WorldWideScience

Sample records for downstream pressure perturbations

  1. Perturbation biology nominates upstream–downstream drug combinations in RAF inhibitor resistant melanoma cells

    Science.gov (United States)

    Korkut, Anil; Wang, Weiqing; Demir, Emek; Aksoy, Bülent Arman; Jing, Xiaohong; Molinelli, Evan J; Babur, Özgün; Bemis, Debra L; Onur Sumer, Selcuk; Solit, David B; Pratilas, Christine A; Sander, Chris

    2015-01-01

    Resistance to targeted cancer therapies is an important clinical problem. The discovery of anti-resistance drug combinations is challenging as resistance can arise by diverse escape mechanisms. To address this challenge, we improved and applied the experimental-computational perturbation biology method. Using statistical inference, we build network models from high-throughput measurements of molecular and phenotypic responses to combinatorial targeted perturbations. The models are computationally executed to predict the effects of thousands of untested perturbations. In RAF-inhibitor resistant melanoma cells, we measured 143 proteomic/phenotypic entities under 89 perturbation conditions and predicted c-Myc as an effective therapeutic co-target with BRAF or MEK. Experiments using the BET bromodomain inhibitor JQ1 affecting the level of c-Myc protein and protein kinase inhibitors targeting the ERK pathway confirmed the prediction. In conclusion, we propose an anti-cancer strategy of co-targeting a specific upstream alteration and a general downstream point of vulnerability to prevent or overcome resistance to targeted drugs. DOI: http://dx.doi.org/10.7554/eLife.04640.001 PMID:26284497

  2. Perturbation biology nominates upstream-downstream drug combinations in RAF inhibitor resistant melanoma cells.

    Science.gov (United States)

    Korkut, Anil; Wang, Weiqing; Demir, Emek; Aksoy, Bülent Arman; Jing, Xiaohong; Molinelli, Evan J; Babur, Özgün; Bemis, Debra L; Onur Sumer, Selcuk; Solit, David B; Pratilas, Christine A; Sander, Chris

    2015-08-18

    Resistance to targeted cancer therapies is an important clinical problem. The discovery of anti-resistance drug combinations is challenging as resistance can arise by diverse escape mechanisms. To address this challenge, we improved and applied the experimental-computational perturbation biology method. Using statistical inference, we build network models from high-throughput measurements of molecular and phenotypic responses to combinatorial targeted perturbations. The models are computationally executed to predict the effects of thousands of untested perturbations. In RAF-inhibitor resistant melanoma cells, we measured 143 proteomic/phenotypic entities under 89 perturbation conditions and predicted c-Myc as an effective therapeutic co-target with BRAF or MEK. Experiments using the BET bromodomain inhibitor JQ1 affecting the level of c-Myc protein and protein kinase inhibitors targeting the ERK pathway confirmed the prediction. In conclusion, we propose an anti-cancer strategy of co-targeting a specific upstream alteration and a general downstream point of vulnerability to prevent or overcome resistance to targeted drugs.

  3. Three-Dimensional Steady Supersonic Euler Flow Past a Concave Cornered Wedge with Lower Pressure at the Downstream

    Science.gov (United States)

    Qu, Aifang; Xiang, Wei

    2018-05-01

    In this paper, we study the stability of the three-dimensional jet created by a supersonic flow past a concave cornered wedge with the lower pressure at the downstream. The gas beyond the jet boundary is assumed to be static. It can be formulated as a nonlinear hyperbolic free boundary problem in a cornered domain with two characteristic free boundaries of different types: one is the rarefaction wave, while the other one is the contact discontinuity, which can be either a vortex sheet or an entropy wave. A more delicate argument is developed to establish the existence and stability of the square jet structure under the perturbation of the supersonic incoming flow and the pressure at the downstream. The methods and techniques developed here are also helpful for other problems involving similar difficulties.

  4. Pressure-driven amplification and penetration of resonant magnetic perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Loizu, J. [Max-Planck-Institut für Plasmaphysik, D-17491 Greifswald (Germany); Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 (United States); Hudson, S. R.; Lazerson, S. A.; Bhattacharjee, A. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 (United States); Helander, P. [Max-Planck-Institut für Plasmaphysik, D-17491 Greifswald (Germany)

    2016-05-15

    We show that a resonant magnetic perturbation applied to the boundary of an ideal plasma screw-pinch equilibrium with nested surfaces can penetrate inside the resonant surface and into the core. The response is significantly amplified with increasing plasma pressure. We present a rigorous verification of nonlinear equilibrium codes against linear theory, showing excellent agreement.

  5. Step Prediction During Perturbed Standing Using Center Of Pressure Measurements

    Directory of Open Access Journals (Sweden)

    Milos R. Popovic

    2007-04-01

    Full Text Available The development of a sensor that can measure balance during quiet standing and predict stepping response in the event of perturbation has many clinically relevant applica- tions, including closed-loop control of a neuroprothesis for standing. This study investigated the feasibility of an algorithm that can predict in real-time when an able-bodied individual who is quietly standing will have to make a step to compensate for an external perturbation. Anterior and posterior perturbations were performed on 16 able-bodied subjects using a pul- ley system with a dropped weight. A linear relationship was found between the peak center of pressure (COP velocity and the peak COP displacement caused by the perturbation. This result suggests that one can predict when a person will have to make a step based on COP velocity measurements alone. Another important feature of this finding is that the peak COP velocity occurs considerably before the peak COP displacement. As a result, one can predict if a subject will have to make a step in response to a perturbation sufficiently ahead of the time when the subject is actually forced to make the step. The proposed instability detection algorithm will be implemented in a sensor system using insole sheets in shoes with minitur- ized pressure sensors by which the COPv can be continuously measured. The sensor system will be integrated in a closed-loop feedback system with a neuroprosthesis for standing in the near future.

  6. Anisotropic Pressure, Transport, and Shielding of Magnetic Perturbations

    International Nuclear Information System (INIS)

    Mynick, H.E.; Boozer, A.H.

    2008-01-01

    We compute the effect on a tokamak of applying a nonaxisymmetric magnetic perturbation (delta)B. An equilibrium with scalar pressure p yields zero net radial current, and therefore zero torque. Thus, the usual approach, which assumes scalar pressure, is not self-consistent, and masks the close connection which exists between that radial current and the in-surface currents, which provide shielding or amplification of (delta)B. Here, we analytically compute the pressure anisotropy, anisotropy, p # parallel#, p # perpendicular# and ≠ p, and from this, both the radial and in-surface currents. The surface-average of the radial current recovers earlier expressions for ripple transport, while the in-surface currents provide an expression for the amount of self-consistent shielding the plasma provides.

  7. Analysis of water hammer in a penstock in the case of valve closure. Part 2: Pressure losses concentrated downstream

    Directory of Open Access Journals (Sweden)

    Hocine HAMMOUM

    2017-06-01

    Full Text Available In our previous study (Part 1; by using the graphic of Bergeron, we have drawn the relationships which allow calculating flows and pressures at the valve and the reservoir, considering that pressure losses are negligible. Now, we assume in this second contribution that these pressure losses are concentrated downstream of the pipe, just at the entry of the valve. The study will focus on water hammer-induced by a slow closing of the valve. A practical example will be presented at the end of this work in order to illustrate the exposed method.

  8. Second-order perturbations of cosmological fluids: Relativistic effects of pressure, multicomponent, curvature, and rotation

    International Nuclear Information System (INIS)

    Hwang, Jai-chan; Noh, Hyerim

    2007-01-01

    We present general relativistic correction terms appearing in Newton's gravity to the second-order perturbations of cosmological fluids. In our previous work we have shown that to the second-order perturbations, the density and velocity perturbation equations of general relativistic zero-pressure, irrotational, single-component fluid in a spatially flat background coincide exactly with the ones known in Newton's theory without using the gravitational potential. We also have shown the effect of gravitational waves to the second order, and pure general relativistic correction terms appearing in the third-order perturbations. Here, we present results of second-order perturbations relaxing all the assumptions made in our previous works. We derive the general relativistic correction terms arising due to (i) pressure, (ii) multicomponent, (iii) background spatial curvature, and (iv) rotation. In the case of multicomponent zero-pressure, irrotational fluids under the flat background, we effectively do not have relativistic correction terms, thus the relativistic equations expressed in terms of density and velocity perturbations again coincide with the Newtonian ones. In the other three cases we generally have pure general relativistic correction terms. In the case of pressure, the relativistic corrections appear even in the level of background and linear perturbation equations. In the presence of background spatial curvature, or rotation, pure relativistic correction terms directly appear in the Newtonian equations of motion of density and velocity perturbations to the second order; to the linear order, without using the gravitational potential (or metric perturbations), we have relativistic/Newtonian correspondences for density and velocity perturbations of a single-component fluid including the rotation even in the presence of background spatial curvature. In the small-scale limit (far inside the horizon), to the second-order, relativistic equations of density and

  9. Downstream pressure and elastic wall reflection of droplet flow in a T-junction microchannel

    Science.gov (United States)

    Pang, Yan; Liu, Zhaomiao; Zhao, Fuwang

    2016-08-01

    This paper discusses pressure variation on a wall during the process of liquid flow and droplet formation in a T-junction microchannel. Relevant pressure in the channel, deformation of the elastic wall, and responses of the droplet generation are analyzed using a numerical method. The pressure difference between the continuous and dispersed phases can indicate the droplet-generation period. The pressure along the channel of the droplet flow is affected by the position of droplets, droplet-generation period, and droplet escape from the outlet. The varying pressures along the channel cause a nonuniform deformation of the wall when they are elastic. The deformation is a vibration and has the same period as the droplet generation arising from the process of droplet formation.

  10. Control, pressure perturbations, displacements, and disruptions in highly elongated tokamak plasmas

    International Nuclear Information System (INIS)

    Marcus, F.B.; Hofmann, F.; Tonetti, G.; Jardin, S.C.; Noll, P.

    1989-06-01

    The control and evolution of highly elongated tokamak plasmas with large growth rates are simulated with the axisymmetric, resistive MHD code TSC in the geometry of the TCV tokamak. Pressure perturbations such as sawteeth and externally programmed displacements create initial velocity perturbations which may be stabilized by low power, rapid response coils inside the passively stabilizing vacuum vessel, together with slower shaping coils outside the vessel. Vertical disruption induced voltages and forces on the rapid coils and vessel are investigated, and a model is proposed for an additional vertical force due to poloidal currents. (author) 6 figs., 1 tab., 26 refs

  11. Third-order perturbations of a zero-pressure cosmological medium: Pure general relativistic nonlinear effects

    International Nuclear Information System (INIS)

    Hwang, Jai-chan; Noh, Hyerim

    2005-01-01

    We consider a general relativistic zero-pressure irrotational cosmological medium perturbed to the third order. We assume a flat Friedmann background but include the cosmological constant. We ignore the rotational perturbation which decays in expanding phase. In our previous studies we discovered that, to the second-order perturbation, except for the gravitational wave contributions, the relativistic equations coincide exactly with the previously known Newtonian ones. Since the Newtonian second-order equations are fully nonlinear, any nonvanishing third- and higher-order terms in the relativistic analyses are supposed to be pure relativistic corrections. In this work, we derive such correction terms appearing in the third order. Continuing our success in the second-order perturbations, we take the comoving gauge. We discover that the third-order correction terms are of φ v order higher than the second-order terms where φ v is a gauge-invariant combination related to the three-space curvature perturbation in the comoving gauge; compared with the Newtonian potential, we have δΦ∼(3/5)φ v to the linear order. Therefore, the pure general relativistic effects are of φ v order higher than the Newtonian ones. The corrections terms are independent of the horizon scale and depend only on the linear-order gravitational potential (curvature) perturbation strength. From the temperature anisotropy of cosmic microwave background, we have (δT/T)∼(1/3)δΦ∼(1/5)φ v ∼10 -5 . Therefore, our present result reinforces our previous important practical implication that near the current era one can use the large-scale Newtonian numerical simulation more reliably even as the simulation scale approaches near (and goes beyond) the horizon

  12. Satellite orbits perturbed by direct solar radiation pressure: general expansion of the disturbing function

    International Nuclear Information System (INIS)

    Hughes, S.

    1977-01-01

    An expression is derived for the solar radiation pressure disturbing function on an Earth satellite orbit which takes into account the variation of the solar radiation flux with distance from the Sun's centre and the absorption of radiation by the satellite. This expression is then expanded in terms of the Keplerian elements of the satellite and solar orbits using Kaula's method (Astr. J.; 67:300 (1962)). The Kaula inclination functions are replaced by an equivalent set of modified Allan (Proc. R. Soc. A.; 288:60 (1965)) inclination functions. The resulting expression reduces to the form commonly used in solar radiation pressure perturbation studies (e.g. Aksnes, Cel. Mech.; 13:89 (1976)), when certain terms are neglected. If, as happens quite often in practice, a satellite's orbit is in near-resonance with certain of these neglected terms, these near-resonant terms can cause changes in the satellite's orbital elements comparable to those produced by the largest term in Aksnes's expression. A new expression for the solar radiation pressure disturbing function expansion is suggested for use in future studies of satellite orbits perturbed by solar radiation pressure. (author)

  13. Cosmological perturbations in warm-tachyon inflationary universe model with viscous pressure

    International Nuclear Information System (INIS)

    Setare, M.R.; Kamali, V.

    2014-01-01

    We study the warm-tachyon inflationary universe model with viscous pressure in high-dissipation regime. General conditions which are required for this model to be realizable are derived in the slow-roll approximation. We present analytic expressions for density perturbation and amplitude of tensor perturbation in longitudinal gauge. Expressions of tensor-to-scalar ratio, scalar spectral index and its running are obtained. We develop our model by using exponential potential, the characteristics of this model are calculated for two specific cases in great details: 1. Dissipative parameter Γ and bulk viscous parameter ζ are constant parameters. 2. Dissipative parameter is a function of tachyon field ϕ and bulk viscous parameter is a function of matter-radiation mixture energy density ρ. The parameters of the model are restricted by recent observational data from the nine-year Wilkinson microwave anisotropy probe (WMAP9), Planck and BICEP2 data.

  14. Cosmological perturbations in warm-tachyon inflationary universe model with viscous pressure

    Energy Technology Data Exchange (ETDEWEB)

    Setare, M.R., E-mail: rezakord@ipm.ir [Department of Science, Campus of Bijar, University of Kurdistan, Bijar (Iran, Islamic Republic of); Kamali, V., E-mail: vkamali1362@gmail.com [Department of Physics, Faculty of Science, Bu-Ali Sina University, Hamedan, 65178 (Iran, Islamic Republic of)

    2014-09-07

    We study the warm-tachyon inflationary universe model with viscous pressure in high-dissipation regime. General conditions which are required for this model to be realizable are derived in the slow-roll approximation. We present analytic expressions for density perturbation and amplitude of tensor perturbation in longitudinal gauge. Expressions of tensor-to-scalar ratio, scalar spectral index and its running are obtained. We develop our model by using exponential potential, the characteristics of this model are calculated for two specific cases in great details: 1. Dissipative parameter Γ and bulk viscous parameter ζ are constant parameters. 2. Dissipative parameter is a function of tachyon field ϕ and bulk viscous parameter is a function of matter-radiation mixture energy density ρ. The parameters of the model are restricted by recent observational data from the nine-year Wilkinson microwave anisotropy probe (WMAP9), Planck and BICEP2 data.

  15. Cosmological perturbations in warm-tachyon inflationary universe model with viscous pressure

    Directory of Open Access Journals (Sweden)

    M.R. Setare

    2014-09-01

    Full Text Available We study the warm-tachyon inflationary universe model with viscous pressure in high-dissipation regime. General conditions which are required for this model to be realizable are derived in the slow-roll approximation. We present analytic expressions for density perturbation and amplitude of tensor perturbation in longitudinal gauge. Expressions of tensor-to-scalar ratio, scalar spectral index and its running are obtained. We develop our model by using exponential potential, the characteristics of this model are calculated for two specific cases in great details: 1. Dissipative parameter Γ and bulk viscous parameter ζ are constant parameters. 2. Dissipative parameter is a function of tachyon field ϕ and bulk viscous parameter is a function of matter-radiation mixture energy density ρ. The parameters of the model are restricted by recent observational data from the nine-year Wilkinson microwave anisotropy probe (WMAP9, Planck and BICEP2 data.

  16. Stability of very-high pressure arc discharges against perturbations of the electron temperature

    Energy Technology Data Exchange (ETDEWEB)

    Benilov, M. S. [Departamento de Fisica, Ciencias Exactas e Engenharia, Universidade da Madeira, Largo do Municipio, Funchal 9000 (Portugal); Hechtfischer, U. [Philips Lighting, BU Automotive Lamps, Technology, Philipsstrasse 8, Aachen 52068 (Germany)

    2012-04-01

    We study the stability of the energy balance of the electron gas in very high-pressure plasmas against longitudinal perturbations, using a local dispersion analysis. After deriving a dispersion equation, we apply the model to a very high-pressure (100 bar) xenon plasma and find instability for electron temperatures, T{sub e}, in a window between 2400 K and 5500-7000 K x 10{sup 3} K, depending on the current density (10{sup 6}-10{sup 8} A/m{sup 2}). The instability can be traced back to the Joule heating of the electron gas being a growing function of T{sub e}, which is due to a rising dependence of the electron-atom collision frequency on T{sub e}. We then analyze the T{sub e} range occurring in very high-pressure xenon lamps and conclude that only the near-anode region exhibits T{sub e} sufficiently low for this instability to occur. Indeed, previous experiments have revealed that such lamps develop, under certain conditions, voltage oscillations accompanied by electromagnetic interference, and this instability has been pinned down to the plasma-anode interaction. A relation between the mechanisms of the considered instability and multiple anodic attachments of high-pressure arcs is discussed.

  17. Perturbed Newtonian description of the Lemaître model with non-negligible pressure

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Kazuhiro [Department of Physical Sciences, Hiroshima University, Higashi-hiroshima, Kagamiyama 1-3-1, 739-8526 (Japan); Marra, Valerio [Departamento de Física, Universidade Federal do Espírito Santo, Av. F. Ferrari, 514, 29075-910, Vitória, ES (Brazil); Mukhanov, Viatcheslav [Theoretical Physics, Ludwig Maxmillians University, Theresienstr. 37, 80333 Munich (Germany); Sasaki, Misao, E-mail: kazuhiro@hiroshima-u.ac.jp, E-mail: valerio.marra@me.com, E-mail: Viatcheslav.Mukhanov@physik.lmu.de, E-mail: misao@yukawa.kyoto-u.ac.jp [Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502 (Japan)

    2016-03-01

    We study the validity of the Newtonian description of cosmological perturbations using the Lemaître model, an exact spherically symmetric solution of Einstein's equation. This problem has been investigated in the past for the case of a dust fluid. Here, we extend the previous analysis to the more general case of a fluid with non-negligible pressure, and, for the numerical examples, we consider the case of radiation (P=ρ/3). We find that, even when the density contrast has a nonlinear amplitude, the Newtonian description of the cosmological perturbations using the gravitational potential ψ and the curvature potential φ is valid as long as we consider sub-horizon inhomogeneities. However, the relation ψ+φ=O(φ{sup 2})—which holds for the case of a dust fluid—is not valid for a relativistic fluid, and an effective anisotropic stress is generated. This demonstrates the usefulness of the Lemaître model which allows us to study in an exact nonlinear fashion the onset of anisotropic stress in fluids with non-negligible pressure. We show that this happens when the characteristic scale of the inhomogeneity is smaller than the sound horizon and that the deviation is caused by the nonlinear effect of the fluid's fast motion. We also find that ψ+φ= [O(φ{sup 2}),O(c{sub s}{sup 2φ} δ)] for an inhomogeneity with density contrast δ whose characteristic scale is smaller than the sound horizon, unless w is close to −1, where w and c{sub s} are the equation of state parameter and the sound speed of the fluid, respectively. On the other hand, we expect ψ+φ=O(φ{sup 2}) to hold for an inhomogeneity whose characteristic scale is larger than the sound horizon, unless the amplitude of the inhomogeneity is large and w is close to −1.

  18. Perturbed Newtonian description of the Lemaître model with non-negligible pressure

    International Nuclear Information System (INIS)

    Yamamoto, Kazuhiro; Marra, Valerio; Mukhanov, Viatcheslav; Sasaki, Misao

    2016-01-01

    We study the validity of the Newtonian description of cosmological perturbations using the Lemaître model, an exact spherically symmetric solution of Einstein's equation. This problem has been investigated in the past for the case of a dust fluid. Here, we extend the previous analysis to the more general case of a fluid with non-negligible pressure, and, for the numerical examples, we consider the case of radiation (P=ρ/3). We find that, even when the density contrast has a nonlinear amplitude, the Newtonian description of the cosmological perturbations using the gravitational potential ψ and the curvature potential φ is valid as long as we consider sub-horizon inhomogeneities. However, the relation ψ+φ=O(φ 2 )—which holds for the case of a dust fluid—is not valid for a relativistic fluid, and an effective anisotropic stress is generated. This demonstrates the usefulness of the Lemaître model which allows us to study in an exact nonlinear fashion the onset of anisotropic stress in fluids with non-negligible pressure. We show that this happens when the characteristic scale of the inhomogeneity is smaller than the sound horizon and that the deviation is caused by the nonlinear effect of the fluid's fast motion. We also find that ψ+φ= [O(φ 2 ),O(c s 2φ  δ)] for an inhomogeneity with density contrast δ whose characteristic scale is smaller than the sound horizon, unless w is close to −1, where w and c s are the equation of state parameter and the sound speed of the fluid, respectively. On the other hand, we expect ψ+φ=O(φ 2 ) to hold for an inhomogeneity whose characteristic scale is larger than the sound horizon, unless the amplitude of the inhomogeneity is large and w is close to −1

  19. Heat-transfer and pressure distributions for laminar separated flows downstream of rearward-facing steps with and without mass suction

    Science.gov (United States)

    Brown, R. D.; Jakubowski, A. K.

    1974-01-01

    Heat-transfer and pressure distributions were measured for laminar separated flows downstream of rearward-facing steps with and without mass suction. The flow conditions were such that the boundary-layer thickness was comparable to or larger than the step height. For both suction and no-suction cases, an increase in the step height resulted in a sharp decrease in the initial heat-transfer rates behind the step. Downstream, however, the heat transfer gradually recovered back to less than or near attached-flow values. Mass suction from the step base area increased the local heat-transfer rates; however, this effect was relatively weak for the laminar flows considered. Even removal of the entire approaching boundary layer raised the post-step heat-transfer rates only about 10 percent above the flatplate values. Post-step pressure distributions were found to depend on the entrainment conditions at separation. In the case of the solid-faced step, a sharp pressure drop behind the step was followed by a very short plateau and relatively fast recompression. For the slotted-step connected to a large plenum but without suction, the pressure drop at the base was much smaller and the downstream recompression more gradual than that for solid-faced step.

  20. Study of Boundary Layer Convective Heat Transfer with Low Pressure Gradient Over a Flat Plate Via He's Homotopy Perturbation Method

    International Nuclear Information System (INIS)

    Fathizadeh, M.; Aroujalian, A.

    2012-01-01

    The boundary layer convective heat transfer equations with low pressure gradient over a flat plate are solved using Homotopy Perturbation Method, which is one of the semi-exact methods. The nonlinear equations of momentum and energy solved simultaneously via Homotopy Perturbation Method are in good agreement with results obtained from numerical methods. Using this method, a general equation in terms of Pr number and pressure gradient (λ) is derived which can be used to investigate velocity and temperature profiles in the boundary layer.

  1. Downstream Hepatic Arterial Blood Pressure Changes Caused by Deployment of the Surefire AntiReflux Expandable Tip

    International Nuclear Information System (INIS)

    Rose, Steven C.; Kikolski, Steven G.; Chomas, James E.

    2013-01-01

    Purpose: The purpose of this work was to evaluate blood pressure changes caused by deployment of the Surefire antireflux expandable tip. The pressure measurements are relevant because they imply changes in hepatoenteric arterial blood flow within this liver compartment during hepatic artery delivery of cytotoxic agents. Methods: After positioning the Surefire antireflux system in the targeted hepatic artery, blood pressure was obtained initially with the tip collapsed (or through a femoral artery sheath), then again after the tip was expanded before chemoembolization or yttrium 90 ( 90 Y) radioembolization. Results: Eighteen patients with liver malignancy underwent 29 procedures in 29 hepatic arteries (3 common hepatic, 22 lobar, 4 segmental). Systolic, diastolic, and mean blood pressure were all decreased by a mean of 29 mm Hg (p = 0.000004), 14 mm Hg (p = 0.0000004), and 22 mm Hg (p = 0.00000001), respectively. Conclusion: When the Surefire expandable tip is deployed to prevent retrograde reflux of agents, it also results in a significant decrease in blood pressure in the antegrade distribution, potentially resulting in hepatopedal blood flow in vessels that are difficult to embolize, such as the supraduodenal arteries

  2. Brine flow up a borehole caused by pressure perturbation from CO2 storage: Static and dynamic evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Birkholzer, J.T.; Nicot, J.-P.; Oldenburg, C.M.; Zhou, Q.; Kraemer, S.; Bandilla, K.W.

    2011-05-01

    Industrial-scale storage of CO{sub 2} in saline sedimentary basins will cause zones of elevated pressure, larger than the CO{sub 2} plume itself. If permeable conduits (e.g., leaking wells) exist between the injection reservoir and overlying shallow aquifers, brine could be pushed upwards along these conduits and mix with groundwater resources. This paper discusses the potential for such brine leakage to occur in temperature- and salinity-stratified systems. Using static mass-balance calculations as well as dynamic well flow simulations, we evaluate the minimum reservoir pressure that would generate continuous migration of brine up a leaking wellbore into a freshwater aquifer. Since the brine invading the well is denser than the initial fluid in the wellbore, continuous flow only occurs if the pressure perturbation in the reservoir is large enough to overcome the increased fluid column weight after full invasion of brine into the well. If the threshold pressure is exceeded, brine flow rates are dependent on various hydraulic (and other) properties, in particular the effective permeability of the wellbore and the magnitude of pressure increase. If brine flow occurs outside of the well casing, e.g., in a permeable fracture zone between the well cement and the formation, the fluid/solute transfer between the migrating fluid and the surrounding rock units can strongly retard brine flow. At the same time, the threshold pressure for continuous flow to occur decreases compared to a case with no fluid/solute transfer.

  3. Statistical mechanics of light elements at high pressure. VII. A perturbative free energy for arbitrary mixtures of H and He

    International Nuclear Information System (INIS)

    Hubbard, W.B.; Dewitt, H.E.

    1985-01-01

    A model free energy is presented which accurately represents results from 45 high-precision Monte Carlo calculations of the thermodynamics of hydrogen-helium mixtures at pressures of astrophysical and planetophysical interest. The free energy is calculated using free-electron perturbation theory (dielectric function theory), and is an extension of the expression given in an earlier paper in this series. However, it fits the Monte Carlo results more accurately, and is valid for the full range of compositions from pure hydrogen to pure helium. Using the new free energy, the phase diagram of mixtures of liquid metallic hydrogen and helium is calculated and compared with earlier results. Sample results for mixing volumes are also presented, and the new free energy expression is used to compute a theoretical Jovian adiabat and compare the adiabat with results from three-dimensional Thomas-Fermi-Dirac theory. The present theory gives slightly higher densities at pressures of about 10 megabars. 20 references

  4. Statistical mechanics of light elements at high pressure. VII - A perturbative free energy for arbitrary mixtures of H and He

    Science.gov (United States)

    Hubbard, W. B.; Dewitt, H. E.

    1985-01-01

    A model free energy is presented which accurately represents results from 45 high-precision Monte Carlo calculations of the thermodynamics of hydrogen-helium mixtures at pressures of astrophysical and planetophysical interest. The free energy is calculated using free-electron perturbation theory (dielectric function theory), and is an extension of the expression given in an earlier paper in this series. However, it fits the Monte Carlo results more accurately, and is valid for the full range of compositions from pure hydrogen to pure helium. Using the new free energy, the phase diagram of mixtures of liquid metallic hydrogen and helium is calculated and compared with earlier results. Sample results for mixing volumes are also presented, and the new free energy expression is used to compute a theoretical Jovian adiabat and compare the adiabat with results from three-dimensional Thomas-Fermi-Dirac theory. The present theory gives slightly higher densities at pressures of about 10 megabars.

  5. Random perturbations of arterial blood pressure for the assessment of dynamic cerebral autoregulation

    International Nuclear Information System (INIS)

    Katsogridakis, Emmanuel; Panerai, Ronney B; Bush, Glen; Fan, Lingke; Birch, Anthony A; Simpson, David M; Allen, Robert; Potter, John F

    2012-01-01

    The assessment of cerebral autoregulation (CA) relies mostly on methods that modulate arterial blood pressure (ABP). Despite advances, the gold standard of assessment remains elusive and clinical practicality is limited. We investigate a novel approach of assessing CA, consisting of the intermittent application of thigh cuffs using square wave sequences. Our aim was to increase ABP variability whilst minimizing volunteer discomfort, thus improving assessment acceptability. Two random square wave sequences and two maximum pressure settings (80 and 150 mmHg) were used, corresponding to four manoeuvres that were conducted in random order after a baseline recording. The intermittent application of thigh cuffs resulted in an amplitude dependent increase in ABP (p = 0.001) and cerebral blood flow velocity (CBFV) variability (p = 0.026) compared to baseline. No statistically significant differences in mean heart rate or heart rate variability were observed (p = 0.108 and p = 0.350, respectively), suggesting that no significant sympathetic response was elicited. No significant differences in the CBFV step response were observed, suggesting no distortion of autoregulatory parameters resulted from the use of thigh cuffs. We conclude that pseudorandom binary sequences are an effective and safe alternative for increasing ABP variability. This new approach shows great promise as a tool for the robust assessment of CA. (paper)

  6. Large plasma pressure perturbations and radial convective transport in a tokamak

    International Nuclear Information System (INIS)

    Krasheninnikov, Sergei; Yu, Guanghui; Ryutov, Dmitri

    2004-01-01

    Strongly localized plasma structures with large pressure inhomogeneities (such as plasma blobs in the scrape-off-layer (SOL)/shadow regions, pellet clouds, Edge localized Modes (ELMs)) observed in the tokamaks, stellarators and linear plasma devices. Experimental studies of these phenomena reveal striking similarities including more convective rather than diffusive radial plasma transport. We suggest that rather simple models can describe many essentials of blobs, ELMs, and pellet clouds dynamics. The main ingredient of these models is the effective plasma gravity caused by magnetic curvature, centrifugal or friction forces effects. As a result, the equations governing plasma transport in such localized structures appear to be rather similar to that used to describe nonlinear evolution of thermal convection in the Boussinesq approximation (directly related to the Rayleigh-Taylor (RT) instability). (author)

  7. An unsteady microfluidic T-form mixer perturbed by hydrodynamic pressure

    International Nuclear Information System (INIS)

    Ma Yanbao; Sun, Chien-Pin; Fields, Michael; Ho, Chih-Ming; Li Yang; Haake, David A; Churchill, Bernard M

    2008-01-01

    An unsteady microfluidic T-form mixer driven by pressure disturbances was designed and investigated. The performance of the mixer was examined both through numerical simulation and experimentation. Linear Stokes equations were used for these low Reynolds number flows. Unsteady mixing in a micro-channel of two aqueous solutions differing in concentrations of chemical species was described using a convection-dominated diffusion equation. The task was greatly simplified by employing linear superimposition of a velocity field for solving a scalar species concentration equation. Low-order-based numerical codes were found not to be suitable for simulation of a convection-dominated mixing process due to erroneous computational dissipation. The convection-dominated diffusion problem was addressed by designing a numerical algorithm with high numerical accuracy and computational-cost effectiveness. This numerical scheme was validated by examining a test case prior to being applied to the mixing simulation. Parametric analysis was performed using this newly developed numerical algorithm to determine the best mixing conditions. Numerical simulation identified the best mixing condition to have a Strouhal number (St) of 0.42. For a T-junction mixer (with channel width = 196 µm), about 75% mixing can be finished within a mixing distance of less than 3 mm (i.e. 15 channel width) at St = 0.42 for flow with a Reynolds number less than 0.24. Numerical results were validated experimentally by mixing two aqueous solutions containing yellow and blue dyes. Visualization of the flow field under the microscope revealed a high level of agreement between numerical simulation and experimental results

  8. Boundary Layer Instabilities Generated by Freestream Laser Perturbations

    Science.gov (United States)

    Chou, Amanda; Schneider, Steven P.

    2015-01-01

    A controlled, laser-generated, freestream perturbation was created in the freestream of the Boeing/AFOSR Mach-6 Quiet Tunnel (BAM6QT). The freestream perturbation convected downstream in the Mach-6 wind tunnel to interact with a flared cone model. The geometry of the flared cone is a body of revolution bounded by a circular arc with a 3-meter radius. Fourteen PCB 132A31 pressure transducers were used to measure a wave packet generated in the cone boundary layer by the freestream perturbation. This wave packet grew large and became nonlinear before experiencing natural transition in quiet flow. Breakdown of this wave packet occurred when the amplitude of the pressure fluctuations was approximately 10% of the surface pressure for a nominally sharp nosetip. The initial amplitude of the second mode instability on the blunt flared cone is estimated to be on the order of 10 -6 times the freestream static pressure. The freestream laser-generated perturbation was positioned upstream of the model in three different configurations: on the centerline, offset from the centerline by 1.5 mm, and offset from the centerline by 3.0 mm. When the perturbation was offset from the centerline of a blunt flared cone, a larger wave packet was generated on the side toward which the perturbation was offset. The offset perturbation did not show as much of an effect on the wave packet on a sharp flared cone as it did on a blunt flared cone.

  9. Continuous downstream processing of biopharmaceuticals.

    Science.gov (United States)

    Jungbauer, Alois

    2013-08-01

    Continuous manufacturing has been applied in many different industries but has been pursued reluctantly in biotechnology where the batchwise process is still the standard. A shift to continuous operation can improve productivity of a process and substantially reduce the footprint. Continuous operation also allows robust purification of labile biomolecules. A full set of unit operations is available to design continuous downstream processing of biopharmaceuticals. Chromatography, the central unit operation, is most advanced in respect to continuous operation. Here, the problem of 'batch' definition has been solved. This has also paved the way for implementation of continuous downstream processing from a regulatory viewpoint. Economic pressure, flexibility, and parametric release considerations will be the driving force to implement continuous manufacturing strategies in future. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. India's Downstream Petroleum Sector

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This study provides a holistic examination of pricing and investment dynamics in India's downstream petroleum sector. It analyses the current pricing practices, highlights the tremendous fiscal cost of current pricing and regulatory arrangements, and examines the sectoral investment dynamics. It also looks at potential paths towards market-based reform along which the Indian government may move, while at the same time protecting energy market access for India's large poor population.

  11. Perturbation theory

    International Nuclear Information System (INIS)

    Bartlett, R.; Kirtman, B.; Davidson, E.R.

    1978-01-01

    After noting some advantages of using perturbation theory some of the various types are related on a chart and described, including many-body nonlinear summations, quartic force-field fit for geometry, fourth-order correlation approximations, and a survey of some recent work. Alternative initial approximations in perturbation theory are also discussed. 25 references

  12. Thermoelastic analysis of non-uniform pressurized functionally graded cylinder with variable thickness using first order shear deformation theory(FSDT) and perturbation method

    Science.gov (United States)

    Khoshgoftar, M. J.; Mirzaali, M. J.; Rahimi, G. H.

    2015-11-01

    Recently application of functionally graded materials(FGMs) have attracted a great deal of interest. These materials are composed of various materials with different micro-structures which can vary spatially in FGMs. Such composites with varying thickness and non-uniform pressure can be used in the aerospace engineering. Therefore, analysis of such composite is of high importance in engineering problems. Thermoelastic analysis of functionally graded cylinder with variable thickness under non-uniform pressure is considered. First order shear deformation theory and total potential energy approach is applied to obtain the governing equations of non-homogeneous cylinder. Considering the inner and outer solutions, perturbation series are applied to solve the governing equations. Outer solution for out of boundaries and more sensitive variable in inner solution at the boundaries are considered. Combining of inner and outer solution for near and far points from boundaries leads to high accurate displacement field distribution. The main aim of this paper is to show the capability of matched asymptotic solution for different non-homogeneous cylinders with different shapes and different non-uniform pressures. The results can be used to design the optimum thickness of the cylinder and also some properties such as high temperature residence by applying non-homogeneous material.

  13. Maximally Rotating Supermassive Stars at the Onset of Collapse: The Perturbative Effects of Gas Pressure, Magnetic Fields, Dark Matter and Dark Energy

    Science.gov (United States)

    Butler, Satya P.; Lima, Alicia R.; Baumgarte, Thomas W.; Shapiro, Stuart L.

    2018-04-01

    The discovery of quasars at increasingly large cosmological redshifts may favor "direct collapse" as the most promising evolutionary route to the formation of supermassive black holes. In this scenario, supermassive black holes form when their progenitors - supermassive stars - become unstable to gravitational collapse. For uniformly rotating stars supported by pure radiation pressure and spinning at the mass-shedding limit, the critical configuration at the onset of collapse is characterized by universal values of the dimensionless spin and radius parameters J/M2 and R/M, independent of mass M. We consider perturbative effects of gas pressure, magnetic fields, dark matter and dark energy on these parameters, and thereby determine the domain of validity of this universality. We obtain leading-order corrections for the critical parameters and establish their scaling with the relevant physical parameters. We compare two different approaches to approximate the effects of gas pressure, which plays the most important role, find identical results for the above dimensionless parameters, and also find good agreement with recent numerical results.

  14. A Study on the Effects on Low Cycle Fatigue Life of a High Pressure Turbine Nozzle due to the Perturbation of Crystal Orientation of Grain of DS Materials

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Jae Sung; Kang, Young Seok; Rhee, Dong Ho [Korea Aerospace Research Institute, Daejeon (Korea, Republic of)

    2016-07-15

    High pressure components of a gas turbine engine are generally made of nickel-base superalloys, using precision casting process due to complicated geometries with intricate channels and cooling holes. Turbine components manufactured from directionally solidified and single crystal materials have columnar grains; however, it is found that the crystals do not grow in its preferred direction, although the orientation can be controlled. This anisotropy can lead to the variations of elastic and Hill's parameters in constitutive equations, and they alter stress distributions and the low cycle fatigue life. We aims to evaluate the effects of perturbed crystal orientations on the structural integrity of a directionally solidified nozzle using low cycle fatigue life. We also attempt to show the necessity for the control of allowed manufacturing errors and stochastic analysis. Our approaches included conjugate heat transfer and structural analysis, along with low cycle fatigue life assessment.

  15. Effect of hydrostatic pressure in the ground state on the perturbed elastic deformable bodies in first post-Newtonian approximation

    International Nuclear Information System (INIS)

    Song Guoxuan

    2009-01-01

    Based on the dynamical equations for a nonrotating elastic deformable astronomical body in the first post-Newtonian approximation of Einstein's theory of gravity, we re-examined the boundary(junction) conditions and have proven that a term, which is missing in the customary boundary(junction) conditions, is found. This term is induced by the existence of initial equilibrium hydrostatic pressure. A physical explanation of this term is given in the Newtonian approximation as well. By using the correcting boundary conditions the relation of the free spherically symmetrical radial oscillation frequency of a nonrotating homogeneously and isotropically elastic sphere with constant density is derived.

  16. Parameter Identification with the Random Perturbation Particle Swarm Optimization Method and Sensitivity Analysis of an Advanced Pressurized Water Reactor Nuclear Power Plant Model for Power Systems

    Directory of Open Access Journals (Sweden)

    Li Wang

    2017-02-01

    Full Text Available The ability to obtain appropriate parameters for an advanced pressurized water reactor (PWR unit model is of great significance for power system analysis. The attributes of that ability include the following: nonlinear relationships, long transition time, intercoupled parameters and difficult obtainment from practical test, posed complexity and difficult parameter identification. In this paper, a model and a parameter identification method for the PWR primary loop system were investigated. A parameter identification process was proposed, using a particle swarm optimization (PSO algorithm that is based on random perturbation (RP-PSO. The identification process included model variable initialization based on the differential equations of each sub-module and program setting method, parameter obtainment through sub-module identification in the Matlab/Simulink Software (Math Works Inc., Natick, MA, USA as well as adaptation analysis for an integrated model. A lot of parameter identification work was carried out, the results of which verified the effectiveness of the method. It was found that the change of some parameters, like the fuel temperature and coolant temperature feedback coefficients, changed the model gain, of which the trajectory sensitivities were not zero. Thus, obtaining their appropriate values had significant effects on the simulation results. The trajectory sensitivities of some parameters in the core neutron dynamic module were interrelated, causing the parameters to be difficult to identify. The model parameter sensitivity could be different, which would be influenced by the model input conditions, reflecting the parameter identifiability difficulty degree for various input conditions.

  17. Traffic Perturbation

    CERN Multimedia

    C. Colloca TS/FM

    2004-01-01

    TS/FM group informs you that, for the progress of the works at the Prévessin site entrance, some perturbation of the traffic may occur during the week between the 14th and 18th of June for a short duration. Access will be assured at any time. For more information, please contact 160239. C. Colloca TS/FM

  18. Electron temperature and pressure at the edge of ASDEX Upgrade plasmas. Estimation via electron cyclotron radiation and investigations on the effect of magnetic perturbations

    International Nuclear Information System (INIS)

    Rathgeber, Sylvia K.

    2013-01-01

    Understanding and control of the plasma edge behaviour are essential for the success of ITER and future fusion plants. This requires the availability of suitable methods for assessing the edge parameters and reliable techniques to handle edge phenomena, e.g. to mitigate 'Edge Localized Modes' (ELMs) - a potentially harmful plasma edge instability. This thesis introduces a new method for the estimation of accurate edge electron temperature profiles by forward modelling of the electron cyclotron radiation transport and demonstrates its successful application to investigate the impact of Magnetic Perturbation (MP) fields used for ELM mitigation on the edge kinetic data. While for ASDEX Upgrade bulk plasmas, straightforward analysis of the measured electron cyclotron intensity spectrum based on the optically thick plasma approximation is usually justified, reasonable analysis of the steep and optically thin edge region relies on full treatment of the radiation transport considering broadened emission and absorption profiles. This is realized in the framework of integrated data analysis which applies Bayesian probability theory for joint analysis of the electron density and temperature with data of different independent and complementary diagnostics. The method reveals that in regimes with improved confinement ('High-confinement modes' (H-modes)) the edge gradient of the electron temperature can be several times higher than that of the radiation temperature. Furthermore, the model is able to reproduce the 'shine-through' peak - the observation of increased radiation temperatures at frequencies with cold resonance outside the confined plasma region. This phenomenon is caused by strongly down-shifted radiation of Maxwellian tail electrons located in the H-mode edge region and, therefore, contains valuable information about the electron temperature edge gradient. The accurate knowledge about the edge profiles and gradients of the electron temperature and - including the

  19. Disformal transformation of cosmological perturbations

    Directory of Open Access Journals (Sweden)

    Masato Minamitsuji

    2014-10-01

    Full Text Available We investigate the gauge-invariant cosmological perturbations in the gravity and matter frames in the general scalar–tensor theory where two frames are related by the disformal transformation. The gravity and matter frames are the extensions of the Einstein and Jordan frames in the scalar–tensor theory where two frames are related by the conformal transformation, respectively. First, it is shown that the curvature perturbation in the comoving gauge to the scalar field is disformally invariant as well as conformally invariant, which gives the predictions from the cosmological model where the scalar field is responsible both for inflation and cosmological perturbations. Second, in case that the disformally coupled matter sector also contributes to curvature perturbations, we derive the evolution equations of the curvature perturbation in the uniform matter energy density gauge from the energy (nonconservation in the matter sector, which are independent of the choice of the gravity sector. While in the matter frame the curvature perturbation in the uniform matter energy density gauge is conserved on superhorizon scales for the vanishing nonadiabatic pressure, in the gravity frame it is not conserved even if the nonadiabatic pressure vanishes. The formula relating two frames gives the amplitude of the curvature perturbation in the matter frame, once it is evaluated in the gravity frame.

  20. Disformal transformation of cosmological perturbations

    International Nuclear Information System (INIS)

    Minamitsuji, Masato

    2014-01-01

    We investigate the gauge-invariant cosmological perturbations in the gravity and matter frames in the general scalar–tensor theory where two frames are related by the disformal transformation. The gravity and matter frames are the extensions of the Einstein and Jordan frames in the scalar–tensor theory where two frames are related by the conformal transformation, respectively. First, it is shown that the curvature perturbation in the comoving gauge to the scalar field is disformally invariant as well as conformally invariant, which gives the predictions from the cosmological model where the scalar field is responsible both for inflation and cosmological perturbations. Second, in case that the disformally coupled matter sector also contributes to curvature perturbations, we derive the evolution equations of the curvature perturbation in the uniform matter energy density gauge from the energy (non)conservation in the matter sector, which are independent of the choice of the gravity sector. While in the matter frame the curvature perturbation in the uniform matter energy density gauge is conserved on superhorizon scales for the vanishing nonadiabatic pressure, in the gravity frame it is not conserved even if the nonadiabatic pressure vanishes. The formula relating two frames gives the amplitude of the curvature perturbation in the matter frame, once it is evaluated in the gravity frame

  1. Non-adiabatic perturbations in multi-component perfect fluids

    Energy Technology Data Exchange (ETDEWEB)

    Koshelev, N.A., E-mail: koshna71@inbox.ru [Ulyanovsk State University, Leo Tolstoy str 42, 432970 (Russian Federation)

    2011-04-01

    The evolution of non-adiabatic perturbations in models with multiple coupled perfect fluids with non-adiabatic sound speed is considered. Instead of splitting the entropy perturbation into relative and intrinsic parts, we introduce a set of symmetric quantities, which also govern the non-adiabatic pressure perturbation in models with energy transfer. We write the gauge invariant equations for the variables that determine on a large scale the non-adiabatic pressure perturbation and the rate of changes of the comoving curvature perturbation. The analysis of evolution of the non-adiabatic pressure perturbation has been made for several particular models.

  2. Non-adiabatic perturbations in multi-component perfect fluids

    International Nuclear Information System (INIS)

    Koshelev, N.A.

    2011-01-01

    The evolution of non-adiabatic perturbations in models with multiple coupled perfect fluids with non-adiabatic sound speed is considered. Instead of splitting the entropy perturbation into relative and intrinsic parts, we introduce a set of symmetric quantities, which also govern the non-adiabatic pressure perturbation in models with energy transfer. We write the gauge invariant equations for the variables that determine on a large scale the non-adiabatic pressure perturbation and the rate of changes of the comoving curvature perturbation. The analysis of evolution of the non-adiabatic pressure perturbation has been made for several particular models

  3. Supersingular quantum perturbations

    International Nuclear Information System (INIS)

    Detwiler, L.C.; Klauder, J.R.

    1975-01-01

    A perturbation potential is called supersingular whenever generally every matrix element of the perturbation in the unperturbed eigenstates is infinite. It follows that supersingular perturbations do not have conventional perturbation expansions, say for energy eigenvalues. By invoking variational arguments, we determine the asymptotic behavior of the energy eigenvalues for asymptotically small values of the coupling constant of the supersingular perturbation

  4. Effects of local fatigue on myoelectrical activity of erector spine muscles and the center for pressure displacement of the feet during balance recovery following postural perturbation in kyphotic subjects

    Directory of Open Access Journals (Sweden)

    Rooholah Rezaee

    2014-07-01

    Full Text Available Background: kyphosis deformity affects postural control. Muscular fatigue is one of the factors that can impair the mechanism of body balance. The aim of this study was to determine the effects of local fatigue on the myoelectrical activity of erector spine muscles and the center for pressure displacement of the feet during balance recovery following postural perturbation in kyphotic subjects. Methods: In this quasi-experimental study, 12 male students with>40 degrees thoracic kyphosis and 12 controls were selected to participate in the study. A flexible ruler was used to measure thoracic kyphosis. For postural control assessment, each subject underwent unexpected, forward-backward perturbations while standing on a foot scan mounted on a movable plate triggered by a weight equivalent to 10% of the subjects’ body weight. Experimental procedure was measured before (3 trails and after (3 trials the fatigue protocol. The myoelectric activity of the erector spine and multi fidus was compared in the groups using repeated measures of ANOVA and independent t-test (P<0.05. Results: There was no significant difference in the foot center of pressure displacement in both groups after muscular fatigue. After fatigue, there was an increase in the activity of longissimus thoracis (P=0.001 and iliocostalis thoracis (P= 0.001 in control group, while no significant difference was reported for the muscular activity of multifidus (p=0.084. The activity of langisimus thoracis was significantly increased (P=0.028 in kyphtic group after fatigue. Conclusion: erector spine muscles fatigue could not significantly affect the postural control in both groups, but the electrical activity of erector spine muscles during balance recovery following postural perturbation in kyphotic subjects was different than the controls.

  5. Operational optimization in the downstream; Otimizacao operacional no downstream

    Energy Technology Data Exchange (ETDEWEB)

    Silberman, Luis; Cunha, Filipe Silveira Ramos da [Petroleo Ipiranga, Porto Alegre, RS (Brazil)

    2004-07-01

    On the present competitive down stream's market, there is a great necessity of optimization aiming to guarantee the best price and quality of our clients. Our goal is to attend these expectations while we guarantee an efficient operation. The greatest question is how far we are from the ideal model. This way, a lot of projects have been executed during the last years aiming the operational optimization of all our activities. We divide the projects in 4 areas: Logistic (new modals distribution), Transport (transport optimization - quality and more deliveries with less trucks), Client Support (Internet Ipiranga and Support Center), Distribution Terminals Productivity (automation and environment). This work intend to present our ideal, perfect and complete Downstream Operation model. We will talk about how close we are of this ideal model and we will present the projects that we had already developed and implanted on the automation of the terminals and the logistics area. (author)

  6. Ion energy characteristics downstream of a high power helicon

    International Nuclear Information System (INIS)

    Prager, James; Winglee, Robert; Ziemba, Tim; Roberson, B Race; Quetin, Gregory

    2008-01-01

    The High Power Helicon eXperiment operates at higher powers (37 kW) and lower background neutral pressure than other helicon experiments. The ion velocity distribution function (IVDF) has been measured at multiple locations downstream of the helicon source and a mach 3-6 flowing plasma was observed. The helicon antenna has a direct effect in accelerating the plasma downstream of the source. Also, the IVDF is affected by the cloud of neutrals from the initial gas puff, which keeps the plasma speed low at early times near the source.

  7. Ion energy characteristics downstream of a high power helicon

    Energy Technology Data Exchange (ETDEWEB)

    Prager, James; Winglee, Robert; Ziemba, Tim; Roberson, B Race; Quetin, Gregory [University of Washington, Johnson Hall 070, Box 351310, 4000 15th Avenue NE, Seattle, WA 98195-1310 (United States)], E-mail: jprager@u.washington.edu

    2008-05-01

    The High Power Helicon eXperiment operates at higher powers (37 kW) and lower background neutral pressure than other helicon experiments. The ion velocity distribution function (IVDF) has been measured at multiple locations downstream of the helicon source and a mach 3-6 flowing plasma was observed. The helicon antenna has a direct effect in accelerating the plasma downstream of the source. Also, the IVDF is affected by the cloud of neutrals from the initial gas puff, which keeps the plasma speed low at early times near the source.

  8. Downstream behavior of fission products

    International Nuclear Information System (INIS)

    Johnson, I.; Farahat, M.K.; Settle, J.L.; Johnson, C.E.; Ritzman, R.

    1986-01-01

    The downstream behavior of fission products has been investigated by injecting mixtures of CsOH, CsI, and Te into a flowing steam/hydrogen stream and determining the physical and chemical changes that took place as the gaseous mixture flowed down a reaction duct on which a temperature gradient (1000 0 to 200 0 C) had been imposed. Deposition on the wall of the duct occurred by vapor condensation in the higher temperature regions and by aerosol deposition in the remainder of the duct. Reactions in the gas stream between CsOH and CsI and between CsOH and Te had an effect on the vapor condensation. The aerosol was characterized by the use of impingement tabs placed in the gas stream

  9. Developments in perturbation theory

    International Nuclear Information System (INIS)

    Greenspan, E.

    1976-01-01

    Included are sections dealing with perturbation expressions for reactivity, methods for the calculation of perturbed fluxes, integral transport theory formulations for reactivity, generalized perturbation theory, sensitivity and optimization studies, multigroup calculations of bilinear functionals, and solution of inhomogeneous Boltzmann equations with singular operators

  10. A downstream voyage with mercury

    Science.gov (United States)

    Heinz, Gary

    2016-01-01

    Retrospective essay for the Bulletin of Environmental Contamination and Toxicology.As I look back on my paper, “Effects of Low Dietary Levels of Methyl Mercury on Mallard Reproduction,” published in 1974 in the Bulletin of Environmental Contamination and Toxicology, a thought sticks in my mind. I realize just how much my mercury research was not unlike a leaf in a stream, carried this way and that, sometimes stalled in an eddy, restarted, and carried downstream at a pace and path that was not completely under my control. I was hired in 1969 by the Patuxent Wildlife Research Center to study the effects of environmental pollutants on the behavior of wildlife. A colleague was conducting a study on the reproductive effects of methylmercury on mallards (Anas platyrhynchos), and he offered to give me some of the ducklings. I conducted a pilot study, testing how readily ducklings approached a tape-recorded maternal call. Sample sizes were small, but the results suggested that ducklings from mercury-treated parents behaved differently than controls. That’s how I got into mercury research—pretty much by chance.

  11. Computer fan performance enhancement via acoustic perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Greenblatt, David, E-mail: davidg@technion.ac.il [Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa (Israel); Avraham, Tzahi; Golan, Maayan [Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa (Israel)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Computer fan effectiveness was increased by introducing acoustic perturbations. Black-Right-Pointing-Pointer Acoustic perturbations controlled blade boundary layer separation. Black-Right-Pointing-Pointer Optimum frequencies corresponded with airfoils studies. Black-Right-Pointing-Pointer Exploitation of flow instabilities was responsible for performance improvements. Black-Right-Pointing-Pointer Peak pressure and peak flowrate were increased by 40% and 15% respectively. - Abstract: A novel technique for increasing computer fan effectiveness, based on introducing acoustic perturbations onto the fan blades to control boundary layer separation, was assessed. Experiments were conducted in a specially designed facility that simultaneously allowed characterization of fan performance and introduction of the perturbations. A parametric study was conducted to determine the optimum control parameters, namely those that deliver the largest increase in fan pressure for a given flowrate. The optimum reduced frequencies corresponded with those identified on stationary airfoils and it was thus concluded that the exploitation of Kelvin-Helmholtz instabilities, commonly observed on airfoils, was responsible for the fan blade performance improvements. The optimum control inputs, such as acoustic frequency and sound pressure level, showed some variation with different fan flowrates. With the near-optimum control conditions identified, the full operational envelope of the fan, when subjected to acoustic perturbations, was assessed. The peak pressure and peak flowrate were increased by up to 40% and 15% respectively. The peak fan efficiency increased with acoustic perturbations but the overall system efficiency was reduced when the speaker input power was accounted for.

  12. Computer fan performance enhancement via acoustic perturbations

    International Nuclear Information System (INIS)

    Greenblatt, David; Avraham, Tzahi; Golan, Maayan

    2012-01-01

    Highlights: ► Computer fan effectiveness was increased by introducing acoustic perturbations. ► Acoustic perturbations controlled blade boundary layer separation. ► Optimum frequencies corresponded with airfoils studies. ► Exploitation of flow instabilities was responsible for performance improvements. ► Peak pressure and peak flowrate were increased by 40% and 15% respectively. - Abstract: A novel technique for increasing computer fan effectiveness, based on introducing acoustic perturbations onto the fan blades to control boundary layer separation, was assessed. Experiments were conducted in a specially designed facility that simultaneously allowed characterization of fan performance and introduction of the perturbations. A parametric study was conducted to determine the optimum control parameters, namely those that deliver the largest increase in fan pressure for a given flowrate. The optimum reduced frequencies corresponded with those identified on stationary airfoils and it was thus concluded that the exploitation of Kelvin–Helmholtz instabilities, commonly observed on airfoils, was responsible for the fan blade performance improvements. The optimum control inputs, such as acoustic frequency and sound pressure level, showed some variation with different fan flowrates. With the near-optimum control conditions identified, the full operational envelope of the fan, when subjected to acoustic perturbations, was assessed. The peak pressure and peak flowrate were increased by up to 40% and 15% respectively. The peak fan efficiency increased with acoustic perturbations but the overall system efficiency was reduced when the speaker input power was accounted for.

  13. Rare earth industries: Downstream business

    International Nuclear Information System (INIS)

    2011-01-01

    The value chain of the rare earths business involves mining, extraction, processing, refining and the manufacture of an extensive range of downstream products which find wide applications in such industries including aerospace, consumer electronics, medical, military, automotive, renewable wind and solar energy and telecommunications. In fact the entire gamut of the high-tech industries depends on a sustainable supply of rare earths elements. The explosive demand in mobile phones is an excellent illustration of the massive potential that the rare earths business offers. In a matter of less than 20 years, the number of cell phones worldwide has reached a staggering 5 billion. Soon, going by the report of their growth in sales, the world demand for cell phones may even exceed the global population. Admittedly, the rare earths business does pose certain risks. Top among the risks are the health and safety risks. The mining, extraction and refining of rare earths produce residues and wastes which carry health and safety risks. The residues from the extraction and refining are radioactive, while their effluent waste streams do pose pollution risks to the receiving rivers and waterways. But, as clearly elaborated in a recent report by IAEA experts, there are technologies and systems available to efficiently mitigate such risks. The risks are Rare Earth manageable. However, it is crucial that the risk and waste management procedures are strictly followed and adhered to. This is where effective monitoring and surveillance throughout the life of all such rare earths facilities is crucial. Fortunately, Malaysia's regulatory standards on rare earths follow international standards. In some areas, Malaysia's regulatory regime is even more stringent than the international guidelines. (author)

  14. Status of perturbative QCD

    International Nuclear Information System (INIS)

    Collins, J.C.

    1985-01-01

    Progress in quantum chromodynamics in the past year is reviewed in these specific areas: proof of factorization for hadron-hadron collisions, fast calculation of higher order graphs, perturbative Monte Carlo calculations for hadron-hadron scattering, applicability of perturbative methods to heavy quark production, and understanding of the small-x problem. 22 refs

  15. Perturbative and constructive renormalization

    International Nuclear Information System (INIS)

    Veiga, P.A. Faria da

    2000-01-01

    These notes are a survey of the material treated in a series of lectures delivered at the X Summer School Jorge Andre Swieca. They are concerned with renormalization in Quantum Field Theories. At the level of perturbation series, we review classical results as Feynman graphs, ultraviolet and infrared divergences of Feynman integrals. Weinberg's theorem and Hepp's theorem, the renormalization group and the Callan-Symanzik equation, the large order behavior and the divergence of most perturbation series. Out of the perturbative regime, as an example of a constructive method, we review Borel summability and point out how it is possible to circumvent the perturbation diseases. These lectures are a preparation for the joint course given by professor V. Rivasseau at the same school, where more sophisticated non-perturbative analytical methods based on rigorous renormalization group techniques are presented, aiming at furthering our understanding about the subject and bringing field theoretical models to a satisfactory mathematical level. (author)

  16. Time-Frequency Analysis of Boundary-Layer Instabilites Generated by Freestream Laser Perturbations

    Science.gov (United States)

    Chou, Amanda; Schneider, Steven P.

    2015-01-01

    A controlled disturbance is generated in the freestream of the Boeing/AFOSR Mach-6 Quiet Tunnel (BAM6QT) by focusing a high-powered Nd:YAG laser to create a laser-induced breakdown plasma. The plasma then cools, creating a freestream thermal disturbance that can be used to study receptivity. The freestream disturbance convects down-stream in the Mach-6 wind tunnel to interact with a flared cone model. The adverse pressure gradient created by the flare of the model is capable of generating second-mode instability waves that grow large and become nonlinear before experiencing natural transition in quiet flow. The freestream laser perturbation generates a wave packet in the boundary layer at the same frequency as the natural second mode, complicating time-independent analyses of the effect of the laser perturbation. The data show that the laser perturbation creates an instability wave packet that is larger than the natural waves on the sharp flared cone. The wave packet is still difficult to distinguish from the natural instabilities on the blunt flared cone.

  17. Perturbative QCD and jets

    International Nuclear Information System (INIS)

    Mueller, A.H.

    1986-03-01

    A brief review of some of the recent progress in perturbative QCD is given (heavy quark production, small-x physics, minijets and related topics, classical simulations in high energy reactions, coherence and the string effect)

  18. Generalized chiral perturbation theory

    International Nuclear Information System (INIS)

    Knecht, M.; Stern, J.

    1994-01-01

    The Generalized Chiral Perturbation Theory enlarges the framework of the standard χPT (Chiral Perturbation Theory), relaxing certain assumptions which do not necessarily follow from QCD or from experiment, and which are crucial for the usual formulation of the low energy expansion. In this way, experimental tests of the foundations of the standard χPT become possible. Emphasis is put on physical aspects rather than on formal developments of GχPT. (author). 31 refs

  19. Sensitivity of the PEP beam transport line to perturbations

    International Nuclear Information System (INIS)

    Peterson, J.M.; Brown, K.L.

    1979-03-01

    The sensitivity of a beam-transport line to various perturbations determines the extent to which one can simplify component design and relax tolerances. For the PEP injection lines, effects of various fabrication errors, magnet misalignments, and residual gas scattering were studied. Using the TURTLE ray-tracing program, it is found that magnetic-field errors corresponding to a relative sextupole strength in the dipoles of 0.5% and/or a relative sextupole or octupole strength in the quadrupoles of 5% are permissible. This allows relatively loose tolerances in magnet fabrication. Transverse misalignment of a quadrupole by a distance x causes the beam centroid to be displaced downstream by as much as 5x. This requires a quadrupole alignment accuracy of +- 0.5 mm or better. No compensation for the earth's field is necessary because an integral number of optical wavelengths and a short wavelength were used for the design. Analysis shows that beam broadening from multiple coulomb scattering is insignificant for pressures of less than 1/10 torr

  20. Turbulence downstream of subcoronary stentless and stented aortic valves.

    Science.gov (United States)

    Funder, Jonas Amstrup; Frost, Markus Winther; Wierup, Per; Klaaborg, Kaj-Erik; Hjortdal, Vibeke; Nygaard, Hans; Hasenkam, J Michael

    2011-08-11

    Regions of turbulence downstream of bioprosthetic heart valves may cause damage to blood components, vessel wall as well as to aortic valve leaflets. Stentless aortic heart valves are known to posses several hemodynamic benefits such as larger effective orifice areas, lower aortic transvalvular pressure difference and faster left ventricular mass regression compared with their stented counterpart. Whether this is reflected by diminished turbulence formation, remains to be shown. We implanted either stented pericardial valve prostheses (Mitroflow), stentless valve prostheses (Solo or Toronto SPV) in pigs or they preserved their native valves. Following surgery, blood velocity was measured in the cross sectional area downstream of the valves using 10MHz ultrasonic probes connected to a dedicated pulsed Doppler equipment. As a measure of turbulence, Reynolds normal stress (RNS) was calculated at two different blood pressures (baseline and 50% increase). We found no difference in maximum RNS measurements between any of the investigated valve groups. The native valve had significantly lower mean RNS values than the Mitroflow (p=0.004), Toronto SPV (p=0.008) and Solo valve (p=0.02). There were no statistically significant differences between the artificial valve groups (p=0.3). The mean RNS was significantly larger when increasing blood pressure (p=0.0006). We, thus, found no advantages for the stentless aortic valves compared with stented prosthesis in terms of lower maximum or mean RNS values. Native valves have a significantly lower mean RNS value than all investigated bioprostheses. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Secondary isocurvature perturbations from acoustic reheating

    Science.gov (United States)

    Ota, Atsuhisa; Yamaguchi, Masahide

    2018-06-01

    The superhorizon (iso)curvature perturbations are conserved if the following conditions are satisfied: (i) (each) non adiabatic pressure perturbation is zero, (ii) the gradient terms are ignored, that is, at the leading order of the gradient expansion (iii) (each) total energy momentum tensor is conserved. We consider the case with the violation of the last two requirements and discuss the generation of secondary isocurvature perturbations during the late time universe. Second order gradient terms are not necessarily ignored even if we are interested in the long wavelength modes because of the convolutions which may pick products of short wavelength perturbations up. We then introduce second order conserved quantities on superhorizon scales under the conditions (i) and (iii) even in the presence of the gradient terms by employing the full second order cosmological perturbation theory. We also discuss the violation of the condition (iii), that is, the energy momentum tensor is conserved for the total system but not for each component fluid. As an example, we explicitly evaluate second order heat conduction between baryons and photons due to the weak Compton scattering, which dominates during the period just before recombination. We show that such secondary effects can be recast into the isocurvature perturbations on superhorizon scales if the local type primordial non Gaussianity exists a priori.

  2. Perturbative anyon gas

    International Nuclear Information System (INIS)

    Dasnieres de Veigy, A.; Ouvry, S.; Paris-6 Univ., 75

    1992-06-01

    The problem of the statistical mechanics of an anyon gas is addressed. A perturbative analysis in the anyonic coupling constant α is reviewed, and the thermodynamical potential is computed at first and second order. An adequate second quantized formalism (field theory at finite temperature) is proposed. At first order in perturbation theory, the results are strikingly simple: only the second virial coefficient close to bosonic statistics is corrected. At second order, however, the complexity of the anyon model appears. One can compute exactly the perturbative correction to each cluster coefficient. However, and contrary to first order, a closed expression for the equation of state seems out of reach. As an illustration, the perturbative expressions of a 3 , a 4 , a 5 and a 6 are given at second order. Finally, using the same formalism, the equation of state of an anyon gas in a constant magnetic field is analyzed at first order in perturbation theory. (K.A.) 16 refs.; 3 figs.; 7 tabs

  3. Philippines' downstream sector poised for growth

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper reports that the Philippines' downstream sector is poised for sharp growth. Despite a slip in refined products demand in recent years, Philippines products demand will rebound sharply by 2000, East-West Center (EWC), Honolulu, predicts. Philippines planned refinery expansions are expected to meet that added demand, EWC Director Fereidun Fesharaki says. Like the rest of the Asia-Pacific region, product specifications are changing, but major refiners in the area expect to meet the changes without major case outlays. At the same time, Fesharaki says, push toward deregulation will further bolster the outlook for the Philippines downstream sector

  4. Free-boundary perturbed MHD equilibria

    International Nuclear Information System (INIS)

    Nührenberg, C

    2012-01-01

    The concept of perturbed ideal MHD equilibria [Boozer A H and Nuhrenberg C 2006 Phys. Plasmas 13 102501] is employed to study the influence of external error-fields and of small plasma-pressure changes on toroidal plasma equilibria. In tokamak and stellarator free-boundary calculations, benchmarks were successful of the perturbed-equilibrium version of the CAS3D stability code [Nührenberg C et al. 2009 Phys. Rev. Lett. 102 235001] with the ideal MHD equilibrium code NEMEC [Hirshman S P et al. 1986 Comput. Phys. Commun. 43 143].

  5. Chiral perturbation theory

    International Nuclear Information System (INIS)

    Ecker, G.

    1996-06-01

    After a general introduction to the structure of effective field theories, the main ingredients of chiral perturbation theory are reviewed. Applications include the light quark mass ratios and pion-pion scattering to two-loop accuracy. In the pion-nucleon system, the linear σ model is contrasted with chiral perturbation theory. The heavy-nucleon expansion is used to construct the effective pion-nucleon Lagrangian to third order in the low-energy expansion, with applications to nucleon Compton scattering. (author)

  6. Scleroglucan: Fermentative Production, Downstream Processing and Applications

    Directory of Open Access Journals (Sweden)

    Shrikant A. Survase

    2007-01-01

    Full Text Available Exopolysaccharides produced by a variety of microorganisms find multifarious industrial applications in foods, pharmaceutical and other industries as emulsifiers, stabilizers, binders, gelling agents, lubricants, and thickening agents. One such exopolysaccharide is scleroglucan, produced by pure culture fermentation from filamentous fungi of genus Sclerotium. The review discusses the properties, fermentative production, downstream processing and applications of scleroglucan.

  7. The downstream industry compared to market

    International Nuclear Information System (INIS)

    Chevallier, B.

    2010-01-01

    J.L. Schilansky introduces here the difficult question of the downstream industry compared to market in recalling the recent structural changes (behaviour of customers, behaviour of the USA- and China-governments), the increase of the European and French regulations, the climatic change and the conjectural impact of the crisis on the refining industry. (O.M.)

  8. Preheating curvaton perturbations

    International Nuclear Information System (INIS)

    Bastero-Gil, M.; Di Clemente, V.; King, S.F.

    2005-01-01

    We discuss the potentially important role played by preheating in certain variants of the curvaton mechanism in which isocurvature perturbations of a D-flat (and F-flat) direction become converted to curvature perturbations during reheating. We discover that parametric resonance of the isocurvature components amplifies the superhorizon fluctuations by a significant amount. As an example of these effects we develop a particle physics motivated model which involves hybrid inflation with the waterfall field N being responsible for generating the μ term, the right-handed neutrino mass scale, and the Peccei-Quinn symmetry breaking scale. The role of the curvaton field can be played either by usual Higgs field, or the lightest right-handed sneutrino. Our new results show that it is possible to achieve the correct curvature perturbations for initial values of the curvaton fields of order the weak scale. In this model we show that the prediction for the spectral index of the final curvature perturbation only depends on the mass of the curvaton during inflation, where consistency with current observational data requires the ratio of this mass to the Hubble constant to be 0.3

  9. String perturbation theory diverges

    International Nuclear Information System (INIS)

    Gross, D.J.; Periwal, V.

    1988-01-01

    We prove that perturbation theory for the bosonic string diverges for arbitrary values of the coupling constant and is not Borel summable. This divergence is independent of the existence of the infinities that occur in the theory due to the presence of tachyons and dilaton tadpoles. We discuss the physical implications of such a divergence

  10. Divergent Perturbation Series

    International Nuclear Information System (INIS)

    Suslov, I.M.

    2005-01-01

    Various perturbation series are factorially divergent. The behavior of their high-order terms can be determined by Lipatov's method, which involves the use of instanton configurations of appropriate functional integrals. When the Lipatov asymptotic form is known and several lowest order terms of the perturbation series are found by direct calculation of diagrams, one can gain insight into the behavior of the remaining terms of the series, which can be resummed to solve various strong-coupling problems in a certain approximation. This approach is demonstrated by determining the Gell-Mann-Low functions in φ 4 theory, QED, and QCD with arbitrary coupling constants. An overview of the mathematical theory of divergent series is presented, and interpretation of perturbation series is discussed. Explicit derivations of the Lipatov asymptotic form are presented for some basic problems in theoretical physics. A solution is proposed to the problem of renormalon contributions, which hampered progress in this field in the late 1970s. Practical perturbation-series summation schemes are described both for a coupling constant of order unity and in the strong-coupling limit. An interpretation of the Borel integral is given for 'non-Borel-summable' series. Higher order corrections to the Lipatov asymptotic form are discussed

  11. Instantaneous stochastic perturbation theory

    International Nuclear Information System (INIS)

    Lüscher, Martin

    2015-01-01

    A form of stochastic perturbation theory is described, where the representative stochastic fields are generated instantaneously rather than through a Markov process. The correctness of the procedure is established to all orders of the expansion and for a wide class of field theories that includes all common formulations of lattice QCD.

  12. Cosmological perturbations in antigravity

    Science.gov (United States)

    Oltean, Marius; Brandenberger, Robert

    2014-10-01

    We compute the evolution of cosmological perturbations in a recently proposed Weyl-symmetric theory of two scalar fields with oppositely signed conformal couplings to Einstein gravity. It is motivated from the minimal conformal extension of the standard model, such that one of these scalar fields is the Higgs while the other is a new particle, the dilaton, introduced to make the Higgs mass conformally symmetric. At the background level, the theory admits novel geodesically complete cyclic cosmological solutions characterized by a brief period of repulsive gravity, or "antigravity," during each successive transition from a big crunch to a big bang. For simplicity, we consider scalar perturbations in the absence of anisotropies, with potential set to zero and without any radiation. We show that despite the necessarily wrong-signed kinetic term of the dilaton in the full action, these perturbations are neither ghostlike nor tachyonic in the limit of strongly repulsive gravity. On this basis, we argue—pending a future analysis of vector and tensor perturbations—that, with respect to perturbative stability, the cosmological solutions of this theory are viable.

  13. Perturbed Markov chains

    OpenAIRE

    Solan, Eilon; Vieille, Nicolas

    2015-01-01

    We study irreducible time-homogenous Markov chains with finite state space in discrete time. We obtain results on the sensitivity of the stationary distribution and other statistical quantities with respect to perturbations of the transition matrix. We define a new closeness relation between transition matrices, and use graph-theoretic techniques, in contrast with the matrix analysis techniques previously used.

  14. Scalar cosmological perturbations

    International Nuclear Information System (INIS)

    Uggla, Claes; Wainwright, John

    2012-01-01

    Scalar perturbations of Friedmann-Lemaitre cosmologies can be analyzed in a variety of ways using Einstein's field equations, the Ricci and Bianchi identities, or the conservation equations for the stress-energy tensor, and possibly introducing a timelike reference congruence. The common ground is the use of gauge invariants derived from the metric tensor, the stress-energy tensor, or from vectors associated with a reference congruence, as basic variables. Although there is a complication in that there is no unique choice of gauge invariants, we will show that this can be used to advantage. With this in mind our first goal is to present an efficient way of constructing dimensionless gauge invariants associated with the tensors that are involved, and of determining their inter-relationships. Our second goal is to give a unified treatment of the various ways of writing the governing equations in dimensionless form using gauge-invariant variables, showing how simplicity can be achieved by a suitable choice of variables and normalization factors. Our third goal is to elucidate the connection between the metric-based approach and the so-called 1 + 3 gauge-invariant approach to cosmological perturbations. We restrict our considerations to linear perturbations, but our intent is to set the stage for the extension to second-order perturbations. (paper)

  15. Generalized perturbation series

    International Nuclear Information System (INIS)

    Baird, L.C.; Stinchcomb, G.

    1973-01-01

    An approximate solution of the Green's function equation may be used to generate an exact solution of the Schroedinger equation. This is accomplished through an iterative procedure. The procedure is equivalent to a perturbation expansion if the approximate Green's function is exact with respect to some reference potential

  16. Perturbed S3 neutrinos

    DEFF Research Database (Denmark)

    jora, Renata; Schechter, Joseph; Naeem Shahid, M.

    2009-01-01

    We study the effects of the perturbation which violates the permutation symmetry of three Majorana neutrinos but preserves the well known (23) interchange symmetry. This is done in the presenceof an arbitrary Majorana phase which serves to insure the degeneracy of the three neutrinos at the unper...... at the unperturbed level....

  17. Curvature perturbations from dimensional decoupling

    CERN Document Server

    Giovannini, Massimo

    2005-01-01

    The scalar modes of the geometry induced by dimensional decoupling are investigated. In the context of the low energy string effective action, solutions can be found where the spatial part of the background geometry is the direct product of two maximally symmetric Euclidean manifolds whose related scale factors evolve at a dual rate so that the expanding dimensions first accelerate and then decelerate while the internal dimensions always contract. After introducing the perturbative treatment of the inhomogeneities, a class of five-dimensional geometries is discussed in detail. Quasi-normal modes of the system are derived and the numerical solution for the evolution of the metric inhomogeneities shows that the fluctuations of the internal dimensions provide a term that can be interpreted, in analogy with the well-known four-dimensional situation, as a non-adiabatic pressure density variation. Implications of this result are discussed with particular attention to string cosmological scenarios.

  18. Flow regime visualization and pressure drops of HFO-1234yf, R-134a and R-410A during downward two-phase flow in vertical return bends

    International Nuclear Information System (INIS)

    Padilla, Miguel; Revellin, Rémi; Wallet, Jérémy; Bonjour, Jocelyn

    2013-01-01

    Highlights: ► Visual observation of two-phase flow regimes during downward flow in a return bend. ► Bubble and vapor slug dynamical behaviors in downward slug flow are reported. ► Perturbation lengths up- and downstream of the return bend have been investigated. ► Measurement of 285 pressure drop data points for HFO-1234yf, R-134a and R-410A. -- Abstract: This paper provides a qualitative visual observation of the two-phase flow patterns for HFO-1234yf and R-134a during downward flow in a vertical 6.7 mm inner diameter glass return bend. The different flow regimes observed are: slug, intermittent and annular flows. Bubble and vapor slug dynamical behaviors in downward slug flow are reported for HFO-1234yf. In addition, to determine the perturbation lengths up- and downstream of the return bend, the total pressure drop has been measured at different pressure tap location up- and downstream of the singularity. Furthermore, 285 pressure drop data points measured for two-phase flow of HFO-1234yf, R-134a and R-410A in vertical downward flow return bends are presented. The flow behavior in the return bend, which is subjected to the complex combined actions of gravity and centrifugal force was expressed in terms of the vapor Froude number. This experimental pressure drop database, which is included in the appendix, is compared to four well-known prediction methods available in the literature

  19. Downstream cumulative effects of land use on freshwater communities

    Science.gov (United States)

    Kuglerová, L.; Kielstra, B. W.; Moore, D.; Richardson, J. S.

    2015-12-01

    Many streams and rivers are subject to disturbance from intense land use such as urbanization and agriculture, and this is especially obvious for small headwaters. Streams are spatially organized into networks where headwaters represent the tributaries and provide water, nutrients, and organic material to the main stems. Therefore perturbations within the headwaters might be cumulatively carried on downstream. Although we know that the disturbance of headwaters in urban and agricultural landscapes poses threats to downstream river reaches, the magnitude and severity of these changes for ecological communities is less known. We studied stream networks along a gradient of disturbance connected to land use intensity, from urbanized watersheds to watersheds placed in agricultural settings in the Greater Toronto Area. Further, we compared the patterns and processes found in the modified watershed to a control watershed, situated in a forested, less impacted landscape. Preliminary results suggest that hydrological modifications (flash floods), habitat loss (drainage and sewer systems), and water quality issues of small streams in urbanized and agricultural watersheds represent major disturbances and threats for aquatic and riparian biota on local as well as larger spatial scales. For example, communities of riparian plants are dominated by species typical of the land use on adjacent uplands as well as the dominant land use on the upstream contributing area, instead of riparian obligates commonly found in forested watersheds. Further, riparian communities in disturbed environments are dominated by invasive species. The changes in riparian communities are vital for various functions of riparian vegetation. Bank erosion control is suppressed, leading to severe channel transformations and sediment loadings in urbanized watersheds. Food sources for instream biota and thermal regimes are also changed, which further triggers alterations of in-stream biological communities

  20. Influence of Upstream and Downstream Compressor Stators on Rotor Exit Flow Field

    Directory of Open Access Journals (Sweden)

    Nicole L. Key

    2014-01-01

    Full Text Available Measurements acquired at the rotor exit plane illuminate the interaction of the rotor with the upstream vane row and the downstream vane row. The relative phase of the upstream and downstream vane rows is adjusted using vane clocking so that the effect of the upstream propagating potential field from the downstream stator can be distinguished from the effects associated with the wakes shed from the upstream stator. Unsteady absolute flow angle information shows that the downstream potential field causes the absolute flow angle to increase in the vicinity of the downstream stator leading edge. The presence of Stator 1 wake is also detected at this measurement plane using unsteady total pressure data. The rotor wakes are measured at different circumferential locations across the vane passage, and the influence of Stator 1 wake on the suction side of the rotor wake is evident. Also, the influence of the downstream stator is detected on the pressure side of the rotor wake for a particular clocking configuration. Understanding the role of the surrounding vane rows on rotor wake development will lead to improved comparison between experimental data and results from computational models.

  1. Studying the perturbative Reggeon

    International Nuclear Information System (INIS)

    Griffiths, S.; Ross, D.A.

    2000-01-01

    We consider the flavour non-singlet Reggeon within the context of perturbative QCD. This consists of ladders built out of ''reggeized'' quarks. We propose a method for the numerical solution of the integro-differential equation for the amplitude describing the exchange of such a Reggeon. The solution is known to have a sharp rise at low values of Bjorken-x when applied to non-singlet quantities in deep-inelastic scattering. We show that when the running of the coupling is taken into account this sharp rise is further enhanced, although the Q 2 dependence is suppressed by the introduction of the running coupling. We also investigate the effects of simulating non-perturbative physics by introducing a constituent mass for the soft quarks and an effective mass for the soft gluons exchanged in the t-channel. (orig.)

  2. Renormalized Lie perturbation theory

    International Nuclear Information System (INIS)

    Rosengaus, E.; Dewar, R.L.

    1981-07-01

    A Lie operator method for constructing action-angle transformations continuously connected to the identity is developed for area preserving mappings. By a simple change of variable from action to angular frequency a perturbation expansion is obtained in which the small denominators have been renormalized. The method is shown to lead to the same series as the Lagrangian perturbation method of Greene and Percival, which converges on KAM surfaces. The method is not superconvergent, but yields simple recursion relations which allow automatic algebraic manipulation techniques to be used to develop the series to high order. It is argued that the operator method can be justified by analytically continuing from the complex angular frequency plane onto the real line. The resulting picture is one where preserved primary KAM surfaces are continuously connected to one another

  3. Nonperturbative perturbation theory

    International Nuclear Information System (INIS)

    Bender, C.M.

    1989-01-01

    In this talk we describe a recently proposed graphical perturbative calculational scheme for quantum field theory. The basic idea is to expand in the power of the interaction term. For example, to solve a λφ 4 theory in d-dimensional space-time, we introduce a small parameter δ and consider a λ(φ 2 ) 1+δ field theory. We show how to expand such a theory as a series in powers of δ. The resulting perturbation series appears to have a finite radius of convergence and numerical results for low-dimensional models are good. We have computed the two-point and four-point Green's functions to second order in powers of δ and the 2n-point Green's functions (n>2) to order δ. We explain how to renormalize the theory and show that, to first order in powers of δ, when δ>0 and d≥4 the theory is free. This conclusion remains valid to second order in powers of δ, and we believe that it remains valid to all orders in powers of δ. The new perturbative scheme is consistent with global supersymmetry invariance. We examine a two-dimensional supersymmetric quantum field theory in which we do not know of any other means for doing analytical calculations. We illustrate the power of this new technique by computing the ground-state energy density E to second order in this new perturbation theory. We show that there is a beautiful and delicate cancellation between infinite classes of graphs which leads to the result that E=0. (orig.)

  4. Perturbed asymptotically linear problems

    OpenAIRE

    Bartolo, R.; Candela, A. M.; Salvatore, A.

    2012-01-01

    The aim of this paper is investigating the existence of solutions of some semilinear elliptic problems on open bounded domains when the nonlinearity is subcritical and asymptotically linear at infinity and there is a perturbation term which is just continuous. Also in the case when the problem has not a variational structure, suitable procedures and estimates allow us to prove that the number of distinct crtitical levels of the functional associated to the unperturbed problem is "stable" unde...

  5. India's Downstream Petroleum Sector

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This study provides a holistic examination of pricing and investment dynamics in India's downstream petroleum sector. It analyses the current pricing practices, highlights the tremendous fiscal cost of current pricing and regulatory arrangements, and examines the sectoral investment dynamics. It also looks at potential paths towards market-based reform along which the Indian government may move, while at the same time protecting energy market access for India's large poor population.

  6. Twisting perturbed parafermions

    Directory of Open Access Journals (Sweden)

    A.V. Belitsky

    2017-07-01

    Full Text Available The near-collinear expansion of scattering amplitudes in maximally supersymmetric Yang–Mills theory at strong coupling is governed by the dynamics of stings propagating on the five sphere. The pentagon transitions in the operator product expansion which systematize the series get reformulated in terms of matrix elements of branch-point twist operators in the two-dimensional O(6 nonlinear sigma model. The facts that the latter is an asymptotically free field theory and that there exists no local realization of twist fields prevents one from explicit calculation of their scaling dimensions and operator product expansion coefficients. This complication is bypassed making use of the equivalence of the sigma model to the infinite-level limit of WZNW models perturbed by current–current interactions, such that one can use conformal symmetry and conformal perturbation theory for systematic calculations. Presently, to set up the formalism, we consider the O(3 sigma model which is reformulated as perturbed parafermions.

  7. Flow behavior of droplets downstream of the spacer

    International Nuclear Information System (INIS)

    Kodama, Eiichiro; Morishita, Kiyohide; Aritomi, Masanori; Yano, Takashi

    1998-01-01

    The fuel spacer, of which role is to maintain an appropriate rod-to-rod clearance, is one of the components of a Boiling Water Reactor (BWR) fuel rod bundles. The fuel spacer influences flow characteristics of the liquid film in fuel rod bundles, so that its geometry influences greatly thermal hydraulics such as critical power and pressure drop therein. The purpose of this study is to clarify the effect of the spacer geometry on the core flow split downstream of the spacer. Phase Doppler Anemometry (PDA) was used for their meausrement under the conditions of a small amount of droplets in mist flows. From the experimental results, the normalized droplet velocity profiles with a spacer were split by the spacer and were different between a wider and a narrower regions in the channel, however, they became uniform at the distance far 100mm from the spacer. In the case without a spacer, the velocity was monotonously increasing nearer the rod surface with going toward the center of the channel. In the case with a spacer, the velocity profile downstream of the spacer changed in the narrower region of the channel. This tendency became more remarkable with thickening the spacer and widening clearance between the spacer and the wall. In this paper, 'drift' velocity effect was applied for the spacer model, due to the gas flows were split by the spacer which is based on the momentum balance between the narrower and wider channels. This model was confirmed from the experimental results that the droplet flowed from a wider region to a narrower one. This drift effect appeared more strongly as the spacer became thicker and the clearance did narrower. The analytical results explained qualitatively the measured ones. It is clarified that the drift effect proposed in this work was a dominant factor on droplet deposition downstream of the spacer

  8. Non-Perturbative Renormalization

    CERN Document Server

    Mastropietro, Vieri

    2008-01-01

    The notion of renormalization is at the core of several spectacular achievements of contemporary physics, and in the last years powerful techniques have been developed allowing to put renormalization on a firm mathematical basis. This book provides a self-consistent and accessible introduction to the sophisticated tools used in the modern theory of non-perturbative renormalization, allowing an unified and rigorous treatment of Quantum Field Theory, Statistical Physics and Condensed Matter models. In particular the first part of this book is devoted to Constructive Quantum Field Theory, providi

  9. Perturbative quantum chromodynamics

    CERN Document Server

    1989-01-01

    This book will be of great interest to advanced students and researchers in the area of high energy theoretical physics. Being the most complete and updated review volume on Perturbative QCD, it serves as an extremely useful textbook or reference book. Some of the reviews in this volume are the best that have been written on the subject anywhere. Contents: Factorization of Hard Processes in QCD (J C Collins, D E Soper & G Sterman); Exclusive Processes in Quantum Chromodynamics (S J Brodsky & G P Lepage); Coherence and Physics of QCD Jets (Yu L Dokshitzer, V A Khoze & S I Troyan); Pomeron in Qu

  10. Perturbative quantum chromodynamics

    International Nuclear Information System (INIS)

    Radyushkin, A.V.

    1987-01-01

    The latest achievements in perturbative quantum chromodynamics (QCD) relating to the progress in factorization of small and large distances are presented. The following problems are concerned: Development of the theory of Sudakov effects on the basis of mean contour formalism. Development of nonlocal condensate formalism. Calculation of hadron wave functions and hadron distribution functions using QCD method of sum rules. Development of the theory of Regge behaviour in QCD, behaviour of structure functions at small x. Study of polarization effects in hadron processes with high momentum transfer

  11. Perturbed effects at radiation physics

    International Nuclear Information System (INIS)

    Külahcı, Fatih; Şen, Zekâi

    2013-01-01

    Perturbation methodology is applied in order to assess the linear attenuation coefficient, mass attenuation coefficient and cross-section behavior with random components in the basic variables such as the radiation amounts frequently used in the radiation physics and chemistry. Additionally, layer attenuation coefficient (LAC) and perturbed LAC (PLAC) are proposed for different contact materials. Perturbation methodology provides opportunity to obtain results with random deviations from the average behavior of each variable that enters the whole mathematical expression. The basic photon intensity variation expression as the inverse exponential power law (as Beer–Lambert's law) is adopted for perturbation method exposition. Perturbed results are presented not only in terms of the mean but additionally the standard deviation and the correlation coefficients. Such perturbation expressions provide one to assess small random variability in basic variables. - Highlights: • Perturbation methodology is applied to Radiation Physics. • Layer attenuation coefficient (LAC) and perturbed LAC are proposed for contact materials. • Perturbed linear attenuation coefficient is proposed. • Perturbed mass attenuation coefficient (PMAC) is proposed. • Perturbed cross-section is proposed

  12. Combined effects of perturbations, radiation and oblateness on the ...

    African Journals Online (AJOL)

    We have studied the effect of small perturbations in the coriolis and the centrifugal forces together with oblateness and radiation pressure forces of the primaries on the locations of equilibrium points in the restricted three-body problem. We have found that oblate-ness and radiation pressure forces affect the locations of ...

  13. Water stress in global transboundary river basins : Significance of upstream water use on downstream stress

    NARCIS (Netherlands)

    Munia, H.; Guillaume, J. H A; Mirumachi, N.; Porkka, M.; Wada, Y.|info:eu-repo/dai/nl/341387819; Kummu, M.

    2016-01-01

    Growing population and water demand have increased pressure on water resources in various parts of the globe, including many transboundary river basins. While the impacts of upstream water use on downstream water availability have been analysed in many of these international river basins, this has

  14. DOWNSTREAM ECOCIDE FROM UPSTREAM WATER PIRACY

    OpenAIRE

    Miah Muhammad Adel

    2012-01-01

    Upstream India and downstream Bangladesh share more than 50 international rivers. India has set up water diversion constructions in more than 50% of these rivers, the largest one being on the Bangladeshâs northwest upon the Ganges River, puts Bangladeshâs Gangetic ecosystem at stake. In some border rivers, India has set up groins on her side of river banks. Also, Indian side pumps Bangladesh river water stealthily from border-rivers. Further, India is constructing another dam and reservoir up...

  15. DARHT-II Downstream Transport Beamline

    International Nuclear Information System (INIS)

    Westenskow, G A; Bertolini, L R; Duffy, P T; Paul, A C

    2001-01-01

    This paper describes the mechanical design of the downstream beam transport line for the second axis of the Dual Axis Radiographic Hydrodynamic Test (DARHT II) Facility. The DARHT-II project is a collaboration between LANL, LBNL and LLNL. DARHT II is a 18.4-MeV, 2000-Amperes, 2-(micro)sec linear induction accelerator designed to generate short bursts of x-rays for the purpose of radiographing dense objects. The downstream beam transport line is approximately 22-meter long region extending from the end of the accelerator to the bremsstrahlung target. Within this proposed transport line there are 12 conventional solenoid, quadrupole and dipole magnets; as well as several specialty magnets, which transport and focus the beam to the target and to the beam dumps. There are two high power beam dumps, which are designed to absorb 80-kJ per pulse during accelerator start-up and operation. Aspects of the mechanical design of these elements are presented

  16. Non-perturbative versus perturbative renormalization of lattice operators

    International Nuclear Information System (INIS)

    Goeckeler, M.; Technische Hochschule Aachen; Horsley, R.; Ilgenfritz, E.M.; Oelrich, H.; Forschungszentrum Juelich GmbH; Schierholz, G.; Forschungszentrum Juelich GmbH; Perlt, H.; Schiller, A.; Rakow, P.

    1995-09-01

    Our objective is to compute the moments of the deep-inelastic structure functions of the nucleon on the lattice. A major source of uncertainty is the renormalization of the lattice operators that enter the calculation. In this talk we compare the renormalization constants of the most relevant twist-two bilinear quark operators which we have computed non-perturbatively and perturbatively to one loop order. Furthermore, we discuss the use of tadpole improved perturbation theory. (orig.)

  17. Perturbation studies on KAHTER

    Energy Technology Data Exchange (ETDEWEB)

    Rueckert, M.; Jonas, H.; Neef, R. D.

    1974-10-15

    The paper describes experimental and analytical results by both transport theory and diffusion theory calculations of perturbation tests in the KAHTER pebble bed critical experiment. The fission-weighted adjoint flux is measured from in-core detector responses by introducing a Cf-source into the core. Adjoint-weighted reactivities are calculated and compared to reactivity measurements for the introduction of a fuel and graphite pebble onto the top of the critical pile, the central rod worth, and the effect of replacing B4C with varying amounts of HfC in the central rod. In addition, analytical studies were made of the sensitivity of criticality to the fuel to graphite pebble ratio as measured in tests and of the effect of the upper void cavity as simulated in tests by placing cadmium layer across the top of the pebble pile to force a zero flux boundary condition.

  18. Introduction to perturbation methods

    CERN Document Server

    Holmes, M

    1995-01-01

    This book is an introductory graduate text dealing with many of the perturbation methods currently used by applied mathematicians, scientists, and engineers. The author has based his book on a graduate course he has taught several times over the last ten years to students in applied mathematics, engineering sciences, and physics. The only prerequisite for the course is a background in differential equations. Each chapter begins with an introductory development involving ordinary differential equations. The book covers traditional topics, such as boundary layers and multiple scales. However, it also contains material arising from current research interest. This includes homogenization, slender body theory, symbolic computing, and discrete equations. One of the more important features of this book is contained in the exercises. Many are derived from problems of up- to-date research and are from a wide range of application areas.

  19. Perturbation theory with instantons

    International Nuclear Information System (INIS)

    Carruthers, P.; Pinsky, S.S.; Zachariasen, F.

    1977-05-01

    ''Perturbation theory'' rules are developed for calculating the effect of instantons in a pure Yang-Mills theory with no fermions, in the ''dilute gas'' approximation in which the N-instanton solution is assumed to be the sum of N widely separated one-instanton solutions. These rules are then used to compute the gluon propagator and proper vertex function including all orders of the instanton interaction but only to lowest order in the gluon coupling. It is to be expected that such an approximation is valid only for momenta q larger than the physical mass μ. The result is that in this regime instantons cause variations in the propagator and vertex of the form (μ 2 /q 2 )/sup -8π 2 b/ where b is the coefficient in the expansion of the β function: β = bg 3 +...

  20. Downstream process options for the ABE fermentation.

    Science.gov (United States)

    Friedl, Anton

    2016-05-01

    Butanol is a very interesting substance both for the chemical industry and as a biofuel. The classical distillation process for the removal of butanol is far too energy demanding, at a factor of 220% of the energy content of butanol. Alternative separation processes studied are hybrid processes of gas-stripping, liquid-liquid extraction and pervaporation with distillation and a novel adsorption/drying/desorption hybrid process. Compared with the energy content of butanol, the resulting energy demand for butanol separation and concentration of optimized hybrid processes is 11%-22% for pervaporation/distillation and 11%-17% for liquid-liquid extraction/distillation. For a novel adsorption/drying/desorption process, the energy demand is 9.4%. But all downstream process options need further proof of industrial applicability. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. The jet membrane-experiment: downstream sampling

    International Nuclear Information System (INIS)

    Campargue, R.

    1976-01-01

    The invasion separation effect of the free jet structure was found in 1966 at Saclay. In the Downstream Sampling Configuration patended by Campargue (1967), the light fraction is withdrawn from the supersonic central core, by skimming the separating free jet. From experimental and theoretical results obtained for gas and isotopic mixtures, the following points linked to operation and equipment costs, are considered: system description; influence of mass ratio, expansion ratio, nature of separating gas, ratio of upflow to separating jet flow, rarefaction. Fron an uninteresting aspect of Jet Membrane (elimination of background penetration), a new principle has been discovered to produce nozzle beams which may be of great interest for other separation processes involving free jets and/or molecular beams [fr

  2. Singular perturbation of simple eigenvalues

    International Nuclear Information System (INIS)

    Greenlee, W.M.

    1976-01-01

    Two operator theoretic theorems which generalize those of asymptotic regular perturbation theory and which apply to singular perturbation problems are proved. Application of these theorems to concrete problems is involved, but the perturbation expansions for eigenvalues and eigenvectors are developed in terms of solutions of linear operator equations. The method of correctors, as well as traditional boundary layer techniques, can be used to apply these theorems. The current formulation should be applicable to highly singular ''hard core'' potential perturbations of the radial equation of quantum mechanics. The theorems are applied to a comparatively simple model problem whose analysis is basic to that of the quantum mechanical problem

  3. Non-hard sphere thermodynamic perturbation theory.

    Science.gov (United States)

    Zhou, Shiqi

    2011-08-21

    A non-hard sphere (HS) perturbation scheme, recently advanced by the present author, is elaborated for several technical matters, which are key mathematical details for implementation of the non-HS perturbation scheme in a coupling parameter expansion (CPE) thermodynamic perturbation framework. NVT-Monte Carlo simulation is carried out for a generalized Lennard-Jones (LJ) 2n-n potential to obtain routine thermodynamic quantities such as excess internal energy, pressure, excess chemical potential, excess Helmholtz free energy, and excess constant volume heat capacity. Then, these new simulation data, and available simulation data in literatures about a hard core attractive Yukawa fluid and a Sutherland fluid, are used to test the non-HS CPE 3rd-order thermodynamic perturbation theory (TPT) and give a comparison between the non-HS CPE 3rd-order TPT and other theoretical approaches. It is indicated that the non-HS CPE 3rd-order TPT is superior to other traditional TPT such as van der Waals/HS (vdW/HS), perturbation theory 2 (PT2)/HS, and vdW/Yukawa (vdW/Y) theory or analytical equation of state such as mean spherical approximation (MSA)-equation of state and is at least comparable to several currently the most accurate Ornstein-Zernike integral equation theories. It is discovered that three technical issues, i.e., opening up new bridge function approximation for the reference potential, choosing proper reference potential, and/or using proper thermodynamic route for calculation of f(ex-ref), chiefly decide the quality of the non-HS CPE TPT. Considering that the non-HS perturbation scheme applies for a wide variety of model fluids, and its implementation in the CPE thermodynamic perturbation framework is amenable to high-order truncation, the non-HS CPE 3rd-order or higher order TPT will be more promising once the above-mentioned three technological advances are established. © 2011 American Institute of Physics

  4. Chiral perturbation theory

    International Nuclear Information System (INIS)

    Harada, Masayasu

    2009-01-01

    Chiral perturbation theory has been used for great number of phenomenological analyses in low energy QCD as well as the lattice QCD analyses since the creation of the theory by Weinberg in 1979 followed by its consolidation by Gasser and Leutwyler in 1984 and 85. The theory is now the highly established one as the approach based on the effective field theory to search for Green function including quantum correlations in the frame of the systematic expansion technique using Lagrangian which includes all of the terms allowed by the symmetry. This review has been intended to describe how systematically physical quantities are calculated in the framework of the chiral symmetry. Consequently many of the various phenomenological analyses are not taken up here for which other reports are to be referred. Further views are foreseen to be developed based on the theory in addition to numbers of results reported up to the present. Finally π-π scattering is taken up to discuss to what energy scale the theory is available. (S. Funahashi)

  5. Perturbed angular correlation

    International Nuclear Information System (INIS)

    Fabris, J.D.

    1977-01-01

    The electric quadrupolar interaction in some hafnium complexes, measured at the metal nucleus level is studied. For that purpose, the technique of γ-γ perturbed angular correlation is used: the frequencies of quadrupolar interaction are compared with some hafnium α-hydroxicarboxilates, namely glycolate, lactate, mandelate and benzylate; the influence of the temperature on the quadrupolar coupling on the hafnium tetramandelate is studied; finally, the effects associated with the capture of thermal neutrons by hafnium tetramandelate are examined locally at the nuclear level. The first group of results shows significant differences in a series of complexes derived from glycolic acid. On the other hand, the substitution of the protons in hafnium tetramandelate structure by some alkaline cations permits to verify a correlation between the variations in the quadrupolar coupling and the electronegativities of the substituent elements. Measurements at high temperatures show that this complex is thermally stable at 100 and 150 0 C. It is possible to see the appearance of two distinct sites for the probe nucleus, after heating the sample at 100 0 C for prolonged time. This fact is attributed to a probable interconversion among the postulated structural isomers for the octacoordinated compounds. Finally, measurements of angular correlation on the irradiated complex show that there is an effective destruction of the target molecule by neutron capture [pt

  6. Perturbative quantum chromodynamics

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1979-12-01

    The application of QCD to hadron dynamics at short distances, where asymptotic freedom allows a systematic perturbative approach, is addressed. The main theme of the approach is to incorporate systematically the effects of the hadronic wave function in large momentum transfer exclusive and inclusive reactions. Although it is conventional to treat the hadron as a classical source of on-shell quarks, there are important dynamical effects due to hadronic constituent structure which lead to a broader testing ground for QCD. QCD predictions are discussed for exclusive processes and form factors at large momentum transfer in which the short-distance behavior and the finite compositeness of the hadronic wave functions play crucial roles. Many of the standard tests of QCD are reviewed including the predictions for R = sigma/sub e + e - →had//sigma/sub e + e - →μ + μ - /, the structure functions of hadrons and photons, jet phenomena, and the QCD corrections to deep inelastic processes. The exclusive-inclusive connection in QCD, the effects of power-law scale-breaking contributions, and the important role of the available energy in controlling logarithmic scale violations are also discussed. 150 references, 44 figures

  7. Downstream Processing of Synechocystis for Biofuel Production

    Science.gov (United States)

    Sheng, Jie

    Lipids and free fatty acids (FFA) from cyanobacterium Synechocystis can be used for biofuel (e.g. biodiesel or renewable diesel) production. In order to utilize and scale up this technique, downstream processes including culturing and harvest, cell disruption, and extraction were studied. Several solvents/solvent systems were screened for lipid extraction from Synechocystis. Chloroform + methanol-based Folch and Bligh & Dyer methods were proved to be "gold standard" for small-scale analysis due to their highest lipid recoveries that were confirmed by their penetration of the cell membranes, higher polarity, and stronger interaction with hydrogen bonds. Less toxic solvents, such as methanol and MTBE, or direct transesterification of biomass (without preextraction step) gave only slightly lower lipid-extraction yields and can be considered for large-scale application. Sustained exposure to high and low temperature extremes severely lowered the biomass and lipid productivity. Temperature stress also triggered changes of lipid quality such as the degree of unsaturation; thus, it affected the productivities and quality of Synechocystis-derived biofuel. Pulsed electric field (PEF) was evaluated for cell disruption prior to lipid extraction. A treatment intensity > 35 kWh/m3 caused significant damage to the plasma membrane, cell wall, and thylakoid membrane, and it even led to complete disruption of some cells into fragments. Treatment by PEF enhanced the potential for the low-toxicity solvent isopropanol to access lipid molecules during subsequent solvent extraction, leading to lower usage of isopropanol for the same extraction efficiency. Other cell-disruption methods also were tested. Distinct disruption effects to the cell envelope, plasma membrane, and thylakoid membranes were observed that were related to extraction efficiency. Microwave and ultrasound had significant enhancement of lipid extraction. Autoclaving, ultrasound, and French press caused significant

  8. Lattice regularized chiral perturbation theory

    International Nuclear Information System (INIS)

    Borasoy, Bugra; Lewis, Randy; Ouimet, Pierre-Philippe A.

    2004-01-01

    Chiral perturbation theory can be defined and regularized on a spacetime lattice. A few motivations are discussed here, and an explicit lattice Lagrangian is reviewed. A particular aspect of the connection between lattice chiral perturbation theory and lattice QCD is explored through a study of the Wess-Zumino-Witten term

  9. Perturbative QCD (1/3)

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    Perturbative QCD is the general theoretical framework for describing hard scattering processes yielding multiparticle production at hadron colliders. In these lectures, we shall introduce fundamental features of perturbative QCD and describe its application to several high energy collider processes, including jet production in electron-positron annihilation, deep inelastic scattering, Higgs boson and gauge boson production at the LHC.

  10. Propagation of Ion Acoustic Perturbations

    DEFF Research Database (Denmark)

    Pécseli, Hans

    1975-01-01

    Equations describing the propagation of ion acoustic perturbations are considered, using the assumption that the electrons are Boltzman distributed and isothermal at all times. Quasi-neutrality is also considered.......Equations describing the propagation of ion acoustic perturbations are considered, using the assumption that the electrons are Boltzman distributed and isothermal at all times. Quasi-neutrality is also considered....

  11. On summation of perturbation expansions

    International Nuclear Information System (INIS)

    Horzela, A.

    1985-04-01

    The problem of the restoration of physical quantities defined by divergent perturbation expansions is analysed. The Pad'e and Borel summability is proved for alternating perturbation expansions with factorially growing coefficients. The proof is based on the methods of the classical moments theory. 17 refs. (author)

  12. Continual integral in perturbation theory

    International Nuclear Information System (INIS)

    Slavnov, A.A.

    1975-01-01

    It is shown that all results obtained by means of continual integration within the framework of perturbation theory are completely equivalent to those obtained by the usual diagram technique and are therfore just as rigorous. A rigorous justification is given for the rules for operating with continual integrals in perturbation theory. (author)

  13. Cladding Heatup Prediction between Spacer Grids for the Downstream Effect Evaluation

    International Nuclear Information System (INIS)

    Park, J. Y.; Kim, M. W.

    2009-01-01

    Since a recirculation sump clogging issue by debris generated from high energy pipe line break had been invoked as GSI-191 in the US, many researches on this issue have been undertaken. Previous researches on this topic are well summarized in Bang et al. Due to comprehensive nature of the issue, it includes many area of research and one of them is the area of downstream effect evaluation. The downstream effect is involved with adverse effects of debris passing the sump screen on the downstream systems, components and piping including core and it can be further divided into an ex-vessel downstream effect and an in-vessel downstream effect. In the ex-vessel downstream effect, focus is laid on plugging of spray nozzle, wearing and abrasion of moving parts of pump and valve and etc. Otherwise, a debris effect on reactor core is focused in the in-vessel downstream effect. Since debris can be ingested in the core or the systems of downstream of sump screen during recirculation, basically the downstream effect influences long-term core cooling phase. With respect to the in-vessel downstream effect, an up-to-date evaluation methodology is well summarized in a topical report submitted to the US nuclear regulatory commission by the pressurized water reactor owners group (PWROG). The report evaluates various aspects of debris ingestion in the core such as blockage at the core inlet, collection of debris on fuel grids, plating-out of fuel, chemical precipitants, protective coatings effect and etc. Most of them are evaluated qualitative manner based on previous research results and geometrical consideration on fuel rod bundles but some of them are also backed up by quantitative calculations to corroborate the qualitative decisions. One of them is a cladding heatup calculation between spacer grids. This is done to demonstrate that the cladding temperature of a fuel rod between grids with debris deposited on the clad surface in a post- LOCA recirculation environment is below

  14. On dark energy isocurvature perturbation

    International Nuclear Information System (INIS)

    Liu, Jie; Zhang, Xinmin; Li, Mingzhe

    2011-01-01

    Determining the equation of state of dark energy with astronomical observations is crucially important to understand the nature of dark energy. In performing a likelihood analysis of the data, especially of the cosmic microwave background and large scale structure data the dark energy perturbations have to be taken into account both for theoretical consistency and for numerical accuracy. Usually, one assumes in the global fitting analysis that the dark energy perturbations are adiabatic. In this paper, we study the dark energy isocurvature perturbation analytically and discuss its implications for the cosmic microwave background radiation and large scale structure. Furthermore, with the current astronomical observational data and by employing Markov Chain Monte Carlo method, we perform a global analysis of cosmological parameters assuming general initial conditions for the dark energy perturbations. The results show that the dark energy isocurvature perturbations are very weakly constrained and that purely adiabatic initial conditions are consistent with the data

  15. Implementation of perturbed-chain statistical associating fluid theory (PC-SAFT), generalized (G)SAFT+cubic, and cubic-plus-association (CPA) for modeling thermophysical properties of selected 1-alkyl-3-methylimidazolium ionic liquids in a wide pressure range.

    Science.gov (United States)

    Polishuk, Ilya

    2013-03-14

    This study is the first comparative investigation of predicting the isochoric and the isobaric heat capacities, the isothermal and the isentropic compressibilities, the isobaric thermal expansibilities, the thermal pressure coefficients, and the sound velocities of ionic liquids by statistical associating fluid theory (SAFT) equation of state (EoS) models and cubic-plus-association (CPA). It is demonstrated that, taking into account the high uncertainty of the literature data (excluding sound velocities), the generalized for heavy compounds version of SAFT+Cubic (GSAFT+Cubic) appears as a robust estimator of the auxiliary thermodynamic properties under consideration. In the case of the ionic liquids the performance of PC-SAFT seems to be less accurate in comparison to ordinary compounds. In particular, PC-SAFT substantially overestimates heat capacities and underestimates the temperature and pressure dependencies of sound velocities and compressibilities. An undesired phenomenon of predicting high fictitious critical temperatures of ionic liquids by PC-SAFT should be noticed as well. CPA is the less accurate estimator of the liquid phase properties, but it is advantageous in modeling vapor pressures and vaporization enthalpies of ionic liquids. At the same time, the preliminary results indicate that the inaccuracies in predicting the deep vacuum vapor pressures of ionic liquids do not influence modeling of phase equilibria in their mixtures at much higher pressures.

  16. Microbial production of scleroglucan and downstream processing

    Directory of Open Access Journals (Sweden)

    Natalia Alejandra Castillo

    2015-10-01

    Full Text Available Synthetic petroleum-based polymers and natural plant polymers have the disadvantage of restricted sources, in addition to the non-biodegradability of the former ones. In contrast, eco-sustainable microbial polysaccharides, of low-cost and standardized production, represent an alternative to address this situation. With a strong global market, they attracted worldwide attention because of their novel and unique physico-chemical properties as well as varied industrial applications, and many of them are promptly becoming economically competitive. Scleroglucan, a beta-1,3-beta-1,6-glucan secreted by Sclerotium fungi, exhibits high potential for commercialization and may show different branching frequency, side-chain length and/or molecular weight depending on the producing strain or culture conditions. Water-solubility, viscosifying ability and wide stability over temperature, pH and salinity make scleroglucan useful for different biotechnological (enhanced oil recovery, food additives, drug delivery, cosmetic and pharmaceutical products, biocompatible materials, etc., and biomedical (immunoceutical, antitumor, etc. applications. It can be copiously produced at bioreactor scale under standardized conditions, where a high EPS concentration normally governs the process optimization. Operative and nutritional conditions, as well as the incidence of scleroglucan downstream processing will be discussed in this chapter. The relevance of using standardized inocula from selected strains and experiences concerning the intricate scleroglucan scaling-up will be also herein outlined.

  17. Cosmological perturbations beyond linear order

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    Cosmological perturbation theory is the standard tool to understand the formation of the large scale structure in the Universe. However, its degree of applicability is limited by the growth of the amplitude of the matter perturbations with time. This problem can be tackled with by using N-body simulations or analytical techniques that go beyond the linear calculation. In my talk, I'll summarise some recent efforts in the latter that ameliorate the bad convergence of the standard perturbative expansion. The new techniques allow better analytical control on observables (as the matter power spectrum) over scales very relevant to understand the expansion history and formation of structure in the Universe.

  18. Instabilities in mimetic matter perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Firouzjahi, Hassan; Gorji, Mohammad Ali [School of Astronomy, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Mansoori, Seyed Ali Hosseini, E-mail: firouz@ipm.ir, E-mail: gorji@ipm.ir, E-mail: shosseini@shahroodut.ac.ir, E-mail: shossein@ipm.ir [Physics Department, Shahrood University of Technology, P.O. Box 3619995161 Shahrood (Iran, Islamic Republic of)

    2017-07-01

    We study cosmological perturbations in mimetic matter scenario with a general higher derivative function. We calculate the quadratic action and show that both the kinetic term and the gradient term have the wrong sings. We perform the analysis in both comoving and Newtonian gauges and confirm that the Hamiltonians and the associated instabilities are consistent with each other in both gauges. The existence of instabilities is independent of the specific form of higher derivative function which generates gradients for mimetic field perturbations. It is verified that the ghost instability in mimetic perturbations is not associated with the higher derivative instabilities such as the Ostrogradsky ghost.

  19. Perturbation theory of effective Hamiltonians

    International Nuclear Information System (INIS)

    Brandow, B.H.

    1975-01-01

    This paper constitutes a review of the many papers which have used perturbation theory to derive ''effective'' or ''model'' Hamiltonians. It begins with a brief review of nondegenerate and non-many-body perturbation theory, and then considers the degenerate but non-many-body problem in some detail. It turns out that the degenerate perturbation problem is not uniquely defined, but there are some practical criteria for choosing among the various possibilities. Finally, the literature dealing with the linked-cluster aspects of open-shell many-body systems is reviewed. (U.S.)

  20. The theory of singular perturbations

    CERN Document Server

    De Jager, E M

    1996-01-01

    The subject of this textbook is the mathematical theory of singular perturbations, which despite its respectable history is still in a state of vigorous development. Singular perturbations of cumulative and of boundary layer type are presented. Attention has been given to composite expansions of solutions of initial and boundary value problems for ordinary and partial differential equations, linear as well as quasilinear; also turning points are discussed. The main emphasis lies on several methods of approximation for solutions of singularly perturbed differential equations and on the mathemat

  1. The power of perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Serone, Marco [SISSA International School for Advanced Studies and INFN Trieste, Via Bonomea 265, 34136, Trieste (Italy); Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151, Trieste (Italy); Spada, Gabriele [SISSA International School for Advanced Studies and INFN Trieste, Via Bonomea 265, 34136, Trieste (Italy); Villadoro, Giovanni [Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151, Trieste (Italy)

    2017-05-10

    We study quantum mechanical systems with a discrete spectrum. We show that the asymptotic series associated to certain paths of steepest-descent (Lefschetz thimbles) are Borel resummable to the full result. Using a geometrical approach based on the Picard-Lefschetz theory we characterize the conditions under which perturbative expansions lead to exact results. Even when such conditions are not met, we explain how to define a different perturbative expansion that reproduces the full answer without the need of transseries, i.e. non-perturbative effects, such as real (or complex) instantons. Applications to several quantum mechanical systems are presented.

  2. Tunnelling instability via perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Graffi, S. (Bologna Univ. (Italy). Dip. di Matematica); Grecchi, V. (Moderna Univ. (Italy). Dip. di Matematica); Jona-Lasinio, G. (Paris-11 Univ., 91 - Orsay (France). Lab. de Physique Theorique et Hautes Energies)

    1984-10-21

    The semiclassical limit of low lying states in a multiwell potential is studied by rigorous perturbative techniques. In particular tunnelling instability and localisation of wave functions is obtained in a simple way under small deformations of symmetric potentials.

  3. Perturbation theory of quantum resonances

    Czech Academy of Sciences Publication Activity Database

    Durand, P.; Paidarová, Ivana

    2016-01-01

    Roč. 135, č. 7 (2016), s. 159 ISSN 1432-2234 Institutional support: RVO:61388955 Keywords : Partitioning technique * Analytic continuation * Perturbative expansion Subject RIV: CF - Physical ; Theoretical Chemistry

  4. Perturbation Theory of Embedded Eigenvalues

    DEFF Research Database (Denmark)

    Engelmann, Matthias

    project gives a general and systematic approach to analytic perturbation theory of embedded eigenvalues. The spectral deformation technique originally developed in the theory of dilation analytic potentials in the context of Schrödinger operators is systematized by the use of Mourre theory. The group...... of dilations is thereby replaced by the unitary group generated y the conjugate operator. This then allows to treat the perturbation problem with the usual Kato theory.......We study problems connected to perturbation theory of embedded eigenvalues in two different setups. The first part deals with second order perturbation theory of mass shells in massive translation invariant Nelson type models. To this end an expansion of the eigenvalues w.r.t. fiber parameter up...

  5. Perturbative tests of quantum chromodynamics

    International Nuclear Information System (INIS)

    Michael, C.

    1978-01-01

    A review is given of perturbation theory results for quantum chromodynamics and of tests in deep inelastic lepton scattering, electron-positron annihilation, hadronic production of massive dileptons and hadronic large-momentum-transfer processes. (author)

  6. Large-order perturbation theory

    International Nuclear Information System (INIS)

    Wu, T.T.

    1982-01-01

    The original motivation for studying the asymptotic behavior of the coefficients of perturbation series came from quantum field theory. An overview is given of some of the attempts to understand quantum field theory beyond finite-order perturbation series. At least is the case of the Thirring model and probably in general, the full content of a relativistic quantum field theory cannot be recovered from its perturbation series. This difficulty, however, does not occur in quantum mechanics, and the anharmonic oscillator is used to illustrate the methods used in large-order perturbation theory. Two completely different methods are discussed, the first one using the WKB approximation, and a second one involving the statistical analysis of Feynman diagrams. The first one is well developed and gives detailed information about the desired asymptotic behavior, while the second one is still in its infancy and gives instead information about the distribution of vertices of the Feynman diagrams

  7. Review of chiral perturbation theory

    Indian Academy of Sciences (India)

    Abstract. A review of chiral perturbation theory and recent developments on the comparison of its predictions with experiment is presented. Some interesting topics with scope for further elaboration are touched upon.

  8. Perturbation theory in light-cone gauge

    International Nuclear Information System (INIS)

    Vianello, Eliana

    2000-01-01

    Perturbation calculations are presented for the light-cone gauge Schwinger model. Eigenstates can be calculated perturbatively but the perturbation theory is nonstandard. We hope to extend the work to QCD 2 to resolve some outstanding issues in those theories

  9. Parallel magnetic field perturbations in gyrokinetic simulations

    International Nuclear Information System (INIS)

    Joiner, N.; Hirose, A.; Dorland, W.

    2010-01-01

    At low β it is common to neglect parallel magnetic field perturbations on the basis that they are of order β 2 . This is only true if effects of order β are canceled by a term in the ∇B drift also of order β[H. L. Berk and R. R. Dominguez, J. Plasma Phys. 18, 31 (1977)]. To our knowledge this has not been rigorously tested with modern gyrokinetic codes. In this work we use the gyrokinetic code GS2[Kotschenreuther et al., Comput. Phys. Commun. 88, 128 (1995)] to investigate whether the compressional magnetic field perturbation B || is required for accurate gyrokinetic simulations at low β for microinstabilities commonly found in tokamaks. The kinetic ballooning mode (KBM) demonstrates the principle described by Berk and Dominguez strongly, as does the trapped electron mode, in a less dramatic way. The ion and electron temperature gradient (ETG) driven modes do not typically exhibit this behavior; the effects of B || are found to depend on the pressure gradients. The terms which are seen to cancel at long wavelength in KBM calculations can be cumulative in the ion temperature gradient case and increase with η e . The effect of B || on the ETG instability is shown to depend on the normalized pressure gradient β ' at constant β.

  10. Learning gene networks under SNP perturbations using eQTL datasets.

    Directory of Open Access Journals (Sweden)

    Lingxue Zhang

    2014-02-01

    Full Text Available The standard approach for identifying gene networks is based on experimental perturbations of gene regulatory systems such as gene knock-out experiments, followed by a genome-wide profiling of differential gene expressions. However, this approach is significantly limited in that it is not possible to perturb more than one or two genes simultaneously to discover complex gene interactions or to distinguish between direct and indirect downstream regulations of the differentially-expressed genes. As an alternative, genetical genomics study has been proposed to treat naturally-occurring genetic variants as potential perturbants of gene regulatory system and to recover gene networks via analysis of population gene-expression and genotype data. Despite many advantages of genetical genomics data analysis, the computational challenge that the effects of multifactorial genetic perturbations should be decoded simultaneously from data has prevented a widespread application of genetical genomics analysis. In this article, we propose a statistical framework for learning gene networks that overcomes the limitations of experimental perturbation methods and addresses the challenges of genetical genomics analysis. We introduce a new statistical model, called a sparse conditional Gaussian graphical model, and describe an efficient learning algorithm that simultaneously decodes the perturbations of gene regulatory system by a large number of SNPs to identify a gene network along with expression quantitative trait loci (eQTLs that perturb this network. While our statistical model captures direct genetic perturbations of gene network, by performing inference on the probabilistic graphical model, we obtain detailed characterizations of how the direct SNP perturbation effects propagate through the gene network to perturb other genes indirectly. We demonstrate our statistical method using HapMap-simulated and yeast eQTL datasets. In particular, the yeast gene network

  11. Downstream-based Scheduling for Energy Conservation in Green EPONs

    KAUST Repository

    Chen, Shen; Dhaini, Ahmad R.; Ho, Pin-Han; Shihada, Basem; Shen, Gangxiang; Lin, Chih-Hao

    2012-01-01

    the ONU sleep time, it jeopardizes the quality of service (QoS) performance of the network, especially for downstream traffic in case the overlapping is based on the upstream time slot. In this paper, we study the downstream traffic performance in green

  12. A floating trap for sampling downstream migrant fishes.

    Science.gov (United States)

    Carl E. McLemore; Fred H. Everest; William R. Humphreys; Mario F. Solazzi

    1989-01-01

    Fishery scientists and managers are interested in obtaining information about downstream movements of fish species for biological and economic reasons. Different types of nets and traps have been used for this purpose with only partial success. The floating, self-cleaning downstream migrant trap described here proved successful for sampling several salmoniform and...

  13. High-order perturbations of a spherical collapsing star

    International Nuclear Information System (INIS)

    Brizuela, David; Martin-Garcia, Jose M.; Sperhake, Ulrich; Kokkotas, Kostas D.

    2010-01-01

    A formalism to deal with high-order perturbations of a general spherical background was developed in earlier work [D. Brizuela, J. M. Martin-Garcia, and G. A. Mena Marugan, Phys. Rev. D 74, 044039 (2006); D. Brizuela, J. M. Martin-Garcia, and G. A. Mena Marugan, Phys. Rev. D 76, 024004 (2007)]. In this paper, we apply it to the particular case of a perfect fluid background. We have expressed the perturbations of the energy-momentum tensor at any order in terms of the perturbed fluid's pressure, density, and velocity. In general, these expressions are not linear and have sources depending on lower-order perturbations. For the second-order case we make the explicit decomposition of these sources in tensor spherical harmonics. Then, a general procedure is given to evolve the perturbative equations of motions of the perfect fluid for any value of the harmonic label. Finally, with the problem of a spherical collapsing star in mind, we discuss the high-order perturbative matching conditions across a timelike surface, in particular, the surface separating the perfect fluid interior from the exterior vacuum.

  14. Effects of local high-frequency perturbation on a turbulent boundary layer by synthetic jet injection

    International Nuclear Information System (INIS)

    Guo, Hao; Huang, Qian-Min; Liu, Pei-qing; Qu, Qiu-Lin

    2015-01-01

    An experimental study is performed to investigate the local high-frequency perturbation effects of a synthetic jet injection on a flat-plate turbulent boundary layer. Parameters of the synthetic jet are designed to force a high-frequency perturbation from a thin spanwise slot in the wall. In the test locations downstream of the slot, it is found that skin-friction is reduced by the perturbation, which is languishingly evolved downstream of the slot with corresponding influence on the near-wall regeneration mechanism of turbulent structures. The downstream slot region is divided into two regions due to the influence strength of the movement of spanwise vortices generated by the high-frequency perturbation. Interestingly, the variable interval time average technique is found to be disturbed by the existence of the spanwise vortices’ motion, especially in the region close to the slot. Similar results are obtained from the analysis of the probability density functions of the velocity fluctuation time derivatives, which is another indirect technique for detecting the enhancement or attenuation of streamwise vortices. However, both methods have shown consistent results with the skin-friction reduction mechanism in the far-away slot region. The main purpose of this paper is to remind researchers to be aware of the probable influence of spanwise vortices’ motion in wall-bounded turbulence control. (paper)

  15. Base case and perturbation scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Edmunds, T

    1998-10-01

    This report describes fourteen energy factors that could affect electricity markets in the future (demand, process, source mix, etc.). These fourteen factors are believed to have the most influence on the State's energy environment. A base case, or most probable, characterization is given for each of these fourteen factors over a twenty year time horizon. The base case characterization is derived from quantitative and qualitative information provided by State of California government agencies, where possible. Federal government databases are nsed where needed to supplement the California data. It is envisioned that a initial selection of issue areas will be based upon an evaluation of them under base case conditions. For most of the fourteen factors, the report identities possible perturbations from base case values or assumptions that may be used to construct additional scenarios. Only those perturbations that are plausible and would have a significant effect on energy markets are included in the table. The fourteen factors and potential perturbations of the factors are listed in Table 1.1. These perturbations can be combined to generate internally consist.ent. combinations of perturbations relative to the base case. For example, a low natural gas price perturbation should be combined with a high natural gas demand perturbation. The factor perturbations are based upon alternative quantitative forecasts provided by other institutions (the Department of Energy - Energy Information Administration in some cases), changes in assumptions that drive the quantitative forecasts, or changes in assumptions about the structure of the California energy markets. The perturbations are intended to be used for a qualitative reexamination of issue areas after an initial evaluation under the base case. The perturbation information would be used as a "tiebreaker;" to make decisions regarding those issue areas that were marginally accepted or rejected under the base case. Hf a

  16. 5 X 5 rod bundle flow field measurements downstream a PWR spacer grid

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Higor F.P.; Silva, Vitor V A.; Santos, André A.C.; Veloso, Maria A.F., E-mail: higorfabiano@gmail.com, E-mail: mdora@nuclear.ufmg.br, E-mail: vitors@cdtn.br, E-mail: aacs@cdtn.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    The spacer grids are structures present in nuclear fuel assembly of Pressurized Water Reactors (PWR). They play an important structural role and also assist in heat removal through the assembly by promoting increased turbulence of the flow. Understanding the flow dynamics downstream the spacer grid is paramount for fuel element design and analysis. This paper presents water flow velocity profiles measurements downstream a spacer grid in a 5 x 5 rod bundle test rig with the objective of highlighting important fluid dynamic behavior near the grid and supplying data for CFD simulation validation. These velocity profiles were obtained at two different heights downstream the spacer grid using a LDV (Laser Doppler Velocimetry) through the top of test rig. The turbulence intensities and patterns of the swirl and cross flow were evaluated. The tests were conducted for Reynolds numbers ranging from 1.8 x 10{sup 4} to 5.4 x 10{sup 4}. This experimental research was carried out in thermo-hydraulics laboratory of Nuclear Technology Development Center – CDTN. Results show great repeatability and low uncertainties (< 1.24 %). Details of the flow field show how the mixture and turbulence induced by the spacer grid quickly decays downstream the spacer grid. It is shown that the developed methodology can supply high resolution low uncertainty results that can be used for validation of CFD simulations. (author)

  17. 5 X 5 rod bundle flow field measurements downstream a PWR spacer grid

    International Nuclear Information System (INIS)

    Castro, Higor F.P.; Silva, Vitor V A.; Santos, André A.C.; Veloso, Maria A.F.

    2017-01-01

    The spacer grids are structures present in nuclear fuel assembly of Pressurized Water Reactors (PWR). They play an important structural role and also assist in heat removal through the assembly by promoting increased turbulence of the flow. Understanding the flow dynamics downstream the spacer grid is paramount for fuel element design and analysis. This paper presents water flow velocity profiles measurements downstream a spacer grid in a 5 x 5 rod bundle test rig with the objective of highlighting important fluid dynamic behavior near the grid and supplying data for CFD simulation validation. These velocity profiles were obtained at two different heights downstream the spacer grid using a LDV (Laser Doppler Velocimetry) through the top of test rig. The turbulence intensities and patterns of the swirl and cross flow were evaluated. The tests were conducted for Reynolds numbers ranging from 1.8 x 10"4 to 5.4 x 10"4. This experimental research was carried out in thermo-hydraulics laboratory of Nuclear Technology Development Center – CDTN. Results show great repeatability and low uncertainties (< 1.24 %). Details of the flow field show how the mixture and turbulence induced by the spacer grid quickly decays downstream the spacer grid. It is shown that the developed methodology can supply high resolution low uncertainty results that can be used for validation of CFD simulations. (author)

  18. Perturbation theory in large order

    International Nuclear Information System (INIS)

    Bender, C.M.

    1978-01-01

    For many quantum mechanical models, the behavior of perturbation theory in large order is strikingly simple. For example, in the quantum anharmonic oscillator, which is defined by -y'' + (x 2 /4 + ex 4 /4 - E) y = 0, y ( +- infinity) = 0, the perturbation coefficients, A/sub n/, in the expansion for the ground-state energy, E(ground state) approx. EPSILON/sub n = 0//sup infinity/ A/sub n/epsilon/sup n/, simplify dramatically as n → infinity: A/sub n/ approx. (6/π 3 )/sup 1/2/(-3)/sup n/GAMMA(n + 1/2). Methods of applied mathematics are used to investigate the nature of perturbation theory in quantum mechanics and show that its large-order behavior is determined by the semiclassical content of the theory. In quantum field theory the perturbation coefficients are computed by summing Feynman graphs. A statistical procedure in a simple lambda phi 4 model for summing the set of all graphs as the number of vertices → infinity is presented. Finally, the connection between the large-order behavior of perturbation theory in quantum electrodynamics and the value of α, the charge on the electron, is discussed. 7 figures

  19. Effects of core perturbations on the structure of the sun

    International Nuclear Information System (INIS)

    Sweigart, A.V.

    1983-01-01

    A number of numerical experiments have been carried out in order to investigate the sensivity of the solar luminosity and radius to perturbations within the radiative core. In these experiments the core was perturbed by suddenly mixing various parts of the composition profile during evolutionary sequences for the present Sun. The hydrostatic readjustment caused by these ''mixing events'' induced an immediate change in the surface luminosity and radius on both the hydrodynamic time scale (approx.15 minutes) and the thermal time scale of the superadiabatic layers (approx.1 day). The subsequent evolution of the luminosity and radius perturbations was followed for 5 x 10 5 yr after each mixing event. The time-dependent behavior of these perturbations was found to depend on where the mixing event occurred. In all cases, however, the ratio W(t) = Δ log R/Δ log L had an initial value of 0.71 and showed only a mild time dependence during the first several thousand years. Two other relationships between the luminosity and radius perturbations are also discussed. One of these, V(t) = (d log R/dd)/(d log L/dt), has a fairly constant value of 0.3 +- 0.1. Both perturbations in the mixing-length ratio α and perturbations in the magnetic pressure within the solar convective envelope yield the same value for V/(t). During the normal unperturbed evolution of the present Sun, V(t) = 0.4. Our results show that core perturbations such as the present mixing events cannot explain the decrease in the solar radius indicated by the solar eclipse data between 1925 and 1980

  20. Perturbations of the Friedmann universe

    International Nuclear Information System (INIS)

    Novello, M.; Salim, J.M.; Heintzmann, H.

    1982-01-01

    Correcting and extending previous work by Hawking (1966) and Olson (1976) the complete set of perturbation equations of a Friedmann Universe in the quasi-Maxwellian form is derived and analized. The formalism is then applied to scalar, vector and tensor perturbations of a phenomenological fluid, which is modelled such as to comprise shear and heat flux. Depending on the equation of state of the background it is found that there exist unstable (growing) modes of purely rotational character. It is further found that (to linear order at least) any vortex perturbation is equivalent to a certain heat flux vector. The equation for the gravitational waves are derived in a completely equivalent method as in case of the propagation, in a curved space-time, of electromagnetic waves in a plasma endowed with some definite constitutive relations. (Author) [pt

  1. Analytic continuation in perturbative QCD

    International Nuclear Information System (INIS)

    Caprini, Irinel

    2002-01-01

    We discuss some attempts to improve standard perturbative expansion in QCD by using the analytic continuation in the momentum and the Borel complex planes. We first analyse the momentum-plane analyticity properties of the Borel-summed Green functions in perturbative QCD and the connection between the Landau singularities and the infrared renormalons. By using the analytic continuation in the Borel complex plane, we propose a new perturbative series replacing the standard expansion in powers of the normalized coupling constant a. The new expansion functions have branch point and essential singularities at the origin of the complex a-plane and divergent Taylor expansions in powers of a. On the other hand the modified expansion of the QCD correlators is convergent under rather conservative conditions. (author)

  2. Perturbative coherence in field theory

    International Nuclear Information System (INIS)

    Aldrovandi, R.; Kraenkel, R.A.

    1987-01-01

    A general condition for coherent quantization by perturbative methods is given, because the basic field equations of a fild theory are not always derivable from a Lagrangian. It's seen that non-lagrangian models way have well defined vertices, provided they satisfy what they call the 'coherence condition', which is less stringent than the condition for the existence of a Lagrangian. They note that Lagrangian theories are perturbatively coherent, in the sense that they have well defined vertices, and that they satisfy automatically that condition. (G.D.F.) [pt

  3. Improved intake design for downstream migrating fish at hydropower plants

    International Nuclear Information System (INIS)

    Mih, W.C.

    1991-01-01

    This paper reports on hydroelectric power projects on the Columbia River which provided low-cost electricity to the Pacific Northwest. However, they are detrimental to anadromous fisheries resources. Anadromous fish are migratory. They begin their life in shallow mountain streams. After several months, they migrate to the ocean, where the fish grow to maturity before their return migration. Remarkably, most anadromous fish return to spawn in their natal streams. At dams, the upstream migration of grown salmon and steelhead is accomplished through fishways. The downstream migration of juveniles remains a serious problem. Juvenile fish follow the water flow during their sea-ward migration. When passing through a turbine, fish can be severely injured due to the sudden pressure drop, high velocity shear zones, and rotating turbine blades. Stunned fish that survive the gauntlet of the turbine are easy prey for sea gulls and squawfish in the tailrace of the powerhouse. Fish mortality per turbine passage is estimated at 15 percent. With nine hydropower projected on the main steam of the Columbia River, their combined mortality is very serious. The historical Columbia River anadromous run of about 12 million fish has declined to 2.5 million in recent years. Modern high-output hydraulic turbines are designed to be placed at a lower elevation to minimize cavitation damage to turbine blades. The modern design trend of deep intake submergence has caused parallel and unsteady vortex flow patterns in the forebay, resulting in a decrease in the guiding efficiency of the screens, such as at Bonneville Second Powerhouse and at Rocky Reach Project

  4. Cosmological perturbation theory and quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Brunetti, Romeo [Dipartimento di Matematica, Università di Trento,Via Sommarive 14, 38123 Povo TN (Italy); Fredenhagen, Klaus [II Institute für Theoretische Physik, Universität Hamburg,Luruper Chaussee 149, 22761 Hamburg (Germany); Hack, Thomas-Paul [Institute für Theoretische Physik, Universität Leipzig,Brüderstr. 16, 04103 Leipzig (Germany); Pinamonti, Nicola [Dipartimento di Matematica, Università di Genova,Via Dodecaneso 35, 16146 Genova (Italy); INFN, Sezione di Genova,Via Dodecaneso 33, 16146 Genova (Italy); Rejzner, Katarzyna [Department of Mathematics, University of York,Heslington, York YO10 5DD (United Kingdom)

    2016-08-04

    It is shown how cosmological perturbation theory arises from a fully quantized perturbative theory of quantum gravity. Central for the derivation is a non-perturbative concept of gauge-invariant local observables by means of which perturbative invariant expressions of arbitrary order are generated. In particular, in the linearised theory, first order gauge-invariant observables familiar from cosmological perturbation theory are recovered. Explicit expressions of second order quantities are presented as well.

  5. Chaotic inflation with metric and matter perturbations

    International Nuclear Information System (INIS)

    Feldman, H.A.; Brandenberger, R.H.

    1989-01-01

    A perturbative scheme to analyze the evolution of both metric and scalar field perturbations in an expanding universe is developed. The scheme is applied to study chaotic inflation with initial metric and scalar field perturbations present. It is shown that initial gravitational perturbations with wavelength smaller than the Hubble radius rapidly decay. The metric simultaneously picks up small perturbations determined by the matter inhomogeneities. Both are frozen in once the wavelength exceeds the Hubble radius. (orig.)

  6. Running vacuum cosmological models: linear scalar perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Perico, E.L.D. [Instituto de Física, Universidade de São Paulo, Rua do Matão 1371, CEP 05508-090, São Paulo, SP (Brazil); Tamayo, D.A., E-mail: elduartep@usp.br, E-mail: tamayo@if.usp.br [Departamento de Astronomia, Universidade de São Paulo, Rua do Matão 1226, CEP 05508-900, São Paulo, SP (Brazil)

    2017-08-01

    In cosmology, phenomenologically motivated expressions for running vacuum are commonly parameterized as linear functions typically denoted by Λ( H {sup 2}) or Λ( R ). Such models assume an equation of state for the vacuum given by P-bar {sub Λ} = - ρ-bar {sub Λ}, relating its background pressure P-bar {sub Λ} with its mean energy density ρ-bar {sub Λ} ≡ Λ/8π G . This equation of state suggests that the vacuum dynamics is due to an interaction with the matter content of the universe. Most of the approaches studying the observational impact of these models only consider the interaction between the vacuum and the transient dominant matter component of the universe. We extend such models by assuming that the running vacuum is the sum of independent contributions, namely ρ-bar {sub Λ} = Σ {sub i} ρ-bar {sub Λ} {sub i} . Each Λ i vacuum component is associated and interacting with one of the i matter components in both the background and perturbation levels. We derive the evolution equations for the linear scalar vacuum and matter perturbations in those two scenarios, and identify the running vacuum imprints on the cosmic microwave background anisotropies as well as on the matter power spectrum. In the Λ( H {sup 2}) scenario the vacuum is coupled with every matter component, whereas the Λ( R ) description only leads to a coupling between vacuum and non-relativistic matter, producing different effects on the matter power spectrum.

  7. Thermal gluons beyond pure perturbation theory

    International Nuclear Information System (INIS)

    Reinbach, J.

    2000-01-01

    The perturbative treatment of non-abelian gauge theory at high temperature leads to a threshold in calculation because of chromomagnetic effects. Infinitely many terms of the same order of magnitude arise. The numerical series to be summed is contained in the part of the theory reduced on 3D, which was recently treated non-perturbative as 2+1D Yang-Mills theory at T=0 by Karabali, Kim and Nair. In the thesis in question the exact 3D results are combined with the thermal 4D diagrammatic. In particular the splitting of the space-part of the transverse self-energy in the static limit is treated. As expected, the 3D subsystem can separate as regularized 3D Yang-Mills theory from the 4D structure. In 1-loop order the regulators are received explicit. For 2-loop order it can be shown amongst other things, that the generic contribution with hard inner momenta vanishes. It is examined, how the magnetic mass could follow. Under pressure it is possible to separate the 3D part in 1- and 2-loop order and to receive regulators [de

  8. Plasma Perturbations in High-Speed Probing of Hall Thruster Discharge Chambers: Quantification and Mitigation

    Science.gov (United States)

    Jorns, Benjamin A.; Goebel, Dan M.; Hofer, Richard R.

    2015-01-01

    An experimental investigation is presented to quantify the effect of high-speed probing on the plasma parameters inside the discharge chamber of a 6-kW Hall thruster. Understanding the nature of these perturbations is of significant interest given the importance of accurate plasma measurements for characterizing thruster operation. An array of diagnostics including a high-speed camera and embedded wall probes is employed to examine in real time the changes in electron temperature and plasma potential induced by inserting a high-speed reciprocating Langmuir probe into the discharge chamber. It is found that the perturbations onset when the scanning probe is downstream of the electron temperature peak, and that along channel centerline, the perturbations are best characterized as a downstream shift of plasma parameters by 15-20% the length of the discharge chamber. A parametric study is performed to investigate techniques to mitigate the observed probe perturbations including varying probe speed, probe location, and operating conditions. It is found that the perturbations largely disappear when the thruster is operated at low power and low discharge voltage. The results of this mitigation study are discussed in the context of recommended methods for generating unperturbed measurements of the discharge chamber plasma.

  9. Water Stress in Global Transboundary River Basins: Significance of Upstream Water Use on Downstream Stress

    Science.gov (United States)

    Munia, H.; Guillaume, J. H. A.; Mirumachi, N.; Porkka,M.; Wada, Yoshihide; Kummu, M.

    2016-01-01

    Growing population and water demand have increased pressure on water resources in various parts of the globe, including many transboundary river basins. While the impacts of upstream water use on downstream water availability have been analyzed in many of these international river basins, this has not been systematically done at the global scale using coherent and comparable datasets. In this study, we aim to assess the change in downstream water stress due to upstream water use in the world's transboundary river basins. Water stress was first calculated considering only local water use of each sub-basin based on country-basin mesh, then compared with the situation when upstream water use was subtracted from downstream water availability. Wefound that water stress was generally already high when considering only local water use, affecting 0.95-1.44 billion people or 33%-51% of the population in transboundary river basins. After accounting for upstream water use, stress level increased by at least 1 percentage-point for 30-65 sub-basins, affecting 0.29-1.13 billion people. Altogether 288 out of 298 middle-stream and downstream sub-basin areas experienced some change in stress level. Further, we assessed whether there is a link between increased water stress due to upstream water use and the number of conflictive and cooperative events in the transboundary river basins, as captured by two prominent databases. No direct relationship was found. This supports the argument that conflicts and cooperation events originate from a combination of different drivers, among which upstream-induced water stress may play a role. Our findings contribute to better understanding of upstream-downstream dynamics in water stress to help address water allocation problems.

  10. A novel cell autolysis system for cost-competitive downstream processing.

    Science.gov (United States)

    Hajnal, Ivan; Chen, Xiangbin; Chen, Guo-Qiang

    2016-11-01

    The industrial production of low value-added biological products poses significant challenges due to cost pressures. In recent years, it has been argued that synthetic biology approaches will lead to breakthroughs that eliminate price bottlenecks for the production of a wide range of biological products including bioplastics and biofuels. One significant bottleneck lies in the necessity to break the tough cell walls of microbes in order to release intracellular products. We here report the implementation of the first synthetic biology standard part based on the lambda phage SRRz genes and a synthetic ribosome binding site (RBS) that works in Escherichia coli and Halomonas campaniensis, which enables the producer strains to induce lysis after the addition of small amounts (1-5 %) of solvents or to spontaneously lyse during the stresses of downstream processing, and thus has the potential to eliminate the mechanical cell disruption step as both an efficiency bottleneck and a significant capex barrier when implementing downstream bioprocesses.

  11. Basics of QCD perturbation theory

    International Nuclear Information System (INIS)

    Soper, D.E.

    1997-01-01

    This is an introduction to the use of QCD perturbation theory, emphasizing generic features of the theory that enable one to separate short-time and long-time effects. The author also covers some important classes of applications: electron-positron annihilation to hadrons, deeply inelastic scattering, and hard processes in hadron-hadron collisions. 31 refs., 38 figs

  12. Current issues in perturbative QCD

    International Nuclear Information System (INIS)

    Hinchliffe, I.

    1994-12-01

    This review talk discusses some issues of active research in perturbative QCD. The following topics are discussed: (1) current value of αs; (2) heavy quark production in hadron collisions; (3) production of Ψ and Υ in p anti p collisions; (4) prompt photon production; (5) small-x and related phenomena; and (6) particle multiplicity in heavy quark jets

  13. New results in perturbative QCD

    International Nuclear Information System (INIS)

    Ellis, R.K.

    1986-01-01

    Three topics in perturbative QCD important for Super-collider physics are reviewed. The topics are: 1. (2 → 2) jet phenomena calculated in O(αs 3 ). 2. New techniques for the calculation of tree graphs. 3. Color coherence in jet phenomena. 31 references, 6 figures

  14. Perturbation theory from stochastic quantization

    International Nuclear Information System (INIS)

    Hueffel, H.

    1984-01-01

    By using a diagrammatical method it is shown that in scalar theories the stochastic quantization method of Parisi and Wu gives the usual perturbation series in Feynman diagrams. It is further explained how to apply the diagrammatical method to gauge theories, discussing the origin of ghost effects. (Author)

  15. Seven topics in perturbative QCD

    International Nuclear Information System (INIS)

    Buras, A.J.

    1980-09-01

    The following topics of perturbative QCD are discussed: (1) deep inelastic scattering; (2) higher order corrections to e + e - annihilation, to photon structure functions and to quarkonia decays; (3) higher order corrections to fragmentation functions and to various semi-inclusive processes; (4) higher twist contributions; (5) exclusive processes; (6) transverse momentum effects; (7) jet and photon physics

  16. Reggeon interactions in perturbative QCD

    International Nuclear Information System (INIS)

    Kirschner, R.

    1994-08-01

    We study the pairwise interaction of reggeized gluons and quarks in the Regge limit of perturbative QCD. The interactions are represented as integral kernels in the transverse momentum space and as operators in the impact parameter space. We observe conformal symmetry and holomorphic factorization in all cases. (orig.)

  17. Basics of QCD perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Soper, D.E. [Univ. of Oregon, Eugene, OR (United States). Inst. of Theoretical Science

    1997-06-01

    This is an introduction to the use of QCD perturbation theory, emphasizing generic features of the theory that enable one to separate short-time and long-time effects. The author also covers some important classes of applications: electron-positron annihilation to hadrons, deeply inelastic scattering, and hard processes in hadron-hadron collisions. 31 refs., 38 figs.

  18. Status of chiral perturbation theory

    International Nuclear Information System (INIS)

    Ecker, G.

    1996-10-01

    A survey is made of semileptonic and nonleptonic kaon decays in the framework of chiral perturbation theory. The emphasis is on what has been done rather than how it was done. The theoretical predictions are compared with available experimental results. (author)

  19. Principles of chiral perturbation theory

    International Nuclear Information System (INIS)

    Leutwyler, H.

    1995-01-01

    An elementary discussion of the main concepts used in chiral perturbation theory is given in textbooks and a more detailed picture of the applications may be obtained from the reviews. Concerning the foundations of the method, the literature is comparatively scarce. So, I will concentrate on the basic concepts and explain why the method works. (author)

  20. Superfield perturbation theory and renormalization

    International Nuclear Information System (INIS)

    Delbourgo, R.

    1975-01-01

    The perturbation theory graphs and divergences in super-symmetric Lagrangian models are studied by using superfield techniques. In super PHI 3 -theory very little effort is needed to arrive at the single infinite (wave function) renormalization counterterm, while in PHI 4 -theory the method indicates the counter-Lagrangians needed at the one-loop level and possibly beyond

  1. Chiral symmetry in perturbative QCD

    International Nuclear Information System (INIS)

    Trueman, T.L.

    1979-04-01

    The chiral symmetry of quantum chromodynamics with massless quarks is unbroken in perturbation theory. Dimensional regularization is used. The ratio of the vector and axial vector renormalization constante is shown to be independent of the renormalization mass. The general results are explicitly verified to fourth order in g, the QCD coupling constant

  2. Perturbative QCD and exclusive processes

    International Nuclear Information System (INIS)

    Bennett, J.; Hawes, F.; Zhao, M.; Zyla, P.

    1991-01-01

    The authors discuss perturbation theory as applied to particle physics calculations. In particle physics one is generally interested in the scattering amplitude for a system going from some initial state to a final state. The intermediate state or states are unknown. To get the scattering amplitude it is necessary to sum the contributions from processes which pass through all possible intermediate states. Intermediate states involve the exchange of intermediate vector bosons between the particles, and with this interaction is associated a coupling constant α. Each additional boson exchange involves an additional contribution of α to the coupling. If α is less than 1, one can see that the relative contribution of higher order processes is less and less important as α falls. In QCD the gluons serve as the intermediate vector bosons exchanged by quarks and gluons, and the interaction constant is not really a constant, but depends upon the distance between the particles. At short distances the coupling is small, and one can assume perturbative expansions may converge rapidly. Exclusive scattering processes, as opposed to inclusive, are those in which all of the final state products are detected. The authors then discuss the application of perturbative QCD to the deuteron. The issues of chiral conservation and color transparancy are also discussed, in the scheme of large Q 2 interations, where perturbative QCD should be applicable

  3. Perturbative treatment of nuclear rotations

    International Nuclear Information System (INIS)

    Civitarese, O.

    1980-01-01

    In this work, it is described the case corresponding to perturbative quantum treatment of a fermion system in free rotation and the divergences which resulted from the 'break' in symmetry, associated by the adoption of a deformed basis as a non pertubed solution. (A.C.A.S.) [pt

  4. Wave and particle evolution downstream of quasi-perpendicular shocks

    Science.gov (United States)

    Mckean, M. E.; Omidi, N.; Krauss-Varban, D.; Karimabadi, H.

    1995-01-01

    Distributions of ions heated in quasi-perpendicular bow shocks have large perpendicular temperature anisotropies that provide free energy for the growth of Alfven ion cyclotron (AIC) and mirror waves. These modes are often obsreved in the Earth's magnetosheath. Using two-dimensional hybrid simulations, we show that these waves are produced near the shock front and convected downstream rather than being produced locally downstream. The wave activity reduces the proton anisotropy to magnetosheath levels within a few tens of gyroradii of the shock but takes significantly longer to reduce the anisotropy of He(++) ions. The waves are primarily driven by proton anisotropy and the dynamics of the helium ions is controlled by the proton waves. Downstream of high Mach number shocks, mirror waves compete effectively with AIC waves. Downstream of low Mach number shocks, AIC waves dominate.

  5. Downstream-based Scheduling for Energy Conservation in Green EPONs

    KAUST Repository

    Chen, Shen

    2012-05-01

    Maximizing the optical network unit’s (ONU) sleep time is an effective approach for achieving maximum energy conservation in green Ethernet passive optical networks (EPONs). While overlapping downstream and upstream ONU transmissions can maximize the ONU sleep time, it jeopardizes the quality of service (QoS) performance of the network, especially for downstream traffic in case the overlapping is based on the upstream time slot. In this paper, we study the downstream traffic performance in green EPONs under the limited service discipline and the upstream-based overlapped time window. Specifically, we first derive the expected mean packet delay, and then present a closed-form expression of the ONU sleep time, setting identical upstream/downstream transmission cycle times based on a maximum downstream traffic delay re-quirement. With the proposed system model, we present a novel downstream bandwidth allocation scheme for energy conservation in green EPONs. Simulation results verify the proposed model and highlight the advantages of our scheme over conventional approaches.

  6. Control of Delta Avulsion by Downstream Sediment Sinks

    Science.gov (United States)

    Salter, Gerard; Paola, Chris; Voller, Vaughan R.

    2018-01-01

    Understanding how fluxes are partitioned at delta bifurcations is critical for predicting patterns of land loss and gain in deltas worldwide. Although the dynamics of river deltas are influenced from both upstream and downstream, previous studies of bifurcations have focused on upstream controls. Using a quasi-1-D bifurcation model, we show that flow switching in bifurcations is strongly influenced by downstream sediment sinks. We find that coupling between upstream and downstream feedbacks can lead to oscillations in water and sediment flux partitioning. The frequency and initial rate of growth/decay of the oscillations depend on both upstream and downstream conditions, with dimensionless bifurcate length and bypass fraction emerging as key downstream parameters. With a strong offshore sink, causing bypass in the bifurcate branches, we find that bifurcation dynamics become "frozen"; that is, the bifurcation settles on a permanent discharge ratio. In contrast, under depositional conditions, we identify three dynamical regimes: symmetric; soft avulsion, where both branches remain open but the dominant branch switches; and full avulsion. Finally, we show that differential subsidence alters these regimes, with the difference in average sediment supply to each branch exactly compensating for the difference in accommodation generation. Additionally, the model predicts that bifurcations with shorter branches are less asymmetric than bifurcations with longer branches, all else equal, providing a possible explanation for the difference between backwater length distributaries, which tend to be avulsive, and relatively stable mouth-bar-scale networks. We conclude that bifurcations are sensitive both quantitatively and qualitatively to downstream sinks.

  7. Effect of Dark Energy Perturbation on Cosmic Voids Formation

    Science.gov (United States)

    Endo, Takao; Nishizawa, Atsushi J.; Ichiki, Kiyotomo

    2018-05-01

    In this paper, we present the effects of dark energy perturbation on the formation and abundance of cosmic voids. We consider dark energy to be a fluid with a negative pressure characterised by a constant equation of state w and speed of sound c_s^2. By solving fluid equations for two components, namely, dark matter and dark energy fluids, we quantify the effects of dark energy perturbation on the sizes of top-hat voids. We also explore the effects on the size distribution of voids based on the excursion set theory. We confirm that dark energy perturbation negligibly affects the size evolution of voids; c_s^2=0 varies the size only by 0.1% as compared to the homogeneous dark energy model. We also confirm that dark energy perturbation suppresses the void size when w -1 (Basse et al. 2011). In contrast to the negligible impact on the size, we find that the size distribution function on scales larger than 10 Mpc/h highly depends on dark energy perturbation; compared to the homogeneous dark energy model, the number of large voids of radius 30Mpc is 25% larger for the model with w = -0.9 and c_s^2=0 while they are 20% less abundant for the model with w = -1.3 and c_s^2=0.

  8. Hemodynamic Perturbations in Deep Brain Stimulation Surgery: First Detailed Description

    Directory of Open Access Journals (Sweden)

    Tumul Chowdhury

    2017-08-01

    Full Text Available Background: Hemodynamic perturbations can be anticipated in deep brain stimulation (DBS surgery and may be attributed to multiple factors. Acute changes in hemodynamics may produce rare but severe complications such as intracranial bleeding, transient ischemic stroke and myocardium infarction. Therefore, this retrospective study attempts to determine the incidence of hemodynamic perturbances (rate and related risk factors in patients undergoing DBS surgery.Materials and Methods: After institutional approval, all patients undergoing DBS surgery for the past 10 years were recruited for this study. Demographic characteristics, procedural characteristics and intraoperative hemodynamic changes were noted. Event rate was calculated and the effect of all the variables on hemodynamic perturbations was analyzed by regression model.Results: Total hemodynamic adverse events during DBS surgery was 10.8 (0–42 and treated in 57% of cases.Conclusion: Among all the perioperative variables, the baseline blood pressure including systolic, diastolic, and mean arterial pressure was found to have highly significant effect on these intraoperative hemodynamic perturbations.

  9. Investigation of wall mass transfer characteristics downstream of an orifice

    International Nuclear Information System (INIS)

    El-Gammal, M.; Ahmed, W.H.; Ching, C.Y.

    2012-01-01

    Highlights: ► Numerical simulations were performed for the mass transfer downstream of an orifice. ► The Low Reynolds Number K-ε turbulence model was used. ► The numerical results were in good agreement with existing experimental results. ► The maximum Sherwood number downstream of the orifice was significantly affected by the Reynolds number. ► The Sherwood number profile was well correlated with the turbulence kinetic energy profile close to the wall. - Abstract: Numerical simulations were performed to determine the effect of Reynolds number and orifice to pipe diameter ratio (d o /d) on the wall mass transfer rate downstream of an orifice. The simulations were performed for d o /d of 0.475 for Reynolds number up to 70,000. The effect of d o /d was determined by performing simulations at a Reynolds number of 70,000 for d o /d of 0.375, 0.475 and 0.575. The momentum and mass transport equations were solved using the Low Reynolds Number (LRN) K-ε turbulence model. The Sherwood number (Sh) profile downstream of the orifice was in relatively good agreement with existing experimental results. The Sh increases sharply downstream of the orifice, reaching a maximum within 1–2 diameters downstream of the orifice, before relaxing back to the fully developed pipe flow value. The Sh number well downstream of the orifice was in good agreement with results for fully developed pipe flow estimated from the correlation of . The peak Sh numbers from the simulations were higher than that predicted from and .

  10. Perturbations in electromagnetic dark energy

    International Nuclear Information System (INIS)

    Jiménez, Jose Beltrán; Maroto, Antonio L.; Koivisto, Tomi S.; Mota, David F.

    2009-01-01

    It has been recently proposed that the presence of a temporal electromagnetic field on cosmological scales could explain the phase of accelerated expansion that the universe is currently undergoing. The field contributes as a cosmological constant and therefore, the homogeneous cosmology produced by such a model is exactly the same as that of ΛCDM. However, unlike a cosmological constant term, electromagnetic fields can acquire perturbations which in principle could affect CMB anisotropies and structure formation. In this work, we study the evolution of inhomogeneous scalar perturbations in this model. We show that provided the initial electromagnetic fluctuations generated during inflation are small, the model is perfectly compatible with both CMB and large scale structure observations at the same level of accuracy as ΛCDM

  11. Perturbative instabilities in Horava gravity

    International Nuclear Information System (INIS)

    Bogdanos, Charalampos; Saridakis, Emmanuel N

    2010-01-01

    We investigate the scalar and tensor perturbations in Horava gravity, with and without detailed balance, around a flat background. Once both types of perturbations are taken into account, it is revealed that the theory is plagued by ghost-like scalar instabilities in the range of parameters which would render it power-counting renormalizable, that cannot be overcome by simple tricks such as analytic continuation. Implementing a consistent flow between the UV and IR limits seems thus more challenging than initially presumed, regardless of whether the theory approaches general relativity at low energies or not. Even in the phenomenologically viable parameter space, the tensor sector leads to additional potential problems, such as fine-tunings and super-luminal propagation.

  12. The status of perturbative QCD

    International Nuclear Information System (INIS)

    Ellis, R.K.

    1988-10-01

    The advances in perturbative QCD are reviewed. The status of determinations of the coupling constant α/sub S/ and the parton distribution functions is presented. New theoretical results on the spin dependent structure functions of the proton are also reviewed. The theoretical description of the production of vector bosons, jets and heavy quarks is outlined with special emphasis on new results. Expected rates for top quark production at hadronic colliders are presented. 111 refs., 8 figs

  13. Scalar perturbations and conformal transformation

    International Nuclear Information System (INIS)

    Fabris, J.C.; Tossa, J.

    1995-11-01

    The non-minimal coupling of gravity to a scalar field can be transformed into a minimal coupling through a conformal transformation. We show how to connect the results of a perturbation calculation, performed around a Friedman-Robertson-Walker background solution, before and after the conformal transformation. We work in the synchronous gauge, but we discuss the implications of employing other frames. (author). 16 refs

  14. Perturbative QCD at finite temperature

    International Nuclear Information System (INIS)

    Altherr, T.

    1989-03-01

    We discuss an application of finite temperature QCD to lepton-pair production in a quark-gluon plasma. The perturbative calculation is performed within the realtime formalism. After cancellation of infrared and mass singularities, the corrections at O (α s ) are found to be very small in the region where the mass of the Drell-Yan pair is much larger than the temperature of the plasma. Interesting effects, however, appear at the annihilation threshold of the thermalized quarks

  15. Gauge-invariant cosmological density perturbations

    International Nuclear Information System (INIS)

    Sasaki, Misao.

    1986-06-01

    Gauge-invariant formulation of cosmological density perturbation theory is reviewed with special emphasis on its geometrical aspects. Then the gauge-invariant measure of the magnitude of a given perturbation is presented. (author)

  16. Perturbation of an exact strong gravity solution

    International Nuclear Information System (INIS)

    Baran, S.A.

    1982-10-01

    Perturbations of an exact strong gravity solution are investigated. It is shown, by using the new multipole expansions previously presented, that this exact and static spherically symmetric solution is stable under odd parity perturbations. (author)

  17. Mortality of zebra mussel, Dreissena polymorpha, veligers during downstream transport

    Science.gov (United States)

    Horvath, T.G.; Lamberti, G.A.

    1999-01-01

    1. Streams flowing from lakes which contain zebra mussels, Dreissena polymorpha, provide apparently suitable habitats for mussel colonization and downstream range expansion, yet most such streams contain few adult mussels. We postulated that mussel veligers experience high mortality during dispersal via downstream transport. They tested this hypothesis in Christiana Creek, a lake-outlet stream in south-western Michigan, U.S.A., in which adult mussel density declined exponentially with distance downstream. 2. A staining technique using neutral red was developed and tested to distinguish quickly live and dead veligers. Live and dead veligers were distinguishable after an exposure of fresh samples to 13.3 mg L-1 of neutral red for 3 h. 3. Neutral red was used to determine the proportion of live veligers in samples taken longitudinally along Christiana Creek. The proportion of live veligers (mean ?? SE) declined from 90 ?? 3% at the lake outlet to 40 ?? 8% 18 km downstream. 4. Veligers appear to be highly susceptible to damage by physical forces (e.g. shear), and therefore, mortality in turbulent streams could be an important mechanism limiting zebra mussel dispersal to downstream reaches. Predictions of zebra mussel spread and population growth should consider lake-stream linkages and high mortality in running waters.

  18. Downstream Yangtze River levels impacted by Three Gorges Dam

    International Nuclear Information System (INIS)

    Wang, Jida; Sheng, Yongwei; Gleason, Colin J; Wada, Yoshihide

    2013-01-01

    Changes in the Yangtze River level induced by large-scale human water regulation have profound implications on the inundation dynamics of surrounding lakes/wetlands and the integrity of related ecosystems. Using in situ measurements and hydrological simulation, this study reveals an altered Yangtze level regime downstream from the Three Gorges Dam (TGD) to the Yangtze estuary in the East China Sea as a combined result of (i) TGD’s flow regulation and (ii) Yangtze channel erosion due to reduced sediment load. During the average annual cycle of TGD’s regular flow control in 2009–2012, downstream Yangtze level variations were estimated to have been reduced by 3.9–13.5% at 15 studied gauging stations, manifested as evident level decrease in fall and increase in winter and spring. The impacts on Yangtze levels generally diminished in a longitudinal direction from the TGD to the estuary, with a total time lag of ∼9–12 days. Chronic Yangtze channel erosion since the TGD closure has lowered water levels in relation to flows at most downstream stations, which in turn counteracts the anticipated level increase by nearly or over 50% in winter and spring while reinforcing the anticipated level decrease by over 20% in fall. Continuous downstream channel erosion in the near future may further counteract the benefit of increased Yangtze levels during TGD’s water supplement in winter and accelerate the receding of inundation areas/levels of downstream lakes in fall. (letter)

  19. Particle collection by a pilot plant venturi scrubber downstream from a pilot plant electrostatic precipitator

    Science.gov (United States)

    Sparks, L. E.; Ramsey, G. H.; Daniel, B. E.

    The results of pilot plant experiments of particulate collection by a venturi scrubber downstream from an electrostatic precipitator (ESP) are presented. The data, which cover a range of scrubber operating conditions and ESP efficiencies, show that particle collection by the venturi scrubber is not affected by the upstream ESP; i.e., for a given scrubber pressure drop, particle collection efficiency as a function of particle diameter is the same for both ESP on and ESP off. The experimental results are in excellent agreement with theoretical predictions. Order of magnitude cost estimates indicate that particle collection by ESP scrubber systems may be economically attractive when scrubbers must be used for SO x control.

  20. Non-perturbative plaquette in 3d pure SU(3)

    CERN Document Server

    Hietanen, A; Laine, Mikko; Rummukainen, K; Schröder, Y

    2005-01-01

    We present a determination of the elementary plaquette and, after the subsequent ultraviolet subtractions, of the finite part of the gluon condensate, in lattice regularization in three-dimensional pure SU(3) gauge theory. Through a change of regularization scheme to MSbar and a matching back to full four-dimensional QCD, this result determines the first non-perturbative contribution in the weak-coupling expansion of hot QCD pressure.

  1. Geometric Hamiltonian structures and perturbation theory

    International Nuclear Information System (INIS)

    Omohundro, S.

    1984-08-01

    We have been engaged in a program of investigating the Hamiltonian structure of the various perturbation theories used in practice. We describe the geometry of a Hamiltonian structure for non-singular perturbation theory applied to Hamiltonian systems on symplectic manifolds and the connection with singular perturbation techniques based on the method of averaging

  2. Multiplicative perturbations of local C-semigroups

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... In this paper, we establish some left and right multiplicative perturbation theorems concerning local -semigroups when the generator of a perturbed local -semigroup S(⋅) may not be densely defined and the perturbation operator is a bounded linear operator from ¯D(A) into () such that = ...

  3. Multiplicative perturbations of local C-semigroups

    Indian Academy of Sciences (India)

    In this paper, we establish some left and right multiplicative perturbation theorems concerning local -semigroups when the generator of a perturbed local -semigroup S ( ⋅ ) may not be densely defined and the perturbation operator is a bounded linear operator from D ( A ) ¯ into () such that = on D ( A ) ¯ ...

  4. FRW Cosmological Perturbations in Massive Bigravity

    CERN Document Server

    Comelli, D; Pilo, L

    2014-01-01

    Cosmological perturbations of FRW solutions in ghost free massive bigravity, including also a second matter sector, are studied in detail. At early time, we find that sub horizon exponential instabilities are unavoidable and they lead to a premature departure from the perturbative regime of cosmological perturbations.

  5. Critical effects of downstream boundary conditions on vortex breakdown

    Science.gov (United States)

    Kandil, Osama; Kandil, Hamdy A.; Liu, C. H.

    1992-01-01

    The unsteady, compressible, full Navier-Stokes (NS) equations are used to study the critical effects of the downstream boundary conditions on the supersonic vortex breakdown. The present study is applied to two supersonic vortex breakdown cases. In the first case, quasi-axisymmetric supersonic swirling flow is considered in a configured circular duct, and in the second case, quasi-axisymmetric supersonic swirling jet, that is issued from a nozzle into a supersonic jet of lower Mach number, is considered. For the configured duct flow, four different types of downstream boundary conditions are used, and for the swirling jet flow from the nozzle, two types of downstream boundary conditions are used. The solutions are time accurate which are obtained using an implicit, upwind, flux-difference splitting, finite-volume scheme.

  6. Comparison of pitot traverses taken at varying distances downstream of obstructions.

    Science.gov (United States)

    Guffey, S E; Booth, D W

    1999-01-01

    This study determined the deviations between pitot traverses taken under "ideal" conditions--at least seven duct diameter's lengths (i.e., distance = 7D) from obstructions, elbows, junction fittings, and other disturbances to flows--with those taken downstream from commonplace disturbances. Two perpendicular 10-point, log-linear velocity pressure traverses were taken at various distances downstream of tested upstream conditions. Upstream conditions included a plain duct opening, a junction fitting, a single 90 degrees elbow, and two elbows rotated 90 degrees from each other into two orthogonal planes. Airflows determined from those values were compared with the values measured more than 40D downstream of the same obstructions under ideal conditions. The ideal measurements were taken on three traverse diameters in the same plane separated by 120 degrees in honed drawn-over-mandrel tubing. In all cases the pitot tubes were held in place by devices that effectively eliminated alignment errors and insertion depth errors. Duct velocities ranged from 1500 to 4500 ft/min. Results were surprisingly good if one employed two perpendicular traverses. When the averages of two perpendicular traverses was taken, deviations from ideal value were 6% or less even for traverses taken as close as 2D distance from the upstream disturbances. At 3D distance, deviations seldom exceeded 5%. With single diameter traverses, errors seldom exceeded 5% at 6D or more downstream from the disturbance. Interestingly, percentage deviations were about the same at high and low velocities. This study demonstrated that two perpendicular pitot traverses can be taken as close as 3D from these disturbances with acceptable (< or = 5%) deviations from measurements taken under ideal conditions.

  7. Downstream Processability of Crystal Habit-Modified Active Pharmaceutical Ingredient

    DEFF Research Database (Denmark)

    Pudasaini, Nawin; Upadhyay, Pratik Pankaj; Parker, Christian Richard

    2017-01-01

    Efficient downstream processing of active pharmaceutical ingredients (APIs) can depend strongly on their particulate properties, such as size and shape distributions. Especially in drug products with high API content, needle-like crystal habit of an API may show compromised flowability and tablet......Efficient downstream processing of active pharmaceutical ingredients (APIs) can depend strongly on their particulate properties, such as size and shape distributions. Especially in drug products with high API content, needle-like crystal habit of an API may show compromised flowability...

  8. Hadronic Structure from Perturbative Dressing

    Energy Technology Data Exchange (ETDEWEB)

    Arash, Firooz [Physics Department, Tafresh University, Tafresh, Iran and Center for theoretical physics and Mathematics, AEOI, P.O. Box 11365-8486, Tehran (Iran, Islamic Republic of)]. E-mail: farash@cic.aut.ac.ir

    2005-09-15

    Perturbative dressing of a valence quark in QCD produces the internal structure of an extended object, the so-called Valon. The valon structure is universal and independent of the hosting hadron. Polarized and unpolarized proton and pion structure functions are calculated in the valon representation. One finds that although all the available data on g{sub 1}{sup p,n,d} are easily reproduced, a sizable orbital angular momentum associated with the partonic structure of the valon is required in order to have a spin 1/2 valon.

  9. Perturbations in loop quantum cosmology

    International Nuclear Information System (INIS)

    Nelson, W; Agullo, I; Ashtekar, A

    2014-01-01

    The era of precision cosmology has allowed us to accurately determine many important cosmological parameters, in particular via the CMB. Confronting Loop Quantum Cosmology with these observations provides us with a powerful test of the theory. For this to be possible, we need a detailed understanding of the generation and evolution of inhomogeneous perturbations during the early, quantum gravity phase of the universe. Here, we have described how Loop Quantum Cosmology provides a completion of the inflationary paradigm, that is consistent with the observed power spectra of the CMB

  10. Perturbation calculations with Wilson loop

    International Nuclear Information System (INIS)

    Peixoto Junior, L.B.

    1984-01-01

    We present perturbative calculations with the Wilson loop (WL). The dimensional regularization method is used with a special attention concerning to the problem of divergences in the WL expansion in second and fourth orders, in three and four dimensions. We show that the residue in the pole, in 4d, of the fourth order graphs contribution sum is important for the charge renormalization. We compute up to second order the exact expression of the WL, in three-dimensional gauge theories with topological mass as well as its assimptotic behaviour for small and large distances. the author [pt

  11. Mobile ankle and knee perturbator.

    Science.gov (United States)

    Andersen, Jacob Buus; Sinkjaer, Thomas

    2003-10-01

    A mobile ankle and knee perturbator has been developed. It consists of a functional joint with an integrated clutch. Four Bowden wires connect the joint to a powerful motor and a double pneumatic cylinder. When needed during any time of the gait cycle, it is possible to impose an ankle rotation by engaging the clutch and rotating the ankle or knee joint with a predefined displacement. The system is designed to investigate electrophysiological and biomechanical features of the human ankle or knee joint during gait.

  12. Imaging for monitoring downstream processing of fermentation broths

    DEFF Research Database (Denmark)

    Moiseyenko, Rayisa; Baum, Andreas; Jørgensen, Thomas Martini

    In relation to downstream processing of a fermentation broth coagulation/flocculation is a typical pretreatment method for separating undesirable particles/impurities from the wanted product. In the coagulation process the negatively charged impurities are destabilized by adding of a clarifying...

  13. DENSITY FLUCTUATIONS UPSTREAM AND DOWNSTREAM OF INTERPLANETARY SHOCKS

    Energy Technology Data Exchange (ETDEWEB)

    Pitňa, A.; Šafránková, J.; Němeček, Z.; Goncharov, O.; Němec, F.; Přech, L. [Charles University, Faculty of Mathematics and Physics, V Holešovičkách 2, 180 00 Prague 8 (Czech Republic); Chen, C. H. K. [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom); Zastenker, G. N., E-mail: jana.safrankova@mff.cuni.cz [Space Research Institute of Russian Academy of Sciences, Moscow, Russia, Profsoyuznaya ul. 84/32, Moscow 117997 (Russian Federation)

    2016-03-01

    Interplanetary (IP) shocks as typical large-scale disturbances arising from processes such as stream–stream interactions or Interplanetary Coronal Mass Ejection (ICME) launching play a significant role in the energy redistribution, dissipation, particle heating, acceleration, etc. They can change the properties of the turbulent cascade on shorter scales. We focus on changes of the level and spectral properties of ion flux fluctuations upstream and downstream of fast forward oblique shocks. Although the fluctuation level increases by an order of magnitude across the shock, the spectral slope in the magnetohydrodynamic range is conserved. The frequency spectra upstream of IP shocks are the same as those in the solar wind (if not spoiled by foreshock waves). The spectral slopes downstream are roughly proportional to the corresponding slopes upstream, suggesting that the properties of the turbulent cascade are conserved across the shock; thus, the shock does not destroy the shape of the spectrum as turbulence passes through it. Frequency spectra downstream of IP shocks often exhibit “an exponential decay” in the ion kinetic range that was earlier reported at electron scales in the solar wind or at ion scales in the interstellar medium. We suggest that the exponential shape of ion flux spectra in this range is caused by stronger damping of the fluctuations in the downstream region.

  14. Lateral and vertical distribution of downstream migrating juvenile sea lamprey

    Science.gov (United States)

    Sotola, V. Alex; Miehls, Scott M.; Simard, Lee G.; Marsden, J. Ellen

    2018-01-01

    Sea lamprey is considered an invasive and nuisance species in the Laurentian Great Lakes, Lake Champlain, and the Finger Lakes of New York and is a major focus of control efforts. Currently, management practices focus on limiting the area of infestation using barriers to block migratory adults, and lampricides to kill ammocoetes in infested tributaries. No control efforts currently target the downstream-migrating post-metamorphic life stage which could provide another management opportunity. In order to apply control methods to this life stage, a better understanding of their downstream movement patterns is needed. To quantify spatial distribution of downstream migrants, we deployed fyke and drift nets laterally and vertically across the stream channel in two tributaries of Lake Champlain. Sea lamprey was not randomly distributed across the stream width and lateral distribution showed a significant association with discharge. Results indicated that juvenile sea lamprey is most likely to be present in the thalweg and at midwater depths of the stream channel. Further, a majority of the catch occurred during high flow events, suggesting an increase in downstream movement activity when water levels are higher than base flow. Discharge and flow are strong predictors of the distribution of out-migrating sea lamprey, thus managers will need to either target capture efforts in high discharge areas of streams or develop means to guide sea lamprey away from these areas.

  15. Extreme wave phenomena in down-stream running modulated waves

    NARCIS (Netherlands)

    Andonowati, A.; Karjanto, N.; van Groesen, Embrecht W.C.

    Modulational, Benjamin-Feir, instability is studied for the down-stream evolution of surface gravity waves. An explicit solution, the soliton on finite background, of the NLS equation in physical space is used to study various phenomena in detail. It is shown that for sufficiently long modulation

  16. Downstream processing of Isochrysis galbana: a step towards microalgal biorefinery

    NARCIS (Netherlands)

    Gilbert-López, B.; Mendiola, J.A.; Fontecha, J.; Broek, van den L.A.M.; Sijtsma, L.; Cifuentes, A.; Herrero, M.; Ibáñez, E.

    2015-01-01

    An algae-based biorefinery relies on the efficient use of algae biomass through its fractionation of several valuable/bioactive compounds that can be used in industry. If this biorefinery includes green platforms as downstream processing technologies able to fulfill the requirements of green

  17. Patents and Downstream Innovation Suppression - Facts or Fiction?

    DEFF Research Database (Denmark)

    Howells, John

    the value of Kitch's prospect theory of patents, a theory that the social value of patents is that they enable the efficient coordination of technological development.    I re-examine history and legal sources bearing on Merges and Nelson's illustrative cases and find no case to illustrate downstream...

  18. Downstream flow top width prediction in a river system | Choudhury ...

    African Journals Online (AJOL)

    ANFIS, ARIMA and Hybrid Multiple Inflows Muskingum models (HMIM) were applied to simulate and forecast downstream discharge and flow top widths in a river system. The ANFIS model works on a set of linguistic rules while the ARIMA model uses a set of past values to predict the next value in a time series. The HMIM ...

  19. "Phonon" scattering beyond perturbation theory

    Science.gov (United States)

    Qiu, WuJie; Ke, XueZhi; Xi, LiLi; Wu, LiHua; Yang, Jiong; Zhang, WenQing

    2016-02-01

    Searching and designing materials with intrinsically low lattice thermal conductivity (LTC) have attracted extensive consideration in thermoelectrics and thermal management community. The concept of part-crystalline part-liquid state, or even part-crystalline part-amorphous state, has recently been proposed to describe the exotic structure of materials with chemical- bond hierarchy, in which a set of atoms is weakly bonded to the rest species while the other sublattices retain relatively strong rigidity. The whole system inherently manifests the coexistence of rigid crystalline sublattices and fluctuating noncrystalline substructures. Representative materials in the unusual state can be classified into two categories, i.e., caged and non-caged ones. LTCs in both systems deviate from the traditional T -1 relationship ( T, the absolute temperature), which can hardly be described by small-parameter-based perturbation approaches. Beyond the classical perturbation theory, an extra rattling-like scattering should be considered to interpret the liquid-like and sublattice-amorphization-induced heat transport. Such a kind of compounds could be promising high-performance thermoelectric materials, due to the extremely low LTCs. Other physical properties for these part-crystalline substances should also exhibit certain novelty and deserve further exploration.

  20. Perturbation theory for Alfven wave

    International Nuclear Information System (INIS)

    Yoshida, Z.; Mahajan, S.M.

    1995-01-01

    The Alfven wave is the dominant low frequency transverse mode of a magnetized plasma. The Alfven wave propagation along the magnetic field, and displays a continuous spectrum even in a bounded plasma. This is essentially due to the degeneracy of the wave characteristics, i.e. the frequency (ω) is primarily determined by the wave number in the direction parallel to the ambient magnetic field (k parallel ) and is independent of the perpendicular wavenumbers. The characteristics, that are the direction along which the wave energy propagates, are identical to the ambient magnetic field lines. Therefore, the spectral structure of the Alfven wave has a close relationship with the geometric structure of the magnetic field lines. In an inhomogeneous plasma, the Alfven resonance constitutes a singularity for the defining wave equation; this results in a singular eigenfunction corresponding to the continuous spectrum. The aim of this review is to present an overview of the perturbation theory for the Alfven wave. Emphasis is placed on those perturbations of the continuous spectrum which lead to the creation of point spectra. Such qualitative changes in the spectrum are relevant to many plasma phenomena

  1. The role of headwater streams in downstream water quality

    Science.gov (United States)

    Alexander, R.B.; Boyer, E.W.; Smith, R.A.; Schwarz, G.E.; Moore, R.B.

    2007-01-01

    Knowledge of headwater influences on the water-quality and flow conditions of downstream waters is essential to water-resource management at all governmental levels; this includes recent court decisions on the jurisdiction of the Federal Clean Water Act (CWA) over upland areas that contribute to larger downstream water bodies. We review current watershed research and use a water-quality model to investigate headwater influences on downstream receiving waters. Our evaluations demonstrate the intrinsic connections of headwaters to landscape processes and downstream waters through their influence on the supply, transport, and fate of water and solutes in watersheds. Hydrological processes in headwater catchments control the recharge of subsurface water stores, flow paths, and residence times of water throughout landscapes. The dynamic coupling of hydrological and biogeochemical processes in upland streams further controls the chemical form, timing, and longitudinal distances of solute transport to downstream waters. We apply the spatially explicit, mass-balance watershed model SPARROW to consider transport and transformations of water and nutrients throughout stream networks in the northeastern United States. We simulate fluxes of nitrogen, a primary nutrient that is a water-quality concern for acidification of streams and lakes and eutrophication of coastal waters, and refine the model structure to include literature observations of nitrogen removal in streams and lakes. We quantify nitrogen transport from headwaters to downstream navigable waters, where headwaters are defined within the model as first-order, perennial streams that include flow and nitrogen contributions from smaller, intermittent and ephemeral streams. We find that first-order headwaters contribute approximately 70% of the mean-annual water volume and 65% of the nitrogen flux in second-order streams. Their contributions to mean water volume and nitrogen flux decline only marginally to about 55% and

  2. Methylation of Hg downstream from the Bonanza Hg mine, Oregon

    Science.gov (United States)

    Gray, John E.; Hines, Mark E.; Krabbenhoft, David P.; Thoms, Bryn

    2012-01-01

    Speciation of Hg and conversion to methyl-Hg were evaluated in stream sediment, stream water, and aquatic snails collected downstream from the Bonanza Hg mine, Oregon. Total production from the Bonanza mine was >1360t of Hg, during mining from the late 1800s to 1960, ranking it as an intermediate sized Hg mine on an international scale. The primary objective of this study was to evaluate the distribution, transport, and methylation of Hg downstream from a Hg mine in a coastal temperate climatic zone. Data shown here for methyl-Hg, a neurotoxin hazardous to humans, are the first reported for sediment and water from this area. Stream sediment collected from Foster Creek flowing downstream from the Bonanza mine contained elevated Hg concentrations that ranged from 590 to 71,000ng/g, all of which (except the most distal sample) exceeded the probable effect concentration (PEC) of 1060ng/g, the Hg concentration above which harmful effects are likely to be observed in sediment-dwelling organisms. Concentrations of methyl-Hg in stream sediment collected from Foster Creek varied from 11 to 62ng/g and were highly elevated compared to regional baseline concentrations (0.11-0.82ng/g) established in this study. Methyl-Hg concentrations in stream sediment collected in this study showed a significant correlation with total organic C (TOC, R2=0.62), generally indicating increased methyl-Hg formation with increasing TOC in sediment. Isotopic-tracer methods indicated that several samples of Foster Creek sediment exhibited high rates of Hg-methylation. Concentrations of Hg in water collected downstream from the mine varied from 17 to 270ng/L and were also elevated compared to baselines, but all were below the 770ng/L Hg standard recommended by the USEPA to protect against chronic effects to aquatic wildlife. Concentrations of methyl-Hg in the water collected from Foster Creek ranged from 0.17 to 1.8ng/L, which were elevated compared to regional baseline sites upstream and downstream

  3. Influence of Copper Ore Comminution in HPGR on Downstream Minerallurgical Processes

    Directory of Open Access Journals (Sweden)

    Saramak D.

    2017-09-01

    Full Text Available Crushing processes taking place in high-pressure grinding rolls devices (HPGR are currently one of the most efficient methods of hard ore size reduction in terms of the energy consumption. The HPGR products are characterized by a fine particle size and the micro-cracks formation in individual particles, which appears in downstream grinding processes, decreasing their energy consumption. The purpose of the paper was to analyze the effectiveness of a ball mill grinding process and flotation operations depending on the changeable conditions of run of the HPGR crushing process. The research programme carried out included crushing tests in the laboratory scale HPGR device at various settings of the operating pressure volume and selected qualitative properties of the feed material (i.e. particle size distribution. On the basis of obtained results the models, defining the grinding process effectiveness as a function of changeable conditions of HPGR process run, were determined. Based on these models the optimal grinding time in a ball mill was specified which is, in turn, the basis for optimization of operation the technological comminution circuits for a given material type. The obtained results proved that the application of HPGR devices in given copper ore comminution circuit may improve the effectiveness of downstream grinding process what leads to improvement of the entire circuit work efficiency through decreasing the process energy consumption and enhancing the product size reduction.

  4. A novel virtual hub approach for multisource downstream service integration

    Science.gov (United States)

    Previtali, Mattia; Cuca, Branka; Barazzetti, Luigi

    2016-08-01

    A large development of downstream services is expected to be stimulated starting from earth observations (EO) datasets acquired by Copernicus satellites. An important challenge connected with the availability of downstream services is the possibility for their integration in order to create innovative applications with added values for users of different categories level. At the moment, the world of geo-information (GI) is extremely heterogeneous in terms of standards and formats used, thus preventing a facilitated access and integration of downstream services. Indeed, different users and data providers have also different requirements in terms of communication protocols and technology advancement. In recent years, many important programs and initiatives have tried to address this issue even on trans-regional and international level (e.g. INSPIRE Directive, GEOSS, Eye on Earth and SEIS). However, a lack of interoperability between systems and services still exists. In order to facilitate the interaction between different downstream services, a new architectural approach (developed within the European project ENERGIC OD) is proposed in this paper. The brokering-oriented architecture introduces a new mediation layer (the Virtual Hub) which works as an intermediary to bridge the gaps linked to interoperability issues. This intermediation layer de-couples the server and the client allowing a facilitated access to multiple downstream services and also Open Data provided by national and local SDIs. In particular, in this paper an application is presented integrating four services on the topic of agriculture: (i) the service given by Space4Agri (providing services based on MODIS and Landsat data); (ii) Gicarus Lab (providing sample services based on Landsat datasets) and (iii) FRESHMON (providing sample services for water quality) and services from a several regional SDIs.

  5. Network perturbation by recurrent regulatory variants in cancer.

    Directory of Open Access Journals (Sweden)

    Kiwon Jang

    2017-03-01

    Full Text Available Cancer driving genes have been identified as recurrently affected by variants that alter protein-coding sequences. However, a majority of cancer variants arise in noncoding regions, and some of them are thought to play a critical role through transcriptional perturbation. Here we identified putative transcriptional driver genes based on combinatorial variant recurrence in cis-regulatory regions. The identified genes showed high connectivity in the cancer type-specific transcription regulatory network, with high outdegree and many downstream genes, highlighting their causative role during tumorigenesis. In the protein interactome, the identified transcriptional drivers were not as highly connected as coding driver genes but appeared to form a network module centered on the coding drivers. The coding and regulatory variants associated via these interactions between the coding and transcriptional drivers showed exclusive and complementary occurrence patterns across tumor samples. Transcriptional cancer drivers may act through an extensive perturbation of the regulatory network and by altering protein network modules through interactions with coding driver genes.

  6. Perturbations i have Known and Loved

    Science.gov (United States)

    Field, Robert W.

    2011-06-01

    A spectroscopic perturbation is a disruption of a ^1Σ-^1Σ-like regular pattern that can embody level-shifts, extra lines, and intensity anomalies. Once upon a time, when a band was labeled ``perturbed,'' it was considered worthless because it could at best yield molecular constants unsuited for archival tables. Nevertheless, a few brave spectroscopists, notably Albin Lagerqvist and Richard Barrow, collected perturbations because they knew that the pattern of multiple perturbations formed an intricate puzzle that would eventually reveal the presence and electronic symmetry of otherwise unobservable electronic states. There are many kinds of patterns of broken patterns. In my PhD thesis I showed how to determine absolute vibrational assignments for the perturber from patterns among the observed values of perturbation matrix elements. When a ^3Π state is perturbed, its six (Ω, parity) components capture a pattern of level shifts and intensity anomalies that reveals more about the nature of the perturber than a simple perturbation of the single component of a ^1Σ state. In perturbation-facilitated OODR, a perturbed singlet level acts as a spectroscopic doorway through which the entire triplet manifold may be systematically explored. For polyatomic molecule vibrations, a vibrational polyad (a group of mutually perturbing vibrational levels, among which the perturbation matrix elements are expected to follow harmonic oscillator scaling rules) can contain more components than a ^3Π state and intrapolyad patterns can be exquisitely sensitive not merely to the nature of an interloper within the polyad but also to the eigenvector character of the vibronic state from which the polyad is viewed. Variation of scaled polyad interaction parameters from one polyad to the next, a pattern of patterns, can signal proximity to an isomerization barrier. Everything in Rydberg-land seems to scale as N⋆-3, yet a trespassing valence state causes all scaling and propensity rules go

  7. New Methods in Non-Perturbative QCD

    Energy Technology Data Exchange (ETDEWEB)

    Unsal, Mithat [North Carolina State Univ., Raleigh, NC (United States)

    2017-01-31

    In this work, we investigate the properties of quantum chromodynamics (QCD), by using newly developing mathematics and physics formalisms. Almost all of the mass in the visible universe emerges from a quantum chromodynamics (QCD), which has a completely negligible microscopic mass content. An intimately related issue in QCD is the quark confinement problem. Answers to non-perturbative questions in QCD remained largely elusive despite much effort over the years. It is also believed that the usual perturbation theory is inadequate to address these kinds of problems. Perturbation theory gives a divergent asymptotic series (even when the theory is properly renormalized), and there are non-perturbative phenomena which never appear at any order in perturbation theory. Recently, a fascinating bridge between perturbation theory and non-perturbative effects has been found: a formalism called resurgence theory in mathematics tells us that perturbative data and non-perturbative data are intimately related. Translating this to the language of quantum field theory, it turns out that non-perturbative information is present in a coded form in perturbation theory and it can be decoded. We take advantage of this feature, which is particularly useful to understand some unresolved mysteries of QCD from first principles. In particular, we use: a) Circle compactifications which provide a semi-classical window to study confinement and mass gap problems, and calculable prototypes of the deconfinement phase transition; b) Resurgence theory and transseries which provide a unified framework for perturbative and non-perturbative expansion; c) Analytic continuation of path integrals and Lefschetz thimbles which may be useful to address sign problem in QCD at finite density.

  8. Rapid Charged Geosynchronous Debris Perturbation Modeling of Electrodynamic Disturbances

    Science.gov (United States)

    Hughes, Joseph; Schaub, Hanspeter

    2018-04-01

    Charged space objects experience small perturbative torques and forces from their interaction with Earth's magnetic field. These small perturbations can change the orbits of lightweight, uncontrolled debris objects dramatically even over short periods. This paper investigates the effects of the isolated Lorentz force, the effects of including or neglecting this and other electromagnetic perturbations in a full propagation, and then analyzes for which objects electromagnetic effects have the most impact. It is found that electromagnetic forces have a negligible impact on their own. However, if the center of charge is not collocated with the center of mass, electromagnetic torques are produced which do impact the attitude, and thus the position by affecting the direction and magnitude of the solar radiation pressure force. The objects for which electrostatic torques have the most influence are charged above the kilovolt level, have a difference between their center of mass and center of charge, have highly attitude-dependent cross-sectional area, and are not spinning stably about an axis of maximum inertia. Fully coupled numerical simulation illustrate the impact of electromagnetic disturbances through the solar radiation pressure coupling.

  9. Perturbation of the solar wind in a model terrestrial foreshock

    International Nuclear Information System (INIS)

    Skadron, G.; Holdaway, R.D.; Scholer, M.

    1986-01-01

    We analyze the perturbation of the solar wind in the earth's foreshock. The foreshock is modulated as a planar magnetic flux tube having a 15 R/sub E/ half width. Within the flux tube the upstream energetic particle pressure is assumed to fall monotonically to zero at the flux tube boundary and decline in the upstream direction with a scale length of 8 R/sub E/. The incident solar wind is assumed to flow uniformly with a velocity of 400 km s -1 , a density of 8 cm -3 , a pressure of 50 eV cm -3 , and a magnetic field of 4γ directed parallel to the flow. The solar wind density, velocity, and magnetic field within the foreshock are described by the steady state ideal MHD equations. We find that (1) the vector solar wind velocity perturbation rotates from the sunward to the transverse direction with increasing distance from the axis of the flux tube, (2) the peak solar wind deflection is located --3R/sub E/ within the flux tube boundary, (3) a central upstream pressure of 200 eV cm -3 produces a maxium deceleration of 6 km s -1 and a maximum deflection of 1.3 0 , (4) a central upstream pressure of 600 eV cm -3 produces a maximum deceleration of 19 km s -1 and a maximum deflection of 3.6 0 , and (5) the deflection and deceleration are accompanied by perturbations of the solar wind density and magnetic field. These perturbations are largest near the flux tube boundary where both form spikes having a width of --2R/sub E/. For a 600 eV cm -3 central pressure those spikes have amplitudes of 2 cm -3 and lγ, respectively. We have analyzed the linearized flow problem analytically and reduced the solutions to quadrature. These solutions are found to be good approximations to the numerical nonlinear solutions for moderate values of the upstream particle pressure

  10. Fully nonlinear and exact perturbations of the Friedmann world model: non-flat background

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Hyerim, E-mail: hr@kasi.ac.kr [Korea Astronomy and Space Science Institute, Daejeon, 305-348 (Korea, Republic of)

    2014-07-01

    We extend the fully non-linear and exact cosmological perturbation equations in a Friedmann background universe to include the background curvature. The perturbation equations are presented in a gauge ready form, so any temporal gauge condition can be adopted freely depending on the problem to be solved. We consider the scalar, and vector perturbations without anisotropic stress. As an application, we analyze the equations in the special case of irrotational zero-pressure fluid in the comoving gauge condition. We also present the fully nonlinear formulation for a minimally coupled scalar field.

  11. Perturbative methods applied for sensitive coefficients calculations in thermal-hydraulic systems

    International Nuclear Information System (INIS)

    Andrade Lima, F.R. de

    1993-01-01

    The differential formalism and the Generalized Perturbation Theory (GPT) are applied to sensitivity analysis of thermal-hydraulics problems related to pressurized water reactor cores. The equations describing the thermal-hydraulic behavior of these reactors cores, used in COBRA-IV-I code, are conveniently written. The importance function related to the response of interest and the sensitivity coefficient of this response with respect to various selected parameters are obtained by using Differential and Generalized Perturbation Theory. The comparison among the results obtained with the application of these perturbative methods and those obtained directly with the model developed in COBRA-IV-I code shows a very good agreement. (author)

  12. Perturbativity in the seesaw mechanism

    International Nuclear Information System (INIS)

    Asaka, Takehiko; Tsuyuki, Takanao

    2016-01-01

    We consider the Standard Model extended by right-handed neutrinos to explain massive neutrinos through the seesaw mechanism. The new fermion can be observed when it has a sufficiently small mass and large mixings to left-handed neutrinos. If such a particle is the lightest right-handed neutrino, its contribution to the mass matrix of active neutrinos needs to be canceled by that of a heavier one. Yukawa couplings of the heavier one are then larger than those of the lightest one. We show that the perturbativity condition gives a severe upper bound on the mixing of the lightest right-handed neutrino, depending on the masses of heavier ones. Models of high energy phenomena, such as leptogenesis, can be constrained by low energy experiments.

  13. Initial conditions for cosmological perturbations

    Science.gov (United States)

    Ashtekar, Abhay; Gupt, Brajesh

    2017-02-01

    Penrose proposed that the big bang singularity should be constrained by requiring that the Weyl curvature vanishes there. The idea behind this past hypothesis is attractive because it constrains the initial conditions for the universe in geometric terms and is not confined to a specific early universe paradigm. However, the precise statement of Penrose’s hypothesis is tied to classical space-times and furthermore restricts only the gravitational degrees of freedom. These are encapsulated only in the tensor modes of the commonly used cosmological perturbation theory. Drawing inspiration from the underlying idea, we propose a quantum generalization of Penrose’s hypothesis using the Planck regime in place of the big bang, and simultaneously incorporating tensor as well as scalar modes. Initial conditions selected by this generalization constrain the universe to be as homogeneous and isotropic in the Planck regime as permitted by the Heisenberg uncertainty relations.

  14. Initial conditions for cosmological perturbations

    International Nuclear Information System (INIS)

    Ashtekar, Abhay; Gupt, Brajesh

    2017-01-01

    Penrose proposed that the big bang singularity should be constrained by requiring that the Weyl curvature vanishes there. The idea behind this past hypothesis is attractive because it constrains the initial conditions for the universe in geometric terms and is not confined to a specific early universe paradigm. However, the precise statement of Penrose’s hypothesis is tied to classical space-times and furthermore restricts only the gravitational degrees of freedom. These are encapsulated only in the tensor modes of the commonly used cosmological perturbation theory. Drawing inspiration from the underlying idea, we propose a quantum generalization of Penrose’s hypothesis using the Planck regime in place of the big bang, and simultaneously incorporating tensor as well as scalar modes. Initial conditions selected by this generalization constrain the universe to be as homogeneous and isotropic in the Planck regime as permitted by the Heisenberg uncertainty relations . (paper)

  15. Closed form bound-state perturbation theory

    Directory of Open Access Journals (Sweden)

    Ollie J. Rose

    1980-01-01

    Full Text Available The perturbed Schrödinger eigenvalue problem for bound states is cast into integral form using Green's Functions. A systematic algorithm is developed and applied to the resulting equation giving rise to approximate solutions expressed as functions of the given perturbation parameter. As a by-product, convergence radii for the traditional Rayleigh-Schrödinger and Brillouin-Wigner perturbation theories emerge in a natural way.

  16. Dead zone area at the downstream flow of barrages

    Directory of Open Access Journals (Sweden)

    Mohamed F. Sauida

    2016-12-01

    Full Text Available Flow separation is a natural phenomenon encountered at some cases downstream of barrages. The main flow is divided into current and dead zone flows. The percentage area of dead zone flow must be taken into consideration downstream of barrages, due to its negative effect on flow characteristics. Experimental studies were conducted in the Hydraulic Research Institute (HRI, on a physical regulator model with five vents. Theoretically the separation zone is described as a part of an ellipse which is practically verified by plotting velocity vectors. The results show that the percentage area of dead zone to the area through length of separation depends mainly on the expansion ratio [channel width to width of opened vents], with maximum value of 81% for operated side gates. A statistical analysis was derived, to predict the percentage area of dead zone flow to the area through length of separation.

  17. Upstream-downstream cooperation approach in Guanting Reservoir watershed.

    Science.gov (United States)

    Yang, Zhi-Feng; Zhang, Wen-Guo

    2005-01-01

    A case study is introduced and discussed concerning water dispute of misuse and pollution between up- and down-stream parts. The relations between water usage and local industrial structures are analyzed. Results show it is important to change industrial structures of the target region along with controlling water pollution by technical and engineering methods. Three manners of upstream-downstream cooperation are presented and discussed based on the actual conditions of Guangting Reservoir watershed. Two typical scenarios are supposed and studied along with the local plan on water resources development. The best solution for this cooperation presents a good way to help the upstream developing in a new pattern of eco-economy.

  18. OGJ group weathered tough times upstream and downstream in 1991

    International Nuclear Information System (INIS)

    Biggs, J.B.; Price, R.B.

    1992-01-01

    With an upstream sector hit by low oil and gas prices and downstream operations squeezed by weak petroleum demand, 1991, was a tough year for the group of 22 major integrated U.S. companies Oil and Gas Journal tracks. This paper reports that the brief respite caused by the oil price spike in second half 1990 ended abruptly early in first half 1991, and it turned into a year of buckling down for most companies. They shed non-core assets, implemented strategic restructuring moves, and reduced staff. Although low prices slowed overall drilling activity for the group, oil and gas production increased slightly, and most companies reported reserves gains. Recession in the U.S. and Europe depressed demand for the group's fined products enough to pinch downstream earnings even as buoyant Asia-Pacific demand helped jack up world product sales

  19. Downstream management practices of transnational companies in institutionally vulnerable countries

    DEFF Research Database (Denmark)

    Jørgensen, Michael Søgaard; Milanez, Bruno

    2017-01-01

    Analyses of social and environmental management in transnational product chains focus often upstream on suppliers in socially and institutionally vulnerable countries and these suppliers' hazardous processes. Furthermore focus is on transnational companies' responsibility when they source from...... such suppliers. On the contrary, not much focus has been on transnational companies' downstream export of hazardous products to vulnerable countries and the product use in those countries. The article uses pesticides as case of hazardous products and identifies mechanisms in the downstream social...... and environmental management of a Danish pesticide company in vulnerable countries and especially in Brazil. The identified mechanisms are: the transnational company's on-going interpretation of the regulatory and ethical obligations for development and use of its hazardous products in vulnerable countries, path...

  20. Kato expansion in quantum canonical perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaev, Andrey, E-mail: Andrey.Nikolaev@rdtex.ru [Institute of Computing for Physics and Technology, Protvino, Moscow Region, Russia and RDTeX LTD, Moscow (Russian Federation)

    2016-06-15

    This work establishes a connection between canonical perturbation series in quantum mechanics and a Kato expansion for the resolvent of the Liouville superoperator. Our approach leads to an explicit expression for a generator of a block-diagonalizing Dyson’s ordered exponential in arbitrary perturbation order. Unitary intertwining of perturbed and unperturbed averaging superprojectors allows for a description of ambiguities in the generator and block-diagonalized Hamiltonian. We compare the efficiency of the corresponding computational algorithm with the efficiencies of the Van Vleck and Magnus methods for high perturbative orders.

  1. Perturbative spacetimes from Yang-Mills theory

    Energy Technology Data Exchange (ETDEWEB)

    Luna, Andrés [School of Physics and Astronomy, University of Glasgow,Glasgow G12 8QQ, Scotland (United Kingdom); Monteiro, Ricardo [Theoretical Physics Department, CERN,Geneva (Switzerland); Nicholson, Isobel; Ochirov, Alexander; O’Connell, Donal [Higgs Centre for Theoretical Physics,School of Physics and Astronomy, The University of Edinburgh,Edinburgh EH9 3JZ, Scotland (United Kingdom); Westerberg, Niclas [Institute of Photonics and Quantum Sciences,School of Engineering and Physical Sciences, Heriot-Watt University,Edinburgh (United Kingdom); Higgs Centre for Theoretical Physics,School of Physics and Astronomy, The University of Edinburgh,Edinburgh EH9 3JZ, Scotland (United Kingdom); White, Chris D. [Centre for Research in String Theory,School of Physics and Astronomy, Queen Mary University of London,327 Mile End Road, London E1 4NS (United Kingdom)

    2017-04-12

    The double copy relates scattering amplitudes in gauge and gravity theories. In this paper, we expand the scope of the double copy to construct spacetime metrics through a systematic perturbative expansion. The perturbative procedure is based on direct calculation in Yang-Mills theory, followed by squaring the numerator of certain perturbative diagrams as specified by the double-copy algorithm. The simplest spherically symmetric, stationary spacetime from the point of view of this procedure is a particular member of the Janis-Newman-Winicour family of naked singularities. Our work paves the way for applications of the double copy to physically interesting problems such as perturbative black-hole scattering.

  2. Kato expansion in quantum canonical perturbation theory

    International Nuclear Information System (INIS)

    Nikolaev, Andrey

    2016-01-01

    This work establishes a connection between canonical perturbation series in quantum mechanics and a Kato expansion for the resolvent of the Liouville superoperator. Our approach leads to an explicit expression for a generator of a block-diagonalizing Dyson’s ordered exponential in arbitrary perturbation order. Unitary intertwining of perturbed and unperturbed averaging superprojectors allows for a description of ambiguities in the generator and block-diagonalized Hamiltonian. We compare the efficiency of the corresponding computational algorithm with the efficiencies of the Van Vleck and Magnus methods for high perturbative orders.

  3. Perturbation methods for power and reactivity reconstruction

    International Nuclear Information System (INIS)

    Palmiotti, G.; Salvatores, M.; Estiot, J.C.; Broccoli, U.; Bruna, G.; Gomit, J.M.

    1987-01-01

    This paper deals with recent developments and applications in perturbation methods. Two types of methods are used. The first one is an explicit method, which allows the explicit reconstruction of a perturbed flux using a linear combination of a library of functions. In our application, these functions are the harmonics (i.e. the high order eigenfunctions of the system). The second type is based on the Generalized Perturbation Theory GPT and needs the calculation of an importance function for each integral parameter of interest. Recent developments of a particularly useful high order formulation allows to obtain satisfactory results also for very large perturbations

  4. On adiabatic perturbations in the ekpyrotic scenario

    International Nuclear Information System (INIS)

    Linde, A.; Mukhanov, V.; Vikman, A.

    2010-01-01

    In a recent paper, Khoury and Steinhardt proposed a way to generate adiabatic cosmological perturbations with a nearly flat spectrum in a contracting Universe. To produce these perturbations they used a regime in which the equation of state exponentially rapidly changed during a short time interval. Leaving aside the singularity problem and the difficult question about the possibility to transmit these perturbations from a contracting Universe to the expanding phase, we will show that the methods used in Khoury are inapplicable for the description of the cosmological evolution and of the process of generation of perturbations in this scenario

  5. International Retailing Operations: Downstream Entry and Expansion via Franchising

    OpenAIRE

    Petersen, Bent; Welch, Lawrence S.

    1999-01-01

    In this article, the shift into international franchising from other forms of operation, rather than the typical home market franchising base is explored. The focus is international retail franchising, based on a study of the Danish clothing and footwear industry. In this study it was found that Danish companies were moving into international franchising as an outcome of a more general shift from upstream wholesaling and subcontracting activities to downstream involvement in retailing activit...

  6. Analysis of Petroleum Downstream Industry Potential in Riau Province

    Directory of Open Access Journals (Sweden)

    Tomi Erfando

    2017-06-01

    Full Text Available Petroleum downstream industry in Riau Province is still not optimal. The data shows that from 98,892,755 barrels lifting oil each year only 62,050,000 barrels could be processed in refinery unit II Dumai operated by PT Pertamina. There is a potential of 35-40% of downstream industry. Indonesian Government through The Ministry of Energy and Mineral Resources declared the construction of a mini refinery to boost oil processing output in the downstream sector. A feasibility study of development plan mini refinery is needed. The study includes production capacity analysis, product analysis, development & operational refinery  analysis and economic analysis. The results obtained by the mini refinery capacity is planned to process crude oil 6000 BOPD with the products produced are gasoline, kerosene, diesel and oil. Investment cost consist of is capital cost US $ 104419784 and operating cost US $ 13766734 each year with net profit earned US $ 12330063/year and rate of return from investment 11.63%

  7. Heat transfer enhancement through control of added perturbation velocity in flow field

    International Nuclear Information System (INIS)

    Wang, Jiansheng; Wu, Cui; Li, Kangning

    2013-01-01

    Highlights: ► Three strategies which restrain the flow drag in heat transfer are proposed. ► Added perturbation induces quasi-streamwise vortices around controlled zone. ► The flow and heat transfer features depend on induced quasi-streamwise vortices. ► Vertical strategy has the best synthesis performance of three control strategies. ► Synthesis performance with control strategy is superior to that without strategy. - Abstract: The characteristics of heat transfer and flow, through an added perturbation velocity, in a rectangle channel, are investigated by Large Eddy Simulation (LES). The downstream, vertical, and upstream control strategy, which can suppress the lift of low speed streaks in the process of improving the performance of heat transfer, are adopted in numerical investigation. Taking both heat transfer and flow properties into consideration, the synthesis performance of heat transfer and flow of three control strategies are evaluated. The numerical results show that the flow structure in boundary layer has been varied obviously for the effect of perturbation velocity and induced quasi-streamwise vortices emerging around the controlled zone. The results indicate that the vertical control strategy has the best synthesis performance of the three control strategies, which also has the least skin frication coefficient. The upstream and downstream strategies can improve the heat transfer performance, but the skin frication coefficient is higher than that with vertical control strategy

  8. Perturbed angular correlations and distributions

    International Nuclear Information System (INIS)

    Makaryunas, K.

    1976-01-01

    The present index comprises original works and review papers on the perturbed angular correlations (PAC) and distributions (PAD). The articles published in the Soviet and foreign journals as well as the materials of conferences, monographs and collections published in the USSR and abroad, the preprints produced by various institutes and abstracts of disertations are included from 1948 up to 1973. The whole material compiled in this index is divided into three parts. Part one is a bibliographic index. All papers in this part are divided into three sections. Section one comprises the papers devoted to the theoretical works on PAC, review papers, monographs, materials of conferences. Section two deals with the works of methodical character where correlation spectrometers as well as the treatment of experimental data are described. In section three experimental works with concrete nuclei are compiled. Part two gives the characteristic of works performed with concrete nuclei. This part is presented in the form of the table in which the works are systematized according to the chemical elements and isotopes. The table shows the characteristics of the nuclear levels used in the investigations by PAC as well as brief characteristics of experiments and results obtained. Part three - appendix contains alphabetic index of the authors, the list of the used editions with the abbreviations of the titles of these editions. The lists indicating the dynamic of the quantity of works on PAC and the distribution according to the literature sources are also given

  9. Chiral perturbation theory with nucleons

    International Nuclear Information System (INIS)

    Meissner, U.G.

    1991-09-01

    I review the constraints posed on the interactions of pions, nucleons and photons by the spontaneously broken chiral symmetry of QCD. The framework to perform these calculations, chiral perturbation theory, is briefly discussed in the meson sector. The method is a simultaneous expansion of the Greens functions in powers of external moments and quark masses around the massless case, the chiral limit. To perform this expansion, use is made of a phenomenological Lagrangian which encodes the Ward-identities and pertinent symmetries of QCD. The concept of chiral power counting is introduced. The main part of the lectures of consists in describing how to include baryons (nucleons) and how the chiral structure is modified by the fact that the nucleon mass in the chiral limit does not vanish. Particular emphasis is put on working out applications to show the strengths and limitations of the methods. Some processes which are discussed are threshold photopion production, low-energy compton scattering off nucleons, πN scattering and the σ-term. The implications of the broken chiral symmetry on the nuclear forces are briefly described. An alternative approach, in which the baryons are treated as very heavy fields, is touched upon

  10. Massive states in chiral perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Mallik, S [Saha Inst. of Nuclear Physics, Calcutta (India)

    1995-08-01

    It is shown that the chiral nonanalytic terms generated by {Delta}{sub 33} resonance in the nucleon self-energy is reproduced in chiral perturbation theory by perturbing appropriate local operators contained in the pion-nucleon effective Lagrangian itself. (orig.)

  11. On the non-perturbative effects

    International Nuclear Information System (INIS)

    Manjavidze, J.; Voronyuk, V.

    2004-01-01

    The quantum correspondence principle based on the time reversibility is adopted to take into account the non-Abelian symmetry constrains. The main properties of the new strong-coupling perturbation theory which take into account non-perturbative effects are described. (author)

  12. Scalar Quantum Electrodynamics: Perturbation Theory and Beyond

    International Nuclear Information System (INIS)

    Bashir, A.; Gutierrez-Guerrero, L. X.; Concha-Sanchez, Y.

    2006-01-01

    In this article, we calculate scalar propagator in arbitrary dimensions and gauge and the three-point scalar-photon vertex in arbitrary dimensions and Feynman gauge, both at the one loop level. We also discuss constraints on their non perturbative structure imposed by requirements of gauge invariance and perturbation theory

  13. Flow structure in the downstream of a square cylinder with different angles of incidence

    Directory of Open Access Journals (Sweden)

    N Jamshidi

    2016-09-01

    Full Text Available This paper presents comparisons between flow fields for turbulent flow over square cylinder with two different angles of incidence in free stream at Reynolds number of Re = 3400. The present numerical results were obtained using a two-dimensional finite-volume code which solves governing equations. The pressure field was obtained with well known SIMPLE algorithm. The central difference scheme was employed for the discretization of convection and diffusion terms. The ν2 f and standard k - ε model were used for simulation of turbulent flow. Time averaged velocity, root mean square velocities and streamlines in the downstream of square cylinders are presented. A number of quantities such as Strouhal number, drag coefficient and the length of the wake are calculated for the case of angle of incidence α = 0°, 45° with two turbulent models. Strouhal number and the length of the wake are larger for the case of α = 45° because of the sharp corners in it which results in more diffusion of turbulence in the downstream of the cylinder. On the other hand, with comparison of results obtained by ν2 f and standard k - ε models with experiment, it is obvious that ν2 f leads to much more accurate results.

  14. Pressure locking test results

    Energy Technology Data Exchange (ETDEWEB)

    DeWall, K.G.; Watkins, J.C.; McKellar, M.G.; Bramwell, D. [Idaho National Engineering Lab., Idaho Falls, ID (United States)] [and others

    1996-12-01

    The U.S. Nuclear Regulatory Commission (NRC), Office of Nuclear Regulatory Research, is funding the Idaho National Engineering Laboratory (INEL) in performing research to provide technical input for their use in evaluating responses to Generic Letter 95-07, {open_quotes}Pressure Locking and Thermal Binding of Safety-Related Power-Operated Gate Valves.{close_quotes} Pressure locking and thermal binding are phenomena that make a closed gate valve difficult to open. This paper discusses only the pressure locking phenomenon in a flexible-wedge gate valve; the authors will publish the results of their thermal binding research at a later date. Pressure locking can occur when operating sequences or temperature changes cause the pressure of the fluid in the bonnet (and, in most valves, between the discs) to be higher than the pressure on the upstream and downstream sides of the disc assembly. This high fluid pressure presses the discs against both seats, making the disc assembly harder to unseat than anticipated by the typical design calculations, which generally consider friction at only one of the two disc/seat interfaces. The high pressure of the bonnet fluid also changes the pressure distribution around the disc in a way that can further contribute to the unseating load. If the combined loads associated with pressure locking are very high, the actuator might not have the capacity to open the valve. The results of the NRC/INEL research discussed in this paper show that the relationship between bonnet pressure and pressure locking stem loads appears linear. The results also show that for this valve, seat leakage affects the bonnet pressurization rate when the valve is subjected to thermally induced pressure locking conditions.

  15. Pressure locking test results

    International Nuclear Information System (INIS)

    DeWall, K.G.; Watkins, J.C.; McKellar, M.G.; Bramwell, D.

    1996-01-01

    The U.S. Nuclear Regulatory Commission (NRC), Office of Nuclear Regulatory Research, is funding the Idaho National Engineering Laboratory (INEL) in performing research to provide technical input for their use in evaluating responses to Generic Letter 95-07, open-quotes Pressure Locking and Thermal Binding of Safety-Related Power-Operated Gate Valves.close quotes Pressure locking and thermal binding are phenomena that make a closed gate valve difficult to open. This paper discusses only the pressure locking phenomenon in a flexible-wedge gate valve; we will publish the results of our thermal binding research at a later date. Pressure locking can occur when operating sequences or temperature changes cause the pressure of the fluid in the bonnet (and, in most valves, between the discs) to be higher than the pressure on the upstream and downstream sides of the disc assembly. This high fluid pressure presses the discs against both seats, making the disc assembly harder to unseat than anticipated by the typical design calculations, which generally consider friction at only one of the two disc/seat interfaces. The high pressure of the bonnet fluid also changes the pressure distribution around the disc in a way that can further contribute to the unseating load. If the combined loads associated with pressure locking are very high, the actuator might not have the capacity to open the valve. The results of the NRC/INEL research discussed in this paper show that the relationship between bonnet pressure and pressure locking stem loads appears linear. The results also show that for this valve, seat leakage affects the bonnet pressurization rate when the valve is subjected to thermally induced pressure locking conditions

  16. In-core fuel management via perturbation theory

    International Nuclear Information System (INIS)

    Mingle, J.O.

    1975-01-01

    A two-step procedure is developed for the optimization of in-core nuclear fuel management using perturbation theory to predict the effects of various core configurations. The first procedure is a cycle cost minimization using linear programming with a zoned core and discrete burnup groups. The second program utilizes an individual fuel assembly shuffling sequence to minimize the maldistribution of power generation. This latter quantity is represented by a figure of merit or by an assembly power peaking factor. A pressurized water reactor example calculation is utilized. 24 references

  17. Climate change issue table : petroleum downstream sector industry foundation paper

    International Nuclear Information System (INIS)

    Crandall, G.R.; Kelly, S.J.; Kromm, R.B.; Prime, M.G.

    1999-01-01

    An analysis of the impact of the Kyoto Protocol on the Canadian downstream petroleum industry is presented. The downstream sector includes petroleum refining, plus all activities regarding distribution, marketing and retailing of petroleum products. In 1990, the carbon dioxide (CO 2 ) emissions resulting from the production and consumption of petroleum products were about 207 megatons which is about 45 per cent of total Canadian CO 2 emissions. This report includes the analysis of the Base Case and the Kyoto Case. The Base Case is premised on the implementation of fuel sulphur reductions to meet cleaner fuels requirements and an enhanced program of refinery efficiency initiatives. Under the Base Case assumptions the CO 2 emissions from refinery operations in 2010 would be about 3.4 below 1990 levels. The Kyoto Case was developed on the basis of reductions in Canadian petroleum product demand that would be sufficient to achieve a 6 per cent reduction in GHG emissions from the production and consumption of petroleum products relative to 1990 levels. The model demonstrates the dramatic economic impact of the Kyoto Case reductions on the Canadian downstream petroleum sector. Investment requirements for capital improvements to further distillate production and to further desulphurization are estimated at $ 1.5 billion between 2005 and 2015. The reduced volume of gasoline sales would be expected to result in rationalization of retail outlets, resulting in the closure of some 2,000 retail outlets with a combined loss of about 12,000 jobs. It is suggested that similar impact in other countries that are signatory to the Kyoto Protocol could result in the shift of refining, refining industry jobs and related economic benefits to countries which are not participants in the Kyoto Protocol. 14 tabs., 6 figs., 5 appendices

  18. Alfven waves and associated energetic ions downstream from Uranus

    International Nuclear Information System (INIS)

    Zhang, Ming; Belcher, J.W.; Richardson, J.D.; Smith, C.W.

    1991-01-01

    The authors report the observation of low-frequency waves in the solar wind downstream from Uranus. These waves are observed by the Voyager spacecraft for more than 2 weeks after the encounter with Uranus and are present during this period whenever the interplanetary magnetic field is oriented such that the field lines intersect the Uranian bow shock. The magnetic field and velocity components transverse to the background field are strongly correlated, consistent with the interpretation that these waves are Alfvenic and/or fast-mode waves. The waves have a spacecraft frame frequency of about 10 -3 Hz, and when first observed near the bow shock have an amplitude comparable to the background field. As the spacecraft moves farther from Uranus, the amplitude decays. The waves appear to propagate along the magnetic field lines outward from Uranus and are right-hand polarized. Theory suggests that these waves are generated in the upstream region by a resonant instability with a proton beam streaming along the magnetic field lines. The solar wind subsequently carries these waves downstream to the spacecraft location. These waves are associated with the presence of energetic (> 28 keV) ions observed by the low-energy charged particle instrument. These ions appear two days after the start of the wave activity and occur thereafter whenever the Alfven waves occur, increasing in intensity away from Uranus. The ions are argued to originate in the Uranian magnetosphere, but pitch-angle scattering in the upstream region is required to bring them downstream to the spacecraft location

  19. Flow diagnostics downstream of a tribladed rotor model

    DEFF Research Database (Denmark)

    Naumov, I. V.; Rahmanov, V. V.; Okulov, Valery

    2012-01-01

    This paper presents results of a study of vortex wake structures and measurements of instantaneous 3D velocity fields downstream of a triblade turbine model. Two operation modes of flow around the rotor with different tip speed ratios were tested. Initially the wake structures were visualized...... and subsequently quantitative data were recorded through velocity field restoration from particle tracks using a stereo PIV system.The study supplied flow diagnostics and recovered the instantaneous 3D velocity fields in the longitudinal cross section behind a tribladed rotor at different values of tip speed ratio...

  20. Recent Molecular Advances on Downstream Plant Responses to Abiotic Stress

    Directory of Open Access Journals (Sweden)

    Cláudia Regina Batista de Souza

    2012-07-01

    Full Text Available Abiotic stresses such as extremes of temperature and pH, high salinity and drought, comprise some of the major factors causing extensive losses to crop production worldwide. Understanding how plants respond and adapt at cellular and molecular levels to continuous environmental changes is a pre-requisite for the generation of resistant or tolerant plants to abiotic stresses. In this review we aimed to present the recent advances on mechanisms of downstream plant responses to abiotic stresses and the use of stress-related genes in the development of genetically engineered crops.

  1. 'Patents and Downstream Innovation Suppression - Fact or Fiction?'

    DEFF Research Database (Denmark)

    Howells, John

    Merges and Nelson have provided an empirically grounded argument that firms use pioneer patents of 'broad' scope to block downstream technological development (Merges and Nelson 1990). If this is a regular occurrence then, as they claim, they have faulted Kitch's 'prospect theory' of patents (Kitch...... 1977), a theory that is a version of the classic justification for the award of the exclusive right - that it should protect the incentive to develop property. Merges and Nelson insist that their thesis should be supported by empirical evidence and they turn to historical accounts as an important form...

  2. A theoretical study of mixing downstream of transverse injection into a supersonic boundary layer

    Science.gov (United States)

    Baker, A. J.; Zelazny, S. W.

    1972-01-01

    A theoretical and analytical study was made of mixing downstream of transverse hydrogen injection, from single and multiple orifices, into a Mach 4 air boundary layer over a flat plate. Numerical solutions to the governing three-dimensional, elliptic boundary layer equations were obtained using a general purpose computer program. Founded upon a finite element solution algorithm. A prototype three-dimensional turbulent transport model was developed using mixing length theory in the wall region and the mass defect concept in the outer region. Excellent agreement between the computed flow field and experimental data for a jet/freestream dynamic pressure ratio of unity was obtained in the centerplane region of the single-jet configuration. Poorer agreement off centerplane suggests an inadequacy of the extrapolated two-dimensional turbulence model. Considerable improvement in off-centerplane computational agreement occured for a multi-jet configuration, using the same turbulent transport model.

  3. A mathematical model for erosion-corrosion downstream of an orifice

    International Nuclear Information System (INIS)

    Thomas, R.M.

    1989-08-01

    In certain types of nuclear plant, the internal surfaces of the steel high-pressure boiler tubes become covered with magnetite. This normal growth of protective magnetite may, in unfavourable circumstances, be replaced by rapid attack on the tube wall. Particularly at risk are the regions downstream of the orifice plates commonly fitted near the boiler inlet. An attempt is made to construct a mathematical model for this erosion-corrosion which is considerably more complete than those available hitherto. A systematic synthesis is developed of the various aspects of the phenomenon, namely the mechanism of the topotactic oxidation at the interface between magnetite and metal, the kinetics of the electrode reactions at the magnetite/solution interface, the thermodynamics of magnetite solubility and the calculation of mass transfer in solution. With one choice of parameters and some simplification, the treatment reduces to the original theory of Bignold. (author)

  4. Regarding the perturbed operating process of DB propellant rocket motor at extreme initial grain temperatures

    Directory of Open Access Journals (Sweden)

    Ioan ION

    2012-03-01

    Full Text Available Despite many decades of study, the combustion instability of several DB propellants is still of particular concern, especially at extreme grain temperature conditions of rocket motor operating. The purpose of the first part of the paper is to give an overview of our main experimental results on combustion instabilities and pressure oscillations in DB propellant segmented grain rocket motors (SPRM-01, large L/D ratio, working at extreme initial grain temperatures. Thus, we recorded some particular pressure-time traces with significant perturbed pressure signal that was FFT analysed. An updated mathematical model incorporating transient frequency-dependent combustion response, in conjunction with pressure-dependent burning, is applied to investigate and predict the DB propellant combustion instability phenomenon. The susceptibility of the tested motor SPRM-01 with DB propellant to get a perturbed working and to go unstable with pressure was evidenced and this risk has to be evaluated. In the last part of our paper we evaluated the influence of recorded perturbed thrust on the rocket behaviour on the trajectory. The study revealed that at firing-table initial conditions, this kind of perturbed motor operating may not lead to an unstable rocket flight, but the ballistic parameters would be influenced in an unacceptable manner.

  5. Difference scheme for a singularly perturbed parabolic convection-diffusion equation in the presence of perturbations

    Science.gov (United States)

    Shishkin, G. I.

    2015-11-01

    An initial-boundary value problem is considered for a singularly perturbed parabolic convection-diffusion equation with a perturbation parameter ɛ (ɛ ∈ (0, 1]) multiplying the highest order derivative. The stability of a standard difference scheme based on monotone approximations of the problem on a uniform mesh is analyzed, and the behavior of discrete solutions in the presence of perturbations is examined. The scheme does not converge ɛ-uniformly in the maximum norm as the number of its grid nodes is increased. When the solution of the difference scheme converges, which occurs if N -1 ≪ ɛ and N -1 0 ≪ 1, where N and N 0 are the numbers of grid intervals in x and t, respectively, the scheme is not ɛ-uniformly well conditioned or stable to data perturbations in the grid problem and to computer perturbations. For the standard difference scheme in the presence of data perturbations in the grid problem and/or computer perturbations, conditions on the "parameters" of the difference scheme and of the computer (namely, on ɛ, N, N 0, admissible data perturbations in the grid problem, and admissible computer perturbations) are obtained that ensure the convergence of the perturbed solutions. Additionally, the conditions are obtained under which the perturbed numerical solution has the same order of convergence as the solution of the unperturbed standard difference scheme.

  6. Internal wave energy flux from density perturbations in nonlinear stratifications

    Science.gov (United States)

    Lee, Frank M.; Allshouse, Michael R.; Swinney, Harry L.; Morrison, P. J.

    2017-11-01

    Tidal flow over the topography at the bottom of the ocean, whose density varies with depth, generates internal gravity waves that have a significant impact on the energy budget of the ocean. Thus, understanding the energy flux (J = p v) is important, but it is difficult to measure simultaneously the pressure and velocity perturbation fields, p and v . In a previous work, a Green's-function-based method was developed to calculate the instantaneous p, v , and thus J , given a density perturbation field for a constant buoyancy frequency N. Here we extend the previous analytic Green's function work to include nonuniform N profiles, namely the tanh-shaped and linear cases, because background density stratifications that occur in the ocean and some experiments are nonlinear. In addition, we present a finite-difference method for the general case where N has an arbitrary profile. Each method is validated against numerical simulations. The methods we present can be applied to measured density perturbation data by using our MATLAB graphical user interface EnergyFlux. PJM was supported by the U.S. Department of Energy Contract DE-FG05-80ET-53088. HLS and MRA were supported by ONR Grant No. N000141110701.

  7. Strings as perturbations of evolving spin networks

    International Nuclear Information System (INIS)

    Smolin, Lee

    2000-01-01

    One step in the construction of a background independent formulation of string theory is detailed, in which it is shown how perturbative strings may arise as small fluctuations around histories in a formulation of non-perturbative dynamics of spin networks due to Markopoulou. In this formulation the dynamics of spin network states and their generalizations is described in terms of histories which have discrete analogues of the causal structure and many fingered time of Lorentzian spacetimes. Perturbations of these histories turn out to be described in terms of spin systems defined on 2-dimensional timelike surfaces embedded in the discrete spacetime. When the history has a classical limit which is Minkowski spacetime, the action of the perturbation theory is given to leading order by the spacetime area of the surface, as in bosonic string theory. This map between a non-perturbative formulation of quantum gravity and a 1+1 dimensional theory generalizes to a large class of theories in which the group SU(2) i s extended to any quantum group or supergroup. It is argued that a necessary condition for the non-perturbative theory to have a good classical limit is that the resulting 1+1 dimensional theory defines a consistent and stable perturbative string theory

  8. Evaluation of Intracellular Signaling Downstream Chimeric Antigen Receptors.

    Directory of Open Access Journals (Sweden)

    Hannah Karlsson

    Full Text Available CD19-targeting CAR T cells have shown potency in clinical trials targeting B cell leukemia. Although mainly second generation (2G CARs carrying CD28 or 4-1BB have been investigated in patients, preclinical studies suggest that third generation (3G CARs with both CD28 and 4-1BB have enhanced capacity. However, little is known about the intracellular signaling pathways downstream of CARs. In the present work, we have analyzed the signaling capacity post antigen stimulation in both 2G and 3G CARs. 3G CAR T cells expanded better than 2G CAR T cells upon repeated stimulation with IL-2 and autologous B cells. An antigen-driven accumulation of CAR+ cells was evident post antigen stimulation. The cytotoxicity of both 2G and 3G CAR T cells was maintained by repeated stimulation. The phosphorylation status of intracellular signaling proteins post antigen stimulation showed that 3G CAR T cells had a higher activation status than 2G. Several proteins involved in signaling downstream the TCR were activated, as were proteins involved in the cell cycle, cell adhesion and exocytosis. In conclusion, 3G CAR T cells had a higher degree of intracellular signaling activity than 2G CARs which may explain the increased proliferative capacity seen in 3G CAR T cells. The study also indicates that there may be other signaling pathways to consider when designing or evaluating new generations of CARs.

  9. Tidal Influence on Water Quality of Kapuas Kecil River Downstream

    Science.gov (United States)

    Purnaini, Rizki; Sudarmadji; Purwono, Suryo

    2018-02-01

    The Kapuas Kecil River is strongly influenced by tidal, in the dry season the intrusion of surface water is often a problem for the WTP because it causes the change of raw water quality to be processed. The purpose of this study was to examine the effect of sea tides on water quality of the Kapuas Kecil River. The study was conducted in Kapuas River downstream along ± 30 km from the upper boundary to the estuary. Water sampling is carried out during the dry and rainy season, when the tidal conditions at 7 (seven) locations of the monitoring station. Descriptive analysis methods and regression-correlation statistics are used to determine the effect of tides on water quality in Kapuas River downstream. In general, the water quality of the Kapuas Kecil River has exceeded the criteria of first class water quality, ie water that can be used for drinking water. The status of water quality of the Kapuas Kecil River based on the pollution index calculation shows the condition of the river is "mild to medium pollutants". The result of multiple linear regression analysis got the value of coefficient of determination (adjusted R square) = 0,760, which in whole show that independent variable (tidal and distance) influence to dependent variable (value of TDS) equal to 76%.

  10. Natural Origin Lycopene and Its "Green" Downstream Processing.

    Science.gov (United States)

    Papaioannou, Emmanouil H; Liakopoulou-Kyriakides, Maria; Karabelas, Anastasios J

    2016-01-01

    Lycopene is an abundant natural carotenoid pigment with several biological functions (well-known for its antioxidant properties) which is under intensive investigation in recent years. Lycopene chemistry, its natural distribution, bioavailability, biological significance, and toxicological effects are briefly outlined in the first part of this review. The second, major part, deals with various modern downstream processing techniques, which are assessed in order to identify promising approaches for the recovery of lycopene and of similar lipophilic compounds. Natural lycopene is synthesized in plants and by microorganisms, with main representatives of these two categories (for industrial production) tomato and its by-products and the fungus Blakeslea trispora, respectively. Currently, there is a great deal of effort to develop efficient downstream processing for large scale production of natural-origin lycopene, with trends strongly indicating the necessity for "green" and mild extraction conditions. In this review, emphasis is placed on final product safety and ecofriendly processing, which are expected to totally dominate in the field of natural-origin lycopene extraction and purification.

  11. Kappa-Electrons Downstream of the Solar Wind Termination Shock

    Science.gov (United States)

    Fahr, H. J.

    2017-12-01

    A theoretical description of the solar wind electron distribution function downstream of the termination shock under the influence of the shock-induced injection of overshooting KeV-energetic electrons will be presented. A kinetic phasespace transport equation in the bulk frame of the heliosheath plasma flow is developed for the solar wind electrons, taking into account shock-induced electron injection, convective changes, magnetic cooling processes and whistler wave-induced energy diffusion. Assuming that the local electron distribution under the prevailing Non-LTE conditions can be represented by a local kappa function with a local kappa parameter that varies with the streamline coordinates, we determine the parameters of the resulting, initial kappa distribution for the downstream electrons. From this initial function spectral electron fluxes can be derived and can be compared with those measured by the VOYAGER-1 spacecraft in the range between 40 to 70 KeV. It can then be shown that with kappa values around kappa = 6 one can in fact fit these data very satisfactorily. In addition it is shown that for isentropic electron flows kappa-distributed electrons have to undergo simultaneous changes of both parameters, i.e. kappa and theta, of the electron kappa function. It is also shown then that under the influence of energy sinks and sources the electron flux becomes non-isentropic with electron entropies changing along the streamline.

  12. Perturbation analysis of linear control problems

    International Nuclear Information System (INIS)

    Petkov, Petko; Konstantinov, Mihail

    2017-01-01

    The paper presents a brief overview of the technique of splitting operators, proposed by the authors and intended for perturbation analysis of control problems involving unitary and orthogonal matrices. Combined with the technique of Lyapunov majorants and the implementation of the Banach and Schauder fixed point principles, it allows to obtain rigorous non-local perturbation bounds for a set of sensitivity analysis problems. Among them are the reduction of linear systems into orthogonal canonical forms, the feedback synthesis problem and pole assignment problem in particular, as well as other important problems in control theory and linear algebra. Key words: perturbation analysis, canonical forms, feedback synthesis

  13. Kerr-CFT and gravitational perturbations

    International Nuclear Information System (INIS)

    Dias, Oscar J.C.; Reall, Harvey S.; Santos, Jorge E.

    2009-01-01

    Motivated by the Kerr-CFT conjecture, we investigate perturbations of the near-horizon extreme Kerr spacetime. The Teukolsky equation for a massless field of arbitrary spin is solved. Solutions fall into two classes: normal modes and traveling waves. Imposing suitable (outgoing) boundary conditions, we find that there are no unstable modes. The explicit form of metric perturbations is obtained using the Hertz potential formalism, and compared with the Kerr-CFT boundary conditions. The energy and angular momentum associated with scalar field and gravitational normal modes are calculated. The energy is positive in all cases. The behaviour of second order perturbations is discussed.

  14. Resolution of ambiguities in perturbative QCD

    International Nuclear Information System (INIS)

    Nakkagawa, Hisao; Niegawa, Akira.

    1984-01-01

    In the perturbative QCD analyses of the deeply inelastic processes, the coupling constant depends on at least two mass-scales, the renormalization scale and the factorization scale. By integrating the coupled renormalization group equations with respect to these two mass-scales, the running coupling constant is defined. A perturbative approximation then introduces a new ambiguity, the integration-path dependence, into the theory. We show that the problem of this new ambiguity is resolved by imposing Stevenson's principle of minimal sensitivity. Together with the analogous analysis of the operator matrix element or the cut vertex, we can completely solve the problem of getting an unambiguous perturbative QCD prediction. (author)

  15. Mass generation in perturbed massless integrable models

    International Nuclear Information System (INIS)

    Controzzi, D.; Mussardo, G.

    2005-01-01

    We extend form-factor perturbation theory to non-integrable deformations of massless integrable models, in order to address the problem of mass generation in such systems. With respect to the standard renormalisation group analysis this approach is more suitable for studying the particle content of the perturbed theory. Analogously to the massive case, interesting information can be obtained already at first order, such as the identification of the operators which create a mass gap and those which induce the confinement of the massless particles in the perturbed theory

  16. Non-perturbative effects in supersymmetry

    International Nuclear Information System (INIS)

    Veneziano, G.

    1987-01-01

    Some non perturbative aspects of globally supersymmetric (SUSY) gauge theories are discussed. These share with their non-supersymmetric analogues interesting non perturbative features, such as the spontaneous breaking of chiral symmetries via condensates. What is peculiar about supersymmetric theories, however, is that one is able to say a lot about non-perturbative effects even without resorting to elaborate numerical calculations: general arguments, supersymmetric and chiral Ward identities and analytic, dynamical calculations will turn out to effectively determine most of the supersymmetric vacuum properties. 28 references, 5 figures

  17. On perturbation theory for distance dependent statistics.

    Energy Technology Data Exchange (ETDEWEB)

    Mashkevich, S V

    1994-12-31

    It is known that perturbation theory for anyons has to be modified near Bose statistics in order to get correct finite results. For ``distance dependent statistics`` or anyons with smeared flux tubes, perturbation theory is in principle applicable directly but gives results which hold for too small values of the statistical parameter and, in particular, are not valid as the flux tube radius tends to zero. In this paper we discuss the way to modify perturbation theory for this situation, which allows to obtain the appropriate results. (author). 6 refs.

  18. Solitonic Integrable Perturbations of Parafermionic Theories

    CERN Document Server

    Fernández-Pousa, C R; Hollowood, Timothy J; Miramontes, J L

    1997-01-01

    The quantum integrability of a class of massive perturbations of the parafermionic conformal field theories associated to compact Lie groups is established by showing that they have quantum conserved densities of scale dimension 2 and 3. These theories are integrable for any value of a continuous vector coupling constant, and they generalize the perturbation of the minimal parafermionic models by their first thermal operator. The classical equations-of-motion of these perturbed theories are the non-abelian affine Toda equations which admit (charged) soliton solutions whose semi-classical quantization is expected to permit the identification of the exact S-matrix of the theory.

  19. Critical behaviors of gravity under quantum perturbations

    Directory of Open Access Journals (Sweden)

    ZHANG Hongsheng

    2014-02-01

    Full Text Available Phase transition and critical phenomenon is a very interesting topic in thermodynamics and statistical mechanics. Gravity is believed to have deep and inherent relation to thermodynamics. Near the critical point,the perturbation becomes significant. Thus for ordinary matter (governed by interactions besides gravity the critical behavior will become very different if we ignore the perturbations around the critical point,such as mean field theory. We find that the critical exponents for RN-AdS spacetime keep the same values even when we consider the full quantum perturbations. This indicates a key difference between gravity and ordinary thermodynamic system.

  20. Analysis and Application of High Resolution Numerical Perturbation Algorithm for Convective-Diffusion Equation

    International Nuclear Information System (INIS)

    Gao Zhi; Shen Yi-Qing

    2012-01-01

    The high resolution numerical perturbation (NP) algorithm is analyzed and tested using various convective-diffusion equations. The NP algorithm is constructed by splitting the second order central difference schemes of both convective and diffusion terms of the convective-diffusion equation into upstream and downstream parts, then the perturbation reconstruction functions of the convective coefficient are determined using the power-series of grid interval and eliminating the truncated errors of the modified differential equation. The important nature, i.e. the upwind dominance nature, which is the basis to ensuring that the NP schemes are stable and essentially oscillation free, is firstly presented and verified. Various numerical cases show that the NP schemes are efficient, robust, and more accurate than the original second order central scheme

  1. Shielding of External Magnetic Perturbations By Torque In Rotating Tokamak Plasmas

    International Nuclear Information System (INIS)

    Park, Jong-Kyu; Boozer, Allen H.; Menard, Jonathan E.; Gerhardt, Stefan P.; Sabbagh, Steve A.

    2009-01-01

    The imposition of a nonaxisymmetric magnetic perturbation on a rotating tokamak plasma requires energy and toroidal torque. Fundamental electrodynamics implies that the torque is essentially limited and must be consistent with the external response of a plasma equilibrium (rvec f) = (rvec j) x (rvec B). Here magnetic measurements on National Spherical Torus eXperiment (NSTX) device are used to derive the energy and the torque, and these empirical evaluations are compared with theoretical calculations based on perturbed scalar pressure equilibria (rvec f) = (rvec (del))p coupled with the theory of nonambipolar transport. The measurement and the theory are consistent within acceptable uncertainties, but can be largely inconsistent when the torque is comparable to the energy. This is expected since the currents associated with the torque are ignored in scalar pressure equilibria, but these currents tend to shield the perturbation.

  2. Exact-to-precision generalized perturbation theory for source-driven systems

    International Nuclear Information System (INIS)

    Wang Congjian; Abdel-Khalik, Hany S.

    2011-01-01

    Highlights: ► We present a new development in higher order generalized perturbation theory. ► The method addresses the explosion in the flux phase space, input parameters, and responses. ► The method hybridizes first-order GPT and proper orthogonal decomposition snapshots method. ► A simplified 1D and realistic 2D assembly models demonstrate applicability of the method. ► The accuracy of the method is compared to exact direct perturbations and first-order GPT. - Abstract: Presented in this manuscript are new developments to perturbation theory which are intended to extend its applicability to estimate, with quantifiable accuracy, the exact variations in all responses calculated by the model with respect to all possible perturbations in the model's input parameters. The new developments place high premium on reducing the associated computational overhead in order to enable the use of perturbation theory in routine reactor design calculations. By way of examples, these developments could be employed in core simulation to accurately estimate the few-group cross-sections variations resulting from perturbations in neutronics and thermal-hydraulics core conditions. These variations are currently being described using a look-up table approach, where thousands of assembly calculations are performed to capture few-group cross-sections variations for the downstream core calculations. Other applications include the efficient evaluation of surrogates for applications that require repeated model runs such as design optimization, inverse studies, uncertainty quantification, and online core monitoring. The theoretical background of these developments applied to source-driven systems and supporting numerical experiments are presented in this manuscript. Extension to eigenvalue problems will be presented in a future article.

  3. Comparison of Perturbed Pathways in Two Different Cell Models for Parkinson's Disease with Structural Equation Model.

    Science.gov (United States)

    Pepe, Daniele; Do, Jin Hwan

    2015-12-16

    Increasing evidence indicates that different morphological types of cell death coexist in the brain of patients with Parkinson's disease (PD), but the molecular explanation for this is still under investigation. In this study, we identified perturbed pathways in two different cell models for PD through the following procedures: (1) enrichment pathway analysis with differentially expressed genes and the Reactome pathway database, and (2) construction of the shortest path model for the enriched pathway and detection of significant shortest path model with fitting time-course microarray data of each PD cell model to structural equation model. Two PD cell models constructed by the same neurotoxin showed different perturbed pathways. That is, one showed perturbation of three Reactome pathways, including cellular senescence, chromatin modifying enzymes, and chromatin organization, while six modules within metabolism pathway represented perturbation in the other. This suggests that the activation of common upstream cell death pathways in PD may result in various down-stream processes, which might be associated with different morphological types of cell death. In addition, our results might provide molecular clues for coexistence of different morphological types of cell death in PD patients.

  4. Stability under persistent perturbation by white noise

    International Nuclear Information System (INIS)

    Kalyakin, L

    2014-01-01

    Deterministic dynamical system which has an asymptotical stable equilibrium is considered under persistent perturbation by white noise. It is well known that if the perturbation does not vanish in the equilibrium position then there is not Lyapunov's stability. The trajectories of the perturbed system diverge from the equilibrium to arbitrarily large distances with probability 1 in finite time. New concept of stability on a large time interval is discussed. The length of interval agrees the reciprocal quantity of the perturbation parameter. The measure of stability is the expectation of the square distance from the trajectory till the equilibrium position. The method of parabolic equation is applied to both estimate the expectation and prove such stability. The main breakthrough is the barrier function derived for the parabolic equation. The barrier is constructed by using the Lyapunov function of the unperturbed system

  5. Inflation and the theory of cosmological perturbations

    International Nuclear Information System (INIS)

    Riotto, A.

    2003-01-01

    These lectures provide a pedagogical introduction to inflation and the theory of cosmological perturbations generated during inflation which are thought to be the origin of structure in the universe. (author)

  6. 't Hooft loops and perturbation theory

    CERN Document Server

    De Forcrand, Philippe; Noth, D; Forcrand, Philippe de; Lucini, Biagio; Noth, David

    2005-01-01

    We show that high-temperature perturbation theory describes extremely well the area law of SU(N) spatial 't Hooft loops, or equivalently the tension of the interface between different Z_N vacua in the deconfined phase. For SU(2), the disagreement between Monte Carlo data and lattice perturbation theory for sigma(T)/T^2 is less than 2%, down to temperatures O(10) T_c. For SU(N), N>3, the ratios of interface tensions, (sigma_k/sigma_1)(T), agree with perturbation theory, which predicts tiny deviations from the ratio of Casimirs, down to nearly T_c. In contrast, individual tensions differ markedly from the perturbative expression. In all cases, the required precision Monte Carlo measurements are made possible by a simple but powerful modification of the 'snake' algorithm.

  7. Isocurvature perturbations in the Ekpyrotic Universe

    International Nuclear Information System (INIS)

    Notari, A.; Riotto, A.

    2002-01-01

    The Ekpyrotic scenario assumes that our visible Universe is a boundary brane in a five-dimensional bulk and that the hot Big Bang occurs when a nearly supersymmetric five-brane travelling along the fifth dimension collides with our visible brane. We show that the generation of isocurvature perturbations is a generic prediction of the Ekpyrotic Universe. This is due to the interactions in the kinetic terms between the brane modulus parameterizing the position of the five-brane in the bulk and the dilaton and volume moduli. We show how to separate explicitly the adiabatic and isocurvature modes by performing a rotation in field space. Our results indicate that adiabatic and isocurvature perturbations might be cross-correlated and that curvature perturbations might be entirely seeded by isocurvature perturbations

  8. Simple Perturbation Example for Quantum Chemistry.

    Science.gov (United States)

    Goodfriend, P. L.

    1985-01-01

    Presents a simple example that illustrates various aspects of the Rayleigh-Schrodinger perturbation theory. The example is a particularly good one because it is straightforward and can be compared with both the exact solution and with experimental data. (JN)

  9. SHARP ENTRYWISE PERTURBATION BOUNDS FOR MARKOV CHAINS.

    Science.gov (United States)

    Thiede, Erik; VAN Koten, Brian; Weare, Jonathan

    For many Markov chains of practical interest, the invariant distribution is extremely sensitive to perturbations of some entries of the transition matrix, but insensitive to others; we give an example of such a chain, motivated by a problem in computational statistical physics. We have derived perturbation bounds on the relative error of the invariant distribution that reveal these variations in sensitivity. Our bounds are sharp, we do not impose any structural assumptions on the transition matrix or on the perturbation, and computing the bounds has the same complexity as computing the invariant distribution or computing other bounds in the literature. Moreover, our bounds have a simple interpretation in terms of hitting times, which can be used to draw intuitive but rigorous conclusions about the sensitivity of a chain to various types of perturbations.

  10. Renormalization scheme-invariant perturbation theory

    International Nuclear Information System (INIS)

    Dhar, A.

    1983-01-01

    A complete solution to the problem of the renormalization scheme dependence of perturbative approximants to physical quantities is presented. An equation is derived which determines any physical quantity implicitly as a function of only scheme independent variables. (orig.)

  11. Cosmological perturbations in the new Higgs inflation

    Energy Technology Data Exchange (ETDEWEB)

    Germani, Cristiano [Arnold Sommerfeld Center, Ludwig-Maximilians-University, Theresienstr, 37 80333 Muenchen (Germany); Kehagias, Alex, E-mail: cristiano.germani@lmu.de, E-mail: kehagias@central.ntua.gr [Physics Division, National Technical University of Athens, 15780 Zografou Campus, Athens (Greece)

    2010-05-01

    We study the cosmological perturbations created during the New Higgs inflationary phase. In the New Higgs Inflation, the Higgs boson is kinetically coupled to the Einstein tensor and only three perturbative degrees of freedom, a scalar and two tensorial (gravitational waves), propagate during Inflation. Scalar perturbations are found to match the latest WMAP-7yrs data within Standard Model Higgs parameters. Primordial gravitational waves also, although propagating with superluminal speed, are consistent with present data. Finally, we estimate the values of the parameter of the New Higgs Inflation in relation to the Higgs mass, the spectral index and amplitude of the primordial scalar perturbations showing that the unitarity bound of the theory is not violated.

  12. Prospects of inflation with perturbed throat geometry

    International Nuclear Information System (INIS)

    Ali, Amna; Chingangbam, R.; Panda, Sudhakar; Sami, M.

    2009-01-01

    We study brane inflation in a warped deformed conifold background that includes general possible corrections to the throat geometry sourced by coupling to the bulk of a compact Calabi-Yau space. We focus specifically, on the perturbation by chiral operator of dimension 3/2 in the CFT. We find that the effective potential in this case can give rise to required number of e-foldings and the spectral index n S consistent with observation. The tensor to scalar ratio of perturbations is generally very low in this scenario. The COBE normalization, however, poses certain difficulties which can be circumvented provided model parameters are properly fine tuned. We find the numerical values of parameters which can give rise to enough inflation, observationally consistent values of density perturbations, scalar to tensor ratio of perturbations and the spectral index n S .

  13. Discrete state perturbation theory via Green's functions

    International Nuclear Information System (INIS)

    Rubinson, W.

    1975-01-01

    The exposition of stationary-state perturbation theory via the Green's function method in Goldberger and Watson's Collision Theory is reworked in a way that makes explicit its mathematical basis. It is stressed that the theory consists of the construction of, and manipulations on, a mathematical identity. The perturbation series fall out of the identity almost immediately. The logical status of the method is commented on

  14. Algebraic renormalization. Perturbative renormalization, symmetries and anomalies

    International Nuclear Information System (INIS)

    Piguet, O.

    1995-01-01

    This book is an introduction to the algebraic method in the perturbative renormalization of relativistic quantum field theory. After a general introduction to renormalized perturbation theory the quantum action principle and Ward identities are described. Then Yang-Mills gauge theories are considered. Thereafter the BRS cohomology and descent equations are described. Then nonrenormalization theorems and topological field theories are considered. Finally an application to the bosonic string is described. (HSI)

  15. A new perturbative approach to QCD

    International Nuclear Information System (INIS)

    Pervushin, V.N.; Kallies, W.; Sarikov, N.A.

    1988-01-01

    For the description of bound states in QED and QCD the physical perturbation theory on the spatial components of the vector over the exact solution, defined by the time one, is proposed. It is shown this perturbation theory in QCD can be redefined so that it reproduces the main elements of hadron physics: confinement, spectroscopy of light and heavy quarkonia, dual-resonance amplitudes, chiral Lagrangians and the parton model

  16. Cylindrical dust acoustic waves with transverse perturbation

    International Nuclear Information System (INIS)

    Xue Jukui

    2003-01-01

    The nonlinear dust acoustic waves in dusty plasmas with the combined effects of bounded cylindrical geometry and the transverse perturbation are studied. Using the perturbation method, a cylindrical Kadomtsev-Petviashvili (CKP) equation that describes the dust acoustic waves is deduced for the first time. A particular solution of this CKP equation is also obtained. It is shown that the dust acoustic solitary waves can exist in the CKP equation

  17. The triangulation in a perturbed Friedmann universe

    International Nuclear Information System (INIS)

    Kasai, Masumi.

    1987-12-01

    A formula for the parallax distance in a general space-time is shown and it is applied to the linearly perturbed Friedmann universe. Its invariance under any coordinate-gauge transformations and any infinitesimal affine transformations is also shown. Then it is applied to the Einstein-de Sitter background model, and it is found that the perturbed space-time behaves as a Friedmann-like universe with the direction-dependent H 0 and q 0 . (author)

  18. Alternative perturbation approaches in classical mechanics

    International Nuclear Information System (INIS)

    Amore, Paolo; Raya, Alfredo; Fernandez, Francisco M

    2005-01-01

    We discuss two alternative methods, based on the Lindstedt-Poincare technique, for the removal of secular terms from the equations of perturbation theory. We calculate the period of an anharmonic oscillator by means of both approaches and show that one of them is more accurate for all values of the coupling constant. We believe that present discussion and comparison may be a suitable exercise for teaching perturbation theory in advanced undergraduate courses on classical mechanics

  19. Double soft theorem for perturbative gravity

    OpenAIRE

    Saha, Arnab

    2016-01-01

    Following up on the recent work of Cachazo, He and Yuan \\cite{arXiv:1503.04816 [hep-th]}, we derive the double soft graviton theorem in perturbative gravity. We show that the double soft theorem derived using CHY formula precisely matches with the perturbative computation involving Feynman diagrams. In particular, we find how certain delicate limits of Feynman diagrams play an important role in obtaining this equivalence.

  20. On perturbations of a quintom bounce

    International Nuclear Information System (INIS)

    Cai Yifu; Qiu Taotao; Zhang Xinmin; Brandenberger, Robert; Piao Yunsong

    2008-01-01

    A quintom universe with an equation of state crossing the cosmological constant boundary can provide a bouncing solution dubbed the quintom bounce and thus resolve the big bang singularity. In this paper, we investigate the cosmological perturbations of the quintom bounce both analytically and numerically. We find that the fluctuations in the dominant mode in the post-bounce expanding phase couple to the growing mode of the perturbations in the pre-bounce contracting phase

  1. Experimental investigation on the thermal properties of hydrogen jet flame and hot currents in the downstream region

    Energy Technology Data Exchange (ETDEWEB)

    Imamura, Tomohiko; Mogi, Toshio; Wada, Yuji; Horiguchi, Sadashige [Research Core for Explosion Safety, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569 (Japan); Hamada, Shota; Miyake, Atsumi; Ogawa, Terushige [Graduate School of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama 240-8501 (Japan)

    2008-07-15

    A series of experiments were conducted to understand the thermal hazards of hydrogen jet flames. In particular, we focused on the temperature properties of hot currents in the downstream region, because it was expected that this involved the most serious thermal hazards. The flame length and width depended on the nozzle diameter and the spouting pressure, namely, the mass flow rate, with similar dependences that were reported by other researchers. The temperature rise from ambient air along the trajectory depended on the balance of the flame length and the traveling distance from the flame tip. The position of the trajectory depended not only on the balance of flame length and the traveling distance, but also on the horizontal momentum induced by the spouting pressure. Empirical formulae for predicting the position and temperature rise of the trajectory were developed by the flame length, traveling distance, spouting pressure, and nozzle diameter as variables. (author)

  2. Downstream ecological effects of dams: A geomorphic perspective

    International Nuclear Information System (INIS)

    Ligon, F.K.; Dietrich, W.E.; Trush, W.J.

    1995-01-01

    The damming of a river changes the flow of water, sediment, nutrients, energy, and biota, interrupting and altering most of a river's ecological processes. This article discusses the importance of geomorphological analysis in river conservation and management. To illustrate how subtle geomorphological adjustments may profoundly influence the ecological relationships downstream from dames, three case studies are presented. Then a geomorphically based approach for assessing and possibly mitigating some of the environmental effects of dams by tailoring dam designed and operation is outlined. The cases are as follows: channel simplification and salmon decline on the McKenzie River in Oregon; Channel incision and reduced floodplain inundation on the Oconee river in Georgia; Increased stability of a braided river in New Zealand's south island. 41 refs., 10 figs., 1 tab

  3. Continuous downstream processing for high value biological products: A Review.

    Science.gov (United States)

    Zydney, Andrew L

    2016-03-01

    There is growing interest in the possibility of developing truly continuous processes for the large-scale production of high value biological products. Continuous processing has the potential to provide significant reductions in cost and facility size while improving product quality and facilitating the design of flexible multi-product manufacturing facilities. This paper reviews the current state-of-the-art in separations technology suitable for continuous downstream bioprocessing, focusing on unit operations that would be most appropriate for the production of secreted proteins like monoclonal antibodies. This includes cell separation/recycle from the perfusion bioreactor, initial product recovery (capture), product purification (polishing), and formulation. Of particular importance are the available options, and alternatives, for continuous chromatographic separations. Although there are still significant challenges in developing integrated continuous bioprocesses, recent technological advances have provided process developers with a number of attractive options for development of truly continuous bioprocessing operations. © 2015 Wiley Periodicals, Inc.

  4. Downstream and upstream extension of the House of Quality

    DEFF Research Database (Denmark)

    Holmen, Elsebeth; Kristensen, Preben Sander

    . The transformation processes and characteristics constituting this fan were based on the knowledge possessed by the company before entering into development interaction with suppliers. If it is these characteristics which are used to express the demands of the company in the subsequent interaction process, much......Executive summary 1. During 1993-94 the authors followed a product development process in a Danish butter cookie company. The process was structured according to the Quality Function Deployment technique House of Quality. Originally, the intention was to study the prototyping process that we...... a discussion in a diabetics end-user focus group. During a series of meetings, the production manager and the sales manager transformed attributes int characteristics and constructed Houses of Quality for a sugar-free cookie. 2. Downstream on its way to the end-user, the product passes through a chain of users...

  5. Mergers and acquisitions of downstream facilities by producing countries

    Energy Technology Data Exchange (ETDEWEB)

    Ligon, D.R.

    1988-01-01

    The author discusses a phenomenon that he calls the ''re-integration'' or ''re-coupling'' of the worldwide oil industry, as foreign, particularly OPEC, producers are becoming directly involved with downstream operations in their most important markets. This phenomenon already has produced some far-reaching consequences that will become even more important and pervasive in the near future. First, he describes the factors and logic that led to these arrangements. Next, he outlines some of their practical considerations and implications. While some of the market factors described are applicable to any non-integrated producer, he spends most of his time discussing OPEC and ''neo-OPEC'' producers such as Mexico. These are the people doing the deals and are therefore probably of greatest interest.

  6. The downstream externalities of harvesting rainwater in semi-arid watersheds: an Indian case study

    NARCIS (Netherlands)

    Bouma, J.A.; Biggs, T.W.; Bouwer, L.M.

    2011-01-01

    Water-related investment projects affect downstream water availability, and therefore should account for these externalities. Few projects do, however, owing to lack of awareness, lack of data and difficulty in linking upstream investments to downstream effects. This article assesses the downstream

  7. From gravel to sand. Downstream fining of bed sediments in the lower river Rhine

    NARCIS (Netherlands)

    Frings, R.M.

    2007-01-01

    A common characteristic of many rivers is the tendency for bed sediments to become finer in downstream direction. This phenomenon, which is generally known as downstream fining, has a strong effect on the morphologic and hydrodynamic behaviour of a river. The fundamental causes of downstream

  8. Operating multireservoir hydropower systems for downstream water quality

    International Nuclear Information System (INIS)

    Hayes, D.F.

    1990-01-01

    Hydropower reservoir operations often impact tailwater quality and water quality in the stream or river below the impoundment for many miles. Determining optimal operating strategies for a system of hydropower reservoirs involves solving a highly dimensional nonlinear, nonconvex optimization problem. This research adds the additional complexities of downstream water quality considerations within the optimization formulation to determine operating strategies for a system of hydropower reservoirs operating in series (tandem) or parallel. The formulation was used to determine operating strategies for six reservoirs of the upper Cumberland river basin in Tennessee and Kentucky. Significant dissolved oxygen (DO) violations occur just upstream of Nashville, Tennessee below Old Hickory dam during the months of August and September. Daily reservoir releases were determined for the period of June through September which would produce the maximum hydropower revenue while meeting downstream water quality objectives. Optimal releases for three operational strategies were compared to historical operations for the years 1985, 1986, and 1988. These strategies included: spilling as necessary to meet water quality criteria, near normal operation (minimal spills), and drawdown of reservoirs as necessary to meet criteria without spills. Optimization results showed an 8% to 15% hydropower loss may be necessary to meet water quality criteria through spills and a 2% to 9% improvement in DO below Old Hickory may be possible without significant spills. Results also showed that substantial increases in initial headwater elevations would be necessary to meet daily DO criteria and avoid spills. The optimal control theory algorithm used to solve the problem proved to be an efficient and robust solver of this large optimization problem

  9. PerturbationAnalyzer: a tool for investigating the effects of concentration perturbation on protein interaction networks.

    Science.gov (United States)

    Li, Fei; Li, Peng; Xu, Wenjian; Peng, Yuxing; Bo, Xiaochen; Wang, Shengqi

    2010-01-15

    The propagation of perturbations in protein concentration through a protein interaction network (PIN) can shed light on network dynamics and function. In order to facilitate this type of study, PerturbationAnalyzer, which is an open source plugin for Cytoscape, has been developed. PerturbationAnalyzer can be used in manual mode for simulating user-defined perturbations, as well as in batch mode for evaluating network robustness and identifying significant proteins that cause large propagation effects in the PINs when their concentrations are perturbed. Results from PerturbationAnalyzer can be represented in an intuitive and customizable way and can also be exported for further exploration. PerturbationAnalyzer has great potential in mining the design principles of protein networks, and may be a useful tool for identifying drug targets. PerturbationAnalyzer can be accessed from the Cytoscape web site http://www.cytoscape.org/plugins/index.php or http://biotech.bmi.ac.cn/PerturbationAnalyzer. Supplementary data are available at Bioinformatics online.

  10. High Pressure Biomass Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Pradeep K [Georgia Tech Research Corporation, Atlanta, GA (United States)

    2016-07-29

    According to the Billion Ton Report, the U.S. has a large supply of biomass available that can supplement fossil fuels for producing chemicals and transportation fuels. Agricultural waste, forest residue, and energy crops offer potential benefits: renewable feedstock, zero to low CO2 emissions depending on the specific source, and domestic supply availability. Biomass can be converted into chemicals and fuels using one of several approaches: (i) biological platform converts corn into ethanol by using depolymerization of cellulose to form sugars followed by fermentation, (ii) low-temperature pyrolysis to obtain bio-oils which must be treated to reduce oxygen content via HDO hydrodeoxygenation), and (iii) high temperature pyrolysis to produce syngas (CO + H2). This last approach consists of producing syngas using the thermal platform which can be used to produce a variety of chemicals and fuels. The goal of this project was to develop an improved understanding of the gasification of biomass at high pressure conditions and how various gasification parameters might affect the gasification behavior. Since most downstream applications of synags conversion (e.g., alcohol synthesis, Fischer-Tropsch synthesis etc) involve utilizing high pressure catalytic processes, there is an interest in carrying out the biomass gasification at high pressure which can potentially reduce the gasifier size and subsequent downstream cleaning processes. It is traditionally accepted that high pressure should increase the gasification rates (kinetic effect). There is also precedence from coal gasification literature from the 1970s that high pressure gasification would be a beneficial route to consider. Traditional approach of using thermogravimetric analyzer (TGA) or high-pressure themogravimetric analyzer (PTGA) worked well in understanding the gasification kinetics of coal gasification which was useful in designing high pressure coal gasification processes. However

  11. Stepping stability: effects of sensory perturbation

    Directory of Open Access Journals (Sweden)

    Krebs David E

    2005-05-01

    Full Text Available Abstract Background Few tools exist for quantifying locomotor stability in balance impaired populations. The objective of this study was to develop and evaluate a technique for quantifying stability of stepping in healthy people and people with peripheral (vestibular hypofunction, VH and central (cerebellar pathology, CB balance dysfunction by means a sensory (auditory perturbation test. Methods Balance impaired and healthy subjects performed a repeated bench stepping task. The perturbation was applied by suddenly changing the cadence of the metronome (100 beat/min to 80 beat/min at a predetermined time (but unpredictable by the subject during the trial. Perturbation response was quantified by computing the Euclidian distance, expressed as a fractional error, between the anterior-posterior center of gravity attractor trajectory before and after the perturbation was applied. The error immediately after the perturbation (Emax, error after recovery (Emin and the recovery response (Edif were documented for each participant, and groups were compared with ANOVA. Results Both balance impaired groups exhibited significantly higher Emax (p = .019 and Emin (p = .028 fractional errors compared to the healthy (HE subjects, but there were no significant differences between CB and VH groups. Although response recovery was slower for CB and VH groups compared to the HE group, the difference was not significant (p = .051. Conclusion The findings suggest that individuals with balance impairment have reduced ability to stabilize locomotor patterns following perturbation, revealing the fragility of their impairment adaptations and compensations. These data suggest that auditory perturbations applied during a challenging stepping task may be useful for measuring rehabilitation outcomes.

  12. Perturbations of ultralight vector field dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Cembranos, J.A.R.; Maroto, A.L.; Jareño, S.J. Núñez [Departamento de Física Teórica I, Universidad Complutense de Madrid, E-28040 Madrid (Spain)

    2017-02-13

    We study the dynamics of cosmological perturbations in models of dark matter based on ultralight coherent vector fields. Very much as for scalar field dark matter, we find two different regimes in the evolution: for modes with k{sup 2}≪Hma, we have a particle-like behaviour indistinguishable from cold dark matter, whereas for modes with k{sup 2}≫Hma, we get a wave-like behaviour in which the sound speed is non-vanishing and of order c{sub s}{sup 2}≃k{sup 2}/m{sup 2}a{sup 2}. This implies that, also in these models, structure formation could be suppressed on small scales. However, unlike the scalar case, the fact that the background evolution contains a non-vanishing homogeneous vector field implies that, in general, the evolution of the three kinds of perturbations (scalar, vector and tensor) can no longer be decoupled at the linear level. More specifically, in the particle regime, the three types of perturbations are actually decoupled, whereas in the wave regime, the three vector field perturbations generate one scalar-tensor and two vector-tensor perturbations in the metric. Also in the wave regime, we find that a non-vanishing anisotropic stress is present in the perturbed energy-momentum tensor giving rise to a gravitational slip of order (Φ−Ψ)/Φ∼c{sub s}{sup 2}. Moreover in this regime the amplitude of the tensor to scalar ratio of the scalar-tensor modes is also h/Φ∼c{sub s}{sup 2}. This implies that small-scale density perturbations are necessarily associated to the presence of gravity waves in this model. We compare their spectrum with the sensitivity of present and future gravity waves detectors.

  13. Acoustic anisotropic wavefields through perturbation theory

    KAUST Repository

    Alkhalifah, Tariq Ali

    2013-09-01

    Solving the anisotropic acoustic wave equation numerically using finite-difference methods introduces many problems and media restriction requirements, and it rarely contributes to the ability to resolve the anisotropy parameters. Among these restrictions are the inability to handle media with η<0 and the presence of shear-wave artifacts in the solution. Both limitations do not exist in the solution of the elliptical anisotropic acoustic wave equation. Using perturbation theory in developing the solution of the anisotropic acoustic wave equation allows direct access to the desired limitation-free solutions, that is, solutions perturbed from the elliptical anisotropic background medium. It also provides a platform for parameter estimation because of the ability to isolate the wavefield dependency on the perturbed anisotropy parameters. As a result, I derive partial differential equations that relate changes in the wavefield to perturbations in the anisotropy parameters. The solutions of the perturbation equations represented the coefficients of a Taylor-series-type expansion of the wavefield as a function of the perturbed parameter, which is in this case η or the tilt of the symmetry axis. The expansion with respect to the symmetry axis allows use of an acoustic transversely isotropic media with a vertical symmetry axis (VTI) kernel to estimate the background wavefield and the corresponding perturbation coefficients. The VTI extrapolation kernel is about one-fourth the cost of the transversely isotropic model with a tilt in the symmetry axis kernel. Thus, for a small symmetry axis tilt, the cost of migration using a first-order expansion can be reduced. The effectiveness of the approach was demonstrated on the Marmousi model.

  14. Pollutant Transport and Fate: Relations Between Flow-paths and Downstream Impacts of Human Activities

    Science.gov (United States)

    Thorslund, J.; Jarsjo, J.; Destouni, G.

    2017-12-01

    The quality of freshwater resources is increasingly impacted by human activities. Humans also extensively change the structure of landscapes, which may alter natural hydrological processes. To manage and maintain freshwater of good water quality, it is critical to understand how pollutants are released into, transported and transformed within the hydrological system. Some key scientific questions include: What are net downstream impacts of pollutants across different hydroclimatic and human disturbance conditions, and on different scales? What are the functions within and between components of the landscape, such as wetlands, on mitigating pollutant load delivery to downstream recipients? We explore these questions by synthesizing results from several relevant case study examples of intensely human-impacted hydrological systems. These case study sites have been specifically evaluated in terms of net impact of human activities on pollutant input to the aquatic system, as well as flow-path distributions trough wetlands as a potential ecosystem service of pollutant mitigation. Results shows that although individual wetlands have high retention capacity, efficient net retention effects were not always achieved at a larger landscape scale. Evidence suggests that the function of wetlands as mitigation solutions to pollutant loads is largely controlled by large-scale parallel and circular flow-paths, through which multiple wetlands are interconnected in the landscape. To achieve net mitigation effects at large scale, a large fraction of the polluted large-scale flows must be transported through multiple connected wetlands. Although such large-scale flow interactions are critical for assessing water pollution spreading and fate through the landscape, our synthesis shows a frequent lack of knowledge at such scales. We suggest ways forward for addressing the mismatch between the large scales at which key pollutant pressures and water quality changes take place and the

  15. Simple preparation of plant epidermal tissue for laser microdissection and downstream quantitative proteome and carbohydrate analysis

    Directory of Open Access Journals (Sweden)

    Christian eFalter

    2015-03-01

    Full Text Available The outwardly directed cell wall and associated plasma membrane of epidermal cells represent the first layers of plant defense against intruding pathogens. Cell wall modifications and the formation of defense structures at sites of attempted pathogen penetration are decisive for plant defense. A precise isolation of these stress-induced structures would allow a specific analysis of regulatory mechanism and cell wall adaption. However, methods for large-scale epidermal tissue preparation from the model plant Arabidopsis thaliana, which would allow proteome and cell wall analysis of complete, laser-microdissected epidermal defense structures, have not been provided. We developed the adhesive tape – liquid cover glass technique for simple leaf epidermis preparation from A. thaliana, which is also applicable on grass leaves. This method is compatible with subsequent staining techniques to visualize stress-related cell wall structures, which were precisely isolated from the epidermal tissue layer by laser microdissection coupled to laser pressure catapulting. We successfully demonstrated that these specific epidermal tissue samples could be used for quantitative downstream proteome and cell wall analysis. The development of the adhesive tape – liquid cover glass technique for simple leaf epidermis preparation and the compatibility to laser microdissection and downstream quantitative analysis opens new possibilities in the precise examination of stress- and pathogen-related cell wall structures in epidermal cells. Because the developed tissue processing is also applicable on A. thaliana, well-established, model pathosystems that include the interaction with powdery mildews can be studied to determine principal regulatory mechanisms in plant-microbe interaction with their potential outreach into crop breeding.

  16. Perturbation theory in Lagrangian hydrodynamics for a cosmological fluid with velocity dispersion

    International Nuclear Information System (INIS)

    Tatekawa, Takayuki; Suda, Momoko; Maeda, Kei-ichi; Morita, Masaaki; Anzai, Hiroki

    2002-01-01

    We extensively develop a perturbation theory for nonlinear cosmological dynamics, based on the Lagrangian description of hydrodynamics. We solve the hydrodynamic equations for a self-gravitating fluid with pressure, given by a polytropic equation of state, using a perturbation method up to second order. This perturbative approach is an extension of the usual Lagrangian perturbation theory for a pressureless fluid, in view of the inclusion of the pressure effect, which should be taken into account on the occurrence of velocity dispersion. We obtain the first-order solutions in generic background universes and the second-order solutions in a wider range of a polytropic index, whereas our previous work gives the first-order solutions only in the Einstein-de Sitter background and the second-order solutions for the polytropic index 4/3. Using the perturbation solutions, we present illustrative examples of our formulation in one- and two-dimensional systems, and discuss how the evolution of inhomogeneities changes for the variation of the polytropic index

  17. Nucleation at high pressure I: Theoretical considerations.

    NARCIS (Netherlands)

    Luijten, C.C.M.; Dongen, van M.E.H.

    1999-01-01

    A theoretical approach is presented that accounts for the influence of high pressure background gases on the vapor-to-liquid nucleation process. The key idea is to treat the carrier gas pressure as a perturbation parameter that modifies the properties of the nucleating substance. Two important

  18. Application of linear and higher perturbation theory in reactor physics

    International Nuclear Information System (INIS)

    Woerner, D.

    1978-01-01

    For small perturbations in the material composition of a reactor according to the first approximation of perturbation theory the eigenvalue perturbation is proportional to the perturbation of the system. This assumption is true for the neutron flux not influenced by the perturbance. The two-dimensional code LINESTO developed for such problems in this paper on the basis of diffusion theory determines the relative change of the multiplication constant. For perturbations varying the neutron flux in the space of energy and position the eigenvalue perturbation is also influenced by this changed neutron flux. In such cases linear perturbation theory yields larger errors. Starting from the methods of calculus of variations there is additionally developed in this paper a perturbation method of calculation permitting in a quick and simple manner to assess the influence of flux perturbation on the eigenvalue perturbation. While the source of perturbations is evaluated in isotropic approximation of diffusion theory the associated inhomogeneous equation may be used to determine the flux perturbation by means of diffusion or transport theory. Possibilities of application and limitations of this method are studied in further systematic investigations on local perturbations. It is shown that with the integrated code system developed in this paper a number of local perturbations may be checked requiring little computing time. With it flux perturbations in first approximation and perturbations of the multiplication constant in second approximation can be evaluated. (orig./RW) [de

  19. Behavior of medial gastrocnemius motor units during postural reactions to external perturbations after stroke.

    Science.gov (United States)

    Pollock, C L; Ivanova, T D; Hunt, M A; Garland, S J

    2015-10-01

    This study investigated the behavior of medial gastrocnemius (GM) motor units (MU) during external perturbations in standing in people with chronic stroke. GM MUs were recorded in standing while anteriorly-directed perturbations were introduced by applying loads of 1% body mass (BM) at the pelvis every 25-40s until 5% BM was maintained. Joint kinematics, surface electromyography (EMG), and force platform measurements were assessed. Although external loads caused a forward progression of the anterior-posterior centre of pressure (APCOP), people with stroke decreased APCOP velocity and centre of mass (COM) velocity immediately following the highest perturbations, thereby limiting movement velocity in response to perturbations. MU firing rate did not increase with loading but the GM EMG magnitude increased, reflecting MU recruitment. MU inter spike interval (ISI) during the dynamic response was negatively correlated with COM velocity and hip angular velocity. The GM utilized primarily MU recruitment to maintain standing during external perturbations. The lack of MU firing rate modulation occurred with a change in postural central set. However, the relationship of MU firing rate with kinematic variables suggests underlying long-loop responses may be somewhat intact after stroke. People with stroke demonstrate alterations in postural control strategies which may explain MU behavior with external perturbations. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  20. Groundwater-Surface Water Interactions and Downstream Transport of Water, Heat, and Solutes in a Hydropeaked River

    Science.gov (United States)

    Ferencz, S. B.; Cardenas, M. B.; Neilson, B. T.; Watson, J.

    2017-12-01

    A majority of the world's largest river systems are regulated by dams. In addition to being used for water resources management and flood prevention, many large dams are also used for hydroelectric power generation. In the United States, dams account for 7% of domestic electricity, and hydropower accounts for 16% of worldwide electricity production. To help meet electricity demand during peak usage times, hydropower utilities often increase their releases of water during high demand periods. This practice, termed hydropeaking, can cause large transient flow regimes downstream of hydroelectric dams. These transient flow increases can result in order of magnitude daily fluctuations in discharge, and the released water can have different thermal and chemical properties than ambient river water. As hydropeaking releases travel downstream, the temporary rise in stage and increase in discharge can enhance surface water-groundwater (SW-GW) exchange between the river and its alluvial aquifer. This dam-induced SW-GW exchange, combined with hydrodynamic attenuation and heat exchange processes, result in complex responses downstream. The dam-regulated Lower Colorado River downstream of Austin, TX was used as a natural laboratory to observe SW-GW interactions and downstream transport of water, heat, and solutes under hydropeaking conditions. To characterize SW-GW interactions, well transects were installed in the banks of the river to observe exchanges between the river and alluvial aquifer. The well transects were installed at three different distances from the dam (15km, 35km, and 80km). At each well transect conductivity, temperature, and pressure sensors were deployed in the monitoring wells and in the channel. Additional conductivity and temperature sensors were deployed along the study reach to provide a more detailed record of heat and solute transport during hydropeaking releases. The field data spans over two months of daily dam releases that were punctuated by two

  1. Corrosion impact of reductant on DWPF and downstream facilities

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J. I. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Imrich, K. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jantzen, C. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murphy, T. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Wilderman, J. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-12-01

    Glycolic acid is being evaluated as an alternate reductant in the preparation of high level waste for the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). During processing, the glycolic acid is not completely consumed and small quantities of the glycolate anion are carried forward to other high level waste (HLW) facilities. The impact of the glycolate anion on the corrosion of the materials of construction throughout the waste processing system has not been previously evaluated. A literature review had revealed that corrosion data in glycolate-bearing solution applicable to SRS systems were not available. Therefore, testing was recommended to evaluate the materials of construction of vessels, piping and components within DWPF and downstream facilities. The testing, conducted in non-radioactive simulants, consisted of both accelerated tests (electrochemical and hot-wall) with coupons in laboratory vessels and prototypical tests with coupons immersed in scale-up and mock-up test systems. Eight waste or process streams were identified in which the glycolate anion might impact the performance of the materials of construction. These streams were 70% glycolic acid (DWPF feed vessels and piping), SRAT/SME supernate (Chemical Processing Cell (CPC) vessels and piping), DWPF acidic recycle (DWPF condenser and recycle tanks and piping), basic concentrated recycle (HLW tanks, evaporators, and transfer lines), salt processing (ARP, MCU, and Saltstone tanks and piping), boric acid (MCU separators), and dilute waste (HLW evaporator condensate tanks and transfer line and ETF components). For each stream, high temperature limits and worst-case glycolate concentrations were identified for performing the recommended tests. Test solution chemistries were generally based on analytical results of actual waste samples taken from the various process facilities or of prototypical simulants produced in the laboratory. The materials of construction for most vessels

  2. Local perturbations perturb—exponentially–locally

    International Nuclear Information System (INIS)

    De Roeck, W.; Schütz, M.

    2015-01-01

    We elaborate on the principle that for gapped quantum spin systems with local interaction, “local perturbations [in the Hamiltonian] perturb locally [the groundstate].” This principle was established by Bachmann et al. [Commun. Math. Phys. 309, 835–871 (2012)], relying on the “spectral flow technique” or “quasi-adiabatic continuation” [M. B. Hastings, Phys. Rev. B 69, 104431 (2004)] to obtain locality estimates with sub-exponential decay in the distance to the spatial support of the perturbation. We use ideas of Hamza et al. [J. Math. Phys. 50, 095213 (2009)] to obtain similarly a transformation between gapped eigenvectors and their perturbations that is local with exponential decay. This allows to improve locality bounds on the effect of perturbations on the low lying states in certain gapped models with a unique “bulk ground state” or “topological quantum order.” We also give some estimate on the exponential decay of correlations in models with impurities where some relevant correlations decay faster than one would naively infer from the global gap of the system, as one also expects in disordered systems with a localized groundstate

  3. Mode coupling of Schwarzschild perturbations: Ringdown frequencies

    International Nuclear Information System (INIS)

    Pazos, Enrique; Brizuela, David; Martin-Garcia, Jose M.; Tiglio, Manuel

    2010-01-01

    Within linearized perturbation theory, black holes decay to their final stationary state through the well-known spectrum of quasinormal modes. Here we numerically study whether nonlinearities change this picture. For that purpose we study the ringdown frequencies of gauge-invariant second-order gravitational perturbations induced by self-coupling of linearized perturbations of Schwarzschild black holes. We do so through high-accuracy simulations in the time domain of first and second-order Regge-Wheeler-Zerilli type equations, for a variety of initial data sets. We consider first-order even-parity (l=2, m=±2) perturbations and odd-parity (l=2, m=0) ones, and all the multipoles that they generate through self-coupling. For all of them and all the initial data sets considered we find that--in contrast to previous predictions in the literature--the numerical decay frequencies of second-order perturbations are the same ones of linearized theory, and we explain the observed behavior. This would indicate, in particular, that when modeling or searching for ringdown gravitational waves, appropriately including the standard quasinormal modes already takes into account nonlinear effects.

  4. Supersymmetry restoration in superstring perturbation theory

    International Nuclear Information System (INIS)

    Sen, Ashoke

    2015-01-01

    Superstring perturbation theory based on the 1PI effective theory approach has been useful for addressing the problem of mass renormalization and vacuum shift. We derive Ward identities associated with space-time supersymmetry transformation in this approach. This leads to a proof of the equality of renormalized masses of bosons and fermions and identities relating fermionic amplitudes to bosonic amplitudes after taking into account the effect of mass renormalization. This also relates unbroken supersymmetry to a given order in perturbation theory to absence of tadpoles of massless scalars to higher order. The results are valid at the perturbative vacuum as well as in the shifted vacuum when the latter describes the correct ground state of the theory. We apply this to SO(32) heterotic string theory on Calabi-Yau 3-folds where a one loop Fayet-Iliopoulos term apparently breaks supersymmetry at one loop, but analysis of the low energy effective field theory indicates that there is a nearby vacuum where supersymmetry is restored. We explicitly prove that the perturbative amplitudes of this theory around the shifted vacuum indeed satisfy the Ward identities associated with unbroken supersymmetry. We also test the general arguments by explicitly verifying the equality of bosonic and fermionic masses at one loop order in the shifted vacuum, and the appearance of two loop dilaton tadpole in the perturbative vacuum where supersymmetry is expected to be broken.

  5. Supersymmetry restoration in superstring perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Ashoke [Harish-Chandra Research Institute,Chhatnag Road, Jhusi, Allahabad 211019 (India)

    2015-12-14

    Superstring perturbation theory based on the 1PI effective theory approach has been useful for addressing the problem of mass renormalization and vacuum shift. We derive Ward identities associated with space-time supersymmetry transformation in this approach. This leads to a proof of the equality of renormalized masses of bosons and fermions and identities relating fermionic amplitudes to bosonic amplitudes after taking into account the effect of mass renormalization. This also relates unbroken supersymmetry to a given order in perturbation theory to absence of tadpoles of massless scalars to higher order. The results are valid at the perturbative vacuum as well as in the shifted vacuum when the latter describes the correct ground state of the theory. We apply this to SO(32) heterotic string theory on Calabi-Yau 3-folds where a one loop Fayet-Iliopoulos term apparently breaks supersymmetry at one loop, but analysis of the low energy effective field theory indicates that there is a nearby vacuum where supersymmetry is restored. We explicitly prove that the perturbative amplitudes of this theory around the shifted vacuum indeed satisfy the Ward identities associated with unbroken supersymmetry. We also test the general arguments by explicitly verifying the equality of bosonic and fermionic masses at one loop order in the shifted vacuum, and the appearance of two loop dilaton tadpole in the perturbative vacuum where supersymmetry is expected to be broken.

  6. Landscape-based upstream-downstream prevalence of land-use/cover change drivers in southeastern rift escarpment of Ethiopia.

    Science.gov (United States)

    Temesgen, Habtamu; Wu, Wei; Legesse, Abiyot; Yirsaw, Eshetu; Bekele, Belew

    2018-02-23

    Characterized by high population density on a rugged topography, the Gedeo-Abaya landscape dominantly contains a multi-strata traditional agroforests showing the insight of Gedeo farmers on natural resource management practices. Currently, this area has been losing its resilience and is becoming unable to sustain its inhabitants. Based on both RS-derived and GIS-computed land-use/cover changes (LUCC) as well as socioeconomic validations, this article explored the LUCC and agroecological-based driver patterns in Gedeo-Abaya landscape from 1986 to 2015. A combination of geo-spatial technology and cross-sectional survey design were employed to detect the drivers behind these changes. The article discussed that LUCC and the prevalence of drivers are highly diverse and vary throughout agroecological zones. Except for the population, most downstream top drivers are perceived as insignificant in the upstream region and vice versa. In the downstream, land-use/cover (LUC) classes are more dynamic, diverse, and challenged by nearly all anticipated drivers than are upstream ones. Agroforestry LUC has been increasing (by 25% of its initial cover) and is becoming the predominant cover type, although socioeconomic analysis and related findings show its rapid LUC modification. A rapid reduction of woodland/shrubland (63%) occurred in the downstream, while wetland/marshy land increased threefold (158%), from 1986 to 2015 with annual change rates of - 3.7 and + 6%, respectively. Land degradation induced by changes in land use is a serious problem in Africa, especially in the densely populated sub-Saharan regions such as Ethiopia (FAO 2015). Throughout the landscape, LUCC is prominently affecting land-use system of the study landscape due to population pressure in the upstream region and drought/rainfall variability, agribusiness investment, and charcoaling in the downstream that necessitate urgent action.

  7. Optimal random perturbations for stochastic approximation using a simultaneous perturbation gradient approximation

    DEFF Research Database (Denmark)

    Sadegh, Payman; Spall, J. C.

    1998-01-01

    simultaneous perturbation approximation to the gradient based on loss function measurements. SPSA is based on picking a simultaneous perturbation (random) vector in a Monte Carlo fashion as part of generating the approximation to the gradient. This paper derives the optimal distribution for the Monte Carlo...

  8. Stability of vertical posture explored with unexpected mechanical perturbations: synergy indices and motor equivalence.

    Science.gov (United States)

    Yamagata, Momoko; Falaki, Ali; Latash, Mark L

    2018-03-21

    We explored the relations between indices of mechanical stability of vertical posture and synergy indices under unexpected perturbations. The main hypotheses predicted higher posture-stabilizing synergy indices and higher mechanical indices of center of pressure stability during perturbations perceived by subjects as less challenging. Healthy subjects stood on a force platform and held in fully extended arms a bar attached to two loads acting downward and upward. One of the loads was unexpectedly released by the experimenter causing a postural perturbations. In different series, subjects either knew or did not know which of the two loads would be released. Forward perturbations were perceived as more challenging and accompanied by co-activation patterns among the main agonist-antagonist pairs. Backward perturbation led to reciprocal muscle activation patterns and was accompanied by indices of mechanical stability and of posture-stabilizing synergy which indicated higher stability. Changes in synergy indices were observed as early as 50-100 ms following the perturbation reflecting involuntary mechanisms. In contrast, predictability of perturbation direction had weak or no effect on mechanical and synergy indices of stability. These observations are interpreted within a hierarchical scheme of synergic control of motor tasks and a hypothesis on the control of movements with shifts of referent coordinates. The findings show direct correspondence between stability indices based on mechanics and on the analysis of multi-muscle synergies. They suggest that involuntary posture-stabilizing mechanisms show synergic organization. They also show that predictability of perturbation direction has strong effects on anticipatory postural adjustment but not corrective adjustments. We offer an interpretation of co-activation patterns that questions their contribution to postural stability.

  9. Downstream process development in biotechnological itaconic acid manufacturing.

    Science.gov (United States)

    Magalhães, Antonio Irineudo; de Carvalho, Júlio Cesar; Medina, Jesus David Coral; Soccol, Carlos Ricardo

    2017-01-01

    Itaconic acid is a promising chemical that has a wide range of applications and can be obtained in large scale using fermentation processes. One of the most important uses of this biomonomer is the environmentally sustainable production of biopolymers. Separation of itaconic acid from the fermented broth has a considerable impact in the total production cost. Therefore, optimization and high efficiency downstream processes are technological challenges to make biorefineries sustainable and economically viable. This review describes the current state of the art in recovery and purification for itaconic acid production via bioprocesses. Previous studies on the separation of itaconic acid relying on operations such as crystallization, precipitation, extraction, electrodialysis, diafiltration, pertraction, and adsorption. Although crystallization is a typical method of itaconic acid separation from fermented broth, other methods such as membrane separation and reactive extraction are promising as a recovery steps coupled to the fermentation, potentially enhancing the overall process yield. Another approach is adsorption in fixed bed columns, which efficiently separates itaconic acid. Despite recent advances in separation and recovery methods, there is still space for improvement in IA recovery and purification.

  10. Simulation of hanging dams downstream of Ossauskoski power plant

    Energy Technology Data Exchange (ETDEWEB)

    Aaltonen, J.; Huokuna, M. [Finnish Environment Inst., Helsinki (Finland); Severinkangas, K.; Talvensaari, M. [Kemijoki Oy, Rovaniemi (Finland)

    2008-07-01

    Sixteen power plants have been constructed along Finland's Kemijoki River for hydroelectric power production. The Ossauskoski facility has recently undergone major renovations and upgrade, making it the sixth largest hydroelectric power plant in Finland, with a new capacity of 124 MW and an annual energy output of 501 GWh. The increase in power output and discharge may cause changes in ice conditions downstream of the power plant. The section of the river is already subjected to frazil ice problems and hanging dam formation. Discharges and adverse effects of frazil ice phenomena are likely to increase due to climate change, resulting in harm for hydropower production and the environment, particularly in flow regulated rivers where winter discharges are higher than natural discharges. As such, a study was launched to investigate a dredge plan suggested by by the electric utility Kemijoki Oy. The project involved mapping the river bed topography to identify the location and extent of hanging dams. A sounding device and ground penetrating radar was used to find the thaw regions in the ice cover. The JJT numerical river ice model was effectively used to study the effect of hanging dams on water levels. However, the ice bridging phenomena was not modelled in a reliable way by the JJT model and will be modelled in the future using the CRISSP2D numerical model. 5 refs., 11 figs.

  11. Energy taxes and subsidies downstream: transparency and dissemination

    International Nuclear Information System (INIS)

    Aissaour, A.

    2001-01-01

    The reasons why governments levy taxes are discussed with special reference to the energy sector. The article focuses on the quantitative aspect of policies and gives a guide to the relevant statistical sources. It summarises the basis of taxes and subsidies and discusses the incidence of energy taxation together with the structure of taxes and subsidies in energy downstream. It reviews the main sources of data and issues highlighted by published statistics and the impact of taxes levied on the consumption of energy products and other taxes (e.g. VAT) which directly affect end-user prices. Production-based levies such as royalties, petroleum revenue taxes, windfall taxes and import and export taxes on fuels are not discussed. The paper is presented under the sub-headings of (i) theoretical foundations in a nutshell; (ii) the incidence of taxation; (iii) the structure and main features of energy taxation (iv) base rate and level of taxation (v) sources of data and methods and (vi) observability and comparability

  12. Gellan Gum: Fermentative Production, Downstream Processing and Applications

    Directory of Open Access Journals (Sweden)

    Ishwar B. Bajaj

    2007-01-01

    Full Text Available The microbial exopolysaccharides are water-soluble polymers secreted by microorganisms during fermentation. The biopolymer gellan gum is a relatively recent addition to the family of microbial polysaccharides that is gaining much importance in food, pharmaceutical and chemical industries due to its novel properties. It is commercially produced by C. P. Kelco in Japan and the USA. Further research and development in biopolymer technology is expected to expand its use. This article presents a critical review of the available information on the gellan gum synthesized by Sphingomonas paucimobilis with special emphasis on its fermentative production and downstream processing. Rheological behaviour of fermentation broth during fermentative production of gellan gum and problems associated with mass transfer have been addressed. Information on the biosynthetic pathway of gellan gum, enzymes and precursors involved in gellan gum production and application of metabolic engineering for enhancement of yield of gellan gum has been specified. Characteristics of gellan gum with respect to its structure, physicochemical properties, rheology of its solutions and gel formation behaviour are discussed. An attempt has also been made to review the current and potential applications of gellan gum in food, pharmaceutical and other industries.

  13. Glomerular prostaglandins modulate vascular reactivity of the downstream efferent arterioles.

    Science.gov (United States)

    Arima, S; Ren, Y; Juncos, L A; Carretero, O A; Ito, S

    1994-03-01

    The balance of vascular resistance in afferent (Af-) and efferent arterioles (Ef-Arts) is a crucial factor that determines glomerular hemodynamics. We have recently reported that when Ef-Arts were perfused from the distal end of the Af-Art through the glomerulus (orthograde perfusion; OP), both angiotensin II (Ang II) and norepinephrine (NE) induced much weaker constriction than they did when Ef-Arts were perfused from the distal end (retrograde perfusion; RP). This difference was not affected by inhibiting synthesis of nitric oxide. In the present study, we tested the hypothesis that glomerular prostaglandins (PGs) may modulate vascular reactivity of the downstream Ef-Art. In addition, we examined the possible modulatory role of PGs in the Af-Art responses to Ang II or NE. Both Ang II and NE caused dose-dependent constriction of Ef-Arts with either OP or RP; however, the constriction was stronger in RP. At 10(-8) M, Ang II decreased Ef-Art diameter by 35 +/- 3.5% in OP (N = 9) compared to 73 +/- 3.9% in RP (N = 5), while 10(-6) M NE decreased the diameter by 25 +/- 3.6% in OP (N = 9) compared to 62 +/- 7.2% in RP (N = 5). Pretreatment with 5 x 10(-5) M indomethacin (Indo) did not alter basal diameter with either method of perfusion.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Flume experiments on scour downstream of wood stream restoration structures

    Science.gov (United States)

    Pagliara, Stefano; Kurdistani, Sahameddin Mahmoudi

    2017-02-01

    River restoration aims to improve physical natural form and processes of a river. Techniques to control the riverbed, stabilize channel alignment, protect stream banks, and rebuild the natural habitat are an important part of river restoration projects. Rivers can be stabilized and habitat restored through techniques such as rebuilding meanders and pool-riffle sequences and managing large wood. Structures that limit channel width to accelerate the normal flows through the constricted section are referred to as stream deflectors. Single-wing, double-wing and triangular deflectors are the most commonly used types of this measure. Log-frame deflectors consist of a triangular log frame filled with rock. Deflector constructions singly or in series in low gradient meandering streams, divert base flows toward the center of the channel and, under certain conditions, increase the depth and velocity of flow thereby creating scour pools and enhancing fish habitat. Scour characteristics and morphologies downstream of log-frame deflectors have been analyzed at the hydraulic laboratory of the University of Pisa. All experiments have been carried out in clear water conditions. The results showed that the tailwater depth plays an important role on scour characteristics. In addition, it was experimentally proven that using log-frame deflectors instead of log-deflectors result in a better river bank protection. In this case, for all the tested hydraulic conditions, the scour hole never occurred close to the channel bank. Useful empirical relationships have been proposed in order to evaluate the main features of the scour geometry.

  15. Incidental potable water reuse in a Catalonian basin: living downstream

    Directory of Open Access Journals (Sweden)

    R. Mujeriego

    2017-09-01

    Full Text Available A preliminary assessment of incidental potable water reuse (IPR in the Llobregat River basin has been conducted by estimating the dilution factor of treated effluent discharges upstream of six river flow measurement sections. IPR in the Llobregat River basin is an everyday occurrence, because of the systematic discharge of treated effluents upstream of river sections used as drinking water sources. Average river flows at the Sant Joan Despí measurement section increased from 400,000 m3/d (2007 to 864,000 m3/d (2008 and to 931,000 m3/d (2013, while treated effluent discharges upstream of that section ranged from 109,000 m3/d to 114,000 m3/d in those years. The highest degree of IPR occurs downstream of the Abrera and Sant Joan Despí flow measurement sections, from where about half of the drinking water supplied to the Barcelona Metropolitan Area is abstracted. Based on average annual flows, the likelihood that drinking water produced from that river stretch contained treated effluent varied from 25% (2007 to 13% (2008 and to 12% (2013. Water agencies and drinking water production utilities have strived for decades to ensure that drinking water production satisfies applicable quality requirements and provides the required public health protection.

  16. Downstream Processing, Formulation Development and Antithrombotic Evaluation of Microbial Nattokinase.

    Science.gov (United States)

    Kapoor, Rohit; Harde, Harshad; Jain, Sanyog; Panda, Amulya Kumar; Panda, Bibhu Prasad

    2015-07-01

    The present research work describes the downstreaming of nattokinase (NK) produced by Bacillus subtilis under solid state fermentation; and the role of efficient oral formulation of purified NK in the management of thrombotic disorders. Molecular weight of purified NK was estimated to be 28 kDa with specific activity of 504.4 FU/mg. Acid stable nattokinase loaded chitosan nanoparticles (sNLCN) were fabricated for oral delivery of this enzyme. Box-Behnken design (BBD) was employed to investigate and validate the effect of process (independent) variables on the quality attributes (dependent variables) of nanoparticles. The integrity, conformational stability and preservation of fibrinolytic activity of NK (in both free and sNLCN forms) were established by SDS-PAGE, CD analysis and in vitro clot lytic examination, respectively. A 'tail thrombosis model' demonstrated significant decrease in frequency of thrombosis in Wistar rats upon peroral administration of sNLCN in comparison with negative control and free NK group. Furthermore, coagulation analysis, namely the measurement of prothrombin and activated partial thromboplastin time illustrated that sNLCN showed significantly (p < 0.001) higher anti-thrombotic potential in comparison to the free NK. Further, sNLCN showed anti-thrombotic profile similar to warfarin. This study signifies the potential of sNLCN in oral delivery of NK for the management of thrombotic disorders.

  17. Tension perturbations of black brane spacetimes

    International Nuclear Information System (INIS)

    Traschen, Jennie; Fox, Daniel

    2004-01-01

    We consider black brane spacetimes that have at least one spatial translation Killing field that is tangent to the brane. A new parameter, the tension of a spacetime, is defined. The tension parameter is associated with spatial translations in much the same way that the ADM mass is associated with the time translation Killing field. In this work, we explore the implications of the spatial translation symmetry for small perturbations around a background black brane. For static-charged black branes we derive a law which relates the tension perturbation to the surface gravity times the change in the horizon area, plus terms that involve variations in the charges and currents. We find that as a black brane evaporates the tension decreases. We also give a simple derivation of a first law for black brane spacetimes. These constructions hold when the background stress-energy is governed by a Hamiltonian, and the results include arbitrary perturbative stress-energy sources

  18. Perturbation measurement of waveguides for acoustic thermometry

    Science.gov (United States)

    Lin, H.; Feng, X. J.; Zhang, J. T.

    2013-09-01

    Acoustic thermometers normally embed small acoustic transducers in the wall bounding a gas-filled cavity resonator. At high temperature, insulators of transducers loss electrical insulation and degrade the signal-to-noise ratio. One essential solution to this technical trouble is to couple sound by acoustic waveguides between resonator and transducers. But waveguide will break the ideal acoustic surface and bring perturbations(Δf+ig) to the ideal resonance frequency. The perturbation model for waveguides was developed based on the first-order acoustic theory in this paper. The frequency shift Δf and half-width change g caused by the position, length and radius of waveguides were analyzed using this model. Six different length of waveguides (52˜1763 mm) were settled on the cylinder resonator and the perturbation (Δf+ig) were measured at T=332 K and p=250˜500 kPa. The experiment results agreed with the theoretical prediction very well.

  19. Microfluidic mixing through oscillatory transverse perturbations

    Science.gov (United States)

    Wu, J. W.; Xia, H. M.; Zhang, Y. Y.; Zhu, P.

    2018-05-01

    Fluid mixing in miniaturized fluidic devices is a challenging task. In this work, the mixing enhancement through oscillatory transverse perturbations coupling with divergent circular chambers is studied. To simplify the design, an autonomous microfluidic oscillator is used to produce the oscillatory flow. It is then applied to four side-channels that intersect with a central channel of constant flow. The mixing performance is tested at high fluid viscosities of up to 16 cP. Results show that the oscillatory flow can cause strong transverse perturbations which effectively enhance the mixing. The influence of a fluidic capacitor in the central channel is also examined, which at low viscosities can intensify the perturbations and further improve the mixing.

  20. One dimensional systems with singular perturbations

    International Nuclear Information System (INIS)

    Alvarez, J J; Gadella, M; Nieto, L M; Glasser, L M; Lara, L P

    2011-01-01

    This paper discusses some one dimensional quantum models with singular perturbations. Eventually, a mass discontinuity is added at the points that support the singular perturbations. The simplest model includes an attractive singular potential with a mass jump both located at the origin. We study the form of the only bound state. Another model exhibits a hard core at the origin plus one or more repulsive deltas with mass jumps at the points supporting these deltas. We study the location and the multiplicity of these resonances for the case of one or two deltas and settle the basis for a generalization. Finally, we consider the harmonic oscillator and the infinite square well plus a singular potential at the origin. We see how the energy of bound states is affected by the singular perturbation.

  1. Perturbations of higher-dimensional spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Durkee, Mark; Reall, Harvey S, E-mail: M.N.Durkee@damtp.cam.ac.uk, E-mail: H.S.Reall@damtp.cam.ac.uk [DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)

    2011-02-07

    We discuss linearized gravitational perturbations of higher-dimensional spacetimes. For algebraically special spacetimes (e.g. Myers-Perry black holes), we show that there exist local gauge invariant quantities linear in the metric perturbation. These are the higher-dimensional generalizations of the 4D Newman-Penrose scalars that (in an algebraically special vacuum spacetime) satisfy decoupled equations of motion. We show that decoupling occurs in more than four dimensions if, and only if, the spacetime admits a null geodesic congruence with vanishing expansion, rotation and shear. Decoupling of electromagnetic perturbations occurs under the same conditions. Although these conditions are not satisfied in black hole spacetimes, they are satisfied in the near-horizon geometry of an extreme black hole.

  2. On the domain of string perturbation theory

    International Nuclear Information System (INIS)

    Davis, S.

    1989-06-01

    For a large class of effectively closed surfaces, it is shown that the only divergences in string scattering amplitudes at each order in perturbation theory are those associated with the coincidence of vertex operators and the boundary of moduli space. This class includes all closed surfaces of finite genus, and infinite-genus surfaces which can be uniformized by a group of Schottky type. While the computation is done explicitly for bosonic strings in their ground states, it can also be extended to excited states and to superstrings. The properties of these amplitudes lead to a definition of the domain of perturbation theory as the set of effectively closed surfaces. The implications of the restriction to effectively closed surfaces on the behavior of the perturbation series are discussed. (author). 20 refs, 6 figs

  3. Perturbation theory for continuous stochastic equations

    International Nuclear Information System (INIS)

    Chechetkin, V.R.; Lutovinov, V.S.

    1987-01-01

    The various general perturbational schemes for continuous stochastic equations are considered. These schemes have many analogous features with the iterational solution of Schwinger equation for S-matrix. The following problems are discussed: continuous stochastic evolution equations for probability distribution functionals, evolution equations for equal time correlators, perturbation theory for Gaussian and Poissonian additive noise, perturbation theory for birth and death processes, stochastic properties of systems with multiplicative noise. The general results are illustrated by diffusion-controlled reactions, fluctuations in closed systems with chemical processes, propagation of waves in random media in parabolic equation approximation, and non-equilibrium phase transitions in systems with Poissonian breeding centers. The rate of irreversible reaction X + X → A (Smoluchowski process) is calculated with the use of general theory based on continuous stochastic equations for birth and death processes. The threshold criterion and range of fluctuational region for synergetic phase transition in system with Poissonian breeding centers are also considered. (author)

  4. MCNP perturbation technique for criticality analysis

    International Nuclear Information System (INIS)

    McKinney, G.W.; Iverson, J.L.

    1995-01-01

    The differential operator perturbation technique has been incorporated into the Monte Carlo N-Particle transport code MCNP and will become a standard feature of future releases. This feature includes first and/or second order terms of the Taylor Series expansion for response perturbations related to cross-section data (i.e., density, composition, etc.). Criticality analyses can benefit from this technique in that predicted changes in the track-length tally estimator of K eff may be obtained for multiple perturbations in a single run. A key advantage of this method is that a precise estimate of a small change in response (i.e., < 1%) is easily obtained. This technique can also offer acceptable accuracy, to within a few percent, for up to 20-30% changes in a response

  5. Gravitational perturbation theory and synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Breuer, R A [Max-Planck-Institut fuer Physik und Astrophysik, Muenchen (F.R. Germany). Inst. fuer Astrophysik

    1975-01-01

    This article presents methods and results for a gravitational perturbation theory which treats massless fields as linearized perturbations of an arbitrary gravitational vacuum background spacetime. The formalism is outlined for perturbations of type (22) spacetimes. As an application, high-frequency radiation emitted by particles moving approximately on relativistic circular geodesic orbits is computed. More precisely, the test particle assumption is made; throughout it is therefore assumed that the reaction of the radiation on the particle motion is negligible. In particular, these orbits are studied in the gravitational field of a spherically symmetric (Schwarzschild-) black hole as well as of a rotating (Kerr-) black hole. In this model, the outgoing radiation is highly focussed and of much higher fequency than the orbital frequency, i.e. one is dealing with 'gravitational synchrotron radiation'.

  6. Gribov ambiguity, perturbation theory, and confinement

    International Nuclear Information System (INIS)

    Greensite, J.P.

    1978-01-01

    The generating functional proposed for gauge theories by Bender, Eguchi, and Pagels (BEP) is shown to be equivalent to a truncated form of the functional integral, in which only one field configuration from each gauge-equivalent Gribov set contributes to the functional integration. The standard perturbation technique provides a method of realizing this truncation condition. It is shown that any gauge-covariant quantity (such as the quark N-point functions), evaluated by perturbating around a field configuration gauge-equivalent to A = 0, is related by a gauge transformation to the same quantity evaluated perturbatively around the trivial vacuum. It follows that, contrary to the conclusion of BEP, the existence of degeneracies in the Coulomb gauge-fixing condition (the Gribov ambiguity) is not directly related to the physics of confinement

  7. Non-Perturbative Quantum Geometry III

    CERN Document Server

    Krefl, Daniel

    2016-08-02

    The Nekrasov-Shatashvili limit of the refined topological string on toric Calabi-Yau manifolds and the resulting quantum geometry is studied from a non-perturbative perspective. The quantum differential and thus the quantum periods exhibit Stockes phenomena over the combined string coupling and quantized Kaehler moduli space. We outline that the underlying formalism of exact quantization is generally applicable to points in moduli space featuring massless hypermultiplets, leading to non-perturbative band splitting. Our prime example is local P1xP1 near a conifold point in moduli space. In particular, we will present numerical evidence that in a Stockes chamber of interest the string based quantum geometry reproduces the non-perturbative corrections for the Nekrasov-Shatashvili limit of 4d supersymmetric SU(2) gauge theory at strong coupling found in the previous part of this series. A preliminary discussion of local P2 near the conifold point in moduli space is also provided.

  8. Redshift-space distortions from vector perturbations

    Science.gov (United States)

    Bonvin, Camille; Durrer, Ruth; Khosravi, Nima; Kunz, Martin; Sawicki, Ignacy

    2018-02-01

    We compute a general expression for the contribution of vector perturbations to the redshift space distortion of galaxy surveys. We show that they contribute to the same multipoles of the correlation function as scalar perturbations and should thus in principle be taken into account in data analysis. We derive constraints for next-generation surveys on the amplitude of two sources of vector perturbations, namely non-linear clustering and topological defects. While topological defects leave a very small imprint on redshift space distortions, we show that the multipoles of the correlation function are sensitive to vorticity induced by non-linear clustering. Therefore future redshift surveys such as DESI or the SKA should be capable of measuring such vector modes, especially with the hexadecapole which appears to be the most sensitive to the presence of vorticity.

  9. Dynamic stability in hydropsychid guilds along a regulated stream: the role of competitive interactions versus environmental perturbations

    International Nuclear Information System (INIS)

    Camargo, J.O.

    1993-01-01

    Temporal alterations in the structure of hydropsychid guilds were studied along a regulated stream to examine the role of interspecific competitive interactions and environmental perturbations in determining species persistence. Discharge fluctuations of hypolimnial waters with a significant oxygen deficit were produced daily by Burgomillodo Dam. Under unregulated conditions (upstream sampling site), it is assumed that the coexistence of competing hydropsychid species is a function of species dominance (d') and resource limitation (R), as major cause of interaction strength among competitors, and the niche overlap (O) as a major causes of connectance among competitors, d' tends to increase with the number of subordinate species. A hydropsychid guild will tend to be unstable (by competitive displacement) if d'R(SO) 0.5 > 1, where S is the number of competing species in the guild. The product d'R(SO) 0.5 is used as a competition coefficient (β'); R and O are assumed to be 1 and 0.5, respectively. Upstream from the dam, values of β' were 0.599, 1.080 and 0.656, and values of S were 7,7 and 6. Downstream β' was less than unity during all sampling surveys, but S decreased at all sampling sites. Total density and total biomass were significantly higher downstream. Hydropsyche pellucidula was dominant upstream, whereas H. siltalai became dominant downstream. Temporal variations in individual weights of H. bulbifera and H. exocellata downstream were different from those upsteam. This is interpreted as 'character displacement. It is concluded that interspecific competitive interactions upstream and environmental perturbations downstream determined species persistence in hydropsychid guilds. (Author)

  10. Experimental investigations of an air curtain device subjected to external perturbations

    International Nuclear Information System (INIS)

    Havet, M.; Rouaud, O.; Solliec, C.

    2003-01-01

    Although plane air jets are often used as dynamic barriers to separate two environments, only a few works have explored their sensitivity to perturbations. We investigated the influence of sharp changes of pressure on the flow field of a device designed to avoid air-borne contamination. Laser tomography and tracer gas experiments clearly indicate that the air curtain is strongly sensitive to perturbations such as draughts. The results highlight that the control of air curtains used in open protection devices should be further investigated

  11. Operator Decomposition Framework for Perturbation Theory

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Khalik, Hany S.; Wang, Congjian; Bang, Young Suk [North Carolina State University, Raleigh (United States)

    2012-05-15

    This summary describes a new framework for perturbation theory intended to improve its performance, in terms of the associated computational cost and the complexity of implementation, for routine reactor calculations in support of design, analysis, and regulation. Since its first introduction in reactor analysis by Winger, perturbation theory has assumed an aura of sophistication with regard to its implementation and its capabilities. Only few reactor physicists, typically mathematically proficient, have contributed to its development, with the general body of the nuclear engineering community remaining unaware of its current status, capabilities, and challenges. Given its perceived sophistication and the small body of community users, the application of perturbation theory has been limited to investigatory analyses only. It is safe to say that the nuclear community is split into two groups, a small one which understands the theory and, and a much bigger group with the perceived notion that perturbation theory is nothing but a fancy mathematical approach that has very little use in practice. Over the past three years, research has demonstrated two goals. First, reduce the computational cost of perturbation theory in order to enable its use for routine reactor calculations. Second, expose some of the myth about perturbation theory and present it in a form that is simple and relatable in order to stimulate the interest of nuclear practitioners, especially those who are currently working on the development of next generation reactor design and analysis tools. The operator decomposition approach has its roots in linear algebra and can be easily understood by code developers, especially those involved in the design of iterative numerical solution strategies

  12. Schroedinger operators with singular perturbation potentials

    International Nuclear Information System (INIS)

    Harrell, E.M. II.

    1976-01-01

    This is a perturbative analysis of the eigenvalues and eigenfunctions of Schroedinger operators of the form -Δ + A + lambda V, defined on the Hilbert space L 2 (R/sup n/). A is a potential function (a smooth, real multiplication operator), and V is a ''spikelike'' perturbation, i.e., a perturbative potential function which diverges at some finite point. Lambda is a small real or complex parameter. The emphasis is on one-dimensional problems, and in particular the typical example is the ''spiked harmonic oscillator'' Hamiltonian, -d 2 /dx 2 + x 2 + lambda x/sup -α/, where α is a positive constant. An earlier study by L. Detwiler and J. R. Klauder [Phys. Rev. D 11 (1975) 1436] indicated that the lowest-order corrections to the ground-state eigenvalue of the spiked harmonic oscillator with lambda greater than 0 were proportional to lambda ln lambda when α = 3, and to lambda/sup 1/(α-2) when α is greater than 3. These and analogous results for a large class of operators and arbitrary eigenvalues are proved. Explicit constants in a modified perturbation series with a complicated dependence on lambda are determined and exhibited. Higher-order corrections for real lambda and lowest-order corrections for complex lambda are also discussed. While the substance of the dissertation is mathematical, its main applications are to quantum physics. The immediate cause of interest in such problems was the use of their peculiar convergence properties by J. R. Klauder as models for the behavior of nonrenormalizable quantum field theories. However, the results of this study are likely to be of greater importance in chemical or nuclear physics, as positive spikelike perturbations represent repulsive core interactions for quantum mechanical particles. The modified perturbation series are a new calculation technique for this situation

  13. Perturbation expansions generated by an approximate propagator

    International Nuclear Information System (INIS)

    Znojil, M.

    1987-01-01

    Starting from a knowledge of an approximate propagator R at some trial energy guess E 0 , a new perturbative prescription for p-plet of bound states and of their energies is proposed. It generalizes the Rayleigh-Schroedinger (RS) degenerate perturbation theory to the nondiagonal operators R (eliminates a RS need of their diagnolisation) and defines an approximate Hamiltonian T by mere inversion. The deviation V of T from the exact Hamiltonian H is assumed small only after a substraction of a further auxiliary Hartree-Fock-like separable ''selfconsistent'' potential U of rank p. The convergence is illustrated numerically on the anharmonic oscillator example

  14. On algebraically special perturbations of black holes

    International Nuclear Information System (INIS)

    Chandrasekhar, S.

    1984-01-01

    Algebraically special perturbations of black holes excite gravitational waves that are either purely ingoing or purely outgoing. Solutions, appropriate to such perturbations of the Kerr, the Schwarzschild, and the Reissner-Nordstroem black-holes, are obtained in explicit forms by different methods. The different methods illustrate the remarkable inner relations among different facets of the mathematical theory. In the context of the Kerr black-hole they derive from the different ways in which the explicit value of the Starobinsky constant emerges, and in the context of the Schwarzschild and the Reissner-Nordstroem black-holes they derive from the potential barriers surrounding them belonging to a special class. (author)

  15. Primordial perturbations with pre-inflationary bounce

    Science.gov (United States)

    Cai, Yong; Wang, Yu-Tong; Zhao, Jin-Yun; Piao, Yun-Song

    2018-05-01

    Based on the effective field theory (EFT) of nonsingular cosmologies, we build a stable model, without the ghost and gradient instabilities, of bounce-inflation (inflation is preceded by a cosmological bounce). We perform a full simulation for the evolution of scalar perturbation, and find that the perturbation spectrum has a large-scale suppression (as expected), which is consistent with the power deficit of the cosmic microwave background (CMB) TT-spectrum at low multipoles, but unexpectedly, it also shows itself one marked lower valley. The depth of valley is relevant with the physics around the bounce scale, which is model-dependent.

  16. Perturbative evaluation of the Thermal Wilson Loop

    International Nuclear Information System (INIS)

    Gava, E.; Jengo, R.

    1981-06-01

    The Thermal Wilson Loop 0 sup(β) dtauA 0 (tau, x-vector)>, representing an order parameter for the gauge theory and expected to be zero in the confining phase, is perturbatively evaluated up to the O(g 4 ) included for an SU(N) pure Yang-Mills theory. This evaluation should be meaningful at high temperature, β → 0. Its behaviour is discussed and a possible need for non-perturbative instanton-like contributions is pointed out. (author)

  17. A generalized perturbation program for CANDU reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Do Heon; Kim, Jong Kyung [Hanyang University, Seoul (Korea, Republic of); Choi, Hang Bok; Roh, Gyu Hong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Yang, Won Sik [Chosun University, Kwangju (Korea, Republic of)

    1999-12-31

    A generalized perturbation program has been developed for the purpose of estimating zonal power variation of a CANDU reactor upon refueling operation. The forward and adjoint calculation modules of RFSP code were used to construct the generalized perturbation program. The numerical algorithm for the generalized adjoint flux calculation was verified by comparing the zone power estimates upon refueling with those of forward calculation. It was, however, noticed that the truncation error from the iteration process of the generalized adjoint flux is not negligible. 2 refs., 1 figs., 1 tab. (Author)

  18. Pre-inflation physics and scalar perturbations

    International Nuclear Information System (INIS)

    Hirai, Shiro

    2005-01-01

    The effect of pre-inflation physics on the power spectrum of scalar perturbations is investigated. Considering various pre-inflation models with radiation-dominated or matter-dominated periods before inflation, the power spectra of curvature perturbations for large scales are calculated, and the spectral index and running spectral index are derived. It is shown that pre-inflation models in which the length of inflation is near 60 e-folds may reproduce some key properties implied by the Wilkinson microwave anisotropy probe data

  19. Non-perturbative QCD and hadron physics

    International Nuclear Information System (INIS)

    Cobos-Martínez, J J

    2016-01-01

    A brief exposition of contemporary non-perturbative methods based on the Schwinger-Dyson (SDE) and Bethe-Salpeter equations (BSE) of Quantum Chromodynamics (QCD) and their application to hadron physics is given. These equations provide a non-perturbative continuum formulation of QCD and are a powerful and promising tool for the study of hadron physics. Results on some properties of hadrons based on this approach, with particular attention to the pion distribution amplitude, elastic, and transition electromagnetic form factors, and their comparison to experimental data are presented. (paper)

  20. Perturbative approach to Markovian open quantum systems.

    Science.gov (United States)

    Li, Andy C Y; Petruccione, F; Koch, Jens

    2014-05-08

    The exact treatment of Markovian open quantum systems, when based on numerical diagonalization of the Liouville super-operator or averaging over quantum trajectories, is severely limited by Hilbert space size. Perturbation theory, standard in the investigation of closed quantum systems, has remained much less developed for open quantum systems where a direct application to the Lindblad master equation is desirable. We present such a perturbative treatment which will be useful for an analytical understanding of open quantum systems and for numerical calculation of system observables which would otherwise be impractical.

  1. Death to perturbative QCD in exclusive processes?

    Energy Technology Data Exchange (ETDEWEB)

    Eckardt, R.; Hansper, J.; Gari, M.F. [Institut fuer Theoretische Physik, Bochum (Germany)

    1994-04-01

    The authors discuss the question of whether perturbative QCD is applicable in calculations of exclusive processes at available momentum transfers. They show that the currently used method of determining hadronic quark distribution amplitudes from QCD sum rules yields wave functions which are completely undetermined because the polynomial expansion diverges. Because of the indeterminacy of the wave functions no statement can be made at present as to whether perturbative QCD is valid. The authors emphasize the necessity of a rigorous discussion of the subject and the importance of experimental data in the range of interest.

  2. Perturbative and nonperturbative renormalization in lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Goeckeler, M. [Regensburg Univ. (Germany). Institut fuer Theoretische Physik; Horsley, R. [University of Edinburgh (United Kingdom). School of Physics and Astronomy; Perlt, H. [Leipzig Univ. (DE). Institut fuer Theoretische Physik] (and others)

    2010-03-15

    We investigate the perturbative and nonperturbative renormalization of composite operators in lattice QCD restricting ourselves to operators that are bilinear in the quark fields (quark-antiquark operators). These include operators which are relevant to the calculation of moments of hadronic structure functions. The nonperturbative computations are based on Monte Carlo simulations with two flavors of clover fermions and utilize the Rome-Southampton method also known as the RI-MOM scheme. We compare the results of this approach with various estimates from lattice perturbation theory, in particular with recent two-loop calculations. (orig.)

  3. A generalized perturbation program for CANDU reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Do Heon; Kim, Jong Kyung [Hanyang University, Seoul (Korea, Republic of); Choi, Hang Bok; Roh, Gyu Hong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Yang, Won Sik [Chosun University, Kwangju (Korea, Republic of)

    1998-12-31

    A generalized perturbation program has been developed for the purpose of estimating zonal power variation of a CANDU reactor upon refueling operation. The forward and adjoint calculation modules of RFSP code were used to construct the generalized perturbation program. The numerical algorithm for the generalized adjoint flux calculation was verified by comparing the zone power estimates upon refueling with those of forward calculation. It was, however, noticed that the truncation error from the iteration process of the generalized adjoint flux is not negligible. 2 refs., 1 figs., 1 tab. (Author)

  4. Scaling violations and perturbative quantum chromodynamics

    International Nuclear Information System (INIS)

    Barbieri, R.; d'Emilio, E.; Caneschi, L.; Curci, G.

    1979-01-01

    The authors try to understand the meaning of the recent data on scaling violations of the moments of the structure function F 3 measured in γ and anti γ deep inelastic scattering, and their relevance as a test of QCD. This is done by reducing to the minimum the theoretical machinery and prejudices and stressing the perturbative nature of the problem. This leads to a definition of the perturbation coupling constant αsub(s) (Q = 2.5 GeV) = 0.61 +- 0.06, in terms of which the corrective terms for all quantities computed so far turn out to be relatively small. (Auth.)

  5. Non-Gaussianity from isocurvature perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Kawasaki, Masahiro; Nakayama, Kazunori; Sekiguchi, Toyokazu; Suyama, Teruaki [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa 277-8582 (Japan); Takahashi, Fuminobu, E-mail: kawasaki@icrr.u-tokyo.ac.jp, E-mail: nakayama@icrr.u-tokyo.ac.jp, E-mail: sekiguti@icrr.u-tokyo.ac.jp, E-mail: suyama@icrr.u-tokyo.ac.jp, E-mail: fuminobu.takahashi@ipmu.jp [Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa 277-8568 (Japan)

    2008-11-15

    We develop a formalism for studying non-Gaussianity in both curvature and isocurvature perturbations. It is shown that non-Gaussianity in the isocurvature perturbation between dark matter and photons leaves distinct signatures in the cosmic microwave background temperature fluctuations, which may be confirmed in future experiments, or possibly even in the currently available observational data. As an explicit example, we consider the quantum chromodynamics axion and show that it can actually induce sizable non-Gaussianity for the inflationary scale, H{sub inf} = O(10{sup 9}-10{sup 11}) GeV.

  6. A perturbative DFT approach for magnetic anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Khoo, Khoong Hong; Laskowski, Robert, E-mail: rolask@ihpc.a-star.edu.sg

    2017-04-15

    We develop a perturbative formalism for computing magnetocrystalline anisotropy within density functional theory and the magnetic force theorem. Instead of computing eigenvalues of the spin–orbit Hamiltonian for selected spin polarizations, as in the conventional “force theorem” approach, we show that the effect can be cast into a redefined form of the spin–orbit operator. This allows to separate the large eigenvalue shift due to spin-orbit interaction common for both polarizations from the much smaller magnetic anisotropy splitting. As a consequence the anisotropy splitting may by considered as a perturbation.

  7. Gauge-invariant perturbations in a spatially flat anisotropic universe

    International Nuclear Information System (INIS)

    Den, Mitsue.

    1986-12-01

    The gauge-invariant perturbations in a spatially flat anisotropic universe with an arbitrary dimension (= N) are studied. In a previous paper the equations for the perturbations with a wave vector k a in one of the axial directions were derived and their solutions were shown. In this paper the perturbations with k a in arbitrary directions are treated. The remarkable properties are that all three types (scalar, vector, and tensor) of perturbations are generally coupled, so that a density perturbation can be produced also by vector or tensor perturbations. The formulation is quite general, but the behavior of the perturbations is discussed in a simple case such that N = 4 and k a is orthogonal to one of the axial directions. In this case, the perturbations are divided into two groups which are dynamically decoupled from each other. The asymptotic behavior of the perturbations in the group containing the density perturbation is discussed. (author)

  8. Wind-Driven Ecological Flow Regimes Downstream from Hydropower Dams

    Science.gov (United States)

    Kern, J.; Characklis, G. W.

    2012-12-01

    Conventional hydropower can be turned on and off quicker and less expensively than thermal generation (coal, nuclear, or natural gas). These advantages enable hydropower utilities to respond to rapid fluctuations in energy supply and demand. More recently, a growing renewable energy sector has underlined the need for flexible generation capacity that can complement intermittent renewable resources such as wind power. While wind power entails lower variable costs than other types of generation, incorporating it into electric power systems can be problematic. Due to variable and unpredictable wind speeds, wind power is difficult to schedule and must be used when available. As a result, integrating large amounts of wind power into the grid may result in atypical, swiftly changing demand patterns for other forms of generation, placing a premium on sources that can be rapidly ramped up and down. Moreover, uncertainty in wind power forecasts will stipulate increased levels of 'reserve' generation capacity that can respond quickly if real-time wind supply is less than expected. These changes could create new hourly price dynamics for energy and reserves, altering the short-term financial signals that hydroelectric dam operators use to schedule water releases. Traditionally, hourly stream flow patterns below hydropower dams have corresponded in a very predictable manner to electricity demand, whose primary factors are weather (hourly temperature) and economic activity (workday hours). Wind power integration has the potential to yield more variable, less predictable flows at hydro dams, flows that at times could resemble reciprocal wind patterns. An existing body of research explores the impacts of standard, demand-following hydroelectric dams on downstream ecological flows; but weighing the benefits of increased reliance on wind power against further impacts to ecological flows may be a novel challenge for the environmental community. As a preliminary step in meeting this

  9. Downstream impacts of dams: shifts in benthic invertivorous fish assemblages

    Science.gov (United States)

    Granzotti, Rafaela Vendrametto; Miranda, Leandro E.; Agostinho, Angelo A.; Gomes, Luiz Carlos

    2018-01-01

    Impoundments alter connectivity, sediment transport and water discharge in rivers and floodplains, affecting recruitment, habitat and resource availability for fish including benthic invertivorous fish, which represent an important link between primary producers and higher trophic levels in tropical aquatic ecosystems. We investigated long-term changes to water regime, water quality, and invertivorous fish assemblages pre and post impoundment in three rivers downstream of Porto Primavera Reservoir in south Brazil: Paraná, Baía and Ivinhema rivers. Impacts were distinct in the Paraná River, which is fully obstructed by the dam, less evident in the Baía River which is partially obstructed by the dam, but absent in the unimpounded Ivinhema River. Changes in water regime were reflected mainly as changes in water-level fluctuation with little effect on timing. Water transparency increased in the Paraná River post impoundment but did not change in the Baía and Ivinhema rivers. Changes in fish assemblages included a decrease in benthic invertivorous fish in the Paraná River and a shift in invertivorous fish assemblage structure in the Baía and Paraná rivers but not in the unimpounded Ivinhema River. Changes in water regime and water transparency, caused by impoundment, directly or indirectly impacted invertivorous fish assemblages. Alterations of fish assemblages following environmental changes have consequences over the entire ecosystem, including a potential decrease in the diversity of mechanisms for energy flow. We suggest that keeping existing unimpounded tributaries free of dams, engineering artificial floods, and intensive management of fish habitat within the floodplain may preserve native fish assemblages and help maintain functionality and ecosystem services in highly impounded rivers.

  10. Low cost energy in Canada: The view from downstream

    International Nuclear Information System (INIS)

    Irving, K.

    1993-01-01

    The key cost determinants of energy in Canada are analyzed and recommendations are made to ensure the competitiveness of Canadian energy costs and energy-consuming industries in the North American and world markets. Oil supplies 45% of world energy and has a key role in determining prices of all other energy forms since it serves as an incremental source of energy: its consumption changes according to economic growth, changes in weather patterns, and other factors. North America currently accounts for about a third of world oil consumption. North American oil demand is expected to remain flat over the next few decades. As Canada only produces ca 3% of world oil supply, it cannot determine oil prices. However, with an efficient downstream industry, Canada can influence the end-user price of energy. The cost structure of refined products in Canada is analyzed. The cost of raw materials is the single biggest determinant of the final product cost, followed by taxes, operating costs, and profit margin. For gasoline in Ontario, taxes account for half the retail cost, crude oil prices ca 30%, and refining costs ca 4%. Refining costs comprise about two thirds labor costs and one third energy costs. Refiner margins have not exceeded 2 cents/l since 1981, creating reluctance to invest in the refining sector. By 1994, some 200,000 bbl/d of refining capacity is expected to be shut down in Canada. Compared to refineries in the USA, Canadian refineries are smaller and have a much lower capacity to upgrade residual fuel oil to light products. Future challenges to the industry include a projected need for $5 billion in investment, largely to fund new environmental initiatives. Such an investment cannot be met through current industry profits. 12 figs., 3 tabs

  11. Ignition of PTFE-lined flexible hoses by rapid pressurization with oxygen

    Science.gov (United States)

    Janoff, Dwight; Bamford, Larry J.; Newton, Barry E.; Bryan, Coleman J.

    1989-01-01

    A high-volume pneumatic-impact system has been used to test PTFE-lined stainless steel braided hoses, in order to characterize the roles played in the mechanism of oxygen-induced ignition by impact pressure, pressurization rate, and upstream and downstream volumes of the hose. Ignitions are noted to have occurred at impact pressures well below the working pressure of the hoses, as well as at pressurization rates easily obtainable through manual operation of valves. The use of stainless steel hardlines downstream of the hose prevented ignitions at all pressures and pressurization rates; internal observations have shown evidence of shock ionization in the oxygen prior to ignition.

  12. Reduction of some perturbed Keplerian problems

    Energy Technology Data Exchange (ETDEWEB)

    Inarrea, Manuel [Universidad de La Rioja, Area de Fisica, 26006 Logrono (Spain); Lanchares, Victor [Universidad de La Rioja, Departamento de Matematicas y Computacion, 26004 Logrono (Spain)] e-mail: vlancha@dmc.unirioja.es; Palacian, Jesus F. [Universidad Publica de Navarra, Departamento de Matematica e Informatica, 31006 Pamplona (Spain); Pascual, Ana I. [Universidad de La Rioja, Departamento de Matematicas y Computacion, 26004 Logrono (Spain); Salas, J. Pablo [Universidad de La Rioja, Area de Fisica, 26006 Logrono (Spain); Yanguas, Patricia [Universidad Publica de Navarra, Departamento de Matematica e Informatica, 31006 Pamplona (Spain)

    2006-01-01

    Perturbed Hamiltonian Keplerian systems enjoying some discrete and continuous symmetries can be brought to a one degree of freedom system containing the main qualitative features of the original one. This reduced system is defined in a compact set of the plane where the qualitative dynamics can be studied in a systematic way.

  13. CIRCUMSTELLAR DEBRIS DISKS: DIAGNOSING THE UNSEEN PERTURBER

    Energy Technology Data Exchange (ETDEWEB)

    Nesvold, Erika R. [Department of Terrestrial Magnetism, Carnegie Institution for Science, 5241 Broad Branch Rd., Washington, DC 20015 (United States); Naoz, Smadar; Vican, Laura [Department of Physics and Astronomy, UCLA, 475 Portola Plaza, Los Angeles, CA 90095 (United States); Farr, Will M. [School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT (United Kingdom)

    2016-07-20

    The first indication of the presence of a circumstellar debris disk is usually the detection of excess infrared emission from the population of small dust grains orbiting the star. This dust is short-lived, requiring continual replenishment, and indicating that the disk must be excited by an unseen perturber. Previous theoretical studies have demonstrated that an eccentric planet orbiting interior to the disk will stir the larger bodies in the belt and produce dust via interparticle collisions. However, motivated by recent observations, we explore another possible mechanism for heating a debris disk: a stellar-mass perturber orbiting exterior to and inclined to the disk and exciting the disk particles’ eccentricities and inclinations via the Kozai–Lidov mechanism. We explore the consequences of an exterior perturber on the evolution of a debris disk using secular analysis and collisional N -body simulations. We demonstrate that a Kozai–Lidov excited disk can generate a dust disk via collisions and we compare the results of the Kozai–Lidov excited disk with a simulated disk perturbed by an interior eccentric planet. Finally, we propose two observational tests of a dust disk that can distinguish whether the dust was produced by an exterior brown dwarf or stellar companion or an interior eccentric planet.

  14. Perturbative renormalization of QED via flow equations

    International Nuclear Information System (INIS)

    Keller, G.; Kopper, C.

    1991-01-01

    We prove the perturbative renormalizability of euclidean QED 4 with a small photon mass in the framework of effective lagrangians due to Wilson and Polchinski. In particular we show that the QED identities, which become violated by our momentum space regularization at intermediate stages, are restored in the renormalized theory. (orig.)

  15. Perturbative renormalization of QED via flow equations

    Energy Technology Data Exchange (ETDEWEB)

    Keller, G. (Max-Planck-Inst. fuer Physik, Werner-Heisenberg-Inst., Munich (Germany)); Kopper, C. (Max-Planck-Inst. fuer Physik, Werner-Heisenberg-Inst., Munich (Germany) Inst. fuer Theoretische Physik, Univ. Goettingen (Germany))

    1991-12-19

    We prove the perturbative renormalizability of euclidean QED{sub 4} with a small photon mass in the framework of effective lagrangians due to Wilson and Polchinski. In particular we show that the QED identities, which become violated by our momentum space regularization at intermediate stages, are restored in the renormalized theory. (orig.).

  16. Perturbation of operators and approximation of spectrum

    Indian Academy of Sciences (India)

    outside the bounds of essential spectrum of A(x) can be approximated ... some perturbed discrete Schrödinger operators treating them as block ...... particular, one may think of estimating the spectrum and spectral gaps of Schrödinger.

  17. On the divergences of inflationary superhorizon perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Enqvist, K; Nurmi, S [Physics Department, University of Helsinki, PO Box 64, Helsinki, FIN-00014 (Finland); Podolsky, D; Rigopoulos, G I, E-mail: kari.enqvist@helsinki.fi, E-mail: sami.nurmi@helsinki.fi, E-mail: dmitry.podolsky@helsinki.fi, E-mail: gerasimos.rigopoulos@helsinki.fi [Helsinki Institute of Physics, University of Helsinki, PO Box 64, Helsinki, FIN-00014 (Finland)

    2008-04-15

    We discuss the infrared divergences that appear to plague cosmological perturbation theory. We show that, within the stochastic framework, they are regulated by eternal inflation so that the theory predicts finite fluctuations. Using the {Delta}N formalism to one loop, we demonstrate that the infrared modes can be absorbed into additive constants and the coefficients of the diagrammatic expansion for the connected parts of two-and three-point functions of the curvature perturbation. As a result, the use of any infrared cutoff below the scale of eternal inflation is permitted, provided that the background fields are appropriately redefined. The natural choice for the infrared cutoff would, of course, be the present horizon; other choices manifest themselves in the running of the correlators. We also demonstrate that it is possible to define observables that are renormalization-group-invariant. As an example, we derive a non-perturbative, infrared finite and renormalization point-independent relation between the two-point correlators of the curvature perturbation for the case of the free single field.

  18. Effective field theory of cosmological perturbations

    International Nuclear Information System (INIS)

    Piazza, Federico; Vernizzi, Filippo

    2013-01-01

    The effective field theory of cosmological perturbations stems from considering a cosmological background solution as a state displaying spontaneous breaking of time translations and (adiabatic) perturbations as the related Nambu–Goldstone modes. With this insight, one can systematically develop a theory for the cosmological perturbations during inflation and, with minor modifications, also describe in full generality the gravitational interactions of dark energy, which are relevant for late-time cosmology. The formalism displays a unique set of Lagrangian operators containing an increasing number of cosmological perturbations and derivatives. We give an introductory description of the unitary gauge formalism for theories with broken gauge symmetry—that allows us to write down the most general Lagrangian—and of the Stückelberg ‘trick’—that allows to recover gauge invariance and to make the scalar field explicit. We show how to apply this formalism to gravity and cosmology and we reproduce the detailed analysis of the action in the ADM variables. We also review some basic applications to inflation and dark energy. (paper)

  19. Modification of the perturbative QCD towards confinement

    International Nuclear Information System (INIS)

    Arodz, H.

    1981-01-01

    Modification of the low momentum behaviour of the perturbative SU(2) gauge theory is proposed. The modification is closely related (although not equivalent) to a nonstandard choice of boundary condition for the Euclidean 2-point gluonic Green function. In the resulting theory already single graphs lead to the confining potential between heavy, static quarks, V(r) = ar 2 for r → infinity. (author)

  20. Geometric perturbation theory and plasma physics

    International Nuclear Information System (INIS)

    Omohundro, S.M.

    1985-01-01

    Modern differential geometric techniques are used to unify the physical asymptotics underlying mechanics, wave theory, and statistical mechanics. The approach gives new insights into the structure of physical theories and is suited to the needs of modern large-scale computer simulation and symbol manipulation systems. A coordinate-free formulation of non-singular perturbation theory is given, from which a new Hamiltonian perturbation structure is derived and related to the unperturbed structure in five different ways. The theory of perturbations in the presence of symmetry is developed, and the method of averaging is related to reduction by a circle-group action. The pseudo-forces and magnetic Poisson bracket terms due to reduction are given a natural asymptotic interpretation. Similar terms due to changing reference frames are related to the method of variation of parameters, which is also given a Hamiltonian formulation. These methods are used to answer a long-standing question posed by Kruskal about nearly periodic systems. The answer leads to a new secular perturbation theory that contains no adhoc elements, which is then applied to gyromotion. Eikonal wave theory is given a Hamiltonian formulation that generalizes Whitham's Lagrangian approach. The evolution of wave action density on ray phase space is given a Hamiltonian structure using a Lie-Poisson bracket. The relationship between dissipative and Hamiltonian systems is discussed. A theory motivated by free electron lasers gives new restrictions on the change of area of projected parallelepipeds under canonical transformations

  1. Many body perturbation calculations of photoionization

    International Nuclear Information System (INIS)

    Kelly, H.P.

    1979-01-01

    The application of many body perturbation theory to the calculation of atomic photoionization cross sections is reviewed. The choice of appropriate potential for the single-particle state is discussed and results are presented for several atoms including resonance structure. In addition to single photoionization, the process of double photoionization is considered and is found to be significant. (Auth.)

  2. Quenched Chiral Perturbation Theory to one loop

    NARCIS (Netherlands)

    Colangelo, G.; Pallante, E.

    The divergences of the generating functional of quenched Chiral Perturbation theory (qCHPT) to one loop are computed in closed form. We show how the quenched chiral logarithms can be reabsorbed in the renormalization of the B0 parameter of the leading order Lagrangian. Finally, we do the chiral

  3. Reduction of some perturbed Keplerian problems

    International Nuclear Information System (INIS)

    Inarrea, Manuel; Lanchares, Victor; Palacian, Jesus F.; Pascual, Ana I.; Salas, J. Pablo; Yanguas, Patricia

    2006-01-01

    Perturbed Hamiltonian Keplerian systems enjoying some discrete and continuous symmetries can be brought to a one degree of freedom system containing the main qualitative features of the original one. This reduced system is defined in a compact set of the plane where the qualitative dynamics can be studied in a systematic way

  4. Perturbation theory for arbitrary coupling strength?

    Science.gov (United States)

    Mahapatra, Bimal P.; Pradhan, Noubihary

    2018-03-01

    We present a new formulation of perturbation theory for quantum systems, designated here as: “mean field perturbation theory” (MFPT), which is free from power-series-expansion in any physical parameter, including the coupling strength. Its application is thereby extended to deal with interactions of arbitrary strength and to compute system-properties having non-analytic dependence on the coupling, thus overcoming the primary limitations of the “standard formulation of perturbation theory” (SFPT). MFPT is defined by developing perturbation about a chosen input Hamiltonian, which is exactly solvable but which acquires the nonlinearity and the analytic structure (in the coupling strength) of the original interaction through a self-consistent, feedback mechanism. We demonstrate Borel-summability of MFPT for the case of the quartic- and sextic-anharmonic oscillators and the quartic double-well oscillator (QDWO) by obtaining uniformly accurate results for the ground state of the above systems for arbitrary physical values of the coupling strength. The results obtained for the QDWO may be of particular significance since “renormalon”-free, unambiguous results are achieved for its spectrum in contrast to the well-known failure of SFPT in this case.

  5. Higher order corrections in perturbative quantum chromodynamics

    Indian Academy of Sciences (India)

    Since the discovery of asymptotic freedom in non-abelian gauge field theories, like quan- tum chromodynamics (QCD), many perturbative calculations have been performed to ..... The integral above appears in the partial integration with respect to the momentum. &½ of the expression below (see figure 2). ¼. Т&½. ґѕπµТ.

  6. Stratospheric HTO perturbations 1980-1983

    Science.gov (United States)

    Mason, A. S.

    1985-02-01

    Three perturbations of the stratospheric tritiated water burden have occurred. An atmospheric nuclear detonation in 1980 injected about 2.1 MCi. The massive eruptions of the volcano El Chichon may have contributed to a doubling of the removal rate in 1982. An unusually large wintertime exchange with the upper stratosphere may have occurred between 1982 and 1983.

  7. Perturbed soliton excitations in inhomogeneous DNA

    International Nuclear Information System (INIS)

    Daniel, M.; Vasumathi, V.

    2005-05-01

    We study nonlinear dynamics of inhomogeneous DNA double helical chain under dynamic plane-base rotator model by considering angular rotation of bases in a plane normal to the helical axis. The DNA dynamics in this case is found to be governed by a perturbed sine-Gordon equation when taking into account the interstrand hydrogen bonding energy and intrastrand inhomogeneous stacking energy and making an analogy with the Heisenberg model of the Hamiltonian for an inhomogeneous anisotropic spin ladder with ferromagnetic legs and antiferromagentic rung coupling. In the homogeneous limit the dynamics is governed by the kink-antikink soliton of the sine-Gordon equation which represents the formation of open state configuration in DNA double helix. The effect of inhomogeneity in stacking energy in the form of localized and periodic variations on the formation of open states in DNA is studied under perturbation. The perturbed soliton is obtained using a multiple scale soliton perturbation theory by solving the associated linear eigen value problem and constructing the complete set of eigen functions. The inhomogeneity in stacking energy is found to modulate the width and speed of the soliton depending on the nature of inhomogeneity. Also it introduces fluctuations in the form of train of pulses or periodic oscillation in the open state configuration (author)

  8. Where does cosmological perturbation theory break down?

    International Nuclear Information System (INIS)

    Armendariz-Picon, Cristian; Fontanini, Michele; Penco, Riccardo; Trodden, Mark

    2009-01-01

    It is often assumed that initial conditions for the evolution of a cosmological mode should be set at the time its physical wavelength reaches a cut-off of the order of the Planck length. Beyond that scale, trans-Planckian corrections to the dispersion relation are supposed to become dominant, leading to the breakdown of cosmological perturbation theory. In this paper, we apply the effective field theory approach to the coupled metric-inflaton system in order to calculate the corrections to the power spectrum of scalar and tensor perturbations induced by higher-dimension operators at short wavelengths. These corrections can be interpreted as modifications of the dispersion relation, and thus open a window to probe the validity of cosmological perturbation theory. Both for scalars and tensors, the modifications become important when the Hubble parameter is of the order of the Planck mass, or when the physical wave number of a cosmological perturbation mode approaches the square of the Planck mass divided by the Hubble constant. Thus, the cut-off length at which such a breakdown occurs is finite, but much smaller than the Planck length.

  9. Analytic continuation and perturbative expansions in QCD

    Czech Academy of Sciences Publication Activity Database

    Caprini, I.; Fischer, Jan

    2002-01-01

    Roč. 24, - (2002), s. 127-135 ISSN 1434-6044 R&D Projects: GA MPO RP-4210/69 Institutional research plan: CEZ:AV0Z1010920 Keywords : perturbative expansion * quantum chromodynamics * infrared ambiguity * essential singularities Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 6.162, year: 2002

  10. Privacy Is Become with, Data Perturbation

    Science.gov (United States)

    Singh, Er. Niranjan; Singhai, Niky

    2011-06-01

    Privacy is becoming an increasingly important issue in many data mining applications that deal with health care, security, finance, behavior and other types of sensitive data. Is particularly becoming important in counterterrorism and homeland security-related applications. We touch upon several techniques of masking the data, namely random distortion, including the uniform and Gaussian noise, applied to the data in order to protect it. These perturbation schemes are equivalent to additive perturbation after the logarithmic Transformation. Due to the large volume of research in deriving private information from the additive noise perturbed data, the security of these perturbation schemes is questionable Many artificial intelligence and statistical methods exist for data analysis interpretation, Identifying and measuring the interestingness of patterns and rules discovered, or to be discovered is essential for the evaluation of the mined knowledge and the KDD process as a whole. While some concrete measurements exist, assessing the interestingness of discovered knowledge is still an important research issue. As the tool for the algorithm implementations we chose the language of choice in industrial world MATLAB.

  11. Characterizing heterogeneous cellular responses to perturbations.

    Science.gov (United States)

    Slack, Michael D; Martinez, Elisabeth D; Wu, Lani F; Altschuler, Steven J

    2008-12-09

    Cellular populations have been widely observed to respond heterogeneously to perturbation. However, interpreting the observed heterogeneity is an extremely challenging problem because of the complexity of possible cellular phenotypes, the large dimension of potential perturbations, and the lack of methods for separating meaningful biological information from noise. Here, we develop an image-based approach to characterize cellular phenotypes based on patterns of signaling marker colocalization. Heterogeneous cellular populations are characterized as mixtures of phenotypically distinct subpopulations, and responses to perturbations are summarized succinctly as probabilistic redistributions of these mixtures. We apply our method to characterize the heterogeneous responses of cancer cells to a panel of drugs. We find that cells treated with drugs of (dis-)similar mechanism exhibit (dis-)similar patterns of heterogeneity. Despite the observed phenotypic diversity of cells observed within our data, low-complexity models of heterogeneity were sufficient to distinguish most classes of drug mechanism. Our approach offers a computational framework for assessing the complexity of cellular heterogeneity, investigating the degree to which perturbations induce redistributions of a limited, but nontrivial, repertoire of underlying states and revealing functional significance contained within distinct patterns of heterogeneous responses.

  12. Perturbations of normally solvable nonlinear operators, I

    Directory of Open Access Journals (Sweden)

    William O. Ray

    1985-01-01

    Full Text Available Let X and Y be Banach spaces and let ℱ and be Gateaux differentiable mappings from X to Y In this note we study when the operator ℱ+ is surjective for sufficiently small perturbations of a surjective operator ℱ The methods extend previous results in the area of normal solvability for nonlinear operators.

  13. Transport perturbation theory in nuclear reactor analysis

    International Nuclear Information System (INIS)

    Nishigori, Takeo; Takeda, Toshikazu; Selvi, S.

    1985-01-01

    Perturbation theory is formulated on the basis of transport theory to obtain a formula for the reactivity changes due to possible variations of cross sections. Useful applications to cell homogenization are presented for the whole core calculation in transport and in diffusion theories. (author)

  14. Mechanical perturbation control of cardiac alternans

    Science.gov (United States)

    Hazim, Azzam; Belhamadia, Youssef; Dubljevic, Stevan

    2018-05-01

    Cardiac alternans is a disturbance in heart rhythm that is linked to the onset of lethal cardiac arrhythmias. Mechanical perturbation control has been recently used to suppress alternans in cardiac tissue of relevant size. In this control strategy, cardiac tissue mechanics are perturbed via active tension generated by the heart's electrical activity, which alters the tissue's electric wave profile through mechanoelectric coupling. We analyze the effects of mechanical perturbation on the dynamics of a map model that couples the membrane voltage and active tension systems at the cellular level. Therefore, a two-dimensional iterative map of the heart beat-to-beat dynamics is introduced, and a stability analysis of the system of coupled maps is performed in the presence of a mechanical perturbation algorithm. To this end, a bidirectional coupling between the membrane voltage and active tension systems in a single cardiac cell is provided, and a discrete form of the proposed control algorithm, that can be incorporated in the coupled maps, is derived. In addition, a realistic electromechanical model of cardiac tissue is employed to explore the feasibility of suppressing alternans at cellular and tissue levels. Electrical activity is represented in two detailed ionic models, the Luo-Rudy 1 and the Fox models, while two active contractile tension models, namely a smooth variant of the Nash-Panfilov model and the Niederer-Hunter-Smith model, are used to represent mechanical activity in the heart. The Mooney-Rivlin passive elasticity model is employed to describe passive mechanical behavior of the myocardium.

  15. Non-perturbative Heavy Quark Effective Theory

    DEFF Research Database (Denmark)

    Della Morte, Michele; Heitger, Jochen; Simma, Hubert

    2015-01-01

    We review a lattice strategy how to non-perturbatively determine the coefficients in the HQET expansion of all components of the heavy-light axial and vector currents, including 1/m_h-corrections. We also discuss recent preliminary results on the form factors parameterizing semi-leptonic B...

  16. A perturbed martingale approach to global optimization

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Saikat [Computational Mechanics Lab, Department of Civil Engineering, Indian Institute of Science, Bangalore 560012 (India); Roy, Debasish, E-mail: royd@civil.iisc.ernet.in [Computational Mechanics Lab, Department of Civil Engineering, Indian Institute of Science, Bangalore 560012 (India); Vasu, Ram Mohan [Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012 (India)

    2014-08-01

    A new global stochastic search, guided mainly through derivative-free directional information computable from the sample statistical moments of the design variables within a Monte Carlo setup, is proposed. The search is aided by imparting to the directional update term additional layers of random perturbations referred to as ‘coalescence’ and ‘scrambling’. A selection step, constituting yet another avenue for random perturbation, completes the global search. The direction-driven nature of the search is manifest in the local extremization and coalescence components, which are posed as martingale problems that yield gain-like update terms upon discretization. As anticipated and numerically demonstrated, to a limited extent, against the problem of parameter recovery given the chaotic response histories of a couple of nonlinear oscillators, the proposed method appears to offer a more rational, more accurate and faster alternative to most available evolutionary schemes, prominently the particle swarm optimization. - Highlights: • Evolutionary global optimization is posed as a perturbed martingale problem. • Resulting search via additive updates is a generalization over Gateaux derivatives. • Additional layers of random perturbation help avoid trapping at local extrema. • The approach ensures efficient design space exploration and high accuracy. • The method is numerically assessed via parameter recovery of chaotic oscillators.

  17. Proprioceptive perturbations of stability during gait

    NARCIS (Netherlands)

    Duysens, J.; Beerepoot, V.P.; Veltink, Petrus H.; Weerdesteyn, V.; Smits-Engelsman, B.C.M.

    2008-01-01

    Through recent studies, the role of proprioceptors in reactions to perturbations during gait has been finally somewhat better understood. The input from spindle afferents has been investigated with tendon taps, vibration and other forms of muscle stretches, including some resembling natural

  18. Acoustic anisotropic wavefields through perturbation theory

    KAUST Repository

    Alkhalifah, Tariq Ali

    2013-01-01

    these restrictions are the inability to handle media with η<0 and the presence of shear-wave artifacts in the solution. Both limitations do not exist in the solution of the elliptical anisotropic acoustic wave equation. Using perturbation theory in developing

  19. Gravitational clustering to all perturbative orders

    International Nuclear Information System (INIS)

    Abdalla, E.; Mohayaee, R.

    1999-04-01

    We derive the time evolution of the density contrast to all orders of perturbation theory, by solving the Einstein equation for scale-invariant fluctuations. These fluctuations are represented by an infinite series in inverse powers of the radial parameter. In addition to the standard growing modes, we find infinitely many more new growing modes for open and closed universes. (author)

  20. Effective field theory of cosmological perturbations

    Science.gov (United States)

    Piazza, Federico; Vernizzi, Filippo

    2013-11-01

    The effective field theory of cosmological perturbations stems from considering a cosmological background solution as a state displaying spontaneous breaking of time translations and (adiabatic) perturbations as the related Nambu-Goldstone modes. With this insight, one can systematically develop a theory for the cosmological perturbations during inflation and, with minor modifications, also describe in full generality the gravitational interactions of dark energy, which are relevant for late-time cosmology. The formalism displays a unique set of Lagrangian operators containing an increasing number of cosmological perturbations and derivatives. We give an introductory description of the unitary gauge formalism for theories with broken gauge symmetry—that allows us to write down the most general Lagrangian—and of the Stückelberg ‘trick’—that allows to recover gauge invariance and to make the scalar field explicit. We show how to apply this formalism to gravity and cosmology and we reproduce the detailed analysis of the action in the ADM variables. We also review some basic applications to inflation and dark energy.

  1. Multiplicative perturbations of local C-semigroups

    Indian Academy of Sciences (India)

    C-semigroup S(·) may not be densely defined and the perturbation operator B is a ... rems for local C-semigroups on X with densely defined generators. ...... [8] Shaw S-Y and Kuo C-C, Generation of local C-semigroups and solvability of the ...

  2. On-Shell Methods in Perturbative QCD

    International Nuclear Information System (INIS)

    Bern, Zvi; Dixon, Lance J.; Kosower, David A.

    2007-01-01

    We review on-shell methods for computing multi-parton scattering amplitudes in perturbative QCD, utilizing their unitarity and factorization properties. We focus on aspects which are useful for the construction of one-loop amplitudes needed for phenomenological studies at the Large Hadron Collider

  3. Fast space travel by vacuum zero-point field perturbations

    International Nuclear Information System (INIS)

    Froning, H. D. Jr.

    1999-01-01

    Forces acting upon an accelerating vehicle that is 'warping' its surrounding space are estimated, using the techniques of computational gas/fluid dynamics. Disturbances corresponding to perturbation of spacetime metric and vacuum zero-point fields by electromagnetic discharges are modeled as changes in the electric permittivity and magnetic permeability characteristics of the vacuum of space. And it is assumed that resistance to acceleration (vehicle inertia) is, in part, a consequence of zero-point radiation pressure field anisotropy in the warped space region surrounding the craft. The paper shows that resistance to vehicle acceleration can be diminished by spacetime warping that increases light propagation speed within the warped region. If sufficient warping is achieved, ship speed is slower than light speed within the region that surrounds it-even if it is moving faster-than-light with respect to earth

  4. Equilibrium and perturbations in plasma-vacuum systems

    International Nuclear Information System (INIS)

    Mercier, C.

    1974-01-01

    Thermonuclear plasmas must be maintained far from all material contact. In order to realize this condition, one uses in the vacuum surrounding the plasma, a metal wall supposed perfectly conducting and currents whose positions and intensities have to be suitably chosen. The problem of equilibrium consists of finding a toroidal solution of the system of equations JxB=grad P, div B=0, J=rot B, B,J, and P being respectively the magnetic field, current intensity and plasma pressure. The problem can be solved in symmetry of revolution using cylindrical coordinates. The arrangement and intensity of the currents found will not be exactly realized due to, for exemple, technical reasons. Consequently, the first problem of equilibrium is considered as a first approximation and the configuration which will be obtained under imposed real conditions is computed as perturbed equilibria [fr

  5. Measuring the speed of dark: Detecting dark energy perturbations

    International Nuclear Information System (INIS)

    Putter, Roland de; Huterer, Dragan; Linder, Eric V.

    2010-01-01

    The nature of dark energy can be probed not only through its equation of state but also through its microphysics, characterized by the sound speed of perturbations to the dark energy density and pressure. As the sound speed drops below the speed of light, dark energy inhomogeneities increase, affecting both cosmic microwave background and matter power spectra. We show that current data can put no significant constraints on the value of the sound speed when dark energy is purely a recent phenomenon, but can begin to show more interesting results for early dark energy models. For example, the best fit model for current data has a slight preference for dynamics [w(a)≠-1], degrees of freedom distinct from quintessence (c s ≠1), and early presence of dark energy [Ω de (a<<1)≠0]. Future data may open a new window on dark energy by measuring its spatial as well as time variation.

  6. Downstream processing and chromatography based analytical methods for production of vaccines, gene therapy vectors, and bacteriophages

    Science.gov (United States)

    Kramberger, Petra; Urbas, Lidija; Štrancar, Aleš

    2015-01-01

    Downstream processing of nanoplexes (viruses, virus-like particles, bacteriophages) is characterized by complexity of the starting material, number of purification methods to choose from, regulations that are setting the frame for the final product and analytical methods for upstream and downstream monitoring. This review gives an overview on the nanoplex downstream challenges and chromatography based analytical methods for efficient monitoring of the nanoplex production. PMID:25751122

  7. Characterization of a Laser-Generated Perturbation in High-Speed Flow for Receptivity Studies

    Science.gov (United States)

    Chou, Amanda; Schneider, Steven P.; Kegerise, Michael A.

    2014-01-01

    A better understanding of receptivity can contribute to the development of an amplitude-based method of transition prediction. This type of prediction model would incorporate more physics than the semi-empirical methods, which are widely used. The experimental study of receptivity requires a characterization of the external disturbances and a study of their effect on the boundary layer instabilities. Characterization measurements for a laser-generated perturbation were made in two different wind tunnels. These measurements were made with hot-wire probes, optical techniques, and pressure transducer probes. Existing methods all have their limitations, so better measurements will require the development of new instrumentation. Nevertheless, the freestream laser-generated perturbation has been shown to be about 6 mm in diameter at a static density of about 0.045 kg/cubic m. The amplitude of the perturbation is large, which may be unsuitable for the study of linear growth.

  8. The effects of a perturbed source on contaminant transport near the Weldon Spring quarry

    International Nuclear Information System (INIS)

    Tomasko, D.

    1989-03-01

    The effects of a perturbed contamination source at the Weldon Spring quarry in St. Charles County, Missouri, on downstream solute concentrations were investigated using one-dimensional analytical solutions to an advection-dispersion equation developed for both constant-strength and multiple-stepped source functions. A sensitivity study using parameter base-case values and ranges consistent with the geologic conceptualization of the quarry area indicates that the parameters having the greatest effect on predicted concentrations are the distance from the quarry to the point of interest, the average linear groundwater velocity, the contaminant retardation coefficient, and the amplitude and duration of the source perturbation caused by response action activities. Use of base-case parameter value and realistic values for the amplitude and duration of the source perturbation produced a small effect on solute concentrations near the western extremity of the nearby municipal well field, as well as small uncertainties in the predicted results for the assumed model. The effect of simplifying assumptions made in deriving the analytic solution is unknown: use of a multidimensional flow and transport model and additional field work are needed to validate the model. 13 refs., 18 figs

  9. The Study of Tissue Dose Perturbation by Air Cavity with 6MV Photon Beam

    International Nuclear Information System (INIS)

    Shin, Byung Chul; Yoo, Myung Jin; Moon, Chang Woo; Jeung, Tae Sig; Yum, Ha Yong

    1995-01-01

    Purpose : To determine the perturbation effect in the tissue downstream from surface layers of lesions located in the air/tumor-tissue interface of larynx using 6MV photon beam. Materials and Methods : Thermoluminescent dosimeters(TLDs). Were embedded at 3 measurement locations in slab no.7 of a humanoid phantom and exposed to forward and backward direction using various field sizes(4 X 4cm 2 - 15 X 15 cm 2 ). Results : At the air/tissue interface, forward dose perturbation factor(FDPF) is about 1.085 with 4 X 4 cm 2 , 1.05 with 7 X 7 cm 2 , 1.048 with 10 X 10 cm 2 , and 1.041 with 15 X 15 cm 2 . Backscatter dose perturbation factor(BDPF) is about 0.99 with 4 X 4 cm 2 , 0.981 with 7 X 7 cm 2 , 0.956 with 10 X 10 cm 2 and 0.97 with 15 X 15 cm 2 . Conclusion : FDPF is greater as field size is smaller. And FDPF is smaller as the distance is further from the air/tissue interface

  10. Cosmological perturbations on the phantom brane

    Energy Technology Data Exchange (ETDEWEB)

    Bag, Satadru; Sahni, Varun [Inter-University Centre for Astronomy and Astrophysics, Pune (India); Viznyuk, Alexander; Shtanov, Yuri, E-mail: satadru@iucaa.in, E-mail: viznyuk@bitp.kiev.ua, E-mail: shtanov@bitp.kiev.ua, E-mail: varun@iucaa.in [Bogolyubov Institute for Theoretical Physics, Kiev 03680 (Ukraine)

    2016-07-01

    We obtain a closed system of equations for scalar perturbations in a multi-component braneworld. Our braneworld possesses a phantom-like equation of state at late times, w {sub eff} < −1, but no big-rip future singularity. In addition to matter and radiation, the braneworld possesses a new effective degree of freedom—the 'Weyl fluid' or 'dark radiation'. Setting initial conditions on super-Hubble spatial scales at the epoch of radiation domination, we evolve perturbations of radiation, pressureless matter and the Weyl fluid until the present epoch. We observe a gradual decrease in the amplitude of the Weyl-fluid perturbations after Hubble-radius crossing, which results in a negligible effect of the Weyl fluid on the evolution of matter perturbations on spatial scales relevant for structure formation. Consequently, the quasi-static approximation of Koyama and Maartens provides a good fit to the exact results during the matter-dominated epoch. We find that the late-time growth of density perturbations on the brane proceeds at a faster rate than in ΛCDM. Additionally, the gravitational potentials Φ and Ψ evolve differently on the brane than in ΛCDM, for which Φ = Ψ. On the brane, by contrast, the ratio Φ/Ψ exceeds unity during the late matter-dominated epoch ( z ∼< 50). These features emerge as smoking gun tests of phantom brane cosmology and allow predictions of this scenario to be tested against observations of galaxy clustering and large-scale structure.

  11. Growth of matter perturbation in quintessence cosmology

    Science.gov (United States)

    Mulki, Fargiza A. M.; Wulandari, Hesti R. T.

    2017-01-01

    Big bang theory states that universe emerged from singularity with very high temperature and density, then expands homogeneously and isotropically. This theory gives rise standard cosmological principle which declares that universe is homogeneous and isotropic on large scales. However, universe is not perfectly homogeneous and isotropic on small scales. There exist structures starting from clusters, galaxies even to stars and planetary system scales. Cosmological perturbation theory is a fundamental theory that explains the origin of structures. According to this theory, the structures can be regarded as small perturbations in the early universe, which evolves as the universe expands. In addition to the problem of inhomogeneities of the universe, observations of supernovae Ia suggest that our universe is being accelerated. Various models of dark energy have been proposed to explain cosmic acceleration, one of them is cosmological constant. Because of several problems arise from cosmological constant, the alternative models have been proposed, one of these models is quintessence. We reconstruct growth of structure model following quintessence scenario at several epochs of the universe, which is specified by the effective equation of state parameters for each stage. Discussion begins with the dynamics of quintessence, in which exponential potential is analytically derived, which leads to various conditions of the universe. We then focus on scaling and quintessence dominated solutions. Subsequently, we review the basics of cosmological perturbation theory and derive formulas to investigate how matter perturbation evolves with time in subhorizon scales which leads to structure formation, and also analyze the influence of quintessence to the structure formation. From analytical exploration, we obtain the growth rate of matter perturbation and the existence of quintessence as a dark energy that slows down the growth of structure formation of the universe.

  12. Unique Fock quantization of scalar cosmological perturbations

    Science.gov (United States)

    Fernández-Méndez, Mikel; Mena Marugán, Guillermo A.; Olmedo, Javier; Velhinho, José M.

    2012-05-01

    We investigate the ambiguities in the Fock quantization of the scalar perturbations of a Friedmann-Lemaître-Robertson-Walker model with a massive scalar field as matter content. We consider the case of compact spatial sections (thus avoiding infrared divergences), with the topology of a three-sphere. After expanding the perturbations in series of eigenfunctions of the Laplace-Beltrami operator, the Hamiltonian of the system is written up to quadratic order in them. We fix the gauge of the local degrees of freedom in two different ways, reaching in both cases the same qualitative results. A canonical transformation, which includes the scaling of the matter-field perturbations by the scale factor of the geometry, is performed in order to arrive at a convenient formulation of the system. We then study the quantization of these perturbations in the classical background determined by the homogeneous variables. Based on previous work, we introduce a Fock representation for the perturbations in which: (a) the complex structure is invariant under the isometries of the spatial sections and (b) the field dynamics is implemented as a unitary operator. These two properties select not only a unique unitary equivalence class of representations, but also a preferred field description, picking up a canonical pair of field variables among all those that can be obtained by means of a time-dependent scaling of the matter field (completed into a linear canonical transformation). Finally, we present an equivalent quantization constructed in terms of gauge-invariant quantities. We prove that this quantization can be attained by a mode-by-mode time-dependent linear canonical transformation which admits a unitary implementation, so that it is also uniquely determined.

  13. Investigation of changes to the operation of Keenleyside Dam to reduce supersaturation of dissolved gases downstream

    International Nuclear Information System (INIS)

    Nunn, J.O.H.; Fidler, L.E.; Northcott, P.

    1993-01-01

    Keenlyside Dam is located on the Columbia River in southeast British Columbia. It impounds Arrow Lakes Reservoir, which has a live storage of 8.8 billion m 3 . The dam is used for flood control and to increase power generation in the USA. Recent field measurements have shown that the current operation of the dam often creates high levels of total gas pressure (TGP) downstream of the dam, with supersaturation levels occasionally reaching as high as 140%. It appeared that these increased levels were associated with the use of the spillway. High levels of dissolved gases may have adverse effects on aquatic life. Therefore, a comprehensive study was initiated to investigate ways of reducing TGP levels. The discharge facilities at the dam are described, along with the effects of dissolved gas supersaturation on fish. Current studies include measurement of field TGP levels, development of a model to predict TGP levels for different modes of operation of the discharge facilities, assessing the effects of TGP on different fish species at different life stages, field testing of the discharge facilities, and assessment of long-term impacts of various operating alternatives on the dam structures and equipment. Preliminary results indicate that the north low-level ports of the spillway increase the TGP level significantly less than the other two components of the discharge facilities. Current operating practice therefore maximizes use of the north ports within current operating limits. 9 refs., 4 figs

  14. Hydraulic Simulation of In-vessel Downstream Effect Test Using MARS-KS Code

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Young Seok; Lee, Joon Soo; Ryu, Seung Hoon [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-05-15

    In-vessel downstream effect test (IDET) has been required to evaluate the effect of debris on long term core cooling following a loss of coolant accident (LOCA) in support of resolution of Generic Safety Issue (GSI) 191. Head loss induced by debris (fiber and particle) accumulated on prototypical fuel assembly (FA) should be compared with the available driving head to the core for the various combinations of LOCA and Emergency Core Cooling System (ECCS) injection. The actual simulation was conducted using MARS-KS code. Also the influence of small difference in gap size which was found in the actual experiment is evaluated using the present model. A simple model to determine the form loss factors of FA and gap in clean state and the debris laden state is discussed based on basic fluid mechanics. Those form loss factors were applied to the hydraulic simulation of a selected IDET using MARS-KS code. The result indicated that the present model can be applied to IDET simulation. The pressure drop influenced by small difference in gap size can be evaluated by the present model with practical assumption.

  15. Wake Measurement Downstream of a Hybrid Wing Body Model with Blown Flaps

    Science.gov (United States)

    Lin, John C.; Jones, Gregory S.; Allan, Brian G.; Westra, Bryan W.; Collins, Scott W.; Zeune, Cale H.

    2010-01-01

    Flow-field measurements were obtained in the wake of a full-span Hybrid Wing Body model with internally blown flaps. The test was performed at the NASA Langley 14 x 22 Foot Subsonic Tunnel at low speeds. Off-body measurements were obtained with a 7-hole probe rake survey system. Three model configurations were investigated. At 0deg angle of attack the surveys were completed with 0deg and 60deg flap deflections. At 10deg angle of attack the wake surveys were completed with a slat and a 60deg flap deflection. The 7-hole probe results further quantified two known swirling regions (downstream of the outboard flap edge and the inboard/outboard flap juncture) for the 60deg flap cases with blowing. Flowfield results and the general trends are very similar for the two blowing cases at nozzle pressure ratios of 1.37 and 1.56. High downwash velocities correlated with the enhanced lift for the 60deg flap cases with blowing. Jet-induced effects are the largest at the most inboard station for all (three) velocity components due in part to the larger inboard slot height. The experimental data are being used to improve computational tools for high-lift wings with integrated powered-lift technologies.

  16. MIXING LOSSES INVESTIGATION DOWNSTREAM OF TURBINE BLADE CASCADE WITH COOLANT FLOW BLOWING

    Directory of Open Access Journals (Sweden)

    ASSIM HAMEED YOUSIF

    2011-04-01

    Full Text Available A major cause of noise and vibration characteristics of turbomachinery has caused by wakes. The characteristics of the wake, the wake decay, the path that it follows, and the mechanisms of mixing losses generated due to the mixing of blade trailing edge cold jet issued into the hot cross flow are important to find adequate solution to the problem. At the present work the wake characteristic was observed by introducing experimental work inside a cascade test rig to investigate the wake domain downstream of blade cascade with the aid of five-hole probe. The case studies were done with cold jets blowing ratios 1.58, 1.667 and 1.935 with jet stream wise angle and jet lateral injection angle 37.5° and 35 º respectively. The measurement showed that there is a certain harmonization in the region of high reverse pressure loss coefficient which reflects the concentration of wake region. Also it was observed three distinct wake regions located in the centre of the passage vortex region. The wake characteristics measurements of the movement path, the growth of wake width, and the physical awareness of the wake propagating may help to explain the mechanisms of mixing losses.

  17. Test-retest reliability of a balance testing protocol with external perturbations in young healthy adults.

    Science.gov (United States)

    Robbins, Shawn M; Caplan, Ryan M; Aponte, Daniel I; St-Onge, Nancy

    2017-10-01

    External perturbations are utilized to challenge balance and mimic realistic balance threats in patient populations. The reliability of such protocols has not been established. The purpose was to examine test-retest reliability of balance testing with external perturbations. Healthy adults (n=34; mean age 23 years) underwent balance testing over two visits. Participants completed ten balance conditions in which the following parameters were combined: perturbation or non-perturbation, single or double leg, and eyes open or closed. Three trials were collected for each condition. Data were collected on a force plate and external perturbations were applied by translating the plate. Force plate center of pressure (CoP) data were summarized using 13 different CoP measures. Test-retest reliability was examined using intraclass correlation coefficients (ICC) and Bland-Altman plots. CoP measures of total speed and excursion in both anterior-posterior and medial-lateral directions generally had acceptable ICC values for perturbation conditions (ICC=0.46 to 0.87); however, many other CoP measures (e.g. range, area of ellipse) had unacceptable test-retest reliability (ICCbalance testing protocols that include external perturbations should be made to improve test-retest reliability and diminish learning including more extensive participant training and increasing the number of trials. CoP measures that consider all data points (e.g. total speed) are more reliable than those that only consider a few data points. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Effect of higher muscle coactivation on standing postural response to perturbation in older adults.

    Science.gov (United States)

    Nagai, Koutatsu; Okita, Yusuke; Ogaya, Shinya; Tsuboyama, Tadao

    2017-04-01

    Although several studies have reported that muscle coactivation during postural control increases with age, the effect of higher muscle coactivation on standing postural response to perturbation is unknown. To investigate whether higher muscle coactivation affects standing postural response to perturbation in older adults. Thirty-four community-dwelling older participants were randomly assigned either to the coactivation group (CG), where muscle coactivation was increased intentionally, or to the non-coactivation group (NCG). The participants were instructed to stand on a force plate that moved forward or backward. Electromyography data were collected from the lower leg muscles. We requested the participants in the CG to increase the activity of their tibialis anterior, and to maintain this posture during the tasks. We moved the force plate with a constant amplitude and velocity, and measured kinematic data with a camera during the tasks. During forward transfer, the knee extension and hip flexion decreased in the CG after perturbation compared to NCG, and the trunk extension angle increased. The center of pressure (COP) displacement decreased around the peak of the movement in the CG compared to NCG. During backward transfer, ankle dorsal and knee flexion changed after perturbation in the CG compared to NCG. Our study found that higher muscle coactivation inhibits lower limb and COP movement as well as increases trunk tilt and the risk for falls during forward perturbations. Postural control with higher coactivation appears to be inefficient for maintaining balance during the backward sway of posture.

  19. Evolution of the curvature perturbations during warm inflation

    International Nuclear Information System (INIS)

    Matsuda, Tomohiro

    2009-01-01

    This paper considers warm inflation as an interesting application of multi-field inflation. Delta-N formalism is used for the calculation of the evolution of the curvature perturbations during warm inflation. Although the perturbations considered in this paper are decaying after the horizon exit, the corrections to the curvature perturbations sourced by these perturbations can remain and dominate the curvature perturbations at large scales. In addition to the typical evolution of the curvature perturbations, inhomogeneous diffusion rate is considered for warm inflation, which may lead to significant non-Gaussianity of the spectrum

  20. Perturbation Theory for Open Two-Level Nonlinear Quantum Systems

    International Nuclear Information System (INIS)

    Zhang Zhijie; Jiang Dongguang; Wang Wei

    2011-01-01

    Perturbation theory is an important tool in quantum mechanics. In this paper, we extend the traditional perturbation theory to open nonlinear two-level systems, treating decoherence parameter γ as a perturbation. By this virtue, we give a perturbative solution to the master equation, which describes a nonlinear open quantum system. The results show that for small decoherence rate γ, the ratio of the nonlinear rate C to the tunneling coefficient V (i.e., r = C/V) determines the validity of the perturbation theory. For small ratio r, the perturbation theory is valid, otherwise it yields wrong results. (general)

  1. Reviews and syntheses: Anthropogenic perturbations to carbon fluxes in Asian river systems – concepts, emerging trends, and research challenges

    Directory of Open Access Journals (Sweden)

    J.-H. Park

    2018-05-01

    Full Text Available Human activities are drastically altering water and material flows in river systems across Asia. These anthropogenic perturbations have rarely been linked to the carbon (C fluxes of Asian rivers that may account for up to 40–50 % of the global fluxes. This review aims to provide a conceptual framework for assessing the human impacts on Asian river C fluxes, along with an update on anthropogenic alterations of riverine C fluxes. Drawing on case studies conducted in three selected rivers (the Ganges, Mekong, and Yellow River and other major Asian rivers, the review focuses on the impacts of river impoundment and pollution on CO2 outgassing from the rivers draining South, Southeast, and East Asian regions that account for the largest fraction of river discharge and C exports from Asia and Oceania. A critical examination of major conceptual models of riverine processes against observed trends suggests that to better understand altered metabolisms and C fluxes in anthropogenic land-water-scapes, or riverine landscapes modified by human activities, the traditional view of the river continuum should be complemented with concepts addressing spatial and temporal discontinuities created by human activities, such as river impoundment and pollution. Recent booms in dam construction on many large Asian rivers pose a host of environmental problems, including increased retention of sediment and associated C. A small number of studies that measured greenhouse gas (GHG emissions in dammed Asian rivers have reported contrasting impoundment effects: decreased GHG emissions from eutrophic reservoirs with enhanced primary production vs. increased emissions from the flooded vegetation and soils in the early years following dam construction or from the impounded reaches and downstream estuaries during the monsoon period. These contrasting results suggest that the rates of metabolic processes in the impounded and downstream reaches can vary greatly longitudinally

  2. Reviews and syntheses: Anthropogenic perturbations to carbon fluxes in Asian river systems - concepts, emerging trends, and research challenges

    Science.gov (United States)

    Park, Ji-Hyung; Nayna, Omme K.; Begum, Most S.; Chea, Eliyan; Hartmann, Jens; Keil, Richard G.; Kumar, Sanjeev; Lu, Xixi; Ran, Lishan; Richey, Jeffrey E.; Sarma, Vedula V. S. S.; Tareq, Shafi M.; Xuan, Do Thi; Yu, Ruihong

    2018-05-01

    Human activities are drastically altering water and material flows in river systems across Asia. These anthropogenic perturbations have rarely been linked to the carbon (C) fluxes of Asian rivers that may account for up to 40-50 % of the global fluxes. This review aims to provide a conceptual framework for assessing the human impacts on Asian river C fluxes, along with an update on anthropogenic alterations of riverine C fluxes. Drawing on case studies conducted in three selected rivers (the Ganges, Mekong, and Yellow River) and other major Asian rivers, the review focuses on the impacts of river impoundment and pollution on CO2 outgassing from the rivers draining South, Southeast, and East Asian regions that account for the largest fraction of river discharge and C exports from Asia and Oceania. A critical examination of major conceptual models of riverine processes against observed trends suggests that to better understand altered metabolisms and C fluxes in anthropogenic land-water-scapes, or riverine landscapes modified by human activities, the traditional view of the river continuum should be complemented with concepts addressing spatial and temporal discontinuities created by human activities, such as river impoundment and pollution. Recent booms in dam construction on many large Asian rivers pose a host of environmental problems, including increased retention of sediment and associated C. A small number of studies that measured greenhouse gas (GHG) emissions in dammed Asian rivers have reported contrasting impoundment effects: decreased GHG emissions from eutrophic reservoirs with enhanced primary production vs. increased emissions from the flooded vegetation and soils in the early years following dam construction or from the impounded reaches and downstream estuaries during the monsoon period. These contrasting results suggest that the rates of metabolic processes in the impounded and downstream reaches can vary greatly longitudinally over time as a

  3. Blood pressure

    Science.gov (United States)

    Normal blood pressure is important for proper blood flow to the body's organs and tissues. The force of the blood on the walls of the arteries is called blood pressure. Blood pressure is measured both as the heart ...

  4. Measuring infrared contributions to the QCD pressure

    CERN Document Server

    Kajantie, Keijo; Rummukainen, K; Schröder, Y

    2002-01-01

    For the pressure (or free energy) of QCD, four-dimensional (4d) lattice data is available at zero baryon density up to a few times the critical temperature $T_c$. Perturbation theory, on the other hand, has serious convergence problems even at very high temperatures. In a combined analytical and three-dimensional (3d) lattice method, we show that it is possible to compute the QCD pressure from about $2 T_c$ to infinity. The numerical accuracy is good enough to resolve in principle, e.g., logarithmic contributions related to 4-loop perturbation theory.

  5. Passage of downstream migrant American eels through an airlift-assisted deep bypass

    Science.gov (United States)

    Haro, Alexander J.; Watten, Barnaby J.; Noreika, John

    2016-01-01

    Traditional downstream guidance and bypass facilities for anadromous fishes (i.e., surface bypasses, surface guidance structures, and behavioral barriers) have frequently been ineffective for anguillid eels. Because eels typically spend the majority of their time near the bottom in the vicinity of intake structures, deep bypass structures with entrances near the bottom hold promise for increased effectiveness, thereby aiding in the recovery of this important species. A new design of a deep bypass system that uses airlift technology (the Conte Airlift Bypass) to induce flow in a bypass pipe was tested in a simulated intake entrance environment under controlled laboratory conditions. Water velocities of 0.9–1.5 m s−1 could be generated at the bypass entrance (opening with 0.073 m2 area), with corresponding flows through the bypass pipe of 0.07–0.11 m3 s−1. Gas saturation and hydrostatic pressure within the bypass pipe did not vary appreciably from a control (no air) condition under tested airflows. Migratory silver-phase American eels (Anguilla rostrata) tested during dark conditions readily located, entered, and passed through the bypass; initial avoidance rates (eels approaching but not entering the bypass entrance) were lower at higher entrance velocities. Eels that investigated the bypass pipe entrance tended to enter headfirst, but those that then exited the pipe upstream did so more frequently at lower entrance velocities. Eels appeared to swim against the flow while being transported downstream through the pipe; median transit times through the bypass for each test velocity ranged from 5.8 to 12.2 s, with transit time decreasing with increasing entrance velocity. Eels did not show strong avoidance of the vertical section of the pipe which contained injected air. No mortality or injury of bypassed eels was observed, and individual eels repeatedly passed through the bypass at rates of up to 40 passes per hour, suggesting that individuals do not

  6. Perturbative QCD and electromagnetic form factors

    International Nuclear Information System (INIS)

    Carlson, C.E.; Gross, F.

    1987-01-01

    We calculate nucleon magnetic form factors using perturbative QCD for several distribution amplitudes including a general one given in terms of Appell polynomials. We find that the magnitude and sign of both nucleon magnetic form factors can be explained within perturbative QCD. The observed normalization of G/sub Mp/ requires that the distribution amplitude be broader than its superhigh momentum transfer limit, and the G/sub Mn//G/sub Mp/ data may require the distribution amplitude to be asymmetric, in accord with distribution amplitudes derived from QCD sum rules. Some speculation as to how an asymmetric distribution amplitude can come about is offered. Finally, we show that the soft contributions corresponding to the particular distribution amplitudes we use need not be bigger than the data. 16 refs., 6 figs

  7. Cosmological perturbations in transient phantom inflation scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Richarte, Martin G. [Universidade Federal do Parana, Departamento de Fisica, Caixa Postal 19044, Curitiba (Brazil); Universidad de Buenos Aires, Ciudad Universitaria 1428, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Kremer, Gilberto M. [Universidade Federal do Parana, Departamento de Fisica, Caixa Postal 19044, Curitiba (Brazil)

    2017-01-15

    We present a model of inflation where the inflaton is accommodated as a phantom field which exhibits an initial transient pole behavior and then decays into a quintessence field which is responsible for a radiation era. We must stress that the present unified model only deals with a single field and that the transition between the two eras is achieved in a smooth way, so the model does not suffer from the eternal inflation issue. We explore the conditions for the crossing of the phantom divide line within the inflationary era along with the structural stability of several critical points. We study the behavior of the phantom field within the slow-climb approximation along with the necessary conditions to have sufficient inflation. We also examine the model at the level of classical perturbations within the Newtonian gauge and determine the behavior of the gravitational potential, contrast density and perturbed field near the inflation stage and the subsequent radiation era. (orig.)

  8. Perturbative search for dead-end CFTs

    International Nuclear Information System (INIS)

    Nakayama, Yu

    2015-01-01

    To explore the possibility of self-organized criticality, we look for CFTs without any relevant scalar deformations (a.k.a. dead-end CFTs) within power-counting renormalizable quantum field theories with a weakly coupled Lagrangian description. In three dimensions, the only candidates are pure (Abelian) gauge theories, which may be further deformed by Chern-Simons terms. In four dimensions, we show that there are infinitely many non-trivial candidates based on chiral gauge theories. Using the three-loop beta functions, we compute the gap of scaling dimensions above the marginal value, and it can be as small as O(10"−"5) and robust against the perturbative corrections. These classes of candidates are very weakly coupled and our perturbative conclusion seems difficult to refute. Thus, the hypothesis that non-trivial dead-end CFTs do not exist is likely to be false in four dimensions.

  9. Theory of cosmological perturbations with cuscuton

    Energy Technology Data Exchange (ETDEWEB)

    Boruah, Supranta S.; Kim, Hyung J.; Geshnizjani, Ghazal, E-mail: ssarmabo@uwaterloo.ca, E-mail: h268kim@uwaterloo.ca, E-mail: ggeshniz@uwaterloo.ca [Department of Applied Mathematics, University of Waterloo, 200 University Ave W., Waterloo, ON N2L 3G1 (Canada)

    2017-07-01

    This paper presents the first derivation of the quadratic action for curvature perturbations, ζ, within the framework of cuscuton gravity. We study the scalar cosmological perturbations sourced by a canonical single scalar field in the presence of cuscuton field. We identify ζ as comoving curvature with respect to the source field and we show that it retains its conservation characteristic on super horizon scales. The result provides an explicit proof that cuscuton modification of gravity around Friedmann-Lemaitre-Robertson-Walker (FLRW) metric is ghost free. We also investigate the potential development of other instabilities in cuscuton models. We find that in a large class of these models, there is no generic instability problem. However, depending on the details of slow-roll parameters, specific models may display gradient instabilities.

  10. Perturbative Universality in Soft Particle Production

    CERN Document Server

    Khoze, V A; Ochs, Wolfgang; Khoze, Valery A.; Lupia, Sergio; Ochs, Wolfgang

    1998-01-01

    The spectrum of partons in a QCD jet becomes independent of the primary energy in the low momentum limit. This follows within the perturbative QCD from the colour coherence in soft gluon branching. Remarkably, the hadrons follow such behaviour closely, suggesting the parton hadron duality picture to be appropriate also for the low momentum particles. More generally, this scaling property holds for particles of low transverse and arbitrary longitudinal momentum, which explains an old experimental observation (``fan invariance''). Further tests of the perturbatively based picture for soft particle production are proposed for three-jet events in e+e- annihilation and di-jet production events in gamma p, gamma-gamma and p\\bar p collisions. They are based upon the difference in the intensity of the soft radiation from primary q\\bar q and gg antennae.

  11. Small-sample-worth perturbation methods

    International Nuclear Information System (INIS)

    1985-01-01

    It has been assumed that the perturbed region, R/sub p/, is large enough so that: (1) even without a great deal of biasing there is a substantial probability that an average source-neutron will enter it; and (2) once having entered, the neutron is likely to make several collisions in R/sub p/ during its lifetime. Unfortunately neither assumption is valid for the typical configurations one encounters in small-sample-worth experiments. In such experiments one measures the reactivity change which is induced when a very small void in a critical assembly is filled with a sample of some test-material. Only a minute fraction of the fission-source neutrons ever gets into the sample and, of those neutrons that do, most emerge uncollided. Monte Carlo small-sample perturbations computations are described

  12. A primer for Chiral Perturbative Theory

    International Nuclear Information System (INIS)

    Scherer, Stefan; Schindler, Matthias R.; George Washington Univ., Washington, DC

    2012-01-01

    Chiral Perturbation Theory, as effective field theory, is a commonly accepted and well established working tool, approximating quantum chromodynamics at energies well below typical hadron masses. This volume, based on a number of lectures and supplemented with additional material, provides a pedagogical introduction for graduate students and newcomers entering the field from related areas of nuclear and particle physics. Starting with the the Lagrangian of the strong interactions and general symmetry principles, the basic concepts of Chiral Perturbation Theory in the mesonic and baryonic sectors are developed. The application of these concepts is then illustrated with a number of examples. A large number of exercises (81, with complete solutions) are included to familiarize the reader with helpful calculational techniques. (orig.)

  13. Infrared problems in field perturbation theory

    International Nuclear Information System (INIS)

    David, Francois.

    1982-12-01

    The work presented mainly covers questions related to the presence of ''infrared'' divergences in perturbation expansions of the Green functions of certain massless field theories. It is important to determine the mathematical status of perturbation expansions in field theory in order to define the region in which they are valid. Renormalization and the symmetry of a theory are important factors in infrared problems. The main object of this thesis resides in the mathematical techniques employed: integral representations of the Feynman amplitudes; methods for desingularization, regularization and dimensional renormalization. Nonlinear two dimensional space-time sigma models describing Goldstone's low energy boson dynamics associated with a breaking of continuous symmetry are studied. Random surface models are then investigated followed by infrared divergences in super-renormalizable theories. Finally, nonperturbation effects in massless theories are studied by expanding the two-dimensional nonlinear sigma model in 1/N [fr

  14. A non-perturbative operator product expansion

    International Nuclear Information System (INIS)

    Bietenholz, W.; Cundy, N.; Goeckeler, M.

    2009-10-01

    Nucleon structure functions can be observed in Deep Inelastic Scattering experiments, but it is an outstanding challenge to confront them with fully non-perturbative QCD results. For this purpose we investigate the product of electromagnetic currents (with large photonmomenta) between quark states (of low momenta). By means of an Operator Product Expansion the structure function can be decomposed into matrix elements of local operators, and Wilson coefficients. For consistency both have to be computed non-perturbatively. Here we present precision results for a set of Wilson coefficients. They are evaluated from propagators for numerous quark momenta on the lattice, where the use of chiral fermions suppresses undesired operator mixing. This overdetermines the Wilson coefficients, but reliable results can be extracted by means of a Singular Value Decomposition. (orig.)

  15. Stability of gradient semigroups under perturbations

    Science.gov (United States)

    Aragão-Costa, E. R.; Caraballo, T.; Carvalho, A. N.; Langa, J. A.

    2011-07-01

    In this paper we prove that gradient-like semigroups (in the sense of Carvalho and Langa (2009 J. Diff. Eqns 246 2646-68)) are gradient semigroups (possess a Lyapunov function). This is primarily done to provide conditions under which gradient semigroups, in a general metric space, are stable under perturbation exploiting the known fact (see Carvalho and Langa (2009 J. Diff. Eqns 246 2646-68)) that gradient-like semigroups are stable under perturbation. The results presented here were motivated by the work carried out in Conley (1978 Isolated Invariant Sets and the Morse Index (CBMS Regional Conference Series in Mathematics vol 38) (RI: American Mathematical Society Providence)) for groups in compact metric spaces (see also Rybakowski (1987 The Homotopy Index and Partial Differential Equations (Universitext) (Berlin: Springer)) for the Morse decomposition of an invariant set for a semigroup on a compact metric space).

  16. Stability of gradient semigroups under perturbations

    International Nuclear Information System (INIS)

    Aragão-Costa, E R; Carvalho, A N; Caraballo, T; Langa, J A

    2011-01-01

    In this paper we prove that gradient-like semigroups (in the sense of Carvalho and Langa (2009 J. Diff. Eqns 246 2646–68)) are gradient semigroups (possess a Lyapunov function). This is primarily done to provide conditions under which gradient semigroups, in a general metric space, are stable under perturbation exploiting the known fact (see Carvalho and Langa (2009 J. Diff. Eqns 246 2646–68)) that gradient-like semigroups are stable under perturbation. The results presented here were motivated by the work carried out in Conley (1978 Isolated Invariant Sets and the Morse Index (CBMS Regional Conference Series in Mathematics vol 38) (RI: American Mathematical Society Providence)) for groups in compact metric spaces (see also Rybakowski (1987 The Homotopy Index and Partial Differential Equations (Universitext) (Berlin: Springer)) for the Morse decomposition of an invariant set for a semigroup on a compact metric space)

  17. A primer for chiral perturbation theory

    CERN Document Server

    Scherer, Stefan

    2012-01-01

    Chiral Perturbation Theory, as effective field theory, is a commonly accepted and well established working tool, approximating quantum chromodynamics at energies well below typical hadron masses. This volume, based on a number of lectures and supplemented with additional material, provides a pedagogical introduction for graduate students and newcomers entering the field from related areas of nuclear and particle physics. Starting with the the Lagrangian of the strong interactions and general symmetry principles, the basic concepts of Chiral Perturbation Theory in the mesonic and baryonic sectors are developed. The application of these concepts is then illustrated with a number of examples. A large number of exercises (81, with complete solutions) are included to familiarize the reader with helpful calculational techniques.

  18. Renormalization of the inflationary perturbations revisited

    Science.gov (United States)

    Markkanen, Tommi

    2018-05-01

    In this work we clarify aspects of renormalization on curved backgrounds focussing on the potential ramifications on the amplitude of inflationary perturbations. We provide an alternate view of the often used adiabatic prescription by deriving a correspondence between the adiabatic subtraction terms and traditional renormalization. Specifically, we show how adiabatic subtraction can be expressed as a set of counter terms that are introduced by redefining the bare parameters of the action. Our representation of adiabatic subtraction then allows us to easily find other renormalization prescriptions differing only in the finite parts of the counter terms. As our main result, we present for quadratic inflation how one may consistently express the renormalization of the spectrum of perturbations from inflation as a redefinition of the bare cosmological constant and Planck mass such that the observable predictions coincide with the unrenormalized result.

  19. 40 CFR 80.210 - What sulfur standards apply to gasoline downstream from refineries and importers?

    Science.gov (United States)

    2010-07-01

    ... combined with non-S-RGAS for the sole purpose of producing midgrade gasoline. (6) Where S-RGAS is being... of the gasoline. (f) Downstream standards applicable to S-RGAS when produced or imported. (1) The downstream standard applicable to any gasoline classified as S-RGAS when produced or imported shall be...

  20. Hydrodynamic properties and distribution of bait downstream of a zooplankton trap

    DEFF Research Database (Denmark)

    Selander, Erik; Heuschele, Jan; Larsson, Ann I.

    2017-01-01

    The flow regime around a chemically baited trap is crucial for the trapping process and distribution of bait downstream of traps. We measured the flow field downstream of a trap prototype in flume experiments and mapped the distribution of bait using laser induced fluorescence. The trap produced ...

  1. 40 CFR 80.220 - What are the downstream standards for GPA gasoline?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false What are the downstream standards for GPA gasoline? 80.220 Section 80.220 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... downstream location other than at a retail outlet or wholesale purchaser-consumer facility, and during the...

  2. Perturbative and global anomalies in supergravity theories

    International Nuclear Information System (INIS)

    Sezgin, E.

    1986-09-01

    Perturbative and global anomalies in supergravity theories are reviewed. The existence of a matter and gauge coupled supergravity theory in six dimensions with E 6 xE 7 xU(1) symmetry and highly nontrivial anomaly cancellations is emphasised. The possible string origin of this theory is posed as an open problem, study of which may lead to discovery of new ways to construct/compactify heterotic superstrings. (author)

  3. Non-perturbative quark mass renormalization

    CERN Document Server

    Capitani, S.; Luescher, M.; Sint, S.; Sommer, R.; Weisz, P.; Wittig, H.

    1998-01-01

    We show that the renormalization factor relating the renormalization group invariant quark masses to the bare quark masses computed in lattice QCD can be determined non-perturbatively. The calculation is based on an extension of a finite-size technique previously employed to compute the running coupling in quenched QCD. As a by-product we obtain the $\\Lambda$--parameter in this theory with completely controlled errors.

  4. Geometric perturbation theory and plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    Omohundro, S.M.

    1985-04-04

    Modern differential geometric techniques are used to unify the physical asymptotics underlying mechanics, wave theory and statistical mechanics. The approach gives new insights into the structure of physical theories and is suited to the needs of modern large-scale computer simulation and symbol manipulation systems. A coordinate-free formulation of non-singular perturbation theory is given, from which a new Hamiltonian perturbation structure is derived and related to the unperturbed structure. The theory of perturbations in the presence of symmetry is developed, and the method of averaging is related to reduction by a circle group action. The pseudo-forces and magnetic Poisson bracket terms due to reduction are given a natural asymptotic interpretation. Similar terms due to changing reference frames are related to the method of variation of parameters, which is also given a Hamiltonian formulation. These methods are used to answer a question about nearly periodic systems. The answer leads to a new secular perturbation theory that contains no ad hoc elements. Eikonal wave theory is given a Hamiltonian formulation that generalizes Whitham's Lagrangian approach. The evolution of wave action density on ray phase space is given a Hamiltonian structure using a Lie-Poisson bracket. The relationship between dissipative and Hamiltonian systems is discussed. A new type of attractor is defined which attracts both forward and backward in time and is shown to occur in infinite-dimensional Hamiltonian systems with dissipative behavior. The theory of Smale horseshoes is applied to gyromotion in the neighborhood of a magnetic field reversal and the phenomenon of reinsertion in area-preserving horseshoes is introduced. The central limit theorem is proved by renormalization group techniques. A natural symplectic structure for thermodynamics is shown to arise asymptotically from the maximum entropy formalism.

  5. Understanding Theoretical Uncertainties in Perturbative QCD Computations

    DEFF Research Database (Denmark)

    Jenniches, Laura Katharina

    effective field theories and perturbative QCD to predict the effect of New Physics on measurements at the LHC and at other future colliders. We use heavy-quark, heavy-scalar and soft-collinear effective theory to calculate a three-body cascade decay at NLO QCD in the expansion-by-regions formalism...... discuss an extension of the Cacciari-Houdeau approach to observables with hadrons in the initial state....

  6. Inclusive central region in perturbative Reggeon calculus

    International Nuclear Information System (INIS)

    Pajares, C.; Pascual, R.

    1976-01-01

    The single-particle inclusive cross section and the correlation function are studied in the perturbative approach to Gribov's Reggeon calculus; the leading contributions to both functions are evaluated. The large energy rise of the inclusive cross section appears as a consequence of the Pomerons having an intercept larger than 1. The same set of parameters which describes correctly the cross-section data and the triple-Regge region also describes the inclusive data in the central region

  7. Word Embedding Perturbation for Sentence Classification

    OpenAIRE

    Zhang, Dongxu; Yang, Zhichao

    2018-01-01

    In this technique report, we aim to mitigate the overfitting problem of natural language by applying data augmentation methods. Specifically, we attempt several types of noise to perturb the input word embedding, such as Gaussian noise, Bernoulli noise, and adversarial noise, etc. We also apply several constraints on different types of noise. By implementing these proposed data augmentation methods, the baseline models can gain improvements on several sentence classification tasks.

  8. Growth rate, population entropy, and perturbation theory.

    OpenAIRE

    Demetrius, L.

    1989-01-01

    This paper is concerned with the connection between two classes of population variables: measures of population growth rate—the Malthusian parameter, the net reproduction rate, the gross reproduction rate, and the mean life expectancy; and measures of demographic heterogeneity—population entropy. It is shown that the entropy functions predict the response of the growth rate parameters to perturbations in the age-specific fecundity and mortality schedule. These results are invoked to introduce...

  9. Baryon form factors in chiral perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, B.; Meissner, U.G. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Kernphysik

    2001-01-01

    We analyze the electromagnetic form factors of the ground state baryon octet to fourth order in relativistic baryon chiral perturbation theory. Predictions for the {sigma}{sup -} charge radius and the {lambda}-{sigma}{sup 0} transition moment are found to be in excellent agreement with the available experimental information. Furthermore, the convergence behavior of the hyperon charge radii is shown to be more than satisfactory. (orig.)

  10. Geometric perturbation theory and plasma physics

    International Nuclear Information System (INIS)

    Omohundro, S.M.

    1985-01-01

    Modern differential geometric techniques are used to unify the physical asymptotics underlying mechanics, wave theory and statistical mechanics. The approach gives new insights into the structure of physical theories and is suited to the needs of modern large-scale computer simulation and symbol manipulation systems. A coordinate-free formulation of non-singular perturbation theory is given, from which a new Hamiltonian perturbation structure is derived and related to the unperturbed structure. The theory of perturbations in the presence of symmetry is developed, and the method of averaging is related to reduction by a circle group action. The pseudo-forces and magnetic Poisson bracket terms due to reduction are given a natural asymptotic interpretation. Similar terms due to changing reference frames are related to the method of variation of parameters, which is also given a Hamiltonian formulation. These methods are used to answer a question about nearly periodic systems. The answer leads to a new secular perturbation theory that contains no ad hoc elements. Eikonal wave theory is given a Hamiltonian formulation that generalizes Whitham's Lagrangian approach. The evolution of wave action density on ray phase space is given a Hamiltonian structure using a Lie-Poisson bracket. The relationship between dissipative and Hamiltonian systems is discussed. A new type of attractor is defined which attracts both forward and backward in time and is shown to occur in infinite-dimensional Hamiltonian systems with dissipative behavior. The theory of Smale horseshoes is applied to gyromotion in the neighborhood of a magnetic field reversal and the phenomenon of reinsertion in area-preserving horseshoes is introduced. The central limit theorem is proved by renormalization group techniques. A natural symplectic structure for thermodynamics is shown to arise asymptotically from the maximum entropy formalism

  11. Capillary and viscous perturbations to Helmholtz flows

    KAUST Repository

    Moore, M. R.; Ockendon, H.; Ockendon, J. R.; Oliver, J. M.

    2014-01-01

    Inspired by recent calculations by Thoraval et al. (Phys. Rev. Lett., vol. 108, 2012, p. 264506) relating to droplet impact, this paper presents an analysis of the perturbations to the free surface caused by small surface tension and viscosity in steady Helmholtz flows. In particular, we identify the regimes in which appreciable vorticity can be shed from the boundary layer to the bulk flow. © 2014 Cambridge University Press.

  12. Capillary and viscous perturbations to Helmholtz flows

    KAUST Repository

    Moore, M. R.

    2014-02-21

    Inspired by recent calculations by Thoraval et al. (Phys. Rev. Lett., vol. 108, 2012, p. 264506) relating to droplet impact, this paper presents an analysis of the perturbations to the free surface caused by small surface tension and viscosity in steady Helmholtz flows. In particular, we identify the regimes in which appreciable vorticity can be shed from the boundary layer to the bulk flow. © 2014 Cambridge University Press.

  13. Recent progress on perturbative QCD fragmentation functions

    International Nuclear Information System (INIS)

    Cheung, K.

    1995-05-01

    The recent development of perturbative QCD (PQCD) fragmentation functions has strong impact on quarkonium production. I shall summarize B c meson production based on these PQCD fragmentation functions, as well as, the highlights of some recent activities on applying these PQCD fragmentation functions to explain anomalous J/ψ and ψ' production at the Tevatron. Finally, I discuss a fragmentation model based on the PQCD fragmentation functions for heavy quarks fragmenting into heavy-light mesons

  14. Computational analysis of the flow field downstream of flow conditioners

    Energy Technology Data Exchange (ETDEWEB)

    Erdal, Asbjoern

    1997-12-31

    Technological innovations are essential for maintaining the competitiveness for the gas companies and here metering technology is one important area. This thesis shows that computational fluid dynamic techniques can be a valuable tool for examination of several parameters that may affect the performance of a flow conditioner (FC). Previous design methods, such as screen theory, could not provide fundamental understanding of how a FC works. The thesis shows, among other things, that the flow pattern through a complex geometry, like a 19-hole plate FC, can be simulated with good accuracy by a k-{epsilon} turbulence model. The calculations illuminate how variations in pressure drop, overall porosity, grading of porosity across the cross-section and the number of holes affects the performance of FCs. These questions have been studied experimentally by researchers for a long time. Now an understanding of the important mechanisms behind efficient FCs emerges from the predictions. 179 ref., 110 figs., 8 tabs.

  15. Inflationary perturbations in no-scale theories

    Energy Technology Data Exchange (ETDEWEB)

    Salvio, Alberto [CERN, Theoretical Physics Department, Geneva (Switzerland)

    2017-04-15

    We study the inflationary perturbations in general (classically) scale-invariant theories. Such scenario is motivated by the hierarchy problem and provides natural inflationary potentials and dark matter candidates. We analyse in detail all sectors (the scalar, vector and tensor perturbations) giving general formulae for the potentially observable power spectra, as well as for the curvature spectral index n{sub s} and the tensor-to-scalar ratio r. We show that the conserved Hamiltonian for all perturbations does not feature negative energies even in the presence of the Weyl-squared term if the appropriate quantisation is performed and argue that this term does not lead to phenomenological problems at least in some relevant setups. The general formulae are then applied to a concrete no-scale model, which includes the Higgs and a scalar, ''the planckion'', whose vacuum expectation value generates the Planck mass. Inflation can be triggered by a combination of the planckion and the Starobinsky scalar and we show that no tension with observations is present even in the case of pure planckion inflation, if the coefficient of the Weyl-squared term is large enough. In general, even quadratic inflation is allowed in this case. Moreover, the Weyl-squared term leads to an isocurvature mode, which currently satisfies the observational bounds, but it may be detectable with future experiments. (orig.)

  16. Methods and applications of analytical perturbation theory

    International Nuclear Information System (INIS)

    Kirchgraber, U.; Stiefel, E.

    1978-01-01

    This monograph on perturbation theory is based on various courses and lectures held by the authors at the ETH, Zurich and at the University of Texas, Austin. Its principal intention is to inform application-minded mathematicians, physicists and engineers about recent developments in this field. The reader is not assumed to have mathematical knowledge beyond what is presented in standard courses on analysis and linear algebra. Chapter I treats the transformations of systems of differential equations and the integration of perturbed systems in a formal way. These tools are applied in Chapter II to celestial mechanics and to the theory of tops and gyroscopic motion. Chapter III is devoted to the discussion of Hamiltonian systems of differential equations and exposes the algebraic aspects of perturbation theory showing also the necessary modifications of the theory in case of singularities. The last chapter gives the mathematical justification for the methods developed in the previous chapters and investigates important questions such as error estimations for the solutions and asymptotic stability. Each chapter ends with useful comments and an extensive reference to the original literature. (HJ) [de

  17. Non-perturbative materialization of ghosts

    International Nuclear Information System (INIS)

    Emparan, Roberto; Garriga, Jaume

    2006-01-01

    In theories with a hidden ghost sector that couples to visible matter through gravity only, empty space can decay into ghosts and ordinary matter by graviton exchange. Perturbatively, such processes can be very slow provided that the gravity sector violates Lorentz invariance above some cut-off scale. Here, we investigate non-perturbative decay processes involving ghosts, such as the spontaneous creation of self-gravitating lumps of ghost matter, as well as pairs of Bondi dipoles (i.e. lumps of ghost matter chasing after positive energy objects). We find the corresponding instantons and calculate their Euclidean action. In some cases, the instantons induce topology change or have negative Euclidean action. To shed some light on the meaning of such peculiarities, we also consider the nucleation of concentrical domain walls of ordinary and ghost matter, where the Euclidean calculation can be compared with the canonical (Lorentzian) description of tunneling. We conclude that non-perturbative ghost nucleation processes can be safely suppressed in phenomenological scenarios

  18. Perturbative Critical Behavior from Spacetime Dependent Couplings

    International Nuclear Information System (INIS)

    Torroba, Gonzalo

    2012-01-01

    We find novel perturbative fixed points by introducing mildly spacetime-dependent couplings into otherwise marginal terms. In four-dimensional QFT, these are physical analogues of the small-ε Wilson-Fisher fixed point. Rather than considering 4-ε dimensions, we stay in four dimensions but introduce couplings whose leading spacetime dependence is of the form λx κ μ κ , with a small parameter κ playing a role analogous to ε. We show, in φ 4 theory and in QED and QCD with massless flavors, that this leads to a critical theory under perturbative control over an exponentially wide window of spacetime positions x. The exact fixed point coupling λ * (x) in our theory is identical to the running coupling of the translationally invariant theory, with the scale replaced by 1/x. Similar statements hold for three-dimensional φ 6 theories and two-dimensional sigma models with curved target spaces. We also describe strongly coupled examples using conformal perturbation theory.

  19. Perturbation treatment of mixing in Josephson junctions

    International Nuclear Information System (INIS)

    Levinsen, M.T.; Ulrich, B.T.

    1975-01-01

    A current biased, resistively shunted Josephson Junction irradiated at two frequencies is considered. The perturbation technique introduced by Aslamasov and Larkin is used in the calculations, and both signals are treated as perturbations. The second order calculation yields the size of the mixing steps at V/sub +-/ = h(ω 1 +- ω 2 )/2e. As in the case of a single frequency, subharmonic mixing steps are absent. The amplitude of the voltage oscillation at the difference and sum frequencies is shown to be non-zero at all voltages. The microwave resistance is calculated for one frequency ω 2 to third order in the perturbation. There are negative resistance regions near V/sub +-/ (as well as near V 2 = hω 2 /2e). Near V/sub -/, the negative resistance region appears for bias voltage V just above V/sub -/, while near V the region appears for V just below V/sub +/. This means that when an incident frequency mixes with a cavity mode, the mixing step at V/sub -/ will be inverted compared to the cavity step itself

  20. Quantum inflaton, primordial perturbations, and CMB fluctuations

    International Nuclear Information System (INIS)

    Cao, F.J.; Vega, H.J. de; Sanchez, N.G.

    2004-01-01

    We compute the primordial scalar, vector and tensor metric perturbations arising from quantum field inflation. Quantum field inflation takes into account the nonperturbative quantum dynamics of the inflaton consistently coupled to the dynamics of the (classical) cosmological metric. For chaotic inflation, the quantum treatment avoids the unnatural requirements of an initial state with all the energy in the zero mode. For new inflation it allows a consistent treatment of the explosive particle production due to spinodal instabilities. Quantum field inflation (under conditions that are the quantum analog of slow-roll) leads, upon evolution, to the formation of a condensate starting a regime of effective classical inflation. We compute the primordial perturbations taking the dominant quantum effects into account. The results for the scalar, vector and tensor primordial perturbations are expressed in terms of the classical inflation results. For a N-component field in a O(N) symmetric model, adiabatic fluctuations dominate while isocurvature or entropy fluctuations are negligible. The results agree with the current Wilkinson Microwave Anisotropy Probe observations and predict corrections to the power spectrum in classical inflation. Such corrections are estimated to be of the order of (m 2 /NH 2 ), where m is the inflaton mass and H the Hubble constant at the moment of horizon crossing. An upper estimate turns to be about 4% for the cosmologically relevant scales. This quantum field treatment of inflation provides the foundations to the classical inflation and permits to compute quantum corrections to it

  1. Perturbative Gaussianizing transforms for cosmological fields

    Science.gov (United States)

    Hall, Alex; Mead, Alexander

    2018-01-01

    Constraints on cosmological parameters from large-scale structure have traditionally been obtained from two-point statistics. However, non-linear structure formation renders these statistics insufficient in capturing the full information content available, necessitating the measurement of higher order moments to recover information which would otherwise be lost. We construct quantities based on non-linear and non-local transformations of weakly non-Gaussian fields that Gaussianize the full multivariate distribution at a given order in perturbation theory. Our approach does not require a model of the fields themselves and takes as input only the first few polyspectra, which could be modelled or measured from simulations or data, making our method particularly suited to observables lacking a robust perturbative description such as the weak-lensing shear. We apply our method to simulated density fields, finding a significantly reduced bispectrum and an enhanced correlation with the initial field. We demonstrate that our method reconstructs a large proportion of the linear baryon acoustic oscillations, improving the information content over the raw field by 35 per cent. We apply the transform to toy 21 cm intensity maps, showing that our method still performs well in the presence of complications such as redshift-space distortions, beam smoothing, pixel noise and foreground subtraction. We discuss how this method might provide a route to constructing a perturbative model of the fully non-Gaussian multivariate likelihood function.

  2. Perturbative quantum field theory via vertex algebras

    International Nuclear Information System (INIS)

    Hollands, Stefan; Olbermann, Heiner

    2009-01-01

    In this paper, we explain how perturbative quantum field theory can be formulated in terms of (a version of) vertex algebras. Our starting point is the Wilson-Zimmermann operator product expansion (OPE). Following ideas of a previous paper (S. Hollands, e-print arXiv:0802.2198), we consider a consistency (essentially associativity) condition satisfied by the coefficients in this expansion. We observe that the information in the OPE coefficients can be repackaged straightforwardly into 'vertex operators' and that the consistency condition then has essentially the same form as the key condition in the theory of vertex algebras. We develop a general theory of perturbations of the algebras that we encounter, similar in nature to the Hochschild cohomology describing the deformation theory of ordinary algebras. The main part of the paper is devoted to the question how one can calculate the perturbations corresponding to a given interaction Lagrangian (such as λφ 4 ) in practice, using the consistency condition and the corresponding nonlinear field equation. We derive graphical rules, which display the vertex operators (i.e., OPE coefficients) in terms of certain multiple series of hypergeometric type.

  3. A theoretical description of arterial pressure-flow relationships with verification in the isolated hindlimb of the dog.

    Science.gov (United States)

    Jackman, A P; Green, J F

    1990-01-01

    We developed and tested a new two-compartment serial model of the arterial vasculature which unifies the capacitance (downstream arterial compliance) and waterfall (constant downstream pressure load) theories of blood flow through the arteries. In this model, blood drains from an upstream compliance through a resistance into a downstream compliance which empties into the veins through a downstream resistance which terminates in a constant pressure load. Using transient arterial pressure data obtained from an isolated canine hindlimb preparation, we tested this model, using a stop-flow technique. Numerical parameter estimation techniques were used to estimate the physiologic parameters of the model. The downstream compliance was found to be more than ten times larger than the upstream compliance and the constant pressure load was significantly above venous pressures but decreased in response to vasodilation. Our results support the applicability of both the capacitance and waterfall theories.

  4. Spectral calculations for pressure-velocity and pressure-strain correlations in homogeneous shear turbulence

    Science.gov (United States)

    Dutta, Kishore

    2018-02-01

    Theoretical analyses of pressure related turbulent statistics are vital for a reliable and accurate modeling of turbulence. In the inertial subrange of turbulent shear flow, pressure-velocity and pressure-strain correlations are affected by anisotropy imposed at large scales. Recently, Tsuji and Kaneda (2012 J. Fluid Mech. 694 50) performed a set of experiments on homogeneous shear flow, and estimated various one-dimensional pressure related spectra and the associated non-dimensional universal numbers. Here, starting from the governing Navier-Stokes dynamics for the fluctuating velocity field and assuming the anisotropy at inertial scales as a weak perturbation of an otherwise isotropic dynamics, we analytically derive the form of the pressure-velocity and pressure-strain correlations. The associated universal numbers are calculated using the well-known renormalization-group results, and are compared with the experimental estimates of Tsuji and Kaneda. Approximations involved in the perturbative calculations are discussed.

  5. An integral equation for the continuation of perturbative expansions

    International Nuclear Information System (INIS)

    Ciulli, S.

    1984-01-01

    It is shown how a procedure for analytic continuation, based on methods of functional analysis, can be used to extend the results of a perturbative calculation to yield nonperturbative information which could not be obtained directly from a perturbative expansion

  6. Bounded Perturbation Regularization for Linear Least Squares Estimation

    KAUST Repository

    Ballal, Tarig; Suliman, Mohamed Abdalla Elhag; Al-Naffouri, Tareq Y.

    2017-01-01

    This paper addresses the problem of selecting the regularization parameter for linear least-squares estimation. We propose a new technique called bounded perturbation regularization (BPR). In the proposed BPR method, a perturbation with a bounded

  7. Positron annihilation and perturbed angular correlation studies of radiation damage

    International Nuclear Information System (INIS)

    Zhu Jiazheng; Li Anli; Xu Yongjun; Wang Zhiqiang; Zhou Dongmei; Zheng Yongnan; Zhu Shengyun; Iwata, T.

    2002-01-01

    The positron annihilation and perturbed angular correlation techniques have been employed to study radiation damage in Si and Nb. The results obtained by the positron annihilation are consistent with those given by the perturbed angular correlation

  8. Non-leading contributions in QCD: Summing the perturbative series

    International Nuclear Information System (INIS)

    Trentadue, L.

    1984-01-01

    This paper presents the results of a systematic analysis of the leading and non-leading contributions in perturbative QCD and addresses the question of logarithmic contributions to all orders of the perturbative series

  9. Delineating social network data anonymization via random edge perturbation

    KAUST Repository

    Xue, Mingqiang; Karras, Panagiotis; Raï ssi, Chedy; Kalnis, Panos; Pung, Hungkeng

    2012-01-01

    study of the probability of success of any}structural attack as a function of the perturbation probability. Our analysis provides a powerful tool for delineating the identification risk of perturbed social network data; our extensive experiments

  10. Modeling of aqueous electrolyte solutions with perturbed-chain statistical associated fluid theory

    DEFF Research Database (Denmark)

    Cameretti, Luca F.; Sadowski, Gabriele; Mollerup, Jørgen

    2005-01-01

    The vapor pressures and liquid densities of single-salt electrolyte solutions containing NaCl, LiCl, KCl, NaBr, LiBr, KBr, NaI, LiI, KI, Li2SO4, Na2SO4, and K2SO4 were modeled with an equation of state based on perturbed-chain statistical associated fluid theory (PC-SAFT). The PC-SAFT model...

  11. Three loop HTL perturbation theory at finite temperature and chemical potential

    Energy Technology Data Exchange (ETDEWEB)

    Strickland, Michael [Department of Physics, Kent State University, Kent, OH 44242 (United States); Andersen, Jens O. [Department of Physics, Norwegian University of Science and Technology, N-7491 Trondheim (Norway); Bandyopadhyay, Aritra; Haque, Najmul; Mustafa, Munshi G. [Theory Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India); Su, Nan [Faculty of Physics, University of Bielefeld, D-33615 Bielefeld (Germany)

    2014-11-15

    In this proceedings contribution we present a recent three-loop hard-thermal-loop perturbation theory (HTLpt) calculation of the thermodynamic potential for a finite temperature and chemical potential system of quarks and gluons. We compare the resulting pressure, trace anomaly, and diagonal/off-diagonal quark susceptibilities with lattice data. We show that there is good agreement between the three-loop HTLpt analytic result and available lattice data.

  12. Determination of partial molar volumes from free energy perturbation theory.

    Science.gov (United States)

    Vilseck, Jonah Z; Tirado-Rives, Julian; Jorgensen, William L

    2015-04-07

    Partial molar volume is an important thermodynamic property that gives insights into molecular size and intermolecular interactions in solution. Theoretical frameworks for determining the partial molar volume (V°) of a solvated molecule generally apply Scaled Particle Theory or Kirkwood-Buff theory. With the current abilities to perform long molecular dynamics and Monte Carlo simulations, more direct methods are gaining popularity, such as computing V° directly as the difference in computed volume from two simulations, one with a solute present and another without. Thermodynamically, V° can also be determined as the pressure derivative of the free energy of solvation in the limit of infinite dilution. Both approaches are considered herein with the use of free energy perturbation (FEP) calculations to compute the necessary free energies of solvation at elevated pressures. Absolute and relative partial molar volumes are computed for benzene and benzene derivatives using the OPLS-AA force field. The mean unsigned error for all molecules is 2.8 cm(3) mol(-1). The present methodology should find use in many contexts such as the development and testing of force fields for use in computer simulations of organic and biomolecular systems, as a complement to related experimental studies, and to develop a deeper understanding of solute-solvent interactions.

  13. Determination of partial molar volumes from free energy perturbation theory†

    Science.gov (United States)

    Vilseck, Jonah Z.; Tirado-Rives, Julian

    2016-01-01

    Partial molar volume is an important thermodynamic property that gives insights into molecular size and intermolecular interactions in solution. Theoretical frameworks for determining the partial molar volume (V°) of a solvated molecule generally apply Scaled Particle Theory or Kirkwood–Buff theory. With the current abilities to perform long molecular dynamics and Monte Carlo simulations, more direct methods are gaining popularity, such as computing V° directly as the difference in computed volume from two simulations, one with a solute present and another without. Thermodynamically, V° can also be determined as the pressure derivative of the free energy of solvation in the limit of infinite dilution. Both approaches are considered herein with the use of free energy perturbation (FEP) calculations to compute the necessary free energies of solvation at elevated pressures. Absolute and relative partial molar volumes are computed for benzene and benzene derivatives using the OPLS-AA force field. The mean unsigned error for all molecules is 2.8 cm3 mol−1. The present methodology should find use in many contexts such as the development and testing of force fields for use in computer simulations of organic and biomolecular systems, as a complement to related experimental studies, and to develop a deeper understanding of solute–solvent interactions. PMID:25589343

  14. Temporal effects of Notch signaling and potential cooperation with multiple downstream effectors on adenohypophysis cell specification in zebrafish.

    Science.gov (United States)

    Nakahara, Yoshinari; Muto, Akihiko; Hirabayashi, Ryo; Sakuma, Tetsushi; Yamamoto, Takashi; Kume, Shoen; Kikuchi, Yutaka

    2016-05-01

    The adenohypophysis (AH) consists of six distinct types of hormone-secreting cells. In zebrafish, although proper differentiation of all AH cell types has been shown to require Notch signaling within a period of 14-16 h postfertilization (hpf), the mechanisms underlying this process remain to be elucidated. Herein, we observed using the Notch inhibitor dibenzazepine (DBZ) that Notch signaling also contributed to AH cell specification beyond 16 hpf. Specification of distinct cell types was perturbed by DBZ treatment for different time frames, suggesting that AH cells are specified by Notch-dependent and cell-type-specific mechanisms. We also found that two hes-family genes, her4.1 and hey1, were expressed in the developing AH under the influence of Notch signaling. her4.1 knockdown reduced expression of proopiomelanocortin a (pomca), growth hormone (gh), and prolactin, whereas hey1 was responsible only for gh expression. Simultaneous loss of both Her4.1 and Hey1 produced milder phenotypes than that of DBZ-treated embryos. Moreover, DBZ treatment from 18 hpf led to a significant down-regulation of both gh and pomca genes only when combined with injection of a subthreshold level of her4.1-morpholino. These observations suggest that multiple downstream effectors, including Her4.1 and Hey1, mediate Notch signaling during AH cell specification. © 2016 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  15. First order normalization in the perturbed restricted three–body ...

    African Journals Online (AJOL)

    This paper performs the first order normalization that will be employed in the study of the nonlinear stability of triangular points of the perturbed restricted three – body problem with variable mass. The problem is perturbed in the sense that small perturbations are given in the coriolis and centrifugal forces. It is with variable ...

  16. Euclidean null controllability of perturbed infinite delay systems with ...

    African Journals Online (AJOL)

    Euclidean null controllability of perturbed infinite delay systems with limited control. ... Open Access DOWNLOAD FULL TEXT ... The results are established by placing conditions on the perturbation function which guarantee that, if the linear control base system is completely Euclidean controllable, then the perturbed system ...

  17. The reconstruction property in Banach spaces and a perturbation theorem

    DEFF Research Database (Denmark)

    Casazza, P.G.; Christensen, Ole

    2008-01-01

    Perturbation theory is a fundamental tool in Banach space theory. However, the applications of the classical results are limited by the fact that they force the perturbed sequence to be equivalent to the given sequence. We will develop a more general perturbation theory that does not force...

  18. Exact Controllability and Perturbation Analysis for Elastic Beams

    International Nuclear Information System (INIS)

    Moreles, Miguel Angel

    2004-01-01

    The Rayleigh beam is a perturbation of the Bernoulli-Euler beam. We establish convergence of the solution of the Exact Controllability Problem for the Rayleigh beam to the corresponding solution of the Bernoulli-Euler beam. Convergence is related to a Singular Perturbation Problem. The main tool in solving this perturbation problem is a weak version of a lower bound for hyperbolic polynomials

  19. de Sitter limit of inflation and nonlinear perturbation theory

    DEFF Research Database (Denmark)

    R. Jarnhus, Philip; Sloth, Martin Snoager

    2007-01-01

    We study the fourth order action of the comoving curvature perturbation in an inflationary universe in order to understand more systematically the de Sitter limit in nonlinear cosmological perturbation theory. We derive the action of the curvature perturbation to fourth order in the comoving gaug...

  20. New Approaches and Applications for Monte Carlo Perturbation Theory

    Energy Technology Data Exchange (ETDEWEB)

    Aufiero, Manuele; Bidaud, Adrien; Kotlyar, Dan; Leppänen, Jaakko; Palmiotti, Giuseppe; Salvatores, Massimo; Sen, Sonat; Shwageraus, Eugene; Fratoni, Massimiliano

    2017-02-01

    This paper presents some of the recent and new advancements in the extension of Monte Carlo Perturbation Theory methodologies and application. In particular, the discussed problems involve Brunup calculation, perturbation calculation based on continuous energy functions, and Monte Carlo Perturbation Theory in loosely coupled systems.

  1. Perturbation Theory of the Cosmological Log-Density Field

    DEFF Research Database (Denmark)

    Wang, Xin; Neyrinck, Mark; Szapudi, István

    2011-01-01

    , motivating an analytic study of it. In this paper, we develop cosmological perturbation theory for the power spectrum of this field. Our formalism is developed in the context of renormalized perturbation theory, which helps to regulate the convergence behavior of the perturbation series, and of the Taylor...

  2. Low pressure cooling seal system for a gas turbine engine

    Science.gov (United States)

    Marra, John J

    2014-04-01

    A low pressure cooling system for a turbine engine for directing cooling fluids at low pressure, such as at ambient pressure, through at least one cooling fluid supply channel and into a cooling fluid mixing chamber positioned immediately downstream from a row of turbine blades extending radially outward from a rotor assembly to prevent ingestion of hot gases into internal aspects of the rotor assembly. The low pressure cooling system may also include at least one bleed channel that may extend through the rotor assembly and exhaust cooling fluids into the cooling fluid mixing chamber to seal a gap between rotational turbine blades and a downstream, stationary turbine component. Use of ambient pressure cooling fluids by the low pressure cooling system results in tremendous efficiencies by eliminating the need for pressurized cooling fluids for sealing this gap.

  3. Non-Perturbative Asymptotic Improvement of Perturbation Theory and Mellin-Barnes Representation

    Directory of Open Access Journals (Sweden)

    Samuel Friot

    2010-10-01

    Full Text Available Using a method mixing Mellin-Barnes representation and Borel resummation we show how to obtain hyperasymptotic expansions from the (divergent formal power series which follow from the perturbative evaluation of arbitrary ''N-point'' functions for the simple case of zero-dimensional φ4 field theory. This hyperasymptotic improvement appears from an iterative procedure, based on inverse factorial expansions, and gives birth to interwoven non-perturbative partial sums whose coefficients are related to the perturbative ones by an interesting resurgence phenomenon. It is a non-perturbative improvement in the sense that, for some optimal truncations of the partial sums, the remainder at a given hyperasymptotic level is exponentially suppressed compared to the remainder at the preceding hyperasymptotic level. The Mellin-Barnes representation allows our results to be automatically valid for a wide range of the phase of the complex coupling constant, including Stokes lines. A numerical analysis is performed to emphasize the improved accuracy that this method allows to reach compared to the usual perturbative approach, and the importance of hyperasymptotic optimal truncation schemes.

  4. Application of functional analysis to perturbation theory of differential equations. [nonlinear perturbation of the harmonic oscillator

    Science.gov (United States)

    Bogdan, V. M.; Bond, V. B.

    1980-01-01

    The deviation of the solution of the differential equation y' = f(t, y), y(O) = y sub O from the solution of the perturbed system z' = f(t, z) + g(t, z), z(O) = z sub O was investigated for the case where f and g are continuous functions on I x R sup n into R sup n, where I = (o, a) or I = (o, infinity). These functions are assumed to satisfy the Lipschitz condition in the variable z. The space Lip(I) of all such functions with suitable norms forms a Banach space. By introducing a suitable norm in the space of continuous functions C(I), introducing the problem can be reduced to an equivalent problem in terminology of operators in such spaces. A theorem on existence and uniqueness of the solution is presented by means of Banach space technique. Norm estimates on the rate of growth of such solutions are found. As a consequence, estimates of deviation of a solution due to perturbation are obtained. Continuity of the solution on the initial data and on the perturbation is established. A nonlinear perturbation of the harmonic oscillator is considered a perturbation of equations of the restricted three body problem linearized at libration point.

  5. Scale interaction and arrangement in a turbulent boundary layer perturbed by a wall-mounted cylindrical element

    Science.gov (United States)

    Tang, Zhanqi; Jiang, Nan

    2018-05-01

    This study reports the modifications of scale interaction and arrangement in a turbulent boundary layer perturbed by a wall-mounted circular cylinder. Hot-wire measurements were executed at multiple streamwise and wall-normal wise locations downstream of the cylindrical element. The streamwise fluctuating signals were decomposed into large-, small-, and dissipative-scale signatures by corresponding cutoff filters. The scale interaction under the cylindrical perturbation was elaborated by comparing the small- and dissipative-scale amplitude/frequency modulation effects downstream of the cylinder element with the results observed in the unperturbed case. It was obtained that the large-scale fluctuations perform a stronger amplitude modulation on both the small and dissipative scales in the near-wall region. At the wall-normal positions of the cylinder height, the small-scale amplitude modulation coefficients are redistributed by the cylinder wake. The similar observation was noted in small-scale frequency modulation; however, the dissipative-scale frequency modulation seems to be independent of the cylindrical perturbation. The phase-relationship observation indicated that the cylindrical perturbation shortens the time shifts between both the small- and dissipative-scale variations (amplitude and frequency) and large-scale fluctuations. Then, the integral time scale dependence of the phase-relationship between the small/dissipative scales and large scales was also discussed. Furthermore, the discrepancy of small- and dissipative-scale time shifts relative to the large-scale motions was examined, which indicates that the small-scale amplitude/frequency leads the dissipative scales.

  6. Delayed Compensatory Postural Adjustments After Lateral Perturbations Contribute to the Reduced Ability of Older Adults to Control Body Balance.

    Science.gov (United States)

    Claudino, Renato; Dos Santos, Marcio José; Mazo, Giovana Zarpellon

    2017-10-01

    The goal of this study was to investigate the timing of compensatory postural adjustments in older adults during body perturbations in the mediolateral direction, circumstances that increase their risk of falls. The latencies of leg and trunk muscle activation to body perturbations at the shoulder level and variables of center of pressure excursion, which characterize postural stability, were analyzed in 40 older adults (nonfallers and fallers evenly split) and in 20 young participants. The older adults exhibited longer latencies of muscular activation in eight out of 15 postural muscles as compared with young participants; for three muscles, the latencies were longer for the older fallers than nonfallers. Simultaneously, the time for the center of pressure displacement reached its peak after the perturbation was significant longer in both groups of older adults. The observed delays in compensatory postural adjustments may affect the older adults' ability to prompt control body balance after postural disturbances and predispose them to falls.

  7. Downstream Antisense Transcription Predicts Genomic Features That Define the Specific Chromatin Environment at Mammalian Promoters.

    Directory of Open Access Journals (Sweden)

    Christopher A Lavender

    2016-08-01

    Full Text Available Antisense transcription is a prevalent feature at mammalian promoters. Previous studies have primarily focused on antisense transcription initiating upstream of genes. Here, we characterize promoter-proximal antisense transcription downstream of gene transcription starts sites in human breast cancer cells, investigating the genomic context of downstream antisense transcription. We find extensive correlations between antisense transcription and features associated with the chromatin environment at gene promoters. Antisense transcription downstream of promoters is widespread, with antisense transcription initiation observed within 2 kb of 28% of gene transcription start sites. Antisense transcription initiates between nucleosomes regularly positioned downstream of these promoters. The nucleosomes between gene and downstream antisense transcription start sites carry histone modifications associated with active promoters, such as H3K4me3 and H3K27ac. This region is bound by chromatin remodeling and histone modifying complexes including SWI/SNF subunits and HDACs, suggesting that antisense transcription or resulting RNA transcripts contribute to the creation and maintenance of a promoter-associated chromatin environment. Downstream antisense transcription overlays additional regulatory features, such as transcription factor binding, DNA accessibility, and the downstream edge of promoter-associated CpG islands. These features suggest an important role for antisense transcription in the regulation of gene expression and the maintenance of a promoter-associated chromatin environment.

  8. Mercury exposure in terrestrial birds far downstream of an historical point source

    International Nuclear Information System (INIS)

    Jackson, Allyson K.; Evers, David C.; Folsom, Sarah B.; Condon, Anne M.; Diener, John; Goodrick, Lizzie F.; McGann, Andrew J.; Schmerfeld, John; Cristol, Daniel A.

    2011-01-01

    Mercury (Hg) is a persistent environmental contaminant found in many freshwater and marine ecosystems. Historical Hg contamination in rivers can impact the surrounding terrestrial ecosystem, but there is little known about how far downstream this contamination persists. In 2009, we sampled terrestrial forest songbirds at five floodplain sites up to 137 km downstream of an historical source of Hg along the South and South Fork Shenandoah Rivers (Virginia, USA). We found that blood total Hg concentrations remained elevated over the entire sampling area and there was little evidence of decline with distance. While it is well known that Hg is a pervasive and long-lasting aquatic contaminant, it has only been recently recognized that it also biomagnifies effectively in floodplain forest food webs. This study extends the area of concern for terrestrial habitats near contaminated rivers for more than 100 km downstream from a waterborne Hg point source. - Highlights: → We report blood mercury levels for terrestrial songbirds downstream of contamination. → Blood mercury levels remain elevated above reference for at least 137 km downstream. → Trends vary based on foraging guild and migration strategy. → Mercury affects terrestrial biota farther downstream than previously documented. - Blood mercury levels of forest songbirds remain elevated above reference levels for at least 137 km downstream of historical point source.

  9. Mercury exposure in terrestrial birds far downstream of an historical point source

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Allyson K., E-mail: allyson.jackson@briloon.org [Biodiversity Research Institute, 19 Flaggy Meadow Road, Gorham, ME 04038 (United States); Institute for Integrative Bird Behavior Studies, Department of Biology, College of William and Mary, PO Box 8795, Williamsburg, VA 23187 (United States); Evers, David C.; Folsom, Sarah B. [Biodiversity Research Institute, 19 Flaggy Meadow Road, Gorham, ME 04038 (United States); Condon, Anne M. [U.S. Fish and Wildlife Service, 6669 Short Lane, Gloucester, VA 23061 (United States); Diener, John; Goodrick, Lizzie F. [Biodiversity Research Institute, 19 Flaggy Meadow Road, Gorham, ME 04038 (United States); McGann, Andrew J. [Institute for Integrative Bird Behavior Studies, Department of Biology, College of William and Mary, PO Box 8795, Williamsburg, VA 23187 (United States); Schmerfeld, John [U.S. Fish and Wildlife Service, 6669 Short Lane, Gloucester, VA 23061 (United States); Cristol, Daniel A. [Institute for Integrative Bird Behavior Studies, Department of Biology, College of William and Mary, PO Box 8795, Williamsburg, VA 23187 (United States)

    2011-12-15

    Mercury (Hg) is a persistent environmental contaminant found in many freshwater and marine ecosystems. Historical Hg contamination in rivers can impact the surrounding terrestrial ecosystem, but there is little known about how far downstream this contamination persists. In 2009, we sampled terrestrial forest songbirds at five floodplain sites up to 137 km downstream of an historical source of Hg along the South and South Fork Shenandoah Rivers (Virginia, USA). We found that blood total Hg concentrations remained elevated over the entire sampling area and there was little evidence of decline with distance. While it is well known that Hg is a pervasive and long-lasting aquatic contaminant, it has only been recently recognized that it also biomagnifies effectively in floodplain forest food webs. This study extends the area of concern for terrestrial habitats near contaminated rivers for more than 100 km downstream from a waterborne Hg point source. - Highlights: > We report blood mercury levels for terrestrial songbirds downstream of contamination. > Blood mercury levels remain elevated above reference for at least 137 km downstream. > Trends vary based on foraging guild and migration strategy. > Mercury affects terrestrial biota farther downstream than previously documented. - Blood mercury levels of forest songbirds remain elevated above reference levels for at least 137 km downstream of historical point source.

  10. Dynamics of a single ion in a perturbed Penning trap: Octupolar perturbation

    International Nuclear Information System (INIS)

    Lara, Martin; Salas, J. Pablo

    2004-01-01

    Imperfections in the design or implementation of Penning traps may give rise to electrostatic perturbations that introduce nonlinearities in the dynamics. In this paper we investigate, from the point of view of classical mechanics, the dynamics of a single ion trapped in a Penning trap perturbed by an octupolar perturbation. Because of the axial symmetry of the problem, the system has two degrees of freedom. Hence, this model is ideal to be managed by numerical techniques like continuation of families of periodic orbits and Poincare surfaces of section. We find that, through the variation of the two parameters controlling the dynamics, several periodic orbits emanate from two fundamental periodic orbits. This process produces important changes (bifurcations) in the phase space structure leading to chaotic behavior

  11. Some remarks on perturbation in flame photometry; Quelques remarques sur les perturbations dans la photometrie de flamme

    Energy Technology Data Exchange (ETDEWEB)

    Malinowski, J [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    After classifying the various types of perturbations, the author attempts to explain their causes. He then gives examples of possibilities of suppressing them. (author) [French] Ayant classe les divers types de perturbations en categories, l'auteur essaie d'expliquer les causes de ces perturbations. Il donne ensuite des exemples de possibilites de les supprimer. (auteur)

  12. Unsteady aerodynamics of a pitching-flapping-perturbed revolving wing at low Reynolds number

    Science.gov (United States)

    Chen, Long; Wu, Jianghao; Zhou, Chao; Hsu, Shih-Jung; Cheng, Bo

    2018-05-01

    Due to adverse viscous effects, revolving wings suffer universally from low efficiency at low Reynolds number (Re). By reciprocating wing revolving motion, natural flyers flying at low Re successfully exploit unsteady effects to augment force production and efficiency. Here we investigate the aerodynamics of an alternative, i.e., a revolving wing with concomitant unsteady pitching and vertical flapping perturbations (a pitching-flapping-perturbed revolving wing). The current work builds upon a previous study on flapping-perturbed revolving wings (FP-RWs) and focuses on combined effects of pitching-flapping perturbation on force generation and vortex behaviors. The results show that, compared with a FR-RW, pitching motion further (1) reduces the external driving torque for rotating at 0° angle of attack (α0) and (2) enhances lift and leads to a self-rotating equilibrium at α0 = 20°. The power loading of a revolving wing at α0 = 20° can be improved using pitching-flapping perturbations with large pitching amplitude but small Strouhal number. Additionally, an advanced pitching improves the reduction of external driving torque, whereas a delayed pitching weakens both the lift enhancement and the reduction of external driving torque. Further analysis shows that pitching effects can be mainly decomposed into the Leading-Edge-Vortex (LEV)-mediated pressure component and geometric projection component, together they determine the force performance. LEV circulation is found to be determined by the instantaneous effective angle of attack but could be affected asymmetrically between upstroke and downstroke depending on the nominal angle of attack. Pitching-flapping perturbation thus can potentially inspire novel mechanisms to improve the aerodynamic performance of rotary wing micro air vehicles.

  13. Sprites and Early ionospheric VLF perturbations

    Science.gov (United States)

    Haldoupis, Christos; Amvrosiadi, Nino; Cotts, Ben; van der Velde, Oscar; Chanrion, Olivier; Neubert, Torsten

    2010-05-01

    Past studies have shown a correlation between sprites and early VLF perturbations, but the reported correlation varies widely from ~ 50% to 100%. The present study resolves these large discrepancies by analyzing several case studies of sprite and narrowband VLF observations, in which multiple transmitter-receiver VLF links with great circle paths (GCPs) passing near a sprite-producing thunderstorm were available. In this setup, the multiple links act in a complementary way that makes the detection of early VLF perturbations much more probable compared to a single VLF link that can miss several of them, a fact that was overlooked in past studies. The evidence shows that sprites are accompanied by early VLF perturbations in a one-to-one correspondence. This implies that the sprite generation mechanism may cause also sub-ionospheric conductivity disturbances that produce early VLF events. However, the one-to-one "sprite to early" event relationship, if viewed conversely as "early to sprite", appears not to be always reciprocal. This is because the number of early events detected in some cases was considerably larger than the number of sprites. Since the great majority of the early events not accompanied by sprites was caused by positive cloud to ground (+CG) lightning discharges, it is possible that sprites or sprite halos were concurrently present in these events as well but were missed by the sprite-watch detection system. In order for this option to be resolved we need more studies using highly sensitive optical systems capable of detecting weaker sprites, sprite halos and elves.

  14. Factorization theorems in perturbative quantum field theory

    International Nuclear Information System (INIS)

    Date, G.D.

    1982-01-01

    This dissertation deals with factorization properties of Green functions and cross-sections in perturbation theory. It consists of two parts. Part I deals with the factorization theorem for the Drell-Yan cross-section. The new approach developed for this purpose is based upon a renormalization group equation with a generalized anomalous dimension. Using an alternate form of factorization for the Drell-Yan cross-section, derived in perturbation theory, a corresponding generalized anomalous dimension is defined, and explicit Feynman rules for its calculation are given. The resultant renormalization group equation is solved by a formal solution which is exhibited explicitly. Simple, explicit calculations are performed which verify Mueller's conjecture for the recovery of the usual parton model results for the Drell-Yan cross-section. The approach developed in this work offers a general framework to analyze the role played by the group factors in the cancellation of the soft divergences, and study their influence on the asymptotic behavior. Part II deals with factorization properties of the Green functions in position space. In this part, a Landau equation analysis is carried out for the singularities of the position space Green fucntions, in perturbation theory with the theta 4 interaction Lagrangian. A physical picture interpretation is given for the corresponding Landau equations. It is used to suggest a light-cone expansion. Using a power counting method, a formal derivation of the light-cone expansion for the two point function, the three point function and a product of two currents, is given without assuming a short distance expansion. Possible extensions to other theories is also considered

  15. Covariant perturbations of Schwarzschild black holes

    International Nuclear Information System (INIS)

    Clarkson, Chris A; Barrett, Richard K

    2003-01-01

    We present a new covariant and gauge-invariant perturbation formalism for dealing with spacetimes having spherical symmetry (or some preferred spatial direction) in the background, and apply it to the case of gravitational wave propagation in a Schwarzschild black-hole spacetime. The 1 + 3 covariant approach is extended to a '1 + 1 + 2 covariant sheet' formalism by introducing a radial unit vector in addition to the timelike congruence, and decomposing all covariant quantities with respect to this. The background Schwarzschild solution is discussed and a covariant characterization is given. We give the full first-order system of linearized 1 + 1 + 2 covariant equations, and we show how, by introducing (time and spherical) harmonic functions, these may be reduced to a system of first-order ordinary differential equations and algebraic constraints for the 1 + 1 + 2 variables which may be solved straightforwardly. We show how both odd- and even-parity perturbations may be unified by the discovery of a covariant, frame- and gauge-invariant, transverse-traceless tensor describing gravitational waves, which satisfies a covariant wave equation equivalent to the Regge-Wheeler equation for both even- and odd-parity perturbations. We show how the Zerilli equation may be derived from this tensor, and derive a similar transverse-traceless tensor equation equivalent to this equation. The so-called special quasinormal modes with purely imaginary frequency emerge naturally. The significance of the degrees of freedom in the choice of the two frame vectors is discussed, and we demonstrate that, for a certain frame choice, the underlying dynamics is governed purely by the Regge-Wheeler tensor. The two transverse-traceless Weyl tensors which carry the curvature of gravitational waves are discussed, and we give the closed system of four first-order ordinary differential equations describing their propagation. Finally, we consider the extension of this work to the study of

  16. Cumulants in perturbation expansions for non-equilibrium field theory

    International Nuclear Information System (INIS)

    Fauser, R.

    1995-11-01

    The formulation of perturbation expansions for a quantum field theory of strongly interacting systems in a general non-equilibrium state is discussed. Non-vanishing initial correlations are included in the formulation of the perturbation expansion in terms of cumulants. The cumulants are shown to be the suitable candidate for summing up the perturbation expansion. Also a linked-cluster theorem for the perturbation series with cumulants is presented. Finally a generating functional of the perturbation series with initial correlations is studied. We apply the methods to a simple model of a fermion-boson system. (orig.)

  17. The cosmological perturbation theory in loop cosmology with holonomy corrections

    International Nuclear Information System (INIS)

    Wu, Jian-Pin; Ling, Yi

    2010-01-01

    In this paper we investigate the scalar mode of first-order metric perturbations over spatially flat FRW spacetime when the holonomy correction is taken into account in the semi-classical framework of loop quantum cosmology. By means of the Hamiltonian derivation, the cosmological perturbation equations is obtained in longitudinal gauge. It turns out that in the presence of metric perturbation the holonomy effects influence both background and perturbations, and contribute the non-trivial terms S h1 and S h2 in the cosmological perturbation equations

  18. Monte Carlo technique for local perturbations in multiplying systems

    International Nuclear Information System (INIS)

    Bernnat, W.

    1974-01-01

    The use of the Monte Carlo method for the calculation of reactivity perturbations in multiplying systems due to changes in geometry or composition requires a correlated sampling technique to make such calculations economical or in the case of very small perturbations even feasible. The technique discussed here is suitable for local perturbations. Very small perturbation regions will be treated by an adjoint mode. The perturbation of the source distribution due to the changed system and its reaction on the reactivity worth or other values of interest is taken into account by a fission matrix method. The formulation of the method and its application are discussed. 10 references. (U.S.)

  19. The spectrum of density perturbations in an expanding universe

    Science.gov (United States)

    Silk, J.

    1974-01-01

    The basic dynamic equations that govern the evolution of perturbations in a Friedmann-Lemaitre universe are derived. General solutions describing the evolution of adiabatic perturbations in the density of matter are obtained, and the choice of the appropriate initial conditions is examined. The various perturbation modes are compared, and the effects of decoupling on the perturbation spectrum are studied. The scheme used to follow the evolution of density perturbations through decoupling is based on an extension of the Eddington approximation to the radiative transfer equation, and is strictly valid in both optically thick and thin limits.

  20. A non-perturbative approach to strings

    International Nuclear Information System (INIS)

    Orland, P.

    1986-03-01

    After briefly reviewing the theory of strings in the light-cone gauge, a lattice regularized path integral for the amplitudes is discussed. The emphasis is put on a toy string model; the U(N) Veneziano model in the limit as N->infinite with g 0 2 N fixed. The lattice methods of Giles and Thorn are used extensively, but are found to require modification beyond perturbation theory. The twenty-six-dimensional toy string model is recast as a two-dimensional spin system. (orig.)

  1. Anisotropic perturbations due to dark energy

    International Nuclear Information System (INIS)

    Battye, Richard A.; Moss, Adam

    2006-01-01

    A variety of observational tests seem to suggest that the Universe is anisotropic. This is incompatible with the standard dogma based on adiabatic, rotationally invariant perturbations. We point out that this is a consequence of the standard decomposition of the stress-energy tensor for the cosmological fluids, and that rotational invariance need not be assumed, if there is elastic rigidity in the dark energy. The dark energy required to achieve this might be provided by point symmetric domain wall network with P/ρ=-2/3, although the concept is more general. We illustrate this with reference to a model with cubic symmetry and discuss various aspects of the model

  2. Explaining jet quenching with perturbative QCD alone

    CERN Document Server

    Zapp, Korinna C; Wiedemann, Urs A

    2011-01-01

    We present a new formulation of jet quenching in perturbative QCD beyond the eikonal approximation. Multiple scattering in the medium is modelled through infra-red-continued (2 -> 2) scattering matrix elements in QCD and the parton shower describing further emissions. The interplay between these processes is arranged in terms of a formation time constraint such that coherent emissions can be treated consistently. Emerging partons are hadronised by the Lund string model, tuned to describe LEP data in conjunction with the parton shower. Based on this picture we obtain a good description of the nuclear modification factor R_AA at RHIC and LHC.

  3. Perturbative ambiguities in Coulomb gauge QCD

    International Nuclear Information System (INIS)

    Doust, P.

    1987-01-01

    The naive Coulomb gauge Feynman rules in non-abelian gauge theory give rise to ambiguous integrals, in addition to the usual ultraviolet divergences. Generalizing the work of Cheng and Tsai, these ambiguities are resolved to all orders in perturbation theory, by defining a gauge that interpolates smoothly between the Feynman gauge and the Coulomb gauge. The extra terms V 1 +V 2 of Christ and Lee are identified with certain two-loop ambiguous terms. However, there still seem to be unsolved problems connected with renormalisation. copyright 1987 Academic Press, Inc

  4. Critical exponents of extremal Kerr perturbations

    Science.gov (United States)

    Gralla, Samuel E.; Zimmerman, Peter

    2018-05-01

    We show that scalar, electromagnetic, and gravitational perturbations of extremal Kerr black holes are asymptotically self-similar under the near-horizon, late-time scaling symmetry of the background metric. This accounts for the Aretakis instability (growth of transverse derivatives) as a critical phenomenon associated with the emergent symmetry. We compute the critical exponent of each mode, which is equivalent to its decay rate. It follows from symmetry arguments that, despite the growth of transverse derivatives, all generally covariant scalar quantities decay to zero.

  5. Perturbative QCD effects in heavy meson decays

    International Nuclear Information System (INIS)

    Szezepaniak, A.; Henley, E.M.

    1991-01-01

    The amplitude for the exclusive nonleptonic decay of a heavy meson into two light pseudoscalar mesons is analyzed using the factorization formalism of perturbative QCD for exclusive reactions at large momentum transfer. We calculate the form factor b → u transition and compare it to the old quark model calculation and the new one based on the light cone formulation of the full quark model wave function. The new results we obtain are smaller by a factor of 2 - 3 as compared to the old value. (orig.)

  6. Quantum system lifetimes and measurement perturbations

    International Nuclear Information System (INIS)

    Najakov, E.

    1977-05-01

    The recently proposed description of quantum system decay in terms of repeated measurement perturbations is modified. The possibility of retarded reductions to a unique quantum state, due to ineffective localization of the decay products at initial time measurements, is simply taken into account. The exponential decay law is verified again. A modified equation giving the observed lifetime in terms of unperturbed quantum decay law, measurement frequency and reduction law is derived. It predicts deviations of the observed lifetime from the umperturbed one, together with a dependence on experimental procedures. The influence of different model unperturbed decay laws and reduction laws on this effect is studied

  7. A non-perturbative approach to strings

    International Nuclear Information System (INIS)

    Orland, P.

    1986-01-01

    After briefly reviewing the theory of strings in the light-cone gauge, a lattice regularized path integral for the amplitudes is discussed. The emphasis is put on a toy string model; the U(N) Veneziano model in the limit as N → ∞, with g/sup 2//sub o/N fixed. The lattice methods of Giles and Thorn are used extensively, but are found to require modification beyond perturbation theory. The twenty-six-dimensional toy string model is recast as a two-dimensional spin system

  8. Perturbations of spacetimes in general relativity

    International Nuclear Information System (INIS)

    Walker, M.

    1977-01-01

    In the case of gravitation, the differential equation of interest is Einstein's equation. Being a tensor equation, this is rather complicated. Moreover, gravitational theory throws up its own peculiar difficulty, the lack of a fixed background space on which to expand things. The plan of these lecture notes is therefore to discuss linear vs. nonlinear differential equations, perturbation theory for ordinary differential equations (ODE), partial differential equations (PDE), and finally, spacetimes. In this way, the basic ideas can be introduced without interference from non-essential complications. (orig.) [de

  9. Amplification of curvature perturbations in cyclic cosmology

    International Nuclear Information System (INIS)

    Zhang Jun; Liu Zhiguo; Piao Yunsong

    2010-01-01

    We analytically and numerically show that through the cycles with nonsingular bounce, the amplitude of curvature perturbation on a large scale will be amplified and the power spectrum will redden. In some sense, this amplification will eventually destroy the homogeneity of the background, which will lead to the ultimate end of cycles of the global universe. We argue that for the model with increasing cycles, it might be possible that a fissiparous multiverse will emerge after one or several cycles, in which the cycles will continue only at corresponding local regions.

  10. Anomaly freedom in perturbative loop quantum gravity

    International Nuclear Information System (INIS)

    Bojowald, Martin; Hossain, Golam Mortuza; Kagan, Mikhail; Shankaranarayanan, S.

    2008-01-01

    A fully consistent linear perturbation theory for cosmology is derived in the presence of quantum corrections as they are suggested by properties of inverse volume operators in loop quantum gravity. The underlying constraints present a consistent deformation of the classical system, which shows that the discreteness in loop quantum gravity can be implemented in effective equations without spoiling space-time covariance. Nevertheless, nontrivial quantum corrections do arise in the constraint algebra. Since correction terms must appear in tightly controlled forms to avoid anomalies, detailed insights for the correct implementation of constraint operators can be gained. The procedures of this article thus provide a clear link between fundamental quantum gravity and phenomenology.

  11. New perturbative approach to renormalizable field theories

    International Nuclear Information System (INIS)

    Dhar, A.; Gupta, V.

    1984-01-01

    A new method for obtaining perturbative predictions in quantum field theory is developed. Our method gives finite predictions, which are free from scheme ambiguities, for any quantity of interest (like a cross section or a Green's function) starting directly from the bare regularized Lagrangian. The central idea in our approach is to incorporate directly the consequences of dimensional transmutation for the predictions of the theory. We thus completely bypass the conventional renormalization procedure and the ambiguities associated with it. The case of massless theories with a single dimensionless coupling constant is treated in detail to illustrate our approach

  12. Visual Vection does not Perturb Squatting Posture

    Directory of Open Access Journals (Sweden)

    Dietrich Gilles

    2011-12-01

    Full Text Available Vision contributes fundamentally to the control of the standing posture. The illusion of self motion falsely perceived (vection increases postural sway while standing. In this paper we examine the effect of vection on both standing and deep squatting with the hypothesis that the squatting posture should not be disturbed by the conflict of sensory information due to vection. The results show that standing posture only was affected by the visual stimuli. The widespread use of squatting for work as well as rest could be due in part to this lack of effect of sensory perturbation on postural stability.

  13. Homological Perturbation Theory for Nonperturbative Integrals

    Science.gov (United States)

    Johnson-Freyd, Theo

    2015-11-01

    We use the homological perturbation lemma to produce explicit formulas computing the class in the twisted de Rham complex represented by an arbitrary polynomial. This is a non-asymptotic version of the method of Feynman diagrams. In particular, we explain that phenomena usually thought of as particular to asymptotic integrals in fact also occur exactly: integrals of the type appearing in quantum field theory can be reduced in a totally algebraic fashion to integrals over an Euler-Lagrange locus, provided this locus is understood in the scheme-theoretic sense, so that imaginary critical points and multiplicities of degenerate critical points contribute.

  14. Perturbative current quark masses in QCD

    International Nuclear Information System (INIS)

    Scadron, M.D.

    1982-01-01

    Neutral PCAC current quark masses follow from the covariant light plane of QCD requirement that α-m-circumflex(M), which is not inconsistent with the spontaneous breakdown of chiral symmetry. The resulting current quark mass ratio (m sub(s)/m-circumflex) sub(curr)=5 and scale m-circumflex sub(curr)=62 MeV at M=2 Gev are compatible with the observed πNσ - term, the Goldberger-Treiman discrepancy, the low-lying 0 - , 1/2 + , 1 - , 3/2 + hadron mass spectrum, the flavor independence of the dynamically generated quark mass and the perturbative weak binding limit. (author)

  15. A new perturbative treatment of pentadiagonal Hamiltonians

    International Nuclear Information System (INIS)

    Znojil, M.

    1987-01-01

    A new formulation of the Rayleich - Schroedinger perturbation theory is proposed. It is inspired by a recurent construction of propagators, and its main idea lies in a replacement of the auxiliary matrix elements (generalized continued fractions) by their non-numerical approximants. In a test of convergence (the anharmonic oscillator), the asymptotic fixed-point approximation scheme is used. The results indicate a good applicability of this fixed-point version of our formalism to systems with a band-matrix structure of the Hamiltonian

  16. a Perturbation Approach to Translational Gravity

    Science.gov (United States)

    Julve, J.; Tiemblo, A.

    2013-05-01

    Within a gauge formulation of 3+1 gravity relying on a nonlinear realization of the group of isometries of space-time, a natural expansion of the metric tensor arises and a simple choice of the gravity dynamical variables is possible. We show that the expansion parameter can be identified with the gravitational constant and that the first-order depends only on a diagonal matrix in the ensuing perturbation approach. The explicit first-order solution is calculated in the static isotropic case, and its general structure is worked out in the harmonic gauge.

  17. Measurement of velocity deficit at the downstream of a 1:10 axial hydrokinetic turbine model

    Energy Technology Data Exchange (ETDEWEB)

    Gunawan, Budi [ORNL; Neary, Vincent S [ORNL; Hill, Craig [St. Anthony Falls Laboratory, 2 Third Avenue SE, Minneapolis, MN 55414; Chamorro, Leonardo [St. Anthony Falls Laboratory, 2 Third Avenue SE, Minneapolis, MN 55414

    2012-01-01

    Wake recovery constrains the downstream spacing and density of turbines that can be deployed in turbine farms and limits the amount of energy that can be produced at a hydrokinetic energy site. This study investigates the wake recovery at the downstream of a 1:10 axial flow turbine model using a pulse-to-pulse coherent Acoustic Doppler Profiler (ADP). In addition, turbine inflow and outflow velocities were measured for calculating the thrust on the turbine. The result shows that the depth-averaged longitudinal velocity recovers to 97% of the inflow velocity at 35 turbine diameter (D) downstream of the turbine.

  18. Very high order lattice perturbation theory for Wilson loops

    International Nuclear Information System (INIS)

    Horsley, R.

    2010-10-01

    We calculate perturbativeWilson loops of various sizes up to loop order n=20 at different lattice sizes for pure plaquette and tree-level improved Symanzik gauge theories using the technique of Numerical Stochastic Perturbation Theory. This allows us to investigate the behavior of the perturbative series at high orders. We observe differences in the behavior of perturbative coefficients as a function of the loop order. Up to n=20 we do not see evidence for the often assumed factorial growth of the coefficients. Based on the observed behavior we sum this series in a model with hypergeometric functions. Alternatively we estimate the series in boosted perturbation theory. Subtracting the estimated perturbative series for the average plaquette from the non-perturbative Monte Carlo result we estimate the gluon condensate. (orig.)

  19. Output synchronization of chaotic systems under nonvanishing perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Mancilla, Didier [Departamento de Ciencias Exactas y Tecnologicas, Centro Universitario de los Lagos, Universidad de Guadalajara (CULagos-UdeG), Enrique Diaz de Leon s/n, 47460 Lagos de Moreno, Jal. (Mexico)], E-mail: didier@uabc.mx; Cruz-Hernandez, Cesar [Electronics and Telecommunications Department, Scientific Research and Advanced Studies of Ensenada (CICESE), Km. 107, Carretera Tijuana-Ensenada, 22860 Ensenada, B.C. (Mexico)], E-mail: ccruz@cicese.mx

    2008-08-15

    In this paper, an analysis for chaos synchronization under nonvanishing perturbations is presented. In particular, we use model-matching approach from nonlinear control theory for output synchronization of identical and nonidentical chaotic systems under nonvanishing perturbations in a master-slave configuration. We show that the proposed approach is indeed suitable to synchronize a class of perturbed slaves with a chaotic master system; that is the synchronization error trajectories remain bounded if the perturbations satisfy some conditions. In order to illustrate this robustness synchronization property, we present two cases of study: (i) for identical systems, a pair of coupled Roessler systems, the first like a master and the other like a perturbed slave, and (ii) for nonidentical systems, a Chua's circuit driving a Roessler/slave system with a perturbed control law, in both cases a quantitative analysis on the perturbation is included.

  20. Output synchronization of chaotic systems under nonvanishing perturbations

    International Nuclear Information System (INIS)

    Lopez-Mancilla, Didier; Cruz-Hernandez, Cesar

    2008-01-01

    In this paper, an analysis for chaos synchronization under nonvanishing perturbations is presented. In particular, we use model-matching approach from nonlinear control theory for output synchronization of identical and nonidentical chaotic systems under nonvanishing perturbations in a master-slave configuration. We show that the proposed approach is indeed suitable to synchronize a class of perturbed slaves with a chaotic master system; that is the synchronization error trajectories remain bounded if the perturbations satisfy some conditions. In order to illustrate this robustness synchronization property, we present two cases of study: (i) for identical systems, a pair of coupled Roessler systems, the first like a master and the other like a perturbed slave, and (ii) for nonidentical systems, a Chua's circuit driving a Roessler/slave system with a perturbed control law, in both cases a quantitative analysis on the perturbation is included