WorldWideScience

Sample records for downregulates malignant cell

  1. Downregulation of the expression of HDGF attenuates malignant biological behaviors of hilar cholangiocarcinoma cells.

    Science.gov (United States)

    Liu, Yanfeng; Sun, Jingxian; Yang, Guangyun; Liu, Zhaojian; Guo, Sen; Zhao, Rui; Xu, Kesen; Wu, Xiaopeng; Zhang, Zhaoyang

    2015-09-01

    Hepatoma-derived growth factor (HDGF) has been reported to be a potential predictive and prognostic marker for several types of cancer and important in malignant biological behaviors. However, its role in human hilar cholangiocarcinoma remains to be elucidated. Our previous study demonstrated that high expression levels of HDGF in hilar cholangiocarcinoma tissues correlates with tumor progression and patient outcome. The present study aimed to elucidate the detailed functions of the HDGF protein. This was performed by downregulating the protein expression of HDGF in the FRH0201 hilar cholangiocarcinoma cell line by RNA interference (RNAi) in vitro, and revealed that downregulation of the HDGF protein significantly inhibited the malignant biological behavior of the FRH0201 cells. In addition, further investigation revealed that downregulation of the protein expression of HDGF significantly decreased the secretion of vascular endothelial growth factor, which may be the mechanism partially responsible for the inhibition of malignant biological behaviors. These findings demonstrated that HDGF is important in promoting malignant biological behaviors, including proliferation, migration and invasion of hilar cholangiocarcinoma FRH0201 cells. Inhibition of the expression of HDGF downregulated the malignant biological behaviors, suggesting that downregulation of the protein expression of HDGF by RNAi may be a novel therapeutic approach to inhibit the progression of hilar cholangiocarcinoma.

  2. [The Effect of TALENs-mediated Downregulation Expression of Nanog on Malignant Behavior of Cervical Cancer HeLa Cells].

    Science.gov (United States)

    Yu, Ai-qing; Li, Cheng-lin; Yang, Yi; Yan, Shi-rong

    2016-01-01

    To study the effect of downregulation expression of Nanog on malignant behavior of cervical cancer HeLa cells. Gene editing tool TALENs was employed to induce downregulation expression of Nanog, and Nanog mutation was evaluated by sequencing. RT-PCR and Western blot was used to detect the mRNA and protein expression level, respectively. Colony-formation assay, Transwell invasion assay, and chemotherapy sensibility assay was carried out to assess the capacity of colony-formation, invasion, and chemoresistance, respectively. TALENs successfully induced Nanog mutation and downregulated Nanog expression. Nanog mRNA and protein expression of Nanog-mutated monoclonal HeLa cells downregulated 3 times compared to thoses of wild-type HeLa cells (P HeLa cells were observed when compared to those of wild-type HeLa cells (P HeLa cells. Importantly, downregulation or silencing of Nanog is promising to be a novel strategy for the treatment of cervical carcinoma.

  3. LIN28 expression in malignant germ cell tumors down-regulates let-7 and increases oncogene levels

    Science.gov (United States)

    Murray, Matthew J.; Saini, Harpreet K.; Siegler, Charlotte A.; Hanning, Jennifer E.; Barker, Emily M.; van Dongen, Stijn; Ward, Dawn M.; Raby, Katie L.; Groves, Ian J.; Scarpini, Cinzia G.; Pett, Mark R.; Thornton, Claire M.; Enright, Anton J.; Nicholson, James C.; Coleman, Nicholas

    2013-01-01

    Despite their clinico-pathologic heterogeneity, malignant germ-cell-tumors (GCTs) share molecular abnormalities that are likely to be functionally important. In this study, we investigated the potential significance of down-regulation of the let-7 family of tumor-suppressor microRNAs in malignant-GCTs. Microarray results from pediatric and adult samples (n=45) showed that LIN28, the negative-regulator of let-7 biogenesis, was abundant in malignant-GCTs, regardless of patient age, tumor site or histologic subtype. Indeed, a strong negative-correlation existed between LIN28 and let-7 levels in specimens with matched datasets. Low let-7 levels were biologically significant, since the sequence complementary to the 2-7nt common let-7 seed ‘GAGGUA’ was enriched in the 3′untranslated regions of mRNAs up-regulated in pediatric and adult malignant-GCTs, compared with normal gonads (a mixture of germ cells and somatic cells). We identified 27 mRNA targets of let-7 that were up-regulated in malignant-GCT cells, confirming significant negative-correlations with let-7 levels. Among 16 mRNAs examined in a largely independent set of specimens by qRT-PCR, we defined negative-associations with let-7e levels for six oncogenes, including MYCN, AURKB, CCNF, RRM2, MKI67 and C12orf5 (when including normal control tissues). Importantly, LIN28 depletion in malignant-GCT cells restored let-7 levels and repressed all of these oncogenic let-7 mRNA targets, with LIN28 levels correlating with cell proliferation and MYCN levels. Conversely, ectopic expression of let-7e was sufficient to reduce proliferation and down-regulate MYCN, AURKB and LIN28, the latter via a double-negative feedback loop. We concluded that the LIN28/let-7 pathway has a critical pathobiological role in malignant-GCTs and therefore offers a promising target for therapeutic intervention. PMID:23774216

  4. 17-AAG mediated targeting of Hsp90 limits tert activity in peritoneal sarcoma related malignant ascites by downregulating cyclin D1 during cell cycle entry.

    Science.gov (United States)

    Chaklader, M; Das, P; Pereira, J A; Law, A; Chattopadhyay, S; Chatterjee, R; Mondal, A; Law, S

    2012-07-01

    Peritoneal or retro-peritoneal sarcomatosis related malignant ascites formation is a rare but serious consequence of the locoregional metastatic event. The present work aimed to study the effect of the Hsp90 inhibitor (17-AAG), an ansamycin analog, on cell cycle and DNA replication specific chaperone-clients interaction in the event of peritoneal sarcoma related malignant ascites formation in mouse model at the late stage of malignant growth. We administered 17-AAG, an Hsp90 inhibitor, divided doses (330 μg/kg b.w./day for first five days then next ten days with166 μg/kg b.w./day) through intra-peritoneal route of inbred Swiss albino mice bearing full grown peritoneal malignant ascites of sarcoma-180. Our study was evaluated by peripheral blood hemogram analysis, malignant ascitic cytology, cell viability test, survival time and mitotic indexing. Furthermore, flowcytometric HSP90, TERT, CyclinD1, PCNA and GM-CSF expression analysis has been considered for special objective of the study. Our experimental efforts reduced the aggressive proliferation of malignant ascites by drastic downregulation of TERT and cyclin D1 on the verge of cell cycle entry along with DNA replication processivity factor PCNA by directly modulating their folding machinery - heat shock protein 90. Consequently, we observed that malignant ascitic cells became error prone during the event of karyokinesis and produced micronucleus containing malignant cells with low viability. Peripheral neutrophilia due to over-expression of GM-CSF by the peritoneal malignant ascites were also controlled by the treatment with 17-AAG and overall, the treatment modality improved the median survival time. Finally we can conclude that 17AAG administration might serve as a prospective pharmacological agent for the management of peritoneal sarcoma related malignant ascites and throws light towards prolonged survival of the patients concerned.

  5. Anticancer effects of kaempferol in A375 human malignant melanoma cells are mediated via induction of apoptosis, cell cycle arrest, inhibition of cell migration and downregulation of m-TOR/PI3K/AKT pathway.

    Science.gov (United States)

    Yang, Jia; Xiao, Peng; Sun, Jiaming; Guo, Liang

    2018-01-01

    Melanoma is an aggressive form of human cancer with limited treatment options currently available. The present study was aimed to evaluate the anticancer activity of kaempferol (KAM) against the human malignant melanoma A375 cell line along with evaluation of its effects on apoptosis, cell cycle, cell migration and m-TOR/PI3K/AKT pathway. Effects on cell viability were assessed by MTT assay while clonogenic assay measured the effects of KAM on colony formation. Annexin V assay evaluated the apoptotic effects of KAM in these cells using flow cytometry. Effects on cell cycle were determined by using flow cytometry with propidium iodide (PI) as probe. The effects of KAM on m-TOR/ PI3K/AKT signalling pathway were evaluated by western blot assay. MTT assay indicated that KAM exhibits a significant anticancer activity against A375 cells with an IC50 of 20 μM. These antiproliferative effects of KAM were also supported by the colony formation assay wherein KAM reduced the colony formation in a dose-dependent manner. The anticancer effect of KAM was found to be due to the initiation of apoptosis in human malignant melanoma A375 cells. Additionally, KAM also exhibited the capacity to trigger G2/M cell cycle arrest and to inhibit the cell migratory potential of A375 cells. KAM caused significant downregulation of m-TOR, phosphorylated (p) m-TOR, PI3K, p-PI3K and Akt protein levels in A375 malignantmelanoma cells. KAM exerts potent anticancer effects via induction of apoptosis, G2/M cell cycle arrest, cell migration inhibition and downregulation of m-TOR, pm-TOR, PI3K, p-PI3K and Akt protein levels.

  6. LncRNA MEG3 downregulation mediated by DNMT3b contributes to nickel malignant transformation of human bronchial epithelial cells via modulating PHLPP1 transcription and HIF-1α translation.

    Science.gov (United States)

    Zhou, C; Huang, C; Wang, J; Huang, H; Li, J; Xie, Q; Liu, Y; Zhu, J; Li, Y; Zhang, D; Zhu, Q; Huang, C

    2017-07-06

    Long noncoding RNAs (lncRNAs) are emerging as key factors in various fundamental cellular biological processes, and many of them are likely to have functional roles in tumorigenesis. Maternally expressed gene 3 (MEG3) is an imprinted gene located at 14q32 that encodes a lncRNA, and the decreased MEG3 expression has been reported in multiple cancer tissues. However, nothing is known about the alteration and role of MEG3 in environmental carcinogen-induced lung tumorigenesis. Our present study, for the first time to the best of our knowledge, discovered that environmental carcinogen nickel exposure led to MEG3 downregulation, consequently initiating c-Jun-mediated PHLPP1 transcriptional inhibition and hypoxia-inducible factor-1α (HIF-1α) protein translation upregulation, in turn resulting in malignant transformation of human bronchial epithelial cells. Mechanistically, MEG3 downregulation was attributed to nickel-induced promoter hypermethylation via elevating DNMT3b expression, whereas PHLPP1 transcriptional inhibition was due to the decreasing interaction of MEG3 with its inhibitory transcription factor c-Jun. Moreover, HIF-1α protein translation was upregulated via activating the Akt/p70S6K/S6 axis resultant from PHLPP1 inhibition in nickel responses. Collectively, we uncover that nickel exposure results in DNMT3b induction and MEG3 promoter hypermethylation and expression inhibition, further reduces its binding to c-Jun and in turn increasing c-Jun inhibition of PHLPP1 transcription, leading to the Akt/p70S6K/S6 axis activation, and HIF-1α protein translation, as well as malignant transformation of human bronchial epithelial cells. Our studies provide a significant insight into understanding the alteration and role of MEG3 in nickel-induced lung tumorigenesis.

  7. Downregulation of miR-125b in metastatic cutaneous malignant melanoma.

    Science.gov (United States)

    Glud, Martin; Rossing, Maria; Hother, Christoffer; Holst, Line; Hastrup, Nina; Nielsen, Finn C; Gniadecki, Robert; Drzewiecki, Krzysztof T

    2010-12-01

    This study aimed to identify microRNA species involved in the earliest metastatic event in cutaneous malignant melanoma (MM). Samples from 28 patients with MM [stage T2 (tumor), M0 (distant metastasis)] were grouped by the presence of micrometastasis in the sentinel lymph nodes (N0/N1). Melanoma cells were harvested from primary, cutaneous MM tumors by laser-capture microdissection, and microRNA expression profiles were obtained by the microarray technique. Results were validated by quantitative reverse transcription PCR. We found that miR-125b was downregulated in the primary cutaneous melanomas that produced early metastases (T2, N1, M0) compared with the sentinel lymph node-negative (T2, N0, M0) melanomas. MiR-125b has earlier been found to be downregulated in other tumor types and in atypic naevi compared with the common acquired naevi. In conclusion, miR-125b may be involved in an early progression of cutaneous MM.

  8. B-Cell Hematologic Malignancy Vaccination Registry

    Science.gov (United States)

    2017-12-29

    Monoclonal Gammopathy of Undetermined Significance; Multiple Myeloma; Waldenstrom Macroglobulinemia; Lymphocytosis; Lymphoma, Non-Hodgkin; B-Cell Chronic Lymphocytic Leukemia; Hematological Malignancies

  9. Downregulation of rRNA transcription triggers cell differentiation.

    Directory of Open Access Journals (Sweden)

    Yuki Hayashi

    Full Text Available Responding to various stimuli is indispensable for the maintenance of homeostasis. The downregulation of ribosomal RNA (rRNA transcription is one of the mechanisms involved in the response to stimuli by various cellular processes, such as cell cycle arrest and apoptosis. Cell differentiation is caused by intra- and extracellular stimuli and is associated with the downregulation of rRNA transcription as well as reduced cell growth. The downregulation of rRNA transcription during differentiation is considered to contribute to reduced cell growth. However, the downregulation of rRNA transcription can induce various cellular processes; therefore, it may positively regulate cell differentiation. To test this possibility, we specifically downregulated rRNA transcription using actinomycin D or a siRNA for Pol I-specific transcription factor IA (TIF-IA in HL-60 and THP-1 cells, both of which have differentiation potential. The inhibition of rRNA transcription induced cell differentiation in both cell lines, which was demonstrated by the expression of the common differentiation marker CD11b. Furthermore, TIF-IA knockdown in an ex vivo culture of mouse hematopoietic stem cells increased the percentage of myeloid cells and reduced the percentage of immature cells. We also evaluated whether differentiation was induced via the inhibition of cell cycle progression because rRNA transcription is tightly coupled to cell growth. We found that cell cycle arrest without affecting rRNA transcription did not induce differentiation. To the best of our knowledge, our results demonstrate the first time that the downregulation of rRNA levels could be a trigger for the induction of differentiation in mammalian cells. Furthermore, this phenomenon was not simply a reflection of cell cycle arrest. Our results provide a novel insight into the relationship between rRNA transcription and cell differentiation.

  10. Bcl-2 antisense therapy in B-cell malignancies.

    Science.gov (United States)

    Chanan-Khan, Asher

    2005-07-01

    Bcl-2 is an apoptosis regulating protein, overexpression of which is associated with chemotherapy resistant disease, aggressive clinical course, and poor survival in patients with B-cell lymphoproliferative disorders. Overexpression of Bcl-2 protein results in an aberrant intrinsic apoptotic pathway that confers a protective effect on malignant cells against a death signal (e.g., chemotherapy or radiotherapy). Downregulation of this oncoprotein, thus, represents a possible new way to target clinically aggressive disease. Preclinical studies have shown that this oncoprotein can be effectively decreased by Bcl-2 antisense in malignant lymphoid cells and can reverse chemotherapy resistance, as well as enhance the anti-apoptotic potential of both chemotherapeutic and biologic agents. Ongoing clinical trials are exploring the role of Bcl-2 downregulation with oblimersen (Bcl-2 antisense) in patients with non-Hodgkin's lymphoma, chronic lymphocytic leukemia and multiple myeloma. Early results from these studies are promising and support the proof of the principle. As these studies are completed and mature data emerges, the role of Bcl-2 antisense therapy in the treatment of B-cell malignancies will become clearer.

  11. Hyaluronan synthase 3 (HAS3) overexpression downregulates MV3 melanoma cell proliferation, migration and adhesion

    International Nuclear Information System (INIS)

    Takabe, Piia; Bart, Geneviève; Ropponen, Antti; Rilla, Kirsi; Tammi, Markku; Tammi, Raija; Pasonen-Seppänen, Sanna

    2015-01-01

    Malignant skin melanoma is one of the most deadly human cancers. Extracellular matrix (ECM) influences the growth of malignant tumors by modulating tumor cells adhesion and migration. Hyaluronan is an essential component of the ECM, and its amount is altered in many tumors, suggesting an important role for hyaluronan in tumorigenesis. Nonetheless its role in melanomagenesis is not understood. In this study we produced a MV3 melanoma cell line with inducible expression of the hyaluronan synthase 3 (HAS3) and studied its effect on the behavior of the melanoma cells. HAS3 overexpression expanded the cell surface hyaluronan coat and decreased melanoma cell adhesion, migration and proliferation by cell cycle arrest at G1/G0. Melanoma cell migration was restored by removal of cell surface hyaluronan by Streptomyces hyaluronidase and by receptor blocking with hyaluronan oligosaccharides, while the effect on cell proliferation was receptor independent. Overexpression of HAS3 decreased ERK1/2 phosphorylation suggesting that inhibition of MAP-kinase signaling was responsible for these suppressive effects on the malignant phenotype of MV3 melanoma cells. - Highlights: • Inducible HAS3-MV3 melanoma cell line was generated using Lentiviral transduction. • HAS3 overexpression inhibits MV3 cell migration via hyaluronan–receptor interaction. • HAS3 overexpression decreases MV3 melanoma cell proliferation and adhesion. • ERK1/2 phosphorylation is downregulated by 50% in HAS3 overexpressing cells. • The results suggest that hyaluronan has anti-cancer like effects in melanoma

  12. Hyaluronan synthase 3 (HAS3) overexpression downregulates MV3 melanoma cell proliferation, migration and adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Takabe, Piia, E-mail: piia.takabe@uef.fi [University of Eastern Finland, Institute of Biomedicine, 70211 Kuopio (Finland); Bart, Geneviève [University of Eastern Finland, Institute of Biomedicine, 70211 Kuopio (Finland); Ropponen, Antti [University of Eastern Finland, Institute of Clinical Medicine, 70211 Kuopio (Finland); Rilla, Kirsi; Tammi, Markku; Tammi, Raija; Pasonen-Seppänen, Sanna [University of Eastern Finland, Institute of Biomedicine, 70211 Kuopio (Finland)

    2015-09-10

    Malignant skin melanoma is one of the most deadly human cancers. Extracellular matrix (ECM) influences the growth of malignant tumors by modulating tumor cells adhesion and migration. Hyaluronan is an essential component of the ECM, and its amount is altered in many tumors, suggesting an important role for hyaluronan in tumorigenesis. Nonetheless its role in melanomagenesis is not understood. In this study we produced a MV3 melanoma cell line with inducible expression of the hyaluronan synthase 3 (HAS3) and studied its effect on the behavior of the melanoma cells. HAS3 overexpression expanded the cell surface hyaluronan coat and decreased melanoma cell adhesion, migration and proliferation by cell cycle arrest at G1/G0. Melanoma cell migration was restored by removal of cell surface hyaluronan by Streptomyces hyaluronidase and by receptor blocking with hyaluronan oligosaccharides, while the effect on cell proliferation was receptor independent. Overexpression of HAS3 decreased ERK1/2 phosphorylation suggesting that inhibition of MAP-kinase signaling was responsible for these suppressive effects on the malignant phenotype of MV3 melanoma cells. - Highlights: • Inducible HAS3-MV3 melanoma cell line was generated using Lentiviral transduction. • HAS3 overexpression inhibits MV3 cell migration via hyaluronan–receptor interaction. • HAS3 overexpression decreases MV3 melanoma cell proliferation and adhesion. • ERK1/2 phosphorylation is downregulated by 50% in HAS3 overexpressing cells. • The results suggest that hyaluronan has anti-cancer like effects in melanoma.

  13. Acrolein, an I-κBα-independent downregulator of NF-κB activity, causes the decrease in nitric oxide production in human malignant keratinocytes.

    Science.gov (United States)

    Moon, Ki-Young

    2011-05-01

    Acrolein, a reactive electrophilic α, β-unsaturated aldehyde, is known to be an alkylating chemical carcinogen. The effect of acrolein on the activation of NF-κB in human malignant epidermal keratinocytes was examined to elucidate the molecular mechanism associated with this NF-κB-acrolein regulation and its consecutive sequence, nitric oxide (NO) production. Acrolein significantly downregulated the cellular NF-κB activity up to 60% compared with control as well as the lipopolysaccharide (LPS)-induced NO production in a dose response manner at concentrations of 10~30 μM. To investigate the regulatory mechanism associated with this NF-κB-acrolein downregulation, the relative level of phosphorylation of I-κBα (serines-32 and -36), a principle regulator of NF-κB activation, represented by acrolein, was quantified. Acrolein inhibited NF-κB activity without altering cellular levels of the phosphorylated and nonphosphorylated forms of I-κBα, implying that the downregulatory effect of acrolein on cellular NF-κB activity in human skin cells is an I-κBα-independent activation pathway. The results suggests that acrolein causes the decrease in nitric oxide production as an I-κBα-independent downregulator of NF-κB activity in human malignant keratinocytes, and acrolein-induced carcinogenesis may be associated with the modulation of cellular NF-κB activity.

  14. Emodin downregulates cell proliferation markers during DMBA ...

    African Journals Online (AJOL)

    Background: Cell-cycle disruption is the major characteristic features of neoplastic transformation and the status of cell-cycle regulators can thus be utilized to assess the prognostic significance in patients with cancer. The PCNA, cyclin D1, CDK4, CDK6 and survivin expression in the buccal mucosa was utilized to evaluate ...

  15. Leukomogenic factors downregulate heparanase expression in acute myeloid leukemia cells

    International Nuclear Information System (INIS)

    Eshel, Rinat; Ben-Zaken, Olga; Vainas, Oded; Nadir, Yona; Minucci, Saverio; Polliack, Aaron; Naparstek, Ella; Vlodavsky, Israel; Katz, Ben-Zion

    2005-01-01

    Heparanase is a heparan sulfate-degrading endoglycosidase expressed by mature monocytes and myeloid cells, but not by immature hematopoietic progenitors. Heparanase gene expression is upregulated during differentiation of immature myeloid cells. PML-RARα and PLZF-RARα fusion gene products associated with acute promyelocytic leukemia abrogate myeloid differentiation and heparanase expression. AML-Eto, a translocation product associated with AML FAB M2, also downregulates heparanase gene expression. The common mechanism that underlines the activity of these three fusion gene products involves the recruitment of histone deacetylase complexes to specific locations within the DNA. We found that retinoic acid that dissociates PML-RARα from the DNA, and which is used to treat acute promyelocytic leukemia patients, restores heparanase expression to normal levels in an acute promyelocytic leukemia cell line. The retinoic acid effects were also observed in primary acute promyelocytic leukemia cells and in a retinoic acid-treated acute promyelocytic leukemia patient. Histone deacetylase inhibitor reverses the downregulation of heparanase expression induced by the AML-Eto fusion gene product in M2 type AML. In summary, we have characterized a link between leukomogenic factors and the downregulation of heparanase in myeloid leukemic cells

  16. Multinuclear giant cell formation is enhanced by down-regulation of Wnt signaling in gastric cancer cell line, AGS

    International Nuclear Information System (INIS)

    Kim, Shi-Mun; Kim, Rockki; Ryu, Jae-Hyun; Jho, Eek-Hoon; Song, Ki-Joon; Jang, Shyh-Ing; Kee, Sun-Ho

    2005-01-01

    AGS cells, which were derived from malignant gastric adenocarcinoma tissue, lack E-cadherin-mediated cell adhesion but have a high level of nuclear β-catenin, which suggests altered Wnt signal. In addition, approximately 5% of AGS cells form multinuclear giant cells in the routine culture conditions, while taxol treatment causes most AGS cells to become giant cells. The observation of reduced nuclear β-catenin levels in giant cells induced by taxol treatment prompted us to investigate the relationship between Wnt signaling and giant cell formation. After overnight serum starvation, the shape of AGS cells became flattened, and this morphological change was accompanied by decrease in Myc expression and an increase in the giant cell population. Lithium chloride treatment, which inhibits GSK3β activity, reversed these serum starvation effects, which suggests an inverse relationship between Wnt signaling and giant cell formation. Furthermore, the down-regulation of Wnt signaling caused by the over-expression of ICAT, E-cadherin, and Axin enhanced giant cell formation. Therefore, down-regulation of Wnt signaling may be related to giant cell formation, which is considered to be a survival mechanism against induced cell death

  17. Cord blood stem cell-mediated induction of apoptosis in glioma downregulates X-linked inhibitor of apoptosis protein (XIAP.

    Directory of Open Access Journals (Sweden)

    Venkata Ramesh Dasari

    2010-07-01

    Full Text Available XIAP (X-linked inhibitor of apoptosis protein is one of the most important members of the apoptosis inhibitor family. XIAP is upregulated in various malignancies, including human glioblastoma. It promotes invasion, metastasis, growth and survival of malignant cells. We hypothesized that downregulation of XIAP by human umbilical cord blood mesenchymal stem cells (hUCBSC in glioma cells would cause them to undergo apoptotic death.We observed the effect of hUCBSC on two malignant glioma cell lines (SNB19 and U251 and two glioma xenograft cell lines (4910 and 5310. In co-cultures of glioma cells with hUCBSC, proliferation of glioma cells was significantly inhibited. This is associated with increased cytotoxicity of glioma cells, which led to glioma cell death. Stem cells induced apoptosis in glioma cells, which was evaluated by TUNEL assay, FACS analyses and immunoblotting. The induction of apoptosis is associated with inhibition of XIAP in co-cultures of hUCBSC. Similar results were obtained by the treatment of glioma cells with shRNA to downregulate XIAP (siXIAP. Downregulation of XIAP resulted in activation of caspase-3 and caspase-9 to trigger apoptosis in glioma cells. Apoptosis is characterized by the loss of mitochondrial membrane potential and upregulation of mitochondrial apoptotic proteins Bax and Bad. Cell death of glioma cells was marked by downregulation of Akt and phospho-Akt molecules. We observed similar results under in vivo conditions in U251- and 5310-injected nude mice brains, which were treated with hUCBSC. Under in vivo conditions, Smac/DIABLO was found to be colocalized in the nucleus, showing that hUCBSC induced apoptosis is mediated by inhibition of XIAP and activation of Smac/DIABLO.Our results indicate that downregulation of XIAP by hUCBSC treatment induces apoptosis, which led to the death of the glioma cells and xenograft cells. This study demonstrates the therapeutic potential of XIAP and hUCBSC to treat malignant

  18. Downregulation of Connective Tissue Growth Factor by Three-Dimensional Matrix Enhances Ovarian Carcinoma Cell Invasion

    Science.gov (United States)

    Barbolina, Maria V.; Adley, Brian P.; Kelly, David L.; Shepard, Jaclyn; Fought, Angela J.; Scholtens, Denise; Penzes, Peter; Shea, Lonnie D.; Sharon Stack, M

    2010-01-01

    Epithelial ovarian carcinoma (EOC) is a leading cause of death from gynecologic malignancy, due mainly to the prevalence of undetected metastatic disease. The process of cell invasion during intra-peritoneal anchoring of metastatic lesions requires concerted regulation of many processes, including modulation of adhesion to the extracellular matrix and localized invasion. Exploratory cDNA microarray analysis of early response genes (altered after 4 hours of 3-dimensional collagen culture) coupled with confirmatory real-time RT-PCR, multiple three-dimensional cell culture matrices, Western blot, immunostaining, adhesion, migration, and invasion assays were used to identify modulators of adhesion pertinent to EOC progression and metastasis. cDNA microarray analysis indicated a dramatic downregulation of connective tissue growth factor (CTGF) in EOC cells placed in invasion-mimicking conditions (3-dimensional type I collagen). Examination of human EOC specimens revealed that CTGF expression was absent in 46% of the tested samples (n=41), but was present in 100% of normal ovarian epithelium samples (n=7). Reduced CTGF expression occurs in many types of cells and may be a general phenomenon displayed by cells encountering a 3D environment. CTGF levels were inversely correlated with invasion such that downregulation of CTGF increased, while its upregulation reduced, collagen invasion. Cells adhered preferentially to a surface comprised of both collagen I and CTGF relative to either component alone using α6β1 and α3β1 integrins. Together these data suggest that downregulation of CTGF in EOC cells may be important for cell invasion through modulation of cell-matrix adhesion. PMID:19382180

  19. Extracellular vesicle-mediated phenotype switching in malignant and non-malignant colon cells

    International Nuclear Information System (INIS)

    Mulvey, Hillary E.; Chang, Audrey; Adler, Jason; Del Tatto, Michael; Perez, Kimberly; Quesenberry, Peter J.; Chatterjee, Devasis

    2015-01-01

    Extracellular vesicles (EVs) are secreted from many cells, carrying cargoes including proteins and nucleic acids. Research has shown that EVs play a role in a variety of biological processes including immunity, bone formation and recently they have been implicated in promotion of a metastatic phenotype. EVs were isolated from HCT116 colon cancer cells, 1459 non-malignant colon fibroblast cells, and tumor and normal colon tissue from a patient sample. Co-cultures were performed with 1459 cells and malignant vesicles, as well as HCT116 cells and non-malignant vesicles. Malignant phenotype was measured using soft agar colony formation assay. Co-cultures were also analyzed for protein levels using mass spectrometry. The importance of 14-3-3 zeta/delta in transfer of malignant phenotype was explored using siRNA. Additionally, luciferase reporter assay was used to measure the transcriptional activity of NF-κB. This study demonstrates the ability of EVs derived from malignant colon cancer cell line and malignant patient tissue to induce the malignant phenotype in non-malignant colon cells. Similarly, EVs derived from non-malignant colon cell lines and normal patient tissue reversed the malignant phenotype of HCT116 cells. Cells expressing an EV-induced malignant phenotype showed increased transcriptional activity of NF-κB which was inhibited by the NF--κB inhibitor, BAY117082. We also demonstrate that knock down of 14-3-3 zeta/delta reduced anchorage-independent growth of HCT116 cells and 1459 cells co-cultured with HCT derived EVs. Evidence of EV-mediated induction of malignant phenotype, and reversal of malignant phenotype, provides rational basis for further study of the role of EVs in tumorigenesis. Identification of 14-3-3 zeta/delta as up-regulated in malignancy suggests its potential as a putative drug target for the treatment of colorectal cancer

  20. Effect of inhibition of the ROCK isoform on RT2 malignant glioma cells.

    Science.gov (United States)

    Inaba, Nobuharu; Ishizawa, Sho; Kimura, Masaki; Fujioka, Kouki; Watanabe, Michiko; Shibasaki, Toshiaki; Manome, Yoshinobu

    2010-09-01

    Malignant glioma is one of the most intractable diseases in the human body. Rho-kinase (ROCK) is overexpressed and has been proposed as the main cause for the refractoriness of the disease. Since efficacious treatment is required, this study investigated the effect of inhibition of ROCK isoforms. The short hairpin RNA transcription vector was transfected into the RT2 rat glioma cell line and the characteristics of the cells were investigated. The effect of nimustine hydrochloride (ACNU) anti-neoplastic agent on cells was also measured. Inhibition of ROCK isoforms did not alter cell growth. Cell cycle analysis revealed that ROCK1 down-regulation reduced the G(0) phase population and ROCK2 down-regulation reduced the G(2)/M phase population. When ROCK1-down-regulated cells were exposed to ACNU, they demonstrated susceptibility to the agent. The roles of ROCK1 and ROCK2 may be different in glioma cells. Furthermore, the combination of ROCK1 down-regulation and an anti-neoplastic agent may be useful for the therapy of malignant glioma.

  1. Antisense downregulation of mutant huntingtin in a cell model

    DEFF Research Database (Denmark)

    Hasholt, L.; Abell, K.; Norremolle, A.

    2003-01-01

    or by addition to the culture medium. Results Expression of the fusion protein containing the mutant huntingtin fragment resulted in diffuse green fluorescence in the cytoplasm and formation of aggregates in some of the NT2 cells and NT2-N neurons. We obtained antisense sequence-specific inhibition of expression...... of the fusion protein and/or suppression of the aggregate formation in both cell types. In the NT2 cells the antisense effect was dependent on the way of administration of the oligo. Conclusions The PS-antisense oligo is effective in downregulation of mutant huntingtin, and the reduction of aggregate formation...... is a sensitive biological marker. The findings suggest that antisense knockdown of huntingtin could be a useful strategy for treatment of HD, and could also be suitable for studies of the normal and pathological function of huntingtin in different cellular model systems....

  2. RENAL MALIGNANT NEOPLASMS: RENAL CELL CARCINOMA

    Directory of Open Access Journals (Sweden)

    Elisangela Giachini

    2017-06-01

    Full Text Available The aim of this study is to evaluate the incidence and prevalence of malignant kidney tumors, to contribute to identifying factors which the diagnosis of renal cell carcinomas. Through this study, we understand that kidney disease over the years had higher incidence rates, especially in adults in the sixth decade of life. The renal cell carcinoma (RCC is the third most common malignancy of the genitourinary tract, affecting 2% to 3% of the population. There are numerous ways of diagnosis; however, the most important are ultrasonography, magnetic resonance imaging and computed tomography. In general most of the patients affected by the CCR, have a good prognosis when diagnosed early and subjected to an effective treatment. This study conducted a literature review about the CCR, through this it was possible to understand the development needs of the imaging methods used for precise diagnosis and classification of RCC through the TNM system.

  3. TCR down-regulation controls T cell homeostasis

    DEFF Research Database (Denmark)

    Boding, Lasse; Bonefeld, Charlotte Menné; Nielsen, Bodil L

    2009-01-01

    TCR and cytokine receptor signaling play key roles in the complex homeostatic mechanisms that maintain a relative stable number of T cells throughout life. Despite the homeostatic mechanisms, a slow decline in naive T cells is typically observed with age. The CD3gamma di-leucine-based motif...... controls TCR down-regulation and plays a central role in fine-tuning TCR expression and signaling in T cells. In this study, we show that the age-associated decline of naive T cells is strongly accelerated in CD3gammaLLAA knock-in mice homozygous for a double leucine to alanine mutation in the CD3gamma di......-leucine-based motif, whereas the number of memory T cells is unaffected by the mutation. This results in premature T cell population senescence with a severe dominance of memory T cells and very few naive T cells in middle-aged to old CD3gamma mutant mice. The reduced number of naive T cells in CD3gamma mutant mice...

  4. Activation of the complement cascade enhances motility of leukemic cells by downregulating expression of HO-1.

    Science.gov (United States)

    Abdelbaset-Ismail, A; Borkowska-Rzeszotek, S; Kubis, E; Bujko, K; Brzeźniakiewicz-Janus, K; Bolkun, L; Kloczko, J; Moniuszko, M; Basak, G W; Wiktor-Jedrzejczak, W; Ratajczak, M Z

    2017-02-01

    As a crucial arm of innate immunity, the complement cascade (ComC) is involved both in mobilization of normal hematopoietic stem/progenitor cells (HSPCs) from bone marrow (BM) into peripheral blood and in their homing to BM. Despite the fact that ComC cleavage fragments alone do not chemoattract normal HSPCs, we found that leukemia cell lines as well as clonogenic blasts from chronic myeloid leukemia and acute myeloid leukemia patients respond robustly to C3 and C5 cleavage fragments by chemotaxis and increased adhesion. This finding was supported by the detection of C3a and C5a receptors in cells from human malignant hematopoietic cell lines and patient blasts at the mRNA (reverse transcriptase-polymerase chain reaction) and protein level (fluorescence-activated cell sorting), and by the demonstration that these receptors respond to stimulation by C3a and C5a by phosphorylation of p42/44 and p38 mitogen-activated protein kinases (MAPK), and protein kinase B (PKB/AKT). We also found that inducible heme oxygenase 1 (HO-1) is a negative regulator of ComC-mediated trafficking of leukemic cells, and that stimulation of leukemic cells by C3 or C5 cleavage fragments activates p38 MAPK, which downregulates HO-1 expression, rendering cells more mobile. We conclude that activation of the ComC in leukemia/lymphoma patients (for example, as a result of accompanying infections) enhances the motility of malignant cells and contributes to their spread in a p38 MAPK-HO-1-dependent manner. Therefore, inhibition of p38 MAPK or upregulation of HO-1 by small-molecule modulators would have a beneficial effect on ameliorating cell migration-mediated expansion of leukemia/lymphoma cells when the ComC becomes activated.

  5. Activation of the complement cascade enhances motility of leukemic cells by downregulating expression of HO-1

    Science.gov (United States)

    Abdelbaset-Ismail, A; Borkowska-Rzeszotek, S; Kubis, E; Bujko, K; Brzeźniakiewicz-Janus, K; Bolkun, L; Kloczko, J; Moniuszko, M; Basak, G W; Wiktor-Jedrzejczak, W; Ratajczak, M Z

    2017-01-01

    As a crucial arm of innate immunity, the complement cascade (ComC) is involved both in mobilization of normal hematopoietic stem/progenitor cells (HSPCs) from bone marrow (BM) into peripheral blood and in their homing to BM. Despite the fact that ComC cleavage fragments alone do not chemoattract normal HSPCs, we found that leukemia cell lines as well as clonogenic blasts from chronic myeloid leukemia and acute myeloid leukemia patients respond robustly to C3 and C5 cleavage fragments by chemotaxis and increased adhesion. This finding was supported by the detection of C3a and C5a receptors in cells from human malignant hematopoietic cell lines and patient blasts at the mRNA (reverse transcriptase-polymerase chain reaction) and protein level (fluorescence-activated cell sorting), and by the demonstration that these receptors respond to stimulation by C3a and C5a by phosphorylation of p42/44 and p38 mitogen-activated protein kinases (MAPK), and protein kinase B (PKB/AKT). We also found that inducible heme oxygenase 1 (HO-1) is a negative regulator of ComC-mediated trafficking of leukemic cells, and that stimulation of leukemic cells by C3 or C5 cleavage fragments activates p38 MAPK, which downregulates HO-1 expression, rendering cells more mobile. We conclude that activation of the ComC in leukemia/lymphoma patients (for example, as a result of accompanying infections) enhances the motility of malignant cells and contributes to their spread in a p38 MAPK–HO-1-dependent manner. Therefore, inhibition of p38 MAPK or upregulation of HO-1 by small-molecule modulators would have a beneficial effect on ameliorating cell migration-mediated expansion of leukemia/lymphoma cells when the ComC becomes activated. PMID:27451975

  6. Downregulation of MMP1 in MDS-derived mesenchymal stromal cells reduces the capacity to restrict MDS cell proliferation.

    Science.gov (United States)

    Zhao, Sida; Zhao, Youshan; Guo, Juan; Fei, Chengming; Zheng, Qingqing; Li, Xiao; Chang, Chunkang

    2017-03-06

    The role of mesenchymal stromal cells (MSCs) in the pathogenesis of myelodysplastic syndromes (MDS) has been increasingly addressed, but has yet to be clearly elucidated. In this investigation, we found that MDS cells proliferated to a greater extent on MDS-derived MSCs compared to normal MSCs. Matrix metalloproteinase 1(MMP1), which was downregulated in MDS-MSCs, was identified as an inhibitory factor of MDS cell proliferation, given that treatment with an MMP1 inhibitor or knock-down of MMP1 in normal MSCs resulted in increased MDS cell proliferation. Further investigations indicated that MMP1 induced apoptosis of MDS cells by interacting with PAR1 and further activating the p38 MAPK pathway. Inhibition of either PAR1 or p38 MAPK can reverse the apoptosis-inducing effect of MMP1. Taken together, these data indicate that downregulation of MMP1 in MSCs of MDS patients may contribute to the reduced capacity of MSCs to restrict MDS cell proliferation, which may account for the malignant proliferation of MDS cells.

  7. Tunicamycin promotes apoptosis in leukemia cells through ROS generation and downregulation of survivin expression.

    Science.gov (United States)

    Lim, Eun Jin; Heo, Jeonghoon; Kim, Young-Ho

    2015-08-01

    Tunicamycin (TN), one of the endoplasmic reticulum stress inducers, has been reported to inhibit tumor cell growth and exhibit anticarcinogenic activity. However, the mechanism by which TN initiates apoptosis remains poorly understood. In the present study, we investigated the effect of TN on the apoptotic pathway in U937 cells. We show that TN induces apoptosis in association with caspase-3 activation, generation of reactive oxygen species (ROS), and downregulation of survivin expression. P38 MAPK (mitogen-activated protein kinase) and the generation of ROS signaling pathway play crucial roles in TN-induced apoptosis in U937 cells. We hypothesized that TN-induced activation of p38 MAPK signaling pathway is responsible for cell death. To test this hypothesis, we selectively inhibited MAPK during treatment with TN. Our data demonstrated that inhibitor of p38 (SB), but not ERK (PD) or JNK (SP), partially maintained apoptosis during treatment with TN. Pre-treatment with NAC and GSH markedly prevented cell death, suggesting a role for ROS in this process. Ectopic expression of survivin in U937 cells attenuated TN-induced apoptosis by suppression of caspase-3 cleavage, mitochondrial membrane potential, and cytochrome c release in U937 cells. Taken together, our results show that TN modulates multiple components of the apoptotic response of human leukemia cells and raise the possibility of a novel therapeutic strategy for hematological malignancies.

  8. Mast cells mediate malignant pleural effusion formation.

    Science.gov (United States)

    Giannou, Anastasios D; Marazioti, Antonia; Spella, Magda; Kanellakis, Nikolaos I; Apostolopoulou, Hara; Psallidas, Ioannis; Prijovich, Zeljko M; Vreka, Malamati; Zazara, Dimitra E; Lilis, Ioannis; Papaleonidopoulos, Vassilios; Kairi, Chrysoula A; Patmanidi, Alexandra L; Giopanou, Ioanna; Spiropoulou, Nikolitsa; Harokopos, Vaggelis; Aidinis, Vassilis; Spyratos, Dionisios; Teliousi, Stamatia; Papadaki, Helen; Taraviras, Stavros; Snyder, Linda A; Eickelberg, Oliver; Kardamakis, Dimitrios; Iwakura, Yoichiro; Feyerabend, Thorsten B; Rodewald, Hans-Reimer; Kalomenidis, Ioannis; Blackwell, Timothy S; Agalioti, Theodora; Stathopoulos, Georgios T

    2015-06-01

    Mast cells (MCs) have been identified in various tumors; however, the role of these cells in tumorigenesis remains controversial. Here, we quantified MCs in human and murine malignant pleural effusions (MPEs) and evaluated the fate and function of these cells in MPE development. Evaluation of murine MPE-competent lung and colon adenocarcinomas revealed that these tumors actively attract and subsequently degranulate MCs in the pleural space by elaborating CCL2 and osteopontin. MCs were required for effusion development, as MPEs did not form in mice lacking MCs, and pleural infusion of MCs with MPE-incompetent cells promoted MPE formation. Once homed to the pleural space, MCs released tryptase AB1 and IL-1β, which in turn induced pleural vasculature leakiness and triggered NF-κB activation in pleural tumor cells, thereby fostering pleural fluid accumulation and tumor growth. Evaluation of human effusions revealed that MCs are elevated in MPEs compared with benign effusions. Moreover, MC abundance correlated with MPE formation in a human cancer cell-induced effusion model. Treatment of mice with the c-KIT inhibitor imatinib mesylate limited effusion precipitation by mouse and human adenocarcinoma cells. Together, the results of this study indicate that MCs are required for MPE formation and suggest that MC-dependent effusion formation is therapeutically addressable.

  9. Aryl hydrocarbon receptor downregulates MYCN expression and promotes cell differentiation of neuroblastoma.

    Directory of Open Access Journals (Sweden)

    Pei-Yi Wu

    Full Text Available Neuroblastoma (NB is the most common malignant disease of infancy. MYCN amplification is a prognostic factor for NB and is a sign of highly malignant disease and poor patient prognosis. In this study, we aimed to investigate novel MYCN-related genes and assess how they affect NB cell behavior. The different gene expression found in 10 MYCN amplification NB tumors and 10 tumors with normal MYCN copy number were analyzed using tissue oligonucleotide microarrays. Ingenuity Pathway Analysis was subsequently performed to identify the potential genes involved in MYCN regulation pathways. Aryl hydrocarbon receptor (AHR, a receptor for dioxin-like compounds, was found to be inversely correlated with MYCN expression in NB tissues. This correlation was confirmed in a further 14 human NB samples. Moreover, AHR expression in NB tumors was found to correlate highly with histological grade of differentiation. In vitro studies revealed that AHR overexpression in NB cells induced spontaneous cell differentiation. In addition, it was found that ectopic expression of AHR suppressed MYCN promoter activity resulting in downregulation of MYCN expression. The suppression effect of AHR on the transcription of MYCN was compensated for by E2F1 overexpression, indicating that E2F1 is involved in the AHR-regulating MYCN pathway. Furthermore, AHR shRNA promotes the expression of E2F1 and MYCN in NB cells. These findings suggest that AHR is one of the upstream regulators of MYCN. Through the modulation of E2F1, AHR regulates MYCN gene expression, which may in turn affect NB differentiation.

  10. Nitrosoureas inhibit the stathmin-mediated migration and invasion of malignant glioma cells.

    Science.gov (United States)

    Liang, Xing-Jie; Choi, Yong; Sackett, Dan L; Park, John K

    2008-07-01

    Malignant gliomas are the most common primary intrinsic brain tumors and are highly lethal. The widespread migration and invasion of neoplastic cells from the initial site of tumor formation into the surrounding brain render these lesions refractory to definitive surgical treatment. Stathmin, a microtubule-destabilizing protein that mediates cell cycle progression, can also regulate directed cell movement. Nitrosoureas, traditionally viewed as DNA alkylating agents, can also covalently modify proteins such as stathmin. We therefore sought to establish a role for stathmin in malignant glioma cell motility, migration, and invasion and determine the effects of nitrosoureas on these cell movement-related processes. Scratch wound-healing recovery, Boyden chamber migration, Matrigel invasion, and organotypic slice invasion assays were performed before and after the down-regulation of cellular stathmin levels and in the absence and presence of sublethal nitrosourea ([1-(2-chloroethyl)-3-cyclohexyl-l-nitrosourea]; CCNU) concentrations. We show that decreases in stathmin expression lead to significant decreases in malignant glioma cell motility, migration, and invasion. CCNU, at a concentration of 10 micromol/L, causes similar significant decreases, even in the absence of any effects on cell viability. The direct inhibition of stathmin by CCNU is likely a contributing factor. These findings suggest that the inhibition of stathmin expression and function may be useful in limiting the spread of malignant gliomas within the brain, and that nitrosoureas may have therapeutic benefits in addition to their antiproliferative effects.

  11. Differentiation of Human Malignant Melanoma Cells that Escape Apoptosis After Treatment with 9-Nitrocamptothecin In Vitro

    Directory of Open Access Journals (Sweden)

    Panayotis Pantazis

    1999-08-01

    Full Text Available After in-vitro exposure to 0.05 μmol/L 9-nitrocamptothecin (9NC for periods of time longer than 5 days, 65% to 80% of the human malignant melanoma SB1 B cells die by apoptosis, whereas the remaining cells are arrested at the G2-phase of the cell cycle. Upon discontinuation of exposure to 9NC the G2-arrested cells resume cell cycling or remain arrested depending on the duration of 9NC exposure. In contrast to cycling malignant cells, the cells irreversibly arrested at G2 exhibit features of normal-like cells, the melanocytes, as assessed by the appearance of dendrite-like structures; loss of proliferative activity; synthesis of the characteristic pigment, melanin; and, particularly, loss of tumorigenic ability after xenografting in immunodeficient mice. Further, the expression of the cyclin-dependent kinase inhibitor p16 is upregulated in the 9NC-treated, G1-arrested, but downregulated in density G1-arrested cells, whereas the reverse is observed in the expression of another cyclin-dependent kinase inhibitor, p21. These results suggest that malignant melanoma SB1B cells that escape 9NC-induced death by apoptosis undergo differentiation toward nonmalignant, normal-like cells.

  12. Malignant Giant Cell Tumour of Bone with Axillary Metastasis

    African Journals Online (AJOL)

    2002-06-06

    Jun 6, 2002 ... SUMMARY. Giant Cell Tumour of bone is a typically benign and solitary tumour. However, multiple lesions have been described and 5-10% of lesions may be malignant. We present a case of a malignant giant cell tumour of the distal radius with metastasis to the ipsilateral axilla (an uncommon location).

  13. N-methylhemeanthidine chloride, a novel Amaryllidaceae alkaloid, inhibits pancreatic cancer cell proliferation via down-regulating AKT activation

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Guoli; Yao, Guangmin; Zhan, Guanqun; Hu, Yufeng [Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei PR China (China); Yue, Ming [Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei (China); Cheng, Ling; Liu, Yaping; Ye, Qi [Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei PR China (China); Qing, Guoliang [Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei (China); Zhang, Yonghui, E-mail: zhangyh@mails.tjmu.edu.cn [Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei PR China (China); Liu, Hudan, E-mail: hudanliu@hust.edu.cn [Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei PR China (China)

    2014-11-01

    We previously reported the isolation of a novel Amaryllidaceae alkaloid, N-methylhemeanthidine chloride (NMHC), from Zephyranthes candida, which exhibits potent cytotoxicity in a spectrum of tumor cells. However, the mechanism of action remains unclear. Using multiple cell lines derived from human pancreatic cancer, one of the most mortal and refractory human malignancies, we further studied the NMHC-mediated cytotoxicity and found that it induced drastic cytotoxicity in pancreatic cancer cells whereas an insignificant effect on a noncancerous cell line. The NMHC-mediated growth inhibition was more severe than the first-line chemotherapeutic agent gemcitabine, leading to cell cycle arrest, apoptotic death and decreased glycolysis. NMHC exerted its function through down-regulating AKT activation, and the ectopic expression of activated AKT rescued the growth inhibition. Consistently, NMHC injections in a pancreatic cancer xenograft model manifested the anti-tumor effect in vivo. Engrafted tumor cells underwent AKT attenuation and apoptotic death upon treatments. As such, we here demonstrate the AKT inhibition may be one of the mechanisms by which NMHC decreases tumor cell survival rate in vitro and in vivo. Our data thereby suggest that NMHC holds great promise as a potent chemotherapeutic agent against pancreatic cancer and sheds new light on obtaining such agents from natural products toward therapeutic purposes. - Highlights: • N-methylhemeanthidine chloride (NMHC) is a novel Amaryllidaceae alkaloid. • NMHC exhibits potent anti-neoplastic activity. • NMHC leads to cell cycle arrest, apoptotic death and decreased metabolism. • NMHC down-regulates the AKT signaling pathway.

  14. Niclosamide, an oral antihelmintic drug, exhibits antimetastatic activity in hepatocellular carcinoma cells through downregulating twist-mediated CD10 expression.

    Science.gov (United States)

    Chien, Ming-Hsien; Ho, Yung-Chuan; Yang, Shun-Fa; Yang, Yi-Chieh; Lai, Szu-Yu; Chen, Wan-Shen; Chen, Ming-Jenn; Yeh, Chao-Bin

    2018-02-26

    Hepatocellular carcinoma (HCC) is one of the most common malignancies in the world, especially, in eastern Asia, and its prognosis is poor once metastasis occurs. Niclosamide, a US Food and Drug Administration-approved antihelmintic drug, was shown to inhibit the growth of various cancers including HCC, but the effect of niclosamide on cell motility and the underlying mechanism have not yet been completely defined. The present study demonstrated that niclosamide, at 0-40 nM, concentration-dependently inhibited wound closure and the migratory/invasive capacities of human Huh7 and SK-Hep-1 HCC cells without exhibiting cytotoxicity. A protease array analysis showed that CD10 was dramatically downregulated in Huh7 cells after niclosamide treatment. Western blot and flow cytometric assays further demonstrated that CD10 expression was concentration-dependently downregulated in Huh7 and SK-Hep-1 cells after niclosamide treatment. Mechanistic investigations found that niclosamide suppressed Twist-mediated CD10 transactivation. Moreover, knockdown of CD10 expression by CD10 small interfering RNA in HCC cells suppressed cell migratory/invasive abilities and overexpression of CD10 relieved the migration inhibition induced by niclosamide. Taken together, our results indicated that niclosamide could be a potential agent for inhibiting metastasis of HCC, and CD10 is an important target of niclosamide for suppressing the motility of HCC cells. © 2018 Wiley Periodicals, Inc.

  15. Synchronous pulmonary malignancies: atypical presentation of mantle cell lymphoma masking a lung malignancy

    Directory of Open Access Journals (Sweden)

    Luke Masha

    2015-09-01

    Full Text Available We present a case of a pleural space malignancy masked by an atypical presentation of mantle cell lymphoma. Our patient presented with a large pleural effusion and right sided pleural studding, initially attributed to a new diagnosis of mantle cell lymphoma. Rare atypical epithelial cells were also seen amongst the clonal population of lymphocytes. The patient lacked systemic manifestations of mantle cell lymphoma and did not improve with chemotherapy. A pleural biopsy ultimately revealed the presence of an undifferentiated carcinoma, favoring a lung primary. A discussion of synchronous pleural space malignancies involving lymphomas is given.

  16. Synchronous Pulmonary Malignancies: Atypical Presentation of Mantle Cell Lymphoma Masking a Lung Malignancy.

    Science.gov (United States)

    Masha, Luke; Zinchuk, Andrey; Boosalis, Valia

    2015-09-07

    We present a case of a pleural space malignancy masked by an atypical presentation of mantle cell lymphoma. Our patient presented with a large pleural effusion and right sided pleural studding, initially attributed to a new diagnosis of mantle cell lymphoma. Rare atypical epithelial cells were also seen amongst the clonal population of lymphocytes. The patient lacked systemic manifestations of mantle cell lymphoma and did not improve with chemotherapy. A pleural biopsy ultimately revealed the presence of an undifferentiated carcinoma, favoring a lung primary. A discussion of synchronous pleural space malignancies involving lymphomas is given.

  17. A case of clear cell sarcoma-A rare malignancy

    DEFF Research Database (Denmark)

    Juel, Jacob; Ibrahim, Rami Mossad

    2017-01-01

    INTRODUCTION: Clear cell sarcoma (CCS) is a rare tumour of the soft tissue often misdiagnosed, as it shares characteristics with malignant melanoma (MM). Previously, CCS has been characterised, as malignant melanoma of the soft tissue, contemporary immunohistochemical techniques, however, have made...

  18. Malignant atypical cell in urine cytology: a diagnostic dilemma

    Directory of Open Access Journals (Sweden)

    Kakkar Nandita

    2006-01-01

    Full Text Available Abstract Aims The aim of this study was to find out the characteristic morphology of malignant atypical cells which were missed on routine cytology of urine. Materials and methods In this retrospective study, we examined detailed cytomorphology of 18 cases of atypical urinary cytology which were missed on routine examination and were further proved on histopathology as transitional cell carcinoma (TCC of bladder. The cytological features of these cases were compared with 10 cases of benign urine samples. Results There were 11 cases of high grade TCC and 7 cases of low grade TCC on histopathology of the atypical urine samples. Necrosis in the background and necrosed papillae were mostly seen in malignant atypical cells. The comet cells and cells with India ink nuclei (single cells with deep black structure-less nuclei were only observed in malignant atypical cells. The most consistent features in malignant atypical cells were: i high nuclear and cytoplasmic (N/C ratio ii nuclear pleomorphism iii nuclear margin irregularity iv hyperchromasia and v chromatin abnormalities Conclusion The present study emphasizes that nuclear features such as high N/C ratio, hyperchromasia and chromatin abnormalities are particularly useful for assessing the malignant atypical cells. Other cytological features such as comet cells and cells with India ink nuclei are also helpful for diagnosis but have limited value because they are less frequently seen.

  19. Regulation of cell cycle checkpoint kinase WEE1 by miR-195 in malignant melanoma.

    Science.gov (United States)

    Bhattacharya, A; Schmitz, U; Wolkenhauer, O; Schönherr, M; Raatz, Y; Kunz, M

    2013-06-27

    WEE1 kinase has been described as a major gate keeper at the G2 cell cycle checkpoint and to be involved in tumour progression in different malignant tumours. Here we analysed the expression levels of WEE1 in a series of melanoma patient samples and melanoma cell lines using immunoblotting, quantitative real-time PCR and immunohistochemistry. WEE1 expression was significantly downregulated in patient samples of metastatic origin as compared with primary melanomas and in melanoma cell lines of high aggressiveness as compared with cell lines of low aggressiveness. Moreover, there was an inverse correlation between the expression of WEE1 and WEE1-targeting microRNA miR-195. Further analyses showed that transfection of melanoma cell lines with miR-195 indeed reduced WEE1 mRNA and protein expression in these cells. Reporter gene analysis confirmed direct targeting of the WEE1 3' untranslated region (3'UTR) by miR-195. Overexpression of miR-195 in SK-Mel-28 melanoma cells was accompanied by WEE1 reduction and significantly reduced stress-induced G2-M cell cycle arrest, which could be restored by stable overexpression of WEE1. Moreover, miR-195 overexpression and WEE1 knockdown, respectively, increased melanoma cell proliferation. miR-195 overexpression also enhanced migration and invasiveness of melanoma cells. Taken together, the present study shows that WEE1 expression in malignant melanoma is directly regulated by miR-195. miR-195-mediated downregulation of WEE1 in metastatic lesions may help to overcome cell cycle arrest under stress conditions in the local tissue microenvironment to allow unrestricted growth of tumour cells.

  20. Primary pleuro-pulmonary malignant germ cell tumours.

    Directory of Open Access Journals (Sweden)

    Vaideeswar P

    2002-01-01

    Full Text Available Lungs and pleura are rare sites for malignant germ-cell tumours. Two cases, pure yolk-sac tumour and yolk sac-sac tumour/embryonal carcinoma are described in young males who presented with rapid progression of respiratory symptoms. The malignant mixed germ cell tumour occurred in the right lung, while the yolk-sac tumour had a pseudomesotheliomatous growth pattern suggesting a pleural origin. Alpha-foetoprotein was immunohistochemically demonstrated in both.

  1. Deregulation of Interferon Signaling in Malignant Cells

    Directory of Open Access Journals (Sweden)

    Leonidas C. Platanias

    2010-02-01

    Full Text Available Interferons (IFNs are a family of cytokines with potent antiproliferative, antiviral, and immunomodulatory properties. Much has been learned about IFNs and IFN-activated signaling cascades over the last 50 years. Due to their potent antitumor effects in vitro and in vivo, recombinant IFNs have been used extensively over the years, alone or in combination with other drugs, for the treatment of various malignancies. This review summarizes the current knowledge on IFN signaling components and pathways that are deregulated in human malignancies. The relevance of deregulation of IFN signaling pathways in defective innate immune surveillance and tumorigenesis are discussed.

  2. Targeting the BCR signalosome in B cell malignancies

    NARCIS (Netherlands)

    de Rooij, M.F.M.

    2017-01-01

    Chronic lymphocytic leukemia (CLL), mantle cell lymphoma (MCL), and Waldenström macroglobulinemia (WM) are B-cell malignancies which are still incurable. In these lymphomas, the cells proliferate in specialized niches in lymph nodes and bone marrow, in which they are provided by stromal-derived

  3. Signal transduction and downregulation of C-MET in HGF stimulated low and highly metastatic human osteosarcoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Husmann, Knut, E-mail: khusmann@research.balgrist.ch [Laboratory for Orthopedic Research, Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich (Switzerland); Ducommun, Pascal [Laboratory for Orthopedic Research, Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich (Switzerland); Division of Plastic Surgery and Hand Surgery, Department of Surgery, University Hospital Zurich, Zurich (Switzerland); Sabile, Adam A.; Pedersen, Else-Marie; Born, Walter; Fuchs, Bruno [Laboratory for Orthopedic Research, Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich (Switzerland)

    2015-09-04

    The poor outcome of osteosarcoma (OS), particularly in patients with metastatic disease and a five-year survival rate of only 20%, asks for more effective therapeutic strategies targeting malignancy-promoting mechanisms. Dysregulation of C-MET, its ligand hepatocyte growth factor (HGF) and the fusion oncogene product TPR-MET, first identified in human MNNG-HOS OS cells, have been described as cancer-causing factors in human cancers. Here, the expression of these molecules at the mRNA and the protein level and of HGF-stimulated signaling and downregulation of C-MET was compared in the parental low metastatic HOS and MG63 cell lines and the respective highly metastatic MNNG-HOS and 143B and the MG63-M6 and MG63-M8 sublines. Interestingly, expression of TPR-MET was only observed in MNNG-HOS cells. HGF stimulated the phosphorylation of Akt and Erk1/2 in all cell lines investigated, but phospho-Stat3 remained at basal levels. Downregulation of HGF-stimulated Akt and Erk1/2 phosphorylation was much faster in the HGF expressing MG63-M8 cells than in HOS cells. Degradation of HGF-activated C-MET occurred predominantly through the proteasomal and to a lesser extent the lysosomal pathway in the cell lines investigated. Thus, HGF-stimulated Akt and Erk1/2 signaling as well as proteasomal degradation of HGF activated C-MET are potential therapeutic targets in OS. - Highlights: • Expression of TPR-MET was only observed in MNNG-HOS cells. • HGF stimulated the phosphorylation of Akt and Erk1/2 but not of Stat3 in osteosarcoma cell lines. • Degradation of HGF-activated C-MET occurred predominantly through the proteasomal pathway.

  4. The malignant niche: safe spaces for toxic stem cell marketing.

    Science.gov (United States)

    Sipp, Douglas

    2017-01-01

    Many tumors are sustained by microenvironments, or niches, that support and protect malignant cells, thus conferring a competitive advantage against both healthy cells and therapeutic interventions (for a brief review, see Yao and Link (Stem Cells 35: 3-8, 2017)). The global industry engaged in the commercial promotion of unproven and scientifically implausible cell-based "regenerative" therapies has developed a number of self-protective strategies that support its survival and growth in ways that are broadly analogous to the functions of the malignant niche.

  5. Downregulation of HIF-1a sensitizes U251 glioma cells to the temozolomide (TMZ) treatment

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jun-Hai [Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037 (China); Ma, Zhi-Xiong [National Institute of Biological Sciences, Beijing 102206 (China); Huang, Guo-Hao; Xu, Qing-Fu; Xiang, Yan [Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037 (China); Li, Ningning; Sidlauskas, Kastytis [Division of Neuropathology and Department of Neurodegenerative Disease, Institute of Neurology, University College London, London WC1N 3BG (United Kingdom); Zhang, Eric Erquan [National Institute of Biological Sciences, Beijing 102206 (China); Lv, Sheng-Qing, E-mail: lvsq0518@hotmail.com [Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037 (China)

    2016-05-01

    Purpose: The aim of this study was to investigate the effect of downregulation of HIF-1α gene on human U251 glioma cells and examine the consequent changes of TMZ induced effects and explore the molecular mechanisms. Methods: U251 cell line stably expressing HIF-1α shRNA was acquired via lentiviral vector transfection. The mRNA and protein expression alterations of genes involved in our study were determined respectively by qRT-PCR and Western blot. Cell proliferation was measured by MTT assay and colony formation assay, cell invasion/migration capacity was determined by transwell invasion assay/wound healing assay, and cell apoptosis was detected by flow cytometry. Results: We successfully established a U251 cell line with highly efficient HIF-1α knockdown. HIF-1a downregulation sensitized U251 cells to TMZ treatment and enhanced the proliferation-inhibiting, invasion/migration-suppressing, apoptosis-inducing and differentiation-promoting effects exerted by TMZ. The related molecular mechanisms demonstrated that expression of O{sup 6}-methylguanine DNA methyltransferase gene (MGMT) and genes of Notch1 pathway were significantly upregulated by TMZ treatment. However, this upregulation was abrogated by HIF-1α knockdown. We further confirmed important regulatory roles of HIF-1α in the expression of MGMT and activation of Notch1 pathways. Conclusion: HIF-1α downregulation sensitizes U251 glioma cells to the temozolomide treatment via inhibiting MGMT expression and Notch1 pathway activation. - Highlights: • TMZ caused more significant proliferation inhibition and apoptosis in U251 cells after downregulating HIF-1α. • Under TMZ treatment, HIF-1 downregulated U251 cells exhibited weaker mobility and more differentiated state. • TMZ caused MGMT over-expression and Notch1 pathway activation, which could be abrogated by HIF-1α downregulation.

  6. Malignant T cells exhibit CD45 resistant Stat 3 activation and proliferation in cutaneous T cell lymphoma

    DEFF Research Database (Denmark)

    Krejsgaard, T; Helvad, Rikke; Ralfkiær, Elisabeth

    2010-01-01

    CD45 is a protein tyrosine phosphatase, which is well-known for regulating antigen receptor signalling in T and B cells via its effect on Src kinases. It has recently been shown that CD45 can also dephosphorylate Janus kinases (Jaks) and thereby regulate Signal transducer and activator of transcr......CD45 is a protein tyrosine phosphatase, which is well-known for regulating antigen receptor signalling in T and B cells via its effect on Src kinases. It has recently been shown that CD45 can also dephosphorylate Janus kinases (Jaks) and thereby regulate Signal transducer and activator...... of transcription (Stat) activation and cytokine-induced proliferation in lymphocytes. Consequently, CD45 dysregulation could be implicated in aberrant Jak/Stat activation and proliferation in lymphoproliferative diseases. Despite high expression of the CD45 ligand, Galectin-1, in skin lesions from cutaneous T......-cell lymphoma (CTCL), the malignant T cells exhibit constitutive activation of the Jak3/Stat3 signalling pathway and uncontrolled proliferation. We show that CD45 expression is down-regulated on malignant T cells when compared to non-malignant T cells established from CTCL skin lesions. Moreover, CD45 cross...

  7. Ezrin dephosphorylation/downregulation contributes to ursolic acid-mediated cell death in human leukemia cells

    International Nuclear Information System (INIS)

    Li, G; Zhou, T; Liu, L; Chen, J; Zhao, Z; Peng, Y; Li, P; Gao, N

    2013-01-01

    Ezrin links the actin filaments with the cell membrane and has a functional role in the apoptotic process. It appears clear that ezrin is directly associated with Fas, leading to activation of caspase cascade and cell death. However, the exact role of ezrin in ursolic acid (UA)-induced apoptosis remains unclear. In this study, we show for the first time that UA induces apoptosis in both transformed and primary leukemia cells through dephosphorylation/downregulation of ezrin, association and polarized colocalization of Fas and ezrin, as well as formation of death-inducing signaling complex. These events are dependent on Rho-ROCK1 signaling pathway. Knockdown of ezrin enhanced cell death mediated by UA, whereas overexpression of ezrin attenuated UA-induced apoptosis. Our in vivo study also showed that UA-mediated inhibition of tumor growth of mouse leukemia xenograft model is in association with the dephosphorylation/downregulation of ezrin. Such findings suggest that the cytoskeletal protein ezrin may represent an attractive target for UA-mediated lethality in human leukemia cells

  8. miR-137 inhibits the invasion of melanoma cells through downregulation of multiple oncogenic target genes.

    Science.gov (United States)

    Luo, Chonglin; Tetteh, Paul W; Merz, Patrick R; Dickes, Elke; Abukiwan, Alia; Hotz-Wagenblatt, Agnes; Holland-Cunz, Stefan; Sinnberg, Tobias; Schittek, Birgit; Schadendorf, Dirk; Diederichs, Sven; Eichmüller, Stefan B

    2013-03-01

    MicroRNAs are small noncoding RNAs that regulate gene expression and have important roles in various types of cancer. Previously, miR-137 was reported to act as a tumor suppressor in different cancers, including malignant melanoma. In this study, we show that low miR-137 expression is correlated with poor survival in stage IV melanoma patients. We identified and validated two genes (c-Met and YB1) as direct targets of miR-137 and confirmed two previously known targets, namely enhancer of zeste homolog 2 (EZH2) and microphthalmia-associated transcription factor (MITF). Functional studies showed that miR-137 suppressed melanoma cell invasion through the downregulation of multiple target genes. The decreased invasion caused by miR-137 overexpression could be phenocopied by small interfering RNA knockdown of EZH2, c-Met, or Y box-binding protein 1 (YB1). Furthermore, miR-137 inhibited melanoma cell migration and proliferation. Finally, miR-137 induced apoptosis in melanoma cell lines and decreased BCL2 levels. In summary, our study confirms that miR-137 acts as a tumor suppressor in malignant melanoma and reveals that miR-137 regulates multiple targets including c-Met, YB1, EZH2, and MITF.

  9. Treatment Resistance Mechanisms of Malignant Glioma Tumor Stem Cells

    International Nuclear Information System (INIS)

    Schmalz, Philip G.R.; Shen, Michael J.; Park, John K.

    2011-01-01

    Malignant gliomas are highly lethal because of their resistance to conventional treatments. Recent evidence suggests that a minor subpopulation of cells with stem cell properties reside within these tumors. These tumor stem cells are more resistant to radiation and chemotherapies than their counterpart differentiated tumor cells and may underlie the persistence and recurrence of tumors following treatment. The various mechanisms by which tumor stem cells avoid or repair the damaging effects of cancer therapies are discussed

  10. Coupled down-regulation of mTOR and telomerase activity during fluorouracil-induced apoptosis of hepatocarcinoma Cells

    Energy Technology Data Exchange (ETDEWEB)

    Bu, Xinxin; Jia, Fengqi; Wang, Weifeng; Guo, Xianling; Wu, Mengchao; Wei, Lixin [Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Hospital, Second Military Medical Universisty, 225 Changhai Road, Shanghai 200438 (China)

    2007-11-12

    Hepatocellular carcinoma (HCC) is the most invasive and frequently diagnosed malignancy and the second leading cause of cancer death in many regions of Asia. The PI3K/Akt/mTOR signal pathway is involved in multiple cellular functions including proliferation, differentiation, tumorigenesis, and apoptosis. Up-regulation of telomerase activity is thought to be a critical step leading to cell transformation. This study investigated changes in mTOR pathway and telomerase activity in hepatocarcinoma cell line SMMC-7721 treated with chemotherapeutic agent 5-fluorouracil (5-Fu). We detected apoptosis of hepatocarcinoma cells by TUNEL assay. Telomerase activity, hTERT transcription level and p- p70 S6k was demonstrated by the telomeric repeat amplification protocol and silver staining assay, Dual-Luciferase Reporter Assay and Western blot analysis respectively. Treating SMMC-7721 cells with 5-Fu leads to apoptosis of the cells, and reduction in telomerase activity, as well as a dramatic reduction in the activated form of p70 S6 kinase, a mTOR substrate. The 5-Fu treatment nearly abolishes transcription of hTERT (the major component of telomerase) mRNA. Treating SMMC-7721 cells with Rapamycin, a specific mTOR inhibitor, significantly reduce hTERT protein level but did not affect hTERT transcription. 5-Fu and rapamycin were synergistic in regards to down-regulation of telomerase activity in hepatocarcinoma cells. These results suggest that chemotherapeutic agent 5-Fu may down-regulate telomerase activity at both transcriptional level and PI3K/Akt/mTOR pathway-dependent post-transcriptional level to facilitate hepatocellular carcinoma cell apoptosis.

  11. Coupled down-regulation of mTOR and telomerase activity during fluorouracil-induced apoptosis of hepatocarcinoma Cells

    International Nuclear Information System (INIS)

    Bu, Xinxin; Jia, Fengqi; Wang, Weifeng; Guo, Xianling; Wu, Mengchao; Wei, Lixin

    2007-01-01

    Hepatocellular carcinoma (HCC) is the most invasive and frequently diagnosed malignancy and the second leading cause of cancer death in many regions of Asia. The PI3K/Akt/mTOR signal pathway is involved in multiple cellular functions including proliferation, differentiation, tumorigenesis, and apoptosis. Up-regulation of telomerase activity is thought to be a critical step leading to cell transformation. This study investigated changes in mTOR pathway and telomerase activity in hepatocarcinoma cell line SMMC-7721 treated with chemotherapeutic agent 5-fluorouracil (5-Fu). We detected apoptosis of hepatocarcinoma cells by TUNEL assay. Telomerase activity, hTERT transcription level and p- p70 S6k was demonstrated by the telomeric repeat amplification protocol and silver staining assay, Dual-Luciferase Reporter Assay and Western blot analysis respectively. Treating SMMC-7721 cells with 5-Fu leads to apoptosis of the cells, and reduction in telomerase activity, as well as a dramatic reduction in the activated form of p70 S6 kinase, a mTOR substrate. The 5-Fu treatment nearly abolishes transcription of hTERT (the major component of telomerase) mRNA. Treating SMMC-7721 cells with Rapamycin, a specific mTOR inhibitor, significantly reduce hTERT protein level but did not affect hTERT transcription. 5-Fu and rapamycin were synergistic in regards to down-regulation of telomerase activity in hepatocarcinoma cells. These results suggest that chemotherapeutic agent 5-Fu may down-regulate telomerase activity at both transcriptional level and PI3K/Akt/mTOR pathway-dependent post-transcriptional level to facilitate hepatocellular carcinoma cell apoptosis

  12. Coupled down-regulation of mTOR and telomerase activity during fluorouracil-induced apoptosis of hepatocarcinoma Cells

    Directory of Open Access Journals (Sweden)

    Wu Mengchao

    2007-11-01

    Full Text Available Abstract Background Hepatocellular carcinoma (HCC is the most invasive and frequently diagnosed malignancy and the second leading cause of cancer death in many regions of Asia. The PI3K/Akt/mTOR signal pathway is involved in multiple cellular functions including proliferation, differentiation, tumorigenesis, and apoptosis. Up-regulation of telomerase activity is thought to be a critical step leading to cell transformation. Methods This study investigated changes in mTOR pathway and telomerase activity in hepatocarcinoma cell line SMMC-7721 treated with chemotherapeutic agent 5-fluorouracil (5-Fu. We detected apoptosis of hepatocarcinoma cells by TUNEL assay. Telomerase activity, hTERT transcription level and p- p70 S6k was demonstrated by the telomeric repeat amplification protocol and silver staining assay, Dual-Luciferase Reporter Assay and Western blot analysis respectively. Results Treating SMMC-7721 cells with 5-Fu leads to apoptosis of the cells, and reduction in telomerase activity, as well as a dramatic reduction in the activated form of p70 S6 kinase, a mTOR substrate. The 5-Fu treatment nearly abolishes transcription of hTERT (the major component of telomerase mRNA. Treating SMMC-7721 cells with Rapamycin, a specific mTOR inhibitor, significantly reduce hTERT protein level but did not affect hTERT transcription. 5-Fu and rapamycin were synergistic in regards to down-regulation of telomerase activity in hepatocarcinoma cells. Conclusion These results suggest that chemotherapeutic agent 5-Fu may down-regulate telomerase activity at both transcriptional level and PI3K/Akt/mTOR pathway-dependent post-transcriptional level to facilitate hepatocellular carcinoma cell apoptosis.

  13. MicroRNA-145 is downregulated in glial tumors and regulates glioma cell migration by targeting connective tissue growth factor.

    Science.gov (United States)

    Lee, Hae Kyung; Bier, Ariel; Cazacu, Simona; Finniss, Susan; Xiang, Cunli; Twito, Hodaya; Poisson, Laila M; Mikkelsen, Tom; Slavin, Shimon; Jacoby, Elad; Yalon, Michal; Toren, Amos; Rempel, Sandra A; Brodie, Chaya

    2013-01-01

    Glioblastomas (GBM), the most common and aggressive type of malignant glioma, are characterized by increased invasion into the surrounding brain tissues. Despite intensive therapeutic strategies, the median survival of GBM patients has remained dismal over the last decades. In this study we examined the expression of miR-145 in glial tumors and its function in glioma cells. Using TCGA analysis and real-time PCR we found that the expression of miR-145/143 cluster was downregulated in astrocytic tumors compared to normal brain specimens and in glioma cells and glioma stem cells (GSCs) compared to normal astrocytes and neural stem cells. Moreover, the low expression of both miR-145 and miR-143 in GBM was correlated with poor patient prognosis. Transfection of glioma cells with miR-145 mimic or transduction with a lentivirus vector expressing pre-miR 145 significantly decreased the migration and invasion of glioma cells. We identified connective tissue growth factor (CTGF) as a novel target of miR-145 in glioma cells; transfection of the cells with this miRNA decreased the expression of CTGF as determined by Western blot analysis and the expression of its 3'-UTR fused to luciferase. Overexpression of a CTGF plasmid lacking the 3'-UTR and administration of recombinant CTGF protein abrogated the inhibitory effect of miR-145 on glioma cell migration. Similarly, we found that silencing of CTGF decreased the migration of glioma cells. CTGF silencing also decreased the expression of SPARC, phospho-FAK and FAK and overexpression of SPARC abrogated the inhibitory effect of CTGF silencing on cell migration. These results demonstrate that miR-145 is downregulated in glial tumors and its low expression in GBM predicts poor patient prognosis. In addition miR-145 regulates glioma cell migration by targeting CTGF which downregulates SPARC expression. Therefore, miR-145 is an attractive therapeutic target for anti-invasive treatment of astrocytic tumors.

  14. MicroRNA-145 is downregulated in glial tumors and regulates glioma cell migration by targeting connective tissue growth factor.

    Directory of Open Access Journals (Sweden)

    Hae Kyung Lee

    Full Text Available Glioblastomas (GBM, the most common and aggressive type of malignant glioma, are characterized by increased invasion into the surrounding brain tissues. Despite intensive therapeutic strategies, the median survival of GBM patients has remained dismal over the last decades. In this study we examined the expression of miR-145 in glial tumors and its function in glioma cells. Using TCGA analysis and real-time PCR we found that the expression of miR-145/143 cluster was downregulated in astrocytic tumors compared to normal brain specimens and in glioma cells and glioma stem cells (GSCs compared to normal astrocytes and neural stem cells. Moreover, the low expression of both miR-145 and miR-143 in GBM was correlated with poor patient prognosis. Transfection of glioma cells with miR-145 mimic or transduction with a lentivirus vector expressing pre-miR 145 significantly decreased the migration and invasion of glioma cells. We identified connective tissue growth factor (CTGF as a novel target of miR-145 in glioma cells; transfection of the cells with this miRNA decreased the expression of CTGF as determined by Western blot analysis and the expression of its 3'-UTR fused to luciferase. Overexpression of a CTGF plasmid lacking the 3'-UTR and administration of recombinant CTGF protein abrogated the inhibitory effect of miR-145 on glioma cell migration. Similarly, we found that silencing of CTGF decreased the migration of glioma cells. CTGF silencing also decreased the expression of SPARC, phospho-FAK and FAK and overexpression of SPARC abrogated the inhibitory effect of CTGF silencing on cell migration. These results demonstrate that miR-145 is downregulated in glial tumors and its low expression in GBM predicts poor patient prognosis. In addition miR-145 regulates glioma cell migration by targeting CTGF which downregulates SPARC expression. Therefore, miR-145 is an attractive therapeutic target for anti-invasive treatment of astrocytic tumors.

  15. Downregulation of Akt1 Inhibits Anchorage-Independent Cell Growth and Induces Apoptosis in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Xuesong Liu

    2001-01-01

    Full Text Available The serine/threonine kinases, Akti/PKBα, Akt2/PKBβ, and Akt3/PKBγ, play a critical role in preventing cancer cells from undergoing apoptosis. However, the function of individual Akt isoforms in the tumorigenicity of cancer cells is still not well defined. In the current study, we used an AM antisense oligonucleotide (AS to specifically downregulate Akti protein in both cancer and normal cells. Our data indicate that AM AS treatment inhibits the ability of MiaPaCa-2, H460, HCT-15, and HT1080 cells to grow in soft agar. The treatment also induces apoptosis in these cancer cells as demonstrated by FRCS analysis and a caspase activity assay. Conversely, Akti AS treatment has little effect on the cell growth and survival of normal human cells including normal human fibroblast (NHF, fibroblast from muscle (FBM, and mammary gland epithelial 184135 cells. In addition, AM AS specifically sensitizes cancer cells to typical chemotherapeutic agents. Thus, Akti is indispensable for maintaining the tumorigenicity of cancer cells. Inhibition of AM may provide a powerful sensitization agent for chemotherapy specifically in cancer cells.

  16. TCR down-regulation controls virus-specific CD8+ T cell responses

    DEFF Research Database (Denmark)

    Bonefeld, Charlotte Menné; Haks, Mariëlle; Nielsen, Bodil

    2008-01-01

    in mice with a mutated CD3gamma di-leucine-based motif. The CD3gamma mutation did not impair early TCR signaling, nor did it compromise recruitment or proliferation of virus-specific T cells, but it increased the apoptosis rate of the activated T cells by increasing down-regulation of the antiapoptotic...

  17. Role of Bruton's tyrosine kinase in B cells and malignancies

    NARCIS (Netherlands)

    Pal Singh, S. (Simar); F. Dammeijer (Floris); R.W. Hendriks (Rudi)

    2018-01-01

    textabstractBruton's tyrosine kinase (BTK) is a non-receptor kinase that plays a crucial role in oncogenic signaling that is critical for proliferation and survival of leukemic cells in many B cell malignancies. BTK was initially shown to be defective in the primary immunodeficiency X-linked

  18. Large mid-esophageal granular cell tumor: benign versus malignant

    Directory of Open Access Journals (Sweden)

    Prarthana Roselil Christopher

    2015-06-01

    Full Text Available Granular cell tumors are rare soft tissue neoplasms, among which only 2% are malignant, arising from nervous tissue. Here we present a case of a large esophageal granular cell tumor with benign histopathological features which metastasized to the liver, but showing on positron emission tomography-computerized tomography standardized uptake value suggestive of a benign lesion.

  19. 17-AAG sensitized malignant glioma cells to death-receptor mediated apoptosis.

    Science.gov (United States)

    Siegelin, Markus David; Habel, Antje; Gaiser, Timo

    2009-02-01

    17-AAG is a selective HSP90-inhibitor that exhibited therapeutic activity in cancer. In this study three glioblastoma cell lines (U87, LN229 and U251) were treated with 17-AAG, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or the combination of both. Treatment with subtoxic doses of 17-AAG in combination with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces rapid apoptosis in TRAIL-resistant glioma cells, suggesting that this combined treatment may offer an attractive strategy for treating gliomas. 17-AAG treatment down-regulated survivin through proteasomal degradation. In addition, over-expression of survivin attenuated cytotoxicity induced by the combination of 17-AAG and TRAIL. In summary, survivin is a key regulator of TRAIL-17-AAG mediated cell death in malignant glioma.

  20. Resveratrol induces cell cycle arrest and apoptosis in malignant NK cells via JAK2/STAT3 pathway inhibition.

    Science.gov (United States)

    Quoc Trung, Ly; Espinoza, J Luis; Takami, Akiyoshi; Nakao, Shinji

    2013-01-01

    Natural killer (NK) cell malignancies, particularly aggressive NK cell leukaemias and lymphomas, have poor prognoses. Although recent regimens with L-asparaginase substantially improved outcomes, novel therapeutic approaches are still needed to enhance clinical response. Resveratrol, a naturally occurring polyphenol, has been extensively studied for its anti-inflammatory, cardioprotective and anti-cancer activities. In this study, we investigated the potential anti-tumour activities of resveratrol against the NK cell lines KHYG-1, NKL, NK-92 and NK-YS. Resveratrol induced robust G0/G1 cell cycle arrest, significantly suppressed cell proliferation and induced apoptosis in a dose- and time-dependent manner for all four cell lines. In addition, resveratrol suppressed constitutively active STAT3 in all the cell lines and inhibited JAK2 phosphorylation but had no effect on other upstream mediators of STAT3 activation, such as PTEN, TYK2, and JAK1. Resveratrol also induced downregulation of the anti-apoptotic proteins MCL1 and survivin, two downstream effectors of the STAT3 pathway. Finally, resveratrol induced synergistic effect on the apoptotic and antiproliferative activities of L-asparaginase against KHYG-1, NKL and NK-92 cells. These results suggest that resveratrol may have therapeutic potential against NK cell malignancies. Furthermore, our finding that resveratrol is a bonafide JAK2 inhibitor extends its potential benefits to other diseases with dysregulated JAK2 signaling.

  1. Resveratrol induces cell cycle arrest and apoptosis in malignant NK cells via JAK2/STAT3 pathway inhibition.

    Directory of Open Access Journals (Sweden)

    Ly Quoc Trung

    Full Text Available Natural killer (NK cell malignancies, particularly aggressive NK cell leukaemias and lymphomas, have poor prognoses. Although recent regimens with L-asparaginase substantially improved outcomes, novel therapeutic approaches are still needed to enhance clinical response. Resveratrol, a naturally occurring polyphenol, has been extensively studied for its anti-inflammatory, cardioprotective and anti-cancer activities. In this study, we investigated the potential anti-tumour activities of resveratrol against the NK cell lines KHYG-1, NKL, NK-92 and NK-YS. Resveratrol induced robust G0/G1 cell cycle arrest, significantly suppressed cell proliferation and induced apoptosis in a dose- and time-dependent manner for all four cell lines. In addition, resveratrol suppressed constitutively active STAT3 in all the cell lines and inhibited JAK2 phosphorylation but had no effect on other upstream mediators of STAT3 activation, such as PTEN, TYK2, and JAK1. Resveratrol also induced downregulation of the anti-apoptotic proteins MCL1 and survivin, two downstream effectors of the STAT3 pathway. Finally, resveratrol induced synergistic effect on the apoptotic and antiproliferative activities of L-asparaginase against KHYG-1, NKL and NK-92 cells. These results suggest that resveratrol may have therapeutic potential against NK cell malignancies. Furthermore, our finding that resveratrol is a bonafide JAK2 inhibitor extends its potential benefits to other diseases with dysregulated JAK2 signaling.

  2. Downregulation of hPMC2 imparts chemotherapeutic sensitivity to alkylating agents in breast cancer cells.

    Science.gov (United States)

    Krishnamurthy, Nirmala; Liu, Lili; Xiong, Xiahui; Zhang, Junran; Montano, Monica M

    2015-01-01

    Triple negative breast cancer cell lines have been reported to be resistant to the cyotoxic effects of temozolomide (TMZ). We have shown previously that a novel protein, human homolog of Xenopus gene which Prevents Mitotic Catastrophe (hPMC2) has a role in the repair of estrogen-induced abasic sites. Our present study provides evidence that downregulation of hPMC2 in MDA-MB-231 and MDA-MB-468 breast cancer cells treated with temozolomide (TMZ) decreases cell survival. This increased sensitivity to TMZ is associated with an increase in number of apurinic/apyrimidinic (AP) sites in the DNA. We also show that treatment with another alkylating agent, BCNU, results in an increase in AP sites and decrease in cell survival. Quantification of western blot analyses and immunofluorescence experiments reveal that treatment of hPMC2 downregulated cells with TMZ results in an increase in γ-H2AX levels, suggesting an increase in double strand DNA breaks. The enhancement of DNA double strand breaks in TMZ treated cells upon downregulation of hPCM2 is also revealed by the comet assay. Overall, we provide evidence that downregulation of hPMC2 in breast cancer cells increases cytotoxicity of alkylating agents, representing a novel mechanism of treatment for breast cancer. Our data thus has important clinical implications in the management of breast cancer and brings forth potentially new therapeutic strategies.

  3. Downregulation of miR-497 promotes tumor growth and angiogenesis by targeting HDGF in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Zhao, Wen-yan; Wang, Yan; An, Zhong-jun; Shi, Chang-guo; Zhu, Guang-ai; Wang, Bin; Lu, Ming-yan; Pan, Chang-kun; Chen, Peng

    2013-01-01

    Highlights: •MiR-497 is down-regulated in NSCLC cells and tissues. •MiR-497 inhibits NSCLC cell growth in vitro. •HDGF is a target gene of miR-497. •MiR-497 inhibits NSCLC cell growth by downregulating HDGF. •miR-497 inhibits tumor growth and angiogenesis in vivo. -- Abstract: MicroRNAs (miRNAs) play important roles in the development of various cancers. MiRNA-497 functions as a tumor-suppressor that is downregulated in several malignancies; however, its role in non-small cell lung cancer (NSCLC) has not been examined in detail. Here, we showed that miR-497 is downregulated in NSCLC tumors and cell lines and its ectopic expression significantly inhibits cell proliferation and colony formation. Integrated analysis identified HDGF as a downstream target of miR-497, and the downregulation of HDGF by miR-497 overexpression confirmed their association. Rescue experiments showed that the inhibitory effect of miR-497 on cell proliferation and colony formation is predominantly mediated by the modulation of HDGF levels. Furthermore, tumor samples from NSCLC patients showed an inverse relationship between miR-497 and HDGF levels, and ectopic expression of miR-497 significantly inhibited tumor growth and angiogenesis in a SCID mouse xenograft model. Our results suggest that miR-497 may serve as a biomarker in NSCLC, and the modulation of its activity may represent a novel therapeutic strategy for the treatment of NSCLC patients

  4. LIM-domain protein AJUBA suppresses malignant mesothelioma cell proliferation via Hippo signaling cascade.

    Science.gov (United States)

    Tanaka, I; Osada, H; Fujii, M; Fukatsu, A; Hida, T; Horio, Y; Kondo, Y; Sato, A; Hasegawa, Y; Tsujimura, T; Sekido, Y

    2015-01-02

    Malignant mesothelioma (MM) is one of the most aggressive neoplasms usually associated with asbestos exposure and is highly refractory to current therapeutic modalities. MMs show frequent activation of a transcriptional coactivator Yes-associated protein (YAP), which is attributed to the neurofibromatosis type 2 (NF2)-Hippo pathway dysfunction, leading to deregulated cell proliferation and acquisition of a malignant phenotype. However, the whole mechanism of disordered YAP activation in MMs has not yet been well clarified. In the present study, we investigated various components of the NF2-Hippo pathway, and eventually found that MM cells frequently showed downregulation of LIM-domain protein AJUBA, a binding partner of large tumor suppressor type 2 (LATS2), which is one of the last-step kinases of the NF2-Hippo pathway. Although loss of AJUBA expression was independent of the alteration status of other Hippo pathway components, MM cell lines with AJUBA inactivation showed a more dephosphorylated (activated) level of YAP. Immunohistochemical analysis showed frequent downregulation of AJUBA in primary MMs, which was associated with YAP constitutive activation. We found that AJUBA transduction into MM cells significantly suppressed promoter activities of YAP-target genes, and the suppression of YAP activity by AJUBA was remarkably canceled by knockdown of LATS2. In connection with these results, transduction of AJUBA-expressing lentivirus significantly inhibited the proliferation and anchorage-independent growth of the MM cells that harbored ordinary LATS family expression. Taken together, our findings indicate that AJUBA negatively regulates YAP activity through the LATS family, and inactivation of AJUBA is a novel key mechanism in MM cell proliferation.

  5. Down-regulation of the antisense mitochondrial non-coding RNAs (ncRNAs) is a unique vulnerability of cancer cells and a potential target for cancer therapy.

    Science.gov (United States)

    Vidaurre, Soledad; Fitzpatrick, Christopher; Burzio, Verónica A; Briones, Macarena; Villota, Claudio; Villegas, Jaime; Echenique, Javiera; Oliveira-Cruz, Luciana; Araya, Mariela; Borgna, Vincenzo; Socías, Teresa; Lopez, Constanza; Avila, Rodolfo; Burzio, Luis O

    2014-09-26

    Hallmarks of cancer are fundamental principles involved in cancer progression. We propose an additional generalized hallmark of malignant transformation corresponding to the differential expression of a family of mitochondrial ncRNAs (ncmtRNAs) that comprises sense and antisense members, all of which contain stem-loop structures. Normal proliferating cells express sense (SncmtRNA) and antisense (ASncmtRNA) transcripts. In contrast, the ASncmtRNAs are down-regulated in tumor cells regardless of tissue of origin. Here we show that knockdown of the low copy number of the ASncmtRNAs in several tumor cell lines induces cell death by apoptosis without affecting the viability of normal cells. In addition, knockdown of ASncmtRNAs potentiates apoptotic cell death by inhibiting survivin expression, a member of the inhibitor of apoptosis (IAP) family. Down-regulation of survivin is at the translational level and is probably mediated by microRNAs generated by dicing of the double-stranded stem of the ASncmtRNAs, as suggested by evidence presented here, in which the ASncmtRNAs are bound to Dicer and knockdown of the ASncmtRNAs reduces reporter luciferase activity in a vector carrying the 3'-UTR of survivin mRNA. Taken together, down-regulation of the ASncmtRNAs constitutes a vulnerability or Achilles' heel of cancer cells, suggesting that the ASncmtRNAs are promising targets for cancer therapy. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Down-regulation of the Antisense Mitochondrial Non-coding RNAs (ncRNAs) Is a Unique Vulnerability of Cancer Cells and a Potential Target for Cancer Therapy*

    Science.gov (United States)

    Vidaurre, Soledad; Fitzpatrick, Christopher; Burzio, Verónica A.; Briones, Macarena; Villota, Claudio; Villegas, Jaime; Echenique, Javiera; Oliveira-Cruz, Luciana; Araya, Mariela; Borgna, Vincenzo; Socías, Teresa; Lopez, Constanza; Avila, Rodolfo; Burzio, Luis O.

    2014-01-01

    Hallmarks of cancer are fundamental principles involved in cancer progression. We propose an additional generalized hallmark of malignant transformation corresponding to the differential expression of a family of mitochondrial ncRNAs (ncmtRNAs) that comprises sense and antisense members, all of which contain stem-loop structures. Normal proliferating cells express sense (SncmtRNA) and antisense (ASncmtRNA) transcripts. In contrast, the ASncmtRNAs are down-regulated in tumor cells regardless of tissue of origin. Here we show that knockdown of the low copy number of the ASncmtRNAs in several tumor cell lines induces cell death by apoptosis without affecting the viability of normal cells. In addition, knockdown of ASncmtRNAs potentiates apoptotic cell death by inhibiting survivin expression, a member of the inhibitor of apoptosis (IAP) family. Down-regulation of survivin is at the translational level and is probably mediated by microRNAs generated by dicing of the double-stranded stem of the ASncmtRNAs, as suggested by evidence presented here, in which the ASncmtRNAs are bound to Dicer and knockdown of the ASncmtRNAs reduces reporter luciferase activity in a vector carrying the 3′-UTR of survivin mRNA. Taken together, down-regulation of the ASncmtRNAs constitutes a vulnerability or Achilles' heel of cancer cells, suggesting that the ASncmtRNAs are promising targets for cancer therapy. PMID:25100722

  7. Mature lymphoid malignancies: origin, stem cells, and chronicity

    DEFF Research Database (Denmark)

    Husby, Simon; Grønbæk, Kirsten

    2017-01-01

    after treatment. Lately, the use of next-generation sequencing techniques has revealed essential information on the clonal evolution of lymphoid malignancies. Also, experimental xenograft transplantation point to the possible existence of an ancestral (stem) cell. Such a malignant lymphoid stem cell...... population could potentially evade current therapies and be the cause of chronicity and death in lymphoma patients; however, the evidence is divergent across disease entities and between studies. In this review we present an overview of genetic studies, case reports, and experimental evidence of the source...

  8. Overexpressed ubiquitin ligase Cullin7 in breast cancer promotes cell proliferation and invasion via down-regulating p53

    International Nuclear Information System (INIS)

    Guo, Hongsheng; Wu, Fenping; Wang, Yan; Yan, Chong; Su, Wenmei

    2014-01-01

    Highlights: • Cullin7 is overexpressed in human breast cancer samples. • Cullin7 stimulated proliferation and invasion of breast cancer cells. • Inhibition of p53 contributes to Cullin7-induced proliferation and invasion. - Abstract: Ubiquitin ligase Cullin7 has been identified as an oncogene in some malignant diseases such as choriocarcinoma and neuroblastoma. However, the role of Cullin7 in breast cancer carcinogenesis remains unclear. In this study, we compared Cullin7 protein levels in breast cancer tissues with normal breast tissues and identified significantly higher expression of Cullin7 protein in breast cancer specimens. By overexpressing Cullin7 in breast cancer cells HCC1937, we found that Cullin7 could promote cell growth and invasion in vitro. In contrast, the cell growth and invasion was inhibited by silencing Cullin7 in breast cancer cell BT474. Moreover, we demonstrated that Cullin7 promoted breast cancer cell proliferation and invasion via down-regulating p53 expression. Thus, our study provided evidence that Cullin7 functions as a novel oncogene in breast cancer and may be a potential therapeutic target for breast cancer management

  9. Overexpressed ubiquitin ligase Cullin7 in breast cancer promotes cell proliferation and invasion via down-regulating p53

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hongsheng [Department of Histology and Embryology, Guangdong Medical College, Dongguan 523808, Guangdong (China); Wu, Fenping [The 7th People’s Hospital of Chengdu, Chengdu 610041, Sichuan (China); Wang, Yan [The Second School of Clinical Medicine, Guangdong Medical College, Dongguan 523808, Guangdong (China); Yan, Chong [School of Pharmacy, Guangdong Medical College, Dongguan 523808, Guangdong (China); Su, Wenmei, E-mail: wenmeisutg@126.com [Oncology of Affiliated Hospital Guangdong Medical College, Zhanjiang 524000, Guangdong (China)

    2014-08-08

    Highlights: • Cullin7 is overexpressed in human breast cancer samples. • Cullin7 stimulated proliferation and invasion of breast cancer cells. • Inhibition of p53 contributes to Cullin7-induced proliferation and invasion. - Abstract: Ubiquitin ligase Cullin7 has been identified as an oncogene in some malignant diseases such as choriocarcinoma and neuroblastoma. However, the role of Cullin7 in breast cancer carcinogenesis remains unclear. In this study, we compared Cullin7 protein levels in breast cancer tissues with normal breast tissues and identified significantly higher expression of Cullin7 protein in breast cancer specimens. By overexpressing Cullin7 in breast cancer cells HCC1937, we found that Cullin7 could promote cell growth and invasion in vitro. In contrast, the cell growth and invasion was inhibited by silencing Cullin7 in breast cancer cell BT474. Moreover, we demonstrated that Cullin7 promoted breast cancer cell proliferation and invasion via down-regulating p53 expression. Thus, our study provided evidence that Cullin7 functions as a novel oncogene in breast cancer and may be a potential therapeutic target for breast cancer management.

  10. Downregulation of survivin by siRNA inhibits invasion and promotes apoptosis in neuroblastoma SH-SY5Y cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, L.; Liang, H. [Department of Pediatrics, Qilu Hospital, Shandong University, Jinan (China); Cao, W. [Department of Obstetrics, Qingdao Central Hospital, Qingdao (China); Xu, R.; Ju, X.L. [Department of Pediatrics, Qilu Hospital, Shandong University, Jinan (China)

    2014-05-23

    Neuroblastoma is a solid tumor that occurs mainly in children. Malignant neuroblastomas have a poor prognosis because conventional chemotherapeutic agents are not very effective. Survivin, a member of the inhibitor of the apoptosis protein family, plays a significant role in cell division, inhibition of apoptosis, and promotion of cell proliferation and invasion. Previous studies found that survivin is highly expressed in some malignant neuroblastomas and is correlated with poor prognosis. The aim of this study was to investigate whether survivin could serve as a potential therapeutic target of human neuroblastoma. We employed RNA interference to reduce survivin expression in the human neuroblastoma SH-SY5Y cell line and analyzed the effect of RNA interference on cell proliferation and invasion in vitro and in vivo. RNA interference of survivin led to a significant decrease in invasiveness and proliferation and increased apoptosis in SH-SY5Y cells in vitro. RNA interference of survivin inhibited tumor growth in vivo by 68±13% (P=0.002) and increased the number of apoptotic cells by 9.8±1.2% (P=0.001) compared with negative small interfering RNA (siRNA) treatment controls. Moreover, RNA interference of survivin inhibited the formation of lung metastases by 92% (P=0.002) and reduced microvascular density by 60% (P=0.0003). Survivin siRNA resulted in significant downregulation of survivin mRNA and protein expression both in vitro and in vivo compared with negative siRNA treatment controls. RNA interference of survivin was found to be a potent inhibitor of SH-SY5Y tumor growth and metastasis formation. These results support further clinical development of RNA interference of survivin as a treatment of neuroblastoma and other cancer types.

  11. Myeloid derived suppressor cells as therapeutic target in hematological malignancies

    Directory of Open Access Journals (Sweden)

    Kim eDe Veirman

    2014-12-01

    Full Text Available Myeloid derived suppressor cells (MDSC are a heterogeneous population of immature myeloid cells that accumulate during pathological conditions such as cancer and are associated with a poor clinical outcome. MDSC expansion hampers the host anti-tumor immune response by inhibition of T cell proliferation, cytokine secretion and recruitment of regulatory T cells. In addition, MDSC exert non-immunological functions including the promotion of angiogenesis, tumor invasion and metastasis. Recent years, MDSC are considered as a potential target in solid tumors and hematological malignancies to enhance the effects of currently used immune modulating agents. This review focuses on the characteristics, distribution, functions, cell-cell interactions and targeting of MDSC in hematological malignancies including multiple myeloma, lymphoma and leukemia.

  12. Stem Cell Factor-Based Identification and Functional Properties of In Vitro-Selected Subpopulations of Malignant Mesothelioma Cells

    Directory of Open Access Journals (Sweden)

    Walter Blum

    2017-04-01

    Full Text Available Summary: Malignant mesothelioma (MM is an aggressive neoplasm characterized by a poor patient survival rate, because of rapid tumor recurrence following first-line therapy. Cancer stem cells (CSCs are assumed to be responsible for initiating tumorigenesis and driving relapse after therapeutic interventions. CSC-enriched MM cell subpopulations were identified by an OCT4/SOX2 reporter approach and were characterized by (1 increased resistance to cisplatin, (2 increased sensitivity toward the FAK inhibitor VS-6063 in vitro, and (3 a higher tumor-initiating capacity in vivo in orthotopic xenograft and allograft mouse models. Overexpression of NF2 (neurofibromatosis 2, merlin, a tumor suppressor often mutated or lost in MM, did not affect proliferation and viability of CSC-enriched MM populations but robustly decreased the viability of reporter-negative cells. In contrast, downregulation of calretinin strongly decreased proliferation and viability of both populations. In summary, we have enriched and characterized a small MM cell subpopulation that bears the expected CSC characteristics. : A cancer stem cell (CSC-enriched malignant mesothelioma (MM cell subpopulation was identified by an OCT4/SOX2 reporter approach. These EGFP-expressing cells showed an altered sensitivity toward chemotherapeutic drugs and a higher tumor-initiating capacity in vivo in orthotopic xenograft and allograft mouse models. While NF2 overexpression had no effect on proliferation/viability of CSC-enriched MM populations, they were susceptible to downregulation of calretinin. Keywords: mesothelioma, cancer stem cells, SOX2, OCT4, NF2, merlin, calretinin, defactinib

  13. Downregulation of CCR1 inhibits human hepatocellular carcinoma cell invasion

    International Nuclear Information System (INIS)

    Wu Xiaofeng; Fan Jia; Wang Xiaoying; Zhou Jian; Qiu Shuangjian; Yu Yao; Liu Yinkun; Tang Zhaoyou

    2007-01-01

    CC chemokine receptor 1 (CCR1) has an important role in the recruitment of leukocytes to the site of inflammation. The migration and metastasis of tumor cells shares many similarities with leukocyte trafficking, which is mainly regulated by chemokine receptor-ligand interactions. CCR1 is highly expressed in hepatocellular carcinoma (HCC) cells and tissues with unknown functions. In this study, we silenced CCR1 expression in the human HCC cell line HCCLM3 using artificial microRNA (miRNA)-mediated RNA interference (RNAi) and examined the invasiveness and proliferation of CCR1-silenced HCCLM3 cells and the matrix metalloproteinase (MMP) activity. The miRNA-mediated knockdown expression of CCR1 significantly inhibited the invasive ability of HCCLM3 cells, but had only a minor effect on the cellular proliferation rate. Moreover, CCR1 knockdown significantly reduced the secretion of MMP-2. Together, these findings indicate that CCR1 has an important role in HCCLM3 invasion and that CCR1 might be a new target of HCC treatment

  14. Downregulation of HDAC9 inhibits cell proliferation and tumor formation by inducing cell cycle arrest in retinoblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yiting; Wu, Dan; Xia, Fengjie; Xian, Hongyu; Zhu, Xinyue [Medical School of Nanjing University, Department of Ophthalmology, Jinling Hospital, Nanjing, 210002 (China); Cui, Hongjuan, E-mail: hcui@swu.edu.cn [State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, 400716 (China); Huang, Zhenping, E-mail: huangzhenping19633@163.com [Medical School of Nanjing University, Department of Ophthalmology, Jinling Hospital, Nanjing, 210002 (China)

    2016-04-29

    Histone deacetylase 9 (HDAC9) is a member of class II HDACs, which regulates a wide variety of normal and abnormal physiological functions. Recently, HDAC9 has been found to be overexpressed in some types of human cancers. However, the role of HDAC9 in retinoblastoma remains unclear. In this study, we found that HDAC9 was commonly expressed in retinoblastoma tissues and HDAC9 was overexpressed in prognostically poor retinoblastoma patients. Through knocking down HDAC9 in Y79 and WERI-Rb-1 cells, the expression level of HDAC9 was found to be positively related to cell proliferation in vitro. Further investigation indicated that knockdown HDAC9 could significantly induce cell cycle arrest at G1 phase in retinoblastoma cells. Western blot assay showed downregulation of HDAC9 could significantly decrease cyclin E2 and CDK2 expression. Lastly, xenograft study in nude mice showed that downregulation of HDAC9 inhibited tumor growth and development in vivo. Therefore, our results suggest that HDAC9 could serve as a novel potential therapeutic target in the treatment of retinoblastoma. - Highlights: • High expression of HDAC9 correlates with poor patient prognosis. • Downregulation of HDAC9 inhibits cell proliferation in retinoblastoma cells. • Downregulation of HDAC9 induces cell cycle arrest at G1 phase in retinoblastoma cells. • Downregulation of HDAC9 suppresses tumor growth in nude mice.

  15. Differentiation of purified malignant B cells induced by PMA or by activated normal T cells

    NARCIS (Netherlands)

    van Kooten, C.; Rensink, I.; Aarden, L.; van Oers, R.

    1993-01-01

    We studied the in vitro differentiation (immunoglobulin production) of purified malignant B cells of 21 patients with different B-cell malignancies, including chronic lymphocytic leukemia (CLL), prolymphocytic leukemia (PLL), hairy cell leukemia (HCL) and non-Hodgkin lymphoma (NHL). Direct

  16. Expression of Potential Cancer Stem Cell Marker ABCG2 is Associated with Malignant Behaviors of Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Guang Zhang

    2013-01-01

    Full Text Available Background. Despite improvement in treatment, the prognosis of hepatocellular carcinoma (HCC remains disastrous. Cancer stem cells (CSCs may be responsible for cancer malignant behaviors. ATP-binding cassette, subfamily G, member 2 (ABCG2 is widely expressed in both normal and cancer stem cells and may play an important role in cancer malignant behaviors. Methods. The expression of ABCG2 in HCC tissues and SMMC-7721 cells was examined, and the relevance of ABCG2 expression with clinical characteristics was analyzed. ABCG2+ and ABCG2− cells were sorted, and the potential of tumorigenicity was determined. Expression level of ABCG2 was manipulated by RNA interference and overexpression. Malignant behaviors including proliferation, drug resistance, migration, and invasion were studied in vitro. Results. Expression of ABCG2 was found in a minor group of cells in HCC tissues and cell lines. ABCG2 expression showed tendencies of association with unfavorable prognosis factors. ABCG2 positive cells showed a superior tumorigenicity. Upregulation of ABCG2 enhanced the capacity of proliferation, doxorubicin resistance, migration, and invasion potential, while downregulation of ABCG2 significantly decreased these malignant behaviors. Conclusion. Our results indicate that ABCG2 is a potential CSC marker for HCC. Its expression level has a close relationship with tumorigenicity, proliferation, drug resistance, and metastasis ability.

  17. FGFR4 Downregulation of Cell Adhesion in Prostate Cancer

    Science.gov (United States)

    2008-09-01

    in Figure 1, all constructs were stably incorporated into 293-RXR cells and were inducible upon treatment with Ponasterone A. Though we had created...through the transmembrane domain, similar to the FGFR3 Gly380Arg mutation responsible for human dwarfism , or achondroplasia. In this model, the FGFR4

  18. Pu-erh Tea Inhibits Tumor Cell Growth by Down-Regulating Mutant p53

    Science.gov (United States)

    Zhao, Lanjun; Jia, Shuting; Tang, Wenru; Sheng, Jun; Luo, Ying

    2011-01-01

    Pu-erh tea is a kind of fermented tea with the incorporation of microorganisms’ metabolites. Unlike green tea, the chemical characteristics and bioactivities of Pu-erh tea are still not well understood. Using water extracts of Pu-erh tea, we analyzed the tumor cell growth inhibition activities on several genetically engineered mouse tumor cell lines. We found that at the concentration that did not affect wild type mouse embryo fibroblasts (MEFs) growth, Pu-erh tea extracts could inhibit tumor cell growth by down-regulated S phase and cause G1 or G2 arrest. Further study showed that Pu-erh tea extracts down-regulated the expression of mutant p53 in tumor cells at the protein level as well as mRNA level. The same concentration of Pu-erh tea solution did not cause p53 stabilization or activation of its downstream pathways in wild type cells. We also found that Pu-erh tea treatment could slightly down-regulate both HSP70 and HSP90 protein levels in tumor cells. These data revealed the action of Pu-erh tea on tumor cells and provided the possible mechanism for Pu-erh tea action, which explained its selectivity in inhibiting tumor cells without affecting wild type cells. Our data sheds light on the application of Pu-erh tea as an anti-tumor agent with low side effects. PMID:22174618

  19. Bcl-2 antisense therapy in B-cell malignant proliferative disorders.

    Science.gov (United States)

    Chanan-Khan, Asher; Czuczman, Myron S

    2004-08-01

    Overexpression of Bcl-2 oncogene has been clinically associated with an aggressive clinical course, chemotherapy and radiotherapy resistance, and poor survival in patients with malignant B-cell disorders. Patients with relapsed or refractory chronic lymphocytic leukemia, multiple myeloma, or non-Hodgkin's lymphoma have limited therapeutic options. Preclinical and early clinical data have shown that Bcl-2 oncoprotein can be decreased by Bcl-2 antisense therapy. Also, downregulation of Bcl-2 protein can result in reversal of chemotherapy resistance and improved antitumor activity of biologic agents. Various clinical trials are evaluating the role of targeting Bcl-2 as a mechanism to enhance the antitumor potential of chemotherapy and immunotherapy. Early results from these clinical studies are encouraging and confirm the proof of principle for antisense therapy. As current data mature, these trials will hopefully validate preliminary results and establish Bcl-2 antisense as an important addition to the current armamentarium used in the treatment of patients with B-cell neoplasms.

  20. Bex2 regulates cell proliferation and apoptosis in malignant glioma cells via the c-Jun NH2-terminal kinase pathway

    International Nuclear Information System (INIS)

    Zhou, Xiuping; Meng, Qingming; Xu, Xuebin; Zhi, Tongle; Shi, Qiong; Wang, Yong; Yu, Rutong

    2012-01-01

    Highlights: ► The expression levels of Bex2 markedly increased in glioma tissues. ► Bex2 over-expression promoted cell proliferation, while its down-regulation inhibited cell growth. ► Bex2 down-regulation promoted cell apoptosis via JNK/c-Jun signaling pathway. -- Abstract: The function of Bex2, a member of the Brain Expressed X-linked gene family, in glioma is controversial and its mechanism is largely unknown. We report here that Bex2 regulates cell proliferation and apoptosis in malignant glioma cells via the c-Jun NH2-terminal kinase (JNK) pathway. The expression level of Bex2 is markedly increased in glioma tissues. We observed that Bex2 over-expression promotes cell proliferation, while down-regulation of Bex2 inhibits cell growth. Furthermore, Bex2 down-regulation promotes cell apoptosis and activates the JNK pathway; these effects were abolished by administration of the JNK specific inhibitor, (SP600125). Thus, Bex2 may be an important player during the development of glioma.

  1. T. B-cell subpopulation in patients with malignant diseases

    International Nuclear Information System (INIS)

    Ogawa, Motoyoshi; Goto, Tatsuhiko; Naruto, Mamiko.

    1978-01-01

    T, B cells in the peripheural blood of patients with malignant diseases were investigated. The percentages of T cells in patients with malignant lymphomas correlated to the extent of disease determined by clinical stagings of Ann Arbor's classification, in stages III and IV T-cells decreased to compare with those in stages I and II, while B-cells did not show any changes. Absolute numbers of lymphocytes, blastogenesis induced by PHA or PWM decreased remarkably during combination chemotherapies and during radiotherapy whereas the percentages of T-cells measuring in the same patients did not influenced consistently by these treatments. The DNA pattern of lymphocytes during treatments was examined by Flow-Microphotometry and the result suggested that those lymphocytes were damaged by treatments and subsequently they were refractory to the action of mitogens. The results indicate that selective timing needs between chemotherapy and immunotherapy. (auth.)

  2. Engaging the lysosomal compartment to combat B cell malignancies

    DEFF Research Database (Denmark)

    Gronbaek, K.; Jaattela, M.

    2009-01-01

    The combination of rituximab, a type I anti-CD20 mAb, with conventional chemotherapy has significantly improved the outcome of patients with B cell malignancies. Regardless of this success, many patients still relapse with therapy-resistant disease, highlighting the need for the development of m...

  3. Modulation of GLO1 Expression Affects Malignant Properties of Cells

    Directory of Open Access Journals (Sweden)

    Antje Hutschenreuther

    2016-12-01

    Full Text Available The energy metabolism of most tumor cells relies on aerobic glycolysis (Warburg effect characterized by an increased glycolytic flux that is accompanied by the increased formation of the cytotoxic metabolite methylglyoxal (MGO. Consequently, the rate of detoxification of this reactive glycolytic byproduct needs to be increased in order to prevent deleterious effects to the cells. This is brought about by an increased expression of glyoxalase 1 (GLO1 that is the rate-limiting enzyme of the MGO-detoxifying glyoxalase system. Here, we overexpressed GLO1 in HEK 293 cells and silenced it in MCF-7 cells using shRNA. Tumor-related properties of wild type and transformed cells were compared and key glycolytic enzyme activities assessed. Furthermore, the cells were subjected to hypoxic conditions to analyze the impact on cell proliferation and enzyme activities. Our results demonstrate that knockdown of GLO1 in the cancer cells significantly reduced tumor-associated properties such as migration and proliferation, whereas no functional alterations where found by overexpression of GLO1 in HEK 293 cells. In contrast, hypoxia caused inhibition of cell growth of all cells except of those overexpressing GLO1. Altogether, we conclude that GLO1 on one hand is crucial to maintaining tumor characteristics of malignant cells, and, on the other hand, supports malignant transformation of cells in a hypoxic environment when overexpressed.

  4. Role of amphipathic helix of a herpesviral protein in membrane deformation and T cell receptor downregulation.

    Directory of Open Access Journals (Sweden)

    Chan-Ki Min

    2008-11-01

    Full Text Available Lipid rafts are membrane microdomains that function as platforms for signal transduction and membrane trafficking. Tyrosine kinase interacting protein (Tip of T lymphotropic Herpesvirus saimiri (HVS is targeted to lipid rafts in T cells and downregulates TCR and CD4 surface expression. Here, we report that the membrane-proximal amphipathic helix preceding Tip's transmembrane (TM domain mediates lipid raft localization and membrane deformation. In turn, this motif directs Tip's lysosomal trafficking and selective TCR downregulation. The amphipathic helix binds to the negatively charged lipids and induces liposome tubulation, the TM domain mediates oligomerization, and cooperation of the membrane-proximal helix with the TM domain is sufficient for localization to lipid rafts and lysosomal compartments, especially the mutivesicular bodies. These findings suggest that the membrane-proximal amphipathic helix and TM domain provide HVS Tip with the unique ability to deform the cellular membranes in lipid rafts and to downregulate TCRs potentially through MVB formation.

  5. Down-regulation of lipoprotein lipase increases glucose uptake in L6 muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Veronica; Saraff, Kumuda [Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA 91330-8262 (United States); Medh, Jheem D., E-mail: jheem.medh@csun.edu [Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA 91330-8262 (United States)

    2009-11-06

    Thiazolidinediones (TZDs) are synthetic hypoglycemic agents used to treat type 2 diabetes. TZDs target the peroxisome proliferator activated receptor-gamma (PPAR-{gamma}) and improve systemic insulin sensitivity. The contributions of specific tissues to TZD action, or the downstream effects of PPAR-{gamma} activation, are not very clear. We have used a rat skeletal muscle cell line (L6 cells) to demonstrate that TZDs directly target PPAR-{gamma} in muscle cells. TZD treatment resulted in a significant repression of lipoprotein lipase (LPL) expression in L6 cells. This repression correlated with an increase in glucose uptake. Down-regulation of LPL message and protein levels using siRNA resulted in a similar increase in insulin-dependent glucose uptake. Thus, LPL down-regulation improved insulin sensitivity independent of TZDs. This finding provides a novel method for the management of insulin resistance.

  6. An Alu-like RNA promotes cell differentiation and reduces malignancy of human neuroblastoma cells

    OpenAIRE

    Castelnuovo Manuele; Massone Sara; Tasso Roberta; Fiorino Gloria; Gatti Monica; Robello Mauro; Gatta Elena; Berger Audrey; Strub Katharina; Florio Tullio; Dieci Giorgio; Cancedda Ranieri; Pagano Aldo

    2010-01-01

    Neuroblastoma (NB) is a pediatric cancer characterized by remarkable cell heterogeneity within the tumor nodules. Here, we demonstrate that the synthesis of a pol III-transcribed noncoding (nc) RNA (NDM29) strongly restricts NB development by promoting cell differentiation, a drop of malignancy processes, and a dramatic reduction of the tumor initiating cell (TIC) fraction in the NB cell population. Notably, the overexpression of NDM29 also confers to malignant NB cells an unpredicted suscept...

  7. Downregulation of NEDD9 by apigenin suppresses migration, invasion, and metastasis of colorectal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Jin; Van Wie, Peter G.; Fai, Leonard Yenwong; Kim, Donghern [Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536 (United States); Wang, Lei; Poyil, Pratheeshkumar [Center for Research on Environmental Disease, University of Kentucky, Lexington, KY 40536 (United States); Luo, Jia [Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536 (United States); Zhang, Zhuo, E-mail: Zhuo.Zhang@uky.edu [Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536 (United States)

    2016-11-15

    Apigenin is a natural flavonoid which possesses multiple anti-cancer properties such as anti-proliferation, anti-inflammation, and anti-metastasis in many types of cancers including colorectal cancer. Neural precursor cell expressed developmentally downregulated 9 (NEDD9) is a multi-domain scaffolding protein of the Cas family which has been shown to correlate with cancer metastasis and progression. The present study investigates the role of NEDD9 in apigenin-inhibited cell migration, invasion, and metastasis of colorectal adenocarcinoma DLD1 and SW480 cells. The results show that knockdown of NEDD9 inhibited cell migration, invasion, and metastasis and that overexpression of NEDD9 promoted cell migration and invasion of DLD1 cells and SW4890 cells. Apigenin treatment attenuated NEDD9 expression at protein level, resulting in reduced phosphorylations of FAK, Src, and Akt, leading to inhibition on cell migration, invasion, and metastasis of both DLD1 and SW480 cells. The present study has demonstrated that apigenin inhibits cell migration, invasion, and metastasis through NEDD9/Src/Akt cascade in colorectal cancer cells. NEDD9 may function as a biomarker for evaluation of cancer aggressiveness and for selection of therapeutic drugs against cancer progression. - Highlights: • Apigenin inhibits migration, invasion, and metastasis of colorectal cancer cells. • Apigenin downregulates NEDD9. • Apigenin decreases phosphorylations of FAK, Src, and Akt. • Apigenin inhibits cell migration, invasion, and metastasis through NEDD9/Src/Akt.

  8. Downregulation of NEDD9 by apigenin suppresses migration, invasion, and metastasis of colorectal cancer cells

    International Nuclear Information System (INIS)

    Dai, Jin; Van Wie, Peter G.; Fai, Leonard Yenwong; Kim, Donghern; Wang, Lei; Poyil, Pratheeshkumar; Luo, Jia; Zhang, Zhuo

    2016-01-01

    Apigenin is a natural flavonoid which possesses multiple anti-cancer properties such as anti-proliferation, anti-inflammation, and anti-metastasis in many types of cancers including colorectal cancer. Neural precursor cell expressed developmentally downregulated 9 (NEDD9) is a multi-domain scaffolding protein of the Cas family which has been shown to correlate with cancer metastasis and progression. The present study investigates the role of NEDD9 in apigenin-inhibited cell migration, invasion, and metastasis of colorectal adenocarcinoma DLD1 and SW480 cells. The results show that knockdown of NEDD9 inhibited cell migration, invasion, and metastasis and that overexpression of NEDD9 promoted cell migration and invasion of DLD1 cells and SW4890 cells. Apigenin treatment attenuated NEDD9 expression at protein level, resulting in reduced phosphorylations of FAK, Src, and Akt, leading to inhibition on cell migration, invasion, and metastasis of both DLD1 and SW480 cells. The present study has demonstrated that apigenin inhibits cell migration, invasion, and metastasis through NEDD9/Src/Akt cascade in colorectal cancer cells. NEDD9 may function as a biomarker for evaluation of cancer aggressiveness and for selection of therapeutic drugs against cancer progression. - Highlights: • Apigenin inhibits migration, invasion, and metastasis of colorectal cancer cells. • Apigenin downregulates NEDD9. • Apigenin decreases phosphorylations of FAK, Src, and Akt. • Apigenin inhibits cell migration, invasion, and metastasis through NEDD9/Src/Akt.

  9. Are All Highly Malignant Cancer Cells Identical?

    Science.gov (United States)

    1979-01-01

    embryo cells or even the original fertilized ovum. If this speculation has validity, the carcinogenesis and differentiation have the same destinies but...whose activity leads to the suppression of the transcrip- tion of the genes responsible for the unique set of embryo -cancer proteins and whose mutation

  10. Frequent downregulation of BTB and CNC homology 2 expression in Epstein-Barr virus-positive diffuse large B-cell lymphoma.

    Science.gov (United States)

    Noujima-Harada, Mai; Takata, Katsuyoshi; Miyata-Takata, Tomoko; Sakurai, Hiroaki; Igarashi, Kazuhiko; Ito, Etsuro; Nagakita, Keina; Taniguchi, Kohei; Ohnishi, Nobuhiko; Omote, Shizuma; Tabata, Tetsuya; Sato, Yasuharu; Yoshino, Tadashi

    2017-05-01

    Diffuse large B-cell lymphoma (DLBCL) is the most common B-cell lymphoma subtype, and the Epstein-Barr virus (EBV)-positive subtype of DLBCL is known to show a more aggressive clinical behavior than the EBV-negative one. BTB and CNC homology 2 (BACH2) has been highlighted as a tumor suppressor in hematopoietic malignancies; however, the role of BACH2 in EBV-positive DLBCL is unclear. In the present study, BACH2 expression and its significance were studied in 23 EBV-positive and 43 EBV-negative patient samples. Immunohistochemistry revealed BACH2 downregulation in EBV-positive cases (P < 0.0001), although biallelic deletion of BACH2 was not detected by FISH. Next, we analyzed the contribution of BACH2 negativity to aggressiveness in EBV-positive B-cell lymphomas using FL-18 (EBV-negative) and FL-18-EB cells (FL-18 sister cell line, EBV-positive). In BACH2-transfected FL-18-EB cells, downregulation of phosphorylated transforming growth factor-β-activated kinase 1 (pTAK1) and suppression in p65 nuclear fractions were observed by Western blot analysis contrary to non-transfected FL-18-EB cells. In patient samples, pTAK1 expression and significant nuclear p65, p50, and p52 localization were detected immunohistochemically in BACH2-negative DLBCL (P < 0.0001, P = 0.006, and P = 0.001, respectively), suggesting that BACH2 downregulation contributes to constitutive activation of the nuclear factor-κB pathway through TAK1 phosphorylation in BACH2-negative DLBCL (most EBV-positive cases). Although further molecular and pathological studies are warranted to clarify the detailed mechanisms, downregulation of BACH2 may contribute to constitutive activation of the nuclear factor-κB pathway through TAK1 activation. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  11. Blockade of CD7 expression in T cells for effective chimeric antigen receptor targeting of T-cell malignancies.

    Science.gov (United States)

    Png, Yi Tian; Vinanica, Natasha; Kamiya, Takahiro; Shimasaki, Noriko; Coustan-Smith, Elaine; Campana, Dario

    2017-11-28

    Effective immunotherapies for T-cell malignancies are lacking. We devised a novel approach based on chimeric antigen receptor (CAR)-redirected T lymphocytes. We selected CD7 as a target because of its consistent expression in T-cell acute lymphoblastic leukemia (T-ALL), including the most aggressive subtype, early T-cell precursor (ETP)-ALL. In 49 diagnostic T-ALL samples (including 14 ETP-ALL samples), median CD7 expression was >99%; CD7 expression remained high at relapse (n = 14), and during chemotherapy (n = 54). We targeted CD7 with a second-generation CAR (anti-CD7-41BB-CD3ζ), but CAR expression in T lymphocytes caused fratricide due to the presence of CD7 in the T cells themselves. To downregulate CD7 and control fratricide, we applied a new method (protein expression blocker [PEBL]), based on an anti-CD7 single-chain variable fragment coupled with an intracellular retention domain. Transduction of anti-CD7 PEBL resulted in virtually instantaneous abrogation of surface CD7 expression in all transduced T cells; 2.0% ± 1.7% were CD7 + vs 98.1% ± 1.5% of mock-transduced T cells (n = 5; P < .0001). PEBL expression did not impair T-cell proliferation, interferon-γ and tumor necrosis factor-α secretion, or cytotoxicity, and eliminated CAR-mediated fratricide. PEBL-CAR T cells were highly cytotoxic against CD7 + leukemic cells in vitro and were consistently more potent than CD7 + T cells spared by fratricide. They also showed strong anti-leukemic activity in cell line- and patient-derived T-ALL xenografts. The strategy described in this study fits well with existing clinical-grade cell manufacturing processes and can be rapidly implemented for the treatment of patients with high-risk T-cell malignancies.

  12. The Glycome of Normal and Malignant Plasma Cells

    Science.gov (United States)

    Hose, Dirk; Andrulis, Mindaugas; Moreaux, Jèrôme; Hielscher, Thomas; Willhauck-Fleckenstein, Martina; Merling, Anette; Bertsch, Uta; Jauch, Anna; Goldschmidt, Hartmut; Klein, Bernard; Schwartz-Albiez, Reinhard

    2013-01-01

    The glycome, i.e. the cellular repertoire of glycan structures, contributes to important functions such as adhesion and intercellular communication. Enzymes regulating cellular glycosylation processes are related to the pathogenesis of cancer including multiple myeloma. Here we analyze the transcriptional differences in the glycome of normal (n = 10) and two cohorts of 332 and 345 malignant plasma-cell samples, association with known multiple myeloma subentities as defined by presence of chromosomal aberrations, potential therapeutic targets, and its prognostic impact. We found i) malignant vs. normal plasma cells to show a characteristic glycome-signature. They can ii) be delineated by a lasso-based predictor from normal plasma cells based on this signature. iii) Cytogenetic aberrations lead to distinct glycan-gene expression patterns for t(11;14), t(4;14), hyperdiploidy, 1q21-gain and deletion of 13q14. iv) A 38-gene glycome-signature significantly delineates patients with adverse survival in two independent cohorts of 545 patients treated with high-dose melphalan and autologous stem cell transplantation. v) As single gene, expression of the phosphatidyl-inositol-glycan protein M as part of the targetable glycosyl-phosphatidyl-inositol-anchor-biosynthesis pathway is associated with adverse survival. The prognostically relevant glycome deviation in malignant cells invites novel strategies of therapy for multiple myeloma. PMID:24386263

  13. The glycome of normal and malignant plasma cells.

    Directory of Open Access Journals (Sweden)

    Thomas M Moehler

    Full Text Available The glycome, i.e. the cellular repertoire of glycan structures, contributes to important functions such as adhesion and intercellular communication. Enzymes regulating cellular glycosylation processes are related to the pathogenesis of cancer including multiple myeloma. Here we analyze the transcriptional differences in the glycome of normal (n = 10 and two cohorts of 332 and 345 malignant plasma-cell samples, association with known multiple myeloma subentities as defined by presence of chromosomal aberrations, potential therapeutic targets, and its prognostic impact. We found i malignant vs. normal plasma cells to show a characteristic glycome-signature. They can ii be delineated by a lasso-based predictor from normal plasma cells based on this signature. iii Cytogenetic aberrations lead to distinct glycan-gene expression patterns for t(11;14, t(4;14, hyperdiploidy, 1q21-gain and deletion of 13q14. iv A 38-gene glycome-signature significantly delineates patients with adverse survival in two independent cohorts of 545 patients treated with high-dose melphalan and autologous stem cell transplantation. v As single gene, expression of the phosphatidyl-inositol-glycan protein M as part of the targetable glycosyl-phosphatidyl-inositol-anchor-biosynthesis pathway is associated with adverse survival. The prognostically relevant glycome deviation in malignant cells invites novel strategies of therapy for multiple myeloma.

  14. TCR Down-Regulation Controls Virus-Specific CD8+ T Cell Responses

    DEFF Research Database (Denmark)

    Bonefeld, Charlotte Menné; Haks, Mariëlle; Nielsen, Bodil

    2008-01-01

    The CD3gamma di-leucine-based motif plays a central role in TCR down-regulation. However, little is understood about the role of the CD3gamma di-leucine-based motif in physiological T cell responses. In this study, we show that the expansion in numbers of virus-specific CD8(+) T cells is impaired...... in mice with a mutated CD3gamma di-leucine-based motif. The CD3gamma mutation did not impair early TCR signaling, nor did it compromise recruitment or proliferation of virus-specific T cells, but it increased the apoptosis rate of the activated T cells by increasing down-regulation of the antiapoptotic...... molecule Bcl-2. This resulted in a 2-fold reduction in the clonal expansion of virus-specific CD8(+) T cells during the acute phase of vesicular stomatitis virus and lymphocytic choriomeningitis virus infections. These results identify an important role of CD3gamma-mediated TCR down-regulation in virus...

  15. Kefir induces cell-cycle arrest and apoptosis in HTLV-1-negative malignant T-lymphocytes

    Science.gov (United States)

    Maalouf, Katia; Baydoun, Elias; Rizk, Sandra

    2011-01-01

    Background: Adult lymphoblastic leukemia (ALL) is a malignancy that occurs in white blood cells. The overall cure rate in children is 85%, whereas it is only 40% in adults. Kefir is an important probiotic that contains many bioactive ingredients, which give it unique health benefits. It has been shown to control several cellular types of cancer. Purpose: The present study investigates the effect of a cell-free fraction of kefir on CEM and Jurkat cells, which are human T-lymphotropic virus type I (HTLV-1)-negative malignant T-lymphocytes. Methods: Cells were incubated with different kefir concentrations. The cytotoxicity of the compound was evaluated by determining the percentage viability of cells. The effect of all the noncytotoxic concentrations of kefir on the proliferation of CEM and Jurkat cells was then assessed. The levels of transforming growth factor-alpha (TGF-α), transforming growth factor- beta1 (TGF-β1), matrix metalloproteinase-2 (MMP-2), and MMP-9 mRNA upon kefir treatment were then analyzed using reverse transcriptase polymerase chain reaction (RT-PCR). Finally, the growth inhibitory effects of kefir on cell-cycle progression/apoptosis were assessed by Cell Death Detection (ELISA) and flow cytometry. Results: The maximum cytotoxicity recorded after 48-hours treatment with 80 μg/μL kefir was only 42% and 39% in CEM and Jurkat cells, respectively. The percent reduction in proliferation was very significant, and was dose-, and time-dependent. In both cell lines, kefir exhibited its antiproliferative effect by downregulating TGF-α and upregulating TGF-β1 mRNA expression. Upon kefir treatment, a marked increase in cell-cycle distribution was noted in the preG1 phase of CEM and Jurkat cells, indicating the proapoptotic effect of kefir, which was further confirmed by Cell Death Detection ELISA. However, kefir did not affect the mRNA expression of metalloproteinases needed for the invasion of leukemic cell lines. Conclusion: In conclusion, kefir is

  16. Kefir induces cell-cycle arrest and apoptosis in HTLV-1-negative malignant T-lymphocytes

    Directory of Open Access Journals (Sweden)

    Katia Maalouf

    2011-02-01

    Full Text Available Katia Maalouf1, Elias Baydoun2, Sandra Rizk11Department of Natural Sciences, Lebanese American University, Beirut, Lebanon; 2Department of Biology, American University of Beirut, Beirut, LebanonBackground: Adult lymphoblastic leukemia (ALL is a malignancy that occurs in white blood cells. The overall cure rate in children is 85%, whereas it is only 40% in adults. Kefir is an important probiotic that contains many bioactive ingredients, which give it unique health benefits. It has been shown to control several cellular types of cancer.Purpose: The present study investigates the effect of a cell-free fraction of kefir on CEM and Jurkat cells, which are human T-lymphotropic virus type I (HTLV-1-negative malignant T-lymphocytes.Methods: Cells were incubated with different kefir concentrations. The cytotoxicity of the compound was evaluated by determining the percentage viability of cells. The effect of all the noncytotoxic concentrations of kefir on the proliferation of CEM and Jurkat cells was then assessed. The levels of transforming growth factor-alpha (TGF-α, transforming growth factor- beta1 (TGF-β1, matrix metalloproteinase-2 (MMP-2, and MMP-9 mRNA upon kefir treatment were then analyzed using reverse transcriptase polymerase chain reaction (RT-PCR. Finally, the growth inhibitory effects of kefir on cell-cycle progression/apoptosis were assessed by Cell Death Detection (ELISA and flow cytometry.Results: The maximum cytotoxicity recorded after 48-hours treatment with 80 µg/µL kefir was only 42% and 39% in CEM and Jurkat cells, respectively. The percent reduction in proliferation was very significant, and was dose-, and time-dependent. In both cell lines, kefir exhibited its antiproliferative effect by downregulating TGF-α and upregulating TGF- β1 mRNA expression. Upon kefir treatment, a marked increase in cell-cycle distribution was noted in the preG1 phase of CEM and Jurkat cells, indicating the proapoptotic effect of kefir, which was

  17. Kefir induces cell-cycle arrest and apoptosis in HTLV-1-negative malignant T-lymphocytes

    International Nuclear Information System (INIS)

    Maalouf, Katia; Baydoun, Elias; Rizk, Sandra

    2011-01-01

    Adult lymphoblastic leukemia (ALL) is a malignancy that occurs in white blood cells. The overall cure rate in children is 85%, whereas it is only 40% in adults. Kefir is an important probiotic that contains many bioactive ingredients, which give it unique health benefits. It has been shown to control several cellular types of cancer. The present study investigates the effect of a cell-free fraction of kefir on CEM and Jurkat cells, which are human T-lymphotropic virus type I (HTLV-1)-negative malignant T-lymphocytes. Cells were incubated with different kefir concentrations. The cytotoxicity of the compound was evaluated by determining the percentage viability of cells. The effect of all the noncytotoxic concentrations of kefir on the proliferation of CEM and Jurkat cells was then assessed. The levels of transforming growth factor-alpha (TGF-α), transforming growth factor- beta1 (TGF-β1), matrix metalloproteinase-2 (MMP-2), and MMP-9 mRNA upon kefir treatment were then analyzed using reverse transcriptase polymerase chain reaction (RT-PCR). Finally, the growth inhibitory effects of kefir on cell-cycle progression/apoptosis were assessed by Cell Death Detection (ELISA) and flow cytometry. The maximum cytotoxicity recorded after 48-hours treatment with 80 μg/μL kefir was only 42% and 39% in CEM and Jurkat cells, respectively. The percent reduction in proliferation was very significant, and was dose-, and time-dependent. In both cell lines, kefir exhibited its antiproliferative effect by downregulating TGF-α and upregulating TGF-β1 mRNA expression. Upon kefir treatment, a marked increase in cell-cycle distribution was noted in the preG 1 phase of CEM and Jurkat cells, indicating the proapoptotic effect of kefir, which was further confirmed by Cell Death Detection ELISA. However, kefir did not affect the mRNA expression of metalloproteinases needed for the invasion of leukemic cell lines. In conclusion, kefir is effective in inhibiting proliferation and inducing

  18. Downregulation of miR-15a due to LMP1 promotes cell proliferation and predicts poor prognosis in nasal NK/T-cell lymphoma.

    Science.gov (United States)

    Komabayashi, Yuki; Kishibe, Kan; Nagato, Toshihiro; Ueda, Seigo; Takahara, Miki; Harabuchi, Yasuaki

    2014-01-01

    Nasal NK/T-cell lymphoma (NNKTL) is an Epstein-Barr virus (EBV)-associated malignancy and has distinct clinical and histological features. However, its genetic features are hitherto unclear. MicroRNAs (miRNAs) play a crucial role in the pathogenesis of several malignancies via regulating gene expression. In this study, we investigated whether the specific microRNAs were related to the tumor behaviors in NNKTL. MiRNA array and Quantitative RT-PCR analyses revealed that miR-15a was expressed at a much lower level in NNKTL cells (SNK-1, SNK-6, and SNT-8) than in normal peripheral NK cells and EBV-negative NK cell line KHYG-1. Quantitative PCR and western blot analyses showed that the expression of MYB and cyclin D1, which are validated targets of miR-15a, was higher in NNKTL cells. Transfection of NNKTL cells (SNK-6 and SNT-8) with a miR-15a precursor decreased MYB and cyclin D1 levels, thereby blocking G1/S transition and cell proliferation. Knockdown of EBV-encoded latent membrane protein 1 (LMP1) significantly increased miR-15a expression in SNK-6 cells. In NNKTL tissues, we found that reduced miR-15a expression, which correlated with MYB and cyclin D1 expression, was associated with poor prognosis of NNKTL patients. These data suggest that downregulation of miR-15a, possibly due to LMP1, implicates in the pathogenesis of NNKTL by inducing cell proliferation via MYB and cyclin D1. Thus, miR-15a could be a potential target for antitumor therapy and a prognostic predictor for NNKTL. Copyright © 2013 Wiley Periodicals, Inc.

  19. Training stem cells for treatment of malignant brain tumors

    Institute of Scientific and Technical Information of China (English)

    Shengwen; Calvin; Li; Mustafa; H; Kabeer; Long; T; Vu; Vic; Keschrumrus; Hong; Zhen; Yin; Brent; A; Dethlefs; Jiang; F; Zhong; John; H; Weiss; William; G; Loudon

    2014-01-01

    The treatment of malignant brain tumors remains a challenge. Stem cell technology has been applied in the treatment of brain tumors largely because of the ability of some stem cells to infiltrate into regions within the brain where tumor cells migrate as shown in preclinical studies. However, not all of these efforts can translate in the effective treatment that improves the quality of life for pa-tients. Here, we perform a literature review to identify the problems in the field. Given the lack of efficacy of most stem cell-based agents used in the treatment of malignant brain tumors, we found that stem cell distribution(i.e., only a fraction of stem cells applied capable of targeting tumors) are among the limiting factors. We provide guidelines for potential improvements in stem cell distribution. Specifically, we use an engineered tissue graft platform that replicates the in vivo microenvironment, and provide our data to validate that this culture platform is viable for producing stem cells that have better stem cell distribution than with the Petri dish culture system.

  20. Mechanical Stress Downregulates MHC Class I Expression on Human Cancer Cell Membrane

    DEFF Research Database (Denmark)

    La Rocca, Rosanna; Tallerico, Rossana; Hassan, Almosawy Talib

    2014-01-01

    In our body, cells are continuously exposed to physical forces that can regulate different cell functions such as cell proliferation, differentiation and death. In this work, we employed two different strategies to mechanically stress cancer cells. The cancer and healthy cell populations were...... treated either with mechanical stress delivered by a micropump (fabricated by deep X-ray nanolithography) or by ultrasound wave stimuli. A specific down-regulation of Major Histocompatibility Complex (MHC) class I molecules expression on cancer cell membrane compared to different kinds of healthy cells...... between 700–1800 cm-1, indicated a relative concentration variation of MHC class I. PCA analysis was also performed to distinguish control and stressed cells within different cell lines. These mechanical induced phenotypic changes increase the tumor immunogenicity, as revealed by the related increased...

  1. Sulforaphane, a Dietary Isothiocyanate, Induces G2/M Arrest in Cervical Cancer Cells through CyclinB1 Downregulation and GADD45β/CDC2 Association

    Directory of Open Access Journals (Sweden)

    Ya-Min Cheng

    2016-09-01

    Full Text Available Globally, cervical cancer is the most common malignancy affecting women. The main treatment methods for this type of cancer include conization or hysterectomy procedures. Sulforaphane (SFN is a natural, compound-based drug derived from dietary isothiocyanates which has previously been shown to possess potent anti-tumor and chemopreventive effects against several types of cancer. The present study investigated the effects of SFN on anti-proliferation and G2/M phase cell cycle arrest in cervical cancer cell lines (Cx, CxWJ, and HeLa. We found that cytotoxicity is associated with an accumulation of cells in the G2/M phases of the cell-cycle. Treatment with SFN led to cell cycle arrest as well as the down-regulation of Cyclin B1 expression, but not of CDC2 expression. In addition, the effects of GADD45β gene activation in cell cycle arrest increase proportionally with the dose of SFN; however, mitotic delay and the inhibition of proliferation both depend on the dosage of SFN used to treat cancer cells. These results indicate that SFN may delay the development of cancer by arresting cell growth in the G2/M phase via down-regulation of Cyclin B1 gene expression, dissociation of the cyclin B1/CDC2 complex, and up-regulation of GADD45β proteins.

  2. Monensin, a polyether ionophore antibiotic, overcomes TRAIL resistance in glioma cells via endoplasmic reticulum stress, DR5 upregulation and c-FLIP downregulation.

    Science.gov (United States)

    Yoon, Mi Jin; Kang, You Jung; Kim, In Young; Kim, Eun Hee; Lee, Ju Ahn; Lim, Jun Hee; Kwon, Taeg Kyu; Choi, Kyeong Sook

    2013-08-01

    Tumor necrosis factor-related apoptosis-induced ligand (TRAIL) is preferentially cytotoxic to cancer cells over normal cells. However, many cancer cells, including malignant glioma cells, tend to be resistant to TRAIL. Monensin (a polyether ionophore antibiotic that is widely used in veterinary medicine) and salinomycin (a compound that is structurally related to monensin and shows cancer stem cell-inhibiting activity) are currently recognized as anticancer drug candidates. In this study, we show that monensin effectively sensitizes various glioma cells, but not normal astrocytes, to TRAIL-mediated apoptosis; this occurs at least partly via monensin-induced endoplasmic reticulum (ER) stress, CHOP-mediated DR5 upregulation and proteasome-mediated downregulation of c-FLIP. Interestingly, other polyether antibiotics, such as salinomycin, nigericin, narasin and lasalocid A, also stimulated TRAIL-mediated apoptosis in glioma cells via ER stress, CHOP-mediated DR5 upregulation and c-FLIP downregulation. Taken together, these results suggest that combined treatment of glioma cells with TRAIL and polyether ionophore antibiotics may offer an effective therapeutic strategy.

  3. CCL5 promotes vascular endothelial growth factor expression and induces angiogenesis by down-regulating miR-199a in human chondrosarcoma cells.

    Science.gov (United States)

    Liu, Guan-Ting; Huang, Yuan-Li; Tzeng, Huey-En; Tsai, Chun-Hao; Wang, Shih-Wei; Tang, Chih-Hsin

    2015-02-28

    Chondrosarcoma is a primary malignant bone cancer, with a potent capacity to invade locally and cause distant metastasis. Angiogenesis is a critical step in tumor growth and metastasis. Chemokine CCL5 (previously called RANTES) has been shown to facilitate tumor progression and metastasis. However, the relationship of CCL5 with vascular endothelial growth factor (VEGF) expression and angiogenesis in human chondrosarcoma is mostly unknown. In this study, CCL5 increased VEGF expression and also promoted chondrosarcoma medium-mediated angiogenesis in vitro as well as angiogenesis effects in the chick chorioallantoic membrane and Matrigel plug nude mice model in vivo. MicroRNA analysis was performed in CCL5-treated chondrosarcoma cells versus control cells to investigate the mechanism of CCL5-mediated promotion of chondrosarcoma angiogenesis. Among the miRNAs regulated by CCL5, miR-199a was the most downregulated miRNA after CCL5 treatment. In addition, co-transfection with miR-199a mimic reversed the CCL5-mediated VEGF expression and angiogenesis in vitro and in vivo. Moreover, overexpression of CCL5 increased tumor-associated angiogenesis and tumor growth by downregulating miR-199a in the xenograft tumor angiogenesis model. Taken together, these results demonstrated that CCL5 promotes VEGF-dependent angiogenesis in human chondrosarcoma cells by downregulating miR-199a. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Human Calmodulin-Like Protein CALML3: A Novel Marker for Normal Oral Squamous Mucosa That Is Downregulated in Malignant Transformation

    Directory of Open Access Journals (Sweden)

    Michael D. Brooks

    2013-01-01

    Full Text Available Oral cancer is often diagnosed only at advanced stages due to a lack of reliable disease markers. The purpose of this study was to determine if the epithelial-specific human calmodulin-like protein (CALML3 could be used as marker for the various phases of oral tumor progression. Immunohistochemical analysis using an affinity-purified CALML3 antibody was performed on biopsy-confirmed oral tissue samples representing these phases. A total of 90 tissue specimens were derived from 52 patients. Each specimen was analyzed in the superficial and basal mucosal cell layers for overall staining and staining of cellular subcompartments. CALML3 was strongly expressed in benign oral mucosal cells with downregulation of expression as squamous cells progress to invasive carcinoma. Based on the Cochran-Armitage test for trend, expression in the nucleus and at the cytoplasmic membrane significantly decreased with increasing disease severity. Chi-square test showed that benign tissue specimens had significantly more expression compared to dysplasia/CIS and invasive specimens. Dysplasia/CIS tissue had significantly more expression than invasive tissue. We conclude that CALML3 is expressed in benign oral mucosal cells with a statistically significant trend in downregulation as tumorigenesis occurs. CALML3 may thus be a sensitive new marker for oral cancer screening.

  5. Down-regulation of Rab5 decreases characteristics associated with maintenance of cell transformation

    International Nuclear Information System (INIS)

    Silva, Patricio; Soto, Nicolás; Díaz, Jorge; Mendoza, Pablo; Díaz, Natalia; Quest, Andrew F.G.; Torres, Vicente A.

    2015-01-01

    The early endosomal protein Rab5 is highly expressed in tumor samples, although a causal relationship between Rab5 expression and cell transformation has not been established. Here, we report the functional effects of targeting endogenous Rab5 with specific shRNA sequences in different tumor cell lines. Rab5 down-regulation in B16-F10 cells decreased tumor formation by subcutaneous injection into C57/BL6 mice. Accordingly, Rab5 targeting in B16-F10 and A549, but not MDA-MB-231 cells was followed by decreased cell proliferation, increased apoptosis and decreased anchorage-independent growth. These findings suggest that Rab5 expression is required to maintain characteristics associated with cell transformation. - Highlights: • Rab5 is important to the maintenance of cell transformation characteristics. • Down-regulation of Rab5 decreases cell proliferation and increases apoptosis in different cancer cells. • Rab5 is required for anchorage-independent growth and tumorigenicity in-vivo

  6. Insulin Downregulates the Transcriptional Coregulator CITED2, an Inhibitor of Proangiogenic Function in Endothelial Cells

    DEFF Research Database (Denmark)

    Wang, Xuanchun; Lockhart, Samuel M; Rathjen, Thomas

    2016-01-01

    In patients with atherosclerotic complications of diabetes, impaired neovascularization of ischemic tissue in the myocardium and lower limb limits the ability of these tissues to compensate for poor perfusion. We identified 10 novel insulin-regulated genes, among them Adm, Cited2 and Ctgf, which...... were downregulated in endothelial cells by insulin through FoxO1. CITED2, which was downregulated by insulin by up to 54%, is an important negative regulator of hypoxia-inducible factor (HIF) and impaired HIF signaling is a key mechanism underlying the impairment of angiogenesis in diabetes. Consistent...... with impairment of vascular insulin action, CITED2 was increased in cardiac endothelial cells from mice with diet-induced obesity and from db/db mice and was 3.8-fold higher in arterial tissue from patients with type 2 diabetes than non-diabetic controls. CITED2 knockdown promoted endothelial tube formation...

  7. Down-regulation of Gab1 inhibits cell proliferation and migration in hilar cholangiocarcinoma.

    Directory of Open Access Journals (Sweden)

    Haiquan Sang

    Full Text Available Hilar cholangiocarcinoma is a highly aggressive malignancy originating from the hilar biliary duct epithelium. Due to few effective comprehensive treatments, the prognosis of hilar cholangiocarcinoma is poor. In this study, immunohistochemistry was first used to detect and analyze the expression of Gab1, VEGFR-2, and MMP-9 in hilar cholangiocarcinoma solid tumors and the relationships to the clinical pathological features. Furthermore, Gab1 and VEGFR-2 siRNA were used to interfere the hilar cholangiocarcinoma cell line ICBD-1 and then detect the PI3K/Akt signaling pathway, MMP-9 levels and malignant biological behaviors of tumor cells. The data showed that 1. Gab1, VEGFR-2, and MMP-9 were highly expressed and positively correlated with each other in hilar cholangiocarcinoma tissues, which were related to lymph node metastasis and differentiation. 2. After Gab1 or VEGFR-2 siRNA interference, PI3K/Akt pathway activity and MMP-9 levels were decreased in ICBD-1 cells. At the same time, cell proliferation decreased, cell cycle arrested in G1 phase, apoptosis increased and invasion decreased. These results suggest that the expression of Gab1, VEGFR-2, and MMP-9 are significantly related to the malignant biological behavior of hilar cholangiocarcinoma. Gab1 regulates growth, apoptosis and invasion through the VEGFR-2/Gab1/PI3K/Akt signaling pathway in hilar cholangiocarcinoma cells and influences the invasion of tumor cells via MMP-9.

  8. Down-regulation of Gab1 inhibits cell proliferation and migration in hilar cholangiocarcinoma.

    Science.gov (United States)

    Sang, Haiquan; Li, Tingting; Li, Hangyu; Liu, Jingang

    2013-01-01

    Hilar cholangiocarcinoma is a highly aggressive malignancy originating from the hilar biliary duct epithelium. Due to few effective comprehensive treatments, the prognosis of hilar cholangiocarcinoma is poor. In this study, immunohistochemistry was first used to detect and analyze the expression of Gab1, VEGFR-2, and MMP-9 in hilar cholangiocarcinoma solid tumors and the relationships to the clinical pathological features. Furthermore, Gab1 and VEGFR-2 siRNA were used to interfere the hilar cholangiocarcinoma cell line ICBD-1 and then detect the PI3K/Akt signaling pathway, MMP-9 levels and malignant biological behaviors of tumor cells. The data showed that 1. Gab1, VEGFR-2, and MMP-9 were highly expressed and positively correlated with each other in hilar cholangiocarcinoma tissues, which were related to lymph node metastasis and differentiation. 2. After Gab1 or VEGFR-2 siRNA interference, PI3K/Akt pathway activity and MMP-9 levels were decreased in ICBD-1 cells. At the same time, cell proliferation decreased, cell cycle arrested in G1 phase, apoptosis increased and invasion decreased. These results suggest that the expression of Gab1, VEGFR-2, and MMP-9 are significantly related to the malignant biological behavior of hilar cholangiocarcinoma. Gab1 regulates growth, apoptosis and invasion through the VEGFR-2/Gab1/PI3K/Akt signaling pathway in hilar cholangiocarcinoma cells and influences the invasion of tumor cells via MMP-9.

  9. Romidepsin targets multiple survival signaling pathways in malignant T cells

    International Nuclear Information System (INIS)

    Valdez, B C; Brammer, J E; Li, Y; Murray, D; Liu, Y; Hosing, C; Nieto, Y; Champlin, R E; Andersson, B S

    2015-01-01

    Romidepsin is a cyclic molecule that inhibits histone deacetylases. It is Food and Drug Administration-approved for treatment of cutaneous and peripheral T-cell lymphoma, but its precise mechanism of action against malignant T cells is unknown. To better understand the biological effects of romidepsin in these cells, we exposed PEER and SUPT1 T-cell lines, and a primary sample from T-cell lymphoma patient (Patient J) to romidepsin. We then examined the consequences in some key oncogenic signaling pathways. Romidepsin displayed IC 50 values of 10.8, 7.9 and 7.0 nm in PEER, SUPT1 and Patient J cells, respectively. Strong inhibition of histone deacetylases and demethylases, increased production of reactive oxygen species and decreased mitochondrial membrane potential were observed, which may contribute to the observed DNA-damage response and apoptosis. The stress-activated protein kinase/c-Jun N-terminal kinase signaling pathway and unfolded protein response in the endoplasmic reticulum were activated, whereas the phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin (PI3K/AKT/mTOR) and β-catenin pro-survival pathways were inhibited. The decreased level of β-catenin correlated with the upregulation of its inhibitor SFRP1 through romidepsin-mediated hypomethylation of its gene promoter. Our results provide new insights into how romidepsin invokes malignant T-cell killing, show evidence of its associated DNA hypomethylating activity and offer a rationale for the development of romidepsin-containing combination therapies

  10. Correlation between activation of PPAR¿ and resistin downregulation in a mouse adipocyte cell line by a series of thiazolidinediones.

    NARCIS (Netherlands)

    Sotiriou, A.; Blaauw, R.H.; Meijer, C.; Gijsbers, L.H.; Burg, van der B.; Vervoort, J.; Rietjens, I.M.C.M.

    2013-01-01

    The present study shows significant correlations between the EC50 for PPAR¿ activation in a reporter gene cell line and resistin downregulation in mouse adipocytes, and between the IC50 for resistin downregulation and the already published minimum effective dose for antihyperglycemic activity in a

  11. Garcinol downregulates Notch1 signaling via modulating miR-200c and suppresses oncogenic properties of PANC-1 cancer stem-like cells.

    Science.gov (United States)

    Huang, Chi-Cheng; Lin, Chien-Min; Huang, Yan-Jiun; Wei, Li; Ting, Lei-Li; Kuo, Chia-Chun; Hsu, Cheyu; Chiou, Jeng-Fong; Wu, Alexander T H; Lee, Wei-Hwa

    2017-03-01

    Pancreatic cancer represents one of the most aggressive types of malignancy due to its high resistance toward most clinically available treatments. The presence of pancreatic cancer stem-like cells (CSCs) has been attributed to the intrinsically high resistance and highly metastatic potential of this disease. Here, we identified and isolated pancreatic CSCs using the side population (SP) method from human pancreatic cancer cell line, PANC-1. We then compared the SP and non-SP PANC-1 cells genetically. PANC-1 SP cells exhibited CSC properties including enhanced self-renewal ability, increased metastatic potential, and resistance toward gemcitabine treatment. These cancer stem-like phenotypes were supported by their enhanced expression of ABCG2, Oct4, and CD44. A traditional plant-derived antioxidant, garcinol, has been implicated for its anticancer properties. Here, we found that garcinol treatment to PANC-1 SP cells significantly suppressed the stem-like properties of PANC-1 SP cells and metastatic potential by downregulating the expression of Mcl-1, EZH2, ABCG2, Gli-1, and Notch1. More importantly, garcinol treatment led to the upregulation of several tumor suppressor microRNAs, and miR-200c increased by garcinol treatment was found to target and downregulate Notch1. Thus, PANC-1 SP cells may serve as a model for studying drug-resistant pancreatic CSCs, and garcinol has the potential as an antagonist against pancreatic CSCs. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  12. Effect of selenium on malignant tumor cells of brain.

    Science.gov (United States)

    Zhu, Z; Kimura, M; Itokawa, Y; Nakatsu, S; Oda, Y; Kikuchi, H

    1995-07-01

    Some reports have demonstrated that selenium can inhibit tumorigenesis in some tissues of animal. However, little is known about the inhibitory effect on malignant tumor cells of brain. The purpose of our study was to determine the biological effect of selenium on growth of rat glioma and human glioblastoma cell lines. Cell lines C6 and A172 were obtained from Japanese Cancer Research Resources Bank, Tokyo, Japan (JCRB). Cells were cultured in Dulbecco's Modified Eagle's Medium (DMEM) supplemented with 10% fetal calf serum at 37 degrees C in a humidified atmosphere of air and 5% CO2. Antiproliferative effects of selenium were evaluated using growth rate assay quantifying cell number by MTT assay. An antiproliferative effect of selenium was found in two cell lines, which was more effective on human A172 glioblastoma and less effective on rat C6 glioma.

  13. Pre-malignant lymphoid cells arise from hematopoietic stem/progenitor cells in chronic lymphocytic leukemia.

    Science.gov (United States)

    Kikushige, Yoshikane; Miyamoto, Toshihiro

    2015-11-01

    Human malignancies progress through a multistep process that includes the development of critical somatic mutations over the clinical course. Recent novel findings have indicated that hematopoietic stem cells (HSCs), which have the potential to self-renew and differentiate into multilineage hematopoietic cells, are an important cellular target for the accumulation of critical somatic mutations in hematological malignancies and play a central role in myeloid malignancy development. In contrast to myeloid malignancies, mature lymphoid malignancies, such as chronic lymphocytic leukemia (CLL), are thought to originate directly from differentiated mature lymphocytes; however, recent compelling data have shown that primitive HSCs and hematopoietic progenitor cells contribute to the pathogenesis of mature lymphoid malignancies. Several representative mutations of hematological malignancies have been identified within the HSCs of CLL and lymphoma patients, indicating that the self-renewing long-lived fraction of HSCs can serve as a reservoir for the development of oncogenic events. Novel mice models have been established as human mature lymphoma models, in which specific oncogenic events target the HSCs and immature progenitor cells. These data collectively suggest that HSCs can be the cellular target involved in the accumulation of oncogenic events in the pathogenesis of mature lymphoid and myeloid malignancies.

  14. Targeting eradication of malignant cells derived from human bone marrow mesenchymal stromal cells

    International Nuclear Information System (INIS)

    Yang, Yingbin; Cai, Shaoxi; Yang, Li; Yu, Shuhui; Jiang, Jiahuan; Yan, Xiaoqing; Zhang, Haoxing; Liu, Lan; Liu, Qun; Du, Jun; Cai, Shaohui; Sung, K.L. Paul

    2010-01-01

    Human bone marrow mesenchymal stromal cells (hBMSC) have been shown to participate in malignant transformation. However, hampered by the low frequency of malignant transformation of hBMSC, we do not yet know how to prevent malignant transformation of implanted hBMSC. In this study, in order to establish a model for the eradication of hBMSC-derived malignant cells, a gene fusion consisting of a human telomerase (hTERT) promoter modified with both c-Myc and myeloid zinc finger protein2 (MZF-2) binding elements and followed by the E. coli cytosine deaminase (CD) and luciferase genes was stably transferred into hBMSC via lentiviral transduction; n-phosphonacelyl-L-aspartic acid (PALA) selection was used to generate malignant cell colonies derived from transduced hBMSC after treatment with the carcinogenic reagent BPDE. Cells that were amplified after PALA selection were used for transplantation and 5-FC pro-drug cytotoxicity tests. The results showed that PALA-resistant malignant cells could be generated from hBMSC co-induced with lentiviral transduction and treatment with Benzo(a)pyrene Diol Epoxide (BPDE); the modification of c-Myc and MZF-2 binding elements could remarkably enhance the transcriptional activities of the hTERT promoter in malignant cells, whereas transcriptional activity was depressed in normal hBMSC; malignant cells stably expressing CD under the control of the modified hTERT promoter could be eliminated by 5-FC administration. This study has provided a method for targeted eradication of malignant cells derived from hBMSC.

  15. Targeting eradication of malignant cells derived from human bone marrow mesenchymal stromal cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yingbin [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); School of Life Science, Southwest University, Chongqing 400715 (China); Cai, Shaoxi, E-mail: sxcai@cqu.edu.cn [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Yang, Li [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); College of Pharmacy, Jinan University, Guangzhou 510632 (China); Yu, Shuhui [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Library of Southwest University, Chongqing 400715 (China); Jiang, Jiahuan; Yan, Xiaoqing [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Zhang, Haoxing [School of Life Science, Southwest University, Chongqing 400715 (China); Liu, Lan [Department of Laboratory of Medicine, Children' s Hospital of Chongqin Medical University, Chongqing 400014 (China); Liu, Qun [College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041 (China); Du, Jun [Center of Microbiology, Biochemistry, and Pharmacology, School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510080 (China); Cai, Shaohui [College of Pharmacy, Jinan University, Guangzhou 510632 (China); Sung, K.L. Paul [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Departments of Orthopaedic Surgery and Bioengineering, University of California, SD 0412 (United States)

    2010-12-10

    Human bone marrow mesenchymal stromal cells (hBMSC) have been shown to participate in malignant transformation. However, hampered by the low frequency of malignant transformation of hBMSC, we do not yet know how to prevent malignant transformation of implanted hBMSC. In this study, in order to establish a model for the eradication of hBMSC-derived malignant cells, a gene fusion consisting of a human telomerase (hTERT) promoter modified with both c-Myc and myeloid zinc finger protein2 (MZF-2) binding elements and followed by the E. coli cytosine deaminase (CD) and luciferase genes was stably transferred into hBMSC via lentiviral transduction; n-phosphonacelyl-L-aspartic acid (PALA) selection was used to generate malignant cell colonies derived from transduced hBMSC after treatment with the carcinogenic reagent BPDE. Cells that were amplified after PALA selection were used for transplantation and 5-FC pro-drug cytotoxicity tests. The results showed that PALA-resistant malignant cells could be generated from hBMSC co-induced with lentiviral transduction and treatment with Benzo(a)pyrene Diol Epoxide (BPDE); the modification of c-Myc and MZF-2 binding elements could remarkably enhance the transcriptional activities of the hTERT promoter in malignant cells, whereas transcriptional activity was depressed in normal hBMSC; malignant cells stably expressing CD under the control of the modified hTERT promoter could be eliminated by 5-FC administration. This study has provided a method for targeted eradication of malignant cells derived from hBMSC.

  16. Downregulation of CD44 reduces doxorubicin resistance of CD44+CD24- breast cancer cells

    Directory of Open Access Journals (Sweden)

    Phuc PV

    2011-06-01

    Full Text Available Pham Van Phuc, Phan Lu Chinh Nhan, Truong Hai Nhung, Nguyen Thanh Tam, Nguyen Minh Hoang, Vuong Gia Tue, Duong Thanh Thuy, Phan Kim NgocLaboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh, VietnamBackground: Cells within breast cancer stem cell populations have been confirmed to have a CD44+CD24- phenotype. Strong expression of CD44 plays a critical role in numerous types of human cancers. CD44 is involved in cell differentiation, adhesion, and metastasis of cancer cells.Methods: In this study, we reduced CD44 expression in CD44+CD24- breast cancer stem cells and investigated their sensitivity to an antitumor drug. The CD44+CD24- breast cancer stem cells were isolated from breast tumors; CD44 expression was downregulated with siRNAs followed by treatment with different concentrations of the antitumor drug.Results: The proliferation of CD44 downregulated CD44+CD24- breast cancer stem cells was decreased after drug treatment. We noticed treated cells were more sensitive to doxorubicin, even at low doses, compared with the control groups.Conclusions: It would appear that expression of CD44 is integral among the CD44+CD24- cell population. Reducing the expression level of CD44, combined with doxorubicin treatment, yields promising results for eradicating breast cancer stem cells in vitro. This study opens a new direction in treating breast cancer through gene therapy in conjunction with chemotherapy.Keywords: antitumor drugs, breast cancer stem cells, CD44, CD44+CD24- cells, doxorubicin

  17. Mucorales-Specific T Cells in Patients with Hematologic Malignancies.

    Science.gov (United States)

    Potenza, Leonardo; Vallerini, Daniela; Barozzi, Patrizia; Riva, Giovanni; Gilioli, Andrea; Forghieri, Fabio; Candoni, Anna; Cesaro, Simone; Quadrelli, Chiara; Maertens, Johan; Rossi, Giulio; Morselli, Monica; Codeluppi, Mauro; Mussini, Cristina; Colaci, Elisabetta; Messerotti, Andrea; Paolini, Ambra; Maccaferri, Monica; Fantuzzi, Valeria; Del Giovane, Cinzia; Stefani, Alessandro; Morandi, Uliano; Maffei, Rossana; Marasca, Roberto; Narni, Franco; Fanin, Renato; Comoli, Patrizia; Romani, Luigina; Beauvais, Anne; Viale, Pier Luigi; Latgè, Jean Paul; Lewis, Russell E; Luppi, Mario

    2016-01-01

    Invasive mucormycosis (IM) is an emerging life-threatening fungal infection. It is difficult to obtain a definite diagnosis and to initiate timely intervention. Mucorales-specific T cells occur during the course of IM and are involved in the clearance of the infection. We have evaluated the feasibility of detecting Mucorales-specific T cells in hematological patients at risk for IM, and have correlated the detection of such cells with the clinical conditions of the patients. By using an enzyme linked immunospot assay, the presence of Mucorales-specific T cells in peripheral blood (PB) samples has been investigated at three time points during high-dose chemotherapy for hematologic malignancies. Mucorales-specific T cells producing interferon-γ, interleukin-10 and interleukin-4 were analysed in order to detect a correlation between the immune response and the clinical picture. Twenty-one (10.3%) of 204 patients, accounting for 32 (5.3%) of 598 PB samples, tested positive for Mucorales-specific T cells. Two groups could be identified. Group 1, including 15 patients without signs or symptoms of invasive fungal diseases (IFD), showed a predominance of Mucorales-specific T cells producing interferon-gamma. Group 2 included 6 patients with a clinical picture consistent with invasive fungal disease (IFD): 2 cases of proven IM and 4 cases of possible IFD. The proven patients had significantly higher number of Mucorales-specific T cells producing interleukin-10 and interleukin-4 and higher rates of positive samples by using derived diagnostic cut-offs when compared with the 15 patients without IFD. Mucorales-specific T cells can be detected and monitored in patients with hematologic malignancies at risk for IM. Mucorales-specific T cells polarized to the production of T helper type 2 cytokines are associated with proven IM and may be evaluated as a surrogate diagnostic marker for IM.

  18. Mucorales-Specific T Cells in Patients with Hematologic Malignancies.

    Directory of Open Access Journals (Sweden)

    Leonardo Potenza

    Full Text Available Invasive mucormycosis (IM is an emerging life-threatening fungal infection. It is difficult to obtain a definite diagnosis and to initiate timely intervention. Mucorales-specific T cells occur during the course of IM and are involved in the clearance of the infection. We have evaluated the feasibility of detecting Mucorales-specific T cells in hematological patients at risk for IM, and have correlated the detection of such cells with the clinical conditions of the patients.By using an enzyme linked immunospot assay, the presence of Mucorales-specific T cells in peripheral blood (PB samples has been investigated at three time points during high-dose chemotherapy for hematologic malignancies. Mucorales-specific T cells producing interferon-γ, interleukin-10 and interleukin-4 were analysed in order to detect a correlation between the immune response and the clinical picture. Twenty-one (10.3% of 204 patients, accounting for 32 (5.3% of 598 PB samples, tested positive for Mucorales-specific T cells. Two groups could be identified. Group 1, including 15 patients without signs or symptoms of invasive fungal diseases (IFD, showed a predominance of Mucorales-specific T cells producing interferon-gamma. Group 2 included 6 patients with a clinical picture consistent with invasive fungal disease (IFD: 2 cases of proven IM and 4 cases of possible IFD. The proven patients had significantly higher number of Mucorales-specific T cells producing interleukin-10 and interleukin-4 and higher rates of positive samples by using derived diagnostic cut-offs when compared with the 15 patients without IFD.Mucorales-specific T cells can be detected and monitored in patients with hematologic malignancies at risk for IM. Mucorales-specific T cells polarized to the production of T helper type 2 cytokines are associated with proven IM and may be evaluated as a surrogate diagnostic marker for IM.

  19. Salinomycin repressed the epithelial–mesenchymal transition of epithelial ovarian cancer cells via downregulating Wnt/β-catenin pathway

    Directory of Open Access Journals (Sweden)

    Li R

    2017-02-01

    Full Text Available Rui Li,* Taotao Dong,* Chen Hu, Jingjing Lu, Jun Dai, Peishu Liu Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, People’s Republic of China *These authors contributed equally to this work Abstract: Epithelial ovarian cancer (EOC is the leading cause of death among all gynecological malignancies. Most patients are diagnosed in the advanced stage and have distant metastasis ultimately. Salinomycin has been demonstrated to reduce invasive capacity of multiple tumor cells. The objective of this study was to investigate the effects of salinomycin on EOC cells. The cell counting kit 8 (CCK-8 and Boyden chamber assays showed that salinomycin could effectively reduce the abilities of proliferation, migration and invasion in EOC cells. The western blot assay showed that salinomycin could increase the expression of epithelial markers (E-cadherin and Keratin while decrease the expression of mesenchymal markers (N-cadherin and vimentin in a dose-dependent manner. These results were ascertained by reverse transcription polymerase chain reaction (RT-PCR. Besides, salinomycin could downregulate the expression of proteins associated with the Wnt/β-catenin pathway and repress the nuclear translocation of β-catenin. It was also shown that salinomycin could reverse the aberrant activation of the canonical Wnt pathway induced by GSK-3β inhibitor (SB216763. Our results revealed that salinomycin could inhibit the proliferation, migration and invasion in EOC cells. In addition, the inhibitive effect of salinomycin on the invasive ability was mediated by repressing the epithelial–mesenchymal transition (EMT program, which may be achieved through its inhibition of the Wnt/β-catenin pathway. Keywords: salinomycin, epithelial–mesenchymal transition, epithelial ovarian cancer, Wnt/β-catenin pathway

  20. MicroRNA-203 Modulates the Radiation Sensitivity of Human Malignant Glioma Cells

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ji Hyun [Department of Radiation Oncology, Graduate School of Medicine, Seoul National University, Seoul (Korea, Republic of); Hwang, Yeo Hyun; Lee, David J.; Kim, Dan Hyo; Park, Ji Min [Medical Science Research Institute, Seoul National University Bundang Hospital, Kyeonggido (Korea, Republic of); Wu, Hong-Gyun [Department of Radiation Oncology, Graduate School of Medicine, Seoul National University, Seoul (Korea, Republic of); Kim, In Ah, E-mail: inah228@snu.ac.kr [Department of Radiation Oncology, Graduate School of Medicine, Seoul National University, Seoul (Korea, Republic of); Medical Science Research Institute, Seoul National University Bundang Hospital, Kyeonggido (Korea, Republic of); Cancer Research Institute, Seoul National University, Seoul (Korea, Republic of)

    2016-02-01

    Purpose: We investigated whether miR-203 could modulate the radiation sensitivity of glioblastoma (GBM) cells and which target gene(s) could be involved. Methods and Materials: Three human malignant glioma (MG) cell lines and normal human astrocytes were transfected with control microRNA, pre-miR-203, or antisense miR-203. Real-time PCR (RT-PCR), clonogenic assays, immunofluorescence, and invasion/migration assays were performed. To predict the target(s), bioinformatics analyses using microRNA target databases were performed. Results: Overexpression of miR-203 increased the radiation sensitivity of all 3 human MG cell lines and prolonged radiation-induced γ-H2AX foci formation. Bioinformatics analyses suggested that miR-203 could be involved in post-transcriptional control of DNA repair, PI3K/AKT, SRC, and JAK/STAT3 and the vascular signaling pathway. Western blot analysis validated the fact that miR-203 downregulated ATM, RAD51, SRC, PLD2, PI3K-AKT, JAK-STAT3, VEGF, HIF-1α, and MMP2. Overexpression of miR-203 inhibited invasion and migration potentials, downregulated SLUG and Vimentin, and upregulated Claudin-1 and ZO1. Conclusions: These data demonstrate that miR-203 potentially controls DNA damage repair via the PI3K/AKT and JAK/STAT3 pathways and may collectively contribute to the modulation of radiation sensitivity in MG cells by inhibiting DNA damage repair, prosurvival signaling, and epithelium-mesenchyme transition. Taken together, these findings demonstrate that miR-203 could be a target for overcoming the radiation resistance of GBM.

  1. MicroRNA-203 Modulates the Radiation Sensitivity of Human Malignant Glioma Cells

    International Nuclear Information System (INIS)

    Chang, Ji Hyun; Hwang, Yeo Hyun; Lee, David J.; Kim, Dan Hyo; Park, Ji Min; Wu, Hong-Gyun; Kim, In Ah

    2016-01-01

    Purpose: We investigated whether miR-203 could modulate the radiation sensitivity of glioblastoma (GBM) cells and which target gene(s) could be involved. Methods and Materials: Three human malignant glioma (MG) cell lines and normal human astrocytes were transfected with control microRNA, pre-miR-203, or antisense miR-203. Real-time PCR (RT-PCR), clonogenic assays, immunofluorescence, and invasion/migration assays were performed. To predict the target(s), bioinformatics analyses using microRNA target databases were performed. Results: Overexpression of miR-203 increased the radiation sensitivity of all 3 human MG cell lines and prolonged radiation-induced γ-H2AX foci formation. Bioinformatics analyses suggested that miR-203 could be involved in post-transcriptional control of DNA repair, PI3K/AKT, SRC, and JAK/STAT3 and the vascular signaling pathway. Western blot analysis validated the fact that miR-203 downregulated ATM, RAD51, SRC, PLD2, PI3K-AKT, JAK-STAT3, VEGF, HIF-1α, and MMP2. Overexpression of miR-203 inhibited invasion and migration potentials, downregulated SLUG and Vimentin, and upregulated Claudin-1 and ZO1. Conclusions: These data demonstrate that miR-203 potentially controls DNA damage repair via the PI3K/AKT and JAK/STAT3 pathways and may collectively contribute to the modulation of radiation sensitivity in MG cells by inhibiting DNA damage repair, prosurvival signaling, and epithelium-mesenchyme transition. Taken together, these findings demonstrate that miR-203 could be a target for overcoming the radiation resistance of GBM.

  2. Heterogeneity in Immune Cell Content in Malignant Pleural Mesothelioma.

    Science.gov (United States)

    Minnema-Luiting, Jorien; Vroman, Heleen; Aerts, Joachim; Cornelissen, Robin

    2018-03-30

    Malignant pleural mesothelioma (MPM) is a highly aggressive cancer with limited therapy options and dismal prognosis. In recent years, the role of immune cells within the tumor microenvironment (TME) has become a major area of interest. In this review, we discuss the current knowledge of heterogeneity in immune cell content and checkpoint expression in MPM in relation to prognosis and prediction of treatment efficacy. Generally, immune-suppressive cells such as M2 macrophages, myeloid-derived suppressor cells and regulatory T cells are present within the TME, with extensive heterogeneity in cell numbers. Infiltration of effector cells such as cytotoxic T cells, natural killer cells and T helper cells is commonly found, also with substantial patient to patient heterogeneity. PD-L1 expression also varied greatly (16-65%). The infiltration of immune cells in tumor and associated stroma holds key prognostic and predictive implications. As such, there is a strong rationale for thoroughly mapping the TME to better target therapy in mesothelioma. Researchers should be aware of the extensive possibilities that exist for a tumor to evade the cytotoxic killing from the immune system. Therefore, no "one size fits all" treatment is likely to be found and focus should lie on the heterogeneity of the tumors and TME.

  3. Osteokalzinexpression and regulation in hematologic malignancies and in cultured cells

    International Nuclear Information System (INIS)

    Wihlidal, P.

    2010-01-01

    Main issue of this work was to gain further insight into the association of haematopoiesis and osteopoiesis. A crucial cue for that is the fact that haematopoietic stem cells of haematopoietic diseases, which are characterised by c-KIT (CD117) expression, express the osteoblast marker osteocalcin. Thus, attention was focussed on the expression and regulation of osteocalcin, on one hand in blood and bone marrow samples of haematological diseases and on the other hand in leukaemic and osteosarcoma cell lines, i.e., by 1. investigating the expression of osteocalcin (OCN) splicing variants in haematological malignancies. We analysed bone marrow obtained from two patients with chronic myeloid leukaemia (CML), seven patients with other myeloproliferative diseases (MPD) and four patients with acute myeloid leukaemia (AML). RT-PCR analyses were performed in order to assess and quantify spliced (OCNs) and unspliced (OCNu) mRNA, the associated transcription factors (AML1 and AML3) as well as c-KIT, which is a marker for activated stem cells. Our data indicate that OCNs mRNA and OCN protein are expressed in c-KIT positive neoplastic stem cells in haematological malignancies. 2. It has been suggested that the tyrosine kinase inhibitor imatinib mesylate (IM), which has proven anti-proliferative effect, influences osteogenesis and bone turnover in treated patients. Thus, we aimed to quantify OCN mRNA, its splicing variants, the associated Runt-domain transcription factors AML1 and AML3, c-KIT and several metabolic genes to gain evidence about the differentiation state in the HL-60 leukaemia cell line as well as MG63 and U2OS osteosarcoma cells and murine primary osteoblasts MC3T3-E1. Our data indicate that IM induces inhibition of proliferation and synthesis of total OCN-mRNA in all cell lines, but a relative increase of OCNs-mRNA was observed in the human cell lines. On the other hand, differentiation-associated genes appeared to be stimulated. This may also indicate an

  4. Nucleolin down-regulation is involved in ADP-induced cell cycle arrest in S phase and cell apoptosis in vascular endothelial cells.

    Directory of Open Access Journals (Sweden)

    Wenmeng Wang

    Full Text Available High concentration of extracellular ADP has been reported to induce cell apoptosis, but the molecular mechanisms remain not fully elucidated. In this study, we found by serendipity that ADP treatment of human umbilical vein endothelial cells (HUVEC and human aortic endothelial cells (HAEC down-regulated the protein level of nucleolin in a dose- and time-dependent manner. ADP treatment did not decrease the transcript level of nucloelin, suggesting that ADP might induce nucleolin protein degradation. HUVEC and HAEC expressed ADP receptor P2Y13 receptor, but did not express P2Y1 or P2Y12 receptors. However, P2Y1, 12, 13 receptor antagonists MRS2179, PSB0739, MRS2211 did not inhibit ADP-induced down-regulation of nucleolin. Moreover, MRS2211 itself down-regulated nucleolin protein level. In addition, 2-MeSADP, an agonist for P2Y1, 12 and 13 receptors, did not down-regulate nucleolin protein. These results suggested that ADP-induced nucleolin down-regulation was not due to the activation of P2Y1, 12, or 13 receptors. We also found that ADP treatment induced cell cycle arrest in S phase, cell apoptosis and cell proliferation inhibition via nucleolin down-regulation. The over-expression of nucleolin by gene transfer partly reversed ADP-induced cell cycle arrest, cell apoptosis and cell proliferation inhibition. Furthermore, ADP sensitized HUVEC to cisplatin-induced cell death by the down-regulation of Bcl-2 expression. Taken together, we found, for the first time to our knowledge, a novel mechanism by which ADP regulates cell proliferation by induction of cell cycle arrest and cell apoptosis via targeting nucelolin.

  5. microRNA-188 is downregulated in oral squamous cell carcinoma and inhibits proliferation and invasion by targeting SIX1.

    Science.gov (United States)

    Wang, Lili; Liu, Hongchen

    2016-03-01

    microRNA-188 expression is downregulated in several tumors. However, its function and mechanism in human oral squamous cell carcinoma (OSCC) remains obscure. The present study aims to identify the expression pattern, biological roles, and potential mechanism by which miR-188 dysregulation is associated with oral squamous cell carcinoma. Significant downregulation of miR-188 was observed in OSCC tissues compared with paired normal tissues. In vitro, gain-of-function, loss-of-function experiments were performed to examine the impact of miR-188 on cancer cell proliferation, invasion, and cell cycle progression. Transfection of miR-188 mimics suppressed Detroit 562 cell proliferation, cell cycle progression and invasion, with downregulation of cyclin D1, MMP9, and p-ERK. Transfection of miR-188 inhibitor in FaDu cell line with high endogenous expression exhibited the opposite effects. Using fluorescence reporter assays, we confirmed that SIX1 was a direct target of miR-188 in OSCC cells. Transfection of miR-188 mimics downregulated SIX1 expression. SIX1 siRNA treatment abrogated miR-188 inhibitor-induced cyclin D1 and MMP9 upregulation. In addition, we found that SIX1 was overexpressed in 32 of 80 OSCC tissues. In conclusion, this study indicates that miR-188 downregulation might be associated with oral squamous cell carcinoma progression. miR-188 suppresses proliferation and invasion by targeting SIX1 in oral squamous cell carcinoma cells.

  6. Mechanical Stress Downregulates MHC Class I Expression on Human Cancer Cell Membrane

    KAUST Repository

    La Rocca, Rosanna

    2014-12-26

    In our body, cells are continuously exposed to physical forces that can regulate different cell functions such as cell proliferation, differentiation and death. In this work, we employed two different strategies to mechanically stress cancer cells. The cancer and healthy cell populations were treated either with mechanical stress delivered by a micropump (fabricated by deep X-ray nanolithography) or by ultrasound wave stimuli. A specific down-regulation of Major Histocompatibility Complex (MHC) class I molecules expression on cancer cell membrane compared to different kinds of healthy cells (fibroblasts, macrophages, dendritic and lymphocyte cells) was observed, stimulating the cells with forces in the range of nano-newton, and pressures between 1 and 10 bar (1 bar = 100.000 Pascal), depending on the devices used. Moreover, Raman spectroscopy analysis, after mechanical treatment, in the range between 700–1800 cm−1, indicated a relative concentration variation of MHC class I. PCA analysis was also performed to distinguish control and stressed cells within different cell lines. These mechanical induced phenotypic changes increase the tumor immunogenicity, as revealed by the related increased susceptibility to Natural Killer (NK) cells cytotoxic recognition.

  7. Mechanical stress downregulates MHC class I expression on human cancer cell membrane.

    Directory of Open Access Journals (Sweden)

    Rosanna La Rocca

    Full Text Available In our body, cells are continuously exposed to physical forces that can regulate different cell functions such as cell proliferation, differentiation and death. In this work, we employed two different strategies to mechanically stress cancer cells. The cancer and healthy cell populations were treated either with mechanical stress delivered by a micropump (fabricated by deep X-ray nanolithography or by ultrasound wave stimuli. A specific down-regulation of Major Histocompatibility Complex (MHC class I molecules expression on cancer cell membrane compared to different kinds of healthy cells (fibroblasts, macrophages, dendritic and lymphocyte cells was observed, stimulating the cells with forces in the range of nano-newton, and pressures between 1 and 10 bar (1 bar = 100.000 Pascal, depending on the devices used. Moreover, Raman spectroscopy analysis, after mechanical treatment, in the range between 700-1800 cm(-1, indicated a relative concentration variation of MHC class I. PCA analysis was also performed to distinguish control and stressed cells within different cell lines. These mechanical induced phenotypic changes increase the tumor immunogenicity, as revealed by the related increased susceptibility to Natural Killer (NK cells cytotoxic recognition.

  8. Overexpression of Oct4 suppresses the metastatic potential of breast cancer cells via Rnd1 downregulation.

    Science.gov (United States)

    Shen, Long; Qin, Kunhua; Wang, Dekun; Zhang, Yan; Bai, Nan; Yang, Shengyong; Luo, Yunping; Xiang, Rong; Tan, Xiaoyue

    2014-11-01

    Although Oct4 is known as a critical transcription factor involved in maintaining "stemness", its role in tumor metastasis is still controversial. Herein, we overexpressed and silenced Oct4 expression in two breast cancer cell lines, MDA-MB-231 and 4T1, separately. Our data showed that ectopic overexpression of Oct4 suppressed cell migration and invasion in vitro and the formation of metastatic lung nodules in vivo. Conversely, Oct4 downregulation increased the metastatic potential of breast cancer cells both in vitro and in vivo. Furthermore, we identified Rnd1 as the downstream target of Oct4 by ribonucleic acid sequencing (RNA-seq) analysis, which was significantly downregulated upon Oct4 overexpression. Chromatin immunoprecipitation assays revealed the binding of Oct4 to the promoter region of Rnd1 by ectopic overexpression of Oct4. Dual luciferase assays indicated that Oct4 overexpression suppressed transcriptional activity of the Rnd1 promoter. Moreover, overexpression of Rnd1 partially rescued the inhibitory effects of Oct4 on the migration and invasion of breast cancer cells. Overexpression of Rnd1 counteracted the influence of Oct4 on the formation of cell adhesion and lamellipodia, which implied a potential underlying mechanism involving Rnd1. In addition, we also found that overexpression of Oct4 led to an elevation of E-cadherin expression, even in 4T1 cells that possess a relatively high basal level of E-cadherin. Rnd1 overexpression impaired the promoting effects of Oct4 on E-cadherin expression in MDA-MB-231 cells. These results suggest that Oct4 affects the metastatic potential of breast cancer cells through Rnd1-mediated effects that influence cell motility and E-cadherin expression. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Down-regulation of endothelin binding sites in rat vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Roubert, P.; Gillard, V.; Plas, P.; Chabrier, P.E.; Braquet, P.

    1990-01-01

    In cultured rat aortic smooth muscle cells, [ 125 I]endothelin (ET-1) bound to an apparent single class of high affinity recognition sites with a dissociation constant of 1.84 +/- 0.29 nmol/L and a maximum binding of 62 +/- 10.5 fmol/10(6) cells. The binding was not affected by calcium antagonists or vasoactive substances, including angiotensin II, arginine vasopressin, atrial natriuretic factor and bradykinin. Exposure of the cells to ET-1 (0.01 nmol/L to 10 nmol/L) resulted in an apparent dose-dependent reduction of the number of endothelin binding sites with no significant modification of its binding affinity. The time course of the down-regulation of ET-1 binding sites showed that this effect was present after 30 min incubation and persisted after 18 h. This indicates that down-regulation of ET-1 binding sites can modulate the activity of ET-1 and suggests a rapid internalization of ET-1 in vascular cells

  10. Mycobacterium leprae downregulates the expression of PHEX in Schwann cells and osteoblasts

    Directory of Open Access Journals (Sweden)

    Sandra R Boiça Silva

    2010-08-01

    Full Text Available Neuropathy and bone deformities, lifelong sequelae of leprosy that persist after treatment, result in significant impairment to patients and compromise their social rehabilitation. Phosphate-regulating gene with homologies to endopeptidase on the X chromosome (PHEX is a Zn-metalloendopeptidase, which is abundantly expressed in osteoblasts and many other cell types, such as Schwann cells, and has been implicated in phosphate metabolism and X-linked rickets. Here, we demonstrate that Mycobacterium leprae stimulation downregulates PHEX transcription and protein expression in a human schwannoma cell line (ST88-14 and human osteoblast lineage. Modulation of PHEX expression was observed to a lesser extent in cells stimulated with other species of mycobacteria, but was not observed in cultures treated with latex beads or with the facultative intracellular bacterium Salmonella typhimurium. Direct downregulation of PHEX by M. leprae could be involved in the bone resorption observed in leprosy patients. This is the first report to describe PHEX modulation by an infectious agent.

  11. Amarogentin Induces Apoptosis of Liver Cancer Cells via Upregulation of p53 and Downregulation of Human Telomerase Reverse Transcriptase in Mice

    Science.gov (United States)

    Li, Runqin; Zhang, Yinglin

    2016-01-01

    Background and Objective: Amarogentin has been reported to have a preventive effect on liver cancer via inducing cancer cell apoptosis. We attempted to elucidate the roles of p53-associated apoptosis pathways in the chemopreventive mechanism of amarogentin. The findings of this study will facilitate the development of a novel supplementary strategy for the treatment of liver cancer. Materials and Methods: The purity of amarogentin was assessed by high-performance liquid chromatography. The inhibitory ratios of the liver cell lines were determined using a Cell Counting Kit-8 following treatment with a gradient concentration of amarogentin. Cell apoptosis was detected by flow cytometry using annexin V-fluorescein isothiocyanate/propidium iodide kits. The gene and protein expression of p53-associated molecules, such as Akt, human telomerase reverse transcriptase, RelA, and p38, was detected by real-time quantitative polymerase chain reaction, Western blotting, and immunohistochemical staining in liver cancer cells and mouse tumor tissues after treatment with amarogentin. Results: The inhibitory effect of amarogentin on cell proliferation was more obvious in liver cancer cells, and amarogentin was more likely to induce the apoptosis of liver cancer cells than that of normal liver cells. The gene and protein expression levels of Akt, RelA, and human telomerase reverse transcriptase were markedly higher in the control group than in the preventive group and treatment groups. Only the expression of human telomerase reverse transcriptase was downregulated, accompanied by the upregulation of p53. Conclusion: The results of our study suggest that amarogentin promotes apoptosis of liver cancer cells by the upregulation of p53 and downregulation of human telomerase reverse transcriptase and prevents the malignant transformation of these cells. PMID:27402632

  12. Cholesterol Down-Regulates BK Channels Stably Expressed in HEK 293 Cells

    Science.gov (United States)

    Deng, Xiu-Ling; Sun, Hai-Ying; Li, Gui-Rong

    2013-01-01

    Cholesterol is one of the major lipid components of the plasma membrane in mammalian cells and is involved in the regulation of a number of ion channels. The present study investigates how large conductance Ca2+-activated K+ (BK) channels are regulated by membrane cholesterol in BK-HEK 293 cells expressing both the α-subunit hKCa1.1 and the auxiliary β1-subunit or in hKCa1.1-HEK 293 cells expressing only the α-subunit hKCa1.1 using approaches of electrophysiology, molecular biology, and immunocytochemistry. Membrane cholesterol was depleted in these cells with methyl-β-cyclodextrin (MβCD), and enriched with cholesterol-saturated MβCD (MβCD-cholesterol) or low-density lipoprotein (LDL). We found that BK current density was decreased by cholesterol enrichment in BK-HEK 293 cells, with a reduced expression of KCa1.1 protein, but not the β1-subunit protein. This effect was fully countered by the proteasome inhibitor lactacystin or the lysosome function inhibitor bafilomycin A1. Interestingly, in hKCa1.1-HEK 293 cells, the current density was not affected by cholesterol enrichment, but directly decreased by MβCD, suggesting that the down-regulation of BK channels by cholesterol depends on the auxiliary β1-subunit. The reduced KCa1.1 channel protein expression was also observed in cultured human coronary artery smooth muscle cells with cholesterol enrichment using MβCD-cholesterol or LDL. These results demonstrate the novel information that cholesterol down-regulates BK channels by reducing KCa1.1 protein expression via increasing the channel protein degradation, and the effect is dependent on the auxiliary β1-subunit. PMID:24260325

  13. Downregulation of reversion-inducing cysteine-rich protein with Kazal motifs in malignant melanoma: inverse correlation with membrane-type 1-matrix metalloproteinase and tissue inhibitor of metalloproteinase 2.

    Science.gov (United States)

    Jacomasso, Thiago; Trombetta-Lima, Marina; Sogayar, Mari C; Winnischofer, Sheila M B

    2014-02-01

    The invasive phenotype of many tumors is associated with an imbalance between the matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of metalloproteinases (TIMPs), and the membrane-anchored reversion-inducing cysteine-rich protein with Kazal motifs (RECK). RECK inhibits MMP-2, MMP-9, and MT1-MMP, and has been linked to patient survival and better prognosis in several types of tumors. However, despite the wide implication of these MMPs in melanoma establishment and progression, the role of RECK in this type of tumor is still unknown. Here, we analyzed the expression of RECK, TIMP1, TIMP2, TIMP3, MT1MMP, MMP2, and MMP9 in two publicly available melanoma microarray datasets and in a panel of human melanoma cell lines. We found that RECK is downregulated in malignant melanoma, accompanied by upregulation of MT1MMP and TIMP2. In both datasets, we observed that the group of samples displaying higher RECK levels show lower median expression levels of MT1MMP and TIMP2 and higher levels of TIMP3. When tested in a sample-wise manner, these correlations were statistically significant. Inverse correlations between RECK, MT1MMP, and TIMP2 were verified in a panel of human melanoma cell lines and in a further reduced model that includes a pair of matched primary tumor-derived and metastasis-derived cell lines. Taken together, our data indicate a consistent correlation between RECK, MT1MMP, and TIMP2 across different models of clinical samples and cell lines and suggest evidence of the potential use of this subset of genes as a gene signature for diagnosing melanoma.

  14. Diarachidonoylphosphoethanolamine induces necrosis/necroptosis of malignant pleural mesothelioma cells.

    Science.gov (United States)

    Kaku, Yoshiko; Tsuchiya, Ayako; Kanno, Takeshi; Nakano, Takashi; Nishizaki, Tomoyuki

    2015-09-01

    The present study investigated 1,2-diarachidonoyl-sn-glycero-3-phosphoethanolamine (DAPE)-induced cell death in malignant pleural mesothelioma (MPM) cells. DAPE reduced cell viability in NCI-H28, NCI-H2052, NCI-H2452, and MSTO-211H MPM cell lines in a concentration (1-100μM)-dependent manner. In the flow cytometry using propidium iodide (PI) and annexin V (AV), DAPE significantly increased the population of PI-positive and AV-negative cells, corresponding to primary necrosis, and that of PI-positive and AV-positive cells, corresponding to late apoptosis/secondary necrosis, in NCI-H28 cells. DAPE-induced reduction of NCI-H28 cell viability was partially inhibited by necrostatin-1, an inhibitor of RIP1 kinase to induce necroptosis, or knocking-down RIP1. DAPE generated reactive oxygen species (ROS) followed by disruption of mitochondrial membrane potentials in NCI-H28 cells. DAPE-induced mitochondrial damage was attenuated by cyclosporin A, an inhibitor of cyclophilin D (CypD). DAPE did not affect expression and mitochondrial localization of p53 protein in NCI-H28 cells. DAPE significantly decreased intracellular ATP concentrations in NCI-H28 cells. Overall, the results of the present study indicate that DAPE induces necroptosis and necrosis of MPM cells; the former is mediated by RIP1 kinase and the latter is caused by generating ROS and opening CypD-dependent mitochondrial permeability transition pore, to reduce intracellular ATP concentrations. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Microvessel and mast cell densities in malignant laryngeal neoplasm

    Directory of Open Access Journals (Sweden)

    Balica Nicolae Constantin

    2014-01-01

    Full Text Available Laryngeal neoplasm contributes to 30-40% of carcinomas of the head and neck. Mast cells are normal connective tissue residents, well represented in the respiratory tract. Experimental evidence suggests that the growth of a tumor beyond a certain size requires angiogenesis, which may also permit metastasis. The aim of this study was to evaluate the correlation between mast cell density, microvascular density, histopathological type and histological grade. Our study included 38 laryngeal carcinomas as follows: adenoid cystic carcinoma (2 cases, malignant papilloma (2 cases and squamous cell carcinoma (34 cases. The combined technique of CD 34-alcian blue safranin (ABS was used to identify microvessel and mast cell density, which was quantified by the hot spot method. A significant correlation was found between both mast cell and microvascular density, and G1/G2 histological grade (p=0.002 and p=0.004, respectively. Squamous cell carcinoma was significantly correlated with mast cell density (p=0.003, but not with microvascular density (p=0.454.

  16. EVALUATION OF CYTOKINE GENE POLYMORPHISM IN B CELL LYMPHOID MALIGNANCIES

    Directory of Open Access Journals (Sweden)

    E. L. Nazarova

    2014-01-01

    Full Text Available Previous studies with some solid tumors has shown that polymorphisms of certain cytokine genes may be used as predictors of clinical outcome in the patients. It seemed important to evaluate potential correlations between production of certain pro- and anti-inflammatory cytokines and co-receptor molecules, and promoter polymorphism of the cytokine genes involved into regulation of cell proliferation, differentiation, apoptosis, lipid metabolism and blood clotting in the patients with hematological malignancies. The article contains our results concerning associations between of IL-1β, -2, -4, -10, -17, TNFα, and allelic polymorphisms of their genes in 62 patients with B cell lymphoid malignancies in an ethnically homogenous group (self-identified as Russians. We have shown that the GА and AA genotypes of the G-308A polymorphism in TNFα gene are significantly associated with increased production of this cytokine, being more common in aggressive non-Hodgkin lymphomas, more rare in multiple myeloma and in indolent non-Hodgkin lymphomas.

  17. Down-regulation of telomerase activity in DLD-1 human colorectal adenocarcinoma cells by tocotrienol

    International Nuclear Information System (INIS)

    Eitsuka, Takahiro; Nakagawa, Kiyotaka; Miyazawa, Teruo

    2006-01-01

    As high telomerase activity is detected in most cancer cells, inhibition of telomerase by drug or dietary food components is a new strategy for cancer prevention. Here, we investigated the inhibitory effect of vitamin E, with particular emphasis on tocotrienol (unsaturated vitamin E), on human telomerase in cell-culture study. As results, tocotrienol inhibited telomerase activity of DLD-1 human colorectal adenocarcinoma cells in time- and dose-dependent manner, interestingly, with δ-tocotrienol exhibiting the highest inhibitory activity. Tocotrienol inhibited protein kinase C activity, resulting in down-regulation of c-myc and human telomerase reverse transcriptase (hTERT) expression, thereby reducing telomerase activity. In contrast to tocotrienol, tocopherol showed very weak telomerase inhibition. These results provide novel evidence for First time indicating that tocotrienol acts as a potent candidate regulator of telomerase and supporting the anti-proliferative function of tocotrienol

  18. Downregulated TIPE2 is associated with poor prognosis and promotes cell proliferation in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Li, Yuexia; Li, Xiaohui; Liu, Gang; Sun, Rongqing; Wang, Lirui; Wang, Jing; Wang, Hongmin

    2015-01-01

    Highlights: • TIPE2 is down-regulated in NSCLC tissues. • TIPE2 inhibits NSCLC cell proliferation, colony formation and invasion. • TIPE2 reduces the anti-apoptotic Bcl-XL protein and mesenchymal marker N-cadherin expression. - Abstract: The present study aims to investigate the expression pattern of TIPE2 protein and its clinical significance in human non-small cell lung cancer (NSCLC). We investigated the expression levels of TIPE2 in 96 NSCLC tumor samples by immunohistochemistry and then analyzed its clinical significance. Furthermore, the role of TIPE2 on the biological properties of the NSCLC cell line H1299 and A549 was experimentally tested in vitro and in vivo. We found that the expression level of TIPE2 was significantly higher in normal lung tissues compared with NSCLC tissues (P < 0.001), and TIPE2 downregulation was significantly correlated with advanced TNM stage (P = 0.006). TIPE2 expression was lower in lung cancer cell lines than normal bronchial cell line HBE. Transfection of TIPE2 plasmid was performed in H1299 and A549 cells. TIPE2 overexpression inhibited lung cancer cell proliferation, colony formation and cell invasive in vitro, and prevented lung tumor growth in vivo. In addition, TIPE2 transfection reduced the anti-apoptotic Bcl-XL protein and mesenchymal marker N-cadherin expression. Taken together, our results demonstrate that TIPE2 might serve as a tumor suppressor in NSCLC progression

  19. Downregulated TIPE2 is associated with poor prognosis and promotes cell proliferation in non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuexia [Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 (China); Li, Xiaohui [Department of Cardiovascular Surgery, Henan Provincial People’s Hospital, Zhengzhou, Henan 450003 (China); Liu, Gang; Sun, Rongqing; Wang, Lirui [Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 (China); Wang, Jing, E-mail: jing_wang1980@163.com [Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 (China); Wang, Hongmin, E-mail: hmwangzz@126.com [Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 (China)

    2015-01-30

    Highlights: • TIPE2 is down-regulated in NSCLC tissues. • TIPE2 inhibits NSCLC cell proliferation, colony formation and invasion. • TIPE2 reduces the anti-apoptotic Bcl-XL protein and mesenchymal marker N-cadherin expression. - Abstract: The present study aims to investigate the expression pattern of TIPE2 protein and its clinical significance in human non-small cell lung cancer (NSCLC). We investigated the expression levels of TIPE2 in 96 NSCLC tumor samples by immunohistochemistry and then analyzed its clinical significance. Furthermore, the role of TIPE2 on the biological properties of the NSCLC cell line H1299 and A549 was experimentally tested in vitro and in vivo. We found that the expression level of TIPE2 was significantly higher in normal lung tissues compared with NSCLC tissues (P < 0.001), and TIPE2 downregulation was significantly correlated with advanced TNM stage (P = 0.006). TIPE2 expression was lower in lung cancer cell lines than normal bronchial cell line HBE. Transfection of TIPE2 plasmid was performed in H1299 and A549 cells. TIPE2 overexpression inhibited lung cancer cell proliferation, colony formation and cell invasive in vitro, and prevented lung tumor growth in vivo. In addition, TIPE2 transfection reduced the anti-apoptotic Bcl-XL protein and mesenchymal marker N-cadherin expression. Taken together, our results demonstrate that TIPE2 might serve as a tumor suppressor in NSCLC progression.

  20. Znhit1 causes cell cycle arrest and down-regulates CDK6 expression

    International Nuclear Information System (INIS)

    Yang, Zhengmin; Cao, Yonghao; Zhu, Xiaoyan; Huang, Ying; Ding, Yuqiang; Liu, Xiaolong

    2009-01-01

    Cyclin-dependent kinase 6 (CDK6) is the key element of the D-type cyclin holoenzymes which has been found to function in the regulation of G1-phase of the cell cycle and is presumed to play important roles in T cell function. In this study, Znhit1, a member of a new zinc finger protein family defined by a conserved Zf-HIT domain, induced arrest in the G1-phase of the cell cycle in NIH/3T3 cells. Of the G1 cell cycle factors examined, the expression of CDK6 was found to be strongly down-regulated by Znhit1 via transcriptional repression. This effect may have correlations with the decreased acetylation level of histone H4 in the CDK6 promoter region. In addition, considering that CDK6 expression predominates in T cells, the negative regulatory role of Znhit1 in TCR-induced T cell proliferation was validated using transgenic mice. These findings identified Znhit1 as a CDK6 regulator that plays an important role in cell proliferation.

  1. Physcion induces mitochondria-driven apoptosis in colorectal cancer cells via downregulating EMMPRIN.

    Science.gov (United States)

    Chen, Xuehong; Gao, Hui; Han, Yantao; Ye, Junli; Xie, Jing; Wang, Chunbo

    2015-10-05

    Physcion, an anthraquinone derivative widely isolated and characterized from both terrestrial and marine sources, has anti-tumor effects on a variety of carcinoma cells, mainly through inhibition of cell proliferation, apoptosis induction and cell cycle arrest. However, little is known about the mechanisms underlying its role in tumor progression. In the present study, we investigated the molecular mechanisms involved in physcion-induced apoptosis in human colorectal cancer (CRC) lines HCT116. Our results showed that physcion inhibited tumor cell viability in a dose- and time-dependent manner, and induced cell apoptosis via intrinsic mitochondrial pathway. Our results also revealed that physcion treatment significantly inhibited extracelluar matrix metalloproteinase inducer (EMMPRIN) expression in HCT116 cells in a dose-dependent manner and overexpression of EMMPRIN protein markedly reduced physcion-induced cell apoptosis. Furthermore, our results strongly indicated the modulating effect of physcion on EMMPRIN is correlated with AMP-activated protein kinase (AMPK)/Hypoxia-inducible factor 1α (HIF-1α) signaling pathway. Our data provide the first experimental evidence that physcion induces mitochondrial apoptosis in CRC cells by downregulating of EMMPRIN via AMPK/HIF-1α signaling pathway and suggest a new mechanism to explain its anti-tumor effects. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Zebularine exerts its antiproliferative activity through S phase delay and cell death in human malignant mesothelioma cells.

    Science.gov (United States)

    Takemura, Yukitoshi; Satoh, Motohiko; Hatanaka, Kenichi; Kubota, Shunichiro

    2018-04-24

    Malignant mesothelioma is an asbestos-related aggressive tumor and current therapy remains ineffective. Zebularine as a DNA methyltransferase (DNMT) inhibitor has an anti-tumor effect in several human cancer cells. The aim of the present study was to investigate whether zebularine could induce antiproliferative effect in human malignant mesothelioma cells. Zebularine induced cell growth inhibition in a dose-dependent manner. In addition, zebularine dose-dependently decreased expression of DNMT1 in all malignant mesothelioma cells tested. Cell cycle analysis indicated that zebularine induced S phase delay. Zebularine also induced cell death in malignant mesothelioma cells. In contrast, zebularine did not induce cell growth inhibition and cell death in human normal fibroblast cells. These results suggest that zebularine has a potential for the treatment of malignant mesothelioma by inhibiting cell growth and inducing cell death.

  3. Anaerobic glycolysis as a property of malignant cells and its application aspects

    International Nuclear Information System (INIS)

    Shmakova, N.L.; Korogodin, V.I.

    1996-01-01

    Under hypoxia excess glucose causes fast death of malignant cells without affecting viability of benign tumor and normal tissue cells. Laws and mechanisms of this phenomenon are described. Relationship between glycolysis activation and malignant degeneration of normal cells, application of artificial hyperglycemia to cancer therapy are discussed. 21 refs., 5 figs., 2 tabs

  4. [Ibrutinib: A new drug of B-cell malignancies].

    Science.gov (United States)

    Thieblemont, Catherine

    2015-06-01

    Ibrutinib (Imbruvica®) is a first-in-class, orally administered once-daily, that inhibits B-cell antigen receptor signaling downstream of Bruton's tyrosine kinase (BTK). Ibrutinib has been approved in USA in February 2014 and in France in October 2014 for the treatment of patients with relapsed/refractory mantle cell lymphoma (MCL) or chronic lymphocytic leukaemia (CLL) and for the treatment of patients with CLL and a chromosome 17 deletion (del 17p) or TP53 mutation. In clinical studies, ibrutinib induced an impressive overall response rate (68%) in patients with relapsed/refractory MCL (phase II study). In CLL, ibrutinib has shown to significantly improve progression-free survival, response rate and overall survival in patients with relapsed/refractory CLL, including in those with del 17p. Ibrutinib had an acceptable tolerability profile. Less than 10% of patients discontinued their treatment because of adverse events. Results are pending in other B-cell lymphomas subtypes such as in diffuse large B-cell lymphoma and in follicular lymphoma. An approval extension has already been enregistered for Waldenström disease in USA in January 2015. Given its efficacy and tolerability, ibrutinib is an emerging treatment option for patients with B-cell malignancies. Copyright © 2015 Société Françise du Cancer. Publié par Elsevier Masson SAS. Tous droits réservés. Published by Elsevier Masson SAS. All rights reserved.

  5. TASK-3 Downregulation Triggers Cellular Senescence and Growth Inhibition in Breast Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Rafael Zúñiga

    2018-03-01

    Full Text Available TASK-3 potassium channels are believed to promote proliferation and survival of cancer cells, in part, by augmenting their resistance to both hypoxia and serum deprivation. While overexpression of TASK-3 is frequently observed in cancers, the understanding of its role and regulation during tumorigenesis remains incomplete. Here, we evaluated the effect of reducing the expression of TASK-3 in MDA-MB-231 and MCF-10F human mammary epithelial cell lines through small hairpin RNA (shRNA-mediated knockdown. Our results show that knocking down TASK-3 in fully transformed MDA-MB-231 cells reduces proliferation, which was accompanied by an induction of cellular senescence and cell cycle arrest, with an upregulation of cyclin-dependent kinase (CDK inhibitors p21 and p27. In non-tumorigenic MCF-10F cells, however, TASK-3 downregulation did not lead to senescence induction, although cell proliferation was impaired and an upregulation of CDK inhibitors was also evident. Our observations implicate TASK-3 as a critical factor in cell cycle progression and corroborate its potential as a therapeutic target in breast cancer treatment.

  6. Management of primary malignant germ cell tumor of the mediastinum

    International Nuclear Information System (INIS)

    Sakurai, Hiroyuki; Asamura, Hisao; Suzuki, Kenji; Watanabe, Shun-ichi; Tsuchiya, Ryosuke

    2004-01-01

    Primary mediastinal malignant germ cell tumors (GCTs) are rare and have a worse prognosis than their gonadal counterparts. Although multimodality treatment is a standard therapeutic strategy in mediastinal GCTs, the clinical implications of surgical intervention remain unclear. Forty-eight patients with primary mediastinal malignant GCT who were treated at the National Cancer Center Hospital, Tokyo, from 1962 to 2002 were studied retrospectively with regard to their histology and clinical profile. Mediastinal GCT occurred predominantly in young males, with a mean age of 28.8 years at the time of diagnosis. There were 46 males (96%) and two females (4%). Histologically, seven patients (15%) were diagnosed as having pure seminoma and 41 (85%) had nonseminomatous GCT. Treatment consisted of surgery alone in nine patients, surgery followed by chemotherapy in two, and chemotherapy followed by surgery in 20. The other 17 patients received chemotherapy and/or radiotherapy without surgery. Of these latter 17 patients, 14 developed progressive disease and three were followed up with a sustained partial response. Among the 31 patients who underwent surgery, complete resection was performed in 27 (87%) and incomplete resection was performed in four (13%). Twelve (41%) patients had elevated serum tumor marker levels preoperatively. Among the 20 patients who received preoperative chemotherapy, viable cells were found in the resected specimen in six (30%). With regard to tumor recurrence in patients with surgical intervention, the preoperative serum tumor marker levels and the presence of viable cells in the resected specimen were significantly associated with recurrence. There was no significant association between surgical curability and recurrence. The 5-year overall survival rate in all 48 patients was 45.5%. Surgical intervention for mediastinal GCT may be needed to remove a chemotherapy-refractory tumor or to assess the pathological response to chemotherapy to determine

  7. Mel-18 negatively regulates stem cell-like properties through downregulation of miR-21 in gastric cancer.

    Science.gov (United States)

    Wang, Xiao-Feng; Zhang, Xiao-Wei; Hua, Rui-Xi; Du, Yi-Qun; Huang, Ming-Zhu; Liu, Yong; Cheng, Yu Fang; Guo, Wei-Jian

    2016-09-27

    Mel-18, a polycomb group protein, has been reported to act as a tumor suppressor and be down-regulated in several human cancers including gastric cancer. It was also found that Mel-18 negatively regulates self-renewal of hematopoietic stem cells and breast cancer stem cells (CSCs). This study aimed to clarify its role in gastric CSCs and explore the mechanisms. We found that low-expression of Mel-18 was correlated with poor prognosis and negatively correlated with overexpression of stem cell markers Oct4, Sox2, and Gli1 in 101 gastric cancer tissues. Mel-18 was down-regulated in cultured spheroid cells, which possess CSCs, and overexpression of Mel-18 inhibits cells sphere-forming ability and tumor growth in vivo. Besides, Mel-18 was lower-expressed in ovary metastatic lesions compared with that in primary lesions of gastric cancer, and Mel-18 overexpression inhibited the migration ability of gastric cancer cells. Interestingly, overexpression of Mel-18 resulted in down-regulation of miR-21 in gastric cancer cells and the expression of Mel-18 was negatively correlated with the expression of miR-21 in gastric cancer tissues. Furthermore, miR-21 overexpression partially restored sphere-forming ability, migration potential and chemo-resistance in Mel-18 overexpressing gastric cancer cells. These results suggests Mel-18 negatively regulates stem cell-like properties through downregulation of miR-21 in gastric cancer cells.

  8. Andrographolide downregulates the v-Src and Bcr-Abl oncoproteins and induces Hsp90 cleavage in the ROS-dependent suppression of cancer malignancy.

    Science.gov (United States)

    Liu, Sheng-Hung; Lin, Chao-Hsiung; Liang, Fong-Ping; Chen, Pei-Fen; Kuo, Cheng-Deng; Alam, Mohd Mujahid; Maiti, Barnali; Hung, Shih-Kai; Chi, Chin-Wen; Sun, Chung-Ming; Fu, Shu-Ling

    2014-01-15

    Andrographolide is a diterpenoid compound isolated from Andrographis paniculata that exhibits anticancer activity. We previously reported that andrographolide suppressed v-Src-mediated cellular transformation by promoting the degradation of Src. In the present study, we demonstrated the involvement of Hsp90 in the andrographolide-mediated inhibition of Src oncogenic activity. Using a proteomics approach, a cleavage fragment of Hsp90α was identified in andrographolide-treated cells. The concentration- and time-dependent induction of Hsp90 cleavage that accompanied the reduction in Src was validated in RK3E cells transformed with either v-Src or a human truncated c-Src variant and treated with andrographolide. In cancer cells, the induction of Hsp90 cleavage by andrographolide and its structural derivatives correlated well with decreased Src levels, the suppression of transformation, and the induction of apoptosis. Moreover, the andrographolide-induced Hsp90 cleavage, Src degradation, inhibition of transformation, and induction of apoptosis were abolished by a ROS inhibitor, N-acetyl-cysteine. Notably, Hsp90 cleavage, decreased levels of Bcr-Abl (another known Hsp90 client protein), and the induction of apoptosis were also observed in human K562 leukemia cells treated with andrographolide or its active derivatives. Together, we demonstrated a novel mechanism by which andrographolide suppressed cancer malignancy that involved inhibiting Hsp90 function and reducing the levels of Hsp90 client proteins. Our results broaden the molecular basis of andrographolide-mediated anticancer activity. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. T-Cell Mediated Immune Responses Induced in ret Transgenic Mouse Model of Malignant Melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Abschuetz, Oliver [Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim , Heidelberg 69120 (Germany); Osen, Wolfram [Division of Translational Immunology, German Cancer Center, Heidelberg 69120 (Germany); Frank, Kathrin [Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim , Heidelberg 69120 (Germany); Kato, Masashi [Unit of Environmental Health Sciences, Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Aichi 487-8501 (Japan); Schadendorf, Dirk [Department of Dermatology, University Hospital Essen, Essen 45122 (Germany); Umansky, Viktor, E-mail: v.umansky@dkfz.de [Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim , Heidelberg 69120 (Germany)

    2012-04-26

    Poor response of human malignant melanoma to currently available treatments requires a development of innovative therapeutic strategies. Their evaluation should be based on animal models that resemble human melanoma with respect to genetics, histopathology and clinical features. Here we used a transgenic mouse model of spontaneous skin melanoma, in which the ret transgene is expressed in melanocytes under the control of metallothionein-I promoter. After a short latency, around 25% mice develop macroscopic skin melanoma metastasizing to lymph nodes, bone marrow, lungs and brain, whereas other transgenic mice showed only metastatic lesions without visible skin tumors. We found that tumor lesions expressed melanoma associated antigens (MAA) tyrosinase, tyrosinase related protein (TRP)-1, TRP-2 and gp100, which could be applied as targets for the immunotherapy. Upon peptide vaccination, ret transgenic mice without macroscopic melanomas were able to generate T cell responses not only against a strong model antigen ovalbumin but also against typical MAA TRP-2. Although mice bearing macroscopic primary tumors could also display an antigen-specific T cell reactivity, it was significantly down-regulated as compared to tumor-free transgenic mice or non-transgenic littermates. We suggest that ret transgenic mice could be used as a pre-clinical model for the evaluation of novel strategies of melanoma immunotherapy.

  10. Malignant T cells express lymphotoxin alpha and drive endothelial activation in cutaneous T cell lymphoma

    DEFF Research Database (Denmark)

    Lauenborg, Britt; Christensen, Louise; Ralfkiaer, Ulrik

    2015-01-01

    Lymphotoxin α (LTα) plays a key role in the formation of lymphatic vasculature and secondary lymphoid structures. Cutaneous T cell lymphoma (CTCL) is the most common primary lymphoma of the skin and in advanced stages, malignant T cells spreads through the lymphatic to regional lymph nodes...

  11. Expression profile and function of Wnt signaling mechanisms in malignant mesothelioma cells

    International Nuclear Information System (INIS)

    Fox, Simon A.; Richards, Alex K.; Kusumah, Ivonne; Perumal, Vanathi; Bolitho, Erin M.; Mutsaers, Steven E.; Dharmarajan, Arun M.

    2013-01-01

    Highlights: •Expression profile of Wnt pathway related genes in mesothelioma cells. •Differential expression of key Wnt pathway molecules and regulators. •Wnt3a stimulated mesothelioma growth whereas sFRP4 was inhibitory. •Targeting β-Catenin can sensitise mesothelioma cells to cytotoxic drugs. -- Abstract: Malignant mesothelioma (MM) is an uncommon and particularly aggressive cancer associated with asbestos exposure, which currently presents an intractable clinical challenge. Wnt signaling has been reported to play a role in the neoplastic properties of mesothelioma cells but has not been investigated in detail in this cancer. We surveyed expression of Wnts, their receptors, and other key molecules in this pathway in well established in vitro mesothelioma models in comparison with primary mesothelial cultures. We also tested the biological response of MM cell lines to exogenous Wnt and secreted regulators, as well as targeting β-catenin. We detected frequent expression of Wnt3 and Wnt5a, as well as Fzd 2, 4 and 6. The mRNA of Wnt4, Fzd3, sFRP4, APC and axin2 were downregulated in MM relative to mesothelial cells while LEF1 was overexpressed in MM. Functionally, we observed that Wnt3a stimulated MM proliferation while sFRP4 was inhibitory. Furthermore, directly targeting β-catenin expression could sensitise MM cells to cytotoxic drugs. These results provide evidence for altered expression of a number of Wnt/Fzd signaling molecules in MM. Modulation of Wnt signaling in MM may prove a means of targeting proliferation and drug resistance in this cancer

  12. Expression profile and function of Wnt signaling mechanisms in malignant mesothelioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Simon A., E-mail: s.fox@curtin.edu.au [Molecular Pharmacology Laboratory, School of Pharmacy, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA (Australia); Richards, Alex K.; Kusumah, Ivonne; Perumal, Vanathi [Molecular Pharmacology Laboratory, School of Pharmacy, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA (Australia); Bolitho, Erin M. [Western Australian Institute for Medical Research, The University of Western Australia Centre for Medical Research, Perth, WA (Australia); Mutsaers, Steven E. [Lung Institute of Western Australia, Centre for Asthma Allergy and Respiratory Research, University of Western Australia, Nedlands (Australia); Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia and Western Australian Institute for Medical Research, Nedlands (Australia); Dharmarajan, Arun M. [School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA (Australia)

    2013-10-11

    Highlights: •Expression profile of Wnt pathway related genes in mesothelioma cells. •Differential expression of key Wnt pathway molecules and regulators. •Wnt3a stimulated mesothelioma growth whereas sFRP4 was inhibitory. •Targeting β-Catenin can sensitise mesothelioma cells to cytotoxic drugs. -- Abstract: Malignant mesothelioma (MM) is an uncommon and particularly aggressive cancer associated with asbestos exposure, which currently presents an intractable clinical challenge. Wnt signaling has been reported to play a role in the neoplastic properties of mesothelioma cells but has not been investigated in detail in this cancer. We surveyed expression of Wnts, their receptors, and other key molecules in this pathway in well established in vitro mesothelioma models in comparison with primary mesothelial cultures. We also tested the biological response of MM cell lines to exogenous Wnt and secreted regulators, as well as targeting β-catenin. We detected frequent expression of Wnt3 and Wnt5a, as well as Fzd 2, 4 and 6. The mRNA of Wnt4, Fzd3, sFRP4, APC and axin2 were downregulated in MM relative to mesothelial cells while LEF1 was overexpressed in MM. Functionally, we observed that Wnt3a stimulated MM proliferation while sFRP4 was inhibitory. Furthermore, directly targeting β-catenin expression could sensitise MM cells to cytotoxic drugs. These results provide evidence for altered expression of a number of Wnt/Fzd signaling molecules in MM. Modulation of Wnt signaling in MM may prove a means of targeting proliferation and drug resistance in this cancer.

  13. Downregulation of mitochondrial UQCRB inhibits cancer stem cell-like properties in glioblastoma.

    Science.gov (United States)

    Jung, Narae; Kwon, Ho Jeong; Jung, Hye Jin

    2018-01-01

    Glioblastoma stem cell targeted therapies have become a powerful strategy for the treatment of this deadliest brain tumor. We demonstrate for the first time that downregulation of mitochondrial ubiquinol-cytochrome c reductase binding protein (UQCRB) inhibits the cancer stem cell-like properties in human glioblastoma cells. The synthetic small molecules targeting UQCRB significantly suppressed not only the self-renewal capacity such as growth and neurosphere formation, but also the metastatic potential such as migration and invasion of glioblastoma stem‑like cells (GSCs) derived from U87MG and U373MG at subtoxic concentrations. Notably, the UQCRB inhibitors repressed c‑Met-mediated downstream signal transduction and hypoxia‑inducible factor‑1α (HIF‑1α) activation, thereby reducing the expression levels of GSC markers including CD133, Nanog, Oct4 and Sox2 in the GSCs. Furthermore, the UQCRB inhibitors decreased mitochondrial ROS generation and mitochondrial membrane potential in the GSCs, indicating that they regulate the mitochondrial function in GSCs. Indeed, the knockdown of UQCRB gene by UQCRB siRNA significantly inhibited the cancer stem cell-like phenotypes as well as the expression of stemness markers by blocking mitochondrial ROS/HIF‑1α/c‑Met pathway in U87MG GSCs. These findings suggest that UQCRB and its inhibitors could be a new therapeutic target and lead compounds for eliminating cancer stem cells in glioblastoma.

  14. MicroRNA-143 Downregulates Interleukin-13 Receptor Alpha1 in Human Mast Cells

    Directory of Open Access Journals (Sweden)

    Jianqiu Cheng

    2013-08-01

    Full Text Available MicroRNA-143 (miR-143 was found to be downregulated in allergic rhinitis, and bioinformatics analysis predicted that IL-13Rα1 was a target gene of miR-143. To understand the molecular mechanisms of miR-143 involved in the pathogenesis of allergic inflammation, recombinant miR-143 plasmid vectors were constructed, and human mast cell-1(HMC-1 cells which play a central role in the allergic response were used for study. The plasmids were transfected into HMC-1 cells using a lentiviral vector. Expression of IL-13Rα1 mRNA was then detected by reverse transcriptase polymerase chain reaction (RT-PCR and Western Blotting. The miR-143 lentiviral vector was successfully stably transfected in HMC-1 cells for target gene expression. Compared to the control, the target gene IL-13Rα1 was less expressed in HMC-1 transfected with miR-143 as determined by RT-PCR and Western Blotting (p < 0.05; this difference in expression was statistically significant and the inhibition efficiency was 71%. It indicates that miR-143 directly targets IL-13Rα1 and suppresses IL-13Rα1 expression in HMC-1 cells. Therefore, miR-143 may be associated with allergic reaction in human mast cells.

  15. Protection and sensitization of normal and malignant cells by a naturally occurring compound in a model of photochemical damage

    Science.gov (United States)

    Lee, Yuan-Hao; Kumar, Neeru; Glickman, Randolph D.

    2012-03-01

    Certain phytonutrients are known to confer protection and immunosuppression against radiation insults. Radiation-induced reactive oxygen species (ROS) can either lead to the destruction of normal tissue cells, or induce tumor radioresistance by activating ROS scavenging proteins. To identify whether the triterpene phytonutrient, ursolic acid, reduces radiation-induced damage in normal cells and promotes the apoptosis of malignant cells, we investigated the biologic mechanisms and effect of radiation-cell interaction with or without treatment with ursolic acid in human skin melanoma cells (ATCC CRL-11147TM) and transformed human retinal pigment epithelial (hTERT-RPE) cells. UV-VIS light was employed to investigate the efficacy of ursolic acid in altering cellular viability by modulations of p53 and NF-κB p65 signaling. Cell response was investigated by changes in proliferative activity and free radical generation assessed by 2',7'-dichlorofluorescin liquid chromatography. Ursolic acid pretreatment strongly increased the level of p53 and decreased the level of phosphorylated p65 leading to enhanced cell death of skin melanoma cells in response to UV-VIS exposure. In contrast, ursolic acid appeared to downregulate p53 levels without disturbing NF-κB activation along with an increase of oxidative stress in hTERT-RPE cells. These findings indicate that ursolic acid may beneficially increase the radiosensitivity of tumor cells while potentiating a photoprotective effect on benign cells through differential effects on the NF-κB and p53 signaling pathways.

  16. Monoclonal antibody studies in B(non-T)-cell malignancies.

    Science.gov (United States)

    Shimoyama, M; Minato, K; Tobinai, K; Nagai, M; Hirose, M

    1983-09-01

    Tumor cells suspensions prepared from 129 B- or non-T cell malignancies were investigated with a panel of 10 monoclonal antibodies and conventional surface marker techniques. Surface immunoglobulin (sIg) and B1 antigen proved to be the most useful markers for B-cell lineage. Six major subtypes of acute lymphoblastic leukemia (ALL) of non-T cell nature are now recognized by these immunological techniques, including null-ALL, Ia-ALL, lymphoid stem cell ALL, pre-pre-B ALL, pre-B ALL and B-ALL. In cases of chronic leukemias and lymphomas of non-T cell nature, 80% of the tumor was defined by sIg and 88% by B1 antigen as definitely of B-cell lineage. The clonal character was also defined in 68% of the tumor on the basis of the detection of predominant single light chain in sIg. Ia-like antigen was detected in almost all cases (96%). Leukemic cells from all cases of chronic lymphocytic leukemia (CLL), chronic lymphosarcoma cell leukemia (CLsCL) and hairy cell leukemia (HCL) reacted with OKIa1 and anti-B1, and leukemic cells from most of them with anti-pan T monoclonal antibody (10.2). In more than half of CLL and CLsCL, leukemic cells were reactive with J5, OKM1, 9.6 and OKT8, but not with OKT3, OKT4 and OKT6. HCL cells had almost the same reactivity with these monoclonal antibodies as CLL and CLsCL cells except that J5 remained unreactive. These results indicated that Japanese CLL, CLsCL and HCL were different from Western ones at least with respect to surface marker characteristics. In cases of lymphomas, heavy chains of sIg were expressed in polyclonal fashion, especially in follicular lymphoma and diffuse lymphomas of medium sized cell type and large cell type, indicating that lymphomas of these types may originate from follicular center cells of the heavy chain switching stage. Anti-T monoclonals were also reactive with lymphoma cells. In about half of follicular lymphomas and diffuse lymphomas of the medium sized cell type, lymphoma cells reacted with 10.2, and less

  17. Modeled microgravity suppressed invasion and migration of human glioblastoma U87 cells through downregulating store-operated calcium entry

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Zi-xuan [Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 (China); Rao, Wei [Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 (China); Wang, Huan [Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi' an, 710032 (China); Wang, Nan-ding [Department of Cardiology, Xi' an Traditional Chinese Medicine Hospital, Xi' an, 710032 (China); Si, Jing-Wen; Zhao, Jiao; Li, Jun-chang [Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 (China); Wang, Zong-ren, E-mail: zongren@fmmu.edu.cn [Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 (China)

    2015-02-13

    Glioblastoma is the most common brain tumor and is characterized with robust invasion and migration potential resulting in poor prognosis. Previous investigations have demonstrated that modeled microgravity (MMG) could decline the cell proliferation and attenuate the metastasis potential in several cell lines. In this study, we studied the effects of MMG on the invasion and migration potentials of glioblastoma in human glioblastoma U87 cells. We found that MMG stimulation significantly attenuated the invasion and migration potentials, decreased thapsigargin (TG) induced store-operated calcium entry (SOCE) and downregulated the expression of Orai1 in U87 cells. Inhibition of SOCE by 2-APB or stromal interaction molecule 1 (STIM1) downregulation both mimicked the effects of MMG on the invasion and migration potentials in U87 cells. Furthermore, upregulation of Orai1 significantly weakened the effects of MMG on the invasion and migration potentials in U87 cells. Therefore, these findings indicated that MMG stimulation inhibited the invasion and migration potentials of U87 cells by downregulating the expression of Orai1 and sequentially decreasing the SOCE, suggesting that MMG might be a new potential therapeutic strategy in glioblastoma treatment in the future. - Highlights: • Modeled microgravity (MMG) suppressed migration and invasion in U87 cells. • MMG downregulated the SOCE and the expression of Orai1. • SOCE inhibition mimicked the effects of MMG on migration and invasion potentials. • Restoration of SOCE diminished the effects of MMG on migration and invasion.

  18. Modeled microgravity suppressed invasion and migration of human glioblastoma U87 cells through downregulating store-operated calcium entry

    International Nuclear Information System (INIS)

    Shi, Zi-xuan; Rao, Wei; Wang, Huan; Wang, Nan-ding; Si, Jing-Wen; Zhao, Jiao; Li, Jun-chang; Wang, Zong-ren

    2015-01-01

    Glioblastoma is the most common brain tumor and is characterized with robust invasion and migration potential resulting in poor prognosis. Previous investigations have demonstrated that modeled microgravity (MMG) could decline the cell proliferation and attenuate the metastasis potential in several cell lines. In this study, we studied the effects of MMG on the invasion and migration potentials of glioblastoma in human glioblastoma U87 cells. We found that MMG stimulation significantly attenuated the invasion and migration potentials, decreased thapsigargin (TG) induced store-operated calcium entry (SOCE) and downregulated the expression of Orai1 in U87 cells. Inhibition of SOCE by 2-APB or stromal interaction molecule 1 (STIM1) downregulation both mimicked the effects of MMG on the invasion and migration potentials in U87 cells. Furthermore, upregulation of Orai1 significantly weakened the effects of MMG on the invasion and migration potentials in U87 cells. Therefore, these findings indicated that MMG stimulation inhibited the invasion and migration potentials of U87 cells by downregulating the expression of Orai1 and sequentially decreasing the SOCE, suggesting that MMG might be a new potential therapeutic strategy in glioblastoma treatment in the future. - Highlights: • Modeled microgravity (MMG) suppressed migration and invasion in U87 cells. • MMG downregulated the SOCE and the expression of Orai1. • SOCE inhibition mimicked the effects of MMG on migration and invasion potentials. • Restoration of SOCE diminished the effects of MMG on migration and invasion

  19. Downregulation of tropomyosin-1 in squamous cell carcinoma of esophagus, the role of Ras signaling and methylation.

    Science.gov (United States)

    Zare, Maryam; Jazii, Ferdous Rastgar; Soheili, Zahra-Soheila; Moghanibashi, Mohamad-Mehdi

    2012-10-01

    Tropomyosins (TMs) are a family of cytoskeletal proteins that bind to and stabilize actin microfilaments. Non-muscle cells express multiple isoforms of TMs including three high molecular weight (HMW) isoforms: TM1, TM2, and TM3. While reports have indicated downregulation of TMs in transformed cells and several human cancers, nevertheless, little is known about the underlying mechanism of TMs suppression. In present study the expression of HMW TMs was investigated in squamous cell carcinoma of esophagus (SCCE), relative to primary cell cultures of normal esophagus by western blotting and real-time RT-PCR. Our results showed that TM1, TM2, and TM3 were significantly downregulated in cell line of SCCE. Moreover, mRNA level of TPM1 and TPM2 were markedly decreased by 93% and 96%, in tumor cell line relative to esophagus normal epithelial cells. Therefore, downregulation of TMs could play an important role in tumorigenesis of esophageal cancer. To asses the mechanism of TM downregulation in esophageal cancer, the role of Ras dependent signaling and promoter hypermethylation were investigated. We found that inhibition of two Ras effectory downstream pathways; MEK/ERK and PI3K/Akt leads to significant increased expression of TM1 protein and both TPM1 and TPM2 mRNAs. In addition, methyltransferase inhibition significantly upregulated TM1, suggesting the prominent contribution of promoter hypermethylation in TM1 downregulation in esophageal cancer. These data indicate that downregulation of HMW TMs occurs basically in SCCE and the activation of MEK/ERK and PI3K/Akt pathways as well as the epigenetic mechanism of promoter hypermethylation play important role in TM1 suppression in SCCE. Copyright © 2011 Wiley Periodicals, Inc.

  20. Oxidative Stress Induces Endothelial Cell Senescence via Downregulation of Sirt6

    Directory of Open Access Journals (Sweden)

    Rong Liu

    2014-01-01

    Full Text Available Accumulating evidence has shown that diabetes accelerates aging and endothelial cell senescence is involved in the pathogenesis of diabetic vascular complications, including diabetic retinopathy. Oxidative stress is recognized as a key factor in the induction of endothelial senescence and diabetic retinopathy. However, specific mechanisms involved in oxidative stress-induced endothelial senescence have not been elucidated. We hypothesized that Sirt6, which is a nuclear, chromatin-bound protein critically involved in many pathophysiologic processes such as aging and inflammation, may have a role in oxidative stress-induced vascular cell senescence. Measurement of Sirt6 expression in human endothelial cells revealed that H2O2 treatment significantly reduced Sirt6 protein. The loss of Sirt6 was associated with an induction of a senescence phenotype in endothelial cells, including decreased cell growth, proliferation and angiogenic ability, and increased expression of senescence-associated β-galactosidase activity. Additionally, H2O2 treatment reduced eNOS expression, enhanced p21 expression, and dephosphorylated (activated retinoblastoma (Rb protein. All of these alternations were attenuated by overexpression of Sirt6, while partial knockdown of Sirt6 expression by siRNA mimicked the effect of H2O2. In conclusion, these results suggest that Sirt6 is a critical regulator of endothelial senescence and oxidative stress-induced downregulation of Sirt6 is likely involved in the pathogenesis of diabetic retinopathy.

  1. Down-regulating overexpressed human Lon in cervical cancer suppresses cell proliferation and bioenergetics.

    Directory of Open Access Journals (Sweden)

    Xiaobo Nie

    Full Text Available The human mitochondrial ATP-dependent Lon protease functions in regulating the metabolism and quality control of proteins and mitochondrial DNA (mtDNA. However, the role of Lon in cancer is not well understood. Therefore, this study was undertaken to investigate the importance of Lon in cervical cancer cells from patients and in established cell lines. Microarray analysis from 30 cancer and 10 normal cervical tissues were analyzed by immunohistochemistry for Lon protein levels. The expression of Lon was also examined by immunoblotting 16 fresh cervical cancer tissues and their respective non-tumor cervical tissues. In all cases, Lon expression was significantly elevated in cervical carcinomas as compared to normal tissues. Augmented Lon expression in tissue microarrays did not vary between age, tumor-node-metastasis grades, or lymph node metastasis. Knocking down Lon in HeLa cervical cancer cells by lentivrial transduction resulted in a substantial decrease in both mRNA and protein levels. Such down-regulation of Lon expression significantly blocked HeLa cell proliferation. In addition, knocking down Lon resulted in decreased cellular bioenergetics as determined by measuring aerobic respiration and glycolysis using the Seahorse XF24 extracellular flux analyzer. Together, these data demonstrate that Lon plays a potential role in the oncogenesis of cervical cancer, and may be a useful biomarker and target in the treatment of cervical cancer. Lon; immunohistochemistry; cervical cancer; cell proliferation; cellular bioenergetics.

  2. Extract of Cordyceps militaris inhibits angiogenesis and suppresses tumor growth of human malignant melanoma cells.

    Science.gov (United States)

    Ruma, I Made Winarsa; Putranto, Endy Widya; Kondo, Eisaku; Watanabe, Risayo; Saito, Ken; Inoue, Yusuke; Yamamoto, Ken-Ichi; Nakata, Susumu; Kaihata, Masaji; Murata, Hitoshi; Sakaguchi, Masakiyo

    2014-07-01

    Angiogenesis is essential for tumor development and metastasis. Among several angiogenic factors, vascular endothelial growth factor receptor (VEGF) is important for tumor-derived angiogenesis and commonly overexpressed in solid tumors. Thus, many antitumor strategies targeting VEGF have been developed to inhibit cancer angiogenesis, offering insights into the successful treatment of solid cancers. However, there are a number of issues such as harmful effects on normal vascularity in clinical trials. Taking this into consideration, we employed Cordyceps militaris as an antitumor approach due to its biological safety in vivo. The herbal medicinal mushroom Cordyceps militaris has been reported to show potential anticancer properties including anti-angiogenic capacity; however, its concrete properties have yet to be fully demonstrated. In this study, we aimed to elucidate the biological role of Cordyceps militaris extract in tumor cells, especially in regulating angiogenesis and tumor growth of a human malignant melanoma cell line. We demonstrated that Cordyceps militaris extract remarkably suppressed tumor growth via induction of apoptotic cell death in culture that links to the abrogation of VEGF production in melanoma cells. This was followed by mitigation of Akt1 and GSK-3β activation, while p38α phosphorylation levels were increased. Extract treatment in mouse model xenografted with human melanoma cells resulted in a dramatic antitumor effect with down-regulation of VEGF expression. The results suggest that suppression of tumor growth by Cordyceps militaris extract is, at least, mediated by its anti-angiogenicity and apoptosis induction capacities. Cordyceps militaris extract may be a potent antitumor herbal drug for solid tumors.

  3. Down-regulation of Wnt10a affects odontogenesis and proliferation in mesenchymal cells

    International Nuclear Information System (INIS)

    Liu, Yang; Han, Dong; Wang, Lei; Feng, Hailan

    2013-01-01

    Highlights: •Down-regulation of Wnt10a in dental mesenchymal cells impairs odontogenesis of reassociated tooth germs. •Dspp is down- and up-regulated after Wnt10a-knockdown and overexpression in dental mesenchymal cells. •Down-regulation of Wnt10a inhibits proliferation of dental mesenchymal cells. -- Abstract: The WNT10a mutation has been found in patients with abnormal odontogenesis. In mice, Wnt10a expression is found in the tooth germ, but its role has not yet been elucidated. We aimed to investigate the role of Wnt10a in odontogenesis. Mesenchymal cells of the first mandibular molar germ at the bell stage were isolated, transfected with Wnt10a SiRNA or plasmid, and reassociated with epithelial part of the molar germ. Scrambled SiRNA or empty vector was used in the control group. The reassociated tooth germs were transplanted into mice subrenal capsules. After gene modification, dental mesenchymal cells cultured in vitro were checked for cell proliferation and the expression of Dspp was examined. All 12 reassociated tooth germs in the control group resumed odontogenesis, while only 5 of 12 in the Wnt10a knockdown group developed into teeth. After Wnt10a knockdown, the mesenchymal cells cultured in vitro presented repressed proliferation. Wnt10a knockdown and overexpression led to both down- and up-regulation of Dspp. We conclude that the down-regulation of Wnt10a impairs odontogensis and cell proliferation, and that Wnt10a regulates Dspp expression in mesenchymal cells. These findings help to elucidate the mechanism of abnormal tooth development in patients with the WNT10A mutation

  4. Downregulation of telomerase activity in human promyelocytic cell line using RNA interference.

    Science.gov (United States)

    Miri-Moghaddam, E; Deezagi, A; Soheili, Z S

    2009-12-01

    Telomerase is a ribonucleoprotein complex. It consists of two main components, human telomerase reverse transcriptase (hTERT) and human telomerase RNA. High telomerase activity is present in most malignant cells, but it is barely detectable in majority of somatic cells. The direct correlation between telomerase reactivation and carcinogens has made hTERT a key target for anticancer therapeutic studies. In this study, for the first time, we evaluated the ability of the new generation of short interfering RNA (siRNA) to regulate telomerase activity in the human promyelocytic leukemia cell line (HL-60). Transient transfection cell line by hTERT siRNAs resulted in statistically significant suppression of hTERT messenger RNAs which were detected by quantitative real-time polymerase chain reaction, while the expressed hTERT protein levels were measured by flow cytometry. The results of telomeric repeat amplification protocol showed that telomerase activity was significantly reduced upon transfection of the HL-60 cell line with hTERT siRNAs. The results of this study showed that telomerase activity and cell proliferation were efficiently inhibited in the hTERT siRNA-treated leukemic cell line.

  5. Malignant primary germ-cell tumor of the brain

    International Nuclear Information System (INIS)

    Yamamoto, Toyoshiro; Sato, Shinichi; Nakao, Satoshi; Ban, Sadahiko; Namba, Koh

    1983-01-01

    The unusual case of a 15 year old boy with three discrete paraventricular germ-cell tumors is reported.FThe first tumor was located just lateral to the left thalamus and included a massive cystic part around it, the second tumor in the paraventricular region above the head of the left caudate nucleus and the third tumor in the medial part of the left parietal lobe.FTotal removal of all tumors was successfully accomplished in stages at four separate operations, namely, the first tumor was removed through the left transsylvian approach, the second tumor via left superior frontal gyrus and the third tumor via left superior frontal gyrus and left superior parietal lobule.FHistological examination revealed that the first tumor was teratoma, the second was choriocarcinoma and the third was germinoma.FPrimary germ-cell tumors of the brain can be divided into 5 groups: 1) germinoma; 2) embryonal carcinoma; 3) choriocarcinoma; 4) yolk-sac tumor; or 5) teratoma.FIn this case, a combination of three different histological patterns was seen. If malignant germ-cell tumor is supected on CT, aggressive extirpation should be done, not only to determine the exact diagnosis, but also to provide the basis for subsequent adjunctive therapy. (author)

  6. An Alu-like RNA promotes cell differentiation and reduces malignancy of human neuroblastoma cells.

    Science.gov (United States)

    Castelnuovo, Manuele; Massone, Sara; Tasso, Roberta; Fiorino, Gloria; Gatti, Monica; Robello, Mauro; Gatta, Elena; Berger, Audrey; Strub, Katharina; Florio, Tullio; Dieci, Giorgio; Cancedda, Ranieri; Pagano, Aldo

    2010-10-01

    Neuroblastoma (NB) is a pediatric cancer characterized by remarkable cell heterogeneity within the tumor nodules. Here, we demonstrate that the synthesis of a pol III-transcribed noncoding (nc) RNA (NDM29) strongly restricts NB development by promoting cell differentiation, a drop of malignancy processes, and a dramatic reduction of the tumor initiating cell (TIC) fraction in the NB cell population. Notably, the overexpression of NDM29 also confers to malignant NB cells an unpredicted susceptibility to the effects of antiblastic drugs used in NB therapy. Altogether, these results suggest the induction of NDM29 expression as possible treatment to increase cancer cells vulnerability to therapeutics and the measure of its synthesis in NB explants as prognostic factor of this cancer type.

  7. Single-cell analysis reveals early manifestation of cancerous phenotype in pre-malignant esophageal cells.

    Directory of Open Access Journals (Sweden)

    Jiangxin Wang

    Full Text Available Cellular heterogeneity plays a pivotal role in a variety of functional processes in vivo including carcinogenesis. However, our knowledge about cell-to-cell diversity and how differences in individual cells manifest in alterations at the population level remains very limited mainly due to the lack of appropriate tools enabling studies at the single-cell level. We present a study on changes in cellular heterogeneity in the context of pre-malignant progression in response to hypoxic stress. Utilizing pre-malignant progression of Barrett's esophagus (BE as a disease model system we studied molecular mechanisms underlying the progression from metaplastic to dysplastic (pre-cancerous stage. We used newly developed methods enabling measurements of cell-to-cell differences in copy numbers of mitochondrial DNA, expression levels of a set of mitochondrial and nuclear genes involved in hypoxia response pathways, and mitochondrial membrane potential. In contrast to bulk cell studies reported earlier, our study shows significant differences between metaplastic and dysplastic BE cells in both average values and single-cell parameter distributions of mtDNA copy numbers, mitochondrial function, and mRNA expression levels of studied genes. Based on single-cell data analysis, we propose that mitochondria may be one of the key factors in pre-malignant progression in BE.

  8. Plastic downregulation of the transcriptional repressor BCL6 during maturation of human dendritic cells

    International Nuclear Information System (INIS)

    Pantano, Serafino; Jarrossay, David; Saccani, Simona; Bosisio, Daniela; Natoli, Gioacchino

    2006-01-01

    Dendritic cell (DC) maturation links peripheral events initiated by the encounter with pathogens to the activation and expansion of antigen-specific T lymphocytes in secondary lymphoid organs. Here, we describe an as yet unrecognized modulator of human DC maturation, the transcriptional repressor BCL6. We found that both myeloid and plasmacytoid DCs constitutively express BCL6, which is rapidly downregulated following maturation triggered by selected stimuli. Both in unstimulated and maturing DCs, control of BCL6 protein levels reflects the convergence of several mechanisms regulating BCL6 stability, mRNA transcription and nuclear export. By regulating the induction of several genes implicated in the immune response, including inflammatory cytokines, chemokines and survival genes, BCL6 may represent a pivotal modulator of the afferent branch of the immune response

  9. MUC-1-ESA+ progenitor cells in normal benign and malignant human breast epithelial cells

    OpenAIRE

    Lu, Xinquan; Li, Huixiang; Xu, Kejia; Nesland, Jahn M.; Suo, Zhenhe

    2009-01-01

    The existence of mammary epithelial stem/progenitor cells has been demonstrated in MUC-1-/ ESA+ subpopulations of breast epithelial cells. However, knowledge about the expression and localization in benign and malignant breast lesions is unknown. Using a double-staining immunohistochemistry method, we investigated MUC-1-/ESA+ cells in 10 normal breast tissues, 49 cases with fibrocystic disease, 40 fibroadenomas, 36 invasive ductal carcinomas and the breast cancer ce...

  10. Epithelial Na, K-ATPase expression is down-regulated in canine prostate cancer; a possible consequence of metabolic transformation in the process of prostate malignancy

    Directory of Open Access Journals (Sweden)

    Martín-Vasallo Pablo

    2003-06-01

    Full Text Available Abstract Background An important physiological function of the normal prostate gland is the synthesis and secretion of a citrate rich prostatic fluid. In prostate cancer, citrate production levels are reduced as a result of altered cellular metabolism and bioenergetics. Na, K-ATPase is essential for citrate production since the inward Na+ gradients it generates are utilized for the Na+ dependent uptake of aspartate, a major substrate for citrate synthesis. The objective of this study was to compare the expression of previously identified Na, K-ATPase isoforms in normal canine prostate, benign prostatic hyperplasia (BPH and prostatic adenocarcinoma (PCa using immunohistochemistry in order to determine whether reduced citrate levels in PCa are also accompanied by changes in Na, K-ATPase expression. Results Expression of Na, K-ATPase α1 and β1 isoforms was observed in the lateral and basolateral plasma membrane domains of prostatic epithelial cells in normal and BPH prostates. Canine kidney was used as positive control for expression of Na, K-ATPase α1 and γ isoforms. The α1 isoform was detected in abundance in prostatic epithelial cells but there was no evidence of α2, α3 or γ subunit expression. In advanced PCa, Na, K-ATPase α1 isoform expression was significantly lower compared to normal and BPH glands. The abundant basolateral immunostaining observed in normal and BPH tissue was significantly attenuated in PCa. Conclusion The loss of epithelial structure and function and the transformation of normal epithelial cells to malignant cells in the canine prostate have important implications for cellular metabolism and are accompanied by a down regulation of Na, K-ATPase.

  11. Inhibition of cell growth by EGR-1 in human primary cultures from malignant glioma

    Directory of Open Access Journals (Sweden)

    Gagliardi Franco

    2004-01-01

    Full Text Available Abstract Background The aim of this work was to investigate in vitro the putative role of EGR-1 in the growth of glioma cells. EGR-1 expression was examined during the early passages in vitro of 17 primary cell lines grown from 3 grade III and from 14 grade IV malignant astrocytoma explants. The explanted tumors were genetically characterized at the p53, MDM2 and INK4a/ARF loci, and fibronectin expression and growth characteristics were examined. A recombinant adenovirus overexpressing EGR-1 was tested in the primary cell lines. Results Low levels of EGR-1 protein were found in all primary cultures examined, with lower values present in grade IV tumors and in cultures carrying wild-type copies of p53 gene. The levels of EGR-1 protein were significantly correlated to the amount of intracellular fibronectin, but only in tumors carrying wild-type copies of the p53 gene (R = 0,78, p = 0.0082. Duplication time, plating efficiency, colony formation in agarose, and contact inhibition were also altered in the p53 mutated tumor cultures compared to those carrying wild-type p53. Growth arrest was achieved in both types of tumor within 1–2 weeks following infection with a recombinant adenovirus overexpressing EGR-1 but not with the control adenovirus. Conclusions Suppression of EGR-1 is a common event in gliomas and in most cases this is achieved through down-regulation of gene expression. Expression of EGR-1 by recombinant adenovirus infection almost completely abolishes the growth of tumor cells in vitro, regardless of the mutational status of the p53 gene.

  12. Downregulation of an Aim-1 Kinase Couples with Megakaryocytic Polyploidization of Human Hematopoietic Cells

    Science.gov (United States)

    Kawasaki, Akira; Matsumura, Itaru; Miyagawa, Jun-ichiro; Ezoe, Sachiko; Tanaka, Hirokazu; Terada, Yasuhiko; Tatsuka, Masaaki; Machii, Takashi; Miyazaki, Hiroshi; Furukawa, Yusuke; Kanakura, Yuzuru

    2001-01-01

    During the late phase of megakaryopoiesis, megakaryocytes undergo polyploidization, which is characterized by DNA duplication without concomitant cell division. However, it remains unknown by which mechanisms this process occurs. AIM-1 and STK15 belong to the Aurora/increase-in-ploidy (Ipl)1 serine/threonine kinase family and play key roles in mitosis. In a human interleukin-3–dependent cell line, F-36P, the expressions of AIM-1 and STK15 mRNA were specifically observed at G2/M phase of the cell cycle during proliferation. In contrast, the expressions of AIM-1 and STK15 were continuously repressed during megakaryocytic polyploidization of human erythro/megakaryocytic cell lines (F-36P, K562, and CMK) treated with thrombopoietin, activated ras (H-rasG12V), or phorbol ester. Furthermore, their expressions were suppressed during thrombopoietin-induced polyploidization of normal human megakaryocytes. Activation of AIM-1 by the induced expression of AIM-1(wild-type) canceled TPA-induced polyploidization of K562 cells significantly, whereas that of STK15 did not. Moreover, suppression of AIM-1 by the induced expression of AIM-1 (K/R, dominant-negative type) led to polyploidization in 25% of K562 cells, whereas STK15(K/R) showed no effect. Also, the induced expression of AIM-1(K/R) in CMK cells provoked polyploidization up to 32N. These results suggested that downregulation of AIM-1 at M phase may be involved in abortive mitosis and polyploid formation of megakaryocytes. PMID:11266445

  13. Vanillin Suppresses Cell Motility by Inhibiting STAT3-Mediated HIF-1α mRNA Expression in Malignant Melanoma Cells.

    Science.gov (United States)

    Park, Eun-Ji; Lee, Yoon-Mi; Oh, Taek-In; Kim, Byeong Mo; Lim, Beong-Ou; Lim, Ji-Hong

    2017-03-01

    Recent studies have shown that vanillin has anti-cancer, anti-mutagenic, and anti-metastatic activity; however, the precise molecular mechanism whereby vanillin inhibits metastasis and cancer progression is not fully elucidated. In this study, we examined whether vanillin has anti-cancer and anti-metastatic activities via inhibition of hypoxia-inducible factor-1α (HIF-1α) in A2058 and A375 human malignant melanoma cells. Immunoblotting and quantitative real time (RT)-PCR analysis revealed that vanillin down-regulates HIF-1α protein accumulation and the transcripts of HIF-1α target genes related to cancer metastasis including fibronectin 1 ( FN1 ), lysyl oxidase-like 2 ( LOXL2 ), and urokinase plasminogen activator receptor ( uPAR ). It was also found that vanillin significantly suppresses HIF-1α mRNA expression and de novo HIF-1α protein synthesis. To understand the suppressive mechanism of vanillin on HIF-1α expression, chromatin immunoprecipitation was performed. Consequently, it was found that vanillin causes inhibition of promoter occupancy by signal transducer and activator of transcription 3 (STAT3), but not nuclear factor-κB (NF-κB), on HIF1A . Furthermore, an in vitro migration assay revealed that the motility of melanoma cells stimulated by hypoxia was attenuated by vanillin treatment. In conclusion, we demonstrate that vanillin might be a potential anti-metastatic agent that suppresses metastatic gene expression and migration activity under hypoxia via the STAT3-HIF-1α signaling pathway.

  14. FK866-induced NAMPT inhibition activates AMPK and downregulates mTOR signaling in hepatocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, Susanne, E-mail: Susanne.Schuster@medizin.uni-leipzig.de [Center for Pediatric Research Leipzig, University Hospital for Children and Adolescents, Faculty of Medicine, University of Leipzig, Liebigstr. 21, 04103 Leipzig (Germany); Penke, Melanie; Gorski, Theresa [Center for Pediatric Research Leipzig, University Hospital for Children and Adolescents, Faculty of Medicine, University of Leipzig, Liebigstr. 21, 04103 Leipzig (Germany); Gebhardt, Rolf [Institute of Biochemistry, Faculty of Medicine, University of Leipzig, Johannisallee 30, 04103 Leipzig (Germany); Weiss, Thomas S. [Children' s University Hospital, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg (Germany); Kiess, Wieland; Garten, Antje [Center for Pediatric Research Leipzig, University Hospital for Children and Adolescents, Faculty of Medicine, University of Leipzig, Liebigstr. 21, 04103 Leipzig (Germany)

    2015-03-06

    Background: Nicotinamide phosphoribosyltransferase (NAMPT) is the key enzyme of the NAD salvage pathway starting from nicotinamide. Cancer cells have an increased demand for NAD due to their high proliferation and DNA repair rate. Consequently, NAMPT is considered as a putative target for anti-cancer therapies. There is evidence that AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) become dysregulated during the development of hepatocellular carcinoma (HCC). Here, we investigated the effects of NAMPT inhibition by its specific inhibitor FK866 on the viability of hepatocarcinoma cells and analyzed the effects of FK866 on the nutrient sensor AMPK and mTOR complex1 (mTORC1) signaling. Results: FK866 markedly decreased NAMPT activity and NAD content in hepatocarcinoma cells (Huh7 cells, Hep3B cells) and led to delayed ATP reduction which was associated with increased cell death. These effects could be abrogated by administration of nicotinamide mononucleotide (NMN), the enzyme product of NAMPT. Our results demonstrated a dysregulation of the AMPK/mTOR pathway in hepatocarcinoma cells compared to non-cancerous hepatocytes with a higher expression of mTOR and a lower AMPKα activation in hepatocarcinoma cells. We found that NAMPT inhibition by FK866 significantly activated AMPKα and inhibited the activation of mTOR and its downstream targets p70S6 kinase and 4E-BP1 in hepatocarcinoma cells. Non-cancerous hepatocytes were less sensitive to FK866 and did not show changes in AMPK/mTOR signaling after FK866 treatment. Conclusion: Taken together, these findings reveal an important role of the NAMPT-mediated NAD salvage pathway in the energy homeostasis of hepatocarcinoma cells and suggest NAMPT inhibition as a potential treatment option for HCC. - Highlights: • FK866 increases cell death in p53-deficient hepatocarcinoma cells. • AMPK/mTOR signaling is dysregulated in hepatocarcinoma cells. • FK866-induced NAMPT inhibition activates AMPK

  15. FK866-induced NAMPT inhibition activates AMPK and downregulates mTOR signaling in hepatocarcinoma cells

    International Nuclear Information System (INIS)

    Schuster, Susanne; Penke, Melanie; Gorski, Theresa; Gebhardt, Rolf; Weiss, Thomas S.; Kiess, Wieland; Garten, Antje

    2015-01-01

    Background: Nicotinamide phosphoribosyltransferase (NAMPT) is the key enzyme of the NAD salvage pathway starting from nicotinamide. Cancer cells have an increased demand for NAD due to their high proliferation and DNA repair rate. Consequently, NAMPT is considered as a putative target for anti-cancer therapies. There is evidence that AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) become dysregulated during the development of hepatocellular carcinoma (HCC). Here, we investigated the effects of NAMPT inhibition by its specific inhibitor FK866 on the viability of hepatocarcinoma cells and analyzed the effects of FK866 on the nutrient sensor AMPK and mTOR complex1 (mTORC1) signaling. Results: FK866 markedly decreased NAMPT activity and NAD content in hepatocarcinoma cells (Huh7 cells, Hep3B cells) and led to delayed ATP reduction which was associated with increased cell death. These effects could be abrogated by administration of nicotinamide mononucleotide (NMN), the enzyme product of NAMPT. Our results demonstrated a dysregulation of the AMPK/mTOR pathway in hepatocarcinoma cells compared to non-cancerous hepatocytes with a higher expression of mTOR and a lower AMPKα activation in hepatocarcinoma cells. We found that NAMPT inhibition by FK866 significantly activated AMPKα and inhibited the activation of mTOR and its downstream targets p70S6 kinase and 4E-BP1 in hepatocarcinoma cells. Non-cancerous hepatocytes were less sensitive to FK866 and did not show changes in AMPK/mTOR signaling after FK866 treatment. Conclusion: Taken together, these findings reveal an important role of the NAMPT-mediated NAD salvage pathway in the energy homeostasis of hepatocarcinoma cells and suggest NAMPT inhibition as a potential treatment option for HCC. - Highlights: • FK866 increases cell death in p53-deficient hepatocarcinoma cells. • AMPK/mTOR signaling is dysregulated in hepatocarcinoma cells. • FK866-induced NAMPT inhibition activates AMPK

  16. Demethoxycurcumin Retards Cell Growth and Induces Apoptosis in Human Brain Malignant Glioma GBM 8401 Cells

    Directory of Open Access Journals (Sweden)

    Tzuu-Yuan Huang

    2012-01-01

    Full Text Available Demethoxycurcumin (DMC; a curcumin-related demethoxy compound has been recently shown to display antioxidant and antitumor activities. It has also produced a potent chemopreventive action against cancer. In the present study, the antiproliferation (using the MTT assay, DMC was found to have cytotoxic activities against GBM 8401 cell with IC50 values at 22.71 μM and induced apoptosis effects of DMC have been investigated in human brain malignant glioma GBM 8401 cells. We have studied the mitochondrial membrane potential (MMP, DNA fragmentation, caspase activation, and NF-κB transcriptional factor activity. By these approaches, our results indicated that DMC has produced an inhibition of cell proliferation as well as the activation of apoptosis in GBM 8401 cells. Both effects were observed to increase in proportion with the dosage of DMC treatment, and the apoptosis was induced by DMC in human brain malignant glioma GBM 8401 cells via mitochondria- and caspase-dependent pathways.

  17. 2-Triazenoazaindoles: α novel class of triazenes inducing transcriptional down-regulation of EGFR and HER-2 in human pancreatic cancer cells.

    Science.gov (United States)

    Kreutzer, Jan N; Salvador, Alessia; Diana, Patrizia; Cirrincione, Girolamo; Vedaldi, Daniela; Litchfield, David W; Issinger, Olaf-Georg; Guerra, Barbara

    2012-04-01

    Pancreatic cancer is a complex malignancy arising from the accumulation of genetic and epigenetic defects in the affected cells. Standard chemotherapy for patients with advanced disease shows only modest effects and is associated with considerable toxicity. Overexpression or aberrant activation of members of the epidermal growth factor receptor tyrosine kinase family, which includes EGFR and HER-2, occurs frequently and is associated with multiple drug resistance and decreased patient survival. In this study, we have investigated the therapeutic potential of AS104, a novel compound of the triazene class, with potential inhibitory effects on EGFR. We found that treatment of cells with AS104 causes significant reduction of cell growth and metabolic activity in four human pancreatic cancer cell lines. Furthermore, we show that the AS104-mediated induction of apoptotic cell death is associated with stimulation of autophagy in a dose-dependent manner. Treatment of cells with AS104 results in significant down-regulation of EGFR and HER-2 expression and activity and subsequent inhibition of downstream signaling proteins. Quantitative RT-PCR analysis and assays with proteasome inhibitors revealed that AS104 regulates the expression of EGFR and HER-2 at the transcriptional level. These findings provide for the first time experimental evidence for efficacy of AS104 in the simultaneous transcriptional repression of EGFR and HER-2 genes and suggest that AS104 may have therapeutic potential in the treatment of pancreatic cancers that express high levels of the aforementioned receptor tyrosine kinases.

  18. 2-Triazenoazaindoles: A novel class of triazenes inducing transcriptional down-regulation of EGFR and HER-2 in human pancreatic cancer cells

    Science.gov (United States)

    KREUTZER, JAN N.; SALVADOR, ALESSIA; DIANA, PATRIZIA; CIRRINCIONE, GIROLAMO; VEDALDI, DANIELA; LITCHFIELD, DAVID W.; ISSINGER, OLAF-GEORG; GUERRA, BARBARA

    2012-01-01

    Pancreatic cancer is a complex malignancy arising from the accumulation of genetic and epigenetic defects in the affected cells. Standard chemotherapy for patients with advanced disease shows only modest effects and is associated with considerable toxicity. Overexpression or aberrant activation of members of the epidermal growth factor receptor tyrosine kinase family, which includes EGFR and HER-2, occurs frequently and is associated with multiple drug resistance and decreased patient survival. In this study, we have investigated the therapeutic potential of AS104, a novel compound of the triazene class, with potential inhibitory effects on EGFR. We found that treatment of cells with AS104 causes significant reduction of cell growth and metabolic activity in four human pancreatic cancer cell lines. Furthermore, we show that the AS104-mediated induction of apoptotic cell death is associated with stimulation of autophagy in a dose-dependent manner. Treatment of cells with AS104 results in significant down-regulation of EGFR and HER-2 expression and activity and subsequent inhibition of downstream signaling proteins. Quantitative RT-PCR analysis and assays with proteasome inhibitors revealed that AS104 regulates the expression of EGFR and HER-2 at the transcriptional level. These findings provide for the first time experimental evidence for efficacy of AS104 in the simultaneous transcriptional repression of EGFR and HER-2 genes and suggest that AS104 may have therapeutic potential in the treatment of pancreatic cancers that express high levels of the aforementioned receptor tyrosine kinases. PMID:22134789

  19. Cell Fusion in the War on Cancer: A Perspective on the Inception of Malignancy

    Directory of Open Access Journals (Sweden)

    Jeffrey L. Platt

    2016-07-01

    Full Text Available Cell fusion occurs in development and in physiology and rarely in those settings is it associated with malignancy. However, deliberate fusion of cells and possibly untoward fusion of cells not suitably poised can eventuate in aneuploidy, DNA damage and malignant transformation. How often cell fusion may initiate malignancy is unknown. However, cell fusion could explain the high frequency of cancers in tissues with low underlying rates of cell proliferation and mutation. On the other hand, cell fusion might also engage innate and adaptive immune surveillance, thus helping to eliminate or retard malignancies. Here we consider whether and how cell fusion might weigh on the overall burden of cancer in modern societies.

  20. Impact of MUC1 mucin downregulation in the phenotypic characteristics of MKN45 gastric carcinoma cell line.

    Directory of Open Access Journals (Sweden)

    Natália R Costa

    Full Text Available BACKGROUND: Gastric carcinoma is the second leading cause of cancer-associated death worldwide. The high mortality associated with this disease is in part due to limited knowledge about gastric carcinogenesis and a lack of available therapeutic and prevention strategies. MUC1 is a high molecular weight transmembrane mucin protein expressed at the apical surface of most glandular epithelial cells and a major component of the mucus layer above gastric mucosa. Overexpression of MUC1 is found in approximately 95% of human adenocarcinomas, where it is associated with oncogenic activity. The role of MUC1 in gastric cancer progression remains to be clarified. METHODOLOGY: We downregulated MUC1 expression in a gastric carcinoma cell line by RNA interference and studied the effects on cellular proliferation (MTT assay, apoptosis (TUNEL assay, migration (migration assay, invasion (invasion assay and aggregation (aggregation assay. Global gene expression was evaluated by microarray analysis to identify alterations that are regulated by MUC1 expression. In vivo assays were also performed in mice, in order to study the tumorigenicity of cells with and without MUC1 downregulation in MKN45 gastric carcinoma cell line. RESULTS: Downregulation of MUC1 expression increased proliferation and apoptosis as compared to controls, whereas cell-cell aggregation was decreased. No significant differences were found in terms of migration and invasion between the downregulated clones and the controls. Expression of TCN1, KLK6, ADAM29, LGAL4, TSPAN8 and SHPS-1 was found to be significantly different between MUC1 downregulated clones and the control cells. In vivo assays have shown that mice injected with MUC1 downregulated cells develop smaller tumours when compared to mice injected with the control cells. CONCLUSIONS: These results indicate that MUC1 downregulation alters the phenotype and tumorigenicity of MKN45 gastric carcinoma cells and also the expression of several

  1. Abscisic acid ameliorates experimental IBD by downregulating cellular adhesion molecule expression and suppressing immune cell infiltration.

    Science.gov (United States)

    Guri, Amir J; Hontecillas, Raquel; Bassaganya-Riera, Josep

    2010-12-01

    Abscisic acid (ABA) has shown effectiveness in ameliorating inflammation in obesity, diabetes and cardiovascular disease models. The objective of this study was to determine whether ABA prevents or ameliorates experimental inflammatory bowel disease (IBD). C57BL/6J mice were fed diets with or without ABA (100mg/kg) for 35 days prior to challenge with 2.5% dextran sodium sulfate (DSS). The severity of clinical disease was assessed daily. Colonic mucosal lesions were evaluated by histopathology, and cellular adhesion molecular and inflammatory markers were assayed by real-time quantitative PCR. Flow cytometry was used to quantify leukocyte populations in the blood, spleen, and mesenteric lymph nodes (MLN). The effect of ABA on cytotoxic T-lymphocyte antigen 4 (CTLA-4) expression in splenocytes was also investigated. ABA significantly ameliorated disease activity, colitis and reduced colonic leukocyte infiltration and inflammation. These improvements were associated with downregulation in vascular cell adhesion marker-1 (VCAM-1), E-selectin, and mucosal addressin adhesion marker-1 (MAdCAM-1) expression. ABA also increased CD4(+) and CD8(+) T-lymphocytes in blood and MLN and regulatory T cells in blood. In vitro, ABA increased CTLA-4 expression through a PPAR γ-dependent mechanism. We conclude that ABA ameliorates gut inflammation by modulating T cell distribution and adhesion molecule expression. Copyright © 2010 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  2. microRNA-143 down-regulates Hexokinase 2 in colon cancer cells

    DEFF Research Database (Denmark)

    Gregersen, Lea Haarup; Jacobsen, Anders; Frankel, Lisa

    2012-01-01

    a significant enrichment of miR-143 seed sites in their 3' UTRs. Here we report the identification of Hexokinase 2 (HK2) as a direct target of miR-143. We show that re-introduction of miR-143 in the colon cancer cell line DLD-1 results in a decreased lactate secretion. CONCLUSION: We have identified...... and validated HK2 as a miR-143 target. Furthermore, our results indicate that miR-143 mediated down-regulation of HK2 affects glucose metabolism in colon cancer cells. We hypothesize that loss of miR-143-mediated repression of HK2 can promote glucose metabolism in cancer cells, contributing to the shift towards......ABSTRACT: BACKGROUND: MicroRNAs (miRNAs) are well recognized as gene regulators and have been implicated in the regulation of development as well as human diseases. miR-143 is located at a fragile site on chromosome 5 frequently deleted in cancer, and has been reported to be down...

  3. Chemotherapy curable malignancies and cancer stem cells: a biological review and hypothesis.

    Science.gov (United States)

    Savage, Philip

    2016-11-21

    Cytotoxic chemotherapy brings routine cures to only a small select group of metastatic malignancies comprising gestational trophoblast tumours, germ cell tumours, acute leukemia, Hodgkin's disease, high grade lymphomas and some of the rare childhood malignancies. We have previously postulated that the extreme sensitivity to chemotherapy for these malignancies is linked to the on-going high levels of apoptotic sensitivity that is naturally linked with the unique genetic events of nuclear fusion, meiosis, VDJ recombination, somatic hypermutation, and gastrulation that have occurred within the cells of origin of these malignancies. In this review we will examine the cancer stem cell/cancer cell relationship of each of the chemotherapy curable malignancies and how this relationship impacts on the resultant biology and pro-apoptotic sensitivity of the varying cancer cell types. In contrast to the common epithelial cancers, in each of the chemotherapy curable malignancies there are no conventional hierarchical cancer stem cells. However cells with cancer stem like qualities can arise stochastically from within the general tumour cell population. These stochastic stem cells acquire a degree of resistance to DNA damaging agents but also retain much of the key characteristics of the cancer cells from which they develop. We would argue that the balance between the acquired resistance of the stochastic cancer stem cell and the inherent chemotherapy sensitivity of parent tumour cell determines the overall chemotherapy curability of each diagnosis. The cancer stem cells in the chemotherapy curable malignancies appear to have two key biological differences from those of the more common chemotherapy incurable malignancies. The first difference is that the conventional hierarchical pattern of cancer stem cells is absent in each of the chemotherapy curable malignancies. The other key difference, we suggest, is that the stochastic stem cells in the chemotherapy curable malignancies

  4. Everolimus downregulates estrogen receptor and induces autophagy in aromatase inhibitor-resistant breast cancer cells

    International Nuclear Information System (INIS)

    Lui, Asona; New, Jacob; Ogony, Joshua; Thomas, Sufi; Lewis-Wambi, Joan

    2016-01-01

    mTOR inhibition of aromatase inhibitor (AI)-resistant breast cancer is currently under evaluation in the clinic. Everolimus/RAD001 (Afinitor®) has had limited efficacy as a solo agent but is projected to become part of combination therapy for AI-resistant breast cancer. This study was conducted to investigate the anti-proliferative and resistance mechanisms of everolimus in AI-resistant breast cancer cells. In this study we utilized two AI-resistant breast cancer cell lines, MCF-7:5C and MCF-7:2A, which were clonally derived from estrogen receptor positive (ER+) MCF-7 breast cancer cells following long-term estrogen deprivation. Cell viability assay, colony formation assay, cell cycle analysis and soft agar anchorage-independent growth assay were used to determine the efficacy of everolimus in inhibiting the proliferation and tumor forming potential of MCF-7, MCF-7:5C, MCF-7:2A and MCF10A cells. Confocal microscopy and transmission electron microscopy were used to evaluate LC3-II production and autophagosome formation, while ERE-luciferase reporter, Western blot, and RT-PCR analyses were used to assess ER expression and transcriptional activity. Everolimus inhibited the proliferation of MCF-7:5C and MCF-7:2A cells with relatively equal efficiency to parental MCF-7 breast cancer cells. The inhibitory effect of everolimus was due to G1 arrest as a result of downregulation of cyclin D1 and p21. Everolimus also dramatically reduced estrogen receptor (ER) expression (mRNA and protein) and transcriptional activity in addition to the ER chaperone, heat shock protein 90 protein (HSP90). Everolimus restored 4-hydroxy-tamoxifen (4OHT) sensitivity in MCF-7:5C cells and enhanced 4OHT sensitivity in MCF-7 and MCF-7:2A cells. Notably, we found that autophagy is one method of everolimus insensitivity in MCF-7 breast cancer cell lines. This study provides additional insight into the mechanism(s) of action of everolimus that can be used to enhance the utility of mTOR inhibitors as

  5. Biology and clinical application of CAR T cells for B cell malignancies.

    Science.gov (United States)

    Davila, Marco L; Sadelain, Michel

    2016-07-01

    Chimeric antigen receptor (CAR)-modified T cells have generated broad interest in oncology following a series of dramatic clinical successes in patients with chemorefractory B cell malignancies. CAR therapy now appears to be on the cusp of regulatory approval as a cell-based immunotherapy. We review here the T cell biology and cell engineering research that led to the development of second generation CARs, the selection of CD19 as a CAR target, and the preclinical studies in animal models that laid the foundation for clinical trials targeting CD19+ malignancies. We further summarize the status of CD19 CAR clinical therapy for non-Hodgkin lymphoma and B cell acute lymphoblastic leukemia, including their efficacy, toxicities (cytokine release syndrome, neurotoxicity and B cell aplasia) and current management in humans. We conclude with an overview of recent pre-clinical advances in CAR design that argues favorably for the advancement of CAR therapy to tackle other hematological malignancies as well as solid tumors.

  6. Lipopolysaccharide inhibits the self-renewal of spermatogonial stem cells in vitro via downregulation of GDNF expression in Sertoli cells.

    Science.gov (United States)

    Zhang, Xiaoli; Shi, Kun; Li, Yi; Zhang, Haiyu; Hao, Jing

    2014-06-01

    Lipopolysaccharide (LPS) can reduce sperm count and sperm quality. The molecular mechanisms underlying this process are not fully understood. In this report, we investigated the effects of LPS-treated Sertoli cells on self-renewal and differentiation of spermatogoinial stem cells (SSCs). Sertoli cell cultures were established and incubated with LPS (10μg/ml) for 1, 2 or 3 days, respectively. The culture media were collected and used as conditioned media (CM) to culture SSCs. The expression of glial cell-derived neurotrophic factor (GDNF), stem cell factor (SCF) and bone morphogenetic protein 4 (BMP4) in Sertoli cells treated with LPS was analyzed by RT-PCR and Western blotting. The results showed that the expression of SSC differentiation markers, c-kit and Sohlh2, was increased, while the expression of SSC self-renewal markers, plzf, oct4, and PCNA, was repressed when cultured in CM from LPS-treated Sertoli cells. GDNF levels in Sertoli cells and CM reduced dramatically after LPS treatments, while SCF and BMP4 levels did not show any significant changes. Moreover, correlated with the GDNF levels in CM, GDNF target genes, Bcl6b and Etv5, were reduced markedly in SSCs. Our results suggest that LPS inhibits the expression of GDNF in Sertoli cells, and might prevent the SSC self-renewal via down-regulation of GDNF target genes. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. The effects of erythropoietin signaling on telomerase regulation in non-erythroid malignant and non-malignant cells

    International Nuclear Information System (INIS)

    Uziel, Orit; Kanfer, Gil; Beery, Einat; Yelin, Dana; Shepshelovich, Daniel; Bakhanashvili, Mary; Nordenberg, Jardena; Lahav, Meir

    2014-01-01

    Highlights: • We assumed that some of erythropoietin adverse effects may be mediated by telomerase activity. • EPO administration increased telomerase activity, cells proliferation and migration. • The inhibition of telomerase modestly repressed the proliferative effect of erythropoietin. • Telomere shortening caused by long term inhibition of the enzyme totally abolished that effect. • This effect was mediated via the Lyn–AKT axis and not by the canonical JAK2–STAT pathway. - Abstract: Treatment with erythropoietin (EPO) in several cancers is associated with decreased survival due to cancer progression. Due to the major importance of telomerase in cancer biology we hypothesized that some of these effects may be mediated through EPO effect on telomerase. For this aim we explored the possible effects of EPO on telomerase regulation, cell migration and chemosensitivity in non-erythroid malignant and non-malignant cells. Cell proliferation, telomerase activity (TA) and cell migration increased in response to EPO. EPO had no effect on cancer cells sensitivity to cisplatinum and on the cell cycle status. The inhibition of telomerase modestly repressed the proliferative effect of EPO. Telomere shortening caused by long term inhibition of the enzyme abolished the effect of EPO, suggesting that EPO effects on cancer cells are related to telomere dynamics. TA was correlated with the levels of Epo-R. The increase in TA was mediated post-translationally through the Lyn-Src and not the canonical JAK2 pathway

  8. Phenotypic characterization of telomerase-immortalized primary non-malignant and malignant tumor-derived human prostate epithelial cell lines

    International Nuclear Information System (INIS)

    Gu Yongpeng; Li Hongzhen; Miki, Jun; Kim, Kee-Hong; Furusato, Bungo; Sesterhenn, Isabell A.; Chu, Wei-Sing; McLeod, David G.; Srivastava, Shiv; Ewing, Charles M.; Isaacs, William B.; Rhim, Johng S.

    2006-01-01

    In vitro human prostate cell culture models are critical for clarifying the mechanism of prostate cancer progression and for testing preventive and therapeutic agents. Cell lines ideal for the study of human primary prostate tumors would be those derived from spontaneously immortalized tumor cells; unfortunately, explanted primary prostate cells survive only short-term in culture, and rarely immortalize spontaneously. Therefore, we recently have generated five immortal human prostate epithelial cell cultures derived from both the benign and malignant tissues of prostate cancer patients with telomerase, a gene that prevents cellular senescence. Examination of these cell lines for their morphologies and proliferative capacities, their abilities to grow in low serum, to respond to androgen stimulation, to grow above the agar layer, to form tumors in SCID mice, suggests that they may serve as valid, useful tools for the elucidation of early events in prostate tumorigenesis. Furthermore, the chromosome alterations observed in these immortalized cell lines expressing aspects of the malignant phenotypes imply that these cell lines accurately recapitulate the genetic composition of primary tumors. These novel in vitro models may offer unique models for the study of prostate carcinogenesis and also provide the means for testing both chemopreventive and chemotherapeutic agents

  9. The effects of erythropoietin signaling on telomerase regulation in non-erythroid malignant and non-malignant cells

    Energy Technology Data Exchange (ETDEWEB)

    Uziel, Orit, E-mail: Oritu@clalit.org.il [Felsenstein Medical Research Center, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv (Israel); Kanfer, Gil [Felsenstein Medical Research Center, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv (Israel); Dep. of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv (Israel); Beery, Einat [Felsenstein Medical Research Center, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv (Israel); Yelin, Dana; Shepshelovich, Daniel [Medicine A, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv (Israel); Bakhanashvili, Mary [Unit of Infectious Diseases, Sheba Medical Center, Tel-Hashomer (Israel); Nordenberg, Jardena [Felsenstein Medical Research Center, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv (Israel); Dep. of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv (Israel); Endocrinology Laboratory, Beilinson Medical Center, Petah-Tikva (Israel); Lahav, Meir [Felsenstein Medical Research Center, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv (Israel); Medicine A, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv (Israel)

    2014-07-18

    Highlights: • We assumed that some of erythropoietin adverse effects may be mediated by telomerase activity. • EPO administration increased telomerase activity, cells proliferation and migration. • The inhibition of telomerase modestly repressed the proliferative effect of erythropoietin. • Telomere shortening caused by long term inhibition of the enzyme totally abolished that effect. • This effect was mediated via the Lyn–AKT axis and not by the canonical JAK2–STAT pathway. - Abstract: Treatment with erythropoietin (EPO) in several cancers is associated with decreased survival due to cancer progression. Due to the major importance of telomerase in cancer biology we hypothesized that some of these effects may be mediated through EPO effect on telomerase. For this aim we explored the possible effects of EPO on telomerase regulation, cell migration and chemosensitivity in non-erythroid malignant and non-malignant cells. Cell proliferation, telomerase activity (TA) and cell migration increased in response to EPO. EPO had no effect on cancer cells sensitivity to cisplatinum and on the cell cycle status. The inhibition of telomerase modestly repressed the proliferative effect of EPO. Telomere shortening caused by long term inhibition of the enzyme abolished the effect of EPO, suggesting that EPO effects on cancer cells are related to telomere dynamics. TA was correlated with the levels of Epo-R. The increase in TA was mediated post-translationally through the Lyn-Src and not the canonical JAK2 pathway.

  10. Downregulation of SPARC expression inhibits the invasion of human trophoblast cells in vitro.

    Directory of Open Access Journals (Sweden)

    Yahong Jiang

    Full Text Available Successful pregnancy depends on the precise regulation of extravilloustrophoblast (EVT invasion into the uterine decidua. SPARC (secreted protein acidic and rich in cysteine is a matricellular glycoprotein that plays critical roles in the pathologies associated with obesity and diabetes, as well as tumorigenesis. The objective of this study was to investigate the role of SPARC in the process of trophoblast invasion which shares many similarities with tumor cell invasion. By Western blot, higher expression of SPARC was observed in mouse brain, ovary and uterus compared to other mouse tissues. Immunohistochemistry analysis revealed a spatio-temporal expression of SPARC in mouse uterus in the periimplantation period. At the implantation site of d8 pregnancy, SPARC mainly accumulated in the secondary decidua zone (SDZ, trophoblast cells and blastocyst. The expression of SPARC was also detected in human placental villi and trophoblast cell lines. In a Matrigel invasion assay, we found SPARC-specific RNA interference significantly reduced the invasion of human extravilloustrophoblast HTR8/SVneo cells. Microarray analysis revealed that SPARC depletion upregulated the expression of interleukin 11 (IL11, KISS1, insulin-like growth factor binding protein 4 (IGFBP4, collagen type I alpha 1 (COLIA1, matrix metallopeptidase 9 (MMP9, and downregulated the expression of the alpha polypeptide of chorionic gonadotropin (CGA, MMP1, gap junction protein alpha 1 (GJA1, et al. The gene array result was further validated by qRT-PCR and Western blot. The present data indicate that SPARC may play an important role in the regulation of normal placentation by promoting the invasion of trophoblast cells into the uterine decidua.

  11. Identification of cancer stem cell markers in human malignant mesothelioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Ghani, Farhana Ishrat; Yamazaki, Hiroto; Iwata, Satoshi; Okamoto, Toshihiro [Division of Clinical Immunology, Institute of Medical Science, University of Tokyo, Tokyo (Japan); Aoe, Keisuke; Okabe, Kazunori; Mimura, Yusuke [Departments of Medical Oncology, Yamaguchi-Ube Medical Center, Yamaguchi (Japan); Fujimoto, Nobukazu; Kishimoto, Takumi [Department of Respiratory Medicine, Okayama Rosai Hospital, Okayama (Japan); Yamada, Taketo [Department of Pathology, Keio University School of Medicine, Tokyo (Japan); Xu, C. Wilson [Drug Development Program, Nevada Cancer Institute, Las Vegas, NV (United States); Morimoto, Chikao, E-mail: morimoto@ims.u-tokyo.ac.jp [Division of Clinical Immunology, Institute of Medical Science, University of Tokyo, Tokyo (Japan); Drug Development Program, Nevada Cancer Institute, Las Vegas, NV (United States)

    2011-01-14

    Research highlights: {yields} We performed serial transplantation of surgical samples and established new cell lines of malignant mesothelioma. {yields} SP cell and expressions of CD9/CD24/CD26 were often observed in mesothelioma cell lines. {yields} SP and CD24{sup +} cells proliferated by asymmetric cell division-like manner. CD9{sup +} and CD24{sup +} cells have higher potential to generate spheroid colony. {yields} The marker-positive cells have clear tendency to generate larger tumors in mice. -- Abstract: Malignant mesothelioma (MM) is an aggressive and therapy-resistant neoplasm arising from the pleural mesothelial cells and usually associated with long-term asbestos exposure. Recent studies suggest that tumors contain cancer stem cells (CSCs) and their stem cell characteristics are thought to confer therapy-resistance. However, whether MM cell has any stem cell characteristics is not known. To understand the molecular basis of MM, we first performed serial transplantation of surgical samples into NOD/SCID mice and established new cell lines. Next, we performed marker analysis of the MM cell lines and found that many of them contain SP cells and expressed several putative CSC markers such as CD9, CD24, and CD26. Interestingly, expression of CD26 closely correlated with that of CD24 in some cases. Sorting and culture assay revealed that SP and CD24{sup +} cells proliferated by asymmetric cell division-like manner. In addition, CD9{sup +} and CD24{sup +} cells have higher potential to generate spheroid colony than negative cells in the stem cell medium. Moreover, these marker-positive cells have clear tendency to generate larger tumors in mouse transplantation assay. Taken together, our data suggest that SP, CD9, CD24, and CD26 are CSC markers of MM and could be used as novel therapeutic targets.

  12. Amplified genes may be overexpressed, unchanged, or downregulated in cervical cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Oscar Vazquez-Mena

    Full Text Available Several copy number-altered regions (CNAs have been identified in the genome of cervical cancer, notably, amplifications of 3q and 5p. However, the contribution of copy-number alterations to cervical carcinogenesis is unresolved because genome-wide there exists a lack of correlation between copy-number alterations and gene expression. In this study, we investigated whether CNAs in the cell lines CaLo, CaSki, HeLa, and SiHa were associated with changes in gene expression. On average, 19.2% of the cell-line genomes had CNAs. However, only 2.4% comprised minimal recurrent regions (MRRs common to all the cell lines. Whereas 3q had limited common gains (13%, 5p was entirely duplicated recurrently. Genome-wide, only 15.6% of genes located in CNAs changed gene expression; in contrast, the rate in MRRs was up to 3 times this. Chr 5p was confirmed entirely amplified by FISH; however, maximum 33.5% of the explored genes in 5p were deregulated. In 3q, this rate was 13.4%. Even in 3q26, which had 5 MRRs and 38.7% recurrently gained SNPs, the rate was only 15.1%. Interestingly, up to 19% of deregulated genes in 5p and 73% in 3q26 were downregulated, suggesting additional factors were involved in gene repression. The deregulated genes in 3q and 5p occurred in clusters, suggesting local chromatin factors may also influence gene expression. In regions amplified discontinuously, downregulated genes increased steadily as the number of amplified SNPs increased (p<0.01, Spearman's correlation. Therefore, partial gene amplification may function in silencing gene expression. Additional genes in 1q, 3q and 5p could be involved in cervical carcinogenesis, specifically in apoptosis. These include PARP1 in 1q, TNFSF10 and ECT2 in 3q and CLPTM1L, AHRR, PDCD6, and DAP in 5p. Overall, gene expression and copy-number profiles reveal factors other than gene dosage, like epigenetic or chromatin domains, may influence gene expression within the entirely amplified genome

  13. DMBT1 expression is down-regulated in breast cancer

    DEFF Research Database (Denmark)

    Braidotti, P; Nuciforo, P G; Mollenhauer, J

    2004-01-01

    and hyperplastic mammary cells positive with DMBTh12 were also MCM5-positive. CONCLUSIONS: The redistribution and up-regulation of DMBT1 in normal and hyperplastic tissues flanking malignant tumours and its down-regulation in carcinomas suggests a potential role in breast cancer. Moreover, the concomitant......BACKGROUND: We studied the expression of DMBT1 (deleted in malignant brain tumor 1), a putative tumor suppressor gene, in normal, proliferative, and malignant breast epithelium and its possible relation to cell cycle. METHODS: Sections from 17 benign lesions and 55 carcinomas were immunostained...... expression was down-regulated in the cancerous lesions compared to the normal and/or hyperplastic epithelium adjacent to carcinomas (3/55 positive carcinomas versus 33/42 positive normal/hyperplastic epithelia; p = 0.0001). In 72% of cases RT-PCR confirmed immunohistochemical results. Most of normal...

  14. Loss of catalase increases malignant mouse keratinocyte cell growth through activation of the stress activated JNK pathway.

    Science.gov (United States)

    Hanke, Neale T; Finch, Joanne S; Bowden, G Timothy

    2008-05-01

    A cell line that produces mouse squamous cell carcinoma (6M90) was modified to develop a cell line with an introduced Tet-responsive catalase transgene (MTOC2). We have previously reported that the overexpressed catalase in the MTOC2 cells reverses the malignant phenotype in part by decreasing epidermal growth factor receptor (EGFR) signaling. With this work we expanded the investigation into the differences between these two cell lines. We found that the decreased EGFR pathway activity of the MTOC2 cells is not because of reduced autocrine secretion of an epidermal growth factor (EGF) ligand but rather because of lower basal receptor activity. Phosphorylated levels of the mitogen-activated protein kinase (MAPK) members JNK and p38 were both higher in the 6M90 cells with low catalase when compared with the MTOC2 cell line. Although treatment with an EGFR inhibitor, AG1478, blocked the increased activity of JNK in the 6M90 cells, a similar effect was not observed for p38. Basal levels of downstream c-jun transcription were also found to be higher in the 6M90 cells versus MTOC2 cells. Activated p38 was found to down-regulate the JNK MAPK pathway in the 6M90 cells. However, the 6M90 cells contain constitutively high levels of phosphorylated JNK, generating higher levels of phosphorylated c-jun and total c-jun than those in the MTOC2 cells. Inhibition of JNK activity in the 6M90 cells reduced AP-1 transcription and cell proliferation. The data confirm the inhibitory effects of catalase on tumor cell growth, specifically through a ligand-independent decrease in the stress activated JNK pathway. (c) 2007 Wiley-Liss, Inc.

  15. Extracellular Vesicles from Adipose-Derived Mesenchymal Stem Cells Downregulate Senescence Features in Osteoarthritic Osteoblasts

    Directory of Open Access Journals (Sweden)

    Miguel Tofiño-Vian

    2017-01-01

    Full Text Available Osteoarthritis (OA affects all articular tissues leading to pain and disability. The dysregulation of bone metabolism may contribute to the progression of this condition. Adipose-derived mesenchymal stem cells (ASC are attractive candidates in the search of novel strategies for OA treatment and exert anti-inflammatory and cytoprotective effects on cartilage. Chronic inflammation in OA is a relevant factor in the development of cellular senescence and joint degradation. In this study, we extend our previous observations of ASC paracrine effects to study the influence of conditioned medium and extracellular vesicles from ASC on senescence induced by inflammatory stress in OA osteoblasts. Our results in cells stimulated with interleukin- (IL- 1β indicate that conditioned medium, microvesicles, and exosomes from ASC downregulate senescence-associated β-galactosidase activity and the accumulation of γH2AX foci. In addition, they reduced the production of inflammatory mediators, with the highest effect on IL-6 and prostaglandin E2. The control of mitochondrial membrane alterations and oxidative stress may provide a mechanism for the protective effects of ASC in OA osteoblasts. We have also shown that microvesicles and exosomes mediate the paracrine effects of ASC. Our study suggests that correction of abnormal osteoblast metabolism by ASC products may contribute to their protective effects.

  16. Down-regulation of a calmodulin-related gene during transformation of human mammary epithelial cells

    International Nuclear Information System (INIS)

    Yaswen, P.; Smoll, A.; Stampfer, M.R.; Peehl, D.M.; Trask, D.K.; Sager, R.

    1990-01-01

    A human cDNA library obtained from cultured normal mammary epithelial cells (HMECs) was searched by subtractive hybridization for genes whose decrease in expression might be relevant to epithelial transformation. One clone identified by this procedure corresponded to a 1.4 kilobase mRNA, designated NB-1, whose expression was decreased >50-fold in HMECs tumorigenically transformed in vitro after exposure to benzo[α]pyrene and Kirsten sarcoma virus. Sequence analysis of NB-1 cDNA revealed an open reading frame with a high degree of homology to calmodulin. NB-1 expression could be demonstrated by polymerase chain reaction amplification in normal breast, prostate, cervix, and epidermal tissues. The presence of NB-1 transcripts was variable in primary breast carcinoma tissues and undetectable in tumor-derived cell lines of breast, prostate, or other origins. NB-1 mRNA expression could be down-regulated in cultured HMECs by exposure to reconstituted extracellular matrix material, while exposure to transforming growth factor type β increased its relative abundance. The protein encoded by NB-1 may have Ca 2 plus binding properties and perform functions similar to those of authentic calmodulin. Its possible roles in differentiation and/or suppression of tumorigenicity in epithelial tissues remain to be examined

  17. MUC1-C activates polycomb repressive complexes and downregulates tumor suppressor genes in human cancer cells.

    Science.gov (United States)

    Rajabi, Hasan; Hiraki, Masayuki; Kufe, Donald

    2018-04-01

    The PRC2 and PRC1 complexes are aberrantly expressed in human cancers and have been linked to decreases in patient survival. MUC1-C is an oncoprotein that is also overexpressed in diverse human cancers and is associated with a poor prognosis. Recent studies have supported a previously unreported function for MUC1-C in activating PRC2 and PRC1 in cancer cells. In the regulation of PRC2, MUC1-C (i) drives transcription of the EZH2 gene, (ii) binds directly to EZH2, and (iii) enhances occupancy of EZH2 on target gene promoters with an increase in H3K27 trimethylation. Regarding PRC1, which is recruited to PRC2 sites in the hierarchical model, MUC1-C induces BMI1 transcription, forms a complex with BMI1, and promotes H2A ubiquitylation. MUC1-C thereby contributes to the integration of PRC2 and PRC1-mediated repression of tumor suppressor genes, such as CDH1, CDKN2A, PTEN and BRCA1. Like PRC2 and PRC1, MUC1-C is associated with the epithelial-mesenchymal transition (EMT) program, cancer stem cell (CSC) state, and acquisition of anticancer drug resistance. In concert with these observations, targeting MUC1-C downregulates EZH2 and BMI1, inhibits EMT and the CSC state, and reverses drug resistance. These findings emphasize the significance of MUC1-C as a therapeutic target for inhibiting aberrant PRC function and reprogramming the epigenome in human cancers.

  18. Nutlin-3 down-regulates retinoblastoma protein expression and inhibits muscle cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Erica M. [Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118 (United States); Niu, MengMeng; Bergholz, Johann [Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610014 China (China); Jim Xiao, Zhi-Xiong, E-mail: jxiao@bu.edu [Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118 (United States); Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610014 China (China)

    2015-05-29

    The p53 tumor suppressor gene plays a critical role in regulation of proliferation, cell death and differentiation. The MDM2 oncoprotein is a major negative regulator for p53 by binding to and targeting p53 for proteasome-mediated degradation. The small molecule inhibitor, nutlin-3, disrupts MDM2-p53 interaction resulting in stabilization and activation of p53 protein. We have previously shown that nutlin-3 activates p53, leading to MDM2 accumulation as concomitant of reduced retinoblastoma (Rb) protein stability. It is well known that Rb is important in muscle development and myoblast differentiation and that rhabdomyosarcoma (RMS), or cancer of the skeletal muscle, typically harbors MDM2 amplification. In this study, we show that nutlin-3 inhibited myoblast proliferation and effectively prevented myoblast differentiation, as evidenced by lack of expression of muscle differentiation markers including myogenin and myosin heavy chain (MyHC), as well as a failure to form multinucleated myotubes, which were associated with dramatic increases in MDM2 expression and decrease in Rb protein levels. These results indicate that nutlin-3 can effectively inhibit muscle cell differentiation. - Highlights: • Nutlin-3 inhibits myoblast proliferation and prevents differentiation into myotubes. • Nutlin-3 increases MDM2 expression and down-regulates Rb protein levels. • This study has implication in nutlin-3 treatment of rhabdomyosarcomas.

  19. Malignant transformation of lichen planus hypertrophicus into squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Aniket Bhagwat Bhole

    2016-01-01

    Full Text Available Neoplastic transformation of lichen planus (LP is reported, but it's a rare event. Squamous cell carcinoma (SCC complicating cutaneous LP has an incidence of 0.4%. Average age at the time of diagnosis of SCC in patients of LP is 58 years with a range of 29–78 years. We report an extremely rare case of 17-year-old female patient who developed SCC from lichen planus hypertrophicus (LPH, a variant of LP. Patient presented with LPH over the anterior aspect of both legs since the age of 7 years which is again a pediatric rarity. SCC developed over an anteromedial aspect of left ankle after 10 years when she came to us. Both the diagnoses were histopathologically confirmed. The patient was treated with complete excision of tumor and defect was closed with rotation flap. This report emphasizes that the long-standing hypertrophic form of LP seems to have a considerable propensity for malignant transformation, even in the juvenile age group. Hence, careful vigilance of a longstanding LPH is necessary to allow early detection of a developing SCC.

  20. Dysregulation of mitotic machinery genes precedes genome instability during spontaneous pre-malignant transformation of mouse ovarian surface epithelial cells

    Directory of Open Access Journals (Sweden)

    Ulises Urzúa

    2016-10-01

    Full Text Available Abstract Background Based in epidemiological evidence, repetitive ovulation has been proposed to play a role in the origin of ovarian cancer by inducing an aberrant wound rupture-repair process of the ovarian surface epithelium (OSE. Accordingly, long term cultures of isolated OSE cells undergo in vitro spontaneous transformation thus developing tumorigenic capacity upon extensive subcultivation. In this work, C57BL/6 mouse OSE (MOSE cells were cultured up to passage 28 and their RNA and DNA copy number profiles obtained at passages 2, 5, 7, 10, 14, 18, 23, 25 and 28 by means of DNA microarrays. Gene ontology, pathway and network analyses were focused in passages earlier than 20, which is a hallmark of malignancy in this model. Results At passage 14, 101 genes were up-regulated in absence of significant DNA copy number changes. Among these, the top-3 enriched functions (>30 fold, adj p < 0.05 comprised 7 genes coding for centralspindlin, chromosome passenger and minichromosome maintenance protein complexes. The genes Ccnb1 (Cyclin B1, Birc5 (Survivin, Nusap1 and Kif23 were the most recurrent in over a dozen GO terms related to the mitotic process. On the other hand, Pten plus the large non-coding RNAs Malat1 and Neat1 were among the 80 down-regulated genes with mRNA processing, nuclear bodies, ER-stress response and tumor suppression as relevant terms. Interestingly, the earliest discrete segmental aneuploidies arose by passage 18 in chromosomes 7, 10, 11, 13, 15, 17 and 19. By passage 23, when MOSE cells express the malignant phenotype, the dysregulated gene expression repertoire expanded, DNA imbalances enlarged in size and covered additional loci. Conclusion Prior to early aneuploidies, overexpression of genes coding for the mitotic apparatus in passage-14 pre-malignant MOSE cells indicate an increased proliferation rate suggestive of replicative stress. Concomitant down-regulation of nuclear bodies and RNA processing related genes

  1. Fine needle aspiration cytology diagnosis of metastatic malignant diffuse type tenosynovial giant cell tumor

    Directory of Open Access Journals (Sweden)

    Prashant Ramteke

    2017-01-01

    Full Text Available Tenosynovial giant cell tumors (TGCTs arise from the synovium of joint, bursa, and tendon sheath, and are classified into localized and diffuse types. Diffused type often affects the large joint, and has more recurrence, metastasis, and malignant transformation potential compared to the localized type. Malignant diffused TGCT (D-TGCT usually occurs as a large tumor (>5 cm, in older patients, and its histopathologic features include necrosis, cellular anaplasia, prominent nucleoli, high nuclear cytoplasmic ratio, brisk mitosis, discohesion of tumor cells, paucity of giant cells, and a diffuse growth pattern. At least five of these criteria are required for the histopathologic diagnosis of malignant TGCT because the benign TGCT also shares many of these morphological features. We describe the cytomorphologic features of a malignant D-TGCT from an unusual case of pulmonary metastasis in an adult patient. Fine needle aspiration cytologic features of malignant D-TGCT have not been described earlier in the English literature.

  2. MicroRNA-187, down-regulated in clear cell renal cell carcinoma and associated with lower survival, inhibits cell growth and migration though targeting B7-H3

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jun [Foshan Maternal and Child Health Care Hospital, Foshan (China); Lei, Ting [Zhongshan People’s Hospital, Zhongshan (China); Xu, Congjie [Department of Urology, Pepole’s Hospital of Hainan Province, Haikou (China); Li, Huan; Ma, Wenmin; Yang, Yunxia; Fan, Shuming [Foshan Maternal and Child Health Care Hospital, Foshan (China); Liu, Yuchen, E-mail: s_ycliu1@stu.edu.cn [Anhui Medical University, Hefei (China)

    2013-08-23

    Highlights: •miR-187 is down-regulated in clear cell renal cell carcinoma (ccRCC). •Down-regulation of miR-187 is associated with poor outcomes in patients with ccRCC. •miR-187 inhibits cell growth and migration though targeting B7-H3 in ccRCC. -- Abstract: Aberrantly expressed microRNAs (miRNAs) are frequently associated with the aggressive malignant behavior of human cancers, including clear cell renal cell carcinoma (ccRCC). Based on the preliminary deep sequencing data, we hypothesized that miR-187 may play an important role in ccRCC development. In this study, we found that miR-187 was down-regulated in both tumor tissue and plasma of ccRCC patients. Lower miR-187 expression levels were associated with higher tumor grade and stage. All patients with high miR-187 expression survived 5 years, while with low miR-187 expression, only 42% survived. Suppressed in vitro proliferation, inhibited in vivo tumor growth, and decreased motility were observed in cells treated with the miR-187 expression vector. Further studies showed that B7 homolog 3 (B7-H3) is a direct target of miR-187. Over-expression of miR-187 decreased B7-H3 mRNA level and repressed B7-H3-3′-UTR reporter activity. Knockdown of B7-H3 using siRNA resulted in similar phenotype changes as that observed for overexpression of miR-187. Our data suggest that miR-187 is emerging as a novel player in the disease state of ccRCC. miR-187 plays a tumor suppressor role in ccRCC.

  3. MicroRNA-187, down-regulated in clear cell renal cell carcinoma and associated with lower survival, inhibits cell growth and migration though targeting B7-H3

    International Nuclear Information System (INIS)

    Zhao, Jun; Lei, Ting; Xu, Congjie; Li, Huan; Ma, Wenmin; Yang, Yunxia; Fan, Shuming; Liu, Yuchen

    2013-01-01

    Highlights: •miR-187 is down-regulated in clear cell renal cell carcinoma (ccRCC). •Down-regulation of miR-187 is associated with poor outcomes in patients with ccRCC. •miR-187 inhibits cell growth and migration though targeting B7-H3 in ccRCC. -- Abstract: Aberrantly expressed microRNAs (miRNAs) are frequently associated with the aggressive malignant behavior of human cancers, including clear cell renal cell carcinoma (ccRCC). Based on the preliminary deep sequencing data, we hypothesized that miR-187 may play an important role in ccRCC development. In this study, we found that miR-187 was down-regulated in both tumor tissue and plasma of ccRCC patients. Lower miR-187 expression levels were associated with higher tumor grade and stage. All patients with high miR-187 expression survived 5 years, while with low miR-187 expression, only 42% survived. Suppressed in vitro proliferation, inhibited in vivo tumor growth, and decreased motility were observed in cells treated with the miR-187 expression vector. Further studies showed that B7 homolog 3 (B7-H3) is a direct target of miR-187. Over-expression of miR-187 decreased B7-H3 mRNA level and repressed B7-H3-3′-UTR reporter activity. Knockdown of B7-H3 using siRNA resulted in similar phenotype changes as that observed for overexpression of miR-187. Our data suggest that miR-187 is emerging as a novel player in the disease state of ccRCC. miR-187 plays a tumor suppressor role in ccRCC

  4. Increased Incidence of T-Cell Malignancies in Patients with Chronic Lymphocytic Leukemia

    OpenAIRE

    Choi, Goda; van den Broek, Esther C; Stam, Olga CG; van Noesel, C.J.M.; Tonino, Sanne H.; Kater, Armon P.

    2015-01-01

    We present a patient with chemotherapy-refractory Chronic Lymphocytic Leukemia (CLL) in whom postmortem examination showed hepatosplenomegaly, with both multiple small-cellular CLL lesions and large-cellular, monoclonal T-cell infiltrates. Following this case, the co-incidence of T-cell malignancies and CLL was studied using Dutch and American cancer registry databases. Analysis showed an excess risk for T-cell malignancies in CLL patients, with increased standardized incidence ratios compare...

  5. Non-myeloablative allogeneic stem cell transplantation focusing on immunotherapy of life-threatening malignant and non-malignant diseases.

    Science.gov (United States)

    Slavin, S; Nagler, A; Shapira, M; Panigrahi, S; Samuel, S; Or, A

    2001-01-01

    Allogeneic bone marrow transplantation (BMT) represents an important therapeutic tool for treatment of otherwise incurable malignant and non-malignant diseases. Until recently, myeloablative regimens were considered mandatory for eradication of all undesirable host-derived hematopoietic elements. Our preclinical and ongoing clinical studies indicated that much more effective eradication of host immunohematopoietic system cells could be achieved by adoptive allogeneic cell therapy with donor lymphocyte infusion (DLI) following BMT. Thus, eradication of blood cancer cells, especially in patients with CML can be frequently accomplished despite complete resistance of such tumor cells to maximally tolerated doses of chemoradiotherapy. Our cumulative experience suggested that graft versus leukemia (GVL) effects might be a useful tool for eradication of otherwise resistant tumor cells of host origin. The latter working hypothesis suggested that effective BMT procedures may be accomplished without lethal conditioning of the host, using new well tolerated non-myeloablative regimen, thus possibly minimizing immediate and late side effects related to myeloablative procedures considered until recently mandatory for conditioning of BMT recipients. Recent clinical data that will be presented suggests that safe non-myeloablative stem cell transplantation (NST), with no major toxicity can replace the conventional BMT. Thus, NST may provide an option for cure for a large spectrum of clinical indications in children and elderly individuals without lower or upper age limit, while minimizing procedure-related toxicity and mortality.

  6. Cisplatin and ultra-violet-C synergistically down-regulate receptor tyrosine kinases in human colorectal cancer cells

    Directory of Open Access Journals (Sweden)

    Kawaguchi Junji

    2012-07-01

    Full Text Available Abstract Background Platinum-containing anti-cancer drugs such as cisplatin are widely used for patients with various types of cancers, however, resistance to cisplatin is observed in some cases. Whereas we have recently reported that high dose UV-C (200 J/m² induces colorectal cancer cell proliferation by desensitization of EGFR, which leads oncogenic signaling in these cells, in this study we investigated the combination effect of low dose cisplatin (10 μM and low dose UV-C (10 J/m² on cell growth and apoptosis in several human colorectal cancer cells, SW480, DLD-1, HT29 and HCT116. Results The combination inhibited cell cycle and colony formation, while either cisplatin or UV-C alone had little effect. The combination also induced apoptosis in these cells. In addition, the combination caused the downregulation of EGFR and HER2. Moreover, UV-C alone caused the transient internalization of the EGFR, but with time EGFR recycled back to the cell surface, while cisplatin did not affect its localization. Surprisingly, the combination caused persistent internalization of the EGFR, which results in the lasting downregulation of the EGFR. Conclusions The combination of low dose cisplatin and low dose UV-C synergistically exerted anti-cancer effect by down-regulating RTK, such as EGFR and HER2. These findings may provide a novel strategy for the treatment of patients with colorectal cancer.

  7. Cell of origin associated classification of B-cell malignancies by gene signatures of the normal B-cell hierarchy.

    Science.gov (United States)

    Johnsen, Hans Erik; Bergkvist, Kim Steve; Schmitz, Alexander; Kjeldsen, Malene Krag; Hansen, Steen Møller; Gaihede, Michael; Nørgaard, Martin Agge; Bæch, John; Grønholdt, Marie-Louise; Jensen, Frank Svendsen; Johansen, Preben; Bødker, Julie Støve; Bøgsted, Martin; Dybkær, Karen

    2014-06-01

    Recent findings have suggested biological classification of B-cell malignancies as exemplified by the "activated B-cell-like" (ABC), the "germinal-center B-cell-like" (GCB) and primary mediastinal B-cell lymphoma (PMBL) subtypes of diffuse large B-cell lymphoma and "recurrent translocation and cyclin D" (TC) classification of multiple myeloma. Biological classification of B-cell derived cancers may be refined by a direct and systematic strategy where identification and characterization of normal B-cell differentiation subsets are used to define the cancer cell of origin phenotype. Here we propose a strategy combining multiparametric flow cytometry, global gene expression profiling and biostatistical modeling to generate B-cell subset specific gene signatures from sorted normal human immature, naive, germinal centrocytes and centroblasts, post-germinal memory B-cells, plasmablasts and plasma cells from available lymphoid tissues including lymph nodes, tonsils, thymus, peripheral blood and bone marrow. This strategy will provide an accurate image of the stage of differentiation, which prospectively can be used to classify any B-cell malignancy and eventually purify tumor cells. This report briefly describes the current models of the normal B-cell subset differentiation in multiple tissues and the pathogenesis of malignancies originating from the normal germinal B-cell hierarchy.

  8. Caffeine affects the biological responses of human hematopoietic cells of myeloid lineage via downregulation of the mTOR pathway and xanthine oxidase activity

    Science.gov (United States)

    Abooali, Maryam; Yasinska, Inna M.; Casely-Hayford, Maxwell A.; Berger, Steffen M.; Fasler-Kan, Elizaveta; Sumbayev, Vadim V.

    2015-01-01

    Correction of human myeloid cell function is crucial for the prevention of inflammatory and allergic reactions as well as leukaemia progression. Caffeine, a naturally occurring food component, is known to display anti-inflammatory effects which have previously been ascribed largely to its inhibitory actions on phosphodiesterase. However, more recent studies suggest an additional role in affecting the activity of the mammalian target of rapamycin (mTOR), a master regulator of myeloid cell translational pathways, although detailed molecular events underlying its mode of action have not been elucidated. Here, we report the cellular uptake of caffeine, without metabolisation, by healthy and malignant hematopoietic myeloid cells including monocytes, basophils and primary acute myeloid leukaemia mononuclear blasts. Unmodified caffeine downregulated mTOR signalling, which affected glycolysis and the release of pro-inflammatory/pro-angiogenic cytokines as well as other inflammatory mediators. In monocytes, the effects of caffeine were potentiated by its ability to inhibit xanthine oxidase, an enzyme which plays a central role in human purine catabolism by generating uric acid. In basophils, caffeine also increased intracellular cyclic adenosine monophosphate (cAMP) levels which further enhanced its inhibitory action on mTOR. These results demonstrate an important mode of pharmacological action of caffeine with potentially wide-ranging therapeutic impact for treating non-infectious disorders of the human immune system, where it could be applied directly to inflammatory cells. PMID:26384306

  9. Resistin promotes tumor metastasis by down-regulation of miR-519d through the AMPK/p38 signaling pathway in human chondrosarcoma cells

    Science.gov (United States)

    Huang, Ho-Ning; Hung, Chih-Hung; Hsu, Chin-Jung; Fong, Yi-Chin; Hsu, Horng-Chaung; Huang, Yuan-Li; Tang, Chih-Hsin

    2015-01-01

    Resistin is a recently discovered adipocyte-secreting adipokine, which may play a critical role in modulating cancer pathogenesis. Chondrosarcoma is a highly malignant tumor known to frequently metastasize; however, the role of resistin in the metastasis of human chondrosarcoma is largely unknown. Here, we found that the expression of resistin was higher in chondrosarcoma biopsy tissues than in normal cartilage. Moreover, treatment with resistin increased matrix metalloproteinase (MMP)-2 expression and promoted cell migration in human chondrosarcoma cells. Co-transfection with microRNA (miR)-519d mimic resulted in reversed resistin-mediated cell migration and MMP-2 expression. Additionally, AMP-activated protein kinase (AMPK) and p38 inhibitors or siRNAs reduced the resistin-increased cell migration and miR-519d suppression, and inhibition of resistin expression resulted in suppression of MMP-2 expression and lung metastasis in vivo. Taken together, our results indicate that resistin promotes chondrosarcoma metastasis and MMP-2 expression through activation of the AMPK/p38 signaling pathway and down-regulation of miR-519d expression. Therefore, resistin may represent a potential novel molecular therapeutic target in chondrosarcoma metastasis. PMID:25404641

  10. Fisetin Enhances the Cytotoxicity of Gemcitabine by Down-regulating ERK-MYC in MiaPaca-2 Human Pancreatic Cancer Cells.

    Science.gov (United States)

    Kim, Nayoung; Kang, Min-Jung; Lee, Sang Hyub; Son, Jun Hyuk; Lee, Ji Eun; Paik, Woo Hyun; Ryu, Ji Kon; Kim, Yong-Tae

    2018-06-01

    Pancreatic cancer is a highly lethal malignancy with a poor prognosis. This study was set up to investigate the combined effect of gemcitabine and fisetin, a natural flavonoid from plants, on human pancreatic cancer cells. Meterials and Methods: Cytotoxic effect of fisetin in combination with gemcitabine on MiaPaca-2 cells was evaluated by the MTT assay, caspase 3/7 assay and propidium iodide/Annexin V. Extracellular signal-regulated kinase (ERK)-v-myc avian myelocytomatosis viral oncogene homolog (MYC) pathway was investigated by western blotting and quantitative real-time polymerase chain reaction. Combination treatment with fisetin and gemcitabine inhibited the proliferation of pancreatic cancer cells within 72 h and induced apoptosis, as indicated by activation of caspase 3/7. Fisetin down-regulated ERK at the protein and mRNA levels, and reduced ERK-induced MYC instability at the protein level. Fisetin sensitized human pancreatic cancer cells to gemcitabine-induced cytotoxicity through inhibition of ERK-MYC signaling. These results suggest that the combination of fisetin and gemcitabine could be developed as a novel potent therapeutic. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  11. Loss of TET1 facilitates DLD1 colon cancer cell migration via H3K27me3-mediated down-regulation of E-cadherin.

    Science.gov (United States)

    Zhou, Zhen; Zhang, Hong-Sheng; Liu, Yang; Zhang, Zhong-Guo; Du, Guang-Yuan; Li, Hu; Yu, Xiao-Ying; Huang, Ying-Hui

    2018-02-01

    Epigenetic modifications such as histone modifications and cytosine hydroxymethylation are linked to tumorigenesis. Loss of 5-hydroxymethylcytosine (5 hmC) by ten-eleven translocation 1 (TET1) down-regulation facilitates tumor initiation and development. However, the mechanisms by which loss of TET1 knockdown promotes malignancy development remains unclear. Here, we report that TET1 knockdown induced epithelial-mesenchymal transition (EMT) and increased cancer cell growth, migration, and invasion in DLD1 cells. Loss of TET1 increased EZH2 expression and reduced UTX-1 expression, thus increasing histone H3K27 tri-methylation causing repression of the target gene E-cadherin. Ectopic expression of the H3K27 demethylase UTX-1 or EZH2 depletion both impeded EZH2 binding caused a loss of H3K27 methylation at epithelial gene E-cadherin promoter, thereby suppressing EMT and tumor invasion in shTET1 cells. Conversely, UTX-1 depletion and ectopic expression of EZH2 enhanced EMT and tumor metastasis in DLD1 cells. These findings provide insight into the regulation of TET1 and E-cadherin and identify EZH2 as a critical mediator of E-cadherin repression and tumor progression. © 2017 Wiley Periodicals, Inc.

  12. Lycium barbarum L. Polysaccharide (LBP Reduces Glucose Uptake via Down-Regulation of SGLT-1 in Caco2 Cell

    Directory of Open Access Journals (Sweden)

    Huizhen Cai

    2017-02-01

    Full Text Available Lycium barbarum L. polysaccharide (LBP is prepared from Lycium barbarum L. (L. barbarum, which is a traditional Chinese medicine. LPB has been shown to have hypoglycemic effects. In order to gain some mechanistic insights on the hypoglycemic effects of LBP, we investigated the uptake of LBP and its effect on glucose absorption in the human intestinal epithelial cell line Caco2 cell. The uptake of LBP through Caco2 cell monolayer was time-dependent and was inhibited by phloridzin, a competitive inhibitor of SGLT-1. LPB decreased the absorption of glucose in Caco2 cell, and down-regulated the expression of SGLT-1. These results suggest that LBP might be transported across the human intestinal epithelium through SGLT-1 and it inhibits glucose uptake via down-regulating SGLT-1.

  13. CD4+ NKG2D+ T cells induce NKG2D down-regulation in natural killer cells in CD86-RAE-1ε transgenic mice

    Science.gov (United States)

    Lin, Zhijie; Wang, Changrong; Xia, Haizui; Liu, Weiguang; Xiao, Weiming; Qian, Li; Jia, Xiaoqin; Ding, Yanbing; Ji, Mingchun; Gong, Weijuan

    2014-01-01

    The binding of NKG2D to its ligands strengthens the cross-talk between natural killer (NK) cells and dendritic cells, particularly at early stages, before the initiation of the adaptive immune response. We found that retinoic acid early transcript-1ε (RAE-1ε), one of the ligands of NKG2D, was persistently expressed on antigen-presenting cells in a transgenic mouse model (pCD86-RAE-1ε). By contrast, NKG2D expression on NK cells, NKG2D-dependent cytotoxicity and tumour rejection, and dextran sodium sulphate-induced colitis were all down-regulated in this mouse model. The down-regulation of NKG2D on NK cells was reversed by stimulation with poly (I:C). The ectopic expression of RAE-1ε on dendritic cells maintained NKG2D expression levels and stimulated the activity of NK cells ex vivo, but the higher frequency of CD4+ NKG2D+ T cells in transgenic mice led to the down-regulation of NKG2D on NK cells in vivo. Hence, high levels of RAE-1ε expression on antigen-presenting cells would be expected to induce the down-regulation of NK cell activation by a regulatory T-cell subset. PMID:24708417

  14. CD4(+) NKG2D(+) T cells induce NKG2D down-regulation in natural killer cells in CD86-RAE-1ε transgenic mice.

    Science.gov (United States)

    Lin, Zhijie; Wang, Changrong; Xia, Haizui; Liu, Weiguang; Xiao, Weiming; Qian, Li; Jia, Xiaoqin; Ding, Yanbing; Ji, Mingchun; Gong, Weijuan

    2014-03-01

    The binding of NKG2D to its ligands strengthens the cross-talk between natural killer (NK) cells and dendritic cells, particularly at early stages, before the initiation of the adaptive immune response. We found that retinoic acid early transcript-1ε (RAE-1ε), one of the ligands of NKG2D, was persistently expressed on antigen-presenting cells in a transgenic mouse model (pCD86-RAE-1ε). By contrast, NKG2D expression on NK cells, NKG2D-dependent cytotoxicity and tumour rejection, and dextran sodium sulphate-induced colitis were all down-regulated in this mouse model. The down-regulation of NKG2D on NK cells was reversed by stimulation with poly (I:C). The ectopic expression of RAE-1ε on dendritic cells maintained NKG2D expression levels and stimulated the activity of NK cells ex vivo, but the higher frequency of CD4(+) NKG2D(+) T cells in transgenic mice led to the down-regulation of NKG2D on NK cells in vivo. Hence, high levels of RAE-1ε expression on antigen-presenting cells would be expected to induce the down-regulation of NK cell activation by a regulatory T-cell subset. © 2013 John Wiley & Sons Ltd.

  15. EBI2 overexpression in mice leads to B1 B-cell expansion and chronic lymphocytic leukemia-like B-cell malignancies.

    Science.gov (United States)

    Niss Arfelt, Kristine; Barington, Line; Benned-Jensen, Tau; Kubale, Valentina; Kovalchuk, Alexander L; Daugvilaite, Viktorija; Christensen, Jan Pravsgaard; Thomsen, Allan Randrup; Egerod, Kristoffer L; Bassi, Maria R; Spiess, Katja; Schwartz, Thue W; Wang, Hongsheng; Morse, Herbert C; Holst, Peter J; Rosenkilde, Mette M

    2017-02-16

    Human and mouse chronic lymphocytic leukemia (CLL) develops from CD5 + B cells that in mice and macaques are known to define the distinct B1a B-cell lineage. B1a cells are characterized by lack of germinal center (GC) development, and the B1a cell population is increased in mice with reduced GC formation. As a major mediator of follicular B-cell migration, the G protein-coupled receptor Epstein-Barr virus-induced gene 2 ( EBI2 or GPR183 ) directs B-cell migration in the lymphoid follicles in response to its endogenous ligands, oxysterols. Thus, upregulation of EBI2 drives the B cells toward the extrafollicular area, whereas downregulation is essential for GC formation. We therefore speculated whether increased expression of EBI2 would lead to an expanded B1 cell subset and, ultimately, progression to CLL. Here, we demonstrate that B-cell-targeted expression of human EBI2 (hEBI2) in mice reduces GC-dependent immune responses, reduces total immunoglobulin M (IgM) and IgG levels, and leads to increased proliferation and upregulation of cellular oncogenes. Furthermore, hEBI2 overexpression leads to an abnormally expanded CD5 + B1a B-cell subset (present as early as 4 days after birth), late-onset lymphoid cancer development, and premature death. These findings are highly similar to those observed in CLL patients and identify EBI2 as a promoter of B-cell malignancies.

  16. Sodium arsenite accelerates TRAIL-mediated apoptosis in melanoma cells through upregulation of TRAIL-R1/R2 surface levels and downregulation of cFLIP expression

    International Nuclear Information System (INIS)

    Ivanov, Vladimir N.; Hei, Tom K.

    2006-01-01

    AP-1/cJun, NF-κB and STAT3 transcription factors control expression of numerous genes, which regulate critical cell functions including proliferation, survival and apoptosis. Sodium arsenite is known to suppress both the IKK-NF-κB and JAK2-STAT3 signaling pathways and to activate the MAPK/JNK-cJun pathways, thereby committing some cancers to undergo apoptosis. Indeed, sodium arsenite is an effective drug for the treatment of acute promyelocytic leukemia with little nonspecific toxicity. Malignant melanoma is highly refractory to conventional radio- and chemotherapy. In the present study, we observed strong effects of sodium arsenite treatment on upregulation of TRAIL-mediated apoptosis in human and mouse melanomas. Arsenite treatment upregulated surface levels of death receptors, TRAIL-R1 and TRAIL-R2, through increased translocation of these proteins from cytoplasm to the cell surface. Furthermore, activation of cJun and suppression of NF-κB by sodium arsenite resulted in upregulation of the endogenous TRAIL and downregulation of the cFLIP gene expression (which encodes one of the main anti-apoptotic proteins in melanomas) followed by cFLIP protein degradation and, finally, by acceleration of TRAIL-induced apoptosis. Direct suppression of cFLIP expression by cFLIP RNAi also accelerated TRAIL-induced apoptosis in these melanomas, while COX-2 suppression substantially increased levels of both TRAIL-induced and arsenite-induced apoptosis. In contrast, overexpression of permanently active AKTmyr inhibited TRAIL-mediated apoptosis via downregulation of TRAIL-R1 levels. Finally, AKT overactivation increased melanoma survival in cell culture and dramatically accelerated growth of melanoma transplant in vivo, highlighting a role of AKT suppression for effective anticancer treatment

  17. Lactogenic differentiation of HC11 cells is not accompanied by downregulation of AP-2 transcription factor genes

    Directory of Open Access Journals (Sweden)

    Schorle Hubert

    2008-06-01

    Full Text Available Abstract Background During pregnancy the mammary epithelium undergoes a complex developmental process which culminates in the generation of the milk-secreting epithelium. Secretory epithelial cells display lactogenic differentiation which is characterized by the expression of milk protein genes, such as beta-casein or whey acidic protein (WAP. Transcription factors AP-2alpha and AP-2gamma are downregulated during lactation, and their overexpression in transgenic mice impaired the secretory differentiation of the mammary epithelium, resulting in lactation failure. To explore whether the downregulation of AP-2alpha and AP-2gamma is of functional significance for lactogenic differentiation, we analyzed the expression of the AP-2 family members during the lactogenic differentiation of HC11 mammary epithelial cells in vitro. Differentiation of HC11 cells was induced following established protocols by applying the lactogenic hormones prolactin, dexamethasone and insulin. Findings HC11 cells express all AP-2 family members except AP-2delta. Using RT-PCR we could not detect a downregulation of any of these genes during the lactogenic differentiation of HC11 cells in vitro. This finding was confirmed for AP-2alpha and AP-2gamma using Northern analysis. Differentiating HC11 cells displayed lower expression levels of milk protein genes than mammary glands of mid-pregnant or lactating mice. Conclusion The extent of lactogenic differentiation of HC11 cells in vitro is limited compared to mammary epithelium undergoing secretory differentiation in vivo. Downregulation of AP-2 transcription factor genes is not required for lactogenic differentiation of HC11 cells but may functionally be involved in aspects of lactogenic differentiation in vivo that are not reflected by the HC11 system.

  18. Insulin-like growth factor I reduces lipid oxidation and foam cell formation via downregulation of 12/15-lipoxygenase.

    Science.gov (United States)

    Sukhanov, Sergiy; Snarski, Patricia; Vaughn, Charlotte; Lobelle-Rich, Patricia; Kim, Catherine; Higashi, Yusuke; Shai, Shaw-Yung; Delafontaine, Patrice

    2015-02-01

    We have shown that insulin-like growth factor I (IGF-1) infusion in Apoe(-/-) mice decreased atherosclerotic plaque size and plaque macrophage and lipid content suggesting that IGF-1 suppressed formation of macrophage-derived foam cells. Since 12/15-lipoxygenase (12/15-LOX) plays an important role in OxLDL and foam cell formation, we hypothesized that IGF-1 downregulates 12/15-LOX, thereby suppressing lipid oxidation and foam cell formation. We found that IGF-1 decreased 12/15-LOX plaque immunopositivity and serum OxLDL levels in Apoe(-/-) mice. IGF-1 reduced 12/15-LOX protein and mRNA levels in cultured THP-1 macrophages and IGF-1 also decreased expression of STAT6 transcription factor. IGF-1 reduction in macrophage 12/15-LOX was mediated in part via a PI3 kinase- and STAT6-dependent transcriptional mechanism. IGF-1 suppressed THP-1 macrophage ability to oxidize lipids and form foam cells. IGF-1 downregulated 12/15-LOX in human blood-derived primary macrophages and IGF-1 decreased LDL oxidation induced by these cells. IGF-1 reduced LDL oxidation and formation of foam cells by wild type murine peritoneal macrophages, however these effects were completely blocked in 12/15-LOX-null macrophages suggesting that the ability of IGF-1 to reduce LDL oxidation and foam cells formation is dependent on its ability to downregulate 12/15-LOX. Overall our data demonstrate that IGF-1 reduces lipid oxidation and foam cell formation via downregulation of 12/15-LOX and this mechanism may play a major role in the anti-atherosclerotic effects of IGF-1. Published by Elsevier Ireland Ltd.

  19. Insulin-like Growth Factor I Reduces Lipid Oxidation and Foam Cell Formation via Downregulation of 12/15-lipoxygenase

    Science.gov (United States)

    Sukhanov, Sergiy; Snarski, Patricia; Vaughn, Charlotte; Lobelle-Rich, Patricia; Kim, Catherine; Higashi, Yusuke; Shai, Shaw-Yung; Delafontaine, Patrice

    2014-01-01

    Objective We have shown that insulin-like growth factor I (IGF-1) infusion in Apoe−/− mice decreased atherosclerotic plaque size and plaque macrophage and lipid content suggesting that IGF-1 suppressed formation of macrophage-derived foam cells. Since 12/15-lipoxygenase (12/15-LOX) plays an important role in OxLDL and foam cell formation, we hypothesized that IGF-1 downregulates 12/15-LOX, thereby suppressing lipid oxidation and foam cell formation. Approach and Results We found that IGF-1 decreased 12/15-LOX plaque immunopositivity and serum OxLDL levels in Apoe−/− mice. IGF-1 reduced 12/15-LOX protein and mRNA levels in cultured THP-1 macrophages and IGF-1 also decreased expression of STAT6 transcription factor. IGF-1 reduction in macrophage 12/15-LOX was mediated in part via a PI3 kinase- and STAT6-dependent transcriptional mechanism. IGF-1 suppressed THP-1 macrophage ability to oxidize lipids and form foam cells. IGF-1 downregulated 12/15-LOX in human blood-derived primary macrophages and IGF-1 decreased LDL oxidation induced by these cells. IGF-1 reduced LDL oxidation and formation of foam cells by wild type murine peritoneal macrophages, however these effects were completely blocked in 12/15-LOX-null macrophages suggesting that the ability of IGF-1 to reduce LDL oxidation and foam cells formation is dependent on its ability to downregulate 12/15-LOX. Conclusions Overall our data demonstrate that IGF-1 reduces lipid oxidation and foam cell formation via downregulation of 12/15-LOX and this mechanism may play a major role in the anti-atherosclerotic effects of IGF-1. PMID:25549319

  20. Akt regulates drug-induced cell death through Bcl-w downregulation.

    Directory of Open Access Journals (Sweden)

    Michela Garofalo

    Full Text Available Akt is a serine threonine kinase with a major role in transducing survival signals and regulating proteins involved in apoptosis. To find new interactors of Akt involved in cell survival, we performed a two-hybrid screening in yeast using human full-length Akt c-DNA as bait and a murine c-DNA library as prey. Among the 80 clones obtained, two were identified as Bcl-w. Bcl-w is a member of the Bcl-2 family that is essential for the regulation of cellular survival, and that is up-regulated in different human tumors, such as gastric and colorectal carcinomas. Direct interaction of Bcl-w with Akt was confirmed by immunoprecipitation assays. Subsequently, we addressed the function of this interaction: by interfering with the activity or amount of Akt, we have demonstrated that Akt modulates the amount of Bcl-w protein. We have found that inhibition of Akt activity may promote apoptosis through the downregulation of Bcl-w protein and the consequential reduction in interaction of Bcl-w with pro-apoptotic members of the Bcl-2 family. Our data provide evidence that Bcl-w is a new member of the Akt pathway and that Akt may induce anti-apoptotic signals at least in part through the regulation of the amount and activity of Bcl-w.

  1. Akt regulates drug-induced cell death through Bcl-w downregulation.

    Science.gov (United States)

    Garofalo, Michela; Quintavalle, Cristina; Zanca, Ciro; De Rienzo, Assunta; Romano, Giulia; Acunzo, Mario; Puca, Loredana; Incoronato, Mariarosaria; Croce, Carlo M; Condorelli, Gerolama

    2008-01-01

    Akt is a serine threonine kinase with a major role in transducing survival signals and regulating proteins involved in apoptosis. To find new interactors of Akt involved in cell survival, we performed a two-hybrid screening in yeast using human full-length Akt c-DNA as bait and a murine c-DNA library as prey. Among the 80 clones obtained, two were identified as Bcl-w. Bcl-w is a member of the Bcl-2 family that is essential for the regulation of cellular survival, and that is up-regulated in different human tumors, such as gastric and colorectal carcinomas. Direct interaction of Bcl-w with Akt was confirmed by immunoprecipitation assays. Subsequently, we addressed the function of this interaction: by interfering with the activity or amount of Akt, we have demonstrated that Akt modulates the amount of Bcl-w protein. We have found that inhibition of Akt activity may promote apoptosis through the downregulation of Bcl-w protein and the consequential reduction in interaction of Bcl-w with pro-apoptotic members of the Bcl-2 family. Our data provide evidence that Bcl-w is a new member of the Akt pathway and that Akt may induce anti-apoptotic signals at least in part through the regulation of the amount and activity of Bcl-w.

  2. ENA/VASP downregulation triggers cell death by impairing axonal maintenance in hippocampal neurons.

    Science.gov (United States)

    Franco, D Lorena; Rezával, Carolina; Cáceres, Alfredo; Schinder, Alejandro F; Ceriani, M Fernanda

    2010-06-01

    Neurodegenerative diseases encompass a broad variety of motor and cognitive disorders that are accompanied by death of specific neuronal populations or brain regions. Cellular and molecular mechanisms underlying these complex disorders remain largely unknown. In a previous work we searched for novel Drosophila genes relevant for neurodegeneration and singled out enabled (ena), which encodes a protein involved in cytoskeleton remodeling. To extend our understanding on the mechanisms of ENA-triggered degeneration we now investigated the effect of silencing ena ortholog genes in mouse hippocampal neurons. We found that ENA/VASP downregulation led to neurite retraction and concomitant neuronal cell death through an apoptotic pathway. Remarkably, this retraction initially affected the axonal structure, showing no effect on dendrites. Reduction in ENA/VASP levels blocked the neuritogenic effect of a specific RhoA kinase (ROCK) inhibitor, thus suggesting that these proteins could participate in the Rho-signaling pathway. Altogether these observations demonstrate that ENA/VASP proteins are implicated in the establishment and maintenance of the axonal structure and that a change on their expression levels triggers neuronal degeneration. 2010 Elsevier Inc. All rights reserved.

  3. Cysteinyl leukotrienes C4 and D4 downregulate human mast cell expression of toll-like receptors 1 through 7.

    Science.gov (United States)

    Karpov, V; Ilarraza, R; Catalli, A; Kulka, M

    2018-01-01

    Cysteinyl leukotrienes (CysLT) are potent inflammatory lipid molecules that mediate some of the pathophysiological responses associated with asthma such as bronchoconstriction, vasodilation and increased microvascular permeability. As a result, CysLT receptor antagonists (LRA), such as montelukast, have been used to effectively treat patients with asthma. We have recently shown that mast cells are necessary modulators of innate immune responses to bacterial infection and an important component of this innate immune response may involve the production of CysLT. However, the effect of LRA on innate immune receptors, particularly on allergic effector cells, is unknown. This study determined the effect of CysLT on toll-like receptor (TLR) expression by the human mast cell line LAD2. Real-time PCR analysis determined that LTC4, LTD4 and LTE4 downregulated mRNA expression of several TLR. Specifically in human CD34+-derived human mast cells (HuMC), LTC4 inhibited expression of TLR1, 2, 4, 5, 6 and 7 while LTD4 inhibited expression of TLR1-7. Montelukast blocked LTC4-mediated downregulation of all TLR, suggesting that these effects were mediated by activation of the CysLT1 receptor (CysLT1R). Flow cytometry analysis confirmed that LTC4 downregulated surface expression of TLR2 which was blocked by montelukast. These data show that CysLT can modulate human mast cell expression of TLR and that montelukast may be beneficial for innate immune responses mediated by mast cells.

  4. CTNNB1 signaling in sertoli cells downregulates spermatogonial stem cell activity via WNT4.

    Directory of Open Access Journals (Sweden)

    Alexandre Boyer

    Full Text Available Constitutive activation of the WNT signaling effector CTNNB1 (β-catenin in the Sertoli cells of the Ctnnb1(tm1Mmt/+;Amhr2(tm3(creBhr/+ mouse model results in progressive germ cell loss and sterility. In this study, we sought to determine if this phenotype could be due to a loss of spermatogonial stem cell (SSC activity. Reciprocal SSC transplants between Ctnnb1(tm1Mmt/+;Amhr2(tm3(creBhr/+ and wild-type mice showed that SSC activity is lost in Ctnnb1(tm1Mmt/+;Amhr2(tm3(creBhr/+ testes over time, whereas the mutant testes could not support colonization by wild-type SSCs. Microarray analyses performed on cultured Sertoli cells showed that CTNNB1 induces the expression of genes associated with the female sex determination pathway, which was also found to occur in Ctnnb1(tm1Mmt/+;Amhr2(tm3(creBhr/+ testes. One CTNNB1 target gene encoded the secreted signaling molecule WNT4. We therefore tested the effects of WNT4 on SSC-enriched germ cell cultures, and found that WNT4 induced cell death and reduced SSC activity without affecting cell cycle. Conversely, conditional inactivation of Wnt4 in the Ctnnb1(tm1Mmt/+;Amhr2(tm3(creBhr/+ model rescued spermatogenesis and male fertility, indicating that WNT4 is the major effector downstream of CTNNB1 responsible for germ cell loss. Furthermore, WNT4 was found to signal via the CTNNB1 pathway in Sertoli cells, suggesting a self-reinforcing positive feedback loop. Collectively, these data indicate for the first time that ectopic activation of a signaling cascade in the stem cell niche depletes SSC activity through a paracrine factor. These findings may provide insight into the pathogenesis of male infertility, as well as embryonic gonadal development.

  5. Programmed cell death-10 enhances proliferation and protects malignant T cells from apoptosis

    DEFF Research Database (Denmark)

    Lauenborg, Britt; Kopp, Katharina; Krejsgaard, Thorbjørn

    2010-01-01

    is associated with serine/threonine kinases and phosphatases and modulates the extracellular signal-regulated kinase pathway suggesting a role in the regulation of cellular growth. Here we provide evidence of a constitutive expression of PDCD10 in malignant T cells and cell lines from peripheral blood......, whereas an activator of Jak3 and NF-¿B, interleukin-2 (IL-2), enhances PDCD10 expression. Functional data show that PDCD10 depletion by small interfering RNA induces apoptosis and decreases proliferation of the sensitive cells. To our knowledge, these data provide the first functional link between PDCD10...

  6. MicroRNA-9 suppresses the growth, migration, and invasion of malignant melanoma cells via targeting NRP1

    Directory of Open Access Journals (Sweden)

    Xu D

    2016-11-01

    Full Text Available Dan Xu,1 Xiaofeng Chen,2 Quanyong He,1 Chengqun Luo1 1Department of Plastic Surgery, Third Xiangya Hospital of Central South University, 2Department of Neurosurgery, Brain Hospital of Hunan Province, Changsha, Hunan, People’s Republic of China Abstract: MicroRNAs (miRs are a class of small noncoding RNAs that negatively regulate the gene expression by directly binding to the 3' untranslated region of their target mRNA, thus resulting in mRNA degradation or translational repression. miR-9 has recently been demonstrated to play a role in the development and progression of malignant melanoma (MM, but the regulatory mechanism of miR-9 in the malignant phenotypes of MM still remains largely unknown. In this study, a total of 73 pairs of MM tissues and adjacent normal tissues were collected. Real-time reverse transcription polymerase chain reaction and Western blot were used to detect the mRNA and protein expression of miR-9. MTT assay, wound healing assay, and transwell assay were conducted to determine the cell proliferation, migration, and invasion. Luciferase reporter assay was used to determine the targeting relationship between miR-9 and NRP1. Our data demonstrated that miR-9 expression was significantly downregulated in MM tissues compared with that in adjacent normal tissues. The decreased miR-9 level was significantly associated with the tumor stage and metastasis of MM. We also found that the expression level of miR-9 was decreased in MM cell lines (G361, B16, A375, and HME1 compared with normal skin HACAT cells. Ectopic expression of miR-9 led to a significant decrease in the ability of proliferation, migration, and invasion in A375 cells. NRP1 was further identified as a direct target gene of miR-9, and the protein expression of NRP1 was negatively regulated by miR-9 in A375 cells. Furthermore, overexpression of NRP1 reversed the suppressive effects of miR-9 on the malignant phenotypes of A375 cells. In vivo study revealed that miR-9

  7. Sensitization of multidrug-resistant human cancer cells to Hsp90 inhibitors by down-regulation of SIRT1

    Science.gov (United States)

    Kim, Hak-Bong; Lee, Su-Hoon; Um, Jee-Hyun; Oh, Won Keun; Kim, Dong-Wan; Kang, Chi-Dug; Kim, Sun-Hee

    2015-01-01

    The effectiveness of Hsp90 inhibitors as anticancer agents was limited in multidrug-resistant (MDR) human cancer cells due to induction of heat shock proteins (Hsps) such as Hsp70/Hsp27 and P-glycoprotein (P-gp)-mediated efflux. In the present study, we showed that resistance to Hsp90 inhibitors of MDR human cancer cells could be overcome with SIRT1 inhibition. SIRT1 knock-down or SIRT1 inhibitors (amurensin G and EX527) effectively suppressed the resistance to Hsp90 inhibitors (17-AAG and AUY922) in several MDR variants of human lymphoblastic leukemia and human breast cancer cell lines. SIRT1 inhibition down-regulated the expression of heat shock factor 1 (HSF1) and subsequently Hsps and facilitated Hsp90 multichaperone complex disruption via hyperacetylation of Hsp90/Hsp70. These findings were followed by acceleration of ubiquitin ligase CHIP-mediated mutant p53 (mut p53) degradation and subsequent down-regulation of P-gp in 17-AAG-treated MDR cancer cells expressing P-gp and mut p53 after inhibition of SIRT1. Therefore, combined treatment with Hsp90 inhibitor and SIRT1 inhibitor could be a more effective therapeutic approach for Hsp90 inhibitor-resistant MDR cells via down-regulation of HSF1/Hsps, mut p53 and P-gp. PMID:26416354

  8. Malignant hematopoietic cell lines: in vitro models for the study of natural killer cell leukemia-lymphoma.

    Science.gov (United States)

    Drexler, H G; Matsuo, Y

    2000-05-01

    Malignancies involving natural killer (NK) cells are rare disorders. The complexity of NK cell-involving disorders has only recently been appreciated. Modern classifications discern immature (precursor) from mature NK cell leukemias-lymphomas. Continuous NK leukemia-lymphoma cell lines represent important model systems to study these neoplasms. While there are a number of putative NK cell lines which are, however, either not characterized, not immortalized, non-malignant, non-NK, or plain false cell lines, six bona fide malignant NK cell lines have been established and are sufficiently well characterized: HANK1, KHYG-1, NK-92, NKL, NK-YS and YT. Except for YT which was derived from a not further defined acute lymphoblastic lymphoma, these cell lines were established from patients with various NK cell malignancies. Five of the six cell lines are constitutively interleukin-2-dependent. Their immunoprofile is remarkably similar: CD1-, CD2+, surface CD3 (but cytoplasmic CD3epsilon+), CD4-, CD5-, CD7+, CD8-, CD16-, CD56+, CD57-, TCRalphabeta-, TCRgammadelta-, negative for B cell and myelomonocytic markers. The immunoglobulin heavy chain and T cell receptor genes are all in germline configuration. All six lines show complex chromosomal alterations, with both numerical and structural aberrations, attesting to their malignant and monoclonal nature. Functionally, these cells which contain azurophilic granules in their cytoplasm are nearly universally positive in NK activity assays. Three of five cell lines are Epstein-Barr virus-positive (type II latency). The composite data on these six cell lines allow for the operational definition of a typical malignant NK cell line profile. NK leukemia-lymphoma cell lines will prove invaluable for studies of normal and malignant NK cell biology.

  9. Epigenetic down-regulated DDX10 promotes cell proliferation through Akt/NF-κB pathway in ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Gai, Muhuizi; Bo, Qifang; Qi, Lixia, E-mail: lixiaqi_dph@sina.com

    2016-01-22

    Ovarian cancer contributes to the majority of ovarian cancer, while the molecular mechanisms remain elusive. Recently, some DEAD box protein 1 has been reported play a tumor suppressor role in ovarian cancer progression. However, the functions of DEAD box protein (DDX) members in ovarian cancer development remain largely unknown. In current study, we retrieved GEO databases and surprisingly found that DDX10 is significantly down-regulated in ovarian cancer tissues compared with normal ovary. These findings suggest that DDX10 might also play a suppressive role in ovarian cancer. We then validated the down-regulated expression pattern of DDX10 in fresh ovarian cancer tissues. Furthermore, both loss- and gain-functions assays reveal that the down-regulated DDX10 could promote ovarian cancer proliferation in vitro and the xenograft subcutaneous tumor formation assays confirmed these findings in vivo. In addition, we found that DDX10 is epigenetic silenced by miR-155-5p in ovarian cancer. Moreover, we further preliminary illustrated that down-regulated DDX10 promotes ovarian cancer cell proliferation through Akt/NF-κB pathway. Taken together, in current study, we found a novel tumor suppressor, DDX10, is epigenetic silenced by miR-155-5p in ovarian cancer, and the down-regulated expression pattern of DDX10 promotes ovarian cancer proliferation through Akt/NF-κB pathway. Our findings shed the light that DDX families might be a novel for ovarian cancer treatment. - Highlights: • A novel DEAD box protein, DDX10 is significantly down-regulated in ovarian cancer tissues. • Down-regulated DDX10 promotes ovarian cancer cell proliferation and growth both in vitro and in vivo. • miR-155-5p is highly expressed in ovarian cancer tissues and epigenetically targets DDX10. • DDX10 and miR-155-5p regulates Akt/p65 axis in ovarian cancer cells.

  10. Epigenetic down-regulated DDX10 promotes cell proliferation through Akt/NF-κB pathway in ovarian cancer

    International Nuclear Information System (INIS)

    Gai, Muhuizi; Bo, Qifang; Qi, Lixia

    2016-01-01

    Ovarian cancer contributes to the majority of ovarian cancer, while the molecular mechanisms remain elusive. Recently, some DEAD box protein 1 has been reported play a tumor suppressor role in ovarian cancer progression. However, the functions of DEAD box protein (DDX) members in ovarian cancer development remain largely unknown. In current study, we retrieved GEO databases and surprisingly found that DDX10 is significantly down-regulated in ovarian cancer tissues compared with normal ovary. These findings suggest that DDX10 might also play a suppressive role in ovarian cancer. We then validated the down-regulated expression pattern of DDX10 in fresh ovarian cancer tissues. Furthermore, both loss- and gain-functions assays reveal that the down-regulated DDX10 could promote ovarian cancer proliferation in vitro and the xenograft subcutaneous tumor formation assays confirmed these findings in vivo. In addition, we found that DDX10 is epigenetic silenced by miR-155-5p in ovarian cancer. Moreover, we further preliminary illustrated that down-regulated DDX10 promotes ovarian cancer cell proliferation through Akt/NF-κB pathway. Taken together, in current study, we found a novel tumor suppressor, DDX10, is epigenetic silenced by miR-155-5p in ovarian cancer, and the down-regulated expression pattern of DDX10 promotes ovarian cancer proliferation through Akt/NF-κB pathway. Our findings shed the light that DDX families might be a novel for ovarian cancer treatment. - Highlights: • A novel DEAD box protein, DDX10 is significantly down-regulated in ovarian cancer tissues. • Down-regulated DDX10 promotes ovarian cancer cell proliferation and growth both in vitro and in vivo. • miR-155-5p is highly expressed in ovarian cancer tissues and epigenetically targets DDX10. • DDX10 and miR-155-5p regulates Akt/p65 axis in ovarian cancer cells.

  11. Induction of malignant transformation in CHL-1 cells by exposure to tritiated water

    International Nuclear Information System (INIS)

    Zou Shu'ai; Wang Hui

    1992-01-01

    The induction of neoplastic transformation in CHL-1 cells by low-dose-rate exposure to tritiated water was reported. CHL-1 cells were exposed to tritiated water (9.25 x 10 5 - 3.7 x 10 6 Bq/mL) for 24-96 hours and the accumulated doses were estimated to be 0.055-0.88 Gy, respectively. Neoplastic transformation was found in all exposed cell groups. The morphological study and transplantation test was carried out for demonstration malignancy of the transformed cells and the results show that they are with the morphology and behaviour for malignant tumour cells. For CHL-1 cells exposed to various doses of tritiated water, transformation rates were found to be from 3.28% to 13.0% at dose of 0.055-0.88 Gy. In order to estimate RBE of tritium for malignant transformation in CHL-1 cells, the induction of malignant transformation in CHL-1 cells by exposure to 137 Cs gamma-rays was carried out at dose rates of 0.359 Gy/24 hr and transformation rates for irradiated CHL-1 cells were found to be from 2.59% to 13.4%. Based on these data, RBE of tritium for malignant transformation in CHL-1 cells was estimated to be 1.6

  12. Protocatechualdehyde possesses anti-cancer activity through downregulating cyclin D1 and HDAC2 in human colorectal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jin Boo [Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742 (United States); Lee, Seong-Ho, E-mail: slee2000@umd.edu [Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742 (United States)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Protocatechualdehyde (PCA) suppressed cell proliferation and induced apoptosis in human colorectal cancer cells. Black-Right-Pointing-Pointer PCA enhanced transcriptional downregulation of cyclin D1 gene. Black-Right-Pointing-Pointer PCA suppressed HDAC2 expression and activity. Black-Right-Pointing-Pointer These findings suggest that anti-cancer activity of PCA may be mediated by reducing HDAC2-derived cyclin D1 expression. -- Abstract: Protocatechualdehyde (PCA) is a naturally occurring polyphenol found in barley, green cavendish bananas, and grapevine leaves. Although a few studies reported growth-inhibitory activity of PCA in breast and leukemia cancer cells, the underlying mechanisms are still poorly understood. Thus, we performed in vitro study to investigate if treatment of PCA affects cell proliferation and apoptosis in human colorectal cancer cells and define potential mechanisms by which PCA mediates growth arrest and apoptosis of cancer cells. Exposure of PCA to human colorectal cancer cells (HCT116 and SW480 cells) suppressed cell growth and induced apoptosis in dose-dependent manner. PCA decreased cyclin D1 expression in protein and mRNA level and suppressed luciferase activity of cyclin D1 promoter, indicating transcriptional downregulation of cyclin D1 gene by PCA. We also observed that PCA treatment attenuated enzyme activity of histone deacetylase (HDAC) and reduced expression of HDAC2, but not HDAC1. These findings suggest that cell growth inhibition and apoptosis by PCA may be a result of HDAC2-mediated cyclin D1 suppression.

  13. Protocatechualdehyde possesses anti-cancer activity through downregulating cyclin D1 and HDAC2 in human colorectal cancer cells

    International Nuclear Information System (INIS)

    Jeong, Jin Boo; Lee, Seong-Ho

    2013-01-01

    Highlights: ► Protocatechualdehyde (PCA) suppressed cell proliferation and induced apoptosis in human colorectal cancer cells. ► PCA enhanced transcriptional downregulation of cyclin D1 gene. ► PCA suppressed HDAC2 expression and activity. ► These findings suggest that anti-cancer activity of PCA may be mediated by reducing HDAC2-derived cyclin D1 expression. -- Abstract: Protocatechualdehyde (PCA) is a naturally occurring polyphenol found in barley, green cavendish bananas, and grapevine leaves. Although a few studies reported growth-inhibitory activity of PCA in breast and leukemia cancer cells, the underlying mechanisms are still poorly understood. Thus, we performed in vitro study to investigate if treatment of PCA affects cell proliferation and apoptosis in human colorectal cancer cells and define potential mechanisms by which PCA mediates growth arrest and apoptosis of cancer cells. Exposure of PCA to human colorectal cancer cells (HCT116 and SW480 cells) suppressed cell growth and induced apoptosis in dose-dependent manner. PCA decreased cyclin D1 expression in protein and mRNA level and suppressed luciferase activity of cyclin D1 promoter, indicating transcriptional downregulation of cyclin D1 gene by PCA. We also observed that PCA treatment attenuated enzyme activity of histone deacetylase (HDAC) and reduced expression of HDAC2, but not HDAC1. These findings suggest that cell growth inhibition and apoptosis by PCA may be a result of HDAC2-mediated cyclin D1 suppression.

  14. cell-derived IFN-γ downregulates protective group 2 innate lymphoid cells in murine lupus erythematosus.

    Science.gov (United States)

    Düster, Mathis; Becker, Martina; Gnirck, Ann-Christin; Wunderlich, Malte; Panzer, Ulf; Turner, Jan-Eric

    2018-04-19

    Innate lymphoid cells (ILCs) are important regulators of the immune response and play a crucial role in the restoration of tissue homeostasis after injury. GATA-3 + IL-13- and IL-5-producing group 2 innate lymphoid cells (ILC2s) have been shown to promote tissue repair in barrier organs, but despite extensive research on ILCs in the recent years, their potential role in autoimmune diseases is still incompletely understood. In the present study, we investigate the role of ILC2s in the MRL/MpJ-Fas lpr (MRL-lpr) mouse model for severe organ manifestation of systemic lupus erythematosus (SLE). We show that in these MRL-lpr mice, progression of lupus nephritis is accompanied with a reduction of ILC2 abundance in the inflamed renal tissue. Proliferation/survival and cytokine production of kidney-residing ILC2s was suppressed by IFN-γ and, to a lesser extent, by IL-27 which were produced by activated T cells and myeloid cells in the nephritic kidney, respectively. Most importantly, restoration of ILC2 numbers by IL-33-mediated expansion ameliorated lupus nephritis and prevented mortality in MRL-lpr mice. In summary, we show here that development of SLE-like kidney inflammation leads to a downregulation of the renal ILC2 response and identify an ILC2-expanding therapy as a promising treatment approach for autoimmune diseases. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. siRNA - Mediated LRP/LR knock-down reduces cellular viability of malignant melanoma cells through the activation of apoptotic caspases.

    Science.gov (United States)

    Rebelo, Thalia M; Vania, Leila; Ferreira, Eloise; Weiss, Stefan F T

    2018-07-01

    The 37 kDa/67 kDa laminin receptor (LRP/LR) is over-expressed in tumor cells and has been implicated in several tumourigenic processes such as metastasis and telomerase activation, however, more importantly the focus of the present study is on the maintenance of cellular viability and the evasion of apoptosis. The aim of the study was to investigate the role of LRP/LR on the cellular viability of early (A375) and late stage (A375SM) malignant melanoma cells. Flow cytometry and western blot analysis revealed that A375SM cells contain more cell-surface and total LRP/LR levels in comparison to the A375 cells, respectively. In order to determine the effect of LRP/LR on cell viability and apoptosis, LRP was down-regulated via siRNA technology. MTT assays revealed that LRP knock-down led to significant reductions in the viability of A375 and A375SM cells. Confocal microscopy indicated nuclear morphological changes suggestive of apoptotic induction in both cell lines and Annexin-V FITC/PI assays confirmed this observation. Additionally, caspase-3 activity assays revealed that apoptosis was induced in both cell lines after siRNA-mediated down-regulation of LRP. Caspase-8 and -9 activity assays suggested that post LRP knock-down; A375 cells undergo apoptosis solely via the extrinsic pathway, while A375SM cells undergo apoptosis via the intrinsic pathway. siRNAs mediated LRP knock-down might represent a powerful alternative therapeutic strategy for the treatment of malignant melanoma through the induction of apoptosis. Copyright © 2018. Published by Elsevier Inc.

  16. MiR-375 inhibits the hepatocyte growth factor-elicited migration of mesenchymal stem cells by downregulating Akt signaling.

    Science.gov (United States)

    He, Lihong; Wang, Xianyao; Kang, Naixin; Xu, Jianwei; Dai, Nan; Xu, Xiaojing; Zhang, Huanxiang

    2018-04-01

    The migration of mesenchymal stem cells (MSCs) is critical for their use in cell-based therapies. Accumulating evidence suggests that microRNAs are important regulators of MSC migration. Here, we report that the expression of miR-375 was downregulated in MSCs treated with hepatocyte growth factor (HGF), which strongly stimulates the migration of these cells. Overexpression of miR-375 decreased the transfilter migration and the migration velocity of MSCs triggered by HGF. In our efforts to determine the mechanism by which miR-375 affects MSC migration, we found that miR-375 significantly inhibited the activation of Akt by downregulating its phosphorylation at T308 and S473, but had no effect on the activity of mitogen-activated protein kinases. Further, we showed that 3'phosphoinositide-dependent protein kinase-1 (PDK1), an upstream kinase necessary for full activation of Akt, was negatively regulated by miR-375 at the protein level. Moreover, miR-375 suppressed the phosphorylation of focal adhesion kinase (FAK) and paxillin, two important regulators of focal adhesion (FA) assembly and turnover, and decreased the number of FAs at cell periphery. Taken together, our results demonstrate that miR-375 inhibits HGF-elicited migration of MSCs through downregulating the expression of PDK1 and suppressing the activation of Akt, as well as influencing the tyrosine phosphorylation of FAK and paxillin and FA periphery distribution.

  17. Down-Regulation of Desmosomes in Cultured Cells: The Roles of PKC, Microtubules and Lysosomal/Proteasomal Degradation

    Science.gov (United States)

    McHarg, Selina; Hopkins, Gemma; Lim, Lusiana; Garrod, David

    2014-01-01

    Desmosomes are intercellular adhesive junctions of major importance for tissue integrity. To allow cell motility and migration they are down-regulated in epidermal wound healing. Electron microscopy indicates that whole desmosomes are internalised by cells in tissues, but the mechanism of down-regulation is unclear. In this paper we provide an overview of the internalisation of half-desmosomes by cultured cells induced by calcium chelation. Our results show that: (i) half desmosome internalisation is dependent on conventional PKC isoforms; (ii) microtubules transport internalised half desmosomes to the region of the centrosome by a kinesin-dependent mechanism; (iii) desmosomal proteins remain colocalised after internalisation and are not recycled to the cell surface; (iv) internalised desmosomes are degraded by the combined action of lysosomes and proteasomes. We also confirm that half desmosome internalisation is dependent upon the actin cytoskeleton. These results suggest that half desmosomes are not disassembled and recycled during or after internalisation but instead are transported to the centrosomal region where they are degraded. These findings may have significance for the down-regulation of desmosomes in wounds. PMID:25291180

  18. Histones Induce the Procoagulant Phenotype of Endothelial Cells through Tissue Factor Up-Regulation and Thrombomodulin Down-Regulation.

    Science.gov (United States)

    Kim, Ji Eun; Yoo, Hyun Ju; Gu, Ja Yoon; Kim, Hyun Kyung

    2016-01-01

    The high circulating levels of histones found in various thrombotic diseases may compromise the anticoagulant barrier of endothelial cells. We determined how histones affect endothelial procoagulant tissue factor (TF) and anticoagulant thrombomodulin (TM). Surface antigens, soluble forms, and mRNA levels of TF and TM were measured by flow cytometry, ELISA, and real-time RT-PCR, respectively. TF and TM activity were measured using procoagulant activity, thrombin generation, or chromogenic assays. Involvement of the toll-like receptor (TLR) was assessed using the neutralizing antibodies. Histones dose-dependently induced surface antigens, activity and mRNA levels of endothelial TF. Histone-treated endothelial cells significantly shortened the lag time and enhanced the endogenous thrombin potential of normal plasma, which was normalized by a TF neutralizing antibody. Histones induced phosphatidylserine and protein-disulfide isomerase expression in endothelial cells. Histones also reduced the surface antigen, activity, and mRNA levels of endothelial TM. Polysialic acid and heparin reversed the histone-induced TF up-regulation and TM down-regulation. Activated protein C did not affect the TF up-regulation, but interrupted TM down-regulation. TLR2, and TLR4 inhibitors partially blocked the TF up-regulation. Histones induced the endothelial procoagulant phenotype through TF up-regulation and TM down-regulation. The effects of histones were partly mediated by TLR2, TLR4. Strategies to inhibit the harmful effects of histones in endothelial cells may be required in order to prevent a thrombotic environment.

  19. The quinone methide aurin is a heat shock response inducer that causes proteotoxic stress and Noxa-dependent apoptosis in malignant melanoma cells.

    Science.gov (United States)

    Davis, Angela L; Qiao, Shuxi; Lesson, Jessica L; Rojo de la Vega, Montserrat; Park, Sophia L; Seanez, Carol M; Gokhale, Vijay; Cabello, Christopher M; Wondrak, Georg T

    2015-01-16

    Pharmacological induction of proteotoxic stress is rapidly emerging as a promising strategy for cancer cell-directed chemotherapeutic intervention. Here, we describe the identification of a novel drug-like heat shock response inducer for the therapeutic induction of proteotoxic stress targeting malignant human melanoma cells. Screening a focused library of compounds containing redox-directed electrophilic pharmacophores employing the Stress & Toxicity PathwayFinder(TM) PCR Array technology as a discovery tool, a drug-like triphenylmethane-derivative (aurin; 4-[bis(p-hydroxyphenyl)methylene]-2,5-cyclohexadien-1-one) was identified as an experimental cell stress modulator that causes (i) heat shock factor transcriptional activation, (ii) up-regulation of heat shock response gene expression (HSPA6, HSPA1A, DNAJB4, HMOX1), (iii) early unfolded protein response signaling (phospho-PERK, phospho-eIF2α, CHOP (CCAAT/enhancer-binding protein homologous protein)), (iv) proteasome impairment with increased protein-ubiquitination, and (v) oxidative stress with glutathione depletion. Fluorescence polarization-based experiments revealed that aurin displays activity as a geldanamycin-competitive Hsp90α-antagonist, a finding further substantiated by molecular docking and ATPase inhibition analysis. Aurin exposure caused caspase-dependent cell death in a panel of human malignant melanoma cells (A375, G361, LOX-IMVI) but not in non-malignant human skin cells (Hs27 fibroblasts, HaCaT keratinocytes, primary melanocytes) undergoing the aurin-induced heat shock response without impairment of viability. Aurin-induced melanoma cell apoptosis depends on Noxa up-regulation as confirmed by siRNA rescue experiments demonstrating that siPMAIP1-based target down-regulation suppresses aurin-induced cell death. Taken together, our data suggest feasibility of apoptotic elimination of malignant melanoma cells using the quinone methide-derived heat shock response inducer aurin. © 2015 by The

  20. Prostate tumor-derived exosomes down-regulate NKG2D expression on natural killer cells and CD8+ T cells: mechanism of immune evasion.

    Directory of Open Access Journals (Sweden)

    Marie Lundholm

    Full Text Available Tumor-derived exosomes, which are nanometer-sized extracellular vesicles of endosomal origin, have emerged as promoters of tumor immune evasion but their role in prostate cancer (PC progression is poorly understood. In this study, we investigated the ability of prostate tumor-derived exosomes to downregulate NKG2D expression on natural killer (NK and CD8+ T cells. NKG2D is an activating cytotoxicity receptor whose aberrant loss in cancer plays an important role in immune suppression. Using flow cytometry, we found that exosomes produced by human PC cells express ligands for NKG2D on their surface. The NKG2D ligand-expressing prostate tumor-derived exosomes selectively induced downregulation of NKG2D on NK and CD8+ T cells in a dose-dependent manner, leading to impaired cytotoxic function in vitro. Consistent with these findings, patients with castration-resistant PC (CRPC showed a significant decrease in surface NKG2D expression on circulating NK and CD8+ T cells compared to healthy individuals. Tumor-derived exosomes are likely involved in this NKG2D downregulation, since incubation of healthy lymphocytes with exosomes isolated from serum or plasma of CRPC patients triggered downregulation of NKG2D expression in effector lymphocytes. These data suggest prostate tumor-derived exosomes as down-regulators of the NKG2D-mediated cytotoxic response in PC patients, thus promoting immune suppression and tumor escape.

  1. BCL11B is frequently downregulated in HTLV-1-infected T-cells through Tax-mediated proteasomal degradation.

    Science.gov (United States)

    Permatasari, Happy Kurnia; Nakahata, Shingo; Ichikawa, Tomonaga; Morishita, Kazuhiro

    2017-08-26

    Human T-cell leukemia virus type 1 (HTLV-1) is a causative agent of adult T-cell leukemia-lymphoma (ATLL). The HTLV-1-encoded protein Tax plays important roles in the proliferation of HTLV-1-infected T-cells by affecting cellular proteins. In this study, we showed that Tax transcriptionally and post-transcriptionally downregulates the expression of the tumor suppressor gene B-cell leukemia/lymphoma 11B (BCL11B), which encodes a lymphoid-related transcription factor. BCL11B expression was downregulated in HTLV-1-infected T-cell lines at the mRNA and protein levels, and forced expression of BCL11B suppressed the proliferation of these cells. The proteasomal inhibitor MG132 increased BCL11B expression in HTLV-1-infected cell lines, and colocalization of Tax with BCL11B was detected in the cytoplasm of HTLV-1-infected T-cells following MG132 treatment. shRNA knock-down of Tax expression also increased the expression of BCL11B in HTLV-1-infected cells. Moreover, we found that Tax physically binds to BCL11B protein and induces the polyubiquitination of BCL11B and proteasome-dependent degradation of BCL11B. Thus, inactivation of BCL11B by Tax protein may play an important role in the Tax-mediated leukemogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. RANKL downregulates cell surface CXCR6 expression through JAK2/STAT3 signaling pathway during osteoclastogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Changhong; Zhao, Jinxia; Sun, Lin; Yao, Zhongqiang; Liu, Rui [Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191 (China); Huang, Jiansheng [Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (United States); Liu, Xiangyuan, E-mail: liu-xiangyuan@263.net [Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191 (China)

    2012-12-14

    Highlights: Black-Right-Pointing-Pointer CXCR6 is down-regulated during RANKL-induced osteoclastogenesis in RAW264.7 cells. Black-Right-Pointing-Pointer CXCR6 reduction was nearly reversed by inhibition of JAK2/STAT3 signaling pathway. Black-Right-Pointing-Pointer CXCL16 alone does not positively regulate osteoclastogenesis. -- Abstract: The receptor activator of nuclear factor-{kappa}B ligand (RANKL), as a member of the tumor necrosis factor (TNF) family, plays an essential role in osteoclast differentiation and function. Chemokines and their receptors have recently been shown to play critical roles in osteoclastogenesis, however, whether CXCL16-CXCR6 plays role in RANKL-mediated osteoclastogenesis is unknown. In this study, we first reported that RANKL decreased CXCR6 in a dose-dependent manner, which may be through deactivation of Akt and STAT3 signaling induced by CXCL16. Interestingly, RANKL-mediated CXCR6 reduction may be associated to the activation of STAT3 by phosphorylation. When STAT3 activation was blocked by JAK2/STAT3 inhibitor AG490, RANKL failed to shut down CXCR6 expression during osteoclastogenesis. However, CXCL16 alone did not augment RANKL-mediated osteoclast differentiation and did not alter RANKL-receptor RANK mRNA expression. These results demonstrate that reduction of CXCL16-CXCR6 is critical in RANKL-mediated osteoclastogenesis, which is mainly through the activation of JAK2/STAT3 signaling. CXCL16-CXCR6 axis may become a novel target for the therapeutic intervention of bone resorbing diseases such as rheumatoid arthritis and osteoporosis.

  3. Glycolysis inhibition inactivates ABC transporters to restore drug sensitivity in malignant cells.

    Directory of Open Access Journals (Sweden)

    Ayako Nakano

    Full Text Available Cancer cells eventually acquire drug resistance largely via the aberrant expression of ATP-binding cassette (ABC transporters, ATP-dependent efflux pumps. Because cancer cells produce ATP mostly through glycolysis, in the present study we explored the effects of inhibiting glycolysis on the ABC transporter function and drug sensitivity of malignant cells. Inhibition of glycolysis by 3-bromopyruvate (3BrPA suppressed ATP production in malignant cells, and restored the retention of daunorubicin or mitoxantrone in ABC transporter-expressing, RPMI8226 (ABCG2, KG-1 (ABCB1 and HepG2 cells (ABCB1 and ABCG2. Interestingly, although side population (SP cells isolated from RPMI8226 cells exhibited higher levels of glycolysis with an increased expression of genes involved in the glycolytic pathway, 3BrPA abolished Hoechst 33342 exclusion in SP cells. 3BrPA also disrupted clonogenic capacity in malignant cell lines including RPMI8226, KG-1, and HepG2. Furthermore, 3BrPA restored cytotoxic effects of daunorubicin and doxorubicin on KG-1 and RPMI8226 cells, and markedly suppressed subcutaneous tumor growth in combination with doxorubicin in RPMI8226-implanted mice. These results collectively suggest that the inhibition of glycolysis is able to overcome drug resistance in ABC transporter-expressing malignant cells through the inactivation of ABC transporters and impairment of SP cells with enhanced glycolysis as well as clonogenic cells.

  4. RACK1 downregulates levels of the pro-apoptotic protein Fem1b in apoptosis-resistant colon cancer cells.

    Science.gov (United States)

    Subauste, M Cecilia; Ventura-Holman, Tereza; Du, Liqin; Subauste, Jose S; Chan, Shing-Leng; Yu, Victor C; Maher, Joseph F

    2009-12-01

    Evasion of apoptosis plays an important role in colon cancer progression. Following loss of the Apc tumor suppressor gene in mice, the gene encoding Fem1b is upregulated early in neoplastic intestinal epithelium. Fem1b is a pro-apoptotic protein that interacts with Fas, TNFR1 and Apaf-1, and increased expression of Fem1b induces apoptosis of cancer cells. Fem1b is a homolog of FEM-1, a protein in Caenorhabditis elegans that is negatively regulated by ubiquitination and proteasomal degradation. To study Fem1b regulation in colon cancer progression, we used apoptotis-sensitive SW480 cells, derived from a primary colon cancer, and their isogenic, apoptosis-resistant counterparts SW620 cells, derived from a subsequent metastatic lesion in the same patient. Treatment with proteasome inhibitor increased Fem1b protein levels in SW620 cells, but not in SW480 cells. In SW620 cells we found that endogenous Fem1b co-immunoprecipitates in complexes with RACK1, a protein known to mediate ubiquitination and proteasomal degradation of other pro-apoptotic proteins and to be upregulated in colon cancer. Full-length Fem1b, or the N-terminal region of Fem1b, associated with RACK1 when co-expressed in HEK293T cells, and RACK1 stimulated ubiquitination of Fem1b. RACK1 overexpression in SW620 cells led to downregulation of Fem1b protein levels. Conversely, downregulation of RACK1 led to upregulation of Fem1b protein levels, associated with induction of apoptosis, and this apoptosis was inhibited by blocking Fem1b protein upregulation. In conclusion, RACK1 downregulates levels of the pro-apoptotic protein Fem1b in metastatic, apoptosis-resistant colon cancer cells, which may promote apoptosis-resistance during progression of colon cancer.

  5. Ethanol extracts of black pepper or turmeric down-regulated SIRT1 protein expression in Daudi culture cells.

    Science.gov (United States)

    Nishimura, Yuri; Kitagishi, Yasuko; Yoshida, Hitomi; Okumura, Naoko; Matsuda, Satoru

    2011-01-01

    SIRT1 is a mammalian candidate molecule involved in longevity and diverse metabolic processes. The present study aimed to determine the effects of certain herbs and spices on SIRT1 expression. Human cell lines Daudi, Jurkat, U937 and K562 were cultured in RPMI-1640. Herb and spice powders were prepared and the supernatants were collected. RT-PCR was used to quantify the expression level of the gene. Protein samples were then analyzed by Western blotting. Western blotting revealed the down-regulation of SIRT1 protein expression in Daudi cells treated with extracts of black pepper or turmeric. On the other hand, the effect on the SIRT1 gene expression examined by reverse transcription polymerase chain reaction was unaltered. In conclusion, component(s) of certain herbs and spices may induce the down-regulation of SIRT1 protein.

  6. Downregulation of the Glial GLT1 Glutamate Transporter and Purkinje Cell Dysfunction in a Mouse Model of Myotonic Dystrophy

    Directory of Open Access Journals (Sweden)

    Géraldine Sicot

    2017-06-01

    Full Text Available Brain function is compromised in myotonic dystrophy type 1 (DM1, but the underlying mechanisms are not fully understood. To gain insight into the cellular and molecular pathways primarily affected, we studied a mouse model of DM1 and brains of adult patients. We found pronounced RNA toxicity in the Bergmann glia of the cerebellum, in association with abnormal Purkinje cell firing and fine motor incoordination in DM1 mice. A global proteomics approach revealed downregulation of the GLT1 glutamate transporter in DM1 mice and human patients, which we found to be the result of MBNL1 inactivation. GLT1 downregulation in DM1 astrocytes increases glutamate neurotoxicity and is detrimental to neurons. Finally, we demonstrated that the upregulation of GLT1 corrected Purkinje cell firing and motor incoordination in DM1 mice. Our findings show that glial defects are critical in DM1 brain pathophysiology and open promising therapeutic perspectives through the modulation of glutamate levels.

  7. TRIM8 downregulation in glioma affects cell proliferation and it is associated with patients survival

    International Nuclear Information System (INIS)

    Micale, Lucia; Fusco, Carmela; Fontana, Andrea; Barbano, Raffaela; Augello, Bartolomeo; De Nittis, Pasquelena; Copetti, Massimiliano; Pellico, Maria Teresa; Mandriani, Barbara; Cocciadiferro, Dario; Parrella, Paola; Fazio, Vito Michele; Dimitri, Lucia Maria Cecilia; D’Angelo, Vincenzo; Novielli, Chiara; Larizza, Lidia; Daga, Antonio; Merla, Giuseppe

    2015-01-01

    Human gliomas are a heterogeneous group of primary malignant brain tumors whose molecular pathogenesis is not yet solved. In this regard, a major research effort has been directed at identifying novel specific glioma-associated genes. Here, we investigated the effect of TRIM8 gene in glioma. TRIM8 transcriptional level was profiled in our own glioma cases collection by qPCR and confirmed in the independent TCGA glioma cohort. The association between TRIM8 expression and Overall Survival and Progression-free Survival in TCGA cohort was determined by using uni-multivariable Cox regression analysis. The effect of TRIM8 on patient glioma cell proliferation was evaluated by performing MTT and clonogenic assays. The mechanisms causing the reduction of TRIM8 expression were explored by using qPCR and in vitro assays. We showed that TRIM8 expression correlates with unfavorable clinical outcome in glioma patients. We found that a restored TRIM8 expression induced a significant reduction of clonogenic potential in U87MG and patient’s glioblastoma cells. Finally we provide experimental evidences showing that miR-17 directly targets the 3′ UTR of TRIM8 and post-transcriptionally represses the expression of TRIM8. Our study provides evidences that TRIM8 may participate in the carcinogenesis and progression of glioma and that the transcriptional repression of TRIM8 might have potential value for predicting poor prognosis in glioma patients. The online version of this article (doi:10.1186/s12885-015-1449-9) contains supplementary material, which is available to authorized users

  8. Neural stem cell-encoded temporal patterning delineates an early window of malignant susceptibility in Drosophila.

    Science.gov (United States)

    Narbonne-Reveau, Karine; Lanet, Elodie; Dillard, Caroline; Foppolo, Sophie; Chen, Ching-Huan; Parrinello, Hugues; Rialle, Stéphanie; Sokol, Nicholas S; Maurange, Cédric

    2016-06-14

    Pediatric neural tumors are often initiated during early development and can undergo very rapid transformation. However, the molecular basis of this early malignant susceptibility remains unknown. During Drosophila development, neural stem cells (NSCs) divide asymmetrically and generate intermediate progenitors that rapidly differentiate in neurons. Upon gene inactivation, these progeny can dedifferentiate and generate malignant tumors. Here, we find that intermediate progenitors are prone to malignancy only when born during an early window of development while expressing the transcription factor Chinmo, and the mRNA-binding proteins Imp/IGF2BP and Lin-28. These genes compose an oncogenic module that is coopted upon dedifferentiation of early-born intermediate progenitors to drive unlimited tumor growth. In late larvae, temporal transcription factor progression in NSCs silences the module, thereby limiting mitotic potential and terminating the window of malignant susceptibility. Thus, this study identifies the gene regulatory network that confers malignant potential to neural tumors with early developmental origins.

  9. Cancer Stem Cells of Differentiated B-Cell Malignancies: Models and Consequences

    International Nuclear Information System (INIS)

    Gross, Emilie; Quillet-Mary, Anne; Ysebaert, Loic; Laurent, Guy; Fournie, Jean-Jacques

    2011-01-01

    The concept of cancer stem cells has revolutionized our current vision of cancer development and was validated in solid tumors and cancers of the primitive hematopoietic compartment. Proof of the principle is still lacking, however, in malignancies of differentiated B-cells. We review here the current literature, which nevertheless suggests hierarchical organizations of the tumor clone for mostly incurable B-cell cancers such as multiple myeloma, lymphomas and B-chronic lymphocytic leukemia. We propose two models accounting for cancer stem cells in these contexts: a “top-to-bottom” clonal hierarchy from memory B-cells and a “bottom-to-top” model of clonal reprogramming. Selection pressure on the growing tumor can drive such reprogramming and increase its genetic diversity

  10. Cancer Stem Cells of Differentiated B-Cell Malignancies: Models and Consequences

    Directory of Open Access Journals (Sweden)

    Jean-Jacques Fournie

    2011-03-01

    Full Text Available The concept of cancer stem cells has revolutionized our current vision of cancer development and was validated in solid tumors and cancers of the primitive hematopoietic compartment. Proof of the principle is still lacking, however, in malignancies of differentiated B-cells. We review here the current literature, which nevertheless suggests hierarchical organizations of the tumor clone for mostly incurable B-cell cancers such as multiple myeloma, lymphomas and B-chronic lymphocytic leukemia. We propose two models accounting for cancer stem cells in these contexts: a “top-to-bottom” clonal hierarchy from memory B-cells and a “bottom-to-top” model of clonal reprogramming. Selection pressure on the growing tumor can drive such reprogramming and increase its genetic diversity.

  11. Scintigraphy with In-111 labeled lymphokine-activated killer cells of malignant brain tumor

    International Nuclear Information System (INIS)

    Itoh, Kazuo; Sawamura, Yutaka; Hosokawa, Masuo; Kobayashi, Hiroshi

    1988-01-01

    This study was undertaken to assess the in vivo distribution and migration of lymphokine-activated killer (LAK) cells to the target malignant foci in four patients with advanced malignant brain tumor. All four patients had failed to respond to prior adoptive immunotherapy. After the intravenous administration of radiolabeled LAK cells, most of the radiolabeled cells were distributed in the liver and spleen, with lesser radioactivity in the lung and bone marrow. Scintigraphy revealed the target malignant foci in all four patients to be areas of increased radioactivity. The number of radiolabeled LAK cells that accumulated in the intracranial malignant lesions, however, seemed to be insufficient to mediate regression of the solid tumor mass by direct cell-to-cell interaction. We conclude that the failure of adoptive immunotherapy could be accounted for by the poor migration of infused LAK cells to the target malignant foci. We also conclude that radionuclide study with radiolabeled lymphokine-activated culture cells against tumors is likely to be helpful as a means to investigate effective possibilities for subsequent adoptive immunotherapy. (author)

  12. Downregulation of proapoptotic Bim augments IL-2-independent T-cell transformation by human T-cell leukemia virus type-1 Tax

    International Nuclear Information System (INIS)

    Higuchi, Masaya; Takahashi, Masahiko; Tanaka, Yuetsu; Fujii, Masahiro

    2014-01-01

    Human T-cell leukemia virus type 1 (HTLV-1), an etiological agent of adult T-cell leukemia, immortalizes and transforms primary human T cells in vitro in both an interleukin (IL)-2-dependent and IL-2-independent manner. Expression of the HTLV-1 oncoprotein Tax transforms the growth of the mouse T-cell line CTLL-2 from being IL-2-dependent to IL-2-independent. Withdrawal of IL-2 from normal activated T cells induces apoptosis, which is mediated through the inducible expression of several proapoptotic proteins, including Bim. In this study, we found that Tax protects IL-2-depleted T cells against Bim-induced apoptosis. Withdrawal of IL-2 from CTLL-2 cells induced a prominent increase in the level of Bim protein in CTLL-2 cells, but not in Tax-transformed CTLL-2 cells. This inhibition of Bim in Tax-transformed CTLL-2 cells was mediated by two mechanisms: downregulation of Bim mRNA and posttranscriptional reduction of Bim protein. Transient expression of Tax in CTLL-2 cells also inhibited IL-2 depletion–induced expression of Bim, however, this decrease in Bim protein expression was not due to downregulation of Bim mRNA, thus indicating that Bim mRNA downregulation in Tax-transformed CTLL-2 occurs only after long-term expression of Tax. Transient expression of Tax in CTLL-2 cells also induced Erk activation, however, this was not involved in the reduction of Bim protein. Knockdown of Bim expression in CTLL-2 cells augmented Tax-induced IL-2-independent transformation. HTLV-1 infection of human T cells also reduced their levels of Bim protein, and restoring Bim expression in HTLV-1-infected cells reduced their proliferation by inducing apoptosis. Taken together, these results indicate that Tax-induced downregulation of Bim in HTLV-1-infected T cells promotes their IL-2-independent growth, thereby supporting the persistence of HTLV-1 infection in vivo

  13. Allogeneic CD19-CAR-T cell infusion after allogeneic hematopoietic stem cell transplantation in B cell malignancies.

    Science.gov (United States)

    Liu, Jun; Zhong, Jiang F; Zhang, Xi; Zhang, Cheng

    2017-01-31

    Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is considered the cornerstone in treatment of hematological malignancies. However, relapse of the hematological disease after allo-HSCT remains a challenge and is associated with poor long-term survival. Chimeric antigen receptor redirected T cells (CAR-T cells) can lead to disease remission in patients with relapsed/refractory hematological malignancies. However, the therapeutic window for infusion of CAR-T cells post allo-HSCT and its efficacy are debatable. In this review, we first discuss the use of CAR-T cells for relapsed cases after allo-HSCT. We then review the toxicities and the occurrence of graft-versus-host disease in relapsed patients who received CAR-T cells post allo-HSCT. Finally, we review clinical trial registrations and the therapeutic time window for infusion of CAR-T cells post allo-HSCT. The treatment of allogeneic CAR-T cells is beneficial for patients with relapsed B cell malignancies after allo-HSCT with low toxicities and complications. However, multicenter clinical trials with larger sample sizes should be performed to select the optimal therapeutic window and confirm its efficacy.

  14. T-Regulatory Cell and CD3 Depleted Double Umbilical Cord Blood Transplantation in Hematologic Malignancies

    Science.gov (United States)

    2017-11-29

    Hematologic Malignancy; Acute Myeloid Leukemia; Acute Lymphocytic Leukemia; Chronic Myelogenous Leukemia in Blast Crisis; Anemia, Refractory, With Excess of Blasts; Chronic Myeloproliferative Disease; Chronic Lymphocytic Leukemia; Small Lymphocytic Lymphoma; Marginal Zone B-cell Lymphoma; Follicular Lymphoma; Lymphoplasmacytic Lymphoma; Mantle-Cell Lymphoma; Prolymphocytic Lymphoma; Large Cell Non-Hodgkin's Lymphoma; Lymphoblastic Lymphoma; Burkitt's Lymphoma; High Grade Non-Hodgkin's Lymphoma

  15. Nicotine affects rat Leydig cell function in vivo and vitro via down-regulating some key steroidogenic enzyme expressions.

    Science.gov (United States)

    Guo, Xiaoling; Wang, Huang; Wu, Xiaolong; Chen, Xianwu; Chen, Yong; Guo, Jingjing; Li, Xiaoheng; Lian, Qingquan; Ge, Ren-Shan

    2017-12-01

    Nicotine is consumed largely as a component of cigarettes and has a potential effect on pubertal development of Leydig cells in males. To investigate its effects, 49-day-old male Sprague Dawley rats received intraperitoneal injections of nicotine (0.5 or 1 mg/kg/day) for 2 weeks and immature Leydig cells were isolated from the testes of 35-day-old rats and treated with nicotine (0.05-50 μM). Serum hormones, Leydig cell number and related gene expression levels after in vivo treatment were determined and medium androgen levels were measured and cell cycle, apoptosis, mitochondrial membrane potential (△Ψm), and reactive oxygen species (ROS) of Leydig cells after in vitro treatment were measured. In vivo exposure to nicotine lowered serum luteinizing hormone, follicle stimulating hormone, and testosterone levels and reduced Leydig cell number and gene expression levels. Nicotine in vitro inhibited androgen production in Leydig cells by downregulating the expression levels of P450 cholesterol side cleavage enzyme, 3β-hydroxysteroid dehydrogenase 1, and steroidogenic factor 1 at different concentration ranges. In conclusion, nicotine disrupts Leydig cell steroidogenesis during puberty possibly via down-regulating some key steroidogenic enzyme expressions. Copyright © 2017. Published by Elsevier Ltd.

  16. CCL5 promotes VEGF-dependent angiogenesis by down-regulating miR-200b through PI3K/Akt signaling pathway in human chondrosarcoma cells

    Science.gov (United States)

    Liu, Guan-Ting; Chen, Hsien-Te; Tsou, Hsi-Kai; Tan, Tzu-Wei; Fong, Yi-Chin; Chen, Po-Chen; Yang, Wei-Hung; Wang, Shih-Wei; Chen, Jui-Chieh; Tang, Chih-Hsin

    2014-01-01

    Chondrosarcoma is the second most common primary malignant bone cancer, with potential for local invasion and distant metastasis. Chemokine CCL5 (formerly RANTES) of the CC-chemokine family plays a crucial role in metastasis. Angiogenesis is essential for the cancer metastasis. However, correlation of CCL5 with vascular endothelial growth factor (VEGF) expression and angiogenesis in human chondrosarcoma is still unknown. CCL5-mediated VEGF expression was assessed by qPCR, ELISA, and Western blotting. CCL5-induced angiogenesis was examined by migration and tube formation in endothelial progenitor cells in vitro. CCL5 increased VEGF expression and also promoted chondrosarcoma conditional medium-mediated angiogenesis in vitro and in vivo. Stimulation of chondrosarcoma with CCL5 augmented PI3K and Akt phosphorylation, while PI3K and Akt inhibitor or siRNA abolished CCL5-induced VEGF expression and angiogenesis. We also demonstrated CCL5 inhibiting miR-200b expression and miR-200b mimic reversing the CCL5-enhanced VEGF expression and angiogenesis. Moreover, in chondrosarcoma patients showed the positive correlation between CCL5 and VEGF; negative correlation between CCL5 and miR-200b. Taken together, results demonstrate CCL5 promoting VEGF-dependent angiogenesis in human chondrosarcoma cells by down-regulating miR-200b through PI3K/Akt signaling pathway. PMID:25301739

  17. Novel genes and pathways modulated by syndecan-1: implications for the proliferation and cell-cycle regulation of malignant mesothelioma cells.

    Directory of Open Access Journals (Sweden)

    Tünde Szatmári

    Full Text Available Malignant pleural mesothelioma is a highly malignant tumor, originating from mesothelial cells of the serous cavities. In mesothelioma the expression of syndecan-1 correlates to epithelioid morphology and inhibition of growth and migration. Our previous data suggest a complex role of syndecan-1 in mesothelioma cell proliferation although the exact underlying molecular mechanisms are not completely elucidated. The aim of this study is therefore to disclose critical genes and pathways affected by syndecan-1 in mesothelioma; in order to better understand its importance for tumor cell growth and proliferation. We modulated the expression of syndecan-1 in a human mesothelioma cell line via both overexpression and silencing, and followed the transcriptomic responses with microarray analysis. To project the transcriptome analysis on the full-dimensional picture of cellular regulation, we applied pathway analysis using Ingenuity Pathway Analysis (IPA and a novel method of network enrichment analysis (NEA which elucidated signaling relations between differentially expressed genes and pathways acting via various molecular mechanisms. Syndecan-1 overexpression had profound effects on genes involved in regulation of cell growth, cell cycle progression, adhesion, migration and extracellular matrix organization. In particular, expression of several growth factors, interleukins, and enzymes of importance for heparan sulfate sulfation pattern, extracellular matrix proteins and proteoglycans were significantly altered. Syndecan-1 silencing had less powerful effect on the transcriptome compared to overexpression, which can be explained by the already low initial syndecan-1 level of these cells. Nevertheless, 14 genes showed response to both up- and downregulation of syndecan-1. The "cytokine - cytokine-receptor interaction", the TGF-β, EGF, VEGF and ERK/MAPK pathways were enriched in both experimental settings. Most strikingly, nearly all analyzed pathways

  18. Downregulation of CD147 expression alters cytoskeleton architecture and inhibits gelatinase production and SAPK pathway in human hepatocellular carcinoma cells

    Directory of Open Access Journals (Sweden)

    Weng Yuan-Yuan

    2008-10-01

    Full Text Available Abstract Background CD147 plays a critical role in the invasive and metastatic activity of hepatocellular carcinoma (HCC cells by stimulating the surrounding fibroblasts to express matrix metalloproteinases (MMPs. Tumor cells adhesion to extracellular matrix (ECM proteins is the first step to the tumor metastasis. MMPs degrade the ECM to promote tumor metastasis. The aim of this study is to investigate the effects of small interfering RNA (siRNA against CD147 (si-CD147 on hepatocellular carcinoma cells' (SMMC-7721 architecture and functions. Methods Flow cytometry and western blot assays were employed to detect the transfection efficiency of si-CD147. Confocal microscopy was used to determine the effects of si-CD147 on SMMC-7721 cells' cytoskeleton. Invasion assay, gelatin zymography and cell adhesion assay were employed to investigate the effects of si-CD147 on SMMC-7721 cells' invasion, gelatinase production and cell adhesive abilities. Western blot assay was utilized to detect the effects of si-CD147 on focal adhesion kinase (FAK, vinculiln and mitogen-activated protein kinase (MAPK expression in SMMC-7721 cells. Results Downregulation of CD147 gene induced the alteration of SMMC-7721 cell cytoskeleton including actin, microtubule and vimentin filaments, and inhibited gelatinase production and expression, cells invasion, FAK and vinculin expression. si-CD147 also blocked SMMC-7721 cells adhesion to collagen IV and phosphorylation level of SAPK/JNKs. SAPK/JNKs inhibitor SP600125 inhibited gelatinase production and expression. Conclusion CD147 is required for normal tumor cell architecture and cell invasion. Downregulation of CD147 affects HCC cell structure and function. Moreover, the alteration of cell behavior may be related to SAPK/JNK Pathway. siRNA against CD147 may be a possible new approach for HCC gene therapy.

  19. Solitary, multiple, benign, atypical, or malignant: the "Granular Cell Tumor" puzzle.

    Science.gov (United States)

    Machado, Isidro; Cruz, Julia; Lavernia, Javier; Llombart-Bosch, Antonio

    2016-05-01

    The clinical evolution and biology of granular cell tumors (GCT) are poorly understood and treatment remains an issue of discussion. The majority of GCT are benign, although some display malignant behavior. The distinction between benign, atypical, and malignant GCT is controversial due to morphological and immunohistochemical overlap and lack of consistent histological and phenotypic criteria that predict behavior. Although histological criteria may indicate increased risk of malignant evolution, some GCT with evident benign appearance exceptionally progress towards metastatic disease. In this review, we discuss current knowledge on GCT, including histologic, immunophenotypic, and molecular characteristics and differential diagnosis. We focus on the following problematic items in GCT: (1) evolution of classification, (2) neural versus non-neural GCT, (3) neoplastic versus reactive disease, (4) malignant transformation of benign GCT, and (5) multiple versus metastatic GCT. We conclude that although a Ki-67 index >10 % and the presence of mitoses and/or of necrosis are frequently associated with malignant behavior, metastasis remains the only unequivocal sign of malignancy in GCT. An infiltrative growth pattern and vascular and/or perineural invasion are not indicative of malignancy. GCT with atypical/uncertain features almost never metastasize, and many of these tumors either behave in a benign fashion or only recur locally (similar to incompletely excised benign tumors). We therefore propose that classical and atypical histological variants form a single group of GCT. GCT with various unfavorable histological features might be labeled as "GCT with increased risk of metastasis" rather than malignant GCT.

  20. The studies of DNA double-strand break (DSB) rejoining and mRNA expression of repair gene XRCCs in malignant transformed cell lines of human bronchial epithelial cells generated by α-particles

    International Nuclear Information System (INIS)

    Sun Jingfen; Sui Jianli; Geng Yu; Zhou Pingkun; Wu Dechang

    2002-01-01

    Objective: To investigate the efficiency of γ-ray-induced DNA DSB rejoining and the mRNA expression of DNA repair genes in malignantly transformed cell lines of human bronchial epithelial cells generated by exposure to a-particles. Methods: Pulsed field gel electrophoresis (PFGE) was used to detect DNA. DSBs mRNA expression was analyzed by RT-PCR. Results: The residual DNA DSB damage level after 4hrs repair following 0-150 Gy of γ-irradiation in the malignantly transformed cell lines BERP35T-1 and BERP35T-4 was significantly higher than that in their parental BEP2D cells. The analysis of mRNA level revealed a 2.5-to 6.5-fold down-regulated expression of the DNA repair genes XRCC-2, XRCC-3 and Ku80 (XRCC-5) in BERP35T-1 and BERP35T-4 cells as compared with the parental BEP2D cells. In contrast, the expression of DNA-PKcs(XRCC7) was 2.4-fold up-regulated in the transformed cell line BERP35T-4, in which there was a significantly higher proportion of polyploid cells. Conclusion: This study results show that the deficiency of DNA DSB rejoining and depressed mRNA expression of DNA repair genes could be involved in the malignant transformation process of BEP2D cells induced by exposure to α-particles

  1. Monomethylfumarate affects polarization of monocyte-derived dendritic cells resulting in down-regulated Th1 lymphocyte responses

    DEFF Research Database (Denmark)

    Litjens, Nicolle H R; Rademaker, Mirjam; Ravensbergen, Bep

    2004-01-01

    Psoriasis vulgaris, a type-1 cytokine-mediated chronic skin disease, can be treated successfully with fumaric acid esters (FAE). Beneficial effects of this medication coincided with decreased production of IFN-gamma. Since dendritic cells (DC) regulate the differentiation of T helper (Th) cells......% of that by the respective Th cells cocultured with control DC. IL-4 production by primed, but not naive Th cells cocultured with MMF-DC was decreased as compared to cocultures with control DC. IL-10 production by naive and primed Th cells cocultured with MMF-DC and control DC did not differ. In addition, MMF inhibited LPS......-induced NF-kappaB activation in DC. Together, beneficial effects of FAE in psoriasis involve modulation of DC polarization by MMF such that these cells down-regulate IFN-gamma production by Th cells....

  2. [Effect of down-regulation of HE4 gene expression on biologic behavior of ovarian cancer cells].

    Science.gov (United States)

    Zhou, Lei; Xiao, Ran; Chen, Ying; Zhang, Jing; Lu, Ren-quan; Guo, Lin

    2013-10-01

    To investigate the effects of HE4 gene knockdown on the proliferation, adhesion and invasion of the ovarian cancer cells SKOV3. The knockdown of HE4 gene was performed by RNAi technology. The recombinant plasmids (pSUPER-HE4 shDNAs) were constructed and transfected into human ovarian cancer cells SKOV3. HE4 expression was then identified by real-time PCR and Western blot analysis. The invasion and adhesion ability of transduced cells were determined. In addition, cell proliferation and growth were analyzed by colonies formation assay. Knockdown of HE4 was achieved, and further confirmed by real-time PCR and Western blot. The proliferation of HE4-down-regulated cells was not affected, but the invasion ability of the transfected cells was reduced (P cells.

  3. Gene expression analysis of cell death induction by Taurolidine in different malignant cell lines

    International Nuclear Information System (INIS)

    Chromik, Ansgar M; Weyhe, Dirk; Mittelkötter, Ulrich; Uhl, Waldemar; Hahn, Stephan A; Daigeler, Adrien; Flier, Annegret; Bulut, Daniel; May, Christina; Harati, Kamran; Roschinsky, Jan; Sülberg, Dominique

    2010-01-01

    The anti-infective agent Taurolidine (TRD) has been shown to have cell death inducing properties, but the mechanism of its action is largely unknown. The aim of this study was to identify potential common target genes modulated at the transcriptional level following TRD treatment in tumour cell lines originating from different cancer types. Five different malignant cell lines (HT29, Chang Liver, HT1080, AsPC-1 and BxPC-3) were incubated with TRD (100 μM, 250 μM and 1000 μM). Proliferation after 8 h and cell viability after 24 h were analyzed by BrdU assay and FACS analysis, respectively. Gene expression analyses were carried out using the Agilent -microarray platform to indentify genes which displayed conjoint regulation following the addition of TRD in all cell lines. Candidate genes were subjected to Ingenuity Pathways Analysis and selected genes were validated by qRT-PCR and Western Blot. TRD 250 μM caused a significant inhibition of proliferation as well as apoptotic cell death in all cell lines. Among cell death associated genes with the strongest regulation in gene expression, we identified pro-apoptotic transcription factors (EGR1, ATF3) as well as genes involved in the ER stress response (PPP1R15A), in ubiquitination (TRAF6) and mitochondrial apoptotic pathways (PMAIP1). This is the first conjoint analysis of potential target genes of TRD which was performed simultaneously in different malignant cell lines. The results indicate that TRD might be involved in different signal transduction pathways leading to apoptosis

  4. Autologous cytokine-induced killer cell immunotherapy may improve overall survival in advanced malignant melanoma patients.

    Science.gov (United States)

    Zhang, Yong; Zhu, Yu'nan; Zhao, Erjiang; He, Xiaolei; Zhao, Lingdi; Wang, Zibing; Fu, Xiaomin; Qi, Yalong; Ma, Baozhen; Song, Yongping; Gao, Quanli

    2017-11-01

    Our study was conducted to explore the efficacy of autologous cytokine-induced killer (CIK) cells in patients with advanced malignant melanoma. Materials & Methods: Here we reviewed 113 stage IV malignant melanoma patients among which 68 patients received CIK cell immunotherapy alone, while 45 patients accepted CIK cell therapy combined with chemotherapy. Results: We found that the median survival time in CIK cell group was longer than the combined therapy group (21 vs 15 months, p = 0.07). In addition, serum hemoglobin level as well as monocyte proportion and lymphocyte count were associated with patients' survival time. These indicated that CIK cell immunotherapy might extend survival time in advanced malignant melanoma patients. Furthermore, serum hemoglobin level, monocyte proportion and lymphocyte count could be prognostic indicators for melanoma.

  5. Revving up Natural Killer Cells and Cytokine-Induced Killer Cells Against Hematological Malignancies.

    Science.gov (United States)

    Pittari, Gianfranco; Filippini, Perla; Gentilcore, Giusy; Grivel, Jean-Charles; Rutella, Sergio

    2015-01-01

    Natural killer (NK) cells belong to innate immunity and exhibit cytolytic activity against infectious pathogens and tumor cells. NK-cell function is finely tuned by receptors that transduce inhibitory or activating signals, such as killer immunoglobulin-like receptors, NK Group 2 member D (NKG2D), NKG2A/CD94, NKp46, and others, and recognize both foreign and self-antigens expressed by NK-susceptible targets. Recent insights into NK-cell developmental intermediates have translated into a more accurate definition of culture conditions for the in vitro generation and propagation of human NK cells. In this respect, interleukin (IL)-15 and IL-21 are instrumental in driving NK-cell differentiation and maturation, and hold great promise for the design of optimal NK-cell culture protocols. Cytokine-induced killer (CIK) cells possess phenotypic and functional hallmarks of both T cells and NK cells. Similar to T cells, they express CD3 and are expandable in culture, while not requiring functional priming for in vivo activity, like NK cells. CIK cells may offer some advantages over other cell therapy products, including ease of in vitro propagation and no need for exogenous administration of IL-2 for in vivo priming. NK cells and CIK cells can be expanded using a variety of clinical-grade approaches, before their infusion into patients with cancer. Herein, we discuss GMP-compliant strategies to isolate and expand human NK and CIK cells for immunotherapy purposes, focusing on clinical trials of adoptive transfer to patients with hematological malignancies.

  6. Revving up natural killer cells and cytokine-induced killer cells against hematological malignancies

    Directory of Open Access Journals (Sweden)

    Gianfranco ePittari

    2015-05-01

    Full Text Available Natural killer (NK cells belong to innate immunity and exhibit cytolytic activity against infectious pathogens and tumor cells. NK-cell function is finely tuned by receptors that transduce inhibitory or activating signals, such as killer immunoglobulin-like receptors (KIR, NK Group 2 member D (NKG2D, NKG2A/CD94, NKp46 and others, and recognize both foreign and self-antigens expressed by NK-susceptible targets. Recent insights into NK-cell developmental intermediates have translated into a more accurate definition of culture conditions for the in vitro generation and propagation of human NK cells. In this respect, interleukin (IL-15 and IL-21 are instrumental in driving NK-cell differentiation and maturation, and hold great promise for the design of optimal NK-cell culture protocols.Cytokine-induced killer (CIK cells possess phenotypic and functional hallmarks of both T cells and NK cells. Similar to T cells, they express CD3 and are expandable in culture, while not requiring functional priming for in vivo activity, like NK cells. CIK cells may offer some advantages over other cell therapy products, including ease of in vitro propagation and no need for exogenous administration of IL-2 for in vivo priming.NK cells and CIK cells can be expanded using a variety of clinical-grade approaches, before their infusion into patients with cancer. Herein, we discuss GMP-compliant strategies to isolate and expand human NK and CIK cells for immunotherapy purposes, focusing on clinical trials of adoptive transfer to patients with hematological malignancies.

  7. Relationship between regulatory and type 1 T cells in dogs with oral malignant melanoma.

    Science.gov (United States)

    Horiuchi, Yutaka; Tominaga, Makiko; Ichikawa, Mika; Yamashita, Masao; Okano, Kumiko; Jikumaru, Yuri; Nariai, Yoko; Nakajima, Yuko; Kuwabara, Masato; Yukawa, Masayoshi

    2010-03-01

    Recent data suggest a decreased prevalence of IFN-gamma-producing T lymphocytes (Type 1 T cells) in tumor-bearing hosts. Moreover, it has been reported that Treg have a strong impact on the activation and proliferation of CD4 (+) and CD8 (+) lymphocytes; however, no previous reports have described the relationship between Treg and the progression of tumor, or Type 1 T cell populations in dogs with malignant tumor. In this study, the percentage of Treg, Th1, and Tc1 in the peripheral blood of dogs with oral malignant melanoma and healthy dogs was measured and compared. Although the percentages of Th1 and Tc1 in dogs with oral malignant melanoma were less than those in healthy dogs (Th1: P dogs with oral malignant melanoma. In dogs, Treg appears to suppress Type 1 immunity, which may be responsible for anti-tumor responses.

  8. Sentinel lymphoscintigraphy in malignant melanoma and Merkel cell carcinoma

    International Nuclear Information System (INIS)

    Dekova, M.; Kirov, V.; Donchev, M.; Slavova, M.; Tsarovska, T.

    2013-01-01

    Full text:Introduction: The concept of a biopsy of the sentinel lymph node (SLN) was developed by Mortan in 1992, using blue dye. In 1993. Alex and Krag identified SLN with radiocolloid and gamma probe in case of malignant melanoma. Today, both methods are applied separately or together with a success rate above 90% and false negative rate of 5 %. Materials and Methods: The study includes 10 patients, 9 of whom have been diagnosed with malignant melanoma and 1 – with Merkel cancer. All patients were of a higher risk of lymphatic metastases without distinct clinical symptoms. Lymphoscintigraphy was performed with double-headed SPECT gamma camera Toshiba CGA 7200 UI. The visualized lymph nodes were projected and marked on the skin by a point radioactive source under monitoring. The marked lymph nodes were verified during the operation by staining and patent Blau then removed and studies histopathologically. Results: In all patients the Lymphoscintigraphy visualized SLN, which were surgically found just below the skin markers and removed. In the SLN of one patient a diffuse metastasis was found. In the SLN of nine patients no evidence for metastatic process was found. Conclusion: The technique of marking the SLN with subsequent biopsy is a minimally invasive method for the detection of lymph node metastases in patients with malignant melanoma and Merkel carcinoma with a high degree of reliability of the results

  9. Chronic inhibition of tumor cell-derived VEGF enhances the malignant phenotype of colorectal cancer cells

    International Nuclear Information System (INIS)

    Yamagishi, Naoko; Teshima-Kondo, Shigetada; Masuda, Kiyoshi; Nishida, Kensei; Kuwano, Yuki; Dang, Duyen T; Dang, Long H; Nikawa, Takeshi; Rokutan, Kazuhito

    2013-01-01

    Vascular endothelial growth factor-a (VEGF)-targeted therapies have become an important treatment for a number of human malignancies. The VEGF inhibitors are actually effective in several types of cancers, however, the benefits are transiently, and the vast majority of patients who initially respond to the therapies will develop resistance. One of possible mechanisms for the acquired resistance may be the direct effect(s) of VEGF inhibitors on tumor cells expressing VEGF receptors (VEGFR). Thus, we investigated here the direct effect of chronic VEGF inhibition on phenotype changes in human colorectal cancer (CRC) cells. To chronically inhibit cancer cell-derived VEGF, human CRC cell lines (HCT116 and RKO) were chronically exposed (2 months) to an anti-VEGF monoclonal antibody (mAb) or were disrupted the Vegf gene (VEGF-KO). Effects of VEGF family members were blocked by treatment with a VEGF receptor tyrosine kinase inhibitor (VEGFR-TKI). Hypoxia-induced apoptosis under VEGF inhibited conditions was measured by TUNEL assay. Spheroid formation ability was assessed using a 3-D spheroid cell culture system. Chronic inhibition of secreted/extracellular VEGF by an anti-VEGF mAb redundantly increased VEGF family member (PlGF, VEGFR1 and VEGFR2), induced a resistance to hypoxia-induced apoptosis, and increased spheroid formation ability. This apoptotic resistance was partially abrogated by a VEGFR-TKI, which blocked the compensate pathway consisted of VEGF family members, or by knockdown of Vegf mRNA, which inhibited intracellular function(s) of all Vegf gene products. Interestingly, chronic and complete depletion of all Vegf gene products by Vegf gene knockout further augmented these phenotypes in the compensate pathway-independent manner. These accelerated phenotypes were significantly suppressed by knockdown of hypoxia-inducible factor-1α that was up-regulated in the VEGF-KO cell lines. Our findings suggest that chronic inhibition of tumor cell-derived VEGF

  10. The split personality of NKT cells in malignancy, autoimmune and allergic disorders

    Science.gov (United States)

    Subleski, Jeff J; Jiang, Qun; Weiss, Jonathan M; Wiltrout, Robert H

    2011-01-01

    NKT cells are a heterogeneous subset of specialized, self-reactive T cells, with innate and adaptive immune properties, which allow them to bridge innate and adaptive immunity and profoundly influence autoimmune and malignant disease outcomes. NKT cells mediate these activities through their ability to rapidly express pro- and anti-inflammatory cytokines that influence the type and magnitude of the immune response. Not only do NKT cells regulate the functions of other cell types, but experimental evidence has found NKT cell subsets can modulate the functions of other NKT subsets. Depending on underlying mechanisms, NKT cells can inhibit or exacerbate autoimmunity and malignancy, making them potential targets for disease intervention. NKT cells can respond to foreign and endogenous antigenic glycolipid signals that are expressed during pathogenic invasion or ongoing inflammation, respectively, allowing them to rapidly react to and influence a broad array of diseases. In this article we review the unique development and activation pathways of NKT cells and focus on how these attributes augment or exacerbate autoimmune disorders and malignancy. We also examine the growing evidence that NKT cells are involved in liver inflammatory conditions that can contribute to the development of malignancy. PMID:21995570

  11. The split personality of NKT cells in malignancy, autoimmune and allergic disorders.

    Science.gov (United States)

    Subleski, Jeff J; Jiang, Qun; Weiss, Jonathan M; Wiltrout, Robert H

    2011-10-01

    NKT cells are a heterogeneous subset of specialized, self-reactive T cells, with innate and adaptive immune properties, which allow them to bridge innate and adaptive immunity and profoundly influence autoimmune and malignant disease outcomes. NKT cells mediate these activities through their ability to rapidly express pro- and anti-inflammatory cytokines that influence the type and magnitude of the immune response. Not only do NKT cells regulate the functions of other cell types, but experimental evidence has found NKT cell subsets can modulate the functions of other NKT subsets. Depending on underlying mechanisms, NKT cells can inhibit or exacerbate autoimmunity and malignancy, making them potential targets for disease intervention. NKT cells can respond to foreign and endogenous antigenic glycolipid signals that are expressed during pathogenic invasion or ongoing inflammation, respectively, allowing them to rapidly react to and influence a broad array of diseases. In this article we review the unique development and activation pathways of NKT cells and focus on how these attributes augment or exacerbate autoimmune disorders and malignancy. We also examine the growing evidence that NKT cells are involved in liver inflammatory conditions that can contribute to the development of malignancy.

  12. The pyrrolo-1,5-benzoxazepine, PBOX-15, enhances TRAIL-induced apoptosis by upregulation of DR5 and downregulation of core cell survival proteins in acute lymphoblastic leukaemia cells

    Science.gov (United States)

    NATHWANI, SEEMA-MARIA; GREENE, LISA M.; BUTINI, STEFANIA; CAMPIANI, GIUSEPPE; WILLIAMS, D. CLIVE; SAMALI, AFSHIN; SZEGEZDI, EVA; ZISTERER, DANIELA M.

    2016-01-01

    Apoptotic defects are frequently associated with poor outcome in pediatric acute lymphoblastic leukaemia (ALL) hence there is an ongoing demand for novel strategies that counteract apoptotic resistance. The death ligand TRAIL (tumour necrosis factor-related apoptosis-inducing ligand) and its selective tumour receptor system has attracted exceptional clinical interest. However, many malignancies including ALL are resistant to TRAIL monotherapy. Tumour resistance can be overcome by drug combination therapy. TRAIL and its agonist antibodies are currently undergoing phase II clinical trials with established chemotherapeutics. Herein, we present promising therapeutic benefits in combining TRAIL with the selective anti-leukaemic agents, the pyrrolo-1,5-benzoxazepines (PBOXs) for the treatment of ALL. PBOX-15 synergistically enhanced apoptosis induced by TRAIL and a DR5-selective TRAIL variant in ALL-derived cells. PBOX-15 enhanced TRAIL-induced apoptosis by dual activation of extrinsic and intrinsic apoptotic pathways. The specific caspase-8 inhibitor, Z-IETD-FMK, identified the extrinsic pathway as the principal mode of apoptosis. We demonstrate that PBOX-15 can enhance TRAIL-induced apoptosis by upregulation of DR5, reduction of cellular mitochondrial potential, activation of the caspase cascade and downregulation of PI3K/Akt, c-FLIP, Mcl-1 and IAP survival pathways. Of note, the PI3K pathway inhibitor LY-294002 significantly enhanced the apoptotic potential of TRAIL and PBOX-15 validating the importance of Akt downregulation in the TRAIL/PBOX-15 synergistic combination. Considering the lack of cytotoxicity to normal cells and ability to downregulate several survival pathways, PBOX-15 may represent an effective agent for use in combination with TRAIL for the treatment of ALL. PMID:27176505

  13. Malignant granular cell tumour on the thoracic wall: a case report and literature review

    International Nuclear Information System (INIS)

    Perez, E.; Esteban, R.; Alcalaya, R.; Albors, L.; Jimenez, C.; Ovelar, Y.; Cantera, M.G.

    1993-01-01

    A case is presented of a malignant granular cell tumour in a 52-year-old patient the initial location of which was the thoracic wall. After the tumour's removal there was recurrence in the lymph nodes, retroperitoneum, bone, lung and orbits. The important features of this case are its extraordinary rarity, the unusual location in the thoracic wall, and the tumour's infrequent malignancy. The radiological and histological findings are discussed, and the literature on the subject is reviewed. (orig.)

  14. Endotoxin-induced basal respiration alterations of renal HK-2 cells: A sign of pathologic metabolism down-regulation

    Energy Technology Data Exchange (ETDEWEB)

    Quoilin, C., E-mail: cquoilin@ulg.ac.be [Laboratory of Biomedical Spectroscopy, Department of Physics, University of Liege, 4000 Liege (Belgium); Mouithys-Mickalad, A. [Center of Oxygen Research and Development, Department of Chemistry, University of Liege, 4000 Liege (Belgium); Duranteau, J. [Department of Anaesthesia and Surgical ICU, CHU Bicetre, University Paris XI Sud, 94275 Le Kremlin Bicetre (France); Gallez, B. [Biomedical Magnetic Resonance Group, Louvain Drug Research Institute, Universite catholique de Louvain, 1200 Brussels (Belgium); Hoebeke, M. [Laboratory of Biomedical Spectroscopy, Department of Physics, University of Liege, 4000 Liege (Belgium)

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer A HK-2 cells model of inflammation-induced acute kidney injury. Black-Right-Pointing-Pointer Two oximetry methods: high resolution respirometry and ESR spectroscopy. Black-Right-Pointing-Pointer Oxygen consumption rates of renal cells decrease when treated with LPS. Black-Right-Pointing-Pointer Cells do not recover normal respiration when the LPS treatment is removed. Black-Right-Pointing-Pointer This basal respiration alteration is a sign of pathologic metabolism down-regulation. -- Abstract: To study the mechanism of oxygen regulation in inflammation-induced acute kidney injury, we investigate the effects of a bacterial endotoxin (lipopolysaccharide, LPS) on the basal respiration of proximal tubular epithelial cells (HK-2) both by high-resolution respirometry and electron spin resonance spectroscopy. These two complementary methods have shown that HK-2 cells exhibit a decreased oxygen consumption rate when treated with LPS. Surprisingly, this cellular respiration alteration persists even after the stress factor was removed. We suggested that this irreversible decrease in renal oxygen consumption after LPS challenge is related to a pathologic metabolic down-regulation such as a lack of oxygen utilization by cells.

  15. Sex-lethal enables germline stem cell differentiation by down-regulating Nanos protein levels during Drosophila oogenesis.

    Science.gov (United States)

    Chau, Johnnie; Kulnane, Laura Shapiro; Salz, Helen K

    2012-06-12

    Drosophila ovarian germ cells require Sex-lethal (Sxl) to exit from the stem cell state and to enter the differentiation pathway. Sxl encodes a female-specific RNA binding protein and in somatic cells serves as the developmental switch gene for somatic sex determination and X-chromosome dosage compensation. None of the known Sxl target genes are required for germline differentiation, leaving open the question of how Sxl promotes the transition from stem cell to committed daughter cell. We address the mechanism by which Sxl regulates this transition through the identification of nanos as one of its target genes. Previous studies have shown that Nanos protein is necessary for GSC self-renewal and is rapidly down-regulated in the daughter cells fated to differentiate in the adult ovary. We find that this dynamic expression pattern is limited to female germ cells and is under Sxl control. In the absence of Sxl, or in male germ cells, Nanos protein is continuously expressed. Furthermore, this female-specific expression pattern is dependent on the presence of canonical Sxl binding sites located in the nanos 3' untranslated region. These results, combined with the observation that nanos RNA associates with the Sxl protein in ovarian extracts and loss and gain of function studies, suggest that Sxl enables the switch from germline stem cell to committed daughter cell by posttranscriptional down-regulation of nanos expression. These findings connect sexual identity to the stem cell self-renewal/differentiation decision and highlight the importance of posttranscriptional gene regulatory networks in controlling stem cell behavior.

  16. Resveratrol via sirtuin-1 downregulates RE1-silencing transcription factor (REST) expression preventing PCB-95-induced neuronal cell death

    Energy Technology Data Exchange (ETDEWEB)

    Guida, Natascia [IRCSS SDN, Naples 80131 (Italy); Laudati, Giusy [Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, “Federico II” University of Naples, Via Pansini, 5, 80131 Naples (Italy); Anzilotti, Serenella [IRCSS SDN, Naples 80131 (Italy); Secondo, Agnese [Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, “Federico II” University of Naples, Via Pansini, 5, 80131 Naples (Italy); Montuori, Paolo [Department of Public Health, ‘Federico II’ University of Naples, Naples (Italy); Di Renzo, Gianfranco [Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, “Federico II” University of Naples, Via Pansini, 5, 80131 Naples (Italy); Canzoniero, Lorella M.T. [Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, “Federico II” University of Naples, Via Pansini, 5, 80131 Naples (Italy); Division of Pharmacology, Department of Science and Technology, University of Sannio, Via Port' Arsa 11, 82100 Benevento (Italy); Formisano, Luigi, E-mail: cformisa@unisannio.it [Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, “Federico II” University of Naples, Via Pansini, 5, 80131 Naples (Italy); Division of Pharmacology, Department of Science and Technology, University of Sannio, Via Port' Arsa 11, 82100 Benevento (Italy)

    2015-11-01

    Resveratrol (3,5,4′-trihydroxystilbene) (RSV), a polyphenol widely present in plants, exerts a neuroprotective function in several neurological conditions; it is an activator of class III histone deacetylase sirtuin1 (SIRT1), a crucial regulator in the pathophysiology of neurodegenerative diseases. By contrast, the RE1-silencing transcription factor (REST) is involved in the neurotoxic effects following exposure to polychlorinated biphenyl (PCB) mixture A1254. The present study investigated the effects of RSV-induced activation of SIRT1 on REST expression in SH-SY5Y cells. Further, we investigated the possible relationship between the non-dioxin-like (NDL) PCB-95 and REST through SIRT1 to regulate neuronal death in rat cortical neurons. Our results revealed that RSV significantly decreased REST gene and protein levels in a dose- and time-dependent manner. Interestingly, overexpression of SIRT1 reduced REST expression, whereas EX-527, an inhibitor of SIRT1, increased REST expression and blocked RSV-induced REST downregulation. These results suggest that RSV downregulates REST through SIRT1. In addition, RSV enhanced activator protein 1 (AP-1) transcription factor c-Jun expression and its binding to the REST promoter gene. Indeed, c-Jun knockdown reverted RSV-induced REST downregulation. Intriguingly, in SH-SY5Y cells and rat cortical neurons the NDL PCB-95 induced necrotic cell death in a concentration-dependent manner by increasing REST mRNA and protein expression. In addition, SIRT1 knockdown blocked RSV-induced neuroprotection in rat cortical neurons treated with PCB-95. Collectively, these results indicate that RSV via SIRT1 activates c-Jun, thereby reducing REST expression in SH-SY5Y cells under physiological conditions and blocks PCB-95-induced neuronal cell death by activating the same SIRT1/c-Jun/REST pathway. - Highlights: • Resveratrol via SIRT1/c-Jun downregulates REST mRNA and protein in SH-SY5Y cells. • Non-dioxin-like (NDL) PCB-95 is cytotoxic to

  17. Resveratrol via sirtuin-1 downregulates RE1-silencing transcription factor (REST) expression preventing PCB-95-induced neuronal cell death

    International Nuclear Information System (INIS)

    Guida, Natascia; Laudati, Giusy; Anzilotti, Serenella; Secondo, Agnese; Montuori, Paolo; Di Renzo, Gianfranco; Canzoniero, Lorella M.T.; Formisano, Luigi

    2015-01-01

    Resveratrol (3,5,4′-trihydroxystilbene) (RSV), a polyphenol widely present in plants, exerts a neuroprotective function in several neurological conditions; it is an activator of class III histone deacetylase sirtuin1 (SIRT1), a crucial regulator in the pathophysiology of neurodegenerative diseases. By contrast, the RE1-silencing transcription factor (REST) is involved in the neurotoxic effects following exposure to polychlorinated biphenyl (PCB) mixture A1254. The present study investigated the effects of RSV-induced activation of SIRT1 on REST expression in SH-SY5Y cells. Further, we investigated the possible relationship between the non-dioxin-like (NDL) PCB-95 and REST through SIRT1 to regulate neuronal death in rat cortical neurons. Our results revealed that RSV significantly decreased REST gene and protein levels in a dose- and time-dependent manner. Interestingly, overexpression of SIRT1 reduced REST expression, whereas EX-527, an inhibitor of SIRT1, increased REST expression and blocked RSV-induced REST downregulation. These results suggest that RSV downregulates REST through SIRT1. In addition, RSV enhanced activator protein 1 (AP-1) transcription factor c-Jun expression and its binding to the REST promoter gene. Indeed, c-Jun knockdown reverted RSV-induced REST downregulation. Intriguingly, in SH-SY5Y cells and rat cortical neurons the NDL PCB-95 induced necrotic cell death in a concentration-dependent manner by increasing REST mRNA and protein expression. In addition, SIRT1 knockdown blocked RSV-induced neuroprotection in rat cortical neurons treated with PCB-95. Collectively, these results indicate that RSV via SIRT1 activates c-Jun, thereby reducing REST expression in SH-SY5Y cells under physiological conditions and blocks PCB-95-induced neuronal cell death by activating the same SIRT1/c-Jun/REST pathway. - Highlights: • Resveratrol via SIRT1/c-Jun downregulates REST mRNA and protein in SH-SY5Y cells. • Non-dioxin-like (NDL) PCB-95 is cytotoxic to

  18. Whole-genome sequencing of a malignant granular cell tumor with metabolic response to pazopanib

    Science.gov (United States)

    Wei, Lei; Liu, Song; Conroy, Jeffrey; Wang, Jianmin; Papanicolau-Sengos, Antonios; Glenn, Sean T.; Murakami, Mitsuko; Liu, Lu; Hu, Qiang; Conroy, Jacob; Miles, Kiersten Marie; Nowak, David E.; Liu, Biao; Qin, Maochun; Bshara, Wiam; Omilian, Angela R.; Head, Karen; Bianchi, Michael; Burgher, Blake; Darlak, Christopher; Kane, John; Merzianu, Mihai; Cheney, Richard; Fabiano, Andrew; Salerno, Kilian; Talati, Chetasi; Khushalani, Nikhil I.; Trump, Donald L.; Johnson, Candace S.; Morrison, Carl D.

    2015-01-01

    Granular cell tumors are an uncommon soft tissue neoplasm. Malignant granular cell tumors comprise T transitions, particularly when immediately preceded by a 5′ G. A loss-of-function mutation was detected in a newly recognized tumor suppressor candidate, BRD7. No mutations were found in known targets of pazopanib. However, we identified a receptor tyrosine kinase pathway mutation in GFRA2 that warrants further evaluation. To the best of our knowledge, this is only the second reported case of a malignant granular cell tumor exhibiting a response to pazopanib, and the first whole-genome sequencing of this uncommon tumor type. The findings provide insight into the genetic basis of malignant granular cell tumors and identify potential targets for further investigation. PMID:27148567

  19. CD47 limits antibody dependent phagocytosis against non-malignant B cells.

    Science.gov (United States)

    Gallagher, Sandra; Turman, Sean; Lekstrom, Kristen; Wilson, Susan; Herbst, Ronald; Wang, Yue

    2017-05-01

    Recent studies have demonstrated the importance of CD47 in protecting malignant B cells from antibody dependent cellular phagocytosis (ADCP). Combined treatment of anti-CD47 and -CD20 antibodies synergistically augment elimination of tumor B cells in xenograft mouse models. This has led to the development of novel reagents that can potentially enhance killing of malignant B cells in patients. B cell depleting therapy is also a promising treatment for autoimmune patients. In the current study, we aimed to investigate whether or not CD47 protects non-malignant B cells from ADCP. We show that CD47 is expressed on all B cells in mice, with the highest level on plasma cells in bone marrow and spleen. Although its expression is dispensable for B cell development in mice, CD47 on B cells limits antibody mediated phagocytosis. B cell depletion following in vivo anti-CD19 treatment is more efficient in CD47-/- mice than in wild type mice. In vitro, both naïve and activated B cells from CD47-/- mice are more sensitive to ADCP than wild type B cells. Lastly, we show in an ADCP assay that blocking CD47 can enhance anti-CD19 antibody mediated phagocytosis of wild type B cells. These results suggest that in addition to its already demonstrated benefit in cancer, targeting CD47 may be used as an adjunct in combination with B cell depletion antibodies for treatment of autoimmune diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Activin A, B and AB decrease progesterone production by down-regulating StAR in human granulosa cells.

    Science.gov (United States)

    Chang, Hsun-Ming; Cheng, Jung-Chien; Huang, He-Feng; Shi, Feng-Tao; Leung, Peter C K

    2015-09-05

    Activins are homo- or heterodimers of inhibin β subunits that play important roles in the reproductive system. Our previous work has shown that activins A (βAβA), B (βBβB) and AB (βAβB) induce aromatase/estradiol, but suppress StAR/progesterone production in human granulosa-lutein cells. However, the underlying molecular determinants of these effects have not been examined. In this continuing study, we used immortalized human granulosa cells (SVOG) to investigate the effects of activins in regulating StAR/progesterone and the potential mechanisms of action. In SVOG cells, activins A, B and AB produced comparable down-regulation of StAR expression and progesterone production. In addition, all three activin isoforms induced equivalent phosphorylation of both SMAD2 and SMAD3. Importantly, the activin-induced down-regulation of StAR, increase in SMAD2/3 phosphorylation, and decrease in progesterone were abolished by the TGF-β type I receptor inhibitor SB431542. Interestingly, the small interfering RNA-mediated knockdown of ALK4 but not ALK5 reversed the activin-induced suppression of StAR. Furthermore, the knockdown of SMAD4 or SMAD2 but not SMAD3 abolished the inhibitory effects of all three activin isoforms on StAR expression. These results provide evidence that activins A, B and AB down-regulate StAR expression and decrease progesterone production in human granulosa cells, likely via an ALK4-mediated SMAD2/SMAD4-dependent pathway. Our findings provide important insights into the molecular mechanisms underlying the regulatory effects of activins on human granulosa cell steroidogenesis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Resveratrol via sirtuin-1 downregulates RE1-silencing transcription factor (REST) expression preventing PCB-95-induced neuronal cell death.

    Science.gov (United States)

    Guida, Natascia; Laudati, Giusy; Anzilotti, Serenella; Secondo, Agnese; Montuori, Paolo; Di Renzo, Gianfranco; Canzoniero, Lorella M T; Formisano, Luigi

    2015-11-01

    Resveratrol (3,5,4'-trihydroxystilbene) (RSV), a polyphenol widely present in plants, exerts a neuroprotective function in several neurological conditions; it is an activator of class III histone deacetylase sirtuin1 (SIRT1), a crucial regulator in the pathophysiology of neurodegenerative diseases. By contrast, the RE1-silencing transcription factor (REST) is involved in the neurotoxic effects following exposure to polychlorinated biphenyl (PCB) mixture A1254. The present study investigated the effects of RSV-induced activation of SIRT1 on REST expression in SH-SY5Y cells. Further, we investigated the possible relationship between the non-dioxin-like (NDL) PCB-95 and REST through SIRT1 to regulate neuronal death in rat cortical neurons. Our results revealed that RSV significantly decreased REST gene and protein levels in a dose- and time-dependent manner. Interestingly, overexpression of SIRT1 reduced REST expression, whereas EX-527, an inhibitor of SIRT1, increased REST expression and blocked RSV-induced REST downregulation. These results suggest that RSV downregulates REST through SIRT1. In addition, RSV enhanced activator protein 1 (AP-1) transcription factor c-Jun expression and its binding to the REST promoter gene. Indeed, c-Jun knockdown reverted RSV-induced REST downregulation. Intriguingly, in SH-SY5Y cells and rat cortical neurons the NDL PCB-95 induced necrotic cell death in a concentration-dependent manner by increasing REST mRNA and protein expression. In addition, SIRT1 knockdown blocked RSV-induced neuroprotection in rat cortical neurons treated with PCB-95. Collectively, these results indicate that RSV via SIRT1 activates c-Jun, thereby reducing REST expression in SH-SY5Y cells under physiological conditions and blocks PCB-95-induced neuronal cell death by activating the same SIRT1/c-Jun/REST pathway. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Gene expression profiles in BCL11B-siRNA treated malignant T cells

    Directory of Open Access Journals (Sweden)

    Grabarczyk Piotr

    2011-05-01

    Full Text Available Abstract Background Downregulation of the B-cell chronic lymphocytic leukemia (CLL/lymphoma11B (BCL11B gene by small interfering RNA (siRNA leads to growth inhibition and apoptosis of the human T-cell acute lymphoblastic leukemia (T-ALL cell line Molt-4. To further characterize the molecular mechanism, a global gene expression profile of BCL11B-siRNA -treated Molt-4 cells was established. The expression profiles of several genes were further validated in the BCL11B-siRNA -treated Molt-4 cells and primary T-ALL cells. Results 142 genes were found to be upregulated and 109 genes downregulated in the BCL11B-siRNA -treated Molt-4 cells by microarray analysis. Among apoptosis-related genes, three pro-apoptotic genes, TNFSF10, BIK, BNIP3, were upregulated and one anti-apoptotic gene, BCL2L1 was downregulated. Moreover, the expression of SPP1 and CREBBP genes involved in the transforming growth factor (TGF-β pathway was down 16-fold. Expression levels of TNFSF10, BCL2L1, SPP1, and CREBBP were also examined by real-time PCR. A similar expression pattern of TNFSF10, BCL2L1, and SPP1 was identified. However, CREBBP was not downregulated in the BLC11B-siRNA -treated Molt-4 cells. Conclusion BCL11B-siRNA treatment altered expression profiles of TNFSF10, BCL2L1, and SPP1 in both Molt-4 T cell line and primary T-ALL cells.

  3. Melittin restores PTEN expression by down-regulating HDAC2 in human hepatocelluar carcinoma HepG2 cells.

    Directory of Open Access Journals (Sweden)

    Hui Zhang

    Full Text Available Melittin is a water-soluble toxic peptide derived from the venom of the bee. Although many studies show the anti-tumor activity of melittin in human cancer including glioma cells, the underlying mechanisms remain elusive. Here the effect of melittin on human hepatocelluar carcinoma HepG2 cell proliferation in vitro and further mechanisms was investigated. We found melittin could inhibit cell proliferation in vitro using Flow cytometry and MTT method. Besides, we discovered that melittin significantly downregulated the expressions of CyclinD1 and CDK4. Results of western Blot and Real-time PCR analysis indicated that melittin was capable to upregulate the expression of PTEN and attenuate histone deacetylase 2 (HDAC2 expression. Further studies demonstrated that knockdown of HDAC2 completely mimicked the effects of melittin on PTEN gene expression. Conversely, it was that the potential utility of melittin on PTEN expression was reversed in cells treated with a recombinant pEGFP-C2-HDAC2 plasmid. In addition, treatment with melittin caused a downregulation of Akt phosphorylation, while overexpression of HDAC2 promoted Akt phosphorylation. These findings suggested that the inhibitory of cell growth by melittin might be led by HDAC2-mediated PTEN upregulation, Akt inactivation, and inhibition of the PI3K/Akt signaling pathways.

  4. Human rotavirus strain Wa downregulates NHE1 and NHE6 expressions in rotavirus-infected Caco-2 cells.

    Science.gov (United States)

    Chen, Honglang; Song, Lijun; Li, Guixian; Chen, Wenfeng; Zhao, Shumin; Zhou, Ruoxia; Shi, Xiaoying; Peng, Zhenying; Zhao, Wenchang

    2017-06-01

    Rotavirus (RV) is the most common cause of severe gastroenteritis and fatal dehydration in human infants and neonates of different species. However, the pathogenesis of rotavirus-induced diarrhea is poorly understood. Secretory diarrhea caused by rotavirus may lead to a combination of excessive secretion of fluid and electrolytes into the intestinal lumen. Fluid absorption in the small intestine is driven by Na + -coupled transport mechanisms at the luminal membrane, including Na + /H + exchanger (NHE). Here, we performed qRT-PCR to detect the transcription of NHEs. Western blotting was employed for protein detection. Furthermore, immunocytochemistry was used to validate the NHE's protein expression. Finally, intracellular Ca 2+ concentration was detected by confocal laser scanning microscopy. The results demonstrated that the NHE6 mRNA and protein expressed in the human colon adenocarcinoma cell line (Caco-2). Furthermore, RV-Wa induced decreased expression of the NHE1 and NHE6 in Caco-2 cell in a time-dependent manner. In addition, intracellular Ca 2+ concentration in RV-Wa-infected Caco-2 cells was higher than that in the mock-infected cells. Furthermore, RV-Wa also can downregulate the expression of calmodulin (CaM) and calmodulin kinase II (CaMKII) in Caco-2 cells. These findings provides important insights into the mechanisms of rotavirus-induced diarrhea. Further studies on the underlying pathophysiological mechanisms that downregulate NHEs in RV-induced diarrhea are required.

  5. Glioblastoma Cell Malignancy and Drug Sensitivity Are Affected by the Cell of Origin

    Directory of Open Access Journals (Sweden)

    Yiwen Jiang

    2017-01-01

    Full Text Available The identity of the glioblastoma (GBM cell of origin and its contributions to disease progression and treatment response remain largely unknown. We have analyzed how the phenotypic state of the initially transformed cell affects mouse GBM development and essential GBM cell (GC properties. We find that GBM induced in neural stem-cell-like glial fibrillary acidic protein (GFAP-expressing cells in the subventricular zone of adult mice shows accelerated tumor development and produces more malignant GCs (mGC1GFAP that are less resistant to cancer drugs, compared with those originating from more differentiated nestin- (mGC2NES or 2,′3′-cyclic nucleotide 3′-phosphodiesterase (mGC3CNP-expressing cells. Transcriptome analysis of mouse GCs identified a 196 mouse cell origin (MCO gene signature that was used to partition 61 patient-derived GC lines. Human GC lines that clustered with the mGC1GFAP cells were also significantly more self-renewing, tumorigenic, and sensitive to cancer drugs compared with those that clustered with mouse GCs of more differentiated origin.

  6. A role for Lin28 in primordial germ cell development and germ cell malignancy

    Science.gov (United States)

    West, Jason A.; Viswanathan, Srinivas R.; Yabuuchi, Akiko; Cunniff, Kerianne; Takeuchi, Ayumu; Park, In-Hyun; Sero, Julia E.; Zhu, Hao; Perez-Atayde, Antonio; Frazier, A. Lindsay; Surani, M. Azim; Daley, George Q.

    2009-01-01

    The rarity and inaccessibility of the earliest primordial germ cells (PGCs) in the mouse embryo thwarts efforts to investigate molecular mechanisms of germ cell specification. Stella marks the minute founder population of the germ lineage1,2. Here we differentiate mouse embryonic stem cells (ESCs) carrying a Stella transgenic reporter into putative PGCs in vitro. The Stella+ cells possess a transcriptional profile similar to embryo-derived PGCs, and like their counterparts in vivo, lose imprints in a time-dependent manner. Using inhibitory RNAs to screen candidate genes for effects on the development of Stella+ cells in vitro, we discovered that Lin28, a negative regulator of let-7 microRNA processing3-6, is essential for proper PGC development. We further show that Blimp1, a let-7 target and a master regulator of PGC specification7-9, can rescue the effect of Lin28-deficiency during PGC development, thereby establishing a mechanism of action for Lin28 during PGC specification. Over-expression of Lin28 promotes formation of Stella+ cells in vitro and PGCs in chimeric embryos, and is associated with human germ cell tumours. The differentiation of putative PGCs from ESCs in vitro recapitulates the early stages of gamete development in vivo, and provides an accessible system for discovering novel genes involved in germ cell development and malignancy. PMID:19578360

  7. Genetically Modified T-Cell-Based Adoptive Immunotherapy in Hematological Malignancies

    Directory of Open Access Journals (Sweden)

    Baixin Ye

    2017-01-01

    Full Text Available A significant proportion of hematological malignancies remain limited in treatment options. Immune system modulation serves as a promising therapeutic approach to eliminate malignant cells. Cytotoxic T lymphocytes (CTLs play a central role in antitumor immunity; unfortunately, nonspecific approaches for targeted recognition of tumor cells by CTLs to mediate tumor immune evasion in hematological malignancies imply multiple mechanisms, which may or may not be clinically relevant. Recently, genetically modified T-cell-based adoptive immunotherapy approaches, including chimeric antigen receptor (CAR T-cell therapy and engineered T-cell receptor (TCR T-cell therapy, promise to overcome immune evasion by redirecting the specificity of CTLs to tumor cells. In clinic trials, CAR-T-cell- and TCR-T-cell-based adoptive immunotherapy have produced encouraging clinical outcomes, thereby demonstrating their therapeutic potential in mitigating tumor development. The purpose of the present review is to (1 provide a detailed overview of the multiple mechanisms for immune evasion related with T-cell-based therapies; (2 provide a current summary of the applications of CAR-T-cell- as well as neoantigen-specific TCR-T-cell-based adoptive immunotherapy and routes taken to overcome immune evasion; and (3 evaluate alternative approaches targeting immune evasion via optimization of CAR-T and TCR-T-cell immunotherapies.

  8. Quantitative analysis of genes regulating sensitivity to heavy ion irradiation in cultured cell lines of malignant choroid melanoma

    International Nuclear Information System (INIS)

    Kumagai, Ken; Adachi, Nanao; Nimura, Yoshinori

    2004-01-01

    As a treatment strategy for malignant melanoma, heavy ion irradiation has been planned in National Institute of Radiological Sciences (NIRS). However, the molecular biology of the malignant melanoma cell after irradiation of heavy ion is still unknown. In this study, we used resistant and sensitive cell lines of malignant melanoma to study the effects of heavy ion irradiation. Furthermore, gene expression profiling of early response genes for heavy ion irradiation was carried out on these cell lines using microarray technology. (author)

  9. Quantitative analysis of genes regulating sensitivity to heavy ion irradiation in cultured cell lines of malignant choroid melanoma

    International Nuclear Information System (INIS)

    Kumagai, Ken; Nimura, Yoshinori; Kato, Masaki; Seki, Naohiko; Miyahara, Nobuyuki; Aoki, Mizuho; Shino, Yayoi; Furusawa, Yoshiya; Mizota, Atsushi

    2005-01-01

    As a treatment strategy for malignant melanoma, heavy ion irradiation has been planned in National Institute of Radiological Sciences (NIRS). However, the molecular biology of the malignant melanoma cell after irradiation of heavy ion is still unknown. In this study, we used resistant and sensitive cell lines of malignant melanoma to study the effects of heavy ion irradiation. Furthermore, gene expression profiling of early response genes for heavy ion irradiation was carried out on these cell lines using microarray technology. (author)

  10. Neural cell adhesion molecule-180-mediated homophilic binding induces epidermal growth factor receptor (EGFR) down-regulation and uncouples the inhibitory function of EGFR in neurite outgrowth

    DEFF Research Database (Denmark)

    Povlsen, Gro Klitgaard; Berezin, Vladimir; Bock, Elisabeth

    2008-01-01

    The neural cell adhesion molecule (NCAM) plays important roles in neuronal development, regeneration, and synaptic plasticity. NCAM homophilic binding mediates cell adhesion and induces intracellular signals, in which the fibroblast growth factor receptor plays a prominent role. Recent studies...... this NCAM-180-induced EGFR down-regulation involves increased EGFR ubiquitination and lysosomal EGFR degradation. Furthermore, NCAM-180-mediated EGFR down-regulation requires NCAM homophilic binding and interactions of the cytoplasmic domain of NCAM-180 with intracellular interaction partners, but does...

  11. Vesnarinone downregulates CXCR4 expression via upregulation of Krüppel-like factor 2 in oral cancer cells

    Directory of Open Access Journals (Sweden)

    Uchida Daisuke

    2009-08-01

    Full Text Available Abstract Background We have demonstrated that the stromal cell-derived factor-1 (SDF-1; CXCL12/CXCR4 system is involved in the establishment of lymph node metastasis in oral squamous cell carcinoma (SCC. Chemotherapy is a powerful tool for the treatment of oral cancer, including oral SCC; however, the effects of chemotherapeutic agents on the expression of CXCR4 are unknown. In this study, we examined the expression of CXCR4 associated with the chemotherapeutic agents in oral cancer cells. Results The expression of CXCR4 was examined using 3 different chemotherapeutic agents; 5-fluorouracil, cisplatin, and vesnarinone (3,4-dihydro-6-[4-(3,4-dimethoxybenzoyl-1-piperazinyl]-2-(1H-quinolinone in B88, a line of oral cancer cells that exhibits high levels of CXCR4 and lymph node metastatic potential. Of the 3 chemotherapeutic agents that we examined, only vesnarinone downregulated the expression of CXCR4 at the mRNA as well as the protein level. Vesnarinone significantly inhibited lymph node metastasis in tumor-bearing nude mice. Moreover, vesnarinone markedly inhibited 2.7-kb human CXCR4 promoter activity, and we identified the transcription factor, Krüppel-like factor 2 (KLF2, as a novel vesnarinone-responsive molecule, which was bound to the CXCR4 promoter at positions -300 to -167 relative to the transcription start site. The forced-expression of KLF2 led to the downregulation of CXCR4 mRNA and impaired CXCR4 promoter activity. The use of siRNA against KLF2 led to an upregulation of CXCR4 mRNA. Conclusion These Results indicate that vesnarinone downregulates CXCR4 via the upregulation of KLF2 in oral cancer.

  12. Is there an increased rate of additional malignancies in patients with mantle cell lymphoma?

    Science.gov (United States)

    Barista, I; Cabanillas, F; Romaguera, J E; Khouri, I F; Yang, Y; Smith, T L; Strom, S S; Medeiros, L J; Hagemeister, F B

    2002-02-01

    To examine the frequency of additional neoplasms preceding and following the diagnosis of mantle cell lymphoma (MCL). A total of 156 patients with MCL treated on the hyperfractionated cyclophosphamide, vincristine, doxorubicin and dexamethasone alternated with methotrexate and cytosine arabinoside (Hyper-CVAD/M-A) program with or without rituximab from 1994 to 2000 were the subjects of this report. These patients were followed for a median time of 26 months, and a total of 32 (21%) additional neoplasms were diagnosed, 21 preceding the diagnosis of MCL and 11 following MCL. After excluding certain types of non-invasive neoplasms, including basal cell carcinoma, meningioma and cervical intraepithelial neoplasia, we observed seven second malignancies after the diagnosis of MCL, and the 5-year cumulative incidence rate of second malignancy was 11%. The observed-to-expected (O/E) ratio was 7/0.07 = 100 [95% confidence interval (CI) 49.3 to 186.6; P <0.0001]. Of the 21 malignancies diagnosed prior to MCL, 16 were invasive and five non-invasive. There were a total of 10 urologic malignancies occurring before or after the diagnosis of MCL was established. Our findings suggest that there is an increased incidence of second malignancies in patients with MCL. In addition, the high number of cases with urinary tract cancer in our series may substantiate prior reports describing a possible association between lymphoma and urologic malignancies.

  13. Differentiation of glioblastoma multiforme stem-like cells leads to downregulation of EGFR and EGFRvIII and decreased tumorigenic and stem-like cell potential

    DEFF Research Database (Denmark)

    Stockhausen, Marie-Thérése; Kristoffersen, Karina; Stobbe, Louise

    2014-01-01

    cancer stem-like cells (bCSC), to play a pivotal role in GBM malignancy. bCSC are identified by their resemblance to normal neural stem cells (NSC), and it is speculated that the bCSC have to be targeted in order to improve treatment outcome for GBM patients. One hallmark of GBM is aberrant expression...

  14. Simultaneous Downregulation of MTHFR and COMT in Switchgrass Affects Plant Performance and Induces Lesion-Mimic Cell Death

    Directory of Open Access Journals (Sweden)

    Sijia Liu

    2017-06-01

    Full Text Available Switchgrass (Panicum virgatum has been developed into a model lignocellulosic bioenergy crop. Downregulation of caffeic acid O-methyltransferase (COMT, a key enzyme in lignin biosynthesis, has been shown to alter lignification and increase biofuel yield in switchgrass. Methylenetetrahydrofolate reductase (MTHFR mediates C1 metabolism and provides methyl units consumed by COMT. It was predicted that co-silencing of MTHFR and COMT would impact lignification even more than either of the single genes. However, our results showed that strong downregulation of MTHFR in a COMT-deficient background led to altered plant growth and development, but no significant change in lignin content or composition was found when compared with COMT plants. Another unexpected finding was that the double MTHFR/COMT downregulated plants showed a novel lesion-mimic leaf phenotype. Molecular analyses revealed that the lesion-mimic phenotype was caused by the synergistic effect of MTHFR and COMT genes, with MTHFR playing a predominant role. Microarray analysis showed significant induction of genes related to oxidative and defense responses. The results demonstrated the lack of additive effects of MTHFR and COMT on lignification. Furthermore, this research revealed an unexpected role of the two genes in the modulation of lesion-mimic cell death as well as their synergistic effects on agronomic performance.

  15. Simultaneous Downregulation of MTHFR and COMT in Switchgrass Affects Plant Performance and Induces Lesion-Mimic Cell Death.

    Science.gov (United States)

    Liu, Sijia; Fu, Chunxiang; Gou, Jiqing; Sun, Liang; Huhman, David; Zhang, Yunwei; Wang, Zeng-Yu

    2017-01-01

    Switchgrass ( Panicum virgatum ) has been developed into a model lignocellulosic bioenergy crop. Downregulation of caffeic acid O -methyltransferase (COMT), a key enzyme in lignin biosynthesis, has been shown to alter lignification and increase biofuel yield in switchgrass. Methylenetetrahydrofolate reductase (MTHFR) mediates C1 metabolism and provides methyl units consumed by COMT. It was predicted that co-silencing of MTHFR and COMT would impact lignification even more than either of the single genes. However, our results showed that strong downregulation of MTHFR in a COMT -deficient background led to altered plant growth and development, but no significant change in lignin content or composition was found when compared with COMT plants. Another unexpected finding was that the double MTHFR/COMT downregulated plants showed a novel lesion-mimic leaf phenotype. Molecular analyses revealed that the lesion-mimic phenotype was caused by the synergistic effect of MTHFR and COMT genes, with MTHFR playing a predominant role. Microarray analysis showed significant induction of genes related to oxidative and defense responses. The results demonstrated the lack of additive effects of MTHFR and COMT on lignification. Furthermore, this research revealed an unexpected role of the two genes in the modulation of lesion-mimic cell death as well as their synergistic effects on agronomic performance.

  16. Inhibition of WNT signaling reduces differentiation and induces sensitivity to doxorubicin in human malignant neuroblastoma SH-SY5Y cells.

    Science.gov (United States)

    Suebsoonthron, Junjira; Jaroonwitchawan, Thiranut; Yamabhai, Montarop; Noisa, Parinya

    2017-06-01

    Neuroblastoma is one of the most common cancers in infancy, arising from the neuroblasts during embryonic development. This cancer is difficult to treat and resistance to chemotherapy is often found; therefore, clinical trials of novel therapeutic approaches, such as targeted-cancer signaling, could be an alternative for a better treatment. WNT signaling plays significant roles in the survival, proliferation, and differentiation of human neuroblastoma. In this report, WNT signaling of a malignant human neuroblastoma cell line, SH-SY5Y cells, was inhibited by XAV939, a specific inhibitor of the Tankyrase enzyme. XAV939 treatment led to the reduction of β-catenin within the cells, confirming its inhibitory effect of WNT. The inhibition of WNT signaling by XAV939 did not affect cell morphology, survival, and proliferation; however, the differentiation and sensitivity to anticancer drugs of human neuroblastoma cells were altered. The treatment of XAV939 resulted in the downregulation of mature neuronal markers, including β-tubulin III, PHOX2A, and PHOX2B, whereas neural progenitor markers (PAX6, TFAP2α, and SLUG) were upregulated. In addition, the combination of XAV939 significantly enhanced the sensitivity of SH-SY5Y and IMR-32 cells to doxorubicin in both 2D and 3D culture systems. Microarray gene expression profiling suggested numbers of candidate target genes of WNT inhibition by XAV939, in particular, p21, p53, ubiquitin C, ZBED8, MDM2, CASP3, and FZD1, and this explained the enhanced sensitivity of SH-SY5Y cells to doxorubicin. Altogether, these results proposed that the altered differentiation of human malignant neuroblastoma cells by inhibiting WNT signaling sensitized the cells to anticancer drugs. This approach could thus serve as an effective treatment option for aggressive brain malignancy.

  17. Nitrosoureas Inhibit the Stathmin Mediated Migration and Invasion of Malignant Glioma Cells

    Science.gov (United States)

    Liang, Xing-Jie; Choi, Yong; Sackett, Dan L.; Park, John K.

    2008-01-01

    Malignant gliomas are the most common primary intrinsic brain tumors and are highly lethal. The widespread migration and invasion of neoplastic cells from the initial site of tumor formation into the surrounding brain render these lesions refractory to definitive surgical treatment. Stathmin, a microtubule destabilizing protein that mediates cell cycle progression, can also regulate directed cell movement. Nitrosoureas, traditionally viewed as DNA alkylating agents, can also covalently modify proteins such as stathmin. We therefore sought to establish a role for stathmin in malignant glioma cell motility, migration, and invasion and determine the effects of nitrosoureas on these cell movement related processes. Scratch-wound healing recovery, Boyden chamber migration, Matrigel invasion, and organotypic slice invasion assays were performed before and after the down regulation of cellular stathmin levels and in the absence and presence of sub-lethal nitrosourea (CCNU; [1-(2-chloroethyl)-3-cyclohexyl-l-nitrosourea]) concentrations. We demonstrate that decreases in stathmin expression lead to significant decreases in malignant glioma cell motility, migration, and invasion. CCNU, at a concentration of 10 μM, causes similar significant decreases, even in the absence of any effects on cell viability. The direct inhibition of stathmin by CCNU is likely a contributing factor. These findings suggest that the inhibition of stathmin expression and function may be useful in limiting the spread of malignant gliomas within the brain and that nitrosoureas may have therapeutic benefits in addition to their anti-proliferative effects. PMID:18593927

  18. Higher positive identification of malignant CSF cells using the cytocentrifuge than the Suta chamber

    Directory of Open Access Journals (Sweden)

    Sérgio Monteiro de Almeida

    Full Text Available ABSTRACT Objective To define how to best handle cerebrospinal fluid (CSF specimens to obtain the highest positivity rate for the diagnosis of malignancy, comparing two different methods of cell concentration, sedimentation and cytocentrifugation. Methods A retrospective analysis of 411 CSF reports. Results This is a descriptive comparative study. The positive identification of malignant CSF cells was higher using the centrifuge than that using the Suta chamber (27.8% vs. 19.0%, respectively; p = 0.038. Centrifuge positively identified higher numbers of malignant cells in samples with a normal concentration of white blood cells (WBCs (< 5 cells/mm3 and with more than 200 cells/mm3, although this was not statistically significant. There was no lymphocyte loss using either method. Conclusions Cytocentrifugation positively identified a greater number of malignant cells in the CSF than cytosedimentation with the Suta chamber. However, there was no difference between the methods when the WBC counts were within the normal range.

  19. High dose therapy with autologous stem cell support in malignant disorders

    International Nuclear Information System (INIS)

    Holte, H.; Kvaloey, S.O.; Engan, T.

    1996-01-01

    New biomedical knowledge may improve the diagnostic procedures and treatment provided by the Health Services, but at additional cost. In a social democratic health care system, the hospital budgets have no room for expensive, new procedures or treatments, unless these are funded through extra allocation from the central authorities. High dose therapy with autologous stem cell support in malignant disorders is an example of a new and promising, but rather expensive treatment, but its role in cancer therapy has yet to be established. The indications for testing high dose therapy with autologous stem cell support in various malignancies are discussed, with emphasis on the principles for deciding which categories of disease should have priority. The authors suggest some malignant disorder for which high dose therapy with stem cell support should be explored versus conventional treatment in randomized prospective trials. 8 refs., 1 tab

  20. Integration of HPV6 and downregulation of AKR1C3 expression mark malignant transformation in a patient with juvenile-onset laryngeal papillomatosis.

    Directory of Open Access Journals (Sweden)

    Christian Ulrich Huebbers

    Full Text Available Juvenile-onset recurrent respiratory papillomatosis (RRP is associated with low risk human papillomavirus (HPV types 6 and 11. Malignant transformation has been reported solely for HPV11-associated RRP in 2-4% of all RRP-cases, but not for HPV6. The molecular mechanisms in the carcinogenesis of low risk HPV-associated cancers are to date unknown. We report of a female patient, who presented with a laryngeal carcinoma at the age of 24 years. She had a history of juvenile-onset RRP with an onset at the age of three and subsequently several hundred surgical interventions due to multiple recurrences of RRP. Polymerase chain reaction (PCR or bead-based hybridization followed by direct sequencing identified HPV6 in tissue sections of previous papilloma and the carcinoma. P16(INK4A, p53 and pRb immunostainings were negative in all lesions. HPV6 specific fluorescence in situ hybridization (FISH revealed nuclear staining suggesting episomal virus in the papilloma and a single integration site in the carcinoma. Integration-specific amplification of papillomavirus oncogene transcripts PCR (APOT-PCR showed integration in the aldo-keto reductase 1C3 gene (AKR1C3 on chromosome 10p15.1. ArrayCGH detected loss of the other gene copy as part of a deletion at 10p14-p15.2. Western blot analysis and immunohistochemistry of the protein AKR1C3 showed a marked reduction of its expression in the carcinoma. In conclusion, we identified a novel molecular mechanism underlying a first case of HPV6-associated laryngeal carcinoma in juvenile-onset RRP, i.e. that HPV6 integration in the AKR1C3 gene resulted in loss of its expression. Alterations of AKR1C gene expression have previously been implicated in the tumorigenesis of other (HPV-related malignancies.

  1. SIRT1 ameliorates oxidative stress induced neural cell death and is down-regulated in Parkinson's disease.

    Science.gov (United States)

    Singh, Preeti; Hanson, Peter S; Morris, Christopher M

    2017-06-02

    Sirtuins (SIRTs) are NAD + dependent lysine deacetylases which are conserved from bacteria to humans and have been associated with longevity and lifespan extension. SIRT1, the best studied mammalian SIRT is involved in many physiological and pathological processes and changes in SIRT1 have been implicated in neurodegenerative disorders, with SIRT1 having a suggested protective role in Parkinson's disease. In this study, we determined the effect of SIRT1 on cell survival and α-synuclein aggregate formation in SH-SY5Y cells following oxidative stress. Over-expression of SIRT1 protected SH-SY5Y cells from toxin induced cell death and the protection conferred by SIRT1 was partially independent of its deacetylase activity, which was associated with the repression of NF-кB and cPARP expression. SIRT1 reduced the formation of α-synuclein aggregates but showed minimal co-localisation with α-synuclein. In post-mortem brain tissue obtained from patients with Parkinson's disease, Parkinson's disease with dementia, dementia with Lewy bodies and Alzheimer's disease, the activity of SIRT1 was observed to be down-regulated. These findings suggests a negative effect of oxidative stress in neurodegenerative disorders and possibly explain the reduced activity of SIRT1 in neurodegenerative disorders. Our study shows that SIRT1 is a pro-survival protein that is downregulated under cellular stress.

  2. MicroRNA-199 suppresses cell proliferation, migration and invasion by downregulating RGS17 in hepatocellular carcinoma.

    Science.gov (United States)

    Zhang, Wei; Qian, Sheng; Yang, Guowei; Zhu, Liang; Zhou, Bo; Wang, Jianhua; Liu, Rong; Yan, Zhiping; Qu, Xudong

    2018-06-15

    Hepatocellular carcinoma (HCC), the most common primary tumor of the liver, has a poor prognosis and shows rapid progression. MicroRNAs (miRNAs) play important roles in carcinogenesis and tumor progression. Regulators of G-protein signaling (RGS) are critical for defining G-protein-dependent signal fidelity. RGS17 plays an important role in the regulation of cancer cell proliferation, migration and invasion. Here, we showed that miR-199 was downregulated in a hepatocarcinoma cell line. Overexpression of miR-199 significantly suppressed HCC cell proliferation, migration, and invasion in vitro. RGS17 overexpression promoted HCC cell proliferation, migration, and invasion, and reversed the miR-199 mediated inhibition of proliferation, migration, and invasion. Dual-fluorescence reporter experiments confirmed that miR-199 downregulated RGS17 by direct interaction with the 3'-UTR of RGS17 mRNA. In vivo studies showed that miR-199 overexpression significantly inhibited the growth of tumors. Taken together, the results suggested that miR-199 inhibited tumor growth and metastasis by targeting RGS17. Published by Elsevier B.V.

  3. [Impact of siRNA-mediated down-regulation of CD147 on human breast cancer cells].

    Science.gov (United States)

    Li, Zhenqian; Li, Daoming; Li, Jiangwei; Huang, Pei; Qin, Hui

    2015-10-01

    To investigate the influence of siRNA-mediated down-regulation of CD147 on growth, proliferation and movement of human breast cancer cell line MDA-MB-231. The protein expression of CD147, MMP-2 and TIMP-2 of the MDA-MB-231 cells were analyzed by ABC. Lentiviral expression vector of CD147 gene was constructed and transfected into MDA-MB-231 cells. RT-PCR and Western blot were used to detect the mRNA and protein level changes of CD147 genes to identify the optimal time point, followed by detection of changes of mRNA and protein expression of MMP-2 and TIMP-2 genes. CCK-8 reagent method and cell scratch test were used to detect the proliferation and migration change of MDA-MB-231 cells. The nude mouse model of breast cancer by hypodermic injection with MDA-MB-231 cells was established to document the effect of CD147 siRNA on the tumor transplants. After transfection of lentiviral expression vector of CD147 gene, protein of CD147, MMP-2 and TIMP-2 were weakly or negative expressed, significantly weaker than those of control group (P CD147 and MMP-2 were 96.03% ± 0.84% and 96.03% ± 0.84%, respectively. Both CD147 mRNA and MMP-2 mRNA expression were down-regulated (P 0.05). No less than 2 days after transfection, cell growth of MDA-MB-231 cell line was found significantly inhibited (P CD147 led to reduction of volume and mass of nude mouses. The growth of the carcinoma transplant was inhibited upon siRNA-mediated down-regulation of CD147 (P CD147 may alter the MMP-2/TIMP-2 balance in MDA-MB-231 cells. CD147 gene silencing inhibits the proliferation and migration of MDA-MB-231 cells and the growth of carcinoma transplants in nude mice.

  4. Diacerein retards cell growth of chondrosarcoma cells at the G2/M cell cycle checkpoint via cyclin B1/CDK1 and CDK2 downregulation

    International Nuclear Information System (INIS)

    Lohberger, Birgit; Leithner, Andreas; Stuendl, Nicole; Kaltenegger, Heike; Kullich, Werner; Steinecker-Frohnwieser, Bibiane

    2015-01-01

    Chondrosarcoma is characterized for its lack of response to conventional cytotoxic chemotherapy, propensity for developing lung metastases, and low rates of survival. Research within the field of development and expansion of new treatment options for unresectable or metastatic diseases is of particular priority. Diacerein, a symptomatic slow acting drug in osteoarthritis (SYSADOA), implicates a therapeutic benefit for the treatment of chondrosarcoma by an antitumor activity. After treatment with diacerein the growth behaviour of the cells was analyzed with the xCELLigence system and MTS assay. Cell cycle was examined using flow cytometric analysis, RT-PCR, and western blot analysis of specific checkpoint regulators. The status for phosophorylation of mitogen-activated protein kinases (MAPKs) was analyzed with a proteome profiler assay. In addition, the possible impact of diacerein on apoptosis was investigated using cleaved caspase 3 and Annexin V/PI flow cytometric analysis. Diacerein decreased the cell viability and the cell proliferation in two different chondrosarcoma cell lines in a dose dependent manner. Flow cytometric analysis showed a classical G2/M arrest. mRNA and protein analysis revealed that diacerein induced a down-regulation of the cyclin B1-CDK1 complex and a reduction in CDK2 expression. Furthermore, diacerein treatment increased the phosphorylation of p38α and p38β MAPKs, and Akt1, Akt2, and Akt 3 in SW-1353, whereas in Cal-78 the opposite effect has been demonstrated. These observations accordingly to our cell cycle flow cytometric analysis and protein expression data may explain the G2/M phase arrest. In addition, no apoptotic induction after diacerein treatment, neither in the Cal-78 nor in the SW-1353 cell line was observed. Our results demonstrate for the first time that the SYSADOA diacerein decreased the viability of human chondrosarcoma cells and induces G2/M cell cycle arrest by CDK1/cyclin B1 down-regulation

  5. Down-regulation of procaspase-8 expression by focal adhesion kinase protects HL-60 cells from TRAIL-induced apoptosis

    International Nuclear Information System (INIS)

    Tamagiku, Yuji; Sonoda, Yoshiko; Kunisawa, Mari; Ichikawa, Daiju; Murakami, Yayoi; Aizu-Yokota, Eriko; Kasahara, Tadashi

    2004-01-01

    We have demonstrated that focal adhesion kinase (FAK)-overexpressed (HL-60/FAK) cells have marked resistance against various apoptotic stimuli such as hydrogen peroxide, etoposide, and ionizing radiation compared with the vector-transfected (HL-60/Vect) cells. HL-60/FAK cells are highly resistant to TRAIL-induced apoptosis, while original HL-60 or HL-60/Vect cells were sensitive. TRAIL at 500 ng/ml induced significant DNA fragmentation, activation of caspase-8 and 3, the processing of a proapoptotic BID, and mitochondrial release of cytochrome c in HL-60/Vect cells, whereas no such events were observed in the HL-60/FAK cells. In particular, the expression of procaspase-8 gene and subsequent cleavage of caspase-8 were markedly reduced in HL-60/FAK cells, while expression of TRAIL-receptor 2 and 3, TRADD, and FADD was equivalent in both types of cells. In HL-60/FAK cells, the phosphoinositide 3 (PI3)-kinase/Akt survival pathway was constitutively activated, accompanied by significant induction of inhibitor-of-apoptosis proteins, XIAP, RIP, and Bcl-XL. The introduction of FAK siRNA in HL-60/FAK cells sensitized them against TRAIL-induced apoptosis, confirming that overexpressed FAK downregulates procaspase-8 expression, which subsequently inhibits downstream apoptosis pathway in the HL-60/FAK cells

  6. miR-24-mediated down-regulation of H2AX suppresses DNA repair in terminally differentiated blood cells

    Science.gov (United States)

    Lal, Ashish; Pan, Yunfeng; Navarro, Francisco; Dykxhoorn, Derek M.; Moreau, Lisa; Meire, Eti; Bentwich, Zvi; Lieberman, Judy; Chowdhury, Dipanjan

    2010-01-01

    Terminally differentiated cells have reduced capacity to repair double strand breaks (DSB), but the molecular mechanism behind this down-regulation is unclear. Here we find that miR-24 is consistently up-regulated during post-mitotic differentiation of hematopoietic cell lines and regulates the histone variant H2AX, a key DSB repair protein that activates cell cycle checkpoint proteins and retains DSB repair factors at DSB foci. The H2AX 3’UTR contains conserved miR-24 binding sites regulated by miR-24. Both H2AX mRNA and protein are substantially reduced during hematopoietic cell terminal differentiation by miR-24 up-regulation both in in vitro differentiated cells and primary human blood cells. miR-24 suppression of H2AX renders cells hypersensitive to γ-irradiation and genotoxic drugs. Antagonizing miR-24 in differentiating cells protects them from DNA damage-induced cell death, while transfecting miR-24 mimics in dividing cells increases chromosomal breaks and unrepaired DNA damage and reduces viability in response to DNA damage. This DNA repair phenotype can be fully rescued by over-expressing miR-24-insensitive H2AX. Therefore, miR-24 up-regulation in post-replicative cells reduces H2AX and thereby renders them highly vulnerable to DNA damage. PMID:19377482

  7. Downregulation of IL-12 and a novel negative feedback system mediated by CD25+CD4+ T cells

    International Nuclear Information System (INIS)

    Sato, Kojiro; Tateishi, Shoko; Kubo, Kanae; Mimura, Toshihide; Yamamoto, Kazuhiko; Kanda, Hiroko

    2005-01-01

    CD25 + CD4 + regulatory T cells suppress immune responses and are believed to play roles in preventing autoimmune diseases. However, the mechanism(s) underlying the suppression and the regulation of their homeostasis remain to be elucidated. Here we show that these regulatory T cells downregulated CD25 - CD4 + T-cell-mediated production of IL-12 from antigen-presenting cells, which can act as a growth factor for CD25 - CD4 + T cells. We further found that CD25 + CD4 + T cells, despite their well-documented 'anergic' nature, proliferate significantly in vitro only when CD25 - CD4 + T cells are present. Notably, this proliferation was strongly dependent on IL-2 and relatively independent of IL-12. Thus, CD25 + CD4 + T cells suppress CD25 - CD4 + T-cell responses, at least in part, by inhibiting IL-12 production while they themselves can undergo proliferation with the mediation of CD25 - CD4 + T cells in vitro. These results offer a novel negative feedback system involving a tripartite interaction among CD25 + CD4 + and CD25 - CD4 + T cells, and APCs that may contribute to the termination of immune responses

  8. Vitamin D Counteracts Mycobacterium tuberculosis-Induced Cathelicidin Downregulation in Dendritic Cells and Allows Th1 Differentiation and IFNγ Secretion

    Directory of Open Access Journals (Sweden)

    Anna K. O. Rode

    2017-05-01

    Full Text Available Tuberculosis (TB presents a serious health problem with approximately one-third of the world’s population infected with Mycobacterium tuberculosis in a latent state. Experience from the pre-antibiotic era and more recent clinical studies have established a beneficial role of sunlight and vitamin D in patients with TB. At the same time, experimental data have shown that Th1 cells through production of IFNγ are crucial for cathelicidin release by macrophages, bacterial killing, and containment of M. tuberculosis in granulomas. Paradoxically, vitamin D has repeatedly been ascribed an immune-suppressive function inhibiting Th1 differentiation and production of IFNγ in T cells. The aim of this study was to investigate this apparent paradox. We studied naïve human CD4+ T cells activated either with CD3 and CD28 antibodies or with allogeneic dendritic cells (DC stimulated with heat-killed M. tuberculosis (HKMT or purified toll-like receptor (TLR ligands. We show that vitamin D does not block differentiation of human CD4+ T cells to Th1 cells and that interleukin (IL-12 partially counteracts vitamin D-mediated inhibition of IFNγ production promoting production of equal amounts of IFNγ in Th1 cells in the presence of vitamin D as in T cells activated in the absence of vitamin D and IL-12. Furthermore, we show that HKMT and TLR2 ligands strongly downregulate cathelicidin expression in DC and that vitamin D counteracts this by upregulating cathelicidin expression. In conclusion, we demonstrate that vitamin D counteracts M. tuberculosis-induced cathelicidin downregulation and allows Th1 differentiation and IFNγ secretion.

  9. Vitamin D Counteracts Mycobacterium tuberculosis-Induced Cathelicidin Downregulation in Dendritic Cells and Allows Th1 Differentiation and IFNγ Secretion.

    Science.gov (United States)

    Rode, Anna K O; Kongsbak, Martin; Hansen, Marie M; Lopez, Daniel Villalba; Levring, Trine B; Woetmann, Anders; Ødum, Niels; Bonefeld, Charlotte M; Geisler, Carsten

    2017-01-01

    Tuberculosis (TB) presents a serious health problem with approximately one-third of the world's population infected with Mycobacterium tuberculosis in a latent state. Experience from the pre-antibiotic era and more recent clinical studies have established a beneficial role of sunlight and vitamin D in patients with TB. At the same time, experimental data have shown that Th1 cells through production of IFNγ are crucial for cathelicidin release by macrophages, bacterial killing, and containment of M. tuberculosis in granulomas. Paradoxically, vitamin D has repeatedly been ascribed an immune-suppressive function inhibiting Th1 differentiation and production of IFNγ in T cells. The aim of this study was to investigate this apparent paradox. We studied naïve human CD4 + T cells activated either with CD3 and CD28 antibodies or with allogeneic dendritic cells (DC) stimulated with heat-killed M. tuberculosis (HKMT) or purified toll-like receptor (TLR) ligands. We show that vitamin D does not block differentiation of human CD4 + T cells to Th1 cells and that interleukin (IL)-12 partially counteracts vitamin D-mediated inhibition of IFNγ production promoting production of equal amounts of IFNγ in Th1 cells in the presence of vitamin D as in T cells activated in the absence of vitamin D and IL-12. Furthermore, we show that HKMT and TLR2 ligands strongly downregulate cathelicidin expression in DC and that vitamin D counteracts this by upregulating cathelicidin expression. In conclusion, we demonstrate that vitamin D counteracts M. tuberculosis -induced cathelicidin downregulation and allows Th1 differentiation and IFNγ secretion.

  10. Istaroxime Inhibits Motility and Down-Regulates Orai1 Expression, SOCE and FAK Phosphorylation in Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Matias Julian Stagno

    2017-07-01

    Full Text Available Background/Aims: Istaroxime is a validated inotropic Na+/K+ ATPase inhibitor currently in development for the treatment of various cardiac conditions. Recent findings established that this steroidal drug exhibits potent apoptotic responses in prostate tumors in vitro and in vivo, by affecting key signaling orchestrating proliferation and apoptosis, such as c-Myc and caspase 3, Rho GTPases and actin cytoskeleton dynamics. In the present study we examined whether istaroxime is affecting cell motility and analyzed the underlying mechanism in prostate tumor cells. Methods: Migration was assessed by transwell and wound healing assays, Orai1 and Stim1 abundance by RT-PCR and confocal immunofluorescence microscopy, Fura-2 fluorescence was utilized to determine intracellular Ca2+ and Western blotting for FAK/pFAK measurements. Results: We observed strong inhibition of cell migration in istaroxime treated DU-145 prostate cancer cells. Istaroxime further decreased Orai1 and Stim1 transcript levels and downregulated Orai1 protein expression. Moreover, SOCE was significantly decreased upon istaroxime treatment. Furthermore, istaroxime strikingly diminished phosphorylated FAK levels. Interestingly, the efficacy of istaroxime on the inhibition of DU-145 cell migration was further enhanced by blocking Orai1 with 2-APB and FAK with the specific inhibitor PF-00562271. These results provide strong evidence that istaroxime prevents cell migration and motility of DU-145 prostate tumor cells, an effect at least partially attributed to Orai1 downregulation and FAK de-activation. Conclusion: Collectively our results indicate that this enzyme inhibitor, besides its pro-apoptotic action, affects motility of cancer cells, supporting its potential role as a strong candidate for further clinical cancer drug development.

  11. ATM suppresses SATB1-induced malignant progression in breast epithelial cells.

    Directory of Open Access Journals (Sweden)

    Ellen Ordinario

    Full Text Available SATB1 drives metastasis when expressed in breast tumor cells by radically reprogramming gene expression. Here, we show that SATB1 also has an oncogenic activity to transform certain non-malignant breast epithelial cell lines. We studied the non-malignant MCF10A cell line, which is used widely in the literature. We obtained aliquots from two different sources (here we refer to them as MCF10A-1 and MCF10A-2, but found them to be surprisingly dissimilar in their responses to oncogenic activity of SATB1. Ectopic expression of SATB1 in MCF10A-1 induced tumor-like morphology in three-dimensional cultures, led to tumor formation in immunocompromised mice, and when injected into tail veins, led to lung metastasis. The number of metastases correlated positively with the level of SATB1 expression. In contrast, SATB1 expression in MCF10A-2 did not lead to any of these outcomes. Yet DNA copy-number analysis revealed that MCF10A-1 is indistinguishable genetically from MCF10A-2. However, gene expression profiling analysis revealed that these cell lines have significantly divergent signatures for the expression of genes involved in oncogenesis, including cell cycle regulation and signal transduction. Above all, the early DNA damage-response kinase, ATM, was greatly reduced in MCF10A-1 cells compared to MCF10A-2 cells. We found the reason for reduction to be phenotypic drift due to long-term cultivation of MCF10A. ATM knockdown in MCF10A-2 and two other non-malignant breast epithelial cell lines, 184A1 and 184B4, enabled SATB1 to induce malignant phenotypes similar to that observed for MCF10A-1. These data indicate a novel role for ATM as a suppressor of SATB1-induced malignancy in breast epithelial cells, but also raise a cautionary note that phenotypic drift could lead to dramatically different functional outcomes.

  12. THE STUDY OF MECHANISMS OF PHOTOINDUCED APOPTOSIS IN THE SKIN MALIGNANT MELANOMA CELL MODEL

    Directory of Open Access Journals (Sweden)

    M. L. Gelfond

    2016-01-01

    Full Text Available The results of the experimental study of immune response of human skin malignant melanoma cells Mel 226 on photodynamic exposure are represented in the article. Photoinduced apoptosis of skin malignant melanoma was studied in vitro. The study showed that irradiation with the agent fotoditazin at dose of 0.5–2.5 µg/ml (6 and 10 min exposure 30 min before irradiation; irradiation parameters: wavelength of 662 nm, total light dose from 40 to 60 J/cm2 induced early apoptosis. The increase of the time of laser irradiation significantly accelerates the conversion of photosensitized tumor cells from early to late apoptosis.

  13. Malignant mesothelioma

    OpenAIRE

    Parker Robert J; Moore Alastair J; Wiggins John

    2008-01-01

    Abstract Malignant mesothelioma is a fatal asbestos-associated malignancy originating from the lining cells (mesothelium) of the pleural and peritoneal cavities, as well as the pericardium and the tunica vaginalis. The exact prevalence is unknown but it is estimated that mesotheliomas represent less than 1% of all cancers. Its incidence is increasing, with an expected peak in the next 10–20 years. Pleural malignant mesothelioma is the most common form of mesothelioma. Typical presenting featu...

  14. Characterization of membrane lipid fluidity in human embryo cells malignantly transfer med post 238Pu α irradiation

    International Nuclear Information System (INIS)

    Qi Zirong; Sun Ling; Liu Guolian; Shen Zhiyuan

    1992-01-01

    The membrane lipid fluidity of malignantly transformed human embryo cells following 238 Pu α particlce irradiation in vitro has been studied. The results indicate that the ontogenesis depends on irradiation dose (Gy) and the membrane lipid fluidity in malignantly transformed cells is higher than that in normal embryo cells. With the microviscosity (η) of cells plotted against the cell counts, the correlation coefficient (γ) is calculated to be between 0.9936 and 0.9999. Since the malignant transformation of irradiated embryo cells is manifested early on cell membrane lipid, the fluidity of membrane lipid can be used as an oncologic marker

  15. Continuous activation of Nrf2 and its target antioxidant enzymes leads to arsenite-induced malignant transformation of human bronchial epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xu [Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu (China); Wang, Dapeng [Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu (China); Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou (China); Ma, Yuan; Xu, Xiguo; Zhu, Zhen; Wang, Xiaojuan; Deng, Hanyi; Li, Chunchun; Chen, Min; Tong, Jian [Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu (China); Yamanaka, Kenzo [Laboratory of Environmental Toxicology and Carcinogenesis, School of Pharmacy, Nihon University, Chiba (Japan); An, Yan, E-mail: dranyan@126.com [Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu (China)

    2015-12-01

    Long-term exposure to arsenite leads to human lung cancer, but the underlying mechanisms of carcinogenesis remain obscure. The transcription factor of nuclear factor-erythroid-2 p45-related factor (Nrf2)-mediated antioxidant response represents a critical cellular defense mechanism and protection against various diseases. Paradoxically, emerging data suggest that the constitutive activation of Nrf2 is associated with cancer development, progression and chemotherapy resistance. However, the role of Nrf2 in the occurrence of cancer induced by long-term arsenite exposure remains to be fully understood. By establishing transformed human bronchial epithelial (HBE) cells via chronic low-dose arsenite treatment, we showed that, in acquiring this malignant phenotype, continuous low level of ROS and sustained enhancement of Nrf2 and its target antioxidant enzyme levels were observed in the later-stage of arsenite-induced cell transformation. The downregulation of Keap1 level may be responsible for the over-activation of Nrf2 and its target enzymes. To validate these observations, Nrf2 was knocked down in arsenite-transformed HBE cells by SiRNA transfection, and the levels of Nrf2 and its target antioxidant enzymes, ROS, cell proliferation, migration, and colony formation were determined following these treatments. Results showed that blocked Nrf2 expression significantly reduced Nrf2 and its target antioxidant enzyme levels, restored ROS levels, and eventually suppressed cell proliferation, migration, and colony formation of the transformed cells. In summary, the results of the study strongly suggested that the continuous activation of Nrf2 and its target antioxidant enzymes led to the over-depletion of intracellular ROS levels, which contributed to arsenite-induced HBE cell transformation. - Highlights: • Low level, long term arsenite exposure induces malignant transformation in vitro. • Long term arsenite exposure reduces ROS and MDA levels. • Long term arsenite

  16. Continuous activation of Nrf2 and its target antioxidant enzymes leads to arsenite-induced malignant transformation of human bronchial epithelial cells

    International Nuclear Information System (INIS)

    Yang, Xu; Wang, Dapeng; Ma, Yuan; Xu, Xiguo; Zhu, Zhen; Wang, Xiaojuan; Deng, Hanyi; Li, Chunchun; Chen, Min; Tong, Jian; Yamanaka, Kenzo; An, Yan

    2015-01-01

    Long-term exposure to arsenite leads to human lung cancer, but the underlying mechanisms of carcinogenesis remain obscure. The transcription factor of nuclear factor-erythroid-2 p45-related factor (Nrf2)-mediated antioxidant response represents a critical cellular defense mechanism and protection against various diseases. Paradoxically, emerging data suggest that the constitutive activation of Nrf2 is associated with cancer development, progression and chemotherapy resistance. However, the role of Nrf2 in the occurrence of cancer induced by long-term arsenite exposure remains to be fully understood. By establishing transformed human bronchial epithelial (HBE) cells via chronic low-dose arsenite treatment, we showed that, in acquiring this malignant phenotype, continuous low level of ROS and sustained enhancement of Nrf2 and its target antioxidant enzyme levels were observed in the later-stage of arsenite-induced cell transformation. The downregulation of Keap1 level may be responsible for the over-activation of Nrf2 and its target enzymes. To validate these observations, Nrf2 was knocked down in arsenite-transformed HBE cells by SiRNA transfection, and the levels of Nrf2 and its target antioxidant enzymes, ROS, cell proliferation, migration, and colony formation were determined following these treatments. Results showed that blocked Nrf2 expression significantly reduced Nrf2 and its target antioxidant enzyme levels, restored ROS levels, and eventually suppressed cell proliferation, migration, and colony formation of the transformed cells. In summary, the results of the study strongly suggested that the continuous activation of Nrf2 and its target antioxidant enzymes led to the over-depletion of intracellular ROS levels, which contributed to arsenite-induced HBE cell transformation. - Highlights: • Low level, long term arsenite exposure induces malignant transformation in vitro. • Long term arsenite exposure reduces ROS and MDA levels. • Long term arsenite

  17. Effect of lymphokine-activated killer cells with or without radiation therapy against malignant brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Kunio; Kamezaki, Takao; Shibata, Yasushi; Tsunoda, Takashi; Meguro, Kotoo; Nose, Tadao [Tsukuba Univ., Ibaraki (Japan). Inst. of Clinical Medicine

    1995-01-01

    The use of autologous lymphokine-activated killer (LAK) cells to treat malignant brain tumors was evaluated in 10 patients, one with metastatic malignant melanoma and nine with malignant glioma. LAK cells were obtained by culturing autologous peripheral blood lymphocytes with human recombinant interleukin-2 (rIL-2) for 7-28 days. All patients underwent surgery to remove as much tumor as possible and an Ommaya reservoir was implaced in the tumor cavity. Two of the 10 patients had received radiotherapy elsewhere, so were treated with LAK cells alone. Eight patients were treated with a combination of LAK cells and radiotherapy, using 1.8-2.0 Gy fractions given five times a week with a total dosage between 54 and 65 Gy. LAK cells and rIL-2 were injected to the tumor cavity via the Ommaya reservoir once a week for inpatients and once a month for outpatients. The duration of the LAK therapy ranged from 3 to 23 months (mean 13.7 mos). Neuroimaging evaluation revealed two complete responses, three partial responses, four no changes, and one progressive disease. In one patient with pontine glioma, the Karnofsky performance score was raised from 20 to 60. There were no side effects after the injection of LAK cells and rIL-2. The results suggest low-dose LAK therapy is a useful and safe treatment modality for malignant brain tumors. (author).

  18. Lymphocyte interactions with the extracellular matrix of malignant cells in vítro: A morphological and immunocytochemical study

    OpenAIRE

    Logothetou-Rella, H.

    1993-01-01

    The interactions of lymphocytes with the glycosaminoglycans-protease-membrane extracellular matrix, produced by mixed cell cultures of normal with malignant cell clones, were examined. Pre-activated and activated heterologous peripheral lymphocytes were used. Co-cultures of activated lymphocytes with al1 cell types used, formed identical cell nodules. Histology of cell nodules showed that activated lymphocytes were cytolytic to pure normal or malignant cell clo...

  19. TCR Translocations at the Normal-malignant T Cell Interface

    NARCIS (Netherlands)

    N.S.D. Larmonie (Nicole)

    2013-01-01

    textabstractHematopoiesis is the process leading to production and maturation of peripheral blood cells. All blood cells are derived from hematopoietic stem cells (HSCs) which reside in hematopoietic organs. In mammals, the site of hematopoiesis changes during development, which is sequentially

  20. [HSP90 Inhibitor 17-AAG Inhibits Multiple Myeloma Cell Proliferation by Down-regulating Wnt/β-Catenin Signaling Pathway].

    Science.gov (United States)

    Chen, Kan-Kan; He, Zheng-Mei; Ding, Bang-He; Chen, Yue; Zhang, Li-Juan; Yu, Liang; Gao, Jian

    2016-02-01

    To investigate the inhibitory effect of HSP90 inhibitory 17-AAG on proliferation of multiple myeloma cells and its main mechanism. The multiple myeloma cells U266 were treated with 17-AAG of different concentrations (200, 400, 600 and 800 nmol/L) for 24, 48, and 72 hours respectively, then the proliferation rate, expression levels of β-catenin and C-MYC protein, as well as cell cycle of U266 cells were treated with 17-AAG and were detected by MTT method, Western blot and flow cytometry, respectively. The 17-AAG showed inhibitory effect on the proliferation of U266 cells in dose- and time-depetent manners (r = -0.518, P AAG displayed no inhibitory effect on proliferation of U266 cells (P > 0.05). The result of culturing U266 cells for 72 hours by 17-AAG of different concentrations showed that the more high of 17-AAG concentration, the more low level of β-catenin and C-MYC proteins (P AAG concentration, the more high of cell ratio in G1 phase (P AAG, the more long time of culture, the more high of cell ratio in G1 phase (P AAG can inhibit the proliferation of multiple myeloma cells, the down-regulation of Wnt/β-catenin signaling pathway and inhibition of HSP90 expression may be the main mechnisms of 17-AAG effect.

  1. Butyrate-induced proapoptotic and antiangiogenic pathways in EAT cells require activation of CAD and downregulation of VEGF

    International Nuclear Information System (INIS)

    Belakavadi, Madesh; Prabhakar, B.T.; Salimath, Bharathi P.

    2005-01-01

    Butyrate, a short-chain fatty acid produced in the colon, induces cell cycle arrest, differentiation, and apoptosis in transformed cell lines. In this report, we study the effects of butyrate (BuA) on the growth of Ehrlich ascites tumor (EAT) cells in vivo. BuA, when injected intraperitoneally (i.p) into mice, inhibited proliferation of EAT cells. Further, induction of apoptosis in EAT cells was monitored by nuclear condensation, annexin-V staining, DNA fragmentation, and translocation of caspase-activated DNase into nucleus upon BuA-treatment. Ac-DEVD-CHO, a caspase-3 inhibitor, completely inhibited BuA-induced apoptosis, indicating that activation of caspase-3 mediates the apoptotic pathway in EAT cells. The proapoptotic effect of BuA also reflects on the antiangiogenic pathway in EAT cells. The antiangiogenic effect of BuA in vivo was demonstrated by the downregulation of the secretion of VEGF in EAT cells. CD31 immunohistochemical staining of peritoneum sections clearly indicated a potential angioinhibitory effect of BuA in EAT cells. These results suggest that BuA, besides regulating other fundamental cellular processes, is able to modulate the expression/secretion of the key angiogenic growth factor VEGF in EAT cells

  2. Tumor initiating cells in malignant gliomas: biology and implications for therapy.

    Science.gov (United States)

    Hadjipanayis, Costas G; Van Meir, Erwin G

    2009-04-01

    A rare subpopulation of cells within malignant gliomas, which shares canonical properties with neural stem cells (NSCs), may be integral to glial tumor development and perpetuation. These cells, also known as tumor initiating cells (TICs), have the ability to self-renew, develop into any cell in the overall tumor population (multipotency), and proliferate. A defining property of TICs is their ability to initiate new tumors in immunocompromised mice with high efficiency. Mounting evidence suggests that TICs originate from the transformation of NSCs and their progenitors. New findings show that TICs may be more resistant to chemotherapy and radiation than the bulk of tumor cells, thereby permitting recurrent tumor formation and accounting for the failure of conventional therapies. The development of new therapeutic strategies selectively targeting TICs while sparing NSCs may provide for more effective treatment of malignant gliomas.

  3. Autophagy collaborates with ubiquitination to downregulate oncoprotein E2A/Pbx1 in B-cell acute lymphoblastic leukemia

    International Nuclear Information System (INIS)

    Yuan, N; Song, L; Lin, W; Cao, Y; Xu, F; Liu, S; Zhang, A; Wang, Z; Li, X; Fang, Y; Zhang, H; Zhao, W; Hu, S; Wang, J; Zhang, S

    2015-01-01

    B-cell acute lymphoblastic leukemia (B-ALL) accounts for the most cancer incidences in children. We present here that autophagy is downregulated in pediatric B-ALL, suggesting a possible link between autophagy failure and pediatric B-ALL leukemogenesis. With a pediatric t(1;19) B-ALL xenograft mouse model, we show here that activation of autophagy by preventive administration of rapamycin improved the survival of leukemia animals by partial restoration of hematopoietic stem/progenitor cells, whereas treatment of the animals with rapamycin caused leukemia bone marrow cell-cycle arrest. Activation of autophagy in vitro or in vivo by rapamycin or starvation downregulated oncogenic fusion protein E2A/Pbx1. Furthermore, E2A/Pbx1 was found to be colocalized with autophagy marker LC3 in autolysosomes and with ubiquitin in response to autophagy stimuli, whereas autophagy or ubiquitination inhibitor blocked these colocalizations. Together, our data suggest a collaborative action between autophagy and ubiquitination in the degradation of E2A/Pbx1, thereby revealing a novel strategy for targeted preventive or treatment therapy on the pediatric ALL

  4. miR-449 inhibits cell proliferation and is down-regulated in gastric cancer

    DEFF Research Database (Denmark)

    Bou Kheir, Tony; Futoma-Kazmierczak, Ewa; Jacobsen, Anders

    2011-01-01

    Gastric cancer is the fourth most common cancer in the world and the second most prevalent cause of cancer related death. The development of gastric cancer is mainly associated with H. Pylori infection leading to a focus in pathology studies on bacterial and environmental factors, and to a lesser...... malignancies. The current study is focused on identifying microRNAs involved in gastric carcinogenesis and to explore their mechanistic relevance by characterizing their targets....

  5. Nitrosoureas Inhibit the Stathmin Mediated Migration and Invasion of Malignant Glioma Cells

    OpenAIRE

    Liang, Xing-Jie; Choi, Yong; Sackett, Dan L.; Park, John K.

    2008-01-01

    Malignant gliomas are the most common primary intrinsic brain tumors and are highly lethal. The widespread migration and invasion of neoplastic cells from the initial site of tumor formation into the surrounding brain render these lesions refractory to definitive surgical treatment. Stathmin, a microtubule destabilizing protein that mediates cell cycle progression, can also regulate directed cell movement. Nitrosoureas, traditionally viewed as DNA alkylating agents, can also covalently modify...

  6. Eckol suppresses maintenance of stemness and malignancies in glioma stem-like cells

    International Nuclear Information System (INIS)

    Hyun, Kyung-Hwan; Yoon, Chang-Hwan; Kim, Rae-Kwon; Lim, Eun-Jung; An, Sungkwan; Park, Myung-Jin; Hyun, Jin-Won; Suh, Yongjoon; Kim, Min-Jung; Lee, Su-Jae

    2011-01-01

    A subpopulation of cancer cells with stem cell properties is responsible for tumor maintenance and progression, and may contribute to resistance to anticancer treatments. Thus, compounds that target cancer stem-like cells could be usefully applied to destroy cancer. In this study, we investigated the effect of Eckol, a phlorotannin compound, on stemness and malignancies in glioma stem-like cells. To determine whether Eckol targets glioma stem-like cells, we examined whether Eckol treatment could change the expression levels of glioma stem-like cell markers and self-renewal-related proteins as well as the sphere forming ability, and the sensitivity to anticancer treatments. Alterations in the malignant properties of sphere-derived cells by Eckol were also investigated by soft-agar colony forming assay, by xenograft assay in nude mice, and by cell invasion assay. Treatment of sphere-forming glioma cells with Eckol effectively decreased the sphere formation as well as the CD133 + cell population. Eckol treatment suppressed expression of the glioma stem-like cell markers and the self-renewal-related proteins without cell death. Moreover, treatment of glioma stem-like cells with Eckol significantly attenuated anchorage-independent growth on soft agar and tumor formation in xenograft mice. Importantly, Eckol treatment effectively reduced the resistance of glioma stem-like cells to ionizing radiation and temozolomide. Treatment of glioma stem-like cells with Eckol markedly blocked both phosphoinositide 3-kinase-Akt and Ras-Raf-1-Erk signaling pathways. These results indicate that the natural phlorotannin Eckol suppresses stemness and malignancies in glioma stem-like cells, and thereby makes glioma stem-like cells more sensitive to anticancer treatments, providing novel therapeutic strategies targeting specifically cancer stem-like cells.

  7. Synergism between Hedgehog-GLI and EGFR signaling in Hedgehog-responsive human medulloblastoma cells induces downregulation of canonical Hedgehog-target genes and stabilized expression of GLI1.

    Directory of Open Access Journals (Sweden)

    Frank Götschel

    Full Text Available Aberrant activation of Hedgehog (HH signaling has been identified as a key etiologic factor in many human malignancies. Signal strength, target gene specificity, and oncogenic activity of HH signaling depend profoundly on interactions with other pathways, such as epidermal growth factor receptor-mediated signaling, which has been shown to cooperate with HH/GLI in basal cell carcinoma and pancreatic cancer. Our experimental data demonstrated that the Daoy human medulloblastoma cell line possesses a fully inducible endogenous HH pathway. Treatment of Daoy cells with Sonic HH or Smoothened agonist induced expression of GLI1 protein and simultaneously prevented the processing of GLI3 to its repressor form. To study interactions between HH- and EGF-induced signaling in greater detail, time-resolved measurements were carried out and analyzed at the transcriptomic and proteomic levels. The Daoy cells responded to the HH/EGF co-treatment by downregulating GLI1, PTCH, and HHIP at the transcript level; this was also observed when Amphiregulin (AREG was used instead of EGF. We identified a novel crosstalk mechanism whereby EGFR signaling silences proteins acting as negative regulators of HH signaling, as AKT- and ERK-signaling independent process. EGFR/HH signaling maintained high GLI1 protein levels which contrasted the GLI1 downregulation on the transcript level. Conversely, a high-level synergism was also observed, due to a strong and significant upregulation of numerous canonical EGF-targets with putative tumor-promoting properties such as MMP7, VEGFA, and IL-8. In conclusion, synergistic effects between EGFR and HH signaling can selectively induce a switch from a canonical HH/GLI profile to a modulated specific target gene profile. This suggests that there are more wide-spread, yet context-dependent interactions, between HH/GLI and growth factor receptor signaling in human malignancies.

  8. Podoplanin expression in oral potentially malignant disorders and oral squamous cell carcinoma.

    Science.gov (United States)

    A G, Deepa; Janardanan-Nair, Bindu; B R, Varun

    2017-12-01

    Podoplanin is a type I transmembrane sialomucin-like glycoprotein that is specifically expressed in lymphatic endothelial cells. Studies have shown that assessment of podoplanin expression in the epithelial cells can be used to predict the malignant transformation of potentially malignant disorders and the metastatic tendency of primary head and neck squamous cell carcinoma. The aim of our study was to compare the expression of podoplanin in oral leukoplakia, oral submucous fibrosis and oral squamous cell carcinoma with that in normal buccal mucosa by immunohistochemical methods. Immunohistochemical expression of podoplanin was analyzed in 20 cases each of oral leukoplakia, oral submucous fibrosis, oral squamous cell carcinoma and normal buccal mucosa, with monoclonal antibody D2-40. The expression of podoplanin was graded from grade 0-4. There was a statistically significant upregulation of the grades of podoplanin expression in oral squamous cell carcinoma(100%), oral submucous fibrosis (90%) and oral leukoplakia (65%) when compared to that in normal mucosa(35%). Podoplanin expression increased with decrease in grades of differentiation in oral squamous cell carcinoma . Podoplanin expression in the samples of oral submucous fibrosis was higher than that in oral leukoplakia. Evaluation of podoplanin expression in the epithelial cells of oral dysplastic lesions may provide valuable information to predict their risk of malignant transformation. Key words: Immunohistochemistry, Oral leukoplakia, Oral submucous fibrosis, Podoplanin, Squamous cell carcinoma.

  9. Mucorales-Specific T Cells in Patients with Hematologic Malignancies

    OpenAIRE

    Potenza, L; Vallerini, D; Barozzi, P; Riva, G; Gilioli, A; Forghieri, F; Candoni, A; Cesaro, S; Quadrelli, C; Maertens, J; Rossi, G; Morselli, M; Codeluppi, M; Mussini, C; Colaci, E

    2016-01-01

    Background Invasive mucormycosis (IM) is an emerging life-threatening fungal infection. It is difficult to obtain a definite diagnosis and to initiate timely intervention. Mucorales-specific T cells occur during the course of IM and are involved in the clearance of the infection. We have evaluated the feasibility of detecting Mucorales-specific T cells in hematological patients at risk for IM, and have correlated the detection of such cells with the clinical conditions of the patients. Method...

  10. 17-Allylamino-17-demethoxygeldanamycin induces downregulation of critical Hsp90 protein clients and results in cell cycle arrest and apoptosis of human urinary bladder cancer cells

    International Nuclear Information System (INIS)

    Karkoulis, Panagiotis K; Stravopodis, Dimitrios J; Margaritis, Lukas H; Voutsinas, Gerassimos E

    2010-01-01

    17-Allylamino-17-demethoxygeldanamycin (17-AAG), a benzoquinone ansamycin antibiotic, specifically targets heat shock protein 90 (Hsp90) and interferes with its function as a molecular chaperone that maintains the structural and functional integrity of various protein clients involved in cellular signaling. In this study, we have investigated the effect of 17-AAG on the regulation of Hsp90-dependent signaling pathways directly implicated in cell cycle progression, survival and motility of human urinary bladder cancer cell lines. We have used MTT-based assays, FACS analysis, Western blotting, semi-quantitative RT-PCR, immunocytochemistry and scratch-wound assay in RT4, RT112 and T24 human urinary bladder cancer cell lines. We have demonstrated that, upon 17-AAG treatment, bladder cancer cells are arrested in the G1 phase of the cell cycle and eventually undergo apoptotic cell death in a dose-dependent manner. Furthermore, 17-AAG administration was shown to induce a pronounced downregulation of multiple Hsp90 protein clients and other downstream effectors, such as IGF-IR, Akt, IKK-α, IKK-β, FOXO1, ERK1/2 and c-Met, resulting in sequestration-mediated inactivation of NF-κB, reduced cell proliferation and decline of cell motility. In total, we have clearly evinced a dose-dependent and cell type-specific effect of 17-AAG on cell cycle progression, survival and motility of human bladder cancer cells, due to downregulation of multiple Hsp90 clients and subsequent disruption of signaling integrity

  11. Lycopene Inhibits Metastasis of Human Liver Adenocarcinoma SK-Hep-1 Cells by Downregulation of NADPH Oxidase 4 Protein Expression.

    Science.gov (United States)

    Jhou, Bo-Yi; Song, Tuzz-Ying; Lee, Inn; Hu, Miao-Lin; Yang, Nae-Cherng

    2017-08-16

    NADPH oxidase 4 (NOX4), with the sole function to produce reactive oxygen species (ROS), can be a molecular target for disrupting cancer metastasis. Several studies have indicated that lycopene exhibited anti-metastatic actions in vitro and in vivo. However, the role of NOX4 in the anti-metastatic action of lycopene remains unknown. Herein, we first confirmed the anti-metastatic effect of lycopene (0.1-5 μM) on human liver adenocarcinoma SK-Hep-1 cells. We showed that lycopene significantly inhibited NOX4 protein expression, with the strongest inhibition of 64.3 ± 10.2% (P lycopene. Lycopene also significantly inhibited NOX4 mRNA expression, NOX activity, and intracellular ROS levels in SK-Hep-1 cells. We then determined the effects of lycopene on transforming growth factor β (TGF-β)-induced metastasis. We found that TGF-β (5 ng/mL) significantly increased migration, invasion, and adhesion activity, the intracellular ROS level, matrix metalloproteinase 9 (MMP-9) and MMP-2 activities, the level of NOX4 protein expression, and NOX activity. All these TGF-β-induced effects were antagonized by the incubation of SK-Hep-1 cells with lycopene (2.5 μM). Using transient transfection of siRNA against NOX4, we found that the downregulation of NOX4 could mimic lycopene by inhibiting cell migration and the activities of MMP-9 and MMP-2 during the incubation with or without TGF-β on SK-Hep-1 cells. The results demonstrate that the downregulation of NOX4 plays a crucial role in the anti-metastatic action of lycopene in SK-Hep-1 cells.

  12. Inhibition of disheveled-2 resensitizes cisplatin-resistant lung cancer cells through down-regulating Wnt/β-catenin signaling.

    Science.gov (United States)

    Luo, Ke; Gu, Xiuhui; Liu, Jing; Zeng, Guodan; Peng, Liaotian; Huang, Houyi; Jiang, Mengju; Yang, Ping; Li, Minhui; Yang, Yuhan; Wang, Yuanyuan; Peng, Quekun; Zhu, Li; Zhang, Kun

    2016-09-10

    Cisplatin (CDDP) is currently recommended as the front-line chemotherapeutic agent for lung cancer. However, the resistance to cisplatin is widespread in patients with advanced lung cancer, and the molecular mechanism of such resistance remains incompletely understood. Disheveled (DVL), a key mediator of Wnt/β-catenin, has been linked to cancer progression, while the role of DVL in cancer drug resistance is not clear. Here, we found that DVL2 was over-expressed in cisplatin-resistant human lung cancer cells A549/CDDP compared to the parental A549 cells. Inhibition of DVL2 by its inhibitor (3289-8625) or shDVL2 resensitized A549/CDDP cells to cisplatin. In addition, over-expression of DVL2 in A549 cells increased the protein levels of BCRP, MRP4, and Survivin, which are known to be associated with chemoresistance, while inhibition of DVL2 in A549/CDDP cells decreased these protein levels, and reduced the accumulation and nuclear translocation of β-catenin. In addition, shβ-catenin abolished the DVL2-induced the expression of BCRP, MRP4, and Survivin. Furthermore, our data showed that GSK3β/β-catenin signals were aberrantly activated by DVL2, and inactivation of GSK3β reversed the shDVL2-induced down-regulation of β-catenin. Taken together, these results suggested that inhibition of DVL2 can sensitize cisplatin-resistant lung cancer cells through down-regulating Wnt/β-catenin signaling and inhibiting BCRP, MRP4, and Survivin expression. It promises a new strategy to chemosensitize cisplatin-induced cytotoxicity in lung cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Downregulation of proapoptotic Bim augments IL-2-independent T-cell transformation by human T-cell leukemia virus type-1 Tax.

    Science.gov (United States)

    Higuchi, Masaya; Takahashi, Masahiko; Tanaka, Yuetsu; Fujii, Masahiro

    2014-12-01

    Human T-cell leukemia virus type 1 (HTLV-1), an etiological agent of adult T-cell leukemia, immortalizes and transforms primary human T cells in vitro in both an interleukin (IL)-2-dependent and IL-2-independent manner. Expression of the HTLV-1 oncoprotein Tax transforms the growth of the mouse T-cell line CTLL-2 from being IL-2-dependent to IL-2-independent. Withdrawal of IL-2 from normal activated T cells induces apoptosis, which is mediated through the inducible expression of several proapoptotic proteins, including Bim. In this study, we found that Tax protects IL-2-depleted T cells against Bim-induced apoptosis. Withdrawal of IL-2 from CTLL-2 cells induced a prominent increase in the level of Bim protein in CTLL-2 cells, but not in Tax-transformed CTLL-2 cells. This inhibition of Bim in Tax-transformed CTLL-2 cells was mediated by two mechanisms: downregulation of Bim mRNA and posttranscriptional reduction of Bim protein. Transient expression of Tax in CTLL-2 cells also inhibited IL-2 depletion-induced expression of Bim, however, this decrease in Bim protein expression was not due to downregulation of Bim mRNA, thus indicating that Bim mRNA downregulation in Tax-transformed CTLL-2 occurs only after long-term expression of Tax. Transient expression of Tax in CTLL-2 cells also induced Erk activation, however, this was not involved in the reduction of Bim protein. Knockdown of Bim expression in CTLL-2 cells augmented Tax-induced IL-2-independent transformation. HTLV-1 infection of human T cells also reduced their levels of Bim protein, and restoring Bim expression in HTLV-1-infected cells reduced their proliferation by inducing apoptosis. Taken together, these results indicate that Tax-induced downregulation of Bim in HTLV-1-infected T cells promotes their IL-2-independent growth, thereby supporting the persistence of HTLV-1 infection in vivo. © 2014 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  14. Inhibition of Cell Survival by Curcumin Is Associated with Downregulation of Cell Division Cycle 20 (Cdc20) in Pancreatic Cancer Cells.

    Science.gov (United States)

    Zhang, Yu; Xue, Ying-Bo; Li, Hang; Qiu, Dong; Wang, Zhi-Wei; Tan, Shi-Sheng

    2017-02-04

    Pancreatic cancer is one of the most aggressive human tumors in the United States. Curcumin, a polyphenol derived from the Curcuma longa plant, has been reported to exert its antitumor activity in pancreatic cancer. However, the molecular mechanisms of curcumin-mediated tumor suppressive function have not been fully elucidated. In the current study, we explore whether curcumin exhibits its anti-cancer function through inhibition of oncoprotein cell division cycle 20 (Cdc20) in pancreatic cancer cells. We found that curcumin inhibited cell growth, enhanced apoptosis, induced cell cycle arrest and retarded cell invasion in pancreatic cancer cells. Moreover, we observed that curcumin significantly inhibited the expression of Cdc20 in pancreatic cancer cells. Furthermore, our results demonstrated that overexpression of Cdc20 enhanced cell proliferation and invasion, and abrogated the cytotoxic effects induced by curcumin in pancreatic cancer cells. Consistently, downregulation of Cdc20 promoted curcumin-mediated anti-tumor activity. Therefore, our findings indicated that inhibition of Cdc20 by curcumin could be useful for the treatment of pancreatic cancer patients.

  15. Lethal effect of glucose load on malignant cells

    International Nuclear Information System (INIS)

    Shmakova, N.L.; Yarmonenko, S.P.; Kozubek, S.

    1987-01-01

    Ehrlich ascites tumor (EAT) cells were treated with glucose load under anoxic conditions (for 15 or 60 min) and/or with γ radiation (20 Gy). The efficiency of the treatment was judged from the tumorigenic activity of EAT cell inocula. The markedly increased efficiency of the combined treatment of EAT cells using glucose load in anoxia and γ radiation is due to the additive action of both agents. The glucose load in anoxia leads to extensive desintegration of tumor cells. Further, the lethal effect of various pH values on EAT cells was investigated. Different pH values were obtained by means of both glucose load and phosphate buffers. The effect was investigated by determining the tumorigenic activity of EAT cells tested in vivo in mice and by determining the radiosensitivity of treated EAT cells. The results allowed us to conclude that the same values of pH lead to the same effect on EAT cells independently of the way by which the given pH value was reached. (author). 5 figs., 2 tabs., 12 refs

  16. The receptors for gibbon ape leukemia virus and amphotropic murine leukemia virus are not downregulated in productively infected cells

    Directory of Open Access Journals (Sweden)

    Eiden Maribeth V

    2011-07-01

    Full Text Available Abstract Background Over the last several decades it has been noted, using a variety of different methods, that cells infected by a specific gammaretrovirus are resistant to infection by other retroviruses that employ the same receptor; a phenomenon termed receptor interference. Receptor masking is thought to provide an earlier means of blocking superinfection, whereas receptor down regulation is generally considered to occur in chronically infected cells. Results We used replication-competent GFP-expressing viruses containing either an amphotropic murine leukemia virus (A-MLV or the gibbon ape leukemia virus (GALV envelope. We also constructed similar viruses containing fluorescence-labeled Gag proteins for the detection of viral particles. Using this repertoire of reagents together with a wide range of antibodies, we were able to determine the presence and availability of viral receptors, and detect viral envelope proteins and particles presence on the cell surface of chronically infected cells. Conclusions A-MLV or GALV receptors remain on the surface of chronically infected cells and are detectable by respective antibodies, indicating that these receptors are not downregulated in these infected cells as previously proposed. We were also able to detect viral envelope proteins on the infected cell surface and infected cells are unable to bind soluble A-MLV or GALV envelopes indicating that receptor binding sites are masked by endogenously expressed A-MLV or GALV viral envelope. However, receptor masking does not completely prevent A-MLV or GALV superinfection.

  17. BMP9 inhibits the bone metastasis of breast cancer cells by downregulating CCN2 (connective tissue growth factor, CTGF) expression.

    Science.gov (United States)

    Ren, Wei; Sun, Xiaoxiao; Wang, Ke; Feng, Honglei; Liu, Yuehong; Fei, Chang; Wan, Shaoheng; Wang, Wei; Luo, Jinyong; Shi, Qiong; Tang, Min; Zuo, Guowei; Weng, Yaguang; He, Tongchuan; Zhang, Yan

    2014-03-01

    Bone morphogenetic proteins (BMPs), which belong to the transforming growth factor-β superfamily, regulate a wide range of cellular responses including cell proliferation, differentiation, adhesion, migration, and apoptosis. BMP9, the latest BMP to be discovered, is reportedly expressed in a variety of human carcinoma cell lines, but the role of BMP9 in breast cancer has not been fully clarified. In a previous study, BMP9 was found to inhibit the growth, migration, and invasiveness of MDA-MB-231 breast cancer cells. In the current study, the effect of BMP9 on the bone metastasis of breast cancer cells was investigated. After absent or low expression of BMP9 was detected in the MDA-MB-231 breast cancer cells and breast non-tumor adjacent tissues using Western blot and immunohistochemistry, In our previous study, BMP9 could inhibit the proliferation and invasiveness of breast cancer cells MDA-MB-231 in vitro and in vivo. This paper shows that BMP9 inhibit the bone metastasis of breast cancer cells by activating the BMP/Smad signaling pathway and downregulating connective tissue growth factor (CTGF); however, when CTGF expression was maintained, the inhibitory effect of BMP9 on the MDA-MB-231 cells was abolished. Together, these observations indicate that BMP9 is an important mediator of breast cancer bone metastasis and a potential therapeutic target for treating this deadly disease.

  18. Involvement of mast cells by the malignant process in patients with Philadelphia chromosome negative myeloproliferative neoplasms.

    Science.gov (United States)

    Wang, J; Ishii, T; Zhang, W; Sozer, S; Dai, Y; Mascarenhas, J; Najfeld, V; Zhao, Z J; Hoffman, R; Wisch, N; Xu, M

    2009-09-01

    The Philadelphia chromosome negative myeloproliferative neoplasms (MPNs) are clonal hematologic malignancies frequently characterized by a mutation in JAK2 (JAK2V617F). Peripheral blood (PB) CD34(+) cells from patients with polycythemia vera (PV) and primary myelofibrosis (PMF) generated in vitro significantly fewer mast cells (MCs) than normal PB CD34(+) cells. The numbers of MC progenitors assayed from MPN CD34(+) cells were, however, similar to that assayed from normal CD34(+) cells. A higher percentage of the cultured MPN MCs expressed FcvarepsilonRIalpha, CD63 and CD69 than normal MCs, suggesting that cultured MPN MCs are associated with an increased state of MC activation. Further analysis showed that a higher proportion of cultured PV and PMF MCs underwent apoptosis in vitro. By using JAK2V617F, MplW515L and chromosomal abnormalities as clonality markers, we showed that the malignant process involved MPN MCs. JAK2V617F-positive MC colonies were assayable from the PB CD34(+) cells of each of the 17 JAK2V617F positive MPN patients studied. Furthermore, erlotinib, a JAK2 inhibitor, was able to inhibit JAK2V617F-positive PV MC progenitor cells, indicating that malignant MC progenitor cells are a potential cellular target for such JAK2 inhibitor-directed therapy.

  19. Artichoke, Cynarin and Cyanidin Downregulate the Expression of Inducible Nitric Oxide Synthase in Human Coronary Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Ning Xia

    2014-03-01

    Full Text Available Artichoke (Cynara scolymus L. is one of the world’s oldest medicinal plants with multiple health benefits. We have previously shown that artichoke leaf extracts and artichoke flavonoids upregulate the gene expression of endothelial-type nitric oxide synthase (eNOS in human endothelial cells. Whereas NO produced by the eNOS is a vasoprotective molecule, NO derived from the inducible iNOS plays a pro-inflammatory role in the vasculature. The present study was aimed to investigate the effects of artichoke on iNOS expression in human coronary artery smooth muscle cells (HCASMC. Incubation of HCASMC with a cytokine mixture led to an induction of iNOS mRNA expression. This iNOS induction was concentration- and time-dependently inhibited by an artichoke leaf extract (1–100 µg/mL, 6 h or 24 h. Consistently, the artichoke leaf extract also reduced cytokine-induced iNOS promoter activation and iNOS protein expression. In addition, treatment of HCASMC with four well-known artichoke compounds (cynarin > cyanidin > luteolin ≈ cynaroside led to a downregulation iNOS mRNA and protein expression, with cynarin being the most potent one. In conclusion, artichoke contains both eNOS-upregulating and iNOS-downregulating compounds. Such compounds may contribute to the beneficial effects of artichoke and may per se have therapeutic potentials.

  20. Artichoke, cynarin and cyanidin downregulate the expression of inducible nitric oxide synthase in human coronary smooth muscle cells.

    Science.gov (United States)

    Xia, Ning; Pautz, Andrea; Wollscheid, Ursula; Reifenberg, Gisela; Förstermann, Ulrich; Li, Huige

    2014-03-24

    Artichoke (Cynara scolymus L.) is one of the world's oldest medicinal plants with multiple health benefits. We have previously shown that artichoke leaf extracts and artichoke flavonoids upregulate the gene expression of endothelial-type nitric oxide synthase (eNOS) in human endothelial cells. Whereas NO produced by the eNOS is a vasoprotective molecule, NO derived from the inducible iNOS plays a pro-inflammatory role in the vasculature. The present study was aimed to investigate the effects of artichoke on iNOS expression in human coronary artery smooth muscle cells (HCASMC). Incubation of HCASMC with a cytokine mixture led to an induction of iNOS mRNA expression. This iNOS induction was concentration- and time-dependently inhibited by an artichoke leaf extract (1-100 µg/mL, 6 h or 24 h). Consistently, the artichoke leaf extract also reduced cytokine-induced iNOS promoter activation and iNOS protein expression. In addition, treatment of HCASMC with four well-known artichoke compounds (cynarin > cyanidin > luteolin ≈ cynaroside) led to a downregulation iNOS mRNA and protein expression, with cynarin being the most potent one. In conclusion, artichoke contains both eNOS-upregulating and iNOS-downregulating compounds. Such compounds may contribute to the beneficial effects of artichoke and may per se have therapeutic potentials.

  1. Downregulation of catalase by reactive oxygen species via PI 3 kinase/Akt signaling in mesangial cells.

    Science.gov (United States)

    Venkatesan, Balachandar; Mahimainathan, Lenin; Das, Falguni; Ghosh-Choudhury, Nandini; Ghosh Choudhury, Goutam

    2007-05-01

    Reactive oxygen species (ROS) contribute to many glomerular diseases by targeting mesangial cells. ROS have been shown to regulate expression of many antioxidant enzymes including catalase. The mechanism by which the expression of catalase protein is regulated by ROS is not precisely known. Here we report that increased intracellular ROS level by hydrogen peroxide (H(2)O(2)) reduced the expression of catalase. H(2)O(2) increased phosphorylation of Akt kinase in a dose-dependent and sustained manner with a concomitant increase in the phosphorylation of FoxO1 transcription factor. Further analysis revealed that H(2)O(2) promoted rapid activation of phosphatidylinositol (PI) 3 kinase. The PI 3 kinase inhibitor Ly294002 and expression of tumor suppressor protein PTEN inhibited Akt kinase activity, resulting in the attenuation of FoxO1 phosphorylation and preventing the downregulating effect of H(2)O(2) on catalase protein level. Dominant negative Akt attenuated the inhibitory effect of H(2)O(2) on expression of catalase. Constitutively active FoxO1 increased the expression of catalase. However, dominant negative FoxO1 inhibited catalase protein level. Catalase transcription was reduced by H(2)O(2) treatment. Furthermore, expression of dominant negative Akt and constitutively active FoxO1 increased catalase transcription, respectively. These results demonstrate that ROS downregulate the expression of catalase in mesangial cells by PI 3 kinase/Akt signaling via FoxO1 as a target. (c) 2007 Wiley-Liss, Inc.

  2. An Epidemiologic study of Oral and Pharyngeal Nonsquamous Cell Malignant Tumors in Kerman province, Iran

    Directory of Open Access Journals (Sweden)

    MR. Zarei

    2007-03-01

    Full Text Available Objective: The aim of the present study was to estimate crude and age-standardized incidence rates for oral and pharyngeal nonsquamous cell malignant tumors in Kerman province over a period of 11 years.Materials and Methods: The data used in this retrospective population-based study were extracted from the records registered in all pathology centers of Kerman province from 1991 to 2001. All confirmed cases of oral and pharyngeal nonsquamous cell malignant tumors were included in the study. The crude and age-standardized incidence rates per 1 million populations were calculated based on the 1996 census data and the population growth rate.Results: The total number of new nonsquamous cell cancers was 61, representing 18.2% of all oral and pharyngeal cancers in Kerman province. The average annual ageadjusted incidence rate per 1,000,000 population was 3.45 for both oral and pharyngeal tumors. The temporal variations in the annual incidence of oral and pharyngeal nonsquamous cell cancers was statistically significant (p=0.015. The most common types of nonsquamous cell malignant tumors in the oral cavity and pharynx were minor salivary tumors and lymphomas, respectively. The age-adjusted incidence was 0.74 formalignant salivary gland tumors, 0.66 for malignant melanomas, 0.4 for different types of sarcomas, and 1.65 for lymphomas.Conclusion: It can be concluded that the incidence rate and other features of nonsquamous cell malignant tumors of the oral cavity and pharynx in residents of Kerman province are similar to those reported by other investigators.

  3. miR-155 as a Biomarker in B-Cell Malignancies

    Directory of Open Access Journals (Sweden)

    Hanne Due

    2016-01-01

    Full Text Available MicroRNAs have the potential to be useful biomarkers in the development of individualized treatment since they are easy to detect, are relatively stable during sample handling, and are important determinants of cellular processes controlling pathogenesis, progression, and response to treatment of several types of cancers including B-cell malignancies. miR-155 is an oncomiR with a crucial role in tumor initiation and development of several B-cell malignancies. The present review elucidates the potential of miR-155 as a diagnostic, prognostic, or predictive biomarker in B-cell malignancies using a systematic search strategy to identify relevant literature. miR-155 was upregulated in several malignancies compared to nonmalignant controls and overexpression of miR-155 was further associated with poor prognosis. Elevated expression of miR-155 shows potential as a diagnostic and prognostic biomarker in diffuse large B-cell lymphoma and chronic lymphocytic leukemia. Additionally, in vitro and in vivo studies suggest miR-155 as an efficient therapeutic target, supporting its oncogenic function. The use of inhibiting anti-miR structures indicates promising potential as novel anticancer therapeutics. Reports from 53 studies prove that miR-155 has the potential to be a molecular tool in personalized medicine.

  4. [Malignant T-cell lymphoma with osteomyelitis-like bone infiltration].

    Science.gov (United States)

    Mittelmeier, H; Schmitt, O

    1980-01-01

    After a short review on the late literature, existing about various forms of acute lymphoblastic leucemias, it is reported on a rare case of malignant T-cell-Lymphoma with ostemyelitis-like, painfull bone infiltration. The clinical symptoms, as well as differential-diagnostic criterias to other leucemias are described.

  5. Nicotine enhances proliferation, migration, and radioresistance of human malignant glioma cells through EGFR activation

    International Nuclear Information System (INIS)

    Khalil, A.A.; Jameson, M.J.; Broaddus, W.C.; Lin, P.S.; Chung, T.D.

    2013-01-01

    It has been suggested that continued tobacco use during radiation therapy contributes to maintenance of neoplastic growth despite treatment with radiation. Nicotine is a cigarette component that is an established risk factor for many diseases, neoplastic and otherwise. The hypothesis of this work is that nicotine promotes the proliferation, migration, and radioresistance of human malignant glioma cells. The effect of nicotine on cellular proliferation, migration, signaling, and radiation sensitivity were evaluated for malignant glioma U87 and GBM12 cells by use of the AlamarBlue, scratch healing, and clonogenic survival assays. Signal transduction was assessed by immunoblotting for activated EGFR, extracellular regulated kinase (ERK), and AKT. At concentrations comparable with those found in chronic smokers, nicotine induced malignant glioma cell migration, growth, colony formation, and radioresistance. Nicotine increased phosphorylation of EGFR tyr992 , AKT ser473 , and ERK. These molecular effects were reduced by pharmacological inhibitors of EGFR, PI3K, and MEK. It was therefore concluded that nicotine stimulates the malignant behavior of glioma cells in vitro by activation of the EGFR and downstream AKT and ERK pathways. (author)

  6. Malignant Granular Cell Tumor of the Back: A Case Report and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Laura Stone McGuire

    2014-01-01

    Full Text Available Malignant granular cell tumors are rare, intensely aggressive entities. This paper presents a case of a large rapidly recurrent malignant granular cell tumor with regional and distal metastases on the back of a 54-year-old Cuban man. The primary tumor recurred within six months of the original wide local excision and with satellite lesions apparent at twelve months, and the mass was diagnosed using the histological criteria established by Fanburg-Smith et al. for malignant granular cell tumors. By fifteen months, right axillary lymphadenopathy, multiple satellite lesions, pulmonary nodules, and distant metastasis in the right thigh were present. At sixteen months, wide local excision of recurrent mass and local satellite masses along with right axillary dissection and placement of Integra with subsequent split-thickness skin graft were performed by surgical oncology and plastic surgery teams. The surgical specimen measured 32.0 × 13.5 × 5.5 cm, containing multiple homogeneous masses with the largest mass 22.0 × 9.0 × 4.6 cm. Following surgery, patient was started on Pazopanib 800 mg/day based on phase III randomized trial data in the treatment of soft tissue sarcomas showing this as a potential novel therapy for malignant granular cell tumors.

  7. Molecular characteristics of malignant ovarian germ cell tumors and comparison with testicular counterparts

    DEFF Research Database (Denmark)

    Kraggerud, Sigrid Marie; Hoei-Hansen, Christina E; Alagaratnam, Sharmini

    2013-01-01

    This review focuses on the molecular characteristics and development of rare malignant ovarian germ cell tumors (mOGCTs). We provide an overview of the genomic aberrations assessed by ploidy, cytogenetic banding, and comparative genomic hybridization. We summarize and discuss the transcriptome pr...

  8. Risk of transferring malignant cells with transplanted frozen-thawed ovarian tissue

    DEFF Research Database (Denmark)

    Dolmans, Marie-Madeleine; Luyckx, Valérie; Donnez, Jacques

    2013-01-01

    Ovarian tissue cryopreservation and transplantation is a real option to preserve and restore fertility in young cancer patients. However, there is a concern regarding the possible presence of malignant cells in the ovarian tissue, which could lead to recurrence of the primary disease after reimpl...

  9. Malignant Solitary Fibrous Tumor Metastatic to Widely Invasive Hurthle Cell Thyroid Carcinoma: A Distinct Tumor-to-Tumor Metastasis.

    Science.gov (United States)

    Kolson Kokohaare, Eva; Riva, Francesco M G; Bernstein, Jonathan M; Miah, Aisha B; Thway, Khin

    2018-04-01

    We illustrate a case of synchronous malignant solitary fibrous tumor of the thoracic cavity, and widely invasive thyroid Hurthle cell carcinoma. The Hurthle cell carcinoma was found to harbor distinct areas of malignant solitary fibrous tumor. This is a unique case of tumor-to-tumor metastasis that, to the best of our knowledge, has not been previously reported.

  10. Long-term outcomes among older patients following nonmyeloablative conditioning and allogeneic hematopoietic cell transplantation for advanced hematologic malignancies

    DEFF Research Database (Denmark)

    Sorror, Mohamed L; Sandmaier, Brenda M; Storer, Barry E

    2011-01-01

    A minimally toxic nonmyeloablative regimen was developed for allogeneic hematopoietic cell transplantation (HCT) to treat patients with advanced hematologic malignancies who are older or have comorbid conditions.......A minimally toxic nonmyeloablative regimen was developed for allogeneic hematopoietic cell transplantation (HCT) to treat patients with advanced hematologic malignancies who are older or have comorbid conditions....

  11. Aldehyde dehydrogenase (ALDH activity does not select for cells with enhanced aggressive properties in malignant melanoma.

    Directory of Open Access Journals (Sweden)

    Lina Prasmickaite

    Full Text Available BACKGROUND: Malignant melanoma is an exceptionally aggressive, drug-resistant and heterogeneous cancer. Recently it has been shown that melanoma cells with high clonogenic and tumourigenic abilities are common, but markers distinguishing such cells from cells lacking these abilities have not been identified. There is therefore no definite evidence that an exclusive cell subpopulation, i.e. cancer stem cells (CSC, exists in malignant melanoma. Rather, it is suggested that multiple cell populations are implicated in initiation and progression of the disease, making it of importance to identify subpopulations with elevated aggressive properties. METHODS AND FINDINGS: In several other cancer forms, Aldehyde Dehydrogenase (ALDH, which plays a role in stem cell biology and resistance, is a valuable functional marker for identification of cells that show enhanced aggressiveness and drug-resistance. Furthermore, the presence of ALDH(+ cells is linked to poor clinical prognosis in these cancers. By analyzing cell cultures, xenografts and patient biopsies, we showed that aggressive melanoma harboured a large, distinguishable ALDH(+ subpopulation. In vivo, ALDH(+ cells gave rise to ALDH(- cells, while the opposite conversion was rare, indicating a higher abilities of ALDH(+ cells to reestablish tumour heterogeneity with respect to the ALDH phenotype. However, both ALDH(+ and ALDH(- cells demonstrated similarly high abilities for clone formation in vitro and tumour initiation in vivo. Furthermore, both subpopulations showed similar sensitivity to the anti-melanoma drugs, dacarbazine and lexatumumab. CONCLUSIONS: These findings suggest that ALDH does not distinguish tumour-initiating and/or therapy-resistant cells, implying that the ALDH phenotype is not associated with more-aggressive subpopulations in malignant melanoma, and arguing against ALDH as a "universal" marker. Besides, it was shown that the ability to reestablish tumour heterogeneity is not

  12. Garcinol from Garcinia indica Downregulates Cancer Stem-like Cell Biomarker ALDH1A1 in Nonsmall Cell Lung Cancer A549 Cells through DDIT3 Activation.

    Science.gov (United States)

    Wang, Jinhan; Wang, Liwen; Ho, Chi-Tang; Zhang, Kunsheng; Liu, Qiang; Zhao, Hui

    2017-05-10

    Nonsmall cell lung cancer (NSCLC) is the predominant type of lung cancer. Patients with NSCLC show high mortality rates because of failure to clean up cancer stem cells (CSCs). The anticancer activity of phytochemical garcinol has been identified in various cancer cell models. However, the effect of garcinol on NSCLC cell lines is still lacking. Of the NSCLC cell lines we tested, A549 cells were the most sensitive to garcinol. Interestingly, Aldehyde Dehydrogenase 1 Family Member A1 (ALDH1A1) was preferentially expressed in A549 cells and downregulated by the addition of garcinol. We also found that garcinol enriched DNA damage-inducible transcript 3 (DDIT3) and then altered DDIT3-CCAAT-enhancer-binding proteins beta (C/EBPβ) interaction resulting in a decreased binding of C/EBPβ to the endogenous ALDH1A1 promoter. Furthermore, garcinol's inhibition of ALDH1A1 was identified in a xenograft mice model. Garcinol repressed ALDH1A1 transcription in A549 cells through alterations in the interaction between DDIT3 and C/EBPβ. Garcinol could be a potential dietary phytochemical candidate for NSCLCs patients whose tumors harbored high ALDH1A1 expression.

  13. A global downregulation of microRNAs occurs in human quiescent satellite cells during myogenesis

    NARCIS (Netherlands)

    Koning, Merel; Werker, Paul M N; van Luyn, Marja J A; Krenning, Guido; Harmsen, Martin C

    2012-01-01

    During myogenesis, human satellite cells differentiate and form multinucleated myotubes, while a fraction of the human satellite cells enter quiescence. These quiescent satellite cells are able to activate, proliferate and contribute to muscle regeneration. Post-transcriptional regulation of

  14. Involvement of p53 Mutation and Mismatch Repair Proteins Dysregulation in NNK-Induced Malignant Transformation of Human Bronchial Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Ying Shen

    2014-01-01

    Full Text Available Genome integrity is essential for normal cellular functions and cell survival. Its instability can cause genetic aberrations and is considered as a hallmark of most cancers. To investigate the carcinogenesis process induced by tobacco-specific carcinogen NNK, we studied the dynamic changes of two important protectors of genome integrity, p53 and MMR system, in malignant transformation of human bronchial epithelial cells after NNK exposure. Our results showed that the expression of MLH1, one of the important MMR proteins, was decreased early and maintained the downregulation during the transformation in a histone modification involved and DNA methylation-independent manner. Another MMR protein PMS2 also displayed a declined expression while being in a later stage of transformation. Moreover, we conducted p53 mutation analysis and revealed a mutation at codon 273 which led to the replacement of arginine by histidine. With the mutation, DNA damage-induced activation of p53 was significantly impaired. We further reintroduced the wild-type p53 into the transformed cells, and the malignant proliferation can be abrogated by inducing cell cycle arrest and apoptosis. These findings indicate that p53 and MMR system play an important role in the initiation and progression of NNK-induced transformation, and p53 could be a potential therapeutic target for tobacco-related cancers.

  15. Endothelial Cell-Targeted Adenoviral Vector for Suppressing Breast Malignancies

    National Research Council Canada - National Science Library

    Huang, Shuang

    2004-01-01

    .... Our proposal is designed to develop an endothelial cell-targeted adenoviral vector and to use the targeted vector to express high levels of anticancer therapeutic genes in the sites of angiogenenic...

  16. Notch4 Signaling Induces a Mesenchymal–Epithelial–like Transition in Melanoma Cells to Suppress Malignant Behaviors

    Science.gov (United States)

    Rad, Ehsan Bonyadi; Hammerlindl, Heinz; Wels, Christian; Popper, Ulrich; Menon, Dinoop Ravindran; Breiteneder, Heimo; Kitzwoegerer, Melitta; Hafner, Christine; Herlyn, Meenhard; Bergler, Helmut; Schaider, Helmut

    2016-01-01

    The effects of Notch signaling are context-dependent and both oncogenic and tumor-suppressive functions have been described. Notch signaling in melanoma is considered oncogenic, but clinical trials testing Notch inhibition in this malignancy have not proved successful. Here, we report that expression of the constitutively active intracellular domain of Notch4 (N4ICD) in melanoma cells triggered a switch from a mesenchymal-like parental phenotype to an epithelial-like phenotype. The epithelial-like morphology was accompanied by strongly reduced invasive, migratory, and proliferative properties concomitant with the downregulation of epithelial–mesenchymal transition markers Snail2 (SNAI2), Twist1, vimentin (VIM), and MMP2 and the reexpression of E-cadherin (CDH1). The N4ICD-induced phenotypic switch also resulted in significantly reduced tumor growth in vivo. Immunohistochemical analysis of primary human melanomas and cutaneous metastases revealed a significant correlation between Notch4 and E-cadherin expression. Mechanistically, we demonstrate that N4ICD induced the expression of the transcription factors Hey1 and Hey2, which bound directly to the promoter regions of Snail2 and Twist1 and repressed gene transcription, as determined by EMSA and luciferase assays. Taken together, our findings indicate a role for Notch4 as a tumor suppressor in melanoma, uncovering a potential explanation for the poor clinical efficacy of Notch inhibitors observed in this setting. PMID:26801977

  17. Downregulation of lncRNA TUG1 Affects Apoptosis and Insulin Secretion in Mouse Pancreatic β Cells

    Directory of Open Access Journals (Sweden)

    Dan-dan Yin

    2015-03-01

    Full Text Available Background: Increasing evidence indicates that long noncoding RNAs (IncRNAs perform specific biological functions in diverse processes. Recent studies have reported that IncRNAs may be involved in β cell function. The aim of this study was to characterize the role of IncRNA TUG1 in mouse pancreatic β cell functioning both in vitro and in vivo. Methods: qRT-PCR analyses were performed to detect the expression of lncRNA TUG1 in different tissues. RNAi, MTT, TUNEL and Annexin V-FITC assays and western blot, GSIS, ELISA and immunochemistry analyses were performed to detect the effect of lncRNA TUG1 on cell apoptosis and insulin secretion in vitro and in vivo. Results: lncRNA TUG1 was highly expressed in pancreatic tissue compared with other organ tissues, and expression was dynamically regulated by glucose in Nit-1 cells. Knockdown of lncRNA TUG1 expression resulted in an increased apoptosis ratio and decreased insulin secretion in β cells both in vitro and in vivo . Immunochemistry analyses suggested decreased relative islet area after treatment with lncRNA TUG1 siRNA. Conclusion: Downregulation of lncRNA TUG1 expression affected apoptosis and insulin secretion in pancreatic β cells in vitro and in vivo. lncRNA TUG1 may represent a factor that regulates the function of pancreatic β cells.

  18. Downregulation of lncRNA TUG1 affects apoptosis and insulin secretion in mouse pancreatic β cells.

    Science.gov (United States)

    Yin, Dan-dan; Zhang, Er-bao; You, Liang-hui; Wang, Ning; Wang, Lin-tao; Jin, Fei-yan; Zhu, Ya-nan; Cao, Li-hua; Yuan, Qing-xin; De, Wei; Tang, Wei

    2015-01-01

    Increasing evidence indicates that long noncoding RNAs (IncRNAs) perform specific biological functions in diverse processes. Recent studies have reported that IncRNAs may be involved in β cell function. The aim of this study was to characterize the role of IncRNA TUG1 in mouse pancreatic β cell functioning both in vitro and in vivo. qRT-PCR analyses were performed to detect the expression of lncRNA TUG1 in different tissues. RNAi, MTT, TUNEL and Annexin V-FITC assays and western blot, GSIS, ELISA and immunochemistry analyses were performed to detect the effect of lncRNA TUG1 on cell apoptosis and insulin secretion in vitro and in vivo. lncRNA TUG1 was highly expressed in pancreatic tissue compared with other organ tissues, and expression was dynamically regulated by glucose in Nit-1 cells. Knockdown of lncRNA TUG1 expression resulted in an increased apoptosis ratio and decreased insulin secretion in β cells both in vitro and in vivo . Immunochemistry analyses suggested decreased relative islet area after treatment with lncRNA TUG1 siRNA. Downregulation of lncRNA TUG1 expression affected apoptosis and insulin secretion in pancreatic β cells in vitro and in vivo. lncRNA TUG1 may represent a factor that regulates the function of pancreatic β cells. © 2015 S. Karger AG, Basel.

  19. Icotinib inhibits the invasion of Tca8113 cells via downregulation of nuclear factor κB-mediated matrix metalloproteinase expression.

    Science.gov (United States)

    Yang, Cailing; Yan, Jianguo; Yuan, Guoyan; Zhang, Yinghua; Lu, Derong; Ren, Mingxin; Cui, Weigang

    2014-09-01

    Icotinib is an epidermal growth factor receptor tyrosine kinase inhibitor, which has been revealed to inhibit proliferation in tumor cells. However, the effect of icotinib on cancer cell metastasis remains to be explained. This study examines the effect of icotinib on the migration and invasion of squamous cells of tongue carcinoma (Tca8113 cells) in vitro . The results of the Boyden chamber invasion assay demonstrated that icotinib reduced cell invasion, suppressed the protein levels of matrix metalloproteinases (MMPs), MMP-2 and MMP-9, and increased the expression of tissue inhibitor of metalloproteinase-1. In addition, icotinib was found to significantly decrease the protein levels of nuclear factor κB (NF-κB) p65, which suggested that icotinib inhibits NF-κB activity. Furthermore, treatment with the NF-κB inhibitor, pyrrolidine dithiocarbamate, suppressed cell invasion and MMP-2 expression. These results suggested that icotinib inhibits the invasion of Tca8113 cells by downregulating MMP via the inactivation of the NF-κB signaling pathways.

  20. IL-15 improves the cytotoxicity of cytokine-induced killer cells against leukemia cells by upregulating CD3+CD56+ cells and downregulating regulatory T cells as well as IL-35.

    Science.gov (United States)

    Tao, Qianshan; Chen, Tianping; Tao, Lili; Wang, Huiping; Pan, Ying; Xiong, Shudao; Zhai, Zhimin

    2013-01-01

    Cytokine-induced killer (CIK) cells are usually generated from peripheral blood mononuclear cells with the stimulation of IL-2 in vitro. Unlike the conventional IL-2-stimulated CIK cells (IL-2-CIK cells), we investigated the characteristics and potential mechanism of IL-15-stimulated CIK cells (IL-15-CIK cells) in this study. Compared with IL-2-CIK cells, the percentage of CD3CD56 cells was significantly increased in IL-15-CIK cells, but the expression of regulatory T (Treg) cells and IL-35 was significantly decreased in IL-15-CIK cells. Meanwhile, the in vitro cytotoxicity against human myeloid leukemia cells K562 of IL-15-CIK cells was significantly augmented compared with IL-2-CIK cells. These data suggest that IL-15 may improve the cytotoxicity of CIK cells against leukemia cells by upregulating CD3CD56 cells and downregulating Treg cells and IL-35.

  1. Type I collagen gene suppresses tumor growth and invasion of malignant human glioma cells

    Directory of Open Access Journals (Sweden)

    Miyata Teruo

    2007-06-01

    Full Text Available Abstract Background Invasion is a hallmark of a malignant tumor, such as a glioma, and the progression is followed by the interaction of tumor cells with an extracellular matrix (ECM. This study examined the role of type I collagen in the invasion of the malignant human glioma cell line T98G by the introduction of the human collagen type I α1 (HCOL1A1 gene. Results The cells overexpressing HCOL1A1 were in a cluster, whereas the control cells were scattered. Overexpression of HCOL1A1 significantly suppressed the motility and invasion of the tumor cells. The glioma cell growth was markedly inhibited in vitro and in vivo by the overexpression of HCOL1A1; in particular, tumorigenicity completely regressed in nude mice. Furthermore, the HCOL1A1 gene induced apoptosis in glioma cells. Conclusion These results indicate that HCOL1A1 have a suppressive biological function in glioma progression and that the introduction of HCOL1A1 provides the basis of a novel therapeutic approach for the treatment of malignant human glioma.

  2. Ascaris Suum Infection Downregulates Inflammatory Pathways in the Pig Intestine In Vivo and in Human Dendritic Cells In Vitro

    DEFF Research Database (Denmark)

    Midttun, Helene L. E.; Acevedo, Nathalie; Skallerup, Per

    2018-01-01

    similar transcriptional pathways in human dendritic cells (DCs) in vitro. DCs exposed to ABF secreted minimal amounts of cytokines and had impaired production of cyclooxygengase-2, altered glucose metabolism, and reduced capacity to induce interferon-gamma production in T cells. Our in vivo and in vitro......Ascaris suum is a helminth parasite of pigs closely related to its human counterpart, A. lumbricoides, which infects almost 1 billion people. Ascaris is thought to modulate host immune and inflammatory responses, which may drive immune hyporesponsiveness during chronic infections. Using...... transcriptomic analysis, we show here that pigs with a chronic A. suum infection have a substantial suppression of inflammatory pathways in the intestinal mucosa, with a broad downregulation of genes encoding cytokines and antigen-processing and costimulatory molecules. A. suum body fluid (ABF) suppressed...

  3. Second-harmonic generation as a DNA malignancy indicator of prostate glandular epithelial cells

    International Nuclear Information System (INIS)

    Zheng-Fei, Zhuang; Han-Ping, Liu; Zhou-Yi, Guo; Xiao-Yuan, Deng; Shuang-Mu, Zhuo; Bi-Ying, Yu

    2010-01-01

    This paper first demonstrates second-harmonic generation (SHG) in the intact cell nucleus, which acts as an optical indicator of DNA malignancy in prostate glandular epithelial cells. Within a scanning region of 2.7 μm×2.7 μm in cell nuclei, SHG signals produced from benign prostatic hyperplasia (BPH) and prostate carcinoma (PC) tissues (mouse model C57BL/6) have been investigated. Statistical analyses (t test) of a total of 405 measurements (204 nuclei from BPH and 201 nuclei from PC) show that SHG signals from BPH and PC have a distinct difference (p < 0.05), suggesting a potential optical method of revealing very early malignancy in prostate glandular epithelial cells based upon induced biochemical and/or biophysical modifications in DNA. (geophysics, astronomy and astrophysics)

  4. Sonic hedgehog initiates cochlear hair cell regeneration through downregulation of retinoblastoma protein

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Na [Otology Skull Base Surgery Department, Hearing Research Institute, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai 200031 (China); Department of Otolaryngology and Program in Neuroscience, Harvard Medical School and Eaton Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114 (United States); Chen, Yan [Central Laboratory, Hearing Research Institute, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai 200031 (China); Wang, Zhengmin [Otology Skull Base Surgery Department, Hearing Research Institute, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai 200031 (China); Institute of Biomedical Sciences, Fudan University, Shanghai 200032 (China); Chen, Guoling [Otology Skull Base Surgery Department, Hearing Research Institute, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai 200031 (China); Lin, Qin [Otology Skull Base Surgery Department, Hearing Research Institute, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai 200031 (China); Department of Otolaryngology, First Affiliated Hospital of Fujian Medical University, Otolaryngology Institute of Fujian Province, Fuzhou (China); Chen, Zheng-Yi, E-mail: Zheng-yi_chen@meei.harvard.edu [Department of Otolaryngology and Program in Neuroscience, Harvard Medical School and Eaton Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114 (United States); Li, Huawei, E-mail: hwli@shmu.edu.cn [Otology Skull Base Surgery Department, Hearing Research Institute, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai 200031 (China); Institute of Biomedical Sciences, Fudan University, Shanghai 200032 (China)

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer Shh activation in neonatal cochleae enhances sensory cell proliferation. Black-Right-Pointing-Pointer Proliferating supporting cells can transdifferentiate into hair cells. Black-Right-Pointing-Pointer Shh promotes proliferation by transiently modulating pRb activity. Black-Right-Pointing-Pointer Shh inhibits pRb by inhibiting transcription and increasing phosphorylation of pRb. -- Abstract: Cell cycle re-entry by cochlear supporting cells and/or hair cells is considered one of the best approaches for restoring hearing loss as a result of hair cell damage. To identify mechanisms that can be modulated to initiate cell cycle re-entry and hair cell regeneration, we studied the effect of activating the sonic hedgehog (Shh) pathway. We show that Shh signaling in postnatal rat cochleae damaged by neomycin leads to renewed proliferation of supporting cells and hair cells. Further, proliferating supporting cells are likely to transdifferentiate into hair cells. Shh treatment leads to inhibition of retinoblastoma protein (pRb) by increasing phosphorylated pRb and reducing retinoblastoma gene transcription. This results in upregulation of cyclins B1, D2, and D3, and CDK1. These results suggest that Shh signaling induces cell cycle re-entry in cochlear sensory epithelium and the production of new hair cells, in part by attenuating pRb function. This study provides an additional route to modulate pRb function with important implications in mammalian hair cell regeneration.

  5. Sonic hedgehog initiates cochlear hair cell regeneration through downregulation of retinoblastoma protein

    International Nuclear Information System (INIS)

    Lu, Na; Chen, Yan; Wang, Zhengmin; Chen, Guoling; Lin, Qin; Chen, Zheng-Yi; Li, Huawei

    2013-01-01

    Highlights: ► Shh activation in neonatal cochleae enhances sensory cell proliferation. ► Proliferating supporting cells can transdifferentiate into hair cells. ► Shh promotes proliferation by transiently modulating pRb activity. ► Shh inhibits pRb by inhibiting transcription and increasing phosphorylation of pRb. -- Abstract: Cell cycle re-entry by cochlear supporting cells and/or hair cells is considered one of the best approaches for restoring hearing loss as a result of hair cell damage. To identify mechanisms that can be modulated to initiate cell cycle re-entry and hair cell regeneration, we studied the effect of activating the sonic hedgehog (Shh) pathway. We show that Shh signaling in postnatal rat cochleae damaged by neomycin leads to renewed proliferation of supporting cells and hair cells. Further, proliferating supporting cells are likely to transdifferentiate into hair cells. Shh treatment leads to inhibition of retinoblastoma protein (pRb) by increasing phosphorylated pRb and reducing retinoblastoma gene transcription. This results in upregulation of cyclins B1, D2, and D3, and CDK1. These results suggest that Shh signaling induces cell cycle re-entry in cochlear sensory epithelium and the production of new hair cells, in part by attenuating pRb function. This study provides an additional route to modulate pRb function with important implications in mammalian hair cell regeneration.

  6. miR-126 is downregulated in cystic fibrosis airway epithelial cells and regulates TOM1 expression.

    LENUS (Irish Health Repository)

    Oglesby, Irene K

    2010-02-15

    Cystic fibrosis (CF) is one of the most common lethal genetic diseases in which the role of microRNAs has yet to be explored. Predicted to be regulated by miR-126, TOM1 (target of Myb1) has been shown to interact with Toll-interacting protein, forming a complex to regulate endosomal trafficking of ubiquitinated proteins. TOM1 has also been proposed as a negative regulator of IL-1beta and TNF-alpha-induced signaling pathways. MiR-126 is highly expressed in the lung, and we now show for the first time differential expression of miR-126 in CF versus non-CF airway epithelial cells both in vitro and in vivo. MiR-126 downregulation in CF bronchial epithelial cells correlated with a significant upregulation of TOM1 mRNA, both in vitro and in vivo when compared with their non-CF counterparts. Introduction of synthetic pre-miR-126 inhibited luciferase activity in a reporter system containing the full length 3\\'-untranslated region of TOM1 and resulted in decreased TOM1 protein production in CF bronchial epithelial cells. Following stimulation with LPS or IL-1beta, overexpression of TOM1 was found to downregulate NF-kappaB luciferase activity. Conversely, TOM1 knockdown resulted in a significant increase in NF-kappaB regulated IL-8 secretion. These data show that miR-126 is differentially regulated in CF versus non-CF airway epithelial cells and that TOM1 is a miR-126 target that may have an important role in regulating innate immune responses in the CF lung. To our knowledge, this study is the first to report of a role for TOM1 in the TLR2\\/4 signaling pathways and the first to describe microRNA involvement in CF.

  7. Down-Regulation of Neuropathy Target Esterase in Preeclampsia Placenta Inhibits Human Trophoblast Cell Invasion via Modulating MMP-9 Levels

    Directory of Open Access Journals (Sweden)

    Ting Zhong

    2018-02-01

    Full Text Available Background/Aims: Neuropathy target esterase (NTE, also known as neurotoxic esterase is proven to deacylate phosphatidylcholine (PC to glycerophosphocholine as a phospholipase B. Recently; studies showed that artificial phosphatidylserine/PC microvesicles can induce preeclampsia (PE-like changes in pregnant mice. However, it is unclear whether NTE plays a key role in the pathology of PE, a pregnancy-related disease, which was characterized by deficient trophoblast invasion and reduced trophoblast-mediated remodeling of spiral arteries. The aim of this study was to investigate the expression pattern of NTE in the placenta from women with PE and normal pregnancy, and the molecular mechanism of NTE involved in the development of PE. Methods: NTE expression levels in placentas from 20 pregnant women with PE and 20 healthy pregnant women were detected using quantitative PCR and immunohistochemistry staining. The effect of NTE on trophoblast migration and invasion and the underlying mechanisms were examined in HTR-8/SVneo cell lines by transfection method. Results: NTE mRNA and protein expression levels were significantly decreased in preeclamptic placentas than normal control. Over-expression of NTE in HTR-8/SVneo cells significantly promoted trophoblast cells migration and invasion and was associated with increased MMP-9 levels. Conversely, shRNA-mediated down-regulation of NTE markedly inhibited the cell migration and invasion. In addition, silencing NTE reduced the MMP-9 activity and phosphorylated Erk1/2 and AKT levels. Conclusions: Our results suggest that the decreased NTE may contribute to the development of PE through impairing trophoblast invasion by down-regulating MMP-9 via the Erk1/2 and AKT signaling pathway.

  8. Down-regulation of glutaminase C in human hepatocarcinoma cell by diphenylarsinic acid, a degradation product of chemical warfare agents

    International Nuclear Information System (INIS)

    Kita, Kayoko; Suzuki, Toshihide; Ochi, Takafumi

    2007-01-01

    In a poisonous incident in Kamisu, Japan, it is understood that diphenylarsinic acid (DPAA) was a critical contaminant of ground water. Most patients showed dysfunction of the central nervous system. To understand the overall mechanism of DPAA toxicity and to gain some insight into the application of a remedy specific for intoxication, the molecular target must be clarified. As an approach, a high throughput analysis of cell proteins in cultured human hepatocarcinoma HpG2 exposed to DPAA was performed by two-dimensional electrophoresis (2-DE). Four proteins, which were up- and down-regulated by exposure of cultured HepG2 cells to DPAA, were identified. They were chaperonin containing TCP-1 (CCT) beta subunit, aldehyde dehydrogenase 1 (ALDH1), ribosomal protein P0 and glutaminase C (GAC). Of these, GAC was the only protein that was down-regulated by DPAA exposure, and cellular expression levels were reduced by DPAA in a concentration- and time-dependent manner. Decrease in cellular GAC levels was accompanied by decreased activity of the enzyme, phosphate-activated glutaminase (PAG). Decreased expression of GAC by DPAA was also observed in human cervical carcinoma HeLa and neuroblastoma SH-SY5Y cells. By contrast, no significant changes in GAC protein expression were observed when cells were incubated with arsenite [iAs (III)] and trivalent dimethylarsinous acid [DMA (III)]. In the central nervous system, GAC plays a role in the production of the neurotransmitter glutamic acid. Selective inhibition of GAC expression by DPAA may be a cause of dysfunction of glutamatergic neuronal transmission and the resultant neurological impairments

  9. Down-regulation of glutaminase C in human hepatocarcinoma cell by diphenylarsinic acid, a degradation product of chemical warfare agents

    Energy Technology Data Exchange (ETDEWEB)

    Kita, Kayoko [Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, Teikyo University, 1091-1 Sagamiko-chou, Sagamihara, Kanagawa 229-0195 (Japan); Suzuki, Toshihide [Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, Teikyo University, 1091-1 Sagamiko-chou, Sagamihara, Kanagawa 229-0195 (Japan); Ochi, Takafumi [Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, Teikyo University, 1091-1 Sagamiko-chou, Sagamihara, Kanagawa 229-0195 (Japan)

    2007-05-01

    In a poisonous incident in Kamisu, Japan, it is understood that diphenylarsinic acid (DPAA) was a critical contaminant of ground water. Most patients showed dysfunction of the central nervous system. To understand the overall mechanism of DPAA toxicity and to gain some insight into the application of a remedy specific for intoxication, the molecular target must be clarified. As an approach, a high throughput analysis of cell proteins in cultured human hepatocarcinoma HpG2 exposed to DPAA was performed by two-dimensional electrophoresis (2-DE). Four proteins, which were up- and down-regulated by exposure of cultured HepG2 cells to DPAA, were identified. They were chaperonin containing TCP-1 (CCT) beta subunit, aldehyde dehydrogenase 1 (ALDH1), ribosomal protein P0 and glutaminase C (GAC). Of these, GAC was the only protein that was down-regulated by DPAA exposure, and cellular expression levels were reduced by DPAA in a concentration- and time-dependent manner. Decrease in cellular GAC levels was accompanied by decreased activity of the enzyme, phosphate-activated glutaminase (PAG). Decreased expression of GAC by DPAA was also observed in human cervical carcinoma HeLa and neuroblastoma SH-SY5Y cells. By contrast, no significant changes in GAC protein expression were observed when cells were incubated with arsenite [iAs (III)] and trivalent dimethylarsinous acid [DMA (III)]. In the central nervous system, GAC plays a role in the production of the neurotransmitter glutamic acid. Selective inhibition of GAC expression by DPAA may be a cause of dysfunction of glutamatergic neuronal transmission and the resultant neurological impairments.

  10. Berberine diminishes side population and down-regulates stem cell-associated genes in the pancreatic cancer cell lines PANC-1 and MIA PaCa-2.

    Science.gov (United States)

    Park, S H; Sung, J H; Chung, N

    2014-09-01

    Cancer stem cells play an important role in metastasis and the relapse of drug resistant cancers. Side-population (SP) cells are capable of effluxing Hoechst 33342 dye and are referred to as cancer stem cells. We investigated the effect of berberine on pancreatic cancer stem cells of PANC-1 and MIA PaCa-2. For both cell lines, the proportions of SP cells in the presence of berberine were investigated and compared to the proportions in the presence of gemcitabine, a standard pancreatic anti-cancer drug. The proportions of SP cells in the PANC-1 and MIA PaCa-2 cell lines were about 9 and PANC-1 decreased to 5.7 ± 2.0 and 6.8 ± 0.8%, respectively, which compares to the control proportion of (9.7 ± 1.7). After berberine and gemcitabine treatment of PANC-1, of the four stem cell-associated genes (SOX2, POU5F1, NANOG, and NOTCH1), all but NOTCH1 were down-regulated. Unfortunately, the effect of berberine and gemcitabine treatments on MIA PaCa-2 SP cells could not be clearly observed because SP cells represented only a very small proportion of MIA PaCa-2 cells. However, SOX2, POU5F1, and NANOG genes were shown to be effectively down-regulated in the MIA PaCa-2 cell line as a whole. Taken together, these results indicate that berberine is as effective at targeting pancreatic cancer cell lines as gemcitabine. Therefore, we believe that POU5F1, SOX2, and NANOG can serve as potential markers, and berberine may be an effective anti-cancer agent when targeting human pancreatic cancer cells and/or their cancer stem cells.

  11. Mycophenolate mofetil modulates adhesion receptors of the beta1 integrin family on tumor cells: impact on tumor recurrence and malignancy

    International Nuclear Information System (INIS)

    Engl, Tobias; Makarević, Jasmina; Relja, Borna; Natsheh, Iyad; Müller, Iris; Beecken, Wolf-Dietrich; Jonas, Dietger; Blaheta, Roman A

    2005-01-01

    Tumor development remains one of the major obstacles following organ transplantation. Immunosuppressive drugs such as cyclosporine and tacrolimus directly contribute to enhanced malignancy, whereas the influence of the novel compound mycophenolate mofetil (MMF) on tumor cell dissemination has not been explored. We therefore investigated the adhesion capacity of colon, pancreas, prostate and kidney carcinoma cell lines to endothelium, as well as their beta1 integrin expression profile before and after MMF treatment. Tumor cell adhesion to endothelial cell monolayers was evaluated in the presence of 0.1 and 1 μM MMF and compared to unstimulated controls. beta1 integrin analysis included alpha1beta1 (CD49a), alpha2beta1 (CD49b), alpha3beta1 (CD49c), alpha4beta1 (CD49d), alpha5beta1 (CD49e), and alpha6beta1 (CD49f) receptors, and was carried out by reverse transcriptase-polymerase chain reaction, confocal microscopy and flow cytometry. Adhesion of the colon carcinoma cell line HT-29 was strongly reduced in the presence of 0.1 μM MMF. This effect was accompanied by down-regulation of alpha3beta1 and alpha6beta1 surface expression and of alpha3beta1 and alpha6beta1 coding mRNA. Adhesion of the prostate tumor cell line DU-145 was blocked dose-dependently by MMF. In contrast to MMF's effects on HT-29 cells, MMF dose-dependently up-regulated alpha1beta1, alpha2beta1, alpha3beta1, and alpha5beta1 on DU-145 tumor cell membranes. We conclude that MMF possesses distinct anti-tumoral properties, particularly in colon and prostate carcinoma cells. Adhesion blockage of HT-29 cells was due to the loss of alpha3beta1 and alpha6beta1 surface expression, which might contribute to a reduced invasive behaviour of this tumor entity. The enhancement of integrin beta1 subtypes observed in DU-145 cells possibly causes re-differentiation towards a low-invasive phenotype

  12. Mycophenolate mofetil modulates adhesion receptors of the beta1 integrin family on tumor cells: impact on tumor recurrence and malignancy

    Directory of Open Access Journals (Sweden)

    Beecken Wolf-Dietrich

    2005-01-01

    Full Text Available Abstract Background Tumor development remains one of the major obstacles following organ transplantation. Immunosuppressive drugs such as cyclosporine and tacrolimus directly contribute to enhanced malignancy, whereas the influence of the novel compound mycophenolate mofetil (MMF on tumor cell dissemination has not been explored. We therefore investigated the adhesion capacity of colon, pancreas, prostate and kidney carcinoma cell lines to endothelium, as well as their beta1 integrin expression profile before and after MMF treatment. Methods Tumor cell adhesion to endothelial cell monolayers was evaluated in the presence of 0.1 and 1 μM MMF and compared to unstimulated controls. beta1 integrin analysis included alpha1beta1 (CD49a, alpha2beta1 (CD49b, alpha3beta1 (CD49c, alpha4beta1 (CD49d, alpha5beta1 (CD49e, and alpha6beta1 (CD49f receptors, and was carried out by reverse transcriptase-polymerase chain reaction, confocal microscopy and flow cytometry. Results Adhesion of the colon carcinoma cell line HT-29 was strongly reduced in the presence of 0.1 μM MMF. This effect was accompanied by down-regulation of alpha3beta1 and alpha6beta1 surface expression and of alpha3beta1 and alpha6beta1 coding mRNA. Adhesion of the prostate tumor cell line DU-145 was blocked dose-dependently by MMF. In contrast to MMF's effects on HT-29 cells, MMF dose-dependently up-regulated alpha1beta1, alpha2beta1, alpha3beta1, and alpha5beta1 on DU-145 tumor cell membranes. Conclusion We conclude that MMF possesses distinct anti-tumoral properties, particularly in colon and prostate carcinoma cells. Adhesion blockage of HT-29 cells was due to the loss of alpha3beta1 and alpha6beta1 surface expression, which might contribute to a reduced invasive behaviour of this tumor entity. The enhancement of integrin beta1 subtypes observed in DU-145 cells possibly causes re-differentiation towards a low-invasive phenotype.

  13. Clinical Impact of the Immunome in Lymphoid Malignancies: The Role of Myeloid-Derived Suppressor Cells

    Science.gov (United States)

    Vetro, Calogero; Romano, Alessandra; Ancora, Flavia; Coppolino, Francesco; Brundo, Maria V.; Raccuia, Salvatore A.; Puglisi, Fabrizio; Tibullo, Daniele; La Cava, Piera; Giallongo, Cesarina; Parrinello, Nunziatina L.

    2015-01-01

    The better definition of the mutual sustainment between neoplastic cells and immune system has been translated from the bench to the bedside acquiring value as prognostic factor. Additionally, it represents a promising tool for improving therapeutic strategies. In this context, myeloid-derived suppressor cells (MDSCs) have gained a central role in tumor developing with consequent therapeutic implications. In this review, we will focus on the biological and clinical impact of the study of MDSCs in the settings of lymphoid malignancies. PMID:26052505

  14. Downregulation of miR-15a due to LMP1 promotes cell proliferation and predicts poor prognosis in nasal NK/T-cell lymphoma.

    OpenAIRE

    駒林, 優樹; 岸部, 幹; 長門, 利純; 上田, 征吾; 高原, 幹; 原渕, 保明

    2014-01-01

    Nasal NK/T-cell lymphoma (NNKTL) is an Epstein-Barr virus (EBV)-associated malignancy and has distinct clinical and histological features. However, its genetic features are hitherto unclear. MicroRNAs (miRNAs) play a crucial role in the pathogenesis of several malignancies via regulating gene expression. In this study, we investigated whether the specific microRNAs were related to the tumor behaviors in NNKTL. MiRNA array and Quantitative RT-PCR analyses revealed that miR-15a was expressed at...

  15. PTHrP promotes malignancy of human oral cancer cell downstream of the EGFR signaling

    International Nuclear Information System (INIS)

    Yamada, Tamaki; Tsuda, Masumi; Ohba, Yusuke; Kawaguchi, Hideaki; Totsuka, Yasunori; Shindoh, Masanobu

    2008-01-01

    Parathyroid hormone-related protein (PTHrP) is detected in many aggressive tumors and involved in malignant conversion; however, the underlying mechanism remains obscure. Here, we identified PTHrP as a mediator of epidermal growth factor receptor (EGFR) signaling to promote the malignancies of oral cancers. PTHrP mRNA was abundantly expressed in most of the quiescent oral cancer cells, and was significantly upregulated by EGF stimulation via ERK and p38 MAPK. PTHrP silencing by RNA interference, as well as EGFR inhibitor AG1478 treatment, significantly suppressed cell proliferation, migration, and invasiveness. Furthermore, combined treatment of AG1478 and PTHrP knockdown achieved synergistic inhibition of malignant phenotypes. Recombinant PTHrP substantially promoted cell motility, and rescued the inhibition by PTHrP knockdown, suggesting the paracrine/autocrine function of PTHrP. These data indicate that PTHrP contributes to the malignancy of oral cancers downstream of EGFR signaling, and may thus provide a therapeutic target for oral cancer

  16. Down-regulation of TCF21 by hypermethylation induces cell proliferation, migration and invasion in colorectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Youyi [Department of Oncology, Xiangya Hospital Central South University (China); Duan, Huaxin [Department of Oncology, Hunan Provincial People' s Hospital (China); The First Affiliated Hospital of Hunan Normal University (China); Duan, Chaojun [Cental Lab of Xiangya Hospital Central South University (China); Zhou, Rongrong; He, Yuxiang; Tu, Qingsong [Department of Oncology, Xiangya Hospital Central South University (China); Shen, Liangfang, E-mail: 3153559525@qq.com [Department of Oncology, Xiangya Hospital Central South University (China)

    2016-01-15

    Epigenetic alteration induced loss function of the transcription factor 21 (TCF21) has been associated with different types of human cancers. However, the epigenetic regulation and molecular functions of TCF21 in colorectal cancer (CRC) remain unknown. In this study, TCF21 expression levels and methylation status of its promoter region in CRC cell lines (n = 5) and CRC tissues (n = 151) as well as normal colorectal mucosa (n = 30) were assessed by RTq-PCR and methylation analysis (methylation specific PCR, MSP and bisulfite sequencing PCR, BSP), respectively. The cellular functions of TCF21 on CRC cell proliferation, apoptosis, invasion and migration were investigated in vitro. Our data revealed that TCF21 was frequently silenced by promoter hypermethylation in both tested CRC cell lines and primary CRC, and correlation analysis between methylation status and clinicopathologic parameters found that TCF21 methylation was significantly correlated with lymph node invasion (P = 0.013), while no significant correlation was found in other parameters. In addition, demethylation treatment resulted in re-expression of TCF21 in CRC cell lines, and cellular function experiments revealed that restoration of TCF21 inhibited CRC cell proliferation, promoted apoptosis and suppressed cell invasion and migration, suggesting that TCF21 may function as a tumor suppressor gene, which is downregulated through promoter hypermethylation in CRC development. - Highlights: • TCF21 was frequently silenced by promoter DNA methylation in CRC cells. • TCF21 was frequently methylated in primary CRC and significantly correlated with metastasis. • Restoration of TCF21 promotes cell apoptosis of CRC cells. • Restoration of TCF21 inhibits cell invasion and migration of CRC cells.

  17. Down-regulation of TCF21 by hypermethylation induces cell proliferation, migration and invasion in colorectal cancer

    International Nuclear Information System (INIS)

    Dai, Youyi; Duan, Huaxin; Duan, Chaojun; Zhou, Rongrong; He, Yuxiang; Tu, Qingsong; Shen, Liangfang

    2016-01-01

    Epigenetic alteration induced loss function of the transcription factor 21 (TCF21) has been associated with different types of human cancers. However, the epigenetic regulation and molecular functions of TCF21 in colorectal cancer (CRC) remain unknown. In this study, TCF21 expression levels and methylation status of its promoter region in CRC cell lines (n = 5) and CRC tissues (n = 151) as well as normal colorectal mucosa (n = 30) were assessed by RTq-PCR and methylation analysis (methylation specific PCR, MSP and bisulfite sequencing PCR, BSP), respectively. The cellular functions of TCF21 on CRC cell proliferation, apoptosis, invasion and migration were investigated in vitro. Our data revealed that TCF21 was frequently silenced by promoter hypermethylation in both tested CRC cell lines and primary CRC, and correlation analysis between methylation status and clinicopathologic parameters found that TCF21 methylation was significantly correlated with lymph node invasion (P = 0.013), while no significant correlation was found in other parameters. In addition, demethylation treatment resulted in re-expression of TCF21 in CRC cell lines, and cellular function experiments revealed that restoration of TCF21 inhibited CRC cell proliferation, promoted apoptosis and suppressed cell invasion and migration, suggesting that TCF21 may function as a tumor suppressor gene, which is downregulated through promoter hypermethylation in CRC development. - Highlights: • TCF21 was frequently silenced by promoter DNA methylation in CRC cells. • TCF21 was frequently methylated in primary CRC and significantly correlated with metastasis. • Restoration of TCF21 promotes cell apoptosis of CRC cells. • Restoration of TCF21 inhibits cell invasion and migration of CRC cells.

  18. Molecular effects of bioactive fraction of Curcuma mangga (DLBS4847) as a downregulator of 5α-reductase activity pathways in prostatic epithelial cells

    International Nuclear Information System (INIS)

    Karsono, Agung Heru; Tandrasasmita, Olivia Mayasari; Tjandrawinata, Raymond R

    2014-01-01

    DLBS4847 is a standardized bioactive fraction of Curcuma mangga. In this study, we used prostate cancer (PC)-3 as the cell line to study the effects of DLBS4847 on prostatic cell viability, as well as related molecular changes associated with the decreased cell number. The observation revealed that DLBS4847 inhibited the growth of PC3 cells through downregulation of the 5α-reductase (5AR) pathway. At the transcription level, 5AR1 and androgen-receptor gene expressions were downregulated in a dose-dependent manner. Furthermore, 5AR-1 and dihydrotestosterone expression were also downregulated at the protein level. A microarray study was also performed to see the effects of DLBS4847 on differential gene expressions in prostate cancer 3 cells. Among others, DLBS4847 downregulated genes related to prostate growth and hypertrophy. Our results suggested that DLBS4847 could potentially become an alternative treatment for prostate disorders, such as benign prostatic hyperplasia. In this regard, DLBS4847 exerts its growth inhibition partially through downregulation of the 5AR pathway

  19. Molecular effects of bioactive fraction of Curcuma mangga (DLBS4847 as a downregulator of 5α-reductase activity pathways in prostatic epithelial cells

    Directory of Open Access Journals (Sweden)

    Karsono AH

    2014-06-01

    Full Text Available Agung Heru Karsono, Olivia Mayasari Tandrasasmita, Raymond R TjandrawinataSection of Molecular Pharmacology, Research Innovation and Invention, Dexa Laboratories of Biomolecular Sciences, Dexa Medica, Cikarang, IndonesiaAbstract: DLBS4847 is a standardized bioactive fraction of Curcuma mangga. In this study, we used prostate cancer (PC-3 as the cell line to study the effects of DLBS4847 on prostatic cell viability, as well as related molecular changes associated with the decreased cell number. The observation revealed that DLBS4847 inhibited the growth of PC3 cells through downregulation of the 5α-reductase (5AR pathway. At the transcription level, 5AR1 and androgen-receptor gene expressions were downregulated in a dose-dependent manner. Furthermore, 5AR-1 and dihydrotestosterone expression were also downregulated at the protein level. A microarray study was also performed to see the effects of DLBS4847 on differential gene expressions in prostate cancer 3 cells. Among others, DLBS4847 downregulated genes related to prostate growth and hypertrophy. Our results suggested that DLBS4847 could potentially become an alternative treatment for prostate disorders, such as benign prostatic hyperplasia. In this regard, DLBS4847 exerts its growth inhibition partially through downregulation of the 5AR pathway.Keywords: DLBS4847, Curcuma mangga, 5α-reductase inhibitor, benign prostatic hyperplasia (BPH, prostate cancer

  20. Downregulation of miR-99a/let-7c/miR-125b miRNA cluster predicts clinical outcome in patients with unresected malignant pleural mesothelioma.

    Science.gov (United States)

    Truini, Anna; Coco, Simona; Nadal, Ernest; Genova, Carlo; Mora, Marco; Dal Bello, Maria Giovanna; Vanni, Irene; Alama, Angela; Rijavec, Erika; Biello, Federica; Barletta, Giulia; Merlo, Domenico Franco; Valentino, Alessandro; Ferro, Paola; Ravetti, Gian Luigi; Stigliani, Sara; Vigani, Antonella; Fedeli, Franco; Beer, David G; Roncella, Silvio; Grossi, Francesco

    2017-09-15

    Malignant pleural mesothelioma (MPM) is an aggressive tumor with a dismal overall survival (OS) and to date no molecular markers are available to guide patient management. This study aimed to identify a prognostic miRNA signature in MPM patients who did not undergo tumor resection. Whole miRNA profiling using a microarray platform was performed using biopsies on 27 unresected MPM patients with distinct clinical outcome: 15 patients had short survival (OS36 months). Three prognostic miRNAs (mir-99a, let-7c, and miR-125b) encoded at the same cluster (21q21) were selected for further validation and tested on publicly available miRNA sequencing data from 72 MPM patients with survival data. A risk model was built based on these 3 miRNAs that was validated by quantitative PCR in an independent set of 30 MPM patients. High-risk patients had shorter median OS (7.6 months) as compared with low-risk patients (median not reached). In the multivariate Cox model, a high-risk score was independently associated with shorter OS (HR=3.14; 95% CI, 1.18-8.34; P=0.022). Our study identified that the downregulation of the miR-99a/let-7/miR-125b miRNA cluster predicts poor outcome in unresected MPM.

  1. Polycomb group proteins in hematopoietic stem cell aging and malignancies

    NARCIS (Netherlands)

    Klauke, Karin; de Haan, Gerald

    Protection of the transcriptional "stemness" network is important to maintain a healthy hematopoietic stem cells (HSCs) compartment during the lifetime of the organism. Recent evidence shows that fundamental changes in the epigenetic status of HSCs might be one of the driving forces behind many

  2. Chimeric Antigen Receptor Therapy for B-cell Malignancies

    Directory of Open Access Journals (Sweden)

    David L Porter, Michael Kalos, Zhaohui Zheng, Bruce Levine, Carl June

    2011-01-01

    Full Text Available We presented data showing that the CART-19 cells expressing the 4-1BB signaling domain can have unprecedented and massive in-vivo expansion, traffic to tumor sites, persist long term in vivo, and induce rapid and potent anti-tumor activity in chemotherapy refractory CLL patients.

  3. miR-193b Modulates Resistance to Doxorubicin in Human Breast Cancer Cells by Downregulating MCL-1

    Directory of Open Access Journals (Sweden)

    Jingpei Long

    2015-01-01

    Full Text Available MicroRNAs (miRNAs family, which is involved in cancer development, proliferation, apoptosis, and drug resistance, is a group of noncoding RNAs that modulate the expression of oncogenes and antioncogenes. Doxorubicin is an active cytotoxic agent for breast cancer treatment, but the acquisition of doxorubicin resistance is a common and critical limitation to cancer therapy. The aim of this study was to investigate whether miR-193b mediated the resistance of breast cancer cells to doxorubicin by targeting myeloid cell leukemia-1 (MCL-1. In this study, we found that miR-193b levels were significantly lower in doxorubicin-resistant MCF-7 (MCF-7/DOXR cells than in the parental MCF-7 cells. We observed that exogenous miR-193b significantly suppressed the ability of MCF-7/DOXR cells to resist doxorubicin. It demonstrated that miR-193b directly targeted MCL-1 3′-UTR (3′-Untranslated Regions. Further studies indicated that miR-193b sensitized MCF-7/DOXR cells to doxorubicin through a mechanism involving the downregulation of MCL-1. Together, our findings provide evidence that the modulation of miR-193b may represent a novel therapeutic target for the treatment of breast cancer.

  4. Down-regulation of HSP40 gene family following OCT4B1 suppression in human tumor cell lines

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Mirzaei

    2016-02-01

    Full Text Available Objective(s: The OCT4B1, as one of OCT4 variants, is expressed in cancer cell lines and tissues more than other variants and plays an important role in apoptosis and stress (heat shock protein pathways. The present study was designed to determine the effects of OCT4B1 silencing on expressional profile of HSP40 gene family expression in three different human tumor cell lines. Materials and Methods: The OCT4B1 expression was suppressed by specific siRNA transfection in AGS (gastric adenocarcinoma, 5637 (bladder tumor and U-87MG (brain tumor cell lines employing Lipofectamine reagent. Real-time PCR array technique was employed for RNA qualification. The fold changes were calculated using RT2 Profiler PCR array data analysis software version 3.5. Results: Our results indicated that fifteen genes (from 36 studied genes were down-regulated and two genes (DNAJC11 and DNAJC5B were up-regulated in all three studied tumor cell lines by approximately more than two folds. The result of other studied genes (19 genes showed different expressional pattern (up or down-expression based on tumor cell lines. Conclusion: According to the findings of the present study, we may suggest that there is a direct correlation between OCT4B1 expression in tumor cell lines (and tissues and HSP40 family gene expressions to escape from apoptosis and cancer expansion.

  5. Galectin-1 is expressed in early-type neural progenitor cells and down-regulates neurogenesis in the adult hippocampus

    Directory of Open Access Journals (Sweden)

    Imaizumi Yoichi

    2011-01-01

    Full Text Available Abstract Background In the adult mammalian brain, neural stem cells (NSCs proliferate in the dentate gyrus (DG of the hippocampus and generate new neurons throughout life. A multimodal protein, Galectin-1, is expressed in neural progenitor cells (NPCs and implicated in the proliferation of the NPCs in the DG. However, little is known about its detailed expression profile in the NPCs and functions in adult neurogenesis in the DG. Results Our immunohistochemical and morphological analysis showed that Galectin-1 was expressed in the type 1 and 2a cells, which are putative NSCs, in the subgranular zone (SGZ of the adult mouse DG. To study Galectin-1's function in adult hippocampal neurogenesis, we made galectin-1 knock-out mice on the C57BL6 background and characterized the effects on neurogenesis. In the SGZ of the galectin-1 knock-out mice, increased numbers of type 1 cells, DCX-positive immature progenitors, and NeuN-positive newborn neurons were observed. Using triple-labeling immunohistochemistry and morphological analyses, we found that the proliferation of the type-1 cells was increased in the SGZ of the galectin-1 knock-out mice, and we propose that this proliferation is the mechanism for the net increase in the adult neurogenesis in these knock-out mice DG. Conclusions Galectin-1 is expressed in the neural stem cells and down-regulates neurogenesis in the adult hippocampus.

  6. Development of the Bruton's tyrosine kinase inhibitor ibrutinib for B cell malignancies.

    Science.gov (United States)

    Gayko, Urte; Fung, Mann; Clow, Fong; Sun, Steven; Faust, Elizabeth; Price, Samiyeh; James, Danelle; Doyle, Margaret; Bari, Samina; Zhuang, Sen Hong

    2015-11-01

    Ibrutinib is a first-in-class oral covalent inhibitor of Bruton's tyrosine kinase that has demonstrated clinical benefit for many patients with B cell malignancies. Positive results in initial trials led the U.S. Food and Drug Administration to grant ibrutinib three breakthrough therapy designations for mantle cell lymphoma (MCL), del17p chronic lymphocytic leukemia (CLL), and Waldenström's macroglobulinemia (WM). Ibrutinib was approved for these three cancers within 14 months of the original U.S. approval. Additionally, ibrutinib is approved for patient subsets with MCL and/or CLL in >45 other countries. Via a unique mechanism of action, ibrutinib inhibits B cell signaling pathways that regulate the survival, proliferation, adhesion, and homing of cancerous cells. This marks a paradigm shift from the conventional cytotoxic chemotherapy approach to treating B cell malignancies. Ibrutinib continues to be evaluated across a range of B cell malignancies, either as single-agent therapy or in combination with other therapies, and continues to transform the lives of these patients. © 2015 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals Inc. on behalf of The New York Academy of Sciences.

  7. Dose-effect relationships for malignancy in cells with different genetic characteristics

    International Nuclear Information System (INIS)

    Chadwick, K.H.; Leenhouts, H.P.

    1978-01-01

    By combining the proposals that malignancy behaves as a recessive genetic character, that a somatic mutation is an important step in the development of cancer, and that radiation-induced DNA double-strand breaks are the critical lesions which may lead to cell death, mutation and chromosomal aberrations, considerations can be made and equations derived for the incidence of malignancy in cells having different genotypes. Equations are derived for diploid carrier cells and tetraploid carrier cells, and are compared with data in literature on cell transformation. It is shown that some differences in experimental results could be due to the different genetic character of the cells used. The theoretical considerations are extended to the population which is considered to be constituted of 'carriers' and 'non-carriers' of the recessive malignant genotype. The possible influence of radiation on 'non-carriers' is discussed as are the implications of the presence of two groups within the population for the estimation of risk to low doses of radiation. (author)

  8. Effect of human cell malignancy on activity of DNA polymerase iota.

    Science.gov (United States)

    Kazakov, A A; Grishina, E E; Tarantul, V Z; Gening, L V

    2010-07-01

    An increased level of mutagenesis, partially caused by imbalanced activities of error prone DNA polymerases, is a key symptom of cell malignancy. To clarify the possible role of incorrect DNA polymerase iota (Pol iota) function in increased frequency of mutations in mammalian cells, the activity of this enzyme in extracts of cells of different mouse organs and human eye (melanoma) and eyelid (basal-cell skin carcinoma) tumor cells was studied. Both Mg2+, considered as the main activator of the enzyme reaction of in vivo DNA replication, and Mn2+, that activates homogeneous Pol iota preparations in experiments in vitro more efficiently compared to all other bivalent cations, were used as cofactors of the DNA polymerase reaction in these experiments. In the presence of Mg2+, the enzyme was active only in cell extracts of mouse testicles and brain, whereas in the presence of Mn2+ the activity of Pol iota was found in all studied normal mouse organs. It was found that in cell extracts of both types of malignant tumors (basal-cell carcinoma and melanoma) Pol iota activity was observed in the presence of either Mn2+ or Mg2+. Manganese ions activated Pol iota in both cases, though to a different extent. In the presence of Mn2+ the Pol iota activity in the basal-cell carcinoma exceeded 2.5-fold that in control cells (benign tumors from the same eyelid region). In extracts of melanoma cells in the presence of either cation, the level of the enzyme activity was approximately equal to that in extracts of cells of surrounding tumor-free tissues as well as in eyes removed after traumas. The distinctive feature of tissue malignancy (in basal-cell carcinoma and in melanoma) was the change in DNA synthesis revealed as Mn2+-activated continuation of DNA synthesis after incorrect incorporation of dG opposite dT in the template by Pol iota. Among cell extracts of different normal mouse organs, only those of testicles exhibited a similar feature. This similarity can be explained by

  9. Human cytomegalovirus IE1 downregulates Hes1 in neural progenitor cells as a potential E3 ubiquitin ligase.

    Directory of Open Access Journals (Sweden)

    Xi-Juan Liu

    2017-07-01

    Full Text Available Congenital human cytomegalovirus (HCMV infection is the leading cause of neurological disabilities in children worldwide, but the mechanisms underlying these disorders are far from well-defined. HCMV infection has been shown to dysregulate the Notch signaling pathway in human neural progenitor cells (NPCs. As an important downstream effector of Notch signaling, the transcriptional regulator Hairy and Enhancer of Split 1 (Hes1 is essential for governing NPC fate and fetal brain development. In the present study, we report that HCMV infection downregulates Hes1 protein levels in infected NPCs. The HCMV 72-kDa immediate-early 1 protein (IE1 is involved in Hes1 degradation by assembling a ubiquitination complex and promoting Hes1 ubiquitination as a potential E3 ubiquitin ligase, followed by proteasomal degradation of Hes1. Sp100A, an important component of PML nuclear bodies, is identified to be another target of IE1-mediated ubiquitination. A C-terminal acidic region in IE1, spanning amino acids 451 to 475, is required for IE1/Hes1 physical interaction and IE1-mediated Hes1 ubiquitination, but is dispensable for IE1/Sp100A interaction and ubiquitination. Our study suggests a novel mechanism linking downregulation of Hes1 protein to neurodevelopmental disorders caused by HCMV infection. Our findings also complement the current knowledge of herpesviruses by identifying IE1 as the first potential HCMV-encoded E3 ubiquitin ligase.

  10. Effective transvascular delivery of nanoparticles across the blood-brain tumor barrier into malignant glioma cells

    Directory of Open Access Journals (Sweden)

    Sharma Kamal

    2008-12-01

    Full Text Available Abstract Background Effective transvascular delivery of nanoparticle-based chemotherapeutics across the blood-brain tumor barrier of malignant gliomas remains a challenge. This is due to our limited understanding of nanoparticle properties in relation to the physiologic size of pores within the blood-brain tumor barrier. Polyamidoamine dendrimers are particularly small multigenerational nanoparticles with uniform sizes within each generation. Dendrimer sizes increase by only 1 to 2 nm with each successive generation. Using functionalized polyamidoamine dendrimer generations 1 through 8, we investigated how nanoparticle size influences particle accumulation within malignant glioma cells. Methods Magnetic resonance and fluorescence imaging probes were conjugated to the dendrimer terminal amines. Functionalized dendrimers were administered intravenously to rodents with orthotopically grown malignant gliomas. Transvascular transport and accumulation of the nanoparticles in brain tumor tissue was measured in vivo with dynamic contrast-enhanced magnetic resonance imaging. Localization of the nanoparticles within glioma cells was confirmed ex vivo with fluorescence imaging. Results We found that the intravenously administered functionalized dendrimers less than approximately 11.7 to 11.9 nm in diameter were able to traverse pores of the blood-brain tumor barrier of RG-2 malignant gliomas, while larger ones could not. Of the permeable functionalized dendrimer generations, those that possessed long blood half-lives could accumulate within glioma cells. Conclusion The therapeutically relevant upper limit of blood-brain tumor barrier pore size is approximately 11.7 to 11.9 nm. Therefore, effective transvascular drug delivery into malignant glioma cells can be accomplished by using nanoparticles that are smaller than 11.7 to 11.9 nm in diameter and possess long blood half-lives.

  11. Ubiquitous expression of MAKORIN-2 in normal and malignant hematopoietic cells and its growth promoting activity.

    Directory of Open Access Journals (Sweden)

    King Yiu Lee

    Full Text Available Makorin-2 (MKRN2 is a highly conserved protein and yet its functions are largely unknown. We investigated the expression levels of MKRN2 and RAF1 in normal and malignant hematopoietic cells, and leukemia cell lines. We also attempted to delineate the role of MKRN2 in umbilical cord blood CD34+ stem/progenitor cells and K562 cell line by over-expression and inhibition of MKRN2 through lentivirus transduction and shRNA nucleofection, respectively. Our results provided the first evidence on the ubiquitous expression of MKRN2 in normal hematopoietic cells, embryonic stem cell lines, primary leukemia and leukemic cell lines of myeloid, lymphoid, erythroid and megakaryocytic lineages. The expression levels of MKRN2 were generally higher in primary leukemia samples compared with those in age-matched normal BM cells. In all leukemia subtypes, there was no significant correlation between expression levels of MKRN2 and RAF1. sh-MKRN2-silenced CD34+ cells had a significantly lower proliferation capacity and decreased levels of the early stem/progenitor subpopulation (CFU-GEMM compared with control cultures. Over-expression of MKRN2 in K562 cells increased cell proliferation. Our results indicated possible roles of MKRN2 in normal and malignant hematopoiesis.

  12. Malignant transformation of guinea pig cells after exposure to ultraviolet-irradiated guinea pig cytomegalovirus

    International Nuclear Information System (INIS)

    Isom, H.C.; Mummaw, J.; Kreider, J.W.

    1983-01-01

    Guinea pig cells were malignantly transformed in vitro by ultraviolet (uv)-irradiated guinea pig cytomegalovirus (GPCMV). When guinea pig hepatocyte monolayers were infected with uv-irradiated GPCMV, three continuous epithelioid cell lines which grew in soft agarose were established. Two independently derived GPCMV-transformed liver cells and a cell line derived from a soft agarose clone of one of these lines induced invasive tumors when inoculated subcutaneously or intraperitoneally into nude mice. The tumors were sarcomas possibly derived from hepatic stroma or sinusoid. Transformed cell lines were also established after infection of guinea pig hepatocyte monolayers with human cytomegalovirus (HCMV) or simian virus 40 (SV40). These cell lines also formed colonies in soft agarose and induced sarcomas in nude mice. It is concluded that (i) GPCMV can malignantly transform guinea pig cells; (ii) cloning of GPCMV-transformed cells in soft agarose produced cells that induced tumors with a shorter latency period but with no alteration in growth rate or final tumor size; and (iii) the tumors produced by GPCMV-and HCMV-transformed guinea pig cells were more similar to each other in growth rate than to those induced by SV40-transformed guinea pig cells

  13. Sonic Hedgehog Initiates Cochlear Hair Cell Regeneration through Downregulation of Retinoblastoma Protein

    Science.gov (United States)

    Lu, Na; Chen, Yan; Wang, Zhengmin; Chen, Guoling; Lin, Qin; Chen, Zheng-Yi; Li, Huawei

    2013-01-01

    Cell cycle re-entry by cochlear supporting cells and/or hair cells is considered one of the best approaches for restoring hearing loss as a result of hair cell damage. To identify mechanisms that can be modulated to initiate cell cycle re-entry and hair cell regeneration, we studied the effect of activating the sonic hedgehog (Shh) pathway. We show that Shh signaling in postnatal rat cochleae damaged by neomycin leads to renewed proliferation of supporting cells and hair cells. Further, proliferating supporting cells are likely to transdifferentiate into hair cells. Shh treatment leads to inhibition of retinoblastoma protein (pRb) by increasing phosphorylated pRb and reducing retinoblastoma gene transcription. This results in upregulation of cyclins B1, D2, and D3, and CDK1. These results suggest that Shh signaling induces cell cycle re-entry in cochlear sensory epithelium and the production of new hair cells, in part by attenuating pRb function. This study provides an additional route to modulate pRb function with important implications in mammalian hair cell regeneration. PMID:23211596

  14. Anti-invasive and antiangiogenic effects of MMI-166 on malignant glioma cells

    International Nuclear Information System (INIS)

    Nakabayashi, Hiromichi; Yawata, Toshio; Shimizu, Keiji

    2010-01-01

    The constitutive overexpression of matrix metalloproteinases (MMPs) is frequently observed in malignant tumours. In particular, MMP-2 and MMP-9 have been reported to be closely associated with invasion and angiogenesis in malignant gliomas. Our study aimed to evaluate the antitumour effects of MMI-166 (Nalpha-[4-(2-Phenyl-2H- tetrazole-5-yl) phenyl sulfonyl]-D-tryptophan), a third generation MMP inhibitor, on three human glioma cell lines (T98G, U87MG, and ONS12) in vitro and in vivo. The effects of MMI-166 on the gelatinolytic activity was analysed by gelatine zymography. The anti-invasive effect of MMI-166 was analysed by an in vitro invasion assay. An in vitro angiogenesis assay was also performed. In vitro growth inhibition of glioma cells by MMI-166 was determined by the MTT assay. The effect of MMI-166 on an orthotropic implantation model using athymic mice was also evaluated. Gelatine zymography revealed that MMP-2 and MMP-9 activities were suppressed by MMI-166. The invasion of glioma cells was suppressed by MMI-166. The angiogenesis assay showed that MMI-166 had a suppressive effect on glioma cell-induced angiogenesis. However, MMI-166 did not suppress glioma cell proliferation in the MTT assay. In vivo, MMI-166 suppressed tumour growth in athymic mice implanted orthotropically with T98G cells and showed an inhibitory effect on tumour-induced angiogenesis and tumour growth. This is the first report of the effect of a third generation MMP inhibitor on malignant glioma cells. These results suggest that MMI-166 may have potentially suppressive effects on the invasion and angiogenesis of malignant gliomas

  15. Methyl jasmonate abolishes the migration, invasion and angiogenesis of gastric cancer cells through down-regulation of matrix metalloproteinase 14

    International Nuclear Information System (INIS)

    Zheng, Liduan; Li, Dan; Xiang, Xuan; Tong, Ling; Qi, Meng; Pu, Jiarui; Huang, Kai; Tong, Qiangsong

    2013-01-01

    Recent evidence indicates that methyl jasmonate (MJ), a plant stress hormone, exhibits anti-cancer activity on human cancer cells. The aim of this study is to determine whether sub-cytotoxic MJ can abolish the migration, invasion and angiogenesis gastric cancer cells. Human gastric cancer cell lines SGC-7901 and MKN-45 were treated with diverse concentrations of MJ. Cell viability, proliferation, migration, invasion and angiogenesis capabilities of cancer cells were measured by MTT colorimetry, EdU incorporation, scratch assay, matrigel invasion assay, and tube formation assay. Gene expression was detected by western blot and real-time quantitative RT-PCR. Binding of transcription factor on gene promoter was detected by chromatin immunoprecipitation. Sub-cytotoxic (0.05 to 0.2 mM) MJ attenuated the migration, invasion and angiogenesis, but not the cell viability or proliferation, of gastric cancer cells in a time- and dose-dependent manner, with down-regulation of matrix metalloproteinase 14 (MMP-14) and its downstream gene vascular endothelial growth factor. Restoration of MMP-14 expression rescued the SGC-7901 and MKN-45 cells from sub-cytotoxic MJ-inhibited migration, invasion and angiogenesis. In addition, sub-cytotoxic MJ decreased the specificity protein 1 (Sp1) expression and binding on MMP-14 promoter, while restoration of Sp1 expression rescued the cancer cells from sub-cytotoxic MJ-mediated defects in MMP-14 expression, migration, invasion and angiogenesis. Sub-cytotoxic MJ attenuates the MMP-14 expression via decreasing the Sp1 expression and binding on MMP-14 promoter, thus inhibiting the migration, invasion and angiogenesis of gastric cancer cells

  16. Calycosin Inhibits the Migration and Invasion of Human Breast Cancer Cells by Down-Regulation of Foxp3 Expression

    Directory of Open Access Journals (Sweden)

    Shuangxi Li

    2017-12-01

    Full Text Available Background/Aims: Calycosin, a phytoestrogenic compound, has recently emerged as a promising antitumor drug. It has been shown that calycosin suppresses growth and induces apoptosis of breast cancer cells. However, the effect of calycosin on migration and invasion of breast cancer cells and the underlying molecular mechanisms have not been elucidated. Methods: Human breast cancer cells MCF-7 and T47D were treated with, or without, different doses (0, 6.25, 12.5, 25, 50, 100 or 150 μM of calycosin, and the viability of different groups was determined by MTT assay. Next, the inhibitory effect of higher doses (50, 100 or 150 μM of calycosin on migration and invasion of the two cell lines was determined by wound healing and transwell assay. The relative expression levels of forkhead box P3 (Foxp3, vascular endothelial growth factor (VEGF and matrix metalloproteinase-9 (MMP-9 in MCF-7 and T47D cells were determined by quantitative RT-PCR and Western blot. Results: Treatment with lower doses (6.25 or 12.5 μM promoted proliferation of breast cancer cells, but with higher doses significantly reduced the viability of MCF-7 and T47D cells. Furthermore, higher doses of calycosin were found to inhibit migration and invasion of the two cell lines in a dose-dependent manner. Additionally, treatment with a higher dose of calycosin significantly reduced the expression levels of Foxp3, followed by down-regulation of VEGF and MMP-9 in both MCF-7 and T47D breast cancer cells. Conclusion: Treatment with a higher dose of calycosin tends to reduce migration and invasion capacity of human breast cancer cells, by targeting Foxp3-mediated VEGF and MMP-9 expression.

  17. Gaucher disease and comorbidities: B-cell malignancy and parkinsonism.

    Science.gov (United States)

    Cox, Timothy M; Rosenbloom, Barry E; Barker, Roger A

    2015-07-01

    Data emerging from the International Collaborative Gaucher Group (ICGG) Gaucher Registry together with other contemporary clinical surveys have revealed a close association between Gaucher disease and non-Hodgkin's B-cell lymphoma and myeloma and Gaucher disease and Parkinson's disease. Several possible explanations for increased B-cell proliferation and neoplasia in Gaucher disease have been proposed, including the possible influence of sphingosine (derived from the extra lysosomal metabolism of glucosylceramide), gene modifiers, splenectomy and immune system deregulation induced by cytokines, chemokines, and hydrolases released from Gaucher cells. Parkinson's disease is frequently seen in the otherwise-healthy relatives of Gaucher disease patients leading to the finding that GBA mutations represent a genetic risk factor for Parkinson's disease. The mechanism of the association between GBA mutations and Parkinson's disease has yet to be elucidated but the pathogenesis appears distinct from that of Gaucher disease. Several pathogenic pathways have been proposed including lysosomal and/or mitochondrial dysfunction. The effect of Gaucher disease specific therapies on the incidence of cancer or Parkinson's disease are not clear and will likely be evaluated in future ICGG Gaucher Registry studies. © 2015 Wiley Periodicals, Inc.

  18. Subcellular localization of YKL-40 in normal and malignant epithelial cells of the breast

    DEFF Research Database (Denmark)

    Roslind, A.; Balslev, E.; Kruse, H.

    2008-01-01

    . YKL-40 protein expression was redistributed in carcinoma versus normal glandular tissue of the breast. A reduced expression of YKL-40 in relation to intermediate filaments and desmosomes was found in tumor cells. Changes in YKL-40 expression suggest that the function of YKL-40 in cells of epithelial......YKL-40 is a new prognostic biomarker in cancer. The biological function is only poorly understood. This study aimed at determining the subcellular localization of YKL-40, using immunogold labeling, in normal epithelial cells and in malignant tumor cells of the breast by immunoelectron microscopy...

  19. Can Selective MHC Downregulation Explain the Specificity and Genetic Diversity of NK Cell Receptors?

    NARCIS (Netherlands)

    Carrillo-Bustamante, Paola; Kesmir, Can; de Boer, Rob J

    2015-01-01

    Natural killer (NK) cells express inhibiting receptors (iNKRs), which specifically bind MHC-I molecules on the surface of healthy cells. When the expression of MHC-I on the cell surface decreases, which might occur during certain viral infections and cancer, iNKRs lose inhibiting signals and the

  20. Breast cancer cell behaviors on staged tumorigenesis-mimicking matrices derived from tumor cells at various malignant stages

    Energy Technology Data Exchange (ETDEWEB)

    Hoshiba, Takashi [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510 (Japan); International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Tanaka, Masaru, E-mail: tanaka@yz.yamagata-u.ac.jp [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510 (Japan)

    2013-09-20

    Highlights: •Models mimicking ECM in tumor with different malignancy were prepared. •Cancer cell proliferation was suppressed on benign tumor ECM. •Benign tumor cell proliferation was suppressed on cancerous ECM. •Chemoresistance of cancer cell was enhanced on cancerous ECM. -- Abstract: Extracellular matrix (ECM) has been focused to understand tumor progression in addition to the genetic mutation of cancer cells. Here, we prepared “staged tumorigenesis-mimicking matrices” which mimic in vivo ECM in tumor tissue at each malignant stage to understand the roles of ECM in tumor progression. Breast tumor cells, MDA-MB-231 (invasive), MCF-7 (non-invasive), and MCF-10A (benign) cells, were cultured to form their own ECM beneath the cells and formed ECM was prepared as staged tumorigenesis-mimicking matrices by decellularization treatment. Cells showed weak attachment on the matrices derived from MDA-MB-231 cancer cells. The proliferations of MDA-MB-231 and MCF-7 was promoted on the matrices derived from MDA-MB-231 cancer cells whereas MCF-10A cell proliferation was not promoted. MCF-10A cell proliferation was promoted on the matrices derived from MCF-10A cells. Chemoresistance of MDA-MB-231 cells against 5-fluorouracil increased on only matrices derived from MDA-MB-231 cells. Our results showed that the cells showed different behaviors on staged tumorigenesis-mimicking matrices according to the malignancy of cell sources for ECM preparation. Therefore, staged tumorigenesis-mimicking matrices might be a useful in vitro ECM models to investigate the roles of ECM in tumor progression.

  1. Breast cancer cell behaviors on staged tumorigenesis-mimicking matrices derived from tumor cells at various malignant stages

    International Nuclear Information System (INIS)

    Hoshiba, Takashi; Tanaka, Masaru

    2013-01-01

    Highlights: •Models mimicking ECM in tumor with different malignancy were prepared. •Cancer cell proliferation was suppressed on benign tumor ECM. •Benign tumor cell proliferation was suppressed on cancerous ECM. •Chemoresistance of cancer cell was enhanced on cancerous ECM. -- Abstract: Extracellular matrix (ECM) has been focused to understand tumor progression in addition to the genetic mutation of cancer cells. Here, we prepared “staged tumorigenesis-mimicking matrices” which mimic in vivo ECM in tumor tissue at each malignant stage to understand the roles of ECM in tumor progression. Breast tumor cells, MDA-MB-231 (invasive), MCF-7 (non-invasive), and MCF-10A (benign) cells, were cultured to form their own ECM beneath the cells and formed ECM was prepared as staged tumorigenesis-mimicking matrices by decellularization treatment. Cells showed weak attachment on the matrices derived from MDA-MB-231 cancer cells. The proliferations of MDA-MB-231 and MCF-7 was promoted on the matrices derived from MDA-MB-231 cancer cells whereas MCF-10A cell proliferation was not promoted. MCF-10A cell proliferation was promoted on the matrices derived from MCF-10A cells. Chemoresistance of MDA-MB-231 cells against 5-fluorouracil increased on only matrices derived from MDA-MB-231 cells. Our results showed that the cells showed different behaviors on staged tumorigenesis-mimicking matrices according to the malignancy of cell sources for ECM preparation. Therefore, staged tumorigenesis-mimicking matrices might be a useful in vitro ECM models to investigate the roles of ECM in tumor progression

  2. Investigating potential exogenous tumor initiating and promoting factors for Cutaneous T-Cell Lymphomas (CTCL), a rare skin malignancy

    DEFF Research Database (Denmark)

    Litvinov, Ivan V.; Shtreis, Anna; Kobayashi, Kenneth

    2016-01-01

    -Cell lymphotropic virus type 1 (HTLV1), Epstein-Barr virus (EBV), and herpes simplex virus (HSV). In this report, we review recent evidence evaluating the involvement of these agents in cancer initiation/progression. Most importantly, recent molecular experimental evidence documented for the first time that S....... aureus can activate oncogenic STAT3 signaling in malignant T cells. Specifically, S. aureus Enterotoxin type A (SEA) was recently shown to trigger non-malignant infiltrating T cells to release IL-2 and other cytokines. These signals upon binging to their cognate receptors on malignant T cells...

  3. Malignant inflammation in cutaneous T-cell lymphoma-a hostile takeover

    DEFF Research Database (Denmark)

    Krejsgaard, Thorbjørn; Lindahl, Lise M; Mongan, Nigel P

    2017-01-01

    Cutaneous T-cell lymphomas (CTCL) are characterized by the presence of chronically inflamed skin lesions containing malignant T cells. Early disease presents as limited skin patches or plaques and exhibits an indolent behavior. For many patients, the disease never progresses beyond this stage......, but in approximately one third of patients, the disease becomes progressive, and the skin lesions start to expand and evolve. Eventually, overt tumors develop and the malignant T cells may disseminate to the blood, lymph nodes, bone marrow, and visceral organs, often with a fatal outcome. The transition from early...... of the inflammatory environment, suppressing cellular immunity and anti-tumor responses while promoting a chronic inflammatory milieu that fuels their own expansion. Here, we review the inflammatory changes associated with disease progression in CTCL and point to their wider relevance in other cancer contexts. We...

  4. Neural Stem Cells: Implications for the Conventional Radiotherapy of Central Nervous System Malignancies

    International Nuclear Information System (INIS)

    Barani, Igor J.; Benedict, Stanley H.; Lin, Peck-Sun

    2007-01-01

    Advances in basic neuroscience related to neural stem cells and their malignant counterparts are challenging traditional models of central nervous system tumorigenesis and intrinsic brain repair. Neurogenesis persists into adulthood predominantly in two neurogenic centers: subventricular zone and subgranular zone. Subventricular zone is situated adjacent to lateral ventricles and subgranular zone is confined to the dentate gyrus of the hippocampus. Neural stem cells not only self-renew and differentiate along multiple lineages in these regions, but also contribute to intrinsic brain plasticity and repair. Ionizing radiation can depopulate these exquisitely sensitive regions directly or impair in situ neurogenesis by indirect, dose-dependent and inflammation-mediated mechanisms, even at doses <2 Gy. This review discusses the fundamental neural stem cell concepts within the framework of cumulative clinical experience with the treatment of central nervous system malignancies using conventional radiotherapy

  5. Melittin induces PTCH1 expression by down-regulating MeCP2 in human hepatocellular carcinoma SMMC-7721 cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiaoqin; Zhao, Bin; Cheng, Yahui; Yang, Yang; Huang, Cheng; Meng, Xiaoming; Wu, Baoming; Zhang, Lei; Lv, Xiongwen; Li, Jun, E-mail: xqwu01@foxmail.com

    2015-10-01

    Hepatocellular carcinoma (HCC) has a high mortality rate worldwide and still remains to be a noticeable public health problem. Therefore, new remedies are urgently needed. Melittin, a major component of bee venom, is known to suppress cell growth in various cancers including HCC. However, the mechanism of the anticancer effect of melittin on HCC has not been fully elucidated. It has been reported that Methyl-CpG binding protein 2 (MeCP2) plays a key role in tumor proliferation, apoptosis, migration and invasion. In the present study, we found the high expression of MeCP2 in human HCC tissues and in the SMMC-7721 cell line. MeCP2 silencing inhibited cell proliferation, while over-expression of MeCP2 promoted cell growth in SMMC-7721 cells. It indicates that MeCP2 may be an attractive target for human HCC. We further found that melittin could inhibit cell proliferation by reducing MeCP2 expression in vitro. Interestingly, the inhibitory effect of melittin on cell proliferation was due to a delay in G{sub 0}/G{sub 1} cell cycle progression, without influencing cell apoptosis. Next, we investigated the potential molecular mechanisms and found that MeCP2 could modulate Shh signaling in SMMC-7721 cells. Further study indicates that melittin may induce the demethylation of PTCH1 promoter, resulting in the increased expression of PTCH1. Furthermore, the expression of Shh and GLI1 was significantly lowered upon treatment of melittin. These results suggest that melittin can block Shh signaling in vitro. In short, these results indicate that melittin inhibits cell proliferation by down-regulating MeCP2 through Shh signaling in SMMC-7721 cells. - Highlights: • MeCP2 plays a key role in the proliferation of human HCC cells. • Melittin reduces MeCP2 expression in vitro. • Melittin induces G{sub 0}/G{sub 1} cell cycle arrest in SMMC-7721 cells. • MeCP2 modulates the Shh signaling pathway in SMMC-7721 cells. • Melittin blocks the Shh signaling pathway in SMMC-7721 cells.

  6. Melittin induces PTCH1 expression by down-regulating MeCP2 in human hepatocellular carcinoma SMMC-7721 cells

    International Nuclear Information System (INIS)

    Wu, Xiaoqin; Zhao, Bin; Cheng, Yahui; Yang, Yang; Huang, Cheng; Meng, Xiaoming; Wu, Baoming; Zhang, Lei; Lv, Xiongwen; Li, Jun

    2015-01-01

    Hepatocellular carcinoma (HCC) has a high mortality rate worldwide and still remains to be a noticeable public health problem. Therefore, new remedies are urgently needed. Melittin, a major component of bee venom, is known to suppress cell growth in various cancers including HCC. However, the mechanism of the anticancer effect of melittin on HCC has not been fully elucidated. It has been reported that Methyl-CpG binding protein 2 (MeCP2) plays a key role in tumor proliferation, apoptosis, migration and invasion. In the present study, we found the high expression of MeCP2 in human HCC tissues and in the SMMC-7721 cell line. MeCP2 silencing inhibited cell proliferation, while over-expression of MeCP2 promoted cell growth in SMMC-7721 cells. It indicates that MeCP2 may be an attractive target for human HCC. We further found that melittin could inhibit cell proliferation by reducing MeCP2 expression in vitro. Interestingly, the inhibitory effect of melittin on cell proliferation was due to a delay in G 0 /G 1 cell cycle progression, without influencing cell apoptosis. Next, we investigated the potential molecular mechanisms and found that MeCP2 could modulate Shh signaling in SMMC-7721 cells. Further study indicates that melittin may induce the demethylation of PTCH1 promoter, resulting in the increased expression of PTCH1. Furthermore, the expression of Shh and GLI1 was significantly lowered upon treatment of melittin. These results suggest that melittin can block Shh signaling in vitro. In short, these results indicate that melittin inhibits cell proliferation by down-regulating MeCP2 through Shh signaling in SMMC-7721 cells. - Highlights: • MeCP2 plays a key role in the proliferation of human HCC cells. • Melittin reduces MeCP2 expression in vitro. • Melittin induces G 0 /G 1 cell cycle arrest in SMMC-7721 cells. • MeCP2 modulates the Shh signaling pathway in SMMC-7721 cells. • Melittin blocks the Shh signaling pathway in SMMC-7721 cells.

  7. Downregulation of Endogenous Hydrogen Sulfide Pathway Is Involved in Mitochondrion-Related Endothelial Cell Apoptosis Induced by High Salt

    Directory of Open Access Journals (Sweden)

    Yanfang Zong

    2015-01-01

    Full Text Available Background. The study aimed to investigate whether endogenous H2S pathway was involved in high-salt-stimulated mitochondria-related vascular endothelial cell (VEC apoptosis. Methods. Cultured human umbilical vein endothelial cells (HUVECs were used in the study. H2S content in the supernatant was detected. Western blot was used to detect expression of cystathionine gamma-lyase (CSE, cleaved-caspase-3, and mitochondrial and cytosolic cytochrome c (cytc. Fluorescent probes were used to quantitatively detect superoxide anion generation and measure the in situ superoxide anion generation in HUVEC. Mitochondrial membrane pore opening, mitochondrial membrane potential, and caspase-9 activities were measured. The cell apoptosis was detected by cell death ELISA and TdT-mediated dUTP nick end labeling (TUNEL methods. Results. High-salt treatment downregulated the endogenous VEC H2S/CSE pathway, in association with increased generation of oxygen free radicals, decreased mitochondrial membrane potential, enhanced the opening of mitochondrial membrane permeability transition pore and leakage of mitochondrial cytc, activated cytoplasmic caspase-9 and caspase-3 and subsequently induced VEC apoptosis. However, supplementation of H2S donor markedly inhibited VEC oxidative stress and mitochondria-related VEC apoptosis induced by high salt. Conclusion. H2S/CSE pathway is an important endogenous defensive system in endothelial cells antagonizing high-salt insult. The protective mechanisms for VEC damage might involve inhibiting oxidative stress and protecting mitochondrial injury.

  8. KPNA7, a nuclear transport receptor, promotes malignant properties of pancreatic cancer cells in vitro

    International Nuclear Information System (INIS)

    Laurila, Eeva; Vuorinen, Elisa; Savinainen, Kimmo; Rauhala, Hanna; Kallioniemi, Anne

    2014-01-01

    Pancreatic cancer is an aggressive malignancy and one of the leading causes of cancer deaths. The high mortality rate is mostly due to the lack of appropriate tools for early detection of the disease and a shortage of effective therapies. We have previously shown that karyopherin alpha 7 (KPNA7), the newest member of the alpha karyopherin family of nuclear import receptors, is frequently amplified and overexpressed in pancreatic cancer. Here, we report that KPNA7 expression is absent in practically all normal human adult tissues but elevated in several pancreatic cancer cell lines. Inhibition of KPNA7 expression in AsPC-1 and Hs700T pancreatic cancer cells led to a reduction in cell growth and decreased anchorage independent growth, as well as increased autophagy. The cell growth effects were accompanied by an induction of the cell cycle regulator p21 and a G1 arrest of the cell cycle. Interestingly, the p21 induction was caused by increased mRNA synthesis and not defective nuclear transport. These data strongly demonstrate that KPNA7 silencing inhibits the malignant properties of pancreatic cancer cells in vitro and thereby provide the first evidence on the functional role for KPNA7 in human cancer. - Highlights: • KPNA7 expression is elevated in several pancreatic cancer cell lines. • KPNA7 silencing in high expressing cancer cells leads to growth inhibition. • The cell growth reduction is associated with p21 induction and G1 arrest. • KPNA7 silencing is also accompanied with increased autophagy

  9. Extraosseous extension of Gaucher cell deposits mimicking malignancy

    International Nuclear Information System (INIS)

    Hermann, G.; Shapiro, R.; Abdelwahab, I.F.; Klein, M.J.; Pastores, G.; Grabowski, G.

    1994-01-01

    Two cases are described in which patients with type I Gaucher disease developed extraosseous soft tissue masses consisting of Gaucher cell deposits. In one instance the mass destroyed the posterior cortex of the left distal femur and protruded into the soft tissues. In the second case the lesion involved the proximal tibia and gradually extended into the soft tissues. While the incidence of neoplastic disorder such as lymphoproliferative disease appears to be more common in Gaucher disease patients than in the general population, lesions of benign etiology that mimic these aggressive processes should be considered in the differential diagnosis when cortical destruction with coexisting soft tissue most is found in these patients. (orig.)

  10. Extraosseous extension of Gaucher cell deposits mimicking malignancy

    Energy Technology Data Exchange (ETDEWEB)

    Hermann, G. (Dept. of Radiology, Mount Sinai Medical Center of the City Univ. of New York, NY (United States)); Shapiro, R. (Dept. of Radiology, Mount Sinai Medical Center of the City Univ. of New York, NY (United States)); Abdelwahab, I.F. (Dept. of Radiology, Mount Sinai Medical Center of the City Univ. of New York, NY (United States)); Klein, M.J. (Dept. of Pathology, Mount Sinai Center of the City Univ. of New York, NY (United States)); Pastores, G. (Dept. of Human Genetics, Mount Sinai Medical Center of the City Univ. of New York, NY (United States)); Grabowski, G. (Cincinnati Children' s Hospital, Cincinnati Univ., Coll. of Medicine, OH (United States))

    1994-05-01

    Two cases are described in which patients with type I Gaucher disease developed extraosseous soft tissue masses consisting of Gaucher cell deposits. In one instance the mass destroyed the posterior cortex of the left distal femur and protruded into the soft tissues. In the second case the lesion involved the proximal tibia and gradually extended into the soft tissues. While the incidence of neoplastic disorder such as lymphoproliferative disease appears to be more common in Gaucher disease patients than in the general population, lesions of benign etiology that mimic these aggressive processes should be considered in the differential diagnosis when cortical destruction with coexisting soft tissue most is found in these patients. (orig.)

  11. Downregulation of cathepsin G reduces the activation of CD4+ T cells in murine autoimmune diabetes.

    Science.gov (United States)

    Zou, Fang; Lai, Xiaoyang; Li, Jing; Lei, Shuihong; Hu, Lei

    2017-01-01

    Type 1 diabetes mellitus (T1DM) is an autoimmune disease due to progressive injury of islet cells mediated by T lymphocytes (T cells). Our previous studies have shown that only cathepsin G (CatG), not other proteases, is involved in the antigen presentation of proinsulin, and if the presentation is inhibited, the activation of CD4+ T cells induced by proinsulin is alleviated in T1DM patients, and CatG-specific inhibitor reduces the activation of CD4+ cells induced by proinsulin in T1DM patients. Therefore, we hypothesize that CatG may play an important role in the activation of CD4+ T cells in T1DM. To this end, mouse studies were conducted to demonstrate that CatG impacts the activation of CD4+ T cells in non-obese diabetic (NOD) mice. CatG gene expression and the activation of CD4+ T cells were examined in NOD mice. The effect of CatG inhibitor was investigated in NOD mice on the activation of CD4+ T cells, islet β cell function, islet inflammation and β-cell apoptosis. Furthermore, NOD mice were injected with CatG siRNA in early stage to observe the effect of CatG knockdown on the activation status of CD4+ T cells and the progression of diabetes. During the pathogenesis of diabetes, the expression level of CatG in NOD mice gradually increased and the CD4+ T cells were gradually activated, resulting in more TH1 cells and less TH2 and Treg cells. Treatment with CatG-specific inhibitor reduced the blood glucose level, improved the function of islet β cells and reduced the activation of CD4+ T cells. Early application of CatG siRNA improved the function of islet β cells, reduced islet inflammation and β cell apoptosis, and lowered the activation level of CD4+ T cells, thus slowing down the progression of diabetes.

  12. Down-regulation of Transducin-Like Enhancer of Split protein 4 in hepatocellular carcinoma promotes cell proliferation and epithelial-Mesenchymal-Transition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiao-cai; Xiao, Cui-cui; Li, Hua [Department of Hepatic Surgery, 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou (China); Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou (China); Tai, Yan; Zhang, Qi [Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou (China); Yang, Yang, E-mail: yysysu2@163.com [Department of Hepatic Surgery, 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou (China)

    2016-08-19

    Background: Transducin-Like Enhancer of Split protein 4 (TLE4) has been reported to be involved in some subsets of acute myeloid leukemia and colorectal cancer. In the present study, we aimed to explore the role of TLE4 in tumorigenesis and cancer progression in hepatocellular carcinoma (HCC). Methods: The expression pattern of TLE4 in HCC was determined by Western-blot and qRT-PCR, gain-of-function and loss-of-function was used to explore the biological role of TLE4 in HCC cells. A xenograft model was established to confirm its effects on proliferation. Results: The protein expression levels of TLE4 were significantly down-regulated in HCC tissues compared to matched adjacent normal liver tissues. In vitro, down-regulation of TLE4 in Huh7 or SMMC-7721 promoted cell proliferation and ectopical expression of TLE4 in Hep3B or Bel-7404 suppressed cell proliferation. In addition, the cell colony formation ability was enhanced after down-regulation of TLE4 expression in Huh-7 but suppressed after over-expression in Hep3B. Furthermore, down-regulation of TLE4 increased the cell invasion ability, as well as increased the expression level of Vimentin and decreased that of E-cadherin, indicating a phenotype of epithelial-mesenchymal transition (EMT) in HCC cells. On the contrary, ectopical expression of TLE4 in HCC cells decreased the cell invasion ability and inhibited EMT. In vivo, compared to control group, xenograft tumor volumes were significantly decreased in TLE4 overexpression group. Conclusions: These results demonstrated that TLE4 might play important regulatory roles in cellular proliferation and EMT process in HCC. - Highlights: • TLE4 is significantly down-regulated in HCC samples. • Down regulated of TLE4 in HCC cells promotes cell proliferation. • Down regulated of TLE4 in HCC cells promotes epithelial-to-mesenchymal transition.

  13. RGD-conjugated gold nanorods induce radiosensitization in melanoma cancer cells by downregulating αvβ3 expression

    Directory of Open Access Journals (Sweden)

    Pang B

    2012-02-01

    Full Text Available Wencai Xu1, Teng Luo2, Ping Li1, Chuanqing Zhou2, Daxiang Cui3, Bo Pang4, Qiushi Ren4, Shen Fu11Department of Radiation Oncology, Shanghai Sixth People's Hospital, 2School of Biomedical Engineering, and 3National Key Laboratory of Nano/Micro Fabrication Technology, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Institute of Micro-Nano Science and Technology, Shanghai Jiao Tong University, Shanghai, 4Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, People's Republic of ChinaBackground: Melanoma is known to be radioresistant and traditional treatments have been intractable. Therefore, novel approaches are required to improve the therapeutic efficacy of melanoma treatment. In our study, gold nanorods conjugated with Arg-Gly-Asp peptides (RGD-GNRs were used as a sensitizer to enhance the response of melanoma cells to 6 mV radiation.Methods and materials: A375 melanoma cells were treated by gold nanorods or RGD-GNRs with or without irradiation. The antiproliferative impact of the treatments was measured by MTT assay. Radiosensitizing effects were determined by colony formation assay. Apoptosis and cell cycle data were measured by flow cytometry. Integrin αvβ3expression was also investigated by flow cytometry.Results: Addition of RGD-GNRs enhanced the radiosensitivity of A375 cells with a dose-modifying factor of 1.35, and enhanced radiation-induced apoptosis. DNA flow cytometric analysis indicated that RGD-GNRs plus irradiation induced significant G2/M phase arrest in A375 cells. Both spontaneous and radiation-induced expressions of integrin αvβ3 were downregulated by RGD-GNRs.Conclusion: Our study indicated that RGD-GNRs could sensitize melanoma A375 cells to irradiation. It was hypothesized that this was mainly through downregulation of radiation-induced αvβ3, in addition to induction of a higher proportion of cells within the G2/M phase. The combination of RGD-GNRs and

  14. Down-regulated βIII-tubulin Expression Can Reverse Paclitaxel Resistance in A549/Taxol Cells Lines

    Directory of Open Access Journals (Sweden)

    Yinling ZHUO

    2014-08-01

    Full Text Available Background and objective Chemotherapy drug resistance is the primary causes of death in patients with pulmonary carcinoma which make tumor recurrence or metastasis. β-tubulin is the main cell targets of anti-microtubule drug. Increased expression of βIII-tubulin has been implicated in non-small cell lung cancer (NSCLC cell lines. To explore the relationship among the expression level of βIII-tubulin and the sensitivity of A549/Taxolcell lines to Taxol and cell cycles and cell apoptosis by RNA interference-mediated inhibition of βIII-tubulin in A549/Taxol cells. Methods Three pairs of siRNA targetd βIII-tubulin were designed and prepared, which were transfected into A549/Taxol cells using LipofectamineTM 2000. We detected the expression of βIII-tubulin mRNA using Real-time fluorescence qRT-PCR. Tedhen we selected the most efficient siRNA by the expression of βIII-tubulin mRNA in transfected group. βIII-tubulin protein level were mesured by Western blot. The taxol sensitivity in transfected group were evaluated by MTT assay. And the cell apoptosis and cell cycles were determined by flow cytometry. Results βIII-tubulin mRNA levels in A549/Taxol cells were significantly decreased in transfected grop by Real-time qRT-PCR than control groups. And βIII-tubulin siRNA-1 sequence showed the highest transfection efficiency, which was (87.73±4.87% (P<0.01; Western blot results showed that the expressional level of BIII tublin protein was significantly down-reulated in the transfectant cells than thant in the control cells. By MTT assay, we showed that the inhibition ratio of Taxol to A549/Taxol cells transfeced was higher than that of control group (51.77±4.60% (P<0.01. The early apoptosis rate of A549/Taxol cells in transfected group were significantly higher than that of control group (P<0.01; G2-M content in taxol group obviously increased than untreated samples by the cell cycle (P<0.05. Conclusion βIII-tubulin down-regulated significantly

  15. Effect and Mechanism of EGFL7 Downregulation in Human Osteosarcoma Cells on the Biological Function of Co-cultured HUVEC

    Directory of Open Access Journals (Sweden)

    Xia Li

    2018-03-01

    Full Text Available Background: Even though epidermal growth factor-like domain 7 is known to be overexpressed in osteosarcoma and is associated with poor clinical outcome, few reports are available regarding its mechanism. Aims: The objective of this study was to explore the effect and mechanism of downregulating epidermal growth factor-like domain 7 expression in a human osteosarcoma cell line on the biological function of co-cultured human umbilical vein endothelial cells. Study Design: Cell study. Methods: In the present study, human osteosarcoma cell lines U2OS, Saos-2, HOS, and MG63, and normal human osteoblasts were cultured in Dulbecco’s Modified Eagle Medium containing 10% fetal bovine serum and 1x antibiotics at 37 °C and 5% CO2 in an incubator. Of the four osteosarcoma cell lines, U2OS expresses the highest level of epidermal growth factor-like domain 7 mRNA as determined using quantitative reverse transcription polymerase chain reaction. With the knockdown of epidermal growth factor-like domain 7 in U2OS and human umbilical vein endothelial cells by lentivirus, the proliferation and apoptosis of U2OS and human umbilical vein endothelial cells were investigated using MTT and flow cytometry assays. After the co-culture of human umbilical vein endothelial cells and epidermal growth factor-like domain 7-knockdown U2OS, the in vitro effects on cell proliferation, apoptosis, adhesion, migration, and the angiogenic ability of human umbilical vein endothelial cells were detected using MTT, flow cytometry, Transwell, and tube formation assays, respectively. The expressions of phosphoinositide 3-kinase, phospho-Akt, total Akt, and vascular endothelial growth factor in human umbilical vein endothelial cells were detected using western blot assay. Results: Lentivirus with epidermal growth factor-like domain 7 shRNA could not significantly affect the proliferation and apoptosis of both U2OS and human umbilical vein endothelial cells, whereas the knockdown of

  16. Down-regulation of survivin by oxaliplatin diminishes radioresistance of head and neck squamous carcinoma cells

    International Nuclear Information System (INIS)

    Khan, Zakir; Khan, Noor; Tiwari, Ram P.; Patro, Ishan K.; Prasad, G.B.K.S.; Bisen, Prakash S.

    2010-01-01

    Background: Oxaliplatin is integrated in treatment strategies against a variety of cancers including radiation protocols. Herein, as a new strategy we tested feasibility and rationale of oxaliplatin in combination with radiation to control proliferation of head and neck squamous cell carcinoma (HNSCC) cells and discussed survivin-related signaling and apoptosis induction. Methods: Cytotoxicity and apoptosis induced by radiation and/or oxaliplatin were examined in relation to survivin status using two HNSCC cell lines viz., Cal27 and NT8e, and one normal 293-cell line. Survivin gene knockdown by siRNA was also tested in relevance to oxaliplatin-mediated radiosensitization effects. Results: Survivin plays a critical role in mediating radiation-resistance in part through suppression of apoptosis via a caspase-dependent mechanism. Oxaliplatin treatment significantly decreased expression of survivin in cancer cells within 24-72 h. Apoptotic cells and caspase-3 activity were increased parallely with decrease in cell viability, if irradiated during this sensitive period. The cytotoxicity of oxaliplatin and radiation combination was greater than additive. Survivin gene knockdown experiments have demonstrated the role of survivin in radiosensitization of cancer cells mediated by oxaliplatin. Conclusions: Higher expression of survivin is a critical factor for radioresistance in HNSCC cell lines. Pre-treatment of cancer cells with oxaliplatin significantly increased the radiosensitivity through induction of apoptosis by potently inhibiting survivin.

  17. CD70 reverse signaling enhances NK cell function and immunosurveillance in CD27-expressing B-cell malignancies.

    Science.gov (United States)

    Al Sayed, Mohamad F; Ruckstuhl, Carla A; Hilmenyuk, Tamara; Claus, Christina; Bourquin, Jean-Pierre; Bornhauser, Beat C; Radpour, Ramin; Riether, Carsten; Ochsenbein, Adrian F

    2017-07-20

    The interaction of the tumor necrosis factor receptor (TNFR) CD27 with its ligand CD70 is an emerging target to treat cancer. CD27 signaling provides costimulatory signals to cytotoxic T cells but also increases the frequency of regulatory T cells. Similar to other TNFR ligands, CD70 has been shown to initiate intracellular signaling pathways (CD70 reverse signaling). CD27 is expressed on a majority of B-cell non-Hodgkin lymphoma, but its role in the immune control of lymphoma and leukemia is unknown. We therefore generated a cytoplasmic deletion mutant of CD27 (CD27-trunc) to study the role of CD70 reverse signaling in the immunosurveillance of B-cell malignancies in vivo. Expression of CD27-trunc on malignant cells increased the number of tumor-infiltrating interferon γ-producing natural killer (NK) cells. In contrast, the antitumoral T-cell response remained largely unchanged. CD70 reverse signaling in NK cells was mediated via the AKT signaling pathway and increased NK cell survival and effector function. The improved immune control by activated NK cells prolonged survival of CD27-trunc-expressing lymphoma-bearing mice. Finally, CD70 reverse signaling enhanced survival and effector function of human NK cells in a B-cell acute lymphoblastic leukemia xenotransplants model. Therefore, CD70 reverse signaling in NK cells contributes to the immune control of CD27-expressing B-cell lymphoma and leukemia. © 2017 by The American Society of Hematology.

  18. Down-regulation of LRP1B in colon cancer promoted the growth and migration of cancer cells.

    Science.gov (United States)

    Wang, Zhiqiang; Sun, Peng; Gao, Chun; Chen, Ji; Li, Jun; Chen, Zhonghao; Xu, Ming; Shao, Jun; Zhang, Yunpeng; Xie, Jiang

    2017-08-01

    Aberrant activation of beta-catenin/TCF signaling is one of the hallmarks of colon cancer. It is of great interest to study the mechanism for the regulation of beta-catenin/TCF signaling. In this study, it was found that LRP1B was down-regulated in colon cancer tissues and inhibited the growth, migration and metastasis of colon cancer cells. The molecular mechanism study revealed that LRP1B interacted with DVL2, inhibited the interaction between DVL2 and Axin, and negatively regulated beta-catenin/TCF signaling. Taken together, our study demonstrated the suppressive roles of LRP1B in the progression of colon cancer, implicating that restoring the function of LRP1B would be a promising strategy for the treatment of colon cancer. Copyright © 2017. Published by Elsevier Inc.

  19. Downregulation of taurine uptake in multidrug resistant Ehrlich ascites tumor cells

    DEFF Research Database (Denmark)

    Poulsen, K A; Litman, Thomas; Eriksen, J

    2002-01-01

    In daunorubicin resistant Ehrlich ascites tumor cells (DNR), the initial taurine uptake was reduced by 56% as compared to the parental, drug sensitive Ehrlich cells. Kinetic experiments indicated that taurine uptake in Ehrlich cells occurs via both high- and low-affinity transporters. The maximal...... rate constant for the initial taurine uptake was reduced by 45% (high-affinity system) and 49% (low affinity system) in the resistant subline whereas the affinity of the transporters to taurine was unchanged. By immunoblotting we identified 3 TauT protein bands in the 50-70 kDa region. A visible...... reduction in the intensity of the band with the lowest molecular weight was observed in resistant cells. Quantitative RT-PCR indicated a significant reduction in the amount of taurine transporter mRNA in the resistant cells. Drug resistance in DNR Ehrlich cells is associated with overexpression of the mdr1...

  20. 3-Bromopyruvate induces apoptosis in breast cancer cells by downregulating Mcl-1 through the PI3K/Akt signaling pathway.

    Science.gov (United States)

    Liu, Zhe; Zhang, Yuan-Yuan; Zhang, Qian-Wen; Zhao, Su-Rong; Wu, Cheng-Zhu; Cheng, Xiu; Jiang, Chen-Chen; Jiang, Zhi-Wen; Liu, Hao

    2014-04-01

    The hexokinase inhibitor 3-bromopyruvate (3-BrPA) can inhibit glycolysis in tumor cells to reduce ATP production, resulting in apoptosis. However, as 3-BrPA is an alkylating agent, its cytotoxic action may be induced by other molecular mechanisms. The results presented here reveal that 3-BrPA-induced apoptosis is caspase independent. Further, 3-BrPA induces the generation of reactive oxygen species in MDA-MB-231 cells, leading to mitochondria-mediated apoptosis. These results suggest that caspase-independent apoptosis may be induced by the generation of reactive oxygen species. In this study, we also demonstrated that 3-BrPA induces apoptosis through the downregulation of myeloid cell leukemia-1 (Mcl-1) in MDA-MB-231 breast cancer cells. The results of Mcl-1 knockdown indicate that Mcl-1 plays an important role in 3-BrPA-induced apoptosis. Further, the upregulation of Mcl-1 expression in 3-BrPA-treated MDA-MB-231 cells significantly increases cell viability. In addition, 3-BrPA treatment resulted in the downregulation of p-Akt, suggesting that 3-BrPA may downregulate Mcl-1 through the phosphoinositide-3-kinase/Akt pathway. These findings indicate that 3-BrPA induces apoptosis in breast cancer cells by downregulating Mcl-1 through the phosphoinositide-3-kinase/Akt signaling pathway.

  1. Malignant cutaneous T-cell lymphoma cells express IL-17 utilizing the Jak3/Stat3 signaling pathway

    DEFF Research Database (Denmark)

    Krejsgaard, Thorbjørn Frej; Ralfkiær, Ulrik; Clasen-Linde, Erik

    2011-01-01

    IL-17 is a proinflammatory cytokine that is crucial for the host's protection against a range of extracellular pathogens. However, inappropriately regulated expression of IL-17 is associated with the development of inflammatory diseases and cancer. In cutaneous T-cell lymphoma (CTCL), malignant T...

  2. DMBT1 expression is down-regulated in breast cancer

    International Nuclear Information System (INIS)

    Braidotti, P; Pietra, GG; Nuciforo, PG; Mollenhauer, J; Poustka, A; Pellegrini, C; Moro, A; Bulfamante, G; Coggi, G; Bosari, S

    2004-01-01

    We studied the expression of DMBT1 (deleted in malignant brain tumor 1), a putative tumor suppressor gene, in normal, proliferative, and malignant breast epithelium and its possible relation to cell cycle. Sections from 17 benign lesions and 55 carcinomas were immunostained with anti DMBT1 antibody (DMBTh12) and sections from 36 samples, were double-stained also with anti MCM5, one of the 6 pre-replicative complex proteins with cell proliferation-licensing functions. DMBT1 gene expression at mRNA level was assessed by RT-PCR in frozen tissues samples from 39 patients. Normal glands and hyperplastic epithelium in benign lesions displayed a luminal polarized DMBTh12 immunoreactivity. Normal and hyperplastic epithelium adjacent to carcinomas showed a loss of polarization, with immunostaining present in basal and perinuclear cytoplasmic compartments. DMBT1 protein expression was down-regulated in the cancerous lesions compared to the normal and/or hyperplastic epithelium adjacent to carcinomas (3/55 positive carcinomas versus 33/42 positive normal/hyperplastic epithelia; p = 0.0001). In 72% of cases RT-PCR confirmed immunohistochemical results. Most of normal and hyperplastic mammary cells positive with DMBTh12 were also MCM5-positive. The redistribution and up-regulation of DMBT1 in normal and hyperplastic tissues flanking malignant tumours and its down-regulation in carcinomas suggests a potential role in breast cancer. Moreover, the concomitant expression of DMTB1 and MCM5 suggests its possible association with the cell-cycle regulation

  3. Downregulation of miR-210 expression inhibits proliferation, induces apoptosis and enhances radiosensitivity in hypoxic human hepatoma cells in vitro

    International Nuclear Information System (INIS)

    Yang, Wei; Sun, Ting; Cao, Jianping; Liu, Fenju; Tian, Ye; Zhu, Wei

    2012-01-01

    Hypoxia is a common feature of solid tumors and an important contributor to tumor radioresistance. miR-210 is the most consistently and robustly induced microRNA under hypoxia in different types of tumor cells and normal cells. In the present study, to explore the feasibility of miR-210 as an effective therapeutic target, lentiviral-mediated anti-sense miR-210 gene transfer technique was employed to downregulate miR-210 expression in hypoxic human hepatoma SMMC-7721, HepG2 and HuH7 cells, and phenotypic changes of which were analyzed. Hypoxia led to an increased hypoxia inducible factor-1α (HIF-1α) and miR-210 expression and cell arrest in the G 0 /G 1 phase in all cell lines. miR-210 downregulation significantly suppressed cell viability, induced cell arrest in the G 0 /G 1 phase, increased apoptotic rate and enhanced radiosensitivity in hypoxic human hepatoma cells. Moreover, apoptosis-inducing factor, mitochondrion-associated, 3 (AIFM3) was identified as a direct target gene of miR-210. AIFM3 downregulation by siRNA attenuated radiation induced apoptosis in miR-210 downregulated hypoxic human hepatoma cells. Taken together, these data suggest that miR-210 might be a potential therapeutic target and specific inhibition of miR-210 expression in combination with radiotherapy might be expected to exert strong anti-tumor effect on hypoxic human hepatoma cells. -- Highlights: ► miR-210 downregulation radiosensitized hypoxic hepatoma. ► AIFM3 was identified as a direct target gene of miR-210. ► miR-210 might be a therapeutic target to hypoxic hepatoma.

  4. Downregulation of miR-210 expression inhibits proliferation, induces apoptosis and enhances radiosensitivity in hypoxic human hepatoma cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Wei, E-mail: detachedy@yahoo.com.cn [Department of Radiobiology, School of Radiological Medicine and Protection, Soochow University, Suzhou (China); Sun, Ting [Brain and Nerve Research Laboratory, The First Affiliated Hospital, Soochow University, Suzhou (China); Cao, Jianping; Liu, Fenju [Department of Radiobiology, School of Radiological Medicine and Protection, Soochow University, Suzhou (China); Tian, Ye [Department of Radiotherapy and Oncology, The Second Affiliated Hospital, Soochow University, Suzhou (China); Zhu, Wei [Department of Radiobiology, School of Radiological Medicine and Protection, Soochow University, Suzhou (China)

    2012-05-01

    Hypoxia is a common feature of solid tumors and an important contributor to tumor radioresistance. miR-210 is the most consistently and robustly induced microRNA under hypoxia in different types of tumor cells and normal cells. In the present study, to explore the feasibility of miR-210 as an effective therapeutic target, lentiviral-mediated anti-sense miR-210 gene transfer technique was employed to downregulate miR-210 expression in hypoxic human hepatoma SMMC-7721, HepG2 and HuH7 cells, and phenotypic changes of which were analyzed. Hypoxia led to an increased hypoxia inducible factor-1{alpha} (HIF-1{alpha}) and miR-210 expression and cell arrest in the G{sub 0}/G{sub 1} phase in all cell lines. miR-210 downregulation significantly suppressed cell viability, induced cell arrest in the G{sub 0}/G{sub 1} phase, increased apoptotic rate and enhanced radiosensitivity in hypoxic human hepatoma cells. Moreover, apoptosis-inducing factor, mitochondrion-associated, 3 (AIFM3) was identified as a direct target gene of miR-210. AIFM3 downregulation by siRNA attenuated radiation induced apoptosis in miR-210 downregulated hypoxic human hepatoma cells. Taken together, these data suggest that miR-210 might be a potential therapeutic target and specific inhibition of miR-210 expression in combination with radiotherapy might be expected to exert strong anti-tumor effect on hypoxic human hepatoma cells. -- Highlights: Black-Right-Pointing-Pointer miR-210 downregulation radiosensitized hypoxic hepatoma. Black-Right-Pointing-Pointer AIFM3 was identified as a direct target gene of miR-210. Black-Right-Pointing-Pointer miR-210 might be a therapeutic target to hypoxic hepatoma.

  5. Mast cell stabilization alleviates acute lung injury after orthotopic autologous liver transplantation in rats by downregulating inflammation.

    Directory of Open Access Journals (Sweden)

    Ailan Zhang

    Full Text Available BACKGROUND: Acute lung injury (ALI is one of the most severe complications after orthotopic liver transplantation. Amplified inflammatory response after transplantation contributes to the process of ALI, but the mechanism underlying inflammation activation is not completely understood. We have demonstrated that mast cell stabilization attenuated inflammation and ALI in a rodent intestine ischemia/reperfusion model. We hypothesized that upregulation of inflammation triggered by mast cell activation may be involve in ALI after liver transplantation. METHODS: Adult male Sprague-Dawley rats received orthotopic autologous liver transplantation (OALT and were executed 4, 8, 16, and 24 h after OALT. The rats were pretreated with the mast cell stabilizers cromolyn sodium or ketotifen 15 min before OALT and executed 8 h after OALT. Lung tissues and arterial blood were collected to evaluate lung injury. β-hexosaminidase and mast cell tryptase levels were assessed to determine the activation of mast cells. Tumor necrosis factor α (TNF-α, interleukin (IL-1β and IL-6 in serum and lung tissue were analyzed by enzyme-linked immunosorbent assay. Nuclear factor-kappa B (NF-κB p65 translocation was assessed by Western blot. RESULTS: The rats that underwent OALT exhibited severe pulmonary damage with a high wet-to-dry ratio, low partial pressure of oxygen, and low precursor surfactant protein C levels, which corresponded to the significant elevation of pro-inflammatory cytokines, β-hexosaminidase, and tryptase levels in serum and lung tissues. The severity of ALI progressed and maximized 8 h after OALT. Mast cell stabilization significantly inhibited the activation of mast cells, downregulated pro-inflammatory cytokine levels and translocation of NF-κB, and attenuated OALT-induced ALI. CONCLUSIONS: Mast cell activation amplified inflammation and played an important role in the process of post-OALT related ALI.

  6. Fe-MIL-101 exhibits selective cytotoxicity and inhibition of angiogenesis in ovarian cancer cells via downregulation of MMP.

    Science.gov (United States)

    Wang, Jiaqiang; Chen, Daomei; Li, Bin; He, Jiao; Duan, Deliang; Shao, Dandan; Nie, Minfang

    2016-05-18

    Though metal-organic frameworks (MOFs) have inspired potential applications in biomedicine, cytotoxicity studies of MOFs have been relatively rare. Here we demonstrate for the first time that an easily available MOF, Fe