WorldWideScience

Sample records for down-regulates hmgb1 rage

  1. Tolerization with BLP down-regulates HMGB1 a critical mediator of sepsis-related lethality.

    LENUS (Irish Health Repository)

    Coffey, J Calvin

    2012-02-03

    Tolerization with bacterial lipoprotein (BLP) affords a significant survival benefit in sepsis. Given that high mobility group box protein-1 (HMGB1) is a recognized mediator of sepsis-related lethality, we determined if tolerization with BLP leads to alterations in HMGB1. In vitro, BLP tolerization led to a reduction in HMGB1 gene transcription. This was mirrored at the protein level, as HMGB1 protein expression and release were reduced significantly in BLP-tolerized human THP-1 monocytic cells. BLP tolerance in vivo led to a highly significant, long-term survival benefit following challenge with lethal dose BLP in C57BL\\/6 mice. This was associated with an attenuation of HMGB1 release into the circulation, as evidenced by negligible serum HMGB1 levels in BLP-tolerized mice. Moreover, HMGB1 levels in peritoneal macrophages from BLP-tolerized mice were reduced significantly. Hence, tolerization with BLP leads to a down-regulation of HMGB1 protein synthesis and release. The improved survival associated with BLP tolerance could thus be explained by a reduction in HMGB1, were the latter associated with lethality in BLP-related sepsis. In testing this hypothesis, it was noted that neutralization of HMGB1, using anti-HMGB1 antibodies, abrogated BLP-associated lethality almost completely. To conclude, tolerization with BLP leads to a down-regulation of HMGB1, thus offering a novel means of targeting the latter. HMGB1 is also a mediator of lethality in BLP-related sepsis.

  2. Quantitative PCR and immunohistochemical analyses of HMGB1 and RAGE expression in canine disseminated histiocytic sarcoma (malignant histiocytosis).

    Science.gov (United States)

    Sterenczak, Katharina A; Kleinschmidt, Sven; Wefstaedt, Patrick; Eberle, Nina; Hewicker-Trautwein, Marion; Bullerdiek, Jörn; Nolte, Ingo; Murua Escobar, Hugo

    2011-05-01

    Disorders of histiocytic origin affecting humans and dogs share various similarities. Canine disseminated histiocytic sarcoma (DHS) (formerly known as malignant histiocytosis) is an aggressive neoplasm of interstitial dendritic cells (DCs). The receptor for glycation end products (RAGE) and the high mobility group box1 protein (HMGB1) have been shown to be required for the maturation and migration of DCs. Thus, deregulation of the expression of these genes could have a major effect on the progression of histiocytic disorders. Neoplastic canine DHS samples and non-neoplastic control samples were analysed immunohistochemically and via real-time PCR. Significant down-regulation of RAGE in the lung tumour samples and down-regulation of HMGB1 in the lung, lymph node and spleen tumour samples were detected compared to their non-neoplastic counterparts. RAGE and HMGB1 expression down-regulation in canine DHS points to a role in the progression of histiocytic disorders.

  3. Activation of the HMGB1-RAGE axis upregulates TH expression in dopaminergic neurons via JNK phosphorylation.

    Science.gov (United States)

    Kim, Soo Jeong; Ryu, Min Jeong; Han, Jeongsu; Jang, Yunseon; Kim, Jungim; Lee, Min Joung; Ryu, Ilhwan; Ju, Xianshu; Oh, Eungseok; Chung, Woosuk; Kweon, Gi Ryang; Heo, Jun Young

    2017-11-04

    The derangement of tyrosine hydroxylase (TH) activity reduces dopamine synthesis and is implicated in the pathogenesis of Parkinson's disease. However, the extracellular modulator and intracellular regulatory mechanisms of TH have yet to be identified. Recently, high-mobility group box 1 (HMGB1) was reported to be actively secreted from glial cells and is regarded as a mediator of dopaminergic neuronal loss. However, the mechanism for how HMGB1 affects TH expression, particularly through the receptor for advanced glycation endproducts (RAGE), has not yet been investigated. We found that recombinant HMGB1 (rHMGB1) upregulates TH mRNA expression via simultaneous activation of JNK phosphorylation, and this induction of TH expression is blocked by inhibitors of RAGE and JNK. To investigate how TH expression levels change through the HMGB1-RAGE axis as a result of MPP + toxicity, we co-treated SN4741 dopaminergic cells with MPP + and rHMGB1. rHMGB1 blocked the reduction of TH mRNA following MPP + treatment without altering cell survival rates. Our results suggest that HMGB1 upregulates TH expression to maintain dopaminergic neuronal function via activating RAGE, which is dependent on JNK phosphorylation. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Expression of RAGE and HMGB1 in thymic epithelial tumors, thymic hyperplasia and regular thymic morphology.

    Directory of Open Access Journals (Sweden)

    Bernhard Moser

    Full Text Available Recently, a role of the receptor for advanced glycation endproducts (RAGE in myasthenia gravis was described. RAGE and its ligand high mobility group box 1 (HMGB1 play key roles in autoimmunity and cancer. To test whether these molecules are involved in patients with thymic abnormalities we applied immunohistochemical analysis in 33 cases of thymic epithelial tumors, comprising 27 thymomas and 6 thymic carcinomas, and 21 nonneoplastic thymuses. Both molecules were detected in neoplastic epithelial cells: RAGE staining was most intense in WHO type B2 thymomas and thymic carcinomas (pB3>thymic carcinoma (p<0.001. Conversely, HMGB1 cytoplasmic staining intensities were as follows: A and AB (none, B1 (strong, B2 (moderate, B3 and thymic carcinoma (weak; (p<0.001. Fetal thymic tissue showed a distinct expression of RAGE and HMGB1 in subcapsular cortical epithelial cells which was found in 50% of myasthenic patients. Furthermore RAGE and HMGB1 were expressed in thymocytes, macrophages, Hassall's corpuscles, thymic medulla, and germinal center cells in myasthenic patients. Immunohistochemistry results were complemented by systemic measurements (immunosorbent assay: serum levels of soluble RAGE were significantly reduced in patients with epithelial tumors (p = 0.008; and in invasive tumors (p = 0.008. Whereas RAGE was equally reduced in thymic hyperplasia and epithelial tumors (p = 0.003, HMGB1 was only elevated in malignancies (p = 0.036. Results were most pronounced in thymic carcinomas. Thus, RAGE and HMGB1 are involved in the (patho-physiology of thymus, as evidenced by differentiated thymic and systemic expression patterns that may act as diagnostic or therapeutic targets in autoimmune disease and cancer.

  5. Expression of RAGE and HMGB1 in thymic epithelial tumors, thymic hyperplasia and regular thymic morphology.

    Science.gov (United States)

    Moser, Bernhard; Janik, Stefan; Schiefer, Ana-Iris; Müllauer, Leonhard; Bekos, Christine; Scharrer, Anke; Mildner, Michael; Rényi-Vámos, Ferenc; Klepetko, Walter; Ankersmit, Hendrik Jan

    2014-01-01

    Recently, a role of the receptor for advanced glycation endproducts (RAGE) in myasthenia gravis was described. RAGE and its ligand high mobility group box 1 (HMGB1) play key roles in autoimmunity and cancer. To test whether these molecules are involved in patients with thymic abnormalities we applied immunohistochemical analysis in 33 cases of thymic epithelial tumors, comprising 27 thymomas and 6 thymic carcinomas, and 21 nonneoplastic thymuses. Both molecules were detected in neoplastic epithelial cells: RAGE staining was most intense in WHO type B2 thymomas and thymic carcinomas (pB3>thymic carcinoma (pepithelial cells which was found in 50% of myasthenic patients. Furthermore RAGE and HMGB1 were expressed in thymocytes, macrophages, Hassall's corpuscles, thymic medulla, and germinal center cells in myasthenic patients. Immunohistochemistry results were complemented by systemic measurements (immunosorbent assay): serum levels of soluble RAGE were significantly reduced in patients with epithelial tumors (p = 0.008); and in invasive tumors (p = 0.008). Whereas RAGE was equally reduced in thymic hyperplasia and epithelial tumors (p = 0.003), HMGB1 was only elevated in malignancies (p = 0.036). Results were most pronounced in thymic carcinomas. Thus, RAGE and HMGB1 are involved in the (patho-)physiology of thymus, as evidenced by differentiated thymic and systemic expression patterns that may act as diagnostic or therapeutic targets in autoimmune disease and cancer.

  6. Protocatechuic aldehyde ameliorates experimental pulmonary fibrosis by modulating HMGB1/RAGE pathway

    International Nuclear Information System (INIS)

    Zhang, Liang; Ji, Yunxia; Kang, Zechun; Lv, Changjun; Jiang, Wanglin

    2015-01-01

    An abnormal high mobility group box 1 (HMGB1) activation and a decrease in receptor for advanced glycation end-product (RAGE) play a key role in the pathogenesis of pulmonary fibrosis. Protocatechuic aldehyde (PA) is a naturally occurring compound, which is extracted from the degradation of phenolic acids. However, whether PA has anti-fibrotic functions is unknown. In this study, the effects of PA on the transforming growth factor-β1 (TGF-β1)-mediated epithelial–mesenchymal transition (EMT) in A549 cells, on the apoptosis of human type I alveolar epithelial cells (AT I), on the proliferation of human lung fibroblasts (HLF-1) in vitro, and on bleomycin (BLM)-induced pulmonary fibrosis in vivo were investigated. PA treatment resulted in a reduction of EMT in A549 cells with a decrease in vimentin and HMGB, an increase of E-cadherin and RAGE, a reduction of HLF-1 proliferation with a decrease of fibroblast growth factor 2 (FGF-2) and platelet-derived growth factor (PDGF). Apoptosis of AT I was attenuated with an increase of RAGE. PA ameliorated BLM-induced pulmonary fibrosis in rats with a reduction of histopathological scores and collagen deposition, and a lower FGF-2, PDGF, α-smooth muscle actin (α-SMA) and HMGB1 expression, whereas higher RAGE was found in BLM-instilled lungs. Through the decrease of HGMB1 and the regulation of RAGE, PA reversed the EMT, inhibited HLF-1 proliferation as well as reduced apoptosis in AT I, and prevented pulmonary fibrosis in vivo. Collectively, our results demonstrate that PA prevents experimental pulmonary fibrosis by modulating HMGB1/RAGE pathway. - Highlights: • PA prevents EMT, reduces the apoptosis of AT1 in vitro. • PA decreases proliferation of HLF-1, reduces PDGF and FGF expression in vitro. • PA prevents experimental pulmonary fibrosis by modulating the HMGB1/RAGE pathway

  7. Protocatechuic aldehyde ameliorates experimental pulmonary fibrosis by modulating HMGB1/RAGE pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liang, E-mail: countryspring@sina.com; Ji, Yunxia, E-mail: 413499057@qq.com; Kang, Zechun, E-mail: davidjiangwl@163.com; Lv, Changjun, E-mail: Lucky_lcj@sina.com; Jiang, Wanglin, E-mail: jwl518@163.com

    2015-02-15

    An abnormal high mobility group box 1 (HMGB1) activation and a decrease in receptor for advanced glycation end-product (RAGE) play a key role in the pathogenesis of pulmonary fibrosis. Protocatechuic aldehyde (PA) is a naturally occurring compound, which is extracted from the degradation of phenolic acids. However, whether PA has anti-fibrotic functions is unknown. In this study, the effects of PA on the transforming growth factor-β1 (TGF-β1)-mediated epithelial–mesenchymal transition (EMT) in A549 cells, on the apoptosis of human type I alveolar epithelial cells (AT I), on the proliferation of human lung fibroblasts (HLF-1) in vitro, and on bleomycin (BLM)-induced pulmonary fibrosis in vivo were investigated. PA treatment resulted in a reduction of EMT in A549 cells with a decrease in vimentin and HMGB, an increase of E-cadherin and RAGE, a reduction of HLF-1 proliferation with a decrease of fibroblast growth factor 2 (FGF-2) and platelet-derived growth factor (PDGF). Apoptosis of AT I was attenuated with an increase of RAGE. PA ameliorated BLM-induced pulmonary fibrosis in rats with a reduction of histopathological scores and collagen deposition, and a lower FGF-2, PDGF, α-smooth muscle actin (α-SMA) and HMGB1 expression, whereas higher RAGE was found in BLM-instilled lungs. Through the decrease of HGMB1 and the regulation of RAGE, PA reversed the EMT, inhibited HLF-1 proliferation as well as reduced apoptosis in AT I, and prevented pulmonary fibrosis in vivo. Collectively, our results demonstrate that PA prevents experimental pulmonary fibrosis by modulating HMGB1/RAGE pathway. - Highlights: • PA prevents EMT, reduces the apoptosis of AT1 in vitro. • PA decreases proliferation of HLF-1, reduces PDGF and FGF expression in vitro. • PA prevents experimental pulmonary fibrosis by modulating the HMGB1/RAGE pathway.

  8. HMGB1 induces an inflammatory response in endothelial cells via the RAGE-dependent endoplasmic reticulum stress pathway

    International Nuclear Information System (INIS)

    Luo, Ying; Li, Shu-Jun; Yang, Jian; Qiu, Yuan-Zhen; Chen, Fang-Ping

    2013-01-01

    Highlights: •Mechanisms of inflammatory response induced by HMGB1 are incompletely understood. •We found that endoplasmic reticulum stress mediate the inflammatory response induced by HMGB1. •RAGE-mediated ERS pathways are involved in those processes. •We reported a new mechanism for HMGB1 induced inflammatory response. -- Abstract: The high mobility group 1B protein (HMGB1) mediates chronic inflammatory responses in endothelial cells, which play a critical role in atherosclerosis. However, the underlying mechanism is unknown. The goal of our study was to identify the effects of HMGB1 on the RAGE-induced inflammatory response in endothelial cells and test the possible involvement of the endoplasmic reticulum stress pathway. Our results showed that incubation of endothelial cells with HMGB1 (0.01–1 μg/ml) for 24 h induced a dose-dependent activation of endoplasmic reticulum stress transducers, as assessed by PERK and IRE1 protein expression. Moreover, HMGB1 also promoted nuclear translocation of ATF6. HMGB1-mediated ICAM-1 and P-selectin production was dramatically suppressed by PERK siRNA or IRE1 siRNA. However, non-targeting siRNA had no such effects. HMGB1-induced increases in ICAM-1 and P-selectin expression were also inhibited by a specific eIF2α inhibitor (salubrinal) and a specific JNK inhibitor (SP600125). Importantly, a blocking antibody specifically targeted against RAGE (anti-RAGE antibody) decreased ICAM-1, P-selectin and endoplasmic reticulum stress molecule (PERK, eIF2α, IRE1 and JNK) protein expression levels. Collectively, these novel findings suggest that HMGB1 promotes an inflammatory response by inducing the expression of ICAM-1 and P-selectin via RAGE-mediated stimulation of the endoplasmic reticulum stress pathway

  9. High-mobility group B1 (HMGB1) and receptor for advanced glycation end-products (RAGE) expression in canine lymphoma.

    Science.gov (United States)

    Sterenczak, Katharina A; Joetzke, Alexa E; Willenbrock, Saskia; Eberle, Nina; Lange, Sandra; Junghanss, Christian; Nolte, Ingo; Bullerdiek, Jörn; Simon, Daniela; Murua Escobar, Hugo

    2010-12-01

    Canine lymphoma is a commonly occurring, spontaneously developing neoplasia similar to human non-Hodgkin's lymphoma and, thus, is used as a valuable model for human malignancy. HMGB1 and RAGE are strongly associated with tumour progression and vascularisation. Consequently, deregulated RAGE and HMGB1 may play an important role in the mechanisms involved in lymphoma progression. Expression patterns of HMGB1 and RAGE were analysed in 22 canine lymphoma and three canine non-neoplastic control samples via real time PCR and canine beta-glucuronidase gene (GUSB) as endogenous control. HMGB1 was up-regulated in the neoplastic samples, while RAGE expression remained inconspicuous. This study demonstrated similar mechanisms in lymphoma progression in humans and dogs due to overexpression of HMGB1, which was described in human lymphomas. RAGE remained stable in terms of expression indicating that the extracellular HMGB1-induced effects are regulated by HMGB1 itself.

  10. HMGB1/RAGE Signaling and Pro-Inflammatory Cytokine Responses in Non-HIV Adults with Active Pulmonary Tuberculosis.

    Directory of Open Access Journals (Sweden)

    Grace Lui

    Full Text Available We aimed to study the pathogenic roles of High-Mobility Group Box 1 (HMGB1 / Receptor-for-Advanced-Glycation-End-products (RAGE signaling and pro-inflammatory cytokines in patients with active pulmonary tuberculosis (PTB.A prospective study was conducted among non-HIV adults newly-diagnosed with active PTB at two acute-care hospitals (n = 80; age-and-sex matched asymptomatic individuals (tested for latent TB were used for comparison (n = 45. Plasma concentrations of 8 cytokines/chemokines, HMGB1, soluble-RAGE, and transmembrane-RAGE expressed on monocytes/dendritic cells, were measured. Gene expression (mRNA of HMGB1, RAGE, and inflammasome-NALP3 was quantified. Patients' PBMCs were stimulated with recombinant-HMGB1 and MTB-antigen (lipoarabinomannan for cytokine induction ex vivo.In active PTB, plasma IL-8/CXCL8 [median(IQR, 6.0(3.6-15.1 vs 3.6(3.6-3.6 pg/ml, P<0.001] and IL-6 were elevated, which significantly correlated with mycobacterial load, extent of lung consolidation (rs +0.509, P<0.001, severity-score (rs +0.317, P = 0.004, and fever and hospitalization durations (rs +0.407, P<0.001. IL-18 and sTNFR1 also increased. Plasma IL-8/CXCL8 (adjusted OR 1.12, 95%CI 1.02-1.23 per unit increase, P = 0.021 and HMGB1 (adjusted OR 1.42 per unit increase, 95%CI 1.08-1.87, P = 0.012 concentrations were independent predictors for respiratory failure, as well as for ICU admission/death. Gene expression of HMGB1, RAGE, and inflammasome-NALP3 were upregulated (1.2-2.8 fold. Transmembrane-RAGE was increased, whereas the decoy soluble-RAGE was significantly depleted. RAGE and HMGB1 gene expressions positively correlated with cytokine levels (IL-8/CXCL8, IL-6, sTNFR1 and clinico-/radiographical severity (e.g. extent of consolidation rs +0.240, P = 0.034. Ex vivo, recombinant-HMGB1 potentiated cytokine release (e.g. TNF-α when combined with lipoarabinomannan.In patients with active PTB, HMGB1/RAGE signaling and pro-inflammatory cytokines may play important

  11. HMGB1-RAGE pathway drives peroxynitrite signaling-induced IBD-like inflammation in murine nonalcoholic fatty liver disease

    Directory of Open Access Journals (Sweden)

    Varun Chandrashekaran

    2017-10-01

    Full Text Available Recent clinical studies found a strong association of colonic inflammation and Inflammatory bowel disease (IBD-like phenotype with NonAlcoholic Fatty liver Disease (NAFLD yet the mechanisms remain unknown. The present study identifies high mobility group box 1 (HMGB1 as a key mediator of intestinal inflammation in NAFLD and outlines a detailed redox signaling mechanism for such a pathway. NAFLD mice showed liver damage and release of elevated HMGB1 in systemic circulation and increased intestinal tyrosine nitration that was dependent on NADPH oxidase. Intestines from NAFLD mice showed higher Toll like receptor 4 (TLR4 activation and proinflammatory cytokine release, an outcome strongly dependent on the existence of NAFLD pathology and NADPH oxidase. Mechanistically intestinal epithelial cells showed the HMGB1 activation of TLR-4 was both NADPH oxidase and peroxynitrite dependent with the latter being formed by the activation of NADPH oxidase. Proinflammatory cytokine production was significantly blocked by the specific peroxynitrite scavenger phenyl boronic acid (FBA, AKT inhibition and NADPH oxidase inhibitor Apocynin suggesting NADPH oxidase-dependent peroxynitrite is a key mediator in TLR-4 activation and cytokine release via an AKT dependent pathway. Studies to ascertain the mechanism of HMGB1-mediated NADPH oxidase activation showed a distinct role of Receptor for advanced glycation end products (RAGE as the use of inhibitors targeted against RAGE or use of deformed HMGB1 protein prevented NADPH oxidase activation, peroxynitrite formation, TLR4 activation and finally cytokine release. Thus, in conclusion the present study identifies a novel role of HMGB1 mediated inflammatory pathway that is RAGE and redox signaling dependent and helps promote ectopic intestinal inflammation in NAFLD.

  12. Down-regulation of LncRNA TUG1 enhances radiosensitivity in bladder cancer via suppressing HMGB1 expression.

    Science.gov (United States)

    Jiang, Huijuan; Hu, Xigang; Zhang, Hongzhi; Li, Wenbo

    2017-04-04

    Long non-coding RNAs (lncRNAs) have been reported to regulate the sensitivity of different cancer cells to chemoradiotherapy. Aberrant expression of lncRNA Taurine-upregulated gene 1 (TUG1) has been found to be involved in the development of bladder cancer, however, its function and underlying mechanism in the radioresistance of bladder cancer remains unclear. Quantitative real-time PCR (qRT-PCR) was conducted to measure the expression of TUG1 and HMGB1 mRNA in bladder cancer tissues and cell lines. HMGB1 protein levels were tested by western blot assays. Different doses of X-ray were used for radiation treatment of bladder cancer cells. Colony survival and cell viability were detected by clonogenic assay and CCK-8 Kit, respectively. Cell apoptosis was determined by flow cytometry. A xenograft mouse model was constructed to observe the effect of TUG1 on tumor growth in vivo. The levels of TUG1 and HMGB1 were remarkably increased in bladder cancer tissues and cell lines. Radiation treatment markedly elevated the expression of TUG1 and HMGB1. TUG1 knockdown inhibited cell proliferation, promoted cell apoptosis and decreased colony survival in SW780 and BIU87 cells under radiation. Moreover, TUG1 depletion suppressed the HMGB1 mRNA and protein levels. Furthermore, overexpression of HMGB1 reversed TUG1 knockdown-induced effect in bladder cancer cells. Radiation treatment dramatically reduced the tumor volume and weight in xenograft model, and this effect was more obvious when combined with TUG1 silencing. LncRNA TUG1 knockdown enhances radiosensitivity of bladder cancer by suppressing HMGB1 expression. TUG1 acts as a potential regulator of radioresistance of bladder cancer, and it may represent a promising therapeutic target for bladder cancer patients.

  13. Down-regulation of LncRNA TUG1 enhances radiosensitivity in bladder cancer via suppressing HMGB1 expression

    OpenAIRE

    Jiang, Huijuan; Hu, Xigang; Zhang, Hongzhi; Li, Wenbo

    2017-01-01

    Background Long non-coding RNAs (lncRNAs) have been reported to regulate the sensitivity of different cancer cells to chemoradiotherapy. Aberrant expression of lncRNA Taurine-upregulated gene 1 (TUG1) has been found to be involved in the development of bladder cancer, however, its function and underlying mechanism in the radioresistance of bladder cancer remains unclear. Methods Quantitative real-time PCR (qRT-PCR) was conducted to measure the expression of TUG1 and HMGB1 mRNA in bladder canc...

  14. Kaempferol alleviates LPS-induced neuroinflammation and BBB dysfunction in mice via inhibiting HMGB1 release and down-regulating TLR4/MyD88 pathway.

    Science.gov (United States)

    Cheng, Xiao; Yang, Ying-Lin; Yang, Huan; Wang, Yue-Hua; Du, Guan-Hua

    2018-03-01

    Kaempferol is a natural flavonoid with many biological activities including anti-oxidation and anti-inflammation. Nevertheless, its anti-neuroinflammation role and the relevant mechanism remain unclear. The present study was to investigate effects of kaempferol against LPS-induced neuroinflammation and blood-brain barrier dysfunction as well as the mechanism in mice. BALB/c mice were treated with LPS 5mg/kg to induce inflammation after pre-treatment with kaempferol 25, 50, or 100mg/kg for 7days. The results showed that kaempferol reduced the production of various pro-inflammatory factors and inflammatory proteins including IL-1β, IL-6, TNF-α, MCP-1, COX-2 and iNOS in brain tissues. In addition, kaempferol also protected BBB integrity and increased BBB related proteins including occludin-1, claudin-1 and CX43 in brain of LPS-induced mice. Furthermore, kaempferol significantly reduced HMGB1 level and suppressed TLR4/MyD88 inflammatory pathway in both transcription level and translation level. These results collectively suggested that kaempferol might be a promising neuroprotective agent for alleviating inflammatory responses and BBB dysfunction by inhibiting HMGB1 release and down-regulating TLR4/MyD88 inflammatory pathway. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Ethyl pyruvate inhibits proliferation and induces apoptosis of hepatocellular carcinoma via regulation of the HMGB1RAGE and AKT pathways

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Ping; Dai, Weiqi; Wang, Fan; Lu, Jie; Shen, Miao; Chen, Kan; Li, Jingjing; Zhang, Yan; Wang, Chengfen; Yang, Jing; Zhu, Rong; Zhang, Huawei; Zheng, Yuanyuan; Guo, Chuan-Yong, E-mail: guochuanyong@hotmail.com; Xu, Ling, E-mail: xuling606@sina.com

    2014-01-24

    Highlights: • Ethyl pyruvate inhibits liver cancer. • Promotes apoptosis. • Decreased the expression of HMGB1, p-Akt. - Abstract: Ethyl pyruvate (EP) was recently identified as a stable lipophilic derivative of pyruvic acid with significant antineoplastic activities. The high mobility group box-B1 (HMGB1)–receptor for advanced glycation end-products (RAGE) and the protein kinase B (Akt) pathways play a crucial role in tumorigenesis and development of many malignant tumors. We tried to observe the effects of ethyl pyruvate on liver cancer growth and explored its effects in hepatocellular carcinoma model. In this study, three hepatocellular carcinoma cell lines were treated with ethyl pyruvate. An MTT colorimetric assay was used to assess the effects of EP on cell proliferation. Flow cytometry and TUNEL assays were used to analyze apoptosis. Real-time PCR, Western blotting and immunofluorescence demonstrated ethyl pyruvate reduced the HMGB1RAGE and AKT pathways. The results of hepatoma orthotopic tumor model verified the antitumor effects of ethyl pyruvate in vivo. EP could induce apoptosis and slow the growth of liver cancer. Moreover, EP decreased the expression of HMGB1, RAGE, p-AKT and matrix metallopeptidase-9 (MMP9) and increased the Bax/Bcl-2 ratio. In conclusion, this study demonstrates that ethyl pyruvate induces apoptosis and cell-cycle arrest in G phase in hepatocellular carcinoma cells, plays a critical role in the treatment of cancer.

  16. A multicenter matched case-control analysis on seven polymorphisms from HMGB1 and RAGE genes in predicting hepatocellular carcinoma risk.

    Science.gov (United States)

    Wang, Dan; Qi, Xiaoying; Liu, Fang; Yang, Chuanhua; Jiang, Wenguo; Wei, Xiaodan; Li, Xuri; Mi, Jia; Tian, Geng

    2017-07-25

    Based on 540 hepatocellular carcinoma patients and 540 age- and gender-matched controls, we tested the hypothesis that high mobility group protein box1 (HMGB1) and the receptor for advanced glycation end products (RAGE) genes are two potential candidate susceptibility genes for hepatocellular carcinoma in a multicenter hospital-based case-control analysis. The genotypes of seven widely-studied polymorphisms were determined, and their distributions respected the Hardy-Weinberg equilibrium. The mutant alleles of two polymorphisms, rs1045411 in HMGB1 gene and rs2070600 in RAGE gene, had significantly higher frequencies in patients than in controls (P hepatocellular carcinoma significantly, particularly for rs2070600 under the additive (odds ratio [OR] = 1.77; 95% confidence interval [CI]: 1.34-2.32; P hepatocellular carcinoma compared with the commonest C-C-T haplotype after adjustment. In RAGE gene, the T-T-A-G (rs1800625-rs1800624-rs2070600-rs184003) (adjusted OR; 95% CI; P: 1.75; 1.02-3.03; 0.045) and T-T-A-T (adjusted OR; 95% CI; P: 1.95; 1.01-3.76; 0.048) haplotypes were associated with a marginally increased risk of hepatocellular carcinoma compared with the commonest T-T-G-G haplotype. In summary, we identified two risk-associated polymorphisms (rs1045411 and rs2070600), and more importantly a joint impact of seven polymorphisms from the HMGB1/RAGE axis in susceptibility to hepatocellular carcinoma.

  17. Pioglitazone Confers Neuroprotection Against Ischemia-Induced Pyroptosis due to its Inhibitory Effects on HMGB-1/RAGE and Rac1/ROS Pathway by Activating PPAR-ɤ

    Directory of Open Access Journals (Sweden)

    Pingping Xia

    2018-03-01

    Full Text Available Background/Aims: Recent researches highlighted the protective potential of pioglitazone, a PPAR-γ agonist, in the progression of cerebral ischemia-reperfusion injury. However, there has been no study on the application of pioglitazone in treating ischemic stroke through mechanisms involving pyroptosis. Methods: The cerebral injury was established by middle cerebral artery occlusion (MCAO. in vitro ischemia in primary cultured astrocytes was induced by the oxygen-glucose deprivation (OGD. ELISA and Western Blot analysis were employed to the levels of PPAR-γ, pyroptosis-related biomarkers and cytoplasmic translocation of HMGB-1 and RAGE expression as well as Rac1 activity, respectively. Results: We demonstrated that repeated intraperitoneal administration of pioglitazone remarkably reduced the infarct volume, improved neurological deficits and suppressed the Rac1 activity with significant reduction of excessive ROS in rat model of middle cerebral artery occlusion (MCAO. Moreover, pioglitazone alleviated the up-regulation of pyroptosis-related biomarkers and the increased cytoplasmic translocation of HMGB-1 and RAGE expression in cerebral penumbra cortex. Similarly, the protective effects of pioglitazone on cultured astrocytes were characterized by reduced Rac1 activity, pyroptosis related protein expressions and lactate dehydrogenase (LDH release. However, these protective effects of pioglitazone were neutralized with the use of GW9662, a PPAR-γ inhibitor. Interestingly, Rac1 knockdown in lentivirus with the Rac1 small hair RNA (shRNA could inhibit the OGD-induced pyroptosis of primary cultured astrocytes. Furthermore, the combination of Rac1-shRNA and pioglitazone can further strengthen the inhibitory effects on pyroptosis induced by OGD. Conclusion: The neuroprotection of pioglitazone was attributable to the alleviated ischemia/hypoxia-induced pyroptosis and was also associated with the PPARγ-mediated suppression of HGMB-1/RAGE signaling

  18. Pioglitazone Confers Neuroprotection Against Ischemia-Induced Pyroptosis due to its Inhibitory Effects on HMGB-1/RAGE and Rac1/ROS Pathway by Activating PPAR-ɤ.

    Science.gov (United States)

    Xia, Pingping; Pan, Yundan; Zhang, Fan; Wang, Na; Wang, E; Guo, Qulian; Ye, Zhi

    2018-01-01

    Recent researches highlighted the protective potential of pioglitazone, a PPAR-γ agonist, in the progression of cerebral ischemia-reperfusion injury. However, there has been no study on the application of pioglitazone in treating ischemic stroke through mechanisms involving pyroptosis. The cerebral injury was established by middle cerebral artery occlusion (MCAO). in vitro ischemia in primary cultured astrocytes was induced by the oxygen-glucose deprivation (OGD). ELISA and Western Blot analysis were employed to the levels of PPAR-γ, pyroptosis-related biomarkers and cytoplasmic translocation of HMGB-1 and RAGE expression as well as Rac1 activity, respectively. We demonstrated that repeated intraperitoneal administration of pioglitazone remarkably reduced the infarct volume, improved neurological deficits and suppressed the Rac1 activity with significant reduction of excessive ROS in rat model of middle cerebral artery occlusion (MCAO). Moreover, pioglitazone alleviated the up-regulation of pyroptosis-related biomarkers and the increased cytoplasmic translocation of HMGB-1 and RAGE expression in cerebral penumbra cortex. Similarly, the protective effects of pioglitazone on cultured astrocytes were characterized by reduced Rac1 activity, pyroptosis related protein expressions and lactate dehydrogenase (LDH) release. However, these protective effects of pioglitazone were neutralized with the use of GW9662, a PPAR-γ inhibitor. Interestingly, Rac1 knockdown in lentivirus with the Rac1 small hair RNA (shRNA) could inhibit the OGD-induced pyroptosis of primary cultured astrocytes. Furthermore, the combination of Rac1-shRNA and pioglitazone can further strengthen the inhibitory effects on pyroptosis induced by OGD. The neuroprotection of pioglitazone was attributable to the alleviated ischemia/hypoxia-induced pyroptosis and was also associated with the PPARγ-mediated suppression of HGMB-1/RAGE signaling pathway. Moreover, the inhibition of Rac1 promoted this function

  19. Molecular characterization of the canine HMGB1.

    Science.gov (United States)

    Murua Escobar, H; Meyer, B; Richter, A; Becker, K; Flohr, A M; Bullerdiek, J; Nolte, I

    2003-01-01

    Due to the close similarities of numerous canine diseases to their human counterparts, the dog could join the mouse as the species of choice to unravel the genetic background of complex diseases as e.g. cancer and metabolic diseases. Accordingly, the role of the dog as a model for therapeutic approaches is strongly increasing. However, prerequisite for such studies is the characterization of the corresponding canine genes. Recently, the human high mobility group protein B1 (HMGB1) has attracted considerable interest of oncologists because of what is called its "double life". Besides its function as an architectural transcription factor HMGB1 can also be secreted by certain cells and then acts as a ligand for the receptor for advanced glycation end products (RAGE). The binding of HMGB1 to RAGE can activate key cell signaling pathways, such as p38(MAPK), JNK, and p42/p44(MAPK) emphasizing the important role of HMGB1 in inflammation and tumor metastasis. These results make HMGB1 a very interesting target for therapeutic studies done in model organisms like the dog. In this study we characterized the molecular structure of the canine HMGB1 gene on genomic and cDNA levels, its predicted protein, the gene locus and a basic expression pattern. Copyright 2003 S. Karger AG, Basel

  20. Elevated Serum Level of HMGB1 in Patients with the Antiphospholipid Syndrome

    Directory of Open Access Journals (Sweden)

    Valeria Manganelli

    2017-01-01

    Full Text Available Pregnancy problems are common in patients with rheumatic disease; indeed, autoimmune disorders and autoantibodies can affect pregnancy progress and lead to maternal complications. Recent studies have highlighted a close association between HMGB1, chronic inflammation, and autoimmune diseases. Thus, in this investigation, we analyzed serum levels of HMGB1, an alarmin which plays a pivotal role in inducing and enhancing immune cell function. Sera from 30 patients with antiphospholipid syndrome (11 primary and 19 secondary APS, 35 subjects with pregnancy morbidity, and 30 healthy women were analysed for HMGB1 and its putative receptor RAGE (sRAGE by Western blot and for TNF-α by ELISA. Results revealed that APS patients showed significantly increased serum levels of HMGB1, sRAGE, and the proinflammatory cytokine TNF-α, as compared to healthy women. However, also, the pregnancy morbidity subjects showed significantly increased levels of HMGB1 and sRAGE as well as TNF-α compared to healthy women. Our findings suggest that in subjects with pregnancy morbidity, including obstetric APS, elevated levels of HMGB1/sRAGE may represent an alarm signal, indicating an increase of proinflammatory triggers. Further studies are needed to evaluate the role of HMGB1/sRAGE as a possible tool to evaluate the risk stratification of adverse pregnancy outcomes.

  1. Targeting receptor for advanced glycation end products (RAGE) expression induces apoptosis and inhibits prostate tumor growth

    International Nuclear Information System (INIS)

    Elangovan, Indira; Thirugnanam, Sivasakthivel; Chen, Aoshuang; Zheng, Guoxing; Bosland, Maarten C.; Kajdacsy-Balla, André; Gnanasekar, Munirathinam

    2012-01-01

    Highlights: ► Targeting RAGE by RNAi induces apoptosis in prostate cancer cells. ► Silencing RAGE expression abrogates rHMGB1 mediated cell proliferation. ► Down regulation of RAGE by RNAi inhibits PSA secretion of prostate cancer cells. ► Knock down of RAGE abrogates prostate tumor growth in vivo. ► Disruption of RAGE expression in prostate tumor activates death receptors. -- Abstract: Expression of receptor for advanced glycation end products (RAGE) plays a key role in the progression of prostate cancer. However, the therapeutic potential of targeting RAGE expression in prostate cancer is not yet evaluated. Therefore in this study, we have investigated the effects of silencing the expression of RAGE by RNAi approach both in vitro and in vivo. The results of this study showed that down regulation of RAGE expression by RNAi inhibited the cell proliferation of androgen-dependent (LNCaP) and androgen-independent (DU-145) prostate cancer cells. Furthermore, targeting RAGE expression resulted in apoptotic elimination of these prostate cancer cells by activation of caspase-8 and caspase-3 death signaling. Of note, the levels of prostate specific antigen (PSA) were also reduced in LNCaP cells transfected with RAGE RNAi constructs. Importantly, the RAGE RNAi constructs when administered in nude mice bearing prostate tumors, inhibited the tumor growth by targeting the expression of RAGE, and its physiological ligand, HMGB1 and by up regulating death receptors DR4 and DR5 expression. Collectively, the results of this study for the first time show that targeting RAGE by RNAi may be a promising alternative therapeutic strategy for treating prostate cancer.

  2. High ASMA+ Fibroblasts and Low Cytoplasmic HMGB1+ Breast Cancer Cells Predict Poor Prognosis.

    Science.gov (United States)

    Amornsupak, Kamolporn; Jamjuntra, Pranisa; Warnnissorn, Malee; O-Charoenrat, Pornchai; Sa-Nguanraksa, Doonyapat; Thuwajit, Peti; Eccles, Suzanne A; Thuwajit, Chanitra

    2017-10-01

    The influence of cancer-associated fibroblasts (CAFs) and high mobility group box 1 (HMGB1) has been recognized in several cancers, although their roles in breast cancer are unclear. The present study aimed to determine the levels and prognostic significance of α-smooth muscle actin-positive (ASMA + ) CAFs, plus HMGB1 and receptor for advanced glycation end products (RAGE) in cancer cells. A total of 127 breast samples, including 96 malignant and 31 benign, were examined for ASMA, HMGB1, and RAGE by immunohistochemistry. The χ 2 test and Fisher's exact test were used to test the association of each protein with clinicopathologic parameters. The Kaplan-Meier method or log-rank test and Cox regression were used for survival analysis. ASMA + fibroblast infiltration was significantly increased in the tumor stroma compared with that in benign breast tissue. The levels of cytoplasmic HMGB1 and RAGE were significantly greater in the breast cancer tissue than in the benign breast tissues. High ASMA expression correlated significantly with large tumor size, clinical stage III-IV, and angiolymphatic and perinodal invasion. In contrast, increased cytoplasmic HMGB1 correlated significantly with small tumor size, pT stage, early clinical stage, luminal subtype (but not triple-negative subtype), and estrogen receptor and progesterone receptor expression. The levels of ASMA (hazard ratio, 14.162; P = .010) and tumor cytoplasmic HMGB1 (hazard ratio, 0.221; P = .005) could serve as independent prognostic markers for metastatic relapse in breast cancer patients. The ASMA-high/HMGB1-low profile provided the most reliable prediction of metastatic relapse. We present for the first time, to the best of our knowledge, the potential clinical implications of the combined assessment of ASMA + fibroblasts and cytoplasmic HMGB1 in breast cancer. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Oxidative stress-dependent contribution of HMGB1 to the interplay between apoptosis and autophagy in diabetic rat liver.

    Science.gov (United States)

    Petrović, Anja; Bogojević, Desanka; Korać, Aleksandra; Golić, Igor; Jovanović-Stojanov, Sofija; Martinović, Vesna; Ivanović-Matić, Svetlana; Stevanović, Jelena; Poznanović, Goran; Grigorov, Ilijana

    2017-11-01

    The progression of oxidative stress, resulting cell damage, and cell death underlies the etiology of liver damage/dysfunction as a complication of diabetes. High-mobility group box 1 (HMGB1) protein, a chromatin-binding nuclear protein and damage-associated molecular pattern molecule, is integral to oxidative stress and signaling pathways regulating cell death and cell survival. We previously found that in streptozotocin (STZ)-induced diabetic rats, reduction of oxidative stress after melatonin administration lowered necrotic cell death and increased expression of HMGB1 and hepatocellular damage. In the present study, we examined whether alleviation of diabetes-attendant oxidative stress and ensuing change in HMGB1 expression influence the dynamic equilibrium between apoptosis/autophagy and liver damage. We observed that elevated HMGB1 protein levels in diabetic rat liver accompanied increased interactions of HMGB1 with TLR4 and RAGE, and activation of the intrinsic apoptotic pathway and Beclin 1-dependent autophagy. The absence of p62 degradation in diabetic rat liver pointed to defective autophagy which was responsible for lower autophagosome/autophagolysosome formation and an increased apoptosis/autophagy ratio. Compared to diabetic rats, in melatonin-treated diabetic rats, the structure of liver cells was preserved, HMGB1/TLR4 interaction and downstream apoptotic signaling were significantly reduced, HMGB1/Beclin 1 colocalization and interactions were augmented and Beclin 1-mediated autophagy, mithophagy in particular, were increased. We concluded that in mild oxidative stress, HMGB1 is cytoprotective, whereas in intense oxidative stress, HMGB1 actions promote cell death and liver damage. Since reduced HMGB1 binds to RAGE but not to TLR4, redox modification of HMGB1 as a mechanism regulating the cross-talk between apoptosis and autophagy in diabetes is discussed.

  4. Identification and characterization of the direct interaction between methotrexate (MTX and high-mobility group box 1 (HMGB1 protein.

    Directory of Open Access Journals (Sweden)

    Yuki Kuroiwa

    Full Text Available BACKGROUND: Methotrexate (MTX is an agent used in chemotherapy of tumors and autoimmune disease including rheumatoid arthritis (RA. In addition, MTX has some anti-inflammatory activity. Although dihydrofolate reductase (DHFR is a well-known target for the anti-tumor effect of MTX, the mode of action for the anti-inflammatory activity of MTX is not fully understood. METHODOLOGY/RESULT: Here, we performed a screening of MTX-binding proteins using T7 phage display with a synthetic biotinylated MTX derivative. We then characterized the interactions using surface plasmon resonance (SPR analysis and electrophoretic mobility shift assay (EMSA. Using a T7 phage display screen, we identified T7 phages that displayed part of high-mobility group box 1 (HMGB1 protein (K86-V175. Binding affinities as well as likely binding sites were characterized using genetically engineered truncated versions of HMGB1 protein (Al G1-K87, Bj: F88-K181, indicating that MTX binds to HMGB1 via two independent sites with a dissociation constants (KD of 0.50±0.03 µM for Al and 0.24 ± 0.01 µM for Bj. Although MTX did not inhibit the binding of HMGB1 to DNA via these domains, HMGB1/RAGE association was impeded in the presence of MTX. These data suggested that binding of MTX to part of the RAGE-binding region (K149-V175 in HMGB1 might be significant for the anti-inflammatory effect of MTX. Indeed, in murine macrophage-like cells (RAW 264.7, TNF-α release and mitogenic activity elicited by specific RAGE stimulation with a truncated monomeric HMGB1 were inhibited in the presence of MTX. CONCLUSIONS/SIGNIFICANCE: These data demonstrate that HMGB1 is a direct binding protein of MTX. Moreover, binding of MTX to RAGE-binding region in HMGB1 inhibited the HMGB1/RAGE interaction at the molecular and cellular levels. These data might explain the molecular basis underlying the mechanism of action for the anti-inflammatory effect of MTX.

  5. The role of high mobility group box 1(HMGB1)in the pathogenesis of kidney diseases

    Institute of Scientific and Technical Information of China (English)

    Qingjie Chen; Xiaofeng Guan; Xiaocong Zuo; Jianglin Wang; Wenjun Yin

    2016-01-01

    High mobility group box 1(HMGB1) is a nuclear protein that can bind to DNA and act as a co-factor for gene transcription. When released into extracellular fluid, it plays a proinflammatory role by acting as a damage-associated molecular pattern molecule(DAMP)(also known as an alarmin) to initiate innate immune responses by activating multiple cell surface receptors such as the receptor for advanced glycation end-products(RAGE) and toll-like receptors(TLRs), TLR2, TLR4 or TLR9. This proinflammatory role is now considered to be important in the pathogenesis of a wide range of kidney diseases whether they result from hemodynamic changes, renal tubular epithelial cell apoptosis, kidney tissue fibrosis or inflammation. This review summarizes our current understanding of the role of HMGB1 in kidney diseases and how the HMGB1-mediated signaling pathway may constitute a new strategy for the treatment of kidney diseases.

  6. HMGB1 Contributes to the Expression of P-Glycoprotein in Mouse Epileptic Brain through Toll-Like Receptor 4 and Receptor for Advanced Glycation End Products.

    Directory of Open Access Journals (Sweden)

    Yan Chen

    Full Text Available The objective of the present study was to investigate the role of high-mobility group box-1 (HMGB1 in the seizure-induced P-glycoprotein (P-gp overexpression and the underlying mechanism. Kainic acid (KA-induced mouse seizure model was used for in vivo experiments. Male C57BL/6 mice were divided into four groups: normal saline control (NS group, KA-induced epileptic seizure (EP group, and EP group pretreated with HMGB1 (EP+HMGB1 group or BoxA (HMGB1 antagonist, EP+BoxA group. Compared to the NS group, increased levels of HMGB1 and P-gp in the brain were observed in the EP group. Injection of HMGB1 before the induction of KA further increased the expression of P-gp while pre-treatment with BoxA abolished this up-regulation. Next, the regulatory role of HMGB1 and its potential involved signal pathways were investigated in mouse microvascular endothelial bEnd.3 cells in vitro. Cells were treated with HMGB1, HMGB1 plus lipopolysaccharide from Rhodobacter sphaeroides (LPS-RS [toll-like receptor 4 (TLR4 antagonist], HMGB1 plus FPS-ZM1 [receptor for advanced glycation end products (RAGE inhibitor], HMGB1 plus SN50 [nuclear factor-kappa B (NF-κB inhibitor], or vehicle. Treatment with HMGB1 increased the expression levels of P-gp, TLR4, RAGE and the activation of NF-κB in bEnd.3 cells. These effects were inhibited by the pre-treatment with either LPS-RS or FPS-ZM1, and were abolished by the pre-treatment of SN50 or a combination treatment of both LPS-RS and FPS-ZM1. Luciferase reporter assays showed that exogenous expression of NF-κB p65 increased the promoter activity of multidrug resistance 1a (P-gp-encoding gene in endothelial cells. These data indicate that HMGB1 contributes to the overexpression of P-gp in mouse epileptic brain tissues via activation of TLR4/RAGE receptors and the downstream transcription factor NF-κB in brain microvascular endothelial cells.

  7. The role of high mobility group box 1 (HMGB-1) in the diabetic retinopathy inflammation and apoptosis.

    Science.gov (United States)

    Yu, Yao; Yang, Lu; Lv, Jinlei; Huang, Xu; Yi, Jinglin; Pei, Chonggang; Shao, Yi

    2015-01-01

    Diabetic Retinopathy (DR) is one of the most common complications of the late phase diabetes, and also a common cause of blindness. High mobility group box 1 (HMGB-1) is considered to be an inflammatory mediator in the late phase that promotes inflammation and neovascularization in diabetes. Therefore, this paper discussed the role of HMGB-1 in diabetic retinopathy inflammation and neovascularization. 96 adult SD rats were randomly divided into control and diabetes group. The diabetic rat model was established by intraperitoneal injection of streptomycin (0.1 mol/L). Western blot was applied to determine HMGB-1 and its receptor RAGE and TLR2 protein expression in the serum. TUNEL was used to detect retinal apoptosis. Immunofluorescence was performed to test HMGB1 protein expression in retina. HBGM-1 and RAGE expression in diabetic rat retina was significantly higher than the control (P detection showed that diabetic rat retinal cells presented obviously higher apoptosis rate (P diabetic rat retinal cells (P diabetic retinopathy by binding with RAGE receptor to accelerate rat retinal cells apoptosis.

  8. The chaperone like function of the nonhistone protein HMGB1

    International Nuclear Information System (INIS)

    Osmanov, Taner; Ugrinova, Iva; Pasheva, Evdokia

    2013-01-01

    Highlights: ► The HMGB1 protein strongly enhanced the formation of nucleosome particles. ► The target of HMGB1 action as a chaperone is the DNA not the histone octamer. ► The acetylation of HMGB1 decreases the stimulating effect of the protein. -- Abstract: Almost all essential nuclear processes as replication, repair, transcription and recombination require the chromatin template to be correctly unwound and than repackaged. The major strategy that the cell uses to overcome the nucleosome barrier is the proper removal of the histone octamer and subsequent deposition onto DNA. Important factors in this multi step phenomenon are the histone chaperones that can assemble nucleosome arrays in vitro in the absence of ATP. The nonhistone protein HMGB1 is a good candidate for a chaperone as its molecule consists of two DNA binding motives, Box’s A and B, and a long nonstructured C tail highly negatively charged. HMGB1 protein is known as a nuclear “architectural” factor for its property to bind preferentially to distorted DNA structures and was reported to kink the double helix. Our experiments show that in the classical stepwise dialysis method for nucleosome assembly the addition of HMGB1 protein stimulates more than two times the formation of middle-positioned nucleosomes. The stimulation effect persists in dialysis free experiment when the reconstitution is possible only in the presence of a chaperone. The addition of HMGB1 protein strongly enhanced the formation of a nucleosome in a dose dependant manner. Our results show that the target of HMGB1 action as a chaperone is the DNA fragment not the histone octamer. One possible explanation for the stimulating effect of HMGB1 is the “architectural” property of the protein to associate with the middle of the DNA fragment and to kink it. The acquired V shaped DNA structure is probably conformationals more favorable to wrap around the prefolded histone octamer. We tested also the role of the post

  9. Structure function relationship of recombinant sRAGE

    OpenAIRE

    Premaratne, Dinamithra Gedara Sujeewani Rasika

    2017-01-01

    The receptor for advanced glycation end-products (RAGE) is a member of the immunoglobulin super family of cell surface receptors. It acts as the direct mediator of physiological and pathological responses such as inflammation, chemotaxis, neurite outgrowth, angiogenesis, apoptosis and proliferation. RAGE is known to bind with structurally and functionally diverse ligands, such as advanced glycation end-products (AGEs), high mobility group family proteins including HMGB-1/amphoterin, matrix pr...

  10. Omega-3 polyunsaturated fatty acid supplementation attenuates microglial-induced inflammation by inhibiting the HMGB1/TLR4/NF-κB pathway following experimental traumatic brain injury.

    Science.gov (United States)

    Chen, Xiangrong; Wu, Shukai; Chen, Chunnuan; Xie, Baoyuan; Fang, Zhongning; Hu, Weipeng; Chen, Junyan; Fu, Huangde; He, Hefan

    2017-07-24

    Microglial activation and the subsequent inflammatory response in the central nervous system play important roles in secondary damage after traumatic brain injury (TBI). High-mobility group box 1 (HMGB1) protein, an important mediator in late inflammatory responses, interacts with transmembrane receptor for advanced glycation end products (RAGE) and toll-like receptors (TLRs) to activate downstream signaling pathways, such as the nuclear factor (NF)-κB signaling pathway, leading to a cascade amplification of inflammatory responses, which are related to neuronal damage after TBI. Omega-3 polyunsaturated fatty acid (ω-3 PUFA) is a commonly used clinical immunonutrient, which has antioxidative and anti-inflammatory effects. However, the effects of ω-3 PUFA on HMGB1 expression and HMGB1-mediated activation of the TLR4/NF-κB signaling pathway are not clear. The Feeney DM TBI model was adopted to induce brain injury in rats. Modified neurological severity scores, brain water content, and Nissl staining were employed to determine the neuroprotective effects of ω-3 PUFA supplementation. Assessment of microglial activation in lesioned sites and protein markers for proinflammatory, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, interferon (IFN)-γ, and HMGB1 were used to evaluate neuroinflammatory responses and anti-inflammation effects of ω-3 PUFA supplementation. Immunofluorescent staining and western blot analysis were used to detect HMGB1 nuclear translocation, secretion, and HMGB1-mediated activation of the TLR4/NF-κB signaling pathway to evaluate the effects of ω-3 PUFA supplementation and gain further insight into the mechanisms underlying the development of the neuroinflammatory response after TBI. It was found that ω-3 PUFA supplementation inhibited TBI-induced microglial activation and expression of inflammatory factors (TNF-α, IL-1β, IL-6, and IFN-γ), reduced brain edema, decreased neuronal apoptosis, and improved neurological

  11. Local and systemic RAGE axis changes in pulmonary hypertension: CTEPH and iPAH.

    Directory of Open Access Journals (Sweden)

    Bernhard Moser

    Full Text Available OBJECTIVE: The molecular determinants of chronic thromboembolic pulmonary hypertension (CTEPH and idiopathic pulmonary arterial hypertension (iPAH remain poorly understood. The receptor for advanced glycation endproducts (RAGE and its ligands: HMGB1 and S100A9 are involved in inflammatory disorders. We sought to investigate the role of the RAGE axis in patients with CTEPH undergoing pulmonary endarterectomy (PEA, iPAH undergoing lung transplantation (LuTX. The high pulmonary vascular resistance in CTEPH/iPAH results in pressure overload of the right ventricle. We compared sRAGE measurements to that of patients with aortic valve stenosis (AVS - pressure overload of the left ventricle. METHODS: We enrolled patients with CTEPH(26, iPAH(15, AVS(15 and volunteers(33. Immunohistochemistry with antibodies to RAGE and HMGB1 was performed on PEA specimens and lung tissues. We employed enzyme-linked immunosorbent assays to determine the concentrations of sRAGE, esRAGE, HMGB1 and S100A9 in serum of volunteers and patients with CTEPH, iPAH, AVS before and after PEA, LuTX and aortic valve replacement (AVR. RESULTS: In endarterectomised tissues from patients with CTEPH RAGE and HMGB1 were identified in myofibroblasts (α-SMA+vimentin+CD34-, recanalizing vessel-like structures of distal myofibrotic tissues and endothelium of neointima. RAGE was differentially expressed in prototypical Heath Edwards lesions in iPAH. We found significantly increased serum concentrations of sRAGE, esRAGE and HMGB1 in CTEPH. In iPAH, sRAGE and esRAGE were significantly higher than in controls. Serum concentrations of sRAGE were significantly elevated in iPAH(p<0.001 and CTEPH(p = 0.001 compared to AVS. Serum sRAGE was significantly higher in iPAH compared to CTEPH(p = 0.042 and significantly reduced in AVS compared to controls(p = 0.001. There were no significant differences in sRAGE serum concentrations before and after surgical therapy for CTEPH, iPAH or AVS. CONCLUSIONS: Our

  12. Lithium chloride attenuates mitomycin C induced necrotic cell death in MDA-MB-231 breast cancer cells via HMGB1 and Bax signaling.

    Science.gov (United States)

    Razmi, Mahdieh; Rabbani-Chadegani, Azra; Hashemi-Niasari, Fatemeh; Ghadam, Parinaz

    2018-07-01

    The clinical use of potent anticancer drug mitomycin C (MMC) has limited due to side effects and resistance of cancer cells. The aim of this study was to investigate whether lithium chloride (LiCl), as a mood stabilizer, can affect the sensitivity of MDA-MB-231 breast cancer cells to mitomycin C. The cells were exposed to various concentrations of mitomycin C alone and combined with LiCl and the viability determined by trypan blue and MTT assays. Proteins were analyzed by western blot and mRNA expression of HMGB1 MMP9 and Bcl-2 were analyzed by RT-PCR. Flow cytometry was used to determine the cell cycle arrest and percent of apoptotic and necrotic cells. Concentration of Bax assessed by ELISA. Exposure of the cells to mitomycin C revealed IC 50 value of 20 μM, whereas pretreatment of the cells with LiCl induced synergistic cytotoxicity and IC 50 value declined to 5 μM. LiCl combined with mitomycin C significantly down-regulated HMGB1, MMP9 and Bcl-2 gene expression but significantly increased the level of Bax protein. In addition, the content of HMGB1 in the nuclei decreased and pretreatment with LiCl reduced the content of HMGB1 release induced by MMC. LiCl increased mitomycin C-induced cell shrinkage and PARP fragmentation suggesting induction of apoptosis in these cells. LiCl prevented mitomycin C-induced necrosis and changed the cell death arrest at G2/M-phase. Taking all together, it is suggested that LiCl efficiently enhances mitomycin C-induced apoptosis and HMGB1, Bax and Bcl-2 expression may play a major role in this process, the findings that provide a new therapeutic strategy for LiCl in combination with mitomycin C. Copyright © 2018 Elsevier GmbH. All rights reserved.

  13. AGEs, RAGEs and s-RAGE; friend or foe for cancer.

    Science.gov (United States)

    Ahmad, Saheem; Khan, Hamda; Siddiqui, Zeba; Khan, Mohd Yasir; Rehman, Shahnawaz; Shahab, Uzma; Godovikova, Tatyana; Silnikov, Vladimir; Moinuddin

    2018-04-01

    Impaired awareness of glycation biology in cancer initiation and progression is one of the fundamental reasons for its meticulous investigation of the molecules involved in signalling pathway. Glycation of biological macromolecules results in the progression of advanced glycation end-products (AGEs) that proliferates the process of carcinogenesis by activation of transcription factors and release of cytokines. The receptor for advanced glycation end-products (RAGEs) with the binding of its different ligands like; AGEs, HMGB1 and S100 activate the signalling arrays. The activation of downstream signalling pathway ultimately leads to the pathophysiological conditions of diabetes, ageing, neurological disorders and cancers as well as a result of the activation of transcription factors which is discussed in the main body text of this review. However, there might be a likelihood of the positive effect of the HMGB1 and S100 proteins in cancer. Still, some untouched mechanisms might be responsible for the establishment of the function of AGE-RAGE or AGE-sRAGE axis activation that leads to the friend-foe association with the cancers. The levels of RAGE and s-RAGE may be a useful biomarker of ligand-RAGE pathway activation and cancer. Thus, the possibility of providing a potential complement to carcinogenesis is very high which might be an interesting target for therapeutic interventions. This article is an insightful assessment on AGE, RAGE and s-RAGE for its possible role in cancer onset and progression. The novel therapeutic targets for cancer prevention or inhibition are also explained in brief in relation to AGE and RAGE. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Sequestering HMGB1 via DNA-Conjugated Beads Ameliorates Murine Colitis

    Science.gov (United States)

    Antoine, Daniel J.; Dancho, Meghan; Tsaava, Teá; Li, Jianhua; Lu, Ben; Levine, Yaakov A.; Stiegler, Andrew; Tamari, Yehuda; Al-Abed, Yousef; Roth, Jesse; Tracey, Kevin J.; Yang, Huan

    2014-01-01

    Inflammatory bowel disease (IBD) is chronic inflammation of the gastrointestinal tract that affects millions of people worldwide. Although the etiology of IBD is not clear, it is known that products from stressed cells and enteric microbes promote intestinal inflammation. High mobility group box 1 (HMGB1), originally identified as a nuclear DNA binding protein, is a cytokine-like protein mediator implicated in infection, sterile injury, autoimmune disease, and IBD. Elevated levels of HMGB1 have been detected in inflamed human intestinal tissues and in feces of IBD patients and mouse models of colitis. Neutralizing HMGB1 activity by administration of anti-HMGB1 antibodies or HMGB1-specific antagonist improves clinical outcomes in animal models of colitis. Since HMGB1 binds to DNA with high affinity, here we developed a novel strategy to sequester HMGB1 using DNA immobilized on sepharose beads. Screening of DNA-bead constructs revealed that B2 beads, one linear form of DNA conjugated beads, bind HMGB1 with high affinity, capture HMGB1 ex vivo from endotoxin-stimulated RAW 264.7 cell supernatant and from feces of mice with colitis. Oral administration of B2 DNA beads significantly improved body weight, reduced colon injury, and suppressed colonic and circulating cytokine levels in mice with spontaneous colitis (IL-10 knockout) and with dextran sulfate sodium-induced colitis. Thus, DNA beads reduce inflammation by sequestering HMGB1 and may have therapeutic potential for the treatment of IBD. PMID:25127031

  15. The extracellular release of Schistosoma mansoni HMGB1 nuclear protein is mediated by acetylation

    International Nuclear Information System (INIS)

    Coutinho Carneiro, Vitor; Moraes Maciel, Renata de; Caetano de Abreu da Silva, Isabel; Furtado Madeira da Costa, Rodrigo; Neto Paiva, Claudia; Torres Bozza, Marcelo; Rosado Fantappie, Marcelo

    2009-01-01

    Schistosoma mansoni HMGB1 (SmHMGB1) was revealed to be a substrate for the parasite histone acetyltransferases SmGCN5 and SmCBP1. We found that full-length SmHMGB1, as well as its HMG-box B (but not HMG-box A) were acetylated in vitro by SmGCN5 and SmCBP1. However, SmCBP1 was able to acetylate both substrates more efficiently than SmGCN5. Interestingly, the removal of the C-terminal acidic tail of SmHMGB1 (SmHMGB1ΔC) resulted in increased acetylation of the protein. We showed by mammalian cell transfection assays that SmHMGB1 and SmHMGB1ΔC were transported from the nucleus to the cytoplasm after sodium butyrate (NaB) treatment. Importantly, after NaB treatment, SmHMGB1 was also present outside the cell. Together, our data suggest that acetylation of SmHMGB1 plays a role in cellular trafficking, culminating with its secretion to the extracellular milieu. The possible role of SmHMGB1 acetylation in the pathogenesis of schistosomiasis is discussed.

  16. HMGB1 Promotes Systemic Lupus Erythematosus by Enhancing Macrophage Inflammatory Response

    Directory of Open Access Journals (Sweden)

    Mudan Lu

    2015-01-01

    Full Text Available Background/Purpose. HMGB1, which may act as a proinflammatory mediator, has been proposed to contribute to the pathogenesis of multiple chronic inflammatory and autoimmune diseases including systemic lupus erythematosus (SLE; however, the precise mechanism of HMGB1 in the pathogenic process of SLE remains obscure. Method. The expression of HMGB1 was measured by ELISA and western blot. The ELISA was also applied to detect proinflammatory cytokines levels. Furthermore, nephritic pathology was evaluated by H&E staining of renal tissues. Results. In this study, we found that HMGB1 levels were significantly increased and correlated with SLE disease activity in both clinical patients and murine model. Furthermore, gain- and loss-of-function analysis showed that HMGB1 exacerbated the severity of SLE. Of note, the HMGB1 levels were found to be associated with the levels of proinflammatory cytokines such as TNF-α and IL-6 in SLE patients. Further study demonstrated that increased HMGB1 expression deteriorated the severity of SLE via enhancing macrophage inflammatory response. Moreover, we found that receptor of advanced glycation end products played a critical role in HMGB1-mediated macrophage inflammatory response. Conclusion. These findings suggested that HMGB1 might be a risk factor for SLE, and manipulation of HMGB1 signaling might provide a therapeutic strategy for SLE.

  17. The extracellular release of Schistosoma mansoni HMGB1 nuclear protein is mediated by acetylation

    Energy Technology Data Exchange (ETDEWEB)

    Coutinho Carneiro, Vitor; Moraes Maciel, Renata de; Caetano de Abreu da Silva, Isabel; Furtado Madeira da Costa, Rodrigo [Instituto de Bioquimica Medica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, CCS, Ilha do Fundao, Rio de Janeiro 21941-590 (Brazil); Neto Paiva, Claudia; Torres Bozza, Marcelo [Departamento de Imunologia, Instituto de Microbiologia Professor Paulo de Goes, Universidade Federal do Rio de Janeiro, CCS, Ilha do Fundao, Rio de Janeiro 21941-590 (Brazil); Rosado Fantappie, Marcelo, E-mail: fantappie@bioqmed.ufrj.br [Instituto de Bioquimica Medica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, CCS, Ilha do Fundao, Rio de Janeiro 21941-590 (Brazil)

    2009-12-25

    Schistosoma mansoni HMGB1 (SmHMGB1) was revealed to be a substrate for the parasite histone acetyltransferases SmGCN5 and SmCBP1. We found that full-length SmHMGB1, as well as its HMG-box B (but not HMG-box A) were acetylated in vitro by SmGCN5 and SmCBP1. However, SmCBP1 was able to acetylate both substrates more efficiently than SmGCN5. Interestingly, the removal of the C-terminal acidic tail of SmHMGB1 (SmHMGB1{Delta}C) resulted in increased acetylation of the protein. We showed by mammalian cell transfection assays that SmHMGB1 and SmHMGB1{Delta}C were transported from the nucleus to the cytoplasm after sodium butyrate (NaB) treatment. Importantly, after NaB treatment, SmHMGB1 was also present outside the cell. Together, our data suggest that acetylation of SmHMGB1 plays a role in cellular trafficking, culminating with its secretion to the extracellular milieu. The possible role of SmHMGB1 acetylation in the pathogenesis of schistosomiasis is discussed.

  18. Expression analysis of HMGB1 in histological samples of malignant pleural mesothelioma.

    Science.gov (United States)

    Rrapaj, Eltjona; Trisolini, Elena; Bertero, Luca; Salvo, Michela; Indellicato, Rossella; Andorno, Silvano; Garcia-Manteiga, Jose M; Rena, Ottavio; Boldorini, Renzo L

    2018-05-01

    High mobility group box 1 (HMGB1) is a chromatin structural protein, expressed ubiquitously in the nuclei of mammalian cells. When transported extracellularly, it acts as a tumour suppressor and oncogenic protein. In malignant pleural mesothelioma (MPM), high serum levels of HMGB1 have been related to a poor prognosis. Conversely, the significance of HMGB1 expression in MPM tissues is still unclear. Biopsy samples from 170 patients with MPM were assessed by immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR) to evaluate HMGB1 protein and gene expression. The expression level of HMGB1 protein was scored using a semiquantitative system that sums the intensity (0-3) and the percentage (from 0 to 4) of positively stained cells in nuclei, cytoplasm and in both. The final score was considered as high (>3) or low (<3) expression. Gene expression levels were calculated using the ΔΔC t method. High expression levels of HMGB1 as total (P = 0.0011) and cytoplasmic score (P = 0.0462) were related to a worse disease-specific survival (DSS) in the entire cohort and in the clinicopathological subgroups. No significant correlation was found between HMGB1 gene expression and DSS. These findings indicate that HMGB1 may be a useful prognostic biomarker in MPM when detected by immunohistochemistry. Conversely, as it is also expressed in normal and reactive mesothelial cells, HMGB1 cannot be considered a diagnostic biomarker in histological samples of mesothelioma. © 2018 John Wiley & Sons Ltd.

  19. HMGB1/anti-HMGB1 antibodies define a molecular signature of early stages of HIV-Associated Neurocognitive Isorders (HAND

    Directory of Open Access Journals (Sweden)

    Marie-Lise Gougeon

    2017-02-01

    Conclusion: We report that brain injury in chronically HIV-infected patients on stable HAART is strongly associated with persistent CNS inflammation, which is correlated with increased levels of HMGB1 and anti-HMGB1 IgG in the CSF. Moreover, we identified circulating anti-HMGB1 IgG as a very early biomarker of neurological impairment in patients without HAND. These results might have important implication for the identification of patients who are at high risk of developing neurological disorders.

  20. Long non-coding RNA UCA1 promotes lung cancer cell proliferation and migration via microRNA-193a/HMGB1 axis.

    Science.gov (United States)

    Wu, Hongyu; Zhou, Caicun

    2018-02-05

    Lung cancer is a leading cause of death worldwide. Long non-coding RNAs have been documented aberrantly expressed and exerted crucial role in variety of cancers. Urothelial carcinoma associated 1 (UCA1) is a potential new type of biomarkers for tumor diagnosis and exerts oncogenic effect on various human cancers. However, the mechanism of oncogenic role of UCA1 in lung cancer remains unclear. In this study, we firstly confirmed the role of UCA1 in lung cancer and found that UCA1 down-regulation inhibited cell proliferation and migration in both SKMES-1 and H520 lung cancer cells. Then we demonstrated that repressed UCA1 promoted the miR-193a expression and miR-193a could bind to the predicted binding site of UCA1. We then dissected the role of miR-193a in lung cancer and proved the anti-tumor role of miR-193a. Furthermore, we found that miR-193a displayed its role in lung cancer via modulating the HMGB1 expression. In addition, we found that over-expression of HMGB1 could restore the UCA1 knockdown induced repression of cell proliferation and migration. In summary, our study demonstrated that UCA1 exerts oncogenes activity in lung cancer, acting mechanistically by upregulating HMGB1 expression through 'sponging' miR-193a. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. RAGE and TLRs: relatives, friends or neighbours?

    Science.gov (United States)

    Ibrahim, Zaridatul Aini; Armour, Carol L; Phipps, Simon; Sukkar, Maria B

    2013-12-01

    The innate immune system forms the first line of protection against infectious and non-infectious tissue injury. Cells of the innate immune system detect pathogen-associated molecular patterns or endogenous molecules released as a result of tissue injury or inflammation through various innate immune receptors, collectively termed pattern-recognition receptors. Members of the Toll-like receptor (TLR) family of pattern-recognition receptors have well established roles in the host immune response to infection, while the receptor for advanced glycation end products (RAGE) is a pattern-recognition receptor predominantly involved in the recognition of endogenous molecules released in the context of infection, physiological stress or chronic inflammation. RAGE and TLRs share common ligands and signaling pathways, and accumulating evidence points towards their co-operative interaction in the host immune response. At present however, little is known about the mechanisms that result in TLR versus RAGE signalling or RAGE-TLR cross-talk in response to their shared ligands. Here we review what is known in relation to the physicochemical basis of ligand interactions between TLRs and RAGE, focusing on three shared ligands of these receptors: HMGB1, S100A8/A9 and LPS. Our aim is to discuss what is known about differential ligand interactions with RAGE and TLRs and to highlight important areas for further investigation so that we may better understand the role of these receptors and their relationship in host defense. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Minocycline attenuates both OGD-induced HMGB1 release and HMGB1-induced cell death in ischemic neuronal injury in PC12 cells

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Kiyoshi [Division of Laboratory and Vascular Medicine, Field of Cardiovascular and Respiratory Disorders, Department of Advanced Therapeutics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan); Department of Neurosurgery, Omuta City General Hospital, 2-19-1 Takarazaka, Omuta-City, Fukuoka 836-8567 (Japan); Kawahara, Ko-ichi; Biswas, Kamal Krishna; Ito, Takashi [Division of Laboratory and Vascular Medicine, Field of Cardiovascular and Respiratory Disorders, Department of Advanced Therapeutics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan); Tancharoen, Salunya [Department of Pharmacology, Faculty of Dentistry, Mahidol University, 6 Yothe Rd., Rajthevee Bangkok 10400 (Thailand); Morimoto, Yoko [Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Matsuda, Fumiyo [Division of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8560 (Japan); Oyama, Yoko; Takenouchi, Kazunori [Division of Laboratory and Vascular Medicine, Field of Cardiovascular and Respiratory Disorders, Department of Advanced Therapeutics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan); Miura, Naoki [Laboratory of Veterinary Diagnostic Imaging, Department of Veterinary Medicine, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065 (Japan); Arimura, Noboru; Nawa, Yuko; Meng, Xiaojie; Shrestha, Binita; Arimura, Shinichiro [Division of Laboratory and Vascular Medicine, Field of Cardiovascular and Respiratory Disorders, Department of Advanced Therapeutics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan); and others

    2009-07-24

    High mobility group box-1 (HMGB1), a non-histone DNA-binding protein, is massively released into the extracellular space from neuronal cells after ischemic insult and exacerbates brain tissue damage in rats. Minocycline is a semisynthetic second-generation tetracycline antibiotic which has recently been shown to be a promising neuroprotective agent. In this study, we found that minocycline inhibited HMGB1 release in oxygen-glucose deprivation (OGD)-treated PC12 cells and triggered the activation of p38mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinases (ERK1/2). The ERK kinase (MEK)1/2 inhibitor U-0126 and p38MAPK inhibitor SB203580 blocked HMGB1 release in response to OGD. Furthermore, HMGB1 triggered cell death in a dose-dependent fashion. Minocycline significantly rescued HMGB1-induced cell death in a dose-dependent manner. In light of recent observations as well as the good safety profile of minocycline in humans, we propose that minocycline might play a potent neuroprotective role through the inhibition of HMGB1-induced neuronal cell death in cerebral infarction.

  3. Minocycline attenuates both OGD-induced HMGB1 release and HMGB1-induced cell death in ischemic neuronal injury in PC12 cells

    International Nuclear Information System (INIS)

    Kikuchi, Kiyoshi; Kawahara, Ko-ichi; Biswas, Kamal Krishna; Ito, Takashi; Tancharoen, Salunya; Morimoto, Yoko; Matsuda, Fumiyo; Oyama, Yoko; Takenouchi, Kazunori; Miura, Naoki; Arimura, Noboru; Nawa, Yuko; Meng, Xiaojie; Shrestha, Binita; Arimura, Shinichiro

    2009-01-01

    High mobility group box-1 (HMGB1), a non-histone DNA-binding protein, is massively released into the extracellular space from neuronal cells after ischemic insult and exacerbates brain tissue damage in rats. Minocycline is a semisynthetic second-generation tetracycline antibiotic which has recently been shown to be a promising neuroprotective agent. In this study, we found that minocycline inhibited HMGB1 release in oxygen-glucose deprivation (OGD)-treated PC12 cells and triggered the activation of p38mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinases (ERK1/2). The ERK kinase (MEK)1/2 inhibitor U-0126 and p38MAPK inhibitor SB203580 blocked HMGB1 release in response to OGD. Furthermore, HMGB1 triggered cell death in a dose-dependent fashion. Minocycline significantly rescued HMGB1-induced cell death in a dose-dependent manner. In light of recent observations as well as the good safety profile of minocycline in humans, we propose that minocycline might play a potent neuroprotective role through the inhibition of HMGB1-induced neuronal cell death in cerebral infarction.

  4. HMGB1 in vascular diseases : Its role in vascular inflammation and atherosclerosis

    NARCIS (Netherlands)

    de Souza, A. W. S.; Westra, J.; Limburg, P. C.; Bijl, M.; Kallenberg, C. G. M.

    2012-01-01

    The nuclear protein high mobility group box 1 (HMGB1) has been suggested to be involved in the pathogenesis of several vascular diseases such as systemic vasculitis and atherosclerosis. In systemic vasculitides including ANCA-associated vasculitis and Kawasaki disease, serum HMGB1 levels are higher

  5. HMGB1 promotes the development of pulmonary arterial hypertension in rats.

    Directory of Open Access Journals (Sweden)

    Yukari Sadamura-Takenaka

    Full Text Available Pulmonary arterial hypertension (PAH is characterized by increased pulmonary vascular resistance leading to right ventricular failure and death. Recent studies have suggested that chronic inflammatory processes are involved in the pathogenesis of PAH. However, the molecular and cellular mechanisms driving inflammation have not been fully elucidated.To elucidate the roles of high mobility group box 1 protein (HMGB1, a ubiquitous DNA-binding protein with extracellular pro-inflammatory activity, in a rat model of PAH.Male Sprague-Dawley rats were administered monocrotaline (MCT. Concentrations of HMGB1 in bronchoalveolar lavage fluid (BALF and serum, and localization of HMGB1 in the lung were examined over time. The protective effects of anti-HMGB1 neutralizing antibody against MCT-induced PAH were tested.HMGB1 levels in BALF were elevated 1 week after MCT injection, and this elevation preceded increases of other pro-inflammatory cytokines, such as TNF-α, and the development of PAH. In contrast, serum HMGB1 levels were elevated 4 weeks after MCT injection, at which time the rats began to die. Immunohistochemical analyses indicated that HMGB1 was translocated to the extranuclear space in periarterial infiltrating cells, alveolar macrophages, and bronchial epithelial cells of MCT-injected rats. Anti-HMGB1 neutralizing antibody protected rats against MCT-induced lung inflammation, thickening of the pulmonary artery wall, and elevation of right ventricular systolic pressure, and significantly improved the survival of the MCT-induced PAH rats.Our results identify extracellular HMGB1 as a promoting factor for MCT-induced PAH. The blockade of HMGB1 activity improved survival of MCT-induced PAH rats, and thus might be a promising therapy for the treatment of PAH.

  6. Effects of propofol on lipopolysaccharide-induced expression and release of HMGB1 in macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Wang, T.; Wei, X.Y.; Liu, B.; Wang, L.J.; Jiang, L.H. [Department of Anesthesiology, the Third Affiliated Hospital, Zhengzhou University, Zhengzhou (China)

    2015-02-24

    This study aimed to determine the effects of different concentrations of propofol (2,6-diisopropylphenol) on lipopolysaccharide (LPS)-induced expression and release of high-mobility group box 1 protein (HMGB1) in mouse macrophages. Mouse macrophage cell line RAW264.7 cells were randomly divided into 5 treatment groups. Expression levels of HMGB1 mRNA were detected using RT-PCR, and cell culture supernatant HMGB1 protein levels were detected using enzyme-linked immunosorbent assay (ELISA). Translocation of HMGB1 from the nucleus to the cytoplasm in macrophages was observed by Western blotting and activity of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in the nucleus was detected using ELISA. HMGB1 mRNA expression levels increased significantly in the cell culture supernatant and in cells after 24 h of stimulating RAW264.7 cells with LPS (500 ng/mL). However, HMGB1 mRNA expression levels in the P2 and P3 groups, which received 500 ng/mL LPS with 25 or 50 μmol/mL propofol, respectively, were significantly lower than those in the group receiving LPS stimulation (P<0.05). After stimulation by LPS, HMGB1 protein levels were reduced significantly in the nucleus but were increased in the cytoplasm (P<0.05). Simultaneously, the activity of NF-κB was enhanced significantly (P<0.05). After propofol intervention, HMGB1 translocation from the nucleus to the cytoplasm and NF-κB activity were inhibited significantly (each P<0.05). Thus, propofol can inhibit the LPS-induced expression and release of HMGB1 by inhibiting HMGB1 translocation and NF-κB activity in RAW264.7 cells, suggesting propofol may be protective in patients with sepsis.

  7. Molecular basis for the redox control of nuclear transport of the structural chromatin protein Hmgb1

    International Nuclear Information System (INIS)

    Hoppe, George; Talcott, Katherine E.; Bhattacharya, Sanjoy K.; Crabb, John W.; Sears, Jonathan E.

    2006-01-01

    Oxidative stress can induce a covalent disulfide bond between protein and peptide thiols that is reversible through enzymatic catalysis. This process provides a post-translational mechanism for control of protein function and may also protect thiol groups from irreversible oxidation. High mobility group protein B1 (Hmgb1), a DNA-binding structural chromosomal protein and transcriptional co-activator was identified as a substrate of glutaredoxin. Hmgb1 contains 3 cysteines, Cys23, 45, and 106. In mild oxidative conditions, Cys23 and Cys45 readily form an intramolecular disulfide bridge, whereas Cys106 remains in the reduced form. The disulfide bond between Cys23 and Cys45 is a target of glutathione-dependent reduction by glutaredoxin. Endogenous Hmgb1 as well as GFP-tagged wild-type Hmgb1 co-localize in the nucleus of CHO cells. While replacement of Hmgb1 Cys23 and/or 45 with serines did not affect the nuclear distribution of the mutant proteins, Cys106-to-Ser and triple cysteine mutations impaired nuclear localization of Hmgb1. Our cysteine targeted mutational analysis suggests that Cys23 and 45 induce conformational changes in response to oxidative stress, whereas Cys106 appears to be critical for the nucleocytoplasmic shuttling of Hmgb1

  8. Binding of histone H1 to DNA is differentially modulated by redox state of HMGB1.

    Directory of Open Access Journals (Sweden)

    Eva Polanská

    Full Text Available HMGB1 is an architectural protein in chromatin, acting also as a signaling molecule outside the cell. Recent reports from several laboratories provided evidence that a number of both the intracellular and extracellular functions of HMGB1 may depend on redox-sensitive cysteine residues of the protein. In this study we demonstrate that redox state of HMGB1 can significantly modulate the ability of the protein to bind and bend DNA, as well as to promote DNA end-joining. We also report a high affinity binding of histone H1 to hemicatenated DNA loops and DNA minicircles. Finally, we show that reduced HMGB1 can readily displace histone H1 from DNA, while oxidized HMGB1 has limited capacity for H1 displacement. Our results suggested a novel mechanism for the HMGB1-mediated modulation of histone H1 binding to DNA. Possible biological consequences of linker histones H1 replacement by HMGB1 for the functioning of chromatin are discussed.

  9. High-Mobility Group Box 1 Mediates Fibroblast Activity via RAGE-MAPK and NF-κB Signaling in Keloid Scar Formation.

    Science.gov (United States)

    Kim, Jihee; Park, Jong-Chul; Lee, Mi Hee; Yang, Chae Eun; Lee, Ju Hee; Lee, Won Jai

    2017-12-28

    Emerging studies have revealed the involvement of high-mobility group box 1 (HMGB1) in systemic fibrotic diseases, yet its role in the cutaneous scarring process has not yet been investigated. We hypothesized that HMGB1 may promote fibroblast activity to cause abnormal cutaneous scarring. In vitro wound healing assay with normal and keloid fibroblasts demonstrated that HMGB1 administration promoted the migration of both fibroblasts with increased speed and a greater traveling distance. Treatment of the HMGB1 inhibitor glycyrrhizic acid (GA) showed an opposing effect on both activities. To analyze the downstream mechanism, the protein levels of extracellular signal-regulated kinase (ERK) 1/2, protein kinase B (AKT), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) were measured by western blot analysis. HMGB1 increased the expression levels of ERK1/2, AKT, and NF-κB compared to the control, which was suppressed by GA. HMGB1 promoted both normal and keloid fibroblasts migration to a degree equivalent to that achieved with TGF-β. We concluded that HMGB1 activates fibroblasts via the receptor for advanced glycation end product (RAGE)-mitogen-activated protein kinases (MAPK) and NF-κB interaction signaling pathways. Further knowledge of the relationship of HMGB1 with skin fibrosis may lead to a promising clinical approach to manage abnormal scarring.

  10. HMGB1 mediates depressive behavior induced by chronic stress through activating the kynurenine pathway.

    Science.gov (United States)

    Wang, Bo; Lian, Yong-Jie; Su, Wen-Jun; Peng, Wei; Dong, Xin; Liu, Lin-Lin; Gong, Hong; Zhang, Ting; Jiang, Chun-Lei; Wang, Yun-Xia

    2017-11-28

    Our previous study has reported that the proactive secretion and role of central high mobility group box 1 (HMGB1) in lipopolysaccharide-induced depressive behavior. Here, the potential mechanism of HMGB1 mediating chronic-stress-induced depression through the kynurenine pathway (KP) was further explored both in vivo and in vitro. Depression model was established with the 4-week chronic unpredictable mild stress (CUMS). Sucrose preference and Barnes maze test were performed to reflect depressive behaviors. The ratio of kynurenine (KYN)/tryptophan (Trp) represented the enzyme activity of indoleamine-2,3-dioxygenase (IDO). Gene transcription and protein expression were assayed by real-time RT-PCR and western-blot or ELISA kit respectively. Along with depressive behaviors, HMGB1 concentrations in the hippocampus and serum substantially increased post 4-week CUMS exposure. Concurrent with the upregulated HMGB1 protein, the regulator of translocation of HMGB1, sirtuin 1 (SIRT1) concentration in the hippocampus remarkably increased. In addition to HMGB1 and SIRT1, IDO, the rate limiting enzyme of KP, was upregulated at the level of mRNA expression and enzyme activity in stressed hippocampi and LPS/HMGB1-treated hippocampal slices. The gene transcription of kynurenine monooxygenase (KMO) and kynureninase (KYNU) in the downstream of KP also increased both in vivo and in vitro. Mice treated with ethyl pyruvate (EP), the inhibitor of HMGB1 releasing, were observed with lower tendency of developing depressive behaviors and reduced activation of enzymes in KP. All of these experiments demonstrate that the role of HMGB1 on the induction of depressive behavior is mediated by KP activation. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Anti-HMGB1 Antibodies and Alpha-7 Agonists as Experimental Therapeutics as BW Countermeasures

    National Research Council Canada - National Science Library

    Tracey, Kevin

    2006-01-01

    .... We originally identified a cytokine role for HMGB1, a protein known previously as a transcription factor, and have since focused our efforts on studying the role of this mediator in the pathogenesis of severe sepsis...

  12. The potential role of HMGB1 release in peritoneal dialysis-related peritonitis.

    Directory of Open Access Journals (Sweden)

    Shirong Cao

    Full Text Available High mobility group box 1 (HMGB1, a DNA-binding nuclear protein, has been implicated as an endogenous danger signal in the pathogenesis of infection diseases. However, the potential role and source of HMGB1 in the peritoneal dialysis (PD effluence of patients with peritonitis are unknown. First, to evaluate HMDB1 levels in peritoneal dialysis effluence (PDE, a total of 61 PD patients were enrolled in this study, including 42 patients with peritonitis and 19 without peritonitis. Demographic characteristics, symptoms, physical examination findings and laboratory parameters were recorded. HMGB1 levels in PDE were determined by Western blot and ELISA. The concentrations of TNF-α and IL-6 in PDE were quantified by ELISA. By animal model, inhibition of HMGB1 with glycyrrhizin was performed to determine the effects of HMGB1 in LPS-induced mice peritonitis. In vitro, a human peritoneal mesothelial cell line (HMrSV5 was stimulated with lipopolysaccharide (LPS, HMGB1 extracellular content in the culture media and intracellular distribution in various cellular fractions were analyzed by Western blot or immunofluorescence. The results showed that the levels of HMGB1 in PDE were higher in patients with peritonitis than those in controls, and gradually declined during the period of effective antibiotic treatments. Furthermore, the levels of HMGB1 in PDE were positively correlated with white blood cells (WBCs count, TNF-α and IL-6 levels. However, pretreatment with glycyrrhizin attenuated LPS-induced acute peritoneal inflammation and dysfunction in mice. In cultured HMrSV5 cells, LPS actively induced HMGB1 nuclear-cytoplasmic translocation and release in a time and dose-dependent fashion. Moreover, cytosolic HMGB1 was located in lysosomes and secreted via a lysosome-mediated secretory pathway following LPS stimulation. Our study demonstrates that elevated HMGB1 levels in PDE during PD-related peritonitis, at least partially, from peritoneal mesothelial cells

  13. HMGB1 Is a Potential Biomarker for Severe Viral Hemorrhagic Fevers.

    Directory of Open Access Journals (Sweden)

    Katarina Resman Rus

    2016-06-01

    Full Text Available Hemorrhagic fever with renal syndrome (HFRS and Crimean-Congo hemorrhagic fever (CCHF are common representatives of viral hemorrhagic fevers still often neglected in some parts of the world. Infection with Dobrava or Puumala virus (HFRS and Crimean-Congo hemorrhagic fever virus (CCHFV can result in a mild, nonspecific febrile illness or as a severe disease with hemorrhaging and high fatality rate. An important factor in optimizing survival rate in patients with VHF is instant recognition of the severe form of the disease for which significant biomarkers need to be elucidated. To determine the prognostic value of High Mobility Group Box 1 (HMGB1 as a biomarker for disease severity, we tested acute serum samples of patients with HFRS or CCHF. Our results showed that HMGB1 levels are increased in patients with CCHFV, DOBV or PUUV infection. Above that, concentration of HMGB1 is higher in patients with severe disease progression when compared to the mild clinical course of the disease. Our results indicate that HMGB1 could be a useful prognostic biomarker for disease severity in PUUV and CCHFV infection, where the difference between the mild and severe patients group was highly significant. Even in patients with severe DOBV infection concentrations of HMGB1 were 2.8-times higher than in the mild group, but the difference was not statistically significant. Our results indicated HMGB1 as a potential biomarker for severe hemorrhagic fevers.

  14. Inhibition of HMGB1 Translocation by Green Tea Extract in Rats Exposed to Environmental Tobacco Smoke

    Directory of Open Access Journals (Sweden)

    Sirintip Chaichalotornkul

    2012-01-01

    Full Text Available Environmental tobacco smoke (ETS exposure is linked to carcinogenic, oxidative and inflammatory cellular reactions. Green tea polyphenol reportedly plays a role in the prevention of inflammation-related diseases. To evaluate the effects of green tea extract (GTE on cellular location of High Mobility Group Box-1 (HMGB1 protein, we studied the lung tissue in rats exposed to cigarette smoke (CS. Rats were divided into three groups; CS, CSG, and C, which were groups of CS-treated only, CS-treated with GTE dietary supplement, and the control, respectively. Our findings by immunocytochemistry showed that abundant HMGB1 translocated from the nucleus to the cytoplasm in the lung tissues of rats that were exposed to CS, whereas HMGB1 was localized to the nuclei of CSG and C group. For in vitro studies, cotinine stimulated the secretion of HMGB1 in a dose and time dependent manner and the HMGB1 level was suppressed by GTE in murine macrophage cell lines. Our results could suggest that GTE supplementation which could suppress HMGB1 may offer a beneficial effect against diseases.

  15. HMGB1 is an independent predictor of death and heart transplantation in heart failure.

    Science.gov (United States)

    Volz, H C; Laohachewin, D; Schellberg, D; Wienbrandt, A R; Nelles, M; Zugck, C; Kaya, Z; Katus, H A; Andrassy, M

    2012-06-01

    High-Mobility-Group Box 1 (HMGB1) has been established as an important mediator of myocardial inflammation and associated with progression of heart failure (HF). The aim of this study was to analyze the prognostic value of systemic HMGB1 levels in HF patients with ischemic and non-ischemic cardiomyopathy. We conducted an analysis (median follow-up time 2.5 years) of HMGB1 plasma concentration in 154 patients with systolic HF and correlated the results with disease severity and prognosis. HMGB1 in HF patients with severe symptoms (NYHA III/IV; 5.35 ng/ml; interquartile range (IQR) = 3.48-8.42 ng/ml) was significantly elevated compared with that in patients with mild symptoms (NYHA I/II; 3.37 ng/ml, IQR = 2.31-5.22 ng/ml, p < 0.0001) and with controls (3.25 ng/ml, IQR = 3.04-3.67 ng/ml, p < 0.0001). HMGB1 levels correlated with other markers of heart failure indicating an association of HMGB1 with disease severity in HF. In a univariate cox regression model for the combined endpoint of death and heart transplantation, HMGB1 proved to be a predictor at cut-off values based on HMGB1 terciles of either 3.4 or 6.1 ng/ml (p = 0.001 and p < 0.0001, respectively). In a multivariate cox regression model, which included NT-proBNP, creatinine, age, NYHA class, white blood cell count, anemia, and age, HMGB1 remained an independent predictor of the combined endpoint (hazard ratio (HR) = 2.48, 95% confidence interval (CI) = 1.06-5.83, p = 0.037 and HR = 2.48, 95% CI = 1.31-4.71, p = 0.005, respectively). Our findings demonstrate that HMGB1 plasma concentration is elevated in HF and correlates with disease severity and that is an independent predictor of the combined endpoint death and heart transplantation in HF patients.

  16. HMGB1 and cord blood: its role as immuno-adjuvant factor in innate immunity.

    Directory of Open Access Journals (Sweden)

    Alessandra Ciucci

    Full Text Available In newborn the innate immune system provides essential protection during primary infections before the generation of an appropriate adaptive immune response that is initially not fully operative. Innate immune response is evoked and perpetuated by molecules derived from microorganisms or by the damage/death of host cells. These are collectively known as damage-associated molecular-pattern (DAMP molecules. High-mobility group box 1 protein (HMGB1 or amphoterin, which previously was considered to be only a nuclear factor, has been recently identified as a DAMP molecule. When it is actively secreted by inflammatory cells or passively released from necrotic cells, HMGB1 mediates the response to infection, injury and inflammation, inducing dendritic cells maturation and T helper-1-cell responses. To characterize the role of HMGB1 in the innate and immature defense mechanisms in newborns, human cord blood (CB mononuclear cells, in comparison to adult peripheral blood (PB mononuclear cells, have been analyzed for its expression. By flow cytometry and western blot analysis, we observed that in CB and PB cells: i HMGB1 is expressed on cell surface membranes of myeloid dendritic cell precursors, mostly, and lymphocytes (gamma/delta and CD4(+ T cells to a lesser extent; ii different pro-inflammatory stimuli or molecules that mimic infection increased cell surface expression of HMGB1 as well as its secretion into extracellular environment; iii the treatment with synthetic molecules such as aminobisphosphonates (ABs, identified to be γδ T cell antigens, triggered up-regulation of HMGB1 expression on mononuclear cells, as well γδ T lymphocytes, inducing its secretion. The modulation of its secretion and the HMGB1-mediated migration of monocytes indicated HMGB1 as regulator of immune response in an immature system, like CB, through engagement of γδ T lymphocytes and myeloid dendritic cell precursors, essential components of innate immunity. In addition

  17. CK2 Phosphorylation of Schistosoma mansoni HMGB1 Protein Regulates Its Cellular Traffic and Secretion but Not Its DNA Transactions

    OpenAIRE

    de Abreu da Silva, Isabel Caetano; Carneiro, Vitor Coutinho; Maciel, Renata de Moraes; da Costa, Rodrigo Furtado Madeiro; Furtado, Daniel Rodrigues; de Oliveira, Francisco Meirelles Bastos; da Silva-Neto, Mário Alberto Cardoso; Rumjanek, Franklin David; Fantappié, Marcelo Rosado

    2011-01-01

    BACKGROUND: The helminth Schistosoma mansoni parasite resides in mesenteric veins where fecundated female worms lay hundred of eggs daily. Some of the egg antigens are trapped in the liver and induce a vigorous granulomatous response. High Mobility Group Box 1 (HMGB1), a nuclear factor, can also be secreted and act as a cytokine. Schistosome HMGB1 (SmHMGB1) is secreted by the eggs and stimulate the production of key cytokines involved in the pathology of schistosomiasis. Thus, understanding t...

  18. Age-dependent change of HMGB1 and DNA double-strand break accumulation in mouse brain

    International Nuclear Information System (INIS)

    Enokido, Yasushi; Yoshitake, Ayaka; Ito, Hikaru; Okazawa, Hitoshi

    2008-01-01

    HMGB1 is an evolutionarily conserved non-histone chromatin-associated protein with key roles in maintenance of nuclear homeostasis; however, the function of HMGB1 in the brain remains largely unknown. Recently, we found that the reduction of nuclear HMGB1 protein level in the nucleus associates with DNA double-strand break (DDSB)-mediated neuronal damage in Huntington's disease [M.L. Qi, K. Tagawa, Y. Enokido, N. Yoshimura, Y. Wada, K. Watase, S. Ishiura, I. Kanazawa, J. Botas, M. Saitoe, E.E. Wanker, H. Okazawa, Proteome analysis of soluble nuclear proteins reveals that HMGB1/2 suppress genotoxic stress in polyglutamine diseases, Nat. Cell Biol. 9 (2007) 402-414]. In this study, we analyze the region- and cell type-specific changes of HMGB1 and DDSB accumulation during the aging of mouse brain. HMGB1 is localized in the nuclei of neurons and astrocytes, and the protein level changes in various brain regions age-dependently. HMGB1 reduces in neurons, whereas it increases in astrocytes during aging. In contrast, DDSB remarkably accumulates in neurons, but it does not change significantly in astrocytes during aging. These results indicate that HMGB1 expression during aging is differentially regulated between neurons and astrocytes, and suggest that the reduction of nuclear HMGB1 might be causative for DDSB in neurons of the aged brain

  19. Persistent Increase in Microglial RAGE Contributes to Chronic Stress-Induced Priming of Depressive-like Behavior.

    Science.gov (United States)

    Franklin, Tina C; Wohleb, Eric S; Zhang, Yi; Fogaça, Manoela; Hare, Brendan; Duman, Ronald S

    2018-01-01

    Chronic stress-induced inflammatory responses occur in part via danger-associated molecular pattern (DAMP) molecules, such as high mobility group box 1 protein (HMGB1), but the receptor(s) underlying DAMP signaling have not been identified. Microglia morphology and DAMP signaling in enriched rat hippocampal microglia were examined during the development and expression of chronic unpredictable stress (CUS)-induced behavioral deficits, including long-term, persistent changes after CUS. The results show that CUS promotes significant morphological changes and causes robust upregulation of HMGB1 messenger RNA in enriched hippocampal microglia, an effect that persists for up to 6 weeks after CUS exposure. This coincides with robust and persistent upregulation of receptor for advanced glycation end products (RAGE) messenger RNA, but not toll-like receptor 4 in hippocampal microglia. CUS also increased surface expression of RAGE protein on hippocampal microglia as determined by flow cytometry and returned to basal levels 5 weeks after CUS. Importantly, exposure to short-term stress was sufficient to increase RAGE surface expression as well as anhedonic behavior, reflecting a primed state that results from a persistent increase in RAGE messenger RNA expression. Further evidence for DAMP signaling in behavioral responses is provided by evidence that HMGB1 infusion into the hippocampus was sufficient to cause anhedonic behavior and by evidence that RAGE knockout mice were resilient to stress-induced anhedonia. Together, the results provide evidence of persistent microglial HMGB1-RAGE expression that increases vulnerability to depressive-like behaviors long after chronic stress exposure. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  20. CK2 phosphorylation of Schistosoma mansoni HMGB1 protein regulates its cellular traffic and secretion but not its DNA transactions.

    Science.gov (United States)

    de Abreu da Silva, Isabel Caetano; Carneiro, Vitor Coutinho; Maciel, Renata de Moraes; da Costa, Rodrigo Furtado Madeiro; Furtado, Daniel Rodrigues; de Oliveira, Francisco Meirelles Bastos; da Silva-Neto, Mário Alberto Cardoso; Rumjanek, Franklin David; Fantappié, Marcelo Rosado

    2011-01-01

    The helminth Schistosoma mansoni parasite resides in mesenteric veins where fecundated female worms lay hundred of eggs daily. Some of the egg antigens are trapped in the liver and induce a vigorous granulomatous response. High Mobility Group Box 1 (HMGB1), a nuclear factor, can also be secreted and act as a cytokine. Schistosome HMGB1 (SmHMGB1) is secreted by the eggs and stimulate the production of key cytokines involved in the pathology of schistosomiasis. Thus, understanding the mechanism of SmHMGB1 release becomes mandatory. Here, we addressed the question of how the nuclear SmHMGB1 can reach the extracellular space. We showed in vitro and in vivo that CK2 phosphorylation was involved in the nucleocytoplasmic shuttling of SmHMGB1. By site-directed mutagenesis we mapped the two serine residues of SmHMGB1 that were phosphorylated by CK2. By DNA bending and supercoiling assays we showed that CK2 phosphorylation of SmHMGB1 had no effect in the DNA binding activities of the protein. We showed by electron microscopy, as well as by cell transfection and fluorescence microscopy that SmHMGB1 was present in the nucleus and cytoplasm of adult schistosomes and mammalian cells. In addition, we showed that treatments of the cells with either a phosphatase or a CK2 inhibitor were able to enhance or block, respectively, the cellular traffic of SmHMGB1. Importantly, we showed by confocal microscopy and biochemically that SmHMGB1 is significantly secreted by S. mansoni eggs of infected animals and that SmHMGB1 that were localized in the periovular schistosomotic granuloma were phosphorylated. We showed that secretion of SmHMGB1 is regulated by phosphorylation. Moreover, our results suggest that egg-secreted SmHMGB1 may represent a new egg antigen. Therefore, the identification of drugs that specifically target phosphorylation of SmHMGB1 might block its secretion and interfere with the pathogenesis of schistosomiasis.

  1. CK2 phosphorylation of Schistosoma mansoni HMGB1 protein regulates its cellular traffic and secretion but not its DNA transactions.

    Directory of Open Access Journals (Sweden)

    Isabel Caetano de Abreu da Silva

    Full Text Available BACKGROUND: The helminth Schistosoma mansoni parasite resides in mesenteric veins where fecundated female worms lay hundred of eggs daily. Some of the egg antigens are trapped in the liver and induce a vigorous granulomatous response. High Mobility Group Box 1 (HMGB1, a nuclear factor, can also be secreted and act as a cytokine. Schistosome HMGB1 (SmHMGB1 is secreted by the eggs and stimulate the production of key cytokines involved in the pathology of schistosomiasis. Thus, understanding the mechanism of SmHMGB1 release becomes mandatory. Here, we addressed the question of how the nuclear SmHMGB1 can reach the extracellular space. PRINCIPAL FINDINGS: We showed in vitro and in vivo that CK2 phosphorylation was involved in the nucleocytoplasmic shuttling of SmHMGB1. By site-directed mutagenesis we mapped the two serine residues of SmHMGB1 that were phosphorylated by CK2. By DNA bending and supercoiling assays we showed that CK2 phosphorylation of SmHMGB1 had no effect in the DNA binding activities of the protein. We showed by electron microscopy, as well as by cell transfection and fluorescence microscopy that SmHMGB1 was present in the nucleus and cytoplasm of adult schistosomes and mammalian cells. In addition, we showed that treatments of the cells with either a phosphatase or a CK2 inhibitor were able to enhance or block, respectively, the cellular traffic of SmHMGB1. Importantly, we showed by confocal microscopy and biochemically that SmHMGB1 is significantly secreted by S. mansoni eggs of infected animals and that SmHMGB1 that were localized in the periovular schistosomotic granuloma were phosphorylated. CONCLUSIONS: We showed that secretion of SmHMGB1 is regulated by phosphorylation. Moreover, our results suggest that egg-secreted SmHMGB1 may represent a new egg antigen. Therefore, the identification of drugs that specifically target phosphorylation of SmHMGB1 might block its secretion and interfere with the pathogenesis of schistosomiasis.

  2. HMGB1 a-Box Reverses Brain Edema and Deterioration of Neurological Function in a Traumatic Brain Injury Mouse Model

    Directory of Open Access Journals (Sweden)

    Lijun Yang

    2018-05-01

    Full Text Available Background/Aims: Traumatic brain injury (TBI is a complex neurological injury in young adults lacking effective treatment. Emerging evidences suggest that inflammation contributes to the secondary brain injury following TBI, including breakdown of the blood brain barrier (BBB, subsequent edema and neurological deterioration. High mobility group box-1 (HMGB1 has been identified as a key cytokine in the inflammation reaction following TBI. Here, we investigated the therapeutic efficacy of HMGB1 A-box fragment, an antagonist competing with full-length HMGB1 for receptor binding, against TBI. Methods: TBI was induced by controlled cortical impact (CCI in adult male mice. HMGB1 A-box fragment was given intravenously at 2 mg/kg/day for 3 days after CCI. HMGB1 A-box-treated CCI mice were compared with saline-treated CCI mice and sham mice in terms of BBB disruption evaluated by Evan’s blue extravasation, brain edema by brain water content, cell death by propidium iodide staining, inflammation by Western blot and ELISA assay for cytokine productions, as well as neurological functions by the modified Neurological Severity Score, wire grip and beam walking tests. Results: HMGB1 A-box reversed brain damages in the mice following TBI. It significantly reduced brain edema by protecting integrity of the BBB, ameliorated cell degeneration, and decreased expression of pro-inflammatory cytokines released in injured brain after TBI. These cellular and molecular effects were accompanied by improved behavioral performance in TBI mice. Notably, HMGB1 A-box blocked IL-1β-induced HMGB1 release, and preferentially attenuated TLR4, Myd88 and P65 in astrocyte cultures. Conclusion: Our data suggest that HMGB1 is involved in CCI-induced TBI, which can be inhibited by HMGB1 A-box fragment. Therefore, HMGB1 A-box fragment may have therapeutic potential for the secondary brain damages in TBI.

  3. HMGB1 a-Box Reverses Brain Edema and Deterioration of Neurological Function in a Traumatic Brain Injury Mouse Model.

    Science.gov (United States)

    Yang, Lijun; Wang, Feng; Yang, Liang; Yuan, Yunchao; Chen, Yan; Zhang, Gengshen; Fan, Zhenzeng

    2018-01-01

    Traumatic brain injury (TBI) is a complex neurological injury in young adults lacking effective treatment. Emerging evidences suggest that inflammation contributes to the secondary brain injury following TBI, including breakdown of the blood brain barrier (BBB), subsequent edema and neurological deterioration. High mobility group box-1 (HMGB1) has been identified as a key cytokine in the inflammation reaction following TBI. Here, we investigated the therapeutic efficacy of HMGB1 A-box fragment, an antagonist competing with full-length HMGB1 for receptor binding, against TBI. TBI was induced by controlled cortical impact (CCI) in adult male mice. HMGB1 A-box fragment was given intravenously at 2 mg/kg/day for 3 days after CCI. HMGB1 A-box-treated CCI mice were compared with saline-treated CCI mice and sham mice in terms of BBB disruption evaluated by Evan's blue extravasation, brain edema by brain water content, cell death by propidium iodide staining, inflammation by Western blot and ELISA assay for cytokine productions, as well as neurological functions by the modified Neurological Severity Score, wire grip and beam walking tests. HMGB1 A-box reversed brain damages in the mice following TBI. It significantly reduced brain edema by protecting integrity of the BBB, ameliorated cell degeneration, and decreased expression of pro-inflammatory cytokines released in injured brain after TBI. These cellular and molecular effects were accompanied by improved behavioral performance in TBI mice. Notably, HMGB1 A-box blocked IL-1β-induced HMGB1 release, and preferentially attenuated TLR4, Myd88 and P65 in astrocyte cultures. Our data suggest that HMGB1 is involved in CCI-induced TBI, which can be inhibited by HMGB1 A-box fragment. Therefore, HMGB1 A-box fragment may have therapeutic potential for the secondary brain damages in TBI. © 2018 The Author(s). Published by S. Karger AG, Basel.

  4. Block effect on HCV infection by HMGB1 released from virus-infected cells: An insight from mathematical modeling

    Science.gov (United States)

    Wang, Wei; Ma, Wanbiao

    2018-06-01

    The nuclear protein high-mobility group box 1 (HMGB1) can have an active role in deoxyribonucleic acid (DNA) organization and the regulation of transcription. Based on the new findings from a recent experimental study, the blocking effect on HCV infection by HMGB1 released from virus-infected cells is investigated using a diffusive model for viral infection dynamics. In the model, the diffusion of the virus depends not only on its concentration gradient, but also on the concentration of HMGB1. The basic reproduction number, threshold dynamics, stability properties of the steady states, travelling wave solutions, and spreading speed for the proposed model are studied. We show that the HMGB1-induced blocking of HCV infection slows the spread of virus compared with random diffusion only. Numerically, it is shown that a high concentration of HMGB1 can block the spread of virus and this confirms, not only qualitatively but also quantitatively, the experimental result.

  5. Proinflammatory Effect of High Glucose Concentrations on HMrSV5 Cells via the Autocrine Effect of HMGB1

    Directory of Open Access Journals (Sweden)

    Yuening Chu

    2017-09-01

    Full Text Available Background: Peritoneal fibrosis, in which inflammation and apoptosis play crucial pathogenic roles, is a severe complication associated with the treatment of kidney failure with peritoneal dialysis (PD using a glucose-based dialysate. Mesothelial cells (MCs take part in the inflammatory processes by producing various cytokines and chemokines, such as monocyte chemoattractant protein 1 (MCP-1 and interleukin 8 (IL-8. The apoptosis of MCs induced by high glucose levels also contributes to complications of PD. High mobility group protein B1 (HMGB1 is an inflammatory factor that has repeatedly been proven to be related to the occurrence of peritoneal dysfunction.Aim: In this study, we aimed to explore the effect and underlying mechanism of endogenous HMGB1 in high-glucose-induced MC injury.Methods: The human peritoneal MC line, HMrSV5 was cultured in high-glucose medium and incubated with recombinant HMGB1. Cellular expression of HMGB1 was blocked using HMGB1 small interfering RNA (siRNA. Apoptosis and production of inflammatory factors as well as the potential intermediary signaling pathways were examined.Results: The major findings of these analyses were: (1 MCs secreted HMGB1 from the nucleus during exposure to high glucose levels; HMGB1 acted in an autocrine fashion on the MCs to promote the production of MCP-1 and IL-8; (2 HMGB1 had little effect on high-glucose-induced apoptosis of the MCs; and (3 HMGB1-mediated MCP-1 and IL-8 production depended on the activation of MAPK signaling pathways. In conclusion, endogenous HMGB1 plays an important role in the inflammatory reaction induced by high glucose on MCs via mitogen-activated protein kinase (MAPK signaling pathways, but it seems to have little effect on high-glucose-induced apoptosis.

  6. Diet Restriction Inhibits Apoptosis and HMGB1 Oxidation and Promotes Inflammatory Cell Recruitment during Acetaminophen Hepatotoxicity

    Science.gov (United States)

    Antoine, Daniel James; Williams, Dominic P; Kipar, Anja; Laverty, Hugh; Park, B Kevin

    2010-01-01

    Acetaminophen (APAP) overdose is a major cause of acute liver failure and serves as a paradigm to elucidate mechanisms, predisposing factors and therapeutic interventions. The roles of apoptosis and inflammation during APAP hepatotoxicity remain controversial. We investigated whether fasting of mice for 24 h can inhibit APAP-induced caspase activation and apoptosis through the depletion of basal ATP. We also investigated in fasted mice the critical role played by inhibition of caspase-dependent cysteine 106 oxidation within high mobility group box-1 protein (HMGB1) released by ATP depletion in dying cells as a mechanism of immune activation. In fed mice treated with APAP, necrosis was the dominant form of hepatocyte death. However, apoptosis was also observed, indicated by K18 cleavage, DNA laddering and procaspase-3 processing. In fasted mice treated with APAP, only necrosis was observed. Inflammatory cell recruitment as a consequence of hepatocyte death was observed only in fasted mice treated with APAP or fed mice cotreated with a caspase inhibitor. Hepatic inflammation was also associated with loss in detection of serum oxidized-HMGB1. A significant role of HMGB1 in the induction of inflammation was confirmed with an HMGB1-neutralizing antibody. The differential response between fasted and fed mice was a consequence of a significant reduction in basal hepatic ATP, which prevented caspase processing, rather than glutathione depletion or altered APAP metabolism. Thus, the inhibition of caspase-driven apoptosis and HMGB1 oxidation by ATP depletion from fasting promotes an inflammatory response during drug-induced hepatotoxicity/liver pathology. PMID:20811657

  7. HMGB1 Inhibition During Zymosan-Induced Inflammation: The Potential Therapeutic Action of Riboflavin.

    Science.gov (United States)

    Mazur-Bialy, Agnieszka Irena; Pocheć, Ewa

    2016-04-01

    Sepsis, also known as systemic inflammatory response syndrome, is a life-threatening condition caused by a pathogenic agent and leading to multiple organ dysfunction syndrome. One of the factors responsible for the excessive intensification of the inflammatory response in the course of inflammation is high-mobility group protein B1 (HMGB1). HMG-1 is a nuclear protein which, after being released to the intercellular space, has a highly pro-inflammatory effect and acts as a late mediator of lethal damage. The purpose of this study was to examine whether the anti-inflammatory action of riboflavin is accompanied by inhibition of HMGB1 release during peritoneal inflammation and zymosan stimulation of macrophages. Peritonitis was induced in male BALB/c and C57BL/6J mice via intraperitoneal injection of zymosan (40 mg/kg). RAW 264.7 macrophages were activated with zymosan (250 µg/ml). Riboflavin (mice, 50 mg/kg; RAW 264.7, 25 µg/ml) was administered 30 min before zymosan, simultaneously with, or 2, 4, 6 h after zymosan. Additionally, mRNA expression of HMGB1 and its intracellular and serum levels were evaluated. The research showed that riboflavin significantly reduces both the expression and the release of HMGB1; however, the effect of riboflavin was time-dependent. The greatest efficacy was found when riboflavin was given 30 min prior to zymosan, and also 2 and 4 h (C57BL/6J; RAW 264.7) or 4 and 6 h (BALB/c) after zymosan. Research showed that riboflavin influences the level of HMGB1 released in the course of inflammation; however, further study is necessary to determine its mechanisms of action.

  8. Nucleosome dynamics: HMGB1 facilitates nucleosome restructuring and collaborates in estrogen-responsive gene expression

    Directory of Open Access Journals (Sweden)

    William M. Scovell

    2016-12-01

    Full Text Available The genome in the human cell is extraordinarily compacted in the nucleus. As a result, much of the DNA is inaccessible and functionally inert. Notwithstanding the highly efficient packaging, mechanisms have evolved to render DNA sites accessible that then enable a multitude of factors to carry out ongoing and vital functions. The compaction is derived from DNA complexation within nucleosomes, which can further consolidate into a higher-order chromatin structure. The nucleosome and nucleosomal DNA are not static in nature, but are dynamic, undergoing structural and functional changes as the cell responds to stresses and/or metabolic or environmental cues. We are only beginning to understand the forces and the complexes that engage the nucleosome to unearth the tightly bound and inaccessible DNA sequences and provide an opening to more accessible target sites. In many cases, current findings support a major role for the action of ATP-dependent chromatin remodeling complexes (CRCs in providing an avenue to factor accessibility that leads to the activation of transcription. The estrogen receptor α (ERα does not bind to the estrogen response element (ERE in the canonical nucleosome. However, evidence will be presented that HMGB1 restructures the nucleosome in an ATP-independent manner and also facilitates access and strong binding of ERα to ERE. The features that appear important in the mechanism of action for HMGB1 will be highlighted, in addition to the characteristic features of the restructured nucleosome. These findings, together with previous evidence, suggest a collaborative role for HMGB1 in the step-wise transcription of estrogen-responsive genes. In addition, alternate mechanistic pathways will be discussed, with consideration that “HMGB1 restructuring” of the nucleosome may generally be viewed as a perturbation of the equilibrium of an ensemble of nearly isoenergetic nucleosome states in an energy landscape that is driven by

  9. HMGB1 mediates endogenous TLR2 activation and brain tumor regression.

    Directory of Open Access Journals (Sweden)

    James F Curtin

    2009-01-01

    Full Text Available Glioblastoma multiforme (GBM is the most aggressive primary brain tumor that carries a 5-y survival rate of 5%. Attempts at eliciting a clinically relevant anti-GBM immune response in brain tumor patients have met with limited success, which is due to brain immune privilege, tumor immune evasion, and a paucity of dendritic cells (DCs within the central nervous system. Herein we uncovered a novel pathway for the activation of an effective anti-GBM immune response mediated by high-mobility-group box 1 (HMGB1, an alarmin protein released from dying tumor cells, which acts as an endogenous ligand for Toll-like receptor 2 (TLR2 signaling on bone marrow-derived GBM-infiltrating DCs.Using a combined immunotherapy/conditional cytotoxic approach that utilizes adenoviral vectors (Ad expressing Fms-like tyrosine kinase 3 ligand (Flt3L and thymidine kinase (TK delivered into the tumor mass, we demonstrated that CD4(+ and CD8(+ T cells were required for tumor regression and immunological memory. Increased numbers of bone marrow-derived, tumor-infiltrating myeloid DCs (mDCs were observed in response to the therapy. Infiltration of mDCs into the GBM, clonal expansion of antitumor T cells, and induction of an effective anti-GBM immune response were TLR2 dependent. We then proceeded to identify the endogenous ligand responsible for TLR2 signaling on tumor-infiltrating mDCs. We demonstrated that HMGB1 was released from dying tumor cells, in response to Ad-TK (+ gancyclovir [GCV] treatment. Increased levels of HMGB1 were also detected in the serum of tumor-bearing Ad-Flt3L/Ad-TK (+GCV-treated mice. Specific activation of TLR2 signaling was induced by supernatants from Ad-TK (+GCV-treated GBM cells; this activation was blocked by glycyrrhizin (a specific HMGB1 inhibitor or with antibodies to HMGB1. HMGB1 was also released from melanoma, small cell lung carcinoma, and glioma cells treated with radiation or temozolomide. Administration of either glycyrrhizin or anti-HMGB

  10. HMGB1 and HMGB2 cell-specifically down-regulate the p53-and p73-dependent sequence-specific transactivation from the human Bax gene promoter

    Czech Academy of Sciences Publication Activity Database

    Štros, Michal; Ozaki, T.; Bačíková, Alena; Kageyama, H.; Nakagawara, A.

    2002-01-01

    Roč. 277, č. 9 (2002), s. 7157-7164 ISSN 0021-9258 R&D Projects: GA AV ČR IAA7004902; GA AV ČR IAA5004105; GA ČR GA301/99/0691; GA ČR GA301/02/0952 Institutional research plan: CEZ:AV0Z5004920 Keywords : tumor-suppressor P53 * DNA-bending proteins * mammalian-cells Subject RIV: BO - Biophysics Impact factor: 6.696, year: 2002

  11. In vivo relative quantitative proteomics reveals HMGB1 as a downstream mediator of oestrogen-stimulated keratinocyte migration.

    Science.gov (United States)

    Shin, Jung U; Noh, Ji Yeon; Lee, Ju Hee; Lee, Won Jai; Yoo, Jong Shin; Kim, Jin Young; Kim, Hyeran; Jung, Inhee; Jin, Shan; Lee, Kwang Hoon

    2015-06-01

    It is known that oestrogen influences skin wound healing by modulating the inflammatory response, cytokine expression and extracellular matrix deposition; accelerating re-epithelialization; and stimulating angiogenesis. To identify novel proteins associated with effects of oestrogen on keratinocyte, stable isotope labelling by amino acids in cell culture (SILAC)-based mass spectrometry was performed. Using SILAC, quantification of 1085 proteins was achieved. Among these proteins, 60 proteins were upregulated and 32 proteins were downregulated. Among significantly upregulated proteins, high-mobility group protein B1 (HMGB1) has been further evaluated for its role in the effect of oestrogen on keratinocytes. HMGB1 expression was strongly induced in oestrogen-treated keratinocytes in dose- and time-dependent manner. Further, HMGB1 was able to significantly accelerate the rate of HaCaT cell migration. To determine whether HMGB1 is involved in E2-induced HaCaT cell migration, cells were transfected with HMGB1 siRNA. Knockdown of HMGB1 blocked oestrogen-induced keratinocyte migration. Collectively, these experiments demonstrate that HMGB1 is a novel downstream mediator of oestrogen-stimulated keratinocyte migration. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Barrier protective effects of withaferin A in HMGB1-induced inflammatory responses in both cellular and animal models

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wonhwa [College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University (Korea, Republic of); Kim, Tae Hoon [Department of Herbal Medicinal Pharmacology, Daegu Haany University (Korea, Republic of); Ku, Sae-Kwang [Department of Anatomy and Histology, College of Oriental Medicine, Daegu Haany University, Gyeongsan 712-715 (Korea, Republic of); Min, Kyoung-jin [Department of Immunology, School of Medicine, Keimyung University, Daegu 704-701 (Korea, Republic of); Lee, Hyun-Shik [School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Kwon, Taeg Kyu [Department of Immunology, School of Medicine, Keimyung University, Daegu 704-701 (Korea, Republic of); Bae, Jong-Sup, E-mail: baejs@knu.ac.kr [College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701 (Korea, Republic of)

    2012-07-01

    Withaferin A (WFA), an active compound from Withania somnifera, is widely researched for its anti-inflammatory, cardioactive and central nervous system effects. In this study, we first investigated the possible barrier protective effects of WFA against pro-inflammatory responses in human umbilical vein endothelial cells (HUVECs) and in mice induced by high mobility group box 1 protein (HMGB1) and the associated signaling pathways. The barrier protective activities of WFA were determined by measuring permeability, leukocytes adhesion and migration, and activation of pro-inflammatory proteins in HMGB1-activated HUVECs. We found that WFA inhibited lipopolysaccharide (LPS)-induced HMGB1 release and HMGB1-mediated barrier disruption, expression of cell adhesion molecules (CAMs) and adhesion/transendothelial migration of leukocytes to human endothelial cells. WFA also suppressed acetic acid-induced hyperpermeability and carboxymethylcellulose-induced leukocytes migration in vivo. Further studies revealed that WFA suppressed the production of interleukin 6, tumor necrosis factor-α (TNF-α) and activation of nuclear factor-κB (NF-κB) by HMGB1. Collectively, these results suggest that WFA protects vascular barrier integrity by inhibiting hyperpermeability, expression of CAMs, adhesion and migration of leukocytes, thereby endorsing its usefulness as a therapy for vascular inflammatory diseases. -- Highlights: ► Withaferin A inhibited LPS induced HMGB1 release. ► Withaferin A reduced HMGB1-mediated hyperpermeability. ► Withaferin A inhibited HMGB1-mediated adhesion and migration of leukocytes. ► Withaferin A inhibited HMGB1-mediated activation of NF-κB, IL-6 and TNF-α.

  13. Barrier protective effects of withaferin A in HMGB1-induced inflammatory responses in both cellular and animal models

    International Nuclear Information System (INIS)

    Lee, Wonhwa; Kim, Tae Hoon; Ku, Sae-Kwang; Min, Kyoung-jin; Lee, Hyun-Shik; Kwon, Taeg Kyu; Bae, Jong-Sup

    2012-01-01

    Withaferin A (WFA), an active compound from Withania somnifera, is widely researched for its anti-inflammatory, cardioactive and central nervous system effects. In this study, we first investigated the possible barrier protective effects of WFA against pro-inflammatory responses in human umbilical vein endothelial cells (HUVECs) and in mice induced by high mobility group box 1 protein (HMGB1) and the associated signaling pathways. The barrier protective activities of WFA were determined by measuring permeability, leukocytes adhesion and migration, and activation of pro-inflammatory proteins in HMGB1-activated HUVECs. We found that WFA inhibited lipopolysaccharide (LPS)-induced HMGB1 release and HMGB1-mediated barrier disruption, expression of cell adhesion molecules (CAMs) and adhesion/transendothelial migration of leukocytes to human endothelial cells. WFA also suppressed acetic acid-induced hyperpermeability and carboxymethylcellulose-induced leukocytes migration in vivo. Further studies revealed that WFA suppressed the production of interleukin 6, tumor necrosis factor-α (TNF-α) and activation of nuclear factor-κB (NF-κB) by HMGB1. Collectively, these results suggest that WFA protects vascular barrier integrity by inhibiting hyperpermeability, expression of CAMs, adhesion and migration of leukocytes, thereby endorsing its usefulness as a therapy for vascular inflammatory diseases. -- Highlights: ► Withaferin A inhibited LPS induced HMGB1 release. ► Withaferin A reduced HMGB1-mediated hyperpermeability. ► Withaferin A inhibited HMGB1-mediated adhesion and migration of leukocytes. ► Withaferin A inhibited HMGB1-mediated activation of NF-κB, IL-6 and TNF-α.

  14. RAGE mediates the inactivation of nAChRs in sympathetic neurons under high glucose conditions.

    Science.gov (United States)

    Chandna, Andrew R; Nair, Manoj; Chang, Christine; Pennington, Paul R; Yamamoto, Yasuhiko; Mousseau, Darrell D; Campanucci, Verónica A

    2015-02-01

    Autonomic dysfunction is a serious complication of diabetes and can lead to cardiovascular abnormalities and premature death. It was recently proposed that autonomic dysfunction is triggered by oxidation-mediated inactivation of neuronal nicotinic acetylcholine receptors (nAChRs), impairing synaptic transmission in sympathetic ganglia and resulting in autonomic failure. We investigated whether the receptor for advanced glycation end products (RAGE) and its role in the generation of reactive oxygen species (ROS) could be contributing to the events that initiate sympathetic malfunction under high glucose conditions. Using biochemical, live imaging and electrophysiological tools we demonstrated that exposure of sympathetic neurons to high glucose increases RAGE expression and oxidative markers, and that incubation with RAGE ligands (e.g. AGEs, S100 and HMGB1) mimics both ROS elevation and nAChR inactivation. In contrast, co-treatment with either antioxidants or an anti-RAGE IgG prevented the inactivation of nAChRs. Lastly, a role for RAGE in this context was corroborated by the lack of sensitivity of sympathetic neurons from RAGE knock-out mice to high glucose. These data define a pivotal role for RAGE in initiating the events associated with exposure of sympathetic neurons to high glucose, and strongly support RAGE signaling as a potential therapeutic target in the autonomic complications associated with diabetes. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  15. HMGB1 interacts with human topoisomerase IIalpha and stimulates its catalytic activity

    Czech Academy of Sciences Publication Activity Database

    Štros, Michal; Bačíková, Alena; Muselíková Polanská, Eva; Štokrová, Jitka; Strauss, F.

    2007-01-01

    Roč. 35, č. 15 (2007), s. 5001-5013 ISSN 0305-1048 R&D Projects: GA ČR(CZ) GA204/05/2031; GA AV ČR(CZ) IAA400040702 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702; CEZ:AV0Z50520514; CEZ:AV0Z50520701 Keywords : HMGB1 * DNA topoisomerase IIalpha * DNA repair Subject RIV: BO - Biophysics Impact factor: 6.954, year: 2007

  16. Inhibition of HMGB1 Translocation by Green Tea Extract in Rats Exposed to Environmental Tobacco Smoke

    OpenAIRE

    Sirintip Chaichalotornkul; Wisuda Suvitayavat; Vanida Sangalangkarn; Yuko Nawa; Kiyoshi Kikuchi; Koichi Kawahara; Tawee Saiwichai; Somphong Narkpinit; Pratap Singhasivanon; Ikuro Maruyama; Salunya Tancharoen

    2012-01-01

    Environmental tobacco smoke (ETS) exposure is linked to carcinogenic, oxidative and inflammatory cellular reactions. Green tea polyphenol reportedly plays a role in the prevention of inflammation-related diseases. To evaluate the effects of green tea extract (GTE) on cellular location of High Mobility Group Box-1 (HMGB1) protein, we studied the lung tissue in rats exposed to cigarette smoke (CS). Rats were divided into three groups; CS, CSG, and C, which were groups of CS-treated only, CS-tre...

  17. The Expression of HMGB1 in Bone Marrow MSCs Is Upregulated by Hypoxia with Regulatory Effects on the Apoptosis and Adhesion

    Directory of Open Access Journals (Sweden)

    Mei-Yun Tan

    2016-01-01

    Full Text Available Background and Aims. Hypoxia regulates the survival of mesenchymal stem cells (MSCs but the mechanism is unclear. In hypoxia, the level of high mobility group box 1 (HMGB1 was increased in many cells which may be involved in the regulation of cell biology. The aim is to determine whether hypoxia affects the expression of HMGB1 in bone marrow MSCs (BM-MSCs and to investigate the role of HMGB1 in the apoptosis and adhesion. Methods. BM-MSCs were exposed to hypoxia (1% O2 and normoxia (20% O2 and the expression of HMGB1 was measured by RT-PCR and western blotting. The apoptosis and adhesion of BM-MSCs were evaluated after interfered by different concentrations of HMGB1. Results. Expression of HMGB1 in BM-MSCs showed a significant upregulation in hypoxia when compared to those in normoxia. The adhesion of BM-MSCs was increased by HMGB1 in a concentration-dependent manner; the apoptosis effect of HMGB1 depended on its concentrations: HMGB1 at low concentration (50 ng/mL promoted the apoptosis of BM-MSCs while HMGB1 at high concentration (≥100 ng/mL reduced this apoptosis. Conclusions. Hypoxia enhanced the expression of HMGB1 in BM-MSCs with influences on apoptosis and adhesion and this could have a significant effect on the regenerative potential of MSC-based strategies.

  18. Thymoquinone-rich fraction nanoemulsion (TQRFNE) decreases Aβ40 and Aβ42 levels by modulating APP processing, up-regulating IDE and LRP1, and down-regulating BACE1 and RAGE in response to high fat/cholesterol diet-induced rats.

    Science.gov (United States)

    Ismail, Norsharina; Ismail, Maznah; Azmi, Nur Hanisah; Bakar, Muhammad Firdaus Abu; Yida, Zhang; Abdullah, Maizaton Atmadini; Basri, Hamidon

    2017-11-01

    Though the causes of Alzheimer's disease (AD) are yet to be understood, much evidence has suggested that excessive amyloid-β (Aβ) accumulation due to abnormal amyloid-β precursor protein (APP) processing and Aβ metabolism are crucial processes towards AD pathogenesis. Hence, approaches aiming at APP processing and Aβ metabolism are currently being actively pursued for the management of AD. Studies suggest that high cholesterol and a high fat diet have harmful effects on cognitive function and may instigate the commencement of AD pathogenesis. Despite the neuropharmacological attributes of black cumin seed (Nigella sativa) extracts and its main active compound, thymoquinone (TQ), limited records are available in relation to AD research. Nanoemulsion (NE) is exploited as drug delivery systems due to their capacity of solubilising non-polar active compounds and is widely examined for brain targeting. Herewith, the effects of thymoquinone-rich fraction nanoemulsion (TQRFNE), thymoquinone nanoemulsion (TQNE) and their counterparts' conventional emulsion in response to high fat/cholesterol diet (HFCD)-induced rats were investigated. Particularly, the Aβ generation; APP processing, β-secretase 1 (BACE1), γ-secretases of presenilin 1 (PSEN1) and presenilin 2 (PSEN2), Aβ degradation; insulin degrading enzyme (IDE), Aβ transportation; low density lipoprotein receptor-related protein 1 (LRP1) and receptor for advanced glycation end products (RAGE) were measured in brain tissues. TQRFNE reduced the brain Aβ fragment length 1-40 and 1-42 (Aβ40 and Aβ42) levels, which would attenuate the AD pathogenesis. This reduction could be due to the modulation of β- and γ-secretase enzyme activity, and the Aβ degradation and transportation in/out of the brain. The findings show the mechanistic actions of TQRFNE in response to high fat and high cholesterol diet associated to Aβ generation, degradation and transportation in the rat's brain tissue. Copyright © 2017 Elsevier

  19. Expression of HMGB1 and HMGN2 in gingival tissues, GCF and PICF of periodontitis patients and peri-implantitis

    Directory of Open Access Journals (Sweden)

    Ping Xie

    2011-09-01

    Full Text Available High mobility group chromosomal protein B1 (HMGB1 and N2 (HMGN2, two members of High mobility group (HMG family, play important role in inflammation. The purposes of this study were to investigate the expression of HMGB1 and HMGN2 in periodontistis. The expression of HMGB1 and HMGN2 mRNA in gingival tissues and gingival crevicular fluid (GCF in chronic periodontitis (CP, generalized aggressive periodontitis (G-AgP patients and healthy subjects was detected by real-time PCR. The protein level of HMGB1 and HMGN2 in peri-implant crevicular fluid (PICF, peri-implant crevicular fluid of peri-implantitis (PI-PICF and normal patients was determined by Western blotting. Furthermore, IL-1β, IL-6, IL-8, TNF-α and HMGB1 levels in GCF, PI-PICF and healthy-PICF samples from different groups were determined by ELISA. HMGN2 expression was increased in inflamed gingival tissues and GCF from CP and G-ApG groups compared to control group. HMGB1 expression was the highest in the gingival tissues and GCF from CP patients and was accompanied by increased concentrations of IL-1β, IL-6, IL-8 proinflammaory cytokines. To our knowledge, this is the first study reporting that the expression of HMGB1 and HMGN2 was increased in the gingival tissues and GCF in CP and G-AgP and the PICF in PICF. Our data suggest that HMGB1 may be a potential target for the therapy of periodontitis and PI.

  20. Decreased serum level of HMGB1 and MyD88 during human aging progress in healthy individuals.

    Science.gov (United States)

    Fu, Guo-Xiang; Chen, Alex F; Zhong, Yuan; Zhao, Jian; Gu, Ying-Jia

    2016-04-01

    Previous studies have suggested that high mobility group box-1 protein (HMGB1) binds to the toll-like receptor 4 (TLR4) signaling mediates the progression of various inflammatory diseases. But the roles of HMGB1 and TLR4 in aging remain poorly unknown. In this study, we aimed to investigate the serum levels of HMGB1 and myeloid differentiation factor 88 (MyD88), which is one of TLR4's intracellular adaptor proteins during human aging process and their relevance with cathepsin B (CTSB). This research was conducted using the blood samples provided by healthy people (n = 90, 63 men and 27 women). Subjects were subdivided into groups with respect to age: young (about 25 years old, n = 30), middle age (about 40 years old, n = 30), and aged (above 65 years old, n = 30). Altered serum levels of HMGB1, MyD88 and CTSB were measured using an enzyme-linked immunosorbent assay. The serum levels of HMGB1 and MyD88 were significantly decreased in the aged group compared with those in the young group. Linear regression analysis showed that HMGB1 and MyD88 positively correlated with CTSB among the whole healthy people. A negative correlation was determined between MyD88 and age. The serum levels of HMGB1 and MyD88 significantly decreased with age. MyD88, but not HMGB1, was negatively correlated with age.

  1. Frontline Science: HMGB1 induces neutrophil dysfunction in experimental sepsis and in patients who survive septic shock.

    Science.gov (United States)

    Grégoire, Murielle; Tadié, Jean-Marc; Uhel, Fabrice; Gacouin, Arnaud; Piau, Caroline; Bone, Nathaniel; Le Tulzo, Yves; Abraham, Edward; Tarte, Karin; Zmijewski, Jaroslaw W

    2017-06-01

    Sepsis is accompanied by the initial activation of proinflammatory pathways and long-lasting immunosuppression that appears to contribute to late-occurring mortality. Although high-mobility group box 1 (HMGB1) is involved in many aspects of inflammation, its role in sepsis-induced immune suppression remains unclear. In this study, we examined HMGB1's contribution to neutrophil NADPH oxidase activity dysfunction and associated neutrophil-dependent bacterial clearance in mice subjected to sepsis and in patients who survive septic shock. Using a murine model of polymicrobial septic peritonitis, we demonstrated that treatment with anti-HMGB1 Ab significantly diminished sepsis-induced dysfunction of neutrophil NADPH oxidase activity. In a subsequent set of experiments, we found that blocking HMGB1 preserved the ability of neutrophils from patients recovering from septic shock to activate NADPH oxidase. Taken together, our data suggest that HMGB1 accumulation in the late phase of sepsis plays a specific role in the development of postsepsis immunosuppression and specifically affects neutrophil-dependent antibacterial defense mechanisms. Thus, blocking HMGB1 may be a promising therapeutic intervention to diminish the adverse effects of sepsis-induced immunosuppression. © Society for Leukocyte Biology.

  2. TLR4-HMGB1 signaling pathway affects the inflammatory reaction of autoimmune myositis by regulating MHC-I.

    Science.gov (United States)

    Wan, Zemin; Zhang, Xiujuan; Peng, Anping; He, Min; Lei, Zhenhua; Wang, Yunxiu

    2016-12-01

    To analyze the effects of TLR4 on the expression of the HMGB1, MHC-I and downstream cytokines IL-6 and TNF-α, and to investigate the biological role of the TLR4-HMGB1 signaling pathway in the development of the autoimmune myositis. We built mice models with experimental autoimmune myositis (EAM) and used the inverted screen experiment to measure their muscle endurance; we also examined inflammatory infiltration of muscle tissues after HE staining; and we assessed the expression of MHC-I using immunohistochemistry. In addition, peripheral blood mononuclear cells (PBMC) were extracted and flow cytometry was utilized to detect the effect of IFN-γ on the expression of MHC-I. Furthermore, PBMCs were treated with IFN-γ, anti-TLR4, anti-HMGB1 and anti-MHC-I. Real-time PCR and western blotting were employed to examine the expressions of TLR4, HMGB1 and MHC-I in different groups. The ELISA method was also utilized to detect the expression of the downstream cytokines TNF-α and IL-6. The expressions of TLR4, HMGB1 and MHC-I in muscle tissues from mice with EAM were significantly higher than those in the control group (all Pmyositis inflammation by regulating the expression of MHC-I and other pro-inflammatory cytokines. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. HMGB1 exacerbates experimental mouse colitis by enhancing innate lymphoid cells 3 inflammatory responses via promoted IL-23 production.

    Science.gov (United States)

    Chen, Xiangyu; Li, Lingyun; Khan, Muhammad Noman; Shi, Lifeng; Wang, Zhongyan; Zheng, Fang; Gong, Feili; Fang, Min

    2016-11-01

    In inflammatory bowel diseases (IBD), high mobility group box 1 (HMGB1), as an endogenous inflammatory molecule, can promote inflammatory cytokines secretion by acting on TLR2/4 resulting in tissue damage. The underlying mechanisms remain unclear. Here we report a novel role of HMGB1 in controlling the maintenance and function of intestine-resident group-3 innate lymphoid cells (ILC3s) that are important innate effector cells implicated in mucosal homeostasis and IBD pathogenesis. We showed that mice treated with anti-HMGB1 Ab, or genetically deficient for TLR2 -/- or TLR4 -/- mice, displayed reduced intestinal inflammation. In these mice, the numbers of colonic ILC3s were significantly reduced, and the levels of IL-17 and IL-22 that can be secreted by ILC3s were also decreased in the colon tissues. Furthermore, HMGB1 promoted DCs via TLR2/4 signaling to produce IL-23, activating ILC3s to produce IL-17 and IL-22. Our data thus indicated that the HMGB1-TLR2/4-DCs-IL-23 cascade pathway enhances the functions of ILC3s to produce IL-17 and IL-22, and this signal way might play a vital role in the development of IBD.

  4. HMGB1 and Histones Play a Significant Role in Inducing Systemic Inflammation and Multiple Organ Dysfunctions in Severe Acute Pancreatitis

    Directory of Open Access Journals (Sweden)

    Runkuan Yang

    2017-01-01

    Full Text Available Severe acute pancreatitis (SAP starts as a local inflammation of pancreatic tissue that induces the development of multiple extrapancreatic organs dysfunction; however, the underlying mechanisms are still not clear. Ischemia-reperfusion, circulating inflammatory cytokines, and possible bile cytokines significantly contribute to gut mucosal injury and intestinal bacterial translocation (BT during SAP. Circulating HMGB1 level is significantly increased in SAP patients and HMGB1 is an important factor that mediates (at least partly gut BT during SAP. Gut BT plays a critical role in triggering/inducing systemic inflammation/sepsis in critical illness, and profound systemic inflammatory response syndrome (SIRS can lead to multiple organ dysfunction syndrome (MODS during SAP, and systemic inflammation with multiorgan dysfunction is the cause of death in experimental SAP. Therefore, HMGB1 is an important factor that links gut BT and systemic inflammation. Furthermore, HMGB1 significantly contributes to multiple organ injuries. The SAP patients also have significantly increased circulating histones and cell-free DNAs levels, which can reflect the disease severity and contribute to multiple organ injuries in SAP. Hepatic Kupffer cells (KCs are the predominant source of circulating inflammatory cytokines in SAP, and new evidence indicates that hepatocyte is another important source of circulating HMGB1 in SAP; therefore, treating the liver injury is important in SAP.

  5. HMGB1-mediated DNA bending: Distinct roles in increasing p53 binding to DNA and the transactivation of p53-responsive gene promoters.

    Science.gov (United States)

    Štros, Michal; Kučírek, Martin; Sani, Soodabeh Abbasi; Polanská, Eva

    2018-03-01

    HMGB1 is a chromatin-associated protein that has been implicated in many important biological processes such as transcription, recombination, DNA repair, and genome stability. These functions include the enhancement of binding of a number of transcription factors, including the tumor suppressor protein p53, to their specific DNA-binding sites. HMGB1 is composed of two highly conserved HMG boxes, linked to an intrinsically disordered acidic C-terminal tail. Previous reports have suggested that the ability of HMGB1 to bend DNA may explain the in vitro HMGB1-mediated increase in sequence-specific DNA binding by p53. The aim of this study was to reinvestigate the importance of HMGB1-induced DNA bending in relationship to the ability of the protein to promote the specific binding of p53 to short DNA duplexes in vitro, and to transactivate two major p53-regulated human genes: Mdm2 and p21/WAF1. Using a number of HMGB1 mutants, we report that the HMGB1-mediated increase in sequence-specific p53 binding to DNA duplexes in vitro depends very little on HMGB1-mediated DNA bending. The presence of the acidic C-terminal tail of HMGB1 and/or the oxidation of the protein can reduce the HMGB1-mediated p53 binding. Interestingly, the induction of transactivation of p53-responsive gene promoters by HMGB1 requires both the ability of the protein to bend DNA and the acidic C-terminal tail, and is promoter-specific. We propose that the efficient transactivation of p53-responsive gene promoters by HMGB1 depends on complex events, rather than solely on the promotion of p53 binding to its DNA cognate sites. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. HMGB1 is negatively correlated with the development of endometrial carcinoma and prevents cancer cell invasion and metastasis by inhibiting the process of epithelial-to-mesenchymal transition

    Directory of Open Access Journals (Sweden)

    Luan XR

    2017-03-01

    Full Text Available Xiaorong Luan,1,2 Chunjing Ma,2 Ping Wang,2 Fenglan Lou1 1Nursing College, Shandong University, 2Qilu Hospital of Shandong University, Jinan, People’s Republic of China Abstract: High-mobility group box protein 1 (HMGB1, a nuclear protein that plays a significant role in DNA architecture and transcription, was correlated with the progression of some types of cancer. However, the role of HMGB1 in endometrial cancer cell invasion and metastasis remains unexplored. HMGB1 expression was initially assessed by immunohistochemistry and reverse transcription-quantitative polymerase chain reaction (RT-qPCR in normal endometrial tissue and endometrial carcinoma tissue. High expressions of HMGB1 protein were detected in normal endometrial tissues; however, in endometrial cancer tissues, the expressions of HMGB1 were found to be very weak. Furthermore, HMGB1 expressions were negatively correlated with advanced stage and lymph node metastasis in endometrial cancer. Then by RT-qPCR, Western blot and immunocytochemistry, HMGB1 was also detected in primary cultured endometrial cells and four kinds of endometrial cancer cell lines (Ishikawa, HEC-1A, HEC-1B and KLE. We found that the expression of HMGB1 was much higher in normal endometrial cells than in endometrial cancer cells, and reduced expression levels of HMGB1 were observed especially in the highly metastatic cell lines. Using lentivirus transfection, HMGB1 small hairpin RNA was constructed, and this infected the lowly invasive endometrial cancer cell lines, Ishikawa and HEC-1B. HMGB1 knockdown significantly enhanced the proliferation, invasion and metastasis of endometrial cancer cells and induced the process of epithelial-to-mesenchymal transition. These results can contribute to the development of a new potential therapeutic target for endometrial cancer. Keywords: HMGB1, endometrial cancer, invasion, metastasis, epithelial-to-mesenchymal transition

  7. Intracellular high mobility group B1 protein (HMGB1) represses HIV-1 LTR-directed transcription in a promoter- and cell-specific manner

    International Nuclear Information System (INIS)

    Naghavi, Mojgan H.; Nowak, Piotr; Andersson, Jan; Soennerborg, Anders; Yang Huan; Tracey, Kevin J.; Vahlne, Anders

    2003-01-01

    We investigated whether the high mobility group B 1 (HMGB1), an abundant nuclear protein in all mammalian cells, affects HIV-1 transcription. Intracellular expression of human HMGB1 repressed HIV-1 gene expression in epithelial cells. This inhibitory effect of HMGB1 was caused by repression of long terminal repeat (LTR)-mediated transcription. Other viral promoters/enhancers, including simian virus 40 or cytomegalovirus, were not inhibited by HMGB1. In addition, HMGB1 inhibition of HIV-1 subtype C expression was dependent on the number of NFκB sites in the LTR region. The inhibitory effect of HMGB1 on viral gene expression observed in HeLa cells was confirmed by an upregulation of viral replication in the presence of antisense HMGB1 in monocytic cells. In contrast to what was found in HeLa cells and monocytic cells, endogenous HMGB1 expression did not affect HIV-1 replication in unstimulated Jurkat cells. Thus, intracellular HMGB1 affects HIV-1 LTR-directed transcription in a promoter- and cell-specific manner

  8. The dengue vector Aedes aegypti contains a functional high mobility group box 1 (HMGB1 protein with a unique regulatory C-terminus.

    Directory of Open Access Journals (Sweden)

    Fabio Schneider Ribeiro

    Full Text Available The mosquito Aedes aegypti can spread the dengue, chikungunya and yellow fever viruses. Thus, the search for key molecules involved in the mosquito survival represents today a promising vector control strategy. High Mobility Group Box (HMGB proteins are essential nuclear factors that maintain the high-order structure of chromatin, keeping eukaryotic cells viable. Outside the nucleus, secreted HMGB proteins could alert the innate immune system to foreign antigens and trigger the initiation of host defenses. In this work, we cloned and functionally characterized the HMGB1 protein from Aedes aegypti (AaHMGB1. The AaHMGB1 protein typically consists of two HMG-box DNA binding domains and an acidic C-terminus. Interestingly, AaHMGB1 contains a unique alanine/glutamine-rich (AQ-rich C-terminal region that seems to be exclusive of dipteran HMGB proteins. AaHMGB1 is localized to the cell nucleus, mainly associated with heterochromatin. Circular dichroism analyses of AaHMGB1 or the C-terminal truncated proteins revealed α-helical structures. We showed that AaHMGB1 can effectively bind and change the topology of DNA, and that the AQ-rich and the C-terminal acidic regions can modulate its ability to promote DNA supercoiling, as well as its preference to bind supercoiled DNA. AaHMGB1 is phosphorylated by PKA and PKC, but not by CK2. Importantly, phosphorylation of AaHMGB1 by PKA or PKC completely abolishes its DNA bending activity. Thus, our study shows that a functional HMGB1 protein occurs in Aedes aegypt and we provide the first description of a HMGB1 protein containing an AQ-rich regulatory C-terminus.

  9. MCPIP1-induced autophagy mediates ischemia/reperfusion injury in endothelial cells via HMGB1 and CaSR.

    Science.gov (United States)

    Xie, Xiaolong; Zhu, Tiebing; Chen, Lulu; Ding, Shuang; Chu, Han; Wang, Jing; Yao, Honghong; Chao, Jie

    2018-01-29

    Monocyte chemotactic protein-1-induced protein 1 (MCPIP1) plays a important role in ischemia/reperfusion (I/R) injury. Autophagy is involved in activating endothelial cells in response to I/R. However, researchers have not clearly determined whether MCPIP1 mediates I/R injury in endothelial cells via autophagy, and its downstream mechanism remains unclear. Western blotting analyses and immunocytochemistry were applied to detect protein levels were detected in HUVECs. An in vitro scratch assay was used to detect cell migration. Cells were transfected with siRNAs to knockdown MCPIP1 and high mobility group box 1 (HMGB1) expression. The pharmacological activator of autophagy rapamycin and the specific calcium-sensing receptor (CaSR) inhibitor NPS-2143 were used to confirm the roles of autophagy and CaSR in I/R injury. I/R induced HMGB1 and CaSR expression, which subsequently upreguated the migration and apoptosis of HUVECs and coincided with the increase of autophagy. HMGB1 was involved in cell migration, whereas CaSR specifically participated in I/R-induced HUVEC apoptosis. Based on these findings, I/R-induced MCPIP1 expression regulates the migration and apoptosis of HUVECs via HMGB1 and CaSR, respectively, suggesting a new therapeutic targetof I/R injury.

  10. Contrast Media-Induced Renal Inflammation Is Mediated Through HMGB1 and Its Receptors in Human Tubular Cells.

    Science.gov (United States)

    Guan, Xiao-Feng; Chen, Qing-Jie; Zuo, Xiao-Cong; Guo, Ren; Peng, Xiang-Dong; Wang, Jiang-Lin; Yin, Wen-Jun; Li, Dai-Yang

    2017-01-01

    With the rapid development of imaging diagnosis and interventional therapy, contrast media (CM) are widely used in clinics. However, contrast-induced nephropathy (CIN) is the third leading cause of hospital-acquired acute renal failure accounting for 10-12% of all causes of hospital-acquired renal failure. Recent study found that inflammation may participate in the pathogenesis of CIN, but the role of it remains unclear. HK-2 cells were treated with Iohexol, Urografin, and mannitol. Two types of CM increased the release of HMGB1 in cell supernatant accompanied by increased expression of TLR2 and CXCR4. Iohexol and Urografin also caused a significant increase in NF-κB followed by the release of IL-6 and MCP-1. To clarify the role of HMGB1, TLR2, and CXCR4, glycyrrhizin, anti-TLR2-IgG, and AMD3100 were used to inhibit HMGB1, TLR2, and CXCR4, respectively. Significant decrease in the expression of TLR2, CXCR4, nuclear NF-κB, and the release of IL-6 and MCP-1 were observed. These results indicate that TLR2 and CXCR4 signaling are involved in CM-induced HK-2 cell injury model in an HMGB1-dependent pathway, which may provide a new target for the prevention and the treatment of CIN.

  11. High mobility group box1 (HMGB1) in relation to cutaneous inflammation in systemic lupus erythematosus (SLE)

    NARCIS (Netherlands)

    Abdulahad, D.A.; Westra, J.; Reefman, E.; Zuidersma, E.; Bijzet, J.; Limburg, P.C.; Kallenberg, C.G.M.; Bijl, M.

    2013-01-01

    Photosensitivity is characteristic of systemic lupus erythematosus (SLE). Upon ultraviolet B (UVB) exposure, patients develop inflammatory skin lesions in the vicinity of sunburn cells (SBCs). High mobility group box 1 (HMGB1) is released from apoptotic and activated cells and exerts inflammatory

  12. HMGB1 and Extracellular Histones Significantly Contribute to Systemic Inflammation and Multiple Organ Failure in Acute Liver Failure.

    Science.gov (United States)

    Yang, Runkuan; Zou, Xiaoping; Tenhunen, Jyrki; Tønnessen, Tor Inge

    2017-01-01

    Acute liver failure (ALF) is the culmination of severe liver cell injury from a variety of causes. ALF occurs when the extent of hepatocyte death exceeds the hepatic regenerative capacity. ALF has a high mortality that is associated with multiple organ failure (MOF) and sepsis; however, the underlying mechanisms are still not clear. Emerging evidence shows that ALF patients/animals have high concentrations of circulating HMGB1, which can contribute to multiple organ injuries and mediate gut bacterial translocation (BT). BT triggers/induces systemic inflammatory responses syndrome (SIRS), which can lead to MOF in ALF. Blockade of HMGB1 significantly decreases BT and improves hepatocyte regeneration in experimental acute fatal liver injury. Therefore, HMGB1 seems to be an important factor that links BT and systemic inflammation in ALF. ALF patients/animals also have high levels of circulating histones, which might be the major mediators of systemic inflammation in patients with ALF. Extracellular histones kill endothelial cells and elicit immunostimulatory effect to induce multiple organ injuries. Neutralization of histones can attenuate acute liver, lung, and brain injuries. In conclusion, HMGB1 and histones play a significant role in inducing systemic inflammation and MOF in ALF.

  13. HMGB1 and Extracellular Histones Significantly Contribute to Systemic Inflammation and Multiple Organ Failure in Acute Liver Failure

    Directory of Open Access Journals (Sweden)

    Runkuan Yang

    2017-01-01

    Full Text Available Acute liver failure (ALF is the culmination of severe liver cell injury from a variety of causes. ALF occurs when the extent of hepatocyte death exceeds the hepatic regenerative capacity. ALF has a high mortality that is associated with multiple organ failure (MOF and sepsis; however, the underlying mechanisms are still not clear. Emerging evidence shows that ALF patients/animals have high concentrations of circulating HMGB1, which can contribute to multiple organ injuries and mediate gut bacterial translocation (BT. BT triggers/induces systemic inflammatory responses syndrome (SIRS, which can lead to MOF in ALF. Blockade of HMGB1 significantly decreases BT and improves hepatocyte regeneration in experimental acute fatal liver injury. Therefore, HMGB1 seems to be an important factor that links BT and systemic inflammation in ALF. ALF patients/animals also have high levels of circulating histones, which might be the major mediators of systemic inflammation in patients with ALF. Extracellular histones kill endothelial cells and elicit immunostimulatory effect to induce multiple organ injuries. Neutralization of histones can attenuate acute liver, lung, and brain injuries. In conclusion, HMGB1 and histones play a significant role in inducing systemic inflammation and MOF in ALF.

  14. Nuclear DAMP complex-mediated RAGE-dependent macrophage cell death

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ruochan [Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213 (United States); Department of Infectious Diseases and State Key Lab of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008 (China); Fu, Sha; Fan, Xue-Gong [Department of Infectious Diseases and State Key Lab of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008 (China); Lotze, Michael T.; Zeh, Herbert J. [Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213 (United States); Tang, Daolin, E-mail: tangd2@upmc.edu [Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213 (United States); Kang, Rui, E-mail: kangr@upmc.edu [Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213 (United States)

    2015-03-13

    High mobility group box 1 (HMGB1), histone, and DNA are essential nuclear components involved in the regulation of chromosome structure and function. In addition to their nuclear function, these molecules act as damage-associated molecular patterns (DAMPs) alone or together when released extracellularly. The synergistic effect of these nuclear DNA-HMGB1-histone complexes as DAMP complexes (nDCs) on immune cells remains largely unexplored. Here, we demonstrate that nDCs limit survival of macrophages (e.g., RAW264.7 and peritoneal macrophages) but not cancer cells (e.g., HCT116, HepG2 and Hepa1-6). nDCs promote production of inflammatory tumor necrosis factor α (TNFα) release, triggering reactive oxygen species-dependent apoptosis and necrosis. Moreover, the receptor for advanced glycation end products (RAGE), but not toll-like receptor (TLR)-4 and TLR-2, was required for Akt-dependent TNFα release and subsequent cell death following treatment with nDCs. Genetic depletion of RAGE by RNAi, antioxidant N-Acetyl-L-cysteine, and TNFα neutralizing antibody significantly attenuated nDC-induced cell death. These findings provide evidence supporting novel signaling mechanisms linking nDCs and inflammation in macrophage cell death. - Highlights: • Nuclear DAMP complexes (nDCs) selectively induce cell death in macrophages, but not cancer cells. • TNFα-mediated oxidative stress is required for nDC-induced death. • RAGE-mediated Akt activation is required for nDC-induced TNFα release. • Blocking RAGE and TNFα inhibits nDC-induced macrophage cell death.

  15. Real-time Kinetics of High-mobility Group Box 1 (HMGB1) Oxidation in Extracellular Fluids Studied by in Situ Protein NMR Spectroscopy*

    Science.gov (United States)

    Zandarashvili, Levani; Sahu, Debashish; Lee, Kwanbok; Lee, Yong Sun; Singh, Pomila; Rajarathnam, Krishna; Iwahara, Junji

    2013-01-01

    Some extracellular proteins are initially secreted in reduced forms via a non-canonical pathway bypassing the endoplasmic reticulum and become oxidized in the extracellular space. One such protein is HMGB1 (high-mobility group box 1). Extracellular HMGB1 has different redox states that play distinct roles in inflammation. Using a unique NMR-based approach, we have investigated the kinetics of HMGB1 oxidation and the half-lives of all-thiol and disulfide HMGB1 species in serum, saliva, and cell culture medium. In this approach, salt-free lyophilized 15N-labeled all-thiol HMGB1 was dissolved in actual extracellular fluids, and the oxidation and clearance kinetics were monitored in situ by recording a series of heteronuclear 1H-15N correlation spectra. We found that the half-life depends significantly on the extracellular environment. For example, the half-life of all-thiol HMGB1 ranged from ∼17 min (in human serum and saliva) to 3 h (in prostate cancer cell culture medium). Furthermore, the binding of ligands (glycyrrhizin and heparin) to HMGB1 significantly modulated the oxidation kinetics. Thus, the balance between the roles of all-thiol and disulfide HMGB1 proteins depends significantly on the extracellular environment and can also be artificially modulated by ligands. This is important because extracellular HMGB1 has been suggested as a therapeutic target for inflammatory diseases and cancer. Our work demonstrates that the in situ protein NMR approach is powerful for investigating the behavior of proteins in actual extracellular fluids containing an enormous number of different molecules. PMID:23447529

  16. The effects of lead exposure on the expression of HMGB1 and HO-1 in rats and PC12 cells.

    Science.gov (United States)

    Yang, Meiyuan; Li, Yaobin; Wang, Ying; Cheng, Nuo; Zhang, Yi; Pang, Shimin; Shen, Qiwei; Zhao, Lijuan; Li, Guilin; Zhu, Gaochun

    2018-05-15

    Lead (Pb) is an environmental neurotoxic metal. Chronic exposure to Pb causes deficits of learning and memory in children and spatial learning deficits in developing rats. In this study we investigated the effects of Pb exposure on the expression of HMGB1 and HO-1 in rats and PC12 cells. The animals were randomly divided to three groups: control group; low lead exposure group; high lead exposure group; PC12 cells were divided into 3 groups: 0 μM (control group), 1 μM and 100 μM Pb acetate. The results showed that Pb levels in blood and brain of Pb exposed groups were significantly higher than that of the control group (p < 0.05). The expression of HMGB1 and HO-1 were increased in Pb exposed groups than that of the control group (p < 0.05). Moreover, we found that the up-regulation of HO-1 in Pb exposure environment inhibited the expression of HMGB1. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Expression and significance of HMGB1, TLR4 and NF-κB p65 in human epidermal tumors

    International Nuclear Information System (INIS)

    Weng, Hui; Deng, Yunhua; Xie, Yuyan; Liu, Hongbo; Gong, Feili

    2013-01-01

    High mobility group protein box 1 (HMGB1) is a DNA binding protein located in nucleus. It is released into extracellular fluid where it acts as a novel proinflammatory cytokine which interacts with Toll like receptor 4 (TLR4) to activate nuclear factor-κB (NF-κB). This sequence of events is involved in tumor growth and progression. However, the effects of HMGB1, TLR4 and NF-κB on epidermal tumors remain unclear. Human epidermal tumor specimens were obtained from 96 patients. Immunohistochemistry was used to detect expression of HMGB1, TLR4 and NF-κB p65 in human epidermal tumor and normal skin specimens. Western blot analysis was used to detect the expression of NF-κB p65 in epithelial cell nuclei in human epidermal tumor and normal tissues. Immunohistochemistry and western blot analysis indicated a progressive but statistically significant increase in p65 expression in epithelial nuclei in benign seborrheic keratosis (SK), precancerous lesions (PCL), low malignancy basal cell carcinoma (BCC) and high malignancy squamous cell carcinoma (SCC) (P <0.01). The level of extracellular HMGB1 in SK was significantly higher than in normal skin (NS) (P <0.01), and was higher than in SCC but without statistical significance. The level of TLR4 on epithelial membranes of SCC cells was significantly higher than in SK, PCL, BCC and NS (P <0.01). There was a significant positive correlation between p65 expression in the epithelial nuclei and TLR4 expression on the epithelial cell membranes (r = 0.3212, P <0.01). These findings indicate that inflammation is intensified in parallel with increasing malignancy. They also indicate that the TLR4 signaling pathway, rather than HMGB1, may be the principal mediator of inflammation in high-grade malignant epidermal tumors. Combined detection of p65 in the epithelial nuclei and TLR4 on the epithelial membranes may assist the accurate diagnosis of malignant epidermal tumors

  18. Resveratrol treatment reveals a novel role for HMGB1 in regulation of the type 1 interferon response in dengue virus infection.

    Science.gov (United States)

    Zainal, Nurhafiza; Chang, Chih-Peng; Cheng, Yi-Lin; Wu, Yan-Wei; Anderson, Robert; Wan, Shu-Wen; Chen, Chia-Ling; Ho, Tzong-Shiann; AbuBakar, Sazaly; Lin, Yee-Shin

    2017-02-20

    Dengue is one of the most significant mosquito-borne virus diseases worldwide, particularly in tropical and subtropical regions. This study sought to examine the antiviral activity of resveratrol (RESV), a phytoalexin secreted naturally by plants, against dengue virus (DENV) infection. Our data showed that RESV inhibits the translocation of high mobility group box 1 (HMGB1), a DNA binding protein that normally resides in the nucleus, into the cytoplasm and extracellular milieu. HMGB1 migrates out of the nucleus during DENV infection. This migration is inhibited by RESV treatment and is mediated by induction of Sirt1 which leads to the retention of HMGB1 in the nucleus and consequently helps in the increased production of interferon-stimulated genes (ISGs). Nuclear HMGB1 was found to bind to the promoter region of the ISG and positively regulated the expression of ISG. The enhanced transcription of ISGs by nuclear HMGB1 thus contributes to the antiviral activity of RESV against DENV. To the best of our knowledge, this is the first report to demonstrate that RESV antagonizes DENV replication and that nuclear HMGB1 plays a role in regulating ISG production.

  19. Antiseptic effect of vicenin-2 and scolymoside from Cyclopia subternata (honeybush) in response to HMGB1 as a late sepsis mediator in vitro and in vivo.

    Science.gov (United States)

    Lee, Wonhwa; Yoon, Eun-Kyung; Kim, Kyung-Min; Park, Dong Ho; Bae, Jong-Sup

    2015-08-01

    Cyclopia subternata is a medicinal plant commonly used in traditional medicine to relieve pain. In this study, we investigated the antiseptic effects and underlying mechanisms of vicenin-2 and scolymoside, which are 2 active compounds from C. subternata that act against high mobility group box 1 (HMGB1)-mediated septic responses in human umbilical vein endothelial cells (HUVECs) and mice. The antiseptic activities of vicenin-2 and scolymoside were determined by measuring permeability, neutrophil adhesion and migration, and activation of proinflammatory proteins in HMGB1-activated HUVECs and mice. According to the results, vicenin-2 and scolymoside effectively inhibited lipopolysaccharide-induced release of HMGB1, and suppressed HMGB1-mediated septic responses such as hyperpermeability, the adhesion and migration of leukocytes, and the expression of cell adhesion molecules. In addition, vicenin-2 and scolymoside suppressed the production of tumor necrosis factor-α and interleukin 6, and activation of nuclear factor-κB and extracellular regulated kinases 1/2 by HMGB1. Collectively, these results indicate that vicenin-2 and scolymoside could be a potential therapeutic agents for the treatment of various severe vascular inflammatory diseases via inhibition of the HMGB1 signaling pathway.

  20. Inhibition of HMGB1 reduces rat spinal cord astrocytic swelling and AQP4 expression after oxygen-glucose deprivation and reoxygenation via TLR4 and NF-κB signaling in an IL-6-dependent manner.

    Science.gov (United States)

    Sun, Lin; Li, Man; Ma, Xun; Feng, Haoyu; Song, Junlai; Lv, Cong; He, Yajun

    2017-11-25

    Spinal cord astrocyte swelling is an important component to spinal cord edema and is associated with poor functional recovery as well as therapeutic resistance after spinal cord injury (SCI). High mobility group box-1 (HMGB1) is a mediator of inflammatory responses in the central nervous system and plays a critical role after SCI. Given this, we sought to identify both the role and underlying mechanisms of HMGB1 in cellular swelling and aquaporin 4 (AQP4) expression in cultured rat spinal cord astrocytes after oxygen-glucose deprivation/reoxygenation (OGD/R). The post-natal day 1-2 Sprague-Dawley rat spinal cord astrocytes were cultured in vitro, and the OGD/R model was induced. We first investigated the effects of OGD/R on spinal cord astrocytic swelling and HMGB1 and AQP4 expression, as well as HMGB1 release. We then studied the effects of HMGB1 inhibition on cellular swelling, HMGB1 and AQP4 expression, and HMGB1 release. The roles of both toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) signaling pathway and interleukin-6 (IL-6) in reducing cellular swelling resulting from HMGB1 inhibition in spinal cord astrocytes after OGD/R were studied. Intergroup data were compared using one-way analysis of variance (ANOVA) followed by Dunnett's test. The OGD/R increased spinal cord astrocytic swelling and HMGB1 and AQP4 expression, as well as HMGB1 release. Inhibition of HMGB1 using either HMGB1 shRNA or ethyl pyruvate resulted in reduced cellular volume, mitochondrial and endoplasmic reticulum swelling, and lysosome number and decreased upregulation of both HMGB1 and AQP4 in spinal cord astrocytes, as well as HMGB1 release. The HMGB1 effects on spinal cord astrocytic swelling and AQP4 upregulation after OGD/R were mediated-at least in part-via activation of TLR4, myeloid differentiation primary response gene 88 (MyD88), and NF-κB. These activation effects can be repressed by TLR4 inhibition using CLI-095 or C34, or by NF-κB inhibition using BAY 11

  1. Comparison of loads for wind turbine down-regulation strategies

    DEFF Research Database (Denmark)

    Zhu, Jiangsheng; Ma, Kuichao; N. Soltani, Mohsen

    2017-01-01

    For wind farm active power setpoint tracking, both farm level and turbine level down regulation strategies should to be optimized. Several down regulation strategies are chosen to analyse the wind turbine load performance according to different wind speed and power reference. In this paper we...... suggest appropriate down regulation strategy to control wind turbine for active power reference tracking. we compare four different control strategies, namely Const-Ω, Const-λ, Max-Ω and Min-Ct and discuss the loads on main components and downwind speed by presenting analysis of several wind scenarios...

  2. Curcumin longa extract-loaded nanoemulsion improves the survival of endotoxemic mice by inhibiting nitric oxide-dependent HMGB1 release.

    Science.gov (United States)

    Ahn, Min Young; Hwang, Jung Seok; Lee, Su Bi; Ham, Sun Ah; Hur, Jinwoo; Kim, Jun Tae; Seo, Han Geuk

    2017-01-01

    High mobility group box 1 (HMGB1) is a well-known damage-related alarmin that participates in cellular inflammatory responses. However, the mechanisms leading to HMGB1 release in inflammatory conditions and the therapeutic agents that could prevent it remain poorly understood. This study attempted to examine whether the Curcumin longa herb, which is known to have anti-inflammatory property, can modulate cellular inflammatory responses by regulating HMGB1 release. The murine macrophage RAW264.7 cells were treated with lipopolysaccharide (LPS) and/or a C. longa extract-loaded nanoemulsion (CLEN). The levels of released HMGB1, nitric oxide (NO) production, inducible NO synthase (iNOS) expression, and phosphorylation of mitogen-activated protein kinases were analyzed in RAW264.7 macrophages. The effects of CLEN on survival of endotoxemic model mice, circulating HMGB1 levels, and tissue iNOS expression were also evaluated. We have shown that a nanoemulsion loaded with an extract from the C. longa rhizome regulates cellular inflammatory responses and LPS-induced systemic inflammation by suppressing the release of HMGB1 by macrophages. First, treatment of RAW264.7 macrophages with the nanoemulsion significantly attenuated their LPS-induced release of HMGB1: this effect was mediated by inhibiting c-Jun N-terminal kinase activation, which in turn suppressed the NO production and iNOS expression of the cells. The nanoemulsion did not affect LPS-induced p38 or extracellular signal-regulated kinase activation. Second, intraperitoneal administration of the nanoemulsion improved the survival rate of LPS-injected endotoxemic mice. This associated with marked reductions in circulating HMGB1 levels and tissue iNOS expression. The present study shows for the first time the mechanism by which C. longa ameliorates sepsis, namely, by suppressing NO signaling and thereby inhibiting the release of the proinflammatory cytokine HMGB1. These observations suggest that identification of

  3. Curcumin longa extract-loaded nanoemulsion improves the survival of endotoxemic mice by inhibiting nitric oxide-dependent HMGB1 release

    Directory of Open Access Journals (Sweden)

    Min Young Ahn

    2017-09-01

    Full Text Available Background High mobility group box 1 (HMGB1 is a well-known damage-related alarmin that participates in cellular inflammatory responses. However, the mechanisms leading to HMGB1 release in inflammatory conditions and the therapeutic agents that could prevent it remain poorly understood. This study attempted to examine whether the Curcumin longa herb, which is known to have anti-inflammatory property, can modulate cellular inflammatory responses by regulating HMGB1 release. Methods The murine macrophage RAW264.7 cells were treated with lipopolysaccharide (LPS and/or a C. longa extract-loaded nanoemulsion (CLEN. The levels of released HMGB1, nitric oxide (NO production, inducible NO synthase (iNOS expression, and phosphorylation of mitogen-activated protein kinases were analyzed in RAW264.7 macrophages. The effects of CLEN on survival of endotoxemic model mice, circulating HMGB1 levels, and tissue iNOS expression were also evaluated. Results We have shown that a nanoemulsion loaded with an extract from the C. longa rhizome regulates cellular inflammatory responses and LPS-induced systemic inflammation by suppressing the release of HMGB1 by macrophages. First, treatment of RAW264.7 macrophages with the nanoemulsion significantly attenuated their LPS-induced release of HMGB1: this effect was mediated by inhibiting c-Jun N-terminal kinase activation, which in turn suppressed the NO production and iNOS expression of the cells. The nanoemulsion did not affect LPS-induced p38 or extracellular signal-regulated kinase activation. Second, intraperitoneal administration of the nanoemulsion improved the survival rate of LPS-injected endotoxemic mice. This associated with marked reductions in circulating HMGB1 levels and tissue iNOS expression. Discussion The present study shows for the first time the mechanism by which C. longa ameliorates sepsis, namely, by suppressing NO signaling and thereby inhibiting the release of the proinflammatory cytokine HMGB1

  4. Sirt1 S-nitrosylation induces acetylation of HMGB1 in LPS-activated RAW264.7 cells and endotoxemic mice.

    Science.gov (United States)

    Kim, Young Min; Park, Eun Jung; Kim, Hye Jung; Chang, Ki Churl

    2018-06-18

    Excessive inflammation plays a detrimental role in endotoxemia. A recent study indicated that alarmins such as high mobility group box 1 (HMGB1) have drawn attention as therapeutic targets of sepsis. Post-translational modification (i.e., acetylation of lysine residues) of HMGB1 leads to the release of HMGB1 into the cellular space, operating as a warning signal that induces inflammation. Sirtuin 1 (SIRT1) has been shown to negatively regulate HMGB1 hyperacetylation and its extracellular release in sepsis. Therefore, we hypothesized that the S-nitrosylation (SNO) of SIRT1 may disrupt the ability of SIRT1 to negatively regulate the hyperacetylation of HMGB1. As long as the S-nitrosylation of SIRT1 occurs during septic conditions, it may worsen the situation. We found that the activity of SIRT1 decreased as the SNO-SIRT1 levels increased, resulting in HMGB1 release by LPS in RAW264.7 cells. Both the iNOS inhibitor (1400 W) and silencing iNOS significantly inhibited SNO-SIRT1, allowing increases in SIRT1 activity that decreased the HMGB1 release by LPS. SNAP, a NO donor, significantly increased both SNO-SIRT1 levels and the HMGB1 release that was accompanied by decreased sirt1 activity. However, sirtinol, a Sirt1 inhibitor, by itself decreased Sirt1 activity compared to that of the control, so that it did not affect already increased SNO-SIRT levels by SNAP. Most importantly, in lung tissues of LPS-endotoxic mice, significantly increased levels of SNO-SIRT were found, which was inhibited by 1400 W treatment. Plasma nitrite and HMGB1 levels were significantly higher than those in the sham controls, and the elevated levels were significantly lowered in the presence of 1400 W. We concluded that the S-nitrosylation of Sirt1 under endotoxic conditions may uninhibit the acetylation of HMGB1 and its extracellular release. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. The association of HMGB1 expression with clinicopathological significance and prognosis in Asian patients with colorectal carcinoma: a meta-analysis and literature review

    Directory of Open Access Journals (Sweden)

    Zhang XL

    2016-08-01

    Full Text Available Xiaoli Zhang,1,2 Jinming Yu,1,2 Minghuan Li,2 Hui Zhu,2 Xindong Sun,2 Li Kong2 1Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 2Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong Province, People’s Republic of China Background: The association of high mobility group box 1 (HMGB1 expression with clinicopathological significance and prognosis in Asian patients with colorectal carcinoma (CRC remains controversial. The purpose of this study was to conduct a meta-analysis and literature review to identify the role of HMGB1 in the development and prognosis of CRC in Asians. Methods: All eligible studies regarding the association between HMGB1 expression in tissue with clinicopathological significance and prognosis in Asian patients with CRC published up to January 2015 were identified by searching PubMed, Web of Science, Chinese National Knowledge Infrastructure, and WanFang database. Analysis of pooled data was performed, while odds ratio (OR or hazard radio with 95% confidence interval (CI was calculated and summarized to evaluate the strength of this association in fixed- or random-effects model. Results: The expression level of HMGB1 in CRC tissues was much higher than normal colorectal tissues (OR =27.35, 95% CI 9.32–80.26, P<0.0001 and para-tumor colorectal tissues (OR =10.06, 95% CI 4.61–21.95, P<0.0001. There was no relation between the HMGB1 expression and sex, age, clinical T stage, tumor size, and location (colon or rectum cancer. However, a significant relation was detected between the HMGB1 expression and clinical stage (American Joint Committee on Cancer 7, lymph node metastasis, distant metastasis, tumor invasion depth, and differentiation rate (P=0.002, P≤0.0001, P<0.0001, P<0.0001, and P=0.007, respectively. Patients with higher HMGB1 expression had shorter overall survival time, whereas patients with lower level of HMGB1 had better survival (hazard

  6. Microglial-derived miRNA let-7 and HMGB1 contribute to ethanol-induced neurotoxicity via TLR7.

    Science.gov (United States)

    Coleman, Leon G; Zou, Jian; Crews, Fulton T

    2017-01-25

    Toll-like receptor (TLR) signaling is emerging as an important component of neurodegeneration. TLR7 senses viral RNA and certain endogenous miRNAs to initiate innate immune responses leading to neurodegeneration. Alcoholism is associated with hippocampal degeneration, with preclinical studies linking ethanol-induced neurodegeneration with central innate immune induction and TLR activation. The endogenous miRNA let-7b binds TLR7 to cause neurodegeneration. TLR7 and other immune markers were assessed in postmortem human hippocampal tissue that was obtained from the New South Wales Tissue Bank. Rat hippocampal-entorhinal cortex (HEC) slice culture was used to assess specific effects of ethanol on TLR7, let-7b, and microvesicles. We report here that hippocampal tissue from postmortem human alcoholic brains shows increased expression of TLR7 and increased microglial activation. Using HEC slice culture, we found that ethanol induces TLR7 and let-7b expression. Ethanol caused TLR7-associated neuroimmune gene induction and initiated the release let-7b in microvesicles (MVs), enhancing TLR7-mediated neurotoxicity. Further, ethanol increased let-7b binding to the danger signaling molecule high mobility group box-1 (HMGB1) in MVs, while reducing let-7 binding to classical chaperone protein argonaute (Ago2). Flow cytometric analysis of MVs from HEC media and analysis of MVs from brain cell culture lines found that microglia were the primary source of let-7b and HMGB1-containing MVs. Our results identify that ethanol induces neuroimmune pathology involving the release of let-7b/HMGB1 complexes in microglia-derived microvesicles. This contributes to hippocampal neurodegeneration and may play a role in the pathology of alcoholism.

  7. RAGE splicing variants in mammals.

    Science.gov (United States)

    Sterenczak, Katharina Anna; Nolte, Ingo; Murua Escobar, Hugo

    2013-01-01

    The receptor for advanced glycation end products (RAGE) is a multiligand receptor of environmental stressors which plays key roles in pathophysiological processes, including immune/inflammatory disorders, Alzheimer's disease, diabetic arteriosclerosis, tumorigenesis, and metastasis. Besides the full-length RAGE protein in humans nearly 20 natural occurring RAGE splicing variants were described on mRNA and protein level. These naturally occurring isoforms are characterized by either N-terminally or C-terminally truncations and are discussed as possible regulators of the full-length RAGE receptor either by competitive ligand binding or by displacing the full-length protein in the membrane. Accordingly, expression deregulations of the naturally occurring isoforms were supposed to have significant effect on RAGE-mediated disorders. Thereby the soluble C-truncated RAGE isoforms present in plasma and tissues are the mostly focused isoforms in research and clinics. Deregulations of the circulating levels of soluble RAGE forms were reported in several RAGE-associated pathological disorders including for example atherosclerosis, diabetes, renal failure, Alzheimer's disease, and several cancer types. Regarding other mammalian species, the canine RAGE gene showed high similarities to the corresponding human structures indicating RAGE to be evolutionary highly conserved between both species. Similar to humans the canine RAGE showed a complex and extensive splicing activity leading to a manifold pattern of RAGE isoforms. Due to the similarities seen in several canine and human diseases-including cancer-comparative structural and functional analyses allow the development of RAGE and ligand-specific therapeutic approaches beneficial for human and veterinary medicine.

  8. Plasma concentration of high-mobility group box 1 (HMGB1) after 100 drop to vertical jumps and after a 1200-km bicycle race.

    Science.gov (United States)

    Behringer, M; Kilian, Y; Montag, J; Geesmann, B; Mester, J

    2016-01-01

    High-mobility group box 1 (HMGB1) has recently been reported to be involved in proinflammation and tissue repair. Therefore, we hypothesized that HMGB1 is released into the bloodstream after eccentric exercises or prolonged endurance activities. Blood samples from 11 participants that performed 100 drop to vertical jumps (DVJ) and from 10 participants that took part in the 1200-km 'Paris-Brest-Paris' bicycle race (PBP) were tested for HMGB1 and creatine kinase (CK) levels. CK increased after both DVJ (pre: 150.6 ± 81.5 U/L; post: 188.8 ± 95.5 U/L 8 h: 790.5 ± 346.4 U/L) and PBP (pre: 81.3 ± 36.4 U/L; post: 725.2 ± 229.5 U/L; 12 h: 535.8 ± 188.6 U/L), indicating membrane damage. However, HMGB1 plasma levels remained below the detection limit (78 pg/mL) of the applied enzyme-linked immunosorbent assay kit for all blood samples analysed. That is, neither high intensity eccentric exercises (DVJ) nor prolonged endurance events (PBP) seemed to affect HMGB1 levels in blood at selected time points.

  9. Redox-sensitive structural change in the A-domain of HMGB1 and its implication for the binding to cisplatin modified DNA

    International Nuclear Information System (INIS)

    Wang, Jing; Tochio, Naoya; Takeuchi, Aya; Uewaki, Jun-ichi; Kobayashi, Naohiro; Tate, Shin-ichi

    2013-01-01

    Highlights: •The structure of the oxidized A-domain of human HMGB1 was solved. •Phe38 ring was flipped in the oxidized structure from that in the reduced form. •The flipped ring disables the intercalation into the cisplatinated lesions. •The functionally relevant redox-dependent structural change was described. -- Abstract: HMGB1 (high-mobility group B1) is a ubiquitously expressed bifunctional protein that acts as a nuclear protein in cells and also as an inflammatory mediator in the extracellular space. HMGB1 changes its functions according to the redox states in both intra- and extra-cellular environments. Two cysteines, Cys23 and Cys45, in the A-domain of HMGB1 form a disulfide bond under oxidative conditions. The A-domain with the disulfide bond shows reduced affinity to cisplatin modified DNA. We have solved the oxidized A-domain structure by NMR. In the structure, Phe38 has a flipped ring orientation from that found in the reduced form; the phenyl ring in the reduced form intercalates into the platinated lesion in DNA. The phenyl ring orientation in the oxidized form is stabilized through intramolecular hydrophobic contacts. The reorientation of the Phe38 ring by the disulfide bond in the A-domain may explain the reduced HMGB1 binding affinity towards cisplatinated DNA

  10. Protective effect of glycyrrhizin, a direct HMGB1 inhibitor, on focal cerebral ischemia/reperfusion-induced inflammation, oxidative stress, and apoptosis in rats.

    Directory of Open Access Journals (Sweden)

    Gu Gong

    Full Text Available AIM: Glycyrrhizin (GL has been reported to protect against ischemia and reperfusion (I/R-induced injury by inhibiting the cytokine activity of high mobility group box 1 (HMGB1. In the present study, the protective effects of GL against I/R injury, as well as the related molecular mechanisms, were investigated in rat brains. METHODS: Focal cerebral I/R injury was induced by intraluminal filamentous occlusion of the middle cerebral artery (MCA in Male Sprague-Dawley rats. GL alone or GL and rHMGB1 were administered intravenously at the time of reperfusion. Serum levels of HMGB1 and inflammatory mediators were quantified via enzyme-linked immunosorbent assay (ELISA. Histopathological examination, immunofluorescence, RT-PCR and western blotting analyses were performed to investigate the protective and anti-apoptotic effects and related molecular mechanisms of GL against I/R injury in rat brains. RESULTS: Pre-treatment with GL significantly reduced infarct volume and improved the accompanying neurological deficits in locomotor function. The release of HMGB1 from the cerebral cortex into the serum was inhibited by GL administration. Moreover, pre-treatment with GL alleviated apoptotic injury resulting from cerebral I/R through the inhibition of cytochrome C release and caspase 3 activity. The expression levels of inflammation- and oxidative stress-related molecules including TNF-α, iNOS, IL-1β, and IL-6, which were over-expressed in I/R, were decreased by GL. P38 and P-JNK signalling were involved in this process. All of the protective effects of GL could be reversed by rHMGB1 administration. CONCLUSIONS: GL has a protective effect on ischemia-reperfusion injury in rat brains through the inhibition of inflammation, oxidative stress and apoptotic injury by antagonising the cytokine activity of HMGB1.

  11. Elevated levels of von Willebrand factor and high mobility group box 1 (HMGB1) are associated with disease severity and clinical outcome of scrub typhus.

    Science.gov (United States)

    Chen, Hongliu; Ning, Zong; Qiu, Ying; Liao, Yuanli; Chang, Haihua; Ai, Yuanyuan; Wei, Yinghua; Deng, Yiming; Shen, Ying

    2017-08-01

    This study aimed to investigate whether von Willebrand factor (vWF) and high mobility group box 1 (HMGB1) are associated with the severity and clinical outcome of scrub typhus and to seek novel biomarkers for surveillance and prediction of the prognosis of this infection. Serum concentrations of vWF and HMGB1 were measured twice by ELISA for scrub typhus patients (n=103), once prior to doxycycline therapy and then on day 7 of doxycycline therapy; concentrations were measured once for healthy controls (n=32). Among the total 103 patients enrolled, 38 had disease complicated by multiple organ dysfunction syndrome (MODS). Serum concentrations of vWF and HMGB1 were significantly higher in all the patients than in the healthy controls, both prior to doxycycline treatment and on day 7 of doxycycline treatment (pscrub typhus (area under the curve (AUC)=0.864, p=0.001, and AUC=0.862, p=0.001, respectively). Elevated levels of vWF and HMGB1 are associated with the severity and clinical outcome of scrub typhus. These represent possible new biomarkers for use in the assessment and prognostic prediction of this infection. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  12. Alarmin HMGB1 is released in the small intestine of gnotobiotic piglets infected with enteric pathogens and its level in plasma reflects severity of sepsis

    Czech Academy of Sciences Publication Activity Database

    Šplíchalová, Alla; Šplíchal, Igor; Chmelařová, Petra; Trebichavský, Ilja

    2011-01-01

    Roč. 31, č. 3 (2011), s. 488-497 ISSN 0271-9142 R&D Projects: GA MŠk ME 915 Institutional research plan: CEZ:AV0Z50200510 Keywords : HMGB1 * enteric infection * cytokines Subject RIV: EE - Microbiology, Virology Impact factor: 3.077, year: 2011

  13. Local and systemic occurrences of HMGB1 in gnotobiotic piglets infected with E. coli O55 are related to bacterial translocation and inflammatory cytokines

    Czech Academy of Sciences Publication Activity Database

    Šplíchalová, Alla; Šplíchal, Igor

    2012-01-01

    Roč. 60, č. 3 (2012), s. 597-600 ISSN 1043-4666 R&D Projects: GA ČR GA524/09/0365 Institutional support: RVO:61388971 Keywords : HMGB1 * Enteric infection * E. coli Subject RIV: EC - Immunology Impact factor: 2.518, year: 2012

  14. Cloning the genes and DNA binding properties of high mobility group B1 (HMGB1) proteins from the human blood flukes Schistosoma mansoni and Schistosoma japonicum

    Czech Academy of Sciences Publication Activity Database

    De Oliveira, F.M.B.; Da Silva, I.C.dA.; Rumjanek, F.D.; Dias-Neto, E.; Guimaraes, P.E.M.; Verjovski-Almeida, S.; Štros, Michal; Fantappié, M.R.

    2006-01-01

    Roč. 377, - (2006), s. 33-45 ISSN 0378-1119 R&D Projects: GA ČR(CZ) GA204/05/2031 Institutional research plan: CEZ:AV0Z50040507 Keywords : HMGB1 * Schistosoma mansoni * Schistosoma japonicum Subject RIV: BO - Biophysics Impact factor: 2.721, year: 2006

  15. Ethanol extracts from Portulaca oleracea L. attenuated ischemia/reperfusion induced rat neural injury through inhibition of HMGB1 induced inflammation

    Science.gov (United States)

    Zheng, Chenggang; Liu, Chen; Wang, Wanyin; Tang, Gusheng; Dong, Liwei; Zhou, Juan; Zhong, Zhengrong

    2016-01-01

    It is well demonstrated that the high mobility group box 1 (HMGB1) mediated inflammation has been implicated as one of the important causes for brain damage induced by cerebral ischemia/reperfusion (I/R). In the present study, we assessed the neuro-protective and anti-inflammation effects of the ethanol extracts from Portulaca oleracea L. (EEPO) against cerebral I/R injury in the rat transient middle cerebral artery occlusion (tMCAO) model. Rats were administrated with their respective treatment for 7 days before the MCA occlusion. After that, rats were intraperitoneal injection with chloral hydrate and sacrificed by decapitation, then the serum and brain tissue were collected. The neurological deficit score, infarct size and brain edema were tested. The levels of serum cytokine as TNF-α, IL-1β, INF-γ, IL-6, and HMGB1 and LDH were detected. The protein level of tissue or nucleus HMGB1, IκB and p-p65 were tested, too. The results showed that pretreatment with EEPO significantly decreased the neurological deficit score, infarct size and brain edema. Moreover, EEPO decreased rat serum cytokine level and rat right cortices p-p65 and IκB protein level. In conclusion all these results suggested that pretreatment with EEFPO provided significant protection against cerebral I/R injury in rats might by virtue of its anti-inflammation property through inhibition of increase of neuleus HMGB1. PMID:27904702

  16. RAGE-dependent activation of gene expression of superoxide dismutase and vanins by AGE-rich extracts in mice cardiac tissue and murine cardiac fibroblasts.

    Science.gov (United States)

    Leuner, Beatrice; Ruhs, Stefanie; Brömme, Hans-Jürgen; Bierhaus, Angelika; Sel, Saadettin; Silber, Rolf-Edgar; Somoza, Veronika; Simm, Andreas; Nass, Norbert

    2012-10-01

    Advanced glycation end products (AGEs) are stable compounds formed from initial Maillard reaction products. They are considered as markers for ageing and often associated with age-related, degenerative diseases. Bread crust represents an established model for nutritional compounds rich in AGEs and is able to induce antioxidative defense genes such as superoxide dismutases and vanins in cardiac cells. The aim of this study was to investigate to what extend the receptor for AGEs (RAGE) contributes to this response. Signal transduction in response to bread crust extract was analysed in cardiac fibroblasts derived from C57/B6-NCrl (RAGE +/+) and the corresponding RAGE-knock out C57/B6-NCrl mouse strain (RAGE -/-). Activation of superoxide dismutases in animals was then analysed upon bread crust feeding in these two mice strains. Cardiac fibroblasts from RAGE -/- mice did not express RAGE, but the expression of AGER-1 and AGER-3 was up-regulated, whereas the expression of SR-B1 was down-regulated. RAGE -/- cells were less sensitive to BCE in terms of MAP-kinase phosphorylation and NF-κB reporter gene activation. Bread crust extract induced mRNA levels of MnSOD and Vnn-1 were also reduced in RAGE -/- cells, whereas Vnn-3 mRNA accumulation seemed to be RAGE receptor independent. In bread crust feeding experiments, RAGE -/- mice did not exhibit an activation of MnSOD-mRNA and -protein accumulation as observed for the RAGE +/+ animals. In conclusion, RAGE was clearly a major factor for the induction of antioxidant defense signals derived from bread crust in cardiac fibroblast and mice. Nevertheless higher doses of bread crust extract could overcome the RAGE dependency in cell cultures, indicating that additional mechanisms are involved in BCE-mediated activation of SOD and vanin expression.

  17. DMBT1 expression is down-regulated in breast cancer

    DEFF Research Database (Denmark)

    Braidotti, P; Nuciforo, P G; Mollenhauer, J

    2004-01-01

    and hyperplastic mammary cells positive with DMBTh12 were also MCM5-positive. CONCLUSIONS: The redistribution and up-regulation of DMBT1 in normal and hyperplastic tissues flanking malignant tumours and its down-regulation in carcinomas suggests a potential role in breast cancer. Moreover, the concomitant......BACKGROUND: We studied the expression of DMBT1 (deleted in malignant brain tumor 1), a putative tumor suppressor gene, in normal, proliferative, and malignant breast epithelium and its possible relation to cell cycle. METHODS: Sections from 17 benign lesions and 55 carcinomas were immunostained...... expression was down-regulated in the cancerous lesions compared to the normal and/or hyperplastic epithelium adjacent to carcinomas (3/55 positive carcinomas versus 33/42 positive normal/hyperplastic epithelia; p = 0.0001). In 72% of cases RT-PCR confirmed immunohistochemical results. Most of normal...

  18. Wind Turbine Down-regulation Strategy for Minimum Wake Deficit

    DEFF Research Database (Denmark)

    Ma, Kuichao; Zhu, Jiangsheng; N. Soltani, Mohsen

    2017-01-01

    Down-regulation mode of wind turbine is commonly used no matter for the reserve power for supporting ancillary service to the grid, power optimization in wind farm or reducing power loss in the fault condition. It is also a method to protect faulty turbine. A down-regulation strategy based...... on minimum wake deficit is proposed in this paper, for the power improvement of the downwind turbine in low and medium wind speed region. The main idea is to operate turbine work at an appropriate operating point through rotor speed and torque control. The effectiveness of the strategy is verified...... by comparing with maximum rotor speed strategy. The result shows that the proposed strategy can improve the power of downwind turbine effectively....

  19. Omega-3 polyunsaturated fatty acid attenuates the inflammatory response by modulating microglia polarization through SIRT1-mediated deacetylation of the HMGB1/NF-κB pathway following experimental traumatic brain injury.

    Science.gov (United States)

    Chen, Xiangrong; Chen, Chunnuan; Fan, Sining; Wu, Shukai; Yang, Fuxing; Fang, Zhongning; Fu, Huangde; Li, Yasong

    2018-04-20

    Microglial polarization and the subsequent neuroinflammatory response are contributing factors for traumatic brain injury (TBI)-induced secondary injury. High mobile group box 1 (HMGB1) mediates the activation of the NF-κB pathway, and it is considered to be pivotal in the late neuroinflammatory response. Activation of the HMGB1/NF-κB pathway is closely related to HMGB1 acetylation, which is regulated by the sirtuin (SIRT) family of proteins. Omega-3 polyunsaturated fatty acids (ω-3 PUFA) are known to have antioxidative and anti-inflammatory effects. We previously demonstrated that ω-3 PUFA inhibited TBI-induced microglial activation and the subsequent neuroinflammatory response by regulating the HMGB1/NF-κB signaling pathway. However, no studies have elucidated if ω-3 PUFA affects the HMGB1/NF-κB pathway in a HMGB1 deacetylation of dependent SIRT1 manner, thus regulating microglial polarization and the subsequent neuroinflammatory response. The Feeney DM TBI model was adopted to induce brain injury in rats. Modified neurological severity scores, rotarod test, brain water content, and Nissl staining were employed to determine the neuroprotective effects of ω-3 PUFA supplementation. Assessment of microglia polarization and pro-inflammatory markers, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and HMGB1, were used to evaluate the neuroinflammatory responses and the anti-inflammatory effects of ω-3 PUFA supplementation. Immunofluorescent staining and western blot analysis were used to detect HMGB1 nuclear translocation, secretion, and HMGB1/NF-κB signaling pathway activation to evaluate the effects of ω-3 PUFA supplementation. The impact of SIRT1 deacetylase activity on HMGB1 acetylation and the interaction between HMGB1 and SIRT1 were assessed to evaluate anti-inflammation effects of ω-3 PUFAs, and also, whether these effects were dependent on a SIRT1-HMGB1/NF-κB axis to gain further insight into the mechanisms underlying the

  20. HMGB1-dependent triggering of HIV-1 replication and persistence in dendritic cells as a consequence of NK-DC cross-talk.

    Directory of Open Access Journals (Sweden)

    Héla Saïdi

    Full Text Available HIV-1 has evolved ways to exploit DCs, thereby facilitating viral dissemination and allowing evasion of antiviral immunity. Recently, the fate of DCs has been found to be extremely dependent on the interaction with autologous NK cells, but the mechanisms by which NK-DC interaction controls viral infections remain unclear. Here, we investigate the impact of NK-DC cross-talk on maturation and functions of HIV-infected immature DCs.Immature DCs were derived from primary monocytes, cultured in the presence of IL-4 and GM-CSF. In some experiments, DCs were infected with R5-HIV-1(BaL or X4-HIV-1(NDK, and viral replication, proviral HIV-DNA and the frequency of infected DCs were measured. Autologous NK cells were sorted and either kept unstimulated in the presence of suboptimal concentration of IL-2, or activated by a combination of PHA and IL-2. The impact of 24 h NK-DC cross-talk on the fate of HIV-1-infected DCs was analyzed. We report that activated NK cells were required for the induction of maturation of DCs, whether uninfected or HIV-1-infected, and this process involved HMGB1. However, the cross-talk between HIV-1-infected DCs and activated NK cells was functionally defective, as demonstrated by the strong impairment of DCs to induce Th1 polarization of naïve CD4 T cells. This was associated with the defective production of IL-12 and IL-18 by infected DCs. Moreover, the crosstalk between activated NK cells and HIV-infected DCs resulted in a dramatic increase in viral replication and proviral DNA expression in DCs. HMGB1, produced both by NK cells and DCs, was found to play a pivotal role in this process, and inhibition of HMGB1 activity by glycyrrhizin, known to bind specifically to HMGB1, or blocking anti-HMGB1 antibodies, abrogated NK-dependent HIV-1 replication in DCs.These observations provide evidence for the crucial role of NK-DC cross-talk in promoting viral dissemination, and challenge the question of the in vivo involvement of HMGB1

  1. Neuroprotection by biodegradable PAMAM ester (e-PAM-R)-mediated HMGB1 siRNA delivery in primary cortical cultures and in the postischemic brain.

    Science.gov (United States)

    Kim, Il-Doo; Lim, Chae-Moon; Kim, Jung-Bin; Nam, Hye Yeong; Nam, Kihoon; Kim, Seung-Woo; Park, Jong-Sang; Lee, Ja-Kyeong

    2010-03-19

    Although RNA interference (RNAi)-mediated gene silencing provides a powerful strategy for modulating specific gene functions, difficulties associated with siRNA delivery have impeded the development of efficient therapeutic applications. In particular, the efficacy of siRNA delivery into neurons has been limited by extremely low transfection efficiencies. e-PAM-R is a biodegradable arginine ester of PAMAM dendrimer, which is readily degradable under physiological conditions (pH 7.4, 37 degrees C). In the present study, we investigated the efficiency of siRNA delivery by e-PAM-R in primary cortical cultures and in rat brain. e-PAM-R/siRNA complexes showed high transfection efficiencies and low cytotoxicities in primary cortical cultures. Localization of fluorescence-tagged siRNA revealed that siRNA was delivered not only into the nucleus and cytoplasm, but also along the processes of the neuron. e-PAM-R/siRNA complex-mediated target gene reduction was observed in over 40% of cells and it was persistent for over 48 h. The potential use of e-PAM-R was demonstrated by gene knockdown after transfecting High mobility group box-1 (HMGB1, a novel cytokine-like molecule) siRNA into H(2)O(2)- or NMDA-treated primary cortical cultures. In these cells, HMGB1 siRNA delivery successfully reduced both basal and H(2)O(2)- or NMDA-induced HMGB1 levels, and as a result of that, neuronal cell death was significantly suppressed in both cases. Furthermore, we showed that e-PAM-R successfully delivered HMGB1 siRNA into the rat brain, wherein HMGB1 expression was depleted in over 40% of neurons and astrocytes of the normal brain. Moreover, e-PAM-R-mediated HMGB1 siRNA delivery notably reduced infarct volume in the postischemic rat brain, which is generated by occluding the middle cerebral artery for 60 min. These results indicate that e-PAM-R, a novel biodegradable nonviral gene carrier, offers an efficient means of transfecting siRNA into primary neuronal cells and in the brain and of

  2. Expression and clinical implication of Beclin1, HMGB1, p62, survivin, BRCA1 and ERCC1 in epithelial ovarian tumor tissues.

    Science.gov (United States)

    Ju, L-L; Zhao, C Y; Ye, K-F; Yang, H; Zhang, J

    2016-05-01

    The aim of the present study is to investigate the differential expression of Beclin1, HMGB1, p62, survivin, ERCC1 and BRCA1 protein in epithelial ovarian cancer (EOC) and to evaluate the relationship between autophagy and platinum resistance of EOC patients during platinum-based chemotherapy with the protein expression. Expression of Beclin1, HMGB1, p62, survivin, ERCC1 and BRCA1 were detected with immunohistochemistry in 60 patients, including 39 with epithelial ovarian cancer (EOC), 13 benign epithelial ovarian tumor tissue (BET) and 8 borderline ovarian tumor tissue. Beclin, p62 and ERCC1 expression was significantly higher in the EOC than the BET (p0.05). BRCA1 expression was lower in EOC than BET (pepithelial ovarian cancer.

  3. Interactions of Histone Acetyltransferase p300 with the Nuclear Proteins Histone and HMGB1, As Revealed by Single Molecule Atomic Force Spectroscopy.

    Science.gov (United States)

    Banerjee, S; Rakshit, T; Sett, S; Mukhopadhyay, R

    2015-10-22

    One of the important properties of the transcriptional coactivator p300 is histone acetyltransferase (HAT) activity that enables p300 to influence chromatin action via histone modulation. p300 can exert its HAT action upon the other nuclear proteins too--one notable example being the transcription-factor-like protein HMGB1, which functions also as a cytokine, and whose accumulation in the cytoplasm, as a response to tissue damage, is triggered by its acetylation. Hitherto, no information on the structure and stability of the complexes between full-length p300 (p300FL) (300 kDa) and the histone/HMGB1 proteins are available, probably due to the presence of unstructured regions within p300FL that makes it difficult to be crystallized. Herein, we have adopted the high-resolution atomic force microscopy (AFM) approach, which allows molecularly resolved three-dimensional contour mapping of a protein molecule of any size and structure. From the off-rate and activation barrier values, obtained using single molecule dynamic force spectroscopy, the biochemical proposition of preferential binding of p300FL to histone H3, compared to the octameric histone, can be validated. Importantly, from the energy landscape of the dissociation events, a model for the p300-histone and the p300-HMGB1 dynamic complexes that HAT forms, can be proposed. The lower unbinding forces of the complexes observed in acetylating conditions, compared to those observed in non-acetylating conditions, indicate that upon acetylation, p300 tends to weakly associate, probably as an outcome of charge alterations on the histone/HMGB1 surface and/or acetylation-induced conformational changes. To our knowledge, for the first time, a single molecule level treatment of the interactions of HAT, where the full-length protein is considered, is being reported.

  4. DMBT1 expression is down-regulated in breast cancer

    International Nuclear Information System (INIS)

    Braidotti, P; Pietra, GG; Nuciforo, PG; Mollenhauer, J; Poustka, A; Pellegrini, C; Moro, A; Bulfamante, G; Coggi, G; Bosari, S

    2004-01-01

    We studied the expression of DMBT1 (deleted in malignant brain tumor 1), a putative tumor suppressor gene, in normal, proliferative, and malignant breast epithelium and its possible relation to cell cycle. Sections from 17 benign lesions and 55 carcinomas were immunostained with anti DMBT1 antibody (DMBTh12) and sections from 36 samples, were double-stained also with anti MCM5, one of the 6 pre-replicative complex proteins with cell proliferation-licensing functions. DMBT1 gene expression at mRNA level was assessed by RT-PCR in frozen tissues samples from 39 patients. Normal glands and hyperplastic epithelium in benign lesions displayed a luminal polarized DMBTh12 immunoreactivity. Normal and hyperplastic epithelium adjacent to carcinomas showed a loss of polarization, with immunostaining present in basal and perinuclear cytoplasmic compartments. DMBT1 protein expression was down-regulated in the cancerous lesions compared to the normal and/or hyperplastic epithelium adjacent to carcinomas (3/55 positive carcinomas versus 33/42 positive normal/hyperplastic epithelia; p = 0.0001). In 72% of cases RT-PCR confirmed immunohistochemical results. Most of normal and hyperplastic mammary cells positive with DMBTh12 were also MCM5-positive. The redistribution and up-regulation of DMBT1 in normal and hyperplastic tissues flanking malignant tumours and its down-regulation in carcinomas suggests a potential role in breast cancer. Moreover, the concomitant expression of DMTB1 and MCM5 suggests its possible association with the cell-cycle regulation

  5. HMGB1 Is Involved in IFN-α Production and TRAIL Expression by HIV-1-Exposed Plasmacytoid Dendritic Cells: Impact of the Crosstalk with NK Cells.

    Directory of Open Access Journals (Sweden)

    Héla Saïdi

    2016-02-01

    Full Text Available Plasmacytoid dendritic cells (pDCs are innate sensors of viral infections and important mediators of antiviral innate immunity through their ability to produce large amounts of IFN-α. Moreover, Toll-like receptor 7 (TLR7 and 9 (TLR9 ligands, such as HIV and CpG respectively, turn pDCs into TRAIL-expressing killer pDCs able to lyse HIV-infected CD4+ T cells. NK cells can regulate antiviral immunity by modulating pDC functions, and pDC production of IFN-α as well as cell-cell contact is required to promote NK cell functions. Impaired pDC-NK cell crosstalk was reported in the setting of HIV-1 infection, but the impact of HIV-1 on TRAIL expression and innate antiviral immunity during this crosstalk is unknown. Here, we report that low concentrations of CCR5-tropic HIV-1Ba-L promote the release of pro-inflammatory cytokines such as IFN-α, TNF-α, IFN-γ and IL-12, and CCR5-interacting chemokines (MIP-1α and MIP-1β in NK-pDCs co-cultures. At high HIV-1BaL concentrations, the addition of NK cells did not promote the release of these mediators, suggesting that once efficiently triggered by the virus, pDCs could not integrate new activating signals delivered by NK cells. However, high HIV-1BaL concentrations were required to trigger IFN-α-mediated TRAIL expression at the surface of both pDCs and NK cells during their crosstalk. Interestingly, we identified the alarmin HMGB1, released at pDC-NK cell synapse, as an essential trigger for the secretion of IFN-α and IFN-related soluble mediators during the interplay of HIV-1 exposed pDCs with NK cells. Moreover, HMGB1 was found crucial for mTRAIL translocation to the plasma membrane of both pDCs and NK cells during their crosstalk following pDC exposure to HIV-1. Data from serum analyses of circulating HMGB1, HMGB1-specific antibodies, sTRAIL and IP-10 in a cohort of 67 HIV-1+ patients argue for the in vivo relevance of these observations. Altogether, these findings identify HMGB1 as a trigger for IFN

  6. HMGB1 Is Involved in IFN-α Production and TRAIL Expression by HIV-1-Exposed Plasmacytoid Dendritic Cells: Impact of the Crosstalk with NK Cells.

    Science.gov (United States)

    Saïdi, Héla; Bras, Marlène; Formaglio, Pauline; Melki, Marie-Thérèse; Charbit, Bruno; Herbeuval, Jean-Philippe; Gougeon, Marie-Lise

    2016-02-01

    Plasmacytoid dendritic cells (pDCs) are innate sensors of viral infections and important mediators of antiviral innate immunity through their ability to produce large amounts of IFN-α. Moreover, Toll-like receptor 7 (TLR7) and 9 (TLR9) ligands, such as HIV and CpG respectively, turn pDCs into TRAIL-expressing killer pDCs able to lyse HIV-infected CD4+ T cells. NK cells can regulate antiviral immunity by modulating pDC functions, and pDC production of IFN-α as well as cell-cell contact is required to promote NK cell functions. Impaired pDC-NK cell crosstalk was reported in the setting of HIV-1 infection, but the impact of HIV-1 on TRAIL expression and innate antiviral immunity during this crosstalk is unknown. Here, we report that low concentrations of CCR5-tropic HIV-1Ba-L promote the release of pro-inflammatory cytokines such as IFN-α, TNF-α, IFN-γ and IL-12, and CCR5-interacting chemokines (MIP-1α and MIP-1β) in NK-pDCs co-cultures. At high HIV-1BaL concentrations, the addition of NK cells did not promote the release of these mediators, suggesting that once efficiently triggered by the virus, pDCs could not integrate new activating signals delivered by NK cells. However, high HIV-1BaL concentrations were required to trigger IFN-α-mediated TRAIL expression at the surface of both pDCs and NK cells during their crosstalk. Interestingly, we identified the alarmin HMGB1, released at pDC-NK cell synapse, as an essential trigger for the secretion of IFN-α and IFN-related soluble mediators during the interplay of HIV-1 exposed pDCs with NK cells. Moreover, HMGB1 was found crucial for mTRAIL translocation to the plasma membrane of both pDCs and NK cells during their crosstalk following pDC exposure to HIV-1. Data from serum analyses of circulating HMGB1, HMGB1-specific antibodies, sTRAIL and IP-10 in a cohort of 67 HIV-1+ patients argue for the in vivo relevance of these observations. Altogether, these findings identify HMGB1 as a trigger for IFN

  7. Mir-22-3p Inhibits Arterial Smooth Muscle Cell Proliferation and Migration and Neointimal Hyperplasia by Targeting HMGB1 in Arteriosclerosis Obliterans

    Directory of Open Access Journals (Sweden)

    Shui-chuan Huang

    2017-08-01

    Full Text Available Background: Aberrant vascular smooth muscle cell (VSMC proliferation and migration contribute to the development of vascular pathologies, such as atherosclerosis and post-angioplasty restenosis. The aim of this study was to determine whether miR-22-3p plays a role in regulating human artery vascular smooth muscle cell (HASMC function and neointima formation. Methods: Quantitative real-time PCR (qRT-PCR and fluorescence in situ hybridization (FISH were used to detect miR-22-3p expression in human arteries. Cell Counting Kit-8 (CCK-8 and EdU assays were performed to assess cell proliferation, and transwell and wound closure assays were performed to assess cell migration. Moreover, luciferase reporter assays were performed to identify the target genes of miR-22-3p. Finally, a rat carotid artery balloon-injury model was used to determine the role of miR-22-3p in neointima formation. Results: MiR-22-3p expression was downregulated in arteriosclerosis obliterans (ASO arteries compared with normal arteries, as well as in platelet-derived growth factor-BB (PDGF-BB-stimulated HASMCs compared with control cells. MiR-22-3p overexpression had anti-proliferative and anti-migratory effects and dual-luciferase assay showed that high mobility group box-1 (HMGB1 is a direct target of miR-22-3p in HASMCs. Furthermore, miR-22-3p expression was negatively correlated with HMGB1 expression in ASO tissue specimens. Finally, LV-miR-22-3p-mediated miR-22-3p upregulation significantly suppressed neointimal hyperplasia specifically by reducing HMGB1 expression in vivo. Conclusions: Our results indicate that miR-22-3p is a key molecule in regulating HASMC proliferation and migration by targeting HMGB1 and that miR-22-3p and HMGB1 may be therapeutic targets in the treatment of human ASO.

  8. Co-expression of nuclear and cytoplasmic HMGB1 is inversely associated with infiltration of CD45RO+ T cells and prognosis in patients with stage IIIB colon cancer

    International Nuclear Information System (INIS)

    Peng, Rui-Qing; Zeng, Yi-Xin; Zhang, Xiao-Shi; Wu, Xiao-Jun; Ding, Ya; Li, Chun-Yan; Yu, Xing-Juan; Zhang, Xing; Pan, Zhi-Zhong; Wan, De-Sen; Zheng, Li-Ming

    2010-01-01

    The intratumoral infiltration of T cells, especially memory T cells, is associated with a favorable prognosis in early colorectal cancers. However, the mechanism underlying this process remains elusive. This study examined whether high-mobility group box 1 (HMGB1), a damage-associated molecular pattern (DAMP) molecule, is involved in the infiltration of T cells and disease progression in locally advanced colon cancer. Seventy-two cases of pathologically-confirmed specimens were obtained from patients with stage IIIB (T3N1M0) colon cancer who underwent radical resection between January 1999 and May 2002 at the Cancer Center of Sun Yat-Sen University. The density of tumor-infiltrating lymphocytes (TILs) within the tumor tissue and the expression of HMGB1 in the cancer cells were examined via immunohistochemical analysis. The phenotype of CD45RO+ cells was confirmed using a flow cytometric assay. The association between HMGB1 expression, the density of TILs, and the 5-year survival rate were analyzed. The density of CD45RO+ T cells within the tumor was independently prognostic, although a higher density of CD3+ T cells was also associated with a favorable prognosis. More importantly, the expression of HMGB1 was observed in both the nucleus and the cytoplasm (co-expression pattern) in a subset of colon cancer tissues, whereas nuclear-only expression of HMGB1 (nuclear expression pattern) existed in most of the cancer tissues and normal mucosa. The co-expression pattern of HMGB1 in colon cancer cells was inversely associated with the infiltration of both CD3+ and CD45RO+ T cells and 5-year survival rates. This study revealed that the co-expression of HMGB1 is inversely associated with the infiltration of CD45RO+ T cells and prognosis in patients with stage IIIB colon cancer, indicating that the distribution patterns of HMGB1 might contribute to the progression of colon cancer via modulation of the local immune response

  9. Flavonoids from Theobroma cacao down-regulate inflammatory mediators.

    Science.gov (United States)

    Ramiro, Emma; Franch, Angels; Castellote, Cristina; Pérez-Cano, Francisco; Permanyer, Joan; Izquierdo-Pulido, Maria; Castell, Margarida

    2005-11-02

    In the present study, we report the effects of a cocoa extract on the secretion and RNA expression of various proinflammatory mediators by macrophages. Monocyte chemoattractant protein 1 and tumor necrosis factor alpha (TNFalpha) were significantly and dose-dependently diminished by cocoa extract, and this effect was higher than that produced by equivalent concentrations of epicatechin but was lower than that produced by isoquercitrin. Interestingly, cocoa extract added prior to cell activation resulted in a significantly greater inhibition of TNFalpha secretion. Both cocoa extract and epicatechin decreased TNFalpha, interleukin (IL) 1alpha, and IL-6 mRNA expression, suggesting that their inhibitory effect on cytokine secretion is produced, in part, at the transcriptional level. Cocoa extract also significantly decreased NO secretion in a dose-dependent manner and with a greater effect than that produced by epicatechin. In conclusion, our study shows that cocoa flavonoids not only inhibit NO release from macrophages but also down-regulate inflammatory cytokines and chemokines.

  10. Escape of HIV-1-infected dendritic cells from TRAIL-mediated NK cell cytotoxicity during NK-DC cross-talk--a pivotal role of HMGB1.

    Directory of Open Access Journals (Sweden)

    Marie-Thérèse Melki

    2010-04-01

    Full Text Available Early stages of Human Immunodeficiency Virus-1 (HIV-1 infection are associated with local recruitment and activation of important effectors of innate immunity, i.e. natural killer (NK cells and dendritic cells (DCs. Immature DCs (iDCs capture HIV-1 through specific receptors and can disseminate the infection to lymphoid tissues following their migration, which is associated to a maturation process. This process is dependent on NK cells, whose role is to keep in check the quality and the quantity of DCs undergoing maturation. If DC maturation is inappropriate, NK cells will kill them ("editing process" at sites of tissue inflammation, thus optimizing the adaptive immunity. In the context of a viral infection, NK-dependent killing of infected-DCs is a crucial event required for early elimination of infected target cells. Here, we report that NK-mediated editing of iDCs is impaired if DCs are infected with HIV-1. We first addressed the question of the mechanisms involved in iDC editing, and we show that cognate NK-iDC interaction triggers apoptosis via the TNF-related apoptosis-inducing ligand (TRAIL-Death Receptor 4 (DR4 pathway and not via the perforin pathway. Nevertheless, once infected with HIV-1, DC(HIV become resistant to NK-induced TRAIL-mediated apoptosis. This resistance occurs despite normal amounts of TRAIL released by NK cells and comparable DR4 expression on DC(HIV. The escape of DC(HIV from NK killing is due to the upregulation of two anti-apoptotic molecules, the cellular-Flice like inhibitory protein (c-FLIP and the cellular inhibitor of apoptosis 2 (c-IAP2, induced by NK-DC(HIV cognate interaction. High-mobility group box 1 (HMGB1, an alarmin and a key mediator of NK-DC cross-talk, was found to play a pivotal role in NK-dependent upregulation of c-FLIP and c-IAP2 in DC(HIV. Finally, we demonstrate that restoration of DC(HIV susceptibility to NK-induced TRAIL killing can be obtained either by silencing c-FLIP and c-IAP2 by specific

  11. TCR down-regulation controls T cell homeostasis

    DEFF Research Database (Denmark)

    Boding, Lasse; Bonefeld, Charlotte Menné; Nielsen, Bodil L

    2009-01-01

    TCR and cytokine receptor signaling play key roles in the complex homeostatic mechanisms that maintain a relative stable number of T cells throughout life. Despite the homeostatic mechanisms, a slow decline in naive T cells is typically observed with age. The CD3gamma di-leucine-based motif...... controls TCR down-regulation and plays a central role in fine-tuning TCR expression and signaling in T cells. In this study, we show that the age-associated decline of naive T cells is strongly accelerated in CD3gammaLLAA knock-in mice homozygous for a double leucine to alanine mutation in the CD3gamma di......-leucine-based motif, whereas the number of memory T cells is unaffected by the mutation. This results in premature T cell population senescence with a severe dominance of memory T cells and very few naive T cells in middle-aged to old CD3gamma mutant mice. The reduced number of naive T cells in CD3gamma mutant mice...

  12. MicroRNA-129-5p inhibits the development of autoimmune encephalomyelitis-related epilepsy by targeting HMGB1 through the TLR4/NF-kB signaling pathway.

    Science.gov (United States)

    Liu, Ai-Hua; Wu, Ya-Ting; Wang, Yu-Ping

    2017-06-01

    The study aimed to explore the effects of microRNA-129-5p (miR-129-5p) on the development of autoimmune encephalomyelitis (AE)-related epilepsy by targeting HMGB1 through the TLR4/NF-kB signaling pathway in a rat model. AE-related epilepsy models were established. Sprague-Dawley (SD) rats were randomly divided into control, model, miR-129-5p mimics, miR-129-5p inhibitor, HMGB1 shRNA, TLR4/NF-kB (TLR4/NF-kB signaling pathway was inhibited) and miR-129-5p mimics+HMGB1 shRNA groups respectively. Latency to a first epilepsy seizure attack was recorded. Neuronal injuries in the hippocampus regions were detected using HE, Nissl and FJB staining methods 24h following model establishment. Microglial cells were detected by OX-42 immunohistochemistry. Expressions of miR-129-5p, HMGB1 and TLR4/NF-kB signaling pathway-related proteins were detected by qRT-PCR. Protein expressions of HMGB1 and TLR4/NF-kB signaling pathway-related proteins were detected by Western blotting. Dual luciferase reporter gene assay showed that miR-129-5p was negatively targeting HMGB1. Neurons of hippocampal tissues in rats were heavily injured by an injection of lithium chloride. Compared with the model and control groups, neuronal injury of the hippocampus and AE-related epilepsy decreased and microglial cells increased in the miR-129-5p mimics, HMGB1 shRNA and TLR4/NF-kB groups; however, in the miR-129-5p inhibitor group, miR-129-5p expression decreased, HMGB1 expression increased, TLR4/NF-kB signaling pathway was activated, latency to a first epilepsy seizure attack was shortened, and neuronal injury increased. This study provides evidence that miR-129-5p inhibits the development of AE-related epilepsy by suppressing HMGB1 expression and inhibiting TLR4/NF-kB signaling pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Edaravone attenuates hippocampal damage in an infant mouse model of pneumococcal meningitis by reducing HMGB1 and iNOS expression via the Nrf2/HO-1 pathway.

    Science.gov (United States)

    Li, Zheng; Ma, Qian-Qian; Yan, Yan; Xu, Feng-Dan; Zhang, Xiao-Ying; Zhou, Wei-Qin; Feng, Zhi-Chun

    2016-09-01

    Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one) is a free radical scavenger that has shown potent antioxidant, anti-inflammatory and neuroprotective effects in variety of disease models. In this study, we investigated whether edaravone produced neuroprotective actions in an infant mouse model of pneumococcal meningitis. C57BL/6 mice were infected on postnatal d 11 by intracisternal injection of a certain inoculum of Streptococcus pneumoniae. The mice received intracisternal injection of 10 μL of saline containing edaravone (3 mg/kg) once a day for 7 d. The severity of pneumococcal meningitis was assessed with a clinical score. In mice with severe meningitis, the survival rate from the time of infection to d 8 after infection was analyzed using Kaplan-Meier curves. In mice with mild meningitis, the CSF inflammation and cytokine levels in the hippocampus were analyzed d 7 after infection, and the clinical neurological deficit score was evaluated using a neurological scoring system d 14 after infection. The nuclear factor (erythroid-derived 2)-like 2 knockout (Nrf2 KO) mice and heme oxygenase-1 knockout (HO-1 KO) mice were used to confirm the involvement of Nrf2/HO-1 pathway in the neuroprotective actions of edaravone. In mice with severe meningitis, edaravone treatment significantly increased the survival rate (76.4%) compared with the meningitis model group (32.2%). In mice with mild meningitis, edaravone treatment significantly decreased the number of leukocytes and TNF- levels in CSF, as well as the neuronal apoptosis and protein levels of HMGB1 and iNOS in the hippocampus, but did not affect the high levels of IL-10 and IL-6 in the hippocampus. Moreover, edaravone treatment significantly improved the neurological function of mice with mild meningitis. In Nrf2 KO or HO-1 KO mice with the meningitis, edaravone treatment was no longer effective in improving the survival rate of the mice with severe meningitis (20.2% and 53.6%, respectively), nor it affected the

  14. Curcumin ameliorates liver damage and progression of NASH in NASH-HCC mouse model possibly by modulating HMGB1-NF-κB translocation.

    Science.gov (United States)

    Afrin, Rejina; Arumugam, Somasundaram; Rahman, Azizur; Wahed, Mir Imam Ibne; Karuppagounder, Vengadeshprabhu; Harima, Meilei; Suzuki, Hiroshi; Miyashita, Shizuka; Suzuki, Kenji; Yoneyama, Hiroyuki; Ueno, Kazuyuki; Watanabe, Kenichi

    2017-03-01

    Curcumin, a phenolic compound, has a wide spectrum of therapeutic effects such as antitumor, anti-inflammatory, anti-cancer and so on. The study aimed to investigate the underlying mechanisms of curcumin to protect liver damage and progression of non-alcoholic steatohepatitis (NASH) in a novel NASH-hepatocellular carcinoma (HCC) mouse model. To induce this model neonatal C57BL/6J male mice were exposed to low-dose streptozotocin and were fed a high-fat diet (HFD) from the age of 4weeks to 14weeks. Curcumin was given at 100mg/kg dose daily by oral gavage started at the age of 10weeks and continued until 14weeks along with HFD feeding. We found that curcumin improved the histopathological changes of the NASH liver via reducing the level of steatosis, fibrosis associated with decreasing serum aminotransferases. In addition, curcumin treatment markedly reduced the hepatic protein expression of oxidative stress, pro-inflammatory cytokines, and chemokines including interferon (IFN) γ, interleukin-1β and IFNγ-inducible protein 10, in NASH mice. Furthermore, curcumin treatment significantly reduced the cytoplasmic translocation of high mobility group box 1 (HMGB1) and the protein expression of toll like receptor 4. Nuclear translocation of nuclear factor kappa B (NF-κB) was also dramatically attenuated by the curcumin in NASH liver. Curcumin treatment effectively reduced the progression of NASH to HCC by suppressing the protein expression of glypican-3, vascular endothelial growth factor, and prothrombin in the NASH liver. Our data suggest that curcumin reduces the progression of NASH and liver damage, which may act via inhibiting HMGB1-NF-κB translocation. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Oral Administration of N-Acetyl-D Glucosamine Polymer Particles Down-Regulates Airway Allergic Responses

    National Research Council Canada - National Science Library

    Shibata, Yoshimi

    2006-01-01

    ... (IL-12, IL-18 and TNFo) that down-regulate allergic immune responses. We also found that administration of chitin particles resulted in less likely induce the production of IL-10 and prostaglandin E2 (PGE2...

  16. Selective Androgen Receptor Down-Regulators (SARDs): A New Prostate Cancer Therapy

    National Research Council Canada - National Science Library

    Bhattacharyya, Rumi S

    2007-01-01

    The androgen receptor (AR) plays a key role in the development and progression of prostate cancer Targeting the AR for down-regulation would be a useful strategy for treating prostate cancer, especially hormone-refractory...

  17. Mechanisms Down-Regulating Sprouty1, a Growth Inhibitor in Prostate Cancer

    National Research Council Canada - National Science Library

    Kwabi-Addo, Bernard

    2006-01-01

    .... I have demonstrated that Sprouty1 is down-regulated in human prostate cancer (PCa). The purpose of the present study is to characterize the molecular mechanisms regulating Sprouty1 expression in the human PCa. Results...

  18. Correction: Kikuchi, K., et al., Potential of the Angiotensin Receptor Blockers (ARBs Telmisartan, Irbesartan, and Candesartan for Inhibiting the HMGB1/RAGE Axis in Prevention and Acute Treatment of Stroke. Int. J. Mol. Sci. 2013, 14, 18899–18924.

    Directory of Open Access Journals (Sweden)

    Kiyoshi Kikuchi

    2014-03-01

    Full Text Available The original version of the paper [1] reports that “This ACTIVE I study was supported by Pfizer” (Page 18905. However, the sponsors of the ACTIVE I study were actually Bristol-Myers Squibb and Sanofi-Aventis rather than Pfizer.

  19. Down-Regulation of p53 by Double-Stranded RNA Modulates the Antiviral Response

    Science.gov (United States)

    Marques, Joao T.; Rebouillat, Dominique; Ramana, Chilakamarti V.; Murakami, Junko; Hill, Jason E.; Gudkov, Andrei; Silverman, Robert H.; Stark, George R.; Williams, Bryan R. G.

    2005-01-01

    p53 has been well characterized as a tumor suppressor gene, but its role in antiviral defense remains unclear. A recent report has demonstrated that p53 can be induced by interferons and is activated after vesicular stomatitis virus (VSV) infection. We observed that different nononcogenic viruses, including encephalomyocarditis virus (EMCV) and human parainfluenza virus type 3 (HPIV3), induced down-regulation of p53 in infected cells. Double-stranded RNA (dsRNA) and a mutant vaccinia virus lacking the dsRNA binding protein E3L can also induce this effect, indicating that dsRNA formed during viral infection is likely the trigger for down-regulation of p53. The mechanism of down-regulation of p53 by dsRNA relies on translation inhibition mediated by the PKR and RNase L pathways. In the absence of p53, the replication of both EMCV and HPIV3 was retarded, whereas, conversely, VSV replication was enhanced. Cell cycle analysis indicated that wild-type (WT) but not p53 knockout (KO) fibroblasts undergo an early-G1 arrest following dsRNA treatment. Moreover, in WT cells the onset of dsRNA-induced apoptosis begins after p53 levels are down-regulated, whereas p53 KO cells, which lack the early-G1 arrest, rapidly undergo apoptosis. Hence, our data suggest that the down-regulation of p53 facilitates apoptosis, thereby limiting viral replication. PMID:16103161

  20. Lipocalin-2 induces NLRP3 inflammasome activation via HMGB1 induced TLR4 signaling in heart tissue of mice under pressure overload challenge.

    Science.gov (United States)

    Song, Erfei; Jahng, James Ws; Chong, Lisa P; Sung, Hye K; Han, Meng; Luo, Cuiting; Wu, Donghai; Boo, Stellar; Hinz, Boris; Cooper, Matthew A; Robertson, Avril Ab; Berger, Thorsten; Mak, Tak W; George, Isaac; Schulze, P Christian; Wang, Yu; Xu, Aimin; Sweeney, Gary

    2017-01-01

    Lipocalin-2 (also known as NGAL) levels are elevated in obesity and diabetes yet relatively little is known regarding effects on the heart. We induced pressure overload (PO) in mice and found that lipocalin-2 knockout (LKO) mice exhibited less PO-induced autophagy and NLRP3 inflammasome activation than Wt. PO-induced mitochondrial damage was reduced and autophagic flux greater in LKO mice, which correlated with less cardiac dysfunction. All of these observations were negated upon adenoviral-mediated restoration of normal lipocalin-2 levels in LKO. Studies in primary cardiac fibroblasts indicated that lipocalin-2 enhanced priming and activation of NLRP3-inflammasome, detected by increased IL-1β, IL-18 and Caspase-1 activation. This was attenuated in cells isolated from NLRP3-deficient mice or upon pharmacological inhibition of NLRP3. Furthermore, lipocalin-2 induced release of HMGB1 from cells and NLRP3-inflammasome activation was attenuated by TLR4 inhibition. We also found evidence of increased inflammasome activation and reduced autophagy in cardiac biopsy samples from heart failure patients. Overall, this study provides new mechanistic insight on the detrimental role of lipocalin-2 in the development of cardiac dysfunction.

  1. Ethyl pyruvate ameliorates hepatic injury following blunt chest trauma and hemorrhagic shock by reducing local inflammation, NF-kappaB activation and HMGB1 release.

    Science.gov (United States)

    Wagner, Nils; Dieteren, Scott; Franz, Niklas; Köhler, Kernt; Mörs, Katharina; Nicin, Luka; Schmidt, Julia; Perl, Mario; Marzi, Ingo; Relja, Borna

    2018-01-01

    The treatment of patients with multiple trauma including blunt chest/thoracic trauma (TxT) and hemorrhagic shock (H) is still challenging. Numerous studies show detrimental consequences of TxT and HS resulting in strong inflammatory changes, organ injury and mortality. Additionally, the reperfusion (R) phase plays a key role in triggering inflammation and worsening outcome. Ethyl pyruvate (EP), a stable lipophilic ester, has anti-inflammatory properties. Here, the influence of EP on the inflammatory reaction and liver injury in a double hit model of TxT and H/R in rats was explored. Female Lewis rats were subjected to TxT followed by hemorrhage/H (60 min, 35±3 mm Hg) and resuscitation/R (TxT+H/R). Reperfusion was performed by either Ringer`s lactated solution (RL) alone or RL supplemented with EP (50 mg/kg). Sham animals underwent all surgical procedures without TxT+H/R. After 2h, blood and liver tissue were collected for analyses, and survival was assessed after 24h. Resuscitation with EP significantly improved haemoglobin levels and base excess recovery compared with controls after TxT+H/R, respectively (ptrauma and hemorrhagic shock is associated with NF-κB. In particular, the beneficial anti-inflammatory effects of ethyl pyruvate seem to be regulated by the HMGB1/NF-κB axis in the liver, thereby, restraining inflammatory responses and liver injury after double hit trauma in the rat.

  2. Structural Characterization of Lignin in Wild-Type versus COMT Down-Regulated Switchgrass

    Energy Technology Data Exchange (ETDEWEB)

    Samuel, Reichel [School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA (United States); BioEnergy Science Center, Oak Ridge, TN (United States); Pu, Yunqiao, E-mail: yunqiao.pu@ipst.gatech.edu [BioEnergy Science Center, Oak Ridge, TN (United States); Institute of Paper Science and Technology, Georgia Institute of Technology, Atlanta, GA (United States); Jiang, Nan [School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA (United States); BioEnergy Science Center, Oak Ridge, TN (United States); Fu, Chunxiang [Forage Improvement Division, The Samuel Roberts Noble Foundation, Ardmore, OK (United States); Wang, Zeng-Yu [BioEnergy Science Center, Oak Ridge, TN (United States); Forage Improvement Division, The Samuel Roberts Noble Foundation, Ardmore, OK (United States); Ragauskas, Arthur, E-mail: yunqiao.pu@ipst.gatech.edu [School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA (United States); BioEnergy Science Center, Oak Ridge, TN (United States)

    2014-01-20

    This study examined the chemical structural characteristics of cellulolytic enzyme lignin isolated from switchgrass focusing on comparisons between wild-type control and caffeic acid 3-O-methyltransferase (COMT) down-regulated transgenic line. Nuclear magnetic resonance techniques including {sup 13}C, {sup 31}P, and two-dimensional {sup 13}C-{sup 1}H heteronuclear single quantum coherence as well as gel permeation chromatography were employed. Compared to the wild-type, the COMT down-regulated transgenic switchgrass lignin demonstrated a decrease in syringyl (S):guaiacyl (G) ratio and p-coumarate:ferulate ratio, an increase in relative abundance of phenylcoumaran unit, and a comparable content of total free phenolic OH groups along with formation of benzodioxane unit. In addition, COMT down-regulation had no significant effects on the lignin molecular weights during its biosynthesis process.

  3. Paroxetine prevented the down-regulation of astrocytic L-Glu transporters in neuroinflammation

    Directory of Open Access Journals (Sweden)

    Koki Fujimori

    2015-01-01

    Full Text Available The extracellular L-glutamate (L-Glu concentration is elevated in neuroinflammation, thereby causing excitotoxicity. One of the mechanisms is down-regulation of astrocyte L-Glu transporters. Some antidepressants have anti-inflammatory effects. We therefore investigated effects of various antidepressants on the down-regulation of astrocyte L-Glu transporters in the in vitro neuroinflammation model. Among these antidepressants, only paroxetine was effective. We previously demonstrated that the down-regulation of astrocyte L-Glu transporters was caused by L-Glu released from activated microglia. We here clarified that only paroxetine inhibited L-Glu release from microglia. This is the novel action of paroxetine, which may bring advantages on the therapy of neuroinflammation.

  4. The receptor RAGE: Bridging inflammation and cancer

    Directory of Open Access Journals (Sweden)

    Hess Jochen

    2009-05-01

    Full Text Available Abstract The receptor for advanced glycation end products (RAGE is a single transmembrane receptor of the immunoglobulin superfamily that is mainly expressed on immune cells, neurons, activated endothelial and vascular smooth muscle cells, bone forming cells, and a variety of cancer cells. RAGE is a multifunctional receptor that binds a broad repertoire of ligands and mediates responses to cell damage and stress conditions. It activates programs responsible for acute and chronic inflammation, and is implicated in a number of pathological diseases, including diabetic complications, stroke, atheriosclerosis, arthritis, and neurodegenerative disorders. The availability of Rage knockout mice has not only advanced our knowledge on signalling pathways within these pathophysiological conditions, but also on the functional importance of the receptor in processes of cancer. Here, we will summarize molecular mechanisms through which RAGE signalling contributes to the establishment of a pro-tumourigenic microenvironment. Moreover, we will review recent findings that provide genetic evidence for an important role of RAGE in bridging inflammation and cancer.

  5. RAGE, receptor of advanced glycation endoproducts, negatively regulates chondrocytes differentiation.

    Directory of Open Access Journals (Sweden)

    Tatsuya Kosaka

    Full Text Available RAGE, receptor for advanced glycation endoproducts (AGE, has been characterized as an activator of osteoclastgenesis. However, whether RAGE directly regulates chondrocyte proliferation and differentiation is unclear. Here, we show that RAGE has an inhibitory role in chondrocyte differentiation. RAGE expression was observed in chondrocytes from the prehypertrophic to hypertrophic regions. In cultured cells, overexpression of RAGE or dominant-negative-RAGE (DN-RAGE demonstrated that RAGE inhibited cartilaginous matrix production, while DN-RAGE promoted production. Additionally, RAGE regulated Ihh and Col10a1 negatively but upregulated PTHrP receptor. Ihh promoter analysis and real-time PCR analysis suggested that downregulation of Cdxs was the key for RAGE-induced inhibition of chondrocyte differentiation. Overexpression of the NF-κB inhibitor I-κB-SR inhibited RAGE-induced NF-κB activation, but did not influence inhibition of cartilaginous matrix production by RAGE. The inhibitory action of RAGE was restored by the Rho family GTPases inhibitor Toxin B. Furthermore, inhibitory action on Ihh, Col10a1 and Cdxs was reproduced by constitutively active forms, L63RhoA, L61Rac, and L61Cdc42, but not by I-κB-SR. Cdx1 induced Ihh and Col10a1 expressions and directly interacted with Ihh promoter. Retinoic acid (RA partially rescued the inhibitory action of RAGE. These data combined suggests that RAGE negatively regulates chondrocyte differentiation at the prehypertrophic stage by modulating NF-κB-independent and Rho family GTPases-dependent mechanisms.

  6. Rapid male-specific regulatory divergence and down regulation of spermatogenesis genes in Drosophila species hybrids.

    Directory of Open Access Journals (Sweden)

    Jennifer Ferguson

    Full Text Available In most crosses between closely related species of Drosophila, the male hybrids are sterile and show postmeiotic abnormalities. A series of gene expression studies using genomic approaches have found significant down regulation of postmeiotic spermatogenesis genes in sterile male hybrids. These results have led some to suggest a direct relationship between down regulation in gene expression and hybrid sterility. An alternative explanation to a cause-and-effect relationship between misregulation of gene expression and male sterility is rapid divergence of male sex regulatory elements leading to incompatible interactions in an interspecies hybrid genome. To test the effect of regulatory divergence in spermatogenesis gene expression, we isolated 35 fertile D. simulans strains with D. mauritiana introgressions in either the X, second or third chromosome. We analyzed gene expression in these fertile hybrid strains for a subset of spermatogenesis genes previously reported as significantly under expressed in sterile hybrids relative to D. simulans. We found that fertile autosomal introgressions can cause levels of gene down regulation similar to that of sterile hybrids. We also found that X chromosome heterospecific introgressions cause significantly less gene down regulation than autosomal introgressions. Our results provide evidence that rapid male sex gene regulatory divergence can explain misexpression of spermatogenesis genes in hybrids.

  7. MiR-128b is down-regulated in gastric cancer and negatively ...

    Indian Academy of Sciences (India)

    2016-02-04

    Feb 4, 2016 ... found that miR-128b expression was down-regulated in tissues from 18 GC patients and 3 carcinoma cell lines. ... study reported that miRNA-128 promoted cell proliferation ... ed with 10% fetal bovine serum (Hyclone, Logan,.

  8. TCR down-regulation controls virus-specific CD8+ T cell responses

    DEFF Research Database (Denmark)

    Bonefeld, Charlotte Menné; Haks, Mariëlle; Nielsen, Bodil

    2008-01-01

    in mice with a mutated CD3gamma di-leucine-based motif. The CD3gamma mutation did not impair early TCR signaling, nor did it compromise recruitment or proliferation of virus-specific T cells, but it increased the apoptosis rate of the activated T cells by increasing down-regulation of the antiapoptotic...

  9. Mast cell chymase degrades the alarmins heat shock protein 70, biglycan, HMGB1, and interleukin-33 (IL-33) and limits danger-induced inflammation.

    Science.gov (United States)

    Roy, Ananya; Ganesh, Goutham; Sippola, Helena; Bolin, Sara; Sawesi, Osama; Dagälv, Anders; Schlenner, Susan M; Feyerabend, Thorsten; Rodewald, Hans-Reimer; Kjellén, Lena; Hellman, Lars; Åbrink, Magnus

    2014-01-03

    During infection and tissue damage, virulence factors and alarmins are pro-inflammatory and induce activation of various immune cells including macrophages and mast cells (MCs). Activated MCs instantly release preformed inflammatory mediators, including several proteases. The chymase mouse mast cell protease (MCPT)-4 is thought to be pro-inflammatory, whereas human chymase also degrades pro-inflammatory cytokines, suggesting that chymase instead limits inflammation. Here we explored the contribution of MCPT4 and human chymase to the control of danger-induced inflammation. We found that protein extracts from wild type (WT), carboxypeptidase A3-, and MCPT6-deficient mice and MCs and recombinant human chymase efficiently degrade the Trichinella spiralis virulence factor heat shock protein 70 (Hsp70) as well as endogenous Hsp70. MC-(W(sash))-, serglycin-, NDST2-, and MCPT4-deficient extracts lacked this capacity, indicating that chymase is responsible for the degradation. Chymase, but not MC tryptase, also degraded other alarmins, i.e. biglycan, HMGB1, and IL-33, a degradation that was efficiently blocked by the chymase inhibitor chymostatin. IL-7, IL-22, GM-CSF, and CCL2 were resistant to chymase degradation. MCPT4-deficient conditions ex vivo and in vivo showed no reduction in added Hsp70 and only minor reduction of IL-33. Peritoneal challenge with Hsp70 resulted in increased neutrophil recruitment and TNF-α levels in the MCPT4-deficient mice, whereas IL-6 and CCL2 levels were similar to the levels found in WT mice. The rapid and MC chymase-specific degradation of virulence factors and alarmins may depend on the presence of accessible extended recognition cleavage sites in target substrates and suggests a protective and regulatory role of MC chymase during danger-induced inflammation.

  10. Mast Cell Chymase Degrades the Alarmins Heat Shock Protein 70, Biglycan, HMGB1, and Interleukin-33 (IL-33) and Limits Danger-induced Inflammation*

    Science.gov (United States)

    Roy, Ananya; Ganesh, Goutham; Sippola, Helena; Bolin, Sara; Sawesi, Osama; Dagälv, Anders; Schlenner, Susan M.; Feyerabend, Thorsten; Rodewald, Hans-Reimer; Kjellén, Lena; Hellman, Lars; Åbrink, Magnus

    2014-01-01

    During infection and tissue damage, virulence factors and alarmins are pro-inflammatory and induce activation of various immune cells including macrophages and mast cells (MCs). Activated MCs instantly release preformed inflammatory mediators, including several proteases. The chymase mouse mast cell protease (MCPT)-4 is thought to be pro-inflammatory, whereas human chymase also degrades pro-inflammatory cytokines, suggesting that chymase instead limits inflammation. Here we explored the contribution of MCPT4 and human chymase to the control of danger-induced inflammation. We found that protein extracts from wild type (WT), carboxypeptidase A3-, and MCPT6-deficient mice and MCs and recombinant human chymase efficiently degrade the Trichinella spiralis virulence factor heat shock protein 70 (Hsp70) as well as endogenous Hsp70. MC-(Wsash)-, serglycin-, NDST2-, and MCPT4-deficient extracts lacked this capacity, indicating that chymase is responsible for the degradation. Chymase, but not MC tryptase, also degraded other alarmins, i.e. biglycan, HMGB1, and IL-33, a degradation that was efficiently blocked by the chymase inhibitor chymostatin. IL-7, IL-22, GM-CSF, and CCL2 were resistant to chymase degradation. MCPT4-deficient conditions ex vivo and in vivo showed no reduction in added Hsp70 and only minor reduction of IL-33. Peritoneal challenge with Hsp70 resulted in increased neutrophil recruitment and TNF-α levels in the MCPT4-deficient mice, whereas IL-6 and CCL2 levels were similar to the levels found in WT mice. The rapid and MC chymase-specific degradation of virulence factors and alarmins may depend on the presence of accessible extended recognition cleavage sites in target substrates and suggests a protective and regulatory role of MC chymase during danger-induced inflammation. PMID:24257755

  11. "Uproar, bulk, rage, suffocation, effort unceasing, frenzied and vain": Beckett's Transports of Rage.

    Science.gov (United States)

    Smith, Russell

    2016-06-01

    In a 1961 interview, Beckett warded off philosophical interpretations of his work: 'I'm no intellectual. All I am is feeling'. Despite the emotional intensity of Beckett's post-war writing, Beckett criticism has tended to ignore this claim, preferring the kinds of philosophical readings that Beckett here rejects. In particular, Beckett criticism underestimates the element of rage in his work. This paper argues that Beckett's post-war breakthrough is enabled by a radical reconsideration of the nature of feeling and of rage in particular. It involves the rejection of the idea of rage as pathological and the embrace of a positive conception of rage as drive or compulsion, a locus of energy and even pleasure.This paper reads the 'Moran' section of Molloy as a kind of 'rage fable', drawing on the ancient Greek concept of thymos, of anger as a virtue. It draws on Alfred Adler's theory of the 'masculine protest', with which Beckett was familiar from his extensive note-taking on Adler in 1934-5, and Sianne Ngai's discussion of the distinction between irritation and rage. According to this reading, Moran's report charts a narrative of thymotic liberation from the irritations of servitude, prefiguring the Unnamable's abandonment to impersonal affective intensities. It ends by suggesting that the prose of the Trilogy might be better understood, not as a 'syntax of weakness' but as a 'syntax of rage', a stylistic correlative of the imperious drive of thymos. We might then begin to understand the Trilogy as the epic of a heroic, impersonal, implacable and liberated rage.

  12. xRage Equation of State

    Energy Technology Data Exchange (ETDEWEB)

    Grove, John W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-16

    The xRage code supports a variety of hydrodynamic equation of state (EOS) models. In practice these are generally accessed in the executing code via a pressure-temperature based table look up. This document will describe the various models supported by these codes and provide details on the algorithms used to evaluate the equation of state.

  13. Women's experience of rage: a critical feminist analysis.

    Science.gov (United States)

    Flemke, Kimberly; Allen, Katherine R

    2008-01-01

    We conducted in-depth interviews with 37 incarcerated women on their experience of rage towards their intimate partner. Participants used specific criteria to distinguish their experience of rage from anger. Rage is described as an overwhelming experience with particular physiological and cognitive changes that takes control of a woman's emotions and actions. In contrast, anger is described as a controllable emotion with a specific termination point. Motivations for acting violently in rage with an intimate partner are described and discussed. Findings suggest a primary trigger for experiencing rage is feeling threatened and feeling emotionally overwhelmed.

  14. Down-regulation of lipoprotein lipase increases glucose uptake in L6 muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Veronica; Saraff, Kumuda [Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA 91330-8262 (United States); Medh, Jheem D., E-mail: jheem.medh@csun.edu [Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA 91330-8262 (United States)

    2009-11-06

    Thiazolidinediones (TZDs) are synthetic hypoglycemic agents used to treat type 2 diabetes. TZDs target the peroxisome proliferator activated receptor-gamma (PPAR-{gamma}) and improve systemic insulin sensitivity. The contributions of specific tissues to TZD action, or the downstream effects of PPAR-{gamma} activation, are not very clear. We have used a rat skeletal muscle cell line (L6 cells) to demonstrate that TZDs directly target PPAR-{gamma} in muscle cells. TZD treatment resulted in a significant repression of lipoprotein lipase (LPL) expression in L6 cells. This repression correlated with an increase in glucose uptake. Down-regulation of LPL message and protein levels using siRNA resulted in a similar increase in insulin-dependent glucose uptake. Thus, LPL down-regulation improved insulin sensitivity independent of TZDs. This finding provides a novel method for the management of insulin resistance.

  15. Optimal experimental design in an epidermal growth factor receptor signalling and down-regulation model.

    Science.gov (United States)

    Casey, F P; Baird, D; Feng, Q; Gutenkunst, R N; Waterfall, J J; Myers, C R; Brown, K S; Cerione, R A; Sethna, J P

    2007-05-01

    We apply the methods of optimal experimental design to a differential equation model for epidermal growth factor receptor signalling, trafficking and down-regulation. The model incorporates the role of a recently discovered protein complex made up of the E3 ubiquitin ligase, Cbl, the guanine exchange factor (GEF), Cool-1 (beta -Pix) and the Rho family G protein Cdc42. The complex has been suggested to be important in disrupting receptor down-regulation. We demonstrate that the model interactions can accurately reproduce the experimental observations, that they can be used to make predictions with accompanying uncertainties, and that we can apply ideas of optimal experimental design to suggest new experiments that reduce the uncertainty on unmeasurable components of the system.

  16. SAMHD1 is down regulated in lung cancer by methylation and inhibits tumor cell proliferation

    International Nuclear Information System (INIS)

    Wang, Jia-lei; Lu, Fan-zhen; Shen, Xiao-Yong; Wu, Yun; Zhao, Li-ting

    2014-01-01

    Highlights: • SAMHD1 expression level is down regulated in lung adenocarcinoma. • The promoter of SAMHD1 is methylated in lung adenocarcinoma. • Over expression of SAMHD1 inhibits the proliferation of lung cancer cells. - Abstract: The function of dNTP hydrolase SAMHD1 as a viral restriction factor to inhibit the replication of several viruses in human immune cells was well established. However, its regulation and function in lung cancer have been elusive. Here, we report that SAMHD1 is down regulated both on protein and mRNA levels in lung adenocarcinoma compared to adjacent normal tissue. We also found that SAMHD1 promoter is highly methylated in lung adenocarcinoma, which may inhibit its gene expression. Furthermore, over expression of the SAMHD1 reduces dNTP level and inhibits the proliferation of lung tumor cells. These results reveal the regulation and function of SAMHD1 in lung cancer, which is important for the proliferation of lung tumor cells

  17. Down-Regulation of p53 by Double-Stranded RNA Modulates the Antiviral Response

    OpenAIRE

    Marques, Joao T.; Rebouillat, Dominique; Ramana, Chilakamarti V.; Murakami, Junko; Hill, Jason E.; Gudkov, Andrei; Silverman, Robert H.; Stark, George R.; Williams, Bryan R. G.

    2005-01-01

    p53 has been well characterized as a tumor suppressor gene, but its role in antiviral defense remains unclear. A recent report has demonstrated that p53 can be induced by interferons and is activated after vesicular stomatitis virus (VSV) infection. We observed that different nononcogenic viruses, including encephalomyocarditis virus (EMCV) and human parainfluenza virus type 3 (HPIV3), induced down-regulation of p53 in infected cells. Double-stranded RNA (dsRNA) and a mutant vaccinia virus la...

  18. Leucine zipper, down regulated in cancer-1 gene expression in prostate cancer

    OpenAIRE

    Salemi, Michele; Barone, Nunziata; La Vignera, Sandro; Condorelli, Rosita A.; Recupero, Domenico; Galia, Antonio; Fraggetta, Filippo; Aiello, Anna Maria; Pepe, Pietro; Castiglione, Roberto; Vicari, Enzo; Calogero, Aldo E.

    2016-01-01

    Numerous genetic alterations have been implicated in the development of prostate cancer (PCa). DNA and protein microarrays have enabled the identification of genes associated with apoptosis, which is important in PCa development. Despite the molecular mechanisms are not entirely understood, inhibition of apoptosis is a critical pathophysiological factor that contributes to the onset and progression of PCa. Leucine zipper, down-regulated in cancer 1 (LDOC-1) is a known regulator of the nuclear...

  19. Photosynthesis down-regulation precedes carbohydrate accumulation under sink limitation in Citrus.

    Science.gov (United States)

    Nebauer, Sergio G; Renau-Morata, Begoña; Guardiola, José Luis; Molina, Rosa-Victoria

    2011-02-01

    Photosynthesis down-regulation due to an imbalance between sources and sinks in Citrus leaves could be mediated by excessive accumulation of carbohydrates. However, there is limited understanding of the physiological role of soluble and insoluble carbohydrates in photosynthesis regulation and the elements triggering the down-regulation process. In this work, the role of non-structural carbohydrates in the regulation of photosynthesis under a broad spectrum of source-sink relationships has been investigated in the Salustiana sweet orange. Soluble sugar and starch accumulation in leaves, induced by girdling experiments, did not induce down-regulation of the photosynthetic rate in the presence of sinks (fruits). The leaf-to-fruit ratio did not modulate photosynthesis but allocation of photoassimilates to the fruits. The lack of strong sink activity led to a decrease in the photosynthetic rate and starch accumulation in leaves. However, photosynthesis down-regulation due to an excess of total soluble sugars or starch was discarded because photosynthesis and stomatal conductance reduction occurred prior to any significant accumulation of these carbohydrates. Gas exchange and fluorescence parameters suggested biochemical limitations to photosynthesis. In addition, the expression of carbon metabolism-related genes was altered within 24 h when strong sinks were removed. Sucrose synthesis and export genes were inhibited, whereas the expression of ADP-glucose pyrophosphorylase was increased to cope with the excess of assimilates. In conclusion, changes in starch and soluble sugar turnover, but not sugar content per se, could provide the signal for photosynthesis regulation. In these conditions, non-stomatal limitations strongly inhibited the photosynthetic rate prior to any significant increase in carbohydrate levels.

  20. Agonist-induced down-regulation of endogenous protein kinase c α through an endolysosomal mechanism.

    Science.gov (United States)

    Lum, Michelle A; Pundt, Krista E; Paluch, Benjamin E; Black, Adrian R; Black, Jennifer D

    2013-05-03

    Protein kinase C (PKC) isozymes undergo down-regulation upon sustained stimulation. Previous studies have pointed to the existence of both proteasome-dependent and -independent pathways of PKCα processing. Here we demonstrate that these down-regulation pathways are engaged in different subcellular compartments; proteasomal degradation occurs mainly at the plasma membrane, whereas non-proteasomal processing occurs in the perinuclear region. Using cholesterol depletion, pharmacological inhibitors, RNA interference, and dominant-negative mutants, we define the mechanisms involved in perinuclear accumulation of PKCα and identify the non-proteasomal mechanism mediating its degradation. We show that intracellular accumulation of PKCα involves at least two clathrin-independent, cholesterol/lipid raft-mediated pathways that do not require ubiquitination of the protein; one is dynamin-dependent and likely involves caveolae, whereas the other is dynamin- and small GTPase-independent. Internalized PKCα traffics through endosomes and is delivered to the lysosome for degradation. Supportive evidence includes (a) detection of the enzyme in EEA1-positive early endosomes, Rab7-positive late endosomes/multivesicular bodies, and LAMP1-positive lysosomes and (b) inhibition of its down-regulation by lysosome-disrupting agents and leupeptin. Only limited dephosphorylation of PKCα occurs during trafficking, with fully mature enzyme being the main target for lysosomal degradation. These studies define a novel and widespread mechanism of desensitization of PKCα signaling that involves endocytic trafficking and lysosome-mediated degradation of the mature, fully phosphorylated protein.

  1. Down-regulation of rat kidney calcitonin receptors by salmon calcitonin infusion evidence by autoradiography

    International Nuclear Information System (INIS)

    Bouizar, Z.; Rostene, W.H.; Milhaud, G.

    1987-01-01

    In treating age-related osteoporosis and Paget disease of bone, it is of major importance to avoid an escape phenomenon that would reduce effectiveness of the treatment. The factors involved in the loss of therapeutic efficacy with administration of large pharmacological doses of the hormone require special consideration. Down-regulation of the hormone receptors could account for the escape phenomenon. Specific binding sites for salmon calcitonin (sCT) were characterized and localized by autoradiography on rat kidney sections incubated with 125 I-labeled sCT. Autoradiograms demonstrated a heterogeneous distribution of 125 I-labeled sCT binding sites in the kidney, with high densities in both the superficial layer of the cortex and the outer medulla. Infusion of different doses of unlabeled sCT by means of Alzet minipumps for 7 days produced rapid changes in plasma calcium, phosphate, and magnesium levels, which were no longer observed after 2 or 6 days of treatment. Besides, infusion of high doses of sCT induced down-regulation of renal sCT binding sites located mainly in the medulla, where calcitonin (CT) has been shown to exert it physiological effects on water and ion reabsorption. These data suggest that the resistance to high doses of sCT often observed during long-term treatment of patients may be the consequence of not only bone-cell desensitization but also down-regulation of CT-sensitive kidney receptor sites

  2. TCR Down-Regulation Controls Virus-Specific CD8+ T Cell Responses

    DEFF Research Database (Denmark)

    Bonefeld, Charlotte Menné; Haks, Mariëlle; Nielsen, Bodil

    2008-01-01

    The CD3gamma di-leucine-based motif plays a central role in TCR down-regulation. However, little is understood about the role of the CD3gamma di-leucine-based motif in physiological T cell responses. In this study, we show that the expansion in numbers of virus-specific CD8(+) T cells is impaired...... in mice with a mutated CD3gamma di-leucine-based motif. The CD3gamma mutation did not impair early TCR signaling, nor did it compromise recruitment or proliferation of virus-specific T cells, but it increased the apoptosis rate of the activated T cells by increasing down-regulation of the antiapoptotic...... molecule Bcl-2. This resulted in a 2-fold reduction in the clonal expansion of virus-specific CD8(+) T cells during the acute phase of vesicular stomatitis virus and lymphocytic choriomeningitis virus infections. These results identify an important role of CD3gamma-mediated TCR down-regulation in virus...

  3. Red Xylem and Higher Lignin Extractability by Down-Regulating a Cinnamyl Alcohol Dehydrogenase in Poplar.

    Science.gov (United States)

    Baucher, M.; Chabbert, B.; Pilate, G.; Van Doorsselaere, J.; Tollier, M. T.; Petit-Conil, M.; Cornu, D.; Monties, B.; Van Montagu, M.; Inze, D.; Jouanin, L.; Boerjan, W.

    1996-12-01

    Cinnamyl alcohol dehydrogenase (CAD) catalyzes the last step in the biosynthesis of the lignin precursors, the monolignols. We have down-regulated CAD in transgenic poplar (Populus tremula X Populus alba) by both antisense and co-suppression strategies. Several antisense and sense CAD transgenic poplars had an approximately 70% reduced CAD activity that was associated with a red coloration of the xylem tissue. Neither the lignin amount nor the lignin monomeric composition (syringyl/guaiacyl) were significantly modified. However, phloroglucinol-HCl staining was different in the down-regulated CAD plants, suggesting changes in the number of aldehyde units in the lignin. Furthermore, the reactivity of the cell wall toward alkali treatment was altered: a lower amount of lignin was found in the insoluble, saponified residue and more lignin could be precipitated from the soluble alkali fraction. Moreover, large amounts of phenolic compounds, vanillin and especially syringaldehyde, were detected in the soluble alkali fraction of the CAD down-regulated poplars. Alkaline pulping experiments on 3-month-old trees showed a reduction of the kappa number without affecting the degree of cellulose degradation. These results indicate that reducing the CAD activity in trees might be a valuable strategy to optimize certain processes of the wood industry, especially those of the pulp and paper industry.

  4. Pu-erh Tea Inhibits Tumor Cell Growth by Down-Regulating Mutant p53

    Science.gov (United States)

    Zhao, Lanjun; Jia, Shuting; Tang, Wenru; Sheng, Jun; Luo, Ying

    2011-01-01

    Pu-erh tea is a kind of fermented tea with the incorporation of microorganisms’ metabolites. Unlike green tea, the chemical characteristics and bioactivities of Pu-erh tea are still not well understood. Using water extracts of Pu-erh tea, we analyzed the tumor cell growth inhibition activities on several genetically engineered mouse tumor cell lines. We found that at the concentration that did not affect wild type mouse embryo fibroblasts (MEFs) growth, Pu-erh tea extracts could inhibit tumor cell growth by down-regulated S phase and cause G1 or G2 arrest. Further study showed that Pu-erh tea extracts down-regulated the expression of mutant p53 in tumor cells at the protein level as well as mRNA level. The same concentration of Pu-erh tea solution did not cause p53 stabilization or activation of its downstream pathways in wild type cells. We also found that Pu-erh tea treatment could slightly down-regulate both HSP70 and HSP90 protein levels in tumor cells. These data revealed the action of Pu-erh tea on tumor cells and provided the possible mechanism for Pu-erh tea action, which explained its selectivity in inhibiting tumor cells without affecting wild type cells. Our data sheds light on the application of Pu-erh tea as an anti-tumor agent with low side effects. PMID:22174618

  5. Down-regulation of Wnt10a affects odontogenesis and proliferation in mesenchymal cells

    International Nuclear Information System (INIS)

    Liu, Yang; Han, Dong; Wang, Lei; Feng, Hailan

    2013-01-01

    Highlights: •Down-regulation of Wnt10a in dental mesenchymal cells impairs odontogenesis of reassociated tooth germs. •Dspp is down- and up-regulated after Wnt10a-knockdown and overexpression in dental mesenchymal cells. •Down-regulation of Wnt10a inhibits proliferation of dental mesenchymal cells. -- Abstract: The WNT10a mutation has been found in patients with abnormal odontogenesis. In mice, Wnt10a expression is found in the tooth germ, but its role has not yet been elucidated. We aimed to investigate the role of Wnt10a in odontogenesis. Mesenchymal cells of the first mandibular molar germ at the bell stage were isolated, transfected with Wnt10a SiRNA or plasmid, and reassociated with epithelial part of the molar germ. Scrambled SiRNA or empty vector was used in the control group. The reassociated tooth germs were transplanted into mice subrenal capsules. After gene modification, dental mesenchymal cells cultured in vitro were checked for cell proliferation and the expression of Dspp was examined. All 12 reassociated tooth germs in the control group resumed odontogenesis, while only 5 of 12 in the Wnt10a knockdown group developed into teeth. After Wnt10a knockdown, the mesenchymal cells cultured in vitro presented repressed proliferation. Wnt10a knockdown and overexpression led to both down- and up-regulation of Dspp. We conclude that the down-regulation of Wnt10a impairs odontogensis and cell proliferation, and that Wnt10a regulates Dspp expression in mesenchymal cells. These findings help to elucidate the mechanism of abnormal tooth development in patients with the WNT10A mutation

  6. Rapamycin up-regulates triglycerides in hepatocytes by down-regulating Prox1.

    Science.gov (United States)

    Kwon, Sora; Jeon, Ji-Sook; Kim, Su Bin; Hong, Young-Kwon; Ahn, Curie; Sung, Jung-Suk; Choi, Inho

    2016-02-27

    Although the prolonged use of rapamycin may cause unwanted side effects such as hyperlipidemia, the underlying mechanism remains unknown. Prox1 is a transcription factor responsible for the development of several tissues including lymphatics and liver. There is growing evidences that Prox1 participates in metabolism in addition to embryogenesis. However, whether Prox1 is directly related to lipid metabolism is currently unknown. HepG2 human hepatoma cells were treated with rapamycin and total lipids were analyzed by thin layer chromatography. The effect of rapamycin on the expression of Prox1 was determined by western blotting. To investigate the role of Prox1 in triglycerides regulation, siRNA and overexpression system were employed. Rapamycin was injected into mice for 2 weeks and total lipids and proteins in liver were measured by thin layer chromatography and western blot analysis, respectively. Rapamycin up-regulated the amount of triglyceride and down-regulated the expression of Prox1 in HepG2 cells by reducing protein half-life but did not affect its transcript. The loss-of-function of Prox1 was coincident with the increase of triglycerides in HepG2 cells treated with rapamycin. The up-regulation of triglycerides by rapamycin in HepG2 cells reverted to normal levels by the compensation of Prox1 using the overexpression system. Rapamycin also down-regulated Prox1 expression but increased triglycerides in mouse liver. This study suggests that rapamycin can increase the amount of triglycerides by down-regulating Prox1 expression in hepatocytes, which means that the mammalian target of rapamycin (mTOR) signaling is important for the regulation of triglycerides by maintaining Prox1 expression.

  7. Frequent down-regulation of ABC transporter genes in prostate cancer

    International Nuclear Information System (INIS)

    Demidenko, Rita; Razanauskas, Deividas; Daniunaite, Kristina; Lazutka, Juozas Rimantas; Jankevicius, Feliksas; Jarmalaite, Sonata

    2015-01-01

    ATP-binding cassette (ABC) transporters are transmembrane proteins responsible for the efflux of a wide variety of substrates, including steroid metabolites, through the cellular membranes. For better characterization of the role of ABC transporters in prostate cancer (PCa) development, the profile of ABC transporter gene expression was analyzed in PCa and noncancerous prostate tissues (NPT). TaqMan Low Density Array (TLDA) human ABC transporter plates were used for the gene expression profiling in 10 PCa and 6 NPT specimens. ABCB1 transcript level was evaluated in a larger set of PCa cases (N = 78) and NPT (N = 15) by real-time PCR, the same PCa cases were assessed for the gene promoter hypermethylation by methylation-specific PCR. Expression of eight ABC transporter genes (ABCA8, ABCB1, ABCC6, ABCC9, ABCC10, ABCD2, ABCG2, and ABCG4) was significantly down-regulated in PCa as compared to NPT, and only two genes (ABCC4 and ABCG1) were up-regulated. Down-regulation of ABC transporter genes was prevalent in the TMPRSS2-ERG-negative cases. A detailed analysis of ABCB1 expression confirmed TLDA results: a reduced level of the transcript was identified in PCa in comparison to NPT (p = 0.048). Moreover, the TMPRSS2-ERG-negative PCa cases showed significantly lower expression of ABCB1 in comparison to NPT (p = 0.003) or the fusion-positive tumors (p = 0.002). Promoter methylation of ABCB1 predominantly occurred in PCa and was rarely detected in NPT (p < 0.001). The study suggests frequent down-regulation of the ABC transporter genes in PCa, especially in the TMPRSS2-ERG-negative tumors. The online version of this article (doi:10.1186/s12885-015-1689-8) contains supplementary material, which is available to authorized users

  8. Curcumin and emodin down-regulate TGF-β signaling pathway in human cervical cancer cells.

    Directory of Open Access Journals (Sweden)

    Pooja Chandrakant Thacker

    Full Text Available Cervical cancer is the major cause of cancer related deaths in women, especially in developing countries and Human Papilloma Virus infection in conjunction with multiple deregulated signaling pathways leads to cervical carcinogenesis. TGF-β signaling in later stages of cancer is known to induce epithelial to mesenchymal transition promoting tumor growth. Phytochemicals, curcumin and emodin, are effective as chemopreventive and chemotherapeutic compounds against several cancers including cervical cancer. The main objective of this work was to study the effect of curcumin and emodin on TGF-β signaling pathway and its functional relevance to growth, migration and invasion in two cervical cancer cell lines, SiHa and HeLa. Since TGF-β and Wnt/β-catenin signaling pathways are known to cross talk having common downstream targets, we analyzed the effect of TGF-β on β-catenin (an important player in Wnt/β-catenin signaling and also studied whether curcumin and emodin modulate them. We observed that curcumin and emodin effectively down regulate TGF-β signaling pathway by decreasing the expression of TGF-β Receptor II, P-Smad3 and Smad4, and also counterbalance the tumorigenic effects of TGF-β by inhibiting the TGF-β-induced migration and invasion. Expression of downstream effectors of TGF-β signaling pathway, cyclinD1, p21 and Pin1, was inhibited along with the down regulation of key mesenchymal markers (Snail and Slug upon curcumin and emodin treatment. Curcumin and emodin were also found to synergistically inhibit cell population and migration in SiHa and HeLa cells. Moreover, we found that TGF-β activates Wnt/β-catenin signaling pathway in HeLa cells, and curcumin and emodin down regulate the pathway by inhibiting β-catenin. Taken together our data provide a mechanistic basis for the use of curcumin and emodin in the treatment of cervical cancer.

  9. Protein kinase B/Akt1 inhibits autophagy by down-regulating UVRAG expression

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Wonseok; Ju, Ji-hyun; Lee, Kyung-min; Nam, KeeSoo; Oh, Sunhwa [Department of Life Science, College of Natural Science, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Shin, Incheol, E-mail: incheol@hanyang.ac.kr [Department of Life Science, College of Natural Science, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of)

    2013-02-01

    Autophagy, or autophagocytosis, is a selective intracellular degradative process involving the cell's own lysosomal apparatus. An essential component in cell development, homeostasis, repair and resistance to stress, autophagy may result in either cell death or survival. The targeted region of the cell is sequestered within a membrane structure, the autophagosome, for regulation of the catabolic process. A key factor in both autophagosome formation and autophagosome maturation is a protein encoded by the ultraviolet irradiation resistance-associated gene (UVRAG). Conversely, the serine/threonine-specific protein kinase B (PKB, also known as Akt), which regulates survival in various cancers, inhibits autophagy through mTOR activation. We found that Akt1 may also directly inhibit autophagy by down-regulating UVRAG both in a 293T transient transfection system and breast cancer cells stably expressing Akt1. The UVRAG with mutations at putative Akt1-phosphorylation sites were still inhibited by Akt1, and dominant-negative Akt1 also inhibited UVRAG expression, suggesting that Akt1 down-regulates UVRAG by a kinase activity-independent mechanism. We showed that Akt1 overexpression in MDA-MB-231 breast cancer cells down-regulated UVRAG transcription. Cells over-expressing Akt1 were more resistant than control cells to ultraviolet light-induced autophagy and exhibited the associated reduction in cell viability. Levels of the autophagosome indicator protein LC3B-II and mRFP-GFP-LC3 were reduced in cells that over-expressing Akt1. Inhibiting Akt1 by siRNA or reintroducing UVRAG gene rescued the level of LC3B-II in UV-irradiation. Altogether, these data suggest that Akt1 may inhibit autophagy by decreasing UVRAG expression, which also sensitizes cancer cells to UV irradiation.

  10. Male sex interspecies divergence and down regulation of expression of spermatogenesis genes in Drosophila sterile hybrids.

    Science.gov (United States)

    Sundararajan, Vignesh; Civetta, Alberto

    2011-01-01

    Male sex genes have shown a pattern of rapid interspecies divergence at both the coding and gene expression level. A common outcome from crosses between closely-related species is hybrid male sterility. Phenotypic and genetic studies in Drosophila sterile hybrid males have shown that spermatogenesis arrest is postmeiotic with few exceptions, and that most misregulated genes are involved in late stages of spermatogenesis. Comparative studies of gene regulation in sterile hybrids and parental species have mainly used microarrays providing a whole genome representation of regulatory problems in sterile hybrids. Real-time PCR studies can reject or reveal differences not observed in microarray assays. Moreover, differences in gene expression between samples can be dependant on the source of RNA (e.g., whole body vs. tissue). Here we survey expression in D. simulans, D. mauritiana and both intra and interspecies hybrids using a real-time PCR approach for eight genes expressed at the four main stages of sperm development. We find that all genes show a trend toward under expression in the testes of sterile hybrids relative to parental species with only the two proliferation genes (bam and bgcn) and the two meiotic class genes (can and sa) showing significant down regulation. The observed pattern of down regulation for the genes tested can not fully explain hybrid male sterility. We discuss the down regulation of spermatogenesis genes in hybrids between closely-related species within the contest of rapid divergence experienced by the male genome, hybrid sterility and possible allometric changes due to subtle testes-specific developmental abnormalities.

  11. Impaired down-regulation of negative emotion in self-referent social situations in bipolar disorder

    DEFF Research Database (Denmark)

    Kjærstad, Hanne L; Vinberg, Maj; Goldin, Philippe R

    2016-01-01

    naturally or dampen their emotional response to positive and negative social scenarios and associated self-beliefs. They were also given an established experimental task for comparison, involving reappraisal of negative affective picture stimuli, as well as a questionnaire of habitual ER strategies. BD...... patients showed reduced ability to down-regulate emotional responses in negative, but not positive, social scenarios relative to healthy controls and UD patients. In contrast, there were no between-group differences in the established ER task or in self-reported habitual reappraisal strategies. Findings...

  12. Mechanisms Down-Regulating Sprouty1, a Growth Inhibitor in Prostate Cancer

    Science.gov (United States)

    2008-10-01

    fibroblast growth factor signaling is down-regulated in prostate cancer. Kwabi-Addo B (2004) Orlando, FL (Oral; mini symposium). • AACR/NCI/EORTC...contains a classic signal peptide PP FRS2 Sos Grb2 Cbl Ras FGFR1-DN MEK ERK STAT3 STAT3 Sprouty PLC - Extracellular stimulus Nucleus P Raf PI3K Receptor... thesis system for reverse transcription-PCR and according to the manufactur- er’s protocol. Real-time PCR was carried out in a Bio-Rad iCycler real

  13. Protection against RAGE-mediated neuronal cell death by sRAGE-secreting human mesenchymal stem cells in 5xFAD transgenic mouse model.

    Science.gov (United States)

    Son, Myeongjoo; Oh, Seyeon; Park, Hyunjin; Ahn, Hyosang; Choi, Junwon; Kim, Hyungho; Lee, Hye Sun; Lee, Sojung; Park, Hye-Jeong; Kim, Seung U; Lee, Bonghee; Byun, Kyunghee

    2017-11-01

    Alzheimer's disease (AD), which is the most commonly encountered neurodegenerative disease, causes synaptic dysfunction and neuronal loss due to various pathological processes that include tau abnormality and amyloid beta (Aβ) accumulation. Aβ stimulates the secretion and the synthesis of Receptor for Advanced Glycation End products (RAGE) ligand by activating microglial cells, and has been reported to cause neuronal cell death in Aβ 1-42 treated rats and in mice with neurotoxin-induced Parkinson's disease. The soluble form of RAGE (sRAGE) is known to reduce inflammation, and to decrease microglial cell activation and Aβ deposition, and thus, it protects from neuronal cell death in AD. However, sRAGE protein has too a short half-life for therapeutic purposes. We developed sRAGE-secreting umbilical cord derived mesenchymal stem cells (sRAGE-MSCs) to enhance the inhibitory effects of sRAGE on Aβ deposition and to reduce the secretion and synthesis of RAGE ligands in 5xFAD mice. In addition, these cells improved the viability of injected MSCs, and enhanced the protective effects of sRAGE by inhibiting the binding of RAGE and RAGE ligands in 5xFAD mice. These findings suggest sRAGE protein from sRAGE-MSCs has better protection against neuronal cell death than sRAGE protein or single MSC treatment by inhibiting the RAGE cell death cascade and RAGE-induce inflammation. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Effect of glycyrrhizin on traumatic brain injury in rats and its mechanism

    Directory of Open Access Journals (Sweden)

    Gu Xiangjin

    2014-02-01

    Full Text Available 【Abstract】Objective: To investigate the neuroprotective effects of glycyrrhizin (Gly as well as its effect on expression of high-mobility group box 1 (HMGB1 in rats after traumatic brain injury (TBI. Methods: Male Sprague-Dawley rats were randomly divided into three groups: sham group, TBI group, and TBI+Gly group (n=36 per group. Rat TBI model was made by using the modified Feeney’s method. In TBI+Gly group, Gly was administered intravenously at a dosage of 10 mg/kg 30 min after TBI. At 24 h after TBI, motor function and brain water content were evaluated. Meanwhile, HMGB1/HMGB1 receptors including toll-like receptor 4 (TLR4 and receptor for advanced glycation end products (RAGE/nuclear factor- κB(NF- κB signaling pathway and inflammatory cytokines in the injured brain tissues were detected using quantitative real-time polymerase chain reaction, western blot, electrophoretic mobility shift assay and enzyme-linked immunosorbent assay. Furthermore, HMGB1, RAGE and TLR4 immunohistochemistry and apoptosis were analyzed. Results: Beam walking performance impairment and brain edema were significantly reduced in TBI+Gly group compared with TBI group; meanwhile, the over-expressions of HMGB1/HMGB1 receptors (TLR4 and RAGE/NF-κB DNA-binding activity and inflammatory cytokines were inhibited. The percentages of HMGB1, RAGE and TLR4- positive cells and apoptotic cells were respectively 58.37%±5.06%, 54.15%±4.65%, 65.50%± 4.83%, 52.02%± 4.63% in TBI group and 39.99%±4.99%, 34.87%±5.02%, 43.33%±4.54%, 37.84%±5.16% in TBI+Gly group (all P<0.01 compared with TBI group. Conclusion: Gly can reduce secondary brain injury and improve outcomes in rat following TBI by down-regulation of HMGB1/HMGB1 receptors (TLR4 and RAGE/NF-κB - mediated inflammatory responses in the injured rat brain.

  15. Amino acid limitation induces down-regulation of WNT5a at transcriptional level

    International Nuclear Information System (INIS)

    Wang Zuguang; Chen Hong

    2009-01-01

    An aberrant WNT signaling contributes to the development and progression of multiple cancers. WNT5a is one of the WNT signaling molecules. This study was designed to test the hypothesis that amino acid deprivation induces changes in the WNT signaling pathway in colon cancer cells. Results showed that targets of the amino acid response pathway, ATF3 and p21, were induced in the human colon cancer cell line SW480 during amino acid limitation. There was a significant decrease in the WNT5a mRNA level following amino acid deprivation. The down-regulation of WNT5a mRNA by amino acid deprivation is not due to mRNA destabilization. There is a reduction of nuclear β-catenin protein level by amino acid limitation. Under amino acid limitation, phosphorylation of ERK1/2 was increased and the blockage of ERK1/2 by the inhibitor U0126 partially restored WNT5a mRNA level. In conclusion, amino acid limitation in colon cancer cells induces phosphorylation of ERK1/2, which then down-regulates WNT5a expression.

  16. Down-regulation of tissue N:P ratios in terrestrial plants by elevated CO2.

    Science.gov (United States)

    Deng, Qi; Hui, Dafeng; Luo, Yiqi; Elser, James; Wang, Ying-ping; Loladze, Irakli; Zhang, Quanfa; Dennis, Sam

    2015-12-01

    Increasing atmospheric CO2 concentrations generally alter element stoichiometry in plants. However, a comprehensive evaluation of the elevated CO2 impact on plant nitrogen: phosphorus (N:P) ratios and the underlying mechanism has not been conducted. We synthesized the results from 112 previously published studies using meta-analysis to evaluate the effects of elevated CO2 on the N:P ratio of terrestrial plants and to explore the underlying mechanism based on plant growth and soil P dynamics. Our results show that terrestrial plants grown under elevated CO2 had lower N:P ratios in both above- and belowground biomass across different ecosystem types. The response ratio for plant N:P was negatively correlated with the response ratio for plant growth in croplands and grasslands, and showed a stronger relationship for P than for N. In addition, the CO2-induced down-regulation of plant N:P was accompanied by 19.3% and 4.2% increases in soil phosphatase activity and labile P, respectively, and a 10.1% decrease in total soil P. Our results show that down-regulation of plant N:P under elevated CO2 corresponds with accelerated soil P cycling. These findings should be useful for better understanding of terrestrial plant stoichiometry in response to elevated CO2 and of the underlying mechanisms affecting nutrient dynamics under climate change.

  17. Down-regulation of endothelin binding sites in rat vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Roubert, P.; Gillard, V.; Plas, P.; Chabrier, P.E.; Braquet, P.

    1990-01-01

    In cultured rat aortic smooth muscle cells, [ 125 I]endothelin (ET-1) bound to an apparent single class of high affinity recognition sites with a dissociation constant of 1.84 +/- 0.29 nmol/L and a maximum binding of 62 +/- 10.5 fmol/10(6) cells. The binding was not affected by calcium antagonists or vasoactive substances, including angiotensin II, arginine vasopressin, atrial natriuretic factor and bradykinin. Exposure of the cells to ET-1 (0.01 nmol/L to 10 nmol/L) resulted in an apparent dose-dependent reduction of the number of endothelin binding sites with no significant modification of its binding affinity. The time course of the down-regulation of ET-1 binding sites showed that this effect was present after 30 min incubation and persisted after 18 h. This indicates that down-regulation of ET-1 binding sites can modulate the activity of ET-1 and suggests a rapid internalization of ET-1 in vascular cells

  18. Protamine sulfate down-regulates thrombin generation by inhibiting factor V activation.

    LENUS (Irish Health Repository)

    Ni Ainle, Fionnuala

    2009-08-20

    Protamine sulfate is a positively charged polypeptide widely used to reverse heparin-induced anticoagulation. Paradoxically, prospective randomized trials have shown that protamine administration for heparin neutralization is associated with increased bleeding, particularly after cardiothoracic surgery with cardiopulmonary bypass. The molecular mechanism(s) through which protamine mediates this anticoagulant effect has not been defined. In vivo administration of pharmacologic doses of protamine to BALB\\/c mice significantly reduced plasma thrombin generation and prolonged tail-bleeding time (from 120 to 199 seconds). Similarly, in pooled normal human plasma, protamine caused significant dose-dependent prolongations of both prothrombin time and activated partial thromboplastin time. Protamine also markedly attenuated tissue factor-initiated thrombin generation in human plasma, causing a significant decrease in endogenous thrombin potential (41% +\\/- 7%). As expected, low-dose protamine effectively reversed the anticoagulant activity of unfractionated heparin in plasma. However, elevated protamine concentrations were associated with progressive dose-dependent reduction in thrombin generation. To assess the mechanism by which protamine mediates down-regulation of thrombin generation, the effect of protamine on factor V activation was assessed. Protamine was found to significantly reduce the rate of factor V activation by both thrombin and factor Xa. Protamine mediates its anticoagulant activity in plasma by down-regulation of thrombin generation via a novel mechanism, specifically inhibition of factor V activation.

  19. E-cadherin and beta-catenin are down-regulated in prostatic bone metastases.

    Science.gov (United States)

    Bryden, A A G; Hoyland, J A; Freemont, A J; Clarke, N W; Schembri Wismayer, D; George, N J R

    2002-03-01

    To determine the E-cadherin and beta-catenin expression phenotype in untreated primary prostate cancer and corresponding bone metastases. Paired bone metastasis and primary prostate specimens were obtained from 14 men with untreated metastatic prostate carcinoma. The tumours were histologically graded by an independent pathologist. Expression of mRNA for E-cadherin and beta-catenin was detected within the tumour cells using in-situ hybridization with a 35S-labelled cDNA probe. The expression of E-cadherin and beta-catenin were graded as uniform, heterogeneous or negative. The mRNA for E-cadherin was expressed in 13 of 14 primary carcinomas and 11 bone metastases; beta-catenin was expressed by 13 and nine, respectively. Of the primary tumours, nine expressed E-cadherin and beta-catenin uniformly; in contrast, all metastases had down-regulated E-cadherin and/or beta-catenin. The down-regulation of E-cadherin and beta-catenin are a feature of the metastatic phenotype, which may be a significant factor in the genesis of bone metastases. However, this does not appear to be reflected in the expression of these molecules in the primary tumours.

  20. Down-regulation of S100C is associated with bladder cancer progression and poor survival

    DEFF Research Database (Denmark)

    Memon, Ashfaque Ahmed; Sorensen, Boe Sandahl; Meldgaard, Peter

    2005-01-01

    cancer biopsy samples obtained from 88 patients followed for a median of 23 months (range, 1-97 months). RESULTS: We found a significantly lower mRNA expression of S100C in connective tissue invasive tumors (T1, P = 0.0030) and muscle invasive tumors [(T2-T4), P ...PURPOSE: The goal of this study was to identify proteins down-regulated during bladder cancer progression. EXPERIMENTAL DESIGN: By using comparative proteome analysis and measurement of mRNA, we found a significant down-regulation of S100C, a member of the S100 family of proteins, in T24 (grade 3......) as compared with RT4 (grade 1) bladder cancer cell lines. Moreover, quantification of the mRNA level revealed that decreased expression of the protein reflects a low level of transcription of the S100C gene. Based on this observation, we quantified the S100C mRNA expression level with real-time PCR in bladder...

  1. Down-regulation of Rab5 decreases characteristics associated with maintenance of cell transformation

    International Nuclear Information System (INIS)

    Silva, Patricio; Soto, Nicolás; Díaz, Jorge; Mendoza, Pablo; Díaz, Natalia; Quest, Andrew F.G.; Torres, Vicente A.

    2015-01-01

    The early endosomal protein Rab5 is highly expressed in tumor samples, although a causal relationship between Rab5 expression and cell transformation has not been established. Here, we report the functional effects of targeting endogenous Rab5 with specific shRNA sequences in different tumor cell lines. Rab5 down-regulation in B16-F10 cells decreased tumor formation by subcutaneous injection into C57/BL6 mice. Accordingly, Rab5 targeting in B16-F10 and A549, but not MDA-MB-231 cells was followed by decreased cell proliferation, increased apoptosis and decreased anchorage-independent growth. These findings suggest that Rab5 expression is required to maintain characteristics associated with cell transformation. - Highlights: • Rab5 is important to the maintenance of cell transformation characteristics. • Down-regulation of Rab5 decreases cell proliferation and increases apoptosis in different cancer cells. • Rab5 is required for anchorage-independent growth and tumorigenicity in-vivo

  2. Significant Down-Regulation of “Biological Adhesion” Genes in Porcine Oocytes after IVM

    Directory of Open Access Journals (Sweden)

    Joanna Budna

    2017-12-01

    Full Text Available Proper maturation of the mammalian oocyte is a compound processes determining successful monospermic fertilization, however the number of fully mature porcine oocytes is still unsatisfactory. Since oocytes’ maturation and fertilization involve cellular adhesion and membranous contact, the aim was to investigate cell adhesion ontology group in porcine oocytes. The oocytes were collected from ovaries of 45 pubertal crossbred Landrace gilts and subjected to two BCB tests. After the first test, only granulosa cell-free BCB+ oocytes were directly exposed to microarray assays and RT-qPCR (“before IVM” group, or first in vitro matured and then if classified as BCB+ passed to molecular analyses (“after IVM” group. As a result, we have discovered substantial down-regulation of genes involved in adhesion processes, such as: organization of actin cytoskeleton, migration, proliferation, differentiation, apoptosis, survival or angiogenesis in porcine oocytes after IVM, compared to oocytes analyzed before IVM. In conclusion, we found that biological adhesion may be recognized as the process involved in porcine oocytes’ successful IVM. Down-regulation of genes included in this ontology group in immature oocytes after IVM points to their unique function in oocyte’s achievement of fully mature stages. Thus, results indicated new molecular markers involved in porcine oocyte IVM, displaying essential roles in biological adhesion processes.

  3. The influence of emotion down-regulation on the expectation of sexual reward.

    Science.gov (United States)

    Brom, Mirte; Laan, Ellen; Everaerd, Walter; Spinhoven, Philip; Cousijn, Janna; Both, Stephanie

    2015-05-01

    Emotion regulation research has shown successful altering of unwanted aversive emotional reactions. Cognitive strategies can also regulate expectations of reward arising from conditioned stimuli. However, less is known about the efficacy of such strategies with expectations elicited by conditioned appetitive sexual stimuli, and possible sex differences therein. In the present study it was examined whether a cognitive strategy (attentional deployment) could successfully down-regulate sexual arousal elicited by sexual reward-conditioned cues in men and women. A differential conditioning paradigm was applied, with genital vibrostimulation as unconditioned stimulus (US) and sexually relevant pictures as conditional stimuli (CSs). Evidence was found for emotion down-regulation to effect extinction of conditioned sexual responding in men. In women, the emotion down-regulatory strategy resulted in attenuated conditioned approach tendencies towards the CSs. The findings support that top-down modulation may indeed influence conditioned sexual responses. This knowledge may have implications for treating disturbances in sexual appetitive responses. Copyright © 2015. Published by Elsevier Ltd.

  4. Phosphorylation-dependent down-regulation of apolipoprotein A5 by insulin

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, Maxine; Helleboid-Chapman, Audrey; Jakel, Heidelinde; Rommens, Corinne; Martin, Genevieve; Duran-Sandoval, Daniel; Staels, Bart; Rubin, Edward M.; Pennacchio, Len A.; Taskinen, Marja-Riitta; Fruchart-Najib, Jamila; Fruchart, Jean-Charles

    2004-02-15

    The apolipoprotein A5 (APOA5) gene has been shown to be important in lowering plasma triglyceride levels. Since several studies have shown that hyperinsulinemia is associated with hypertriglyceridemia, we sought to determine whether APOA5 gene is regulated by insulin. We show here that cell and mouse treatments with insulin down-regulated APOA5 expression in a dose-dependent manner. Furthermore, we determined that insulin decreases APOA5 promoter activity and subsequent deletion analyses revealed an E-box-containing fragment. We showed that Upstream Stimulatory Factors, USF1/USF2, bind to the identified E-box in the APOA5 promoter. Moreover, in cotransfection studies, USF1 stimulates APOA5 promoter activity. The treatment with insulin reduces the binding of USF1/USF2 to APOA5 promoter. The inhibition of PI3K pathway with wortmannin abolished the insulin s effect on APOA5 gene transcription. Using oligoprecipitation method of USF from nuclear extracts, we demonstrated that phosphorylated USF1 failed to bind to APOA5 promoter. This indicates that the APOA5 gene transrepression by insulin involves a phosphorylation of USF through PI3K, that modulate their binding to APOA5 promoter and results in APOA5 down-regulation. The effect of exogenous hyperinsulinemia in healthy men shows a decrease of the plasma ApoAV level. These data suggest a potential mechanism involving APOA5 gene in hypertriglyceridemia associated with hyperinsulinemia.

  5. RAGE: a new frontier in chronic airways disease

    Science.gov (United States)

    Sukkar, Maria B; Ullah, Md Ashik; Gan, Wan Jun; Wark, Peter AB; Chung, Kian Fan; Hughes, J Margaret; Armour, Carol L; Phipps, Simon

    2012-01-01

    Asthma and chronic obstructive pulmonary disease (COPD) are heterogeneous inflammatory disorders of the respiratory tract characterized by airflow obstruction. It is now clear that the environmental factors that drive airway pathology in asthma and COPD, including allergens, viruses, ozone and cigarette smoke, activate innate immune receptors known as pattern-recognition receptors, either directly or indirectly by causing the release of endogenous ligands. Thus, there is now intense research activity focused around understanding the mechanisms by which pattern-recognition receptors sustain the airway inflammatory response, and how these mechanisms might be targeted therapeutically. One pattern-recognition receptor that has recently come to attention in chronic airways disease is the receptor for advanced glycation end products (RAGE). RAGE is a member of the immunoglobulin superfamily of cell surface receptors that recognizes pathogen- and host-derived endogenous ligands to initiate the immune response to tissue injury, infection and inflammation. Although the role of RAGE in lung physiology and pathophysiology is not well understood, recent genome-wide association studies have linked RAGE gene polymorphisms with airflow obstruction. In addition, accumulating data from animal and clinical investigations reveal increased expression of RAGE and its ligands, together with reduced expression of soluble RAGE, an endogenous inhibitor of RAGE signalling, in chronic airways disease. In this review, we discuss recent studies of the ligand–RAGE axis in asthma and COPD, highlight important areas for future research and discuss how this axis might potentially be harnessed for therapeutic benefit in these conditions. PMID:22506507

  6. Overexpression of rice LRK1 restricts internode elongation by down-regulating OsKO2.

    Science.gov (United States)

    Yang, Mengfei; Qi, Weiwei; Sun, Fan; Zha, Xiaojun; Chen, Mingluan; Huang, Yunqing; Feng, Yu-Qi; Yang, Jinshui; Luo, Xiaojin

    2013-01-01

    Rice (Oryza sativa) has the potential to undergo rapid internodal elongation which determines plant height. Gibberellin is involved in internode elongation. Leucine-rich repeat receptor-like kinases (LRR-RLKs) are the largest subfamily of transmembrane receptor-like kinases in plants. LRR-RLKs play important functions in mediating a variety of cellular processes and regulating responses to environmental signals. LRK1, a PSK receptor homolog, is a member of the LRR-RLK family. In the present study, differences in ectopic expression of LRK1 were consistent with extent of rice internode elongation. Analyses of gene expression demonstrated that LRK1 restricts gibberellin biosynthesis during the internode elongation process by down-regulation of the gibberellin biosynthetic gene coding for ent-kaurene oxidase.

  7. Possible Power Estimation of Down-Regulated Offshore Wind Power Plants

    DEFF Research Database (Denmark)

    Gögmen, Tuhfe

    The penetration of offshore wind power is continuously increasing in the Northern European grids. To assure safety in the operation of the power system, wind power plants are required to provide ancillary services, including reserve power attained through down-regulating the wind farm from its...... power plant. The developed procedure, the PossPOW algorithm, can also be used in the wind farm control as it yields a real-time wind farm power curve. The modern wind turbines have a possible power signal at the turbine level and the current state of the art is to aggregate those signals to achieve...... the wind farm scale production capacity. However the summation of these individual signals is simply an over-estimation for the wind power plant, due to reduced wake losses during curtailment. The determination of the possible power with the PossPOW algorithm works as follows: firstly the second...

  8. Down-regulation of telomerase activity in DLD-1 human colorectal adenocarcinoma cells by tocotrienol

    International Nuclear Information System (INIS)

    Eitsuka, Takahiro; Nakagawa, Kiyotaka; Miyazawa, Teruo

    2006-01-01

    As high telomerase activity is detected in most cancer cells, inhibition of telomerase by drug or dietary food components is a new strategy for cancer prevention. Here, we investigated the inhibitory effect of vitamin E, with particular emphasis on tocotrienol (unsaturated vitamin E), on human telomerase in cell-culture study. As results, tocotrienol inhibited telomerase activity of DLD-1 human colorectal adenocarcinoma cells in time- and dose-dependent manner, interestingly, with δ-tocotrienol exhibiting the highest inhibitory activity. Tocotrienol inhibited protein kinase C activity, resulting in down-regulation of c-myc and human telomerase reverse transcriptase (hTERT) expression, thereby reducing telomerase activity. In contrast to tocotrienol, tocopherol showed very weak telomerase inhibition. These results provide novel evidence for First time indicating that tocotrienol acts as a potent candidate regulator of telomerase and supporting the anti-proliferative function of tocotrienol

  9. Natural polyphenols down-regulate universal stress protein in Mycobacterium tuberculosis: An in-silico approach

    Directory of Open Access Journals (Sweden)

    M Vijey Aanandhi

    2014-01-01

    Full Text Available Universal stress protein (USP is a novel target to overcome the tuberculosis resistance. Our present study enlightens the possibilities of some natural polyphenols as an antioxidant for USP. The study has shown some molecular simulations of some selected natural antioxidants with USP. We have considered USP (Rv1636 strain for homology modeling and the selected template was taken for the docking study. Curcumin, catechin, reservetrol has shown ARG 136 (1.8Ε hydrogen bonding and two ionic bonding with carboxyl group of curcumin with LEU 130 (3.3Ε and ASN 144 (3.4Ε respectively. INH was taken for the standard molecule to perform molecular simulation. It showed poor binding interaction with the target, that is, −5.18 kcal, and two hydrogen bonding with SER 140 (1.887Ε, ARG 147 (2.064Ε respectively. The study indicates possible new generation curcumin analogue for future therapy to down-regulate USP.

  10. Down-regulation of PRKCB1 expression in Han Chinese patients with subsyndromal symptomatic depression.

    Science.gov (United States)

    Guo, Xiaoyun; Li, Zezhi; Zhang, Chen; Yi, Zhenghui; Li, Haozhe; Cao, Lan; Yuan, Chengmei; Hong, Wu; Wu, Zhiguo; Peng, Daihui; Chen, Jun; Xia, Weiping; Zhao, Guoqing; Wang, Fan; Yu, Shunying; Cui, Donghong; Xu, Yifeng; Golam, Chowdhury M I; Smith, Alicia K; Wang, Tong; Fang, Yiru

    2015-10-01

    Subsyndromal symptomatic depression (SSD) is a common disease with significant social dysfunction. However, SSD is still not well understood and the pathophysiology of it remains unclear. We classified 48 candidate genes for SSD according to our previous study into clusters and pathways using DAVID Bioinformatics Functional Annotation Tool. We further replicated the result by using real-time Quantitative PCR (qPCR) studies to examine the expression of identified genes (i.e., STAT5b, PKCB1, ABL1 and NRAS) in another group of Han Chinese patients with SSD (n = 50). We further validated the result by examining PRKCB1 expression collected from MDD patients (n = 20). To test whether a deficit in PRKCB1 expression leads to dysregulation in PRKCB1 dependent transcript networks, we tested mRNA expression levels for the remaining 44 genes out of 48 genes in SSD patients. Finally, the power of discovery was improved by incorporating information from Quantitative Trait (eQTL) analysis. The results showed that the PRCKB1 gene expression in peripheral blood mononuclear cells (PBMC) was 33.3% down-regulated in SSD patients (n = 48, t = 3.202, p = 0.002), and a more dramatic (n = 17, 49%) down-regulation in MDD patients than control (n = 49, t = 2.114, p = 0.001). We also identified 37 genes that displayed a strong correlation with PRKCB1 mRNA expression levels in SSD patients. The expression of PRKCB1 was regulated by multiple single nucleotide polymorphisms (SNPs) both at the transcript level and exon level. In conclusion, we first found a significant decrease of PRCKB1 mRNA expression in SSD, suggesting PRKCB1 might be the candidate gene and biomarker for SSD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Cholesterol Down-Regulates BK Channels Stably Expressed in HEK 293 Cells

    Science.gov (United States)

    Deng, Xiu-Ling; Sun, Hai-Ying; Li, Gui-Rong

    2013-01-01

    Cholesterol is one of the major lipid components of the plasma membrane in mammalian cells and is involved in the regulation of a number of ion channels. The present study investigates how large conductance Ca2+-activated K+ (BK) channels are regulated by membrane cholesterol in BK-HEK 293 cells expressing both the α-subunit hKCa1.1 and the auxiliary β1-subunit or in hKCa1.1-HEK 293 cells expressing only the α-subunit hKCa1.1 using approaches of electrophysiology, molecular biology, and immunocytochemistry. Membrane cholesterol was depleted in these cells with methyl-β-cyclodextrin (MβCD), and enriched with cholesterol-saturated MβCD (MβCD-cholesterol) or low-density lipoprotein (LDL). We found that BK current density was decreased by cholesterol enrichment in BK-HEK 293 cells, with a reduced expression of KCa1.1 protein, but not the β1-subunit protein. This effect was fully countered by the proteasome inhibitor lactacystin or the lysosome function inhibitor bafilomycin A1. Interestingly, in hKCa1.1-HEK 293 cells, the current density was not affected by cholesterol enrichment, but directly decreased by MβCD, suggesting that the down-regulation of BK channels by cholesterol depends on the auxiliary β1-subunit. The reduced KCa1.1 channel protein expression was also observed in cultured human coronary artery smooth muscle cells with cholesterol enrichment using MβCD-cholesterol or LDL. These results demonstrate the novel information that cholesterol down-regulates BK channels by reducing KCa1.1 protein expression via increasing the channel protein degradation, and the effect is dependent on the auxiliary β1-subunit. PMID:24260325

  12. Frequent down-regulation of ABC transporter genes in prostate cancer.

    Science.gov (United States)

    Demidenko, Rita; Razanauskas, Deividas; Daniunaite, Kristina; Lazutka, Juozas Rimantas; Jankevicius, Feliksas; Jarmalaite, Sonata

    2015-10-12

    ATP-binding cassette (ABC) transporters are transmembrane proteins responsible for the efflux of a wide variety of substrates, including steroid metabolites, through the cellular membranes. For better characterization of the role of ABC transporters in prostate cancer (PCa) development, the profile of ABC transporter gene expression was analyzed in PCa and noncancerous prostate tissues (NPT). TaqMan Low Density Array (TLDA) human ABC transporter plates were used for the gene expression profiling in 10 PCa and 6 NPT specimens. ABCB1 transcript level was evaluated in a larger set of PCa cases (N = 78) and NPT (N = 15) by real-time PCR, the same PCa cases were assessed for the gene promoter hypermethylation by methylation-specific PCR. Expression of eight ABC transporter genes (ABCA8, ABCB1, ABCC6, ABCC9, ABCC10, ABCD2, ABCG2, and ABCG4) was significantly down-regulated in PCa as compared to NPT, and only two genes (ABCC4 and ABCG1) were up-regulated. Down-regulation of ABC transporter genes was prevalent in the TMPRSS2-ERG-negative cases. A detailed analysis of ABCB1 expression confirmed TLDA results: a reduced level of the transcript was identified in PCa in comparison to NPT (p = 0.048). Moreover, the TMPRSS2-ERG-negative PCa cases showed significantly lower expression of ABCB1 in comparison to NPT (p = 0.003) or the fusion-positive tumors (p = 0.002). Promoter methylation of ABCB1 predominantly occurred in PCa and was rarely detected in NPT (p ABC transporter genes in PCa, especially in the TMPRSS2-ERG-negative tumors.

  13. Aldosterone down-regulates the slowly activated delayed rectifier potassium current in adult guinea pig cardiomyocytes.

    Science.gov (United States)

    Lv, Yankun; Bai, Song; Zhang, Hua; Zhang, Hongxue; Meng, Jing; Li, Li; Xu, Yanfang

    2015-12-01

    There is emerging evidence that the mineralocorticoid hormone aldosterone is associated with arrhythmias in cardiovascular disease. However, the effect of aldosterone on the slowly activated delayed rectifier potassium current (IK s ) remains poorly understood. The present study was designed to investigate the modulation of IK s by aldosterone. Adult guinea pigs were treated with aldosterone for 28 days via osmotic pumps. Standard glass microelectrode recordings and whole-cell patch-clamp techniques were used to record action potentials in papillary muscles and IK s in ventricular cardiomyocytes. The aldosterone-treated animals exhibited a prolongation of the QT interval and action potential duration with a higher incidence of early afterdepolarizations. Patch-clamp recordings showed a significant down-regulation of IK s density in the ventricular myocytes of these treated animals. These aldosterone-induced electrophysiological changes were fully prevented by a combined treatment with spironolactone, a mineralocorticoid receptor (MR) antagonist. In addition, in in vitro cultured ventricular cardiomyocytes, treatment with aldosterone (sustained exposure for 24 h) decreased the IK s density in a concentration-dependent manner. Furthermore, a significant corresponding reduction in the mRNA/protein expression of IKs channel pore and auxiliary subunits, KCNQ1 and KCNE1 was detected in ventricular tissue from the aldosterone-treated animals. Aldosterone down-regulates IK s by inhibiting the expression of KCNQ1 and KCNE1, thus delaying the ventricular repolarization. These results provide new insights into the mechanism underlying K(+) channel remodelling in heart disease and may explain the highly beneficial effects of MR antagonists in HF. © 2015 The British Pharmacological Society.

  14. PPARα activators down-regulate CYP2C7, a retinoic acid and testosterone hydroxylase

    International Nuclear Information System (INIS)

    Fan Liqun; Brown-Borg, Holly; Brown, Sherri; Westin, Stefan; Mode, Agneta; Corton, J. Christopher

    2004-01-01

    Peroxisome proliferators (PP) are a large class of structurally diverse chemicals that mediate their effects in the liver mainly through the peroxisome proliferator-activated receptor α (PPARα). Exposure to PP results in down-regulation of CYP2C family members under control of growth hormone and sex steroids including CYP2C11 and CYP2C12. We hypothesized that PP exposure would also lead to similar changes in CYP2C7, a retinoic acid and testosterone hydroxylase. CYP2C7 gene expression was dramatically down-regulated in the livers of rats treated for 13 weeks by WY-14,643 (WY; 500 ppm) or gemfibrozil (GEM; 8000 ppm). In the same tissues, exposure to WY and GEM and to a lesser extent di-n-butyl phthalate (20 000 ppm) led to decreases in CYP2C7 protein levels in both male and female rats. An examination of the time and dose dependence of CYP2C7 protein changes after PP exposure revealed that CYP2C7 was more sensitive to compound exposure compared to other CYP2C family members. Protein expression was decreased after 1, 5 and 13 weeks of PP treatment. CYP2C7 protein expression was completely abolished at 5 ppm WY, the lowest dose tested. GEM and DBP exhibited dose-dependent decreases in CYP2C7 protein expression, becoming significant at 1000 ppm or 5000 ppm and above, respectively. These results show that PP exposure leads to changes in CYP2C7 mRNA and protein levels. Thus, in addition to known effects on steroid metabolism, exposure to PP may alter retinoic acid metabolism

  15. BMP4 and LGL1 are Down Regulated in an Ovine Model of Congenital Diaphragmatic Hernia

    Directory of Open Access Journals (Sweden)

    Heather eEmmerton-Coughlin

    2014-11-01

    Full Text Available Background/Purpose: The molecular pathophysiology of lung hypoplasia in congenital diaphragmatic hernia (CDH remains poorly understood. The Wnt signaling pathway and downstream targets, such as bone morphogenetic proteins (BMP 4 and other factors such as late gestation lung protein 1 (LGL1, are essential to normal lung development. Nitrofen-induced hypoplastic CDH rodent lungs demonstrate down regulation of the Wnt pathway including BMP4 and reduced LGL1 expression. The aim of the current study was to examine the molecular pathophysiology associated with a surgically induced CDH in an ovine model. Methods: Left thoracotomy was performed at 80 days in 14 fetal sheep; CDH was created in 7 experimental animals. Lungs were harvested at 136 days (term=145d. Lung weight and mean terminal bronchiole density (MTBD were measured to determine the degree of pulmonary hypoplasia. Quantitative real time PCR was undertaken to analyze Wnt2, Wnt7b, BMP4 and LGL1 mRNA expression. Results: Total lung weight was decreased while MTBD was increased in the CDH group (p<0.05, confirming pulmonary hypoplasia. BMP4 and LGL1 mRNA was significantly reduced in CDH lungs (p<0.05. Wnt2 mRNA was decreased, although not significantly (p<0.06. Conclusions: For the first time, down regulation of BMP4 and Lgl1 are reported in an ovine CDH model. In contrast to other animal models, these changes are persistent to near term. These findings suggest that mechanical compression from herniated viscera may play a more important role in causing pulmonary hypoplasia in CDH, rather than a primary defect in lung organogenesis.

  16. A Genome-wide Association Study Provides Evidence of Sex-specific Involvement of Chr1p35.1 (ZSCAN20-TLR12P and Chr8p23.1 (HMGB1P46 With Diabetic Neuropathic Pain

    Directory of Open Access Journals (Sweden)

    Weihua Meng

    2015-10-01

    Full Text Available Neuropathic pain is defined as pain arising as a direct consequence of a lesion or a disease affecting the somatosensory system and it affects around 1 in 4 diabetic patients in the UK. The purpose of this genome-wide association study (GWAS was to identify genetic contributors to this disorder. Cases of neuropathic pain were defined as diabetic patients with a multiple prescription history of at least one of five drugs specifically indicated for the treatment of neuropathic pain. Controls were diabetic individuals who were not prescribed any of these drugs, nor amitriptyline, carbamazepine, or nortriptyline. Overall, 961 diabetic neuropathic pain cases and 3260 diabetic controls in the Genetics of Diabetes Audit and Research Tayside (GoDARTS cohort were identified. We found a cluster in the Chr1p35.1 (ZSCAN20-TLR12P with a lowest P value of 2.74 × 10−7 at rs71647933 in females and a cluster in the Chr8p23.1, next to HMGB1P46 with a lowest P value of 8.02 × 10−7 at rs6986153 in males. Sex-specific narrow sense heritability was higher in males (30.0% than in females (14.7%. This GWAS on diabetic neuropathic pain provides evidence for the sex-specific involvement of Chr1p35.1 (ZSCAN20-TLR12P and Chr8p23.1 (HMGB1P46 with the disorder, indicating the need for further research.

  17. The RAGE radiation-hydrodynamic code

    Energy Technology Data Exchange (ETDEWEB)

    Gittings, Michael; Clover, Michael; Betlach, Thomas; Byrne, Nelson; Ranta, Dale [Science Applications International Corp. MS A-1, 10260 Campus Point Drive, San Diego, CA 92121 (United States); Weaver, Robert; Coker, Robert; Dendy, Edward; Hueckstaedt, Robert; New, Kim; Oakes, W Rob [Los Alamos National Laboratory, MS T087, PO Box 1663, Los Alamos, NM 87545 (United States); Stefan, Ryan [TaylorMade-adidas Golf, 5545 Fermi Court, Carlsbad, CA 92008-7324 (United States)], E-mail: michael.r.clover@saic.com

    2008-10-01

    We describe RAGE, the 'radiation adaptive grid Eulerian' radiation-hydrodynamics code, including its data structures, its parallelization strategy and performance, its hydrodynamic algorithm(s), its (gray) radiation diffusion algorithm, and some of the considerable amount of verification and validation efforts. The hydrodynamics is a basic Godunov solver, to which we have made significant improvements to increase the advection algorithm's robustness and to converge stiffnesses in the equation of state. Similarly, the radiation transport is a basic gray diffusion, but our treatment of the radiation-material coupling, wherein we converge nonlinearities in a novel manner to allow larger timesteps and more robust behavior, can be applied to any multi-group transport algorithm.

  18. The RAGE radiation-hydrodynamic code

    International Nuclear Information System (INIS)

    Gittings, Michael; Clover, Michael; Betlach, Thomas; Byrne, Nelson; Ranta, Dale; Weaver, Robert; Coker, Robert; Dendy, Edward; Hueckstaedt, Robert; New, Kim; Oakes, W Rob; Stefan, Ryan

    2008-01-01

    We describe RAGE, the 'radiation adaptive grid Eulerian' radiation-hydrodynamics code, including its data structures, its parallelization strategy and performance, its hydrodynamic algorithm(s), its (gray) radiation diffusion algorithm, and some of the considerable amount of verification and validation efforts. The hydrodynamics is a basic Godunov solver, to which we have made significant improvements to increase the advection algorithm's robustness and to converge stiffnesses in the equation of state. Similarly, the radiation transport is a basic gray diffusion, but our treatment of the radiation-material coupling, wherein we converge nonlinearities in a novel manner to allow larger timesteps and more robust behavior, can be applied to any multi-group transport algorithm

  19. Genetically Determined Insulin Resistance is Characterized by Down-Regulation of Mitochondrial Oxidative Metabolism in Human Skeletal Muscle

    DEFF Research Database (Denmark)

    Kristensen, Jonas M; Skov, Vibe; Wojtaszewski, Jørgen

    2010-01-01

    Transcriptional profiling of skeletal muscle from patients with type 2 diabetes and high-risk individuals have demonstrated a co-ordinated down-regulation of oxidative phosphorylation (OxPhos) genes, suggesting a link between insulin resistance and mitochondrial dysfunction. However, whether...... mitochondrial dysfunction is a cause or consequence of insulin resistance remains to be clarified. In the present study, we tested the hypothesis that mitochondrial oxidative metabolism was down-regulated in skeletal muscle of patients with genetically determined insulin resistance. Skeletal muscle biopsies.......02), and complex V (ATP5B; p=0.005). Our data demonstrate that genetically determined insulin resistance is associated with a co-ordinated down-regulation of OxPhos components both at the transcriptional and translational level. These findings suggest that an impaired biological response to insulin in skeletal...

  20. Protein Kinase C-{delta} mediates down-regulation of heterogeneous nuclear ribonucleoprotein K protein: involvement in apoptosis induction

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Feng-Hou [NO.3 People' s Hospital affiliated to Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 201900 (China); The Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China); Wu, Ying-Li [The Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China); Zhao, Meng [Institute of Health Science, SJTU-SM/Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai (China); Liu, Chuan-Xu; Wang, Li-Shun [The Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China); Chen, Guo-Qiang, E-mail: chengq@shsmu.edu.cn [The Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China); Institute of Health Science, SJTU-SM/Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai (China)

    2009-11-15

    We reported previously that NSC606985, a camptothecin analogue, induces apoptosis of acute myeloid leukemia (AML) cells through proteolytic activation of protein kinase C delta ({Delta}PKC-{delta}). By subcellular proteome analysis, heterogeneous nuclear ribonucleoprotein K (hnRNP K) was identified as being significantly down-regulated in NSC606985-treated leukemic NB4 cells. HnRNP K, a docking protein for DNA, RNA, and transcriptional or translational molecules, is implicated in a host of processes involving the regulation of gene expression. However, the molecular mechanisms of hnRNP K reduction and its roles during apoptosis are still not understood. In the present study, we found that, following the appearance of the {Delta}PKC-{delta}, hnRNP K protein was significantly down-regulated in NSC606985, doxorubicin, arsenic trioxide and ultraviolet-induced apoptosis. We further provided evidence that {Delta}PKC-{delta} mediated the down-regulation of hnRNP K protein during apoptosis: PKC-{delta} inhibitor could rescue the reduction of hnRNP K; hnRNP K failed to be decreased in PKC-{delta}-deficient apoptotic KG1a cells; conditional induction of {Delta}PKC-{delta} in U937T cells directly down-regulated hnRNP K protein. Moreover, the proteasome inhibitor also inhibited the down-regulation of hnRNP K protein by apoptosis inducer and the conditional expression of {Delta}PKC-{delta}. More intriguingly, the suppression of hnRNP K with siRNA transfection significantly induced apoptosis. To our knowledge, this is the first demonstration that proteolytically activated PKC-{delta} down-regulates hnRNP K protein in a proteasome-dependent manner, which plays an important role in apoptosis induction.

  1. RAGE receptor and its soluble isoforms in diabetes mellitus complications

    Directory of Open Access Journals (Sweden)

    Mauren Isfer Anghebem Oliveira

    2013-04-01

    Full Text Available Chronic hyperglycemia, which is present in all types of diabetes, increases the formation of advanced glycation end-products (AGEs. The interaction of AGEs with receptor of advanced glycation end-products (RAGE initiates a cascade of pro-inflammatory and pro-coagulant processes that result in oxidative stress, stimulating the formation and accumulation of more AGE molecules. This cyclic process, denominated metabolic memory, may explain the persistency of diabetic vascular complications in patients with satisfactory glycemic control. The RAGE found in several cell membranes is also present in soluble isoforms (esRAGE and cRAGE, which are generated by alternative deoxyribonucleic acid splicing or by proteolytic cleavage. This review focuses on new research into these mediators as potential biomarkers for vascular complications in diabetes.

  2. RAGE: a new frontier in chronic airways disease.

    Science.gov (United States)

    Sukkar, Maria B; Ullah, Md Ashik; Gan, Wan Jun; Wark, Peter A B; Chung, Kian Fan; Hughes, J Margaret; Armour, Carol L; Phipps, Simon

    2012-11-01

    Asthma and chronic obstructive pulmonary disease (COPD) are heterogeneous inflammatory disorders of the respiratory tract characterized by airflow obstruction. It is now clear that the environmental factors that drive airway pathology in asthma and COPD, including allergens, viruses, ozone and cigarette smoke, activate innate immune receptors known as pattern-recognition receptors, either directly or indirectly by causing the release of endogenous ligands. Thus, there is now intense research activity focused around understanding the mechanisms by which pattern-recognition receptors sustain the airway inflammatory response, and how these mechanisms might be targeted therapeutically. One pattern-recognition receptor that has recently come to attention in chronic airways disease is the receptor for advanced glycation end products (RAGE). RAGE is a member of the immunoglobulin superfamily of cell surface receptors that recognizes pathogen- and host-derived endogenous ligands to initiate the immune response to tissue injury, infection and inflammation. Although the role of RAGE in lung physiology and pathophysiology is not well understood, recent genome-wide association studies have linked RAGE gene polymorphisms with airflow obstruction. In addition, accumulating data from animal and clinical investigations reveal increased expression of RAGE and its ligands, together with reduced expression of soluble RAGE, an endogenous inhibitor of RAGE signalling, in chronic airways disease. In this review, we discuss recent studies of the ligand-RAGE axis in asthma and COPD, highlight important areas for future research and discuss how this axis might potentially be harnessed for therapeutic benefit in these conditions. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  3. Protein Phosphatase 1 Down Regulates ZYG-1 Levels to Limit Centriole Duplication.

    Directory of Open Access Journals (Sweden)

    Nina Peel

    2017-01-01

    Full Text Available In humans perturbations of centriole number are associated with tumorigenesis and microcephaly, therefore appropriate regulation of centriole duplication is critical. The C. elegans homolog of Plk4, ZYG-1, is required for centriole duplication, but our understanding of how ZYG-1 levels are regulated remains incomplete. We have identified the two PP1 orthologs, GSP-1 and GSP-2, and their regulators I-2SZY-2 and SDS-22 as key regulators of ZYG-1 protein levels. We find that down-regulation of PP1 activity either directly, or by mutation of szy-2 or sds-22 can rescue the loss of centriole duplication associated with a zyg-1 hypomorphic allele. Suppression is achieved through an increase in ZYG-1 levels, and our data indicate that PP1 normally regulates ZYG-1 through a post-translational mechanism. While moderate inhibition of PP1 activity can restore centriole duplication to a zyg-1 mutant, strong inhibition of PP1 in a wild-type background leads to centriole amplification via the production of more than one daughter centriole. Our results thus define a new pathway that limits the number of daughter centrioles produced each cycle.

  4. Quantitative Impact of Plasma Clearance and Down-regulation on GLP-1 Receptor Molecular Imaging.

    Science.gov (United States)

    Zhang, Liang; Thurber, Greg M

    2016-02-01

    Quantitative molecular imaging of beta cell mass (BCM) would enable early detection and treatment monitoring of type 1 diabetes. The glucagon-like peptide-1 (GLP-1) receptor is an attractive target due to its beta cell specificity and cell surface location. We quantitatively investigated the impact of plasma clearance and receptor internalization on targeting efficiency in healthy B6 mice. Four exenatide-based probes were synthesized that varied in molecular weight, binding affinity, and plasma clearance. The GLP-1 receptor internalization rate and in vivo receptor expression were quantified. Receptor internalization (54,000 receptors/cell in vivo) decreased significantly within minutes, reducing the benefit of a slower-clearing agent. The multimers and albumin binding probes had higher kidney and liver uptake, respectively. Slow plasma clearance is beneficial for GLP-1 receptor peptide therapeutics. However, for exendin-based imaging of islets, down-regulation of the GLP-1 receptor and non-specific background uptake result in a higher target-to-background ratio for fast-clearing agents.

  5. Znhit1 causes cell cycle arrest and down-regulates CDK6 expression

    International Nuclear Information System (INIS)

    Yang, Zhengmin; Cao, Yonghao; Zhu, Xiaoyan; Huang, Ying; Ding, Yuqiang; Liu, Xiaolong

    2009-01-01

    Cyclin-dependent kinase 6 (CDK6) is the key element of the D-type cyclin holoenzymes which has been found to function in the regulation of G1-phase of the cell cycle and is presumed to play important roles in T cell function. In this study, Znhit1, a member of a new zinc finger protein family defined by a conserved Zf-HIT domain, induced arrest in the G1-phase of the cell cycle in NIH/3T3 cells. Of the G1 cell cycle factors examined, the expression of CDK6 was found to be strongly down-regulated by Znhit1 via transcriptional repression. This effect may have correlations with the decreased acetylation level of histone H4 in the CDK6 promoter region. In addition, considering that CDK6 expression predominates in T cells, the negative regulatory role of Znhit1 in TCR-induced T cell proliferation was validated using transgenic mice. These findings identified Znhit1 as a CDK6 regulator that plays an important role in cell proliferation.

  6. Down-Regulation of Gene Expression by RNA-Induced Gene Silencing

    Science.gov (United States)

    Travella, Silvia; Keller, Beat

    Down-regulation of endogenous genes via post-transcriptional gene silencing (PTGS) is a key to the characterization of gene function in plants. Many RNA-based silencing mechanisms such as post-transcriptional gene silencing, co-suppression, quelling, and RNA interference (RNAi) have been discovered among species of different kingdoms (plants, fungi, and animals). One of the most interesting discoveries was RNAi, a sequence-specific gene-silencing mechanism initiated by the introduction of double-stranded RNA (dsRNA), homologous in sequence to the silenced gene, which triggers degradation of mRNA. Infection of plants with modified viruses can also induce RNA silencing and is referred to as virus-induced gene silencing (VIGS). In contrast to insertional mutagenesis, these emerging new reverse genetic approaches represent a powerful tool for exploring gene function and for manipulating gene expression experimentally in cereal species such as barley and wheat. We examined how RNAi and VIGS have been used to assess gene function in barley and wheat, including molecular mechanisms involved in the process and available methodological elements, such as vectors, inoculation procedures, and analysis of silenced phenotypes.

  7. Down-regulating overexpressed human Lon in cervical cancer suppresses cell proliferation and bioenergetics.

    Directory of Open Access Journals (Sweden)

    Xiaobo Nie

    Full Text Available The human mitochondrial ATP-dependent Lon protease functions in regulating the metabolism and quality control of proteins and mitochondrial DNA (mtDNA. However, the role of Lon in cancer is not well understood. Therefore, this study was undertaken to investigate the importance of Lon in cervical cancer cells from patients and in established cell lines. Microarray analysis from 30 cancer and 10 normal cervical tissues were analyzed by immunohistochemistry for Lon protein levels. The expression of Lon was also examined by immunoblotting 16 fresh cervical cancer tissues and their respective non-tumor cervical tissues. In all cases, Lon expression was significantly elevated in cervical carcinomas as compared to normal tissues. Augmented Lon expression in tissue microarrays did not vary between age, tumor-node-metastasis grades, or lymph node metastasis. Knocking down Lon in HeLa cervical cancer cells by lentivrial transduction resulted in a substantial decrease in both mRNA and protein levels. Such down-regulation of Lon expression significantly blocked HeLa cell proliferation. In addition, knocking down Lon resulted in decreased cellular bioenergetics as determined by measuring aerobic respiration and glycolysis using the Seahorse XF24 extracellular flux analyzer. Together, these data demonstrate that Lon plays a potential role in the oncogenesis of cervical cancer, and may be a useful biomarker and target in the treatment of cervical cancer. Lon; immunohistochemistry; cervical cancer; cell proliferation; cellular bioenergetics.

  8. Endocrine gland derived-VEGF is down-regulated in human pituitary adenoma.

    Science.gov (United States)

    Raica, Marius; Coculescu, Mihail; Cimpean, Anca Maria; Ribatti, Domenico

    2010-10-01

    Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is an angiogenic molecule restricted to endocrine glands and, particularly, to steroid-secreting cells. The expression of EG-VEGF and its significance in human adenohypophysis in physiological and pathological conditions is still unknown. In this study, we investigated by immunohistochemistry the expression of EG-VEGF in 2 samples of normal adenohypophysis and 43 bioptic samples of pituitary adenoma. Moreover, the expression of growth hormone (GH), prolactin (PRL), follicle-stimulating hormone (FSH), luteinizing hormone (LH), thyroid-stimulating hormone (TSH) and adrenocorticoprophic hormone (ACTH) were also estimated. The results of this study for the first time demonstrate a down-regulation of EG-VEGF expression in human pituitary adenoma as compared to normal adenohypophysis, suggesting an impaired function of the neoplastic cells in terms of hormone release in the blood stream, as a consequence of impaired tumor angiogenesis in the tumor. On the basis of our data showing a marked decrease in the expression of EG-VEGF in pituitary adenoma, with the exception of LH-secreting adenomas, we suggest that LH might be involved in the induction of EG-VEGF secretion.

  9. Carnosine reverses the aging-induced down regulation of brain regional serotonergic system.

    Science.gov (United States)

    Banerjee, Soumyabrata; Ghosh, Tushar K; Poddar, Mrinal K

    2015-12-01

    The purpose of the present investigation was to study the role of carnosine, an endogenous dipeptide biomolecule, on brain regional (cerebral cortex, hippocampus, hypothalamus and pons-medulla) serotonergic system during aging. Results showed an aging-induced brain region specific significant (a) increase in Trp (except cerebral cortex) and their 5-HIAA steady state level with an increase in their 5-HIAA accumulation and declination, (b) decrease in their both 5-HT steady state level and 5-HT accumulation (except cerebral cortex). A significant decrease in brain regional 5-HT/Trp ratio (except cerebral cortex) and increase in 5-HIAA/5-HT ratio were also observed during aging. Carnosine at lower dosages (0.5-1.0μg/Kg/day, i.t. for 21 consecutive days) didn't produce any significant response in any of the brain regions, but higher dosages (2.0-2.5μg/Kg/day, i.t. for 21 consecutive days) showed a significant response on those aging-induced brain regional serotonergic parameters. The treatment with carnosine (2.0μg/Kg/day, i.t. for 21 consecutive days), attenuated these brain regional aging-induced serotonergic parameters and restored towards their basal levels that observed in 4 months young control rats. These results suggest that carnosine attenuates and restores the aging-induced brain regional down regulation of serotonergic system towards that observed in young rats' brain regions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Down-regulation of a calmodulin-related gene during transformation of human mammary epithelial cells

    International Nuclear Information System (INIS)

    Yaswen, P.; Smoll, A.; Stampfer, M.R.; Peehl, D.M.; Trask, D.K.; Sager, R.

    1990-01-01

    A human cDNA library obtained from cultured normal mammary epithelial cells (HMECs) was searched by subtractive hybridization for genes whose decrease in expression might be relevant to epithelial transformation. One clone identified by this procedure corresponded to a 1.4 kilobase mRNA, designated NB-1, whose expression was decreased >50-fold in HMECs tumorigenically transformed in vitro after exposure to benzo[α]pyrene and Kirsten sarcoma virus. Sequence analysis of NB-1 cDNA revealed an open reading frame with a high degree of homology to calmodulin. NB-1 expression could be demonstrated by polymerase chain reaction amplification in normal breast, prostate, cervix, and epidermal tissues. The presence of NB-1 transcripts was variable in primary breast carcinoma tissues and undetectable in tumor-derived cell lines of breast, prostate, or other origins. NB-1 mRNA expression could be down-regulated in cultured HMECs by exposure to reconstituted extracellular matrix material, while exposure to transforming growth factor type β increased its relative abundance. The protein encoded by NB-1 may have Ca 2 plus binding properties and perform functions similar to those of authentic calmodulin. Its possible roles in differentiation and/or suppression of tumorigenicity in epithelial tissues remain to be examined

  11. Leucine zipper, down regulated in cancer-1 gene expression in prostate cancer

    Science.gov (United States)

    Salemi, Michele; Barone, Nunziata; La Vignera, Sandro; Condorelli, Rosita A.; Recupero, Domenico; Galia, Antonio; Fraggetta, Filippo; Aiello, Anna Maria; Pepe, Pietro; Castiglione, Roberto; Vicari, Enzo; Calogero, Aldo E.

    2016-01-01

    Numerous genetic alterations have been implicated in the development of prostate cancer (PCa). DNA and protein microarrays have enabled the identification of genes associated with apoptosis, which is important in PCa development. Despite the molecular mechanisms are not entirely understood, inhibition of apoptosis is a critical pathophysiological factor that contributes to the onset and progression of PCa. Leucine zipper, down-regulated in cancer 1 (LDOC-1) is a known regulator of the nuclear factor (NF)-mediated pathway of apoptosis through the inhibition of NF-κB. The present study investigated the expression of the LDOC-1 gene in LNCaP, PC-3, PNT1A and PNT2 prostate cell lines by reverse transcription-quantitative polymerase chain reaction. In addition LDOC-1 protein expression in normal prostate tissues and PCa was studied by immunohistochemistry. LDOC-1 messenger RNA resulted overexpressed in LNCaP and PC-3 PCa cell lines compared with the two normal prostate cell lines PNT1A and PNT2. The results of immunohistochemistry demonstrated a positive cytoplasmic LDOC-1 staining in all PCa and normal prostate samples, whereas no nuclear staining was observed in any sample. Furthermore, a more intense signal was evidenced in PCa samples. LDOC-1 gene overexpression in PCa suggests an activity of LDOC-1 in PCa cell lines. PMID:27698860

  12. Nutlin-3 down-regulates retinoblastoma protein expression and inhibits muscle cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Erica M. [Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118 (United States); Niu, MengMeng; Bergholz, Johann [Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610014 China (China); Jim Xiao, Zhi-Xiong, E-mail: jxiao@bu.edu [Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118 (United States); Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610014 China (China)

    2015-05-29

    The p53 tumor suppressor gene plays a critical role in regulation of proliferation, cell death and differentiation. The MDM2 oncoprotein is a major negative regulator for p53 by binding to and targeting p53 for proteasome-mediated degradation. The small molecule inhibitor, nutlin-3, disrupts MDM2-p53 interaction resulting in stabilization and activation of p53 protein. We have previously shown that nutlin-3 activates p53, leading to MDM2 accumulation as concomitant of reduced retinoblastoma (Rb) protein stability. It is well known that Rb is important in muscle development and myoblast differentiation and that rhabdomyosarcoma (RMS), or cancer of the skeletal muscle, typically harbors MDM2 amplification. In this study, we show that nutlin-3 inhibited myoblast proliferation and effectively prevented myoblast differentiation, as evidenced by lack of expression of muscle differentiation markers including myogenin and myosin heavy chain (MyHC), as well as a failure to form multinucleated myotubes, which were associated with dramatic increases in MDM2 expression and decrease in Rb protein levels. These results indicate that nutlin-3 can effectively inhibit muscle cell differentiation. - Highlights: • Nutlin-3 inhibits myoblast proliferation and prevents differentiation into myotubes. • Nutlin-3 increases MDM2 expression and down-regulates Rb protein levels. • This study has implication in nutlin-3 treatment of rhabdomyosarcomas.

  13. Minocycline down-regulates topical mucosal inflammation during the application of microbicide candidates.

    Directory of Open Access Journals (Sweden)

    Liangzhu Li

    Full Text Available An effective anti-human immunodeficiency virus-1 (HIV-1 microbicide should exert its action in the absence of causing aberrant activation of topical immunity that will increase the risk of HIV acquisition. In the present study, we demonstrated that the vaginal application of cellulose sulfate (CS gel induced topical mucosal inflammatory responses; the addition of minocycline to CS gel could significantly attenuate the inflammation in a mice model. The combined gel of CS plus minocycline not only reduced the production of inflammatory cytokines in cervicovaginal lavages (CVLs, also down-regulated the activation of CD4+ T cells and the recruitment of other immune cells including HIV target cells into vaginal tissues. Furthermore, an In vitro HIV-1 pseudovirus infection inhibition assay showed that the combined gel decreased the infection efficacy of different subtypes of HIV-1 pseudoviruses compared with that of CS gel alone. These results implicate that minocycline could be integrated into microbicide formulation to suppress the aberrant activation of topical mucosal immunity and enhance the safety profile during the application of microbicides.

  14. microRNA-143 down-regulates Hexokinase 2 in colon cancer cells

    DEFF Research Database (Denmark)

    Gregersen, Lea Haarup; Jacobsen, Anders; Frankel, Lisa

    2012-01-01

    a significant enrichment of miR-143 seed sites in their 3' UTRs. Here we report the identification of Hexokinase 2 (HK2) as a direct target of miR-143. We show that re-introduction of miR-143 in the colon cancer cell line DLD-1 results in a decreased lactate secretion. CONCLUSION: We have identified...... and validated HK2 as a miR-143 target. Furthermore, our results indicate that miR-143 mediated down-regulation of HK2 affects glucose metabolism in colon cancer cells. We hypothesize that loss of miR-143-mediated repression of HK2 can promote glucose metabolism in cancer cells, contributing to the shift towards......ABSTRACT: BACKGROUND: MicroRNAs (miRNAs) are well recognized as gene regulators and have been implicated in the regulation of development as well as human diseases. miR-143 is located at a fragile site on chromosome 5 frequently deleted in cancer, and has been reported to be down...

  15. Down regulation of macrophage IFNGR1 exacerbates systemic L. monocytogenes infection.

    Directory of Open Access Journals (Sweden)

    Emily M Eshleman

    2017-05-01

    Full Text Available Interferons (IFNs target macrophages to regulate inflammation and resistance to microbial infections. The type II IFN (IFNγ acts on a cell surface receptor (IFNGR to promote gene expression that enhance macrophage inflammatory and anti-microbial activity. Type I IFNs can dampen macrophage responsiveness to IFNγ and are associated with increased susceptibility to numerous bacterial infections. The precise mechanisms responsible for these effects remain unclear. Type I IFNs silence macrophage ifngr1 transcription and thus reduce cell surface expression of IFNGR1. To test how these events might impact macrophage activation and host resistance during bacterial infection, we developed transgenic mice that express a functional FLAG-tagged IFNGR1 (fGR1 driven by a macrophage-specific promoter. Macrophages from fGR1 mice expressed physiologic levels of cell surface IFNGR1 at steady state and responded equivalently to WT C57Bl/6 macrophages when treated with IFNγ alone. However, fGR1 macrophages retained cell surface IFNGR1 and showed enhanced responsiveness to IFNγ in the presence of type I IFNs. When fGR1 mice were infected with the bacterium Listeria monocytogenes their resistance was significantly increased, despite normal type I and II IFN production. Enhanced resistance was dependent on IFNγ and associated with increased macrophage activation and antimicrobial function. These results argue that down regulation of myeloid cell IFNGR1 is an important mechanism by which type I IFNs suppress inflammatory and anti-bacterial functions of macrophages.

  16. Dioscin enhances methotrexate absorption by down-regulating MDR1 in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lijuan, E-mail: jlwang1979@163.com [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning (China); Wang, Changyuan, E-mail: wangcyuan@163.com [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, Liaoning (China); Peng, Jinyong, E-mail: jinyongpeng2005@163.com [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, Liaoning (China); Liu, Qi, E-mail: llaqii@yahoo.com.cn [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, Liaoning (China); Meng, Qiang, E-mail: mengq531@yahoo.cn [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, Liaoning (China); Sun, Huijun, E-mail: sunhuijun@hotmail.com [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, Liaoning (China); Huo, Xiaokui, E-mail: huoxiaokui@163.com [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, Liaoning (China); and others

    2014-06-01

    The purpose of this study was to investigate the enhancing effect of dioscin on the absorption of methotrexate (MTX) and clarify the molecular mechanism involved in vivo and in vitro. Dioscin increased MTX chemosensitivity and transepithelial flux in the absorptive direction, significantly inhibiting multidrug resistance 1 (MDR1) mRNA and protein expression and MDR1 promoter and nuclear factor κ-B (NF-κB) activities in Caco-2 cells. Moreover, inhibitor κB-α (IκB-α) degradation was inhibited by dioscin. Dioscin enhanced the intracellular concentration of MTX by down-regulating MDR1 expression through a mechanism that involves NF-κB signaling pathway inhibition in Caco-2 cells. Dioscin strengthened MTX absorption by inhibiting MDR1 expression in rat intestine. In addition, even though MTX is absorbed into the enterocytes, there was no increase in toxicity observed, and that, in fact, decreased toxicity was seen. - Highlights: • Dioscin raised MTX concentration by inhibiting MDR1 in Caco-2 cells. • Dioscin suppresses MDR1 by inhibiting NF-κB signaling pathway in Caco-2 cells. • Dioscin can enhance MTX absorption via inhibiting MDR1 in vivo and in vitro. • Dioscin did not increase MTX-induced gastrointestinal mucosal toxicity.

  17. Antisense down-regulation of 4CL expression alters lignification, tree growth, and saccharification potential of field-grown poplar

    Science.gov (United States)

    Steven L. Voelker; Barbara Lachenbruch; Frederick C. Meinzer; Michael Jourdes; Chanyoung Ki; Ann M. Patten; Laurence B. Davin; Norman G. Lewis; Gerald A. Tuskan; Lee Gunter; Stephen R. Decker; Michael J. Selig; Robert Sykes; Michael E. Himmel; Peter Kitin; Olga Shevchenko; Steven H. Strauss

    2010-01-01

    Transgenic down-regulation of the Pt4CL1 gene family encoding 4-coumarate:coenzyme A ligase (4CL) has been reported as a means for reducing lignin content in cell walls and increasing overall growth rates, thereby improving feedstock quality for paper and bioethanol production. Using hybrid poplar (Populus tremula...

  18. Down-regulation of ABCG2, a urate exporter, by parathyroid hormone enhances urate accumulation in secondary hyperparathyroidism.

    Science.gov (United States)

    Sugimoto, Ryusei; Watanabe, Hiroshi; Ikegami, Komei; Enoki, Yuki; Imafuku, Tadashi; Sakaguchi, Yoshiaki; Murata, Michiya; Nishida, Kento; Miyamura, Shigeyuki; Ishima, Yu; Tanaka, Motoko; Matsushita, Kazutaka; Komaba, Hirotaka; Fukagawa, Masafumi; Otagiri, Masaki; Maruyama, Toru

    2017-03-01

    Hyperuricemia occurs with increasing frequency among patients with hyperparathyroidism. However, the molecular mechanism by which the serum parathyroid hormone (PTH) affects serum urate levels remains unknown. This was studied in uremic rats with secondary hyperparathyroidism where serum urate levels were found to be increased and urate excretion in the intestine and kidney decreased, presumably due to down-regulation of the expression of the urate exporter ABCG2 in intestinal and renal epithelial membranes. These effects were prevented by administration of the calcimimetic cinacalcet, a PTH suppressor, suggesting that PTH may down-regulate ABCG2 expression. This was directly tested in intestinal Caco-2 cells where the expression of ABCG2 on the plasma membrane was down-regulated by PTH (1-34) while its mRNA level remained unchanged. Interestingly, an inactive PTH derivative (13-34) had no effect, suggesting that a posttranscriptional regulatory system acts through the PTH receptor to regulate ABCG2 plasma membrane expression. As found in an animal study, additional clinical investigations showed that treatment with cinacalcet resulted in significant reductions in serum urate levels together with decreases in PTH levels in patients with secondary hyperparathyroidism undergoing dialysis. Thus, PTH down-regulates ABCG2 expression on the plasma membrane to suppress intestinal and renal urate excretion, and the effects of PTH can be prevented by cinacalcet treatment. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  19. Pentamidine blocks the interaction between mutant S100A5 and RAGE V domain and inhibits the RAGE signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Ching Chang, E-mail: ccjwo@yahoo.com.tw [Department of Chemistry, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Chou, Ruey Hwang, E-mail: rhchou@mail.cmu.edu.tw [Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung 40402, Taiwan (China); Yu, Chin, E-mail: cyu.nthu@gmail.com [Department of Chemistry, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China)

    2016-08-19

    The human S100 protein family contains small, dimeric and acidic proteins that contain two EF-hand motifs and bind calcium. When S100A5 binds calcium, its conformation changes and promotes interaction with the target protein. The extracellular domain of RAGE (Receptor of Advanced Glycation End products) contain three domains: C1, C2 and V. The RAGE V domain is the target protein of S100A5 that promotes cell survival, growth and differentiation by activating several signaling pathways. Pentamidine is an apoptotic and antiparasitic drug that is used to treat or prevent pneumonia. Here, we found that pentamidine interacts with S100A5 using HSQC titration. We elucidated the interactions of S100A5 with RAGE V domain and pentamidine using fluorescence and NMR spectroscopy. We generated two binary models—the S100A5-RAGE V domain and S100A5-Pentamidine complex—and then observed that the pentamidine and RAGE V domain share a similar binding region in mS100A5. We also used the WST-1 assay to investigate the bioactivity of S100A5, RAGE V domain and pentamidine. These results indicated that pentamidine blocks the binding between S100A5 and RAGE V domain. This finding is useful for the development of new anti-proliferation drugs. - Highlights: • The interaction between mS100A5–RAGE V was investigated by fluorescence spectroscopy. • The interfacial residues on mS100A5–RAGE V and mS100A5–pentamidine contact surface were mapped by {sup 1}H-{sup 15}N HSQC experiments. • mS100A5–RAGE V and mS100A5–pentamidine complex models were generated from NMR restraints using HADDOCK program. • The bioactivity of the mS100A5–RAGE V and mS100A5–pentamidine complex was studied using WST-1 assay.

  20. Epigenetic down-regulated DDX10 promotes cell proliferation through Akt/NF-κB pathway in ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Gai, Muhuizi; Bo, Qifang; Qi, Lixia, E-mail: lixiaqi_dph@sina.com

    2016-01-22

    Ovarian cancer contributes to the majority of ovarian cancer, while the molecular mechanisms remain elusive. Recently, some DEAD box protein 1 has been reported play a tumor suppressor role in ovarian cancer progression. However, the functions of DEAD box protein (DDX) members in ovarian cancer development remain largely unknown. In current study, we retrieved GEO databases and surprisingly found that DDX10 is significantly down-regulated in ovarian cancer tissues compared with normal ovary. These findings suggest that DDX10 might also play a suppressive role in ovarian cancer. We then validated the down-regulated expression pattern of DDX10 in fresh ovarian cancer tissues. Furthermore, both loss- and gain-functions assays reveal that the down-regulated DDX10 could promote ovarian cancer proliferation in vitro and the xenograft subcutaneous tumor formation assays confirmed these findings in vivo. In addition, we found that DDX10 is epigenetic silenced by miR-155-5p in ovarian cancer. Moreover, we further preliminary illustrated that down-regulated DDX10 promotes ovarian cancer cell proliferation through Akt/NF-κB pathway. Taken together, in current study, we found a novel tumor suppressor, DDX10, is epigenetic silenced by miR-155-5p in ovarian cancer, and the down-regulated expression pattern of DDX10 promotes ovarian cancer proliferation through Akt/NF-κB pathway. Our findings shed the light that DDX families might be a novel for ovarian cancer treatment. - Highlights: • A novel DEAD box protein, DDX10 is significantly down-regulated in ovarian cancer tissues. • Down-regulated DDX10 promotes ovarian cancer cell proliferation and growth both in vitro and in vivo. • miR-155-5p is highly expressed in ovarian cancer tissues and epigenetically targets DDX10. • DDX10 and miR-155-5p regulates Akt/p65 axis in ovarian cancer cells.

  1. Epigenetic down-regulated DDX10 promotes cell proliferation through Akt/NF-κB pathway in ovarian cancer

    International Nuclear Information System (INIS)

    Gai, Muhuizi; Bo, Qifang; Qi, Lixia

    2016-01-01

    Ovarian cancer contributes to the majority of ovarian cancer, while the molecular mechanisms remain elusive. Recently, some DEAD box protein 1 has been reported play a tumor suppressor role in ovarian cancer progression. However, the functions of DEAD box protein (DDX) members in ovarian cancer development remain largely unknown. In current study, we retrieved GEO databases and surprisingly found that DDX10 is significantly down-regulated in ovarian cancer tissues compared with normal ovary. These findings suggest that DDX10 might also play a suppressive role in ovarian cancer. We then validated the down-regulated expression pattern of DDX10 in fresh ovarian cancer tissues. Furthermore, both loss- and gain-functions assays reveal that the down-regulated DDX10 could promote ovarian cancer proliferation in vitro and the xenograft subcutaneous tumor formation assays confirmed these findings in vivo. In addition, we found that DDX10 is epigenetic silenced by miR-155-5p in ovarian cancer. Moreover, we further preliminary illustrated that down-regulated DDX10 promotes ovarian cancer cell proliferation through Akt/NF-κB pathway. Taken together, in current study, we found a novel tumor suppressor, DDX10, is epigenetic silenced by miR-155-5p in ovarian cancer, and the down-regulated expression pattern of DDX10 promotes ovarian cancer proliferation through Akt/NF-κB pathway. Our findings shed the light that DDX families might be a novel for ovarian cancer treatment. - Highlights: • A novel DEAD box protein, DDX10 is significantly down-regulated in ovarian cancer tissues. • Down-regulated DDX10 promotes ovarian cancer cell proliferation and growth both in vitro and in vivo. • miR-155-5p is highly expressed in ovarian cancer tissues and epigenetically targets DDX10. • DDX10 and miR-155-5p regulates Akt/p65 axis in ovarian cancer cells.

  2. High-Mobility Group Box 1 Mediates Fibroblast Activity via RAGE-MAPK and NF-κB Signaling in Keloid Scar Formation

    Directory of Open Access Journals (Sweden)

    Jihee Kim

    2017-12-01

    Full Text Available Emerging studies have revealed the involvement of high-mobility group box 1 (HMGB1 in systemic fibrotic diseases, yet its role in the cutaneous scarring process has not yet been investigated. We hypothesized that HMGB1 may promote fibroblast activity to cause abnormal cutaneous scarring. In vitro wound healing assay with normal and keloid fibroblasts demonstrated that HMGB1 administration promoted the migration of both fibroblasts with increased speed and a greater traveling distance. Treatment of the HMGB1 inhibitor glycyrrhizic acid (GA showed an opposing effect on both activities. To analyze the downstream mechanism, the protein levels of extracellular signal-regulated kinase (ERK 1/2, protein kinase B (AKT, and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB were measured by western blot analysis. HMGB1 increased the expression levels of ERK1/2, AKT, and NF-κB compared to the control, which was suppressed by GA. HMGB1 promoted both normal and keloid fibroblasts migration to a degree equivalent to that achieved with TGF-β. We concluded that HMGB1 activates fibroblasts via the receptor for advanced glycation end product (RAGE—mitogen-activated protein kinases (MAPK and NF-κB interaction signaling pathways. Further knowledge of the relationship of HMGB1 with skin fibrosis may lead to a promising clinical approach to manage abnormal scarring.

  3. Carbachol does not down-regulate substance P receptors in pancreatic acini.

    Science.gov (United States)

    Patto, R J; Vinayek, R; Jensen, R T; Gardner, J D

    1992-01-01

    In a previous study, we found that first incubating guinea pig pancreatic acini with carbachol caused desensitization of the enzyme secretory response to cholecystokinin-octapeptide (CCK-8), bombesin, and carbachol but not that to substance P. This carbachol-induced desensitization could be accounted for by carbachol-induced down-regulation of receptors for CCK-8, bombesin, and carbachol. Although carbachol did not desensitize the enzyme secretory response to substance P, an effect of carbachol on substance P receptors was not examined. In the present study, in dispersed acini from guinea pig pancreas, substance P caused a twofold increase in amylase secretion. Stimulation was half-maximal at 0.7 nM and was maximal at 10 nM. Analysis of the ability of substance P to inhibit binding of 125I-substance P to substance P receptors indicated that acini possess a single class of receptors for substance P (Kd = 0.8 +/- 0.1 nM; Bmax = 1,037 +/- 145 fmol/mg of DNA). There was a close correlation between the relative potency with which substance P stimulated amylase secretion (0.7 nM) and the potency for inhibiting binding of 125I-substance P (Kd = 0.8 nM). First incubating pancreatic acini with carbachol did not alter either substance P-stimulated enzyme secretion or binding of 125I-substance P to substance P receptors, whereas in the same experiments, carbachol reduced binding of 125I-CCK-8 to cholecystokinin receptors by 50% and decreased in CCK-8-stimulated enzyme secretion by 50%.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Quantitative cell signalling analysis reveals down-regulation of MAPK pathway activation in colorectal cancer.

    LENUS (Irish Health Repository)

    Gulmann, Christian

    2009-08-01

    Mitogen-activated protein kinases (MAPK) are considered to play significant roles in colonic carcinogenesis and kinase inhibitor therapy has been proposed as a potential tool in the treatment of this disease. Reverse-phase microarray assays using phospho-specific antibodies can directly measure levels of phosphorylated protein isoforms. In the current study, samples from 35 cases of untreated colorectal cancer colectomies were laser capture-microdissected to isolate epithelium and stroma from cancer as well as normal (i.e. uninvolved) mucosa. Lysates generated from these four tissue types were spotted onto reverse-phase protein microarrays and probed with a panel of antibodies to ERK, p-ERK, p38, p-p38, p-JNK, MEK and p-MEK. Whereas total protein levels were unchanged, or slightly elevated (p38, p = 0.0025) in cancers, activated isoforms, including p-ERK, p-p38 and p-JNK, were decreased two- to four-fold in cancers compared with uninvolved mucosa (p < 0.0023 in all cases except for p-JNK in epithelium, where decrement was non-significant). This was backed up by western blotting. Dukes\\' stage B and C cancers displayed lower p-ERK and p-p38 expression than Dukes\\' stage A cancers, although this was not statistically significant. It is concluded that MAPK activity may be down-regulated in colorectal cancer and that further exploration of inhibitory therapy in this system should be carefully evaluated if this finding is confirmed in larger series.

  5. Stathmin Mediates Hepatocyte Resistance to Death from Oxidative Stress by down Regulating JNK

    Science.gov (United States)

    Zhao, Enpeng; Amir, Muhammad; Lin, Yu; Czaja, Mark J.

    2014-01-01

    Stathmin 1 performs a critical function in cell proliferation by regulating microtubule polymerization. This proliferative function is thought to explain the frequent overexpression of stathmin in human cancer and its correlation with a bad prognosis. Whether stathmin also functions in cell death pathways is unclear. Stathmin regulates microtubules in part by binding free tubulin, a process inhibited by stathmin phosphorylation from kinases including c-Jun N-terminal kinase (JNK). The involvement of JNK activation both in stathmin phosphorylation, and in hepatocellular resistance to oxidative stress, led to an examination of the role of stathmin/JNK crosstalk in oxidant-induced hepatocyte death. Oxidative stress from menadione-generated superoxide induced JNK-dependent stathmin phosphorylation at Ser-16, Ser-25 and Ser-38 in hepatocytes. A stathmin knockdown sensitized hepatocytes to both apoptotic and necrotic cell death from menadione without altering levels of oxidant generation. The absence of stathmin during oxidative stress led to JNK overactivation that was the mechanism of cell death as a concomitant knockdown of JNK1 or JNK2 blocked death. Hepatocyte death from JNK overactivation was mediated by the effects of JNK on mitochondria. Mitochondrial outer membrane permeabilization occurred in stathmin knockdown cells at low concentrations of menadione that triggered apoptosis, whereas mitochondrial β-oxidation and ATP homeostasis were compromised at higher, necrotic menadione concentrations. Stathmin therefore mediates hepatocyte resistance to death from oxidative stress by down regulating JNK and maintaining mitochondrial integrity. These findings demonstrate a new mechanism by which stathmin promotes cell survival and potentially tumor growth. PMID:25285524

  6. Stathmin mediates hepatocyte resistance to death from oxidative stress by down regulating JNK.

    Directory of Open Access Journals (Sweden)

    Enpeng Zhao

    Full Text Available Stathmin 1 performs a critical function in cell proliferation by regulating microtubule polymerization. This proliferative function is thought to explain the frequent overexpression of stathmin in human cancer and its correlation with a bad prognosis. Whether stathmin also functions in cell death pathways is unclear. Stathmin regulates microtubules in part by binding free tubulin, a process inhibited by stathmin phosphorylation from kinases including c-Jun N-terminal kinase (JNK. The involvement of JNK activation both in stathmin phosphorylation, and in hepatocellular resistance to oxidative stress, led to an examination of the role of stathmin/JNK crosstalk in oxidant-induced hepatocyte death. Oxidative stress from menadione-generated superoxide induced JNK-dependent stathmin phosphorylation at Ser-16, Ser-25 and Ser-38 in hepatocytes. A stathmin knockdown sensitized hepatocytes to both apoptotic and necrotic cell death from menadione without altering levels of oxidant generation. The absence of stathmin during oxidative stress led to JNK overactivation that was the mechanism of cell death as a concomitant knockdown of JNK1 or JNK2 blocked death. Hepatocyte death from JNK overactivation was mediated by the effects of JNK on mitochondria. Mitochondrial outer membrane permeabilization occurred in stathmin knockdown cells at low concentrations of menadione that triggered apoptosis, whereas mitochondrial β-oxidation and ATP homeostasis were compromised at higher, necrotic menadione concentrations. Stathmin therefore mediates hepatocyte resistance to death from oxidative stress by down regulating JNK and maintaining mitochondrial integrity. These findings demonstrate a new mechanism by which stathmin promotes cell survival and potentially tumor growth.

  7. Curcumin inhibits hepatitis B virus infection by down-regulating cccDNA-bound histone acetylation.

    Science.gov (United States)

    Wei, Zhi-Qiang; Zhang, Yong-Hong; Ke, Chang-Zheng; Chen, Hong-Xia; Ren, Pan; He, Yu-Lin; Hu, Pei; Ma, De-Qiang; Luo, Jie; Meng, Zhong-Ji

    2017-09-14

    To investigate the potential effect of curcumin on hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) and the underlying mechanism. A HepG2.2.15 cell line stably transfected with HBV was treated with curcumin, and HBV surface antigen (HBsAg) and e antigen (HBeAg) expression levels were assessed by ELISA. Intracellular HBV DNA replication intermediates and cccDNA were detected by Southern blot and real-time PCR, respectively. The acetylation levels of histones H3 and H4 were measured by Western blot. H3/H4-bound cccDNA was detected by chromatin immunoprecipitation (ChIP) assays. The deacetylase inhibitors trichostatin A and sodium butyrate were used to study the mechanism of action for curcumin. Additionally, short interfering RNAs (siRNAs) targeting HBV were tested along with curcumin. Curcumin treatment led to time- and dose-dependent reductions in HBsAg and HBeAg expression and significant reductions in intracellular HBV DNA replication intermediates and HBV cccDNA. After treatment with 20 μmol/L curcumin for 2 d, HBsAg and cccDNA levels in HepG2.2.15 cells were reduced by up to 57.7% ( P curcumin, accompanied by reductions in H3- and H4-bound cccDNA. Furthermore, the deacetylase inhibitors trichostatin A and sodium butyrate could block the effects of curcumin. Additionally, transfection of siRNAs targeting HBV enhanced the inhibitory effects of curcumin. Curcumin inhibits HBV gene replication via down-regulation of cccDNA-bound histone acetylation and has the potential to be developed as a cccDNA-targeting antiviral agent for hepatitis B.

  8. The Down regulated in Adenoma (dra) gene encodes an intestine-specific membrane sulfate transport protein.

    Science.gov (United States)

    Silberg, D G; Wang, W; Moseley, R H; Traber, P G

    1995-05-19

    A gene has been described, Down Regulated in Adenoma (dra), which is expressed in normal colon but is absent in the majority of colon adenomas and adenocarcinomas. However, the function of this protein is unknown. Because of sequence similarity to a recently cloned membrane sulfate transporter in rat liver, the transport function of Dra was examined. We established that dra encodes for a Na(+)-independent transporter for both sulfate and oxalate using microinjected Xenopus oocytes as an assay system. Sulfate transport was sensitive to the anion exchange inhibitor DIDS (4,4'-diisothiocyano-2,2' disulfonic acid stilbene). Using an RNase protection assay, we found that dra mRNA expression is limited to the small intestine and colon in mouse, therefore identifying Dra as an intestine-specific sulfate transporter. dra also had a unique pattern of expression during intestinal development. Northern blot analysis revealed a low level of expression in colon at birth with a marked increase in the first 2 postnatal weeks. In contrast, there was a lower, constant level of expression in small intestine in the postnatal period. Caco-2 cells, a colon carcinoma cell line that differentiates over time in culture, demonstrated a marked induction of dra mRNA as cells progressed from the preconfluent (undifferentiated) to the postconfluent (differentiated) state. These results show that Dra is an intestine-specific Na(+)-independent sulfate transporter that has differential expression during colonic development. This functional characterization provides the foundation for investigation of the role of Dra in intestinal sulfate transport and in the malignant phenotype.

  9. CD36 deficiency leads to choroidal involution via COX2 down-regulation in rodents.

    Directory of Open Access Journals (Sweden)

    Marianne Houssier

    2008-02-01

    Full Text Available BACKGROUND: In the Western world, a major cause of blindness is age-related macular degeneration (AMD. Recent research in angiogenesis has furthered the understanding of choroidal neovascularization, which occurs in the "wet" form of AMD. In contrast, very little is known about the mechanisms of the predominant, "dry" form of AMD, which is characterized by retinal atrophy and choroidal involution. The aim of this study is to elucidate the possible implication of the scavenger receptor CD36 in retinal degeneration and choroidal involution, the cardinal features of the dry form of AMD. METHODS AND FINDINGS: We here show that deficiency of CD36, which participates in outer segment (OS phagocytosis by the retinal pigment epithelium (RPE in vitro, leads to significant progressive age-related photoreceptor degeneration evaluated histologically at different ages in two rodent models of CD36 invalidation in vivo (Spontaneous hypertensive rats (SHR and CD36-/- mice. Furthermore, these animals developed significant age related choroidal involution reflected in a 100%-300% increase in the avascular area of the choriocapillaries measured on vascular corrosion casts of aged animals. We also show that proangiogenic COX2 expression in RPE is stimulated by CD36 activating antibody and that CD36-deficient RPE cells from SHR rats fail to induce COX2 and subsequent vascular endothelial growth factor (VEGF expression upon OS or antibody stimulation in vitro. CD36-/- mice express reduced levels of COX2 and VEGF in vivo, and COX2-/- mice develop progressive choroidal degeneration similar to what is seen in CD36 deficiency. CONCLUSIONS: CD36 deficiency leads to choroidal involution via COX2 down-regulation in the RPE. These results show a novel molecular mechanism of choroidal degeneration, a key feature of dry AMD. These findings unveil a pathogenic process, to our knowledge previously undescribed, with important implications for the development of new therapies.

  10. microRNA-7 down-regulation mediates excessive collagen expression in localized scleroderma.

    Science.gov (United States)

    Etoh, Mitsuhiko; Jinnin, Masatoshi; Makino, Katsunari; Yamane, Keitaro; Nakayama, Wakana; Aoi, Jun; Honda, Noritoshi; Kajihara, Ikko; Makino, Takamitsu; Fukushima, Satoshi; Ihn, Hironobu

    2013-01-01

    Localized scleroderma (LSc), a connective tissue disorder restricted to the skin and subcutaneous tissue, is characterized by skin fibrosis due to an excessive deposition of types I collagen. The mechanism of such fibrosis is still unknown, but epigenetics may play some roles in the excessive collagen expression. In the present study, we investigated the mechanism of fibrosis seen in LSc, focusing on microRNA (miRNA). miRNA expression was determined by PCR array, real-time PCR, and in situ hybridization. The function of miRNA was evaluated using specific inhibitor. Immunoblotting was performed to detect α2(I) collagen protein. PCR array analysis using tissue miRNA demonstrated miR-7 level was significantly decreased in LSc skin as well as keloid tissue compared to normal skin in vivo. In situ hybridization also showed miR-7 expression in dermal fibroblasts was decreased in LSc dermis. The transfection of specific inhibitor for miR-7 into cultured normal dermal fibroblasts resulted in the up-regulation of α2(I) collagen protein in vitro. Also, the serum levels of miR-7 were significantly decreased in LSc patients compared with healthy controls, but serum miR-29a levels not. Systemic or local down-regulation of miR-7 may contribute to the pathogenesis of LSc via the overexpression of α2(I) collagen, and serum miR-7 may be useful as a disease marker. Investigation of the regulatory mechanisms of LSc by miRNA may lead to new treatments by the transfection into the lesional skin of this disease.

  11. Down-regulation of voltage-dependent sodium channels initiated by sodium influx in developing neurons

    International Nuclear Information System (INIS)

    Dargent, B.; Couraud, F.

    1990-01-01

    To address the issue of whether regulatory feedback exists between the electrical activity of a neuron and ion-channel density, the authors investigated the effect of Na + -channel activators (scorpion α toxin, batrachotoxin, and veratridine) on the density of Na + channels in fetal rat brain neurons in vitro. A partial but rapid (t 1/2 , 15 min) disappearance of surface Na + channels was observed as measured by a decrease in the specific binding of [ 3 H]saxitoxin and 125 I-labeled scorpion β toxin and a decrease in specific 22 Na + uptake. Moreover, the increase in the number of Na + channels that normally occurs during neuronal maturation in vitro was inhibited by chronic channel activator treatment. The induced disappearance of Na + channels was abolished by tetrodotoxin, was found to be dependent on the external Na + concentration, and was prevented when either choline (a nonpermeant ion) or Li + (a permeant ion) was substituted for Na + . Amphotericin B, a Na + ionophore, and monensin were able to mimick the effect of Na + -channel activators, while a KCl depolarization failed to do this. This feedback regulation seems to be a neuronal property since Na + -channel density in cultured astrocytes was not affected by channel activator treatment or by amphotericin B. The present evidence suggests that an increase in intracellular Na + concentration, whether elicited by Na + -channel activators or mediated by a Na + ionophore, can induce a decrease in surface Na + channels and therefore is involved in down-regulation of Na + -channel density in fetal rat brain neurons in vitro

  12. CCoAOMT Down-Regulation Activates Anthocyanin Biosynthesis in Petunia1

    Science.gov (United States)

    Shaipulah, Nur Fariza M.; Muhlemann, Joëlle K.; Woodworth, Benjamin D.; Van Moerkercke, Alex; Ramirez, Aldana A.; Haring, Michel A.; Schuurink, Robert C.

    2016-01-01

    Anthocyanins and volatile phenylpropenes (isoeugenol and eugenol) in petunia (Petunia hybrida) flowers have the precursor 4-coumaryl coenzyme A (CoA) in common. These phenolics are produced at different stages during flower development. Anthocyanins are synthesized during early stages of flower development and sequestered in vacuoles during the lifespan of the flowers. The production of isoeugenol and eugenol starts when flowers open and peaks after anthesis. To elucidate additional biochemical steps toward (iso)eugenol production, we cloned and characterized a caffeoyl-coenzyme A O-methyltransferase (PhCCoAOMT1) from the petals of the fragrant petunia ‘Mitchell’. Recombinant PhCCoAOMT1 indeed catalyzed the methylation of caffeoyl-CoA to produce feruloyl CoA. Silencing of PhCCoAOMT1 resulted in a reduction of eugenol production but not of isoeugenol. Unexpectedly, the transgenic plants had purple-colored leaves and pink flowers, despite the fact that cv Mitchell lacks the functional R2R3-MYB master regulator ANTHOCYANIN2 and has normally white flowers. Our results indicate that down-regulation of PhCCoAOMT1 activated the anthocyanin pathway through the R2R3-MYBs PURPLE HAZE (PHZ) and DEEP PURPLE, with predominantly petunidin accumulating. Feeding cv Mitchell flowers with caffeic acid induced PHZ expression, suggesting that the metabolic perturbation of the phenylpropanoid pathway underlies the activation of the anthocyanin pathway. Our results demonstrate a role for PhCCoAOMT1 in phenylpropene production and reveal a link between PhCCoAOMT1 and anthocyanin production. PMID:26620524

  13. CCoAOMT Down-Regulation Activates Anthocyanin Biosynthesis in Petunia.

    Science.gov (United States)

    Shaipulah, Nur Fariza M; Muhlemann, Joëlle K; Woodworth, Benjamin D; Van Moerkercke, Alex; Verdonk, Julian C; Ramirez, Aldana A; Haring, Michel A; Dudareva, Natalia; Schuurink, Robert C

    2016-02-01

    Anthocyanins and volatile phenylpropenes (isoeugenol and eugenol) in petunia (Petunia hybrida) flowers have the precursor 4-coumaryl coenzyme A (CoA) in common. These phenolics are produced at different stages during flower development. Anthocyanins are synthesized during early stages of flower development and sequestered in vacuoles during the lifespan of the flowers. The production of isoeugenol and eugenol starts when flowers open and peaks after anthesis. To elucidate additional biochemical steps toward (iso)eugenol production, we cloned and characterized a caffeoyl-coenzyme A O-methyltransferase (PhCCoAOMT1) from the petals of the fragrant petunia 'Mitchell'. Recombinant PhCCoAOMT1 indeed catalyzed the methylation of caffeoyl-CoA to produce feruloyl CoA. Silencing of PhCCoAOMT1 resulted in a reduction of eugenol production but not of isoeugenol. Unexpectedly, the transgenic plants had purple-colored leaves and pink flowers, despite the fact that cv Mitchell lacks the functional R2R3-MYB master regulator ANTHOCYANIN2 and has normally white flowers. Our results indicate that down-regulation of PhCCoAOMT1 activated the anthocyanin pathway through the R2R3-MYBs PURPLE HAZE (PHZ) and DEEP PURPLE, with predominantly petunidin accumulating. Feeding cv Mitchell flowers with caffeic acid induced PHZ expression, suggesting that the metabolic perturbation of the phenylpropanoid pathway underlies the activation of the anthocyanin pathway. Our results demonstrate a role for PhCCoAOMT1 in phenylpropene production and reveal a link between PhCCoAOMT1 and anthocyanin production. © 2016 American Society of Plant Biologists. All Rights Reserved.

  14. Irradiation of protoporphyric mice induces down-regulation of epidermal eicosanoid metabolism

    International Nuclear Information System (INIS)

    He, D.; Lim, H.W.

    1991-01-01

    This study investigated the effect of radiation on clinical and histologic changes, and on cutaneous eicosanoid metabolism, in Skh:HR-1 hairless albino mice rendered protoporphyric by the administration of collidine. At 0.1-18 h after exposure to 12 kJ/m2 of 396-406 nm irradiation, thicknesses of back skin and ears were measured, and histologic changes were evaluated by using hematoxylin and eosin (H-E) and Giemsa's stains. Activities of eicosanoid-metabolizing enzymes in epidermal and dermal homogenates were assessed by incubating the tissue homogenates with 3H-AA, followed by quantitation of the eicosanoids generated by radio-TLC. In irradiated protoporphyric mice, an increase of back-skin thickness was noted at 0.1 h, reaching a peak at 18 h, whereas maximal increase in ear thickness was observed at 12 h. Histologic changes included dermal edema, increased mast cell degranulation, and mononuclear cells in the dermis. In these irradiated protoporphyric animals, generations of 6 keto-PGF1a, PGF2a, PGE2, PGD2, and HETE by epidermal eicosanoid-metabolizing enzymes were markedly suppressed at all the timepoints studied. Dermal eicosanoid-metabolizing enzymes of irradiated protoporphyric mice generated increased amounts of PGE2 and HETE at 18 h, probably reflecting the presence of dermal cellular infiltrates. The suppression of the activities of epidermal eicosanoid-metabolizing enzymes was prevented by intraperitoneal injection of WR-2721, a sulfhydryl group generator, prior to irradiation, suggesting that the suppression was secondary to photo-oxidative damage of the enzymes during the in vivo phototoxic response. These results suggest that the effect of protoporphyrin and radiation on cutaneous eicosanoid metabolism in this animal model in vivo is that of a down regulation of the activities of epidermal eicosanoid-metabolizing enzymes

  15. Down-regulated resistin level in consequence of decreased neutrophil counts in untreated Grave's disease.

    Science.gov (United States)

    Peng, Ying; Qi, Yicheng; Huang, Fengjiao; Chen, Xinxin; Zhou, Yulin; Ye, Lei; Wang, Weiqing; Ning, Guang; Wang, Shu

    2016-11-29

    Resistin, belongs to cysteine-rich secretory protein, is mainly produced by circulating leukocytes, such as neutrophils monocytes and macrophages in humans. To date, few but controversial studies have reported about resistin concentrations in hyperthyroid patients, especially in Graves' disease (GD). We undertaked a controlled, prospective study to explore the serum resistin concentration in GD patients before and after -MMI treatment. In addition, we also investigated the main influencing factor on serum resistin level and discuessed the potential role of serum resistin plays in GD patients. 39 untreated GD (uGD) patients, including 8 males and 31 females, were enrolled in our investigation. All of these patients were prescribed with MMI treatment, in addition to 25 healthy controls. Anthropometric parameters and hormone assessment were measured. Enzyme-linked immunosorbent assay was used to detect serum resistin concentration in different stages of GD patients. Furthermore, neutrophil cell line NB4 with or without T3 treatment to detect the effect of thyroid hormones on resistin expression. The serum resistin level and neutrophil counts in untreated GD patients were significantly declined. And all of these parameters were recovered to normal after MMI treatment in ethyroid GD (eGD) and TRAb-negative conversion (nGD) patients. Resistin concentration exhibited a negative correlation with FT3 and FT4, but a positive correlation with absolute number of neutrophiles in uGD patients, whereas did not correlate with thyroid autoimmune antibodies and BMI. Neutrophile cell line, NB4, produced decreased expression of resistin when stimulated with T3. Our study showed a decrease of serum resistin level in GD patients and we suggested that the serum resistin might primarily secreted from circulating neutrophils and down-regulated by excessive thyroid hormones in GD patients.

  16. Ectodermal-neural cortex 1 down-regulates Nrf2 at the translational level.

    Directory of Open Access Journals (Sweden)

    Xiao-Jun Wang

    Full Text Available The transcription factor Nrf2 is the master regulator of a cellular defense mechanism against environmental insults. The Nrf2-mediated antioxidant response is accomplished by the transcription of a battery of genes that encode phase II detoxifying enzymes, xenobiotic transporters, and antioxidants. Coordinated expression of these genes is critical in protecting cells from toxic and carcinogenic insults and in maintaining cellular redox homeostasis. Activation of the Nrf2 pathway is primarily controlled by Kelch-like ECH-associated protein 1 (Keap1, which is a molecular switch that turns on or off the Nrf2 signaling pathway according to intracellular redox conditions. Here we report our finding of a novel Nrf2 suppressor ectodermal-neural cortex 1 (ENC1, which is a BTB-Kelch protein and belongs to the same family as Keap1. Transient expression of ENC1 reduced steady-state levels of Nrf2 and its downstream gene expression. Although ENC1 interacted with Keap1 indirectly, the ENC1-mediated down-regulation of Nrf2 was independent of Keap1. The negative effect of ENC1 on Nrf2 was not due to a change in the stability of Nrf2 because neither proteasomal nor lysosomal inhibitors had any effects. Overexpression of ENC1 did not result in a change in the level of Nrf2 mRNA, rather, it caused a decrease in the rate of Nrf2 protein synthesis. These results demonstrate that ENC1 functions as a negative regulator of Nrf2 through suppressing Nrf2 protein translation, which adds another level of complexity in controlling the Nrf2 signaling pathway.

  17. Circulating soluble RAGE isoforms are attenuated in obese, impaired-glucose-tolerant individuals and are associated with the development of type 2 diabetes

    DEFF Research Database (Denmark)

    Miranda, Edwin R; Somal, Vikram S; Mey, Jacob T

    2017-01-01

    The soluble receptor for advanced glycation end products (sRAGE) may be protective against inflammation associated with obesity and type 2 diabetes (T2DM). The aim of this study was to determine the distribution of sRAGE isoforms and whether sRAGE isoforms are associated with risk of T2DM...... development in subjects spanning the glucose tolerance continuum. In this retrospective analysis, circulating total sRAGE and endogenous secretory RAGE (esRAGE) were quantified via ELISA, and cleaved RAGE (cRAGE) was calculated in 274 individuals stratified by glucose tolerance status (GTS) and obesity. Group......RAGE, and esRAGE were all lower with IGT and T2DM, while the ratio of cRAGE to esRAGE (cRAGE:esRAGE) was only lower (P obesity, cRAGE:esRAGE was higher with obesity and lower with IGT (P

  18. Inner Milky Way Raging with Star Formation

    Science.gov (United States)

    2008-01-01

    More than 444,580 frames from NASA's Spitzer Space Telescope were stitched together to create this portrait of the raging star-formation occurring in the inner Milky Way. As inhabitants of a flat galactic disk, Earth and its solar system have an edge-on view of their host galaxy, like looking a glass dish from its edge. From our perspective, most of the galaxy is condensed into a blurry narrow band of light that stretches completely around the sky, also known as the galactic plane. In this mosaic the galactic plane is broken up into five components: the far-left side of the plane (top image); the area just left of the galactic center (second to top); galactic center (middle); the area to the right of galactic center (second to bottom); and the far-right side of the plane (bottom). Together, these panels represent more than 50 percent of our entire Milky Way galaxy. The red haze that permeates the picture comes from organic molecules called polycyclic aromatic hydrocarbons, which are illuminated by light from massive baby stars. On Earth, these molecules are found in automobile exhaust, or charred barbeque grills anywhere carbon molecules are burned incompletely. The patches of black are dense, obscuring dust clouds impenetrable by even Spitzer's super-sensitive infrared eyes. Bright arcs of white throughout the image are massive stellar incubators. The bluish-white haze that hovers heavily in the middle panel is starlight from the older stellar population towards the center of the galaxy. This picture was taken with Spitzer's infrared array camera, as part of the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) project. This is a four-color composite where blue is 3.6-micron light, green is 4.5 microns, orange is 5.8 microns and red is 8.0 microns.

  19. SENP1 attenuates the liver fibrosis through down-regulating the expression of SMAD2.

    Science.gov (United States)

    Wu, Linshi; Qiu, Weiqing; Sun, Jianhua; Wang, Jian

    2018-01-01

    To investigate whether SENP1 could play a regulating role in the liver fibrosis process, the Sprague-Dawley (SD) rats were used to establish the liver fibrosis rat models by intraperitoneally injecting with 1 ml/kg of 10% CCl 4 , while the control normal rats were injected with olive oil. Then confirmation experiments to verify the successful establishment of these models were conducted by detecting the cellular and lobular architecture, and liver function indexes using hematoxylin-eosin staining, Masson's trichrome staining and microplate method, respectively. In addition, the expression levels of fibrosis markers including collagen I, collagen III, α-SMA and TGF-β1 were inspected using quantitative real-time PCR (qRT-PCR), as well as SMAD2. Subsequently, the relative mRNA and protein level of SENP1 was also determined via qRT-PCR and western blot analysis. Next, the HSC-T6 cells of SENP1 knock-down were constructed and used to test the relative protein expression levels of α-SMA and SMAD2 in these cells. The results of hematoxylin-eosin staining, Masson's trichrome staining and microplate method turned out that the rat liver fibrosis models were constructed successfully, which was further confirmed by the increased expression of collagen I, collagen III, α-SMA and TGF-β1 in mRNA and protein level, as well as SMAD2. Then the expression of SENP1 was overexpressed in the rat liver fibrosis models induced by CCl 4 and the TGF-β1 treatment could increase the protein expression level of collagen I, collagen III and α-SMA. Lastly, the SENP1 knockdown HSC-T6 cells were successfully constructed, while the silence of SENP1 down-regulated the protein expression of α-SMA and SMAD2. In conclusion, this study provided a new regulation mechanism about the liver fibrosis process. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Lycium barbarum L. Polysaccharide (LBP Reduces Glucose Uptake via Down-Regulation of SGLT-1 in Caco2 Cell

    Directory of Open Access Journals (Sweden)

    Huizhen Cai

    2017-02-01

    Full Text Available Lycium barbarum L. polysaccharide (LBP is prepared from Lycium barbarum L. (L. barbarum, which is a traditional Chinese medicine. LPB has been shown to have hypoglycemic effects. In order to gain some mechanistic insights on the hypoglycemic effects of LBP, we investigated the uptake of LBP and its effect on glucose absorption in the human intestinal epithelial cell line Caco2 cell. The uptake of LBP through Caco2 cell monolayer was time-dependent and was inhibited by phloridzin, a competitive inhibitor of SGLT-1. LPB decreased the absorption of glucose in Caco2 cell, and down-regulated the expression of SGLT-1. These results suggest that LBP might be transported across the human intestinal epithelium through SGLT-1 and it inhibits glucose uptake via down-regulating SGLT-1.

  1. Ethanol extracts of black pepper or turmeric down-regulated SIRT1 protein expression in Daudi culture cells.

    Science.gov (United States)

    Nishimura, Yuri; Kitagishi, Yasuko; Yoshida, Hitomi; Okumura, Naoko; Matsuda, Satoru

    2011-01-01

    SIRT1 is a mammalian candidate molecule involved in longevity and diverse metabolic processes. The present study aimed to determine the effects of certain herbs and spices on SIRT1 expression. Human cell lines Daudi, Jurkat, U937 and K562 were cultured in RPMI-1640. Herb and spice powders were prepared and the supernatants were collected. RT-PCR was used to quantify the expression level of the gene. Protein samples were then analyzed by Western blotting. Western blotting revealed the down-regulation of SIRT1 protein expression in Daudi cells treated with extracts of black pepper or turmeric. On the other hand, the effect on the SIRT1 gene expression examined by reverse transcription polymerase chain reaction was unaltered. In conclusion, component(s) of certain herbs and spices may induce the down-regulation of SIRT1 protein.

  2. Internalization and down-regulation of the human epidermal growth factor receptor are regulated by the carboxyl-terminal tyrosines

    DEFF Research Database (Denmark)

    Helin, K; Beguinot, L

    1991-01-01

    with receptors in which 1, 2, or all 3 tyrosines were changed to phenylalanines. The triple point mutant EGF-R, expressed in NIH-3T3, exhibited low autophosphorylation in vivo, low biological and reduced kinase activities. Single and double point mutants were down-regulated, as well as wild type EGF......-R in response to EGF showing a half-life of about 1 h. Degradation of the triple point mutant, however, was impaired and resulted in a half-life of 4 h in the presence of EGF. EGF-dependent down-regulation of surface receptors was decreased in the triple point mutant EGF-R as was internalization and degradation...... of EGF. The specific rate of internalization of the triple point mutant was reduced. By contrast, intracellular processing of ligand previously internalized at 20 degrees C was similar between wild type and mutant receptors. Taken together the data indicate that the delay in degradation observed in cells...

  3. Tissue-specific down-regulation of RIPK 2 in Mycobacterium leprae-infected nu/nu mice

    Directory of Open Access Journals (Sweden)

    Gue-Tae Chae

    1992-01-01

    Full Text Available RIPK 2 is adapter molecule in the signal pathway involved in Toll-like receptors. However, there has been no reported association between receptor-interacting serine/threonine kinase 2 (RIPK 2 expression and the infectious diseases involving mycobacterial infection. This study found that its expression was down-regulated in the footpads and skin but was up-regulated in the liver of Mycobacterium leprae-infected nu/nu mice compared with those of the M. leprae non-infected nu/nu mice. It was observed that the interlukin-12p40 and interferon-γ genes involved in the susceptibility of M. leprae were down-regulated in the skin but were up-regulated in the liver. Overall, this suggests that regulation of RIPK 2 expression is tissue-specifically associated with M. leprae infection.

  4. Five Conditions Commonly Used to Down-regulate Tor Complex 1 Generate Different Physiological Situations Exhibiting Distinct Requirements and Outcomes*

    Science.gov (United States)

    Tate, Jennifer J.; Cooper, Terrance G.

    2013-01-01

    Five different physiological conditions have been used interchangeably to establish the sequence of molecular events needed to achieve nitrogen-responsive down-regulation of TorC1 and its subsequent regulation of downstream reporters: nitrogen starvation, methionine sulfoximine (Msx) addition, nitrogen limitation, rapamycin addition, and leucine starvation. Therefore, we tested a specific underlying assumption upon which the interpretation of data generated by these five experimental perturbations is premised. It is that they generate physiologically equivalent outcomes with respect to TorC1, i.e. its down-regulation as reflected by TorC1 reporter responses. We tested this assumption by performing head-to-head comparisons of the requirements for each condition to achieve a common outcome for a downstream proxy of TorC1 inactivation, nuclear Gln3 localization. We demonstrate that the five conditions for down-regulating TorC1 do not elicit physiologically equivalent outcomes. Four of the methods exhibit hierarchical Sit4 and PP2A phosphatase requirements to elicit nuclear Gln3-Myc13 localization. Rapamycin treatment required Sit4 and PP2A. Nitrogen limitation and short-term nitrogen starvation required only Sit4. G1 arrest-correlated, long-term nitrogen starvation and Msx treatment required neither PP2A nor Sit4. Starving cells of leucine or treating them with leucyl-tRNA synthetase inhibitors did not elicit nuclear Gln3-Myc13 localization. These data indicate that the five commonly used nitrogen-related conditions of down-regulating TorC1 are not physiologically equivalent and minimally involve partially differing regulatory mechanisms. Further, identical requirements for Msx treatment and long-term nitrogen starvation raise the possibility that their effects are achieved through a common regulatory pathway with glutamine, a glutamate or glutamine metabolite level as the sensed metabolic signal. PMID:23935103

  5. Down-regulated miR-448 relieves spinal cord ischemia/reperfusion injury by up-regulating SIRT1

    Directory of Open Access Journals (Sweden)

    Yun Wang

    2018-03-01

    Full Text Available MicroRNAs play a crucial role in the progression of spinal cord ischemia/reperfusion injury (SCII. The role of miR-448 and SIRT1 in SCII was investigated in this study, to provide further insights into prevention and improvement of this disorder. In this study, expressions of miR-448 and SIRT1 protein were determined by qRT-PCR and western blot, respectively. Flow cytometry was used to analyze cell apoptosis. The endogenous expression of genes was modulated by recombinant plasmids and cell transfection. Dual-luciferase reporter assay was performed to determine the interaction between miR-448 and SIRT1. The Basso, Beattie, and Bresnahan score was used to measure the hind-limb function of rat. The spinal cord ischemia reperfusion injury model of adult rats was developed by abdominal aorta clamping, and the nerve function evaluation was completed by motor deficit index score. In SCII tissues and cells treated with hypoxia, miR-448 was up-regulated while SIRT1 was down-regulated. Hypoxia treatment reduced the expression of SIRT1 through up-regulating miR-448 in nerve cells. Up-regulation of miR-448 induced by hypoxia promoted apoptosis of nerve cells through down-regulating SIRT1. Down-regulated miR-448 improved neurological function and hind-limb motor function of rats with SCII by up-regulating SIRT1. Down-regulated miR-448 inhibited apoptosis of nerve cells and improved neurological function by up-regulating SIRT1, which contributes to relieving SCII.

  6. The herpes simplex virus receptor nectin-1 is down-regulated after trans-interaction with glycoprotein D

    International Nuclear Information System (INIS)

    Stiles, Katie M.; Milne, Richard S.B.; Cohen, Gary H.; Eisenberg, Roselyn J.; Krummenacher, Claude

    2008-01-01

    During herpes simplex virus (HSV) entry, membrane fusion occurs either on the cell surface or after virus endocytosis. In both cases, binding of glycoprotein D (gD) to a receptor such as nectin-1 or HVEM is required. In this study, we co-cultured cells expressing gD with nectin-1 expressing cells to investigate the effects of gD on nectin-1 at cell contacts. After overnight co-cultures with gD expressing cells, there was a down-regulation of nectin-1 in B78H1-C10, SY5Y, A431 and HeLa cells, which HSV enters by endocytosis. In contrast, on Vero cells, which HSV enters at the plasma membrane, nectin-1 was not down-regulated. Further analysis of B78H1-derived cells showed that nectin-1 down-regulation corresponds to the ability of gD to bind nectin-1 and is achieved by internalization and low-pH-dependent degradation of nectin-1. Moreover, gD is necessary for virion internalization in B78H1 cells expressing nectin-1. These data suggest that the determinants of gD-mediated internalization of nectin-1 may direct HSV to an endocytic pathway during entry

  7. An ethanol extract of Piper betle Linn. mediates its anti-inflammatory activity via down-regulation of nitric oxide.

    Science.gov (United States)

    Ganguly, Sudipto; Mula, Soumyaditya; Chattopadhyay, Subrata; Chatterjee, Mitali

    2007-05-01

    The leaves of Piper betle (locally known as Paan) have long been in use in the Indian indigenous system of medicine for the relief of pain; however, the underlying molecular mechanisms of this effect have not been elucidated. The anti-inflammatory and immunomodulatory effects of an ethanolic extract of the leaves of P. betle (100 mg kg(-1); PB) were demonstrated in a complete Freund's adjuvant-induced model of arthritis in rats with dexamethasone (0.1 mg kg(-1)) as the positive control. At non-toxic concentrations of PB (5-25 microg mL(-1)), a dose-dependent decrease in extracellular production of nitric oxide in murine peritoneal macrophages was measured by the Griess assay and corroborated by flow cytometry using the nitric oxide specific probe, 4,5-diaminofluorescein-2 diacetate. This decreased generation of reactive nitrogen species was mediated by PB progressively down-regulating transcription of inducible nitric oxide synthase in macrophages, and concomitantly causing a dose-dependent decrease in the expression of interleukin-12 p40, indicating the ability of PB to down-regulate T-helper 1 pro-inflammatory responses. Taken together, the anti-inflammatory and anti-arthrotic activity of PB is attributable to its ability to down-regulate the generation of reactive nitrogen species, thus meriting further pharmacological investigation.

  8. Sensitization of multidrug-resistant human cancer cells to Hsp90 inhibitors by down-regulation of SIRT1

    Science.gov (United States)

    Kim, Hak-Bong; Lee, Su-Hoon; Um, Jee-Hyun; Oh, Won Keun; Kim, Dong-Wan; Kang, Chi-Dug; Kim, Sun-Hee

    2015-01-01

    The effectiveness of Hsp90 inhibitors as anticancer agents was limited in multidrug-resistant (MDR) human cancer cells due to induction of heat shock proteins (Hsps) such as Hsp70/Hsp27 and P-glycoprotein (P-gp)-mediated efflux. In the present study, we showed that resistance to Hsp90 inhibitors of MDR human cancer cells could be overcome with SIRT1 inhibition. SIRT1 knock-down or SIRT1 inhibitors (amurensin G and EX527) effectively suppressed the resistance to Hsp90 inhibitors (17-AAG and AUY922) in several MDR variants of human lymphoblastic leukemia and human breast cancer cell lines. SIRT1 inhibition down-regulated the expression of heat shock factor 1 (HSF1) and subsequently Hsps and facilitated Hsp90 multichaperone complex disruption via hyperacetylation of Hsp90/Hsp70. These findings were followed by acceleration of ubiquitin ligase CHIP-mediated mutant p53 (mut p53) degradation and subsequent down-regulation of P-gp in 17-AAG-treated MDR cancer cells expressing P-gp and mut p53 after inhibition of SIRT1. Therefore, combined treatment with Hsp90 inhibitor and SIRT1 inhibitor could be a more effective therapeutic approach for Hsp90 inhibitor-resistant MDR cells via down-regulation of HSF1/Hsps, mut p53 and P-gp. PMID:26416354

  9. Reversal of islet GIP receptor down-regulation and resistance to GIP by reducing hyperglycemia in the Zucker rat

    International Nuclear Information System (INIS)

    Piteau, Shalea; Olver, Amy; Kim, Su-Jin; Winter, Kyle; Pospisilik, John Andrew; Lynn, Francis; Manhart, Susanne; Demuth, Hans-Ulrich; Speck, Madeleine; Pederson, Raymond A.; McIntosh, Christopher H.S.

    2007-01-01

    In type 2 diabetes (T2DM) β-cell responsiveness to glucose-dependent insulinotropic polypeptide (GIP) is reduced. In a model of T2DM, the VDF Zucker rat, GIP receptor mRNA and protein levels were shown to be down-regulated. Possible restoration of responsiveness to GIP in Zucker rats by reducing hyperglycemia has been examined. ZDF rats with extreme hyperglycemia demonstrated greater islet GIP receptor mRNA down-regulation (94.3 ± 3.8%) than ZF rats (48.8 ± 22.8%). GIP receptor mRNA levels in ZDF rats returned to 83.0 ± 17.9% of lean following normalization of hyperglycemia by phlorizin treatment and pancreas perfusions demonstrated markedly improved GIP responsiveness. Treatment of VDF rats with a DP IV inhibitor (P32/98) resulted in improved glucose tolerance and restored sensitivity to GIP in isolated pancreata. These findings support the proposal that GIP receptor down-regulation in rodent T2DM is secondary to chronic hyperglycemia and that normalization of glycemia can restore GIP sensitivity

  10. MiR-217 is down-regulated in psoriasis and promotes keratinocyte differentiation via targeting GRHL2

    International Nuclear Information System (INIS)

    Zhu, Haigang; Hou, Liyue; Liu, Jingjing; Li, Zhiming

    2016-01-01

    MiR-217 is a well-known tumor suppressor, and its down-regulation has been shown in a wide range of solid and leukaemic cancers. However, the biological role of miR-217 in psoriasis pathogenesis, especially in keratinocyte hyperproliferation and differentiation, is not clearly understood. In this study, we found the expression of miR-217 was markedly down-regulated in psoriasis keratinocytes of psoriatic patients. In addition, overexpression of miR-217 inhibited the proliferation and promoted the differentiation of primary human keratinocytes. On the contrary, inhibition of endogenous miR-217 increased cell proliferation and delayed differentiation. Furthermore, Grainyhead-like 2 (GRHL2) was identified as a direct target of miR-217 by luciferase reporter assay. The expression of miR-217 and GRHL2 was inversely correlated in both transfected keratinocytes and in psoriasis lesional skin. Moreover, knocking down GRHL2 expression by siRNA enhanced keratinocyte differentiation. Taken together, our results demonstrate a role for miR-217 in the regulation of keratinocyte differentiation, partially through the regulation of GRHL2. - Highlights: • miR-217 is down-regulated in psoriasis skin lesions. • miR-217 inhibits the proliferation and promotes differentiation of keratinocytes. • GRHL2 is a novel target of miR-217 in keratinocytes. • GRHL2 is up-regulated and inversely correlated with miR-217 in psoriasis skin lesions.

  11. MiR-217 is down-regulated in psoriasis and promotes keratinocyte differentiation via targeting GRHL2

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Haigang; Hou, Liyue; Liu, Jingjing; Li, Zhiming, E-mail: lizm_1001@sina.com

    2016-02-26

    MiR-217 is a well-known tumor suppressor, and its down-regulation has been shown in a wide range of solid and leukaemic cancers. However, the biological role of miR-217 in psoriasis pathogenesis, especially in keratinocyte hyperproliferation and differentiation, is not clearly understood. In this study, we found the expression of miR-217 was markedly down-regulated in psoriasis keratinocytes of psoriatic patients. In addition, overexpression of miR-217 inhibited the proliferation and promoted the differentiation of primary human keratinocytes. On the contrary, inhibition of endogenous miR-217 increased cell proliferation and delayed differentiation. Furthermore, Grainyhead-like 2 (GRHL2) was identified as a direct target of miR-217 by luciferase reporter assay. The expression of miR-217 and GRHL2 was inversely correlated in both transfected keratinocytes and in psoriasis lesional skin. Moreover, knocking down GRHL2 expression by siRNA enhanced keratinocyte differentiation. Taken together, our results demonstrate a role for miR-217 in the regulation of keratinocyte differentiation, partially through the regulation of GRHL2. - Highlights: • miR-217 is down-regulated in psoriasis skin lesions. • miR-217 inhibits the proliferation and promotes differentiation of keratinocytes. • GRHL2 is a novel target of miR-217 in keratinocytes. • GRHL2 is up-regulated and inversely correlated with miR-217 in psoriasis skin lesions.

  12. Down-Regulation of Desmosomes in Cultured Cells: The Roles of PKC, Microtubules and Lysosomal/Proteasomal Degradation

    Science.gov (United States)

    McHarg, Selina; Hopkins, Gemma; Lim, Lusiana; Garrod, David

    2014-01-01

    Desmosomes are intercellular adhesive junctions of major importance for tissue integrity. To allow cell motility and migration they are down-regulated in epidermal wound healing. Electron microscopy indicates that whole desmosomes are internalised by cells in tissues, but the mechanism of down-regulation is unclear. In this paper we provide an overview of the internalisation of half-desmosomes by cultured cells induced by calcium chelation. Our results show that: (i) half desmosome internalisation is dependent on conventional PKC isoforms; (ii) microtubules transport internalised half desmosomes to the region of the centrosome by a kinesin-dependent mechanism; (iii) desmosomal proteins remain colocalised after internalisation and are not recycled to the cell surface; (iv) internalised desmosomes are degraded by the combined action of lysosomes and proteasomes. We also confirm that half desmosome internalisation is dependent upon the actin cytoskeleton. These results suggest that half desmosomes are not disassembled and recycled during or after internalisation but instead are transported to the centrosomal region where they are degraded. These findings may have significance for the down-regulation of desmosomes in wounds. PMID:25291180

  13. Histones Induce the Procoagulant Phenotype of Endothelial Cells through Tissue Factor Up-Regulation and Thrombomodulin Down-Regulation.

    Science.gov (United States)

    Kim, Ji Eun; Yoo, Hyun Ju; Gu, Ja Yoon; Kim, Hyun Kyung

    2016-01-01

    The high circulating levels of histones found in various thrombotic diseases may compromise the anticoagulant barrier of endothelial cells. We determined how histones affect endothelial procoagulant tissue factor (TF) and anticoagulant thrombomodulin (TM). Surface antigens, soluble forms, and mRNA levels of TF and TM were measured by flow cytometry, ELISA, and real-time RT-PCR, respectively. TF and TM activity were measured using procoagulant activity, thrombin generation, or chromogenic assays. Involvement of the toll-like receptor (TLR) was assessed using the neutralizing antibodies. Histones dose-dependently induced surface antigens, activity and mRNA levels of endothelial TF. Histone-treated endothelial cells significantly shortened the lag time and enhanced the endogenous thrombin potential of normal plasma, which was normalized by a TF neutralizing antibody. Histones induced phosphatidylserine and protein-disulfide isomerase expression in endothelial cells. Histones also reduced the surface antigen, activity, and mRNA levels of endothelial TM. Polysialic acid and heparin reversed the histone-induced TF up-regulation and TM down-regulation. Activated protein C did not affect the TF up-regulation, but interrupted TM down-regulation. TLR2, and TLR4 inhibitors partially blocked the TF up-regulation. Histones induced the endothelial procoagulant phenotype through TF up-regulation and TM down-regulation. The effects of histones were partly mediated by TLR2, TLR4. Strategies to inhibit the harmful effects of histones in endothelial cells may be required in order to prevent a thrombotic environment.

  14. AGE-RAGE Stress, Stressors, and Antistressors in Health and Disease.

    Science.gov (United States)

    Prasad, Kailash; Mishra, Manish

    2018-03-01

    Adverse effects of advanced glycation end-products (AGEs) on the tissues are through nonreceptor- and receptor-mediated mechanisms. In the receptor-mediated mechanism, interaction of AGEs with its cell-bound receptor of AGE (RAGE) increases generation of oxygen radicals, activates nuclear factor-kappa B, and increases expression and release of pro-inflammatory cytokines resulting in the cellular damage. The deleterious effects of AGE and AGE-RAGE interaction are coined as "AGE-RAGE stress." The body is equipped with defense mechanisms to counteract the adverse effects of AGE and RAGE through endogenous enzymatic (glyoxalase 1, glyoxalase 2) and AGE receptor-mediated (AGER1, AGER2) degradation of AGE, and through elevation of soluble receptor of AGE (sRAGE). Exogenous defense mechanisms include reduction in consumption of AGE, prevention of AGE formation, and downregulation of RAGE expression. We have coined AGE and RAGE as "stressors" and the defense mechanisms as "anti-stressors." AGE-RAGE stress is defined as a shift in the balance between stressors and antistressors in the favor of stressors. Measurements of stressors or antistressors alone would not assess AGE-RAGE stress. For true assessment of AGE-RAGE stress, the equation should include all the stressors and antistressors. The equation for AGE-RAGE stress, therefore, would be the ratio of AGE + RAGE/sRAGE + glyoxalase1 + glyoxalase 2 + AGER1 +AGER2. This is, however, not practical in patients. AGE-RAGE stress may be assessed simply by the ratio of AGE/sRAGE. A high ratio of AGE/sRAGE indicates a relative shift in stressors from antistressors, suggesting the presence of AGE-RAGE stress, resulting in tissue damage, initiation, and progression of the diseases and their complications.

  15. Synergism between the mTOR inhibitor rapamycin and FAK down-regulation in the treatment of acute lymphoblastic leukemia

    Directory of Open Access Journals (Sweden)

    Pei-Jie Shi

    2016-02-01

    Full Text Available Abstract Background Acute lymphoblastic leukemia (ALL is an aggressive malignant disorder of lymphoid progenitor cells in both children and adults. Although improvements in contemporary therapy and development of new treatment strategies have led to dramatic increases in the cure rate in children with ALL, the relapse rate remains high and the prognosis of relapsed childhood ALL is poor. Molecularly targeted therapies have emerged as the leading treatments in cancer therapy. Multi-cytotoxic drug regimens have achieved success, yet many studies addressing targeted therapies have focused on only one single agent. In this study, we attempted to investigate whether the effect of the mammalian target of rapamycin (mTOR inhibitor rapamycin is synergistic with the effect of focal adhesion kinase (FAK down-regulation in the treatment of ALL. Methods The effect of rapamycin combined with FAK down-regulation on cell proliferation, the cell cycle, and apoptosis was investigated in the human precursor B acute lymphoblastic leukemia cells REH and on survival time and leukemia progression in a non-obese diabetic/severe combined immunodeficiency (NOD/SCID mouse model. Results When combined with FAK down-regulation, rapamycin-induced suppression of cell proliferation, G0/G1 cell cycle arrest, and apoptosis were significantly enhanced. In addition, REH cell-injected NOD/SCID mice treated with rapamycin and a short-hairpin RNA (shRNA to down-regulate FAK had significantly longer survival times and slower leukemia progression compared with mice injected with REH-empty vector cells and treated with rapamycin. Moreover, the B-cell CLL/lymphoma-2 (BCL-2 gene family was shown to be involved in the enhancement, by combined treatment, of REH cell apoptosis. Conclusions FAK down-regulation enhanced the in vitro and in vivo inhibitory effects of rapamycin on REH cell growth, indicating that the simultaneous targeting of mTOR- and FAK-related pathways might offer a novel

  16. Receptor for advanced glycation endproducts (RAGE maintains pulmonary structure and regulates the response to cigarette smoke.

    Directory of Open Access Journals (Sweden)

    Lisa Wolf

    Full Text Available The receptor for advanced glycation endproducts (RAGE is highly expressed in the lung but its physiological functions in this organ is still not completely understood. To determine the contribution of RAGE to physiological functions of the lung, we analyzed pulmonary mechanics and structure of wildtype and RAGE deficient (RAGE-/- mice. RAGE deficiency spontaneously resulted in a loss of lung structure shown by an increased mean chord length, increased respiratory system compliance, decreased respiratory system elastance and increased concentrations of serum protein albumin in bronchoalveolar lavage fluids. Pulmonary expression of RAGE was mainly localized on alveolar epithelial cells and alveolar macrophages. Primary murine alveolar epithelial cells isolated from RAGE-/- mice revealed an altered differentiation and defective barrier formation under in vitro conditions. Stimulation of interferone-y (IFNy-activated alveolar macrophages deficient for RAGE with Toll-like receptor (TLR ligands resulted in significantly decreased release of proinflammatory cytokines and chemokines. Exposure to chronic cigarette smoke did not affect emphysema-like changes in lung parenchyma in RAGE-/- mice. Acute cigarette smoke exposure revealed a modified inflammatory response in RAGE-/- mice that was characterized by an influx of macrophages and a decreased keratinocyte-derived chemokine (KC release. Our data suggest that RAGE regulates the differentiation of alveolar epithelial cells and impacts on the development and maintenance of pulmonary structure. In cigarette smoke-induced lung pathology, RAGE mediates inflammation that contributes to lung damage.

  17. Nifedipine, a calcium channel blocker, inhibits advanced glycation end product (AGE)-elicited mesangial cell damage by suppressing AGE receptor (RAGE) expression via peroxisome proliferator-activated receptor-gamma activation

    International Nuclear Information System (INIS)

    Matsui, Takanori; Yamagishi, Sho-ichi; Takeuchi, Masayoshi; Ueda, Seiji; Fukami, Kei; Okuda, Seiya

    2009-01-01

    The interaction between advanced glycation end products (AGE) and their receptor RAGE mediates the progressive alteration in renal architecture and loss of renal function in diabetic nephropathy. Oxidative stress generation and inflammation also play a central role in diabetic nephropathy. This study investigated whether and how nifedipine, a calcium channel blocker (CCB), blocked the AGE-elicited mesangial cell damage in vitro. Nifedipine, but not amlodipine, a control CCB, down-regulated RAGE mRNA levels and subsequently reduced reactive oxygen species (ROS) generation in AGE-exposed mesangial cells. AGE increased mRNA levels of vascular cell adhesion molecule-1 (VCAM-1) and induced monocyte chemoattractant protein-1 (MCP-1) production in mesangial cells, both of which were prevented by the treatment with nifedipine, but not amlodipine. The beneficial effects of nifedipine on AGE-exposed mesangial cells were blocked by the simultaneous treatment of GW9662, an inhibitor of peroxisome proliferator-activated receptor-γ (PPAR-γ). Although nifedipine did not affect expression levels of PPAR-γ, it increased the PPAR-γ transcriptional activity in mesangial cells. Our present study provides a unique beneficial aspect of nifedipine on diabetic nephropathy; it could work as an anti-inflammatory agent against AGE by suppressing RAGE expression in cultured mesangial cells via PPAR-γ activation.

  18. RAGE Architecture for Reusable Serious Gaming Technology Components

    Directory of Open Access Journals (Sweden)

    Wim van der Vegt

    2016-01-01

    Full Text Available For seizing the potential of serious games, the RAGE project—funded by the Horizon-2020 Programme of the European Commission—will make available an interoperable set of advanced technology components (software assets that support game studios at serious game development. This paper describes the overall software architecture and design conditions that are needed for the easy integration and reuse of such software assets in existing game platforms. Based on the component-based software engineering paradigm the RAGE architecture takes into account the portability of assets to different operating systems, different programming languages, and different game engines. It avoids dependencies on external software frameworks and minimises code that may hinder integration with game engine code. Furthermore it relies on a limited set of standard software patterns and well-established coding practices. The RAGE architecture has been successfully validated by implementing and testing basic software assets in four major programming languages (C#, C++, Java, and TypeScript/JavaScript, resp.. Demonstrator implementation of asset integration with an existing game engine was created and validated. The presented RAGE architecture paves the way for large scale development and application of cross-engine reusable software assets for enhancing the quality and diversity of serious gaming.

  19. RAGE Architecture for Reusable Serious Gaming Technology Components

    NARCIS (Netherlands)

    Van der Vegt, Wim; Westera, Wim; Nyamsuren, Enkhbold; Georgiev, Atanas; Martinez Ortiz, Ivan

    2016-01-01

    For seizing the potential of serious games, the RAGE project - funded by the Horizon-2020 Programme of the European Commission - will make available an interoperable set of advanced technology components (software assets) that support game studios at serious game development. This paper describes

  20. The RAGE Software Asset Model and Metadata Model

    NARCIS (Netherlands)

    Georgiev, Atanas; Grigorov, Alexander; Bontchev, Boyan; Boytchev, Pavel; Stefanov, Krassen; Bahreini, Kiavash; Nyamsuren, Enkhbold; Van der Vegt, Wim; Westera, Wim; Prada, Rui; Hollins, Paul; Moreno, Pablo

    2016-01-01

    Software assets are key output of the RAGE project and they can be used by applied game developers to enhance the pedagogical and educational value of their games. These software assets cover a broad spectrum of functionalities – from player analytics including emotion detection to intelligent

  1. Biphasic Modulation of NOS Expression, Protein and Nitrite Products by Hydroxocobalamin Underlies Its Protective Effect in Endotoxemic Shock: Downstream Regulation of COX-2, IL-1β, TNF-α, IL-6, and HMGB1 Expression

    Science.gov (United States)

    Sampaio, André L. F.; Dalli, Jesmond; Brancaleone, Vincenzo; D'Acquisto, Fulvio; Perretti, Mauro; Wheatley, Carmen

    2013-01-01

    Background. NOS/•NO inhibitors are potential therapeutics for sepsis, yet they increase clinical mortality. However, there has been no in vivo investigation of the (in vitro) •NO scavenger, cobalamin's (Cbl) endogenous effects on NOS/•NO/inflammatory mediators during the immune response to sepsis. Methods. We used quantitative polymerase chain reaction (qPCR), ELISA, Western blot, and NOS Griess assays, in a C57BL/6 mouse, acute endotoxaemia model. Results. During the immune response, pro-inflammatory phase, parenteral hydroxocobalamin (HOCbl) treatment partially inhibits hepatic, but not lung, iNOS mRNA and promotes lung eNOS mRNA, but attenuates the LPS hepatic rise in eNOS mRNA, whilst paradoxically promoting high iNOS/eNOS protein translation, but relatively moderate •NO production. HOCbl/NOS/•NO regulation is reciprocally associated with lower 4 h expression of TNF-α, IL-1β, COX-2, and lower circulating TNF-α, but not IL-6. In resolution, 24 h after LPS, HOCbl completely abrogates a major late mediator of sepsis mortality, high mobility group box 1 (HMGB1) mRNA, inhibits iNOS mRNA, and attenuates LPS-induced hepatic inhibition of eNOS mRNA, whilst showing increased, but still moderate, NOS activity, relative to LPS only. experiments (LPS+D-Galactosamine) HOCbl afforded significant, dose-dependent protection in mice Conclusions. HOCbl produces a complex, time- and organ-dependent, selective regulation of NOS/•NO during endotoxaemia, corollary regulation of downstream inflammatory mediators, and increased survival. This merits clinical evaluation. PMID:23781123

  2. RAGE polymorphisms and oxidative stress levels in Hashimoto's thyroiditis.

    Science.gov (United States)

    Giannakou, Maria; Saltiki, Katerina; Mantzou, Emily; Loukari, Eleni; Philippou, Georgios; Terzidis, Konstantinos; Lili, Kiriaki; Stavrianos, Charalampos; Kyprianou, Miltiades; Alevizaki, Maria

    2017-05-01

    Polymorphisms of the receptor for advanced glycation end products (RAGE) gene have been studied in various autoimmune disorders, but not in Hashimoto's thyroiditis. Also, increased oxidative stress has been described in patients with Hashimoto's thyroiditis. The aim of this study was to investigate the possible role of two common RAGE polymorphisms (-429T>C, -374T>A) in Hashimoto's thyroiditis; in parallel, we studied oxidative stress levels. A total of 300 consecutive euthyroid women were examined and classified into three groups: Hashimoto's thyroiditis with treatment (n = 96), Hashimoto's thyroiditis without treatment (n = 109) and controls (n = 95). For a rough evaluation of oxidative stress, total lipid peroxide levels in serum were measured. The -429T>C AluI and -374T>A MfeI polymorphisms of RAGE were studied in genomic DNA. Significant association of the RAGE system with Hashimoto's thyroiditis was found only with regard to the prevalence of the -429T>C, but not with -374T>A polymorphism. The levels of oxidative stress were significantly elevated in Hashimoto's thyroiditis patients under treatment. Further analysis demonstrated that an oxidative stress cut-off value of 590 μmol/L is associated with an increased risk of progression of Hashimoto's thyroiditis from euthyroidism to hypothyroidism; this risk is further increased in carriers of the RAGE -429T>C polymorphism. Our findings indicate that both examined risk factors may be implicated in the occurrence of Hashimoto's thyroiditis, but this covers only a fraction of the pathophysiology of the disease. © 2017 Stichting European Society for Clinical Investigation Journal Foundation.

  3. Radical Roles for RAGE in the Pathogenesis of Oxidative Stress in Cardiovascular Diseases and Beyond

    Directory of Open Access Journals (Sweden)

    Radha Ananthakrishnan

    2013-10-01

    Full Text Available Oxidative stress is a central mechanism by which the receptor for advanced glycation endproducts (RAGE mediates its pathological effects. Multiple experimental inquiries in RAGE-expressing cultured cells have demonstrated that ligand-RAGE interaction mediates generation of reactive oxygen species (ROS and consequent downstream signal transduction and regulation of gene expression. The primary mechanism by which RAGE generates oxidative stress is via activation of NADPH oxidase; amplification mechanisms in the mitochondria may further drive ROS production. Recent studies indicating that the cytoplasmic domain of RAGE binds to the formin mDia1 provide further support for the critical roles of this pathway in oxidative stress; mDia1 was required for activation of rac1 and NADPH oxidase in primary murine aortic smooth muscle cells treated with RAGE ligand S100B. In vivo, in multiple distinct disease models in animals, RAGE action generates oxidative stress and modulates cellular/tissue fate in range of disorders, such as in myocardial ischemia, atherosclerosis, and aneurysm formation. Blockade or genetic deletion of RAGE was shown to be protective in these settings. Indeed, beyond cardiovascular disease, evidence is accruing in human subjects linking levels of RAGE ligands and soluble RAGE to oxidative stress in disorders such as doxorubicin toxicity, acetaminophen toxicity, neurodegeneration, hyperlipidemia, diabetes, preeclampsia, rheumatoid arthritis and pulmonary fibrosis. Blockade of RAGE signal transduction may be a key strategy for the prevention of the deleterious consequences of oxidative stress, particularly in chronic disease.

  4. Incidence, clinical correlates and treatment effect of rage in anxious children.

    Science.gov (United States)

    Johnco, Carly; Salloum, Alison; De Nadai, Alessandro S; McBride, Nicole; Crawford, Erika A; Lewin, Adam B; Storch, Eric A

    2015-09-30

    Episodic rage represents an important and underappreciated clinical feature in pediatric anxiety. This study examined the incidence and clinical correlates of rage in children with anxiety disorders. Change in rage during treatment for anxiety was also examined. Participants consisted of 107 children diagnosed with an anxiety disorder and their parents. Participants completed structured clinical interviews and questionnaire measures to assess rage, anxiety, functional impairment, family accommodation and caregiver strain, as well as the quality of the child's relationship with family and peers. Rage was a common feature amongst children with anxiety disorders. Rage was associated with a more severe clinical profile, including increased anxiety severity, functional impairment, family accommodation and caregiver strain, as well as poorer relationships with parents, siblings, extended family and peers. Rage was more common in children with separation anxiety, comorbid anxiety, attention deficit/hyperactivity disorder and behavioral disorders, but not depressive symptoms. Rage predicted higher levels of functional impairment, beyond the effect of anxiety severity. Rage severity reduced over treatment in line with changes in anxiety symptoms. Findings suggest that rage is a marker of greater psychopathology in anxious youth. Standard cognitive behavioral treatment for anxiety appears to reduce rage without adjunctive treatment. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Activin A, B and AB decrease progesterone production by down-regulating StAR in human granulosa cells.

    Science.gov (United States)

    Chang, Hsun-Ming; Cheng, Jung-Chien; Huang, He-Feng; Shi, Feng-Tao; Leung, Peter C K

    2015-09-05

    Activins are homo- or heterodimers of inhibin β subunits that play important roles in the reproductive system. Our previous work has shown that activins A (βAβA), B (βBβB) and AB (βAβB) induce aromatase/estradiol, but suppress StAR/progesterone production in human granulosa-lutein cells. However, the underlying molecular determinants of these effects have not been examined. In this continuing study, we used immortalized human granulosa cells (SVOG) to investigate the effects of activins in regulating StAR/progesterone and the potential mechanisms of action. In SVOG cells, activins A, B and AB produced comparable down-regulation of StAR expression and progesterone production. In addition, all three activin isoforms induced equivalent phosphorylation of both SMAD2 and SMAD3. Importantly, the activin-induced down-regulation of StAR, increase in SMAD2/3 phosphorylation, and decrease in progesterone were abolished by the TGF-β type I receptor inhibitor SB431542. Interestingly, the small interfering RNA-mediated knockdown of ALK4 but not ALK5 reversed the activin-induced suppression of StAR. Furthermore, the knockdown of SMAD4 or SMAD2 but not SMAD3 abolished the inhibitory effects of all three activin isoforms on StAR expression. These results provide evidence that activins A, B and AB down-regulate StAR expression and decrease progesterone production in human granulosa cells, likely via an ALK4-mediated SMAD2/SMAD4-dependent pathway. Our findings provide important insights into the molecular mechanisms underlying the regulatory effects of activins on human granulosa cell steroidogenesis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Down-regulation of tricarboxylic acid (TCA) cycle genes blocks progression through the first mitotic division in Caenorhabditis elegans embryos.

    Science.gov (United States)

    Rahman, Mohammad M; Rosu, Simona; Joseph-Strauss, Daphna; Cohen-Fix, Orna

    2014-02-18

    The cell cycle is a highly regulated process that enables the accurate transmission of chromosomes to daughter cells. Here we uncover a previously unknown link between the tricarboxylic acid (TCA) cycle and cell cycle progression in the Caenorhabditis elegans early embryo. We found that down-regulation of TCA cycle components, including citrate synthase, malate dehydrogenase, and aconitase, resulted in a one-cell stage arrest before entry into mitosis: pronuclear meeting occurred normally, but nuclear envelope breakdown, centrosome separation, and chromosome condensation did not take place. Mitotic entry is controlled by the cyclin B-cyclin-dependent kinase 1 (Cdk1) complex, and the inhibitory phosphorylation of Cdk1 must be removed in order for the complex to be active. We found that following down-regulation of the TCA cycle, cyclin B levels were normal but CDK-1 remained inhibitory-phosphorylated in one-cell stage-arrested embryos, indicative of a G2-like arrest. Moreover, this was not due to an indirect effect caused by checkpoint activation by DNA damage or replication defects. These observations suggest that CDK-1 activation in the C. elegans one-cell embryo is sensitive to the metabolic state of the cell, and that down-regulation of the TCA cycle prevents the removal of CDK-1 inhibitory phosphorylation. The TCA cycle was previously shown to be necessary for the development of the early embryo in mammals, but the molecular processes affected were not known. Our study demonstrates a link between the TCA cycle and a specific cell cycle transition in the one-cell stage embryo.

  7. Impressic acid from Acanthopanax koreanum, possesses matrix metalloproteinase-13 down-regulating capacity and protects cartilage destruction.

    Science.gov (United States)

    Lim, Hyun; Min, Dong Suk; Yun, Han Eul; Kim, Kil Tae; Sun, Ya Nan; Dat, Le Duc; Kim, Young Ho; Kim, Hyun Pyo

    2017-09-14

    Acanthopanax koreanum (Araliaceae) has been used in traditional medicine for enhancing vitality, rheumatism, and bone-related pains. But its activity on cartilage protection has not been known yet. Matrix metalloproteinase (MMP)-13 has an important role in degrading cartilage materials under pathologic conditions such as arthritis. The present study was designed to find the inhibitory activity of impressic acid on MMP-13 expression and cartilage protective action. 70% ethanol extract of Acanthopanax koreanum leaves and impressic acid, a major constituent isolated from the same plant materials, were examined on MMP-13 down-regulating capacity in IL-1β-treated human chondrocyte cell line (SW1353) and rabbit cartilage explants. In IL-1β-treated SW1353 cells, impressic acid significantly and concentration-dependently inhibited MMP-13 expression at 0.5-10μM. Impressic acid was found to be able to inhibit MMP-13 expression by blocking the phosphorylation of signal transducer and activator of transcription-1/-2 (STAT-1/-2) and activation of c-Jun and c-Fos among the cellular signaling pathways involved. Further, impressic acid was found to inhibit the expression of MMP-13 mRNA (47.7% inhibition at 10μM), glycosaminoglycan release (42.2% reduction at 10μM) and proteoglycan loss in IL-1-treated rabbit cartilage explants culture. In addition, a total of 21 lupane-type triterpenoids structurally-related to impressic acid were isolated from the same plant materials and their suppressive activities against MMP-13 expression were also examined. Among these derivatives, compounds 2, 3, 16, and 18 clearly down-regulated MMP-13 expression. However, impressic acid was more potent than these derivatives in down-regulating MMP-13 expression. Impressic acid, its related triterpenoids, and A. koreanum extract have potential as therapeutic agents to prevent cartilage degradation by inhibiting matrix protein degradation. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  8. Down-regulation of transcription of the proapoptotic gene BNip3 in cultured astrocytes by murine coronavirus infection

    International Nuclear Information System (INIS)

    Cai Yingyun; Liu Yin; Yu Dongdong; Zhang Xuming

    2003-01-01

    Murine coronavirus mouse hepatitis virus (MHV) causes encephalitis and demyelination in the central nervous system of susceptible rodents. Astrocytes are the major target for MHV persistence. However, the mechanisms by which astrocytes survive MHV infection and permit viral persistence are not known. Here we performed DNA microarray analysis on differential gene expression in astrocyte DBT cells by MHV infection and found that the mRNA of the proapoptotic gene BNip3 was significantly decreased following MHV infection. This finding was further confirmed by quantitative reverse transcription-polymerase chain reaction, Western blot analysis, and BNip3-promoter-luciferase reporter system. Interestingly, infection with live and ultraviolet light-inactivated viruses equally repressed BNip3 expression, indicating that the down-regulation of BNip3 expression does not require virus replication and is mediated during cell entry. Furthermore, treatment of cells with chloroquine, which blocks the acidification of endosomes, significantly inhibited the repression of the BNip3 promoter activity induced by the acidic pH-dependent MHV mutant OBLV60, which enters cells via endocytosis, indicating that the down-regulation of BNip3 expression is mediated by fusion between viral envelope and cell membranes during entry. Deletion analysis showed that the sequence between nucleotides 262 and 550 of the 588-base-pair BNip3 promoter is necessary and sufficient for driving the BNip3 expression and that it contains signals that are responsible for MHV-induced down-regulation of BNip3 expression in DBT cells. These results may provide insights into the mechanisms by which MHV evades host antiviral defense and promotes cell survival, thereby allowing its persistence in the host astrocytes

  9. Both SEPT2 and MLL are down-regulated in MLL-SEPT2 therapy-related myeloid neoplasia

    International Nuclear Information System (INIS)

    Cerveira, Nuno; Snijder, Simone; Mariz, José M; Norton, Lucília; Mellink, Clemens H; Buijs, Arjan; Teixeira, Manuel R; Santos, Joana; Bizarro, Susana; Costa, Vera; Ribeiro, Franclim R; Lisboa, Susana; Correia, Cecília; Torres, Lurdes; Vieira, Joana

    2009-01-01

    A relevant role of septins in leukemogenesis has been uncovered by their involvement as fusion partners in MLL-related leukemia. Recently, we have established the MLL-SEPT2 gene fusion as the molecular abnormality subjacent to the translocation t(2;11)(q37;q23) in therapy-related acute myeloid leukemia. In this work we quantified MLL and SEPT2 gene expression in 58 acute myeloid leukemia patients selected to represent the major AML genetic subgroups, as well as in all three cases of MLL-SEPT2-associated myeloid neoplasms so far described in the literature. Cytogenetics, fluorescence in situ hybridization (FISH) and molecular studies (RT-PCR, qRT-PCR and qMSP) were used to characterize 58 acute myeloid leukemia patients (AML) at diagnosis selected to represent the major AML genetic subgroups: CBFB-MYH11 (n = 13), PML-RARA (n = 12); RUNX1-RUNX1T1 (n = 12), normal karyotype (n = 11), and MLL gene fusions other than MLL-SEPT2 (n = 10). We also studied all three MLL-SEPT2 myeloid neoplasia cases reported in the literature, namely two AML patients and a t-MDS patient. When compared with normal controls, we found a 12.8-fold reduction of wild-type SEPT2 and MLL-SEPT2 combined expression in cases with the MLL-SEPT2 gene fusion (p = 0.007), which is accompanied by a 12.4-fold down-regulation of wild-type MLL and MLL-SEPT2 combined expression (p = 0.028). The down-regulation of SEPT2 in MLL-SEPT2 myeloid neoplasias was statistically significant when compared with all other leukemia genetic subgroups (including those with other MLL gene fusions). In addition, MLL expression was also down-regulated in the group of MLL fusions other than MLL-SEPT2, when compared with the normal control group (p = 0.023) We found a significant down-regulation of both SEPT2 and MLL in MLL-SEPT2 myeloid neoplasias. In addition, we also found that MLL is under-expressed in AML patients with MLL fusions other than MLL-SEPT2

  10. N-MYC DOWN-REGULATED-LIKE Proteins Regulate Meristem Initiation by Modulating Auxin Transport and MAX2 Expression

    OpenAIRE

    Mudgil, Yashwanti; Ghawana, Sanjay; Jones, Alan M.

    2013-01-01

    Background N-MYC DOWN-REGULATED-LIKE (NDL) proteins interact with the G? subunit (AGB1) of the heterotrimeric G protein complex and play an important role in AGB1-dependent regulation of lateral root formation by affecting root auxin transport, auxin gradients and the steady-state levels of mRNA encoding the PIN-FORMED 2 and AUXIN 1 auxin transport facilitators. Auxin transport in aerial tissue follows different paths and utilizes different transporters than in roots; therefore, in the presen...

  11. Down-regulation of SFRP1 as a putative tumor suppressor gene can contribute to human hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Huang, Jian; Zhang, Yun-Li; Teng, Xiao-Mei; Lin, Yun; Zheng, Da-Li; Yang, Peng-Yuan; Han, Ze-Guang

    2007-01-01

    Hepatocellular carcinoma (HCC) is one of the most common cancers in the world. SFRP1 (the secreted frizzled-related protein 1), a putative tumor suppressor gene mapped onto chromosome 8p12-p11.1, the frequent loss of heterozygosity (LOH) region in human HCC, encodes a Wingless-type (Wnt) signaling antagonist and is frequently inactivated by promoter methylation in many human cancers. However, whether the down-regulation of SFRP1 can contribute to hepatocarcinogenesis still remains unclear. We investigated the expression of SFRP1 through real time RT-PCR and immunohistochemistry staining. The cell growth and colony formation were observed as the overexpression and knockdown of SFRP1. The DNA methylation status within SFRP1 promoter was analyzed through methylation-specific PCR or bisulphate-treated DNA sequencing assays. Loss of heterozygosity was here detected with microsatellite markers. SFRP1 was significantly down-regulated in 76.1% (35/46) HCC specimens at mRNA level and in 30% (30/100) HCCs indicated by immunohistochemistry staining, as compared to adjacent non-cancerous livers. The overexpression of SFRP1 can significantly inhibit the cell growth and colony formation of YY-8103, SMMC7721, and Hep3B cells. The RNA interference against the constitutional SFRP1 in the offspring SMMC7721 cells, which were stably transfected by ectopic SFRP1, can markedly promote cell growth of these cells. LOH of both microsatellite markers D8S532 and D8SAC016868 flanking the gene locus was found in 13% (6 of 46 HCCs) and 6.5% (3 of 46 HCCs) of the informative cases, respectively, where 5 of 8 HCC specimens with LOH showed the down-regulation of SFRP1. DNA hypermethylation within SFRP1 promoter was identified in two of three HCC specimens without SFRP1 expression. Moreover, the DNA methylation of SFRP1 promoter was significantly reduced, along with the re-expression of the gene, in those HCC cell lines, Bel7404, QGY7701, and MHCC-H, as treated by DAC. Our data suggested that the

  12. Neural cell adhesion molecule-180-mediated homophilic binding induces epidermal growth factor receptor (EGFR) down-regulation and uncouples the inhibitory function of EGFR in neurite outgrowth

    DEFF Research Database (Denmark)

    Povlsen, Gro Klitgaard; Berezin, Vladimir; Bock, Elisabeth

    2008-01-01

    The neural cell adhesion molecule (NCAM) plays important roles in neuronal development, regeneration, and synaptic plasticity. NCAM homophilic binding mediates cell adhesion and induces intracellular signals, in which the fibroblast growth factor receptor plays a prominent role. Recent studies...... this NCAM-180-induced EGFR down-regulation involves increased EGFR ubiquitination and lysosomal EGFR degradation. Furthermore, NCAM-180-mediated EGFR down-regulation requires NCAM homophilic binding and interactions of the cytoplasmic domain of NCAM-180 with intracellular interaction partners, but does...

  13. Endotoxin-induced basal respiration alterations of renal HK-2 cells: A sign of pathologic metabolism down-regulation

    Energy Technology Data Exchange (ETDEWEB)

    Quoilin, C., E-mail: cquoilin@ulg.ac.be [Laboratory of Biomedical Spectroscopy, Department of Physics, University of Liege, 4000 Liege (Belgium); Mouithys-Mickalad, A. [Center of Oxygen Research and Development, Department of Chemistry, University of Liege, 4000 Liege (Belgium); Duranteau, J. [Department of Anaesthesia and Surgical ICU, CHU Bicetre, University Paris XI Sud, 94275 Le Kremlin Bicetre (France); Gallez, B. [Biomedical Magnetic Resonance Group, Louvain Drug Research Institute, Universite catholique de Louvain, 1200 Brussels (Belgium); Hoebeke, M. [Laboratory of Biomedical Spectroscopy, Department of Physics, University of Liege, 4000 Liege (Belgium)

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer A HK-2 cells model of inflammation-induced acute kidney injury. Black-Right-Pointing-Pointer Two oximetry methods: high resolution respirometry and ESR spectroscopy. Black-Right-Pointing-Pointer Oxygen consumption rates of renal cells decrease when treated with LPS. Black-Right-Pointing-Pointer Cells do not recover normal respiration when the LPS treatment is removed. Black-Right-Pointing-Pointer This basal respiration alteration is a sign of pathologic metabolism down-regulation. -- Abstract: To study the mechanism of oxygen regulation in inflammation-induced acute kidney injury, we investigate the effects of a bacterial endotoxin (lipopolysaccharide, LPS) on the basal respiration of proximal tubular epithelial cells (HK-2) both by high-resolution respirometry and electron spin resonance spectroscopy. These two complementary methods have shown that HK-2 cells exhibit a decreased oxygen consumption rate when treated with LPS. Surprisingly, this cellular respiration alteration persists even after the stress factor was removed. We suggested that this irreversible decrease in renal oxygen consumption after LPS challenge is related to a pathologic metabolic down-regulation such as a lack of oxygen utilization by cells.

  14. Down-regulation of OsSPX1 causes high sensitivity to cold and oxidative stresses in rice seedlings.

    Directory of Open Access Journals (Sweden)

    Chunchao Wang

    Full Text Available Rice SPX domain gene, OsSPX1, plays an important role in the phosphate (Pi signaling network. Our previous work showed that constitutive overexpression of OsSPX1 in tobacco and Arabidopsis plants improved cold tolerance while also decreasing total leaf Pi. In the present study, we generated rice antisense and sense transgenic lines of OsSPX1 and found that down-regulation of OsSPX1 caused high sensitivity to cold and oxidative stresses in rice seedlings. Compared to wild-type and OsSPX1-sense transgenic lines, more hydrogen peroxide accumulated in seedling leaves of OsSPX1-antisense transgenic lines for controls, cold and methyl viologen (MV treatments. Glutathione as a ROS scavenger could protect the antisense transgenic lines from cold and MV stress. Rice whole genome GeneChip analysis showed that some oxidative-stress marker genes (e.g. glutathione S-transferase and P450s and Pi-signaling pathway related genes (e.g. OsPHO2 were significantly down-regulated by the antisense of OsSPX1. The microarray results were validated by real-time RT-PCR. Our study indicated that OsSPX1 may be involved in cross-talks between oxidative stress, cold stress and phosphate homeostasis in rice seedling leaves.

  15. N-methylhemeanthidine chloride, a novel Amaryllidaceae alkaloid, inhibits pancreatic cancer cell proliferation via down-regulating AKT activation

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Guoli; Yao, Guangmin; Zhan, Guanqun; Hu, Yufeng [Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei PR China (China); Yue, Ming [Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei (China); Cheng, Ling; Liu, Yaping; Ye, Qi [Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei PR China (China); Qing, Guoliang [Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei (China); Zhang, Yonghui, E-mail: zhangyh@mails.tjmu.edu.cn [Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei PR China (China); Liu, Hudan, E-mail: hudanliu@hust.edu.cn [Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei PR China (China)

    2014-11-01

    We previously reported the isolation of a novel Amaryllidaceae alkaloid, N-methylhemeanthidine chloride (NMHC), from Zephyranthes candida, which exhibits potent cytotoxicity in a spectrum of tumor cells. However, the mechanism of action remains unclear. Using multiple cell lines derived from human pancreatic cancer, one of the most mortal and refractory human malignancies, we further studied the NMHC-mediated cytotoxicity and found that it induced drastic cytotoxicity in pancreatic cancer cells whereas an insignificant effect on a noncancerous cell line. The NMHC-mediated growth inhibition was more severe than the first-line chemotherapeutic agent gemcitabine, leading to cell cycle arrest, apoptotic death and decreased glycolysis. NMHC exerted its function through down-regulating AKT activation, and the ectopic expression of activated AKT rescued the growth inhibition. Consistently, NMHC injections in a pancreatic cancer xenograft model manifested the anti-tumor effect in vivo. Engrafted tumor cells underwent AKT attenuation and apoptotic death upon treatments. As such, we here demonstrate the AKT inhibition may be one of the mechanisms by which NMHC decreases tumor cell survival rate in vitro and in vivo. Our data thereby suggest that NMHC holds great promise as a potent chemotherapeutic agent against pancreatic cancer and sheds new light on obtaining such agents from natural products toward therapeutic purposes. - Highlights: • N-methylhemeanthidine chloride (NMHC) is a novel Amaryllidaceae alkaloid. • NMHC exhibits potent anti-neoplastic activity. • NMHC leads to cell cycle arrest, apoptotic death and decreased metabolism. • NMHC down-regulates the AKT signaling pathway.

  16. Synergistic combination of gemcitabine and dietary molecule induces apoptosis in pancreatic cancer cells and down regulates PKM2 expression.

    Directory of Open Access Journals (Sweden)

    Archana Pandita

    Full Text Available Gemcitabine, an effective agent in treatment of cancer of pancreas, has undergone failures in many instances after multiple cycles of therapy due to emergence of drug resistance. Combination of dietary compounds with clinically validated drugs has emerged as an effective therapeutic approach to treat pancreatic tumors, refractory to gemcitabine therapy. In order to optimize a possible synergistic combination of Gemcitabine (GCB with dietary molecules, Betuilnic acid (BA and Thymoquinone (TQ, stand-alone IC50 dose of GCB, BA and TQ was calculated for pancreatic cancer cell lines. Fixed IC50 dose ratio of the dietary molecules in combination with reduced IC50 dose of GCB was tested on GCB resistant PANC-1 and sensitive MIA PaCa-2 cells for synergism, additive response and antagonism, using calcusyn. Combination index (CI revealed that pre-treatment of BA and TQ along with GCB synergistically inhibited the cancer cell proliferation in in-vitro experiments. Pyruvate kinase (PK M2 isoform, a promising target involved in cancer cell metabolism, showed down-regulation in presence of TQ or BA in combination with GCB. GCB with BA acted preferentially on tumor mitochondria and triggered mitochondrial permeability transition. Pre-exposure of the cell lines, MIA PaCa-2 and PANC-1, to TQ in combination with GCB induced apoptosis. Thus, the effectiveness of BA or TQ in combination with GCB to inhibit cell proliferation, induce apoptosis and down-regulate the expression of PKM2, reflects promise in pancreatic cancer treatment.

  17. Senescence-related functional nuclear barrier by down-regulation of nucleo-cytoplasmic trafficking gene expression

    International Nuclear Information System (INIS)

    Kim, Sung Young; Ryu, Sung Jin; Ahn, Hong Ju; Choi, Hae Ri; Kang, Hyun Tae; Park, Sang Chul

    2010-01-01

    One of the characteristic natures of senescent cells is the hypo- or irresponsiveness not only to growth factors but also to apoptotic stress. In the present study, we confirmed the inhibition of nuclear translocation of activated p-ERK1/2 and NF-kB p50 in response to growth stimuli or LPS in the senescent human diploid fibroblasts. In order to elucidate the underlying mechanism for the senescence-associated hypo-responsiveness, we carried out the comparison study for gene expression profiles through microarray analysis. In consequence, we observed the vast reduction in expression of nucleo-cytoplasmic trafficking genes in senescent cells, when compared with those in young cells. Expression levels of several nucleoporins, karyopherin α, karyopherin β, Ran, and Ran-regulating factors were confirmed to be down-regulated in senescent HDFs by using RT-PCR and Western blot methods. Taken together, these data suggest the operation of certain senescence-associated functional nuclear barriers by down-regulation of the nucleo-cytoplasmic trafficking genes in the senescent cells.

  18. Senescence-related functional nuclear barrier by down-regulation of nucleo-cytoplasmic trafficking gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Young; Ryu, Sung Jin; Ahn, Hong Ju; Choi, Hae Ri; Kang, Hyun Tae [Department of Biochemistry and Molecular Biology, Aging and Apoptosis Research Center, Institute on Aging, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Park, Sang Chul, E-mail: scpark@snu.ac.kr [Department of Biochemistry and Molecular Biology, Aging and Apoptosis Research Center, Institute on Aging, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of)

    2010-01-01

    One of the characteristic natures of senescent cells is the hypo- or irresponsiveness not only to growth factors but also to apoptotic stress. In the present study, we confirmed the inhibition of nuclear translocation of activated p-ERK1/2 and NF-kB p50 in response to growth stimuli or LPS in the senescent human diploid fibroblasts. In order to elucidate the underlying mechanism for the senescence-associated hypo-responsiveness, we carried out the comparison study for gene expression profiles through microarray analysis. In consequence, we observed the vast reduction in expression of nucleo-cytoplasmic trafficking genes in senescent cells, when compared with those in young cells. Expression levels of several nucleoporins, karyopherin {alpha}, karyopherin {beta}, Ran, and Ran-regulating factors were confirmed to be down-regulated in senescent HDFs by using RT-PCR and Western blot methods. Taken together, these data suggest the operation of certain senescence-associated functional nuclear barriers by down-regulation of the nucleo-cytoplasmic trafficking genes in the senescent cells.

  19. BDNF val66met Polymorphism Impairs Hippocampal Long-Term Depression by Down-Regulation of 5-HT3 Receptors

    Directory of Open Access Journals (Sweden)

    Rui Hao

    2017-10-01

    Full Text Available Brain-derived neurotrophic factor (BDNF is a key regulator of neuronal plasticity and cognitive functions. BDNF val66met polymorphism, a human single-nucleotide polymorphism (SNP in the pro-domain of BDNF gene, is associated with deficits in activity-dependent BDNF secretion and hippocampus-dependent memory. However, the underlying mechanism remains unclear. Here we show that in the BDNFMet/Met mouse line mimicking the human SNP, BDNF expression in the hippocampus was decreased. There was a reduction in the total number of cells in hippocampal CA1 region, while hippocampal expression of mRNAs for NR2a, 2b, GluR1, 2 and GABAARβ3 subunits were up-regulated. Although basal glutamatergic neurotransmission was unaltered, hippocampal long-term depression (LTD induced by low-frequency stimulation was impaired, which was partially rescued by exogenous application of BDNF. Interestingly, 5-HT3a receptors were down-regulated in the hippocampus of BDNFMet/Met mice, whereas 5-HT2c receptors were up-regulated. Moreover, impaired LTD in BDNFMet/Met mice was reversed by 5-HT3aR agonist. Thus, these observations indicate that BDNF val66met polymorphism changes hippocampal synaptic plasticity via down-regulation of 5-HT3a receptors, which may underlie cognition dysfunction of Met allele carriers.

  20. Improved forage digestibility of tall fescue (Festuca arundinacea) by transgenic down-regulation of cinnamyl alcohol dehydrogenase.

    Science.gov (United States)

    Chen, Lei; Auh, Chung-Kyoon; Dowling, Paul; Bell, Jeremey; Chen, Fang; Hopkins, Andrew; Dixon, Richard A; Wang, Zeng-Yu

    2003-11-01

    Lignification of cell walls during plant development has been identified as the major factor limiting forage digestibility and concomitantly animal productivity. cDNA sequences encoding a key lignin biosynthetic enzyme, cinnamyl alcohol dehydrogenase (CAD), were cloned from the widely grown monocotyledonous forage species tall fescue (Festuca arundinacea Schreb.). Recombinant tall fescue CAD expressed in E. coli exhibited the highest V(max)/K(m) values when coniferaldehyde and sinapaldehyde were used as substrates. Transgenic tall fescue plants carrying either sense or antisense CAD gene constructs were obtained by microprojectile bombardment of single genotype-derived embryogenic suspension cells. Severely reduced levels of mRNA transcripts and significantly reduced CAD enzymatic activities were found in two transgenic plants carrying sense and antisense CAD transgenes, respectively. These CAD down-regulated transgenic lines had significantly decreased lignin content and altered ratios of syringyl (S) to guaiacyl (G), G to p-hydroxyphenyl (H) and S to H units. No significant changes in cellulose, hemicellulose, neutral sugar composition, p-coumaric acid and ferulic acid levels were observed in the transgenic plants. Increases of in vitro dry matter digestibility of 7.2-9.5% were achieved in the CAD down-regulated lines, thus providing a novel germplasm to be used for the development of grass cultivars with improved forage quality.

  1. Multinuclear giant cell formation is enhanced by down-regulation of Wnt signaling in gastric cancer cell line, AGS

    International Nuclear Information System (INIS)

    Kim, Shi-Mun; Kim, Rockki; Ryu, Jae-Hyun; Jho, Eek-Hoon; Song, Ki-Joon; Jang, Shyh-Ing; Kee, Sun-Ho

    2005-01-01

    AGS cells, which were derived from malignant gastric adenocarcinoma tissue, lack E-cadherin-mediated cell adhesion but have a high level of nuclear β-catenin, which suggests altered Wnt signal. In addition, approximately 5% of AGS cells form multinuclear giant cells in the routine culture conditions, while taxol treatment causes most AGS cells to become giant cells. The observation of reduced nuclear β-catenin levels in giant cells induced by taxol treatment prompted us to investigate the relationship between Wnt signaling and giant cell formation. After overnight serum starvation, the shape of AGS cells became flattened, and this morphological change was accompanied by decrease in Myc expression and an increase in the giant cell population. Lithium chloride treatment, which inhibits GSK3β activity, reversed these serum starvation effects, which suggests an inverse relationship between Wnt signaling and giant cell formation. Furthermore, the down-regulation of Wnt signaling caused by the over-expression of ICAT, E-cadherin, and Axin enhanced giant cell formation. Therefore, down-regulation of Wnt signaling may be related to giant cell formation, which is considered to be a survival mechanism against induced cell death

  2. Agitation down-regulates immunoglobulin binding protein EibG expression in Shiga toxin-producing Escherichia coli (STEC.

    Directory of Open Access Journals (Sweden)

    Thorsten Kuczius

    Full Text Available Shiga toxin (Stx-producing Escherichia coli (STEC carrying eibG synthesize Escherichia coli immunoglobulin binding protein (EibG. EibG nonspecifically binds to immunoglobulins and tends to aggregate in multimers but is poorly expressed in wild-type strains. To study synthesis of the proteins and their regulation in the pathogens, we identified natural growth conditions that increased EibG synthesis. EibG proteins as well as corresponding mRNA were highly expressed under static growth conditions while shearing stress created by agitation during growth repressed protein synthesis. Further regulation effects were driven by reduced oxygen tension, and pH up-regulated EibG expression, but to a lesser extent than growth conditions while decreased temperature down-regulated EibG. Bacteria with increased EibG expression during static growth conditions showed a distinct phenotype with chain formation and biofilm generation, which disappeared with motion. High and low EibG expression was reversible indicating a process with up- and down-regulation of the protein expression. Our findings indicate that shear stress represses EibG expression and might reduce bacterial attachments to cells and surfaces.

  3. Acute secondhand smoke-induced pulmonary inflammation is diminished in RAGE knockout mice.

    Science.gov (United States)

    Wood, Tyler T; Winden, Duane R; Marlor, Derek R; Wright, Alex J; Jones, Cameron M; Chavarria, Michael; Rogers, Geraldine D; Reynolds, Paul R

    2014-11-15

    The receptor for advanced glycation end-products (RAGE) has increasingly been demonstrated to be an important modulator of inflammation in cases of pulmonary disease. Published reports involving tobacco smoke exposure have demonstrated increased expression of RAGE, its participation in proinflammatory signaling, and its role in irreversible pulmonary remodeling. The current research evaluated the in vivo effects of short-term secondhand smoke (SHS) exposure in RAGE knockout and control mice compared with identical animals exposed to room air only. Quantitative PCR, immunoblotting, and immunohistochemistry revealed elevated RAGE expression in controls after 4 wk of SHS exposure and an anticipated absence of RAGE expression in RAGE knockout mice regardless of smoke exposure. Ras activation, NF-κB activity, and cytokine elaboration were assessed to characterize the molecular basis of SHS-induced inflammation in the mouse lung. Furthermore, bronchoalveolar lavage fluid was procured from RAGE knockout and control animals for the assessment of inflammatory cells and molecules. As a general theme, inflammation coincident with leukocyte recruitment was induced by SHS exposure and significantly influenced by the availability of RAGE. These data reveal captivating information suggesting a role for RAGE signaling in lungs exposed to SHS. However, ongoing research is still warranted to fully explain roles for RAGE and other receptors in cells coping with involuntary smoke exposure for prolonged periods of time. Copyright © 2014 the American Physiological Society.

  4. [The Habit of Rage in a United States Ghetto.

    Science.gov (United States)

    Bourgois, Philippe; Castrillo, Fernando Montero; Hart, Laurie; Karandinos, George

    2013-04-01

    For five years, the open air drug sales block where the authors resided and conducted participant-observation fieldwork in the Puerto Rican corner of inner-city Philadelphia was subject to a routinized whirlwind of shootings, stabbings and assaults. The narcotics industry filled the void left by deindustrialization, turning the city's former factory district into an open-air narcotics supermarket staffed at the entry level by young Puerto Ricans serving primarily poor white injectors. A capacity to mobilize rage ensures success in the drug economy, protection in prison, and minimal income for the no-longer-worthy poor who are diagnosed as cognitively disabled. Many residents seek alliances in social networks that oblige them to participate in solidary exchanges of assistive violence. A dynamic of embodied, primitive accumulation kills, maims, disables or incarcerates most of this industry's entry-level employees and customers. Artificially high profit margins depend on violence and coercion. A rage-filled habitus propels street-level sellers into violently defending the micro-monopoly power of their bosses in the underground economy as if it were fun. They rush to enforce commercial transactions in the absence of protective legal sanctions in an environment of scarcity that is flooded by streams of cash, addictive drugs and automatic weapons. With the end of welfare entitlements, the left hand of the state, in the form of social services, attempts to continue subsidies for vulnerable individuals by diagnosing scarred bodies and brains as proof of permanent cognitive disability in need of heavy pharmaceutical medication. Periodic outbursts of interpersonal or of self-inflicted rage-filled violence emerge as the best way to ensure the continuity of that fragile public subsidy. Simultaneously, within the bowels of the right hand of the state, in overcrowded, hostilely-supervised violent prisons, rage becomes a valuable physical self-protection strategy for inmates. In

  5. Low-molecular weight fractions of Japanese soy sauce act as a RAGE antagonist via inhibition of RAGE trafficking to lipid rafts.

    Science.gov (United States)

    Munesue, Seiichi; Yamamoto, Yasuhiko; Urushihara, Ryouta; Inomata, Kouhei; Saito, Hidehito; Motoyoshi, So; Watanabe, Takuo; Yonekura, Hideto; Yamamoto, Hiroshi

    2013-12-01

    Advanced glycation end-products (AGE) have been implicated in aging and the pathogenesis of diabetic complications, inflammation, Alzheimer's disease, and cancer. AGE engage the cell surface receptor for AGE (RAGE), which in turn elicits intracellular signaling, leading to activation of NF-κB to cause deterioration of tissue homeostasis. AGE are not only formed within our bodies but are also derived from foods, endowing them with flavor. In the present study, we assessed the agonistic/antagonistic effects of food-derived AGE on RAGE signaling in a reporter assay system and found that low-molecular weight AGE can antagonize the action of AGE-BSA. Foods tested were Japanese soy sauce, coffee, cola, and red wine, all of which showed fluorescence characteristics of AGE. Soy sauce and coffee contained N(ε)-carboxymethyl-lysine (CML). Soy sauce, coffee, and red wine inhibited the RAGE ligand-induced activation of NF-κB, whereas cola had no effect on the ligand induction of NF-κB. The liquids were then fractionated into high-molecular weight (HMW) fractions and low-molecular weight (LMW) fractions. Soy sauce-, coffee-, and red wine-derived LMW fractions consistently inhibited the RAGE ligand induction of NF-κB, whereas the HMW fractions of these foods activated RAGE signaling. Using the LMW fraction of soy sauce as a model food-derived RAGE antagonist, we performed a plate-binding assay and found that the soy sauce LMW fractions competitively inhibited AGE-RAGE association. Further, this fraction significantly reduced AGE-dependent monocyte chemoattractant protein-1 (MCP-1) secretion from murine peritoneal macrophages. The LMF from soy sauce suppressed the AGE-induced RAGE trafficking to lipid rafts. These results indicate that small components in some, if not all, foods antagonize RAGE signaling and could exhibit beneficial effects on RAGE-related diseases.

  6. [Impact of siRNA-mediated down-regulation of CD147 on human breast cancer cells].

    Science.gov (United States)

    Li, Zhenqian; Li, Daoming; Li, Jiangwei; Huang, Pei; Qin, Hui

    2015-10-01

    To investigate the influence of siRNA-mediated down-regulation of CD147 on growth, proliferation and movement of human breast cancer cell line MDA-MB-231. The protein expression of CD147, MMP-2 and TIMP-2 of the MDA-MB-231 cells were analyzed by ABC. Lentiviral expression vector of CD147 gene was constructed and transfected into MDA-MB-231 cells. RT-PCR and Western blot were used to detect the mRNA and protein level changes of CD147 genes to identify the optimal time point, followed by detection of changes of mRNA and protein expression of MMP-2 and TIMP-2 genes. CCK-8 reagent method and cell scratch test were used to detect the proliferation and migration change of MDA-MB-231 cells. The nude mouse model of breast cancer by hypodermic injection with MDA-MB-231 cells was established to document the effect of CD147 siRNA on the tumor transplants. After transfection of lentiviral expression vector of CD147 gene, protein of CD147, MMP-2 and TIMP-2 were weakly or negative expressed, significantly weaker than those of control group (P CD147 and MMP-2 were 96.03% ± 0.84% and 96.03% ± 0.84%, respectively. Both CD147 mRNA and MMP-2 mRNA expression were down-regulated (P 0.05). No less than 2 days after transfection, cell growth of MDA-MB-231 cell line was found significantly inhibited (P CD147 led to reduction of volume and mass of nude mouses. The growth of the carcinoma transplant was inhibited upon siRNA-mediated down-regulation of CD147 (P CD147 may alter the MMP-2/TIMP-2 balance in MDA-MB-231 cells. CD147 gene silencing inhibits the proliferation and migration of MDA-MB-231 cells and the growth of carcinoma transplants in nude mice.

  7. Lung Myofibroblasts Are Characterized by Down-Regulated Cyclooxygenase-2 and Its Main Metabolite, Prostaglandin E2

    Science.gov (United States)

    Gabasa, Marta; Royo, Dolores; Molina-Molina, Maria; Roca-Ferrer, Jordi; Pujols, Laura; Picado, Cesar

    2013-01-01

    Background Prostaglandin E2 (PGE2), the main metabolite of cyclooxygenase (COX), is a well-known anti-fibrotic agent. Moreover, myofibroblasts expressing α-smooth muscle actin (α-SMA), fibroblast expansion and epithelial-mesenchymal transition (EMT) are critical to the pathogenesis of idiopathic pulmonary fibrosis (IPF). Our aim was to investigate the expression of COX-2 and PGE2 in human lung myofibroblasts and establish whether fibroblast-myofibroblast transition (FMT) and EMT are associated with COX-2 and PGE2 down-regulation. Methods Fibroblasts obtained from IPF patients (n = 6) and patients undergoing spontaneous pneumothorax (control, n = 6) and alveolar epithelial cell line A549 were incubated with TGF-β1 and FMT and EMT markers were evaluated. COX-2 and α-SMA expression, PGE2 secretion and cell proliferation were measured after IL-1β and PGE2 incubation. Results Myofibroblasts from both control and IPF fibroblast cultures stimulated with IL-1β showed no COX-2 expression. IPF fibroblasts showed increased myofibroblast population and reduced COX-2 expression in response to IL-1β. TGF-β1 increased the number of myofibroblasts in a time-dependent manner. In contrast, TGF-β1 induced slight COX-2 expression at 4 h (without increase in myofibroblasts) and 24 h, but not at 72 h. Both IPF and control cultures incubated with TGF-β1 for 72 h showed diminished COX-2 induction, PGE2 secretion and α-SMA expression after IL-1β addition. The latter decreased proliferation in fibroblasts but not in myofibroblasts. A549 cells incubated with TGF-β1 for 72 h showed down-regulated COX-2 expression and low basal PGE2 secretion in response to IL-1β. Immuno-histochemical analysis of IPF lung tissue showed no COX-2 immuno-reactivity in myofibroblast foci. Conclusions Myofibroblasts are associated with COX-2 down-regulation and reduced PGE2 production, which could be crucial in IPF development and progression. PMID:23755232

  8. hZip2 and hZip3 zinc transporters are down regulated in human prostate adenocarcinomatous glands

    Directory of Open Access Journals (Sweden)

    Franklin Renty B

    2007-06-01

    Full Text Available Abstract Background The normal human prostate glandular epithelium has the unique function of accumulating high levels of zinc. In prostate cancer this capability is lost as an early event in the development of the malignant cells. The mechanism and factors responsible for the ability of the normal epithelial cells to accumulate zinc and the loss of this capability in the malignant cells need to be identified. We previously reported that Zip1 is an important zinc uptake transporter in prostate cells and is down regulated in the malignant cells in situ along with the depletion of zinc levels. In this report we investigated the expression of two other Zip family zinc transporters, Zip2 and Zip3 in malignant versus nonmalignant (normal and BPH glands. Zip2 and Zip3 relative protein levels were determined by immunohistochemistry analysis of human prostate tissue sections. Results Normal and BPH glandular epithelium consistently exhibited the strong presence of both Zip 2 and Zip3; whereas both transporters consistently were essentially non-detectable in the malignant glands. This represents the first report of the expression of Zip3 in human prostate tissue; and more importantly, reveals that ZiP2 and Zip3 are down regulated in malignant cells in situ as we also had demonstrated for Zip1. Zip2 and Zip3 transporter proteins were localized predominantly at the apical cell membrane, which is in contrast to the Zip1 localization at the basolateral membrane. Zip2 and Zip3 seemingly are associated with the re-uptake of zinc from prostatic fluid. Conclusion These results coupled with previous reports implicate Zip2 and Zip3 along with Zip1 as important zinc uptake transporters involved in the unique ability of prostate cells to accumulate high cellular zinc levels. Zip1 is important for the extraction of zinc from circulation as the primary source of cellular zinc. Zip 2 and Zip3 appear to be important for retention of the zinc in the cellular compartment

  9. In vitro anticancer effects of a RAGE inhibitor discovered using a structure-based drug design system

    Science.gov (United States)

    El-Far, Ali Hafez Ali Mohammed; Munesue, Seiichi; Harashima, Ai; Sato, Akira; Shindo, Mika; Nakajima, Shingo; Inada, Mana; Tanaka, Mariko; Takeuchi, Akihiko; Tsuchiya, Hiroyuki; Yamamoto, Hiroshi; Shaheen, Hazem M.E.; El-Sayed, Yasser S.; Kawano, Shuhei; Tanuma, Sei-Ichi; Yamamoto, Yasuhiko

    2018-01-01

    Receptor for advanced glycation end-products (RAGE) is a pattern recognition receptor implicated in the pathogenesis of certain types of cancer. In the present study, papaverine was identified as a RAGE inhibitor using the conversion to small molecules through optimized-peptide strategy drug design system. Papaverine significantly inhibited RAGE-dependent nuclear factor κ-B activation driven by high mobility group box-1, a RAGE ligand. Using RAGE- or dominant-negative RAGE-expressing HT1080 human fibrosarcoma cells, the present study revealed that papaverine suppressed RAGE-dependent cell proliferation and migration dose-dependently. Furthermore, papaverine significantly inhibited cell invasion. The results of the present study suggested that papaverine could inhibit RAGE, and provided novel insights into the field of RAGE biology, particularly anticancer therapies. PMID:29541234

  10. Nucleolin down-regulation is involved in ADP-induced cell cycle arrest in S phase and cell apoptosis in vascular endothelial cells.

    Directory of Open Access Journals (Sweden)

    Wenmeng Wang

    Full Text Available High concentration of extracellular ADP has been reported to induce cell apoptosis, but the molecular mechanisms remain not fully elucidated. In this study, we found by serendipity that ADP treatment of human umbilical vein endothelial cells (HUVEC and human aortic endothelial cells (HAEC down-regulated the protein level of nucleolin in a dose- and time-dependent manner. ADP treatment did not decrease the transcript level of nucloelin, suggesting that ADP might induce nucleolin protein degradation. HUVEC and HAEC expressed ADP receptor P2Y13 receptor, but did not express P2Y1 or P2Y12 receptors. However, P2Y1, 12, 13 receptor antagonists MRS2179, PSB0739, MRS2211 did not inhibit ADP-induced down-regulation of nucleolin. Moreover, MRS2211 itself down-regulated nucleolin protein level. In addition, 2-MeSADP, an agonist for P2Y1, 12 and 13 receptors, did not down-regulate nucleolin protein. These results suggested that ADP-induced nucleolin down-regulation was not due to the activation of P2Y1, 12, or 13 receptors. We also found that ADP treatment induced cell cycle arrest in S phase, cell apoptosis and cell proliferation inhibition via nucleolin down-regulation. The over-expression of nucleolin by gene transfer partly reversed ADP-induced cell cycle arrest, cell apoptosis and cell proliferation inhibition. Furthermore, ADP sensitized HUVEC to cisplatin-induced cell death by the down-regulation of Bcl-2 expression. Taken together, we found, for the first time to our knowledge, a novel mechanism by which ADP regulates cell proliferation by induction of cell cycle arrest and cell apoptosis via targeting nucelolin.

  11. Down-regulation of Transducin-Like Enhancer of Split protein 4 in hepatocellular carcinoma promotes cell proliferation and epithelial-Mesenchymal-Transition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiao-cai; Xiao, Cui-cui; Li, Hua [Department of Hepatic Surgery, 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou (China); Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou (China); Tai, Yan; Zhang, Qi [Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou (China); Yang, Yang, E-mail: yysysu2@163.com [Department of Hepatic Surgery, 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou (China)

    2016-08-19

    Background: Transducin-Like Enhancer of Split protein 4 (TLE4) has been reported to be involved in some subsets of acute myeloid leukemia and colorectal cancer. In the present study, we aimed to explore the role of TLE4 in tumorigenesis and cancer progression in hepatocellular carcinoma (HCC). Methods: The expression pattern of TLE4 in HCC was determined by Western-blot and qRT-PCR, gain-of-function and loss-of-function was used to explore the biological role of TLE4 in HCC cells. A xenograft model was established to confirm its effects on proliferation. Results: The protein expression levels of TLE4 were significantly down-regulated in HCC tissues compared to matched adjacent normal liver tissues. In vitro, down-regulation of TLE4 in Huh7 or SMMC-7721 promoted cell proliferation and ectopical expression of TLE4 in Hep3B or Bel-7404 suppressed cell proliferation. In addition, the cell colony formation ability was enhanced after down-regulation of TLE4 expression in Huh-7 but suppressed after over-expression in Hep3B. Furthermore, down-regulation of TLE4 increased the cell invasion ability, as well as increased the expression level of Vimentin and decreased that of E-cadherin, indicating a phenotype of epithelial-mesenchymal transition (EMT) in HCC cells. On the contrary, ectopical expression of TLE4 in HCC cells decreased the cell invasion ability and inhibited EMT. In vivo, compared to control group, xenograft tumor volumes were significantly decreased in TLE4 overexpression group. Conclusions: These results demonstrated that TLE4 might play important regulatory roles in cellular proliferation and EMT process in HCC. - Highlights: • TLE4 is significantly down-regulated in HCC samples. • Down regulated of TLE4 in HCC cells promotes cell proliferation. • Down regulated of TLE4 in HCC cells promotes epithelial-to-mesenchymal transition.

  12. Down-regulation of LRP1B in colon cancer promoted the growth and migration of cancer cells.

    Science.gov (United States)

    Wang, Zhiqiang; Sun, Peng; Gao, Chun; Chen, Ji; Li, Jun; Chen, Zhonghao; Xu, Ming; Shao, Jun; Zhang, Yunpeng; Xie, Jiang

    2017-08-01

    Aberrant activation of beta-catenin/TCF signaling is one of the hallmarks of colon cancer. It is of great interest to study the mechanism for the regulation of beta-catenin/TCF signaling. In this study, it was found that LRP1B was down-regulated in colon cancer tissues and inhibited the growth, migration and metastasis of colon cancer cells. The molecular mechanism study revealed that LRP1B interacted with DVL2, inhibited the interaction between DVL2 and Axin, and negatively regulated beta-catenin/TCF signaling. Taken together, our study demonstrated the suppressive roles of LRP1B in the progression of colon cancer, implicating that restoring the function of LRP1B would be a promising strategy for the treatment of colon cancer. Copyright © 2017. Published by Elsevier Inc.

  13. Monomethylfumarate affects polarization of monocyte-derived dendritic cells resulting in down-regulated Th1 lymphocyte responses

    DEFF Research Database (Denmark)

    Litjens, Nicolle H R; Rademaker, Mirjam; Ravensbergen, Bep

    2004-01-01

    Psoriasis vulgaris, a type-1 cytokine-mediated chronic skin disease, can be treated successfully with fumaric acid esters (FAE). Beneficial effects of this medication coincided with decreased production of IFN-gamma. Since dendritic cells (DC) regulate the differentiation of T helper (Th) cells......% of that by the respective Th cells cocultured with control DC. IL-4 production by primed, but not naive Th cells cocultured with MMF-DC was decreased as compared to cocultures with control DC. IL-10 production by naive and primed Th cells cocultured with MMF-DC and control DC did not differ. In addition, MMF inhibited LPS......-induced NF-kappaB activation in DC. Together, beneficial effects of FAE in psoriasis involve modulation of DC polarization by MMF such that these cells down-regulate IFN-gamma production by Th cells....

  14. Top-down regulation of left temporal cortex by hypnotic amusia for rhythm: a pilot study on mismatch negativity.

    Science.gov (United States)

    Facco, Enrico; Ermani, Mario; Rampazzo, Patrizia; Tikhonoff, Valérie; Saladini, Marina; Zanette, Gastone; Casiglia, Edoardo; Spiegel, David

    2014-01-01

    To evaluate the effect of hypnotically induced amusia for rhythm (a condition in which individuals are unable to recognize melodies or rhythms) on mismatch negativity (MMN), 5 highly (HH) and 5 poorly (LH) hypnotizable nonmusician volunteers underwent MMN recording before and during a hypnotic suggestion for amusia. MMN amplitude was recorded using a 19-channel montage and then processed using the low-resolution electromagnetic tomography (LORETA) to localize its sources. MMN amplitude was significantly decreased during hypnotic amusia (p < .04) only in HH, where the LORETA maps of MMN showed a decreased source amplitude in the left temporal lobe, suggesting a hypnotic top-down regulation of activity of these areas and that these changes can be assessed by neurophysiological investigations.

  15. Niemann-Pick C1 like 1 gene expression is down-regulated by LXR activators in the intestine

    International Nuclear Information System (INIS)

    Duval, Caroline; Touche, Veronique; Tailleux, Anne; Fruchart, Jean-Charles; Fievet, Catherine; Clavey, Veronique; Staels, Bart; Lestavel, Sophie

    2006-01-01

    Niemann-Pick C1 like 1 (NPC1L1) is a protein critical for intestinal cholesterol absorption. The nuclear receptors peroxisome proliferator-activated receptor alpha (PPARα) and liver X receptors (LXRα and LXRβ) are major regulators of cholesterol homeostasis and their activation results in a reduced absorption of intestinal cholesterol. The goal of this study was to define the role of PPARα and LXR nuclear receptors in the regulation of NPC1L1 gene expression. We show that LXR activators down-regulate NPC1L1 mRNA levels in the human enterocyte cell line Caco-2/TC7, whereas PPARα ligands have no effect. Furthermore, NPC1L1 mRNA levels are decreased in vivo, in duodenum of mice treated with the LXR agonist T0901317. In conclusion, the present study identifies NPC1L1 as a novel LXR target gene further supporting a crucial role of LXR in intestinal cholesterol homeostasis

  16. [Effect of down-regulation of HE4 gene expression on biologic behavior of ovarian cancer cells].

    Science.gov (United States)

    Zhou, Lei; Xiao, Ran; Chen, Ying; Zhang, Jing; Lu, Ren-quan; Guo, Lin

    2013-10-01

    To investigate the effects of HE4 gene knockdown on the proliferation, adhesion and invasion of the ovarian cancer cells SKOV3. The knockdown of HE4 gene was performed by RNAi technology. The recombinant plasmids (pSUPER-HE4 shDNAs) were constructed and transfected into human ovarian cancer cells SKOV3. HE4 expression was then identified by real-time PCR and Western blot analysis. The invasion and adhesion ability of transduced cells were determined. In addition, cell proliferation and growth were analyzed by colonies formation assay. Knockdown of HE4 was achieved, and further confirmed by real-time PCR and Western blot. The proliferation of HE4-down-regulated cells was not affected, but the invasion ability of the transfected cells was reduced (P cells.

  17. Circulating let-7g is down-regulated in Bernese Mountain dogs with disseminated histiocytic sarcoma and carcinomas

    DEFF Research Database (Denmark)

    Børresen, B; Nielsen, L N; Jessen, L R

    2017-01-01

    Cancer is a prevalent cause of mortality in Bernese mountain dogs (BMDs). Circulating microRNAs (miRNAs) are found in blood and have been identified as promising biomarkers in various neoplastic diseases in humans. In the current study, the expression profile of different types of mi...... dogs. Twenty-four different miRNAs were profiled from RNA isolated from whole blood preserved in PAXgene(®) tubes using quantitative real-time PCR (qPCR). The miRNA let-7g was significantly down-regulated in dogs with cancer (P = 0.002) and dogs with DHS (P = 0.011) compared with healthy controls...

  18. N-MYC down-regulated-like proteins regulate meristem initiation by modulating auxin transport and MAX2 expression.

    Science.gov (United States)

    Mudgil, Yashwanti; Ghawana, Sanjay; Jones, Alan M

    2013-01-01

    N-MYC down-regulated-like (NDL) proteins interact with the Gβ subunit (AGB1) of the heterotrimeric G protein complex and play an important role in AGB1-dependent regulation of lateral root formation by affecting root auxin transport, auxin gradients and the steady-state levels of mRNA encoding the PIN-FORMED 2 and AUXIN 1 auxin transport facilitators. Auxin transport in aerial tissue follows different paths and utilizes different transporters than in roots; therefore, in the present study, we analyzed whether NDL proteins play an important role in AGB1-dependent, auxin-mediated meristem development. Expression levels of NDL gene family members need to be tightly regulated, and altered expression (both over-expression and down-regulation) confers ectopic growth. Over-expression of NDL1 disrupts vegetative and reproductive organ development. Reduced expression of the NDL gene family members results in asymmetric leaf emergence, twinning of rosette leaves, defects in leaf formation, and abnormal silique distribution. Reduced expression of the NDL genes in the agb1-2 (null allele) mutant rescues some of the abnormal phenotypes, such as silique morphology, silique distribution, and peduncle angle, suggesting that proper levels of NDL proteins are maintained by AGB1. We found that all of these abnormal aerial phenotypes due to altered NDL expression were associated with increases in basipetal auxin transport, altered auxin maxima and altered MAX2 expression within the inflorescence stem. NDL proteins, together with AGB1, act as positive regulators of meristem initiation and branching. AGB1 and NDL1 positively regulate basipetal inflorescence auxin transport and modulate MAX2 expression in shoots, which in turn regulates organ and lateral meristem formation by the establishment and maintenance of auxin gradients.

  19. N-MYC down-regulated-like proteins regulate meristem initiation by modulating auxin transport and MAX2 expression.

    Directory of Open Access Journals (Sweden)

    Yashwanti Mudgil

    Full Text Available N-MYC down-regulated-like (NDL proteins interact with the Gβ subunit (AGB1 of the heterotrimeric G protein complex and play an important role in AGB1-dependent regulation of lateral root formation by affecting root auxin transport, auxin gradients and the steady-state levels of mRNA encoding the PIN-FORMED 2 and AUXIN 1 auxin transport facilitators. Auxin transport in aerial tissue follows different paths and utilizes different transporters than in roots; therefore, in the present study, we analyzed whether NDL proteins play an important role in AGB1-dependent, auxin-mediated meristem development.Expression levels of NDL gene family members need to be tightly regulated, and altered expression (both over-expression and down-regulation confers ectopic growth. Over-expression of NDL1 disrupts vegetative and reproductive organ development. Reduced expression of the NDL gene family members results in asymmetric leaf emergence, twinning of rosette leaves, defects in leaf formation, and abnormal silique distribution. Reduced expression of the NDL genes in the agb1-2 (null allele mutant rescues some of the abnormal phenotypes, such as silique morphology, silique distribution, and peduncle angle, suggesting that proper levels of NDL proteins are maintained by AGB1. We found that all of these abnormal aerial phenotypes due to altered NDL expression were associated with increases in basipetal auxin transport, altered auxin maxima and altered MAX2 expression within the inflorescence stem.NDL proteins, together with AGB1, act as positive regulators of meristem initiation and branching. AGB1 and NDL1 positively regulate basipetal inflorescence auxin transport and modulate MAX2 expression in shoots, which in turn regulates organ and lateral meristem formation by the establishment and maintenance of auxin gradients.

  20. Onset and organ specificity of Tk2 deficiency depends on Tk1 down-regulation and transcriptional compensation.

    Science.gov (United States)

    Dorado, Beatriz; Area, Estela; Akman, Hasan O; Hirano, Michio

    2011-01-01

    Deficiency of thymidine kinase 2 (TK2) is a frequent cause of isolated myopathy or encephalomyopathy in children with mitochondrial DNA (mtDNA) depletion. To determine the bases of disease onset, organ specificity and severity of TK2 deficiency, we have carefully characterized Tk2 H126N knockin mice (Tk2-/-). Although normal until postnatal day 8, Tk2-/- mice rapidly develop fatal encephalomyopathy between postnatal days 10 and 13. We have observed that wild-type Tk2 activity is constant in the second week of life, while Tk1 activity decreases significantly between postnatal days 8 and 13. The down-regulation of Tk1 activity unmasks Tk2 deficiency in Tk2-/- mice and correlates with the onset of mtDNA depletion in the brain and the heart. Resistance to pathology in Tk2 mutant organs depends on compensatory mechanisms to the reduced mtDNA level. Our analyses at postnatal day 13 have revealed that Tk2-/- heart significantly increases mitochondrial transcript levels relative to the mtDNA content. This transcriptional compensation allows the heart to maintain normal levels of mtDNA-encoded proteins. The up-regulation in mitochondrial transcripts is not due to increased expression of the master mitochondrial biogenesis regulators peroxisome proliferator-activated receptor-gamma coactivator 1 alpha and nuclear respiratory factors 1 and 2, or to enhanced expression of the mitochondrial transcription factors A, B1 or B2. Instead, Tk2-/- heart compensates for mtDNA depletion by down-regulating the expression of the mitochondrial transcriptional terminator transcription factor 3 (MTERF3). Understanding the molecular mechanisms that allow Tk2 mutant organs to be spared may help design therapies for Tk2 deficiency.

  1. Down-regulation of DNA mismatch repair enhances initiation and growth of neuroblastoma and brain tumour multicellular spheroids.

    Directory of Open Access Journals (Sweden)

    Samuel L Collins

    Full Text Available Multicellular tumour spheroid (MCTS cultures are excellent model systems for simulating the development and microenvironmental conditions of in vivo tumour growth. Many documented cell lines can generate differentiated MCTS when cultured in suspension or in a non-adhesive environment. While physiological and biochemical properties of MCTS have been extensively characterized, insight into the events and conditions responsible for initiation of these structures is lacking. MCTS are formed by only a small subpopulation of cells during surface-associated growth but the processes responsible for this differentiation are poorly understood and have not been previously studied experimentally. Analysis of gene expression within spheroids has provided clues but to date it is not known if the observed differences are a cause or consequence of MCTS growth. One mechanism linked to tumourigenesis in a number of cancers is genetic instability arising from impaired DNA mismatch repair (MMR. This study aimed to determine the role of MMR in MCTS initiation and development. Using surface-associated N2a and CHLA-02-ATRT culture systems we have investigated the impact of impaired MMR on MCTS growth. Analysis of the DNA MMR genes MLH1 and PMS2 revealed both to be significantly down-regulated at the mRNA level compared with non-spheroid-forming cells. By using small interfering RNA (siRNA against these genes we show that silencing of MLH1 and PMS2 enhances both MCTS initiation and subsequent expansion. This effect was prolonged over several passages following siRNA transfection. Down-regulation of DNA MMR can contribute to tumour initiation and progression in N2a and CHLA-02-ATRT MCTS models. Studies of surface-associated MCTS differentiation may have broader applications in studying events in the initiation of cancer foci.

  2. The Cell Surface Estrogen Receptor, G Protein- Coupled Receptor 30 (GPR30, is Markedly Down Regulated During Breast Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Indira Poola

    2008-01-01

    Full Text Available Background: GPR30 is a cell surface estrogen receptor that has been shown to mediate a number of non-genomic rapid effects of estrogen and appear to balance the signaling of estrogen and growth factors. In addition, progestins appear to use GPR30 for their actions. Therefore, GPR30 could play a critical role in hormonal regulation of breast epithelial cell integrity. Deregulation of the events mediated by GPR30 could contribute to tumorigenesis.Methods: To understand the role of GPR30 in the deregulation of estrogen signaling processes during breast carcinogenesis, we have undertaken this study to investigate its expression at mRNA levels in tumor tissues and their matched normal tissues. We compared its expression at mRNA levels by RT quantitative real-time PCR relative to GAPDH in ERα”—positive (n = 54 and ERα”—negative (n = 45 breast cancer tissues to their matched normal tissues.Results: We report here, for the first time, that GPR30 mRNA levels were significantly down-regulated in cancer tissues in comparison with their matched normal tissues (p 0.0001 by two sided paired t-test. The GPR30 expression levels were significantly lower in tumor tissues from patients (n = 29 who had lymph node metastasis in comparison with tumors from patients (n = 53 who were negative for lymph node metastasis (two sample t-test, p 0.02, but no association was found with ERα, PR and other tumor characteristics.Conclusions: Down-regulation of GPR30 could contribute to breast tumorigenesis and lymph node metastasis.

  3. IL-10 down-regulates the expression of survival associated gene hspX of Mycobacterium tuberculosis in murine macrophage

    Directory of Open Access Journals (Sweden)

    Babban Jee

    2017-07-01

    Full Text Available Mycobacterium tuberculosis (MTB adopts a special survival strategy to overcome the killing mechanism(s of host immune system. Amongst the many known factors, small heat shock protein 16.3 (sHSP16.3 of MTB encoded by gene hspX has been reported to be critical for the survival of MTB. In the present study, the effect of recombinant murine interferon-gamma (rmIFN-γ and recombinant murine interleukin-10 (rmIL-10 on the expression of gene hspX of MTB in murine macrophage RAW264.7 has been investigated. By real-time RT-PCR, it was observed that three increasing concentrations (5, 25 and 50 ng/ml of rmIFN-γ significantly up-regulated the expression of hspX whereas similar concentrations of rmIL-10 (5, 25 and 50 ng/ml significantly down-regulated the hspX expression. This effect was not only dependent on the concentration of the stimulus but this was time-dependent as well. A contrasting pattern of hspX expression was observed against combinations of two different concentrations of rmIFN-γ and rmIL-10. The study results suggest that rIL-10 mediated down-regulation of hspX expression, in the presence of low concentration of rIFN-γ, could be used as an important strategy to decrease the dormancy of MTB in its host and thus making MTB susceptible to the standard anti-mycobacterial therapy used for treating tuberculosis. However, as these are only preliminary results in the murine cell line model, this hypothesis needs to be first validated in human cell lines and subsequently in animal models mimicking the latent infection using clinical isolates of MTB before considering the development of modified regimens for humans.

  4. Interaction between C/EBPβ and Tax down-regulates human T-cell leukemia virus type I transcription

    International Nuclear Information System (INIS)

    Hivin, P.; Gaudray, G.; Devaux, C.; Mesnard, J.-M.

    2004-01-01

    The human T-cell leukemia virus type I (HTLV-I) Tax protein trans-activates viral transcription through three imperfect tandem repeats of a 21-bp sequence called Tax-responsive element (TxRE). Tax regulates transcription via direct interaction with some members of the activating transcription factor/CRE-binding protein (ATF/CREB) family including CREM, CREB, and CREB-2. By interacting with their ZIP domain, Tax stimulates the binding of these cellular factors to the CRE-like sequence present in the TxREs. Recent observations have shown that CCAAT/enhancer binding protein β (C/EBPβ) forms stable complexes on the CRE site in the presence of CREB-2. Given that C/EBPβ has also been found to interact with Tax, we analyzed the effects of C/EBPβ on viral Tax-dependent transcription. We show here that C/EBPβ represses viral transcription and that Tax is no more able to form a stable complex with CREB-2 on the TxRE site in the presence of C/EBPβ. We also analyzed the physical interactions between Tax and C/EBPβ and found that the central region of C/EBPβ, excluding its ZIP domain, is required for direct interaction with Tax. It is the first time that Tax is described to interact with a basic leucine-zipper (bZIP) factor without recognizing its ZIP domain. Although unexpected, this result explains why C/EBPβ would be unable to form a stable complex with Tax on the TxRE site and could then down-regulate viral transcription. Lastly, we found that C/EBPβ was able to inhibit Tax expression in vivo from an infectious HTLV-I molecular clone. In conclusion, we propose that during cell activation events, which stimulate the Tax synthesis, C/EBPβ may down-regulate the level of HTLV-I expression to escape the cytotoxic-T-lymphocyte response

  5. Nickel induces transcriptional down-regulation of DNA repair pathways in tumorigenic and non-tumorigenic lung cells.

    Science.gov (United States)

    Scanlon, Susan E; Scanlon, Christine D; Hegan, Denise C; Sulkowski, Parker L; Glazer, Peter M

    2017-06-01

    The heavy metal nickel is a known carcinogen, and occupational exposure to nickel compounds has been implicated in human lung and nasal cancers. Unlike many other environmental carcinogens, however, nickel does not directly induce DNA mutagenesis, and the mechanism of nickel-related carcinogenesis remains incompletely understood. Cellular nickel exposure leads to signaling pathway activation, transcriptional changes and epigenetic remodeling, processes also impacted by hypoxia, which itself promotes tumor growth without causing direct DNA damage. One of the mechanisms by which hypoxia contributes to tumor growth is the generation of genomic instability via down-regulation of high-fidelity DNA repair pathways. Here, we find that nickel exposure similarly leads to down-regulation of DNA repair proteins involved in homology-dependent DNA double-strand break repair (HDR) and mismatch repair (MMR) in tumorigenic and non-tumorigenic human lung cells. Functionally, nickel induces a defect in HDR capacity, as determined by plasmid-based host cell reactivation assays, persistence of ionizing radiation-induced DNA double-strand breaks and cellular hypersensitivity to ionizing radiation. Mechanistically, we find that nickel, in contrast to the metalloid arsenic, acutely induces transcriptional repression of HDR and MMR genes as part of a global transcriptional pattern similar to that seen with hypoxia. Finally, we find that exposure to low-dose nickel reduces the activity of the MLH1 promoter, but only arsenic leads to long-term MLH1 promoter silencing. Together, our data elucidate novel mechanisms of heavy metal carcinogenesis and contribute to our understanding of the influence of the microenvironment on the regulation of DNA repair pathways. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Down-regulation of inflammatory mediator synthesis and infiltration of inflammatory cells by MMP-3 in experimentally induced rat pulpitis.

    Science.gov (United States)

    Takimoto, Koyo; Kawashima, Nobuyuki; Suzuki, Noriyuki; Koizumi, Yu; Yamamoto, Mioko; Nakashima, Misako; Suda, Hideaki

    2014-09-01

    Matrix metalloproteinase (MMP)-3 is a member of the MMP family that degrades the extracellular matrix. Application of MMP-3 to injured pulp tissue induces angiogenesis and wound healing, but its anti-inflammatory effects are still unclear. Here, we evaluated the anti-inflammatory functions of MMP-3 in vitro and in vivo. Nitric oxide and inflammatory mediator synthesis in macrophages activated by lipopolysaccharide (LPS) was measured in the presence or absence of MMP-3. The mouse Mmp3 (mMmp3) expression vector containing full length cDNA sequence of mMmp3 or cDNA sequence of mMmp3 missing the signal peptide and pro-peptide regions was transfected to RAW264, a mouse macrophage cell line, and NO synthesis and inflammatory mediator expression were evaluated. Pulpal inflammation was histologically and immunohistochemically evaluated in a rat model of incisor pulpitis induced by the application of LPS for 9 hours in the presence or absence of MMP-3. NO and pro-inflammatory mediator synthesis promoted by LPS was significantly down-regulated by MMP-3 in vitro. The full length of mMmp3 down-regulated the LPS-induced NO synthesis and chemical mediator mRNA expression, however the mMmp3 missing the signal peptide failed to block the NO synthesis induced by LPS. The numbers of major histocompatibility complex class II+ and CD68+ cells, which infiltrated into the rat incisor pulp tissues in response to the topical application of LPS, were significantly decreased by the application of MMP-3 in vivo. These results indicate that MMP-3 possesses anti-inflammatory functions, suggesting its potential utility as an anti-inflammatory agent for pulpal inflammation. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  7. Putative tumour-suppressor gene DAB2 is frequently down regulated by promoter hypermethylation in nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Tong, Joanna H; Lo, Kwok W; To, Ka F; Ng, David C; Chau, Shuk L; So, Ken K; Leung, Patrick P; Lee, Tin L; Lung, Raymond W; Chan, Michael W; Chan, Anthony W

    2010-01-01

    Human Disabled-2 (DAB2), is a multi-function signalling molecule that it is frequently down-regulated in human cancers. We aimed to investigate the possible tumour suppressor effect of DAB2 in nasopharyngeal carcinoma (NPC). We studied the expression of DAB2 in NPC cell lines, xenografts and primary tumour samples. The status of promoter methylation was assessed by methylation specific PCR and bisulfite sequencing. The functional role of DAB2 in NPC was investigated by re-introducing DAB2 expression into NPC cell line C666-1. Decrease or absent of DAB2 transcript was observed in NPC cell lines and xenografts. Loss of DAB2 protein expression was seen in 72% (33/46) of primary NPC as demonstrated by immunohistochemistry. Aberrant DAB2 promoter methylation was detected in 65.2% (30/46) of primary NPC samples by methylation specific PCR. Treatment of the DAB2 negative NPC cell line C666-1 with 5-aza-2'-deoxycytidine resulted in restoration of DAB2 expression in a dose-dependent manner. Overexpression of DAB2 in NPC cell line C666-1 resulted in reduced growth rate and 35% reduction in anchorage-dependent colony formation, and inhibition of serum-induced c-Fos expression compared to vector-transfected controls. Over expression of DAB2 resulted in alterations of multiple pathways as demonstrated by expression profiling and functional network analysis, which confirmed the role of DAB2 as an adaptor molecule involved in multiple receptor-mediated signalling pathways. We report the frequent down regulation of DAB2 in NPC and the promoter hypermethylation contributes to the loss of expression of DAB2. This is the first study demonstrating frequent DAB2 promoter hypermethylation in human cancer. Our functional studies support the putative tumour suppressor effect of DAB2 in NPC cells

  8. Systemic responses to inhaled ozone in mice: cachexia and down-regulation of liver xenobiotic metabolizing genes

    Energy Technology Data Exchange (ETDEWEB)

    Last, Jerold A [Pulmonary and Critical Care Medicine, School of Medicine, Toxic Substances Program, 1131 Surge I, University of California, Davis, CA 95616-8723 (United States); Gohil, Kishorchandra [Pulmonary and Critical Care Medicine, School of Medicine, Toxic Substances Program, 1131 Surge I, University of California, Davis, CA 95616-8723 (United States); Mathrani, Vivek C [Pulmonary and Critical Care Medicine, School of Medicine, Toxic Substances Program, 1131 Surge I, University of California, Davis, CA 95616-8723 (United States); Kenyon, Nicholas J [Pulmonary and Critical Care Medicine, School of Medicine, Toxic Substances Program, 1131 Surge I, University of California, Davis, CA 95616-8723 (United States)

    2005-10-15

    Rats or mice acutely exposed to high concentrations of ozone show an immediate and significant weight loss, even when allowed free access to food and water. The mechanisms underlying this systemic response to ozone have not been previously elucidated. We have applied the technique of global gene expression analysis to the livers of C57BL mice acutely exposed to ozone. Mice lost up to 14% of their original body weight, with a 42% decrease in total food consumption. We previously had found significant up-regulation of genes encoding proliferative enzymes, proteins related to acute phase reactions and cytoskeletal functions, and other biomarkers of a cachexia-like inflammatory state in lungs of mice exposed to ozone. These results are consistent with a general up-regulation of different gene families responsive to NF-{kappa}B in the lungs of the exposed mice. In the present study, we observed significant down-regulation of different families of mRNAs in the livers of the exposed mice, including genes related to lipid and fatty acid metabolism, and to carbohydrate metabolism in this tissue, consistent with a systemic cachexic response. Several interferon-dependent genes were down-regulated in the liver, suggesting a possible role for interferon as a signaling molecule between lung and liver. In addition, transcription of several mRNAs encoding enzymes of xenobiotic metabolism in the livers of mice exposed to ozone was decreased, suggesting cytokine-mediated suppression of cytochrome P450 expression. This finding may explain a previously controversial report from other investigators more than 20 years ago of prolongation of pentobarbital sleeping time in mice exposed to ozone.

  9. Systemic responses to inhaled ozone in mice: cachexia and down-regulation of liver xenobiotic metabolizing genes

    International Nuclear Information System (INIS)

    Last, Jerold A.; Gohil, Kishorchandra; Mathrani, Vivek C.; Kenyon, Nicholas J.

    2005-01-01

    Rats or mice acutely exposed to high concentrations of ozone show an immediate and significant weight loss, even when allowed free access to food and water. The mechanisms underlying this systemic response to ozone have not been previously elucidated. We have applied the technique of global gene expression analysis to the livers of C57BL mice acutely exposed to ozone. Mice lost up to 14% of their original body weight, with a 42% decrease in total food consumption. We previously had found significant up-regulation of genes encoding proliferative enzymes, proteins related to acute phase reactions and cytoskeletal functions, and other biomarkers of a cachexia-like inflammatory state in lungs of mice exposed to ozone. These results are consistent with a general up-regulation of different gene families responsive to NF-κB in the lungs of the exposed mice. In the present study, we observed significant down-regulation of different families of mRNAs in the livers of the exposed mice, including genes related to lipid and fatty acid metabolism, and to carbohydrate metabolism in this tissue, consistent with a systemic cachexic response. Several interferon-dependent genes were down-regulated in the liver, suggesting a possible role for interferon as a signaling molecule between lung and liver. In addition, transcription of several mRNAs encoding enzymes of xenobiotic metabolism in the livers of mice exposed to ozone was decreased, suggesting cytokine-mediated suppression of cytochrome P450 expression. This finding may explain a previously controversial report from other investigators more than 20 years ago of prolongation of pentobarbital sleeping time in mice exposed to ozone

  10. Down-Regulation of Neuropathy Target Esterase in Preeclampsia Placenta Inhibits Human Trophoblast Cell Invasion via Modulating MMP-9 Levels

    Directory of Open Access Journals (Sweden)

    Ting Zhong

    2018-02-01

    Full Text Available Background/Aims: Neuropathy target esterase (NTE, also known as neurotoxic esterase is proven to deacylate phosphatidylcholine (PC to glycerophosphocholine as a phospholipase B. Recently; studies showed that artificial phosphatidylserine/PC microvesicles can induce preeclampsia (PE-like changes in pregnant mice. However, it is unclear whether NTE plays a key role in the pathology of PE, a pregnancy-related disease, which was characterized by deficient trophoblast invasion and reduced trophoblast-mediated remodeling of spiral arteries. The aim of this study was to investigate the expression pattern of NTE in the placenta from women with PE and normal pregnancy, and the molecular mechanism of NTE involved in the development of PE. Methods: NTE expression levels in placentas from 20 pregnant women with PE and 20 healthy pregnant women were detected using quantitative PCR and immunohistochemistry staining. The effect of NTE on trophoblast migration and invasion and the underlying mechanisms were examined in HTR-8/SVneo cell lines by transfection method. Results: NTE mRNA and protein expression levels were significantly decreased in preeclamptic placentas than normal control. Over-expression of NTE in HTR-8/SVneo cells significantly promoted trophoblast cells migration and invasion and was associated with increased MMP-9 levels. Conversely, shRNA-mediated down-regulation of NTE markedly inhibited the cell migration and invasion. In addition, silencing NTE reduced the MMP-9 activity and phosphorylated Erk1/2 and AKT levels. Conclusions: Our results suggest that the decreased NTE may contribute to the development of PE through impairing trophoblast invasion by down-regulating MMP-9 via the Erk1/2 and AKT signaling pathway.

  11. The transcription factor FOXO4 is down-regulated and inhibits tumor proliferation and metastasis in gastric cancer

    International Nuclear Information System (INIS)

    Su, Linna; Liu, Xiangqiang; Chai, Na; Lv, Lifen; Wang, Rui; Li, Xiaosa; Nie, Yongzhan; Shi, Yongquan; Fan, Daiming

    2014-01-01

    FOXO4, a member of the FOXO family of transcription factors, is currently the focus of intense study. Its role and function in gastric cancer have not been fully elucidated. The present study was aimed to investigate the expression profile of FOXO4 in gastric cancer and the effect of FOXO4 on cancer cell growth and metastasis. Immunohistochemistry, Western blotting and qRT-PCR were performed to detect the FOXO4 expression in gastric cancer cells and tissues. Cell biological assays, subcutaneous tumorigenicity and tail vein metastatic assay in combination with lentivirus construction were performed to detect the impact of FOXO4 to gastric cancer in proliferation and metastasis in vitro and in vivo. Confocal and qRT-PCR were performed to explore the mechanisms. We found that the expression of FOXO4 was decreased significantly in most gastric cancer tissues and in various human gastric cancer cell lines. Up-regulating FOXO4 inhibited the growth and metastasis of gastric cancer cell lines in vitro and led to dramatic attenuation of tumor growth, and liver and lung metastasis in vivo, whereas down-regulating FOXO4 with specific siRNAs promoted the growth and metastasis of gastric cancer cell lines. Furthermore, we found that up-regulating FOXO4 could induce significant G1 arrest and S phase reduction and down-regulation of the expression of vimentin. Our data suggest that loss of FOXO4 expression contributes to gastric cancer growth and metastasis, and it may serve as a potential therapeutic target for gastric cancer

  12. Distribution of beta-adrenergic receptors in failing human myocardium. Implications for mechanisms of down-regulation

    International Nuclear Information System (INIS)

    Murphree, S.S.; Saffitz, J.E.

    1989-01-01

    The density of beta-adrenergic receptors is reduced in crude membranes prepared from failing human myocardium. We used quantitative autoradiography of radioligand binding sites in intact tissue slices to determine whether the total tissue content of receptors is reduced and to characterize the transmural distribution of receptors in cardiac myocytes and the coronary vasculature in hearts obtained from nine cardiac transplant patients with severe congestive failure. Binding of [125Iodo]cyanopindolol to transmural slices of human myocardium was rapid, saturable, stereoselective, and displaceable by agonists and antagonists with an appropriate rank order of potency. Binding isotherms in four normal and nine failing ventricles showed a significant reduction in the total tissue content of beta-receptors in failing myocardium (38.3 +/- 2.0 fmol/mg protein) compared with normal tissue (52.4 +/- 1.7 fmol/mg protein, p = 0.038). In the normal ventricles, the greatest receptor density was observed autoradiographically in myocytic regions of the subendocardium. Receptor density of the coronary arterioles was approximately 70% of that in adjacent myocytic regions. The density of binding sites in both myocytic regions and arterioles was diminished in all regions of the failing ventricles, but down-regulation was due primarily to a selective reduction of beta-receptors of subendocardial myocytes (63 +/- 5% of subepicardial receptor density vs. 115 +/- 6% in controls, p less than 0.0001). These observations indicate that down-regulation occurs nonuniformly in the transmural distribution and thus is likely not related simply to elevated circulating catecholamine levels

  13. Inhibition of disheveled-2 resensitizes cisplatin-resistant lung cancer cells through down-regulating Wnt/β-catenin signaling.

    Science.gov (United States)

    Luo, Ke; Gu, Xiuhui; Liu, Jing; Zeng, Guodan; Peng, Liaotian; Huang, Houyi; Jiang, Mengju; Yang, Ping; Li, Minhui; Yang, Yuhan; Wang, Yuanyuan; Peng, Quekun; Zhu, Li; Zhang, Kun

    2016-09-10

    Cisplatin (CDDP) is currently recommended as the front-line chemotherapeutic agent for lung cancer. However, the resistance to cisplatin is widespread in patients with advanced lung cancer, and the molecular mechanism of such resistance remains incompletely understood. Disheveled (DVL), a key mediator of Wnt/β-catenin, has been linked to cancer progression, while the role of DVL in cancer drug resistance is not clear. Here, we found that DVL2 was over-expressed in cisplatin-resistant human lung cancer cells A549/CDDP compared to the parental A549 cells. Inhibition of DVL2 by its inhibitor (3289-8625) or shDVL2 resensitized A549/CDDP cells to cisplatin. In addition, over-expression of DVL2 in A549 cells increased the protein levels of BCRP, MRP4, and Survivin, which are known to be associated with chemoresistance, while inhibition of DVL2 in A549/CDDP cells decreased these protein levels, and reduced the accumulation and nuclear translocation of β-catenin. In addition, shβ-catenin abolished the DVL2-induced the expression of BCRP, MRP4, and Survivin. Furthermore, our data showed that GSK3β/β-catenin signals were aberrantly activated by DVL2, and inactivation of GSK3β reversed the shDVL2-induced down-regulation of β-catenin. Taken together, these results suggested that inhibition of DVL2 can sensitize cisplatin-resistant lung cancer cells through down-regulating Wnt/β-catenin signaling and inhibiting BCRP, MRP4, and Survivin expression. It promises a new strategy to chemosensitize cisplatin-induced cytotoxicity in lung cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Sex-lethal enables germline stem cell differentiation by down-regulating Nanos protein levels during Drosophila oogenesis.

    Science.gov (United States)

    Chau, Johnnie; Kulnane, Laura Shapiro; Salz, Helen K

    2012-06-12

    Drosophila ovarian germ cells require Sex-lethal (Sxl) to exit from the stem cell state and to enter the differentiation pathway. Sxl encodes a female-specific RNA binding protein and in somatic cells serves as the developmental switch gene for somatic sex determination and X-chromosome dosage compensation. None of the known Sxl target genes are required for germline differentiation, leaving open the question of how Sxl promotes the transition from stem cell to committed daughter cell. We address the mechanism by which Sxl regulates this transition through the identification of nanos as one of its target genes. Previous studies have shown that Nanos protein is necessary for GSC self-renewal and is rapidly down-regulated in the daughter cells fated to differentiate in the adult ovary. We find that this dynamic expression pattern is limited to female germ cells and is under Sxl control. In the absence of Sxl, or in male germ cells, Nanos protein is continuously expressed. Furthermore, this female-specific expression pattern is dependent on the presence of canonical Sxl binding sites located in the nanos 3' untranslated region. These results, combined with the observation that nanos RNA associates with the Sxl protein in ovarian extracts and loss and gain of function studies, suggest that Sxl enables the switch from germline stem cell to committed daughter cell by posttranscriptional down-regulation of nanos expression. These findings connect sexual identity to the stem cell self-renewal/differentiation decision and highlight the importance of posttranscriptional gene regulatory networks in controlling stem cell behavior.

  15. DFsn collaborates with Highwire to down-regulate the Wallenda/DLK kinase and restrain synaptic terminal growth

    Directory of Open Access Journals (Sweden)

    DiAntonio Aaron

    2007-08-01

    Full Text Available Abstract Background The growth of new synapses shapes the initial formation and subsequent rearrangement of neural circuitry. Genetic studies have demonstrated that the ubiquitin ligase Highwire restrains synaptic terminal growth by down-regulating the MAP kinase kinase kinase Wallenda/dual leucine zipper kinase (DLK. To investigate the mechanism of Highwire action, we have identified DFsn as a binding partner of Highwire and characterized the roles of DFsn in synapse development, synaptic transmission, and the regulation of Wallenda/DLK kinase abundance. Results We identified DFsn as an F-box protein that binds to the RING-domain ubiquitin ligase Highwire and that can localize to the Drosophila neuromuscular junction. Loss-of-function mutants for DFsn have a phenotype that is very similar to highwire mutants – there is a dramatic overgrowth of synaptic termini, with a large increase in the number of synaptic boutons and branches. In addition, synaptic transmission is impaired in DFsn mutants. Genetic interactions between DFsn and highwire mutants indicate that DFsn and Highwire collaborate to restrain synaptic terminal growth. Finally, DFsn regulates the levels of the Wallenda/DLK kinase, and wallenda is necessary for DFsn-dependent synaptic terminal overgrowth. Conclusion The F-box protein DFsn binds the ubiquitin ligase Highwire and is required to down-regulate the levels of the Wallenda/DLK kinase and restrain synaptic terminal growth. We propose that DFsn and Highwire participate in an evolutionarily conserved ubiquitin ligase complex whose substrates regulate the structure and function of synapses.

  16. MicroRNA expression is down-regulated and reorganized in prefrontal cortex of depressed suicide subjects.

    Directory of Open Access Journals (Sweden)

    Neil R Smalheiser

    Full Text Available Recent studies suggest that alterations in expression of genes, including those which regulate neural and structural plasticity, may be crucial in the pathogenesis of depression. MicroRNAs (miRNAs are newly discovered regulators of gene expression that have recently been implicated in a variety of human diseases, including neuropsychiatric diseases.The present study was undertaken to examine whether the miRNA network is altered in the brain of depressed suicide subjects. Expression of miRNAs was measured in prefrontal cortex (Brodmann Area 9 of antidepressant-free depressed suicide (n = 18 and well-matched non-psychiatric control subjects (n = 17 using multiplex RT-PCR plates. We found that overall miRNA expression was significantly and globally down-regulated in prefrontal cortex of depressed suicide subjects. Using individual tests of statistical significance, 21 miRNAs were significantly decreased at p = 0.05 or better. Many of the down-regulated miRNAs were encoded at nearby chromosomal loci, shared motifs within the 5'-seeds, and shared putative mRNA targets, several of which have been implicated in depression. In addition, a set of 29 miRNAs, whose expression was not pairwise correlated in the normal controls, showed a high degree of co-regulation across individuals in the depressed suicide group.The findings show widespread changes in miRNA expression that are likely to participate in pathogenesis of major depression and/or suicide. Further studies are needed to identify whether the miRNA changes lead to altered expression of prefrontal cortex mRNAs, either directly (by acting as miRNA targets or indirectly (e.g., by affecting transcription factors.

  17. Coupled down-regulation of mTOR and telomerase activity during fluorouracil-induced apoptosis of hepatocarcinoma Cells

    Energy Technology Data Exchange (ETDEWEB)

    Bu, Xinxin; Jia, Fengqi; Wang, Weifeng; Guo, Xianling; Wu, Mengchao; Wei, Lixin [Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Hospital, Second Military Medical Universisty, 225 Changhai Road, Shanghai 200438 (China)

    2007-11-12

    Hepatocellular carcinoma (HCC) is the most invasive and frequently diagnosed malignancy and the second leading cause of cancer death in many regions of Asia. The PI3K/Akt/mTOR signal pathway is involved in multiple cellular functions including proliferation, differentiation, tumorigenesis, and apoptosis. Up-regulation of telomerase activity is thought to be a critical step leading to cell transformation. This study investigated changes in mTOR pathway and telomerase activity in hepatocarcinoma cell line SMMC-7721 treated with chemotherapeutic agent 5-fluorouracil (5-Fu). We detected apoptosis of hepatocarcinoma cells by TUNEL assay. Telomerase activity, hTERT transcription level and p- p70 S6k was demonstrated by the telomeric repeat amplification protocol and silver staining assay, Dual-Luciferase Reporter Assay and Western blot analysis respectively. Treating SMMC-7721 cells with 5-Fu leads to apoptosis of the cells, and reduction in telomerase activity, as well as a dramatic reduction in the activated form of p70 S6 kinase, a mTOR substrate. The 5-Fu treatment nearly abolishes transcription of hTERT (the major component of telomerase) mRNA. Treating SMMC-7721 cells with Rapamycin, a specific mTOR inhibitor, significantly reduce hTERT protein level but did not affect hTERT transcription. 5-Fu and rapamycin were synergistic in regards to down-regulation of telomerase activity in hepatocarcinoma cells. These results suggest that chemotherapeutic agent 5-Fu may down-regulate telomerase activity at both transcriptional level and PI3K/Akt/mTOR pathway-dependent post-transcriptional level to facilitate hepatocellular carcinoma cell apoptosis.

  18. Coupled down-regulation of mTOR and telomerase activity during fluorouracil-induced apoptosis of hepatocarcinoma Cells

    International Nuclear Information System (INIS)

    Bu, Xinxin; Jia, Fengqi; Wang, Weifeng; Guo, Xianling; Wu, Mengchao; Wei, Lixin

    2007-01-01

    Hepatocellular carcinoma (HCC) is the most invasive and frequently diagnosed malignancy and the second leading cause of cancer death in many regions of Asia. The PI3K/Akt/mTOR signal pathway is involved in multiple cellular functions including proliferation, differentiation, tumorigenesis, and apoptosis. Up-regulation of telomerase activity is thought to be a critical step leading to cell transformation. This study investigated changes in mTOR pathway and telomerase activity in hepatocarcinoma cell line SMMC-7721 treated with chemotherapeutic agent 5-fluorouracil (5-Fu). We detected apoptosis of hepatocarcinoma cells by TUNEL assay. Telomerase activity, hTERT transcription level and p- p70 S6k was demonstrated by the telomeric repeat amplification protocol and silver staining assay, Dual-Luciferase Reporter Assay and Western blot analysis respectively. Treating SMMC-7721 cells with 5-Fu leads to apoptosis of the cells, and reduction in telomerase activity, as well as a dramatic reduction in the activated form of p70 S6 kinase, a mTOR substrate. The 5-Fu treatment nearly abolishes transcription of hTERT (the major component of telomerase) mRNA. Treating SMMC-7721 cells with Rapamycin, a specific mTOR inhibitor, significantly reduce hTERT protein level but did not affect hTERT transcription. 5-Fu and rapamycin were synergistic in regards to down-regulation of telomerase activity in hepatocarcinoma cells. These results suggest that chemotherapeutic agent 5-Fu may down-regulate telomerase activity at both transcriptional level and PI3K/Akt/mTOR pathway-dependent post-transcriptional level to facilitate hepatocellular carcinoma cell apoptosis

  19. Down-regulation of glutaminase C in human hepatocarcinoma cell by diphenylarsinic acid, a degradation product of chemical warfare agents

    International Nuclear Information System (INIS)

    Kita, Kayoko; Suzuki, Toshihide; Ochi, Takafumi

    2007-01-01

    In a poisonous incident in Kamisu, Japan, it is understood that diphenylarsinic acid (DPAA) was a critical contaminant of ground water. Most patients showed dysfunction of the central nervous system. To understand the overall mechanism of DPAA toxicity and to gain some insight into the application of a remedy specific for intoxication, the molecular target must be clarified. As an approach, a high throughput analysis of cell proteins in cultured human hepatocarcinoma HpG2 exposed to DPAA was performed by two-dimensional electrophoresis (2-DE). Four proteins, which were up- and down-regulated by exposure of cultured HepG2 cells to DPAA, were identified. They were chaperonin containing TCP-1 (CCT) beta subunit, aldehyde dehydrogenase 1 (ALDH1), ribosomal protein P0 and glutaminase C (GAC). Of these, GAC was the only protein that was down-regulated by DPAA exposure, and cellular expression levels were reduced by DPAA in a concentration- and time-dependent manner. Decrease in cellular GAC levels was accompanied by decreased activity of the enzyme, phosphate-activated glutaminase (PAG). Decreased expression of GAC by DPAA was also observed in human cervical carcinoma HeLa and neuroblastoma SH-SY5Y cells. By contrast, no significant changes in GAC protein expression were observed when cells were incubated with arsenite [iAs (III)] and trivalent dimethylarsinous acid [DMA (III)]. In the central nervous system, GAC plays a role in the production of the neurotransmitter glutamic acid. Selective inhibition of GAC expression by DPAA may be a cause of dysfunction of glutamatergic neuronal transmission and the resultant neurological impairments

  20. Down-regulation of glutaminase C in human hepatocarcinoma cell by diphenylarsinic acid, a degradation product of chemical warfare agents

    Energy Technology Data Exchange (ETDEWEB)

    Kita, Kayoko [Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, Teikyo University, 1091-1 Sagamiko-chou, Sagamihara, Kanagawa 229-0195 (Japan); Suzuki, Toshihide [Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, Teikyo University, 1091-1 Sagamiko-chou, Sagamihara, Kanagawa 229-0195 (Japan); Ochi, Takafumi [Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, Teikyo University, 1091-1 Sagamiko-chou, Sagamihara, Kanagawa 229-0195 (Japan)

    2007-05-01

    In a poisonous incident in Kamisu, Japan, it is understood that diphenylarsinic acid (DPAA) was a critical contaminant of ground water. Most patients showed dysfunction of the central nervous system. To understand the overall mechanism of DPAA toxicity and to gain some insight into the application of a remedy specific for intoxication, the molecular target must be clarified. As an approach, a high throughput analysis of cell proteins in cultured human hepatocarcinoma HpG2 exposed to DPAA was performed by two-dimensional electrophoresis (2-DE). Four proteins, which were up- and down-regulated by exposure of cultured HepG2 cells to DPAA, were identified. They were chaperonin containing TCP-1 (CCT) beta subunit, aldehyde dehydrogenase 1 (ALDH1), ribosomal protein P0 and glutaminase C (GAC). Of these, GAC was the only protein that was down-regulated by DPAA exposure, and cellular expression levels were reduced by DPAA in a concentration- and time-dependent manner. Decrease in cellular GAC levels was accompanied by decreased activity of the enzyme, phosphate-activated glutaminase (PAG). Decreased expression of GAC by DPAA was also observed in human cervical carcinoma HeLa and neuroblastoma SH-SY5Y cells. By contrast, no significant changes in GAC protein expression were observed when cells were incubated with arsenite [iAs (III)] and trivalent dimethylarsinous acid [DMA (III)]. In the central nervous system, GAC plays a role in the production of the neurotransmitter glutamic acid. Selective inhibition of GAC expression by DPAA may be a cause of dysfunction of glutamatergic neuronal transmission and the resultant neurological impairments.

  1. Coupled down-regulation of mTOR and telomerase activity during fluorouracil-induced apoptosis of hepatocarcinoma Cells

    Directory of Open Access Journals (Sweden)

    Wu Mengchao

    2007-11-01

    Full Text Available Abstract Background Hepatocellular carcinoma (HCC is the most invasive and frequently diagnosed malignancy and the second leading cause of cancer death in many regions of Asia. The PI3K/Akt/mTOR signal pathway is involved in multiple cellular functions including proliferation, differentiation, tumorigenesis, and apoptosis. Up-regulation of telomerase activity is thought to be a critical step leading to cell transformation. Methods This study investigated changes in mTOR pathway and telomerase activity in hepatocarcinoma cell line SMMC-7721 treated with chemotherapeutic agent 5-fluorouracil (5-Fu. We detected apoptosis of hepatocarcinoma cells by TUNEL assay. Telomerase activity, hTERT transcription level and p- p70 S6k was demonstrated by the telomeric repeat amplification protocol and silver staining assay, Dual-Luciferase Reporter Assay and Western blot analysis respectively. Results Treating SMMC-7721 cells with 5-Fu leads to apoptosis of the cells, and reduction in telomerase activity, as well as a dramatic reduction in the activated form of p70 S6 kinase, a mTOR substrate. The 5-Fu treatment nearly abolishes transcription of hTERT (the major component of telomerase mRNA. Treating SMMC-7721 cells with Rapamycin, a specific mTOR inhibitor, significantly reduce hTERT protein level but did not affect hTERT transcription. 5-Fu and rapamycin were synergistic in regards to down-regulation of telomerase activity in hepatocarcinoma cells. Conclusion These results suggest that chemotherapeutic agent 5-Fu may down-regulate telomerase activity at both transcriptional level and PI3K/Akt/mTOR pathway-dependent post-transcriptional level to facilitate hepatocellular carcinoma cell apoptosis.

  2. Total soluble and endogenous secretory receptor for advanced glycation endproducts (RAGE) in IBD.

    Science.gov (United States)

    Meijer, Berrie; Hoskin, Teagan; Ashcroft, Anna; Burgess, Laura; Keenan, Jacqueline I; Falvey, James; Gearry, Richard B; Day, Andrew S

    2014-06-01

    Recruitment and activation of neutrophils, with release of specific proteins such as S100 proteins, is a feature of inflammatory bowel disease (IBD). Soluble forms of the receptor for advanced glycation endproducts (sRAGE), and variants such as endogenous secretory (esRAGE), can act as decoy receptors by binding ligands, including S100A12. The aims of this study were to determine total sRAGE and esRAGE concentrations in patients with IBD and correlate these with C-reactive protein (CRP), endoscopic scores and clinical disease activity scores. EDTA-plasma was collected from patients undergoing colonoscopy including those with Crohn's disease (CD: n=125), ulcerative colitis (UC: n=79) and control patients without endoscopic signs of inflammation (non-IBD: n=156). Concentrations of sRAGE and esRAGE were determined by enzyme-linked immunosorbent assay and plasma CRP concentrations measured. Standard clinical disease activity and endoscopic severity scores were defined for all subjects. Plasma sRAGE concentrations were lower in UC (but not CD) than non-IBD subjects (pdefine the significance of sRAGE and esRAGE in IBD. Copyright © 2013 European Crohn's and Colitis Organisation. Published by Elsevier B.V. All rights reserved.

  3. Dynamic changes in sRAGE levels and relationship with cardiac function in STEMI patients

    DEFF Research Database (Denmark)

    Jensen, Louise J N; Lindberg, Søren; Hoffmann, Søren

    2015-01-01

    the dynamic changes in sRAGE levels during AMI and relationship with cardiac dysfunction. DESIGN AND METHODS: We prospectively included 80 patients with ST-elevation myocardial infarction (STEMI) treated with primary percutaneous coronary intervention (pPCI). sRAGE concentrations were measured before p...... in the early phase of AMI; sRAGE levels significantly increased after pPCI compared with sRAGE before pPCI (median ratio: 1.25, 95% CI: 1.15-1.35, P...phase rather than in the days after AMI and pPCI. The increase...

  4. Correlation between follicular fluid levels of sRAGE and vitamin D in women with PCOS.

    Science.gov (United States)

    Garg, Deepika; Grazi, Richard; Lambert-Messerlian, Geralyn M; Merhi, Zaher

    2017-11-01

    The pro-inflammatory advanced glycation end products (AGEs) and their anti-inflammatory soluble receptors, sRAGE, play a role in the pathogenesis of PCOS. There is a correlation between vitamin D (vit D) and sRAGE in the serum, whereby vit D replacement increases serum sRAGE levels in women with PCOS, thus incurring a protective anti-inflammatory role. This study aims to compare levels of sRAGE, N-carboxymethyl-lysine (CML; one of the AGEs), and 25-hydroxy-vit D in the follicular fluid (FF) of women with or without PCOS, and to evaluate the correlation between sRAGE and 25-hydroxy-vit D in the FF. Women with (n = 12) or without (n = 13) PCOS who underwent IVF were prospectively enrolled. Women with PCOS had significantly higher anti-Mullerian hormone levels, higher number of total retrieved and mature oocytes, and higher number of day 3 and day 5 embryos formed. Compared to women without PCOS, women with PCOS had significantly lower FF sRAGE levels. In women with PCOS, in women without PCOS, and in all participants together, there was a significant positive correlation between sRAGE and 25-hydroxy-vit D. sRAGE positively correlated with CML in women without PCOS but not in women with PCOS. In women with PCOS, the low ovarian levels of the anti-inflammatory sRAGE suggest that sRAGE could represent a biomarker and a potential therapeutic target for ovarian dysfunction in PCOS. Whether there is a direct causal relationship between sRAGE and vit D in the ovaries remains to be determined.

  5. Overexpression of Receptor for Advanced Glycation End Products and High-Mobility Group Box 1 in Human Dental Pulp Inflammation

    Directory of Open Access Journals (Sweden)

    Salunya Tancharoen

    2014-01-01

    Full Text Available High mobility group box 1 (HMGB1, a nonhistone DNA-binding protein, is released into the extracellular space and promotes inflammation. HMGB1 binds to related cell signaling transduction receptors, including receptor for advanced glycation end products (RAGE, which actively participate in vascular and inflammatory diseases. The aim of this study was to examine whether RAGE and HMGB1 are involved in the pathogenesis of pulpitis and investigate the effect of Prevotella intermedia (P. intermedia lipopolysaccharide (LPS on RAGE and HMGB1 expression in odontoblast-like cells (OLC-1. RAGE and HMGB1 expression levels in clinically inflamed dental pulp were higher than those in healthy dental pulp. Upregulated expression of RAGE was observed in odontoblasts, stromal pulp fibroblasts-like cells, and endothelial-like cell lining human pulpitis tissue. Strong cytoplasmic HMGB1 immunoreactivity was noted in odontoblasts, whereas nuclear HMGB1 immunoreactivity was seen in stromal pulp fibroblasts-like cells in human pulpitis tissue. LPS stimulated OLC-1 cells produced HMGB1 in a dose-dependent manner through RAGE. HMGB1 translocation towards the cytoplasm and secretion from OLC-1 in response to LPS was inhibited by TPCA-1, an inhibitor of NF-κB activation. These findings suggest that RAGE and HMGB1 play an important role in the pulpal immune response to oral bacterial infection.

  6. The CD3 gamma leucine-based receptor-sorting motif is required for efficient ligand-mediated TCR down-regulation

    DEFF Research Database (Denmark)

    von Essen, Marina; Menné, Charlotte; Nielsen, Bodil L

    2002-01-01

    . The other pathway is dependent on protein kinase C (PKC)-mediated activation of the CD3 gamma di-leucine-based receptor-sorting motif. Previous studies have failed to demonstrate a connection between ligand- and PKC-induced TCR down-regulation. Thus, although an apparent paradox, the dogma has been...... that ligand- and PKC-induced TCR down-regulations are not interrelated. By analyses of a newly developed CD3 gamma-negative T cell variant, freshly isolated and PHA-activated PBMC, and a mouse T cell line, we challenged this dogma and demonstrate in this work that PKC activation and the CD3 gamma di...

  7. Combined down-regulation by aromatase inhibitor and GnRH-agonist in IVF patients with endometriomas-A pilot study

    DEFF Research Database (Denmark)

    Lossl, Kristine; Loft, Anne; Freiesleben, Nina L C

    2009-01-01

    and delivery rate, and endocrine response. The paired T test and Wilcoxon Signed Rank test were used to analyse paired differences. RESULTS: During the combined down-regulation, the endometriomal volume and the serum CA125 level decreased by 29% (3-39%) and 61% (21-74%), respectively (median (95%CI), P=0....... The aim of this study was to test the concept of combined down-regulation prior to IVF in patients with endometriomas. STUDY DESIGN: Prospective pilot study in a university-based tertiary fertility clinic including 20 infertile patients with endometriomas undergoing IVF/ICSI. The patients received...

  8. CD3 gamma contains a phosphoserine-dependent di-leucine motif involved in down-regulation of the T cell receptor

    DEFF Research Database (Denmark)

    Dietrich, J; Hou, X; Wegener, A M

    1994-01-01

    -regulation of the TCR. Furthermore, analysis of a series of CD3 gamma truncation mutants indicated that in addition to S126 phosphorylation a motif C-terminal of S126 was required for TCR down-regulation. Point mutation analyses confirmed this observation and demonstrated that a membrane-proximal di-leucine motif (L131......, indicating that the TCR was down-regulated by endocytosis via clathrin coated pits. Based on the present results and previously published observations on intracellular receptor sorting, a general model for intracellular sorting of receptors containing di-leucine- or tyrosine-based motifs is proposed....

  9. Images en mouvement stockage, repérage, indexation

    CERN Document Server

    Turner, James

    1998-01-01

    L'avènement puis la fusion des nouveaux modes de communication que sont l'informatique, les télécommunications et l'audiovisuel ont mis à la portée de tous une grande quantité d'images fixes et en mouvement dont la conservation et le repérage risquent de prendre des proportions démesurées. Le présent ouvrage veut offrir aux responsables de collection des repères pour aborder la problématique de l'indexation des images et faciliter l'accès des usagers à ces images.

  10. Inhibition of disheveled-2 resensitizes cisplatin-resistant lung cancer cells through down-regulating Wnt/β-catenin signaling

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Ke; Gu, Xiuhui [School of Basic Medical Sciences, Chengdu Medical College, Chengdu (China); Liu, Jing; Zeng, Guodan; Peng, Liaotian; Huang, Houyi; Jiang, Mengju [School of Biomedical Sciences, Chengdu Medical College, Chengdu (China); Yang, Ping; Li, Minhui [School of Basic Medical Sciences, Chengdu Medical College, Chengdu (China); Yang, Yuhan; Wang, Yuanyuan [School of Biomedical Sciences, Chengdu Medical College, Chengdu (China); Peng, Quekun, E-mail: pengquekun@163.com [School of Biomedical Sciences, Chengdu Medical College, Chengdu (China); Zhu, Li, E-mail: 1968403299@qq.com [Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital, Chengdu Medical College, Chengdu (China); Zhang, Kun, E-mail: zhangkunyyo@163.com [School of Biomedical Sciences, Chengdu Medical College, Chengdu (China)

    2016-09-10

    Cisplatin (CDDP) is currently recommended as the front-line chemotherapeutic agent for lung cancer. However, the resistance to cisplatin is widespread in patients with advanced lung cancer, and the molecular mechanism of such resistance remains incompletely understood. Disheveled (DVL), a key mediator of Wnt/β-catenin, has been linked to cancer progression, while the role of DVL in cancer drug resistance is not clear. Here, we found that DVL2 was over-expressed in cisplatin-resistant human lung cancer cells A549/CDDP compared to the parental A549 cells. Inhibition of DVL2 by its inhibitor (3289-8625) or shDVL2 resensitized A549/CDDP cells to cisplatin. In addition, over-expression of DVL2 in A549 cells increased the protein levels of BCRP, MRP4, and Survivin, which are known to be associated with chemoresistance, while inhibition of DVL2 in A549/CDDP cells decreased these protein levels, and reduced the accumulation and nuclear translocation of β-catenin. In addition, shβ-catenin abolished the DVL2-induced the expression of BCRP, MRP4, and Survivin. Furthermore, our data showed that GSK3β/β-catenin signals were aberrantly activated by DVL2, and inactivation of GSK3β reversed the shDVL2-induced down-regulation of β-catenin. Taken together, these results suggested that inhibition of DVL2 can sensitize cisplatin-resistant lung cancer cells through down-regulating Wnt/β-catenin signaling and inhibiting BCRP, MRP4, and Survivin expression. It promises a new strategy to chemosensitize cisplatin-induced cytotoxicity in lung cancer. - Highlights: • Inhibition of DVL2 chemosensitizes resistant lung cancer to cisplatin. • DVL2 positively regulated the expression of BCRP, MRP4 and Survivin. • β-catenin mediated the DVL2-induced expression. • DVL2 increased the accumulation and nuclear translocation of β-catenin. • DVL2 up-regulated β-catenin via inhibiting GSK3β.

  11. Promoter hypermethylation-induced transcriptional down-regulation of the gene MYCT1 in laryngeal squamous cell carcinoma

    International Nuclear Information System (INIS)

    Yang, Min; Li, Wei; Liu, Yi-Ying; Fu, Shuang; Qiu, Guang-Bin; Sun, Kai-Lai; Fu, Wei-Neng

    2012-01-01

    MYCT1, previously named MTLC, is a novel candidate tumor suppressor gene. MYCT1 was cloned from laryngeal squamous cell cancer (LSCC) and has been found to be down-regulated in LSCC; however, the regulatory details have not been fully elucidated. Here, we sought to investigate the methylation status of the CpG islands of MYCT1 and mRNA levels by bisulfite-specific PCR (BSP) based on sequencing restriction enzyme digestion, reverse transcription and real-time quantitative polymerase chain reaction (RQ-PCR). The function of specific sites in the proximal promoter of MYCT1 in LSCC was measured by transient transfection, luciferase assays, electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation assay (ChIP). The results suggested hypermethylation of 12 CpG sites of the promoter in both laryngeal cancer tissues and the laryngeal cancer line Hep-2 cell. The hypermethylation of the site CGCG (−695 to −692), which has been identified as the c-Myc binding site, was identified in laryngeal cancer tissues (59/73) compared to paired mucosa (13/73); in addition, statistical analysis revealed that the methylation status of this site significantly correlated with cancer cell differentiation(p < 0.01). The mRNA level of MYCT1 increased in Hep-2 cells treated with 5-aza-C (p < 0.01). The luciferase activity from mutant transfectants pGL3-MYCT1m (−852/+12, mut-695-C > A, mut-693-C > G) was significantly reduced compared with the wild type pGL3-MYCT1 (−852/+12), while the luciferase activity from wild transfectants pGL3-MYCT1 (−852/+12) rose after 5-aza treatment in Hep-2 cells. Finally, EMSA and ChIP confirmed that the methylation of the CGCG (−695 to −692) site prevented c-Myc from binding of the site and demethylation treatment of the 5′ flanking region of MYCT1 by 5-aza induced the increased occupation of the core promoter by c-Myc (p < 0.01). In summary, this study concluded that hypermethylation contributed to the transcriptional down-regulation

  12. Inhibition of disheveled-2 resensitizes cisplatin-resistant lung cancer cells through down-regulating Wnt/β-catenin signaling

    International Nuclear Information System (INIS)

    Luo, Ke; Gu, Xiuhui; Liu, Jing; Zeng, Guodan; Peng, Liaotian; Huang, Houyi; Jiang, Mengju; Yang, Ping; Li, Minhui; Yang, Yuhan; Wang, Yuanyuan; Peng, Quekun; Zhu, Li; Zhang, Kun

    2016-01-01

    Cisplatin (CDDP) is currently recommended as the front-line chemotherapeutic agent for lung cancer. However, the resistance to cisplatin is widespread in patients with advanced lung cancer, and the molecular mechanism of such resistance remains incompletely understood. Disheveled (DVL), a key mediator of Wnt/β-catenin, has been linked to cancer progression, while the role of DVL in cancer drug resistance is not clear. Here, we found that DVL2 was over-expressed in cisplatin-resistant human lung cancer cells A549/CDDP compared to the parental A549 cells. Inhibition of DVL2 by its inhibitor (3289-8625) or shDVL2 resensitized A549/CDDP cells to cisplatin. In addition, over-expression of DVL2 in A549 cells increased the protein levels of BCRP, MRP4, and Survivin, which are known to be associated with chemoresistance, while inhibition of DVL2 in A549/CDDP cells decreased these protein levels, and reduced the accumulation and nuclear translocation of β-catenin. In addition, shβ-catenin abolished the DVL2-induced the expression of BCRP, MRP4, and Survivin. Furthermore, our data showed that GSK3β/β-catenin signals were aberrantly activated by DVL2, and inactivation of GSK3β reversed the shDVL2-induced down-regulation of β-catenin. Taken together, these results suggested that inhibition of DVL2 can sensitize cisplatin-resistant lung cancer cells through down-regulating Wnt/β-catenin signaling and inhibiting BCRP, MRP4, and Survivin expression. It promises a new strategy to chemosensitize cisplatin-induced cytotoxicity in lung cancer. - Highlights: • Inhibition of DVL2 chemosensitizes resistant lung cancer to cisplatin. • DVL2 positively regulated the expression of BCRP, MRP4 and Survivin. • β-catenin mediated the DVL2-induced expression. • DVL2 increased the accumulation and nuclear translocation of β-catenin. • DVL2 up-regulated β-catenin via inhibiting GSK3β.

  13. LIN28 expression in malignant germ cell tumors down-regulates let-7 and increases oncogene levels

    Science.gov (United States)

    Murray, Matthew J.; Saini, Harpreet K.; Siegler, Charlotte A.; Hanning, Jennifer E.; Barker, Emily M.; van Dongen, Stijn; Ward, Dawn M.; Raby, Katie L.; Groves, Ian J.; Scarpini, Cinzia G.; Pett, Mark R.; Thornton, Claire M.; Enright, Anton J.; Nicholson, James C.; Coleman, Nicholas

    2013-01-01

    Despite their clinico-pathologic heterogeneity, malignant germ-cell-tumors (GCTs) share molecular abnormalities that are likely to be functionally important. In this study, we investigated the potential significance of down-regulation of the let-7 family of tumor-suppressor microRNAs in malignant-GCTs. Microarray results from pediatric and adult samples (n=45) showed that LIN28, the negative-regulator of let-7 biogenesis, was abundant in malignant-GCTs, regardless of patient age, tumor site or histologic subtype. Indeed, a strong negative-correlation existed between LIN28 and let-7 levels in specimens with matched datasets. Low let-7 levels were biologically significant, since the sequence complementary to the 2-7nt common let-7 seed ‘GAGGUA’ was enriched in the 3′untranslated regions of mRNAs up-regulated in pediatric and adult malignant-GCTs, compared with normal gonads (a mixture of germ cells and somatic cells). We identified 27 mRNA targets of let-7 that were up-regulated in malignant-GCT cells, confirming significant negative-correlations with let-7 levels. Among 16 mRNAs examined in a largely independent set of specimens by qRT-PCR, we defined negative-associations with let-7e levels for six oncogenes, including MYCN, AURKB, CCNF, RRM2, MKI67 and C12orf5 (when including normal control tissues). Importantly, LIN28 depletion in malignant-GCT cells restored let-7 levels and repressed all of these oncogenic let-7 mRNA targets, with LIN28 levels correlating with cell proliferation and MYCN levels. Conversely, ectopic expression of let-7e was sufficient to reduce proliferation and down-regulate MYCN, AURKB and LIN28, the latter via a double-negative feedback loop. We concluded that the LIN28/let-7 pathway has a critical pathobiological role in malignant-GCTs and therefore offers a promising target for therapeutic intervention. PMID:23774216

  14. AGE and their receptor RAGE in systemic autoimmune diseases : An inflammation propagating factor contributing to accelerated atherosclerosis

    NARCIS (Netherlands)

    Nienhuis, Hans L. A.; Westra, Johanna; Smit, Andries J.; Limburg, Pieter C.; Kallenberg, Cees G. M.; Bijl, Marc

    2009-01-01

    Systemic autoimmune diseases are associated with inflammation, and oxidative stress favouring the formation of advanced glycation endproducts (AGE), able to modulate cellular functions by activation of receptor for advanced glycation endproducts (RAGE). As RAGE expression is increased in an

  15. Discovering Small Molecule Inhibitors Targeted to Ligand-Stimulated RAGE-DIAPH1 Signaling Transduction

    Science.gov (United States)

    Pan, Jinhong

    The receptor of advanced glycation end product (RAGE) is a multiligand receptor of the immunoglobulin superfamily of cell surface molecules, which plays an important role in immune responses. Full-length RAGE includes three extracellular immunoglobulin domains, a transmembrane domain and an intracellular domain. It is a pattern recognition receptor that can bind diverse ligands. NMR spectroscopy and x-ray crystallization studies of the extracellular domains of RAGE indicate that RAGE ligands bind by distinct charge- and hydrophobicity-dependent mechanisms. It is found that calgranulin binding to the C1C2 domain or AGEs binding to the V domain activates extracellular signaling, which triggers interactions of the RAGE cytoplasmic tail (ctRAGE) with intracellular effector, such as diaphanous 1 (DIAPH1), to initiate signal transduction cascades. ctRAGE is essential for RAGE-ligand-mediated signal transduction and consequent modulation of gene expression and cellular properties. RAGE is over-expressed in diseased tissues of most RAGE-associated pathogenic conditions, such as complications of Alzheimer's diseases, diabetes, vascular diseases, inflammation, cancers and neurodegeneration. They are the major diseases affecting a large population worldwide. RAGE can function as a biomarker or drug target for these diseases. The cytoplasmic tail of RAGE can be used as a drug target to inhibit RAGE-induced intracellular signaling by small molecule inhibitors to treat RAGE-associated diseases. We developed a high throughput screening assay with which we probed a small molecule library of 58,000 compounds to find that 777 small molecules displayed 50% inhibition and 97 compounds demonstrated dose-dependent inhibition of the binding of ctRAGE-DIAPH1. Eventually, there were 13 compounds which displayed dose-dependent inhibition of ctRAGE binding to DIAPH1 and direct binding to ctRAGE analyzed by 15N HSQC-NMR and native tryptophan fluorescence titration experiments; thus, they were

  16. Review: Joschka Philipps, Ambivalent Rage: Youth Gangs and Urban Protest in Conakry, Guinea (2013)

    OpenAIRE

    Ineke van Kessel; Afrika-Studiecentrum Leiden

    2014-01-01

    Review of the Monograph:Joschka Philipps, Ambivalent Rage: Youth Gangs and Urban Protest in Conakry, Guinea, Paris: L’Harmattan, 2013, ISBN 978-2-343-01577-4, 238 pp. Besprechung der Monographie:Joschka Philipps, Ambivalent Rage: Youth Gangs and Urban Protest in Conakry, Guinea, Paris: L’Harmattan, 2013, ISBN 978-2-343-01577-4, 238 Seiten

  17. Total soluble and endogenous secretory receptor for advanced glycation endproducts (RAGE) in IBD

    NARCIS (Netherlands)

    Meijer, Berrie; Hoskin, Teagan; Ashcroft, Anna; Burgess, Laura; Keenan, Jacqueline I.; Falvey, James; Gearry, Richard B.; Day, Andrew S.

    2014-01-01

    Recruitment and activation of neutrophils, with release of specific proteins such as S100 proteins, is a feature of inflammatory bowel disease (IBD). Soluble forms of the receptor for advanced glycation endproducts (sRAGE), and variants such as endogenous secretory (esRAGE), can act as decoy

  18. Expression of receptor for advanced glycation end-products (RAGE) in thymus from myasthenia patients.

    Science.gov (United States)

    Bouchikh, M; Zouaidia, F; Benhaddou, E H A; Mahassini, N; Achir, A; El Malki, H O

    2017-06-01

    The receptor for advanced glycation end-products (RAGE) is a membranous immunoglobulin involved in the pathogenesis of numerous autoimmune diseases and tumors. The aim of this study was to investigate the possible involvement of RAGE in the pathogenesis of myasthenia gravis. This prospective study included 41 cases of myasthenia gravis treated at our institution between 2010 and 2015. There were 18 men and 23 women, with an average age of 36.44±14.47 years. The majority of patients (24.4%) were classified as IIb, according to MGFA scoring, and 21 of them required corticosteroid and/or immunosuppressive treatment. Assessment of RAGE in thymus specimens was done by immunohistochemistry using RAGE antibody (C-term). RAGE expression was assessed according to various clinical, paraclinical and pathological parameters. Histopathological studies found 18 thymomas, 17 hyperplasias and six other types of pathology. Expression of RAGE was negative/weak in 19 cases and moderate/strong in 22 cases. It was more important in thymoma type B2 (Pmyasthenia was short (P=0.04), and was not significantly related to either myasthenia clinical severity or preoperative treatment. Our results suggest that the RAGE pathway is involved in myasthenia gravis pathophysiology, especially at disease onset, and in forms with thymomas. Further studies would be indispensable to explore other aspects of this signaling pathway, especially the potential role of different ligands and soluble forms of RAGE. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. The RAGE Advanced Game Technologies Repository for Supporting Applied Game Development

    NARCIS (Netherlands)

    Georgiev, Atanas; Grigorov, Alexander; Bontchev, Boyan; Boytchev, Pavel; Stefanov, Krassen; Westera, Wim; Prada, Rui; Hollins, Paul; Moreno Ger, Pablo

    2016-01-01

    This paper describes the structural architecture of the RAGE repository, which is a unique and dedicated infrastructure that provides access to a wide variety of advanced technologies (RAGE software assets) for applied game development. These software assets are reusable across a wide diversity of

  20. A Molecular Dynamics Study on RAGE-Aβ42 Interaction and the Influence of G82S RAGE Polymorphism on Aβ Interaction

    Directory of Open Access Journals (Sweden)

    Sreeram Krishnan

    2015-12-01

    Full Text Available Interaction of amyloid peptides (Aβ with receptor for advanced glycation end products (RAGE elicits an inflammatory response and augments Alzheimer's disease (AD pathology. The present study was aimed to analyse the interactions of different forms of Aβ42 peptide with ligand binding domain of normal and G82S RAGE and their possible consequences in AD pathology. The structures of RAGE ectodomain (3CJJ, monomeric forms of Aβ42 - 1IYT (apolar and 1Z0Q (polar and fibrillar (2BEG were obtained from PDB. The structure of G82 and S82 RAGE was generated using SWISS MODEL. SIFT and PolyPhen analysis was performed to predict the phenotypic and functional effect of the amino acid substitution. The G82 and S82 variant structures were simulated in GROMACS and the 10 lowest energy structures were docked with different forms of Aβ42 using CLUSPRO in antibody mode. The lowest energy docked structure was further simulated for 5 ns. The structures corresponding to 0-5 ns were taken and the amino acid interactions were generated using PDBSUM. SIFT analysis indicated that G82S SNP had a tolerating effect on the structure of protein but polyphen predicted a probable damaging effect. Highest binding score was obtained with 2BEG docked with both G82 RAGE (-375.84 ± 7.425 Kcal/mol and G82S variant (-391.09 ± 13.391 Kcal/mol indicating that the fibrillar form showed better interaction. Compared to G82 RAGE, the S82 variant showed better interaction to all three forms of Aβ42. The results of study indicate that RAGE interacted better with fibrillar form of Aβ42 peptide and G82S mutation enhanced the binding affinity of RAGE towards amyloid peptides leading to enhanced inflammatory response.

  1. miR-297 modulates multidrug resistance in human colorectal carcinoma by down-regulating MRP-2.

    Science.gov (United States)

    Xu, Ke; Liang, Xin; Shen, Ke; Cui, Daling; Zheng, Yuanhong; Xu, Jianhua; Fan, Zhongze; Qiu, Yanyan; Li, Qi; Ni, Lei; Liu, Jianwen

    2012-09-01

    Colorectal carcinoma is a frequent cause of cancer-related death in men and women. miRNAs (microRNAs) are endogenous small non-coding RNAs that regulate gene expression negatively at the post-transcriptional level. In the present study we investigated the possible role of microRNAs in the development of MDR (multidrug resistance) in colorectal carcinoma cells. We analysed miRNA expression levels between MDR colorectal carcinoma cell line HCT116/L-OHP cells and their parent cell line HCT116 using a miRNA microarray. miR-297 showed lower expression in HCT116/L-OHP cells compared with its parental cells. MRP-2 (MDR-associated protein 2) is an important MDR protein in platinum-drug-resistance cells and is a predicted target of miR-297. Additionally miR-297 was down-regulated in a panel of human colorectal carcinoma tissues and negatively correlated with expression levels of MRP-2. Furthermore, we found that ectopic expression of miR-297 in MDR colorectal carcinoma cells reduced MRP-2 protein level and sensitized these cells to anti-cancer drugs in vitro and in vivo. Taken together, our findings suggest that miR-297 could play a role in the development of MDR in colorectal carcinoma cells, at least in part by modulation of MRP-2.

  2. Induction of autophagy by Imatinib sequesters Bcr-Abl in autophagosomes and down-regulates Bcr-Abl protein.

    LENUS (Irish Health Repository)

    Elzinga, Baukje M

    2013-06-01

    Chronic Myeloid Leukemia (CML) is a disease of hematopoietic stem cells which harbor the chimeric gene Bcr-Abl. Expression levels of this constitutively active tyrosine kinase are critical for response to tyrosine kinase inhibitor treatment and also disease progression, yet the regulation of protein stability is poorly understood. We have previously demonstrated that imatinib can induce autophagy in Bcr-Abl expressing cells. Autophagy has been associated with the clearance of large macromolecular signaling complexes and abnormal proteins, however, the contribution of autophagy to the turnover of Bcr-Abl protein in imatinib treated cells is unknown. In this study, we show that following imatinib treatment, Bcr-Abl is sequestered into vesicular structures that co-localize with the autophagy marker LC3 or GABARAP. This association is inhibited by siRNA mediated knockdown of autophagy regulators (Beclin 1\\/ATG7). Pharmacological inhibition of autophagy also reduced Bcr-Abl\\/LC3 co-localization in both K562 and CML patient cells. Bcr-Abl protein expression was reduced with imatinib treatment. Inhibition of both autophagy and proteasome activity in imatinib treated cells was required to restore Bcr-Abl protein levels to those of untreated cells. This ability to down-regulate Bcr-Abl protein levels through the induction of autophagy may be an additional and important feature of the activity of imatinib.

  3. Natural product ginsenoside 25-OCH3-PPD inhibits breast cancer growth and metastasis through down-regulating MDM2.

    Science.gov (United States)

    Wang, Wei; Zhang, Xu; Qin, Jiang-Jiang; Voruganti, Sukesh; Nag, Subhasree Ashok; Wang, Ming-Hai; Wang, Hui; Zhang, Ruiwen

    2012-01-01

    Although ginseng and related herbs have a long history of utility for various health benefits, their application in cancer therapy and underlying mechanisms of action are not fully understood. Our recent work has shown that 20(S)-25-methoxyl-dammarane-3β, 12β, 20-triol (25-OCH(3)-PPD), a newly identified ginsenoside from Panax notoginseng, exerts activities against a variety of cancer cells in vitro and in vivo. This study was designed to investigate its anti-breast cancer activity and the underlying mechanisms of action. We observed that 25-OCH(3)-PPD decreased the survival of breast cancer cells by induction of apoptosis and G1 phase arrest and inhibited the growth of breast cancer xenografts in vivo. We further demonstrated that, in a dose- and time-dependent manner, 25-OCH(3)-PPD inhibited MDM2 expression at both transcriptional and post-translational levels in human breast cancer cells with various p53 statuses (wild type and mutant). Moreover, 25-OCH(3)-PPD inhibited in vitro cell migration, reduced the expression of epithelial-to-mesenchymal transition (EMT) markers, and prevented in vivo metastasis of breast cancer. In summary, 25-OCH(3)-PPD is a potential therapeutic and anti-metastatic agent for human breast cancer through down-regulating MDM2. Further preclinical and clinical development of this agent is warranted.

  4. Down-regulation of HSP40 gene family following OCT4B1 suppression in human tumor cell lines

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Mirzaei

    2016-02-01

    Full Text Available Objective(s: The OCT4B1, as one of OCT4 variants, is expressed in cancer cell lines and tissues more than other variants and plays an important role in apoptosis and stress (heat shock protein pathways. The present study was designed to determine the effects of OCT4B1 silencing on expressional profile of HSP40 gene family expression in three different human tumor cell lines. Materials and Methods: The OCT4B1 expression was suppressed by specific siRNA transfection in AGS (gastric adenocarcinoma, 5637 (bladder tumor and U-87MG (brain tumor cell lines employing Lipofectamine reagent. Real-time PCR array technique was employed for RNA qualification. The fold changes were calculated using RT2 Profiler PCR array data analysis software version 3.5. Results: Our results indicated that fifteen genes (from 36 studied genes were down-regulated and two genes (DNAJC11 and DNAJC5B were up-regulated in all three studied tumor cell lines by approximately more than two folds. The result of other studied genes (19 genes showed different expressional pattern (up or down-expression based on tumor cell lines. Conclusion: According to the findings of the present study, we may suggest that there is a direct correlation between OCT4B1 expression in tumor cell lines (and tissues and HSP40 family gene expressions to escape from apoptosis and cancer expansion.

  5. Down-regulation of serum/glucocorticoid regulated kinase 1 in colorectal tumours is largely independent of promoter hypermethylation.

    Directory of Open Access Journals (Sweden)

    Francesca Lessi

    2010-11-01

    Full Text Available We have previously shown that serum/glucocorticoid regulated kinase 1 (SGK1 is down-regulated in colorectal cancers (CRC with respect to normal tissue. As hyper-methylation of promoter regions is a well-known mechanism of gene silencing in cancer, we tested whether the SGK1 promoter region was methylated in colonic tumour samples.We investigated the methylation profile of the two CpG islands present in the promoter region of SGK1 in a panel of 5 colorectal cancer cell lines by sequencing clones of bisulphite-treated DNA samples. We further confirmed our findings in a panel of 10 normal and 10 tumour colonic tissue samples of human origin. We observed CpG methylation only in the smaller and more distal CpG island in the promoter region of SGK1 in both normal and tumour samples of colonic origin. We further identified a single nucleotide polymorphism (SNP, rs1743963 which affects methylation of the corresponding CpG.Our results show that even though partial methylation of the promoter region of SGK1 is present, this does not account for the different expression levels seen between normal and tumour tissue.

  6. Deletion and down-regulation of HRH4 gene in gastric carcinomas: a potential correlation with tumor progression.

    Directory of Open Access Journals (Sweden)

    Chao Zhang

    Full Text Available BACKGROUND: Histamine is an established growth factor for gastrointestinal malignancies. The effect of histamine is largely determined locally by the histamine receptor expression pattern. Histamine receptor H4 (HRH4, the newest member of the histamine receptor family, is positively expressed on the epithelium of the gastrointestinal tract, and its function remains to be elucidated. Previously, we reported the decreased expression of HRH4 in colorectal cancers and revealed its correlation with tumor proliferation. In the current study, we aimed to investigate the abnormalities of HRH4 gene in gastric carcinomas (GCs. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed H4R expression in collected GC samples by quantitative PCR, Western blot analysis, and immunostaining. Our results showed that the protein and mRNA levels of HRH4 were reduced in some GC samples, especially in advanced GC samples. Copy number decrease of HRH4 gene was observed (17.6%, 23 out of 131, which was closely correlated with the attenuated expression of H4R. In vitro studies, using gastric cancer cell lines, showed that the alteration of HRH4 expression on gastric cancer cells influences tumor growth upon exposure to histamine. CONCLUSIONS/SIGNIFICANCE: We show for the first time that deletion of HRH4 gene is present in GC cases and is closely correlated with attenuated gene expression. Down-regulation of HRH4 in gastric carcinomas plays a role in histamine-mediated growth control of GC cells.

  7. E3B1/ABI-1 Isoforms Are Down-Regulated in Cancers of Human Gastrointestinal Tract

    Directory of Open Access Journals (Sweden)

    Rafia A. Baba

    2012-01-01

    Full Text Available The expression of E3B1/ABI-1 protein and its role in cancer progression and prognosis are largely unknown in the majority of solid tumors. In this study, we examined the expression pattern of E3B1/ABI-1 protein in histologically confirmed cases of esophageal (squamous cell carcinoma and adenocarcinoma, gastro-esophageal junction, colorectal cancers and corresponding normal tissues freshly resected from a cohort of 135 patients, by Western Blotting and Immunofluorescence Staining. The protein is present in its phosphorylated form in cells and tissues. Depending on the extent of phosphorylation it is either present in hyper-phosphorylated (M. Wt. 72 kDa form or in hypo-phosphorylated form (M. Wt. 68 kDa and 65 kDa. A thorough analysis revealed that expression of E3B1/ABI-1 protein is significantly decreased in esophageal, gastro-esophageal junction and colorectal carcinomas irrespective of age, gender, dietary and smoking habits of the patients. The decrease in expression of E3B1/ABI-1 was consistently observed for all the three isoforms. However, the decrease in the expression of isoforms varied with different forms of cancers. Down-regulation of E3B1/ABI-1 expression in human carcinomas may play a critical role in tumor progression and in determining disease prognosis.

  8. Nanocurcumin-Mediated Down-Regulation of Telomerase Via Stimulating TGFβ1 Signaling Pathway in Hepatocellular Carcinoma Cells

    Science.gov (United States)

    Shariati, Molood; Hajigholami, Samira; Veisi Malekshahi, Ziba; Entezari, Maliheh; Bodaghabadi, Narges; Sadeghizadeh, Majid

    2017-10-10

    Curcumin, extracted from turmeric, represents enormous potential to serve as an anticancer agent. Telomerase is viewed as a prominent molecular target of curcumin, and Transforming growth factor-β1 (TGFβ1) has proven to be a major inhibitory signaling pathway for telomerase activity. In the current study, we aimed to explore suppressive effects of nanocurcumin on telomerase expression through TGFβ1 pathway in a hepatocellular carcinoma cell line (Huh7). MTT assay was used to determine the effect of nonocurcumin on viability of Huh7 cells. RT-PCR was used to analyze the gene expression patterns. MTT assay revealed that nanocurcumin acts in a dose- and time-dependent manner to diminish the cell viability. RT-PCR analysis indicated that nanocurcumin results in augmentation of TGFβ1 72 hours post treatment and leads to the reduction of telomerase expression 48 and 72 hours post exposure. Also, up-regulation of Smad3 and E2F1 and down-regulation of Smad7 confirmed the effect of nanocurcumin on intermediate components of TGFβ1 pathway. Furthermore, transfection of the proximal promoter of telomerase triggered a significant reduction in luciferase activity. The data from the present study lead us to develop a deeper understanding of the mechanisms underlying nanocurcumin-mediated regulation of telomerase expression, thereby presenting a new perspective to the landscape of using nanocurcumin as a cancer-oriented therapeutic agent.

  9. Down-regulation of Fusarium oxysporum endogenous genes by Host-Delivered RNA interference enhances disease resistance

    Directory of Open Access Journals (Sweden)

    Zongli eHu

    2015-01-01

    Full Text Available Fusarium oxysporum is a devastating pathogen causing extensive yield losses in a variety of crops and development of sustainable, environmentally friendly methods to improve crop resistance is crucial. We have used Host-Derived RNA interference (HD-RNAi technology to partially silence three different genes (FOW2, FRP1 and OPR in the hemi-biotrophic fungus Fusarium oxysporum f. sp. conglutinans. Expression of double stranded RNA molecules targeting fungal pathogen genes was achieved in a number of transgenic Arabidopsis lines. F. oxysporum infecting the transgenic lines displayed substantially reduced mRNA levels on all three targeted genes, with an average of 75%, 83% and 72% reduction for FOW2, FRP1 and OPR respectively. The silencing of pathogen genes had a clear positive effect on the ability of the transgenic lines to fight infection. All transgenic lines displayed enhanced resistance to F. oxysporum with delayed disease symptom development, especially FRP1 and OPR lines. Survival rates after fungal infection were higher in the transgenic lines compared to control wild type plants which consistently showed survival rates of 10%, with FOW2 lines showing 25% survival; FRP1 lines 30-50% survival and FOW2 between 45-70% survival. The down-regulation effect was specific for the targeted genes without unintended effects in related genes. In addition to producing resistant crops, HD-RNAi can provide a useful tool to rapidly screen candidate fungal pathogenicity genes without the need to produce fungal knockout mutants.

  10. Drought stress provokes the down-regulation of methionine and ethylene biosynthesis pathways in Medicago truncatula roots and nodules.

    Science.gov (United States)

    Larrainzar, Estíbaliz; Molenaar, Johanna A; Wienkoop, Stefanie; Gil-Quintana, Erena; Alibert, Bénédicte; Limami, Anis M; Arrese-Igor, Cesar; González, Esther M

    2014-09-01

    Symbiotic nitrogen fixation is one of the first physiological processes inhibited in legume plants under water-deficit conditions. Despite the progress made in the last decades, the molecular mechanisms behind this regulation are not fully understood yet. Recent proteomic work carried out in the model legume Medicago truncatula provided the first indications of a possible involvement of nodule methionine (Met) biosynthesis and related pathways in response to water-deficit conditions. To better understand this involvement, the drought-induced changes in expression and content of enzymes involved in the biosynthesis of Met, S-adenosyl-L-methionine (SAM) and ethylene in M. truncatula root and nodules were analyzed using targeted approaches. Nitrogen-fixing plants were subjected to a progressive water deficit and a subsequent recovery period. Besides the physiological characterization of the plants, the content of total sulphur, sulphate and main S-containing metabolites was measured. Results presented here show that S availability is not a limiting factor in the drought-induced decline of nitrogen fixation rates in M. truncatula plants and provide evidences for a down-regulation of the Met and ethylene biosynthesis pathways in roots and nodules in response to water-deficit conditions. © 2014 John Wiley & Sons Ltd.

  11. Down-regulation of POLYGALACTURONASE1 alters firmness, tensile strength and water loss in apple (Malus x domestica) fruit.

    Science.gov (United States)

    Atkinson, Ross G; Sutherland, Paul W; Johnston, Sarah L; Gunaseelan, Kularajathevan; Hallett, Ian C; Mitra, Deepali; Brummell, David A; Schröder, Roswitha; Johnston, Jason W; Schaffer, Robert J

    2012-08-02

    While there is now a significant body of research correlating apple (Malus x domestica) fruit softening with the cell wall hydrolase ENDO-POLYGALACTURONASE1 (PG1), there is currently little knowledge of its physiological effects in planta. This study examined the effect of down regulation of PG1 expression in 'Royal Gala' apples, a cultivar that typically has high levels of PG1, and softens during fruit ripening. PG1-suppressed 'Royal Gala' apples harvested from multiple seasons were firmer than controls after ripening, and intercellular adhesion was higher. Cell wall analyses indicated changes in yield and composition of pectin, and a higher molecular weight distribution of CDTA-soluble pectin. Structural analyses revealed more ruptured cells and free juice in pulled apart sections, suggesting improved integrity of intercellular connections and consequent cell rupture due to failure of the primary cell walls under stress. PG1-suppressed lines also had reduced expansion of cells in the hypodermis of ripe apples, resulting in more densely packed cells in this layer. This change in morphology appears to be linked with reduced transpirational water loss in the fruit. These findings confirm PG1's role in apple fruit softening and suggests that this is achieved in part by reducing cellular adhesion. This is consistent with previous studies carried out in strawberry but not with those performed in tomato. In apple PG1 also appears to influence other fruit texture characters such as juiciness and water loss.

  12. [HSP90 Inhibitor 17-AAG Inhibits Multiple Myeloma Cell Proliferation by Down-regulating Wnt/β-Catenin Signaling Pathway].

    Science.gov (United States)

    Chen, Kan-Kan; He, Zheng-Mei; Ding, Bang-He; Chen, Yue; Zhang, Li-Juan; Yu, Liang; Gao, Jian

    2016-02-01

    To investigate the inhibitory effect of HSP90 inhibitory 17-AAG on proliferation of multiple myeloma cells and its main mechanism. The multiple myeloma cells U266 were treated with 17-AAG of different concentrations (200, 400, 600 and 800 nmol/L) for 24, 48, and 72 hours respectively, then the proliferation rate, expression levels of β-catenin and C-MYC protein, as well as cell cycle of U266 cells were treated with 17-AAG and were detected by MTT method, Western blot and flow cytometry, respectively. The 17-AAG showed inhibitory effect on the proliferation of U266 cells in dose- and time-depetent manners (r = -0.518, P AAG displayed no inhibitory effect on proliferation of U266 cells (P > 0.05). The result of culturing U266 cells for 72 hours by 17-AAG of different concentrations showed that the more high of 17-AAG concentration, the more low level of β-catenin and C-MYC proteins (P AAG concentration, the more high of cell ratio in G1 phase (P AAG, the more long time of culture, the more high of cell ratio in G1 phase (P AAG can inhibit the proliferation of multiple myeloma cells, the down-regulation of Wnt/β-catenin signaling pathway and inhibition of HSP90 expression may be the main mechnisms of 17-AAG effect.

  13. Down-regulation of E-cadherin and catenins in human pituitary growth hormone-producing adenomas.

    Science.gov (United States)

    Sano, Toshiaki; Rong, Qian Zhi; Kagawa, Noriko; Yamada, Shozo

    2004-01-01

    Growth hormone (GH)-producing pituitary adenomas can be ultrastructurally divided into two major types: densely granulated and sparsely granulated. The latter type of adenoma characteristically exhibits globular accumulations of cytokeratin filaments known as fibrous bodies, which are immunohistochemically identifiable as juxtanuclear dot-like immunoreactivity. We hypothesize that the formation of fibrous body might be related to dysfunction of adhesion molecules, because of the functional relationship between intermediate filaments and the cadherin-catenin complex and frequent observation of loss of cohesiveness of the adenoma cells. Our recent immunohistochemical study showed that expression of E-cadherin and its undercoat proteins, alpha-, beta- and gamma-catenin, in GH cell adenomas with prominent fibrous bodies was significantly reduced compared with GH cell adenomas without fibrous bodies and the normal adenohypophysial cells. Although no mutation of exon 3 of the beta-catenin gene was found in any GH cell adenomas with fibrous bodies, methylation-specific polymerase chain reaction analysis revealed that the E-cadherin promoter region was methylated in 37.5% of these adenomas, two of which displayed total methylation, but not in GH cell adenomas without fibrous bodies. We conclude that the decreased expression of the E-cadherin-catenin complex and methylation of the E-cadherin gene promoter region are events associated with the formation of fibrous bodies in GH cell adenomas. It remains to be clarified to explain the mechanism by which down-regulation of adhesion molecules is involved in the abnormal assembly of intermediate filaments.

  14. Bmi1 is down-regulated in the aging brain and displays antioxidant and protective activities in neurons.

    Directory of Open Access Journals (Sweden)

    Mohamed Abdouh

    Full Text Available Aging increases the risk to develop several neurodegenerative diseases, although the underlying mechanisms are poorly understood. Inactivation of the Polycomb group gene Bmi1 in mice results in growth retardation, cerebellar degeneration, and development of a premature aging-like phenotype. This progeroid phenotype is characterized by formation of lens cataracts, apoptosis of cortical neurons, and increase of reactive oxygen species (ROS concentrations, owing to p53-mediated repression of antioxidant response (AOR genes. Herein we report that Bmi1 expression progressively declines in the neurons of aging mouse and human brains. In old brains, p53 accumulates at the promoter of AOR genes, correlating with a repressed chromatin state, down-regulation of AOR genes, and increased oxidative damages to lipids and DNA. Comparative gene expression analysis further revealed that aging brains display an up-regulation of the senescence-associated genes IL-6, p19(Arf and p16(Ink4a, along with the pro-apoptotic gene Noxa, as seen in Bmi1-null mice. Increasing Bmi1 expression in cortical neurons conferred robust protection against DNA damage-induced cell death or mitochondrial poisoning, and resulted in suppression of ROS through activation of AOR genes. These observations unveil that Bmi1 genetic deficiency recapitulates aspects of physiological brain aging and that Bmi1 over-expression is a potential therapeutic modality against neurodegeneration.

  15. Down-regulation of Fusarium oxysporum endogenous genes by Host-Delivered RNA interference enhances disease resistance

    Science.gov (United States)

    Hu, Zongli; Parekh, Urvi; Maruta, Natsumi; Trusov, Yuri; Botella, Jimmy

    2015-01-01

    Fusarium oxysporum is a devastating pathogen causing extensive yield losses in a variety of crops and development of sustainable, environmentally friendly methods to improve crop resistance is crucial. We have used Host-Derived RNA interference (HD-RNAi) technology to partially silence three different genes (FOW2, FRP1 and OPR) in the hemi-biotrophic fungus Fusarium oxysporum f. sp. conglutinans. Expression of double stranded RNA molecules targeting fungal pathogen genes was achieved in a number of transgenic Arabidopsis lines. F. oxysporum infecting the transgenic lines displayed substantially reduced mRNA levels on all three targeted genes, with an average of 75%, 83% and 72% reduction for FOW2, FRP1 and OPR respectively. The silencing of pathogen genes had a clear positive effect on the ability of the transgenic lines to fight infection. All transgenic lines displayed enhanced resistance to F. oxysporum with delayed disease symptom development, especially FRP1 and OPR lines. Survival rates after fungal infection were higher in the transgenic lines compared to control wild type plants which consistently showed survival rates of 10%, with FOW2 lines showing 25% survival; FRP1 lines 30-50% survival and FOW2 between 45-70% survival. The down-regulation effect was specific for the targeted genes without unintended effects in related genes. In addition to producing resistant crops, HD-RNAi can provide a useful tool to rapidly screen candidate fungal pathogenicity genes without the need to produce fungal knockout mutants.

  16. A molecular toolbox for rapid generation of viral vectors to up- or down-regulate in vivo neuronal gene expression

    Directory of Open Access Journals (Sweden)

    Melanie D. White

    2011-07-01

    Full Text Available We introduce a molecular toolbox for manipulation of neuronal gene expression in vivo. The toolbox includes promoters, ion channels, optogenetic tools, fluorescent proteins and intronic artificial microRNAs. The components are easily assembled into adeno-associated virus (AAV or lentivirus vectors using recombination cloning. We demonstrate assembly of toolbox components into lentivirus and AAV vectors and use these vectors for in vivo expression of inwardly rectifying potassium channels (Kir2.1, Kir3.1 and Kir3.2 and an artificial microRNA targeted against the ion channel HCN1 (HCN1 miR. We show that AAV assembled to express HCN1 miR produces efficacious and specific in vivo knockdown of HCN1 channels. Comparison of in vivo viral transduction using HCN1 miR with mice containing a germ line deletion of HCN1 reveals similar physiological phenotypes in cerebellar Purkinje cells. The easy assembly and re-usability of the toolbox components, together with the ability to up- or down-regulate neuronal gene expression in vivo, may be useful for applications in many areas of neuroscience.

  17. Down-regulation of NR2B receptors partially contributes to analgesic effects of Gentiopicroside in persistent inflammatory pain.

    Science.gov (United States)

    Chen, Lei; Liu, Jin-cheng; Zhang, Xiao-nan; Guo, Yan-yan; Xu, Zhao-hui; Cao, Wei; Sun, Xiao-li; Sun, Wen-ji; Zhao, Ming-Gao

    2008-06-01

    Gentiopicroside is one of the secoiridoid compound isolated from Gentiana lutea. It exhibits analgesic activities in the mice. The anterior cingulate cortex (ACC) is a forebrain structure known for its roles in pain transmission and modulation. Painful stimuli potentiate the prefrontal synaptic transmission and induce glutamate NMDA NR2B receptor expression in the ACC. But little is known about Gentiopicroside on the persistent inflammatory pain and chronic pain-induced synaptic transmission changes in the ACC. The present study was undertaken to investigate its analgesic activities and central synaptic modulation to the peripheral painful inflammation. Gentiopicroside produced significant analgesic effects against persistent inflammatory pain stimuli in mice. Systemic administration of Gentiopicroside significantly reversed NR2B over-expression during the chronic phases of persistent inflammation caused by hind-paw administration of complete Freunds adjuvant (CFA) in mice. Whole-cell patch clamp recordings revealed that Gentiopicroside significantly reduced NR2B receptors mediated postsynaptic currents in the ACC. Our findings provide strong evidence that analgesic effects of Gentiopicroside involve down-regulation of NR2B receptors in the ACC to persistent inflammatory pain.

  18. Nicotine affects rat Leydig cell function in vivo and vitro via down-regulating some key steroidogenic enzyme expressions.

    Science.gov (United States)

    Guo, Xiaoling; Wang, Huang; Wu, Xiaolong; Chen, Xianwu; Chen, Yong; Guo, Jingjing; Li, Xiaoheng; Lian, Qingquan; Ge, Ren-Shan

    2017-12-01

    Nicotine is consumed largely as a component of cigarettes and has a potential effect on pubertal development of Leydig cells in males. To investigate its effects, 49-day-old male Sprague Dawley rats received intraperitoneal injections of nicotine (0.5 or 1 mg/kg/day) for 2 weeks and immature Leydig cells were isolated from the testes of 35-day-old rats and treated with nicotine (0.05-50 μM). Serum hormones, Leydig cell number and related gene expression levels after in vivo treatment were determined and medium androgen levels were measured and cell cycle, apoptosis, mitochondrial membrane potential (△Ψm), and reactive oxygen species (ROS) of Leydig cells after in vitro treatment were measured. In vivo exposure to nicotine lowered serum luteinizing hormone, follicle stimulating hormone, and testosterone levels and reduced Leydig cell number and gene expression levels. Nicotine in vitro inhibited androgen production in Leydig cells by downregulating the expression levels of P450 cholesterol side cleavage enzyme, 3β-hydroxysteroid dehydrogenase 1, and steroidogenic factor 1 at different concentration ranges. In conclusion, nicotine disrupts Leydig cell steroidogenesis during puberty possibly via down-regulating some key steroidogenic enzyme expressions. Copyright © 2017. Published by Elsevier Ltd.

  19. Formation of the sacrum requires down-regulation of sonic hedgehog signaling in the sacral intervertebral discs.

    Science.gov (United States)

    Bonavita, Raffaella; Vincent, Kathleen; Pinelli, Robert; Dahia, Chitra Lekha

    2018-05-21

    In humans, the sacrum forms an important component of the pelvic arch, and it transfers the weight of the body to the lower limbs. The sacrum is formed by collapse of the intervertebral discs (IVDs) between the five sacral vertebrae during childhood, and their fusion to form a single bone. We show that collapse of the sacral discs in the mouse is associated with the down-regulation of sonic hedgehog (SHH) signaling in the nucleus pulposus (NP) of the disc, and many aspects of this phenotype can be reversed by experimental postnatal activation of HH signaling. We have previously shown that SHH signaling is essential for the normal postnatal growth and differentiation of intervertebral discs elsewhere in the spine, and that loss of SHH signaling leads to pathological disc degeneration, a very common disorder of aging. Thus, loss of SHH is pathological in one region of the spine but part of normal development in another. © 2018. Published by The Company of Biologists Ltd.

  20. Overexpressed ubiquitin ligase Cullin7 in breast cancer promotes cell proliferation and invasion via down-regulating p53

    International Nuclear Information System (INIS)

    Guo, Hongsheng; Wu, Fenping; Wang, Yan; Yan, Chong; Su, Wenmei

    2014-01-01

    Highlights: • Cullin7 is overexpressed in human breast cancer samples. • Cullin7 stimulated proliferation and invasion of breast cancer cells. • Inhibition of p53 contributes to Cullin7-induced proliferation and invasion. - Abstract: Ubiquitin ligase Cullin7 has been identified as an oncogene in some malignant diseases such as choriocarcinoma and neuroblastoma. However, the role of Cullin7 in breast cancer carcinogenesis remains unclear. In this study, we compared Cullin7 protein levels in breast cancer tissues with normal breast tissues and identified significantly higher expression of Cullin7 protein in breast cancer specimens. By overexpressing Cullin7 in breast cancer cells HCC1937, we found that Cullin7 could promote cell growth and invasion in vitro. In contrast, the cell growth and invasion was inhibited by silencing Cullin7 in breast cancer cell BT474. Moreover, we demonstrated that Cullin7 promoted breast cancer cell proliferation and invasion via down-regulating p53 expression. Thus, our study provided evidence that Cullin7 functions as a novel oncogene in breast cancer and may be a potential therapeutic target for breast cancer management

  1. miR-24-mediated down-regulation of H2AX suppresses DNA repair in terminally differentiated blood cells

    Science.gov (United States)

    Lal, Ashish; Pan, Yunfeng; Navarro, Francisco; Dykxhoorn, Derek M.; Moreau, Lisa; Meire, Eti; Bentwich, Zvi; Lieberman, Judy; Chowdhury, Dipanjan

    2010-01-01

    Terminally differentiated cells have reduced capacity to repair double strand breaks (DSB), but the molecular mechanism behind this down-regulation is unclear. Here we find that miR-24 is consistently up-regulated during post-mitotic differentiation of hematopoietic cell lines and regulates the histone variant H2AX, a key DSB repair protein that activates cell cycle checkpoint proteins and retains DSB repair factors at DSB foci. The H2AX 3’UTR contains conserved miR-24 binding sites regulated by miR-24. Both H2AX mRNA and protein are substantially reduced during hematopoietic cell terminal differentiation by miR-24 up-regulation both in in vitro differentiated cells and primary human blood cells. miR-24 suppression of H2AX renders cells hypersensitive to γ-irradiation and genotoxic drugs. Antagonizing miR-24 in differentiating cells protects them from DNA damage-induced cell death, while transfecting miR-24 mimics in dividing cells increases chromosomal breaks and unrepaired DNA damage and reduces viability in response to DNA damage. This DNA repair phenotype can be fully rescued by over-expressing miR-24-insensitive H2AX. Therefore, miR-24 up-regulation in post-replicative cells reduces H2AX and thereby renders them highly vulnerable to DNA damage. PMID:19377482

  2. Overexpressed ubiquitin ligase Cullin7 in breast cancer promotes cell proliferation and invasion via down-regulating p53

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hongsheng [Department of Histology and Embryology, Guangdong Medical College, Dongguan 523808, Guangdong (China); Wu, Fenping [The 7th People’s Hospital of Chengdu, Chengdu 610041, Sichuan (China); Wang, Yan [The Second School of Clinical Medicine, Guangdong Medical College, Dongguan 523808, Guangdong (China); Yan, Chong [School of Pharmacy, Guangdong Medical College, Dongguan 523808, Guangdong (China); Su, Wenmei, E-mail: wenmeisutg@126.com [Oncology of Affiliated Hospital Guangdong Medical College, Zhanjiang 524000, Guangdong (China)

    2014-08-08

    Highlights: • Cullin7 is overexpressed in human breast cancer samples. • Cullin7 stimulated proliferation and invasion of breast cancer cells. • Inhibition of p53 contributes to Cullin7-induced proliferation and invasion. - Abstract: Ubiquitin ligase Cullin7 has been identified as an oncogene in some malignant diseases such as choriocarcinoma and neuroblastoma. However, the role of Cullin7 in breast cancer carcinogenesis remains unclear. In this study, we compared Cullin7 protein levels in breast cancer tissues with normal breast tissues and identified significantly higher expression of Cullin7 protein in breast cancer specimens. By overexpressing Cullin7 in breast cancer cells HCC1937, we found that Cullin7 could promote cell growth and invasion in vitro. In contrast, the cell growth and invasion was inhibited by silencing Cullin7 in breast cancer cell BT474. Moreover, we demonstrated that Cullin7 promoted breast cancer cell proliferation and invasion via down-regulating p53 expression. Thus, our study provided evidence that Cullin7 functions as a novel oncogene in breast cancer and may be a potential therapeutic target for breast cancer management.

  3. Down-regulation of miR-181a can reduce heat stress damage in PBMCs of Holstein cows.

    Science.gov (United States)

    Chen, Kun-Lin; Fu, Yuan-Yuan; Shi, Min-Yan; Li, Hui-Xia

    2016-09-01

    Heat stress can weaken the immune system and even increase livestock's susceptibility to disease. MicroRNA (miR) is short non-coding RNA that functions in post-transcriptional regulation of gene expression and some phenotypes. Our recent study found that miR-181a is highly expressed in the serum of heat-stressed Holstein cows, but the potential function of miR-181a is still not clarified. In this study, peripheral blood mononuclear cells (PBMCs), isolated from Holstein cows' peripheral blood, were used to investigate the effects of miR-181a inhibitor on heat stress damage. Our results showed that significant apoptosis and oxidative damage were induced by heat stress in PBMCs. However, with apoptosis, the levels of reactive oxygen species (ROS) and content of malondialdehyde (MDA) were reduced, while the content of glutathione (GSH) and the activity of superoxide dismutase (SOD) were increased even under heat stress conditions after transfecting miR-181a inhibitors to PBMCs. Meanwhile, mRNA expression of bax and caspase-3 was significantly decreased, but mRNA expression of bcl-2 was increased in transfected PBMCs. In conclusion, our results demonstrated that down-regulation of miR-181a can reduce heat stress damage in PBMCs of Holstein cows.

  4. Down-regulation of microRNA-196a in the sera and involved skin of localized scleroderma patients.

    Science.gov (United States)

    Makino, Takamitsu; Jinnin, Masatoshi; Etoh, Mitsuhiko; Yamane, Keitaro; Kajihara, Ikko; Makino, Katsunari; Ichihara, Asako; Igata, Toshikatsu; Sakai, Keisuke; Fukushima, Satoshi; Ihn, Hironobu

    2014-01-01

    Localized scleroderma (LSc) exhibits fibrosis of the skin and subcutaneous tissue. LSc shows an excessive deposition of type 1 collagen. To elucidate the mechanism of type 1 collagen overexpression in LSc, we investigated the epigenetics, focusing on microRNA (miRNA). miRNA expression profile was determined by PCR array analysis. The expression of microRNA-196a (miR-196a) in the skin tissue was examined by in situ hybridization or real-time PCR. The serum levels of miR-196a were measured by real-time PCR. PCR array analysis demonstrated that the miR-196a level was markedly decreased in LSc skin tissue in vivo. The transfection of specific inhibitor for miR-196a into normal cultured human dermal fibroblasts led to the up-regulation of type 1 collagen protein in vitro. Furthermore, the serum levels of miR-196a were significantly decreased in LSc patients. Down-regulation of miR-196a and subsequent overexpression of type 1 collagen in dermal fibroblasts may play a key role in the pathogenesis of LSc. The serum levels of miR-196a may be useful as a diagnostic marker of LSc.

  5. Rosiglitazone reverses memory decline and hippocampal glucocorticoid receptor down-regulation in an Alzheimer's disease mouse model

    International Nuclear Information System (INIS)

    Escribano, Luis; Simon, Ana-Maria; Perez-Mediavilla, Alberto; Salazar-Colocho, Pablo; Rio, Joaquin Del; Frechilla, Diana

    2009-01-01

    Clinical trials with rosiglitazone, a potent agonist at peroxisome proliferator-activated receptor gamma (PPARγ) suggest an improvement of cognitive function in Alzheimer's disease (AD) patients. The mechanisms mediating this potential beneficial effect remain to be fully elucidated. In mice overexpressing mutant human amyloid precursor protein (hAPP), a model of AD, we found that memory impairment in the object recognition test was prevented and also reversed by chronic rosiglitazone treatment. Given the possible involvement of glucocorticoid receptors (GR) in the actions of PPARγ-ligands, we studied the effect of chronic rosiglitazone treatment on GR levels in the hippocampus of hAPP mice. An early down-regulation of GR, not related to elevated plasma corticosterone levels, was found in different hippocampal subfields of the transgenic mice and this decrease was prevented by rosiglitazone. In parallel with behavioural studies, rosiglitazone also normalized GR levels in older animals. This effect may contribute to explain the attenuation of memory decline by PPARγ activation in an AD mouse model.

  6. Cisplatin and ultra-violet-C synergistically down-regulate receptor tyrosine kinases in human colorectal cancer cells

    Directory of Open Access Journals (Sweden)

    Kawaguchi Junji

    2012-07-01

    Full Text Available Abstract Background Platinum-containing anti-cancer drugs such as cisplatin are widely used for patients with various types of cancers, however, resistance to cisplatin is observed in some cases. Whereas we have recently reported that high dose UV-C (200 J/m² induces colorectal cancer cell proliferation by desensitization of EGFR, which leads oncogenic signaling in these cells, in this study we investigated the combination effect of low dose cisplatin (10 μM and low dose UV-C (10 J/m² on cell growth and apoptosis in several human colorectal cancer cells, SW480, DLD-1, HT29 and HCT116. Results The combination inhibited cell cycle and colony formation, while either cisplatin or UV-C alone had little effect. The combination also induced apoptosis in these cells. In addition, the combination caused the downregulation of EGFR and HER2. Moreover, UV-C alone caused the transient internalization of the EGFR, but with time EGFR recycled back to the cell surface, while cisplatin did not affect its localization. Surprisingly, the combination caused persistent internalization of the EGFR, which results in the lasting downregulation of the EGFR. Conclusions The combination of low dose cisplatin and low dose UV-C synergistically exerted anti-cancer effect by down-regulating RTK, such as EGFR and HER2. These findings may provide a novel strategy for the treatment of patients with colorectal cancer.

  7. Galectin-1 is expressed in early-type neural progenitor cells and down-regulates neurogenesis in the adult hippocampus

    Directory of Open Access Journals (Sweden)

    Imaizumi Yoichi

    2011-01-01

    Full Text Available Abstract Background In the adult mammalian brain, neural stem cells (NSCs proliferate in the dentate gyrus (DG of the hippocampus and generate new neurons throughout life. A multimodal protein, Galectin-1, is expressed in neural progenitor cells (NPCs and implicated in the proliferation of the NPCs in the DG. However, little is known about its detailed expression profile in the NPCs and functions in adult neurogenesis in the DG. Results Our immunohistochemical and morphological analysis showed that Galectin-1 was expressed in the type 1 and 2a cells, which are putative NSCs, in the subgranular zone (SGZ of the adult mouse DG. To study Galectin-1's function in adult hippocampal neurogenesis, we made galectin-1 knock-out mice on the C57BL6 background and characterized the effects on neurogenesis. In the SGZ of the galectin-1 knock-out mice, increased numbers of type 1 cells, DCX-positive immature progenitors, and NeuN-positive newborn neurons were observed. Using triple-labeling immunohistochemistry and morphological analyses, we found that the proliferation of the type-1 cells was increased in the SGZ of the galectin-1 knock-out mice, and we propose that this proliferation is the mechanism for the net increase in the adult neurogenesis in these knock-out mice DG. Conclusions Galectin-1 is expressed in the neural stem cells and down-regulates neurogenesis in the adult hippocampus.

  8. eEF-2 Phosphorylation Down-Regulates P-Glycoprotein Over-Expression in Rat Brain Microvessel Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Xing Hua Tang

    Full Text Available We investigated whether glutamate, NMDA receptors, and eukaryote elongation factor-2 kinase (eEF-2K/eEF-2 regulate P-glycoprotein expression, and the effects of the eEF-2K inhibitor NH125 on the expression of P-glycoprotein in rat brain microvessel endothelial cells (RBMECs.Cortex was obtained from newborn Wistar rat brains. After surface vessels and meninges were removed, the pellet containing microvessels was resuspended and incubated at 37°C in culture medium. Cell viability was assessed by the MTT assay. RBMECs were identified by immunohistochemistry with anti-vWF. P-glycoprotein, phospho-eEF-2, and eEF-2 expression were determined by western blot analysis. Mdr1a gene expression was analyzed by RT-PCR.Mdr1a mRNA, P-glycoprotein and phospho-eEF-2 expression increased in L-glutamate stimulated RBMECs. P-glycoprotein and phospho-eEF-2 expression were down-regulated after NH125 treatment in L-glutamate stimulated RBMECs.eEF-2K/eEF-2 should have played an important role in the regulation of P-glycoprotein expression in RBMECs. eEF-2K inhibitor NH125 could serve as an efficacious anti-multidrug resistant agent.

  9. SIRT1 ameliorates oxidative stress induced neural cell death and is down-regulated in Parkinson's disease.

    Science.gov (United States)

    Singh, Preeti; Hanson, Peter S; Morris, Christopher M

    2017-06-02

    Sirtuins (SIRTs) are NAD + dependent lysine deacetylases which are conserved from bacteria to humans and have been associated with longevity and lifespan extension. SIRT1, the best studied mammalian SIRT is involved in many physiological and pathological processes and changes in SIRT1 have been implicated in neurodegenerative disorders, with SIRT1 having a suggested protective role in Parkinson's disease. In this study, we determined the effect of SIRT1 on cell survival and α-synuclein aggregate formation in SH-SY5Y cells following oxidative stress. Over-expression of SIRT1 protected SH-SY5Y cells from toxin induced cell death and the protection conferred by SIRT1 was partially independent of its deacetylase activity, which was associated with the repression of NF-кB and cPARP expression. SIRT1 reduced the formation of α-synuclein aggregates but showed minimal co-localisation with α-synuclein. In post-mortem brain tissue obtained from patients with Parkinson's disease, Parkinson's disease with dementia, dementia with Lewy bodies and Alzheimer's disease, the activity of SIRT1 was observed to be down-regulated. These findings suggests a negative effect of oxidative stress in neurodegenerative disorders and possibly explain the reduced activity of SIRT1 in neurodegenerative disorders. Our study shows that SIRT1 is a pro-survival protein that is downregulated under cellular stress.

  10. miR-214 down-regulates ARL2 and suppresses growth and invasion of cervical cancer cells

    International Nuclear Information System (INIS)

    Peng, Ruiqing; Men, Jianlong; Ma, Rui; Wang, Qian; Wang, Yang; Sun, Ying; Ren, Jing

    2017-01-01

    Increasing evidence has shown that miRNAs are implicated in carcinogenesis and can function as oncogenes or tumor suppressor genes in human cancers. In this study, we confirmed that miR-214 is frequently down-regulated in cervical cancer compared with normal cervical tissues. Ectopic expression of miR-214 suppressed proliferation, migration and invasion of HeLa and C33A cervical cancer cells. Bioinformatics analysis revealed that ADP ribosylation factor like 2 (ARL2) was a potential target of miR-214 and was remarkably up-regulated in cervical cancer. Knockdown of ARL2 markedly inhibited cervical cancer cell proliferation, migration and invasion, similarly to over-expression of miR-214, indicating that ARL2 may function as an oncogene in cervical cancer. In conclusion, our study revealed that miR-214 acts as a tumor suppressor via inhibiting proliferation, migration and invasion of cervical cancer cells through targeting ARL2, and that both miR-214 and ARL2 may serve as prognostic or therapeutic targets for cervical cancer. - Highlights: • miR-214 targets ARL2. • ARL2 maybe an oncogene in cervical cancer. • ARL2 rescues miR-214.

  11. Systemic down-regulation of delta-9 desaturase promotes muscle oxidative metabolism and accelerates muscle function recovery following nerve injury.

    Directory of Open Access Journals (Sweden)

    Ghulam Hussain

    Full Text Available The progressive deterioration of the neuromuscular axis is typically observed in degenerative conditions of the lower motor neurons, such as amyotrophic lateral sclerosis (ALS. Neurodegeneration in this disease is associated with systemic metabolic perturbations, including hypermetabolism and dyslipidemia. Our previous gene profiling studies on ALS muscle revealed down-regulation of delta-9 desaturase, or SCD1, which is the rate-limiting enzyme in the synthesis of monounsaturated fatty acids. Interestingly, knocking out SCD1 gene is known to induce hypermetabolism and stimulate fatty acid beta-oxidation. Here we investigated whether SCD1 deficiency can affect muscle function and its restoration in response to injury. The genetic ablation of SCD1 was not detrimental per se to muscle function. On the contrary, muscles in SCD1 knockout mice shifted toward a more oxidative metabolism, and enhanced the expression of synaptic genes. Repressing SCD1 expression or reducing SCD-dependent enzymatic activity accelerated the recovery of muscle function after inducing sciatic nerve crush. Overall, these findings provide evidence for a new role of SCD1 in modulating the restorative potential of skeletal muscles.

  12. The receptor for advanced glycation end products (RAGE) and the lung.

    LENUS (Irish Health Repository)

    Buckley, Stephen T

    2010-01-01

    The receptor for advanced glycation end products (RAGE) is a member of the immunoglobulin superfamily of cell surface molecules. As a pattern-recognition receptor capable of binding a diverse range of ligands, it is typically expressed at low levels under normal physiological conditions in the majority of tissues. In contrast, the lung exhibits high basal level expression of RAGE localised primarily in alveolar type I (ATI) cells, suggesting a potentially important role for the receptor in maintaining lung homeostasis. Indeed, disruption of RAGE levels has been implicated in the pathogenesis of a variety of pulmonary disorders including cancer and fibrosis. Furthermore, its soluble isoforms, sRAGE, which act as decoy receptors, have been shown to be a useful marker of ATI cell injury. Whilst RAGE undoubtedly plays an important role in the biology of the lung, it remains unclear as to the exact nature of this contribution under both physiological and pathological conditions.

  13. The receptor for advanced glycation end products (RAGE contributes to the progression of emphysema in mice.

    Directory of Open Access Journals (Sweden)

    Nisha Sambamurthy

    Full Text Available Several recent clinical studies have implied a role for the receptor for advanced glycation end products (RAGE and its variants in chronic obstructive pulmonary disease (COPD. In this study we have defined a role for RAGE in the pathogenesis of emphysema in mice. RAGE deficient mice (RAGE-/- exposed to chronic cigarette smoke were significantly protected from smoke induced emphysema as determined by airspace enlargement and had no significant reduction in lung tissue elastance when compared to their air exposed controls contrary to their wild type littermates. The progression of emphysema has been largely attributed to an increased inflammatory cell-mediated elastolysis. Acute cigarette smoke exposure in RAGE-/- mice revealed an impaired early recruitment of neutrophils, approximately a 6-fold decrease compared to wild type mice. Hence, impaired neutrophil recruitment with continued cigarette smoke exposure reduces elastolysis and consequent emphysema.

  14. Oligomerization interface of RAGE receptor revealed by MS-monitored hydrogen deuterium exchange.

    Directory of Open Access Journals (Sweden)

    Ewa Sitkiewicz

    Full Text Available Activation of the receptor for advanced glycation end products (RAGE leads to a chronic proinflammatory signal, affecting patients with a variety of diseases. Potentially beneficial modification of RAGE activity requires understanding the signal transduction mechanism at the molecular level. The ligand binding domain is structurally uncoupled from the cytoplasmic domain, suggesting receptor oligomerization is a requirement for receptor activation. In this study, we used hydrogen-deuterium exchange and mass spectrometry to map structural differences between the monomeric and oligomeric forms of RAGE. Our results indicated the presence of a region shielded from exchange in the oligomeric form of RAGE and led to the identification of a new oligomerization interface localized at the linker region between domains C1 and C2. Based on this finding, a model of a RAGE dimer and higher oligomeric state was constructed.

  15. Resolvin D1 Protects Lipopolysaccharide-induced Acute Kidney Injury by Down-regulating Nuclear Factor-kappa B Signal and Inhibiting Apoptosis

    Directory of Open Access Journals (Sweden)

    Yu-Liang Zhao

    2016-01-01

    Conclusion: In LPS-induced AKI, RvD1 could decrease TNF-α level, ameliorate kidney pathological injury, protect kidney function, and improve animal survival by down-regulating NF-κB inflammatory signal as well as inhibiting renal cell apoptosis.

  16. Down-regulation of Cell Surface Cyclic AMP Receptors and Desensitization of Cyclic AMP-stimulated Adenylate Cyclase by Cyclic AMP in Dictyostelium discoideum. Kinetics and Concentration Dependence

    NARCIS (Netherlands)

    Haastert, Peter J.M. van

    1987-01-01

    cAMP binds to Dictyostelium discoideum surface receptors and induces a transient activation of adenylate cyclase, which is followed by desensitization. cAMP also induces a loss of detectable surface receptors (down-regulation). Cells were incubated with constant cAMP concentrations, washed free of

  17. Identification of phenylalanine 346 in the rat growth hormone receptor as being critical for ligand-mediated internalization and down-regulation

    DEFF Research Database (Denmark)

    Allevato, G; Billestrup, N; Goujon, L

    1995-01-01

    The functional significance of growth hormone (GH) receptor (GHR) internalization is unknown; therefore, we have analyzed domains and individual amino acids in the cytoplasmic region of the rat GHR required for ligand-mediated receptor internalization, receptor down-regulation, and transcriptiona...

  18. CD4+ NKG2D+ T cells induce NKG2D down-regulation in natural killer cells in CD86-RAE-1ε transgenic mice

    Science.gov (United States)

    Lin, Zhijie; Wang, Changrong; Xia, Haizui; Liu, Weiguang; Xiao, Weiming; Qian, Li; Jia, Xiaoqin; Ding, Yanbing; Ji, Mingchun; Gong, Weijuan

    2014-01-01

    The binding of NKG2D to its ligands strengthens the cross-talk between natural killer (NK) cells and dendritic cells, particularly at early stages, before the initiation of the adaptive immune response. We found that retinoic acid early transcript-1ε (RAE-1ε), one of the ligands of NKG2D, was persistently expressed on antigen-presenting cells in a transgenic mouse model (pCD86-RAE-1ε). By contrast, NKG2D expression on NK cells, NKG2D-dependent cytotoxicity and tumour rejection, and dextran sodium sulphate-induced colitis were all down-regulated in this mouse model. The down-regulation of NKG2D on NK cells was reversed by stimulation with poly (I:C). The ectopic expression of RAE-1ε on dendritic cells maintained NKG2D expression levels and stimulated the activity of NK cells ex vivo, but the higher frequency of CD4+ NKG2D+ T cells in transgenic mice led to the down-regulation of NKG2D on NK cells in vivo. Hence, high levels of RAE-1ε expression on antigen-presenting cells would be expected to induce the down-regulation of NK cell activation by a regulatory T-cell subset. PMID:24708417

  19. CD4(+) NKG2D(+) T cells induce NKG2D down-regulation in natural killer cells in CD86-RAE-1ε transgenic mice.

    Science.gov (United States)

    Lin, Zhijie; Wang, Changrong; Xia, Haizui; Liu, Weiguang; Xiao, Weiming; Qian, Li; Jia, Xiaoqin; Ding, Yanbing; Ji, Mingchun; Gong, Weijuan

    2014-03-01

    The binding of NKG2D to its ligands strengthens the cross-talk between natural killer (NK) cells and dendritic cells, particularly at early stages, before the initiation of the adaptive immune response. We found that retinoic acid early transcript-1ε (RAE-1ε), one of the ligands of NKG2D, was persistently expressed on antigen-presenting cells in a transgenic mouse model (pCD86-RAE-1ε). By contrast, NKG2D expression on NK cells, NKG2D-dependent cytotoxicity and tumour rejection, and dextran sodium sulphate-induced colitis were all down-regulated in this mouse model. The down-regulation of NKG2D on NK cells was reversed by stimulation with poly (I:C). The ectopic expression of RAE-1ε on dendritic cells maintained NKG2D expression levels and stimulated the activity of NK cells ex vivo, but the higher frequency of CD4(+) NKG2D(+) T cells in transgenic mice led to the down-regulation of NKG2D on NK cells in vivo. Hence, high levels of RAE-1ε expression on antigen-presenting cells would be expected to induce the down-regulation of NK cell activation by a regulatory T-cell subset. © 2013 John Wiley & Sons Ltd.

  20. Growth promotion in pigs by oxytetracycline coincides with down regulation of serum inflammatory parameters and of hibernation-associated protein HP-27

    DEFF Research Database (Denmark)

    Soler, Laura; Miller, Ingrid; Hummel, Karin

    2016-01-01

    to explore the systemic molecular effect of feed supplementation with sub therapeutic levels of oxytetracycline (OTC) by analysis of serum proteome changes. Results showed that OTC promoted growth, coinciding with a significant down regulation of different serum proteins related to inflammation, oxidation...

  1. Down-regulation of MHC class I by the Marek's disease virus (MDV) UL49.5 gene product mildly affects virulence in a haplotype-specific fashion.

    Science.gov (United States)

    Jarosinski, Keith W; Hunt, Henry D; Osterrieder, Nikolaus

    2010-09-30

    Marek's disease is a devastating neoplastic disease of chickens caused by Marek's disease virus (MDV). MDV down-regulates surface expression of MHC class I molecules, although the mechanism has remained elusive. MDV harbors a UL49.5 homolog that has been shown to down-regulate MHC class I expression in other Varicelloviruses. Using in vitro assays, we showed that MDV pUL49.5 down-regulates MHC class I directly and identified its cytoplasmic tail as essential for this function. In vivo, viruses lacking the cytoplasmic tail of pUL49.5 showed no differences in MD pathogenesis compared to revertant viruses in highly susceptible chickens of the B(19)B(19) MHC class I haplotype, while there was a mild reduction in pathogenic potential of the deletion viruses in chickens more resistant to MD pathogenesis (MHC:B(21)B(21)). We concluded that the pathogenic effect of MHC class I down-regulation mediated by pUL49.5 is small because virus immune evasion possibly requires more than one viral protein. Copyright 2010 Elsevier Inc. All rights reserved.

  2. Down-regulation of MHC Class I by the Marek's Disease Virus (MDV) UL49.5 Gene Product Mildly Affects Virulence in a Haplotype-specific Fashion

    Science.gov (United States)

    Marek’s disease is a devastating neoplastic disease of chickens caused by gallid herpesvirus 2 or Marek’s disease virus (MDV), which is characterized by massive visceral tumors, immune suppression, neurologic syndromes, and peracute deaths. It has been reported that MDV down-regulates surface expre...

  3. Metformin suppresses CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating aryl hydrocarbon receptor expression

    Energy Technology Data Exchange (ETDEWEB)

    Do, Minh Truong; Kim, Hyung Gyun; Tran, Thi Thu Phuong; Khanal, Tilak; Choi, Jae Ho [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of); Chung, Young Chul [Department of Food Science and Culinary, International University of Korea, Jinju (Korea, Republic of); Jeong, Tae Cheon, E-mail: taecheon@ynu.ac.kr [College of Pharmacy, Yeungnam University, Gyeongsan (Korea, Republic of); Jeong, Hye Gwang, E-mail: hgjeong@cnu.ac.kr [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of)

    2014-10-01

    Induction of cytochrome P450 (CYP) 1A1 and CYP1B1 by environmental xenobiotic chemicals or endogenous ligands through the activation of the aryl hydrocarbon receptor (AhR) has been implicated in a variety of cellular processes related to cancer, such as transformation and tumorigenesis. Here, we investigated the effects of the anti-diabetes drug metformin on expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and inducible conditions. Our results indicated that metformin down-regulated the expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced conditions. Down-regulation of AhR expression was required for metformin-mediated decreases in CYP1A1 and CYP1B1 expression, and the metformin-mediated CYP1A1 and CYP1B1 reduction is irrelevant to estrogen receptor α (ERα) signaling. Furthermore, we found that metformin markedly down-regulated Sp1 protein levels in breast cancer cells. The use of genetic and pharmacological tools revealed that metformin-mediated down-regulation of AhR expression was mediated through the reduction of Sp1 protein. Metformin inhibited endogenous AhR ligand-induced CYP1A1 and CYP1B1 expression by suppressing tryptophan-2,3-dioxygenase (TDO) expression in MCF-7 cells. Finally, metformin inhibits TDO expression through a down-regulation of Sp1 and glucocorticoid receptor (GR) protein levels. Our findings demonstrate that metformin reduces CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating AhR signaling. Metformin would be able to act as a potential chemopreventive agent against CYP1A1 and CYP1B1-mediated carcinogenesis and development of cancer. - Graphical abstract: Schematic of the CYP1A1 and CYP1B1 gene regulation by metformin. - Highlights: • Metformin inhibits CYP1A1 and CYP1B1 expression. • Metformin down-regulates the AhR signaling. • Metformin reduces Sp1 protein expression. • Metformin suppresses TDO expression.

  4. Metformin suppresses CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating aryl hydrocarbon receptor expression

    International Nuclear Information System (INIS)

    Do, Minh Truong; Kim, Hyung Gyun; Tran, Thi Thu Phuong; Khanal, Tilak; Choi, Jae Ho; Chung, Young Chul; Jeong, Tae Cheon; Jeong, Hye Gwang

    2014-01-01

    Induction of cytochrome P450 (CYP) 1A1 and CYP1B1 by environmental xenobiotic chemicals or endogenous ligands through the activation of the aryl hydrocarbon receptor (AhR) has been implicated in a variety of cellular processes related to cancer, such as transformation and tumorigenesis. Here, we investigated the effects of the anti-diabetes drug metformin on expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and inducible conditions. Our results indicated that metformin down-regulated the expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced conditions. Down-regulation of AhR expression was required for metformin-mediated decreases in CYP1A1 and CYP1B1 expression, and the metformin-mediated CYP1A1 and CYP1B1 reduction is irrelevant to estrogen receptor α (ERα) signaling. Furthermore, we found that metformin markedly down-regulated Sp1 protein levels in breast cancer cells. The use of genetic and pharmacological tools revealed that metformin-mediated down-regulation of AhR expression was mediated through the reduction of Sp1 protein. Metformin inhibited endogenous AhR ligand-induced CYP1A1 and CYP1B1 expression by suppressing tryptophan-2,3-dioxygenase (TDO) expression in MCF-7 cells. Finally, metformin inhibits TDO expression through a down-regulation of Sp1 and glucocorticoid receptor (GR) protein levels. Our findings demonstrate that metformin reduces CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating AhR signaling. Metformin would be able to act as a potential chemopreventive agent against CYP1A1 and CYP1B1-mediated carcinogenesis and development of cancer. - Graphical abstract: Schematic of the CYP1A1 and CYP1B1 gene regulation by metformin. - Highlights: • Metformin inhibits CYP1A1 and CYP1B1 expression. • Metformin down-regulates the AhR signaling. • Metformin reduces Sp1 protein expression. • Metformin suppresses TDO expression

  5. Klotho down-regulates Egr-1 by inhibiting TGF-β1/Smad3 signaling in high glucose treated human mesangial cells

    International Nuclear Information System (INIS)

    Li, Yang; Hu, Fang; Xue, Meng; Jia, Yi-Jie; Zheng, Zong-Ji; Wang, Ling; Guan, Mei-Ping; Xue, Yao-Ming

    2017-01-01

    Diabetic kidney disease (DKD) has become the leading cause of end-stage renal disease worldwide and is associated with glomerular mesangial cell (MC) proliferation and excessive extracellular matrix (ECM) production. Klotho can attenuate renal fibrosis in part by inhibiting TGF-β1/Smad3 signaling in DKD. Early growth response factor 1 (Egr-1) has been shown to play a key role in renal fibrosis in part by facilitating the formation of a positive feedback loop involving TGF-β1. However, whether Klotho down-regulates Egr-1 by inhibiting TGF-β1/Smad3 signaling in DKD is unclear. In the present study, we assessed human MCs that were incubated under high-glucose conditions to mimic diabetes. Then, we transfected the cells with Klotho plasmid or siRNA to overexpress or knock down Klotho gene and protein expression. Klotho, Egr-1, fibronectin (FN), collagen type I (Col I), Smad3 and phosphorylated Smad3 (p-Smad3) gene and protein expression levels were determined by RT-qPCR and western blotting respectively. High glucose time-dependently down-regulated Klotho mRNA and protein expression in cultured human MCs. pcDNA3.1-Klotho transfection-mediated Klotho overexpression down-regulated Egr-1, FN and Col I expression and the p-Smad3/Smad3 ratio in human MCs. Conversely, siRNA-mediated Klotho silencing up-regulated Egr-1, FN, and Col I expression and the p-Smad3/Smad3 ratio. Moreover, the effects of si-Klotho on Egr-1 expression were abolished by the TGF-β1 inhibitor SB-431542. Klotho overexpression can prevent mesangial ECM production in high-glucose-treated human MCs, an effect that has been partially attributed to Egr-1 down-regulation facilitated by TGF-β1/Smad3 signaling inhibition. - Highlights: • High glucose time-dependently down-regulated Klotho mRNA and protein expression in cultured human MCs. • Klotho overexpression down-regulated Egr-1 and prevented mesangial ECM production in high-glucose-treated human MCs. • Klotho down-regulated Egr-1 by inhibiting

  6. Myelin down-regulates myelin phagocytosis by microglia and macrophages through interactions between CD47 on myelin and SIRPα (signal regulatory protein-α on phagocytes

    Directory of Open Access Journals (Sweden)

    Reichert Fanny

    2011-03-01

    Full Text Available Abstract Background Traumatic injury to axons produces breakdown of axons and myelin at the site of the lesion and then further distal to this where Wallerian degeneration develops. The rapid removal of degenerated myelin by phagocytosis is advantageous for repair since molecules in myelin impede regeneration of severed axons. Thus, revealing mechanisms that regulate myelin phagocytosis by macrophages and microglia is important. We hypothesize that myelin regulates its own phagocytosis by simultaneous activation and down-regulation of microglial and macrophage responses. Activation follows myelin binding to receptors that mediate its phagocytosis (e.g. complement receptor-3, which has been previously studied. Down-regulation, which we test here, follows binding of myelin CD47 to the immune inhibitory receptor SIRPα (signal regulatory protein-α on macrophages and microglia. Methods CD47 and SIRPα expression was studied by confocal immunofluorescence microscopy, and myelin phagocytosis by ELISA. Results We first document that myelin, oligodendrocytes and Schwann cells express CD47 without SIRPα and further confirm that microglia and macrophages express both CD47 and SIRPα. Thus, CD47 on myelin can bind to and subsequently activate SIRPα on phagocytes, a prerequisite for CD47/SIRPα-dependent down-regulation of CD47+/+ myelin phagocytosis by itself. We then demonstrate that phagocytosis of CD47+/+ myelin is augmented when binding between myelin CD47 and SIRPα on phagocytes is blocked by mAbs against CD47 and SIRPα, indicating that down-regulation of phagocytosis indeed depends on CD47-SIRPα binding. Further, phagocytosis in serum-free medium of CD47+/+ myelin is augmented after knocking down SIRPα levels (SIRPα-KD in phagocytes by lentiviral infection with SIRPα-shRNA, whereas phagocytosis of myelin that lacks CD47 (CD47-/- is not. Thus, myelin CD47 produces SIRPα-dependent down-regulation of CD47+/+ myelin phagocytosis in phagocytes

  7. Metformin reduces the endotoxin-induced down-regulation of apolipoprotein E gene expression in macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Stavri, Simona; Trusca, Violeta G.; Simionescu, Maya; Gafencu, Anca V., E-mail: anca.gafencu@icbp.ro

    2015-05-29

    The atheroprotective role of macrophage-derived apolipoprotein E (apoE) is well known. Our previous reports demonstrated that inflammatory stress down-regulates apoE expression in macrophages, aggravating atherogenesis. Metformin, extensively used as an anti-diabetic drug, has also anti-inflammatory properties, and thus confers vascular protection. In this study, we questioned whether metformin could have an effect on apoE expression in macrophages in normal conditions or under lipopolysaccharide (LPS)-induced stress. The results showed that metformin slightly increases the apoE expression only at high doses (5–10 mM). Low doses of metformin (1–3 mM) significantly reduce the LPS down-regulatory effect on apoE expression in macrophages. Our experiments demonstrated that LPS-induced NF-κB binds to the macrophage-specific distal regulatory element of apoE gene, namely to the multienhancer 2 (ME.2) and its 5′-deletion fragments. The NF-κB binding on ME.2 and apoE promoter has a down-regulatory effect. In addition, data revealed that metformin impairs NF-κB nuclear translocation, and thus, improves the apoE levels in macrophages under inflammatory stress. The positive effect of metformin in the inflammatory states, its clinical safety and low cost, make this drug a potential adjuvant in the therapeutic strategies for atherosclerosis. - Highlights: • High doses of metformin slightly increase apoE expression in macrophages. • Low doses of metformin up-regulate apoE gene in endotoxin-stressed macrophages. • Metformin reduces the negative effect of LPS on apoE expression by NF-κB inhibition.

  8. Overexpression of microRNA-132 enhances the radiosensitivity of cervical cancer cells by down-regulating Bmi-1.

    Science.gov (United States)

    Liu, Gui-Feng; Zhang, Shu-Hua; Li, Xue-Feng; Cao, Li-Yan; Fu, Zhan-Zhao; Yu, Shao-Nan

    2017-10-06

    We examined the effects of microRNA-132 (miR-132) on Bmi-1 expression and radiosensitivity in HeLa, SiHa, and C33A cervical cancer (CC) cells and 104 CC patients. MiR-132 expression was decreased and Bmi-1 expression was increased in tumor tissues compared to adjacent normal tissues and in radiotherapy-resistant patients compared to radiotherapy-sensitive patients. MiR-132 expression and Bmi-1 mRNA expression were also negatively correlated in tumor tissues. HeLa, SiHa, and C33A cells were divided into blank, miR-132 negative control (NC), miR-132 inhibitor, miR-132 mimics, siBmi-1, and miR-132 inhibitor + siBmi-1 groups, after which expression of miR-132 and Bmi-1, and the interaction between them and cell survival, proliferation, and apoptosis were examined. Bmi-1 was confirmed as a target of miRNA-132. Survival was higher and apoptosis lower in the miR-132 inhibitor group than the blank group after various doses of radiation. By contrast, survival was lower and apoptosis higher in the miRNA-132 mimics and siBmi-1 groups than in the blank group. Moreover, miR-132 expression increased and Bmi-1 mRNA expression decreased in each group at radiation doses of 6 and 8 Gy. Finally, co-administration of radiotherapy and exogenous miR-132 inhibited the growth of HeLa cell transplant-induced tumors in nude mice more effectively than radiotherapy alone. These results suggest overexpression of miR-132 enhances the radiosensitivity of CC cells by down-regulating Bmi-1 and that miR-132 may be a useful new target for the treatment of CC.

  9. Down-regulation of POLYGALACTURONASE1 alters firmness, tensile strength and water loss in apple (Malus x domestica fruit

    Directory of Open Access Journals (Sweden)

    Atkinson Ross G

    2012-08-01

    Full Text Available Abstract Background While there is now a significant body of research correlating apple (Malus x domestica fruit softening with the cell wall hydrolase ENDO-POLYGALACTURONASE1 (PG1, there is currently little knowledge of its physiological effects in planta. This study examined the effect of down regulation of PG1 expression in ‘Royal Gala’ apples, a cultivar that typically has high levels of PG1, and softens during fruit ripening. Results PG1-suppressed ‘Royal Gala’ apples harvested from multiple seasons were firmer than controls after ripening, and intercellular adhesion was higher. Cell wall analyses indicated changes in yield and composition of pectin, and a higher molecular weight distribution of CDTA-soluble pectin. Structural analyses revealed more ruptured cells and free juice in pulled apart sections, suggesting improved integrity of intercellular connections and consequent cell rupture due to failure of the primary cell walls under stress. PG1-suppressed lines also had reduced expansion of cells in the hypodermis of ripe apples, resulting in more densely packed cells in this layer. This change in morphology appears to be linked with reduced transpirational water loss in the fruit. Conclusions These findings confirm PG1’s role in apple fruit softening and suggests that this is achieved in part by reducing cellular adhesion. This is consistent with previous studies carried out in strawberry but not with those performed in tomato. In apple PG1 also appears to influence other fruit texture characters such as juiciness and water loss.

  10. Cetuximab in combination with anti-human IgG antibodies efficiently down-regulates the EGF receptor by macropinocytosis

    International Nuclear Information System (INIS)

    Berger, Christian; Madshus, Inger Helene; Stang, Espen

    2012-01-01

    The monoclonal antibody C225 (Cetuximab) blocks binding of ligand to the epidermal growth factor receptor (EGFR). In addition, it is known that incubation with C225 induces endocytosis of the EGFR. This endocytosis has previously been shown to be increased when C225 is combined with an additional monoclonal anti-EGFR antibody. However, the effects of antibody combinations on EGFR activation, endocytosis, trafficking and degradation have been unclear. By binding a secondary antibody to the C225-EGFR complex, we here demonstrate that a combination of antibodies can efficiently internalize and degrade the EGFR. Although the combination of antibodies activated the EGFR kinase and induced ubiquitination of the EGFR, the kinase activity was not required for internalization of the EGFR. In contrast to EGF-induced EGFR down-regulation, the antibody combination efficiently degraded the EGFR without initiating downstream proliferative signaling. The antibody-induced internalization of EGFR was found not to depend on clathrin and/or dynamin, but depended on actin polymerization, suggesting induction of macropinocytosis. Macropinocytosis may cause internalization of large membrane areas, and this could explain the highly efficient internalization of the EGFR induced by combination of antibodies. -- Highlight: ► Cetuximab induced endocytosis of EGFR increases upon combination with anti-human IgG. ► Antibody combination causes internalization of EGFR by macropinocytosis. ► Antibody-induced internalization of EGFR is independent of EGFR kinase activity. ► Antibody combination may have a zipper effect and cross-link EGFRs on neighboring cells.

  11. BMP15 suppresses progesterone production by down-regulating StAR via ALK3 in human granulosa cells.

    Science.gov (United States)

    Chang, Hsun-Ming; Cheng, Jung-Chien; Klausen, Christian; Leung, Peter C K

    2013-12-01

    In addition to somatic cell-derived growth factors, oocyte-derived growth differentiation factor (GDF)9 and bone morphogenetic protein (BMP)15 play essential roles in female fertility. However, few studies have investigated their effects on human ovarian steroidogenesis, and fewer still have examined their differential effects or underlying molecular determinants. In the present study, we used immortalized human granulosa cells (SVOG) and human granulosa cell tumor cells (KGN) to compare the effects of GDF9 and BMP15 on steroidogenic enzyme expression and investigate potential mechanisms of action. In SVOG cells, neither GDF9 nor BMP15 affects the mRNA levels of P450 side-chain cleavage enzyme or 3β-hydroxysteroid dehydrogenase. However, treatment with BMP15, but not GDF9, significantly decreases steroidogenic acute regulatory protein (StAR) mRNA and protein levels as well as progesterone production. These suppressive effects, along with the induction of Sma and Mad-related protein (SMAD)1/5/8 phosphorylation, are attenuated by cotreatment with 2 different BMP type I receptor inhibitors (dorsomorphin and DMH-1). Furthermore, depletion of activin receptor-like kinase (ALK)3 using small interfering RNA reverses the effects of BMP15 on SMAD1/5/8 phosphorylation and StAR expression. Similarly, knockdown of ALK3 abolishes BMP15-induced SMAD1/5/8 phosphorylation in KGN cells. These results provide evidence that oocyte-derived BMP15 down-regulates StAR expression and decreases progesterone production in human granulosa cells, likely via ALK3-mediated SMAD1/5/8 signaling. Our findings suggest that oocyte may play a critical role in the regulation of progesterone to prevent premature luteinization during the late stage of follicle development.

  12. Valsartan attenuates cardiac and renal hypertrophy in rats with experimental cardiorenal syndrome possibly through down-regulating galectin-3 signaling.

    Science.gov (United States)

    Zhang, M-J; Gu, Y; Wang, H; Zhu, P-F; Liu, X-Y; Wu, J

    2016-01-01

    Aortocaval fistula (AV) induced chronic volume overload in rats with preexisting mild renal dysfunction (right kidney remove: UNX) could mimic the type 4 cardiorenal syndrome (CRS): chronic renocardiac syndrome. Galectin-3, a β-galactoside binding lectin, is an emerging biomarker in cardiovascular as well as renal diseases. We observed the impact of valsartan on cardiac and renal hypertrophy and galectin-3 changes in this model. Adult male Sprague-Dawley (SD) rats (200-250 g) were divided into S (Sham, n = 7), M (UNX+AV, n = 7) and M+V (UNX+AV+valsartan, n = 7) groups. Eight weeks later, cardiac function was measured by echocardiography. Renal outcome was measured by glomerular filtration rate, effective renal plasma flow, renal blood flow and 24 hours albuminuria. Immunohistochemistry and real-time PCR were used to evaluate the expressions of galectin-3 in heart and renal. Cardiac hypertrophy and renal hypertrophy as well as cardiac enlargement were evidenced in this AV shunt induced chronic volume overload rat model with preexisting mild renal dysfunction. Cardiac and renal hypertrophy were significantly attenuated but cardiac enlargement was unaffected by valsartan independent of its blood pressure lowering effect. 24 hours urine albumin was significantly increased, which was significantly reduced by valsartan in this model. Immunohistochemistry and real-time PCR evidenced significantly up-regulated galectin-3 expression in heart and kidney and borderline increased myocardial collagen I expression, which tended to be lower post valsartan treatment. Up-regulated galectin-3 signaling might also be involved in the pathogenesis in this CRS model. The beneficial effects of valsartan in terms of attenuating cardiac and renal hypertrophy and reducing 24 hours albumin in this model might partly be mediated through down-regulating galectin-3 signal pathway.

  13. MicroRNA-mediated down-regulation of NKG2D ligands contributes to glioma immune escape.

    Science.gov (United States)

    Codo, Paula; Weller, Michael; Meister, Gunter; Szabo, Emese; Steinle, Alexander; Wolter, Marietta; Reifenberger, Guido; Roth, Patrick

    2014-09-15

    Malignant gliomas are intrinsic brain tumors with a dismal prognosis. They are well-adapted to hypoxic conditions and poorly immunogenic. NKG2D is one of the major activating receptors of natural killer (NK) cells and binds to several ligands (NKG2DL). Here we evaluated the impact of miRNA on the expression of NKG2DL in glioma cells including stem-like glioma cells. Three of the candidate miRNA predicted to target NKG2DL were expressed in various glioma cell lines as well as in glioblastomas in vivo: miR-20a, miR-93 and miR-106b. LNA inhibitor-mediated miRNA silencing up-regulated cell surface NKG2DL expression, which translated into increased susceptibility to NK cell-mediated lysis. This effect was reversed by neutralizing NKG2D antibodies, confirming that enhanced lysis upon miRNA silencing was mediated through the NKG2D system. Hypoxia, a hallmark of glioblastomas in vivo, down-regulated the expression of NKG2DL on glioma cells, associated with reduced susceptibility to NK cell-mediated lysis. This process, however, was not mediated through any of the examined miRNA. Accordingly, both hypoxia and the expression of miRNA targeting NKG2DL may contribute to the immune evasion of glioma cells at the level of the NKG2D recognition pathway. Targeting miRNA may therefore represent a novel approach to increase the immunogenicity of glioblastoma.

  14. Down-regulation of Pax6 is associated with abnormal differentiation of corneal epithelial cells in severe ocular surface diseases

    Science.gov (United States)

    Li, W; Chen, Y-T; Hayashida, Y; Blanco, G; Kheirkah, A; He, H; Chen, S-Y; Liu, C-Y; Tseng, SCG

    2010-01-01

    Pax6 is the universal master control gene for eye morphogenesis. Other than retina and lens, Pax6 also expressed in the ocular surface epithelium from early gestation until the postnatal stage, in which little is known about the function of Pax6. In this study, corneal pannus tissues from patients with ocular surface diseases such as Stevens–Johnson syndrome (SJS), chemical burn, aniridia and recurrent pterygium were investigated. Our results showed that normal ocular surface epithelial cells expressed Pax6. However, corneal pannus epithelial cells from the above patients showed a decline or absence of Pax6 expression, accompanied by a decline or absence of K12 keratin but an increase of K10 keratin and filaggrin expression. Pannus basal epithelial cells maintained nuclear p63 expression and showed activated proliferation, evidenced by positive Ki67 and K16 keratin staining. On 3T3 fibroblast feeder layers, Pax6 immunostaining was negative in clones generated from epithelial cells harvested from corneal pannus from SJS or aniridia, but positive in those from the normal limbal epithelium; whereas western blots showed that some epithelial clones expanded from pannus retained Pax6 expression. Transient transfection of an adenoviral vector carrying EGFP–Pax6 transgenes into these Pax6− clones increased both Pax6 and K12 keratin expression. These results indicate that Pax6 helps to maintain the normal corneal epithelial phenotype postnatally, and that down-regulation of Pax6 is associated with abnormal epidermal differentiation in severe ocular surface diseases. Reintroduction of activation of the Pax6 gene might be useful in treating squamous metaplasia of the ocular surface epithelium. PMID:18027901

  15. AR-12 suppresses dengue virus replication by down-regulation of PI3K/AKT and GRP78.

    Science.gov (United States)

    Chen, Hsin-Hsin; Chen, Chien-Chin; Lin, Yee-Shin; Chang, Po-Chun; Lu, Zi-Yi; Lin, Chiou-Feng; Chen, Chia-Ling; Chang, Chih-Peng

    2017-06-01

    Dengue virus (DENV) infection has become a public health issue of worldwide concern and is a serious health problem in Taiwan, yet there are no approved effective antiviral drugs to treat DENV. The replication of DENV requires both viral and cellular factors. Targeting host factors may provide a potential antiviral strategy. It has been known that up-regulation of PI3K/AKT signaling and GRP78 by DENV infection supports its replication. AR-12, a celecoxib derivative with no inhibiting activity on cyclooxygenase, shows potent inhibitory activities on both PI3K/AKT signaling and GRP78 expression levels, and recently has been found to block the replication of several hemorrhagic fever viruses. However the efficacy of AR-12 in treating DENV infection is still unclear. Here, we provide evidence to show that AR-12 is able to suppress DENV replication before or after virus infection in cell culture and mice. The antiviral activities of AR-12 are positive against infection of the four different DENV serotypes. AR-12 significantly down-regulates the PI3K/AKT activity and GRP78 expression in DENV infected cells whereas AKT and GRP78 rescue are able to attenuate anti-DENV effect of AR-12. Using a DENV-infected suckling mice model, we further demonstrate that treatment of AR-12 before or after DENV infection reduces virus replication and mice mortality. In conclusion, we uncover the potential efficacy of AR-12 as a novel drug for treating dengue. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Silymarin and caffeine combination ameliorates experimentally-induced hepatic fibrosis through down-regulation of LPAR1 expression.

    Science.gov (United States)

    Eraky, Salma M; El-Mesery, Mohamed; El-Karef, Amro; Eissa, Laila A; El-Gayar, Amal M

    2018-05-01

    Lysophosphatidic acid is a lipid mediator that is supposed to be implicated in hepatic fibrosis. Silymarin and caffeine are natural compounds known for their anti-inflammatory and antioxidant effects. Our study aimed to explore the effect of silymarin, caffeine, and their combination on lysophosphatidic acid receptor 1 (LPAR1) pathway in thioacetamide (TAA)-induced hepatic fibrosis. Hepatic fibrosis was induced in male Sprague-Dawley rats by intraperitoneal injection of 200 mg/kg of TAA twice a week for 8 weeks. Silymarin (50 mg/kg), caffeine (50 mg/kg), and their combination (50 mg/kg silymarin + 50 mg/kg caffeine) were orally given to rats every day for 8 weeks along with TAA injection. Liver functions were measured. Histopathological examination of liver tissues was performed using hematoxylin and eosin and Masson's trichrome staining. mRNA expressions of LPAR1, transforming growth factor beta 1 (TGF-β1), connective tissue growth factor (CTGF), and alpha smooth muscle actin (α-SMA) were measured using RT-PCR. LPAR1 tissue expression was scored using immunohistochemistry. Silymarin, caffeine, and their combination significantly improved liver function. They caused significant decrease in fibrosis and necro-inflammatory scores. Combination of silymain and caffeine caused a significant decrease in the necro-inflammatory score than the single treatment with silymarin or caffeine. In addition, silymarin, caffeine, and their combination significantly decreased hepatic LPAR1, TGF-β1, CTGF, and α-SMA gene expressions and LPAR1 tissue expression. Silymarin, caffeine, and their combination protect against liver fibrosis through down-regulation of LPAR1, TGF-β1, and CTGF. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  17. Cetuximab in combination with anti-human IgG antibodies efficiently down-regulates the EGF receptor by macropinocytosis

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Christian [Department of Pathology, Oslo University Hospital, Rikshospitalet, Post box 4950 Nydalen, 0424 Oslo (Norway); Madshus, Inger Helene [Institute of Pathology, University of Oslo, Rikshospitalet, 0027 Oslo (Norway); Department of Pathology, Oslo University Hospital, Rikshospitalet, Post box 4950 Nydalen, 0424 Oslo (Norway); Stang, Espen, E-mail: espsta@rr-research.no [Department of Pathology, Oslo University Hospital, Rikshospitalet, Post box 4950 Nydalen, 0424 Oslo (Norway)

    2012-12-10

    The monoclonal antibody C225 (Cetuximab) blocks binding of ligand to the epidermal growth factor receptor (EGFR). In addition, it is known that incubation with C225 induces endocytosis of the EGFR. This endocytosis has previously been shown to be increased when C225 is combined with an additional monoclonal anti-EGFR antibody. However, the effects of antibody combinations on EGFR activation, endocytosis, trafficking and degradation have been unclear. By binding a secondary antibody to the C225-EGFR complex, we here demonstrate that a combination of antibodies can efficiently internalize and degrade the EGFR. Although the combination of antibodies activated the EGFR kinase and induced ubiquitination of the EGFR, the kinase activity was not required for internalization of the EGFR. In contrast to EGF-induced EGFR down-regulation, the antibody combination efficiently degraded the EGFR without initiating downstream proliferative signaling. The antibody-induced internalization of EGFR was found not to depend on clathrin and/or dynamin, but depended on actin polymerization, suggesting induction of macropinocytosis. Macropinocytosis may cause internalization of large membrane areas, and this could explain the highly efficient internalization of the EGFR induced by combination of antibodies. -- Highlight: Black-Right-Pointing-Pointer Cetuximab induced endocytosis of EGFR increases upon combination with anti-human IgG. Black-Right-Pointing-Pointer Antibody combination causes internalization of EGFR by macropinocytosis. Black-Right-Pointing-Pointer Antibody-induced internalization of EGFR is independent of EGFR kinase activity. Black-Right-Pointing-Pointer Antibody combination may have a zipper effect and cross-link EGFRs on neighboring cells.

  18. Down-Regulation by Resveratrol of Basic Fibroblast Growth Factor-Stimulated Osteoprotegerin Synthesis through Suppression of Akt in Osteoblasts

    Directory of Open Access Journals (Sweden)

    Gen Kuroyanagi

    2014-10-01

    Full Text Available It is firmly established that resveratrol, a natural food compound abundantly found in grape skins and red wine, has beneficial properties for human health. In the present study, we investigated the effect of basic fibroblast growth factor (FGF-2 on osteoprotegerin (OPG synthesis in osteoblast-like MC3T3-E1 cells and whether resveratrol affects the OPG synthesis. FGF-2 stimulated both the OPG release and the expression of OPG mRNA. Resveratrol significantly suppressed the FGF-2-stimulated OPG release and the mRNA levels of OPG. SRT1720, an activator of SIRT1, reduced the FGF-2-induced OPG release and the OPG mRNA expression. PD98059, an inhibitor of upstream kinase activating p44/p42 mitogen-activated protein (MAP kinase, had little effect on the FGF-2-stimulated OPG release. On the other hand, SB203580, an inhibitor of p38 MAP kinase, SP600125, an inhibitor of stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK, and Akt inhibitor suppressed the OPG release induced by FGF-2. Resveratrol failed to affect the FGF-2-induced phosphorylation of p44/p42 MAP kinase, p38 MAP kinase or SAPK/JNK. The phosphorylation of Akt induced by FGF-2 was significantly suppressed by resveratrol or SRT1720. These findings strongly suggest that resveratrol down-regulates FGF-2-stimulated OPG synthesis through the suppression of the Akt pathway in osteoblasts and that the inhibitory effect of resveratrol is mediated at least in part by SIRT1 activation.

  19. Foxa1 reduces lipid accumulation in human hepatocytes and is down-regulated in nonalcoholic fatty liver.

    Directory of Open Access Journals (Sweden)

    Marta Moya

    Full Text Available Triglyceride accumulation in nonalcoholic fatty liver (NAFL results from unbalanced lipid metabolism which, in the liver, is controlled by several transcription factors. The Foxa subfamily of winged helix/forkhead box (Fox transcription factors comprises three members which play important roles in controlling both metabolism and homeostasis through the regulation of multiple target genes in the liver, pancreas and adipose tissue. In the mouse liver, Foxa2 is repressed by insulin and mediates fasting responses. Unlike Foxa2 however, the role of Foxa1 in the liver has not yet been investigated in detail. In this study, we evaluate the role of Foxa1 in two human liver cell models, primary cultured hepatocytes and HepG2 cells, by adenoviral infection. Moreover, human and rat livers were analyzed to determine Foxa1 regulation in NAFL. Results demonstrate that Foxa1 is a potent inhibitor of hepatic triglyceride synthesis, accumulation and secretion by repressing the expression of multiple target genes of these pathways (e.g., GPAM, DGAT2, MTP, APOB. Moreover, Foxa1 represses the fatty acid transporter protein FATP2 and lowers fatty acid uptake. Foxa1 also increases the breakdown of fatty acids by inducing peroxisomal fatty acid β-oxidation and ketone body synthesis. Finally, Foxa1 is able to largely up-regulate UCP1, thereby dissipating energy and consistently decreasing the mitochondria membrane potential. We also report that human and rat NAFL have a reduced Foxa1 expression, possibly through a protein kinase C-dependent pathway. We conclude that Foxa1 is an antisteatotic factor that coordinately tunes several lipid metabolic pathways to block triglyceride accumulation in hepatocytes. However, Foxa1 is down-regulated in human and rat NAFL and, therefore, increasing Foxa1 levels could protect from steatosis. Altogether, we suggest that Foxa1 could be a novel therapeutic target for NAFL disease and insulin resistance.

  20. Podoplanin, novel 43-kd membrane protein of glomerular epithelial cells, is down-regulated in puromycin nephrosis.

    Science.gov (United States)

    Breiteneder-Geleff, S.; Matsui, K.; Soleiman, A.; Meraner, P.; Poczewski, H.; Kalt, R.; Schaffner, G.; Kerjaschki, D.

    1997-01-01

    Puromycin aminonucleoside nephrosis (PAN), a rat model of human minimal change nephropathy, is characterized by extensive flattening of glomerular epithelial cell (podocyte) foot processes and by severe proteinuria. For comparison of expression of glomerular membrane proteins of normal and PAN rats, a membrane protein fraction of isolated rat glomeruli was prepared and monoclonal antibodies were raised against it. An IgG-secreting clone designated LF3 was selected that specifically immunolabeled podocytes of normal but not of PAN rats. The antigen of LF3 IgG was identified as a 43-kd glycoprotein. Molecular cloning of its cDNA was performed in a delta gt11 expression library prepared from mRNA of isolated rat glomeruli. The predicted amino acid sequence indicated a 166-amino-acid integral membrane protein with a single membrane-spanning domain, two potential phosphorylation sites in its short cytoplasmic tail, and six potential O-glycosylation sites in the large ectodomain. High amino acid sequence identities were found to membrane glycoproteins of rat lung and bone and mouse thymus epithelial cells as well as to a phorbol-ester-induced protein in a mouse osteoblast cell line and to a canine influenza C virus receptor. In PAN, expression of this 43-kd protein was selectively reduced to < 30%, as determined by quantitative immunogold electron microscopy, immunoblotting, and Northern blotting. These data provide evidence that transcription of the 43-kd transmembrane podocyte glycoprotein is specifically down-regulated in PAN. To indicate that this protein could be associated with transformation of arborized foot processes to flat feet (Latin, pes planus) we have called it podoplanin. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 10 Figure 12 Figure 13 Figure 14 Figure 15 PMID:9327748

  1. Methyl jasmonate abolishes the migration, invasion and angiogenesis of gastric cancer cells through down-regulation of matrix metalloproteinase 14

    International Nuclear Information System (INIS)

    Zheng, Liduan; Li, Dan; Xiang, Xuan; Tong, Ling; Qi, Meng; Pu, Jiarui; Huang, Kai; Tong, Qiangsong

    2013-01-01

    Recent evidence indicates that methyl jasmonate (MJ), a plant stress hormone, exhibits anti-cancer activity on human cancer cells. The aim of this study is to determine whether sub-cytotoxic MJ can abolish the migration, invasion and angiogenesis gastric cancer cells. Human gastric cancer cell lines SGC-7901 and MKN-45 were treated with diverse concentrations of MJ. Cell viability, proliferation, migration, invasion and angiogenesis capabilities of cancer cells were measured by MTT colorimetry, EdU incorporation, scratch assay, matrigel invasion assay, and tube formation assay. Gene expression was detected by western blot and real-time quantitative RT-PCR. Binding of transcription factor on gene promoter was detected by chromatin immunoprecipitation. Sub-cytotoxic (0.05 to 0.2 mM) MJ attenuated the migration, invasion and angiogenesis, but not the cell viability or proliferation, of gastric cancer cells in a time- and dose-dependent manner, with down-regulation of matrix metalloproteinase 14 (MMP-14) and its downstream gene vascular endothelial growth factor. Restoration of MMP-14 expression rescued the SGC-7901 and MKN-45 cells from sub-cytotoxic MJ-inhibited migration, invasion and angiogenesis. In addition, sub-cytotoxic MJ decreased the specificity protein 1 (Sp1) expression and binding on MMP-14 promoter, while restoration of Sp1 expression rescued the cancer cells from sub-cytotoxic MJ-mediated defects in MMP-14 expression, migration, invasion and angiogenesis. Sub-cytotoxic MJ attenuates the MMP-14 expression via decreasing the Sp1 expression and binding on MMP-14 promoter, thus inhibiting the migration, invasion and angiogenesis of gastric cancer cells

  2. Apigenin ameliorates hypertension-induced cardiac hypertrophy and down-regulates cardiac hypoxia inducible factor-lα in rats.

    Science.gov (United States)

    Zhu, Zeng-Yan; Gao, Tian; Huang, Yan; Xue, Jie; Xie, Mei-Lin

    2016-04-01

    Apigenin is a natural flavonoid compound that can inhibit hypoxia-inducible factor (HIF)-1α expression in cultured tumor cells under hypoxic conditions. Hypertension-induced cardiac hypertrophy is always accompanied by abnormal myocardial glucolipid metabolism due to an increase of HIF-1α. However, whether or not apigenin may ameliorate the cardiac hypertrophy and abnormal myocardial glucolipid metabolism remains unknown. This study aimed to examine the effects of apigenin. Rats with cardiac hypertrophy induced by renovascular hypertension were treated with apigenin 50-100 mg kg(-1) (the doses can be achieved by pharmacological or dietary supplementation for an adult person) by gavage for 4 weeks. The results showed that after treatment with apigenin, the blood pressure, heart weight, heart weight index, cardiomyocyte cross-sectional area, serum angiotensin II, and serum and myocardial free fatty acids were reduced. It is important to note that apigenin decreased the expression level of myocardial HIF-1α protein. Moreover, apigenin simultaneously increased the expression levels of myocardial peroxisome proliferator-activated receptor (PPAR) α, carnitine palmitoyltransferase (CPT)-1, and pyruvate dehydrogenase kinase (PDK)-4 proteins and decreased the expression levels of myocardial PPARγ, glycerol-3-phosphate acyltransferase genes (GPAT), and glucose transporter (GLUT)-4 proteins. These findings demonstrated that apigenin could improve hypertensive cardiac hypertrophy and abnormal myocardial glucolipid metabolism in rats, and its mechanisms might be associated with the down-regulation of myocardial HIF-1α expression and, subsequently increasing the expressions of myocardial PPARα and its target genes CPT-1 and PDK-4, and decreasing the expressions of myocardial PPARγ and its target genes GPAT and GLUT-4.

  3. Down-regulation of the cyprinid herpesvirus-3 annotated genes in cultured cells maintained at restrictive high temperature.

    Science.gov (United States)

    Ilouze, Maya; Dishon, Arnon; Kotler, Moshe

    2012-10-01

    Cyprinid herpesvirus-3 (CyHV-3) is a member of the Alloherpesviridae, in the order Herpesvirales. It causes a fatal disease in carp and koi fish. The disease is seasonal and is active when water temperatures ranges from 18 to 28 °C. Little is known about how and where the virus is preserved between the permissive seasons. The hallmark of the herpesviruses is their ability to become latent, persisting in the host in an apparently inactive state for varying periods of time. Hence, it could be expected that CyHV-3 enter a latent period. CyHV-3 has so far been shown to persist in fish maintained under restrictive temperatures, while shifting the fish to permissive conditions reactivates the virus. Previously, we demonstrated that cultured cells infected with CyHV-3 at 22 °C and subsequently transferred to a restrictive temperature of 30 °C preserve the virus for 30 days. The present report shows that cultured carp cells maintained and exposed to CyHV-3 at 30 °C are abortively infected; that is, autonomous viral DNA synthesis is hampered and the viral genome is not multiplied. Under these conditions, 91 of the 156 viral annotated ORFs were initially transcribed. These transcripts were down-regulated and gradually shut off over 18 days post-infection, while two viral transcripts encoded by ORFs 114 and 115 were preserved in the infected cells for 18 days p.i. These experiments, carried out in cultured cells, suggest that fish could be infected at a high non-permissive temperature and harbor the viral genome without producing viral particles. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Metformin reduces the endotoxin-induced down-regulation of apolipoprotein E gene expression in macrophages

    International Nuclear Information System (INIS)

    Stavri, Simona; Trusca, Violeta G.; Simionescu, Maya; Gafencu, Anca V.

    2015-01-01

    The atheroprotective role of macrophage-derived apolipoprotein E (apoE) is well known. Our previous reports demonstrated that inflammatory stress down-regulates apoE expression in macrophages, aggravating atherogenesis. Metformin, extensively used as an anti-diabetic drug, has also anti-inflammatory properties, and thus confers vascular protection. In this study, we questioned whether metformin could have an effect on apoE expression in macrophages in normal conditions or under lipopolysaccharide (LPS)-induced stress. The results showed that metformin slightly increases the apoE expression only at high doses (5–10 mM). Low doses of metformin (1–3 mM) significantly reduce the LPS down-regulatory effect on apoE expression in macrophages. Our experiments demonstrated that LPS-induced NF-κB binds to the macrophage-specific distal regulatory element of apoE gene, namely to the multienhancer 2 (ME.2) and its 5′-deletion fragments. The NF-κB binding on ME.2 and apoE promoter has a down-regulatory effect. In addition, data revealed that metformin impairs NF-κB nuclear translocation, and thus, improves the apoE levels in macrophages under inflammatory stress. The positive effect of metformin in the inflammatory states, its clinical safety and low cost, make this drug a potential adjuvant in the therapeutic strategies for atherosclerosis. - Highlights: • High doses of metformin slightly increase apoE expression in macrophages. • Low doses of metformin up-regulate apoE gene in endotoxin-stressed macrophages. • Metformin reduces the negative effect of LPS on apoE expression by NF-κB inhibition

  5. Calycosin Inhibits the Migration and Invasion of Human Breast Cancer Cells by Down-Regulation of Foxp3 Expression

    Directory of Open Access Journals (Sweden)

    Shuangxi Li

    2017-12-01

    Full Text Available Background/Aims: Calycosin, a phytoestrogenic compound, has recently emerged as a promising antitumor drug. It has been shown that calycosin suppresses growth and induces apoptosis of breast cancer cells. However, the effect of calycosin on migration and invasion of breast cancer cells and the underlying molecular mechanisms have not been elucidated. Methods: Human breast cancer cells MCF-7 and T47D were treated with, or without, different doses (0, 6.25, 12.5, 25, 50, 100 or 150 μM of calycosin, and the viability of different groups was determined by MTT assay. Next, the inhibitory effect of higher doses (50, 100 or 150 μM of calycosin on migration and invasion of the two cell lines was determined by wound healing and transwell assay. The relative expression levels of forkhead box P3 (Foxp3, vascular endothelial growth factor (VEGF and matrix metalloproteinase-9 (MMP-9 in MCF-7 and T47D cells were determined by quantitative RT-PCR and Western blot. Results: Treatment with lower doses (6.25 or 12.5 μM promoted proliferation of breast cancer cells, but with higher doses significantly reduced the viability of MCF-7 and T47D cells. Furthermore, higher doses of calycosin were found to inhibit migration and invasion of the two cell lines in a dose-dependent manner. Additionally, treatment with a higher dose of calycosin significantly reduced the expression levels of Foxp3, followed by down-regulation of VEGF and MMP-9 in both MCF-7 and T47D breast cancer cells. Conclusion: Treatment with a higher dose of calycosin tends to reduce migration and invasion capacity of human breast cancer cells, by targeting Foxp3-mediated VEGF and MMP-9 expression.

  6. Caracterización de la expresión de nCD64 en neutrófilos y de los niveles de s-TREM-1 y HMGB-1 en pacientes con sospecha de infección admitidos en el departamento de emergencias

    Directory of Open Access Journals (Sweden)

    Sergio Velásquez

    2013-12-01

    Full Text Available Introducción. El receptor CD64, receptor soluble ‘desencadenador’ expresado en células mieloides (sTREM-1 y la proteína del grupo Box-1 de alta movilidad (HMGB-1, se han propuesto como mediadores en la sepsis. Objetivo. Evaluar el valor pronóstico de estos marcadores en pacientes con sospecha de infección, recientemente admitidos en un departamento de emergencias. Materiales y métodos. Se incluyeron en el estudio pacientes que consultaron al hospital con sospecha de infección. Se analizó la base de datos clínica, el puntaje SOFA, el puntaje APACHE II, los niveles de HMGB-1, los niveles de sTREM-1 y los niveles de nCD64. Se determinaron las concentraciones en suero de HMGB-1 y sTREM-1, usando kits de ELISA disponibles comercialmente, y la de CD64 se midió por citometría de flujo. Resultados. Se analizaron 579 pacientes con sospecha de infección al ingreso. La edad media fue de 50 años (rango intercuartílico=35-68, y 11,1 % (n=64 murieron durante el seguimiento de 28 días. El diagnóstico más frecuente en el momento del ingreso fue neumonía adquirida en la comunidad, en 23 % (n=133 de los pacientes, seguida de infección de tejidos blandos, en 16,6 % (n=96, e infección urinaria, en 15 % (n=87. Después de un análisis multivariado, no hubo asociación significativa entre ningún biomarcador y la mortalidad a los 28 días. Conclusión. Los resultados sugieren que en el contexto de un departamento de emergencias de tercer nivel de una ciudad latinoamericana típica, los tres marcadores evaluados no ofrecieron ninguna ventaja en el pronóstico de infección. La búsqueda de marcadores pronósticos más confiables en estadios tempranos de la infección aún continúa abierta.   doi: http://dx.doi.org/10.7705/biomedica.v33i4.805

  7. Receptor for Advanced Glycation End Products (RAGE and Its Ligands: Focus on Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Juhyun Song

    2014-07-01

    Full Text Available Spinal cord injury (SCI results in neuronal and glial death and the loss of axons at the injury site. Inflammation after SCI leads to the inhibition of tissue regeneration and reduced neuronal survival. In addition, the loss of axons after SCI results in functional loss below the site of injury accompanied by neuronal cell body’s damage. Consequently, reducing inflammation and promoting axonal regeneration after SCI is a worthy therapeutic goal. The receptor for advanced glycation end products (RAGE is a transmembrane protein and receptor of the immunoglobulin superfamily. RAGE is implicated in inflammation and neurodegeneration. Several recent studies demonstrated an association between RAGE and central nervous system disorders through various mechanisms. However, the relationship between RAGE and SCI has not been shown. It is imperative to elucidate the association between RAGE and SCI, considering that RAGE relates to inflammation and axonal degeneration following SCI. Hence, the present review highlights recent research regarding RAGE as a compelling target for the treatment of SCI.

  8. Decreased levels of sRAGE in follicular fluid from patients with PCOS.

    Science.gov (United States)

    Wang, BiJun; Li, Jing; Yang, QingLing; Zhang, FuLi; Hao, MengMeng; Guo, YiHong

    2017-03-01

    This study aimed to explore the association between soluble receptor for advanced glycation end products (sRAGE) levels in follicular fluid and the number of oocytes retrieved and to evaluate the effect of sRAGE on vascular endothelial growth factor (VEGF) in granulosa cells in patients with polycystic ovarian syndrome (PCOS). Two sets of experiments were performed in this study. In part one, sRAGE and VEGF protein levels in follicular fluid samples from 39 patients with PCOS and 35 non-PCOS patients were measured by ELISA. In part two, ovarian granulosa cells were isolated from an additional 10 patients with PCOS and cultured. VEGF and SP1 mRNA and protein levels, as well as pAKT levels, were detected by real-time PCR and Western blotting after cultured cells were treated with different concentrations of sRAGE. Compared with the non-PCOS patients, patients with PCOS had lower sRAGE levels in follicular fluid. Multi-adjusted regression analysis showed that high sRAGE levels in follicular fluid predicted a lower Gn dose, more oocytes retrieved, and a better IVF outcome in the non-PCOS group. Logistic regression analysis showed that higher sRAGE levels predicted favorably IVF outcomes in the non-PCOS group. Multi-adjusted regression analysis also showed that high sRAGE levels in follicular fluid predicted a lower Gn dose in the PCOS group. Treating granulosa cells isolated from patients with PCOS with recombinant sRAGE decreased VEGF and SP1 mRNA and protein expression and pAKT levels in a dose-dependent manner. © 2017 Society for Reproduction and Fertility.

  9. Decreased Neointimal Extracellular Matrix Formation in RAGE-Knockout Mice After Microvascular Denudation

    Energy Technology Data Exchange (ETDEWEB)

    Groezinger, Gerd, E-mail: gerd.groezinger@med.uni-tuebingen.de; Schmehl, Joerg, E-mail: joerg.schmehl@med.uni-tuebingen.de; Bantleon, Ruediger, E-mail: ruediger.bantleon@med.uni-tuebingen.de; Kehlbach, Rainer, E-mail: rainer.kehlbach@uni-tuebingen.de [University of Tuebingen, Department of Diagnostic and Interventional Radiology (Germany); Mehra, Tarun, E-mail: tarun.mehra@med.uni-tuebingen.de [University of Tuebingen, Department of Dermatology (Germany); Claussen, Claus, E-mail: gerd.groezinger@med.uni-tuebingen.de; Wiesinger, Benjamin, E-mail: benjamin.wiesinger@med.uni-tuebingen.de [University of Tuebingen, Department of Diagnostic and Interventional Radiology (Germany)

    2012-12-15

    Purpose: To evaluate in vivo the role of RAGE (receptor for advanced glycated end products) in the development of restenosis and neointimal proliferation in RAGE-deficient knockout (KO) mice compared with wild-type (WT) mice in an animal model. Materials and Methods: Sixteen WT and 15 RAGE-deficient mice underwent microvascular denudation of the common femoral artery under general anaesthesia. Contralateral arteries underwent a sham operation and served as controls. Four weeks after the intervention, all animals were killed, and paraformaldehyde-fixed specimens of the femoral artery were analysed with different stains (hematoxylin and eosin and Elastica van Gieson) and several different types of immunostaining (proliferating cell nuclear antigen, {alpha}-actin, collagen, von Willebrand factor, RAGE). Luminal area, area of the neointima, and area of the media were measured in all specimens. In addition, colony-formation assays were performed, and collagen production by WT smooth muscle cells (SMCs) and RAGE-KO SMCs was determined. For statistical analysis, P < 0.05 was considered statistically significant. Results: Four weeks after denudation, WT mice showed a 49.6% loss of luminal area compared with 14.9% loss of luminal area in RAGE-deficient mice (sham = 0% loss) (P < 0.001). The neointima was 18.2 (*1000 {mu}m{sup 2} [n = 15) in the WT group compared with only 8.4 (*1000 {mu}m{sup 2} [n = 16]) in the RAGE-KO group. RAGE-KO SMCs showed significantly decreased proliferation activity and production of extracellular matrix protein. Conclusion: RAGE may be shown to play a considerable role in the formation of neointima leading to restenosis after vascular injury.

  10. MR imaging in epilepsy with use of 3D MP-RAGE

    International Nuclear Information System (INIS)

    Tanaka, Akio; Ohno, Sigeru; Sei, Tetsuro; Kanazawa, Susumu; Yasui, Koutaro; Kuroda, Masahiro; Hiraki, Yoshio; Oka, Eiji

    1996-01-01

    The patients were 40 males and 33 females; their ages ranged from 1 month to 39 years (mean: 15.7 years). The patients underwent MR imaging, including spin-echo T 1 -weighted, turbo spin-echo proton density/T 2 -weighted, and 3D magnetization-prepared rapid gradient-echo (3D MP-RAGE) images. These examinations disclosed 39 focal abnormalities. On visual evaluation, the boundary of abnormal gray matter in the neuronal migration disorder (NMD) cases was most clealy shown on 3D MP-RAGE images as compared to the other images. This is considered to be due to the higher spatial resolution and the better contrast of the 3D MP-RAGE images than those of the other techniques. The relative contrast difference between abnormal gray matter and the adjacent white matter was also assessed. The results revealed that the contrast differences on the 3D MP-RAGE images were larger than those on the other images; this was statistically significant. Although the sensitivity of 3D MP-RAGE for NMD was not specifically evaluated in this study, the possibility of this disorder, in cases suspected on other images, could be ruled out. Thus, it appears that the specificity with respect to NMD was at least increased with us of 3D MP-RAGE. 3D MP-RAGE also enabled us to build three-dimensional surface models that were helpful in understanding the three-dimensional anatomy. Furthermore. 3D MP-RAGE was considered to be the best technique for evaluating hippocampus atrophy in patients with MTS. On the other hand, the sensitivity in the signal change of the hippocampus was higher on T 2 -weighted images. In addition, demonstration of cortical tubers of tuberous sclerosis in neurocutaneous syndrome was superior on T 2 -weighted images than on 3D MP-RAGE images. (K.H.)

  11. Blockade of RAGE in Zucker obese rats with experimental periodontitis

    DEFF Research Database (Denmark)

    Grauballe, M B; Østergaard, J A; Schou, S

    2017-01-01

    BACKGROUND AND OBJECTIVE: Periodontitis and type 2 diabetes mellitus (T2D) are two interrelated chronic diseases. Periodontitis is more prevalent in patients with T2D than in healthy subjects, and studies indicate that periodontitis impacts the metabolic control of patients with T2D. Hyperglycemia...... on the interrelationship between periodontitis and T2D in a rat model of both diseases. MATERIAL AND METHODS: Zucker obese rats (HsdHlr:ZUCKER-Lepr (fa/fa) ) and their lean littermates were divided into five treatment groups, with and without periodontitis. Monoclonal anti-RAGE IgG3 were injected into the rats three times...... evaluated in plasma. Kidney complications were evaluated by quantitative real-time PCR, the creatinine clearance rate, the albumin excretion rate and kidney hypertrophy. Periodontitis was evaluated by morphometric registration of alveolar bone loss and radiographic recording of bone support. RESULTS...

  12. Thalamus segmentation from MP2RAGE: a comparative study

    DEFF Research Database (Denmark)

    Eskildsen, Simon Fristed; Næss-Schmidt, Erhard; Blicher, Jakob

    RAGE sequence on a Siemens Magnetom Skyra 3T MRI system with a 32 channel head coil. Parameters were TR=5 s, TI1=0.7 s, TI2=2.5 s, α1=4°, α2=5° and acquired at a nominal, isotropic, resolution of 1mm (acquisition matrix: 240x256, 176 sagittal slices). An experienced neuro-radiologist manually traced......, increasing the number of training images in the library of SNIPE improves segmentation accuracy (Figure 4). Even though the DSI seems to plateau around a library size of 10-11 images, increasing the library may improve the accuracy even further. Conclusions: Widely used atlas based segmentation methods...

  13. SOX2 expression is associated with a cancer stem cell state and down-regulation of CDX2 in colorectal cancer

    International Nuclear Information System (INIS)

    Lundberg, Ida V.; Edin, Sofia; Eklöf, Vincy; Öberg, Åke; Palmqvist, Richard; Wikberg, Maria L.

    2016-01-01

    To improve current treatment strategies for patients with aggressive colorectal cancer (CRC), the molecular understanding of subgroups of CRC with poor prognosis is of vast importance. SOX2 positive tumors have been associated with a poor patient outcome, but the functional role of SOX2 in CRC patient prognosis is still unclear. An in vitro cell culture model expressing SOX2 was used to investigate the functional role of SOX2 in CRC. In vitro findings were verified using RNA from fresh frozen tumor tissue or immunohistochemistry on formalin fixed paraffin embedded (FFPE) tumor tissue from a cohort of 445 CRC patients. Using our in vitro model, we found that SOX2 expressing cells displayed several characteristics of cancer stem cells; such as a decreased proliferative rate, a spheroid growth pattern, and increased expression of stem cell markers CD24 and CD44. Cells expressing SOX2 also showed down-regulated expression of the intestinal epithelial marker CDX2. We next evaluated CDX2 expression in our patient cohort. CDX2 down-regulation was more often found in right sided tumors of high grade and high stage. Furthermore, a decreased expression of CDX2 was closely linked to MSI, CIMP-high as well as BRAF mutated tumors. A decreased expression of CDX2 was also, in a stepwise manner, strongly correlated to a poor patient prognosis. When looking at SOX2 expression in relation to CDX2, we found that SOX2 expressing tumors more often displayed a down-regulated expression of CDX2. In addition, SOX2 expressing tumors with a down-regulated CDX2 expression had a worse patient prognosis compared to those with retained CDX2 expression. Our results indicate that SOX2 expression induces a cellular stem cell state in human CRC with a decreased expression of CDX2. Furthermore, a down-regulated expression of CDX2 results in a poor patient prognosis in CRC and at least part of the prognostic importance of SOX2 is mediated through CDX2 down-regulation. The online version of this

  14. 5-Bromo-3-(3-hydroxyprop-1-ynyl-2H-pyran-2-one targets prostate cancer cells by down-regulating inflammation-related genes

    Directory of Open Access Journals (Sweden)

    Zhao-Yang Wang

    2016-06-01

    Full Text Available The present study was performed to examine the effect of 5-bromo-3-(3-hydroxyprop-1-ynyl-2H-pyran-2-one (BHP on the rate of cell proliferation and apoptosis induction in the PC3, human prostate carcinoma cell line. The cell viability was assayed by using sulphorhodamine B staining and apoptosis by annexin V and flow cytometry analyses. The results revealed that BHP treatment in PC3 cells caused a significant reduction in the rate of cell proliferation in dose- and time-dependent manner. Compared to the un-treated cells, the formation of HUVEC tubes was markedly inhibited on treatment with BHP at a concentration of 30 µM. Further investigation revealed the expression of HMGB1, IL-6 and IL-8, pro-inflammatory cytokines was also inhibited on treatment with BHP. Therefore, BHP treatment plays an important role in inducing apoptosis in the prostrate cells and can be of therapeutic value for the prostate cancer treatment.

  15. Atherosclerosis-Associated Endothelial Cell Apoptosis by MiR-429-Mediated Down Regulation of Bcl-2

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    2015-10-01

    -associated endothelial cell apoptosis may result from down regulation of Bcl-2, through increased miR-429 that binds and suppresses translation of Bcl-2 mRNA.

  16. Down-regulated βIII-tubulin Expression Can Reverse Paclitaxel Resistance in A549/Taxol Cells Lines

    Directory of Open Access Journals (Sweden)

    Yinling ZHUO

    2014-08-01

    Full Text Available Background and objective Chemotherapy drug resistance is the primary causes of death in patients with pulmonary carcinoma which make tumor recurrence or metastasis. β-tubulin is the main cell targets of anti-microtubule drug. Increased expression of βIII-tubulin has been implicated in non-small cell lung cancer (NSCLC cell lines. To explore the relationship among the expression level of βIII-tubulin and the sensitivity of A549/Taxolcell lines to Taxol and cell cycles and cell apoptosis by RNA interference-mediated inhibition of βIII-tubulin in A549/Taxol cells. Methods Three pairs of siRNA targetd βIII-tubulin were designed and prepared, which were transfected into A549/Taxol cells using LipofectamineTM 2000. We detected the expression of βIII-tubulin mRNA using Real-time fluorescence qRT-PCR. Tedhen we selected the most efficient siRNA by the expression of βIII-tubulin mRNA in transfected group. βIII-tubulin protein level were mesured by Western blot. The taxol sensitivity in transfected group were evaluated by MTT assay. And the cell apoptosis and cell cycles were determined by flow cytometry. Results βIII-tubulin mRNA levels in A549/Taxol cells were significantly decreased in transfected grop by Real-time qRT-PCR than control groups. And βIII-tubulin siRNA-1 sequence showed the highest transfection efficiency, which was (87.73±4.87% (P<0.01; Western blot results showed that the expressional level of BIII tublin protein was significantly down-reulated in the transfectant cells than thant in the control cells. By MTT assay, we showed that the inhibition ratio of Taxol to A549/Taxol cells transfeced was higher than that of control group (51.77±4.60% (P<0.01. The early apoptosis rate of A549/Taxol cells in transfected group were significantly higher than that of control group (P<0.01; G2-M content in taxol group obviously increased than untreated samples by the cell cycle (P<0.05. Conclusion βIII-tubulin down-regulated significantly

  17. Resveratrol Induced Premature Senescence Is Associated with DNA Damage Mediated SIRT1 and SIRT2 Down-Regulation.

    Directory of Open Access Journals (Sweden)

    Mehtap Kilic Eren

    agent doxorubicin also induced senescence in BJ fibroblasts associated with decreased SIRT1/2 levels. In conclusion our data reveal that resveratrol induced premature senescence is associated with SIRT1 and SIRT2 down regulation in human dermal fibroblasts. Here we suggest that the concomitant decline in SIRT1/2 expression in response to resveratrol treatment may be a cause for induction of senescence, which is most likely mediated by a regulatory mechanism activated by DNA damage response.

  18. Down-regulation of Irf8 by Lyz2-cre/loxP accelerates osteoclast differentiation in vitro.

    Science.gov (United States)

    Saito, Emi; Suzuki, Dai; Kurotaki, Daisuke; Mochizuki, Ayako; Manome, Yoko; Suzawa, Tetsuo; Toyoshima, Yoichi; Ichikawa, Takahiro; Funatsu, Takahiro; Inoue, Tomio; Takami, Masamichi; Tamura, Tomohiko; Inagaki, Katsunori; Kamijo, Ryutaro

    2017-06-01

    Interferon regulatory factor 8 (Irf8) is a transcription factor that negatively regulates osteoclast differentiation and Irf8 global knockout (Irf8 -/- ) mice have been shown to have reduced bone volume resulting from increased osteoclast numbers. However, detailed analysis of the functions of Irf8 in osteoclast precursors with a monocyte/macrophage linage is difficult, because the population and properties of hematopoietic cells in Irf8 -/- mice are severely altered. Therefore, to clearly elucidate the functions of Irf8 during osteoclastogenesis, we established myeloid cell-specific Irf8 conditional knockout (Irf8 fl/fl ;Lyz2 cre/+ ) mice. We found that trabecular bone volume in the Irf8 fl/fl ;Lyz2 cre/+ mice was not significantly affected, while exposure to M-CSF and RANKL significantly increased TRAP activity in vitro in osteoclasts that underwent osteoclastogenesis from bone marrow-derived macrophages (BMMs) induced from bone marrow cells (BMCs) of those mice by addition of M-CSF. Our results also showed that expression of Irf8 mRNA and protein in BMMs obtained from Irf8 fl/fl ;Lyz2 cre/+ mice and cultured with M-CSF was reduced. These findings predicted that Lyz2/Lyz2-cre expression is induced when BMCs differentiate into BMMs in cultures with M-CSF. In osteoclast differentiation cultures, Lyz2 was gradually increased by M-CSF during the first 3 days of culture, then rapidly decreased by the addition of RANKL with M-CSF during the next 3 days. Furthermore, BMCs differentiated into osteoclasts while maintaining a low level of Lyz2 expression when cultured simultaneously with both M-CSF and RANKL from the initiation of culture. These findings suggest that Lyz2-cre expression is induced along with differentiation to BMMs by BMCs obtained from Irf8 fl/fl ;Lyz2 cre/+ mice and cultured with M-CSF. In addition, Irf8 was down-regulated by activation of the cre/loxP recombination system in BMMs and osteoclastogenesis was accelerated. Based on our results, we propose

  19. Elevated expression of prostate cancer-associated genes is linked to down-regulation of microRNAs

    International Nuclear Information System (INIS)

    Erdmann, Kati; Kaulke, Knut; Thomae, Cathleen; Huebner, Doreen; Sergon, Mildred; Froehner, Michael; Wirth, Manfred P; Fuessel, Susanne

    2014-01-01

    Recent evidence suggests that the prostate cancer (PCa)-specific up-regulation of certain genes such as AMACR, EZH2, PSGR, PSMA and TRPM8 could be associated with an aberrant expression of non-coding microRNAs (miRNA). In silico analyses were used to search for miRNAs being putative regulators of PCa-associated genes. The expression of nine selected miRNAs (hsa-miR-101, -138, -186, -224, -26a, -26b, -374a, -410, -660) as well as of the aforementioned PCa-associated genes was analyzed by quantitative PCR using 50 malignant (Tu) and matched non-malignant (Tf) tissue samples from prostatectomy specimens as well as 30 samples from patients with benign prostatic hyperplasia (BPH). Then, correlations between paired miRNA and target gene expression levels were analyzed. Furthermore, the effect of exogenously administered miR-26a on selected target genes was determined by quantitative PCR and Western Blot in various PCa cell lines. A luciferase reporter assay was used for target validation. The expression of all selected miRNAs was decreased in PCa tissue samples compared to either control group (Tu vs Tf: -1.35 to -5.61-fold; Tu vs BPH: -1.17 to -5.49-fold). The down-regulation of most miRNAs inversely correlated with an up-regulation of their putative target genes with Spearman correlation coefficients ranging from -0.107 to -0.551. MiR-186 showed a significantly diminished expression in patients with non-organ confined PCa and initial metastases. Furthermore, over-expression of miR-26a reduced the mRNA and protein expression of its potential target gene AMACR in vitro. Using the luciferase reporter assay AMACR was validated as new target for miR-26a. The findings of this study indicate that the expression of specific miRNAs is decreased in PCa and inversely correlates with the up-regulation of their putative target genes. Consequently, miRNAs could contribute to oncogenesis and progression of PCa via an altered miRNA-target gene-interaction

  20. Melittin induces PTCH1 expression by down-regulating MeCP2 in human hepatocellular carcinoma SMMC-7721 cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiaoqin; Zhao, Bin; Cheng, Yahui; Yang, Yang; Huang, Cheng; Meng, Xiaoming; Wu, Baoming; Zhang, Lei; Lv, Xiongwen; Li, Jun, E-mail: xqwu01@foxmail.com

    2015-10-01

    Hepatocellular carcinoma (HCC) has a high mortality rate worldwide and still remains to be a noticeable public health problem. Therefore, new remedies are urgently needed. Melittin, a major component of bee venom, is known to suppress cell growth in various cancers including HCC. However, the mechanism of the anticancer effect of melittin on HCC has not been fully elucidated. It has been reported that Methyl-CpG binding protein 2 (MeCP2) plays a key role in tumor proliferation, apoptosis, migration and invasion. In the present study, we found the high expression of MeCP2 in human HCC tissues and in the SMMC-7721 cell line. MeCP2 silencing inhibited cell proliferation, while over-expression of MeCP2 promoted cell growth in SMMC-7721 cells. It indicates that MeCP2 may be an attractive target for human HCC. We further found that melittin could inhibit cell proliferation by reducing MeCP2 expression in vitro. Interestingly, the inhibitory effect of melittin on cell proliferation was due to a delay in G{sub 0}/G{sub 1} cell cycle progression, without influencing cell apoptosis. Next, we investigated the potential molecular mechanisms and found that MeCP2 could modulate Shh signaling in SMMC-7721 cells. Further study indicates that melittin may induce the demethylation of PTCH1 promoter, resulting in the increased expression of PTCH1. Furthermore, the expression of Shh and GLI1 was significantly lowered upon treatment of melittin. These results suggest that melittin can block Shh signaling in vitro. In short, these results indicate that melittin inhibits cell proliferation by down-regulating MeCP2 through Shh signaling in SMMC-7721 cells. - Highlights: • MeCP2 plays a key role in the proliferation of human HCC cells. • Melittin reduces MeCP2 expression in vitro. • Melittin induces G{sub 0}/G{sub 1} cell cycle arrest in SMMC-7721 cells. • MeCP2 modulates the Shh signaling pathway in SMMC-7721 cells. • Melittin blocks the Shh signaling pathway in SMMC-7721 cells.

  1. Melittin induces PTCH1 expression by down-regulating MeCP2 in human hepatocellular carcinoma SMMC-7721 cells

    International Nuclear Information System (INIS)

    Wu, Xiaoqin; Zhao, Bin; Cheng, Yahui; Yang, Yang; Huang, Cheng; Meng, Xiaoming; Wu, Baoming; Zhang, Lei; Lv, Xiongwen; Li, Jun

    2015-01-01

    Hepatocellular carcinoma (HCC) has a high mortality rate worldwide and still remains to be a noticeable public health problem. Therefore, new remedies are urgently needed. Melittin, a major component of bee venom, is known to suppress cell growth in various cancers including HCC. However, the mechanism of the anticancer effect of melittin on HCC has not been fully elucidated. It has been reported that Methyl-CpG binding protein 2 (MeCP2) plays a key role in tumor proliferation, apoptosis, migration and invasion. In the present study, we found the high expression of MeCP2 in human HCC tissues and in the SMMC-7721 cell line. MeCP2 silencing inhibited cell proliferation, while over-expression of MeCP2 promoted cell growth in SMMC-7721 cells. It indicates that MeCP2 may be an attractive target for human HCC. We further found that melittin could inhibit cell proliferation by reducing MeCP2 expression in vitro. Interestingly, the inhibitory effect of melittin on cell proliferation was due to a delay in G 0 /G 1 cell cycle progression, without influencing cell apoptosis. Next, we investigated the potential molecular mechanisms and found that MeCP2 could modulate Shh signaling in SMMC-7721 cells. Further study indicates that melittin may induce the demethylation of PTCH1 promoter, resulting in the increased expression of PTCH1. Furthermore, the expression of Shh and GLI1 was significantly lowered upon treatment of melittin. These results suggest that melittin can block Shh signaling in vitro. In short, these results indicate that melittin inhibits cell proliferation by down-regulating MeCP2 through Shh signaling in SMMC-7721 cells. - Highlights: • MeCP2 plays a key role in the proliferation of human HCC cells. • Melittin reduces MeCP2 expression in vitro. • Melittin induces G 0 /G 1 cell cycle arrest in SMMC-7721 cells. • MeCP2 modulates the Shh signaling pathway in SMMC-7721 cells. • Melittin blocks the Shh signaling pathway in SMMC-7721 cells.

  2. Effect of oxaliplatin on the survival rate of human Y79 cells after down-regulation of Mcl-1

    Directory of Open Access Journals (Sweden)

    Lu Zhou

    2017-12-01

    Full Text Available AIM: To study the effect of oxaliplatin on the survival rate of Y79 after down-regulation of Mcl-1 by SiRNA. METHODS: Y79 cells were cultured in RPMI1640. The cultured cells were stimulated with 0.25μmol/L of oxaliplatin. The expression of Mcl-1 protein was detected by Western blot after 6, 16 and 24h respectively. Cells in logarithmic phase were collected and used for single-cell suspension. Then they were transfected with empty plasmid, Mcl-1-homo-991, Mcl-1-homo-1114 and Mcl-1-homo-1235. After 6h, fluorescence microscope was used to observe the transfection efficiency and the optimal one was selected. The cells were divided into Group A and transfected with empty plasmids. The cells transfected with Mcl-1 were divided into Group B and Group C. Group A and Group C were treated with 0.25μmol/L oxaliplatin for stimulating induction, and the apoptotic rate was compared after 24h.RESULTS: The expression of Mcl-1 in Y79 stimulated by oxaliplatin was the most after 24h of culture. Mcl-1-homo-991 significantly inhibited the expression of Mcl-1 in Y79 after transfection. There was no significant difference in the apoptosis rate in Group A(11.1%±1.2%and in the control group(6.1%±0.6%(P>0.05. The apoptotic rate of Group C(49.2%±2.7%was significantly higher than that of Group B(20.8%±1.9%. At the same time, the apoptotic rates of these two groups were significantly higher than those of Group A and control group, the difference was statistically significant(PCONCLUSION:Downregulation of Mcl-1 by siRNA can reduce the drug resistance of Y79, thereby enhancing the apoptosis of Y79, and reducing the survival rate of Y79.

  3. Gonadotropin Inhibitory Hormone Down-Regulates the Brain-Pituitary Reproductive Axis of Male European Sea Bass (Dicentrarchus labrax).

    Science.gov (United States)

    Paullada-Salmerón, José A; Cowan, Mairi; Aliaga-Guerrero, María; Morano, Francesca; Zanuy, Silvia; Muñoz-Cueto, José A

    2016-06-01

    Gonadotropin-inhibitory hormone (GnIH) inhibits gonadotropin synthesis and release from the pituitary of birds and mammals. However, the physiological role of orthologous GnIH peptides on the reproductive axis of fish is still uncertain, and their actions on the main neuroendocrine systems controlling reproduction (i.e., GnRHs, kisspeptins) have received little attention. In a recent study performed in the European sea bass, we cloned a cDNA encoding a precursor polypeptide that contained C-terminal MPMRFamide (sbGnIH-1) and MPQRFamide (sbGnIH-2) peptide sequences, developed a specific antiserum against sbGnIH-2, and characterized its central and pituitary GnIH projections in this species. In this study, we analyzed the effects of intracerebroventricular injection of sbGnIH-1 and sbGnIH-2 on brain and pituitary expression of reproductive hormone genes (gnrh1, gnrh2, gnrh3, kiss1, kiss2, gnih, lhbeta, fshbeta), and their receptors (gnrhr II-1a, gnrhr II-2b, kiss1r, kiss2r, and gnihr) as well as on plasma Fsh and Lh levels. In addition, we determined the effects of GnIH on pituitary somatotropin (Gh) expression. The results obtained revealed the inhibitory role of sbGnIH-2 on brain gnrh2, kiss1, kiss2, kiss1r, gnih, and gnihr transcripts and on pituitary fshbeta, lhbeta, gh, and gnrhr-II-1a expression, whereas sbGnIH-1 only down-regulated brain gnrh1 expression. However, at different doses, central administration of both sbGnIH-1 and sbGnIH-2 decreased Lh plasma levels. Our work represents the first study reporting the effects of centrally administered GnIH in fish and provides evidence of the differential actions of sbGnIH-1 and sbGnIH-2 on the reproductive axis of sea bass, the main inhibitory role being exerted by the sbGnIH-2 peptide. © 2016 by the Society for the Study of Reproduction, Inc.

  4. Chlamydia trachomatis In Vivo to In Vitro Transition Reveals Mechanisms of Phase Variation and Down-Regulation of Virulence Factors.

    Directory of Open Access Journals (Sweden)

    Vítor Borges

    Full Text Available Research on the obligate intracellular bacterium Chlamydia trachomatis demands culture in cell-lines, but the adaptive process behind the in vivo to in vitro transition is not understood. We assessed the genomic and transcriptomic dynamics underlying C. trachomatis in vitro adaptation of strains representing the three disease groups (ocular, epithelial-genital and lymphogranuloma venereum propagated in epithelial cells over multiple passages. We found genetic features potentially underlying phase variation mechanisms mediating the regulation of a lipid A biosynthesis enzyme (CT533/LpxC, and the functionality of the cytotoxin (CT166 through an ON/OFF mechanism. We detected inactivating mutations in CT713/porB, a scenario suggesting metabolic adaptation to the available carbon source. CT135 was inactivated in a tropism-specific manner, with CT135-negative clones emerging for all epithelial-genital populations (but not for LGV and ocular populations and rapidly increasing in frequency (~23% mutants per 10 passages. RNA-sequencing analyses revealed that a deletion event involving CT135 impacted the expression of multiple virulence factors, namely effectors known to play a role in the C. trachomatis host-cell invasion or subversion (e.g., CT456/Tarp, CT694, CT875/TepP and CT868/ChlaDub1. This reflects a scenario of attenuation of C. trachomatis virulence in vitro, which may take place independently or in a cumulative fashion with the also observed down-regulation of plasmid-related virulence factors. This issue may be relevant on behalf of the recent advances in Chlamydia mutagenesis and transformation where culture propagation for selecting mutants/transformants is mandatory. Finally, there was an increase in the growth rate for all strains, reflecting gradual fitness enhancement over time. In general, these data shed light on the adaptive process underlying the C. trachomatis in vivo to in vitro transition, and indicates that it would be prudent to

  5. Antidiabetic activity of Ganoderma lucidum polysaccharides F31 down-regulated hepatic glucose regulatory enzymes in diabetic mice.

    Science.gov (United States)

    Xiao, Chun; Wu, Qingping; Zhang, Jumei; Xie, Yizhen; Cai, Wen; Tan, Jianbin

    2017-01-20

    Ganoderma lucidum (Lin Zhi) has been used to treat diabetes in Chinese folk for centuries. Our laboratory previously demonstrated that Ganoderma lucidum polysaccharides (GLPs) had hypoglycemic effects in diabetic mice. Our aim was to identify the main bioactives in GLPs and corresponding mechanism of action. Four polysaccharide-enriched fraction were isolated from GLPs and the antidiabetic activities were evaluated by type 2 diabetic mice. Fasting serum glucose (FSG), fasting serum insulin (FSI) and epididymal fat/BW ratio were measured at the end of the experiment. In liver, the mRNA levels of hepatic glucose regulatory enzymes were determined by quantitative polymerase chain reaction (qPCR) and the protein levels of phospho-AMP-activated protein kinase (p-AMPK)/AMPK were determined by western blotting test. In epididymal fat tissue, the mRNA and protein levels GLUT4, resistin, fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC1) were determined by qPCR and immuno-histochemistry. The structure of polysaccharide F31 was obtained from GPC, FTIR NMR and GC-MS spectroscopy, RESULTS: F31 significantly decreased FSG (P<0.05), FSI and epididymal fat/BW ratio (P<0.01). In liver, F31 decreased the mRNA levels of hepatic glucose regulatory enzymes, and up-regulated the ratio of phospho-AMP-activated protein kinase (p-AMPK)/AMPK. In epididymal fat tissue, F31 increased the mRNA levels of GLUT4 but decreased fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC1) and resistin. Immuno-histochemistry results revealed F31 increased the protein levels of GLUT4 and decreased resistin. Data suggested that the main bioactives in GLPs was F31, which was determined to be a β-heteropolysaccharide with the weight-average molecular weight of 15.9kDa. The possible action mechanism of F31 may be associated with down-regulation of the hepatic glucose regulated enzyme mRNA levels via AMPK activation, improvement of insulin resistance and decrease of epididymal fat/BW ratio. These

  6. microRNA-145 promotes differentiation in human urothelial carcinoma through down-regulation of syndecan-1

    International Nuclear Information System (INIS)

    Fujii, Tomomi; Shimada, Keiji; Tatsumi, Yoshihiro; Hatakeyama, Kinta; Obayashi, Chiho; Fujimoto, Kiyohide; Konishi, Noboru

    2015-01-01

    A new molecular marker of carcinoma in the urinary bladder is needed as a diagnostic tool or as a therapeutic target. Potential markers include microRNAs (miRNAs), which are short, low molecular weight RNAs 19–24 nt long that regulate genes associated with cell proliferation, differentiation, and development in various cancers. In this study, we investigated the molecular mechanisms by which miR-145 promotes survival of urothelial carcinoma cells and differentiation into multiple lineages. We found miR-145 to regulate expression of syndecan-1, a heparin sulfate proteoglycan. Cell proliferation in the human urothelial carcinoma cell lines T24 and KU7 was assessed by MTS assay. Cellular senescence and apoptosis were measured by senescence-associated β-galactosidase (SA-β-gal) and TUNEL assay, respectively. Quantitative RT-PCR was used to measure mRNA expression of various genes, including syndecan-1, stem cell factors, and markers of differentiation into squamous, glandular, or neuroendocrine cells. Overexpression of miR-145 induced cell senescence, and thus significantly inhibited cell proliferation in T24 and KU7 cells. Syndecan-1 expression diminished, whereas stem cell markers such as SOX2, NANOG, OCT4, and E2F3 increased. miR-145 also up-regulated markers of differentiation into squamous (p63, TP63, and CK5), glandular (MUC-1, MUC-2, and MUC-5 AC), and neuroendocrine cells (NSE and UCHL-1). Finally, expression of miR-145 was down-regulated in high-grade urothelial carcinomas, but not in low-grade tumors. Results indicate that miR-145 suppresses syndecan-1 and, by this mechanism, up-regulates stem cell factors and induces cell senescence and differentiation. We propose that miR-145 may confer stem cell-like properties on urothelial carcinoma cells and thus facilitate differentiation into multiple cell types. The online version of this article (doi:10.1186/s12885-015-1846-0) contains supplementary material, which is available to authorized users

  7. Expression of high mobility group box 1 in inflamed dental pulp and its chemotactic effect on dental pulp cells

    International Nuclear Information System (INIS)

    Zhang, Xufang; Jiang, Hongwei; Gong, Qimei; Fan, Chen; Huang, Yihua; Ling, Junqi

    2014-01-01

    Highlights: • HMGB1 translocated from nucleus to cytoplasm during dental pulp inflammation. • HMGB1and its receptor RAGE were up-regulated in hDPCs under LPS stimulation. • HMGB1 enhanced hDPCs migration and induces cytoskeleton reorganization. • HMGB1 may play a critical role in dental pulp repair during inflamed state. - Abstract: High mobility group box 1 protein (HMGB1) is a chromatin protein which can be released extracellularly, eliciting a pro-inflammatory response and promoting tissue repair process. This study aimed to examine the expression and distribution of HMGB1 and its receptor RAGE in inflamed dental pulp tissues, and to assess its effects on proliferation, migration and cytoskeleton of cultured human dental pulp cells (DPCs). Our data demonstrated that cytoplasmic expression of HMGB1 was observed in inflamed pulp tissues, while HMGB1 expression was confined in the nuclei in healthy dental pulp. The mRNA expression of HMGB1 and RAGE were significantly increased in inflamed pulps. In in vitro cultured DPCs, expression of HMGB1 in both protein and mRNA level was up-regulated after treated with lipopolysaccharide (LPS). Exogenous HMGB1 enhanced DPCs migration in a dose-dependent manner and induced the reorganization of f-actin in DPCs. Our results suggests that HMGB1 are not only involved in the process of dental pulp inflammation, but also play an important role in the recruitment of dental pulp stem cells, promoting pulp repair and regeneration

  8. Expression of high mobility group box 1 in inflamed dental pulp and its chemotactic effect on dental pulp cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xufang, E-mail: xufang.zhang@student.qut.edu.au [Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Guangdong Province Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China); Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059 (Australia); Jiang, Hongwei, E-mail: jianghw@163.com [Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Guangdong Province Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China); Gong, Qimei, E-mail: gongqmei@gmail.com [Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Guangdong Province Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China); Fan, Chen, E-mail: c3.fan@student.qut.edu.au [Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059 (Australia); Huang, Yihua, E-mail: enu0701@163.com [Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Guangdong Province Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China); Ling, Junqi, E-mail: lingjq@mail.sysu.edu.cn [Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Guangdong Province Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China)

    2014-08-08

    Highlights: • HMGB1 translocated from nucleus to cytoplasm during dental pulp inflammation. • HMGB1and its receptor RAGE were up-regulated in hDPCs under LPS stimulation. • HMGB1 enhanced hDPCs migration and induces cytoskeleton reorganization. • HMGB1 may play a critical role in dental pulp repair during inflamed state. - Abstract: High mobility group box 1 protein (HMGB1) is a chromatin protein which can be released extracellularly, eliciting a pro-inflammatory response and promoting tissue repair process. This study aimed to examine the expression and distribution of HMGB1 and its receptor RAGE in inflamed dental pulp tissues, and to assess its effects on proliferation, migration and cytoskeleton of cultured human dental pulp cells (DPCs). Our data demonstrated that cytoplasmic expression of HMGB1 was observed in inflamed pulp tissues, while HMGB1 expression was confined in the nuclei in healthy dental pulp. The mRNA expression of HMGB1 and RAGE were significantly increased in inflamed pulps. In in vitro cultured DPCs, expression of HMGB1 in both protein and mRNA level was up-regulated after treated with lipopolysaccharide (LPS). Exogenous HMGB1 enhanced DPCs migration in a dose-dependent manner and induced the reorganization of f-actin in DPCs. Our results suggests that HMGB1 are not only involved in the process of dental pulp inflammation, but also play an important role in the recruitment of dental pulp stem cells, promoting pulp repair and regeneration.

  9. MiR-155 induction by F. novicida but not the virulent F. tularensis results in SHIP down-regulation and enhanced pro-inflammatory cytokine response.

    Directory of Open Access Journals (Sweden)

    Thomas J Cremer

    2009-12-01

    Full Text Available The intracellular gram-negative bacterium Francisella tularensis causes the disease tularemia and is known for its ability to subvert host immune responses. Previous work from our laboratory identified the PI3K/Akt pathway and SHIP as critical modulators of host resistance to Francisella. Here, we show that SHIP expression is strongly down-regulated in monocytes and macrophages following infection with F. tularensis novicida (F.n.. To account for this negative regulation we explored the possibility that microRNAs (miRs that target SHIP may be induced during infection. There is one miR that is predicted to target SHIP, miR-155. We tested for induction and found that F.n. induced miR-155 both in primary monocytes/macrophages and in vivo. Using luciferase reporter assays we confirmed that miR-155 led to down-regulation of SHIP, showing that it specifically targets the SHIP 3'UTR. Further experiments showed that miR-155 and BIC, the gene that encodes miR-155, were induced as early as four hours post-infection in primary human monocytes. This expression was dependent on TLR2/MyD88 and did not require inflammasome activation. Importantly, miR-155 positively regulated pro-inflammatory cytokine release in human monocytes infected with Francisella. In sharp contrast, we found that the highly virulent type A SCHU S4 strain of Francisella tularensis (F.t. led to a significantly lower miR-155 response than the less virulent F.n. Hence, F.n. induces miR-155 expression and leads to down-regulation of SHIP, resulting in enhanced pro-inflammatory responses. However, impaired miR-155 induction by SCHU S4 may help explain the lack of both SHIP down-regulation and pro-inflammatory response and may account for the virulence of Type A Francisella.

  10. Francisella tularensis elicits IL-10 via a PGE₂-inducible factor, to drive macrophage MARCH1 expression and class II down-regulation.

    Directory of Open Access Journals (Sweden)

    Danielle Hunt

    Full Text Available Francisella tularensis is a bacterial pathogen that uses host-derived PGE₂ to subvert the host's adaptive immune responses in multiple ways. Francisella-induced PGE₂ acts directly on CD4 T cells to blunt production of IFN-γ. Francisella-induced PGE₂ can also elicit production of a >10 kDa soluble host factor termed FTMØSN (F. tularensismacrophage supernatant, which acts on IFN-γ pre-activated MØ to down-regulate MHC class II expression via a ubiquitin-dependent mechanism, blocking antigen presentation to CD4 T cells. Here, we report that FTMØSN-induced down-regulation of MØ class II is the result of the induction of MARCH1, and that MØ expressing MARCH1 "resistant" class II molecules are resistant to FTMØSN-induced class II down-regulation. Since PGE₂ can induce IL-10 production and IL-10 is the only reported cytokine able to induce MARCH1 expression in monocytes and dendritic cells, these findings suggested that IL-10 is the active factor in FTMØSN. However, use of IL-10 knockout MØ established that IL-10 is not the active factor in FTMØSN, but rather that Francisella-elicited PGE₂ drives production of a >10 kDa host factor distinct from IL-10. This factor then drives MØ IL-10 production to induce MARCH1 expression and the resultant class II down-regulation. Since many human pathogens such as Salmonella typhi, Mycobacterium tuberculosis and Legionella pneumophila also induce production of host PGE₂, these results suggest that a yet-to-be-identified PGE₂-inducible host factor capable of inducing IL-10 is central to the immune evasion mechanisms of multiple important human pathogens.

  11. BMP6 down-regulates GDNF expression through SMAD1/5 and ERK1/2 signaling pathways in human granulosa-lutein cells.

    Science.gov (United States)

    Zhang, Xin-Yue; Chang, Hsun-Ming; Taylor, Elizabeth L; Leung, Peter C K; Liu, Rui-Zhi

    2018-05-09

    Bone morphogenetic protein 6 (BMP6) is a critical regulator of follicular development that is expressed in mammalian oocytes and granulosa cells. Glial cell line-derived neurotrophic factor (GDNF) is an intraovarian neurotrophic factor that plays an essential role in regulating mammalian oocyte maturation. The aim of this study was to investigate the effect of BMP6 on the regulation of GDNF expression and the potential underlying mechanisms. We used an established immortalized human granulosa cell line (SVOG cells) and primary human granulosa-lutein cells as in vitro cell models. Our results showed that BMP6 significantly down-regulated the expression of GDNF in both SVOG and primary human granulosa-lutein cells. Using dual inhibition approaches (kinase receptor inhibitor and small interfering RNA knockdown), our results showed that both ALK2 and ALK3 are involved in BMP6-induced down-regulation of GDNF. In addition, BMP6 induced the phosphorylation of SMAD1/5/8 and ERK1/2 but not AKT or p38. Among three downstream mediators, both SMAD1 and SMAD5 are involved in BMP6-induced down-regulation of GDNF. Moreover, concomitant knockdown of endogenous SMAD4 and inhibition of ERK1/2 activity completely reversed BMP6-induced down-regulation of GDNF, indicating that both SMAD and ERK1/2 signaling pathways are required for the regulatory effect of BMP6 on GDNF expression. Our findings suggest an additional role for an intrafollicular growth factor in regulating follicular function through their paracrine interactions in human granulosa cells.

  12. Real-time fMRI neurofeedback to down-regulate superior temporal gyrus activity in patients with schizophrenia and auditory hallucinations: a proof-of-concept study.

    Science.gov (United States)

    Orlov, Natasza D; Giampietro, Vincent; O'Daly, Owen; Lam, Sheut-Ling; Barker, Gareth J; Rubia, Katya; McGuire, Philip; Shergill, Sukhwinder S; Allen, Paul

    2018-02-12

    Neurocognitive models and previous neuroimaging work posit that auditory verbal hallucinations (AVH) arise due to increased activity in speech-sensitive regions of the left posterior superior temporal gyrus (STG). Here, we examined if patients with schizophrenia (SCZ) and AVH could be trained to down-regulate STG activity using real-time functional magnetic resonance imaging neurofeedback (rtfMRI-NF). We also examined the effects of rtfMRI-NF training on functional connectivity between the STG and other speech and language regions. Twelve patients with SCZ and treatment-refractory AVH were recruited to participate in the study and were trained to down-regulate STG activity using rtfMRI-NF, over four MRI scanner visits during a 2-week training period. STG activity and functional connectivity were compared pre- and post-training. Patients successfully learnt to down-regulate activity in their left STG over the rtfMRI-NF training. Post- training, patients showed increased functional connectivity between the left STG, the left inferior prefrontal gyrus (IFG) and the inferior parietal gyrus. The post-training increase in functional connectivity between the left STG and IFG was associated with a reduction in AVH symptoms over the training period. The speech-sensitive region of the left STG is a suitable target region for rtfMRI-NF in patients with SCZ and treatment-refractory AVH. Successful down-regulation of left STG activity c