, P.; Curtil, C.; De Bonis, G.; Decowski, M.P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Eberl, T.; Emanuele, U.; Enzenhofer, A.; Ernenwein, J.P.; Escoffier, S.; Fermani, P.; Ferri, M.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J.L.; Galata, S.; Gay, P.; Giacomelli, G.; Giordano, V.; Gomez-Gonzalez, J.P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Hartman, J.; Heijboer, A.J.; Hello, Y.; Hernandez-Rey, J.J.; Herold, B.; Hossl, J.; Hsu, C.C.; De Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kavatsyuk, O.; Keller, P.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lamare, P.; Larosa, G.; Lattuada, D.; Lefevre, D.; Le Van Suu, A.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J.A.; Meli, A.; Montaruli, T.; Moscoso, L.; Motz, H.; Neff, M.; Nezri, E.; Niess, V.; Palioselitis, D.; Pavalas, G.E.; Payet, K.; Payre, P.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Real, D.; Reed, C.; Riccobene, G.; Richardt, C.; Richter, R.; Riviere, C.; Robert, A.; Roensch, K.; Rostovtsev, A.; Ruiz-Rivas, J.; Rujoiu, M.; Russo, G.V.; Salesa, F.; Samtleben, D.F.E.; Schock, F.; Schuller, J.P.; Schussler, F.; Seitz, T.; Shanidze, R.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J.J.M.; Stolarczyk, T.; Sanchez-Losa, A.; Taiuti, M.; Tamburini, C.; Toscano, S.; Vallage, B.; Van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Wagner, S.; Wijnker, G.; Wilms, J.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J.D.; Zuniga, J.

    2012-01-01

    The ANTARES neutrino telescope, located 40km off the coast of Toulon in the Mediterranean Sea at a mooring depth of about 2475m, consists of twelve detection lines equipped typically with 25 storeys. Every storey carries three optical modules that detect Cherenkov light induced by charged secondary

  8. Twin-Telescope Wettzell (TTW)

    Science.gov (United States)

    Hase, H.; Dassing, R.; Kronschnabl, G.; Schlüter, W.; Schwarz, W.; Lauber, P.; Kilger, R.

    2007-07-01

    delay measurements, Mark 5 Memo #043, MIT Haystack Observatory. Rogers, A.E.E. (2006). Some thoughts on the calibration of broadband geodetic VLBI, Mark 5 Memo #044, MIT Haystack Observatory. Rothacher M. (2006). GGOS: the IAG contribution to Earth observation, IGS Workshop 2006 "Perspectives and Visions for 2010 and beyond", May 8-12, Darmstadt, Germany Weinreb, S., Mandi, H. (2006). Pattern and Noise Tests of ETS-Lindgren 3164-05 Quadridge/Vivaldi Antenna, California Institute of Technology. Weinreb, S. (2007). Broadband feeds, E-mail, January. Welch, Wm. J. (2005). The Allen Telescope Array, URSI, UC Berkeley, January.

  9. Innovative compact focal plane array for wide field vis and ir orbiting telescopes

    Science.gov (United States)

    Hugot, Emmanuel; Vives, Sébastien; Ferrari, Marc; Gaeremynck, Yann; Jahn, Wilfried

    2017-11-01

    The future generation of high angular resolution space telescopes will require breakthrough technologies to combine large diameters and large focal plane arrays with compactness and lightweight mirrors and structures. Considering the allocated volume medium-size launchers, short focal lengths are mandatory, implying complex optical relays to obtain diffraction limited images on large focal planes. In this paper we present preliminary studies to obtain compact focal plane arrays (FPA) for earth observations on low earth orbits at high angular resolution. Based on the principle of image slicers, we present an optical concept to arrange a 1D FPA into a 2D FPA, allowing the use of 2D detector matrices. This solution is particularly attractive for IR imaging requiring a cryostat, which volume could be considerably reduced as well as the relay optics complexity. Enabling the use of 2D matrices for such an application offers new possibilities. Recent developments on curved FPA allows optimization without concerns on the field curvature. This innovative approach also reduces the complexity of the telescope optical combination, specifically for fast telescopes. This paper will describe the concept and optical design of an F/5 - 1.5m telescope equipped with such a FPA, the performances and the impact on the system with a comparison with an equivalent 1.5m wide field Korsch telescope.

  10. The CERN axion solar telescope (CAST)

    International Nuclear Information System (INIS)

    Aalseth, C.E.; Arik, E.; Autiero, D.; Avignone, F.T.; Barth, K.; Bowyer, S.M.; Brauninger, H.; Brodzinski, R.L.; Carmona, J.M.; Cebrian, S.; Celebi, G.; Cetin, S.; Collar, J.I.; Creswick, R.; Delbart, A.; Delattre, M.; DiLella, L.; De Oliveira, R.; Eleftheriadis, Ch.; Erdutan, N.; Fanourakis, G.; Farach, H.A.; Fiorini, C.; Geralis, Th.; Giomataris, I.; Girard, T.A.; Gninenko, S.N.; Golubev, N.A.; Hasinoff, M.; Hoffmann, D.; Irastorza, I.G.; Jacoby, J.; Jeanneau, F.; Knopf, M.A.; Kovzelev, A.V.; Kotthaus, R.; Krcmar, M.; Krecak, Z.; Lakic, B.; Liolios, A.; Ljubicic, A.; Lutz, G.; Longoni, A.; Luzon, G.; Mailov, A.; Matveev, V.A.; Miley, H.S.; Morales, A.; Morales, J.; Mutterer, M.; Nikolaidis, A.; Nussinov, S.; Ortiz, A.; Pitts, W.K.; Placci, A.; Postoev, V.E.; Raffelt, G.G.; Riege, H.; Sampieto, M.; Sarsa, M.; Savvidis, I.; Stipcevic, M.; Thomas, C.W.; Thompson, R.C.; Valco, P.; Villar, J.A.; Villierme, B.; Walckiers, L.; Wilcox, W.; Zachariadou, K.; Zioutas, K.

    2002-01-01

    A decommissioned LHC test magnet is being prepared as the CERN Axion Solar Telescope (CAST) experiment. The magnet has a field of 9.6 Tesla and length of 10 meters. It is being mounted on a platform to track the sun over ±8 deg. vertically and ±45 deg. , horizontally. A sensitivity in axion-photon coupling gαγγ -11 GeV -1 can be reached for m α ≤ 10 -2 eV, and with a gas filled tube-can reach gαγγ ≤ 10 -10 GeV -1 for axion masses m α < 2eV

  11. Silicon Telescope Detectors

    CERN Document Server

    Gurov, Yu B; Sandukovsky, V G; Yurkovski, J

    2005-01-01

    The results of research and development of special silicon detectors with a large active area ($> 8 cm^{2}$) for multilayer telescope spectrometers (fulfilled in the Laboratory of Nuclear Problems, JINR) are reviewed. The detector parameters are listed. The production of totally depleted surface barrier detectors (identifiers) operating under bias voltage two to three times higher than depletion voltage is described. The possibility of fabrication of lithium drifted counters with a very thin entrance window on the diffusion side of the detector (about 10--20 $\\mu$m) is shown. The detector fabrication technique has allowed minimizing detector dead regions without degradation of their spectroscopic characteristics and reliability during long time operation in charge particle beams.

  12. The ROTSE-IIIa telescope system

    International Nuclear Information System (INIS)

    Smith, D.; Akerlof, C.; Kehoe, R.; McKay, T.; Rykoff, E.; Ashley, M.C.B.; Phillips, M.A.; Casperson, D.; Gisler, G.; McGowan, K.; Vestrand, W.T.; Wozniak, P.; Wren, J.; Marshall, S.

    2003-01-01

    We report on the current operating status of the ROTSE-IIIa telescope, currently undergoing testing at Los Alamos National Laboratories in New Mexico. It will be shipped to Siding Spring Observatory, Australia, in first quarter 2002. ROTSE-IIIa has been in automated observing mode since early October, 2001, after completing several weeks of calibration and check-out observations. Calibrated lists of objects in ROTSE-IIIa sky patrol data are produced routinely in an automated pipeline, and we are currently automating analysis procedures to compile these lists, eliminate false detections, and automatically identify transient and variable objects. The manual application of these procedures has already led to the detection of a nova that rose over six magnitudes in two days to a maximum detected brightness of mR ∼ 13.9 and then faded two magnitudes in two weeks. We also readily identify variable stars, includings those suspected to be variables from the Sloan Digital Sky Survey. We report on our system to allow public monitoring of the telescope operational status in real time over the WWW

  13. Reliability and risk analysis methods research plan

    International Nuclear Information System (INIS)

    1984-10-01

    This document presents a plan for reliability and risk analysis methods research to be performed mainly by the Reactor Risk Branch (RRB), Division of Risk Analysis and Operations (DRAO), Office of Nuclear Regulatory Research. It includes those activities of other DRAO branches which are very closely related to those of the RRB. Related or interfacing programs of other divisions, offices and organizations are merely indicated. The primary use of this document is envisioned as an NRC working document, covering about a 3-year period, to foster better coordination in reliability and risk analysis methods development between the offices of Nuclear Regulatory Research and Nuclear Reactor Regulation. It will also serve as an information source for contractors and others to more clearly understand the objectives, needs, programmatic activities and interfaces together with the overall logical structure of the program

  14. Jets at high Q2 at HERA and test beam measurements with the EUDET pixel telescope

    International Nuclear Information System (INIS)

    Behr, Joerg

    2010-09-01

    In this thesis the measurement of inclusive dijet and trijet cross sections in deep-inelastic ep scattering at HERA is presented. The kinematic phase space of the measurement was defined by 125 2 2 and 0.2 2 and y are the virtuality and the inelasticity, respectively. The data sample was taken during the years 1998-2000 and 2004-2007 with the ZEUS detector and corresponded to an integrated luminosity of 374 pb -1 . The inclusive k t jet algorithm was applied to the massless final-state objects in the Breit reference frame. The cross sections referred to jets with E T,B jet >8 GeV and -1 LAB jet 3/2 , between the cross sections for trijet and dijet production was determined as a function of the average transverse jet energy in the Breit frame, E T,B jet , in intervals of Q 2 . The quantity R 3/2 was utilised for an extraction of the strong coupling, α s , with partially reduced systematic uncertainties. The extracted value was in agreement with the world average value of α s . In a second part, test-beam measurements were performed with the EUDET pixel telescope. During the work for this thesis, the online-monitoring software was improved, the MIMOSA 26 sensors were integrated into the offline analysis software and the first data taken with these sensors were analysed. The first data were taken with the demonstrator telescope together with three MIMOSA 26 sensors that were operated as devices-under-test. The second data sample was taken with a telescope that consisted of six MIMOSA 26 sensors, of which five could be used. The single-point resolution and the detection efficiency were determined and found to be consistent with the expectation. (orig.)

  15. First results of the Test-Bed Telescopes (TBT) project: Cebreros telescope commissioning

    Science.gov (United States)

    Ocaña, Francisco; Ibarra, Aitor; Racero, Elena; Montero, Ángel; Doubek, Jirí; Ruiz, Vicente

    2016-07-01

    The TBT project is being developed under ESA's General Studies and Technology Programme (GSTP), and shall implement a test-bed for the validation of an autonomous optical observing system in a realistic scenario within the Space Situational Awareness (SSA) programme of the European Space Agency (ESA). The goal of the project is to provide two fully robotic telescopes, which will serve as prototypes for development of a future network. The system consists of two telescopes, one in Spain and the second one in the Southern Hemisphere. The telescope is a fast astrograph with a large Field of View (FoV) of 2.5 x 2.5 square-degrees and a plate scale of 2.2 arcsec/pixel. The tube is mounted on a fast direct-drive mount moving with speed up to 20 degrees per second. The focal plane hosts a 2-port 4K x 4K back-illuminated CCD with readout speeds up to 1MHz per port. All these characteristics ensure good survey performance for transients and fast moving objects. Detection software and hardware are optimised for the detection of NEOs and objects in high Earth orbits (objects moving from 0.1-40 arcsec/second). Nominal exposures are in the range from 2 to 30 seconds, depending on the observational strategy. Part of the validation scenario involves the scheduling concept integrated in the robotic operations for both sensors. Every night it takes all the input needed and prepares a schedule following predefined rules allocating tasks for the telescopes. Telescopes are managed by RTS2 control software, that performs the real-time scheduling of the observation and manages all the devices at the observatory.1 At the end of the night the observing systems report astrometric positions and photometry of the objects detected. The first telescope was installed in Cebreros Satellite Tracking Station in mid-2015. It is currently in the commissioning phase and we present here the first results of the telescope. We evaluate the site characteristics and the performance of the TBT Cebreros

  16. The high-resolution cross-dispersed echelle white-pupil spectrometer of the McDonald Observatory 2.7-m telescope

    Science.gov (United States)

    Tull, Robert G.; Macqueen, Phillip J.; Sneden, Christopher; Lambert, David L.

    1995-01-01

    A new high-resolution cross-dispersed echelle spectrometer has been installed at the coude focus of the McDonald Observatory 2.7-m telescope. Its primary goal was simultaneously to gather spectra over as much of the spectral range 3400 A to 1 micrometer as practical, at a resolution R identical with lambda/Delta lambda which approximately = 60,000 with signal-to-noise ratio of approximately 100 for stars down to magnitude 11, using 1-h exposures. In the instrument as built, two exposures are all that are needed to cover the full range. Featuring a white-pupil design, fused silica prism cross disperser, and folded Schmidt camera with a Tektronix 2048x2048 CCD used at either of two foci, it has been in regularly scheduled operation since 1992 April. Design details and performance are described.

  17. Infrared up-conversion telescope

    DEFF Research Database (Denmark)

    2014-01-01

    There is presented to an up-conversion infrared telescope (110) arranged for imaging an associated scene (130), wherein the up-conversion infrared telescope (110) comprises a non-linear crystal (120) arranged for up-conversion of infrared electromagnetic radiation, and wherein a first optical...

  18. On the Disappearance of the Supergiant Progenitor of SN 2011dh in M51.

    Science.gov (United States)

    Ergon, Mattias; Sollerman, Jesper; Pursimo, Tapio; Augusteijn, Thomas; Telting, John; Smirnova, Olesja; Kankare, Erkki; Mattila, Seppo; Maund, Justyn; Fraser, Morgan

    2013-03-01

    We report on high quality pre- and post-explosion B, V and r band imaging obtained with the 2.56 m Nordic Optical Telescope (NOT). Difference imaging reveals a reduction of 45-60 percent in flux at the position of the yellow supergiant coincident with SN 2011dh and proposed as the progenitor by Maund et al. (2011, ApJ, 739, L37). The pre-explosion imaging was obtained on May 26 2008 (B) and May 29 2011 (V and r), the latter just 2 days before explosion.

  19. Prime focus architectures for large space telescopes: reduce surfaces to save cost

    Science.gov (United States)

    Breckinridge, J. B.; Lillie, C. F.

    2016-07-01

    Conceptual architectures are now being developed to identify future directions for post JWST large space telescope systems to operate in the UV Optical and near IR regions of the spectrum. Here we show that the cost of optical surfaces within large aperture telescope/instrument systems can exceed $100M/reflection when expressed in terms of the aperture increase needed to over come internal absorption loss. We recommend a program in innovative optical design to minimize the number of surfaces by considering multiple functions for mirrors. An example is given using the Rowland circle imaging spectrometer systems for UV space science. With few exceptions, current space telescope architectures are based on systems optimized for ground-based astronomy. Both HST and JWST are classical "Cassegrain" telescopes derived from the ground-based tradition to co-locate the massive primary mirror and the instruments at the same end of the metrology structure. This requirement derives from the dual need to minimize observatory dome size and cost in the presence of the Earth's 1-g gravitational field. Space telescopes, however function in the zero gravity of space and the 1- g constraint is relieved to the advantage of astronomers. Here we suggest that a prime focus large aperture telescope system in space may have potentially have higher transmittance, better pointing, improved thermal and structural control, less internal polarization and broader wavelength coverage than Cassegrain telescopes. An example is given showing how UV astronomy telescopes use single optical elements for multiple functions and therefore have a minimum number of reflections.

  20. Imaging the Schwarzschild-radius-scale Structure of M87 with the Event Horizon Telescope Using Sparse Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Kazunori; Fish, Vincent L.; Doeleman, Sheperd S. [Massachusetts Institute of Technology, Haystack Observatory, Route 40, Westford, MA 01886 (United States); Kuramochi, Kazuki; Tazaki, Fumie; Honma, Mareki [Mizusawa VLBI Observatory, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Ikeda, Shiro [Department of Statistical Science, School of Multidisciplinary Sciences, Graduate University for Advanced Studies, 10-3 Midori-cho, Tachikawa, Tokyo 190-8562 (Japan); Broderick, Avery E. [Perimeter Institute for Theoretical Physics, 31 Caroline Street, North Waterloo, Ontario N2L 2Y5 (Canada); Dexter, Jason [Max Planck Institute for Extraterrestrial Physics, Giessenbachstr. 1, D-85748 Garching (Germany); Mościbrodzka, Monika [Department of Astrophysics/IMAPP, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen (Netherlands); Bouman, Katherine L. [Massachusetts Institute of Technology, Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street, Cambridge, MA 02139 (United States); Chael, Andrew A. [Black Hole Initiative, Harvard University, 20 Garden Street,Cambridge, MA 02138,USA (United States); Zaizen, Masamichi, E-mail: kazu@haystack.mit.edu [Department of Astronomy, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2017-03-20

    We propose a new imaging technique for radio and optical/infrared interferometry. The proposed technique reconstructs the image from the visibility amplitude and closure phase, which are standard data products of short-millimeter very long baseline interferometers such as the Event Horizon Telescope (EHT) and optical/infrared interferometers, by utilizing two regularization functions: the ℓ {sub 1}-norm and total variation (TV) of the brightness distribution. In the proposed method, optimal regularization parameters, which represent the sparseness and effective spatial resolution of the image, are derived from data themselves using cross-validation (CV). As an application of this technique, we present simulated observations of M87 with the EHT based on four physically motivated models. We confirm that ℓ {sub 1} + TV regularization can achieve an optimal resolution of ∼20%–30% of the diffraction limit λ / D {sub max}, which is the nominal spatial resolution of a radio interferometer. With the proposed technique, the EHT can robustly and reasonably achieve super-resolution sufficient to clearly resolve the black hole shadow. These results make it promising for the EHT to provide an unprecedented view of the event-horizon-scale structure in the vicinity of the supermassive black hole in M87 and also the Galactic center Sgr A*.

  1. Parametric cost models for space telescopes

    Science.gov (United States)

    Stahl, H. Philip; Henrichs, Todd; Dollinger, Courtnay

    2017-11-01

    Multivariable parametric cost models for space telescopes provide several benefits to designers and space system project managers. They identify major architectural cost drivers and allow high-level design trades. They enable cost-benefit analysis for technology development investment. And, they provide a basis for estimating total project cost. A survey of historical models found that there is no definitive space telescope cost model. In fact, published models vary greatly [1]. Thus, there is a need for parametric space telescopes cost models. An effort is underway to develop single variable [2] and multi-variable [3] parametric space telescope cost models based on the latest available data and applying rigorous analytical techniques. Specific cost estimating relationships (CERs) have been developed which show that aperture diameter is the primary cost driver for large space telescopes; technology development as a function of time reduces cost at the rate of 50% per 17 years; it costs less per square meter of collecting aperture to build a large telescope than a small telescope; and increasing mass reduces cost.

  2. Parametric Cost Models for Space Telescopes

    Science.gov (United States)

    Stahl, H. Philip; Henrichs, Todd; Dollinger, Courtney

    2010-01-01

    Multivariable parametric cost models for space telescopes provide several benefits to designers and space system project managers. They identify major architectural cost drivers and allow high-level design trades. They enable cost-benefit analysis for technology development investment. And, they provide a basis for estimating total project cost. A survey of historical models found that there is no definitive space telescope cost model. In fact, published models vary greatly [1]. Thus, there is a need for parametric space telescopes cost models. An effort is underway to develop single variable [2] and multi-variable [3] parametric space telescope cost models based on the latest available data and applying rigorous analytical techniques. Specific cost estimating relationships (CERs) have been developed which show that aperture diameter is the primary cost driver for large space telescopes; technology development as a function of time reduces cost at the rate of 50% per 17 years; it costs less per square meter of collecting aperture to build a large telescope than a small telescope; and increasing mass reduces cost.

  3. Radio and Optical Telescopes for School Students and Professional Astronomers

    Science.gov (United States)

    Hosmer, Laura; Langston, G.; Heatherly, S.; Towner, A. P.; Ford, J.; Simon, R. S.; White, S.; O'Neil, K. L.; Haipslip, J.; Reichart, D.

    2013-01-01

    The NRAO 20m telescope is now on-line as a part of UNC's Skynet worldwide telescope network. The NRAO is completing integration of radio astronomy tools with the Skynet web interface. We present the web interface and astronomy projects that allow students and astronomers from all over the country to become Radio Astronomers. The 20 meter radio telescope at NRAO in Green Bank, WV is dedicated to public education and also is part of an experiment in public funding for astronomy. The telescope has a fantastic new web-based interface, with priority queuing, accommodating priority for paying customers and enabling free use of otherwise unused time. This revival included many software and hardware improvements including automatic calibration and improved time integration resulting in improved data processing, and a new ultra high resolution spectrometer. This new spectrometer is optimized for very narrow spectral lines, which will allow astronomers to study complex molecules and very cold regions of space in remarkable detail. In accordance with focusing on broader impacts, many public outreach and high school education activities have been completed with many confirmed future activities. The 20 meter is now a fully automated, powerful tool capable of professional grade results available to anyone in the world. Drop by our poster and try out real-time telescope control!

  4. Can Telescopes Help Leo Satellites Dodge Most Lethal Impacts?

    Science.gov (United States)

    GUDIEL, ANDREA; Carroll, Joseph; Rowe, David

    2018-01-01

    Authors: Joseph Carroll and David RoweABSTRACT LEO objects are tracked by radar because it works day and night, in all weather. This fits military interest in potentially hostile objects. There is less interest in objects too small to be credible active threats. But accidental hypervelocity impact by even 5-10 mm objects can disable most LEO satellites. Such “cm-class” objects greatly outnumber objects of military interest, and will cause most accidental impact losses.Under good viewing conditions, a sunlit 5mm sphere with 0.15 albedo at 800 km altitude is a 19th magnitude object. A ground-based 0.5m telescope tracking it against a 20 mag/arcsec2 sky can see it in seconds, and provide 1 million such objects in LEO, nearly all debris fragments, mostly cm-class and at 600-1200 km altitude.Maintaining a ~million-item catalog requires a world-wide network of several dozen telescope sites with several telescopes at each site. Each telescope needs a mount capable of ~1,000,000 fast slews/year without wearing out.The paper discusses recent advances that make such a service far more feasible:1. Automated tasking and remote control of distributed telescope networks,2. Direct-drive mounts that can make millions of fast slews without wearing out,3. Telescope optics with low focal curvature that are in focus across large imagers,4. CMOS imagers with 95% peak QE and 1.5e- noise at 2E8 pix/sec readout rates,5. Methods for uncued detection of most lethal LEO debris (eg., >5 mm at 800 km),6. Initial orbit determination using 3 alt-az fixes made during the discovery pass,7. High-speed photometry to infer debris spin axis, to predict drag area changes,8. Better conjunction predictions using explicit modeling of drag area variations.

  5. Using New Media to Spread the Word About the James Webb Space Telescope

    Science.gov (United States)

    Masetti, Maggie; Krishnamurthi, A.

    2008-05-01

    The James Webb Space Telescope is a 6.5 m infrared telescope that will be launched in 2013. This modern telescope will look very different from the simple telescope Galileo used to look up at the skies 400 years ago. Modern technology, coupled with scientific curiosity, is enabling science to help us understand a Universe Galileo had not dreamed of in his time. The International Year of Astronomy presents an excellent opportunity to take the public along on the journey of the development of the Webb Telescope and its technological innovations. In keeping with the cutting-edge nature of the Webb, its education and public outreach (EPO) team is using a variety of new media to engage the public. We will discuss several of our EPO projects including our website, exhibits and displays in Second Life (an internet-based virtual world), and involvement in podcasts. Webb's EPO team is looking to expand past a passive web presence to engage the new and growing internet-savvy audiences. We are making our website more interactive through a variety of means, including a Flash game that allows the user to compare the Webb to a common reflecting telescope. This will enable the user to learn about the changes in telescopes that have come about since Galileo's time. We are also taking advantage of other new media opportunities as they present themselves - we participate in podcasts and have an engaging presence for the Webb Telescope on NASA's "islands” in Second Life.

  6. A telescope with augmented reality functions

    Science.gov (United States)

    Hou, Qichao; Cheng, Dewen; Wang, Qiwei; Wang, Yongtian

    2016-10-01

    This study introduces a telescope with virtual reality (VR) and augmented reality (AR) functions. In this telescope, information on the micro-display screen is integrated to the reticule of telescope through a beam splitter and is then received by the observer. The design and analysis of telescope optical system with AR and VR ability is accomplished and the opto-mechanical structure is designed. Finally, a proof-of-concept prototype is fabricated and demonstrated. The telescope has an exit pupil diameter of 6 mm at an eye relief of 19 mm, 6° field of view, 5 to 8 times visual magnification , and a 30° field of view of the virtual image.

  7. New discoveries with radio telescopes

    International Nuclear Information System (INIS)

    Schmidt, J.

    1985-01-01

    The author describes in a simple fashion the results obtained by astronomers from ETH Zurich using the broadband 7-m radio telescope in Switzerland to observe the sun over a period of six years. He explains the results in terms of our present understanding of the sun's workings. The astronomers found that a solar eruption is not a single event but consists of tens of thousands of small eruptions or spikes each only 200 km high and producing a burst of radio waves 10-100 times as intense as the background. (T.J.R.A.)

  8. Discovery of KPS-1b, a Transiting Hot-Jupiter, with an Amateur Telescope Setup (Abstract)

    Science.gov (United States)

    Benni, P.; Burdanov, A.; Krushinsky, V.; Sokov, E.

    2018-06-01

    (Abstract only) Using readily available amateur equipment, a wide-field telescope (Celestron RASA, 279 mm f/2.2) coupled with a SBIG ST-8300M camera was set up at a private residence in a fairly light polluted suburban town thirty miles outside of Boston, Massachusetts. This telescope participated in the Kourovka Planet Search (KPS) prototype survey, along with a MASTER-II Ural wide field telescope near Yekaterinburg, Russia. One goal was to determine if higher resolution imaging ( 2 arcsec/pixel) with much lower sky coverage can practically detect exoplanet transits compared to the successful very wide-field exoplanet surveys (KELT, XO, WASP, HATnet, TrES, Qatar, etc.) which used an array of small aperture telescopes coupled to CCDs.

  9. The Gemini 8-Meter Telescopes Project

    Science.gov (United States)

    Boroson, Todd A.

    1995-05-01

    The Gemini 8-Meter Telescopes Project is an international partnership to build and operate two 8-meter telescopes, one on Mauna Kea, Hawaii, and one on Cerro Pachon, Chile. The telescopes will be international facilities, open to the scientific communities of the six member countries, the United States (50%), the United Kingdom (25%), Canada (15%), Chile (5%), Argentina (2.5%), and Brazil (2.5%). The telescopes are designed to exploit the best atmospheric conditions at these excellent sites. Near diffraction limited performance will be delivered at 2.2 microns and longward, with minimal degradation of the best seeing conditions at shorter wavelengths. The telescopes and facilities are designed to achieve emissivity opportunity. First light for the Mauna Kea telescope is expected in late 1998, and for the Cerro Pachon telescope in mid-2000. This talk will report on construction progress, the instrumental capabilities, and operations strategies being considered. The Gemini 8-meter Telescopes Project is managed by the Association of Universities for Research in Astronomy (AURA), Inc. under a cooperative agreement with the National Science Foundation which serves as executive agency for the Gemini partner countries. U.S. participation in the project is through the U.S. Gemini Program, a division of the National Optical Astronomy Observatories. NOAO is operated by AURA, Inc. under cooperative agreement with the National Science Foundation.

  10. The MIDAS telescope for microwave detection of ultra-high energy cosmic rays

    Science.gov (United States)

    Alvarez-Muñiz, J.; Amaral Soares, E.; Berlin, A.; Bogdan, M.; Boháčová, M.; Bonifazi, C.; Carvalho, W. R.; de Mello Neto, J. R. T.; Facal San Luis, P.; Genat, J. F.; Hollon, N.; Mills, E.; Monasor, M.; Privitera, P.; Ramos de Castro, A.; Reyes, L. C.; Richardson, M.; Rouille d'Orfeuil, B.; Santos, E. M.; Wayne, S.; Williams, C.; Zas, E.; Zhou, J.

    2013-08-01

    We present the design, implementation and data taking performance of the MIcrowave Detection of Air Showers (MIDAS) experiment, a large field of view imaging telescope designed to detect microwave radiation from extensive air showers induced by ultra-high energy cosmic rays. This novel technique may bring a tenfold increase in detector duty cycle when compared to the standard fluorescence technique based on detection of ultraviolet photons. The MIDAS telescope consists of a 4.5 m diameter dish with a 53-pixel receiver camera, instrumented with feed horns operating in the commercial extended C-Band (3.4-4.2 GHz). A self-trigger capability is implemented in the digital electronics. The main objectives of this first prototype of the MIDAS telescope - to validate the telescope design, and to demonstrate a large detector duty cycle - were successfully accomplished in a dedicated data taking run at the University of Chicago campus prior to installation at the Pierre Auger Observatory.

  11. Survey for C-Band High Spectral Lines with the Arecibo Telescope

    Science.gov (United States)

    Tan, Wei Siang

    High-mass stars have masses greater than 8 solar masses and are the main source of heavy elements such as iron in the interstellar medium. This type of stars form in giant molecular clouds. Studying the molecular environment in star-forming regions is crucial to understand the physical structure and conditions that lead to the formation of high-mass stars. This thesis presents observations conducted with the 305m Arecibo Telescope in Puerto Rico of twelve high-mass star forming regions. Every source was observed in multiple transitions of molecular species including CH, CH3OH, H2CS, and OH lines, and a radio recombination line. The observations were conducted with the C-Band High receiver of the Arecibo Telescope in the frequency range of 6.0 to 7.4GHz. The goals of the observations were to investigate the detectability of different molecular species (including new possible molecular masers) and obtain high sensitivity observations of the 6.7GHz CH3OH line to detect absorption and use it as a probe of the kinematics of the molecular material with respect to the ionized gas. Among the results of the observations, we report detection of 6.7GHz CH3OH masers toward nine regions, OH masers toward five sources, 6.7GHz CH3OH absorption toward four sources (including tentative detections), and detection of H2CS toward the star forming region G34.26+0.15. We also found a variable and recurrent 6.7GHz CH3OH maser in G45.12+0.13. The 6.7GHz CH 3OH and 6278.65MHz H2CS absorption lines were modeled using the radiative transfer code RADEX to investigate the physical conditions of the molecular clouds responsible for the absorption lines. Our analysis of the absorption lines supports the interpretation that the spectral lines are tracing molecular envelopes of HII regions. In the case of 6.7GHz CH 3OH absorption, our results and data from an extensive literature review indicate that absorption is rare, but that a population of 6.7GHz CH 3OH absorbers may be present at levels

  12. Pre-selecting muon events in the camera server of the ASTRI telescopes for the Cherenkov Telescope Array

    Science.gov (United States)

    Maccarone, Maria C.; Mineo, Teresa; Capalbi, Milvia; Conforti, Vito; Coffaro, Martina

    2016-08-01

    The Cherenkov Telescope Array (CTA) represents the next generation of ground based observatories for very high energy gamma ray astronomy. The CTA will consist of two arrays at two different sites, one in the northern and one in the southern hemisphere. The current CTA design foresees, in the southern site, the installation of many tens of imaging atmospheric Cherenkov telescopes of three different classes, namely large, medium, and small, so defined in relation to their mirror area; the northern hemisphere array would consist of few tens of the two larger telescope types. The telescopes will be equipped with cameras composed either of photomultipliers or silicon photomultipliers, and with different trigger and read-out electronics. In such a scenario, several different methods will be used for the telescopes' calibration. Nevertheless, the optical throughput of any CTA telescope, independently of its type, can be calibrated analyzing the characteristic image produced by local atmospheric highly energetic muons that induce the emission of Cherenkov light which is imaged as a ring onto the focal plane if their impact point is relatively close to the telescope optical axis. Large sized telescopes would be able to detect useful muon events under stereo coincidence and such stereo muon events will be directly addressed to the central CTA array data acquisition pipeline to be analyzed. For the medium and small sized telescopes, due to their smaller mirror area and large inter-telescope distance, the stereo coincidence rate will tend to zero; nevertheless, muon events will be detected by single telescopes that must therefore be able to identify them as possible useful calibration candidates, even if no stereo coincidence is available. This is the case for the ASTRI telescopes, proposed as pre-production units of the small size array of the CTA, which are able to detect muon events during regular data taking without requiring any dedicated trigger. We present two fast

  13. A DUAL-BAND MILLIMETER-WAVE KINETIC INDUCTANCE CAMERA FOR THE IRAM 30 m TELESCOPE

    International Nuclear Information System (INIS)

    Monfardini, A.; Benoit, A.; Bideaud, A.; Swenson, L.; Cruciani, A.; Camus, P.; Hoffmann, C.; Desert, F. X.; Doyle, S.; Ade, P.; Mauskopf, P.; Tucker, C.; Roesch, M.; Leclercq, S.; Schuster, K. F.; Endo, A.; Baryshev, A.; Baselmans, J. J. A.; Ferrari, L.; Yates, S. J. C

    2011-01-01

    The Neel IRAM KIDs Array (NIKA) is a fully integrated measurement system based on kinetic inductance detectors (KIDs) currently being developed for millimeter wave astronomy. The instrument includes dual-band optics allowing simultaneous imaging at 150 GHz and 220 GHz. The imaging sensors consist of two spatially separated arrays of KIDs. The first array, mounted on the 150 GHz branch, is composed of 144 lumped-element KIDs. The second array (220 GHz) consists of 256 antenna-coupled KIDs. Each of the arrays is sensitive to a single polarization; the band splitting is achieved by using a grid polarizer. The optics and sensors are mounted in a custom dilution cryostat, with an operating temperature of ∼70 mK. Electronic readout is realized using frequency multiplexing and a transmission line geometry consisting of a coaxial cable connected in series with the sensor array and a low-noise 4 K amplifier. The dual-band NIKA was successfully tested in 2010 October at the Institute for Millimetric Radio Astronomy (IRAM) 30 m telescope at Pico Veleta, Spain, performing in-line with laboratory predictions. An optical NEP was then calculated to be around 2 x 10 -16 W Hz -1/2 (at 1 Hz) while under a background loading of approximately 4 pW pixel -1 . This improvement in comparison with a preliminary run (2009) verifies that NIKA is approaching the target sensitivity for photon-noise limited ground-based detectors. Taking advantage of the larger arrays and increased sensitivity, a number of scientifically relevant faint and extended objects were then imaged including the Galactic Center SgrB2 (FIR1), the radio galaxy Cygnus A, and the NGC1068 Seyfert galaxy. These targets were all observed simultaneously in the 150 GHz and 220 GHz atmospheric windows.

  14. Cost Modeling for Space Telescope

    Science.gov (United States)

    Stahl, H. Philip

    2011-01-01

    Parametric cost models are an important tool for planning missions, compare concepts and justify technology investments. This paper presents on-going efforts to develop single variable and multi-variable cost models for space telescope optical telescope assembly (OTA). These models are based on data collected from historical space telescope missions. Standard statistical methods are used to derive CERs for OTA cost versus aperture diameter and mass. The results are compared with previously published models.

  15. Weak-lensing mass calibration of the Atacama Cosmology Telescope equatorial Sunyaev-Zeldovich cluster sample with the Canada-France-Hawaii telescope stripe 82 survey

    Energy Technology Data Exchange (ETDEWEB)

    Battaglia, N.; Miyatake, H.; Hasselfield, M.; Calabrese, E.; Ferrara, S.; Hložek, R. [Dept. of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Leauthaud, A. [Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Gralla, M.B.; Crichton, D. [Dept. of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Allison, R.; Dunkley, J. [Dept. of Astrophysics, University of Oxford, Oxford OX1 3RH (United Kingdom); Bond, J.R. [Canadian Institute for Theoretical Astrophysics, Toronto, ON M5S 3H8 (Canada); Devlin, M.J. [Dept. of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States); Dünner, R. [Dept. de Astronomía y Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Santiago (Chile); Erben, T. [Argelander-Institut für Astronomie, University of Bonn, 53121 Bonn (Germany); Halpern, M.; Hincks, A.D. [Dept. of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z4 (Canada); Hilton, M. [Astrophysics and Cosmology Research Unit, School of Mathematical, Statistics and Computer Science, University of KwaZulu-Natal, Durban, 4041 (South Africa); Hill, J.C. [Dept. of Astronomy, Columbia University, New York, NY 10027 (United States); Huffenberger, K.M., E-mail: nbatta@astro.princeton.edu [Dept. of Physics, Florida State University, Tallahassee, FL 32306 (United States); and others

    2016-08-01

    Mass calibration uncertainty is the largest systematic effect for using clusters of galaxies to constrain cosmological parameters. We present weak lensing mass measurements from the Canada-France-Hawaii Telescope Stripe 82 Survey for galaxy clusters selected through their high signal-to-noise thermal Sunyaev-Zeldovich (tSZ) signal measured with the Atacama Cosmology Telescope (ACT). For a sample of 9 ACT clusters with a tSZ signal-to-noise greater than five the average weak lensing mass is (4.8±0.8) ×10{sup 14} M{sub ⊙}, consistent with the tSZ mass estimate of (4.70±1.0) ×10{sup 14} M{sub ⊙} which assumes a universal pressure profile for the cluster gas. Our results are consistent with previous weak-lensing measurements of tSZ-detected clusters from the Planck satellite. When comparing our results, we estimate the Eddington bias correction for the sample intersection of Planck and weak-lensing clusters which was previously excluded.

  16. Weak-lensing mass calibration of the Atacama Cosmology Telescope equatorial Sunyaev-Zeldovich cluster sample with the Canada-France-Hawaii telescope stripe 82 survey

    International Nuclear Information System (INIS)

    Battaglia, N.; Miyatake, H.; Hasselfield, M.; Calabrese, E.; Ferrara, S.; Hložek, R.; Leauthaud, A.; Gralla, M.B.; Crichton, D.; Allison, R.; Dunkley, J.; Bond, J.R.; Devlin, M.J.; Dünner, R.; Erben, T.; Halpern, M.; Hincks, A.D.; Hilton, M.; Hill, J.C.; Huffenberger, K.M.

    2016-01-01

    Mass calibration uncertainty is the largest systematic effect for using clusters of galaxies to constrain cosmological parameters. We present weak lensing mass measurements from the Canada-France-Hawaii Telescope Stripe 82 Survey for galaxy clusters selected through their high signal-to-noise thermal Sunyaev-Zeldovich (tSZ) signal measured with the Atacama Cosmology Telescope (ACT). For a sample of 9 ACT clusters with a tSZ signal-to-noise greater than five the average weak lensing mass is (4.8±0.8) ×10 14 M ⊙ , consistent with the tSZ mass estimate of (4.70±1.0) ×10 14 M ⊙ which assumes a universal pressure profile for the cluster gas. Our results are consistent with previous weak-lensing measurements of tSZ-detected clusters from the Planck satellite. When comparing our results, we estimate the Eddington bias correction for the sample intersection of Planck and weak-lensing clusters which was previously excluded.

  17. Telescope aperture optimization for spacebased coherent wind lidar

    Science.gov (United States)

    Ge, Xian-ying; Zhu, Jun; Cao, Qipeng; Zhang, Yinchao; Yin, Huan; Dong, Xiaojing; Wang, Chao; Zhang, Yongchao; Zhang, Ning

    2015-08-01

    Many studies have indicated that the optimum measurement approach for winds from space is a pulsed coherent wind lidar, which is an active remote sensing tool with the characteristics that high spatial and temporal resolutions, real-time detection, high mobility, facilitated control and so on. Because of the significant eye safety, efficiency, size, and lifetime advantage, 2μm wavelength solid-state laser lidar systems have attracted much attention in spacebased wind lidar plans. In this paper, the theory of coherent detection is presented and a 2μm wavelength solid-state laser lidar system is introduced, then the ideal aperture is calculated from signal-to-noise(SNR) view at orbit 400km. However, considering real application, even if the lidar hardware is perfectly aligned, the directional jitter of laser beam, the attitude change of the lidar in the long round trip time of the light from the atmosphere and other factors can bring misalignment angle. So the influence of misalignment angle is considered and calculated, and the optimum telescope diameter(0.45m) is obtained as the misalignment angle is 4 μrad. By the analysis of the optimum aperture required for spacebased coherent wind lidar system, we try to present the design guidance for the telescope.

  18. Hartman Testing of X-Ray Telescopes

    Science.gov (United States)

    Saha, Timo T.; Biskasch, Michael; Zhang, William W.

    2013-01-01

    Hartmann testing of x-ray telescopes is a simple test method to retrieve and analyze alignment errors and low-order circumferential errors of x-ray telescopes and their components. A narrow slit is scanned along the circumference of the telescope in front of the mirror and the centroids of the images are calculated. From the centroid data, alignment errors, radius variation errors, and cone-angle variation errors can be calculated. Mean cone angle, mean radial height (average radius), and the focal length of the telescope can also be estimated if the centroid data is measured at multiple focal plane locations. In this paper we present the basic equations that are used in the analysis process. These equations can be applied to full circumference or segmented x-ray telescopes. We use the Optical Surface Analysis Code (OSAC) to model a segmented x-ray telescope and show that the derived equations and accompanying analysis retrieves the alignment errors and low order circumferential errors accurately.

  19. Medium-resolution isaac newton telescope library of empirical spectra

    NARCIS (Netherlands)

    Sanchez-Blazquez, P.; Peletier, R. F.; Jimenez-Vicente, J.; Cardiel, N.; Cenarro, A. J.; Falcon-Barroso, J.; Gorgas, J.; Selam, S.; Vazdekis, A.

    2006-01-01

    A new stellar library developed for stellar population synthesis modelling is presented. The library consists of 985 stars spanning a large range in atmospheric parameters. The spectra were obtained at the 2.5-m Isaac Newton Telescope and cover the range lambda lambda 3525-7500 angstrom at 2.3

  20. Digitalized Mirror Array and Its Application in Large Telescope: Principle and Case Studies

    International Nuclear Information System (INIS)

    Chen Yingtian; Zhang Yang; Lim, Boon Ham; Lim, Chen Sin; Hu Sen; Ho, Tso-Hsiu; Chong, Kok Keong; Tan, Boon Kok

    2009-01-01

    In this article, we report the principle and conceptual design of a fundamentally different technology in fabricating high precision aberration free optical devices. The tip-tilt of facet in a mirror array is produced by digitally controlled line-tilts of rows and columns. It has not only provided a cost-effective designing methodology in optical physics but also led to a much finer precision of 1 mili arc sec or less. As examples of the application of the proposed digitalised optics, two case studies have been given: a 10 m Schmidt telescope (off-axis) and an 8 m Cassegrain telescope (on-axis). (geophysics, astronomy, and astrophysics)

  1. The GCT camera for the Cherenkov Telescope Array

    Science.gov (United States)

    Lapington, J. S.; Abchiche, A.; Allan, D.; Amans, J.-P.; Armstrong, T. P.; Balzer, A.; Berge, D.; Boisson, C.; Bousquet, J.-J.; Bose, R.; Brown, A. M.; Bryan, M.; Buchholtz, G.; Buckley, J.; Chadwick, P. M.; Costantini, H.; Cotter, G.; Daniel, M. K.; De Franco, A.; De Frondat, F.; Dournaux, J.-L.; Dumas, D.; Ernenwein, J.-P.; Fasola, G.; Funk, S.; Gironnet, J.; Graham, J. A.; Greenshaw, T.; Hervet, O.; Hidaka, N.; Hinton, J. A.; Huet, J.-M.; Jankowsky, D.; Jegouzo, I.; Jogler, T.; Kawashima, T.; Kraus, M.; Laporte, P.; Leach, S.; Lefaucheur, J.; Markoff, S.; Melse, T.; Minaya, I. A.; Mohrmann, L.; Molyneux, P.; Moore, P.; Nolan, S. J.; Okumura, A.; Osborne, J. P.; Parsons, R. D.; Rosen, S.; Ross, D.; Rowell, G.; Rulten, C. B.; Sato, Y.; Sayede, F.; Schmoll, J.; Schoorlemmer, H.; Servillat, M.; Sol, H.; Stamatescu, V.; Stephan, M.; Stuik, R.; Sykes, J.; Tajima, H.; Thornhill, J.; Tibaldo, L.; Trichard, C.; Varner, G.; Vink, J.; Watson, J. J.; White, R.; Yamane, N.; Zech, A.; Zink, A.; Zorn, J.; CTA Consortium

    2017-12-01

    The Gamma Cherenkov Telescope (GCT) is one of the designs proposed for the Small Sized Telescope (SST) section of the Cherenkov Telescope Array (CTA). The GCT uses dual-mirror optics, resulting in a compact telescope with good image quality and a large field of view with a smaller, more economical, camera than is achievable with conventional single mirror solutions. The photon counting GCT camera is designed to record the flashes of atmospheric Cherenkov light from gamma and cosmic ray initiated cascades, which last only a few tens of nanoseconds. The GCT optics require that the camera detectors follow a convex surface with a radius of curvature of 1 m and a diameter of 35 cm, which is approximated by tiling the focal plane with 32 modules. The first camera prototype is equipped with multi-anode photomultipliers, each comprising an 8×8 array of 6×6 mm2 pixels to provide the required angular scale, adding up to 2048 pixels in total. Detector signals are shaped, amplified and digitised by electronics based on custom ASICs that provide digitisation at 1 GSample/s. The camera is self-triggering, retaining images where the focal plane light distribution matches predefined spatial and temporal criteria. The electronics are housed in the liquid-cooled, sealed camera enclosure. LED flashers at the corners of the focal plane provide a calibration source via reflection from the secondary mirror. The first GCT camera prototype underwent preliminary laboratory tests last year. In November 2015, the camera was installed on a prototype GCT telescope (SST-GATE) in Paris and was used to successfully record the first Cherenkov light of any CTA prototype, and the first Cherenkov light seen with such a dual-mirror optical system. A second full-camera prototype based on Silicon Photomultipliers is under construction. Up to 35 GCTs are envisaged for CTA.

  2. Robotic and Survey Telescopes

    Science.gov (United States)

    Woźniak, Przemysław

    Robotic telescopes are revolutionizing the way astronomers collect their dataand conduct sky surveys. This chapter begins with a discussion of principles thatguide the process of designing, constructing, and operating telescopes andobservatories that offer a varying degree of automation, from instruments remotelycontrolled by observers to fully autonomous systems requiring no humansupervision during their normal operations. Emphasis is placed on designtrade-offs involved in building end-to-end systems intended for a wide range ofscience applications. The second part of the chapter contains descriptions ofseveral projects and instruments, both existing and currently under development.It is an attempt to provide a representative selection of actual systems thatillustrates state of the art in technology, as well as important ideas and milestonesin the development of the field. The list of presented instruments spans the fullrange in size starting from small all-sky monitors, through midrange robotic andsurvey telescopes, and finishing with large robotic instruments and surveys.Explosive growth of telescope networking is enabling entirely new modesof interaction between the survey and follow-up observing. Increasingimportance of standardized communication protocols and software is stressed.These developments are driven by the fusion of robotic telescope hardware,massive storage and databases, real-time knowledge extraction, and datacross-correlation on a global scale. The chapter concludes with examplesof major science results enabled by these new technologies and futureprospects.

  3. Tianma 65-m telescope detection of new OH maser features towards the water fountain source IRAS 18286-0959

    Science.gov (United States)

    Chen, Xi; Shen, Zhi-Qiang; Li, Xiao-Qiong; Yang, Kai; Nakashima, Jun-ichi; Wu, Ya-Jun; Zhao, Rong-Bin; Li, Juan; Wang, Jun-Zhi; Jiang, Dong-Rong; Wang, Jin-Qing; Li, Bin; Zhong, Wei-Ye; Yung, Bosco H. K.

    2017-07-01

    We report the results of the OH maser observation towards the water fountain source IRAS 18286-0959 using the newly built Shanghai Tianma 65-m Radio Telescope. We observed the three OH ground state transition lines at frequencies of 1612, 1665 and 1667 MHz. Comparing with the spectra of previous observations, we find new maser spectral components at velocity channels largely shifted from the systemic velocity: the velocity offsets of the newly found components lie in the range 20-40 km s-1 with respect to the systemic velocity. Besides maser variability, another possible interpretation for the newly detected maser features is that part of the molecular gas in the circumstellar envelope is accelerated. The acceleration is probably caused by the passage of a high-velocity molecular jet, which has been detected in previous Very Long Baseline Interferometry observations in the H2O maser line.

  4. Amateur Telescope Making

    Science.gov (United States)

    Tonkin, Stephen

    Many amateur astronomers make their own instruments, either because of financial considerations or because they are just interested. Amateur Telescope Making offers a variety of designs for telescopes, mounts and drives which are suitable for the home-constructor. The designs range from simple to advanced, but all are within the range of a moderately well-equipped home workshop. The book not only tells the reader what he can construct, but also what it is sensible to construct given what time is available commercially. Thus each chapter begins with reasons for undertaking the project, then looks at theoretical consideration before finishing with practical instructions and advice. An indication is given as to the skills required for the various projects. Appendices list reputable sources of (mail order) materials and components. The telescopes and mounts range from "shoestring" (very cheap) instruments to specialist devices that are unavailable commercially.

  5. The present status of the Telescope Array experiment

    Energy Technology Data Exchange (ETDEWEB)

    Nonaka, T. [Institute for Cosmic Ray Research University of Tokyo, 5-1-5 Kashiwanoha Kashiwa Chiba (Japan); Abu-Zayyad, T.; Allen, M. [University of Utah - High Energy Astrophysics Institute, 115 S 1400 E 201, Salt Lake City, UT 84112-0830 (United States); Azuma, R. [Tokyo Institute of Technology, 2-12-1 Ohokayama Meguro-ku, Tokyo 152-8550 (Japan); Belz, J.W. [University of Utah - High Energy Astrophysics Institute, 115 S 1400 E 201, Salt Lake City, UT 84112-0830 (United States); Bergman, D.R. [Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Blake, S.A.; Brusova, O.; Cady, R.; Cao, Z. [University of Utah - High Energy Astrophysics Institute, 115 S 1400 E 201, Salt Lake City, UT 84112-0830 (United States); Chiba, J. [Tokyo University of Science, 2641 Yamazaki Noda-shi, Chiba 278-8510 (Japan); Chikawa, M. [Kinki University, 3-4-1 Kowakae, Higashiosaka-shi, Osaka 577-8582 (Japan); Cho, I.S. [Yonsei University, 134 Sinchon-dong, Seodaemun-gu, Seoul (Korea, Republic of); Fujii, H. [KEK - Institute of Particle And Nuclear Studies, 1-1 Oho Tsukuba-shi, Ibaraki 305-0801 (Japan); Fujii, T. [Osaka City University, 3-3-138 Sugimoto-cho, Sumiyoshi-ku, Osaka 558-8585 (Japan); Fukuda, T. [Tokyo Institute of Technology, 2-12-1 Ohokayama Meguro-ku, Tokyo 152-8550 (Japan); Fukushima, M. [Institute for Cosmic Ray Research University of Tokyo, 5-1-5 Kashiwanoha Kashiwa Chiba (Japan); Hayashi, K. [Tokyo Institute of Technology, 2-12-1 Ohokayama Meguro-ku, Tokyo 152-8550 (Japan); Hayashida, N. [Institute for Cosmic Ray Research University of Tokyo, 5-1-5 Kashiwanoha Kashiwa Chiba (Japan); Hibino, K. [Kanagawa University, 3-27-1 Rokkakubashi Kanagawa-ku, Yokohama-shi, Kanagawa 221-8686 (Japan)

    2009-05-15

    The Telescope Array(TA) experiment located at western desert in Utah USA (N39.3,W112.9) is designed for observation of air shower from extreme high energy cosmic rays. The TA detector consists of 2 types of detector to enable a cross check on systematic difference from the two main methods of observation for the energy region. One is a Fluorescence detector (FD) for detecting fluorescence light from air shower and another is surface detector (SD) array for detecting air shower particles at ground level. Each SD consists of 2 layers of plastic scintillator with 3m{sup 2} of surface and more sensitive to electromagnetic component in air shower. The full operation using 3FD stations and full SD array has started. Here we present the updated status of Telescope Array experiment.

  6. Advanced Source Deconvolution Methods for Compton Telescopes

    Science.gov (United States)

    Zoglauer, Andreas

    list-mode approach to get the best angular resolution, to get achieve both at the same time! The second open question concerns the best deconvolution algorithm. For example, several algorithms have been investigated for the famous COMPTEL 26Al map which resulted in significantly different images. There is no clear answer as to which approach provides the most accurate result, largely due to the fact that detailed simulations to test and verify the approaches and their limitations were not possible at that time. This has changed, and therefore we propose to evaluate several deconvolution algorithms (e.g. Richardson-Lucy, Maximum-Entropy, MREM, and stochastic origin ensembles) with simulations of typical observations to find the best algorithm for each application and for each stage of the hybrid reconstruction approach. We will adapt, implement, and fully evaluate the hybrid source reconstruction approach as well as the various deconvolution algorithms with simulations of synthetic benchmarks and simulations of key science objectives such as diffuse nuclear line science and continuum science of point sources, as well as with calibrations/observations of the COSI balloon telescope. This proposal for "development of new data analysis methods for future satellite missions" will significantly improve the source deconvolution techniques for modern Compton telescopes and will allow unlocking the full potential of envisioned satellite missions using Compton-scatter technology in astrophysics, heliophysics and planetary sciences, and ultimately help them to "discover how the universe works" and to better "understand the sun". Ultimately it will also benefit ground based applications such as nuclear medicine and environmental monitoring as all developed algorithms will be made publicly available within the open-source Compton telescope analysis framework MEGAlib.

  7. History of Robotic and Remotely Operated Telescopes

    Science.gov (United States)

    Genet, Russell M.

    2011-03-01

    While automated instrument sequencers were employed on solar eclipse expeditions in the late 1800s, it wasn't until the 1960s that Art Code and associates at Wisconsin used a PDP minicomputer to automate an 8-inch photometric telescope. Although this pioneering project experienced frequent equipment failures and was shut down after a couple of years, it paved the way for the first space telescopes. Reliable microcomputers initiated the modern era of robotic telescopes. Louis Boyd and I applied single board microcomputers with 64K of RAM and floppy disk drives to telescope automation at the Fairborn Observatory, achieving reliable, fully robotic operation in 1983 that has continued uninterrupted for 28 years. In 1985 the Smithsonian Institution provided us with a suburb operating location on Mt. Hopkins in southern Arizona, while the National Science Foundation funded additional telescopes. Remote access to our multiple robotic telescopes at the Fairborn Observatory began in the late 1980s. The Fairborn Observatory, with its 14 fully robotic telescopes and staff of two (one full and one part time) illustrates the potential for low operating and maintenance costs. As the information capacity of the Internet has expanded, observational modes beyond simple differential photometry opened up, bringing us to the current era of real-time remote access to remote observatories and global observatory networks. Although initially confined to smaller telescopes, robotic operation and remote access are spreading to larger telescopes as telescopes from afar becomes the normal mode of operation.

  8. SPITZER SPACE TELESCOPE MID-IR LIGHT CURVES OF NEPTUNE

    Energy Technology Data Exchange (ETDEWEB)

    Stauffer, John; Rebull, Luisa; Carey, Sean J.; Krick, Jessica; Ingalls, James G.; Lowrance, Patrick; Glaccum, William [Spitzer Science Center (SSC), California Institute of Technology, Pasadena, CA 91125 (United States); Marley, Mark S. [NASA Ames Research Center, Space Sciences and Astrobiology Division, MS245-3, Moffett Field, CA 94035 (United States); Gizis, John E. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Kirkpatrick, J. Davy [Infrared Processing and Analysis Center, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Simon, Amy A. [NASA Goddard Space Flight Center, Solar System Exploration Division (690.0), 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Wong, Michael H. [University of California, Department of Astronomy, Berkeley CA 94720-3411 (United States)

    2016-11-01

    We have used the Spitzer Space Telescope in 2016 February to obtain high cadence, high signal-to-noise, 17 hr duration light curves of Neptune at 3.6 and 4.5 μ m. The light curve duration was chosen to correspond to the rotation period of Neptune. Both light curves are slowly varying with time, with full amplitudes of 1.1 mag at 3.6 μ m and 0.6 mag at 4.5 μ m. We have also extracted sparsely sampled 18 hr light curves of Neptune at W1 (3.4 μ m) and W2 (4.6 μ m) from the Wide-feld Infrared Survey Explorer ( WISE )/ NEOWISE archive at six epochs in 2010–2015. These light curves all show similar shapes and amplitudes compared to the Spitzer light curves but with considerable variation from epoch to epoch. These amplitudes are much larger than those observed with Kepler / K 2 in the visible (amplitude ∼0.02 mag) or at 845 nm with the Hubble Space Telescope ( HST ) in 2015 and at 763 nm in 2016 (amplitude ∼0.2 mag). We interpret the Spitzer and WISE light curves as arising entirely from reflected solar photons, from higher levels in Neptune’s atmosphere than for K 2. Methane gas is the dominant opacity source in Neptune’s atmosphere, and methane absorption bands are present in the HST 763 and 845 nm, WISE W1, and Spitzer 3.6 μ m filters.

  9. A Hubble Space Telescope survey for novae in M87 - III. Are novae good standard candles 15 d after maximum brightness?

    Science.gov (United States)

    Shara, Michael M.; Doyle, Trisha F.; Pagnotta, Ashley; Garland, James T.; Lauer, Tod R.; Zurek, David; Baltz, Edward A.; Goerl, Ariel; Kovetz, Attay; Machac, Tamara; Madrid, Juan P.; Mikołajewska, Joanna; Neill, J. D.; Prialnik, Dina; Welch, D. L.; Yaron, Ofer

    2018-02-01

    Ten weeks of daily imaging of the giant elliptical galaxy M87 with the Hubble Space Telescope (HST) has yielded 41 nova light curves of unprecedented quality for extragalactic cataclysmic variables. We have recently used these light curves to demonstrate that the observational scatter in the so-called maximum-magnitude rate of decline (MMRD) relation for classical novae is so large as to render the nova-MMRD useless as a standard candle. Here, we demonstrate that a modified Buscombe-de Vaucouleurs hypothesis, namely that novae with decline times t2 > 10 d converge to nearly the same absolute magnitude about two weeks after maximum light in a giant elliptical galaxy, is supported by our M87 nova data. For 13 novae with daily sampled light curves, well determined times of maximum light in both the F606W and F814W filters, and decline times t2 > 10 d we find that M87 novae display M606W,15 = -6.37 ± 0.46 and M814W,15 = -6.11 ± 0.43. If very fast novae with decline times t2 < 10 d are excluded, the distances to novae in elliptical galaxies with stellar binary populations similar to those of M87 should be determinable with 1σ accuracies of ± 20 per cent with the above calibrations.

  10. Prospects for γ-ray imaging telescopes

    International Nuclear Information System (INIS)

    Carter, J.N.; Dean, A.J.; Ramsden, D.

    1981-01-01

    Apart from the requirement for a new, high angular-resolution gamma-ray telescope for the more precise location of known COS-B gamma-ray sources, there is also a need for another instrument that can be used in a search for the gamma-ray emission from specific X-ray-emitting objects. If there is to be any hope of relating gamma ray emission to specific candidate X-ray objects, then an angular resolution of typically a few minutes of arc is required to resolve adjacent sources in crowded regions of the sky such as the galactic centre. Efforts to improve the angular resolution of track-chamber telescopes are compared. For energies close to 1 MeV telescopes have either used collimators to restrict the field of view or have made use of the kinematics of the Compton scattering process to determine the direction of the incident photon. The use of coded aperture techniques in high angular resolution X-ray astronomy telescopes is reviewed. A practical telescope for astronomy at high energies described by Carter is mentioned. At low energies an imaging telescope could be constructed by making use of position-sensitive detectors initially developed for use in medical physics. Such a telescope is outlined in general terms and its benefits and uses given. (U.K.)

  11. Optics simulations of the 5 MeV NPBSE FOX telescope

    International Nuclear Information System (INIS)

    Reusch, M.F.; Bruhwiler, D.L.

    1993-01-01

    The far-field optics experiment (FOX) is a proposed design for the neutral particle beam space experiment (NPBSE) program. This 425 MHz straight beam line includes a 4.3 meter large-bore telescope. It is designed to deliver an 8 mA, 5 MeV neutral hydrogen beam with a transverse divergence of approximately 30 micro-radians to a target space vehicle (TSV) located up to 5 km away. The authors present zero current simulations, made with Grummann's TOPKARK code, of the telescope optics and the resulting 5 km target footprint. These simulations demonstrate the need for momentum compactation to minimize chromatic aberrations and for the careful use of octupoles to correct geometric aberrations. TOPKARK uses a novel line dipole model for the large-bore, combined function telescope objective lenses, constructed with rods of permanent magnet material, proposed for use in the FOX. The authors describe this model and its effect on the dynamics

  12. SUPERNOVA REMNANTS AND THE INTERSTELLAR MEDIUM OF M83: IMAGING AND PHOTOMETRY WITH THE WIDE FIELD CAMERA 3 ON THE HUBBLE SPACE TELESCOPE

    International Nuclear Information System (INIS)

    Dopita, Michael A.; Blair, William P.; Kuntz, Kip D.; Long, Knox S.; Mutchler, Max; Whitmore, Bradley C.; Bond, Howard E.; MacKenty, John; Balick, Bruce; Calzetti, Daniela; Carollo, Marcella; Disney, Michael; Frogel, Jay A.; O'Connell, Robert; Hall, Donald; Holtzman, Jon A.; Kimble, Randy A.; McCarthy, Patrick; Paresce, Francesco; Saha, Abhijit

    2010-01-01

    We present Wide Field Camera 3 images taken with the Hubble Space Telescope within a single field in the southern grand design star-forming galaxy M83. Based on their size, morphology, and photometry in continuum-subtracted Hα, [S II], Hβ, [O III], and [O II] filters, we have identified 60 supernova remnant (SNR) candidates, as well as a handful of young ejecta-dominated candidates. A catalog of these remnants, their sizes and, where possible, their Hα fluxes are given. Radiative ages and pre-shock densities are derived from those SNRs that have good photometry. The ages lie in the range 2.62 rad /yr) 0 /cm -3 min = 16 +7 -5 M sun . Finally, we give evidence for the likely detection of the remnant of the historical supernova, SN1968L.

  13. Performance of the Multi-Spectral Solar Telescope Array. III - Optical characteristics of the Ritchey-Chretien and Cassegrain telescopes

    Science.gov (United States)

    Hoover, Richard B.; Baker, Phillip C.; Hadaway, James B.; Johnson, R. B.; Peterson, Cynthia; Gabardi, David R.; Walker, Arthur B., Jr.; Lindblom, J. F.; Deforest, Craig; O'Neal, R. H.

    1991-12-01

    The Multi-Spectral Solar Telescope Array (MSSTA), which is a sounding-rocket-borne observatory for investigating the sun in the soft X-ray/EUV and FUV regimes of the electromagnetic spectrum, utilizes single reflection multilayer coated Herschelian telescopes for wavelengths below 100 A, and five doubly reflecting multilayer coated Ritchey-Chretien and two Cassegrain telescopes for selected wavelengths in the EUV region between 100 and 1000 A. The paper discusses the interferometric alignment, testing, focusing, visible light testing, and optical performance characteristics of the Ritchey-Chretien and Cassegrain telescopes of MSSTA. A schematic diagram of the MSSTA Ritchey-Chretien telescope is presented together with diagrams of the system autocollimation testing.

  14. The space infrared telescope for cosmology and astrophysics : SPICA A joint mission between JAXA and ESA

    NARCIS (Netherlands)

    Swinyard, Bruce; Nakagawa, Takao; Wild, Wolfgang

    The Space Infrared telescope for Cosmology and Astrophysics (SPICA) is planned to be the next space astronomy mission observing in the infrared. The mission is planned to be launched in 2017 and will feature a 3.5 m telescope cooled to <5 K through the use of mechanical coolers. These coolers will

  15. Telescopes and Techniques

    CERN Document Server

    Kitchin, C R

    2013-01-01

    Telescopes and Techniques has proved itself in its first two editions, having become probably one of the most widely used astronomy texts, both for amateur astronomers and astronomy and astrophysics undergraduates. Both earlier editions of the book were widely used for introductory practical astronomy courses in many universities. In this Third Edition the author guides the reader through the mathematics, physics and practical techniques needed to use today's telescopes (from the smaller models to the larger instruments installed in many colleges) and how to find objects in the sky. Most of the physics and engineering involved is described fully and requires little prior knowledge or experience. Both visual and electronic imaging techniques are covered, together with an introduction to how data (measurements) should be processed and analyzed. A simple introduction to radio telescopes is also included. Brief coverage of the more advanced topics of photometry and spectroscopy are included, but mainly to enable ...

  16. Commissioning and first tests of the MAGIC telescope

    Science.gov (United States)

    Baixeras, C.; Bastieri, D.; Bigongiari, C.; Blanch, O.; Blanchot, G.; Bock, R.; Bretz, T.; Chilingarian, A.; Coarasa, J. A.; Colombo, E.; Contreras, J. C.; Corti, D.; Cortina, J.; Domingo, C.; Domingo, E.; Ferenc, D.; Fernández, E.; Flix, J.; Fonseca, V.; Font, L.; Galante, N.; Gaug, M.; Garczarczyk, M.; Gebauer, J.; Giller, M.; Goebel, F.; Hengstebeck, T.; Jacone, P.; de Jager, O. C.; Kalekin, O.; Kestel, M.; Kneiske, T.; Laille, A.; López, M.; López, J.; Lorenz, E.; Mannheim, K.; Mariotti, M.; Martínez, M.; Mase, K.; Merck, M.; Meucci, M.; Miralles, L.; Mirzoyan, R.; Moralejo, A.; Wilhelmi, E. Oña; Orduña, R.; Paneque, D.; Paoletti, R.; Pascoli, D.; Pavel, N.; Pegna, R.; Peruzzo, L.; Piccioli, A.; Roberts, A.; Reyes, R.; Saggion, A.; Sánchez, A.; Sartori, P.; Scalzotto, V.; Schweizer, T.; Sillanpaa, A.; Sobczynska, D.; Stamerra, A.; Stepanian, A.; Stiehler, R.; Takalo, L.; Teshima, M.; Tonello, N.; Torres, A.; Turini, N.; Vitale, V.; Volkov, S.; Wagner, R. M.; Wibig, T.; Wittek, W.

    2004-02-01

    Major Atmospheric Gamma Imaging Cherenkov telescope is starting its operations with a set of engineering runs to tune the telescope subsystem elements to be ready for the first physics campaign. Many technical improvements have been developed and implemented in several elements of the telescope to reach the lowest energy threshold ever obtained by an Imaging Atmospheric Cherenkov Telescope. A general description of the telescope is presented. The commissioning of the telescope's elements is described and the expected performances are reviewed with the final detector set-up.

  17. Modified cataract surgery with telescopic magnification for patients with age-related macular degeneration.

    Science.gov (United States)

    Iizuka, Megumi; Gorfinkel, John; Mandelcorn, Mark; Lam, Wai-Ching; Devenyi, Robert; Markowitz, Samuel N

    2007-12-01

    The most desirable effect following cataract surgery in the presence of age-related macular degeneration (AMD) is to obtain an improvement in distance resolution acuity, and the only optical solution to this is the use of telescopic magnification. The purpose of the study was to develop and verify the clinical utility of inducing low-grade telescopic magnification (model of the eye in such a way that at the intraocular lens plane a minus lens was created, which, together with a plus lens in matching glasses, formed a Galilean telescopic system with magnification of up to 33%. Outcome measures were visual acuity, contrast sensitivity, and activities of daily living (ADL) scores. The mean power of the implanted intraocular lenses was 6.31 (SD 2.42) diopters and, according to the theoretical derivations, achieved magnification between 20% and 30% (mean 26%; SD 4.92%). Visual acuity improved for the group from a mean of 20/525 (logMAR 1.48; SD 0.13) to a mean of 20/290 (logMAR 1.20; SD 0.21). Contrast sensitivity improved significantly (p < 0.001) only in the lower spatial frequencies. Postoperatively, ADL scores improved significantly in all patients except one. At the end of the follow-up period, 3 patients reported that they would like to proceed with similar surgery for the other eye. An optimal surgical telescopic device based on low-grade telescopic magnification may improve functional vision for usage in all tasks in AMD patients. All patients from this study were satisfied following surgery and viewed study outcomes as positive and beneficial, and some patients responded with enthusiasm. Surgeons are encouraged to use this modified technique of cataract surgery in low-vision patients with AMD and cataract.

  18. Preliminary Cost Model for Space Telescopes

    Science.gov (United States)

    Stahl, H. Philip; Prince, F. Andrew; Smart, Christian; Stephens, Kyle; Henrichs, Todd

    2009-01-01

    Parametric cost models are routinely used to plan missions, compare concepts and justify technology investments. However, great care is required. Some space telescope cost models, such as those based only on mass, lack sufficient detail to support such analysis and may lead to inaccurate conclusions. Similarly, using ground based telescope models which include the dome cost will also lead to inaccurate conclusions. This paper reviews current and historical models. Then, based on data from 22 different NASA space telescopes, this paper tests those models and presents preliminary analysis of single and multi-variable space telescope cost models.

  19. Merz telescopes a global heritage worth preserving

    CERN Document Server

    2017-01-01

    This book comprises a fascinating collection of contributions on the Merz telescopes in Italy that collectively offer the first survey on historical large refracting telescopes in the country, drawing on original documents and photographs. It opens with a general introduction on the importance of Merz telescopes in the history of astronomy and analyses of the local and international contexts in which the telescopes were made. After examination of an example of the interaction between the maker and the astronomer in the construction and maintenance of these refractors, the history of the Merz telescopes at the main Italian observatories in the nineteenth century is described in detail. Expert testimony is also provided on how these telescopes were successfully used until the second half of the twentieth century for research purposes, thus proving their excellent optical qualities.

  20. Monte: A compact and versatile multidetector system based on monolithic telescopes

    International Nuclear Information System (INIS)

    Amorini, F.; Bonanno, A.; Cardella, G.; Di Pietro, A.; Fallica, G.; Figuera, P.; Morea, A.; Musumarra, A.; Papa, M.; Pappalardo, G.; Pinto, A.; Rizzo, F.; Tian, W.; Tudisco, S.; Valvo, G.

    2005-01-01

    We present the characteristics of a new multidetector based on monolithic silicon telescopes: MONTE. By using high-energy ion implantation techniques, the ΔE and residual energy stages of such telescopes have been integrated on the same silicon chip, obtaining extremely thin ΔE stages of the order of 1μm. This allowed one to obtain a very low charge identification energy threshold and a very good β background suppression in reactions induced by radioactive ion beams. The multidetector has a modular structure and can be assembled in different geometrical configurations according to experimental needs

  1. ULTRA-NARROW NEGATIVE FLARE FRONT OBSERVED IN HELIUM-10830 Å USING THE 1.6 m NEW SOLAR TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yan; Liu, Chang; Jing, Ju; Wang, Haimin [Space Weather Research Lab, Center for Solar-Terrestrial Research, New Jersey Institute of Technology, 323 Martin Luther King Blvd, Newark, NJ 07102-1982 (United States); Cao, Wenda; Gary, Dale [Big Bear Solar Observatory, New Jersey Institute of Technology 323 Martin Luther King Blvd, Newark, NJ 07102-1982 (United States); Ding, Mingde [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Kleint, Lucia [Fachhochschule Nordwestschweiz (FHNW), Institute of 4D technologies Bahnhofstr. 6, CH-5210 Windisch (Switzerland); Su, Jiangtao [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Ji, Haisheng [Purple Mountain Observatory, 2 Beijing Xi Lu, Nanjing, 210008 (China); Chae, Jongchul; Cho, Kyuhyoun [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of); Cho, Kyungsuk [Korea Astronomy and Space Science Institute, Daedeokdae-ro 776, Yuseong-gu, Daejeon 305-348 (Korea, Republic of)

    2016-03-10

    Solar flares are sudden flashes of brightness on the Sun and are often associated with coronal mass ejections and solar energetic particles that have adverse effects on the near-Earth environment. By definition, flares are usually referred to as bright features resulting from excess emission. Using the newly commissioned 1.6 m New Solar Telescope at Big Bear Solar Observatory, we show a striking “negative” flare with a narrow but unambiguous “dark” moving front observed in He i 10830 Å, which is as narrow as 340 km and is associated with distinct spectral characteristics in Hα and Mg ii lines. Theoretically, such negative contrast in He i 10830 Å can be produced under special circumstances by nonthermal electron collisions or photoionization followed by recombination. Our discovery, made possible due to unprecedented spatial resolution, confirms the presence of the required plasma conditions and provides unique information in understanding the energy release and radiative transfer in astronomical objects.

  2. ULTRA-NARROW NEGATIVE FLARE FRONT OBSERVED IN HELIUM-10830 Å USING THE 1.6 m NEW SOLAR TELESCOPE

    International Nuclear Information System (INIS)

    Xu, Yan; Liu, Chang; Jing, Ju; Wang, Haimin; Cao, Wenda; Gary, Dale; Ding, Mingde; Kleint, Lucia; Su, Jiangtao; Ji, Haisheng; Chae, Jongchul; Cho, Kyuhyoun; Cho, Kyungsuk

    2016-01-01

    Solar flares are sudden flashes of brightness on the Sun and are often associated with coronal mass ejections and solar energetic particles that have adverse effects on the near-Earth environment. By definition, flares are usually referred to as bright features resulting from excess emission. Using the newly commissioned 1.6 m New Solar Telescope at Big Bear Solar Observatory, we show a striking “negative” flare with a narrow but unambiguous “dark” moving front observed in He i 10830 Å, which is as narrow as 340 km and is associated with distinct spectral characteristics in Hα and Mg ii lines. Theoretically, such negative contrast in He i 10830 Å can be produced under special circumstances by nonthermal electron collisions or photoionization followed by recombination. Our discovery, made possible due to unprecedented spatial resolution, confirms the presence of the required plasma conditions and provides unique information in understanding the energy release and radiative transfer in astronomical objects

  3. Design progress of the solar UV-Vis-IR telescope (SUVIT) aboard SOLAR-C

    Science.gov (United States)

    Katsukawa, Y.; Ichimoto, K.; Suematsu, Y.; Hara, H.; Kano, R.; Shimizu, T.; Matsuzaki, K.

    2013-09-01

    We present a design progress of the Solar UV-Vis-IR Telescope (SUVIT) aboard the next Japanese solar mission SOLAR-C. SUVIT has an aperture diameter of ~1.4 m for achieving spectro-polarimetric observations with spatial and temporal resolution exceeding the Hinode Solar Optical Telescope (SOT). We have studied structural and thermal designs of the optical telescope as well as the optical interface between the telescope and the focal plane instruments. The focal plane instruments are installed into two packages, filtergraph and spectrograph packages. The spectropolarimeter is the instrument dedicated to accurate polarimetry in the three spectrum windows at 525 nm, 854 nm, and 1083 nm for observing magnetic fields at both the photospheric and chromospheric layers. We made optical design of the spectrograph accommodating the conventional slit spectrograph and the integral field unit (IFU) for two-dimensional coverage. We are running feasibility study of the IFU using fiber arrays consisting of rectangular cores.

  4. The Cherenkov Telescope Array production system for Monte Carlo simulations and analysis

    Science.gov (United States)

    Arrabito, L.; Bernloehr, K.; Bregeon, J.; Cumani, P.; Hassan, T.; Haupt, A.; Maier, G.; Moralejo, A.; Neyroud, N.; pre="for the"> CTA Consortium, DIRAC Consortium,

    2017-10-01

    The Cherenkov Telescope Array (CTA), an array of many tens of Imaging Atmospheric Cherenkov Telescopes deployed on an unprecedented scale, is the next-generation instrument in the field of very high energy gamma-ray astronomy. An average data stream of about 0.9 GB/s for about 1300 hours of observation per year is expected, therefore resulting in 4 PB of raw data per year and a total of 27 PB/year, including archive and data processing. The start of CTA operation is foreseen in 2018 and it will last about 30 years. The installation of the first telescopes in the two selected locations (Paranal, Chile and La Palma, Spain) will start in 2017. In order to select the best site candidate to host CTA telescopes (in the Northern and in the Southern hemispheres), massive Monte Carlo simulations have been performed since 2012. Once the two sites have been selected, we have started new Monte Carlo simulations to determine the optimal array layout with respect to the obtained sensitivity. Taking into account that CTA may be finally composed of 7 different telescope types coming in 3 different sizes, many different combinations of telescope position and multiplicity as a function of the telescope type have been proposed. This last Monte Carlo campaign represented a huge computational effort, since several hundreds of telescope positions have been simulated, while for future instrument response function simulations, only the operating telescopes will be considered. In particular, during the last 18 months, about 2 PB of Monte Carlo data have been produced and processed with different analysis chains, with a corresponding overall CPU consumption of about 125 M HS06 hours. In these proceedings, we describe the employed computing model, based on the use of grid resources, as well as the production system setup, which relies on the DIRAC interware. Finally, we present the envisaged evolutions of the CTA production system for the off-line data processing during CTA operations and

  5. Charged Coupled Device Debris Telescope Observations of the Geosynchronous Orbital Debris Environment - Observing Year: 1998

    Science.gov (United States)

    Jarvis, K. S.; Thumm, T. L.; Matney, M. J.; Jorgensen, K.; Stansbery, E. G.; Africano, J. L.; Sydney, P. F.; Mulrooney, M. K.

    2002-01-01

    NASA has been using the charged coupled device (CCD) debris telescope (CDT)--a transportable 32-cm Schmidt telescope located near Cloudcroft, New Mexico-to help characterize the debris environment in geosynchronous Earth orbit (GEO). The CDT is equipped with a SITe 512 x 512 CCD camera whose 24 m2 (12.5 arc sec) pixels produce a 1.7 x 1.7-deg field of view. The CDT system can therefore detect l7th-magnitude objects in a 20-sec integration corresponding to an approx. 0.6-m diameter, 0.20 albedo object at 36,000 km. The telescope pointing and CCD operation are computer controlled to collect data automatically for an entire night. The CDT has collected more than 1500 hrs of data since November 1997. This report describes the collection and analysis of 58 nights (approx. 420 hrs) of data acquired in 1998.

  6. The Infrared-Optical Telescope (IRT) of the Exist Observatory

    Science.gov (United States)

    Kutyrev, Alexander; Bloom, Joshua; Gehrels, Neil; Golisano, Craig; Gong, Quan; Grindlay, Jonathan; Moseley, Samuel; Woodgate, Bruce

    2010-01-01

    The IRT is a 1.1m visible and infrared passively cooled telescope, which can locate, identify and obtain spectra of GRB afterglows at redshifts up to z 20. It will also acquire optical-IR, imaging and spectroscopy of AGN and transients discovered by the EXIST (The Energetic X-ray Imaging Survey Telescope). The IRT imaging and spectroscopic capabilities cover a broad spectral range from 0.32.2m in four bands. The identical fields of view in the four instrument bands are each split in three subfields: imaging, objective prism slitless for the field and objective prism single object slit low resolution spectroscopy, and high resolution long slit on single object. This allows the instrument, to do simultaneous broadband photometry or spectroscopy of the same object over the full spectral range, thus greatly improving the efficiency of the observatory and its detection limits. A prompt follow up (within three minutes) of the transient discovered by the EXIST makes IRT a unique tool for detection and study of these events, which is particularly valuable at wavelengths unavailable to the ground based observatories.

  7. The UK Infrared Telescope M 33 monitoring project - V. The star formation history across the galactic disc

    Science.gov (United States)

    Javadi, Atefeh; van Loon, Jacco Th.; Khosroshahi, Habib G.; Tabatabaei, Fatemeh; Hamedani Golshan, Roya; Rashidi, Maryam

    2017-01-01

    We have conducted a near-infrared monitoring campaign at the UK Infrared Telescope of the Local Group spiral galaxy M 33 (Triangulum). On the basis of their variability, we have identified stars in the very final stage of their evolution, and for which the luminosity is more directly related to the birth mass than the more numerous less-evolved giant stars that continue to increase in luminosity. In this fifth paper of the series, we construct the birth mass function and hence derive the star formation history across the galactic disc of M 33. The star formation rate has varied between ˜0.010 ± 0.001 (˜0.012 ± 0.007) and 0.060±0.005 (0.052±0.009) M⊙ yr-1 kpc-2 statistically (systematically) in the central square kiloparsec of M 33, comparable with the values derived previously with another camera. The total star formation rate in M 33 within a galactocentric radius of 14 kpc has varied between ˜0.110 ± 0.005 (˜0.174 ± 0.060) and ˜0.560 ± 0.028 (˜0.503 ± 0.100) M⊙ yr-1 statistically (systematically). We find evidence of two epochs during which the star formation rate was enhanced by a factor of a few - one that started ˜6 Gyr ago and lasted ˜3 Gyr and produced ≥71 per cent of the total mass in stars, and one ˜250 Myr ago that lasted ˜200 Myr and formed ≤13 per cent of the mass in stars. Radial star formation history profiles suggest that the inner disc of M 33 was formed in an inside-out formation scenario. The outskirts of the disc are dominated by the old population, which may be the result of dynamical effects over many Gyr. We find correspondence to spiral structure for all stars, but enhanced only for stars younger than ˜100 Myr; this suggests that the spiral arms are transient features and not a part of a global density wave potential.

  8. HARPS3 for a roboticized Isaac Newton Telescope

    Science.gov (United States)

    Thompson, Samantha J.; Queloz, Didier; Baraffe, Isabelle; Brake, Martyn; Dolgopolov, Andrey; Fisher, Martin; Fleury, Michel; Geelhoed, Joost; Hall, Richard; González Hernández, Jonay I.; ter Horst, Rik; Kragt, Jan; Navarro, Ramón; Naylor, Tim; Pepe, Francesco; Piskunov, Nikolai; Rebolo, Rafael; Sander, Louis; Ségransan, Damien; Seneta, Eugene; Sing, David; Snellen, Ignas; Snik, Frans; Spronck, Julien; Stempels, Eric; Sun, Xiaowei; Santana Tschudi, Samuel; Young, John

    2016-08-01

    We present a description of a new instrument development, HARPS3, planned to be installed on an upgraded and roboticized Isaac Newton Telescope by end-2018. HARPS3 will be a high resolution (R≃115,000) echelle spectrograph with a wavelength range from 380-690 nm. It is being built as part of the Terra Hunting Experiment - a future 10- year radial velocity measurement programme to discover Earth-like exoplanets. The instrument design is based on the successful HARPS spectrograph on the 3.6m ESO telescope and HARPS-N on the TNG telescope. The main changes to the design in HARPS3 will be: a customised fibre adapter at the Cassegrain focus providing a stabilised beam feed and on-sky fibre diameter ≍1:4 arcsec, the implementation of a new continuous ow cryostat to keep the CCD temperature very stable, detailed characterisation of the HARPS3 CCD to map the effective pixel positions and thus provide an improved accuracy wavelength solution, an optimised integrated polarimeter and the instrument integrated into a robotic operation. The robotic operation will optimise our programme which requires our target stars to be measured on a nightly basis. We present an overview of the entire project, including a description of our anticipated robotic operation.

  9. Optical Design of the STAR-X Telescope

    Science.gov (United States)

    Saha, Timo T.; Zhang, William W.; McClelland, Ryan S.

    2017-01-01

    Top-level science goals of the Survey and Time-domain Astrophysical Research eXplorer (STAR-X) include: investigations of most violent explosions in the universe, study of growth of black holes across cosmic time and mass scale, and measure how structure formation heats majority of baryons in the universe. To meet these goals, the field-of-view of the telescope should be about 1 square-degree, the angular resolution should be 5 arc-seconds or below across large part of the field-of-view. The on-axis effective area at 1 KeV should be about 2,000 sq cm. Payload cost and launch considerations limit the outer diameter, focal length, and mass to 1.3 meters, 5 meters, and 250 kilograms, respectively. Telescope design is based on a segmented meta-shell approach we have developed at Goddard Space Flight Center for the STAR-X telescope. The telescope shells are divided into 30-degree segments. Individual telescopes and meta-shells are nested inside each other to meet the effective area requirements in 0.5 - 6.0 KeV range. We consider Wolter-Schwarzschild, and Modified-Wolter-Schwarzschild telescope designs as basic building blocks of the nested STAR-X telescope. These designs offer an excellent resolution over a large field of views. Nested telescopes are vulnerable to stray light problems. We have designed a multi-component baffle system to eliminate direct and single-reflection light paths inside the telescopes. Large number of internal and external baffle vane structures are required to prevent stray rays from reaching the focal plane. We have developed a simple ray-trace based tool to determine the dimensions and locations of the baffles. In this paper, we present the results of our trade studies, baffle design studies, and optical performance analyses of the STAR-X telescope.

  10. The SOAR Telescope Project Southern Observatory for Astronomical Research (SOAR)

    Science.gov (United States)

    2003-03-21

    completed SOAR dome and facility. 2. Dome The preliminary design of the dome was handled by M3 (US). A Brazilian firm, Equatorial Sistemas led the...for the Gemini Telescope during construction, now Project Manager at the National Solar Observatory • Robert Shelton, Provost of the University on

  11. THE DEEPEST HUBBLE SPACE TELESCOPE COLOR-MAGNITUDE DIAGRAM OF M32. EVIDENCE FOR INTERMEDIATE-AGE POPULATIONS

    International Nuclear Information System (INIS)

    Monachesi, Antonela; Trager, Scott C.; Lauer, Tod R.; Mighell, Kenneth J.; Freedman, Wendy; Dressler, Alan; Grillmair, Carl

    2011-01-01

    We present the deepest optical color-magnitude diagram (CMD) to date of the local elliptical galaxy M32. We have obtained F435W and F555W photometries based on Hubble Space Telescope (HST) Advanced Camera for Surveys/High-Resolution Channel images for a region 110'' from the center of M32 (F1) and a background field (F2) about 320'' away from M32 center. Due to the high resolution of our Nyquist-sampled images, the small photometric errors, and the depth of our data (the CMD of M32 goes as deep as F435W ∼ 28.5 at 50% completeness level), we obtain the most detailed resolved photometric study of M32 yet. Deconvolution of HST images proves to be superior than other standard methods to derive stellar photometry on extremely crowded HST images, as its photometric errors are ∼2x smaller than other methods tried. The location of the strong red clump in the CMD suggests a mean age between 8 and 10 Gyr for [Fe/H] = -0.2 dex in M32. We detect for the first time a red giant branch bump and an asymptotic giant branch (AGB) bump in M32 which, together with the red clump, allow us to constrain the age and metallicity of the dominant population in this region of M32. These features indicate that the mean age of M32's population at ∼2' from its center is between 5 and 10 Gyr. We see evidence of an intermediate-age population in M32 mainly due to the presence of AGB stars rising to M F555W ∼ -2.0. Our detection of a blue component of stars (blue plume) may indicate for the first time the presence of a young stellar population, with ages of the order of 0.5 Gyr, in our M32 field. However, it is likely that the brighter stars of this blue plume belong to the disk of M31 rather than to M32. The fainter stars populating the blue plume indicate the presence of stars not younger than 1 Gyr and/or BSSs in M32. The CMD of M32 displays a wide color distribution of red giant branch stars indicating an intrinsic spread in metallicity with a peak at [Fe/H] ∼ -0.2. There is not a

  12. Muon imaging of volcanoes with Cherenkov telescopes

    Science.gov (United States)

    Carbone, Daniele; Catalano, Osvaldo; Cusumano, Giancarlo; Del Santo, Melania; La Parola, Valentina; La Rosa, Giovanni; Maccarone, Maria Concetta; Mineo, Teresa; Pareschi, Giovanni; Sottile, Giuseppe; Zuccarello, Luciano

    2017-04-01

    La Nave (southern flank of Mt. Etna, Italy; 1740m a.s.l.), in the framework of ASTRI, a flagship project of the Italian Ministry of Education, University and Research, led by the Italian National Institute of Astrophysics (INAF). This offers the opportunity to test the use of a Cherenkov telescope for imaging volcanic structures. Starting from this know-how, we plan to develop a new prototype of Cherenkov detector with suitable characteristics for installation in the summit zone of Etna volcano (around 3000m a.s.l.).

  13. Gas kinematics and star formation in the filamentary molecular cloud G47.06+0.26

    Science.gov (United States)

    Xu, Jin-Long; Xu, Ye; Zhang, Chuan-Peng; Liu, Xiao-Lan; Yu, Naiping; Ning, Chang-Chun; Ju, Bing-Gang

    2018-01-01

    Aims: We performed a multi-wavelength study toward the filamentary cloud G47.06+0.26 to investigate the gas kinematics and star formation. Methods: We present the 12CO (J = 1-0), 13CO (J = 1-0) and C18O (J = 1-0) observations of G47.06+0.26 obtained with the Purple Mountain Observation (PMO) 13.7 m radio telescope to investigate the detailed kinematics of the filament. Radio continuum and infrared archival data were obtained from the NRAO VLA Sky Survey (NVSS), the APEX Telescope Large Area Survey of the Galaxy (ATLASGAL), the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) survey, and the Multi-band Imaging Photometer Survey of the Galaxy (MIPSGAL). To trace massive clumps and extract young stellar objects in G47.06+0.26, we used the BGPS catalog v2.0 and the GLIMPSE I catalog, respectively. Results: The 12CO (J = 1-0) and 13CO (J = 1-0) emission of G47.06+0.26 appear to show a filamentary structure. The filament extends about 45' (58.1 pc) along the east-west direction. The mean width is about 6.8 pc, as traced by the 13CO (J = 1-0) emission. G47.06+0.26 has a linear mass density of 361.5 M⊙pc-1. The external pressure (due to neighboring bubbles and H II regions) may help preventing the filament from dispersing under the effects of turbulence. From the velocity-field map, we discern a velocity gradient perpendicular to G47.06+0.26. From the Bolocam Galactic Plane Survey (BGPS) catalog, we found nine BGPS sources in G47.06+0.26, that appear to these sources have sufficient mass to form massive stars. We obtained that the clump formation efficiency (CFE) is 18% in the filament. Four infrared bubbles were found to be located in, and adjacent to, G47.06+0.26. Particularly, infrared bubble N98 shows a cometary structure. CO molecular gas adjacent to N98 also shows a very intense emission. H II regions associated with infrared bubbles can inject the energy to surrounding gas. We calculated the kinetic energy, ionization energy, and thermal energy

  14. Probing a Possible Vacuum Refractive Index with Gamma-Ray Telescopes

    CERN Document Server

    Ellis, John; Nanopoulos, D V; PH-TH

    2009-01-01

    We have used a stringy model of quantum space-time foam to suggest that the vacuum may exhibit a non-trivial refractive index depending linearly on gamma-ray energy: eta -1 ~ E_gamma/M_QG1, where M_QG1 is some mass scale typical of quantum gravity that may be ~ 10^18 GeV: see Phys. Lett. B 665, 412 (2008) and references therein. The MAGIC, HESS and Fermi gamma-ray telescopes have recently probed the possible existence of such an energy-dependent vacuum refractive index. All find indications of time-lags for higher-energy photons, but cannot exclude the possibility that they are due to intrinsic delays at the sources. However, the MAGIC and HESS observations of time-lags in emissions from AGNs Mkn 501 and PKS 2155-304 are compatible with each other and a refractive index depending linearly on the gamma-ray energy, with M_QG1 ~ 10^18 GeV. We combine their results to estimate the time-lag Delta t to be expected for the highest-energy photon from GRB 080916c measured by the Fermi telescope, which has an energy ~ ...

  15. A NEW CONCEPT FOR SPECTROPHOTOMETRY OF EXOPLANETS WITH SPACE-BORNE TELESCOPES

    Energy Technology Data Exchange (ETDEWEB)

    Matsuo, Taro; Itoh, Satoshi; Shibai, Hiroshi; Sumi, Takahiro [Department of Earth and Space Science, Graduate School of Science, Osaka University, 1-1, Machikaneyamacho, Toyonaka, Osaka 560-0043 (Japan); Yamamuro, Tomoyasu [Optocraft, 3-16-8-101, Higashi Hashimoto, Midori-ku, Sagamihara, Kanagawa 252-0144 (Japan)

    2016-06-01

    We propose a new concept for the spectral characterization of transiting exoplanets with future space-based telescopes. This concept, called densified pupil spectroscopy, allows us to perform high, stable spectrophotometry against telescope pointing jitter and deformation of the primary mirror. This densified pupil spectrometer comprises the following three roles: division of a pupil into a number of sub-pupils, densification of each sub-pupil, and acquisition of the spectrum of each sub-pupil with a conventional spectrometer. Focusing on the fact that the divided and densified sub-pupil can be treated as a point source, we discovered that a simplified spectrometer allows us to acquire the spectra of the densified sub-pupils on the detector plane−an optical conjugate with the primary mirror−by putting the divided and densified sub-pupils on the entrance slit of the spectrometer. The acquired multiple spectra are not principally moved on the detector against low-order aberrations such as the telescope pointing jitter and any deformation of the primary mirror. The reliability of the observation result is also increased by statistically treating them. Our numerical calculations show that because this method suppresses the instrumental systematic errors down to 10 ppm under telescopes with modest pointing accuracy, next generation space telescopes with more than 2.5 m diameter potentially provide opportunities to characterize temperate super-Earths around nearby late-type stars through the transmission spectroscopy and secondary eclipse.

  16. Measurement of the Ec.m.=184 keV Resonance Strength in the 26gAl(p,γ)27Si Reaction

    International Nuclear Information System (INIS)

    Ruiz, C.; Buchmann, L.; Caggiano, J. A.; Davids, B.; Davis, C.; Hutcheon, D.A.; Olin, A.; Ottewell, D.F.; Ruprecht, G.; Trinczek, M.; Vockenhuber, C.; Parikh, A.; Clark, J.A.; Deibel, C.; Lewis, R.; Parker, P.; Wrede, C.; Jose, J.; Chen, A.A.; Ouellet, C.V.

    2006-01-01

    The strength of the E c.m. =184 keV resonance in the 26g Al(p,γ) 27 Si reaction has been measured in inverse kinematics using the DRAGON recoil separator at TRIUMF's ISAC facility. We measure a value of ωγ=35±7 μeV and a resonance energy of E c.m. =184±1 keV, consistent with p-wave proton capture into the 7652(3) keV state in 27 Si, and discuss the implications of these values for 26g Al nucleosynthesis in typical oxygen-neon white-dwarf novae

  17. Neutrino telescopes in the World

    International Nuclear Information System (INIS)

    Ernenwein, J.-P.

    2007-01-01

    Neutrino astronomy has rapidly developed these last years, being the only way to get specific and reliable information about astrophysical objects still poorly understood.Currently two neutrino telescopes are operational in the World: BAIKAL, in the lake of the same name in Siberia, and AMANDA, in the ices of the South Pole. Two telescopes of the same type are under construction in the Mediterranean Sea: ANTARES and NESTOR. All these telescopes belong to a first generation, with an instrumented volume smaller or equal to 0.02 km3. Also in the Mediterranean Sea, the NEMO project is just in its starting phase, within the framework of a cubic kilometer size neutrino telescope study. Lastly, the ICECUBE detector, with a volume reaching about 1 km3, is under construction on the site of AMANDA experiment, while an extension of the BAIKAL detector toward km3 is under study. We will present here the characteristics of these experiments, as well as the results of their observations

  18. Results on dark matter searches with the ANTARES neutrino telescope

    CERN Multimedia

    Zornoza, Juande

    2016-01-01

    Neutrino telescopes have a wide scientific scope. One of their main goals is the detection of dark matter, for which they have specific advantages. The understanding of the nature of dark matter requires a multi-front approach since we still do not know many of their properties. Neutrino telescopes offer the possibility of look at several kinds of sources, not all of them available to other indirect searches. In this work we provide an overview of the results obtained by the ANTARES neutrino telescope, which has been taking data for almost ten years. It is installed in the Mediterranean Sea at a depth of 2475 m, off the coast of Toulon (France). The results presented in this work include searches for neutrino excess from several astrophysical sources. One of the most interesting ones is the Sun. Dark matter particles by the solar system would scatter with nuclei of the Sun, lose energy and accumulate in its centre. Among the final products of their annihilations, only neutrinos could escape. Therefore, a dete...

  19. ANTARES: The first undersea neutrino telescope

    Science.gov (United States)

    Ageron, M.; Aguilar, J. A.; Al Samarai, I.; Albert, A.; Ameli, F.; André, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Arnaud, K.; Aslanides, E.; Assis Jesus, A. C.; Astraatmadja, T.; Aubert, J.-J.; Auer, R.; Barbarito, E.; Baret, B.; Basa, S.; Bazzotti, M.; Becherini, Y.; Beltramelli, J.; Bersani, A.; Bertin, V.; Beurthey, S.; Biagi, S.; Bigongiari, C.; Billault, M.; Blaes, R.; Bogazzi, C.; de Botton, N.; Bou-Cabo, M.; Boudahef, B.; Bouwhuis, M. C.; Brown, A. M.; Brunner, J.; Busto, J.; Caillat, L.; Calzas, A.; Camarena, F.; Capone, A.; Caponetto, L.; Cârloganu, C.; Carminati, G.; Carmona, E.; Carr, J.; Carton, P. H.; Cassano, B.; Castorina, E.; Cecchini, S.; Ceres, A.; Chaleil, Th.; Charvis, Ph.; Chauchot, P.; Chiarusi, T.; Circella, M.; Compère, C.; Coniglione, R.; Coppolani, X.; Cosquer, A.; Costantini, H.; Cottini, N.; Coyle, P.; Cuneo, S.; Curtil, C.; D'Amato, C.; Damy, G.; van Dantzig, R.; de Bonis, G.; Decock, G.; Decowski, M. P.; Dekeyser, I.; Delagnes, E.; Desages-Ardellier, F.; Deschamps, A.; Destelle, J.-J.; di Maria, F.; Dinkespiler, B.; Distefano, C.; Dominique, J.-L.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drogou, J.-F.; Drouhin, D.; Druillole, F.; Durand, D.; Durand, R.; Eberl, T.; Emanuele, U.; Engelen, J. J.; Ernenwein, J.-P.; Escoffier, S.; Falchini, E.; Favard, S.; Fehr, F.; Feinstein, F.; Ferri, M.; Ferry, S.; Fiorello, C.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J.-L.; Galatá, S.; Galeotti, S.; Gay, P.; Gensolen, F.; Giacomelli, G.; Gojak, C.; Gómez-González, J. P.; Goret, Ph.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Hartmann, B.; Heijboer, A. J.; Heine, E.; Hello, Y.; Henry, S.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; Hogenbirk, J.; Hsu, C. C.; Hubbard, J. R.; Jaquet, M.; Jaspers, M.; de Jong, M.; Jourde, D.; Kadler, M.; Kalantar-Nayestanaki, N.; Kalekin, O.; Kappes, A.; Karg, T.; Karkar, S.; Karolak, M.; Katz, U.; Keller, P.; Kestener, P.; Kok, E.; Kok, H.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kretschmer, W.; Kruijer, A.; Kuch, S.; Kulikovskiy, V.; Lachartre, D.; Lafoux, H.; Lagier, P.; Lahmann, R.; Lahonde-Hamdoun, C.; Lamare, P.; Lambard, G.; Languillat, J.-C.; Larosa, G.; Lavalle, J.; Le Guen, Y.; Le Provost, H.; Levansuu, A.; Lefèvre, D.; Legou, T.; Lelaizant, G.; Lévéque, C.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Lucarelli, F.; Lyashuk, V.; Magnier, P.; Mangano, S.; Marcel, A.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Masullo, R.; Mazéas, F.; Mazure, A.; Meli, A.; Melissas, M.; Migneco, E.; Mongelli, M.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Musumeci, M.; Naumann, C.; Naumann-Godo, M.; Neff, M.; Niess, V.; Nooren, G. J. L.; Oberski, J. E. J.; Olivetto, C.; Palanque-Delabrouille, N.; Palioselitis, D.; Papaleo, R.; Păvălaş, G. E.; Payet, K.; Payre, P.; Peek, H.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Picq, C.; Piret, Y.; Poinsignon, J.; Popa, V.; Pradier, T.; Presani, E.; Prono, G.; Racca, C.; Raia, G.; van Randwijk, J.; Real, D.; Reed, C.; Réthoré, F.; Rewiersma, P.; Riccobene, G.; Richardt, C.; Richter, R.; Ricol, J. S.; Rigaud, V.; Roca, V.; Roensch, K.; Rolin, J.-F.; Rostovtsev, A.; Rottura, A.; Roux, J.; Rujoiu, M.; Ruppi, M.; Russo, G. V.; Salesa, F.; Salomon, K.; Sapienza, P.; Schmitt, F.; Schöck, F.; Schuller, J.-P.; Schüssler, F.; Sciliberto, D.; Shanidze, R.; Shirokov, E.; Simeone, F.; Sottoriva, A.; Spies, A.; Spona, T.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Streeb, K.; Sulak, L.; Taiuti, M.; Tamburini, C.; Tao, C.; Tasca, L.; Terreni, G.; Tezier, D.; Toscano, S.; Urbano, F.; Valdy, P.; Vallage, B.; van Elewyck, V.; Vannoni, G.; Vecchi, M.; Venekamp, G.; Verlaat, B.; Vernin, P.; Virique, E.; de Vries, G.; van Wijk, R.; Wijnker, G.; Wobbe, G.; de Wolf, E.; Yakovenko, Y.; Yepes, H.; Zaborov, D.; Zaccone, H.; Zornoza, J. D.; Zúñiga, J.

    2011-11-01

    The ANTARES Neutrino Telescope was completed in May 2008 and is the first operational Neutrino Telescope in the Mediterranean Sea. The main purpose of the detector is to perform neutrino astronomy and the apparatus also offers facilities for marine and Earth sciences. This paper describes the design, the construction and the installation of the telescope in the deep sea, offshore from Toulon in France. An illustration of the detector performance is given.

  20. ANTARES: The first undersea neutrino telescope

    International Nuclear Information System (INIS)

    Ageron, M.; Aguilar, J.A.; Al Samarai, I.; Albert, A.; Ameli, F.; Andre, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Arnaud, K.; Aslanides, E.; Assis Jesus, A.C.; Astraatmadja, T.; Aubert, J.-J.; Auer, R.; Barbarito, E.; Baret, B.

    2011-01-01

    The ANTARES Neutrino Telescope was completed in May 2008 and is the first operational Neutrino Telescope in the Mediterranean Sea. The main purpose of the detector is to perform neutrino astronomy and the apparatus also offers facilities for marine and Earth sciences. This paper describes the design, the construction and the installation of the telescope in the deep sea, offshore from Toulon in France. An illustration of the detector performance is given.

  1. ULE design considerations for a 3m class light weighted mirror blank for E-ELT M5

    Science.gov (United States)

    Fox, Andrew; Hobbs, Tom; Edwards, Mary; Arnold, Matthew; Sawyer, Kent

    2016-07-01

    It is expected that the next generation of large ground based astronomical telescopes will need large fast-steering/tip-tilt mirrors made of ultra-lightweight construction. These fast-steering mirrors are used to continuously correct for atmospheric disturbances and telescope vibrations. An example of this is the European Extremely Large Telescope (E-ELT) M5 lightweight mirror, which is part of the Tip-Tilt/Field-Stabilization Unit. The baseline design for the E-ELT M5 mirror, as presented in the E-ELT Construction Proposal, is a closed-back ULE mirror with a lightweight core using square core cells. Corning Incorporated (Corning) has a long history of manufacturing lightweight mirror blanks using ULE in a closed-back construction, going back to the 1960's, and includes the Hubble Space Telescope primary mirror, Subaru Telescope secondary and tertiary mirrors, the Magellan I and II tertiary mirrors, and Kepler Space Telescope primary mirror, among many others. A parametric study of 1-meter class lightweight mirror designs showed that Corning's capability to seal a continuous back sheet to a light-weighted core structure provides superior mirror rigidity, in a near-zero thermal expansion material, relative to other existing technologies in this design space. Corning has investigated the parametric performance of several design characteristics for a 3-meter class lightweight mirror blank for the E-ELT M5. Finite Element Analysis was performed on several design scenarios to obtain weight, areal density, and first Eigen frequency. This paper presents an overview of Corning ULE and lightweight mirror manufacturing capabilities, the parametric performance of design characteristics for 1-meter class and 3-meter class lightweight mirrors, as well as the manufacturing advantages and disadvantages of those characteristics.

  2. The Dutch Open Telescope: History, Status, Prospects

    NARCIS (Netherlands)

    Rutten, R.J.

    1999-01-01

    After many years of persistent telescope design and telescope construction, R.H. Hammerschlag has installed his Dutch Open Telescope (DOT) on La Palma. I brie y review its history and design. The future of optical solar physics at Utrecht hinges on a recently-funded three- year DOT science

  3. Wavelet imaging cleaning method for atmospheric Cherenkov telescopes

    Science.gov (United States)

    Lessard, R. W.; Cayón, L.; Sembroski, G. H.; Gaidos, J. A.

    2002-07-01

    We present a new method of image cleaning for imaging atmospheric Cherenkov telescopes. The method is based on the utilization of wavelets to identify noise pixels in images of gamma-ray and hadronic induced air showers. This method selects more signal pixels with Cherenkov photons than traditional image processing techniques. In addition, the method is equally efficient at rejecting pixels with noise alone. The inclusion of more signal pixels in an image of an air shower allows for a more accurate reconstruction, especially at lower gamma-ray energies that produce low levels of light. We present the results of Monte Carlo simulations of gamma-ray and hadronic air showers which show improved angular resolution using this cleaning procedure. Data from the Whipple Observatory's 10-m telescope are utilized to show the efficacy of the method for extracting a gamma-ray signal from the background of hadronic generated images.

  4. The MEarth Project: Status Update and the Commissioning of a Brand New Telescope Array in the Southern Hemisphere

    Science.gov (United States)

    Berta-Thompson, Zachory K.; Irwin, Jonathan; Charbonneau, David; Newton, Elisabeth R.; Dittmann, Jason

    2014-06-01

    The MEarth Project is an ongoing all-sky survey for Earth-like planets transiting the closest, smallest M dwarfs. MEarth aims to find good targets for atmospheric characterization with JWST and the next generation of enormous ground-based telescopes. MEarth's yearly data releases, containing precise light curves of nearby mid-to-late M dwarfs, provide a unique window into the photometric variability of the stars that will forever be among the most interesting targets in the search for potentially habitable exoplanets. We present a status update on the MEarth Project, including a detailed map of the progress we’ve made so far with 8 telescopes in the Northern hemisphere and promising early results from our new installation of 8 more telescopes in the Southern hemisphere.

  5. CARCINOMA-ASSOCIATED MUCIN SERUM MARKERS CA-M26 AND CA-M29 - EFFICACY IN DETECTING AND MONITORING PATIENTS WITH CANCER OF THE BREAST, COLON, OVARY, ENDOMETRIUM AND CERVIX

    NARCIS (Netherlands)

    YEDEMA, KA; KENEMANS, P; WOBBES, T; VANKAMP, GJ; DEBRUIJN, HW; THOMAS, CM; MASSUGER, LF; SCHIJF, CP; BON, GG; VERMORKEN, JB; VOORHORST, F; HILGERS, J

    1991-01-01

    Two recently developed monoclonal antibody (MAb)-based anti-mucin assays, CA M26 and CA M29, were studied in 250 cancer patients and compared to 3 well-established marker tests, viz., CA 125, CA 15.3 and SCC, in order to assess their clinical usefulness as serum tumor markers. Pre-treatment sera

  6. Status and recent results of the MAGIC telescope system

    Energy Technology Data Exchange (ETDEWEB)

    Fruck, Christian [Max-Planck-Institut fuer Physik, Muenchen (Germany); Collaboration: MAGIC-Collaboration

    2016-07-01

    MAGIC is an instrument for pointed ground-based observations of the gamma-ray sky in the 50 GeV to 80 TeV regime. The two 17 m diameter Imaging Air Cherenkov Telescopes are located on 2200 m a.s.l. at the Roque de los Muchachos Observatory on the Canary island La Palma. We will report the status and recent technical developments of the instrument, highlight the most important scientific results obtained with observations of Galactic and extragalactic objects, and will summarize future plans.

  7. The 1.5 meter solar telescope GREGOR

    Science.gov (United States)

    Schmidt, W.; von der Lühe, O.; Volkmer, R.; Denker, C.; Solanki, S. K.; Balthasar, H.; Bello Gonzalez, N.; Berkefeld, Th.; Collados, M.; Fischer, A.; Halbgewachs, C.; Heidecke, F.; Hofmann, A.; Kneer, F.; Lagg, A.; Nicklas, H.; Popow, E.; Puschmann, K. G.; Schmidt, D.; Sigwarth, M.; Sobotka, M.; Soltau, D.; Staude, J.; Strassmeier, K. G.; Waldmann , T. A.

    2012-11-01

    The 1.5 m telescope GREGOR opens a new window to the understanding of solar small-scale magnetism. The first light instrumentation includes the Gregor Fabry Pérot Interferometer (GFPI), a filter spectro-polarimeter for the visible wavelength range, the GRating Infrared Spectro-polarimeter (GRIS) and the Broad-Band Imager (BBI). The excellent performance of the first two instruments has already been demonstrated at the Vacuum Tower Telescope. GREGOR is Europe's largest solar telescope and number 3 in the world. Its all-reflective Gregory design provides a large wavelength coverage from the near UV up to at least 5 microns. The field of view has a diameter of 150 arcsec. GREGOR is equipped with a high-order adaptive optics system, with a subaperture size of 10 cm, and a deformable mirror with 256 actuators. The science goals are focused on, but not limited to, solar magnetism. GREGOR allows us to measure the emergence and disappearance of magnetic flux at the solar surface at spatial scales well below 100 km. Thanks to its spectro-polarimetric capabilities, GREGOR will measure the interaction between the plasma flows, different kinds of waves, and the magnetic field. This will foster our understanding of the processes that heat the chromosphere and the outer layers of the solar atmosphere. Observations of the surface magnetic field at very small spatial scales will shed light on the variability of the solar brightness.

  8. The W. M. Keck Telescope segmented primary mirror active control system software

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, R.W. (Lawrence Berkeley Lab., CA (USA) California Association for Research in Astronomy, Kamuela, HI (USA)); Andreae, S.; Biocca, A.K.; Jared, R.C.; Llacer, J.; Meng, J.D.; Minor, R.H.; Orayani, M. (Lawrence Berkeley Lab., CA (USA))

    1989-07-01

    The active control system (ACS) uses both parallel and distributed processing techniques to measure and control the positions of the 36 segments of the Keck Observatory Telescope primary mirror. The main function of the software is to maintain the mirror figure; to accomplish this goal the software uses a predictive, feed-forward'' mechanism which effectively increases the system bandwidth for the most important sources of perturbation. The software executes on a set of twelve 68000-family processors under the supervision of a VAX workstation. An array of nine parallel I/O processors collect and process data from 168 displacement sensors and transmit motion commands to 108 actuators. Three additional processors simultaneously compute actuator commands, monitor system performance, compute sensor control parameters and communicate with other observatory computers. The software is highly optimized for speed. 6 refs., 7 figs.

  9. In vitro and in vivo comparison of binding of 99m-Tc-labeled anti-CEA MAb F33-104 with 99m-Tc-labeled anti-CEA MAb BW431/26

    International Nuclear Information System (INIS)

    Watanabe, N.; Gunma Univ. School of Medicine; Oriuchi, N.; Inoue, T.; Sugiyama, S.; Kuroki, M.; Matsuoka, Y.; Tanada, S.; Murata, H.; Sasaki, Y.

    1999-01-01

    Aim: The purpose of this study was to assess the potential for radioimmunodetection (RAID) of murine anti-carcinoembryonic antigen (CEA) monoclonal antibody (MAb) F33-104 labeled with technetium-99m (99m-Tc) by a reduction-mediated labeling method. Methods: The binding capacity of 99m-Tc-labeled anti-CEA MAb F33-104 with CEA by means of in vitro procedures such as immunoradiometric assay and cell binding assay and the biodistribution of 99m-Tc-labeled anti-CEA MAb F33-104 in normal nude mice and nude mice bearing human colon adenocarcinoma LS180 tumor were investigated and compared with 99m-Tc-labeled anti-CEA MAb BW431/26. Results: The in vitro binding rate of 99m-Tc-labeled anti-CEA MAb F33-104 with CEA in solution and attached to the cell membrane was significantly higher than 99m-Tc-labeled anti-CEA MAb BW431/261 (31.4 ± 0.95% vs. 11.9 ± 0.55% at 100 ng/mL of soluble CEA, 83.5 ± 2.84% vs. 54.0 ± 2.54% at 10 7 of LS 180 cells). In vivo, accumulation of 99m-Tc-labeled anti-CEA MAb F33-104 was higher at 18 h postinjection than 99m-Tc-labeled anti-CEA MAb BW431/26 (20.1 ± 3.50% ID/g vs. 14.4 ± 3.30% ID/g). 99m-Tc-activity in the kidneys of nude mice bearing tumor was higher at 18 h postinjection than at 3 h (12.8 ± 2.10% ID/g vs. 8.01 ± 2.40% ID/g of 99m-Tc-labeled anti-CEA MAb F33-104, 10.7 ± 1.70% ID/g vs. 8.10 ± 1.75% ID/g of 99m-Tc-labeled anti-CEA MAb BW431/26). Conclusion: 99m-Tc-labeled anti-CEA MAb F33-104 is a potential novel agent for RAID of recurrent colorectal cancer. (orig.) [de

  10. Automatic Photoelectric Telescope Service

    International Nuclear Information System (INIS)

    Genet, R.M.; Boyd, L.J.; Kissell, K.E.; Crawford, D.L.; Hall, D.S.; BDM Corp., McLean, VA; Kitt Peak National Observatory, Tucson, AZ; Dyer Observatory, Nashville, TN)

    1987-01-01

    Automatic observatories have the potential of gathering sizable amounts of high-quality astronomical data at low cost. The Automatic Photoelectric Telescope Service (APT Service) has realized this potential and is routinely making photometric observations of a large number of variable stars. However, without observers to provide on-site monitoring, it was necessary to incorporate special quality checks into the operation of the APT Service at its multiple automatic telescope installation on Mount Hopkins. 18 references

  11. Highly efficient actively Q-switched Yb:LGGG laser generating 3.26 mJ of pulse energy

    Science.gov (United States)

    Li, Yanbin; Zhang, Jian; Zhao, Ruwei; Zhang, Baitao; He, Jingliang; Jia, Zhitai; Tao, Xutang

    2018-05-01

    An efficient acousto-optic Q-switched laser operation of Yb:(LuxGd1-x)3Ga5O12 (x = 0.062) (Yb:LGGG) crystal is demonstrated, producing stable pulses with repetition rate ranging from 1 to 20 kHz. Under the absorbed pump power of 8.75 W, the maximum average output power of 3.26 W is obtained at the pulse repletion rate of 1 kHz, corresponding to the slope efficiency as high as 52%. The pulse width of 14.5 ns is achieved with the pulse energy and peak power of 3.26 mJ and 225 kW, respectively. It indicates great potential of Yb:LGGG crystal for generating pulsed lasers.

  12. The ATHENA telescope and optics status

    Science.gov (United States)

    Bavdaz, Marcos; Wille, Eric; Ayre, Mark; Ferreira, Ivo; Shortt, Brian; Fransen, Sebastiaan; Collon, Maximilien; Vacanti, Giuseppe; Barriere, Nicolas; Landgraf, Boris; Haneveld, Jeroen; van Baren, Coen; Zuknik, Karl-Heintz; Della Monica Ferreira, Desiree; Massahi, Sonny; Christensen, Finn; Krumrey, Michael; Burwitz, Vadim; Pareschi, Giovanni; Spiga, Daniele; Valsecchi, Giuseppe; Vernani, Dervis; Oliver, Paul; Seidel, André

    2017-08-01

    The work on the definition and technological preparation of the ATHENA (Advanced Telescope for High ENergy Astrophysics) mission continues to progress. In parallel to the study of the accommodation of the telescope, many aspects of the X-ray optics are being evolved further. The optics technology chosen for ATHENA is the Silicon Pore Optics (SPO), which hinges on technology spin-in from the semiconductor industry, and uses a modular approach to produce large effective area lightweight telescope optics with a good angular resolution. Both system studies and the technology developments are guided by ESA and implemented in industry, with participation of institutional partners. In this paper an overview of the current status of the telescope optics accommodation and technology development activities is provided.

  13. Using ISS Telescopes for Electromagnetic Follow-up of Gravitational Wave Detections of NS-NS and NS-BH Mergers

    Science.gov (United States)

    Camp, J.; Barthelmy, S.; Blackburn, L.; Carpenter, K. G.; Gehrels, N.; Kanner, J.; Marshall, F. E.; Racusin, J. L.; Sakamoto, T.

    2013-01-01

    The International Space Station offers a unique platform for rapid and inexpensive deployment of space telescopes. A scientific opportunity of great potential later this decade is the use of telescopes for the electromagnetic follow-up of ground-based gravitational wave detections of neutron star and black hole mergers. We describe this possibility for OpTIIX, an ISS technology demonstration of a 1.5 m diffraction limited optical telescope assembled in space, and ISS-Lobster, a wide-field imaging X-ray telescope now under study as a potential NASA mission. Both telescopes will be mounted on pointing platforms, allowing rapid positioning to the source of a gravitational wave event. Electromagnetic follow-up rates of several per year appear likely, offering a wealth of complementary science on the mergers of black holes and neutron stars.

  14. Hard x-ray telescope mission

    DEFF Research Database (Denmark)

    Gorenstein, P.; Worrall, D.; Joensen, K.D.

    1996-01-01

    The Hard X-Ray Telescope was selected for study as a possible new intermediate size mission for the early 21st century. Its principal attributes are: (1) multiwavelength observing with a system of focussing telescopes that collectively observe from the UV to over 1 MeV, (2) much higher sensitivity...

  15. Solar system astronomy with the 3.6-m DOT and the 4-m ILMT

    Science.gov (United States)

    Ganesh, Shashikiran; Venkataramani, Kumar; Baliyan, Kiran Singh; Joshi, Umesh Chandra

    2018-04-01

    Solar system astronomy would be an important field of study with the 3.6-m Devasthal Optical Telescope (DOT) and the 4-m International Liquid Mirror Telescope (ILMT). In this contribution, we highlight the work that could be done in reaching a better understanding of the Solar system and its constituents - particularly the minor bodies and other smaller objects. There may be a large number of very faint objects in the vicinity of the Earth orbit. In fact only recently a 'second moon' of the Earth has been found and has been designated 2016 H03. This is a quasi-satellite with the same period of revolution around Earth and Sun. There could be many such objects and it is important to have a full characterization and understanding of these potentially hazardous objects. They are generally fainter than 18th magnitude and one would need a lot of telescope time to fully characterize these objects using techniques of spectropolarimetry. In a similar fashion, a deep census of the Kuiper Belt Objects and the TNOs is needed. In this census, the concept of pencil beam surveys could be extended to cylindrical transit imaging technique available with the 4-m ILMT.

  16. VizieR Online Data Catalog: Solar neighborhood. XXXII. L and M dwarfs (Dieterich+, 2014)

    Science.gov (United States)

    Dieterich, S. B.; Henry, T. J.; Jao, W.-C.; Winters, J. G.; Hosey, A. D.; Riedel, A. R.; Subasavage, J. P.

    2015-01-01

    We obtained VRI photometry for all targets in our sample using the Cerro Tololo Inter-American Observatory (CTIO) 0.9m telescope for the brighter targets and the SOuthern Astrophysical Research (SOAR) Optical Imager camera on the SOAR 4.1m telescope for fainter targets. SOAR observations were conducted between 2009 September and 2010 December during six observing runs comprising NOAO programs 2009B-0425, 2010A-0185, and 2010B-0176. A total of 17 nights on SOAR were used for optical photometry. Table 1 shows the photometry in the photometric system used by the telescope with which the measurements were taken (Johnson-Kron-Cousins for the CTIO 0.9m telescope and Bessell for SOAR). Astrometric observations are based in part on observations obtained via the Cerro Tololo Inter-American Observatory Parallax Investigation (CTIOPI), at the Cerro Tololo 0.9m telescope. CTIOPI is a large and versatile astrometric monitoring program targeting diverse types of stellar and substellar objects in the solar neighborhood. Observations are taken using the CTIO 0.9m telescope and its sole instrument, a 2048*2048 Tektronix imaging CCD detector with a plate scale of 0.401''/pixel. (4 data files).

  17. Volcanoes muon imaging using Cherenkov telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Catalano, O. [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Del Santo, M., E-mail: melania@ifc.inaf.it [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Mineo, T.; Cusumano, G.; Maccarone, M.C. [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Pareschi, G. [INAF Osservatorio Astronomico di Brera, Via E. Bianchi 46, I-23807, Merate (Italy)

    2016-01-21

    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting of the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energy. Our new approach offers the advantage of a negligible background and an improved spatial resolution. To test the feasibility of our new method, we have carried out simulations with a toy-model based on the geometrical parameters of ASTRI SST-2M, i.e. the imaging atmospheric Cherenkov telescope currently under installation onto the Etna volcano. Comparing the results of our simulations with previous experiments based on particle detectors, we gain at least a factor of 10 in sensitivity. The result of this study shows that we resolve an empty cylinder with a radius of about 100 m located inside a volcano in less than 4 days, which implies a limit on the magma velocity of 5 m/h.

  18. Volcanoes muon imaging using Cherenkov telescopes

    International Nuclear Information System (INIS)

    Catalano, O.; Del Santo, M.; Mineo, T.; Cusumano, G.; Maccarone, M.C.; Pareschi, G.

    2016-01-01

    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting of the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energy. Our new approach offers the advantage of a negligible background and an improved spatial resolution. To test the feasibility of our new method, we have carried out simulations with a toy-model based on the geometrical parameters of ASTRI SST-2M, i.e. the imaging atmospheric Cherenkov telescope currently under installation onto the Etna volcano. Comparing the results of our simulations with previous experiments based on particle detectors, we gain at least a factor of 10 in sensitivity. The result of this study shows that we resolve an empty cylinder with a radius of about 100 m located inside a volcano in less than 4 days, which implies a limit on the magma velocity of 5 m/h.

  19. Design considerations for large detector arrays on submillimeter-wave telescopes

    Science.gov (United States)

    Stark, Antony A.

    2000-07-01

    The emerging technology of large (approximately 10,000 pixel) submillimeter-wave bolometer arrays presents a novel optical design problem -- how can such arrays be fed by diffraction- limited telescope optics where the primary mirror is less than 100,000 wavelengths in diameter? Standard Cassegrain designs for radiotelescope optics exhibit focal surface curvature so large that detectors cannot be placed more than 25 beam diameters from the central ray. The problem is worse for Ritchey-Chretien designs, because these minimize coma while increasing field curvature. Classical aberrations, including coma, are usually dominated by diffraction in submillimeter- wave single dish telescopes. The telescope designer must consider (1) diffraction, (2) aberration, (3) curvature of field, (4) cross-polarization, (5) internal reflections, (6) the effect of blockages, (7) means of beam chopping on- and off-source, (8) gravitational and thermal deformations of the primary mirror, (9) the physical mounting of large detector packages, and (10) the effect of gravity and (11) vibration on those detectors. Simultaneous optimization of these considerations in the case of large detector arrays leads to telescopes that differ considerably from standard radiotelescope designs. Offset optics provide flexibility for mounting detectors, while eliminating blockage and internal reflections. Aberrations and cross-polarization can be the same as on-axis designs having the same diameter and focal length. Trade-offs include the complication of primary mirror homology and an increase in overall cost. A dramatic increase in usable field of view can be achieved using shaped optics. Solutions having one to six mirrors will be discussed, including possible six-mirror design for the proposed South Pole 10 m telescope.

  20. THE PECULIAR EXTINCTION LAW OF SN 2014J MEASURED WITH THE HUBBLE SPACE TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Amanullah, R.; Goobar, A.; Johansson, J.; Petrushevska, T. [Oskar Klein Centre, Physics Department, Stockholm University, SE-106 91 Stockholm (Sweden); Banerjee, D. P. K.; Venkataraman, V.; Joshi, V.; Ashok, N. M. [Physical Research Laboratory, Ahmedabad 380009 (India); Cao, Y.; Kulkarni, S. R. [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Kasliwal, M. M. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Nugent, P. E. [Department of Astronomy, University of California Berkeley, B-20 Hearst Field, Annex # 3411, Berkeley, CA 94720-3411 (United States); Stanishev, V., E-mail: rahman@fysik.su.se [CENTRA—Centro Multidisciplinar de Astrofísica, Instituto Superior Técnico, Av. Rovisco Pais 1, 1049-001 Lisbon (Portugal)

    2014-06-20

    The wavelength dependence of the extinction of Type Ia SN 2014J in the nearby galaxy M82 has been measured using UV to near-IR photometry obtained with the Hubble Space Telescope, the Nordic Optical Telescope, and the Mount Abu Infrared Telescope. This is the first time that the reddening of an SN Ia is characterized over the full wavelength range of 0.2-2 μm. A total-to-selective extinction, R{sub V} ≥ 3.1, is ruled out with high significance. The best fit at maximum using a Galactic type extinction law yields R{sub V} = 1.4 ± 0.1. The observed reddening of SN 2014J is also compatible with a power-law extinction, A {sub λ}/A{sub V} = (λ/λ {sub V}) {sup p} as expected from multiple scattering of light, with p = –2.1 ± 0.1. After correcting for differences in reddening, SN 2014J appears to be very similar to SN 2011fe over the 14 broadband filter light curves used in our study.

  1. 21 CFR 886.5870 - Low-vision telescope.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Low-vision telescope. 886.5870 Section 886.5870...) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5870 Low-vision telescope. (a) Identification. A low-vision telescope is a device that consists of an arrangement of lenses or mirrors intended for...

  2. No Bursts Detected from FRB121102 in Two 5 hr Observing Campaigns with the Robert C. Byrd Green Bank Telescope

    Science.gov (United States)

    Price, Danny C.; Gajjar, Vishal; Rosenthal, Lee; Hallinan, Gregg; Croft, Steve; DeBoer, David; Hellbourg, Greg; Isaacson, Howard; Lebofsky, Matt; Lynch, Ryan; MacMahon, David H. E.; Men, Yunpeng; Xu, Yonghua; Liu, Zhiyong; Lee, Kejia; Siemion, Andrew

    2018-02-01

    Here, we report non-detection of radio bursts from Fast Radio Burst FRB 121102 during two 5-hour observation sessions on the Robert C. Byrd 100-m Green Bank Telescope in West Virginia, USA, on December 11, 2017, and January 12, 2018. In addition, we report non-detection during an abutting 10-hour observation with the Kunming 40-m telescope in China, which commenced UTC 10:00 January 12, 2018. These are among the longest published contiguous observations of FRB 121102, and support the notion that FRB 121102 bursts are episodic. These observations were part of a simultaneous optical and radio monitoring campaign with the the Caltech HIgh- speed Multi-color CamERA (CHIMERA) instrument on the Hale 5.1-m telescope.

  3. The MIDAS telescope for microwave detection of ultra-high energy cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez-Muñiz, J. [Universidad de Santiago de Compostela, Departamento de Física de Partículas, Campus Sur, Universidad, E-15782 Santiago de Compostela (Spain); Amaral Soares, E. [Universidade Federal do Rio de Janeiro, Instituto de Física, Cidade Universitaria, Caixa Postal 68528, 21945-970 Rio de Janeiro, RJ (Brazil); Berlin, A.; Bogdan, M. [University of Chicago, Enrico Fermi Institute and Kavli Institute for Cosmological Physics, 5640 S. Ellis Ave., Chicago, IL 60637 (United States); Boháčová, M. [University of Chicago, Enrico Fermi Institute and Kavli Institute for Cosmological Physics, 5640 S. Ellis Ave., Chicago, IL 60637 (United States); Institute of Physics of the Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-182 21 Praha 8 (Czech Republic); Bonifazi, C. [Universidade Federal do Rio de Janeiro, Instituto de Física, Cidade Universitaria, Caixa Postal 68528, 21945-970 Rio de Janeiro, RJ (Brazil); Carvalho, W.R. [Universidad de Santiago de Compostela, Departamento de Física de Partículas, Campus Sur, Universidad, E-15782 Santiago de Compostela (Spain); Mello Neto, J.R.T. de [Universidade Federal do Rio de Janeiro, Instituto de Física, Cidade Universitaria, Caixa Postal 68528, 21945-970 Rio de Janeiro, RJ (Brazil); Facal San Luis, P., E-mail: facal@kicp.uchicago.edu [University of Chicago, Enrico Fermi Institute and Kavli Institute for Cosmological Physics, 5640 S. Ellis Ave., Chicago, IL 60637 (United States); Genat, J.F.; Hollon, N.; Mills, E.; Monasor, M.; Privitera, P. [University of Chicago, Enrico Fermi Institute and Kavli Institute for Cosmological Physics, 5640 S. Ellis Ave., Chicago, IL 60637 (United States); and others

    2013-08-11

    We present the design, implementation and data taking performance of the MIcrowave Detection of Air Showers (MIDAS) experiment, a large field of view imaging telescope designed to detect microwave radiation from extensive air showers induced by ultra-high energy cosmic rays. This novel technique may bring a tenfold increase in detector duty cycle when compared to the standard fluorescence technique based on detection of ultraviolet photons. The MIDAS telescope consists of a 4.5 m diameter dish with a 53-pixel receiver camera, instrumented with feed horns operating in the commercial extended C-Band (3.4–4.2 GHz). A self-trigger capability is implemented in the digital electronics. The main objectives of this first prototype of the MIDAS telescope – to validate the telescope design, and to demonstrate a large detector duty cycle – were successfully accomplished in a dedicated data taking run at the University of Chicago campus prior to installation at the Pierre Auger Observatory. -- Highlights: • The MIDAS objective is to detect ultra high energy cosmic rays using microwaves. • GHz radiation could provide a powerful alternative to current detection methods. • The MIDAS prototype explores the potential of the microwave technique.

  4. The MIDAS telescope for microwave detection of ultra-high energy cosmic rays

    International Nuclear Information System (INIS)

    Alvarez-Muñiz, J.; Amaral Soares, E.; Berlin, A.; Bogdan, M.; Boháčová, M.; Bonifazi, C.; Carvalho, W.R.; Mello Neto, J.R.T. de; Facal San Luis, P.; Genat, J.F.; Hollon, N.; Mills, E.; Monasor, M.; Privitera, P.

    2013-01-01

    We present the design, implementation and data taking performance of the MIcrowave Detection of Air Showers (MIDAS) experiment, a large field of view imaging telescope designed to detect microwave radiation from extensive air showers induced by ultra-high energy cosmic rays. This novel technique may bring a tenfold increase in detector duty cycle when compared to the standard fluorescence technique based on detection of ultraviolet photons. The MIDAS telescope consists of a 4.5 m diameter dish with a 53-pixel receiver camera, instrumented with feed horns operating in the commercial extended C-Band (3.4–4.2 GHz). A self-trigger capability is implemented in the digital electronics. The main objectives of this first prototype of the MIDAS telescope – to validate the telescope design, and to demonstrate a large detector duty cycle – were successfully accomplished in a dedicated data taking run at the University of Chicago campus prior to installation at the Pierre Auger Observatory. -- Highlights: • The MIDAS objective is to detect ultra high energy cosmic rays using microwaves. • GHz radiation could provide a powerful alternative to current detection methods. • The MIDAS prototype explores the potential of the microwave technique

  5. Wavelength calibration with PMAS at 3.5 m Calar Alto Telescope using a tunable astro-comb

    Science.gov (United States)

    Chavez Boggio, J. M.; Fremberg, T.; Bodenmüller, D.; Sandin, C.; Zajnulina, M.; Kelz, A.; Giannone, D.; Rutowska, M.; Moralejo, B.; Roth, M. M.; Wysmolek, M.; Sayinc, H.

    2018-05-01

    On-sky tests conducted with an astro-comb using the Potsdam Multi-Aperture Spectrograph (PMAS) at the 3.5 m Calar Alto Telescope are reported. The proposed astro-comb approach is based on cascaded four-wave mixing between two lasers propagating through dispersion optimized nonlinear fibers. This approach allows for a line spacing that can be continuously tuned over a broad range (from tens of GHz to beyond 1 THz) making it suitable for calibration of low- medium- and high-resolution spectrographs. The astro-comb provides 300 calibration lines and his line-spacing is tracked with a wavemeter having 0.3 pm absolute accuracy. First, we assess the accuracy of Neon calibration by measuring the astro-comb lines with (Neon calibrated) PMAS. The results are compared with expected line positions from wavemeter measurement showing an offset of ∼5-20 pm (4%-16% of one resolution element). This might be the footprint of the accuracy limits from actual Neon calibration. Then, the astro-comb performance as a calibrator is assessed through measurements of the Ca triplet from stellar objects HD3765 and HD219538 as well as with the sky line spectrum, showing the advantage of the proposed astro-comb for wavelength calibration at any resolution.

  6. New planetary nebulae in the outskirts of the Andromeda Galaxy discovered with the Guoshoujing Telescope (LAMOST)

    International Nuclear Information System (INIS)

    Yuan Haibo; Liu Xiaowei; Huo Zhiying; Zhang Huihua; Zhang Huawei; Zhao Yongheng; Chen Jianjun; Bai Zhongrui; Zhang Haotong; Yan Hongliang; Ren Juanjuan; Sun Shiwei; GarcIa-Benito, Ruben; Xiang Maosheng; Zhang Yong; Li Yeping; Lu Qishuai; Wang You; Ni Jijun; Wang Hai

    2010-01-01

    Planetary nebulae (PNe) are good tracers of the stellar populations, chemical composition and dynamics of their host galaxies. This paper reports the discovery of new PNe in the outskirts of the Andromeda Galaxy (M 31) with the Guoshoujing Telescope (GSJT, formerly named the Large Sky Area Multi-Object Fiber Spectroscopic Telescope-LAMOST) during its early commissioning phase. In total, 36 candidates selected from SDSS photometry are confirmed in terms of their PN nature, including 17 new discoveries and another 19 previously known emission line objects. Their positions, spectra, radial velocities and m 5007 magnitudes are presented. We discuss the potential for detecting more PNe in M31 with GSJT's multi-object spectroscopy and the related applications in studies of the dynamics and chemistry of M 31 and its assemblage history. (editor's recommendation)

  7. Testing and modelling of the SVOM MXT narrow field lobster-eye telescope

    Science.gov (United States)

    Feldman, Charlotte; Pearson, James; Willingale, Richard; Sykes, John; Drumm, Paul; Houghton, Paul; Bicknell, Chris; Osborne, Julian; Martindale, Adrian; O'Brien, Paul; Fairbend, Ray; Schyns, Emile; Petit, Sylvain; Roudot, Romain; Mercier, Karine; Le Duigou, Jean-Michel; Gotz, Diego

    2017-08-01

    The Space-based multi-band astronomical Variable Objects Monitor (SVOM) is a French-Chinese space mission to be launched in 2021 with the goal of studying gamma-ray bursts, the most powerful stellar explosions in the Universe. The Microchannel X-ray Telescope (MXT) on-board SVOM, is an X-ray focusing telescope with a detector-limited field of view of ˜1 square° , working in the 0.2-10 keV energy band. The MXT is a narrow-field-optimised lobster eye telescope, designed to promptly detect and accurately locate gamma-ray bursts afterglows. The breadboard MXT optic comprises of an array of square pore micro pore optics (MPOs) which are slumped to a spherical radius of 2 m giving a focal length of 1 m and an intrinsic field of view of ˜6° . We present details of the baseline design and results from the ongoing X-ray tests of the breadboard and structural thermal model MPOs performed at the University of Leicester and at Panter. In addition, we present details of modelling and analysis which reveals the factors that limit the angular resolution, characteristics of the point spread function and the efficiency and collecting area of the currently available MPOs.

  8. UPPER LIMITS FROM FIVE YEARS OF BLAZAR OBSERVATIONS WITH THE VERITAS CHERENKOV TELESCOPES

    Energy Technology Data Exchange (ETDEWEB)

    Archambault, S. [Physics Department, McGill University, Montreal, QC H3A 2T8 (Canada); Archer, A.; Buckley, J. H.; Bugaev, V. [Department of Physics, Washington University, St. Louis, MO 63130 (United States); Benbow, W.; Cerruti, M. [Fred Lawrence Whipple Observatory, Harvard-Smithsonian Center for Astrophysics, Amado, AZ 85645 (United States); Bird, R. [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Biteau, J. [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA 95064 (United States); Buchovecky, M. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Byrum, K. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Chen, X. [Institute of Physics and Astronomy, University of Potsdam, D-14476 Potsdam-Golm (Germany); Ciupik, L. [Astronomy Department, Adler Planetarium and Astronomy Museum, Chicago, IL 60605 (United States); Connolly, M. P. [School of Physics, National University of Ireland Galway, University Road, Galway (Ireland); Cui, W.; Feng, Q.; Finley, J. P. [Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907 (United States); Eisch, J. D. [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Errando, M. [Department of Physics and Astronomy, Barnard College, Columbia University, NY 10027 (United States); Falcone, A. [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States); Fleischhack, H., E-mail: wystan.benbow@cfa.harvard.edu, E-mail: matteo.cerruti@lpnhe.in2p3.fr, E-mail: caajohns@ucsc.edu [DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Collaboration: VERITAS collaboration; and others

    2016-06-01

    Between the beginning of its full-scale scientific operations in 2007 and 2012, the VERITAS Cherenkov telescope array observed more than 130 blazars; of these, 26 were detected as very-high-energy (VHE; E > 100 GeV) γ -ray sources. In this work, we present the analysis results of a sample of 114 undetected objects. The observations constitute a total live-time of ∼570 hr. The sample includes several unidentified Fermi -Large Area Telescope (LAT) sources (located at high Galactic latitude) as well as all the sources from the second Fermi -LAT catalog that are contained within the field of view of the VERITAS observations. We have also performed optical spectroscopy measurements in order to estimate the redshift of some of these blazars that do not have spectroscopic distance estimates. We present new optical spectra from the Kast instrument on the Shane telescope at the Lick observatory for 18 blazars included in this work, which allowed for the successful measurement or constraint on the redshift of four of them. For each of the blazars included in our sample, we provide the flux upper limit in the VERITAS energy band. We also study the properties of the significance distributions and we present the result of a stacked analysis of the data set, which shows a 4 σ excess.

  9. UPPER LIMITS FROM FIVE YEARS OF BLAZAR OBSERVATIONS WITH THE VERITAS CHERENKOV TELESCOPES

    International Nuclear Information System (INIS)

    Archambault, S.; Archer, A.; Buckley, J. H.; Bugaev, V.; Benbow, W.; Cerruti, M.; Bird, R.; Biteau, J.; Buchovecky, M.; Byrum, K.; Chen, X.; Ciupik, L.; Connolly, M. P.; Cui, W.; Feng, Q.; Finley, J. P.; Eisch, J. D.; Errando, M.; Falcone, A.; Fleischhack, H.

    2016-01-01

    Between the beginning of its full-scale scientific operations in 2007 and 2012, the VERITAS Cherenkov telescope array observed more than 130 blazars; of these, 26 were detected as very-high-energy (VHE; E > 100 GeV) γ -ray sources. In this work, we present the analysis results of a sample of 114 undetected objects. The observations constitute a total live-time of ∼570 hr. The sample includes several unidentified Fermi -Large Area Telescope (LAT) sources (located at high Galactic latitude) as well as all the sources from the second Fermi -LAT catalog that are contained within the field of view of the VERITAS observations. We have also performed optical spectroscopy measurements in order to estimate the redshift of some of these blazars that do not have spectroscopic distance estimates. We present new optical spectra from the Kast instrument on the Shane telescope at the Lick observatory for 18 blazars included in this work, which allowed for the successful measurement or constraint on the redshift of four of them. For each of the blazars included in our sample, we provide the flux upper limit in the VERITAS energy band. We also study the properties of the significance distributions and we present the result of a stacked analysis of the data set, which shows a 4 σ excess.

  10. A new calibration model for pointing a radio telescope that considers nonlinear errors in the azimuth axis

    International Nuclear Information System (INIS)

    Kong De-Qing; Wang Song-Gen; Zhang Hong-Bo; Wang Jin-Qing; Wang Min

    2014-01-01

    A new calibration model of a radio telescope that includes pointing error is presented, which considers nonlinear errors in the azimuth axis. For a large radio telescope, in particular for a telescope with a turntable, it is difficult to correct pointing errors using a traditional linear calibration model, because errors produced by the wheel-on-rail or center bearing structures are generally nonlinear. Fourier expansion is made for the oblique error and parameters describing the inclination direction along the azimuth axis based on the linear calibration model, and a new calibration model for pointing is derived. The new pointing model is applied to the 40m radio telescope administered by Yunnan Observatories, which is a telescope that uses a turntable. The results show that this model can significantly reduce the residual systematic errors due to nonlinearity in the azimuth axis compared with the linear model

  11. The MaNGA integral field unit fiber feed system for the Sloan 2.5 m telescope

    Energy Technology Data Exchange (ETDEWEB)

    Drory, N. [McDonald Observatory, The University of Texas at Austin, 1 University Station, Austin, TX 78712 (United States); MacDonald, N.; Byler, N. [Department of Astronomy, University of Washington, Box 351580 Seattle, WA 98195 (United States); Bershady, M. A.; Smith, M.; Tremonti, C. A.; Wake, D. A.; Eigenbrot, A.; Jaehnig, K. [Department of Astronomy, University of Wisconsin, 475 N. Charter St., Madison, WI 53706 (United States); Bundy, K. [Kavli Institute for the Physics and Mathematics of The Universe (Kavli IPMU, WPI), Todai Institutes for Advanced Study, The University of Tokyo, Kashiwa, Japan 277-8583 (Japan); Gunn, J. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Law, D. R.; Cherinka, B. [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George St, Toronto, ON M5S 3H4 (Canada); Stoll, R. [C Technologies, Inc., 757 Route 202/206, Bridgewater, NJ 08807 (United States); Yan, R. [Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky, 40506-0055 (United States); Weijmans, A. M. [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom); Cope, F.; Holder, D.; Huehnerhoff, J. [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349 (United States); Harding, P., E-mail: drory@astro.as.utexas.edu [Department of Astronomy, Case Western Reserve University, Cleveland, OH 44106 (United States); and others

    2015-02-01

    We describe the design, manufacture, and performance of bare-fiber integral field units (IFUs) for the SDSS-IV survey Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) on the the Sloan 2.5 m telescope at Apache Point Observatory. MaNGA is a luminosity-selected integral-field spectroscopic survey of 10{sup 4} local galaxies covering 360–1030 nm at R∼2200. The IFUs have hexagonal dense packing of fibers with packing regularity of 3 μm (rms), and throughput of 96 ± 0.5% from 350 nm to 1 μm in the lab. Their sizes range from 19 to 127 fibers (3–7 hexagonal layers) using Polymicro FBP 120:132:150 μm core:clad:buffer fibers to reach a fill fraction of 56%. High throughput (and low focal-ratio degradation (FRD)) is achieved by maintaining the fiber cladding and buffer intact, ensuring excellent surface polish, and applying a multi-layer anti-reflection (AR) coating of the input and output surfaces. In operations on-sky, the IFUs show only an additional 2.3% FRD-related variability in throughput despite repeated mechanical stressing during plate plugging (however other losses are present). The IFUs achieve on-sky throughput 5% above the single-fiber feeds used in SDSS-III/BOSS, attributable to equivalent performance compared to single fibers and additional gains from the AR coating. The manufacturing process is geared toward mass-production of high-multiplex systems. The low-stress process involves a precision ferrule with a hexagonal inner shape designed to lead inserted fibers to settle in a dense hexagonal pattern. The ferrule ID is tapered at progressively shallower angles toward its tip and the final 2 mm are straight and only a few microns larger than necessary to hold the desired number of fibers. Our IFU manufacturing process scales easily to accommodate other fiber sizes and can produce IFUs with substantially larger fiber counts. To assure quality, automated testing in a simple and inexpensive system enables complete characterization of

  12. The MaNGA integral field unit fiber feed system for the Sloan 2.5 m telescope

    International Nuclear Information System (INIS)

    Drory, N.; MacDonald, N.; Byler, N.; Bershady, M. A.; Smith, M.; Tremonti, C. A.; Wake, D. A.; Eigenbrot, A.; Jaehnig, K.; Bundy, K.; Gunn, J.; Law, D. R.; Cherinka, B.; Stoll, R.; Yan, R.; Weijmans, A. M.; Cope, F.; Holder, D.; Huehnerhoff, J.; Harding, P.

    2015-01-01

    We describe the design, manufacture, and performance of bare-fiber integral field units (IFUs) for the SDSS-IV survey Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) on the the Sloan 2.5 m telescope at Apache Point Observatory. MaNGA is a luminosity-selected integral-field spectroscopic survey of 10 4 local galaxies covering 360–1030 nm at R∼2200. The IFUs have hexagonal dense packing of fibers with packing regularity of 3 μm (rms), and throughput of 96 ± 0.5% from 350 nm to 1 μm in the lab. Their sizes range from 19 to 127 fibers (3–7 hexagonal layers) using Polymicro FBP 120:132:150 μm core:clad:buffer fibers to reach a fill fraction of 56%. High throughput (and low focal-ratio degradation (FRD)) is achieved by maintaining the fiber cladding and buffer intact, ensuring excellent surface polish, and applying a multi-layer anti-reflection (AR) coating of the input and output surfaces. In operations on-sky, the IFUs show only an additional 2.3% FRD-related variability in throughput despite repeated mechanical stressing during plate plugging (however other losses are present). The IFUs achieve on-sky throughput 5% above the single-fiber feeds used in SDSS-III/BOSS, attributable to equivalent performance compared to single fibers and additional gains from the AR coating. The manufacturing process is geared toward mass-production of high-multiplex systems. The low-stress process involves a precision ferrule with a hexagonal inner shape designed to lead inserted fibers to settle in a dense hexagonal pattern. The ferrule ID is tapered at progressively shallower angles toward its tip and the final 2 mm are straight and only a few microns larger than necessary to hold the desired number of fibers. Our IFU manufacturing process scales easily to accommodate other fiber sizes and can produce IFUs with substantially larger fiber counts. To assure quality, automated testing in a simple and inexpensive system enables complete characterization of throughput

  13. Scientific management of Space Telescope

    Science.gov (United States)

    Odell, C. R.

    1981-01-01

    A historical summay is given on the science management of the Space Telescope, the inception of which began in 1962, when scientists and engineers first recommended the development of a nearly diffraction limited substantial-size optical telescope. Phase A, the feasibility requirements generation phase, began in 1971 and consisted largely of NASA scientists and a NASA design. Phase B, the preliminary design phase, established a tiered structure of scientists, led by the Large Space Telescope operations and Management Work Group. A Mission Operations Working Group headed six instrument definition teams to develop the essential instrument definitions. Many changes took place during Phase B, before design and development, which began in 1978 and still continues today.

  14. NASA's Newest Orbital Debris Ground-based Telescope Assets: MCAT and UKIRT

    Science.gov (United States)

    Lederer, S.; Frith, J.; Pace, L. F.; Cowardin, H. M.; Hickson, P.; Glesne, T.; Maeda, R.; Buckalew, B.; Nishimoto, D.; Douglas, D.; Stansbery, E. G.

    2014-09-01

    NASAs Orbital Debris Program Office (ODPO) will break ground on Ascension Island in 2014 to build the newest optical (0.30 1.06 microns) ground-based telescope asset dedicated to the study of orbital debris. The Meter Class Autonomous Telescope (MCAT) is a 1.3m optical telescope designed to track objects in orbits ranging from Low Earth Orbit (LEO) to Geosynchronous Earth Orbit (GEO). Ascension Island is located in the South Atlantic Ocean, offering longitudinal sky coverage not afforded by the Ground-based Electro-Optical Deep Space Surveillance (GEODSS) network. With a fast-tracking dome, a suite of visible wide-band filters, and a time-delay integration (TDI) capable camera, MCAT is capable of multiple observing modes ranging from tracking cataloged debris targets to surveying the overall debris environment. Access to the United Kingdom Infrared Telescope (UKIRT) will extend our spectral coverage into the near- (0.8-5 micron) and mid- to far-infrared (8-25 micron) regime. UKIRT is a 3.8m telescope located on Mauna Kea on the Big Island of Hawaii. At nearly 14,000-feet and above the atmospheric inversion layer, this is one of the premier astronomical sites in the world and is an ideal setting for an infrared telescope. An unprecedented one-third of this telescopes time has been allocated to collect orbital debris data for NASAs ODPO over a 2-year period. UKIRT has several instruments available to obtain low-resolution spectroscopy in both the near-IR and the mid/far-IR. Infrared spectroscopy is ideal for constraining the material types, albedos and sizes of debris targets, and potentially gaining insight into reddening effects caused by space weathering. In addition, UKIRT will be used to acquire broadband photometric imaging at GEO with the Wide Field Camera (WFCAM) for studying known objects of interest as well as collecting data in survey-mode to discover new targets. Results from the first stage of the debris campaign will be presented. The combination of

  15. Astronomers Make First Images With Space Radio Telescope

    Science.gov (United States)

    1997-07-01

    radio astronomers for more than half a century. To see a level of detail equal to that revealed by optical telescopes would require a radio-telescope dish miles across. In the 1950s, British and Australian scientists developed a technique that used smaller, widely-separated antennas, and combined their signals to produce resolving power equal to that of a single dish as large as the distance between the smaller dishes. This technique, called interferometry, is used by the VLA, with 27 antennas and a maximum separation of 20 miles, and the VLBA, with 10 antennas and a maximum separation of 5,000 miles. Systems such as the VLBA, in which the antennas are so widely separated that data must be individually tape-recorded at each site and combined after the observation, are called Very Long Baseline Interferometry (VLBI) systems. VLBI was developed by American and Canadian astronomers and was first successfully demonstrated in 1967. The VLBA, working with radio telescopes in Europe, represents the largest radio telescope that can be accommodated on the surface of the Earth. With an orbit that carries it more than 13,000 miles above the Earth, HALCA, working with the ground-based telescopes, extends the "sharp vision" of radio astronomy farther than ever before. Using HALCA, radio astronomers expect to routinely produce images with more than 100 times the detail seen by the Hubble Space Telescope. Astronomers around the world are waiting to use the satellite to seek answers to questions about some of the most distant and intriging objects in the universe. As much as one-third of the VLBA's observing time will be devoted to observations in conjunction with HALCA. Over the expected five-year lifetime of HALCA, scientists hope to observe hundreds of quasars, pulsars, galaxies, and other objects. Launched from Japan's Kagoshima Space Center, HALCA orbits the Earth every six hours, ranging from 350 to 13,200 miles high. The 1,830-pound satellite has a dish antenna 26 feet in

  16. Remote secure observing for the Faulkes Telescopes

    Science.gov (United States)

    Smith, Robert J.; Steele, Iain A.; Marchant, Jonathan M.; Fraser, Stephen N.; Mucke-Herzberg, Dorothea

    2004-09-01

    Since the Faulkes Telescopes are to be used by a wide variety of audiences, both powerful engineering level and simple graphical interfaces exist giving complete remote and robotic control of the telescope over the internet. Security is extremely important to protect the health of both humans and equipment. Data integrity must also be carefully guarded for images being delivered directly into the classroom. The adopted network architecture is described along with the variety of security and intrusion detection software. We use a combination of SSL, proxies, IPSec, and both Linux iptables and Cisco IOS firewalls to ensure only authenticated and safe commands are sent to the telescopes. With an eye to a possible future global network of robotic telescopes, the system implemented is capable of scaling linearly to any moderate (of order ten) number of telescopes.

  17. Study on the spectrum and inelastic interactions of muons using Baksan underground scintillation telescope

    International Nuclear Information System (INIS)

    Bakatanov, V.P.; Novosel'tsev, Yu.F.; Novosel'tseva, R.V.; Semenov, A.M.; Sten'kin, Yu.V.; Chudakov, A.E.

    1989-01-01

    Muon inelastic interaction process was investigated and spectrum of cosmic ray muons was calculated using Baksan underground scintillation telescope. Possibility to separate electromagnetic and nuclear cascades generated at muon inelastic interaction was provided in the experiment. Calculation of spectrum of energy yields initated at cascade passage through the telescope which shows that on an average about 13% of electromagnetic cascade energy and about 11% of nuclear one are detected is presented. Electromagnetic cascades with E k e =0.906 TeV mean energy and E k n =1.14 TeV energy nuclear ones response energy yield within 01.11 ≤ E ≤ 0.133 TeV range. Integral energy spectrum of cascades and dependence of cross section of photonuclear interaction with A=26 nucleus on energy are shown. Measurement results for R exp (E)=N n N e ratio of number of nuclear cascades to number of electromagnetic ones within energy yield different regions are given

  18. Single particle detecting telescope system

    International Nuclear Information System (INIS)

    Yamamoto, I.; Tomiyama, T.; Iga, Y.; Komatsubara, T.; Kanada, M.; Yamashita, Y.; Wada, T.; Furukawa, S.

    1981-01-01

    We constructed the single particle detecting telescope system for detecting a fractionally charged particle. The telescope consists of position detecting counters, wall-less multi-cell chambers, single detecting circuits and microcomputer system as data I/0 processor. Especially, a frequency of double particle is compared the case of the single particle detecting with the case of an ordinary measurement

  19. Building the Hubble Space Telescope

    International Nuclear Information System (INIS)

    O'dell, C.R.

    1989-01-01

    The development of the design for the Hubble Space Telescope (HST) is discussed. The HST optical system is described and illustrated. The financial and policy issues related to the development of the HST are considered. The actual construction of the HST optical telescope is examined. Also, consideration is given to the plans for the HST launch

  20. Lee Sang Gak Telescope (LSGT): A Remotely Operated Robotic Telescope for Education and Research at Seoul National University

    Science.gov (United States)

    Im, Myungshin; Choi, Changsu; Kim, Kihyun

    2015-08-01

    We introduce the Lee Sang Gak Telescope (LSGT), a remotely operated, robotic 0.43-meter telescope. The telescope was installed at the Siding Spring Observatory, Australia, in 2014 October, to secure regular and exclusive access to the dark sky and excellent atmospheric conditions in the southern hemisphere from the Seoul National University (SNU) campus. Here, we describe the LSGT system and its performance, present example images from early observations, and discuss a future plan to upgrade the system. The use of the telescope includes (i) long-term monitoring observations of nearby galaxies, active galactic nuclei, and supernovae; (ii) rapid follow-up observations of transients such as gamma-ray bursts and gravitational wave sources; and (iii) observations for educational activities at SNU. Based on observations performed so far, we find that the telescope is capable of providing images to a depth of R=21.5 mag (point source detection) at 5-σ with 15 min total integration time under good obs-erving conditions.

  1. Carbon Fiber Mirror for a CubeSat Telescope

    Science.gov (United States)

    Kim, Young-Soo; Jang, Jeong Gyun; Kim, Jihun; Nam, Uk Won

    2017-08-01

    Telescope mirrors made by carbon fibers have been increasingly used especially for space applications, and they may replace the traditional glass mirrors. Glass mirrors are easy to fabricate, but needed to be carefully handled as they are brittle. Other materials have also been considered for telescope mirrors, such as metals, plastics, and liquids even. However glass and glass ceramics are still commonly and dominantly used.Carbon fiber has mainly been used for mechanical supports like truss structure and telescope tubes, as it is stiff and light-weight. It can also be a good material for telescope mirrors, as it has additional merits of non-brittle and very low thermal expansion. Therefore, carbon fiber mirror would be suitable for space telescopes which should endure the harsh vibration conditions during launch.A light-weight telescope made by carbon fiber has been designed for a small satellite which would have much less weight than conventional ones. In this poster, mirror materials are reviewed, and a design of carbon fiber telescope is presented and discussed.

  2. Performance of the front-end electronics of the ANTARES neutrino telescope

    NARCIS (Netherlands)

    Aguilar, J. A.; Al Samarai, I.; Albert, A.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Jesus, A. C. Assis; Astraatmadja, T.; Aubert, J-J; Auer, R.; Baret, B.; Basa, S.; Bazzotti, M.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bou-Cabo, M.; Bouwhuis, M. C.; Brown, A.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Caponetto, L.; Carloganu, C.; Carminati, G.; Carr, J.; Castorina, E.; Cavasinni, V.; Cecchini, S.; Chaleil, Th; Charvis, [No Value; Chiarusi, T.; Sen, N. Chon; Circella, M.; Costantini, H.; Cottini, N.; Coyle, P.; Curtil, C.; De Bonis, G.; de Botton, N.; Dekeyser, I.; Delagnes, E.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Druillole, F.; Eberl, T.; Emanuele, U.; Ernenwein, J-P; Escoffier, S.; Falchini, E.; Fehr, F.; Feinstein, F.; Flaminio, V.; Fopma, J.; Fratini, K.; Fritsch, U.; Fuda, J-L; Gay, P.; Giacomelli, G.; Gomez-Gonzalez, J. P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; Hoffmann, C.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernandez-Rey, J. J.; Herold, B.; Hoessl, J.; de Jong, M.; Kalantar-Nayestanaki, N.; Kalekin, O.; Kappes, A.; Katz, U.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kretschmer, W.; Lachartre, D.; Lafoux, H.; Lahmann, R.; Lamare, P.; Lambard, G.; Larosa, G.; Laschinsky, H.; Le Provost, H.; Le Van Suu, A.; Lefevre, D.; Legou, T.; Lelaizant, G.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Lucarelli, F.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Mazure, A.; Monmarthe, E.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Naumann, C.; Neff, M.; Olivetto, Ch; Ostasch, R.; Palioselitis, D.; Pavala, G. E.; Payre, P.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Picq, C.; Pineau, J-P; Poinsignon, J.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Radu, A.; Reed, C.; Rethore, F.; Riccobene, G.; Richardt, C.; Rujoiu, M.; Russo, G. V.; Salesa, F.; Sapienza, P.; Schoeck, F.; Schuller, J. P.; Shanidze, R.; Simeone, F.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Tamburini, C.; Tasca, L.; Toscano, S.; Vallage, B.; Van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Wijnker, G.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zuniga, J.

    2010-01-01

    ANTARES is a high-energy neutrino telescope installed in the Mediterranean Sea at a depth of 2475 m. It consists of a three-dimensional array of optical modules, each containing a large photomultiplier tube. A total of 2700 front-end ASICs named analogue ring samplers (ARS) process the phototube

  3. A free market in telescope time?

    Science.gov (United States)

    Etherton, Jason; Steele, Iain A.; Mottram, Christopher J.

    2004-09-01

    As distributed systems are becoming more and more diverse in application there is a growing need for more intelligent resource scheduling. eSTAR Is a geographically distributed network of Grid-enabled telescopes, using grid middleware to provide telescope users with an authentication and authorisation method, allowing secure, remote access to such resources. The eSTAR paradigm is based upon this secure, single sign-on, giving astronomers or their agent proxies direct access to these telescopes. This concept, however, involves the complex issue of how to schedule observations stored within physically distributed media, on geographically distributed resources. This matter is complicated further by the varying degrees of constraints placed upon observations such as timeliness, atmospheric and meteorological conditions, and sky brightness to name a few. This paper discusses a free market approach to this scheduling problem, where astronomers are given credit, instead of time, from their respective TAGs to spend on telescopes as they see fit. This approach will ultimately provide a community-driven schedule, genuine indicators of the worth of specific telescope time and promote a more efficient use of that time, as well as demonstrating a 'survival of the fittest' type selection.

  4. Mark III VLBI observations of the nucleus of M81 at 2.3 and 8.3 GHz

    International Nuclear Information System (INIS)

    Bartel, N.; Corey, B.E.; Shapiro, I.I.; Rogers, A.E.E.; Whitney, A.R.; Preston, R.A.

    1982-01-01

    The authors report here on simultaneous VLBI observations made with the Mark III system at 2.3 and 8.3 GHz. Observations on 14 and 16 March 1981 utilized the 100 m diameter telescope in Effelsberg, W. Germany (MPIR); the 43 m telescope at Green Bank, WV (NRAO); and the 40 m telescope near Big Pine, CA (OVRO). (Auth.)

  5. Laparoscopic resection of lower rectal cancer with telescopic anastomosis without abdominal incisions.

    Science.gov (United States)

    Li, Shi-Yong; Chen, Gang; Du, Jun-Feng; Chen, Guang; Wei, Xiao-Jun; Cui, Wei; Zuo, Fu-Yi; Yu, Bo; Dong, Xing; Ji, Xi-Qing; Yuan, Qiang

    2015-04-28

    To assess laparoscopic radical resection of lower rectal cancer with telescopic anastomosis through transanal resection without abdominal incisions. From March 2010 to June 2014, 30 patients (14 men and 16 women, aged 36-78 years, mean age 59.8 years) underwent laparoscopic radical resection of lower rectal cancer with telescopic anastomosis through anus-preserving transanal resection. The tumors were 5-7 cm away from the anal margin in 24 cases, and 4 cm in six cases. In preoperative assessment, there were 21 cases of T1N0M0 and nine of T2N0M0. Through the middle approach, the sigmoid mesentery was freed at the root with an ultrasonic scalpel and the roots of the inferior mesenteric artery and vein were dissected, clamped and cut. Following the total mesorectal excision principle, the rectum was separated until the anorectal ring reached 3-5 cm from the distal end of the tumor. For perineal surgery, a ring incision was made 2 cm above the dentate line, and sharp dissection was performed submucosally towards the superior direction, until the plane of the levator ani muscle, to transect the rectum. The rectum and distal sigmoid colon were removed together from the anus, followed by a telescopic anastomosis between the full thickness of the proximal colon and the mucosa and submucosal tissue of the rectum. For the present cohort of 30 cases, the mean operative time was 178 min, with an average of 13 positive lymph nodes detected. One case of postoperative anastomotic leak was observed, requiring temporary colostomy, which was closed and recovered 3 mo later. The postoperative pathology showed T1-T2N0M0 in 19 cases and T2N1M0 in 11 cases. Twelve months after surgery, 94.4% patients achieved anal function Kirwan grade 1, indicating that their anal function returned to normal. The patients were followed up for 1-36 mo, with an average of 23 mo. There was no local recurrence, and 17 patients survived for > 3 years (with a survival rate of 100%). Laparoscopic radical

  6. Ground-Based Telescope Parametric Cost Model

    Science.gov (United States)

    Stahl, H. Philip; Rowell, Ginger Holmes

    2004-01-01

    A parametric cost model for ground-based telescopes is developed using multi-variable statistical analysis, The model includes both engineering and performance parameters. While diameter continues to be the dominant cost driver, other significant factors include primary mirror radius of curvature and diffraction limited wavelength. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e.. multi-telescope phased-array systems). Additionally, single variable models based on aperture diameter are derived. This analysis indicates that recent mirror technology advances have indeed reduced the historical telescope cost curve.

  7. Giving High School Students a Research Grade Radio Telescope to Control; Motivational Results from Access to Real Scientific Tools

    Science.gov (United States)

    Kohrs, Russell; Langston, G.; Heatherly, S.

    2013-01-01

    Have you ever wondered what it might be like to place control of a six-story building in the hands of eager high school students? This past summer, the USNO 20m telescope at the National Radio Astronomy Observatory, Green Bank, WV was brought back online for just such a purpose. This telescope is equipped with an X-band receiver, capable of observing center frequencies from 8-10 GHz and is the first radio telescope accessible by students and observers through the SKYNET telescope network. Operated remotely with a queue-based system, students can now collect real radio data for any range of projects. This past summer, five lessons were written that were tailor-made for student exploration of radio astronomy. Each lesson explores various radio objects in the context of an action-packed sci-fi adventure. Some of the work required to bring the 20m online for student use will be discussed here, but the main focus of this presentation will be how this work has been received by the author’s own students in its first classroom application. Topics that are normally difficult to discuss with students in an inquiry-based classroom setting, such as HII regions, synchrotron radiation, lunar temperature profiles, and galactic supermassive black holes were addressed in the classroom using the lessons developed by the author for the 20m as well as data collected by students using the telescope via SKYNET.

  8. Care of astronomical telescopes and accessories a manual for the astronomical observer and amateur telescope maker

    CERN Document Server

    Pepin, M Barlow

    2005-01-01

    Commercially-made astronomical telescopes are better and less expensive than ever before, and their optical and mechanical performance can be superb. When a good-quality telescope fails to perform as well as it might, the reason is quite probably that it needs a little care and attention! Here is a complete guide for anyone who wants to understand more than just the basics of astronomical telescopes and accessories, and how to maintain them in the peak of condition. The latest on safely adjusting, cleaning, and maintaining your equipment is combined with thoroughly updated methods from the old masters. Here, too, are details of choosing new and used optics and accessories, along with enhancements you can make to extend their versatility and useful lifetime. This book is for you. Really. Looking after an astronomical telescope isn't only for the experts - although there are some things that only an expert should attempt - and every serious amateur astronomer will find invaluable information here, gleaned from ...

  9. GRANITE- A steroscopic imaging Chernkov telescope system

    International Nuclear Information System (INIS)

    Shubnell, M.; Akerlof, C.W.; Cawley, M.F.; Chantell, M.; Fegan, D.J.; Fennell, S.; O'Flaherty, K.S.; Freeman, S.; Frishman, D.; Gaidos, J.A.; Hagan, J.; Harris, K.; Hillas, A.M.; Kerrick, A.D.; Lamb, R.C.; Lappin, T.; Lawrence, M.A.; Levy, H.; Lewis, D.A.; Meyer, D.I.; Mohanty, G.; Punch, M.; Reynolds, P.T.; Rovero, A.C.; Sembroski, G.; Weaverdyck, C.; Weekes, T.C.; Whitaker, T.; Wilson, C.

    1993-01-01

    A second 10 meter class imaging telescope was constructed on Mt. Hopkins, Arizona, the site of the original 10 meter Whipple Cherenkov telescope. The twin telescope system with a 140 meter base line will allow both a reduction in the energy threshold and an improvement in the rejection of the hardonic background. The new telescope started operation in December 1991. With the final completion of the first installation stage (GRANITE I) during spring 92, it is now operating simultaneously with the orginal reflector. We describe in this paper design and construction of the new instrument and demonstrate the capability of the experiment to record coincident events

  10. Characterization benches for neutrino telescope Optical Modules at the APC laboratory

    Science.gov (United States)

    Avgitas, Theodore; Creusot, Alexandre; Kouchner, Antoine

    2016-04-01

    As has been demonstrated by the first generation of neutrino telescopes Antares and IceCube, precise knowledge of the photon detection efficiency of optical modules is of fundamental importance for the understanding of the instrument and accurate event reconstruction. Dedicated test benches have been developed to measure all related quantities for the Digital Optical Modules of the KM3NeT neutrino telescope being currently deployed in the Mediterranean sea. The first bench is a black box with robotic arms equipped with a calibrated single photon source or laser which enable a precise mapping of the detection efficiency at arbitrary incident angles as well as precise measurements of the time delays induced by the photodetection chain. These measurement can be incorporated and compared to full GEANT MonteCarlo simulations of the optical modules. The second bench is a 2 m×2 m ×2 m water tank equipped with muon hodoscopes on top and bottom. It enables to study and measure the angular dependence of the DOM's detection efficiency of the Cherenkov light produced in water by relativistic muons, thus reproducing in situ detection conditions. We describe these two benches and present their first results and status.

  11. Trick or Treat and Telescopes

    Science.gov (United States)

    Buratti, Bonnie J.; Meinke, Bonnie K.; Schmude, Richard W.

    2017-10-01

    Based on an activity that DPS member Richard Schmude Jr. has been doing for years, with over 5000 children reached, DPS initiated in 2016 a pilot program entitled “Trick-or-Treat and Telescopes.” DPS encouraged its members to put out their telescopes during trick-or-treat time on Halloween, in their own lawns or in a neighbor’s lawn with better viewing (or more traffic). The program will be continued in 2017. This year should offer good viewing with a waxing gibbous moon and Saturn visible. The program was also advertised though the Night Sky Network, a consortium of astronomy clubs. The following website gives advice and connections to resources.https://dps.aas.org/education/trick-or-treat-and-telescopes acknowledged.

  12. NESTOR Deep Sea Neutrino Telescope

    International Nuclear Information System (INIS)

    Aggouras, G.; Anassontzis, E.G.; Ball, A.E.; Bourlis, G.; Chinowsky, W.; Fahrun, E.; Grammatikakis, G.; Green, C.; Grieder, P.; Katrivanos, P.; Koske, P.; Leisos, A.; Markopoulos, E.; Minkowsky, P.; Nygren, D.; Papageorgiou, K.; Przybylski, G.; Resvanis, L.K.; Siotis, I.; Sopher, J.; Staveris-Polikalas, A.; Tsagli, V.; Tsirigotis, A.; Tzamarias, S.; Zhukov, V.A.

    2006-01-01

    One module of NESTOR, the Mediterranean deep-sea neutrino telescope, was deployed at a depth of 4000m, 14km off the Sapienza Island, off the South West coast of Greece. The deployment site provides excellent environmental characteristics. The deployed NESTOR module is constructed as a hexagonal star like latticed titanium star with 12 Optical Modules and an one-meter diameter titanium sphere which houses the electronics. Power and data were transferred through a 30km electro-optical cable to the shore laboratory. In this report we describe briefly the detector and the detector electronics and discuss the first physics data acquired and give the zenith angular distribution of the reconstructed muons

  13. The Hubble Space Telescope UV Legacy Survey of Galactic globular clusters - XIV. Multiple stellar populations within M 15 and their radial distribution

    Science.gov (United States)

    Nardiello, D.; Milone, A. P.; Piotto, G.; Anderson, J.; Bedin, L. R.; Bellini, A.; Cassisi, S.; Libralato, M.; Marino, A. F.

    2018-06-01

    In the context of the Hubble Space Telescope UV Survey of Galactic globular clusters (GCs), we derived high-precision, multi-band photometry to investigate the multiple stellar populations in the massive and metal-poor GC M 15. By creating for red-giant branch (RGB) stars of the cluster a `chromosome map', which is a pseudo two-colour diagram made with appropriate combination of F275W, F336W, F438W, and F814W magnitudes, we revealed colour spreads around two of the three already known stellar populations. These spreads cannot be produced by photometric errors alone and could hide the existence of (two) additional populations. This discovery increases the complexity of the multiple-population phenomenon in M 15. Our analysis shows that M 15 exhibits a faint sub-giant branch (SGB), which is also detected in colour-magnitude diagrams (CMDs) made with optical magnitudes only. This poorly populated SGB includes about 5 per cent of the total number of SGB stars and evolves into a red RGB in the mF336W versus mF336W - mF814W CMD, suggesting that M 15 belongs to the class of Type II GCs. We measured the relative number of stars in each population at various radial distances from the cluster centre, showing that all of these populations share the same radial distribution within statistic uncertainties. These new findings are discussed in the context of the formation and evolution scenarios of the multiple populations.

  14. The camera of the fifth H.E.S.S. telescope. Part I: System description

    Energy Technology Data Exchange (ETDEWEB)

    Bolmont, J., E-mail: bolmont@in2p3.fr [LPNHE, Université Pierre et Marie Curie Paris 6, Université Denis Diderot Paris 7, CNRS/IN2P3, 4 Place Jussieu, F-75252 Paris Cedex 5 (France); Corona, P.; Gauron, P.; Ghislain, P.; Goffin, C.; Guevara Riveros, L.; Huppert, J.-F.; Martineau-Huynh, O.; Nayman, P.; Parraud, J.-M.; Tavernet, J.-P.; Toussenel, F.; Vincent, D.; Vincent, P. [LPNHE, Université Pierre et Marie Curie Paris 6, Université Denis Diderot Paris 7, CNRS/IN2P3, 4 Place Jussieu, F-75252 Paris Cedex 5 (France); Bertoli, W.; Espigat, P.; Punch, M. [APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité, 10, rue Alice Domon et Léonie Duquet, F-75205 Paris Cedex 13 (France); Besin, D.; Delagnes, E.; Glicenstein, J.-F. [CEA Saclay, DSM/IRFU, F-91191 Gif-Sur-Yvette Cedex (France); and others

    2014-10-11

    In July 2012, as the four ground-based gamma-ray telescopes of the H.E.S.S. (High Energy Stereoscopic System) array reached their tenth year of operation in Khomas Highlands, Namibia, a fifth telescope took its first data as part of the system. This new Cherenkov detector, comprising a 614.5 m{sup 2} reflector with a highly pixelized camera in its focal plane, improves the sensitivity of the current array by a factor two and extends its energy domain down to a few tens of GeV. The present part I of the paper gives a detailed description of the fifth H.E.S.S. telescope's camera, presenting the details of both the hardware and the software, emphasizing the main improvements as compared to previous H.E.S.S. camera technology.

  15. Observational results of a multi-telescope campaign in search of interstellar urea [(NH2)2CO

    International Nuclear Information System (INIS)

    Remijan, Anthony J.; Snyder, Lewis E.; Kuo, Hsin-Lun; Looney, Leslie W.; Friedel, Douglas N.; McGuire, Brett A.; Golubiatnikov, G. Yu; Lovas, Frank J.; Ilyushin, V. V.; Alekseev, E. A.; Dyubko, S. F.; McCall, Benjamin J.; Hollis, Jan M.

    2014-01-01

    In this paper, we present the results of an observational search for gas phase urea [(NH 2 ) 2 CO] observed toward the Sgr B2(N-LMH) region. We show data covering urea transitions from ∼100 GHz to 250 GHz from five different observational facilities: the Berkeley-Illinois-Maryland-Association (BIMA) Array, the Combined Array for Research in Millimeter-wave Astronomy (CARMA), the NRAO 12 m telescope, the IRAM 30 m telescope, and the Swedish-ESO Submillimeter Telescope (SEST). The results show that the features ascribed to urea can be reproduced across the entire observed bandwidth and all facilities by best-fit column density, temperature, and source size parameters which vary by less than a factor of two between observations merely by adjusting for telescope-specific parameters. Interferometric observations show that the emission arising from these transitions is cospatial and compact, consistent with the derived source sizes and emission from a single species. Despite this evidence, the spectral complexity of both (NH 2 ) 2 CO and of Sgr B2(N) makes the definitive identification of this molecule challenging. We present observational spectra, laboratory data, and models, and discuss our results in the context of a possible molecular detection of urea.

  16. NASA Telescopes Help Identify Most Distant Galaxy Cluster

    Science.gov (United States)

    2011-01-01

    WASHINGTON -- Astronomers have uncovered a burgeoning galactic metropolis, the most distant known in the early universe. This ancient collection of galaxies presumably grew into a modern galaxy cluster similar to the massive ones seen today. The developing cluster, named COSMOS-AzTEC3, was discovered and characterized by multi-wavelength telescopes, including NASA's Spitzer, Chandra and Hubble space telescopes, and the ground-based W.M. Keck Observatory and Japan's Subaru Telescope. "This exciting discovery showcases the exceptional science made possible through collaboration among NASA projects and our international partners," said Jon Morse, NASA's Astrophysics Division director at NASA Headquarters in Washington. Scientists refer to this growing lump of galaxies as a proto-cluster. COSMOS-AzTEC3 is the most distant massive proto-cluster known, and also one of the youngest, because it is being seen when the universe itself was young. The cluster is roughly 12.6 billion light-years away from Earth. Our universe is estimated to be 13.7 billion years old. Previously, more mature versions of these clusters had been spotted at 10 billion light-years away. The astronomers also found that this cluster is buzzing with extreme bursts of star formation and one enormous feeding black hole. "We think the starbursts and black holes are the seeds of the cluster," said Peter Capak of NASA's Spitzer Science Center at the California Institute of Technology in Pasadena. "These seeds will eventually grow into a giant, central galaxy that will dominate the cluster -- a trait found in modern-day galaxy clusters." Capak is first author of a paper appearing in the Jan. 13 issue of the journal Nature. Most galaxies in our universe are bound together into clusters that dot the cosmic landscape like urban sprawls, usually centered around one old, monstrous galaxy containing a massive black hole. Astronomers thought that primitive versions of these clusters, still forming and clumping

  17. The Northwest Indiana Robotic Telescope

    Science.gov (United States)

    Slavin, Shawn D.; Rengstorf, A. W.; Aros, J. C.; Segally, W. B.

    2011-01-01

    The Northwest Indiana Robotic (NIRo) Telescope is a remote, automated observing facility recently built by Purdue University Calumet (PUC) at a site in Lowell, IN, approximately 30 miles from the PUC campus. The recently dedicated observatory will be used for broadband and narrowband optical observations by PUC students and faculty, as well as pre-college students through the implementation of standards-based, middle-school modules developed by PUC astronomers and education faculty. The NIRo observatory and its web portal are the central technical elements of a project to improve astronomy education at Purdue Calumet and, more broadly, to improve science education in middle schools of the surrounding region. The NIRo Telescope is a 0.5-meter (20-inch) Ritchey-Chrétien design on a Paramount ME robotic mount, featuring a seven-position filter wheel (UBVRI, Hα, Clear), Peltier (thermoelectrically) cooled CCD camera with 3056 x 3056, square, 12 μm pixels, and off-axis guiding. It provides a coma-free imaging field of 0.5 degrees square, with a plate scale of 0.6 arcseconds per pixel. The observatory has a wireless internet connection, local weather station which publishes data to an internet weather site, and a suite of CCTV security cameras on an IP-based, networked video server. Control of power to every piece of instrumentation is maintained via internet-accessible power distribution units. The telescope can be controlled on-site, or off-site in an attended fashion via an internet connection, but will be used primarily in an unattended mode of automated observation, where queued observations will be scheduled daily from a database of requests. Completed observational data from queued operation will be stored on a campus-based server, which also runs the web portal and observation database. Partial support for this work was provided by the National Science Foundation's Course, Curriculum, and Laboratory Improvement (CCLI) program under Award No. 0736592.

  18. Design and development of telescope control system and software for the 50/80 cm Schmidt telescope

    Science.gov (United States)

    Kumar, T. S.; Banavar, R. N.

    2012-09-01

    In this paper, we describe the details of telescope controller design for the 50/80 cm Schmidt telescope at the Aryabhatta Research Institute of observational sciencES. The GUI based software for commanding the telescope is developed in Visual C++. The hardware architecture features a distributed network of microcontrollers over CAN. The basic functionality can also be implemented using the dedicated RS232 port per board. The controller is able to perform with negligible rms velocity errors. At fine speeds limit cycles are exhibited due to nonlinear friction. At speeds over 3.90 × 10-02 radians/sec, the PI controller performs with peak errors less than 1%.

  19. Simulation and track reconstruction for beam telescopes

    CERN Document Server

    Maqbool, Salman

    2017-01-01

    Beam telescopes are used for testing new detectors under development. Sensors are placed and a particle beam is passed through them. To test these novel detectors and determine their properties, the particle tracks need to be reconstructed from the known detectors in the telescope. Based on the reconstructed track, it’s predicted hits on the Device under Test (DUT) are compared with the actual hits on the DUT. Several methods exist for track reconstruction, but most of them don’t account for the effects of multiple scattering. General Broken Lines is one such algorithm which incorporates these effects during reconstruction. The aim of this project was to simulate the beam telescope and extend the track reconstruction framework for the FE-I4 telescope, which takes these effects into account. Section 1 introduces the problem, while section 2 focuses on beam telescopes. This is followed by the Allpix2 simulation framework in Section 3. And finally, Section 4 introduces the Proteus track reconstruction framew...

  20. Habitable Exoplanet Imager Optical Telescope Concept Design

    Science.gov (United States)

    Stahl, H Philip

    2017-01-01

    The Habitable Exoplanet Imaging Mission (HabEx) is one of four missions under study for the 2020 Astrophysics Decadal Survey. Its goal is to directly image and spectroscopically characterize planetary systems in the habitable zone of Sun-like stars. Additionally, HabEx will perform a broad range of general astrophysics science enabled by 100 to 2500 nm spectral range and 3 x 3 arc-minute FOV. Critical to achieving the HabEx science goals is a large, ultra-stable UV/Optical/Near-IR (UVOIR) telescope. The baseline HabEx telescope is a 4-meter off-axis unobscured three-mirror-anastigmatic, diffraction limited at 400 nm with wavefront stability on the order of a few 10s of picometers. This paper summarizes the opto-mechanical design of the HabEx baseline optical telescope assembly, including a discussion of how science requirements drive the telescope's specifications, and presents analysis that the baseline telescope structure meets its specified tolerances.

  1. Simulation and Track Reconstruction for Beam Telescopes

    CERN Document Server

    Maqbool, Salman

    2017-01-01

    Beam telescopes are an important tool to test new detectors under development in a particle beam. To test these novel detectors and determine their properties, the particle tracks need to be reconstructed from the known detectors in the telescope. Based on the reconstructed track, its predicted position on the Device under Test (DUT) are compared with the actual hits on the DUT. Several methods exist for track reconstruction, but most of them do not account for the effects of multiple scattering. General Broken Lines is one such algorithm which incorporates these effects during reconstruction. The aim of this project was to simulate the beam telescope and extend the track reconstruction framework for the FE-I4 telescope, which takes these effects into account. Section 1 introduces the problem, while section 2 focuses on beam telescopes. This is followed by the Allpix2 simulation framework in Section 3. And finally, Section 4 introduces the Proteus track reconstruction framework along with the General Broken ...

  2. Habitable exoplanet imager optical telescope concept design

    Science.gov (United States)

    Stahl, H. Philip

    2017-09-01

    The Habitable Exoplanet Imaging Mission (HabEx) is one of four missions under study for the 2020 Astrophysics Decadal Survey. Its goal is to directly image and spectroscopically characterize planetary systems in the habitable zone of Sunlike stars. Additionally, HabEx will perform a broad range of general astrophysics science enabled by 100 to 2500 nm spectral range and 3 x 3 arc-minute FOV. Critical to achieving the HabEx science goals is a large, ultra-stable UV/Optical/Near-IR (UVOIR) telescope. The baseline HabEx telescope is a 4-meter off-axis unobscured three-mirroranastigmatic, diffraction limited at 400 nm with wavefront stability on the order of a few 10s of picometers. This paper summarizes the opto-mechanical design of the HabEx baseline optical telescope assembly, including a discussion of how science requirements drive the telescope's specifications, and presents analysis that the baseline telescope structure meets its specified tolerances.

  3. Mirrors design, analysis and manufacturing of the 550mm Korsch telescope experimental model

    Science.gov (United States)

    Huang, Po-Hsuan; Huang, Yi-Kai; Ling, Jer

    2017-08-01

    In 2015, NSPO (National Space Organization) began to develop the sub-meter resolution optical remote sensing instrument of the next generation optical remote sensing satellite which follow-on to FORMOSAT-5. Upgraded from the Ritchey-Chrétien Cassegrain telescope optical system of FORMOSAT-5, the experimental optical system of the advanced optical remote sensing instrument was enhanced to an off-axis Korsch telescope optical system which consists of five mirrors. It contains: (1) M1: 550mm diameter aperture primary mirror, (2) M2: secondary mirror, (3) M3: off-axis tertiary mirror, (4) FM1 and FM2: two folding flat mirrors, for purpose of limiting the overall volume, reducing the mass, and providing a long focal length and excellent optical performance. By the end of 2015, we implemented several important techniques including optical system design, opto-mechanical design, FEM and multi-physics analysis and optimization system in order to do a preliminary study and begin to develop and design these large-size lightweight aspheric mirrors and flat mirrors. The lightweight mirror design and opto-mechanical interface design were completed in August 2016. We then manufactured and polished these experimental model mirrors in Taiwan; all five mirrors ware completed as spherical surfaces by the end of 2016. Aspheric figuring, assembling tests and optical alignment verification of these mirrors will be done with a Korsch telescope experimental structure model in 2018.

  4. A Research on the Primary Mirror Manipulator of Large Segmented-mirror Telescope

    Science.gov (United States)

    Zuo, H.

    2012-09-01

    Since Galileo firstly used the telescope to observe the sky 400 years ago, the aperture of the telescope has become larger and larger to observe the deeper universe, and the segmented-mirror telescope is becoming more and more popular with increasing aperture. In the early 21st century, a series of segmented-mirror telescopes have been constructed including the Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST) of China. LAMOST is a meridian reflecting Schmidt telescope, and the dimension of the primary mirror is about 6.7 m× 6 m, which is composed of 37 hexagonal sub-mirrors. However, a problem about the mirror installation appears with the increasing aperture. If there are hundreds of sub-mirrors in the telescope, it is a challenging job to mount and dismount them to the truss. This problem is discussed in this paper and a manipulator for the primary mirror of LAMOST is designed to perform the mount and dismount work. In chapter 1, all the segmented-mirror telescopes in the world are introduced and how the sub-mirrors of these telescopes are installed has been investigated. After comparing with the serial and the parallel robot, a serial robot manipulator proposal, which has several redundant degrees of freedom (DOFs), has been chosen from a series of design proposals. In chapter 2, the theoretical analysis has been carried out on the basis of the design proposal, which includes the forward kinematics and the inverse kinematics. Firstly the D-H coordinate is built according to the structure of the manipulator, so it is possible to obtain the end-effector position and orientation from the individual joint motion thanks to the forward kinematics. Because of the redundant DOFs of the manipulator, the inverse kinematics solution can be a very trick task, and the result may not be only, therefore a kind of simulation is carried out to get the numerical solution using ADAMS (Automatic Dynamic Analysis of Mechanical System). In the dynamics analysis the

  5. Commissioning and First Operation of the Cryogenics for the CERN Axion Solar Telescope (CAST)

    CERN Document Server

    Barth, K; Passardi, Giorgio; Pezzetti, M; Pirotte, O; Stewart, L; Vullierme, B; Walckiers, L; Zioutas, Konstantin

    2004-01-01

    A new experiment, the CERN Axion Solar Telescope (CAST) was installed and commissioned in 2002. Its aim is to experimentally prove the existence of an as yet hypothetical particle predicted by theory as a solution of the strong CP problem and possible candidate for galactic dark matter. The heart of the detector consists of a decommissioned 10-m long LHC superconducting dipole prototype magnet, providing a magnetic field of up to 9.5 T. The whole telescope assembly is aligned with high precision to the core of the sun. If they exist, axions could be copiously produced in the core of the sun and converted into photons within the transverse magnetic field of the telescope. The converted low-energy solar axion spectrum, peaked around a mean energy of 4.4 keV, can then be focused by a special x-ray mirror system and detected by low-background photon detectors, installed on each end of the telescopes twin beam pipes. This paper describes the external and proximity cryogenic system and magnet commissioning as well ...

  6. TELICS—A Telescope Instrument Control System for Small/Medium Sized Astronomical Observatories

    Science.gov (United States)

    Srivastava, Mudit K.; Ramaprakash, A. N.; Burse, Mahesh P.; Chordia, Pravin A.; Chillal, Kalpesh S.; Mestry, Vilas B.; Das, Hillol K.; Kohok, Abhay A.

    2009-10-01

    For any modern astronomical observatory, it is essential to have an efficient interface between the telescope and its back-end instruments. However, for small and medium-sized observatories, this requirement is often limited by tight financial constraints. Therefore a simple yet versatile and low-cost control system is required for such observatories to minimize cost and effort. Here we report the development of a modern, multipurpose instrument control system TELICS (Telescope Instrument Control System) to integrate the controls of various instruments and devices mounted on the telescope. TELICS consists of an embedded hardware unit known as a common control unit (CCU) in combination with Linux-based data acquisition and user interface. The hardware of the CCU is built around the ATmega 128 microcontroller (Atmel Corp.) and is designed with a backplane, master-slave architecture. A Qt-based graphical user interface (GUI) has been developed and the back-end application software is based on C/C++. TELICS provides feedback mechanisms that give the operator good visibility and a quick-look display of the status and modes of instruments as well as data. TELICS has been used for regular science observations since 2008 March on the 2 m, f/10 IUCAA Telescope located at Girawali in Pune, India.

  7. Solar cooker effect test and temperature field simulation of radio telescope subreflector

    International Nuclear Information System (INIS)

    Chen, Deshen; Wang, Huajie; Qian, Hongliang; Zhang, Gang; Shen, Shizhao

    2016-01-01

    Highlights: • Solar cooker effect test of a telescope subreflector is conducted for the first time. • The cause and temperature distribution regularities are analyzed contrastively. • Simulation methods are proposed using light beam segmentation and tracking methods. • The validity of simulation methods is evaluated using the test results. - Abstract: The solar cooker effect can cause a local high temperature of the subreflector and can directly affect the working performance of the radio telescope. To study the daily temperature field and solar cooker effect of a subreflector, experimental studies are carried out with a 3-m-diameter radio telescope model for the first time. Initially, the solar temperature distribution rules, especially the solar cooker effect, are summarized according to the field test results under the most unfavorable conditions. Then, a numerical simulation for the solar temperature field of the subreflector is studied by light beam segmentation and tracking methods. Finally, the validity of the simulation methods is evaluated using the test results. The experimental studies prove that the solar cooker effect really exists and should not be overlooked. In addition, simulation methods for the subreflector temperature field proposed in this paper are effective. The research methods and conclusions can provide valuable references for thermal design, monitoring and control of similar high-precision radio telescopes.

  8. Mirror position determination for the alignment of Cherenkov Telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Adam, J. [TU Dortmund, Experimental Physics 5 Otto-Hahn-Str. 4, 44221 Dortmund (Germany); Ahnen, M.L. [ETH Zurich, Institute for Particle Physics Otto-Stern-Weg 5, 8093 Zurich (Switzerland); Baack, D. [TU Dortmund, Experimental Physics 5 Otto-Hahn-Str. 4, 44221 Dortmund (Germany); Balbo, M. [University of Geneva, ISDC Data Center for Astrophysics Chemin Ecogia 16, 1290 Versoix (Switzerland); Bergmann, M. [Universität Würzburg, Institute for Theoretical Physics and Astrophysics Emil-Fischer-Str. 31, 97074 Würzburg (Germany); Biland, A. [ETH Zurich, Institute for Particle Physics Otto-Stern-Weg 5, 8093 Zurich (Switzerland); Blank, M. [Universität Würzburg, Institute for Theoretical Physics and Astrophysics Emil-Fischer-Str. 31, 97074 Würzburg (Germany); Bretz, T. [ETH Zurich, Institute for Particle Physics Otto-Stern-Weg 5, 8093 Zurich (Switzerland); RWTH Aachen (Germany); Bruegge, K.A.; Buss, J. [TU Dortmund, Experimental Physics 5 Otto-Hahn-Str. 4, 44221 Dortmund (Germany); Dmytriiev, A. [University of Geneva, ISDC Data Center for Astrophysics Chemin Ecogia 16, 1290 Versoix (Switzerland); Domke, M. [TU Dortmund, Experimental Physics 5 Otto-Hahn-Str. 4, 44221 Dortmund (Germany); Dorner, D. [Universität Würzburg, Institute for Theoretical Physics and Astrophysics Emil-Fischer-Str. 31, 97074 Würzburg (Germany); FAU Erlangen (Germany); Einecke, S. [TU Dortmund, Experimental Physics 5 Otto-Hahn-Str. 4, 44221 Dortmund (Germany); Hempfling, C. [Universität Würzburg, Institute for Theoretical Physics and Astrophysics Emil-Fischer-Str. 31, 97074 Würzburg (Germany); and others

    2017-07-11

    Imaging Atmospheric Cherenkov Telescopes (IACTs) need imaging optics with large apertures to map the faint Cherenkov light emitted in extensive air showers onto their image sensors. Segmented reflectors fulfill these needs using mass produced and light weight mirror facets. However, as the overall image is the sum of the individual mirror facet images, alignment is important. Here we present a method to determine the mirror facet positions on a segmented reflector in a very direct way. Our method reconstructs the mirror facet positions from photographs and a laser distance meter measurement which goes from the center of the image sensor plane to the center of each mirror facet. We use our method to both align the mirror facet positions and to feed the measured positions into our IACT simulation. We demonstrate our implementation on the 4 m First Geiger-mode Avalanche Cherenkov Telescope (FACT).

  9. A synthetic aperture radio telescope for ICME observations as a potential payload of SPORT

    Science.gov (United States)

    Zhang, C.; Sun, W.; Liu, H.; Xiong, M.; Liu, Y. D.; Wu, J.

    2013-12-01

    We introduce a potential payload for the Solar Polar ORbit Telescope (SPORT), a space weather mission proposed by the National Space Science Center, Chinese Academy of Sciences. This is a synthetic aperture radio imager designed to detect radio emissions from interplanetary coronal mass ejections (ICMEs), which is expected to be an important instrument to monitor the propagation and evolution of ICMEs. The radio telescope applies a synthetic aperture interferometric technique to measure the brightness temperature of ICMEs. Theoretical calculations of the brightness temperature utilizing statistical properties of ICMEs and the background solar wind indicate that ICMEs within 0.35 AU from the Sun are detectable by a radio telescope at a frequency <= 150 MHz with a sensitivity of <=1 K. The telescope employs a time shared double rotation scan (also called a clock scan), where two coplanar antennas revolve around a fixed axis at different radius and speed, to fulfill sampling of the brightness temperature. An array of 4+4 elements with opposite scanning directions are developed for the radio telescope to achieve the required sensitivity (<=1K) within the imaging refreshing time (~30 minutes). This scan scheme is appropriate for a three-axis stabilized spacecraft platform while keeping a good sampling pattern. We also discuss how we select the operating frequency, which involves a trade-off between the engineering feasibility and the scientific goal. Our preliminary results indicate that the central frequency of 150 MHz with a bandwidth of 20 MHz, which requires arm lengths of the two groups of 14m and 16m, respectively, gives an angular resolution of 2°, a field of view of ×25° around the Sun, and a time resolution of 30 minutes.

  10. A major electronics upgrade for the H.E.S.S. Cherenkov telescopes 1-4

    CERN Document Server

    Giavitto, G; Balzer, A.; Berge, D.; Brun, F.; Chaminade, T.; Delagnes, E.; Fontaine, G.; Füßling, M.; Giebels, B.; Glicenstein, J.F.; Gräber, T.; Hinton, J.A.; Jahnke, A.; Klepser, S.; Kossatz, M.; Kretzschmann, A.; Lefranc, V.; Leich, H.; Lüdecke, H.; Manigot, P.; Marandon, V.; Moulin, E.; de, M.; Nayman, P.; Penno, M.; Ross, D.; Salek, D.; Schade, M.; Schwab, T.; Simoni, R.; Stegmann, C.; Thornhill, J.; Toussenel, F.

    2015-01-01

    The High Energy Stereoscopic System (H.E.S.S.) is an array of imaging atmospheric Cherenkov telescopes (IACTs) located in the Khomas Highland in Namibia. It consists of four 12-m telescopes (CT1-4), which started operations in 2003, and a 28-m diameter one (CT5), which was brought online in 2012. It is the only IACT system featuring telescopes of different sizes, which provides sensitivity for gamma rays across a very wide energy range, from ~30 GeV up to ~100 TeV. Since the camera electronics of CT1-4 are much older than the one of CT5, an upgrade is being carried out; first deployment was in 2015, full operation is planned for 2016. The goals of this upgrade are threefold: reducing the dead time of the cameras, improving the overall performance of the array and reducing the system failure rate related to aging. Upon completion, the upgrade will assure the continuous operation of H.E.S.S. at its full sensitivity until and possibly beyond the advent of CTA. In the design of the new components, several CTA con...

  11. VLT Unit Telescopes Named at Paranal Inauguration

    Science.gov (United States)

    1999-03-01

    This has been a busy, but also a very successful and rewarding week for the European Southern Observatory and its staff. While "First Light" was achieved at the second 8.2-m VLT Unit Telescope (UT2) ahead of schedule, UT1 produced its sharpest image so far. This happened at a moment of exceptional observing conditions in the night between March 4 and 5, 1999. During a 6-min exposure of the majestic spiral galaxy, NGC 2997 , stellar images of only 0.25 arcsec FWHM (full-width half-maximum) were recorded. This and two other frames of nearly the same quality have provided the base for the beautiful colour-composite shown above. At this excellent angular resolution, individual star forming regions are well visible along the spiral arms. Of particular interest is the peculiar, twisted shape of the long spiral arm to the right. The Paranal Inauguration The official inauguration of the Paranal Observatory took place in the afternoon of March 5, 1999, in the presence of His Excellency, the President of the Republic of Chile, Don Eduardo Frei Ruiz-Tagle, and ministers of his cabinet, as well the Ambassadors to Chile of the ESO member states and many other distinguished guests. The President of the ESO Council, Mr. Henrik Grage, and the ESO Director General, Professor Riccardo Giacconi, were the foremost representatives of the ESO organisation; most members of the ESO Council and ESO staff also participated. A substantial number of media representatives from Europe and Chile were present and reported - often live - from Paranal during the afternoon and evening. The guests were shown the impressive installations at the new observatory, including the first and second 8.2-m VLT Unit Telescopes; the latter having achieved "First Light" just four days before. A festive ceremony took place in the dome of UT2, under the large telescope structure that had been tilted towards the horizon to make place for the numerous participants. After an introductory address by the ESO Director

  12. A mechanical design for a detection unit for a deep-sea neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Berbee, E.M.; Boer Rookhuizen, H.; Heine, E.; Mul, G. [Nikhef, Science Park 105, 1098 XG Amsterdam (Netherlands); Wolf, E. de, E-mail: e.dewolf@nikhef.nl [University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Nikhef, Science Park 105, 1098 XG Amsterdam (Netherlands)

    2013-10-11

    The future KM3NeT neutrino telescope will be built on the seabed of the Mediterranean Sea at a depth between three and five kilometers. The high ambient pressure, but also the fact that the detector is hardly accessible, put severe constraints on the mechanical design of the detection units of the telescope. A detection unit is a vertical structure that supports the optical sensors of the telescope. It has a height of almost 900 m; two data cables run along the full length of the structure. The detection unit will be installed at the seabed as a compact package. Once acoustically released, it unfurls to its full length. The stability of the detection unit during unfurling and during operation is an important requirement for the mechanical design of the structure. We present the evolution of the design of the detection unit for the KM3NeT detector.

  13. A mechanical design for a detection unit for a deep-sea neutrino telescope

    International Nuclear Information System (INIS)

    Berbee, E.M.; Boer Rookhuizen, H.; Heine, E.; Mul, G.; Wolf, E. de

    2013-01-01

    The future KM3NeT neutrino telescope will be built on the seabed of the Mediterranean Sea at a depth between three and five kilometers. The high ambient pressure, but also the fact that the detector is hardly accessible, put severe constraints on the mechanical design of the detection units of the telescope. A detection unit is a vertical structure that supports the optical sensors of the telescope. It has a height of almost 900 m; two data cables run along the full length of the structure. The detection unit will be installed at the seabed as a compact package. Once acoustically released, it unfurls to its full length. The stability of the detection unit during unfurling and during operation is an important requirement for the mechanical design of the structure. We present the evolution of the design of the detection unit for the KM3NeT detector

  14. Deploying the NASA Meter Class Autonomous Telescope (MCAT) on Ascension Island

    Science.gov (United States)

    Lederer, S. M.; Pace, L.; Hickson, P.; Cowardin, H. M.; Frith, J.; Buckalew, B.; Glesne, T.; Maeda, R.; Douglas, D.; Nishimoto, D.

    2015-01-01

    NASA has successfully constructed the 1.3m Meter Class Autonomous Telescope (MCAT) facility on Ascension Island in the South Atlantic Ocean. MCAT is an optical telescope designed specifically to collect ground-based data for the statistical characterization of orbital debris ranging from Low Earth Orbit (LEO) through Middle Earth Orbits (MEO) and beyond to Geo Transfer and Geosynchronous Orbits (GTO/GEO). The location of Ascension Island has two distinct advantages. First, the near-equatorial location fills a significant longitudinal gap in the Ground-based Electro-Optical Deep Space Surveillance (GEODSS) network of telescopes, and second, it allows access to objects in Low Inclination Low-Earth Orbits (LILO). The MCAT facility will be controlled by a sophisticated software suite that operates the dome and telescope, assesses sky and weather conditions, conducts all necessary calibrations, defines an observing strategy (as dictated by weather, sky conditions and the observing plan for the night), and carries out the observations. It then reduces the collected data via four primary observing modes ranging from tracking previously cataloged objects to conducting general surveys for detecting uncorrelated debris. Nightly observing plans, as well as the resulting text file of reduced data, will be transferred to and from Ascension, respectively, via a satellite connection. Post-processing occurs at NASA Johnson Space Center. Construction began in September, 2014 with dome and telescope installation occurring in April through early June, 2015. First light was achieved in June, 2015. Acceptance testing, full commissioning, and calibration of this soon-to-be fully autonomous system commenced in summer 2015. The initial characterization of the system from these tests is presented herein.

  15. Space Telescope maintenance and refurbishment

    Science.gov (United States)

    Trucks, H. F.

    1983-01-01

    The Space Telescope (ST) represents a new concept regarding spaceborne astronomical observatories. Maintenance crews will be brought to the orbital worksite to make repairs and replace scientific instruments. For major overhauls the telescope can be temporarily returned to earth with the aid of the Shuttle. It will, thus, be possible to conduct astronomical studies with the ST for two decades or more. The five first-generation scientific instruments used with the ST include a wide field/planetary camera, a faint object camera, a faint object spectrograph, a high resolution spectrograph, and a high speed photometer. Attention is given to the optical telescope assembly, the support systems module, aspects of mission and science operations, unscheduled maintenance, contingency orbital maintenance, planned on-orbit maintenance, ground maintenance, ground refurbishment, and ground logistics.

  16. Eyes on the sky a spectrum of telescopes

    CERN Document Server

    Graham-Smith, Francis

    2016-01-01

    Astronomy is experiencing a golden age, with a new generation of innovative telescopes yielding a flood of information on the Universe. This book traces the development of telescopes from Galileo to the present day, and explains the basic principles of telescopes that operate in different parts of electromagnetic spectrum.

  17. The First Multichroic Polarimeter Array on the Atacama Cosmology Telescope: Characterization and Performance

    Science.gov (United States)

    Ho, S. P.; Pappas, C. G.; Austermann, J.; Beall, J. A.; Becker, D.; Choi, S. K.; Datta, R.; Duff, S. M.; Gallardo, P. A.; Grace, E.; Hasselfield, M.; Henderson, S. W.; Hilton, G. C.; Hubmayr, J.; Koopman, B. J.; Lanen, J. V.; Li, D.; McMahon, J.; Nati, F.; Niemack, M. D.; Niraula, P.; Salatino, M.; Schillaci, A.; Schmitt, B. L.; Simon, S. M.; Staggs, S. T.; Stevens, J. R.; Ward, J. T.; Wollack, E. J.; Vavagiakis, E. M.

    2016-08-01

    The Atacama Cosmology Telescope Polarimeter (ACTPol) is a polarization sensitive receiver for the 6-m Atacama Cosmology Telescope (ACT) and measures the small angular scale polarization anisotropies in the cosmic microwave background (CMB). The full focal plane is composed of three detector arrays, containing over 3000 transition edge sensors (TES detectors) in total. The first two detector arrays, observing at 146 GHz, were deployed in 2013 and 2014, respectively. The third and final array is composed of multichroic pixels sensitive to both 90 and 146 GHz and saw first light in February 2015. Fabricated at NIST, this dichroic array consists of 255 pixels, with a total of 1020 polarization sensitive bolometers and is coupled to the telescope with a monolithic array of broad-band silicon feedhorns. The detectors are read out using time-division SQUID multiplexing and cooled by a dilution refrigerator at 110 mK. We present an overview of the assembly and characterization of this multichroic array in the lab, and the initial detector performance in Chile. The detector array has a TES detector electrical yield of 85 %, a total array sensitivity of less than 10 \\upmu K√{ {s}}, and detector time constants and saturation powers suitable for ACT CMB observations.

  18. Optical Design for a Survey X-Ray Telescope

    Science.gov (United States)

    Saha, Timo T.; Zhang, William W.; McClelland, Ryan S.

    2014-01-01

    Optical design trades are underway at the Goddard Space Flight Center to define a telescope for an x-ray survey mission. Top-level science objectives of the mission include the study of x-ray transients, surveying and long-term monitoring of compact objects in nearby galaxies, as well as both deep and wide-field x-ray surveys. In this paper we consider Wolter, Wolter-Schwarzschild, and modified Wolter-Schwarzschild telescope designs as basic building blocks for the tightly nested survey telescope. Design principles and dominating aberrations of individual telescopes and nested telescopes are discussed and we compare the off-axis optical performance at 1.0 KeV and 4.0 KeV across a 1.0-degree full field-of-view.

  19. ANTARES : The first undersea neutrino telescope

    NARCIS (Netherlands)

    Ageron, M.; Aguilar, J. A.; Al Samarai, I.; Albert, A.; Ameli, F.; Andre, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Arnaud, K.; Aslanides, E.; Jesus, A. C. Assis; Astraatmadja, T.; Aubert, J. -J.; Auer, R.; Barbarito, E.; Baret, B.; Basa, S.; Bazzotti, M.; Becherini, Y.; Beltramelli, J.; Bersani, A.; Bertin, V.; Beurthey, S.; Biagi, S.; Bigongiari, C.; Billault, M.; Blaes, R.; Bogazzi, C.; de Botton, N.; Bou-Cabo, M.; Boudahef, B.; Bouwhuis, M. C.; Brown, A. M.; Brunner, J.; Busto, J.; Caillat, L.; Calzas, A.; Camarena, F.; Capone, A.; Caponetto, L.; Carloganu, C.; Carminati, G.; Carmona, E.; Carr, J.; Carton, P. H.; Cassano, B.; Castorina, E.; Cecchini, S.; Ceres, A.; Chaleil, Th; Charvis, Ph; Chauchot, P.; Chiarusi, T.; Circella, M.; Compere, C.; Coniglione, R.; Coppolani, X.; Cosquer, A.; Costantini, H.; Cottini, N.; Coyle, P.; Cuneo, S.; Curtil, C.; D'Amato, C.; Damy, G.; van Dantzig, R.; De Bonis, G.; Decock, G.; Decowski, M. P.; Dekeyser, I.; Delagnes, E.; Desages-Ardellier, F.; Deschamps, A.; Destelle, J. -J.; Di Maria, F.; Dinkespiler, B.; Distefano, C.; Dominique, J. -L.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drogou, J. -F.; Drouhin, D.; Druillole, F.; Durand, D.; Durand, R.; Eberl, T.; Emanuele, U.; Engelen, J. J.; Ernenwein, J. -P.; Escoffier, S.; Falchini, E.; Favard, S.; Fehr, F.; Feinstein, F.; Ferri, M.; Ferry, S.; Fiorello, C.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J. -L.; Galata, S.; Galeotti, S.; Gay, P.; Gensolen, F.; Giacomelli, G.; Gojak, C.; Gomez-Gonzalez, J. P.; Goret, Ph.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Hartmann, B.; Heijboer, A. J.; Heine, E.; Hello, Y.; Henry, S.; Hernandez-Rey, J. J.; Herold, B.; Hoessl, J.; Hogenbirk, J.; Hsu, C. C.; Hubbard, J. R.; Jaquet, M.; Jaspers, M.; de Jong, M.; Jourde, D.; Kadler, M.; Kalantar-Nayestanaki, N.; Kalekin, O.; Kappes, A.; Karg, T.; Karkar, S.; Karolak, M.; Katz, U.; Keller, P.; Kestener, P.; Kok, E.; Kok, H.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kretschmer, W.; Kruijer, A.; Kuch, S.; Kulikovskiy, V.; Lachartre, D.; Lafoux, H.; Lagier, P.; Lahmann, R.; Lahonde-Hamdoun, C.; Lamare, P.; Lambard, G.; Languillat, J-C; Larosa, G.; Lavalle, J.; Le Guen, Y.; Le Provost, H.; LeVanSuu, A.; Lefevre, D.; Legou, T.; Lelaizant, G.; Leveque, C.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Lucarelli, F.; Lyashuk, V.; Magnier, P.; Mangano, S.; Marcel, A.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Masullo, R.; Mazeas, F.; Mazure, A.; Meli, A.; Melissas, M.; Migneco, E.; Mongelli, M.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Musumeci, M.; Naumann, C.; Naumann-Godo, M.; Neff, M.; Niess, V.; Nooren, G. J. L.; Oberski, J. E. J.; Olivetto, C.; Palanque-Delabrouille, N.; Patioselitis, D.; Papaleo, R.; Pavalas, G. E.; Payet, K.; Payre, P.; Peek, H.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Picq, C.; Piret, Y.; Poinsignon, J.; Popa, V.; Pradier, T.; Presani, E.; Prono, G.; Racca, C.; Raia, G.; van Randwijk, J.; Real, D.; Reed, C.; Rethore, F.; Rewiersma, P.; Riccobene, G.; Richardt, C.; Richter, R.; Ricol, J. S.; Rigaud, V.; Roca, V.; Roensch, K.; Rolin, J. -F.; Rostovtsev, A.; Rottura, A.; Roux, J.; Rujoiu, M.; Ruppi, M.; Russo, G. V.; Salesa, F.; Salomon, K.; Sapienza, P.; Schmitt, F.; Schoeck, F.; Schuller, J. -P.; Schuessler, F.; Sciliberto, D.; Shanidze, R.; Shirokov, E.; Simeone, F.; Sottoriva, A.; Spies, A.; Spona, T.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th; Streeb, K.; Sulak, L.; Taiuti, M.; Tamburini, C.; Tao, C.; Tasca, L.; Terreni, G.; Tezier, D.; Toscano, S.; Urbano, F.; Valdy, P.; Vallage, B.; Van Elewyck, V.; Vannoni, G.; Vecchi, M.; Venekamp, G.; Verlaat, B.; Vernin, P.; Virique, E.; de Vries, G.; Wijnker, G.; Wobbe, G.; de Wolf, E.; Yakovenko, Y.; Yepes, H.; Zaborov, D.; Zaccone, H.; Zornoza, J. D.; Zuniga, J.; van Wijk, R.

    2011-01-01

    The ANTARES Neutrino Telescope was completed in May 2008 and is the first operational Neutrino Telescope in the Mediterranean Sea. The main purpose of the detector is to perform neutrino astronomy and the apparatus also offers facilities for marine and Earth sciences. This paper describes the

  20. Observations of cometary parent molecules with the IRAM radio telescope

    Science.gov (United States)

    Colom, P.; Despois, D.; Paubert, G.; Bockelee-Morvan, D.; Crovisier, Jacques

    1992-01-01

    Several rotational transitions of HCN, H2S, H2CO, and CH3OH were detected in comets P/Brorsen-Metcalf 1989 X, Austin (1989c1) and Levy (1990c) with the Institute for Millimeter Radioastronomy (IRAM) 30-m radio telescope. This allows us to determine the production rates of these molecules and to probe the physical conditions of the coma.

  1. Optimal networks of future gravitational-wave telescopes

    Science.gov (United States)

    Raffai, Péter; Gondán, László; Heng, Ik Siong; Kelecsényi, Nándor; Logue, Josh; Márka, Zsuzsa; Márka, Szabolcs

    2013-08-01

    We aim to find the optimal site locations for a hypothetical network of 1-3 triangular gravitational-wave telescopes. We define the following N-telescope figures of merit (FoMs) and construct three corresponding metrics: (a) capability of reconstructing the signal polarization; (b) accuracy in source localization; and (c) accuracy in reconstructing the parameters of a standard binary source. We also define a combined metric that takes into account the three FoMs with practically equal weight. After constructing a geomap of possible telescope sites, we give the optimal 2-telescope networks for the four FoMs separately in example cases where the location of the first telescope has been predetermined. We found that based on the combined metric, placing the first telescope to Australia provides the most options for optimal site selection when extending the network with a second instrument. We suggest geographical regions where a potential second and third telescope could be placed to get optimal network performance in terms of our FoMs. Additionally, we use a similar approach to find the optimal location and orientation for the proposed LIGO-India detector within a five-detector network with Advanced LIGO (Hanford), Advanced LIGO (Livingston), Advanced Virgo, and KAGRA. We found that the FoMs do not change greatly in sites within India, though the network can suffer a significant loss in reconstructing signal polarizations if the orientation angle of an L-shaped LIGO-India is not set to the optimal value of ˜58.2°( + k × 90°) (measured counterclockwise from East to the bisector of the arms).

  2. Active control of the Chinese Giant Solar Telescope

    Science.gov (United States)

    Dai, Yichun; Yang, Dehua; Jin, Zhenyu; Liu, Zhong; Qin, Wei

    2014-07-01

    The Chinese Giant Solar Telescope (CGST) is the next generation solar telescope of China with diameter of 8 meter. The unique feature of CGST is that its primary is a ring, which facilitates the polarization detection and thermal control. In its present design and development phase, two primary mirror patterns are considered. For one thing, the primary mirror is expected to construct with mosaic mirror with 24 trapezoidal (or petal) segments, for another thing, a monolithic mirror is also a candidate for its primary mirror. Both of them depend on active control technique to maintain the optical quality of the ring mirror. As a solar telescope, the working conditions of the CGST are quite different from those of the stellar telescopes. To avoid the image deterioration due to the mirror seeing and dome seeing, especially in the case of the concentration of flux in a solar telescope, large aperture solar projects prefer to adopt open telescopes and open domes. In this circumstance, higher wind loads act on the primary mirror directly, which will cause position errors and figure errors of the primary with matters worse than those of the current 10-meter stellar telescopes with dome protect. Therefore, it gives new challenges to the active control capability, telescope structure design, and wind shielding design. In this paper, the study progress of active control of CGST for its mosaic and monolithic mirror are presented, and the wind effects on such two primary mirrors are also investigated.

  3. EUSO-TA prototype telescope

    Energy Technology Data Exchange (ETDEWEB)

    Bisconti, Francesca, E-mail: francesca.bisconti@kit.edu

    2016-07-11

    EUSO-TA is one of the prototypes developed for the JEM-EUSO project, a space-based large field-of-view telescope to observe the fluorescence light emitted by cosmic ray air showers in the atmosphere. EUSO-TA is a ground-based prototype located at the Telescope Array (TA) site in Utah, USA, where an Electron Light Source and a Central Laser Facility are installed. The purpose of the EUSO-TA project is to calibrate the prototype with the TA fluorescence detector in presence of well-known light sources and cosmic ray air showers. In 2015, the detector started the first measurements and tests using the mentioned light sources have been performed successfully. A first cosmic ray candidate has been observed, as well as stars of different magnitude and color index. Since Silicon Photo-Multipliers (SiPMs) are very promising for fluorescence telescopes of next generation, they are under consideration for the realization of a new prototype of EUSO Photo Detector Module (PDM). The response of this sensor type is under investigation through simulations and laboratory experimentation.

  4. EUSO-TA prototype telescope

    Science.gov (United States)

    Bisconti, Francesca; JEM-EUSO Collaboration

    2016-07-01

    EUSO-TA is one of the prototypes developed for the JEM-EUSO project, a space-based large field-of-view telescope to observe the fluorescence light emitted by cosmic ray air showers in the atmosphere. EUSO-TA is a ground-based prototype located at the Telescope Array (TA) site in Utah, USA, where an Electron Light Source and a Central Laser Facility are installed. The purpose of the EUSO-TA project is to calibrate the prototype with the TA fluorescence detector in presence of well-known light sources and cosmic ray air showers. In 2015, the detector started the first measurements and tests using the mentioned light sources have been performed successfully. A first cosmic ray candidate has been observed, as well as stars of different magnitude and color index. Since Silicon Photo-Multipliers (SiPMs) are very promising for fluorescence telescopes of next generation, they are under consideration for the realization of a new prototype of EUSO Photo Detector Module (PDM). The response of this sensor type is under investigation through simulations and laboratory experimentation.

  5. Discovery Channel Telescope active optics system early integration and test

    Science.gov (United States)

    Venetiou, Alexander J.; Bida, Thomas A.

    2012-09-01

    The Discovery Channel Telescope (DCT) is a 4.3-meter telescope with a thin meniscus primary mirror (M1) and a honeycomb secondary mirror (M2). The optical design is an f/6.1 Ritchey-Chrétien (RC) with an unvignetted 0.5° Field of View (FoV) at the Cassegrain focus. We describe the design, implementation and performance of the DCT active optics system (AOS). The DCT AOS maintains collimation and controls the figure of the mirror to provide seeing-limited images across the focal plane. To minimize observing overhead, rapid settling times are achieved using a combination of feed-forward and low-bandwidth feedback control using a wavefront sensing system. In 2011, we mounted a Shack-Hartmann wavefront sensor at the prime focus of M1, the Prime Focus Test Assembly (PFTA), to test the AOS with the wavefront sensor, and the feedback loop. The incoming wavefront is decomposed using Zernike polynomials, and the mirror figure is corrected with a set of bending modes. Components of the system that we tested and tuned included the Zernike to Bending Mode transformations. We also started open-loop feed-forward coefficients determination. In early 2012, the PFTA was replaced by M2, and the wavefront sensor moved to its normal location on the Cassegrain instrument assembly. We present early open loop wavefront test results with the full optical system and instrument cube, along with refinements to the overall control loop operating at RC Cassegrain focus.

  6. Development of the quality control system of the readout electronics for the large size telescope of the Cherenkov Telescope Array observatory

    Science.gov (United States)

    Konno, Y.; Kubo, H.; Masuda, S.; Paoletti, R.; Poulios, S.; Rugliancich, A.; Saito, T.

    2016-07-01

    The Cherenkov Telescope Array (CTA) is the next generation VHE γ-ray observatory which will improve the currently available sensitivity by a factor of 10 in the range 100 GeV to 10 TeV. The array consists of different types of telescopes, called large size telescope (LST), medium size telescope (MST) and small size telescope (SST). A LST prototype is currently being built and will be installed at the Observatorio Roque de los Muchachos, island of La Palma, Canary islands, Spain. The readout system for the LST prototype has been designed and around 300 readout boards will be produced in the coming months. In this note we describe an automated quality control system able to measure basic performance parameters and quickly identify faulty boards.

  7. Discovery of a Probable Nova in M81 and Photometry of Three M81 Novae

    Science.gov (United States)

    Hornoch, K.; Errmann, R.; Carlisle, Ch.; Vaduvescu, O.

    2015-02-01

    We report the discovery of a probable nova in M81 on a co-added 1600-s narrow-band H-alpha CCD image taken with the 2.5-m Isaac Newton Telescope (INT) + WFC at La Palma under ~1.6" seeing on 2015 Jan.

  8. EDUCATIONAL ASTRONOMICAL OBSERVATIONS ON REMOTE ACCESS TELESCOPES

    Directory of Open Access Journals (Sweden)

    Ivan P. Kriachko

    2016-01-01

    Full Text Available The purpose of this article is to show the way of overcoming one of the major problems of astronomy teaching methods in upper secondary school – organization of educational astronomical observations. Nowadays it became possible to perform such observations on remote access telescopes. By using up-to-date informational and communicational technologies, having an opportunity to work with robotic telescopes allows us to organize a unique cognitive and research oriented activities for students while conducting their specialized astronomical studies. Below here is given a brief description of the most significant robotic telescopes and the way of the usage of open remote access telescopic network which was created by professors and scientists of Harvard-Smithsonian Center for Astrophysics, USA.

  9. Development of a SiPM Camera for a Schwarzschild-Couder Cherenkov Telescope for the Cherenkov Telescope Array

    CERN Document Server

    Otte, A N; Dickinson, H.; Funk, S.; Jogler, T.; Johnson, C.A.; Karn, P.; Meagher, K.; Naoya, H.; Nguyen, T.; Okumura, A.; Santander, M.; Sapozhnikov, L.; Stier, A.; Tajima, H.; Tibaldo, L.; Vandenbroucke, J.; Wakely, S.; Weinstein, A.; Williams, D.A.

    2015-01-01

    We present the development of a novel 11328 pixel silicon photomultiplier (SiPM) camera for use with a ground-based Cherenkov telescope with Schwarzschild-Couder optics as a possible medium-sized telescope for the Cherenkov Telescope Array (CTA). The finely pixelated camera samples air-shower images with more than twice the optical resolution of cameras that are used in current Cherenkov telescopes. Advantages of the higher resolution will be a better event reconstruction yielding improved background suppression and angular resolution of the reconstructed gamma-ray events, which is crucial in morphology studies of, for example, Galactic particle accelerators and the search for gamma-ray halos around extragalactic sources. Packing such a large number of pixels into an area of only half a square meter and having a fast readout directly attached to the back of the sensors is a challenging task. For the prototype camera development, SiPMs from Hamamatsu with through silicon via (TSV) technology are used. We give ...

  10. The Falcon Telescope Network

    Science.gov (United States)

    Chun, F.; Tippets, R.; Dearborn, M.; Gresham, K.; Freckleton, R.; Douglas, M.

    2014-09-01

    The Falcon Telescope Network (FTN) is a global network of small aperture telescopes developed by the Center for Space Situational Awareness Research in the Department of Physics at the United States Air Force Academy (USAFA). Consisting of commercially available equipment, the FTN is a collaborative effort between USAFA and other educational institutions ranging from two- and four-year colleges to major research universities. USAFA provides the equipment (e.g. telescope, mount, camera, filter wheel, dome, weather station, computers and storage devices) while the educational partners provide the building and infrastructure to support an observatory. The user base includes USAFA along with K-12 and higher education faculty and students. Since the FTN has a general use purpose, objects of interest include satellites, astronomical research, and STEM support images. The raw imagery, all in the public domain, will be accessible to FTN partners and will be archived at USAFA in the Cadet Space Operations Center. FTN users will be able to submit observational requests via a web interface. The requests will then be prioritized based on the type of user, the object of interest, and a user-defined priority. A network wide schedule will be developed every 24 hours and each FTN site will autonomously execute its portion of the schedule. After an observational request is completed, the FTN user will receive notification of collection and a link to the data. The Falcon Telescope Network is an ambitious endeavor, but demonstrates the cooperation that can be achieved by multiple educational institutions.

  11. X-ray emission, ablation pressure, and preheating for foils irradiated at 0. 26. mu. m wavelength

    Energy Technology Data Exchange (ETDEWEB)

    Pepin, H.; Fabbro, R.; Faral, B.; Amiranoff, F.; Virmont, J.; Cottet, F.; Romain, J.P.

    1985-11-01

    The x-ray emission, ablation pressure, and preheating for foils irradiated with a 0.26 ..mu..m laser at intensities approx.10/sup 15/ W cm/sup -2/ are studied. The foils are Al with various thicknesses, coated or uncoated with CH or Au. The x-ray emission and conversion efficiency are obtained with a multichannel x-ray diode spectrometer, the ablation pressures are deduced from shock transit times, and the rear temperatures are inferred from x-ray pyrometry. For thin foils (<<12 ..mu..m), the rear temperatures can be predicted reasonably well with the use of the front x-ray spectra. For thick foils shock preheating is dominant.

  12. X-ray emission, ablation pressure, and preheating for foils irradiated at 0.26 μm wavelength

    International Nuclear Information System (INIS)

    Pepin, H.; Fabbro, R.; Faral, B.; Amiranoff, F.; Virmont, J.; Cottet, F.; Romain, J.P.

    1985-01-01

    The x-ray emission, ablation pressure, and preheating for foils irradiated with a 0.26 μm laser at intensities approx.10 15 W cm -2 are studied. The foils are Al with various thicknesses, coated or uncoated with CH or Au. The x-ray emission and conversion efficiency are obtained with a multichannel x-ray diode spectrometer, the ablation pressures are deduced from shock transit times, and the rear temperatures are inferred from x-ray pyrometry. For thin foils (<<12 μm), the rear temperatures can be predicted reasonably well with the use of the front x-ray spectra. For thick foils shock preheating is dominant

  13. The BOOTES-5 telescope at San Pedro Martir National Astronomical Observatory, Mexico

    Science.gov (United States)

    Hiriart, D.; Valdez, J.; Martínez, B.; García, B.; Cordova, A.; Colorado, E.; Guisa, G.; Ochoa, J. L.; Nuñez, J. M.; Ceseña, U.; Cunniffe, R.; Murphy, D.; Lee, W.; Park, Il H.; Castro-Tirado, A. J.

    2016-12-01

    BOOTES-5 is the fifth robotic observatory of the international network of robotic telescopes BOOTES (Burst Observer and Optical Transient Exploring Optical System). It is located at the National Astronomical Observatory at Sierra San Pedro Martir, Baja California, Mexico. It was dedicated on November 26, 2015 and it is in the process of testing. Its main scientific objective is the observation and monitoring of the optic counterparts of gamma-ray bursts as quickly as possible once they have been detected from space or other ground-based observatories. BOOTES-5 fue nombrado Telescopio Javier Gorosabel en memoria del astrónomo español Javier Gorosabel Urkia.

  14. Processing of data from innovative parabolic strip telescope.

    Science.gov (United States)

    Kosejk, Vladislav; Novy, J.; Chadzitaskos, Goce

    2015-12-01

    This paper presents an innovative telescope design based on the usage of a parabolic strip fulfilling the function of an objective. Isaac Newton was the first to solve the problem of chromatic aberration, which is caused by a difference in the refractive index of lenses. This problem was solved by a new kind of telescope with a mirror used as an objective. There are many different kinds of telescopes. The most basic one is the lens telescope. This type of a telescope uses a set of lenses. Another type is the mirror telescope, which employs the concave mirror, spherical parabolic mirror or hyperbolically shaped mirror as its objective. The lens speed depends directly on the surface of a mirror. Both types can be combined to form a telescope composed of at least two mirrors and a set of lenses. The light is reflected from the primary mirror to the secondary one and then to the lens system. This type is smaller-sized, with a respectively reduced lens speed. The telescope design presented in this paper uses a parabolic strip fulfilling the function of an objective. Observed objects are projected as lines in a picture plane. Each of the lines of a size equal to the size of the strip corresponds to the sum of intensities of the light coming perpendicular to the objective from an observed object. A series of pictures taken with a different rotation and processed by a special reconstruction algorithm is needed to get 2D pictures. The telescope can also be used for fast detection of objects. In this mode, the rotation and multiple pictures are not needed, just one picture in the focus of a mirror is required to be taken.

  15. Discovery of an Unusual Optical Transient with the Hubble Space Telescope

    Energy Technology Data Exchange (ETDEWEB)

    The Supernova Cosmology Project; Barbary, Kyle; Dawson, Kyle S.; Tokita, Kouichi; Aldering, Greg; Amanullah, Rahman; Connolly, Natalia V.; Doi, Mamoru; Faccioli, Lorenzo; Fadeyev, Vitaliy; Fruchter, Andrew S.; Goldhaber, Gerson; Goobar, Ariel; Gude, Alexander; Huang, Xiaosheng; Ihara, Yutaka; Konishi, Kohki; Kowalski, Marek; Lidman, Chris; Meyers, Josh; Morokuma, Tomoki; Nugent, Peter; Perlmutter, Saul; Rubin, David; Schlegel, David; Spadafora, Anthony L.; Suzuki, Nao; Swift, Hannah K.; Takanashi, Naohiro; Thomas, Rollin C.; Yasuda, Naoki

    2008-09-08

    We present observations of SCP 06F6, an unusual optical transient discovered during the Hubble Space Telescope Cluster Supernova Survey. The transient brightened over a period of ~;;100 days, reached a peak magnitude of ~;;21.0 in both i_775 and z_850, and then declined over a similar timescale. There is no host galaxy or progenitor star detected at the location of the transient to a 3 sigma upper limit of i_775 = 26.4 and z_850 = 26.1, giving a corresponding lower limit on the flux increase of a factor of ~;;120. Multiple spectra show five broad absorption bands between 4100 AA and 6500 AA and a mostly featureless continuum longward of 6500 AA. The shape of the lightcurve is inconsistent with microlensing. The transient's spectrum, in addition to being inconsistent with all known supernova types, is not matched to any spectrum in the Sloan Digital Sky Survey (SDSS) database. We suggest that the transient may be one of a new class.

  16. Pattern recognition trigger electronics for an imaging atmospheric Cherenkov telescope

    International Nuclear Information System (INIS)

    Bradbury, S.M.; Rose, H.J.

    2002-01-01

    For imaging atmospheric Cherenkov telescopes, which aim to detect electromagnetic air showers with cameras consisting of several hundred photomultiplier pixels, the single pixel trigger rate is dominated by fluctuations in night sky brightness and by ion feedback in the photomultipliers. Pattern recognition trigger electronics may be used to reject night sky background images, thus reducing the data rate to a manageable level. The trigger system described here detects patterns of 2, 3 or 4 adjacent pixel signals within a 331 pixel camera and gives a positive trigger decision in 65 ns. The candidate pixel pattern is compared with the contents of a pre-programmed memory. With the trigger decision timing controlled by a fixed delay the time-jitter inherent in the use of programmable gate arrays is avoided. This system is now in routine operation at the Whipple 10 m Telescope

  17. Addressing Thermal Model Run Time Concerns of the Wide Field Infrared Survey Telescope using Astrophysics Focused Telescope Assets (WFIRST-AFTA)

    Science.gov (United States)

    Peabody, Hume; Guerrero, Sergio; Hawk, John; Rodriguez, Juan; McDonald, Carson; Jackson, Cliff

    2016-01-01

    The Wide Field Infrared Survey Telescope using Astrophysics Focused Telescope Assets (WFIRST-AFTA) utilizes an existing 2.4 m diameter Hubble sized telescope donated from elsewhere in the federal government for near-infrared sky surveys and Exoplanet searches to answer crucial questions about the universe and dark energy. The WFIRST design continues to increase in maturity, detail, and complexity with each design cycle leading to a Mission Concept Review and entrance to the Mission Formulation Phase. Each cycle has required a Structural-Thermal-Optical-Performance (STOP) analysis to ensure the design can meet the stringent pointing and stability requirements. As such, the models have also grown in size and complexity leading to increased model run time. This paper addresses efforts to reduce the run time while still maintaining sufficient accuracy for STOP analyses. A technique was developed to identify slews between observing orientations that were sufficiently different to warrant recalculation of the environmental fluxes to reduce the total number of radiation calculation points. The inclusion of a cryocooler fluid loop in the model also forced smaller time-steps than desired, which greatly increases the overall run time. The analysis of this fluid model required mitigation to drive the run time down by solving portions of the model at different time scales. Lastly, investigations were made into the impact of the removal of small radiation couplings on run time and accuracy. Use of these techniques allowed the models to produce meaningful results within reasonable run times to meet project schedule deadlines.

  18. Optimal networks of future gravitational-wave telescopes

    International Nuclear Information System (INIS)

    Raffai, Péter; Márka, Zsuzsa; Márka, Szabolcs; Gondán, László; Kelecsényi, Nándor; Heng, Ik Siong; Logue, Josh

    2013-01-01

    We aim to find the optimal site locations for a hypothetical network of 1–3 triangular gravitational-wave telescopes. We define the following N-telescope figures of merit (FoMs) and construct three corresponding metrics: (a) capability of reconstructing the signal polarization; (b) accuracy in source localization; and (c) accuracy in reconstructing the parameters of a standard binary source. We also define a combined metric that takes into account the three FoMs with practically equal weight. After constructing a geomap of possible telescope sites, we give the optimal 2-telescope networks for the four FoMs separately in example cases where the location of the first telescope has been predetermined. We found that based on the combined metric, placing the first telescope to Australia provides the most options for optimal site selection when extending the network with a second instrument. We suggest geographical regions where a potential second and third telescope could be placed to get optimal network performance in terms of our FoMs. Additionally, we use a similar approach to find the optimal location and orientation for the proposed LIGO-India detector within a five-detector network with Advanced LIGO (Hanford), Advanced LIGO (Livingston), Advanced Virgo, and KAGRA. We found that the FoMs do not change greatly in sites within India, though the network can suffer a significant loss in reconstructing signal polarizations if the orientation angle of an L-shaped LIGO-India is not set to the optimal value of ∼58.2°( + k × 90°) (measured counterclockwise from East to the bisector of the arms). (paper)

  19. Identification of a novel linear B-cell epitope in the UL26 and UL26.5 proteins of Duck Enteritis Virus

    Directory of Open Access Journals (Sweden)

    Kong Xiangang

    2010-09-01

    Full Text Available Abstract Background The Unique Long 26 (UL26 and UL26.5 proteins of herpes simplex virus are known to function during the assembly of the viruses. However, for duck enteritis virus (DEV, which is an unassigned member of the family Herpesviridae, little information is available about the function of the two proteins. In this study, the C-terminus of DEV UL26 protein (designated UL26c, which contains the whole of UL26.5, was expressed, and the recombinant UL26c protein was used to immunize BALB/c mice to generate monoclonal antibodies (mAb. The mAb 1C8 was generated against DEV UL26 and UL26.5 proteins and used subsequently to map the epitope in this region. Both the mAb and its defined epitope will provide potential tools for further study of DEV. Results A mAb (designated 1C8 was generated against the DEV UL26c protein, and a series of 17 partially overlapping fragments that spanned the DEV UL26c were expressed with GST tags. These peptides were subjected to enzyme-linked immunosorbent assay (ELISA and western blotting analysis using mAb 1C8 to identify the epitope. A linear motif, 520IYYPGE525, which was located at the C-terminus of the DEV UL26 and UL26.5 proteins, was identified by mAb 1C8. The result of the ELISA showed that this epitope could be recognized by DEV-positive serum from mice. The 520IYYPGE525 motif was the minimal requirement for reactivity, as demonstrated by analysis of the reactivity of 1C8 with several truncated peptides derived from the motif. Alignment and comparison of the 1C8-defined epitope sequence with those of other alphaherpesviruses indicated that the motif 521YYPGE525 in the epitope sequence was conserved among the alphaherpesviruses. Conclusion A mAb, 1C8, was generated against DEV UL26c and the epitope-defined minimal sequence obtained using mAb 1C8 was 520IYYPGE525. The mAb and the identified epitope may be useful for further study of the design of diagnostic reagents for DEV.

  20. Estimating the mirror seeing for a large optical telescope with a numerical method

    Science.gov (United States)

    Zhang, En-Peng; Cui, Xiang-Qun; Li, Guo-Ping; Zhang, Yong; Shi, Jian-Rong; Zhao, Yong-Heng

    2018-05-01

    It is widely accepted that mirror seeing is caused by turbulent fluctuations in the index of air refraction in the vicinity of a telescope mirror. Computational Fluid Dynamics (CFD) is a useful tool to evaluate the effects of mirror seeing. In this paper, we present a numerical method to estimate the mirror seeing for a large optical telescope (∼ 4 m) in cases of natural convection with the ANSYS ICEPAK software. We get the FWHM of the image for different inclination angles (i) of the mirror and different temperature differences (ΔT) between the mirror and ambient air. Our results show that the mirror seeing depends very weakly on i, which agrees with observational data from the Canada-France-Hawaii Telescope. The numerical model can be used to estimate mirror seeing in the case of natural convection although with some limitations. We can determine ΔT for thermal control of the primary mirror according to the simulation, empirical data and site seeing.

  1. Development of the quality control system of the readout electronics for the large size telescope of the Cherenkov Telescope Array observatory

    Energy Technology Data Exchange (ETDEWEB)

    Konno, Y.; Kubo, H.; Masuda, S. [Department of Physics, Graduate School of Science, Kyoto University, Kyoto (Japan); Paoletti, R.; Poulios, S. [SFTA Department, Physics Section, University of Siena and INFN, Siena (Italy); Rugliancich, A., E-mail: andrea.rugliancich@pi.infn.it [SFTA Department, Physics Section, University of Siena and INFN, Siena (Italy); Saito, T. [Department of Physics, Graduate School of Science, Kyoto University, Kyoto (Japan)

    2016-07-11

    The Cherenkov Telescope Array (CTA) is the next generation VHE γ-ray observatory which will improve the currently available sensitivity by a factor of 10 in the range 100 GeV to 10 TeV. The array consists of different types of telescopes, called large size telescope (LST), medium size telescope (MST) and small size telescope (SST). A LST prototype is currently being built and will be installed at the Observatorio Roque de los Muchachos, island of La Palma, Canary islands, Spain. The readout system for the LST prototype has been designed and around 300 readout boards will be produced in the coming months. In this note we describe an automated quality control system able to measure basic performance parameters and quickly identify faulty boards. - Highlights: • The Dragon Board is part of the DAQ of the LST Cherenkov telescope prototype. • We developed an automated quality control system for the Dragon Board. • We check pedestal, linearity, pulse shape and crosstalk values. • The quality control test can be performed on the production line.

  2. Plans for the Meter Class Autonomous Telescope and Potential Coordinated Measurements with Kwajalein Radars

    Science.gov (United States)

    Stansberry, Gene; Kervin, Paul; Mulrooney, Mark

    2010-01-01

    The National Aeronautics and Space Administration's (NASA) Orbital Debris Program Office is teaming with the US Air Force Research Laboratory's (AFRL) Maui Optical Site to deploy a moderate field-of-view, 1.3 m aperture, optical telescope for orbital debris applications. The telescope will be located on the island of Legan in the Kwajalein Atoll and is scheduled for completion in the Spring of 2011. The telescope is intended to sample both low inclination/high eccentricity orbits and near geosynchronous orbits. The telescope will have a 1 deg diagonal field-of-view on a 4K x 4K CCD. The telescope is expected to be able to detect 10-cm diameter debris at geosynchronous altitudes (5 sec exposure assuming a spherical specular phase function w/ albedo =0.13). Once operational, the telescope has the potential of conducting simultaneous observations with radars operated by the US Army at Kwajalein Atoll (USAKA) and located on the island of Roi-Namur, approximately 55 km to the north of Legan. Four radars, representing 6 frequency bands, are available for use: ALTAIR (ARPA-Long Range Tracking and Instrumentation Radar) operating at VHF & UHF, TRADEX (Target Resolution and Discrimination Experiment) operating at L-band and S-band, ALCOR (ARPA-Lincoln C-band Observables Radar) operating at S-band, and MMW (Millimeter Wave) Radar operating at Ka-band. Also potentially available is the X-band GBRP (Ground Based Radar-Prototype located 25 km to the southeast of Legan on the main island of Kwajalein.

  3. VLTI auxiliary telescopes: a full object-oriented approach

    Science.gov (United States)

    Chiozzi, Gianluca; Duhoux, Philippe; Karban, Robert

    2000-06-01

    The Very Large Telescope (VLT) Telescope Control Software (TCS) is a portable system. It is now in use or will be used in a whole family of ESO telescopes VLT Unit Telescopes, VLTI Auxiliary Telescopes, NTT, La Silla 3.6, VLT Survey Telescope and Astronomical Site Monitors in Paranal and La Silla). Although it has been developed making extensive usage of Object Oriented (OO) methodologies, the overall development process chosen at the beginning of the project used traditional methods. In order to warranty a longer lifetime to the system (improving documentation and maintainability) and to prepare for future projects, we have introduced a full OO process. We have taken as a basis the United Software Development Process with the Unified Modeling Language (UML) and we have adapted the process to our specific needs. This paper describes how the process has been applied to the VLTI Auxiliary Telescopes Control Software (ATCS). The ATCS is based on the portable VLT TCS, but some subsystems are new or have specific characteristics. The complete process has been applied to the new subsystems, while reused code has been integrated in the UML models. We have used the ATCS on one side to tune the process and train the team members and on the other side to provide a UML and WWW based documentation for the portable VLT TCS.

  4. Simulation of the Simbol-X telescope: imaging performance of a deformable x-ray telescope

    Science.gov (United States)

    Chauvin, Maxime; Roques, Jean-Pierre

    2009-08-01

    We have developed a simulation tool for a Wolter I telescope subject to deformations. The aim is to understand and predict the behavior of Simbol-X and other future missions (NuSTAR, Astro-H, IXO, ...). Our code, based on Monte-Carlo ray-tracing, computes the full photon trajectories up to the detector plane, along with the deformations. The degradation of the imaging system is corrected using metrology. This tool allows to perform many analyzes in order to optimize the configuration of any of these telescopes.

  5. FACT. Bokeh alignment for Cherenkov telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Sebastian Achim [ETH Zurich (Switzerland); Buss, Jens [TU Dortmund (Germany)

    2016-07-01

    Imaging Atmospheric Cherenkov Telescopes (IACTs) need fast and large imaging optics to map the faint Cherenkov light emitted in cosmic ray air showers onto their image sensors. Segmented reflectors are inexpensive, lightweight and offer good image quality. However, alignment of the mirror facets remains a challenge. A good alignment is crucial in IACT observations to separate gamma rays from hadronic cosmic rays. We present a simple, yet extendable method, to align segmented reflectors using their Bokeh. Bokeh alignment does not need a star or good weather nights but can be done anytime, even during the day. Bokeh alignment optimizes the facet orientations by comparing the segmented reflector's Bokeh to a predefined template. The Bokeh is observed using the out of focus image of a nearby point like light source in a distance of about ten times the focal lengths. We introduce Bokeh alignment on segmented reflectors and present its use on the First Geiger-mode Avalanche Cherenkov Telescope (FACT) on Canary Island La Palma, as well as on the Cherenkov Telescope Array (CTA) Medium Size Telescope (MST) prototype in Berlin Adlershof.

  6. Choosing and Using a Refracting Telescope

    CERN Document Server

    English, Neil

    2011-01-01

    The refracting telescope has a long and illustrious past. Here’s what the author says about early telescopes and today’s refractors: “Four centuries ago, a hitherto obscure Italian scientist turned a home-made spyglass towards the heavens. The lenses he used were awful by modern standards, inaccurately figured and filled with the scars of their perilous journey from the furnace to the finishing workshop. Yet, despite these imperfections, they allowed him to see what no one had ever seen before – a universe far more complex and dynamic than anyone had dared imagine. But they also proved endlessly useful in the humdrum of human affairs. For the first time ever, you could spy on your neighbor from a distance, or monitor the approach of a war-mongering army, thus deciding the fate of nations. “The refractor is without doubt the prince of telescopes. Compared with all other telescopic designs, the unobstructed view of the refractor enables it to capture the sharpest, highest contrast images and the wides...

  7. Go-To Telescopes Under Suburban Skies

    CERN Document Server

    Monks, Neale

    2010-01-01

    For the last four centuries stargazers have turned their telescopes to the night skies to look at its wonders, but only in this age of computers has it become possible to let the telescope find for you the object you are looking for! So-called “go-to” telescopes are programmed with the locations of thousands of objects, including dazzling distant Suns, stunning neighboring galaxies, globular and open star clusters, the remnants of past supernovae, and many other breathtaking sights. This book does not tell you how to use your Go-to telescope. Your manual will help you do that. It tells you what to look for in the deep sky and why, and what equipment to best see it with. Organized broadly by what is best for viewing in the northern hemisphere in different seasons, Monks further divides the sights of each season into groupings such as “Showpiece Objects,” “Interesting Deep Sky Objects,” and “Obscure and Challenging Deep Sky Objects.” He also tells what objects are visible even in light-polluted ...

  8. Telescoping cylindrical piezoelectric fiber composite actuator assemblies

    Science.gov (United States)

    Allison, Sidney G. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, legal representative, Christopher L. (Inventor); Fox Chattin, legal representative, Melanie L. (Inventor)

    2010-01-01

    A telescoping actuator assembly includes a plurality of cylindrical actuators in a concentric arrangement. Each cylindrical actuator is at least one piezoelectric fiber composite actuator having a plurality of piezoelectric fibers extending parallel to one another and to the concentric arrangement's longitudinal axis. Each cylindrical actuator is coupled to concentrically-adjacent ones of the cylindrical actuators such that the plurality of cylindrical actuators can experience telescopic movement. An electrical energy source coupled to the cylindrical actuators applies actuation energy thereto to generate the telescopic movement.

  9. Design Considerations: Falcon M Dwarf Habitable Exoplanet Survey

    Science.gov (United States)

    Polsgrove, Daniel; Novotny, Steven; Della-Rose, Devin J.; Chun, Francis; Tippets, Roger; O'Shea, Patrick; Miller, Matthew

    2016-01-01

    The Falcon Telescope Network (FTN) is an assemblage of twelve automated 20-inch telescopes positioned around the globe, controlled from the Cadet Space Operations Center (CSOC) at the US Air Force Academy (USAFA) in Colorado Springs, Colorado. Five of the 12 sites are currently installed, with full operational capability expected by the end of 2016. Though optimized for studying near-earth objects to accomplish its primary mission of Space Situational Awareness (SSA), the Falcon telescopes are in many ways similar to those used by ongoing and planned exoplanet transit surveys targeting individual M dwarf stars (e.g., MEarth, APACHE, SPECULOOS). The network's worldwide geographic distribution provides additional potential advantages. We have performed analytical and empirical studies exploring the viability of employing the FTN for a future survey of nearby late-type M dwarfs tailored to detect transits of 1-2REarth exoplanets in habitable-zone orbits . We present empirical results on photometric precision derived from data collected with multiple Falcon telescopes on a set of nearby (survey design parameters is also described, including an analysis of site-specific weather data, anticipated telescope time allocation and the percentage of nearby M dwarfs with sufficient check stars within the Falcons' 11' x 11' field-of-view required to perform effective differential photometry. The results of this ongoing effort will inform the likelihood of discovering one (or more) habitable-zone exoplanets given current occurrence rate estimates over a nominal five-year campaign, and will dictate specific survey design features in preparation for initiating project execution when the FTN begins full-scale automated operations.

  10. Experimental study of ablation pressures and target velocities obtained in 0. 26. mu. m wavelength laser experiments in planar geometry

    Energy Technology Data Exchange (ETDEWEB)

    Fabbro, R.; Faral, B.; Virmont, J.; Cottet, F.; Romain, J.P.; Pepin, H.

    1985-11-01

    In 0.26 ..mu..m wavelength laser experiments that were performed in planar geometry with irradiances between 10/sup 13/ and 10/sup 15/ W/cm/sup 2/, the ablation pressure and the target velocity have been measured using a shock-velocity measurement and the double foil technique, respectively. The conditions are discussed that must be satisfied if the double-foil technique is to give an accurate measurement of the velocity of the dense part of the target. The rocket model has also been improved using a time-dependent applied pressure pulse, in order to accurately describe the relation between ablation pressure, target velocity, and ablated fraction. Pressures up to 50 Mbar have been easily generated since lateral energy transport is rather low with a 0.26 ..mu..m wavelength laser.

  11. A new Recoil Proton Telescope for energy and fluence measurement of fast neutron fields

    Energy Technology Data Exchange (ETDEWEB)

    Lebreton, Lena; Bachaalany, Mario [IRSN / LMDN (Institut de Radioprotection et de Surete nucleaire / Laboratoire de Metrologie et de dosimetrie des neutrons), Cadarache Bat.159, 13115 Saint Paul-lez-Durance, (France); Husson, Daniel; Higueret, Stephane [IPHC / RaMsEs (Institut Pluridisciplinaire Hubert Curien / Radioprotection et Mesures Environnementales), 23 rue du loess - BP28, 67037 Strasbourg cedex 2, (France)

    2015-07-01

    The spectrometer ATHENA (Accurate Telescope for High Energy Neutron metrology Applications), is being developed at the IRSN / LMDN (Institut de Radioprotection et de Surete nucleaire / Laboratoire de Metrologie et de dosimetrie des neutrons) and aims at characterizing energy and fluence of fast neutron fields. The detector is a Recoil Proton Telescope and measures neutron fields in the range of 5 to 20 MeV. This telescope is intended to become a primary standard for both energy and fluence measurements. The neutron detection is achieved by a polyethylene radiator for n-p conversion, three 50{sub m} thick silicon sensors that use CMOS technology for the proton tracking and a 3 mm thick silicon diode to measure the residual proton energy. This first prototype used CMOS sensors called MIMOSTAR, initially developed for heavy ion physics. The use of CMOS sensors and silicon diode increases the intrinsic efficiency of the detector by a factor of ten compared with conventional designs. The first prototype has already been done and was a successful study giving the results it offered in terms of energy and fluence measurements. For mono energetic beams going from 5 to 19 MeV, the telescope offered an energy resolution between 5 and 11% and fluence difference going from 5 to 7% compared to other home standards. A second and final prototype of the detector is being designed. It will hold upgraded CMOS sensors called FastPixN. These CMOS sensors are supposed to run 400 times faster than the older version and therefore give the telescope the ability to support neutron flux in the order of 107 to 108cm{sup 2}:s{sup 1}. The first prototypes results showed that a 50 m pixel size is enough for a precise scattering angle reconstruction. Simulations using MCNPX and GEANT4 are already in place for further improvements. A DeltaE diode will replace the third CMOS sensor and will be installed right before the silicon diode for a better recoil proton selection. The final prototype with

  12. SPATIALLY RESOLVED M-BAND EMISSION FROM IO’S LOKI PATERA–FIZEAU IMAGING AT THE 22.8 m LBT

    Energy Technology Data Exchange (ETDEWEB)

    Conrad, Albert; Veillet, Christian [LBT Observatory, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721 (United States); Kleer, Katherine de; Pater, Imke de [University of California at Berkeley, Berkeley, CA 94720 (United States); Leisenring, Jarron; Defrère, Denis; Hinz, Philip; Skemer, Andy [University of Arizona, 1428 E. University Blvd., Tucson, AZ 85721 (United States); Camera, Andrea La; Bertero, Mario; Boccacci, Patrizia [DIBRIS, University of Genoa, Via Dodecaneso 35, I-16146 Genova (Italy); Arcidiacono, Carmelo [INAF-Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Hofmann, Karl-Heinz; Schertl, Dieter; Weigelt, Gerd [Max Planck Institute for Radio Astronomy, Auf dem Hügel 69, D-53121 Bonn (Germany); Kürster, Martin [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Rathbun, Julie [Planetary Science Institute, 1700 E. Fort Lowell, Tucson, AZ 85719 (United States); Skrutskie, Michael [University of Virginia, 530 McCormick Road, Charlottesville, VA 22904 (United States); Spencer, John [Southwest Research Institute, 1050 Walnut Ste. Suite 300, Boulder, CO 80302 (United States); Woodward, Charles E., E-mail: aconrad@lbto.org [Minnesota Institute for Astrophysics, 116 Church St., Minneapolis, MN 55455 (United States)

    2015-05-15

    The Large Binocular Telescope Interferometer mid-infrared camera, LMIRcam, imaged Io on the night of 2013 December 24 UT and detected strong M-band (4.8 μm) thermal emission arising from Loki Patera. The 22.8 m baseline of the Large Binocular Telescope provides an angular resolution of ∼32 mas (∼100 km at Io) resolving the Loki Patera emission into two distinct maxima originating from different regions within Loki’s horseshoe lava lake. This observation is consistent with the presence of a high-temperature source observed in previous studies combined with an independent peak arising from cooling crust from recent resurfacing. The deconvolved images also reveal 15 other emission sites on the visible hemisphere of Io including two previously unidentified hot spots.

  13. Fast Fourier transform telescope

    International Nuclear Information System (INIS)

    Tegmark, Max; Zaldarriaga, Matias

    2009-01-01

    We propose an all-digital telescope for 21 cm tomography, which combines key advantages of both single dishes and interferometers. The electric field is digitized by antennas on a rectangular grid, after which a series of fast Fourier transforms recovers simultaneous multifrequency images of up to half the sky. Thanks to Moore's law, the bandwidth up to which this is feasible has now reached about 1 GHz, and will likely continue doubling every couple of years. The main advantages over a single dish telescope are cost and orders of magnitude larger field-of-view, translating into dramatically better sensitivity for large-area surveys. The key advantages over traditional interferometers are cost (the correlator computational cost for an N-element array scales as Nlog 2 N rather than N 2 ) and a compact synthesized beam. We argue that 21 cm tomography could be an ideal first application of a very large fast Fourier transform telescope, which would provide both massive sensitivity improvements per dollar and mitigate the off-beam point source foreground problem with its clean beam. Another potentially interesting application is cosmic microwave background polarization.

  14. Proper Motions of Dwarf Spheroidal Galaxies from Hubble Space Telescope Imaging. IV. Measurement for Sculptor

    Science.gov (United States)

    Piatek, Slawomir; Pryor, Carlton; Bristow, Paul; Olszewski, Edward W.; Harris, Hugh C.; Mateo, Mario; Minniti, Dante; Tinney, Christopher G.

    2006-03-01

    This article presents a measurement of the proper motion of the Sculptor dwarf spheroidal galaxy determined from images taken with the Hubble Space Telescope using the Space Telescope Imaging Spectrograph in the imaging mode. Each of two distinct fields contains a quasi-stellar object that serves as the ``reference point.'' The measured proper motion of Sculptor, expressed in the equatorial coordinate system, is (μα, μδ)=(9+/-13, 2+/-13) mas century-1. Removing the contributions from the motion of the Sun and the motion of the local standard of rest produces the proper motion in the Galactic rest frame: (μGrfα, μGrfδ)=(-23+/-13, 45+/-13) mas century-1. The implied space velocity with respect to the Galactic center has a radial component of Vr=79+/-6 km s-1 and a tangential component of Vt=198+/-50 km s-1. Integrating the motion of Sculptor in a realistic potential for the Milky Way produces orbital elements. The perigalacticon and apogalacticon are 68 (31, 83) and 122 (97, 313) kpc, respectively, where the values in the parentheses represent the 95% confidence interval derived from Monte Carlo experiments. The eccentricity of the orbit is 0.29 (0.26, 0.60), and the orbital period is 2.2 (1.5, 4.9) Gyr. Sculptor is on a polar orbit around the Milky Way: the angle of inclination is 86° (83°, 90°). Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  15. Liverpool Telescope 2: beginning the design phase

    Science.gov (United States)

    Copperwheat, Christopher M.; Steele, Iain A.; Barnsley, Robert M.; Bates, Stuart D.; Bode, Mike F.; Clay, Neil R.; Collins, Chris A.; Jermak, Helen E.; Knapen, Johan H.; Marchant, Jon M.; Mottram, Chris J.; Piascik, Andrzej S.; Smith, Robert J.

    2016-07-01

    The Liverpool Telescope is a fully robotic 2-metre telescope located at the Observatorio del Roque de los Muchachos on the Canary Island of La Palma. The telescope began routine science operations in 2004, and currently seven simultaneously mounted instruments support a broad science programme, with a focus on transient followup and other time domain topics well suited to the characteristics of robotic observing. Work has begun on a successor facility with the working title `Liverpool Telescope 2'. We are entering a new era of time domain astronomy with new discovery facilities across the electromagnetic spectrum, and the next generation of optical survey facilities such as LSST are set to revolutionise the field of transient science in particular. The fully robotic Liverpool Telescope 2 will have a 4-metre aperture and an improved response time, and will be designed to meet the challenges of this new era. Following a conceptual design phase, we are about to begin the detailed design which will lead towards the start of construction in 2018, for first light ˜2022. In this paper we provide an overview of the facility and an update on progress.

  16. The Telescope: Outline of a Poetic History

    Science.gov (United States)

    Stocchi, M. P.

    2011-06-01

    Amongst the first editions of Galileo's books, only the Saggiatore has on its frontispiece the image of the telescope. Indeed, the telescope is not pictured on the very emphatic frontispieces of the other books in which Galileo was presenting and defending the results achieved by his celestial observations, such as the Sidereus Nuncius. Many contemporary scientists denied the reliability of the telescope, and some even refused to look into the eyepiece. In the 16th and 17th century, the lenses, mirrors, and optical devices of extraordinary complexity did not have the main task of leading to the objective truth but obtaining the deformation of the reality by means of amazing effects of illusion. The Baroque art and literature had the aim of surprising, and the artists gave an enthusiastic support to the telescope. The poems in praise of Galileo's telescopic findings were quite numerous, including Adone composed by Giovanni Battista Marino, one of the most renowned poets of the time. The Galilean discoveries were actually accepted by the poets as ideologically neutral contributions to the "wonder" in spite they were rejected or even condemned by the scientists, philosophers, and theologians.

  17. A new concept of imaging system: telescope windows

    Science.gov (United States)

    Bourgenot, Cyril; Cowie, Euan; Young, Laura; Love, Gordon; Girkin, John; Courtial, Johannes

    2018-02-01

    A Telescope window is a novel concept of transformation-optics consisting of an array of micro-telescopes, in our configuration, of a Galilean type. When the array is considered as one multifaceted device, it acts as a traditional Galilean telescope with distinctive and attractive properties such as compactness and modularity. Each lenslet, can in principle, be independently designed for a specific optical function. In this paper, we report on the design, manufacture and prototyping, by diamond precision machining, of 2 concepts of telescope windows, and discuss both their performances and limitations with a view to use them as potential low vision aid devices to support patients with macular degeneration.

  18. Aplanatic telescopes based on Schwarzschild optical configuration: from grazing incidence Wolter-like x-ray optics to Cherenkov two-mirror normal incidence telescopes

    Science.gov (United States)

    Sironi, Giorgia

    2017-09-01

    At the beginning of XX century Karl Schwarzschild defined a method to design large-field aplanatic telescopes based on the use of two aspheric mirrors. The approach was then refined by Couder (1926) who, in order to correct for the astigmatic aberration, introduced a curvature of the focal plane. By the way, the realization of normal-incidence telescopes implementing the Schwarzschild aplanatic configuration has been historically limited by the lack of technological solutions to manufacture and test aspheric mirrors. On the other hand, the Schwarzschild solution was recovered for the realization of coma-free X-ray grazing incidence optics. Wolter-like grazing incidence systems are indeed free of spherical aberration, but still suffer from coma and higher order aberrations degrading the imaging capability for off-axis sources. The application of the Schwarzschild's solution to X-ray optics allowed Wolter to define an optical system that exactly obeys the Abbe sine condition, eliminating coma completely. Therefore these systems are named Wolter-Schwarzschild telescopes and have been used to implement wide-field X-ray telescopes like the ROSAT WFC and the SOHO X-ray telescope. Starting from this approach, a new class of X-ray optical system was proposed by Burrows, Burg and Giacconi assuming polynomials numerically optimized to get a flat field of view response and applied by Conconi to the wide field x-ray telescope (WFXT) design. The Schwarzschild-Couder solution has been recently re-discovered for the application to normal-incidence Cherenkov telescopes, thanks to the suggestion by Vassiliev and collaborators. The Italian Institute for Astrophysics (INAF) realized the first Cherenkov telescope based on the polynomial variation of the Schwarzschild configuration (the so-called ASTRI telescope). Its optical qualification was successfully completed in 2016, demonstrating the suitability of the Schwarzschild-like configuration for the Cherenkov astronomy requirements

  19. The Origins Space Telescope (OST)

    Science.gov (United States)

    Staguhn, Johannes

    2018-01-01

    The Origins Space Telescope is the mission concept for the Far-Infrared Surveyor, one of the four science and technology definition studies to be submitted by NASA Headquarters to the 2020 Astronomy and Astrophysics Decadal survey. The observatory will provide orders of magnitude improvements in sensitivity over prior missions, in particular for spectroscopy, enabling breakthrough science across astrophysics. The observatory will cover a wavelength range between 5 μm and 600 μm in order to enable the study of the formation of proto-planetary disks, detection of bio-signatures from extra-solar planet's atmospheres, characterization of the first galaxies in the universe, and many more. The five instruments that are currently studied are two imaging far-infrared spectrometers using incoherent detectors, providing up to R 10^5 spectral resolution, one far-infrared infrared heterodyne instrument for even higher spectral resolving powers, one far-infrared continuum imager and polarimeter, plus a mid-infrared coronagraph with imaging and spectroscopy mode. I will describe the scientific and technical capabilities of the observatory with focus on the expected synergies with AtLAST.

  20. The JCMT Telescope Management System

    Science.gov (United States)

    Tilanus, Remo P. J.; Jenness, Tim; Economou, Frossie; Cockayne, Steve

    Established telescopes often face a challenge when trying to incorporate new software standards and utilities into their existing real-time control system. At the JCMT we have successfully added important new features such as a Relational Database (the Telescope Management System---TMS), an online data Archive, and WWW based utilities to an, in part, 10-year old system. The new functionality was added with remarkably few alterations to the existing system. We are still actively expanding and exploring these new capabilities.

  1. Spectroscopic study of the optical counterpart to the fast X-ray transient IGR J17544-2619 based on observations at the 1.5-m RTT-150 telescope

    Science.gov (United States)

    Bikmaev, I. F.; Nikolaeva, E. A.; Shimansky, V. V.; Galeev, A. I.; Zhuchkov, R. Ya.; Irtuganov, E. N.; Melnikov, S. S.; Sakhibullin, N. A.; Grebenev, S. A.; Sharipova, L. M.

    2017-10-01

    We present the results of our long-term photometric and spectroscopic observations at the Russian-Turkish RTT-150 telescope for the optical counterpart to one of the best-known sources, representatives of the class of fast X-ray transients, IGR J17544-2619. Based on our optical data, we have determined for the first time the orbital and physical parameters of the binary system by the methods of Doppler spectroscopy.We have calculated theoretical spectra of the optical counterpart by applying non- LTE corrections for selected lines and obtained the parameters of the stellar atmosphere ( T eff = 33 000 K, log g = 3.85, R = 9.5 R ⊙, and M = 23 M ⊙). The latter suggest that the optical star is not a supergiant as has been thought previously.

  2. Portable triple silicon detector telescope spectrometer for skin dosimetry

    CERN Document Server

    Helt-Hansen, J; Christensen, P

    1999-01-01

    The features of a newly developed portable beta telescope spectrometer are described. The detector probe uses three silicon detectors with the thickness: 50 mu m/150 mu m/7000 mu m covered by a 2 mu m thick titanium window. Rejection of photon contributions from mixed beta/photon exposures is achieved by coincidence requirements between the detector signals. The silicon detectors, together with cooling aggregate, bias supplies, preamplifiers and charge generation for calibration are contained in a handy detector probe. Through a 3- or 10-m cable the detector unit is connected to a compact, portable processing unit including a laptop computer executing control, monitor, histogram and display tasks. The use of digital signal processing at an early stage of the signal chain has facilitated the achievement of a compact, low-weight device. 256 channels are available for each of the three detectors. The LabVIEW sup T sup M software distributed by National Instruments was used for all program developments for the sp...

  3. HUBBLE SPACE TELESCOPE WFC3 EARLY RELEASE SCIENCE: EMISSION-LINE GALAXIES FROM INFRARED GRISM OBSERVATIONS

    International Nuclear Information System (INIS)

    Straughn, Amber N.; Gardner, Jonathan P.; Kuntschner, Harald; Kuemmel, Martin; Walsh, Jeremy R.; Cohen, Seth H.; Windhorst, Rogier A.; Malhotra, Sangeeta; Rhoads, James; O'Connell, Robert W.; Pirzkal, Norbert; Bond, Howard E.; Meurer, Gerhardt; McCarthy, Patrick J.; Hathi, Nimish P.; Balick, Bruce; Calzetti, Daniela; Disney, Michael J.; Dopita, Michael A.; Frogel, Jay A.

    2011-01-01

    We present grism spectra of emission-line galaxies (ELGs) from 0.6 to 1.6 μm from the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope. These new infrared grism data augment previous optical Advanced Camera for Surveys G800L 0.6-0.95 μm grism data in GOODS-South from the PEARS program, extending the wavelength coverage well past the G800L red cutoff. The Early Release Science (ERS) grism field was observed at a depth of two orbits per grism, yielding spectra of hundreds of faint objects, a subset of which is presented here. ELGs are studied via the Hα, [O III], and [O II] emission lines detected in the redshift ranges 0.2 ∼ B(F098M) ≅ 25 mag. Seventeen GOODS-South galaxies that previously only had photometric redshifts now have new grism-spectroscopic redshifts, in some cases with large corrections to the photometric redshifts (Δz ≅ 0.3-0.5). Additionally, one galaxy had no previously measured redshift but now has a secure grism-spectroscopic redshift, for a total of 18 new GOODS-South spectroscopic redshifts. The faintest source in our sample has a magnitude m AB(F098M) = 26.9 mag. The ERS grism data also reflect the expected trend of lower specific star formation rates for the highest mass galaxies in the sample as a function of redshift, consistent with downsizing and discovered previously from large surveys. These results demonstrate the remarkable efficiency and capability of the WFC3 NIR grisms for measuring galaxy properties to faint magnitudes and redshifts to z ∼> 2.

  4. The conceptual design and simulation of 30m RIT

    Science.gov (United States)

    Liu, Zhong; Yichun, Dai; Jin, Zhenyu; Jun, Xu; Lin, Jing

    2008-07-01

    As one of the preliminary research projects of Chinese ELT, 30m RIT--Ring Interferometric Telescope are being simulated and tentatively designed by Yunnan Astronomical Observatory, CAS. The simulations of 30m RIT are mainly included as follows: PSF transform and the image quality at limited photons mode, active control mode of the primary ring mirror, the phasing mode of 30m segmented ring mirror, the turbulent atmosphere and adaptive optics etc. This paper also introduces some tentative design results of 30m RIT, such as the optical design, the conceptual design of the enclosure. The astronomical experiments at seeing limited case and diffraction limited case are introduced in this paper too. A ring aperture mask was put on the entrance pupil of a one meter telescope, real astronomical objects were observed by this "ring telescope" and reconstructed by high resolution imaging techniques such as speckle masking, iterative shift and add methods. The diffraction imaging ability and the full u-v coverage property of a ring aperture were proved by these astronomical experiments.

  5. Development of Slewing Mirror Telescope Optical System for the UFFO-pathfinder

    DEFF Research Database (Denmark)

    Jeong, S.; Nam, J.W.; Ahn, K.-B.

    2013-01-01

    The Slewing Mirror Telescope (SMT) is the UV/optical telescope of UFFO-pathfinder. The SMT optical system is a Ritchey-Chrétien (RC) telescope of 100 mm diameter pointed by means of a gimbal-mounted flat mirror in front of the telescope. The RC telescope has a 17 × 17arcmin2 in Field of View and ...

  6. Academic Training: Deep Space Telescopes

    CERN Multimedia

    Françoise Benz

    2006-01-01

    2005-2006 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 20, 21, 22, 23, 24 February from 11:00 to 12:00 - Council Chamber on 20, 21, 23, 24 February, TH Auditorium, bldg 4 - 3-006, on 22 February Deep Space Telescopes G. BIGNAMI / CNRS, Toulouse, F & Univ. di Pavia, I The short series of seminars will address results and aims of current and future space astrophysics as the cultural framework for the development of deep space telescopes. It will then present such new tools, as they are currently available to, or imagined by, the scientific community, in the context of the science plans of ESA and of all major world space agencies. Ground-based astronomy, in the 400 years since Galileo's telescope, has given us a profound phenomenological comprehension of our Universe, but has traditionally been limited to the narrow band(s) to which our terrestrial atmosphere is transparent. Celestial objects, however, do not care about our limitations, and distribute most of the information about their physics thro...

  7. Remaining Sites Verification Package for the 100-F-26:12, 1.8-m (72-in.) Main Process Sewer Pipeline. Attachment to Waste Site Reclassification Form 2007-034

    International Nuclear Information System (INIS)

    Capron, J.M.

    2008-01-01

    The 100-F-26:12 waste site was an approximately 308-m-long, 1.8-m-diameter east-west-trending reinforced concrete pipe that joined the North Process Sewer Pipelines (100-F-26:1) and the South Process Pipelines (100-F-26:4) with the 1.8-m reactor cooling water effluent pipeline (100-F-19). In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River

  8. Observations of Anomalous Refraction with Co-housed Telescopes

    Science.gov (United States)

    Taylor, Malinda S.; McGraw, J. T.; Zimmer, P. C.

    2013-01-01

    Anomalous refraction is described as a low frequency, large angular scale motion of the entire image plane with respect to the celestial coordinate system as observed and defined by previous astrometric catalogs. These motions of typically several tenths of an arcsecond with timescales on the order of ten minutes are ubiquitous to drift-scan ground-based astrometric measurements regardless of location or telescopes used and have been attributed to meter scale slowly evolving coherent dynamical structures in the boundary-layer below 60 meters. The localized nature of the effect and general inconsistency of the motions seen by even closely spaced telescopes in individual domes has led to the hypothesis that the dome or other type of telescope housing may be responsible. This hypothesis is tested by observing anomalous refraction using two telescopes housed in a single roll-off roof observatory building with the expected outcome that the two telescopes will see correlated anomalous refraction induced motions.

  9. The Chemical Composition Contrast between M3 and M13 Revisited: New Abundances for 28 Giant Stars in M3

    Science.gov (United States)

    Sneden, Christopher; Kraft, Robert P.; Guhathakurta, Puragra; Peterson, Ruth C.; Fulbright, Jon P.

    2004-04-01

    We report new chemical abundances of 23 bright red giant members of the globular cluster M3, based on high-resolution (R~45,000) spectra obtained with the Keck I telescope. The observations, which involve the use of multislits in the HIRES Keck I spectrograph, are described in detail. Combining these data with a previously reported small sample of M3 giants obtained with the Lick 3 m telescope, we compare metallicities and [X/Fe] ratios for 28 M3 giants with a 35-star sample in the similar-metallicity cluster M13, and with Galactic halo field stars having [Fe/H]=A(Si), we derive little difference in [X/Fe] ratios in the M3, M13, or halo field samples. All three groups exhibit C depletion with advancing evolutionary state beginning at the level of the red giant branch ``bump,'' but the overall depletion of about 0.7-0.9 dex seen in the clusters is larger than that associated with the field stars. The behaviors of O, Na, Mg, and Al are distinctively different among the three stellar samples. Field halo giants and subdwarfs have a positive correlation of Na with Mg, as predicted from explosive or hydrostatic carbon burning in Type II supernova sites. Both M3 and M13 show evidence of high-temperature proton-capture synthesis from the ON, NeNa, and MgAl cycles, while there is no evidence for such synthesis among halo field stars. But the degree of such extreme proton-capture synthesis in M3 is smaller than it is in M13: the M3 giants exhibit only modest deficiencies of O and corresponding enhancements of Na, less extreme overabundances of Al, fewer stars with low Mg and correspondingly high Na, and no indication that O depletions are a function of advancing evolutionary state, as has been claimed for M13. We have also considered NGC 6752, for which Mg isotopic abundances have been reported by Yong et al. Giants in NGC 6752 and M13 satisfy the same anticorrelation of O abundances with the ratio (25Mg+26Mg)/24Mg, which measures the relative contribution of rare to

  10. Simulation of the Simbol-X Telescope

    International Nuclear Information System (INIS)

    Chauvin, M.; Roques, J. P.

    2009-01-01

    We have developed a simulation tool for a Wolter I telescope operating in formation flight. The aim is to understand and predict the behavior of the Simbol-X instrument. As the geometry is variable, formation flight introduces new challenges and complex implications. Our code, based on Monte Carlo ray tracing, computes the full photon trajectories up to the detector plane, along with the relative drifts of the two spacecrafts. It takes into account angle and energy dependent interactions of the photons with the mirrors and applies to any grazing incidence telescope. The resulting images of simulated sources from 0.1 keV to 100 keV allow us to optimize the configuration of the instrument and to assess the performance of the Simbol-X telescope.

  11. Simulation of the Simbol-X Telescope

    Science.gov (United States)

    Chauvin, M.; Roques, J. P.

    2009-05-01

    We have developed a simulation tool for a Wolter I telescope operating in formation flight. The aim is to understand and predict the behavior of the Simbol-X instrument. As the geometry is variable, formation flight introduces new challenges and complex implications. Our code, based on Monte Carlo ray tracing, computes the full photon trajectories up to the detector plane, along with the relative drifts of the two spacecrafts. It takes into account angle and energy dependent interactions of the photons with the mirrors and applies to any grazing incidence telescope. The resulting images of simulated sources from 0.1 keV to 100 keV allow us to optimize the configuration of the instrument and to assess the performance of the Simbol-X telescope.

  12. The VTIE telescope resource management system

    Science.gov (United States)

    Busschots, B.; Keating, J. G.

    2005-06-01

    The VTIE Telescope Resource Management System (TRMS) provides a frame work for managing a distributed group of internet telescopes as a single "Virtual Observatory". The TRMS provides hooks which allow for it to be connected to any Java Based web portal and for a Java based scheduler to be added to it. The TRMS represents each telescope and observatory in the system with a software agent and then allows the scheduler and web portal to communicate with these distributed resources in a simple transparent way, hence allowing the scheduler and portal designers to concentrate only on what they wish to do with these resources rather than how to communicate with them. This paper outlines the structure and implementation of this frame work.

  13. EXTINCTION AND DUST GEOMETRY IN M83 H II REGIONS: AN HUBBLE SPACE TELESCOPE/WFC3 STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guilin; Calzetti, Daniela; Hong, Sungryong [Astronomy Department, University of Massachusetts, Amherst, MA 01003 (United States); Whitmore, Bradley [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Chandar, Rupali [Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606 (United States); O' Connell, Robert W. [Astronomy Department, University of Virginia, P.O. Box 3818, Charlottesville, VA 22903 (United States); Blair, William P. [Center for Astrophysical Sciences, Johns Hopkins University, Baltimore, MD 21218 (United States); Cohen, Seth H.; Kim, Hwihyun [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States); Frogel, Jay A., E-mail: liu@pha.jhu.edu [Galaxies Unlimited, Lutherville, MD 21093 (United States)

    2013-12-01

    We present Hubble Space Telescope/WFC3 narrow-band imaging of the starburst galaxy M83 targeting the hydrogen recombination lines (Hβ, Hα, and Paβ), which we use to investigate the dust extinction in the H II regions. We derive extinction maps with 6 pc spatial resolution from two combinations of hydrogen lines (Hα/Hβ and Hα/Paβ), and show that the longer wavelengths probe larger optical depths, with A{sub V} values larger by ≳1 mag than those derived from the shorter wavelengths. This difference leads to a factor ≳2 discrepancy in the extinction-corrected Hα luminosity, a significant effect when studying extragalactic H II regions. By comparing these observations to a series of simple models, we conclude that a large diversity of absorber/emitter geometric configurations can account for the data, implying a more complex physical structure than the classical foreground ''dust screen'' assumption. However, most data points are bracketed by the foreground screen and a model where dust and emitters are uniformly mixed. When averaged over large (≳100-200 pc) scales, the extinction becomes consistent with a ''dust screen'', suggesting that other geometries tend to be restricted to more local scales. Moreover, the extinction in any region can be described by a combination of the foreground screen and the uniform mixture model with weights of 1/3 and 2/3 in the center (≲2 kpc), respectively, and 2/3 and 1/3 for the rest of the disk. This simple prescription significantly improves the accuracy of the dust extinction corrections and can be especially useful for pixel-based analyses of galaxies similar to M83.

  14. Direct illumination LED calibration for telescope photometry

    International Nuclear Information System (INIS)

    Barrelet, E.; Juramy, C.

    2008-01-01

    A calibration method for telescope photometry, based on the direct illumination of a telescope with a calibrated light source regrouping multiple LEDs, is proposed. Its purpose is to calibrate the instrument response. The main emphasis of the proposed method is the traceability of the calibration process and a continuous monitoring of the instrument in order to maintain a 0.2% accuracy over a period of years. Its specificity is to map finely the response of the telescope and its camera as a function of all light ray parameters. This feature is essential to implement a computer model of the instrument representing the variation of the overall light collection efficiency of each pixel for various filter configurations. We report on hardware developments done for SNDICE, the first application of this direct illumination calibration system which will be installed in Canada France Hawaii telescope (CFHT) for its leading supernova experiment (SNLS)

  15. THE ARAUCARIA PROJECT. A DISTANCE DETERMINATION TO THE LOCAL GROUP SPIRAL M33 FROM NEAR-INFRARED PHOTOMETRY OF CEPHEID VARIABLES

    Energy Technology Data Exchange (ETDEWEB)

    Gieren, Wolfgang; Pietrzynski, Grzegorz; Graczyk, Dariusz, E-mail: wgieren@astro-udec.cl, E-mail: pietrzyn@hubble.cfm.udec.cl [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warsaw (Poland); and others

    2013-08-10

    Motivated by an amazing range of reported distances to the nearby Local Group spiral galaxy M33, we have obtained deep near-infrared photometry for 26 long-period Cepheids in this galaxy with the ESO Very Large Telescope. From the data, we constructed period-luminosity relations in the J and K bands which together with previous optical VI photometry for the Cepheids by Macri et al. were used to determine the true distance modulus of M33, and the mean reddening affecting the Cepheid sample with the multiwavelength fit method developed in the Araucaria Project. We find a true distance modulus of 24.62 for M33, with a total uncertainty of {+-}0.07 mag which is dominated by the uncertainty on the photometric zero points in our photometry. The reddening is determined as E(B - V) = 0.19 {+-} 0.02, in agreement with the value used by the Hubble Space Telescope Key Project of Freedman et al. but in some discrepancy with other recent determinations based on blue supergiant spectroscopy and an O-type eclipsing binary which yielded lower reddening values. Our derived M33 distance modulus is extremely insensitive to the adopted reddening law. We show that the possible effects of metallicity and crowding on our present distance determination are both at the 1%-2% level and therefore minor contributors to the total uncertainty of our distance result for M33.

  16. Antarctic observations at long wavelengths with the IRAIT-ITM Telescope at Dome C

    Science.gov (United States)

    Durand, Gilles A.; Tremblin, Pascal; Minier, Vincent; Reinert, Yann; Leroy dos Santos, Christophe; Rodriguez, Louis; Joffrin, Xavier; Busso, Maurizio; Tosti, Gino; Nucciarelli, Giuliano; Dolci, Mauro; Straniero, Oscar; Valentini, Angelo; Abia, Carlos; Christille, Jean Marc; Doumayrou, Eric; Lortholary, Michel; Charron, Patrice; Lotrus, Paul; Walter, Christian; Ronayette, Samuel; Challita, Zalpha; Fromont, Laurent; Condamin, Mathieu; Kwon, Min Kyong; Tavagnacco, Daniele

    2014-07-01

    We illustrate the status of the international infra-red telescope IRAIT-ITM, a project developed thanks to an Italian- Spanish-French collaboration and now sited at the Dome C Antarctic base. The telescope and its subsystems were installed at DomeC by a team of Italian and French scientists. The 80 cm telescope is placed on a small snow hill next to a laboratory of astronomy. The operations started in January 2013, with the Nasmyth focal planes equipped with the midinfrared camera AMICA for 1.25 to 25 μm and the sub-millimetre camera CAMISTIC for observation of the sky noise at 200 and 350 μm using a bolometer camera. During 2013 the two winter-overs worked mainly on technological duties, learning how to operate the telescope, while temperatures decreased down to -80°C. The cryogenic systems could be operated respectively at 0.25K and 4K at all times, with satisfactory use of the heat from the compressors of the cryocoolers to the warm-up the laboratory through a closed loop glycol system. The lack of tests and reliability in extreme conditions of some components and difficult access to maintenance hampered regular observations below -50°C. Using the lessons of this first winter, the summer team improves the robustness of the failing systems and ease the access to maintenance. The winter 2014 is the first one with programmed observations. Because of power restrictions, the two instruments are used each one at a time by periods of 2 weeks. The Camistic camera continues to observe the stability of the sky at a fixed altitude in chopping mode and performs skydips. The TCS is being upgraded in order to prepare the next summer season with extensive observations of the sun with Camistic.

  17. [Galileo and his telescope].

    Science.gov (United States)

    Strebel, Christoph

    2006-01-01

    Galileo's publication of observations made with his newly reinvented telescope provoked a fierce debate. In April 1610 Martinus Horky, a young Bohemian astronomer, had an opportunity to make his own observations with Galileo's telescope in the presence of Antonio Magini and other astronomers. Horky and the other witnesses denied the adequacy of Galileo's telescope and therefore the bona fides of his discoveries. Kepler conjectured Horky as well as all his witnesses to be myopic. But Kepler's objection could not stop the publication of Horky's Peregrinatio contra nuncium sidereum (Modena, 1610), the first printed refutation of Galileo's Sidereus nuncius. In his treatise, Horky adresses four questions: 1) Do the four newly observed heavenly bodies actually exist? Horky denies their existence on various grounds: a) God, as every astronomer teaches, has created only seven moveable heavenly bodies and astronomical knowledge originates in God, too. b) Heavenly bodies are either stars or planets. Galileo's moveable heavenly bodies fit into neither category. c) If they do exist, why have they not already been observed by other scholars? Horky concludes that there are no such heavenly bodies. 2) What are these phenomena? They are purely artefactual, and produced by Galileo's telescope. 3) How are they like? Galileo's "stars" are so small as to be almost invisible. Galileo claims that he has measured their distances from each other. This however is impossible due to their diminutive size and other observational problems. Hence, Galileo's claim is a further proof that he is a fraud. 4) Why are they? For Galileo they are a chance to earn money but for astronomers like Horky they are a reason to offer thanks and honour to God. Horky's treatise was favourably received by the enemies of Galileo. But Kepler's critique was devastating. After calling on Kepler in Prague, Horky had to revoke the contents of his book.

  18. The Associate Principal Astronomer for AI Management of Automatic Telescopes

    Science.gov (United States)

    Henry, Gregory W.

    1998-01-01

    This research program in scheduling and management of automatic telescopes had the following objectives: 1. To field test the 1993 Automatic Telescope Instruction Set (ATIS93) programming language, which was specifically developed to allow real-time control of an automatic telescope via an artificial intelligence scheduler running on a remote computer. 2. To develop and test the procedures for two-way communication between a telescope controller and remote scheduler via the Internet. 3. To test various concepts in Al scheduling being developed at NASA Ames Research Center on an automatic telescope operated by Tennessee State University at the Fairborn Observatory site in southern Arizona. and 4. To develop a prototype software package, dubbed the Associate Principal Astronomer, for the efficient scheduling and management of automatic telescopes.

  19. An off-the-shelf guider for the Palomar 200-inch telescope: interfacing amateur astronomy software with professional telescopes for an easy life

    Science.gov (United States)

    Clarke, Fraser; Lynn, James; Thatte, Niranjan; Tecza, Matthias

    2014-08-01

    We have developed a simple but effective guider for use with the Oxford-SWIFT integral field spectrograph on the Palomar 200-inch telescope. The guider uses mainly off-the-shelf components, including commercial amateur astronomy software to interface with the CCD camera, calculating guiding corrections, and send guide commands to the telescope. The only custom piece of software is an driver to provide an interface between the Palomar telescope control system and the industry standard 'ASCOM' system. Using existing commercial software provided a very cheap guider (guiding, and could easily be adapted to any other professional telescope

  20. VizieR Online Data Catalog: Gravitational waves search from known PSR with LIGO (Abbott+, 2017)

    Science.gov (United States)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Beer, C.; Bejger, M.; Belahcene, I.; Belgin, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnho Ltz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderon Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglia, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. C.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H.-P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conti, L.; Cooper, S. J.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Del Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; Day, R.; de, S.; Debra, D.; Debreczeni, G.; Degallaix, J.; de Laurentis, M.; Deleglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; Derosa, R. T.; Desalvo, R.; Devenson, J.; Devine R. C, .; Dhurandhar, S.; Diaz, M. C.; di Fiore, L.; di Giovanni M.; di Girolamo, T.; di Lieto, A.; di Pace, S.; di Palma, I.; di Virgilio A.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Alvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fernandez Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, A.; Ghosh, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; Gonzalez, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jimenez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kefelian, F.; Keitel, D.; Kelley, D. B.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J. C.; Kim, W.; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kramer, C.; Kringel, V.; Krishnan, B.; Krolak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Luck, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; Macinnis, M.; MacLeod, D. M.; Magana-Sandoval, F.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Marka, S.; Marka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGra, Th C.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, A.; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Mytidis, A.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, R. J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Purrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero E. A.; QuitzoW-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Rhoades, E.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romie, J. H.; Rosinska, D.; Rowan, S.; Rudiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schonbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T. J.; Shahriar, M. S.; Shapiro, B.; Shawhan P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepanczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tapai, M.; Taracchini, A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tippens, T.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Toyra, D.; Travasso, F.; Traylor, G.; Trifiro, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tse, M.; Tso, R.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasuth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Vicere, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yu, H.; Yvert, M.; Zadrozny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; Buchner, S.; Cognard, I.; Corongiu, A.; Freire, P. C. C.; Guillemot, L.; Hobbs, G. B.; Kerr, M.; Lyne, A. G.; Possenti, A.; Ridolfi, A.; Shannon, R. M.; Stappers, B. W.; Weltevrede, P.; (The Ligo Scientific Collaboration)

    2017-11-01

    We have obtained timings for 200 known pulsars. Timing was performed using the 42ft telescope and Lovell telescope at Jodrell Bank (UK), the 26m telescope at Hartebeesthoek (South Africa), the Parkes radio telescope (Australia), the Nancay Decimetric Radio Telescope (France), the Arecibo Observatory (Puerto Rico) and the Fermi Large Area Telescope (LAT). Of these, 122 have been targeted in previous campaigns (Aasi+ 2014, J/ApJ/785/119), while 78 are new to this search. (1 data file).

  1. Telescope Construction: A Hands-On Approach to Astronomy Education

    Science.gov (United States)

    Sarrazine, Angela R.; Albin, E.

    2009-01-01

    We report on a popular semester-long telescope making course offered at Fernbank Science Center in Atlanta, GA. The program is tailored for junior / senior level high school students and incorporates the current educational performance standards for the state of Georgia. This course steps out of the traditional classroom environment and allows students to explore optics and astronomical concepts by constructing their own telescopes. Student telescopes follow the classic six-inch f/8 Newtonian reflector design, which has proven to be a good compromise between portability and aperture. Participants meet for a few hours, twice weekly, to build their telescopes. Over the course of the semester, raw one-inch thick Pyrex mirror blanks are ground, polished, and figured by hand into precision telescope objectives. Along the way, students are introduced to the Ronchi and Foucault methods for testing optics and once figured, completed mirrors are then chemically silvered. A plywood Dobsonian-style base is built and eventually mated with an optical tube made from a standard eight-inch concrete form tube or sonotube. An evening of star testing the optics and observation is planned at the end of the semester to insure the proper operation of each telescope. In summary, we believe that a hands-on approach to the understanding and use of optical telescopes is a great way not only to instill enthusiasm among students for the night sky, but may perhaps inspire the next generation of professional telescope makers.

  2. Hubble Space Telescope, Faint Object Camera

    Science.gov (United States)

    1981-01-01

    This drawing illustrates Hubble Space Telescope's (HST's), Faint Object Camera (FOC). The FOC reflects light down one of two optical pathways. The light enters a detector after passing through filters or through devices that can block out light from bright objects. Light from bright objects is blocked out to enable the FOC to see background images. The detector intensifies the image, then records it much like a television camera. For faint objects, images can be built up over long exposure times. The total image is translated into digital data, transmitted to Earth, and then reconstructed. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.

  3. The big data telescope

    International Nuclear Information System (INIS)

    Finkel, Elizabeth

    2017-01-01

    On a flat, red mulga plain in the outback of Western Australia, preparations are under way to build the most audacious telescope astronomers have ever dreamed of - the Square Kilometre Array (SKA). Next-generation telescopes usually aim to double the performance of their predecessors. The Australian arm of SKA will deliver a 168-fold leap on the best technology available today, to show us the universe as never before. It will tune into signals emitted just a million years after the Big Bang, when the universe was a sea of hydrogen gas, slowly percolating with the first galaxies. Their starlight illuminated the fledgling universe in what is referred to as the “cosmic dawn”.

  4. Proxy magnetometry with the Dutch Open Telescope

    NARCIS (Netherlands)

    Rutten, R.J.; Hammerschlag, R.H.; Sütterlin, P.; Bettonvil, F.C.M.

    1999-01-01

    Superb movies from the Dutch Open Telescope (DOT) on La Palma have proven the validity of the open concept of this innovative telescope for high-resolution imaging of the solar atmosphere. A five- camera speckle-burst registration system is being installed that should permit consistent and

  5. Space telescopes capturing the rays of the electromagnetic spectrum

    CERN Document Server

    English, Neil

    2017-01-01

    Space telescopes are among humankind’s greatest scientific achievements of the last fifty years. This book describes the instruments themselves and what they were designed to discover about the Solar System and distant stars. Exactly how these telescopes were built and launched and the data they provided is explored. Only certain kinds of radiation can penetrate our planet's atmosphere, which limits what we can observe. But with space telescopes all this changed. We now have the means to "see" beyond Earth using ultraviolet, microwave, and infrared rays, X-rays and gamma rays. In this book we meet the pioneers and the telescopes that were built around their ideas. This book looks at space telescopes not simply chronologically but also in order of the electromagnetic spectrum, making it possible to understand better why they were made.

  6. A semiconductor counter telescope for neutron reaction studies

    Energy Technology Data Exchange (ETDEWEB)

    Lalovic, B I; Ajdacic, V S [Institute of nuclear sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1963-12-15

    A counter telescope consisting of two or three semiconductor counters for {delta}E/{delta}x vs. E analysis was made for studying nuclear reactions induced by 14.4 MeV neutrons. Various factors important for the telescope performance are discussed in details and some solutions for getting an optimum resolution and a low background are given. Protons, deuterons and alpha particles resulting from scattering and reactions of 14.4 MeV neutrons on deuterium, tritium, praseodymium and niobium were detected, and pulses from the counters recorded on a two-dimensional analyzer. These experiments have shown that the telescope compares favorably with other types of telescopes with regards to the upper limit of neutron flux which can be used, (DELTADELTA)x and E resolution, versatility and compactness (author)

  7. L' AND M' Photometry Of Ultracool Dwarfs

    National Research Council Canada - National Science Library

    Marley, M

    2004-01-01

    We have compiled L' (3.4-4.1 microns) and M' (4.6-4.8 microns) photometry of 63 single and binary M, L, and T dwarfs obtained at the United Kingdom Infrared Telescope using the Mauna Kea Observatory filter set...

  8. Dobson space telescope: development of an optical payload of the next generation

    Science.gov (United States)

    Segert, Tom; Danziger, Björn; Gork, Daniel; Lieder, Matthias

    2017-11-01

    The Dobson Space Telescope (DST) is a research project of the Department of Astronautics at the TUBerlin. For Development and commercialisation there is a close cooperation with the network of the Berlin Space Industry (RIBB). Major Partner is the Astro- und Feinwerktechnik Adlershof GmbH a specialist for space structures and head of the industry consortia which built the DLR BIRD micro satellite. The aim of the project is to develop a new type of deployable telescope that can overcome the mass and volume limitations of small satellites. With the DST payload micro satellites of the 100kg class will be able to carry 50cm main mirror diameter optics (→ 1m GSD). Basis of this technology is the fact that a telescope is mainly empty space between the optical elements. To fold down the telescope during launch and to undfold it after the satellite reached its orbit can save 70% of payload volume and 50% of payload mass. Since these advantages continue along the value added chain DST is of highest priority for the next generation of commercial EO micro satellites. Since 2002 the key technologies for DST have been developed in test benches in Labs of TU-Berlin and were tested on board a ESA parabolic flight campaign in 2005. The development team at TU-Berlin currently prepares the foundation of a start-up company for further development and commercialisation of DST.

  9. Observations of binary stars by speckle interferometry

    International Nuclear Information System (INIS)

    Morgan, B.L.; Beckmann, G.K.; Scaddan, R.J.

    1980-01-01

    This is the second paper in a series describing observations of binary stars using the technique of speckle interferometry. Observations were made using the 2.5-m Isaac Newton Telescope and the 1-m telescope of the Royal Greenwich Observatory and the 1.9-m telescope of the South African Astronomical Observatory. The classical Rayleigh diffraction limits are 0.050 arcsec for the 2.5-m telescope, 0.065 arcsec for the 1.9-m telescope and 0.125 arcsec for the 1-m telescope, at a wavelength of 500 nm. The results of 29 measurements of 26 objects are presented. The objects include long period spectroscopic binaries from the 6th Catalogue of Batten, close visual binary systems from the 3rd Catalogue of Finsen and Worley and variable stars. Nine of the objects have not been previously resolved by speckle interferometry. New members are detected in the systems β Cep, p Vel and iota UMa. (author)

  10. Simulations of cm-wavelength Sunyaev-Zel'dovich galaxy cluster and point source blind sky surveys and predictions for the RT32/OCRA-f and the Hevelius 100-m radio telescope

    Energy Technology Data Exchange (ETDEWEB)

    Lew, Bartosz; Kus, Andrzej [Toruń Centre for Astronomy, Nicolaus Copernicus University, ul. Gagarina 11, 87-100 Toruń (Poland); Birkinshaw, Mark [HH Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Wilkinson, Peter, E-mail: blew@astro.uni.torun.pl, E-mail: Mark.Birkinshaw@bristol.ac.uk, E-mail: peter.wilkinson@manchester.ac.uk, E-mail: ajk@astro.uni.torun.pl [Jodrell Bank Centre for Astrophysics, The University of Manchester, Alan Turing Building, Manchester M13 9PL (United Kingdom)

    2015-02-01

    We investigate the effectiveness of blind surveys for radio sources and galaxy cluster thermal Sunyaev-Zel'dovich effects (TSZEs) using the four-pair, beam-switched OCRA-f radiometer on the 32-m radio telescope in Poland. The predictions are based on mock maps that include the cosmic microwave background, TSZEs from hydrodynamical simulations of large scale structure formation, and unresolved radio sources. We validate the mock maps against observational data, and examine the limitations imposed by simplified physics. We estimate the effects of source clustering towards galaxy clusters from NVSS source counts around Planck-selected cluster candidates, and include appropriate correlations in our mock maps. The study allows us to quantify the effects of halo line-of-sight alignments, source confusion, and telescope angular resolution on the detections of TSZEs. We perform a similar analysis for the planned 100-m Hevelius radio telescope (RTH) equipped with a 49-beam radio camera and operating at frequencies up to 22 GHz.We find that RT32/OCRA-f will be suitable for small-field blind radio source surveys, and will detect 33{sup +17}{sub −11} new radio sources brighter than 0.87 mJy at 30 GHz in a 1 deg{sup 2} field at > 5σ CL during a one-year, non-continuous, observing campaign, taking account of Polish weather conditions. It is unlikely that any galaxy cluster will be detected at 3σ CL in such a survey. A 60-deg{sup 2} survey, with field coverage of 2{sup 2} beams per pixel, at 15 GHz with the RTH, would find <1.5 galaxy clusters per year brighter than 60 μJy (at 3σ CL), and would detect about 3.4 × 10{sup 4} point sources brighter than 1 mJy at 5σ CL, with confusion causing flux density errors ∼< 2% (20%) in 68% (95%) of the detected sources.A primary goal of the planned RTH will be a wide-area (π sr) radio source survey at 15 GHz. This survey will detect nearly 3 × 10{sup 5} radio sources at 5σ CL down to 1.3 mJy, and tens of galaxy

  11. Eyes on the Universe: The Legacy of the Hubble Space Telescope and Looking to the Future with the James Webb Space Telescope

    Science.gov (United States)

    Straughn, Amber

    2011-01-01

    Over the past 20 years the Hubble Space Telescope has revolutionized our understanding of the Universe. Most recently, the complete refurbishment of Hubble in 2009 has given new life to the telescope and the new science instruments have already produced groundbreaking science results, revealing some of the most distant galaxy candidates ever discovered. Despite the remarkable advances in astrophysics that Hubble has provided, the new questions that have arisen demand a new space telescope with new technologies and capabilities. I will present the exciting new technology development and science goals of NASA's James Webb Space Telescope, which is currently being built and tested and will be launched this decade.

  12. FPGA applications for single dish activity at Medicina radio telescopes

    Science.gov (United States)

    Bartolini, M.; Naldi, G.; Mattana, A.; Maccaferri, A.; De Biaggi, M.

    FPGA technologies are gaining major attention in the recent years in the field of radio astronomy. At Medicina radio telescopes, FPGAs have been used in the last ten years for a number of purposes and in this article we will take into exam the applications developed and installed for the Medicina Single Dish 32m Antenna: these range from high performance digital signal processing to instrument control developed on top of smaller FPGAs.

  13. New infrared telescopic observation of Vesta

    Science.gov (United States)

    Palomba, E.; D'Aversa, E.; Sato, T.; Longobardo, A.; Aoki, S.; Sindoni, G.; Oliva, F.

    2017-09-01

    In this work we present new telescopic observations of the Vesta asteroid made at the Subaru Telescope by using the COMICS IR spectrometer. We were able to obtain 5 different observations in 5 day, at two different epochs. The obtained spectra do not exhibit Reststrahlen bands and show only weak features attributable to the Christiansen peak and to the transparency feature compatible with a fine grain size regolith.

  14. Infrared profile of Milky Way at 2.4 μm

    International Nuclear Information System (INIS)

    Hayakawa, S.; Ito, K.; Matsumoto, T.; Ono, T.; Uyama, K.

    1976-01-01

    A balloon observation was made of infrared radiation from the Milky Way at wavelength 2.4 μm, with a band width of 0.1 μm, avoiding intense OH airglow. The telescope employed is described. The optical system was cooled by liquid N 2 to reduce the background thermal radiation and improve the detector sensitivity. An array of three PbS detectors was employed. An isophoto of the infrared surface brightness is shown. It appeared that some infrared sources are associated with objects in the spiral arms, but a considerable fraction of these sources is distributed over the galaxy in a similar manner to normal stars. An analysis of the results suggests that the infrared radiation observed at 2.4 μm is emitted mainly from the region inside the solar circle. A comparison was made with the intensity of 100 MeV γ-rays, produced by collisions of cosmic rays with interstellar matter. The longitude dependences observed for the 2.4 μm radiation, the 2.6 mm CO line, HII regions, the 21 cm H line, and the 100 MeV γ-rays correlated with one another. It is concluded that infrared emission provides a further means of investigating galactic structure. (U.K.)

  15. Active galactic nucleus and quasar science with aperture masking interferometry on the James Webb Space Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Ford, K. E. Saavik; McKernan, Barry [Department of Science, Borough of Manhattan Community College, City University of New York, New York, NY 10007 (United States); Sivaramakrishnan, Anand; Martel, André R.; Koekemoer, Anton [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Lafrenière, David [Département de Physique, Université de Montréal, C.P. 6128 Succ. Centre-ville, QC H3C 3J7 (Canada); Parmentier, Sébastien [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States)

    2014-03-10

    Due to feedback from accretion onto supermassive black holes (SMBHs), active galactic nuclei (AGNs) are believed to play a key role in ΛCDM cosmology and galaxy formation. However, AGNs extreme luminosities and the small angular size of their accretion flows create a challenging imaging problem. We show that the James Webb Space Telescope's Near Infrared Imager and Slitless Spectrograph (JWST-NIRISS) Aperture Masking Interferometry (AMI) mode will enable true imaging (i.e., without any requirement of prior assumptions on source geometry) at ∼65 mas angular resolution at the centers of AGNs. This is advantageous for studying complex extended accretion flows around SMBHs and in other areas of angular-resolution-limited astrophysics. By simulating data sequences incorporating expected sources of noise, we demonstrate that JWST-NIRISS AMI mode can map extended structure at a pixel-to-pixel contrast of ∼10{sup –2} around an L = 7.5 point source, using short exposure times (minutes). Such images will test models of AGN feedback, fueling, and structure (complementary with ALMA observations), and are not currently supported by any ground-based IR interferometer or telescope. Binary point source contrast with NIRISS is ∼10{sup –4} (for observing binary nuclei in merging galaxies), significantly better than current ground-based optical or IR interferometry. JWST-NIRISS's seven-hole non-redundant mask has a throughput of 15%, and utilizes NIRISS's F277W (2.77 μm), F380M (3.8 μm), F430M (4.3 μm), and F480M (4.8 μm) filters. NIRISS's square pixels are 65 mas per side, with a field of view ∼2' × 2'. We also extrapolate our results to AGN science enabled by non-redundant masking on future 2.4 m and 16 m space telescopes working at long-UV to near-IR wavelengths.

  16. Giat Industries selected for construction of the "Very Large Telescope"

    Science.gov (United States)

    1995-06-01

    Versailles-Satory (France) May 31, 1995 - Giat Industries has just obtained a contract from the European Southern Observatory (ESO) for the construction of the primary and tertiary mirror supports and the positioning apparatus of the world's largest optical telescope. This contract, worth almost 140 million francs, represents over 100,000 hours of work. It was won by Gitech, a division of Giat Industries, in collaboration with the Sfim group, following an international competition between the largest European groups in the space field. Gitech is charged with the development of civil and military industrial equipment for the Giat Industries group, in particular in high technology fields. The VLT (Very Large Telescope) will be installed in Chile before the year 2000; the delivery schedule provides for reception of the first assembly in May 1997. It will consist of four telescopes of 8.2m diameter, providing, in its most powerful configuration, a close-up view of an object measuring one meter on the surface of the moon. The cell, built by Gitech, is one of the key parts of the telescope. It mainly consists of a very rigid metal structure and an electro-hydraulic system of more that 200 hydraulic jacks and 150 electrically-controlled jacks linking the metallic structure to the mirror. This structure, produced to an original design of laser-welded steel chambers, weighs less than 10 tonnes and will support over 37 tonnes of mirror and equipment, while guaranteeing precise positioning to within a micron. The electro-hydraulic jack system, manufactured in collaboration with the Sfim group, will support and position the mirror, and correct its geometry by applying a precise distribution of forces to its rear. The assembly is designed to meet the requirements of para-seismic safety. Gitech is also producing the computerised control system to ensure the operation and the reliability of the assembly.

  17. New background quasars in the vicinity of the Andromeda Galaxy discovered with the Guoshoujing Telescope (LAMOST)

    International Nuclear Information System (INIS)

    Huo Zhiying; Liu Xiaowei; Yuan Haibo; Zhang Huihua; Zhang Huawei; Zhao Yongheng; Chen Jianjun; Bai Zhongrui; Zhang Haotong; Yan Hongliang; Ren Juanjuan; Sun Shiwei; GarcIa-Benito, Ruben; Xiang Maosheng; Zhang Yong; Li Yeping; Lu Qishuai; Wang You; Ni Jijun; Wang Hai

    2010-01-01

    We present preliminary analyses of spectra of quasar candidates in two Guoshoujing Telescope (GSJT, formerly named the Large Sky Area Multi-Object Fiber Spectroscopic Telescope - LAMOST) test fields near M 31 where one is close to the optical center of the disk and the other is towards the northeastern outskirts of the halo, obtained during the early stage of the GSJT commissioning in the last season of 2009. Both fields contain background low-redshift quasar candidates selected from the SDSS photometry. In total, 14 new quasars with redshifts up to 2 and i magnitudes between 16.7 and 19.2, are discovered, including 7 within the 2.5 0 central region of M 31. We briefly discuss the potential applications of these newly discovered bright quasars. (editor's recommendation)

  18. Mechanical conceptual design of 6.5 meter telescope: Telescopio San Pedro Mártir (TSPM)

    Science.gov (United States)

    Uribe, Jorge; Bringas, Vicente; Reyes, Noe; Tovar, Carlos; López, Aldo; Caballero, Xóchitl; Martínez, César; Toledo, Gengis; Lee, William; Carramiñana, Alberto; González, Jesús; Richer, Michael; Sánchez, Beatriz; Lucero, Diana; Manuel, Rogelio; Rubio, Saúl; González, Germán.; Hernández, Obed; Segura, José; Macias, Eduardo; García, Mary; Lazaro, José; Rosales, Fabián.; del Llano, Luis

    2016-07-01

    Telescopio San Pedro Mártir (TSPM) project intends to build a 6.5 meters telescope with alt-azimuth design, currently at the conceptual design. The project is an association between Instituto de Astronomía de la Universidad Nacional Autónoma de México (IA-UNAM) and the Instituto Nacional de Astrofísica, Óptica Electrónica (INAOE) in partnership with department of Astronomy and Steward Observatory of University of Arizona and Smithsonian Astrophysical Observatory of Harvard University. Conceptual design of the telescope is lead and developed by the Centro de Ingeniería y Desarrollo Industrial (CIDESI). An overview of the feasibility study and the structural conceptual design are summarized in this paper. The telescope concept is based on telescopes already commissioned such as MMT and the Baade and Clay Magellan telescopes, building up on these proven concepts. The main differences relative to the Magellan pair are; the elevation axis is located 1 meter above the primary mirror vertex, allowing for a similar field of view at the Cassegrain and both Nasmyth focal stations; instead of using a vane ends to position the secondary mirror TSPM considers an Steward platform like MMT; finally TSPM has a larger floor distance to m1 cell than Magellans and MMT. Initially TSPM will operate with an f/5 Cassegrain station, but the design considers further Nasmyth configurations from a Cassegrain f/5 up to a Gregorian f/11. The telescope design includes 7 focal stations: 1 Cassegrain; 2 Nasmyth; and 4 folded-Cassegrain. The telescope will be designed and manufactured in Mexico, will be design in Queretaro by CIDESI and built between Queretaro and Michoacán manufacturing facilities; it will be preassembled in these facilities and disassembled to send it to the San Pedro Mártir Observatory for final integration. The azimuth and altitude structure is planned to be constructed in modules and transported by truck and shipped to Ensenada and finally to the OAN where is going

  19. The NASA Spitzer Space Telescope.

    Science.gov (United States)

    Gehrz, R D; Roellig, T L; Werner, M W; Fazio, G G; Houck, J R; Low, F J; Rieke, G H; Soifer, B T; Levine, D A; Romana, E A

    2007-01-01

    The National Aeronautics and Space Administration's Spitzer Space Telescope (formerly the Space Infrared Telescope Facility) is the fourth and final facility in the Great Observatories Program, joining Hubble Space Telescope (1990), the Compton Gamma-Ray Observatory (1991-2000), and the Chandra X-Ray Observatory (1999). Spitzer, with a sensitivity that is almost three orders of magnitude greater than that of any previous ground-based and space-based infrared observatory, is expected to revolutionize our understanding of the creation of the universe, the formation and evolution of primitive galaxies, the origin of stars and planets, and the chemical evolution of the universe. This review presents a brief overview of the scientific objectives and history of infrared astronomy. We discuss Spitzer's expected role in infrared astronomy for the new millennium. We describe pertinent details of the design, construction, launch, in-orbit checkout, and operations of the observatory and summarize some science highlights from the first two and a half years of Spitzer operations. More information about Spitzer can be found at http://spitzer.caltech.edu/.

  20. Mobile Tracking Systems Using Meter Class Reflective Telescopes

    Science.gov (United States)

    Sturzenbecher, K.; Ehrhorn, B.

    This paper is a discussion on the use of large reflective telescopes on mobile tracking systems with modern instrument control systems. Large optics can be defined as reflective telescopes with an aperture of at least 20 inches in diameter. New carbon composite construction techniques allow for larger, stronger, and lighter telescopes ranging from 240 pounds for a 20 inch, to 800 pounds for a 32 inch, making them ideal for mobile tracking systems. These telescopes have better light gathering capability and produce larger images with greater detail at a longer range than conventional refractive lenses. In a mobile configuration these systems provide the ability to move the observation platform to the optimal location anywhere in the world. Mounting and systems integration - We will discuss how large telescopes can be physically fit to the mobile tracking system and the integration with the tracking systems' digital control system. We will highlight the remote control capabilities. We will discuss special calibration techniques available in a modern instrument control system such as star calibration, calibration of sensors. Tracking Performance - We will discuss the impact of using large telescopes on the performance of the mobile tracking system. We will highlight the capabilities for auto-tracking and sidereal rate tracking in a mobile mount. Large optics performance - We will discuss the advantages of two-mirror Ritchey-Chrétien reflective optics which offer in-focus imaging across the spectrum, from visible to Long Wave Infrared. These zero expansion optics won't lose figure or focus during temperature changes. And the carbon composite telescope tube is thermally inert. The primary mirror is a modern lightweight "dish" mirror for low thermal mass and is center supported/self balancing. Applications - We will discuss Visible - IR Imaging requirements, Optical Rangefinders, and capabilities for special filters to increase resolution in difficult conditions such as