WorldWideScience

Sample records for double-stranded adeno-associated viral

  1. Absolute determination of single-stranded and self-complementary adeno-associated viral vector genome titers by droplet digital PCR.

    Science.gov (United States)

    Lock, Martin; Alvira, Mauricio R; Chen, Shu-Jen; Wilson, James M

    2014-04-01

    Accurate titration of adeno-associated viral (AAV) vector genome copies is critical for ensuring correct and reproducible dosing in both preclinical and clinical settings. Quantitative PCR (qPCR) is the current method of choice for titrating AAV genomes because of the simplicity, accuracy, and robustness of the assay. However, issues with qPCR-based determination of self-complementary AAV vector genome titers, due to primer-probe exclusion through genome self-annealing or through packaging of prematurely terminated defective interfering (DI) genomes, have been reported. Alternative qPCR, gel-based, or Southern blotting titering methods have been designed to overcome these issues but may represent a backward step from standard qPCR methods in terms of simplicity, robustness, and precision. Droplet digital PCR (ddPCR) is a new PCR technique that directly quantifies DNA copies with an unparalleled degree of precision and without the need for a standard curve or for a high degree of amplification efficiency; all properties that lend themselves to the accurate quantification of both single-stranded and self-complementary AAV genomes. Here we compare a ddPCR-based AAV genome titer assay with a standard and an optimized qPCR assay for the titration of both single-stranded and self-complementary AAV genomes. We demonstrate absolute quantification of single-stranded AAV vector genomes by ddPCR with up to 4-fold increases in titer over a standard qPCR titration but with equivalent readout to an optimized qPCR assay. In the case of self-complementary vectors, ddPCR titers were on average 5-, 1.9-, and 2.3-fold higher than those determined by standard qPCR, optimized qPCR, and agarose gel assays, respectively. Droplet digital PCR-based genome titering was superior to qPCR in terms of both intra- and interassay precision and is more resistant to PCR inhibitors, a desirable feature for in-process monitoring of early-stage vector production and for vector genome biodistribution

  2. Adeno-associated viral vector-induced overexpression of neuropeptide Y Y2 receptors in the hippocampus suppresses seizures

    DEFF Research Database (Denmark)

    Woldbye, David Paul Drucker; Ängehagen, Mikael; Gøtzsche, Casper René

    2010-01-01

    Gene therapy using recombinant adeno-associated viral vectors overexpressing neuropeptide Y in the hippocampus exerts seizure-suppressant effects in rodent epilepsy models and is currently considered for clinical application in patients with intractable mesial temporal lobe epilepsy. Seizure...... recombinant adeno-associated viral vectors. In two temporal lobe epilepsy models, electrical kindling and kainate-induced seizures, vector-based transduction of Y2 receptor complementary DNA in the hippocampus of adult rats exerted seizure-suppressant effects. Simultaneous overexpression of Y2...... and neuropeptide Y had a more pronounced seizure-suppressant effect. These results demonstrate that overexpression of Y2 receptors (alone or in combination with neuropeptide Y) could be an alternative strategy for epilepsy treatment....

  3. DNA Minicircle Technology Improves Purity of Adeno-associated Viral Vector Preparations

    Directory of Open Access Journals (Sweden)

    Maria Schnödt

    2016-01-01

    Full Text Available Adeno-associated viral (AAV vectors are considered as one of the most promising delivery systems in human gene therapy. In addition, AAV vectors are frequently applied tools in preclinical and basic research. Despite this success, manufacturing pure AAV vector preparations remains a difficult task. While empty capsids can be removed from vector preparations owing to their lower density, state-of-the-art purification strategies as of yet failed to remove antibiotic resistance genes or other plasmid backbone sequences. Here, we report the development of minicircle (MC constructs to replace AAV vector and helper plasmids for production of both, single-stranded (ss and self-complementary (sc AAV vectors. As bacterial backbone sequences are removed during MC production, encapsidation of prokaryotic plasmid backbone sequences is avoided. This is of particular importance for scAAV vector preparations, which contained an unproportionally high amount of plasmid backbone sequences (up to 26.1% versus up to 2.9% (ssAAV. Replacing standard packaging plasmids by MC constructs not only allowed to reduce these contaminations below quantification limit, but in addition improved transduction efficiencies of scAAV preparations up to 30-fold. Thus, MC technology offers an easy to implement modification of standard AAV packaging protocols that significantly improves the quality of AAV vector preparations.

  4. Hepatorenal correction in murine glycogen storage disease type I with a double-stranded adeno-associated virus vector.

    LENUS (Irish Health Repository)

    Luo, Xiaoyan

    2011-11-01

    Glycogen storage disease type Ia (GSD-Ia) is caused by the deficiency of glucose-6-phosphatase (G6Pase). Long-term complications of GSD-Ia include life-threatening hypoglycemia and proteinuria progressing to renal failure. A double-stranded (ds) adeno-associated virus serotype 2 (AAV2) vector encoding human G6Pase was pseudotyped with four serotypes, AAV2, AAV7, AAV8, and AAV9, and we evaluated efficacy in 12-day-old G6pase (-\\/-) mice. Hypoglycemia during fasting (plasma glucose <100 mg\\/dl) was prevented for >6 months by the dsAAV2\\/7, dsAAV2\\/8, and dsAAV2\\/9 vectors. Prolonged fasting for 8 hours revealed normalization of blood glucose following dsAAV2\\/9 vector administration at the higher dose. The glycogen content of kidney was reduced by >65% with both the dsAAV2\\/7 and dsAAV2\\/9 vectors, and renal glycogen content was stably reduced between 7 and 12 months of age for the dsAAV2\\/9 vector-treated mice. Every vector-treated group had significantly reduced glycogen content in the liver, in comparison with untreated G6pase (-\\/-) mice. G6Pase was expressed in many renal epithelial cells of with the dsAAV2\\/9 vector for up to 12 months. Albuminuria and renal fibrosis were reduced by the dsAAV2\\/9 vector. Hepatorenal correction in G6pase (-\\/-) mice demonstrates the potential of AAV vectors for the correction of inherited diseases of metabolism.

  5. Adeno-associated viral vectors as agents for gene delivery : application in disorders and trauma of the central nervous system

    NARCIS (Netherlands)

    Ruitenberg, Marc J; Eggers, Ruben; Boer, Gerard J; Verhaagen, J.

    2002-01-01

    The use of viral vectors as agents for gene delivery provides a direct approach to manipulate gene expression in the mammalian central nervous system (CNS). The present article describes in detail the methodology for the injection of viral vectors, in particular adeno-associated virus (AAV) vectors,

  6. Adeno-Associated Viral Vector-Induced Overexpression of Neuropeptide Y Y2 Receptors in the Hippocampus Suppresses Seizures

    Science.gov (United States)

    Woldbye, David P. D.; Angehagen, Mikael; Gotzsche, Casper R.; Elbrond-Bek, Heidi; Sorensen, Andreas T.; Christiansen, Soren H.; Olesen, Mikkel V.; Nikitidou, Litsa; Hansen, Thomas v. O.; Kanter-Schlifke, Irene; Kokaia, Merab

    2010-01-01

    Gene therapy using recombinant adeno-associated viral vectors overexpressing neuropeptide Y in the hippocampus exerts seizure-suppressant effects in rodent epilepsy models and is currently considered for clinical application in patients with intractable mesial temporal lobe epilepsy. Seizure suppression by neuropeptide Y in the hippocampus is…

  7. The double-stranded RNA-activated protein kinase mediates viral-induced encephalitis

    International Nuclear Information System (INIS)

    Scheuner, Donalyn; Gromeier, Matthias; Davies, Monique V.; Dorner, Andrew J.; Song Benbo; Patel, Rupali V.; Wimmer, Eckard J.; McLendon, Roger E.; Kaufman, Randal J.

    2003-01-01

    The double-stranded (ds) RNA-activated protein kinase (PKR) plays an important role in control of viral infections and cell growth. We have studied the role of PKR in viral infection in mice that are defective in the PKR signaling pathway. Transgenic mice were derived that constitutively express a trans-dominant-negative kinase-defective mutant PKR under control of the β-actin promoter. The trans-dominant-negative PKR mutant expressing transgenic mice do not have a detectable phenotype, similar to observations with PKR knock-out mice. The requirement for PKR in viral pathogenesis was studied by intracerebral infection of mice with a mouse-adapted poliovirus. Histopathological analysis revealed diffuse encephalomyelitis with severe inflammatory lesions throughout the central nervous system (CNS) in infected wild-type mice. In contrast, histopathological evaluation of virus-injected trans-dominant-negative PKR transgenic mice as well as PKR knock-out mice yielded no signs of tissue damage associated with inflammatory host responses. However, the virus did replicate in both models of PKR-deficient mice at a level equal to that observed in wild-type infected mice. Although the results indicate a clear difference in susceptibility to poliovirus-induced encephalitis, this difference manifests clinically as a slight delay in fatal neuropathy in trans-dominant-negative PKR transgenic and PKR knock-out animals. Our observations support the finding that viral-induced PKR activation may play a significant role in pathogenesis by mediating the host response to viral CNS infection. They support PKR to be an effective target to control tissue damage due to deleterious host responses to viral infection

  8. Creation of a cardiotropic adeno-associated virus: the story of viral directed evolution

    Directory of Open Access Journals (Sweden)

    Yang Lin

    2013-02-01

    Full Text Available Abstract Adeno-associated virus (AAV is an important vector system for human gene therapy. Although use of AAV serotypes can result in efficient myocardial gene transfer, improvements in the transduction efficiency and specificity are still required. As a method for artificial modification and selection of gene function, directed evolution has been used for diverse applications in genetic engineering of enzymes and proteins. Since 2000, pioneering work has been performed on directed evolution of viral vectors. We further attempted to evolve the AAV using DNA shuffling and in vivo biopanning in a mouse model. An AAVM41 mutant was characterized, which was found to have improved transduction efficiency and specificity in myocardium, an attribute unknown for any natural AAV serotypes. This review focuses on the development of AAV vector for cardiac gene transfer, the history of directed evolution of viral vectors, and our creation of a cardiotropic AAV, which might have implications for the future design and application of viral vectors.

  9. Adeno-associated viral vector transduction of human mesenchymal stem cells

    DEFF Research Database (Denmark)

    Stender, Stefan; Murphy, Mary; O'Brien, Tim

    2007-01-01

    Mesenchymal stem cells (MSCs) have received considerable attention in the emerging field of regenerative medicine. One aspect of MSC research focuses on genetically modifying the cells with the aim of enhancing their regenerative potential. Adeno-associated virus (AAV) holds promise as a vector...... in human MSCs and to assess whether AAV transduction affects MSC multipotentiality. The results indicated that human MSCs could indeed be transiently transduced in vitro by the AAV2 vector with efficiencies of up to 65%. The percentage of GFP-positive cells peaked at 4 days post-transduction and declined...... rapidly towards 0% after day 8. The level of transgene expression in the GFP-positive population increased 4-fold over a 10,000 fold viral dose increase. This dose-response contrasted with the 200-fold increase observed in similarly transduced 293-cells, indicating a relatively restricted transgene...

  10. Adeno-associated viral vector-mediated neurotrophin gene transfer in the injured adult rat spinal cord improves hind-limb function

    NARCIS (Netherlands)

    Blits, B; Oudega, M.; Boer, G J; Bartlett Bunge, M; Verhaagen, J

    2003-01-01

    To foster axonal growth from a Schwann cell bridge into the caudal spinal cord, spinal cells caudal to the implant were transduced with adeno-associated viral (AAV) vectors encoding for brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (AAV-NT-3). Control rats received AAV vectors encoding

  11. A compact dual promoter adeno-associated viral vector for efficient delivery of two genes to dorsal root ganglion neurons

    NARCIS (Netherlands)

    Fagoe, N D; Eggers, R; Verhaagen, J; Mason, M R J

    Adeno-associated viral (AAV) vectors based on serotype 5 are an efficient means to target dorsal root ganglia (DRG) to study gene function in the primary sensory neurons of the peripheral nervous system. In this study, we have developed a compact AAV dual promoter vector composed of the

  12. Stable integration of recombinant adeno-associated virus vector genomes after transduction of murine hematopoietic stem cells.

    Science.gov (United States)

    Han, Zongchao; Zhong, Li; Maina, Njeri; Hu, Zhongbo; Li, Xiaomiao; Chouthai, Nitin S; Bischof, Daniela; Weigel-Van Aken, Kirsten A; Slayton, William B; Yoder, Mervin C; Srivastava, Arun

    2008-03-01

    We previously reported that among single-stranded adeno-associated virus (ssAAV) vectors, serotypes 1 through 5, ssAAV1 is the most efficient in transducing murine hematopoietic stem cells (HSCs), but viral second-strand DNA synthesis remains a rate-limiting step. Subsequently, using double-stranded, self-complementary AAV (scAAV) vectors, serotypes 7 through 10, we observed that scAAV7 vectors also transduce murine HSCs efficiently. In the present study, we used scAAV1 and scAAV7 shuttle vectors to transduce HSCs in a murine bone marrow serial transplant model in vivo, which allowed examination of the AAV proviral integration pattern in the mouse genome, as well as recovery and nucleotide sequence analyses of AAV-HSC DNA junction fragments. The proviral genomes were stably integrated, and integration sites were localized to different mouse chromosomes. None of the integration sites was found to be in a transcribed gene, or near a cellular oncogene. None of the animals, monitored for up to 1 year, exhibited pathological abnormalities. Thus, AAV proviral integration-induced risk of oncogenesis was not found in our study, which provides functional confirmation of stable transduction of self-renewing multipotential HSCs by scAAV vectors as well as promise for the use of these vectors in the potential treatment of disorders of the hematopoietic system.

  13. Adeno-associated viral vector serotypes 1 and 5 targeted to the neonatal rat and pig striatum induce widespread transgene expression in the forebrain

    DEFF Research Database (Denmark)

    Kornum, Birgitte R; Stott, Simon R W; Mattsson, Bengt

    2010-01-01

    Viral vector-mediated gene transfer has emerged as a powerful means to target transgene expression in the central nervous system. Here we characterized the efficacy of serotypes 1 and 5 recombinant adeno-associated virus (rAAV) vectors encoding green fluorescent protein (GFP) after stereotaxic...

  14. Adeno-associated viral vector transduction of human mesenchymal stem cells

    DEFF Research Database (Denmark)

    Stender, Stefan; Murphy, Mary; O'Brien, Tim

    2007-01-01

    Mesenchymal stem cells (MSCs) have received considerable attention in the emerging field of regenerative medicine. One aspect of MSC research focuses on genetically modifying the cells with the aim of enhancing their regenerative potential. Adeno-associated virus (AAV) holds promise as a vector...

  15. High-accuracy biodistribution analysis of adeno-associated virus variants by double barcode sequencing.

    Science.gov (United States)

    Marsic, Damien; Méndez-Gómez, Héctor R; Zolotukhin, Sergei

    2015-01-01

    Biodistribution analysis is a key step in the evaluation of adeno-associated virus (AAV) capsid variants, whether natural isolates or produced by rational design or directed evolution. Indeed, when screening candidate vectors, accurate knowledge about which tissues are infected and how efficiently is essential. We describe the design, validation, and application of a new vector, pTR-UF50-BC, encoding a bioluminescent protein, a fluorescent protein and a DNA barcode, which can be used to visualize localization of transduction at the organism, organ, tissue, or cellular levels. In addition, by linking capsid variants to different barcoded versions of the vector and amplifying the barcode region from various tissue samples using barcoded primers, biodistribution of viral genomes can be analyzed with high accuracy and efficiency.

  16. Adeno-associated virus for cystic fibrosis gene therapy

    Directory of Open Access Journals (Sweden)

    S.V. Martini

    2011-11-01

    Full Text Available Gene therapy is an alternative treatment for genetic lung disease, especially monogenic disorders such as cystic fibrosis. Cystic fibrosis is a severe autosomal recessive disease affecting one in 2500 live births in the white population, caused by mutation of the cystic fibrosis transmembrane conductance regulator (CFTR. The disease is classically characterized by pancreatic enzyme insufficiency, an increased concentration of chloride in sweat, and varying severity of chronic obstructive lung disease. Currently, the greatest challenge for gene therapy is finding an ideal vector to deliver the transgene (CFTR to the affected organ (lung. Adeno-associated virus is the most promising viral vector system for the treatment of respiratory disease because it has natural tropism for airway epithelial cells and does not cause any human disease. This review focuses on the basic properties of adeno-associated virus and its use as a vector for cystic fibrosis gene therapy.

  17. Recombination and population mosaic of a multifunctional viral gene, adeno-associated virus cap.

    Directory of Open Access Journals (Sweden)

    Yasuhiro Takeuchi

    Full Text Available Homologous recombination is a dominant force in evolution and results in genetic mosaics. To detect evidence of recombination events and assess the biological significance of genetic mosaics, genome sequences for various viral populations of reasonably large size are now available in the GenBank. We studied a multi-functional viral gene, the adeno-associated virus (AAV cap gene, which codes for three capsid proteins, VP1, VP2 and VP3. VP1-3 share a common C-terminal domain corresponding to VP3, which forms the viral core structure, while the VP1 unique N-terminal part contains an enzymatic domain with phospholipase A2 activity. Our recombinant detection program (RecI revealed five novel recombination events, four of which have their cross-over points in the N-terminal, VP1 and VP2 unique region. Comparison of phylogenetic trees for different cap gene regions confirmed discordant phylogenies for the recombinant sequences. Furthermore, differences in the phylogenetic tree structures for the VP1 unique (VP1u region and the rest of cap highlighted the mosaic nature of cap gene in the AAV population: two dominant forms of VP1u sequences were identified and these forms are linked to diverse sequences in the rest of cap gene. This observation together with the finding of frequent recombination in the VP1 and 2 unique regions suggests that this region is a recombination hot spot. Recombination events in this region preserve protein blocks of distinctive functions and contribute to convergence in VP1u and divergence of the rest of cap. Additionally the possible biological significance of two dominant VP1u forms is inferred.

  18. Double-stranded RNA viral infection of Trichomonas vaginalis (TVV1) in Iranian isolates.

    Science.gov (United States)

    Khanaliha, Khadijeh; Masoumi-Asl, Hossein; Bokharaei-Salim, Farah; Tabatabaei, Azardokht; Naghdalipoor, Mehri

    2017-08-01

    The Totiviridae family includes a number of viruses that can infect protozoan parasites such as Leishmania and Giardia and fungi like Saccharomyces cerevisiae. Some isolates of Trichomonas vaginalis are also infected with one or more double-stranded RNA (dsRNA) viruses. In this study, the frequency of Trichomonas vaginalis virus (TVV1) was evaluated in Iranian isolates of T. vaginalis in Tehran, Iran. One thousand five hundred vaginal samples were collected from patients attending obstetrics and gynaecology hospitals associated with Iran University of Medical Sciences in Tehran, Iran from October 2015 to September 2016. Trichomonas vaginalis isolates were cultured in Diamond's modified medium. Nucleic acids were extracted using a DNA/RNA extraction kit and RT-PCR was performed. Among 1500 collected vaginal samples, 8 (0.53%) cases of T. vaginalis infection were found. Half (4/8) of the T. vaginalis positive cases were infected with TVV1. Phylogenetic mapping indicated that the Iranian isolates were most closely related to TVV1-OC5, TVV1-UR1. Iranian isolates of T. vaginalis were infected with TVV1. The frequency of viral infection (TVV1) in T. vaginalis isolates found in this study is higher than previously reported in Iran. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Towards quantitative viromics for both double-stranded and single-stranded DNA viruses

    Directory of Open Access Journals (Sweden)

    Simon Roux

    2016-12-01

    Full Text Available Background Viruses strongly influence microbial population dynamics and ecosystem functions. However, our ability to quantitatively evaluate those viral impacts is limited to the few cultivated viruses and double-stranded DNA (dsDNA viral genomes captured in quantitative viral metagenomes (viromes. This leaves the ecology of non-dsDNA viruses nearly unknown, including single-stranded DNA (ssDNA viruses that have been frequently observed in viromes, but not quantified due to amplification biases in sequencing library preparations (Multiple Displacement Amplification, Linker Amplification or Tagmentation. Methods Here we designed mock viral communities including both ssDNA and dsDNA viruses to evaluate the capability of a sequencing library preparation approach including an Adaptase step prior to Linker Amplification for quantitative amplification of both dsDNA and ssDNA templates. We then surveyed aquatic samples to provide first estimates of the abundance of ssDNA viruses. Results Mock community experiments confirmed the biased nature of existing library preparation methods for ssDNA templates (either largely enriched or selected against and showed that the protocol using Adaptase plus Linker Amplification yielded viromes that were ±1.8-fold quantitative for ssDNA and dsDNA viruses. Application of this protocol to community virus DNA from three freshwater and three marine samples revealed that ssDNA viruses as a whole represent only a minor fraction (<5% of DNA virus communities, though individual ssDNA genomes, both eukaryote-infecting Circular Rep-Encoding Single-Stranded DNA (CRESS-DNA viruses and bacteriophages from the Microviridae family, can be among the most abundant viral genomes in a sample. Discussion Together these findings provide empirical data for a new virome library preparation protocol, and a first estimate of ssDNA virus abundance in aquatic systems.

  20. Engineering adeno-associated viruses for clinical gene therapy.

    Science.gov (United States)

    Kotterman, Melissa A; Schaffer, David V

    2014-07-01

    Clinical gene therapy has been increasingly successful owing both to an enhanced molecular understanding of human disease and to progressively improving gene delivery technologies. Among these technologies, delivery vectors based on adeno-associated viruses (AAVs) have emerged as safe and effective and, in one recent case, have led to regulatory approval. Although shortcomings in viral vector properties will render extension of such successes to many other human diseases challenging, new approaches to engineer and improve AAV vectors and their genetic cargo are increasingly helping to overcome these barriers.

  1. A Luciferase Reporter Gene Assay to Measure Ebola Virus Viral Protein 35-Associated Inhibition of Double-Stranded RNA-Stimulated, Retinoic Acid-Inducible Gene 1-Mediated Induction of Interferon β.

    Science.gov (United States)

    Cannas, Valeria; Daino, Gian Luca; Corona, Angela; Esposito, Francesca; Tramontano, Enzo

    2015-10-01

    During Ebola virus (EBOV) infection, the type I interferon α/β (IFN-α/β) innate immune response is suppressed by EBOV viral protein 35 (VP35), a validated drug target. Identification of EBOV VP35 inhibitors requires a cellular system able to assess the VP35-based inhibitory functions of viral double-stranded RNA (dsRNA) IFN-β induction. We established a miniaturized luciferase gene reporter assay in A549 cells that measures IFN-β induction by viral dsRNA and is dose-dependently inhibited by VP35 expression. When compared to influenza A virus NS1 protein, EBOV VP35 showed improved inhibition of viral dsRNA-based IFN-β induction. This assay can be used to screen for EBOV VP35 inhibitors. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. The logic of DNA replication in double-stranded DNA viruses: insights from global analysis of viral genomes.

    Science.gov (United States)

    Kazlauskas, Darius; Krupovic, Mart; Venclovas, Česlovas

    2016-06-02

    Genomic DNA replication is a complex process that involves multiple proteins. Cellular DNA replication systems are broadly classified into only two types, bacterial and archaeo-eukaryotic. In contrast, double-stranded (ds) DNA viruses feature a much broader diversity of DNA replication machineries. Viruses differ greatly in both completeness and composition of their sets of DNA replication proteins. In this study, we explored whether there are common patterns underlying this extreme diversity. We identified and analyzed all major functional groups of DNA replication proteins in all available proteomes of dsDNA viruses. Our results show that some proteins are common to viruses infecting all domains of life and likely represent components of the ancestral core set. These include B-family polymerases, SF3 helicases, archaeo-eukaryotic primases, clamps and clamp loaders of the archaeo-eukaryotic type, RNase H and ATP-dependent DNA ligases. We also discovered a clear correlation between genome size and self-sufficiency of viral DNA replication, the unanticipated dominance of replicative helicases and pervasive functional associations among certain groups of DNA replication proteins. Altogether, our results provide a comprehensive view on the diversity and evolution of replication systems in the DNA virome and uncover fundamental principles underlying the orchestration of viral DNA replication. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. An adeno-associated viral vector transduces the rat hypothalamus and amygdala more efficient than a lentiviral vector

    Directory of Open Access Journals (Sweden)

    Vreugdenhil Erno

    2010-07-01

    Full Text Available Abstract Background This study compared the transduction efficiencies of an adeno-associated viral (AAV vector, which was pseudotyped with an AAV1 capsid and encoded the green fluorescent protein (GFP, with a lentiviral (LV vector, which was pseudotyped with a VSV-G envelop and encoded the discosoma red fluorescent protein (dsRed, to investigate which viral vector transduced the lateral hypothalamus or the amygdala more efficiently. The LV-dsRed and AAV1-GFP vector were mixed and injected into the lateral hypothalamus or into the amygdala of adult rats. The titers that were injected were 1 × 108 or 1 × 109 genomic copies of AAV1-GFP and 1 × 105 transducing units of LV-dsRed. Results Immunostaining for GFP and dsRed showed that AAV1-GFP transduced significantly more cells than LV-dsRed in both the lateral hypothalamus and the amygdala. In addition, the number of LV particles that were injected can not easily be increased, while the number of AAV1 particles can be increased easily with a factor 100 to 1000. Both viral vectors appear to predominantly transduce neurons. Conclusions This study showed that AAV1 vectors are better tools to overexpress or knockdown genes in the lateral hypothalamus and amygdala of adult rats, since more cells can be transduced with AAV1 than with LV vectors and the titer of AAV1 vectors can easily be increased to transduce the area of interest.

  4. MDA5 Detects the Double-Stranded RNA Replicative Form in Picornavirus-Infected Cells

    Directory of Open Access Journals (Sweden)

    Qian Feng

    2012-11-01

    Full Text Available RIG-I and MDA5 are cytosolic RNA sensors that play a critical role in innate antiviral responses. Major advances have been made in identifying RIG-I ligands, but our knowledge of the ligands for MDA5 remains restricted to data from transfection experiments mostly using poly(I:C, a synthetic dsRNA mimic. Here, we dissected the IFN-α/β-stimulatory activity of different viral RNA species produced during picornavirus infection, both by RNA transfection and in infected cells in which specific steps of viral RNA replication were inhibited. Our results show that the incoming genomic plus-strand RNA does not activate MDA5, but minus-strand RNA synthesis and production of the 7.5 kbp replicative form trigger a strong IFN-α/β response. IFN-α/β production does not rely on plus-strand RNA synthesis and thus generation of the partially double-stranded replicative intermediate. This study reports MDA5 activation by a natural RNA ligand under physiological conditions.

  5. Adeno-associated virus rep protein synthesis during productive infection

    International Nuclear Information System (INIS)

    Redemann, B.E.; Mendelson, E.; Carter, B.J.

    1989-01-01

    Adeno-associated virus (AAV) Rep proteins mediate viral DNA replication and can regulate expression from AAV genes. The authors studied the kinetics of synthesis of the four Rep proteins, Rep78, Rep68, Rep52, and Rep40, during infection of human 293 or KB cells with AAV and helper adenovirus by in vivo labeling with [ 35 S]methionine, immunoprecipitation, and immunoblotting analyses. Rep78 and Rep52 were readily detected concomitantly with detection of viral monomer duplex DNA replicating about 10 to 12 h after infection, and Rep68 and Rep40 were detected 2 h later. Rep78 and Rep52 were more abundant than Rep68 and Rep40 owing to a higher synthesis rate throughout the infectious cycle. In some experiments, very low levels of Rep78 could be detected as early as 4 h after infection. The synthesis rates of Rep proteins were maximal between 14 and 24 h and then decreased later after infection. Isotopic pulse-chase experiments showed that each of the Rep proteins was synthesized independently and was stable for at least 15 h. A slower-migrating, modified form of Rep78 was identified late after infection. AAV capsid protein synthesis was detected at 10 to 12 h after infection and also exhibited synthesis kinetics similar to those of the Rep proteins. AAV DNA replication showed at least two clearly defined stages. Bulk duplex replicating DNA accumulation began around 10 to 12 h and reached a maximum level at about 20 h when Rep and capsid protein synthesis was maximal. Progeny single-stranded DNA accumulation began about 12 to 13 h, but most of this DNA accumulated after 24 h when Rep and capsid protein synthesis had decreased

  6. Enhancing gene delivery of adeno-associated viruses by cell-permeable peptides

    Directory of Open Access Journals (Sweden)

    Yarong Liu

    2014-01-01

    Full Text Available Adeno-associated virus type 2 (AAV2 is considered a promising gene delivery vector and has been extensively applied in several disease models; however, inefficient transduction in various cells and tissues has limited its widespread application in many areas of gene therapy. In this study, we have developed a general, but efficient, strategy to enhance viral transduction, both in vitro and in vivo, by incubating viral particles with cell-permeable peptides (CPPs. We show that CPPs increase internalization of viral particles into cells by facilitating both energy-independent and energy-dependent endocytosis. Moreover, CPPs can significantly enhance the endosomal escape process of viral particles, thus enhancing viral transduction to those cells that have exhibited very low permissiveness to AAV2 infection as a result of impaired intracellular viral processing. We also demonstrated that this approach could be applicable to other AAV serotypes. Thus, the membrane-penetrating ability of CPPs enables us to generate an efficient method for enhanced gene delivery of AAV vectors, potentially facilitating its applicability to human gene therapy.

  7. Long-term correction of canine hemophilia B by gene transfer of blood coagulation factor IX mediated by adeno-associated viral vector.

    Science.gov (United States)

    Herzog, R W; Yang, E Y; Couto, L B; Hagstrom, J N; Elwell, D; Fields, P A; Burton, M; Bellinger, D A; Read, M S; Brinkhous, K M; Podsakoff, G M; Nichols, T C; Kurtzman, G J; High, K A

    1999-01-01

    Hemophilia B is a severe X-linked bleeding diathesis caused by the absence of functional blood coagulation factor IX, and is an excellent candidate for treatment of a genetic disease by gene therapy. Using an adeno-associated viral vector, we demonstrate sustained expression (>17 months) of factor IX in a large-animal model at levels that would have a therapeutic effect in humans (up to 70 ng/ml, adequate to achieve phenotypic correction, in an animal injected with 8.5x10(12) vector particles/kg). The five hemophilia B dogs treated showed stable, vector dose-dependent partial correction of the whole blood clotting time and, at higher doses, of the activated partial thromboplastin time. In contrast to other viral gene delivery systems, this minimally invasive procedure, consisting of a series of percutaneous intramuscular injections at a single timepoint, was not associated with local or systemic toxicity. Efficient gene transfer to muscle was shown by immunofluorescence staining and DNA analysis of biopsied tissue. Immune responses against factor IX were either absent or transient. These data provide strong support for the feasibility of the approach for therapy of human subjects.

  8. The importance of becoming double-stranded: Innate immunity and the kinetic model of HIV-1 central plus strand synthesis

    International Nuclear Information System (INIS)

    Poeschla, Eric

    2013-01-01

    Central initiation of plus strand synthesis is a conserved feature of lentiviruses and certain other retroelements. This complication of the standard reverse transcription mechanism produces a transient “central DNA flap” in the viral cDNA, which has been proposed to mediate its subsequent nuclear import. This model has assumed that the important feature is the flapped DNA structure itself rather than the process that produces it. Recently, an alternative kinetic model was proposed. It posits that central plus strand synthesis functions to accelerate conversion to the double-stranded state, thereby helping HIV-1 to evade single-strand DNA-targeting antiviral restrictions such as APOBEC3 proteins, and perhaps to avoid innate immune sensor mechanisms. The model is consistent with evidence that lentiviruses must often synthesize their cDNAs when dNTP concentrations are limiting and with data linking reverse transcription and uncoating. There may be additional kinetic advantages for the artificial genomes of lentiviral gene therapy vectors. - Highlights: • Two main functional models for HIV central plus strand synthesis have been proposed. • In one, a transient central DNA flap in the viral cDNA mediates HIV-1 nuclear import. • In the other, multiple kinetic consequences are emphasized. • One is defense against APOBEC3G, which deaminates single-stranded DNA. • Future questions pertain to antiviral restriction, uncoating and nuclear import

  9. Intracellular generation of single-strand template increases the knock-in efficiency by combining CRISPR/Cas9 with AAV.

    Science.gov (United States)

    Xiao, Qing; Min, Taishan; Ma, Shuangping; Hu, Lingna; Chen, Hongyan; Lu, Daru

    2018-04-18

    Targeted integration of transgenes facilitates functional genomic research and holds prospect for gene therapy. The established microhomology-mediated end-joining (MMEJ)-based strategy leads to the precise gene knock-in with easily constructed donor, yet the limited efficiency remains to be further improved. Here, we show that single-strand DNA (ssDNA) donor contributes to efficient increase of knock-in efficiency and establishes a method to achieve the intracellular linearization of long ssDNA donor. We identified that the CRISPR/Cas9 system is responsible for breaking double-strand DNA (dsDNA) of palindromic structure in inverted terminal repeats (ITRs) region of recombinant adeno-associated virus (AAV), leading to the inhibition of viral second-strand DNA synthesis. Combing Cas9 plasmids targeting genome and ITR with AAV donor delivery, the precise knock-in of gene cassette was achieved, with 13-14% of the donor insertion events being mediated by MMEJ in HEK 293T cells. This study describes a novel method to integrate large single-strand transgene cassettes into the genomes, increasing knock-in efficiency by 13.6-19.5-fold relative to conventional AAV-mediated method. It also provides a comprehensive solution to the challenges of complicated production and difficult delivery with large exogenous fragments.

  10. Induction of Immune Tolerance to Foreign Protein via Adeno-Associated Viral Vector Gene Transfer in Mid-Gestation Fetal Sheep

    Science.gov (United States)

    Davey, Marcus G.; Riley, John S.; Andrews, Abigail; Tyminski, Alec; Limberis, Maria; Pogoriler, Jennifer E.; Partridge, Emily; Olive, Aliza; Hedrick, Holly L.; Flake, Alan W.; Peranteau, William H.

    2017-01-01

    A major limitation to adeno-associated virus (AAV) gene therapy is the generation of host immune responses to viral vector antigens and the transgene product. The ability to induce immune tolerance to foreign protein has the potential to overcome this host immunity. Acquisition and maintenance of tolerance to viral vector antigens and transgene products may also permit repeat administration thereby enhancing therapeutic efficacy. In utero gene transfer (IUGT) takes advantage of the immunologic immaturity of the fetus to induce immune tolerance to foreign antigens. In this large animal study, in utero administration of AAV6.2, AAV8 and AAV9 expressing green fluorescent protein (GFP) to ~60 day fetal sheep (term: ~150 days) was performed. Transgene expression and postnatal immune tolerance to GFP and viral antigens were assessed. We demonstrate 1) hepatic expression of GFP 1 month following in utero administration of AAV6.2.GFP and AAV8.GFP, 2) in utero recipients of either AAV6.2.GFP or AAV8.GFP fail to mount an anti-GFP antibody response following postnatal GFP challenge and lack inflammatory cellular infiltrates at the intramuscular site of immunization, 3) a serotype specific anti-AAV neutralizing antibody response is elicited following postnatal challenge of in utero recipients of AAV6.2 or AAV8 with the corresponding AAV serotype, and 4) durable hepatic GFP expression was observed up to 6 months after birth in recipients of AAV8.GFP but expression was lost between 1 and 6 months of age in recipients of AAV6.2.GFP. The current study demonstrates, in a preclinical large animal model, the potential of IUGT to achieve host immune tolerance to the viral vector transgene product but also suggests that a single exposure to the vector capsid proteins at the time of IUGT is inadequate to induce tolerance to viral vector antigens. PMID:28141818

  11. Editing of HIV-1 RNA by the double-stranded RNA deaminase ADAR1 stimulates viral infection

    Science.gov (United States)

    Doria, Margherita; Neri, Francesca; Gallo, Angela; Farace, Maria Giulia; Michienzi, Alessandro

    2009-01-01

    Adenosine deaminases that act on dsRNA (ADARs) are enzymes that target double-stranded regions of RNA converting adenosines into inosines (A-to-I editing) thus contributing to genome complexity and fine regulation of gene expression. It has been described that a member of the ADAR family, ADAR1, can target viruses and affect their replication process. Here we report evidence showing that ADAR1 stimulates human immuno deficiency virus type 1 (HIV-1) replication by using both editing-dependent and editing-independent mechanisms. We show that over-expression of ADAR1 in HIV-1 producer cells increases viral protein accumulation in an editing-independent manner. Moreover, HIV-1 virions generated in the presence of over-expressed ADAR1 but not an editing-inactive ADAR1 mutant are released more efficiently and display enhanced infectivity, as demonstrated by challenge assays performed with T cell lines and primary CD4+ T lymphocytes. Finally, we report that ADAR1 associates with HIV-1 RNAs and edits adenosines in the 5′ untranslated region (UTR) and the Rev and Tat coding sequence. Overall these results suggest that HIV-1 has evolved mechanisms to take advantage of specific RNA editing activity of the host cell and disclose a stimulatory function of ADAR1 in the spread of HIV-1. PMID:19651874

  12. Perinatal systemic gene delivery using adeno-associated viral vectors

    Directory of Open Access Journals (Sweden)

    Rajvinder eKarda

    2014-11-01

    Full Text Available Neurodegenerative monogenic diseases can also affect a broad range of tissues and organs throughout the body. An effective treatment would require a systemic approach. The intravenous administration of novel therapies is ideal but is hampered by the inability of such drugs to cross the blood-brain barrier and precludes efficacy in the central nervous system. A number of these early lethal intractable diseases also present devastating irreversible pathology at birth or soon after. Therefore, any therapy would ideally be administered during the perinatal period to prevent, stop or ameliorate disease progression. The concept of perinatal gene therapy has moved a step further towards being a feasible approach to treating such disorders. This has primarily been driven by the recent discoveries that particular serotypes of adeno-associated virus (AAV gene delivery vectors have the ability to cross the blood-brain barrier following intravenous administration. Furthermore, this has been safely demonstrated in perinatal mice and non-human primates. This review focuses on the progress made in using AAV to achieve systemic transduction and what this means for developing perinatal gene therapy for early lethal neurodegenerative diseases.

  13. Role of cellular FKBP52 protein in intracellular trafficking of recombinant adeno-associated virus 2 vectors

    International Nuclear Information System (INIS)

    Zhao Weihong; Zhong Li; Wu Jianqing; Chen Linyuan; Qing Keyun; Weigel-Kelley, Kirsten A.; Larsen, Steven H.; Shou Weinian; Warrington, Kenneth H.; Srivastava, Arun

    2006-01-01

    We have reported that tyrosine-phosphorylated forms of a cellular protein, FKBP52, inhibit the second-strand DNA synthesis of adeno-associated virus 2 (AAV), leading to inefficient transgene expression from recombinant AAV vectors. To further explore the role of FKBP52 in AAV-mediated transduction, we established murine embryo fibroblasts (MEFs) cultures from FKBP52 wild-type (WT), heterozygous (HE), and knockout (KO) mice. Conventional AAV vectors failed to transduce WT MEFs efficiently, and the transduction efficiency was not significantly increased in HE or KO MEFs. AAV vectors failed to traffic efficiently to the nucleus in these cells. Treatment with hydroxyurea (HU) increased the transduction efficiency of conventional AAV vectors by ∼25-fold in WT MEFs, but only by ∼4-fold in KO MEFs. The use of self-complementary AAV (scAAV) vectors, which bypass the requirement of viral second-strand DNA synthesis, revealed that HU treatment increased the transduction efficiency ∼23-fold in WT MEFs, but only ∼4-fold in KO MEFs, indicating that the lack of HU treatment-mediated increase in KO MEFs was not due to failure of AAV to undergo viral second-strand DNA synthesis. Following HU treatment, ∼59% of AAV genomes were present in the nuclear fraction from WT MEFs, but only ∼28% in KO MEFs, indicating that the pathway by which HU treatment mediates nuclear transport of AAV was impaired in KO MEFs. When KO MEFs were stably transfected with an FKBP52 expression plasmid, HU treatment-mediated increase in the transduction efficiency was restored in these cells, which correlated directly with improved intracellular trafficking. Intact AAV particles were also shown to interact with FKBP52 as well as with dynein, a known cellular protein involved in AAV trafficking. These studies suggest that FKBP52, being a cellular chaperone protein, facilitates intracellular trafficking of AAV, which has implications in the optimal use of recombinant AAV vectors in human gene

  14. [Investigation of RNA viral genome amplification by multiple displacement amplification technique].

    Science.gov (United States)

    Pang, Zheng; Li, Jian-Dong; Li, Chuan; Liang, Mi-Fang; Li, De-Xin

    2013-06-01

    In order to facilitate the detection of newly emerging or rare viral infectious diseases, a negative-strand RNA virus-severe fever with thrombocytopenia syndrome bunyavirus, and a positive-strand RNA virus-dengue virus, were used to investigate RNA viral genome unspecific amplification by multiple displacement amplification technique from clinical samples. Series of 10-fold diluted purified viral RNA were utilized as analog samples with different pathogen loads, after a series of reactions were sequentially processed, single-strand cDNA, double-strand cDNA, double-strand cDNA treated with ligation without or with supplemental RNA were generated, then a Phi29 DNA polymerase depended isothermal amplification was employed, and finally the target gene copies were detected by real time PCR assays to evaluate the amplification efficiencies of various methods. The results showed that multiple displacement amplification effects of single-strand or double-strand cDNA templates were limited, while the fold increases of double-strand cDNA templates treated with ligation could be up to 6 X 10(3), even 2 X 10(5) when supplemental RNA existed, and better results were obtained when viral RNA loads were lower. A RNA viral genome amplification system using multiple displacement amplification technique was established in this study and effective amplification of RNA viral genome with low load was achieved, which could provide a tool to synthesize adequate viral genome for multiplex pathogens detection.

  15. Complete Genome Sequence of a Double-Stranded RNA Virus from Avocado

    OpenAIRE

    Villanueva, Francisco; Sabanadzovic, Sead; Valverde, Rodrigo A.; Navas-Castillo, Jesús

    2012-01-01

    A number of avocado (Persea americana) cultivars are known to contain high-molecular-weight double-stranded RNA (dsRNA) molecules for which a viral nature has been suggested, although sequence data are not available. Here we report the cloning and complete sequencing of a 13.5-kbp dsRNA virus isolated from avocado and show that it corresponds to the genome of a new species of the genus Endornavirus (family Endornaviridae), tentatively named Persea americana endornavirus (PaEV).

  16. Novel adeno-associated viral vector delivering the utrophin gene regulator jazz counteracts dystrophic pathology in mdx mice.

    Science.gov (United States)

    Strimpakos, Georgios; Corbi, Nicoletta; Pisani, Cinzia; Di Certo, Maria Grazia; Onori, Annalisa; Luvisetto, Siro; Severini, Cinzia; Gabanella, Francesca; Monaco, Lucia; Mattei, Elisabetta; Passananti, Claudio

    2014-09-01

    Over-expression of the dystrophin-related gene utrophin represents a promising therapeutic strategy for Duchenne muscular dystrophy (DMD). The strategy is based on the ability of utrophin to functionally replace defective dystrophin. We developed the artificial zinc finger transcription factor "Jazz" that up-regulates both the human and mouse utrophin promoter. We observed a significant recovery of muscle strength in dystrophic Jazz-transgenic mdx mice. Here we demonstrate the efficacy of an experimental gene therapy based on the systemic delivery of Jazz gene in mdx mice by adeno-associated virus (AAV). AAV serotype 8 was chosen on the basis of its high affinity for skeletal muscle. Muscle-specific expression of the therapeutic Jazz gene was enhanced by adding the muscle α-actin promoter to the AAV vector (mAAV). Injection of mAAV8-Jazz viral preparations into mdx mice resulted in muscle-specific Jazz expression coupled with up-regulation of the utrophin gene. We show a significant recovery from the dystrophic phenotype in mAAV8-Jazz-treated mdx mice. Histological and physiological analysis revealed a reduction of fiber necrosis and inflammatory cell infiltration associated with functional recovery in muscle contractile force. The combination of ZF-ATF technology with the AAV delivery can open a new avenue to obtain a therapeutic strategy for treatment of DMD. © 2014 Wiley Periodicals, Inc.

  17. Double-Stranded Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2001-01-01

    A novel class of compounds, known as peptide nucleic acids, form double-stranded structures with one another and with ssDNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker.......A novel class of compounds, known as peptide nucleic acids, form double-stranded structures with one another and with ssDNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  18. Robust Lentiviral Gene Delivery But Limited Transduction Capacity of Commonly Used Adeno-Associated Viral Serotypes in Xenotransplanted Human Skin.

    Science.gov (United States)

    Jakobsen, Maria; Askou, Anne Louise; Stenderup, Karin; Rosada, Cecilia; Dagnæs-Hansen, Frederik; Jensen, Thomas G; Corydon, Thomas J; Mikkelsen, Jacob Giehm; Aagaard, Lars

    2015-08-01

    Skin is an easily accessible organ, and therapeutic gene transfer to skin remains an attractive alternative for the treatment of skin diseases. Although we have previously documented potent lentiviral gene delivery to human skin, vectors based on adeno-associated virus (AAV) rank among the most promising gene delivery tools for in vivo purposes. Thus, we compared the potential usefulness of various serotypes of recombinant AAV vectors and lentiviral vectors for gene transfer to human skin in a xenotransplanted mouse model. Vector constructs encoding firefly luciferase were packaged in AAV capsids of serotype 1, 2, 5, 6, 8, and 9 and separately administered by intradermal injection in human skin transplants. For all serotypes, live bioimaging demonstrated low levels of transgene expression in the human skin graft, and firefly luciferase expression was observed primarily in neighboring tissue outside of the graft. In contrast, gene delivery by intradermally injected lentiviral vectors was efficient and led to extensive and persistent firefly luciferase expression within the human skin graft only. The study demonstrates the limited capacity of single-stranded AAV vectors of six commonly used serotypes for gene delivery to human skin in vivo.

  19. Complete Genome Sequence of a Double-Stranded RNA Virus from Avocado

    Science.gov (United States)

    Villanueva, Francisco; Sabanadzovic, Sead; Valverde, Rodrigo A.

    2012-01-01

    A number of avocado (Persea americana) cultivars are known to contain high-molecular-weight double-stranded RNA (dsRNA) molecules for which a viral nature has been suggested, although sequence data are not available. Here we report the cloning and complete sequencing of a 13.5-kbp dsRNA virus isolated from avocado and show that it corresponds to the genome of a new species of the genus Endornavirus (family Endornaviridae), tentatively named Persea americana endornavirus (PaEV). PMID:22205720

  20. A comparative analysis of constitutive promoters located in adeno-associated viral vectors.

    Directory of Open Access Journals (Sweden)

    Lkhagvasuren Damdindorj

    Full Text Available The properties of constitutive promoters within adeno-associated viral (AAV vectors have not yet been fully characterized. In this study, AAV vectors, in which enhanced GFP expression was directed by one of the six constitutive promoters (human β-actin, human elongation factor-1α, chicken β-actin combined with cytomegalovirus early enhancer, cytomegalovirus (CMV, simian virus 40, and herpes simplex virus thymidine kinase, were constructed and introduced into the HCT116, DLD-1, HT-1080, and MCF-10A cell lines. Quantification of GFP signals in infected cells demonstrated that the CMV promoter produced the highest GFP expression in the six promoters and maintained relatively high GFP expression for up to eight weeks after infection of HCT116, DLD-1, and HT-1080. Exogenous human CDKN2A gene expression was also introduced into DLD-1 and MCF-10A in a similar pattern by using AAV vectors bearing the human β-actin and the CMV promoters. The six constitutive promoters were subsequently placed upstream of the neomycin resistance gene within AAV vectors, and HCT116, DLD-1, and HT-1080 were infected with the resulting vectors. Of the six promoters, the CMV promoter produced the largest number of G418-resistant colonies in all three cell lines. Because AAV vectors have been frequently used as a platform to construct targeting vectors that permit gene editing in human cell lines, we lastly infected the three cell lines with AAV-based targeting vectors against the human PIGA gene in which one of the six promoters regulate the neomycin resistance gene. This assay revealed that the CMV promoter led to the lowest PIGA gene targeting efficiency in the investigated promoters. These results provide a clue to the identification of constitutive promoters suitable to express exogenous genes with AAV vectors, as well as those helpful to conduct efficient gene targeting using AAV-based targeting vectors in human cell lines.

  1. Targeted CNS delivery using human MiniPromoters and demonstrated compatibility with adeno-associated viral vectors

    Directory of Open Access Journals (Sweden)

    Charles N de Leeuw

    2014-01-01

    Full Text Available Critical for human gene therapy is the availability of small promoters tools to drive gene expression in a highly specific and reproducible manner. We tackled this challenge by developing human DNA MiniPromoters (MiniPs using computational biology and phylogenetic conservation. MiniPs were tested in mouse as single-copy knock-ins at the Hprt locus on the X chromosome and evaluated for lacZ reporter expression in central nervous system (CNS and non–CNS tissue. Eighteen novel MiniPs driving expression in mouse brain were identified, 2 MiniPs for driving pan-neuronal expression and 17 MiniPs for the mouse eye. Key areas of therapeutic interest were represented in this set: the cerebral cortex, embryonic hypothalamus, spinal cord, bipolar and ganglion cells of the retina, and skeletal muscle. We also demonstrated that three retinal ganglion cell MiniPs exhibit similar cell type specificity when delivered via adeno-associated virus vectors intravitreally. We conclude that our methodology and characterization has resulted in desirable expression characteristics that are intrinsic to the MiniPromoter, not dictated by copy-number effects or genomic location, and results in constructs predisposed to success in adeno-associated virus. These MiniPs are immediately applicable for preclinical studies toward gene therapy in humans and are publicly available to facilitate basic and clinical research, and human gene therapy.

  2. Adeno-Associated Viral Vector-Mediated mTOR Inhibition by Short Hairpin RNA Suppresses Laser-Induced Choroidal Neovascularization

    Directory of Open Access Journals (Sweden)

    Tae Kwann Park

    2017-09-01

    Full Text Available Choroidal neovascularization (CNV is the defining characteristic feature of the wet subtype of age-related macular degeneration (AMD and may result in irreversible blindness. Based on anti-vascular endothelial growth factor (anti-VEGF, the current therapeutic approaches to CNV are fraught with difficulties, and mammalian target of rapamycin (mTOR has recently been proposed as a possible therapeutic target, although few studies have been conducted. Here, we show that a recombinant adeno-associated virus-delivered mTOR-inhibiting short hairpin RNA (rAAV-mTOR shRNA, which blocks the activity of both mTOR complex 1 and 2, represents a promising therapeutic approach for the treatment of CNV. Eight-week-old male C57/B6 mice were treated with the short hairpin RNA (shRNA after generating CNV lesions in the eyes via laser photocoagulation. The recombinant adeno-associated virus (rAAV delivery vehicle was able to effectively transduce cells in the inner retina, and significantly fewer inflammatory cells and less extensive CNV were observed in the animals treated with rAAV-mTOR shRNA when compared with control- and rAAV-scrambled shRNA-treated groups. Presumably related to the reduction of CNV, increased autophagy was detected in CNV lesions treated with rAAV-mTOR shRNA, whereas significantly fewer apoptotic cells detected in the outer nuclear layer around the CNV indicate that mTOR inhibition may also have neuroprotective effects. Taken together, these results demonstrate the therapeutic potential of mTOR inhibition, resulting from rAAV-mTOR shRNA activity, in the treatment of AMD-related CNV. Keywords: retinal neovascularization, choroidal neovascularization, adeno-associated virus, mTOR, RNA interference, mTOR shRNA, autophagy

  3. Inhibition of APOBEC3G activity impedes double-stranded DNA repair.

    Science.gov (United States)

    Prabhu, Ponnandy; Shandilya, Shivender M D; Britan-Rosich, Elena; Nagler, Adi; Schiffer, Celia A; Kotler, Moshe

    2016-01-01

    The cellular cytidine deaminase APOBEC3G (A3G) was first described as an anti-HIV-1 restriction factor, acting by directly deaminating reverse transcripts of the viral genome. HIV-1 Vif neutralizes the activity of A3G, primarily by mediating degradation of A3G to establish effective infection in host target cells. Lymphoma cells, which express high amounts of A3G, can restrict Vif-deficient HIV-1. Interestingly, these cells are more stable in the face of treatments that result in double-stranded DNA damage, such as ionizing radiation and chemotherapies. Previously, we showed that the Vif-derived peptide (Vif25-39) efficiently inhibits A3G deamination, and increases the sensitivity of lymphoma cells to ionizing radiation. In the current study, we show that additional peptides derived from Vif, A3G, and APOBEC3F, which contain the LYYF motif, inhibit deamination activity. Each residue in the Vif25-39 sequence moderately contributes to the inhibitory effect, whereas replacing a single residue in the LYYF motif completely abrogates inhibition of deamination. Treatment of A3G-expressing lymphoma cells exposed to ionizing radiation with the new inhibitory peptides reduces double-strand break repair after irradiation. Incubation of cultured irradiated lymphoma cells with peptides that inhibit double-strand break repair halts their propagation. These results suggest that A3G may be a potential therapeutic target that is amenable to peptide and peptidomimetic inhibition. © 2015 FEBS.

  4. Multiple pathways of DNA double-strand break processing in a mutant Indian muntjac cell line

    International Nuclear Information System (INIS)

    Bouffler, S.D.; Jha, B.; Johnson, R.T.

    1990-01-01

    DNA break processing is compared in the Indian muntjac cell lines, SVM and DM. The initial frequencies and resealing of X-ray generated single- and double-strand breaks are similar in the two cell lines. Inhibiting the repair of UV damage leads to greater double-strand breakage in SVM than in DM, and some of these breaks are not repaired; however, repair-associated single-strand breakage and resealing are normal. Dimethylsulfate also induces excess double-strand breakage in SVM, and these breaks are irreparable. Restricted plasmids are reconstituted correctly in SVM at approximately 30% of the frequency observed in DM. Thus SVM has a reduced capacity to repair certain types of double-strand break. This defect is not due to a DNA ligase deficiency. We conclude that DNA double-strand breaks are repaired by a variety of pathways within mammalian cells and that the structure of the break or its mode of formation determines its subsequent fate

  5. Cellular toxicity following application of adeno-associated viral vector-mediated RNA interference in the nervous system

    Directory of Open Access Journals (Sweden)

    Verhaagen Joost

    2010-02-01

    Full Text Available Abstract Background After a spinal cord lesion, axon regeneration is inhibited by the presence of a diversity of inhibitory molecules in the lesion environment. At and around the lesion site myelin-associated inhibitors, chondroitin sulfate proteoglycans (CSPGs and several axon guidance molecules, including all members of the secreted (class 3 Semaphorins, are expressed. Interfering with multiple inhibitory signals could potentially enhance the previously reported beneficial effects of blocking single molecules. RNA interference (RNAi is a tool that can be used to simultaneously silence expression of multiple genes. In this study we aimed to employ adeno-associated virus (AAV mediated expression of short hairpin RNAs (shRNAs to target all Semaphorin class 3 signaling by knocking down its receptors, Neuropilin 1 (Npn-1 and Neuropilin 2 (Npn-2. Results We have successfully generated shRNAs that knock down Npn-1 and Npn-2 in a neuronal cell line. We detected substantial knockdown of Npn-2 mRNA when AAV5 viral vector particles expressing Npn-2 specific shRNAs were injected in dorsal root ganglia (DRG of the rat. Unexpectedly however, AAV1-mediated expression of Npn-2 shRNAs and a control shRNA in the red nucleus resulted in an adverse tissue response and neuronal degeneration. The observed toxicity was dose dependent and was not seen with control GFP expressing AAV vectors, implicating the shRNAs as the causative toxic agents. Conclusions RNAi is a powerful tool to knock down Semaphorin receptor expression in neuronal cells in vitro and in vivo. However, when shRNAs are expressed at high levels in CNS neurons, they trigger an adverse tissue response leading to neuronal degradation.

  6. Mechanisms of DNA Packaging by Large Double-Stranded DNA Viruses

    Science.gov (United States)

    Rao, Venigalla B.; Feiss, Michael

    2016-01-01

    Translocation of viral double-stranded DNA (dsDNA) into the icosahedral prohead shell is catalyzed by TerL, a motor protein that has ATPase, endonuclease, and translocase activities. TerL, following endonucleolytic cleavage of immature viral DNA concatemer recognized by TerS, assembles into a pentameric ring motor on the prohead’s portal vertex and uses ATP hydrolysis energy for DNA translocation. TerL’s N-terminal ATPase is connected by a hinge to the C-terminal endonuclease. Inchworm models propose that modest domain motions accompanying ATP hydrolysis are amplified, through changes in electrostatic interactions, into larger movements of the C-terminal domain bound to DNA. In phage φ29, four of the five TerL subunits sequentially hydrolyze ATP, each powering translocation of 2.5 bp. After one viral genome is encapsidated, the internal pressure signals termination of packaging and ejection of the motor. Current focus is on the structures of packaging complexes and the dynamics of TerL during DNA packaging, endonuclease regulation, and motor mechanics. PMID:26958920

  7. Fragmentation in DNA double-strand breaks

    International Nuclear Information System (INIS)

    Wei Zhiyong; Suzhou Univ., Suzhou; Zhang Lihui; Li Ming; Fan Wo; Xu Yujie

    2005-01-01

    DNA double strand breaks are important lesions induced by irradiations. Random breakage model or quantification supported by this concept is suitable to analyze DNA double strand break data induced by low LET radiation, but deviation from random breakage model is more evident in high LET radiation data analysis. In this work we develop a new method, statistical fragmentation model, to analyze the fragmentation process of DNA double strand breaks. After charged particles enter the biological cell, they produce ionizations along their tracks, and transfer their energies to the cells and break the cellular DNA strands into fragments. The probable distribution of the fragments is obtained under the condition in which the entropy is maximum. Under the approximation E≅E 0 + E 1 l + E 2 l 2 , the distribution functions are obtained as exp(αl + βl 2 ). There are two components, the one proportional to exp(βl 2 ), mainly contributes to the low mass fragment yields, the other component, proportional to exp(αl), decreases slowly as the mass of the fragments increases. Numerical solution of the constraint equations provides parameters α and β. Experimental data, especially when the energy deposition is higher, support the statistical fragmentation model. (authors)

  8. Pharmacology of Recombinant Adeno-associated Virus Production

    Directory of Open Access Journals (Sweden)

    Magalie Penaud-Budloo

    2018-03-01

    Full Text Available Recombinant adeno-associated viral (rAAV vectors have been used in more than 150 clinical trials with a good safety profile and significant clinical benefit in many genetic diseases. In addition, due to their ability to infect non-dividing and dividing cells and to serve as efficient substrate for homologous recombination, rAAVs are being used as a tool for gene-editing approaches. However, manufacturing of these vectors at high quantities and fulfilling current good manufacturing practices (GMP is still a challenge, and several technological platforms are competing for this niche. Herein, we will describe the most commonly used upstream methods to produce rAAVs, paying particular attention to the starting materials (input used in each platform and which related impurities can be expected in final products (output. The most commonly found impurities in rAAV stocks include defective particles (i.e., AAV capsids that do contain the therapeutic gene or are not infectious, residual proteins from host cells and helper viruses (adenovirus, herpes simplex virus, or baculoviruses, and illegitimate DNA from plasmids, cells, or helper viruses that may be encapsidated into rAAV particles. Given the role that impurities may play in immunotoxicity, this article reviews the impurities inherently associated with each manufacturing platform.

  9. The cumulative burden of double-stranded DNA virus detection after allogeneic HCT is associated with increased mortality.

    Science.gov (United States)

    Hill, Joshua A; Mayer, Bryan T; Xie, Hu; Leisenring, Wendy M; Huang, Meei-Li; Stevens-Ayers, Terry; Milano, Filippo; Delaney, Colleen; Sorror, Mohamed L; Sandmaier, Brenda M; Nichols, Garrett; Zerr, Danielle M; Jerome, Keith R; Schiffer, Joshua T; Boeckh, Michael

    2017-04-20

    Strategies to prevent active infection with certain double-stranded DNA (dsDNA) viruses after allogeneic hematopoietic cell transplantation (HCT) are limited by incomplete understanding of their epidemiology and clinical impact. We retrospectively tested weekly plasma samples from allogeneic HCT recipients at our center from 2007 to 2014. We used quantitative PCR to test for cytomegalovirus, BK polyomavirus, human herpesvirus 6B, HHV-6A, adenovirus, and Epstein-Barr virus between days 0 and 100 post-HCT. We evaluated risk factors for detection of multiple viruses and association of viruses with mortality through day 365 post-HCT with Cox models. Among 404 allogeneic HCT recipients, including 125 cord blood, 125 HLA-mismatched, and 154 HLA-matched HCTs, detection of multiple viruses was common through day 100: 90% had ≥1, 62% had ≥2, 28% had ≥3, and 5% had 4 or 5 viruses. Risk factors for detection of multiple viruses included cord blood or HLA-mismatched HCT, myeloablative conditioning, and acute graft-versus-host disease ( P values < .01). Absolute lymphocyte count of <200 cells/mm 3 was associated with greater virus exposure on the basis of the maximum cumulative viral load area under the curve (AUC) ( P = .054). The maximum cumulative viral load AUC was the best predictor of early (days 0-100) and late (days 101-365) overall mortality (adjusted hazard ratio [aHR] = 1.36, 95% confidence interval [CI] [1.25, 1.49], and aHR = 1.04, 95% CI [1.0, 1.08], respectively) after accounting for immune reconstitution and graft-versus-host disease. In conclusion, detection of multiple dsDNA viruses was frequent after allogeneic HCT and had a dose-dependent association with increased mortality. These data suggest opportunities to improve outcomes with better antiviral strategies. © 2017 by The American Society of Hematology.

  10. Structural Studies of Adeno-Associated Virus Serotype 8 Capsid Transitions Associated with Endosomal Trafficking

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Hyun-Joo; Gurda, Brittney L.; McKenna, Robert; Potter, Mark; Byrne, Barry; Salganik, Maxim; Muzyczka, Nicholas; Agbandje-McKenna, Mavis (Florida)

    2012-09-17

    The single-stranded DNA (ssDNA) parvoviruses enter host cells through receptor-mediated endocytosis, and infection depends on processing in the early to late endosome as well as in the lysosome prior to nuclear entry for replication. However, the mechanisms of capsid endosomal processing, including the effects of low pH, are poorly understood. To gain insight into the structural transitions required for this essential step in infection, the crystal structures of empty and green fluorescent protein (GFP) gene-packaged adeno-associated virus serotype 8 (AAV8) have been determined at pH values of 6.0, 5.5, and 4.0 and then at pH 7.5 after incubation at pH 4.0, mimicking the conditions encountered during endocytic trafficking. While the capsid viral protein (VP) topologies of all the structures were similar, significant amino acid side chain conformational rearrangements were observed on (i) the interior surface of the capsid under the icosahedral 3-fold axis near ordered nucleic acid density that was lost concomitant with the conformational change as pH was reduced and (ii) the exterior capsid surface close to the icosahedral 2-fold depression. The 3-fold change is consistent with DNA release from an ordering interaction on the inside surface of the capsid at low pH values and suggests transitions that likely trigger the capsid for genome uncoating. The surface change results in disruption of VP-VP interface interactions and a decrease in buried surface area between VP monomers. This disruption points to capsid destabilization which may (i) release VP1 amino acids for its phospholipase A2 function for endosomal escape and nuclear localization signals for nuclear targeting and (ii) trigger genome uncoating.

  11. TALEN-Induced Double-Strand Break Repair of CTG Trinucleotide Repeats

    Directory of Open Access Journals (Sweden)

    Valentine Mosbach

    2018-02-01

    Full Text Available Trinucleotide repeat expansions involving CTG/CAG triplets are responsible for several neurodegenerative disorders, including myotonic dystrophy and Huntington’s disease. Because expansions trigger the disease, contracting repeat length could be a possible approach to gene therapy for these disorders. Here, we show that a TALEN-induced double-strand break was very efficient at contracting expanded CTG repeats in yeast. We show that RAD51, POL32, and DNL4 are dispensable for double-strand break repair within CTG repeats, the only required genes being RAD50, SAE2, and RAD52. Resection was totally abolished in the absence of RAD50 on both sides of the break, whereas it was reduced in a sae2Δ mutant on the side of the break containing the longest repeat tract, suggesting that secondary structures at double-strand break ends must be removed by the Mre11-Rad50 complex and Sae2. Following the TALEN double-strand break, single-strand annealing occurred between both sides of the repeat tract, leading to repeat contraction.

  12. 75 FR 62820 - Screening Framework Guidance for Providers of Synthetic Double-Stranded DNA

    Science.gov (United States)

    2010-10-13

    ... Providers of Synthetic Double- Stranded DNA AGENCY: Department of Health and Human Services, Office of the.... Government has developed Guidance that provides a framework for screening synthetic double-stranded DNA (dsDNA). This document, the Screening Framework Guidance for Providers of Synthetic Double-Stranded DNA...

  13. Excess single-stranded DNA inhibits meiotic double-strand break repair.

    Directory of Open Access Journals (Sweden)

    Rebecca Johnson

    2007-11-01

    Full Text Available During meiosis, self-inflicted DNA double-strand breaks (DSBs are created by the protein Spo11 and repaired by homologous recombination leading to gene conversions and crossovers. Crossover formation is vital for the segregation of homologous chromosomes during the first meiotic division and requires the RecA orthologue, Dmc1. We analyzed repair during meiosis of site-specific DSBs created by another nuclease, VMA1-derived endonuclease (VDE, in cells lacking Dmc1 strand-exchange protein. Turnover and resection of the VDE-DSBs was assessed in two different reporter cassettes that can repair using flanking direct repeat sequences, thereby obviating the need for a Dmc1-dependent DNA strand invasion step. Access of the single-strand binding complex replication protein A, which is normally used in all modes of DSB repair, was checked in chromatin immunoprecipitation experiments, using antibody against Rfa1. Repair of the VDE-DSBs was severely inhibited in dmc1Delta cells, a defect that was associated with a reduction in the long tract resection required to initiate single-strand annealing between the flanking repeat sequences. Mutants that either reduce Spo11-DSB formation or abolish resection at Spo11-DSBs rescued the repair block. We also found that a replication protein A component, Rfa1, does not accumulate to expected levels at unrepaired single-stranded DNA (ssDNA in dmc1Delta cells. The requirement of Dmc1 for VDE-DSB repair using flanking repeats appears to be caused by the accumulation of large quantities of ssDNA that accumulate at Spo11-DSBs when Dmc1 is absent. We propose that these resected DSBs sequester both resection machinery and ssDNA binding proteins, which in wild-type cells would normally be recycled as Spo11-DSBs repair. The implication is that repair proteins are in limited supply, and this could reflect an underlying mechanism for regulating DSB repair in wild-type cells, providing protection from potentially harmful effects

  14. The human skin double-stranded DNA virome: topographical and temporal diversity, genetic enrichment, and dynamic associations with the host microbiome.

    Science.gov (United States)

    Hannigan, Geoffrey D; Meisel, Jacquelyn S; Tyldsley, Amanda S; Zheng, Qi; Hodkinson, Brendan P; SanMiguel, Adam J; Minot, Samuel; Bushman, Frederic D; Grice, Elizabeth A

    2015-10-20

    Viruses make up a major component of the human microbiota but are poorly understood in the skin, our primary barrier to the external environment. Viral communities have the potential to modulate states of cutaneous health and disease. Bacteriophages are known to influence the structure and function of microbial communities through predation and genetic exchange. Human viruses are associated with skin cancers and a multitude of cutaneous manifestations. Despite these important roles, little is known regarding the human skin virome and its interactions with the host microbiome. Here we evaluated the human cutaneous double-stranded DNA virome by metagenomic sequencing of DNA from purified virus-like particles (VLPs). In parallel, we employed metagenomic sequencing of the total skin microbiome to assess covariation and infer interactions with the virome. Samples were collected from 16 subjects at eight body sites over 1 month. In addition to the microenviroment, which is known to partition the bacterial and fungal microbiota, natural skin occlusion was strongly associated with skin virome community composition. Viral contigs were enriched for genes indicative of a temperate phage replication style and also maintained genes encoding potential antibiotic resistance and virulence factors. CRISPR spacers identified in the bacterial DNA sequences provided a record of phage predation and suggest a mechanism to explain spatial partitioning of skin phage communities. Finally, we modeled the structure of bacterial and phage communities together to reveal a complex microbial environment with a Corynebacterium hub. These results reveal the previously underappreciated diversity, encoded functions, and viral-microbial dynamic unique to the human skin virome. To date, most cutaneous microbiome studies have focused on bacterial and fungal communities. Skin viral communities and their relationships with their hosts remain poorly understood despite their potential to modulate states

  15. Formation of double-strand breaks in DNA of γ-irradiated bacteria depending on the function of fast repair processes of DNA single-strand breaks

    International Nuclear Information System (INIS)

    Petrov, S.I.; Gaziev, A.I.

    1980-01-01

    The formation of double-strand breaks in DNA of γ-irradiated ( 60 Co)Ex coli bacteria depending on the function of fast repair processes of DNA single-strand breaks, is investigated. The profiles of sedimentation of DNA Ex coli cells, irradiated at 0-2 deg C in the salt medium and in EDTA-borate buffer, are presented. It is shown that when irradiating cells in EDTA-borate buffer, the output of single- and double strand breaks in DNA is much higher than in the case of their irradiation in the minimum salt medium. The dependence of output of single-strand and double-strand breaks depending on the radiatier doze of E coli cells in the salt medium and EDTA-borate buffer, is studied. The supposition is made on the presence of a regulative interaction between the accumulation of DNA single-breaks and their repair with the formation of double-strand breaks. The functionating of fast and superfast repair processes considerably affects the formation of double-strand breaks in DNA of a bacterium cell. A considerable amount of double-breaks registered immediately after irradiation forms due to a close position of single-strand breaks on the opposite DNA strands

  16. Sensitivity and specificity of the AdenoPlus test for diagnosing adenoviral conjunctivitis.

    Science.gov (United States)

    Sambursky, Robert; Trattler, William; Tauber, Shachar; Starr, Christopher; Friedberg, Murray; Boland, Thomas; McDonald, Marguerite; DellaVecchia, Michael; Luchs, Jodi

    2013-01-01

    To compare the clinical sensitivity and specificity of the AdenoPlus test with those of both viral cell culture (CC) with confirmatory immunofluorescence assay (IFA) and polymerase chain reaction (PCR) at detecting the presence of adenovirus in tear fluid. A prospective, sequential, masked, multicenter clinical trial enrolled 128 patients presenting with a clinical diagnosis of acute viral conjunctivitis from a combination of 8 private ophthalmology practices and academic centers. Patients were tested with AdenoPlus, CC-IFA, and PCR to detect the presence of adenovirus. The sensitivity and specificity of AdenoPlus were assessed for identifying cases of adenoviral conjunctivitis. Of the 128 patients enrolled, 36 patients' results were found to be positive by either CC-IFA or PCR and 29 patients' results were found to be positive by both CC-IFA and PCR. When compared only with CC-IFA, AdenoPlus showed a sensitivity of 90% (28/31) and specificity of 96% (93/97). When compared only with PCR, AdenoPlus showed a sensitivity of 85% (29/34) and specificity of 98% (89/91). When compared with both CC-IFA and PCR, AdenoPlus showed a sensitivity of 93% (27/29) and specificity of 98% (88/90). When compared with PCR, CC-IFA showed a sensitivity of 85% (29/34) and specificity of 99% (90/91). AdenoPlus is sensitive and specific at detecting adenoviral conjunctivitis. An accurate and rapid in-office test can prevent the misdiagnosis of adenoviral conjunctivitis that leads to the spread of disease, unnecessary antibiotic use, and increased health care costs. Additionally, AdenoPlus may help a clinician make a more informed treatment decision regarding the use of novel therapeutics. clinicaltrials.gov Identifier: NCT00921895.

  17. Repair and gamma radiation-induced single- and double-strand breaks in DNA of Escherichia coli

    International Nuclear Information System (INIS)

    Petrov, S.I.

    1981-01-01

    Studies in the kinetics of repair of γ-radiation-induced single- and double-strand breaks in DNA of E. coli cells showed that double-strand DNA breaks are rejoined by the following two ways. The first way is conditioned by repair of single-strand breaks and represents the repair of ''oblique'' double-strand breaks in DNA, whereas the second way is conditioned by functioning of the recombination mechanisms and, to all appearance, represents the repair of ''direct'' double-strand breaks in DNA

  18. Adeno-associated virus-mediated gene transfer

    OpenAIRE

    Srivastava, Arun

    2008-01-01

    Although the remarkable versatility and efficacy of recombinant adeno-associated virus 2 (AAV2) vectors in transducing a wide variety of cells and tissues in vitro, and in numerous pre-clinical animal models of human diseases in vivo, have been well established, the published literature is replete with controversies with regard to the efficacy of AAV2 vectors in hematopoietic stem cell (HSC) transduction. A number of factors have contributed to these controversies, the molecular bases of whic...

  19. Three methods to determine the yields of DNA double-strand breaks

    International Nuclear Information System (INIS)

    Erzgraeber, G.; Lapidus, I.L.

    1985-01-01

    A possibility of determining the yield of DNA double-strand breaks in cells of the Chinese hamster (V79-4) by finding the amount of DNA released as a result of breaks and by determining the relative sedimentation velocity of DNA-membrane complexes affected by ionizing radiations with different physical characteristics is discussed. Results of the analysis are compared with the data obtained by a traditional method of sedimentation in the neutral sucrose density gradient. Comparative characterization of the methods is discussed. The yields of DNA double-strand breaks determined by the suggested independent methods are in good agreement, which opens possibilities of studying induction and repair of double-strand breaks by means of simpler and more reliable methods

  20. Study in regularities in the formation of double stranded DNA breaks in irradiated rat thymocytes

    International Nuclear Information System (INIS)

    Ivannik, B.P.; ProskuryakoV, S.Ya.; Ryabchenko, N.I.

    1979-01-01

    Using low-gradient viscosimetry of neutral detergent nuclear lysates a study was made of postradiation changes in the molecular weight of double-stranded DNA of thymocytes. It was established that 375 eV are needed for one double-stranded break to appear, and a dose of 1 rad is required for 0.275 double-stranded break to occur at the site of DNA with m.w. 10 12 dalton. The repair of double-stranded breaks is only observed when rats are exposed to a dose of 500 R. It is assumed that the absence of repair of double-stranded DNA breaks and the presence of secondary postradiation degradation of DNA are responsible for thymocyte death

  1. Enzymatic induction of DNA double-strand breaks in γ-irradiated Escherichia coli K-12

    International Nuclear Information System (INIS)

    Bonura, T.; Smith, K.C.; Kaplan, H.S.

    1975-01-01

    The polA1 mutation increases the sensitivity of E. coli K-12 to killing by γ-irradiation in air by a factor of 2.9 and increases the yield of DNA double-strand breaks by a factor of 2.5. These additional DNA double-strand breaks appear to be due to the action of nucleases in the polA1 strain rather than to the rejoining of radiation-induced double-strand breaks in the pol + strain. This conclusion is based upon the observation that γ-irradiation at 3 0 did not affect the yield of DNA double-strand breaks in the pol + strain, but decreased the yield in the polA1 strain by a factor of 2.2. Irradiation of the polA1 strain at 3 0 followed by incubation at 3 0 for 20 min before plating resulted in approximately a 1.5-fold increase in the D 0 . The yield of DNA double-strand breaks was reduced by a factor of 1.5. The pol + strain, however, did not show the protective effect of the low temperature incubation upon either survival or DNA double-strand breakage. We suggest that the increased yield of DNA double-strand breaks in the polA 1 strain may be the result of the unsuccessful excision repair of ionizing radiation-induced dna base damage

  2. Induction and repair of double- and single-strand DNA breaks in bacteriophage lambda superinfecting Escherichia coli

    International Nuclear Information System (INIS)

    Boye, E.; Krisch, R.E.

    1980-01-01

    Induction and repair of double-and single-strand DNA breaks have been measured after decays of 125 I and 3 H incorporated into the DNA and after external irradiation with 4 MeV electrons. For the decay experiments, cells of wild type Escherichia coli K-12 were superinfected with bacteriophage lambda DNA labelled with 5'-( 125 I)iodo-2'-deoxyuridine or with (methyl- 3 H)thymidine and frozen in liquid nitrogen. Aliquots were thawed at intervals and lysed at neutral pH, and the phage DNA was assayed for double- and single-strand breakage by neutral sucrose gradient centrifugation. The gradients used allowed measurements of both kinds of breaks in the same gradient. Decays of 125 I induced 0.39 single-strand breaks per double-strand break. No repair of either break type could be detected. Each 3 H disintegration caused 0.20 single-strand breaks and very few double-strand breaks. The single-strand breaks were rapidly rejoined after the cells were thawed. For irradiation with 4 MeV electrons, cells of wild type E. coli K-12 were superinfected with phage lambda and suspended in growth medium. Irradiation induced 42 single-strand breaks per double-strand break. The rates of break induction were 6.75 x 10 -14 (double-strand breaks) and 2.82 x 10 -12 (single-strand breaks) per rad and per dalton. The single-strand breaks were rapidly repaired upon incubation whereas the double-strand breaks seemed to remain unrepaired. It is concluded that double-strand breaks in superinfecting bacteriophage lambda DNA are repaired to a very small extent, if at all. (Author)

  3. Viral interference with DNA repair by targeting of the single-stranded DNA binding protein RPA.

    Science.gov (United States)

    Banerjee, Pubali; DeJesus, Rowena; Gjoerup, Ole; Schaffhausen, Brian S

    2013-10-01

    Correct repair of damaged DNA is critical for genomic integrity. Deficiencies in DNA repair are linked with human cancer. Here we report a novel mechanism by which a virus manipulates DNA damage responses. Infection with murine polyomavirus sensitizes cells to DNA damage by UV and etoposide. Polyomavirus large T antigen (LT) alone is sufficient to sensitize cells 100 fold to UV and other kinds of DNA damage. This results in activated stress responses and apoptosis. Genetic analysis shows that LT sensitizes via the binding of its origin-binding domain (OBD) to the single-stranded DNA binding protein replication protein A (RPA). Overexpression of RPA protects cells expressing OBD from damage, and knockdown of RPA mimics the LT phenotype. LT prevents recruitment of RPA to nuclear foci after DNA damage. This leads to failure to recruit repair proteins such as Rad51 or Rad9, explaining why LT prevents repair of double strand DNA breaks by homologous recombination. A targeted intervention directed at RPA based on this viral mechanism could be useful in circumventing the resistance of cancer cells to therapy.

  4. Disruption of Microtubules Post-Virus Entry Enhances Adeno-Associated Virus Vector Transduction

    Science.gov (United States)

    Xiao, Ping-Jie; Mitchell, Angela M.; Huang, Lu; Li, Chengwen; Samulski, R. Jude

    2016-01-01

    Perinuclear retention of viral particles is a poorly understood phenomenon observed during many virus infections. In this study, we investigated whether perinuclear accumulation acts as a barrier to limit recombinant adeno-associated virus (rAAV) transduction. After nocodazole treatment to disrupt microtubules at microtubule-organization center (MT-MTOC) after virus entry, we observed higher rAAV transduction. To elucidate the role of MT-MTOC in rAAV infection and study its underlying mechanisms, we demonstrated that rAAV's perinuclear localization was retained by MT-MTOC with fluorescent analysis, and enhanced rAAV transduction from MT-MTOC disruption was dependent on the rAAV capsid's nuclear import signals. Interestingly, after knocking down RhoA or inhibiting its downstream effectors (ROCK and Actin), MT-MTOC disruption failed to increase rAAV transduction or nuclear entry. These data suggest that enhancement of rAAV transduction is the result of increased trafficking to the nucleus via the RhoA-ROCK-Actin pathway. Ten-fold higher rAAV transduction was also observed by disrupting MT-MTOC in brain, liver, and tumor in vivo. In summary, this study indicates that virus perinuclear accumulation at MT-MTOC is a barrier-limiting parameter for effective rAAV transduction and defines a novel defense mechanism by which host cells restrain viral invasion. PMID:26942476

  5. Molecular characterization of double-stranded RNA virus in Trichomonas vaginalis Egyptian isolates and its association with pathogenicity.

    Science.gov (United States)

    El-Gayar, Eman K; Mokhtar, Amira B; Hassan, Wael A

    2016-10-01

    Trichomoniasis is a common human sexually transmitted infection caused by Trichomonas vaginalis. The parasite can be infected with double-stranded RNA viruses (TVV). This viral infection may have important implications on trichomonal virulence and disease pathogenesis. This study aimed to determine the prevalence of T. vaginalis virus among isolates obtained from infected (symptomatic and asymptomatic) women in Ismailia City, Egypt, and to correlate the virus-infected isolates with the clinical manifestations of patients. In addition, the pathogenicity of TVV infected isolates on mice was also evaluated. T. vaginalis isolates were obtained from symptomatic and asymptomatic female patients followed by axenic cultivation in Diamond's TYM medium. The presence of T. vaginalis virus was determined from total extraction of nucleic acids (DNA-RNA) followed by reverse transcriptase-PCR. Representative samples were inoculated intraperitoneally in female albino/BALB mice to assess the pathogenicity of different isolates. A total of 110 women were examined; 40 (36.3 %) samples were positive for T. vaginalis infection. Of these 40 isolates, 8 (20 %) were infected by TVV. Five isolates contained TVV-2 virus species, and the remaining three isolates were infected withTVV-4 variant. A significant association was found between the presence of TVV and particular clinical manifestations of trichomoniasis. Experimental mice infection showed varying degrees of pathogenicity. This is the first report on T. vaginalis infection by TVV in Egypt. The strong association detected between TVV and particular clinical features of trichomoniasis and also the degree of pathogenicity in experimentally infected mice may indicate a possible clinical significance of TVV infection of T. vaginalis isolates.

  6. A Novel Leu92 Mutant of HIV-1 Reverse Transcriptase with a Selective Deficiency in Strand Transfer Causes a Loss of Viral Replication.

    Science.gov (United States)

    Herzig, Eytan; Voronin, Nickolay; Kucherenko, Nataly; Hizi, Amnon

    2015-08-01

    The process of reverse transcription (RTN) in retroviruses is essential to the viral life cycle. This key process is catalyzed exclusively by the viral reverse transcriptase (RT) that copies the viral RNA into DNA by its DNA polymerase activity, while concomitantly removing the original RNA template by its RNase H activity. During RTN, the combination between DNA synthesis and RNA hydrolysis leads to strand transfers (or template switches) that are critical for the completion of RTN. The balance between these RT-driven activities was considered to be the sole reason for strand transfers. Nevertheless, we show here that a specific mutation in HIV-1 RT (L92P) that does not affect the DNA polymerase and RNase H activities abolishes strand transfer. There is also a good correlation between this complete loss of the RT's strand transfer to the loss of the DNA clamp activity of the RT, discovered recently by us. This finding indicates a mechanistic linkage between these two functions and that they are both direct and unique functions of the RT (apart from DNA synthesis and RNA degradation). Furthermore, when the RT's L92P mutant was introduced into an infectious HIV-1 clone, it lost viral replication, due to inefficient intracellular strand transfers during RTN, thus supporting the in vitro data. As far as we know, this is the first report on RT mutants that specifically and directly impair RT-associated strand transfers. Therefore, targeting residue Leu92 may be helpful in selectively blocking this RT activity and consequently HIV-1 infectivity and pathogenesis. Reverse transcription in retroviruses is essential for the viral life cycle. This multistep process is catalyzed by viral reverse transcriptase, which copies the viral RNA into DNA by its DNA polymerase activity (while concomitantly removing the RNA template by its RNase H activity). The combination and balance between synthesis and hydrolysis lead to strand transfers that are critical for reverse transcription

  7. [Hybrids of human and monkey adenoviruses (adeno-adeno hybrids) that can reproduce in monkey cells: biological and molecular genetic peculiarities].

    Science.gov (United States)

    Grinenko, N F; Savitskaia, N V; Pashvykina, G V; Al'tshteĭn, A D

    2003-06-01

    A highly oncogenic monkey adenovirus SA7(C8) facilitates the reproduction of human adenovirus type 2 (Ad2) in monkey cells. Upon mixed infection of monkey cells with both viruses, these viruses recombine producing defective adeno-adeno hybrids Ad2C8 serologically identical to Ad2 and capable of assisting Ad2 to reproduce in monkey cells. Ad2C8 and Ad2 form an intercomplementary pair inseparable in monkey cells. Unlike oncogenic SA7(C8), Ad2C8 is a nononcogenic virus for hamsters but is able to induce tumor antigens of this virus (T and TSTA). Molecular genetic analysis of 68 clones of adeno-adeno hybrids revealed that the left part of their genome consists of Ad2 DNA, and the right part contains no less than 40% of the viral SA7(C8) genome where E2A, E3, and E4 genes are located. Apparently, the products of these genes contribute to the composition of adenoviral tumor antigens, while the E4 gene is involved in complementation of monkey and human adenoviruses and makes a contribution to host range determination of these viruses.

  8. Pleolipoviridae, a newly proposed family comprising archaeal pleomorphic viruses with single-stranded or double-stranded DNA genomes.

    Science.gov (United States)

    Pietilä, Maija K; Roine, Elina; Sencilo, Ana; Bamford, Dennis H; Oksanen, Hanna M

    2016-01-01

    Viruses infecting archaea show a variety of virion morphotypes, and they are currently classified into more than ten viral families or corresponding groups. A pleomorphic virus morphotype is very common among haloarchaeal viruses, and to date, several such viruses have been isolated. Here, we propose the classification of eight such viruses and formation of a new family, Pleolipoviridae (from the Greek pleo for more or many and lipos for lipid), containing three genera, Alpha-, Beta-, and Gammapleolipovirus. The proposal is currently under review by the International Committee on Taxonomy of Viruses (ICTV). The members of the proposed family Pleolipoviridae infect halophilic archaea and are nonlytic. They share structural and genomic features and differ from any other classified virus. The virion of pleolipoviruses is composed of a pleomorphic membrane vesicle enclosing the genome. All pleolipoviruses have two major structural protein species, internal membrane and spike proteins. Although the genomes of the pleolipoviruses are single- or double-stranded, linear or circular DNA molecules, they share the same genome organization and gene synteny and show significant similarity at the amino acid level. The canonical features common to all members of the proposed family Pleolipoviridae show that they are closely related and thus form a new viral family.

  9. Torsional regulation of hRPA-induced unwinding of double-stranded DNA

    NARCIS (Netherlands)

    De Vlaminck, I.; Vidic, I.; Van Loenhout, M.T.J.; Kanaar, R.; Lebbink, J.H.G.; Dekker, C.

    2010-01-01

    All cellular single-stranded (ss) DNA is rapidly bound and stabilized by single stranded DNA-binding proteins (SSBs). Replication protein A, the main eukaryotic SSB, is able to unwind double-stranded (ds) DNA by binding and stabilizing transiently forming bubbles of ssDNA. Here, we study the

  10. Phenotypic silencing of cytoplasmic genes using sequence-specific double-stranded short interfering RNA and its application in the reverse genetics of wild type negative-strand RNA viruses

    Directory of Open Access Journals (Sweden)

    Barik Sailen

    2001-12-01

    Full Text Available Abstract Background Post-transcriptional gene silencing (PTGS by short interfering RNA has opened up new directions in the phenotypic mutation of cellular genes. However, its efficacy on non-nuclear genes and its effect on the interferon pathway remain unexplored. Since directed mutation of RNA genomes is not possible through conventional mutagenesis, we have tested sequence-specific 21-nucleotide long double-stranded RNAs (dsRNAs for their ability to silence cytoplasmic RNA genomes. Results Short dsRNAs were generated against specific mRNAs of respiratory syncytial virus, a nonsegmented negative-stranded RNA virus with a cytoplasmic life cycle. At nanomolar concentrations, the dsRNAs specifically abrogated expression of the corresponding viral proteins, and produced the expected mutant phenotype ex vivo. The dsRNAs did not induce an interferon response, and did not inhibit cellular gene expression. The ablation of the viral proteins correlated with the loss of the specific mRNAs. In contrast, viral genomic and antigenomic RNA, which are encapsidated, were not directly affected. Conclusions Synthetic inhibitory dsRNAs are effective in specific silencing of RNA genomes that are exclusively cytoplasmic and transcribed by RNA-dependent RNA polymerases. RNA-directed RNA gene silencing does not require cloning, expression, and mutagenesis of viral cDNA, and thus, will allow the generation of phenotypic null mutants of specific RNA viral genes under normal infection conditions and at any point in the infection cycle. This will, for the first time, permit functional genomic studies, attenuated infections, reverse genetic analysis, and studies of host-virus signaling pathways using a wild type RNA virus, unencumbered by any superinfecting virus.

  11. PI3K-delta mediates double-stranded RNA-induced upregulation of B7-H1 in BEAS-2B airway epithelial cells

    International Nuclear Information System (INIS)

    Kan-o, Keiko; Matsumoto, Koichiro; Asai-Tajiri, Yukari; Fukuyama, Satoru; Hamano, Saaka; Seki, Nanae; Nakanishi, Yoichi; Inoue, Hiromasa

    2013-01-01

    Highlights: •Double-stranded RNA upregulates B7-H1 on BEAS-2B airway epithelial cells. •The upregulation of B7-H1 is attenuated by inhibition of PI3Kδ isoform. •PI3Kδ-mediated upregulation of B7-H1 is independent of NF-κB activation. •Inhibition of PI3Kδ may prevent persistent viral infection induced by B7-H1. -- Abstract: Airway viral infection disturbs the health-related quality of life. B7-H1 (also known as PD-L1) is a coinhibitory molecule associated with the escape of viruses from the mucosal immunity, leading to persistent infection. Most respiratory viruses generate double-stranded (ds) RNA during replication. The stimulation of cultured airway epithelial cells with an analog of viral dsRNA, polyinosinic-polycytidylic acid (poly IC) upregulates the expression of B7-H1 via activation of the nuclear factor κB(NF-κB). The mechanism of upregulation was investigated in association with phosphatidylinositol 3-kinases (PI3Ks). Poly IC-induced upregulation of B7-H1 was profoundly suppressed by a pan-PI3K inhibitor and partially by an inhibitor or a small interfering (si)RNA for PI3Kδ in BEAS-2B cells. Similar results were observed in the respiratory syncytial virus-infected cells. The expression of p110δ was detected by Western blot and suppressed by pretreatment with PI3Kδ siRNA. The activation of PI3Kδ is typically induced by oxidative stress. The generation of reactive oxygen species was increased by poly IC. Poly IC-induced upregulation of B7-H1 was attenuated by N-acetyl-L-cysteine, an antioxidant, or by oxypurinol, an inhibitor of xanthine oxidase. Poly IC-induced activation of NF-κB was suppressed by a pan-PI3K inhibitor but not by a PI3Kδ inhibitor. These results suggest that PI3Kδ mediates dsRNA-induced upregulation of B7-H1 without affecting the activation of NF-κB

  12. Genetic polymorphisms of DNA double-strand break repair pathway genes and glioma susceptibility

    International Nuclear Information System (INIS)

    Zhao, Peng; Zou, Peng; Zhao, Lin; Yan, Wei; Kang, Chunsheng; Jiang, Tao; You, Yongping

    2013-01-01

    Genetic variations in DNA double-strand break repair genes can influence the ability of a cell to repair damaged DNA and alter an individual’s susceptibility to cancer. We studied whether polymorphisms in DNA double-strand break repair genes are associated with an increased risk of glioma development. We genotyped 10 potentially functional single nucleotide polymorphisms (SNPs) in 7 DNA double-strand break repair pathway genes (XRCC3, BRCA2, RAG1, XRCC5, LIG4, XRCC4 and ATM) in a case–control study including 384 glioma patients and 384 cancer-free controls in a Chinese Han population. Genotypes were determined using the OpenArray platform. In the single-locus analysis there was a significant association between gliomas and the LIG4 rs1805388 (Ex2 +54C>T, Thr9Ile) TT genotype (adjusted OR, 3.27; 95% CI, 1.87-5.71), as well as the TC genotype (adjusted OR, 1.62; 95% CI, 1.20-2.18). We also found that the homozygous variant genotype (GG) of XRCC4 rs1805377 (IVS7-1A>G, splice-site) was associated with a significantly increased risk of gliomas (OR, 1.77; 95% CI, 1.12-2.80). Interestingly, we detected a significant additive and multiplicative interaction effect between the LIG4 rs1805388 and XRCC4 rs1805377 polymorphisms with an increasing risk of gliomas. When we stratified our analysis by smoking status, LIG4 rs1805388 was associated with an increased glioma risk among smokers. These results indicate for the first time that LIG4 rs1805388 and XRCC4 rs1805377, alone or in combination, are associated with a risk of gliomas

  13. Adeno-Associated Viral Vector (Serotype 2)-Nerve Growth Factor for Patients With Alzheimer Disease: A Randomized Clinical Trial.

    Science.gov (United States)

    Rafii, Michael S; Tuszynski, Mark H; Thomas, Ronald G; Barba, David; Brewer, James B; Rissman, Robert A; Siffert, Joao; Aisen, Paul S

    2018-03-26

    Nerve growth factor (NGF) is an endogenous neurotrophic factor that prevents the death and augments the functional state of cholinergic neurons of the basal forebrain, a cell population that undergoes extensive degeneration in Alzheimer disease (AD). To determine whether stereotactically guided intracerebral injections of adeno-associated viral vector (serotype 2)-nerve growth factor (AAV2-NGF) are well tolerated and exhibit preliminary evidence of impact on cognitive decline in mild to moderate AD-associated dementia. In a multicenter phase 2 trial, 49 participants with mild to moderate AD were randomly assigned in a 1:1 ratio to receive stereotactically guided intracerebral injections of AAV2-NGF or sham surgery. Participants were enrolled between November 2009 and December 2012. Analyses began in February 2015. The study was conducted at 10 US academic medical centers. Eligibility required a diagnosis of mild to moderate dementia due to AD and individuals aged 55 to 80 years. A total of 39 participants did not pass screening; the most common reason was Mini-Mental State Examination scores below cutoff. Analyses were intention-to-treat. Stereotactically guided intracerebral injections of AAV2-NGF into the nucleus basalis of Meynert of each hemisphere or sham surgery. Change from baseline on the Alzheimer Disease Assessment Scale-cognitive subscale at month 24. Among 49 participants, 21 (43%) were women, 42 (86%) self-identified as white, and the mean (SD) age was 68 (6.4) years. AAV2-NGF was safe and well-tolerated through 24 months. No significant difference was noted between the treatment group and placebo on the primary outcome measure, the Alzheimer Disease Assessment Scale-cognitive subscale (mean [SD] score, 14.52 [4.66] vs 9.11 [4.65], P = .17). This multicenter randomized clinical trial demonstrated the feasibility of sham-surgery-controlled stereotactic gene delivery studies in patients with AD. AAV2-NGF delivery was well-tolerated but did not

  14. Cre Activated and Inactivated Recombinant Adeno-Associated Viral Vectors for Neuronal Anatomical Tracing or Activity Manipulation.

    Science.gov (United States)

    Saunders, Arpiar; Sabatini, Bernardo L

    2015-07-01

    Recombinant adeno-associated viruses (rAAVs) transcriptionally activated by Cre recombinase (Cre-On) are powerful tools for determining the anatomy and function of genetically defined neuronal types in transgenic Cre driver mice. Here we describe how rAAVs transcriptionally inactivated by Cre (Cre-Off) can be used in conjunction with Cre-On rAAVs or genomic Cre-reporter alleles to study brain circuits. Intracranial injection of Cre-On/Cre-Off rAAVs into spatially intermingled Cre(+) and Cre(-) neurons allows these populations to be differentially labeled or manipulated within individual animals. This comparison helps define the unique properties of Cre(+) neurons, highlighting the specialized role they play in their constituent brain circuits. This protocol touches on the conceptual and experimental background of Cre-Off rAAV systems, including caveats and methods of validation. Copyright © 2015 John Wiley & Sons, Inc.

  15. The Regulatory and Kinase Domains but Not the Interdomain Linker Determine Human Double-stranded RNA-activated Kinase (PKR) Sensitivity to Inhibition by Viral Non-coding RNAs.

    Science.gov (United States)

    Sunita, S; Schwartz, Samantha L; Conn, Graeme L

    2015-11-20

    Double-stranded RNA (dsRNA)-activated protein kinase (PKR) is an important component of the innate immune system that presents a crucial first line of defense against viral infection. PKR has a modular architecture comprising a regulatory N-terminal dsRNA binding domain and a C-terminal kinase domain interposed by an unstructured ∼80-residue interdomain linker (IDL). Guided by sequence alignment, we created IDL deletions in human PKR (hPKR) and regulatory/kinase domain swap human-rat chimeric PKRs to assess the contributions of each domain and the IDL to regulation of the kinase activity by RNA. Using circular dichroism spectroscopy, limited proteolysis, kinase assays, and isothermal titration calorimetry, we show that each PKR protein is properly folded with similar domain boundaries and that each exhibits comparable polyinosinic-cytidylic (poly(rI:rC)) dsRNA activation profiles and binding affinities for adenoviral virus-associated RNA I (VA RNAI) and HIV-1 trans-activation response (TAR) RNA. From these results we conclude that the IDL of PKR is not required for RNA binding or mediating changes in protein conformation or domain interactions necessary for PKR regulation by RNA. In contrast, inhibition of rat PKR by VA RNAI and TAR RNA was found to be weaker than for hPKR by 7- and >300-fold, respectively, and each human-rat chimeric domain-swapped protein showed intermediate levels of inhibition. These findings indicate that PKR sequence or structural elements in the kinase domain, present in hPKR but absent in rat PKR, are exploited by viral non-coding RNAs to accomplish efficient inhibition of PKR. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Assembly and function of DNA double-strand break repair foci in mammalian cells

    DEFF Research Database (Denmark)

    Bekker-Jensen, Simon; Mailand, Niels

    2010-01-01

    DNA double-strand breaks (DSBs) are among the most cytotoxic types of DNA damage, which if left unrepaired can lead to mutations or gross chromosomal aberrations, and promote the onset of diseases associated with genomic instability such as cancer. One of the most discernible hallmarks...

  17. A single-strand specific lesion drives MMS-induced hyper-mutability at a double-strand break in yeast.

    Science.gov (United States)

    Yang, Yong; Gordenin, Dmitry A; Resnick, Michael A

    2010-08-05

    Localized hyper-mutability (LHM) can be important in evolution, immunity, and genetic diseases. We previously reported that single-strand DNA (ssDNA) can be an important source of damage-induced LHM in yeast. Here, we establish that the generation of LHM by methyl methanesulfonate (MMS) during repair of a chromosomal double-strand break (DSB) can result in over 0.2 mutations/kb, which is approximately 20,000-fold higher than the MMS-induced mutation density without a DSB. The MMS-induced mutations associated with DSB repair were primarily due to substitutions via translesion DNA synthesis at damaged cytosines, even though there are nearly 10 times more MMS-induced lesions at other bases. Based on this mutation bias, the promutagenic lesion dominating LHM is likely 3-methylcytosine, which is single-strand specific. Thus, the dramatic increase in mutagenesis at a DSB is concluded to result primarily from the generation of non-repairable lesions in ssDNA associated with DSB repair along with efficient induction of highly mutagenic ssDNA-specific lesions. These findings with MMS-induced LHM have broad biological implications for unrepaired damage generated in ssDNA and possibly ssRNA. Published by Elsevier B.V.

  18. On the linearity of the dose-effect relationship of DNA double strand breaks

    International Nuclear Information System (INIS)

    Chadwick, K.H.; Leenhouts, H.P.

    1994-01-01

    Most radiation biologists believe that DNA double-strand breaks are induced linearly with radiation dose for all types of radiation. Since 1985, with the advent of elution and gel electrophoresis techniques which permit the measurement of DNA double-strand breaks induced in mammalian cells at doses having radiobiological relevance, the true nature of the dose-effect relationship has been brought into some doubt. Many investigators measured curvilinear dose-effect relationships and a few found good correlations between the induction of the DNA double-strand breaks and cell survival. We approach the problem pragmatically by assuming that the induction of DNA double-strand breaks by 125 I Auger electron emitters incorporated into the DNA of the cells is a linear function of the number of 125 I decays, and by comparing the dose-effect relationship for sparsely ionizing radiation against this standard. The conclusion drawn that the curvilinear dose-effect relationships and the correlations with survival are real. (Author)

  19. Protected DNA strand displacement for enhanced single nucleotide discrimination in double-stranded DNA.

    Science.gov (United States)

    Khodakov, Dmitriy A; Khodakova, Anastasia S; Huang, David M; Linacre, Adrian; Ellis, Amanda V

    2015-03-04

    Single nucleotide polymorphisms (SNPs) are a prime source of genetic diversity. Discriminating between different SNPs provides an enormous leap towards the better understanding of the uniqueness of biological systems. Here we report on a new approach for SNP discrimination using toehold-mediated DNA strand displacement. The distinctiveness of the approach is based on the combination of both 3- and 4-way branch migration mechanisms, which allows for reliable discrimination of SNPs within double-stranded DNA generated from real-life human mitochondrial DNA samples. Aside from the potential diagnostic value, the current study represents an additional way to control the strand displacement reaction rate without altering other reaction parameters and provides new insights into the influence of single nucleotide substitutions on 3- and 4-way branch migration efficiency and kinetics.

  20. Double-Strand DNA Break Repair in Mycobacteria.

    Science.gov (United States)

    Glickman, Michael S

    2014-10-01

    Discontinuity of both strands of the chromosome is a lethal event in all living organisms because it compromises chromosome replication. As such, a diversity of DNA repair systems has evolved to repair double-strand DNA breaks (DSBs). In part, this diversity of DSB repair systems has evolved to repair breaks that arise in diverse physiologic circumstances or sequence contexts, including cellular states of nonreplication or breaks that arise between repeats. Mycobacteria elaborate a set of three genetically distinct DNA repair pathways: homologous recombination, nonhomologous end joining, and single-strand annealing. As such, mycobacterial DSB repair diverges substantially from the standard model of prokaryotic DSB repair and represents an attractive new model system. In addition, the presence in mycobacteria of a DSB repair system that can repair DSBs in nonreplicating cells (nonhomologous end joining) or when DSBs arise between repeats (single-strand annealing) has clear potential relevance to Mycobacterium tuberculosis pathogenesis, although the exact role of these systems in M. tuberculosis pathogenesis is still being elucidated. In this article we will review the genetics of mycobacterial DSB repair systems, focusing on recent insights.

  1. Adeno-associated virus type 2 enhances goose parvovirus replication in embryonated goose eggs

    International Nuclear Information System (INIS)

    Malkinson, Mertyn; Winocour, Ernest

    2005-01-01

    The autonomous goose parvovirus (GPV) and the human helper-dependent adeno-associated virus type 2 (AAV2) share a high degree of homology. To determine if this evolutionary relationship has a biological impact, we studied viral replication in human 293 cells and in embryonated goose eggs coinfected with both viruses. Similar experiments were performed with the minute virus of mice (MVM), an autonomous murine parvovirus with less homology to AAV2. In human 293 cells, both GPV and MVM augmented AAV2 replication. In contrast, AAV2 markedly enhanced GPV replication in embryonated goose eggs under conditions where a similar effect was not observed with MVM. AAV2 did not replicate in embryonated goose eggs and AAV2 inactivated by UV-irradiation also enhanced GPV replication. To our knowledge, this is the first report that a human helper-dependent member of the Parvoviridae can provide helper activity for an autonomous parvovirus in a natural host

  2. Double-stranded RNA-activated protein kinase PKR of fishes and amphibians: Varying the number of double-stranded RNA binding domains and lineage-specific duplications

    Directory of Open Access Journals (Sweden)

    Dever Thomas E

    2008-03-01

    Full Text Available Abstract Background Double-stranded (ds RNA, generated during viral infection, binds and activates the mammalian anti-viral protein kinase PKR, which phosphorylates the translation initiation factor eIF2α leading to the general inhibition of protein synthesis. Although PKR-like activity has been described in fish cells, the responsible enzymes eluded molecular characterization until the recent discovery of goldfish and zebrafish PKZ, which contain Z-DNA-binding domains instead of dsRNA-binding domains (dsRBDs. Fish and amphibian PKR genes have not been described so far. Results Here we report the cloning and identification of 13 PKR genes from 8 teleost fish and amphibian species, including zebrafish, demonstrating the coexistence of PKR and PKZ in this latter species. Analyses of their genomic organization revealed up to three tandemly arrayed PKR genes, which are arranged in head-to-tail orientation. At least five duplications occurred independently in fish and amphibian lineages. Phylogenetic analyses reveal that the kinase domains of fish PKR genes are more closely related to those of fish PKZ than to the PKR kinase domains of other vertebrate species. The duplication leading to fish PKR and PKZ genes occurred early during teleost fish evolution after the divergence of the tetrapod lineage. While two dsRBDs are found in mammalian and amphibian PKR, one, two or three dsRBDs are present in fish PKR. In zebrafish, both PKR and PKZ were strongly upregulated after immunostimulation with some tissue-specific expression differences. Using genetic and biochemical assays we demonstrate that both zebrafish PKR and PKZ can phosphorylate eIF2α in yeast. Conclusion Considering the important role for PKR in host defense against viruses, the independent duplication and fixation of PKR genes in different lineages probably provided selective advantages by leading to the recognition of an extended spectrum of viral nucleic acid structures, including both ds

  3. Postreplicational formation and repair of DNA double-strand breaks in UV-irradiated Escherichia coli uvrB cells

    International Nuclear Information System (INIS)

    Wang, Tzuchien V.; Smith, K.C.

    1986-01-01

    The number of DNA double-strand breaks formed in UV-irradiated uvrB recF recB cells correlates with the number of unrepaired DNA daughter-strand gaps, and is dependent on DNA synthesis after UV-irradiation. These results are consistent with the model that the DNA double-strand breaks that are produced in UV-irradiated excision-deficient cells occur as the result of breaks in the parental DNA opposite unrepaired DNA daughter-strand gaps. By employing a temperature-sensitive recA200 mutation, we have devised an improved assay for studying the formation and repair of these DNA double-strand breaks. Possible mechanisms for the postreplication repair of DNA double-strand breaks are discussed. (Auth.)

  4. X-ray induced DNA double strand break production and repair in mammalian cells as measured by neutral filter elution

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, M O; Kohn, K W [National Institutes of Health, Bethesda, MD (USA)

    1979-10-01

    A neutral filter elution method was used for detecting DNA double strand breaks in mouse L1210 cells after X-ray. The assay detected the number of double strand breaks induced by as little as 1000 rad of X-ray. The rate of DNA elution through the filters under neutral conditions increased with X-ray dose. Certain conditions for deproteinization, pH, and filter type were shown to increase the assay's sensitivity. Hydrogen peroxide and Bleomycin also induced apparent DNA double strand breaks, although the ratios of double to single strand breaks varied from those produced by X-ray. The introduction of double strand cuts by HpA I restriction endonuclease in DNA lysed on filters resulted in a rapid rate of elution under neutral conditions, implying that the method can detect double strand breaks if they exist in the DNA. The eluted DNA banded with a double stranded DNA marker in cesium chloride. This evidence suggested that the assay detected DNA double strand breaks. L1210 cells were shown to rejoin most of the DNA double strand breaks induced by 5-10 krad of X-ray with a half-time of about 40 minutes. (author).

  5. Genetic modification of adeno-associated viral vector type 2 capsid enhances gene transfer efficiency in polarized human airway epithelial cells.

    Science.gov (United States)

    White, April F; Mazur, Marina; Sorscher, Eric J; Zinn, Kurt R; Ponnazhagan, Selvarangan

    2008-12-01

    Cystic fibrosis (CF) is a common genetic disease characterized by defects in the expression of the CF transmembrane conductance regulator (CFTR) gene. Gene therapy offers better hope for the treatment of CF. Adeno-associated viral (AAV) vectors are capable of stable expression with low immunogenicity. Despite their potential in CF gene therapy, gene transfer efficiency by AAV is limited because of pathophysiological barriers in these patients. Although a few AAV serotypes have shown better transduction compared with the AAV2-based vectors, gene transfer efficiency in human airway epithelium has still not reached therapeutic levels. To engineer better AAV vectors for enhanced gene delivery in human airway epithelium, we developed and characterized mutant AAV vectors by genetic capsid modification, modeling the well-characterized AAV2 serotype. We genetically incorporated putative high-affinity peptide ligands to human airway epithelium on the GH loop region of AAV2 capsid protein. Six independent mutant AAV were constructed, containing peptide ligands previously reported to bind with high affinity for known and unknown receptors on human airway epithelial cells. The vectors were tested on nonairway cells and nonpolarized and polarized human airway epithelial cells for enhanced infectivity. One of the mutant vectors, with the peptide sequence THALWHT, not only showed the highest transduction in undifferentiated human airway epithelial cells but also indicated significant transduction in polarized cells. Interestingly, this modified vector was also able to infect cells independently of the heparan sulfate proteoglycan receptor. Incorporation of this ligand on other AAV serotypes, which have shown improved gene transfer efficiency in the human airway epithelium, may enhance the application of AAV vectors in CF gene therapy.

  6. Colocalization of multiple DNA double-strand breaks at a single Rad52 repair centre

    DEFF Research Database (Denmark)

    Lisby, M.; Mortensen, Uffe Hasbro; Rothstein, R.

    2003-01-01

    DNA double-strand break repair (DSBR) is an essential process for preserving genomic integrity in all organisms. To investigate this process at the cellular level, we engineered a system of fluorescently marked DNA double-strand breaks (DSBs) in the yeast Saccharomyces cerevisiae to visualize in ...

  7. Cellular La protein shields nonsegmented negative-strand RNA viral leader RNA from RIG-I and enhances virus growth by diverse mechanisms.

    Science.gov (United States)

    Bitko, Vira; Musiyenko, Alla; Bayfield, Mark A; Maraia, Richard J; Barik, Sailen

    2008-08-01

    The La antigen (SS-B) associates with a wide variety of cellular and viral RNAs to affect gene expression in multiple systems. We show that La is the major cellular protein found to be associated with the abundant 44-nucleotide viral leader RNA (leRNA) early after infection with respiratory syncytial virus (RSV), a nonsegmented negative-strand RNA virus. Consistent with this, La redistributes from the nucleus to the cytoplasm in RSV-infected cells. Upon RNA interference knockdown of La, leRNA is redirected to associate with the RNA-binding protein RIG-I, a known activator of interferon (IFN) gene expression, and this is accompanied by the early induction of IFN mRNA. These results suggest that La shields leRNA from RIG-I, abrogating the early viral activation of type I IFN. We mapped the leRNA binding function to RNA recognition motif 1 of La and showed that while wild-type La greatly enhanced RSV growth, a La mutant defective in RSV leRNA binding also did not support RSV growth. Comparative studies of RSV and Sendai virus and the use of IFN-negative Vero cells indicated that La supports the growth of nonsegmented negative-strand RNA viruses by both IFN suppression and a potentially novel IFN-independent mechanism.

  8. DNA double-strand breaks & poptosis in the testis

    NARCIS (Netherlands)

    Hamer, Geert

    2003-01-01

    During spermatogenesis, DNA damage is a naturally occurring event. At a certain stage, during the first meiotic prophase, DNA breaks are endogenously induced and even required for meiotic recombination. We studied these DNA breaks but also used ionizing radiation (IR) to induce DNA double-strand

  9. A critical role for topoisomerase IIb and DNA double strand breaks in transcription.

    Science.gov (United States)

    Calderwood, Stuart K

    2016-05-26

    Recent studies have indicated a novel role for topoisomerase IIb in transcription. Transcription of heat shock genes, serum-induced immediate early genes and nuclear receptor-activated genes, each required DNA double strands generated by topoisomerase IIb. Such strand breaks seemed both necessary and sufficient for transcriptional activation. In addition, such transcription was associated with initiation of the DNA damage response pathways, including the activation of the enzymes: ataxia-telangiectasia mutated (ATM), DNA-dependent protein kinase and poly (ADP ribose) polymerase 1. DNA damage response signaling was involved both in transcription and in repair of DNA breaks generated by topoisomerase IIb.

  10. Regulation of Gene Expression with Double-Stranded Phosphorothioate Oligonucleotides

    Science.gov (United States)

    Bielinska, Anna; Shivdasani, Ramesh A.; Zhang, Liquan; Nabel, Gary J.

    1990-11-01

    Alteration of gene transcription by inhibition of specific transcriptional regulatory proteins is necessary for determining how these factors participate in cellular differentiation. The functions of these proteins can be antagonized by several methods, each with specific limitations. Inhibition of sequence-specific DNA-binding proteins was achieved with double-stranded (ds) phosphorothioate oligonucleotides that contained octamer or kappaB consensus sequences. The phosphorothioate oligonucleotides specifically bound either octamer transcription factor or nuclear factor (NF)-kappaB. The modified oligonucleotides accumulated in cells more effectively than standard ds oligonucleotides and modulated gene expression in a specific manner. Octamer-dependent activation of a reporter plasmid or NF-kappaB-dependent activation of the human immunodeficiency virus (HIV) enhancer was inhibited when the appropriate phosphorothioate oligonucleotide was added to a transiently transfected B cell line. Addition of phosphorothioate oligonucleotides that contained the octamer consensus to Jurkat T leukemia cells inhibited interleukin-2 (IL-2) secretion to a degree similar to that observed with a mutated octamer site in the IL-2 enhancer. The ds phosphorothioate oligonucleotides probably compete for binding of specific transcription factors and may provide anti-viral, immunosuppressive, or other therapeutic effects.

  11. Genetics of x-ray induced double strand break repair in saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Budd, M.E.

    1982-07-01

    The possible fates of x-ray-induced double-strand breaks in Saccharomyces cerevisiae were examined. One possible pathway which breaks can follow, the repair pathway, was studied by assaying strains with mutations in the RAD51, RAD54, and RAD57 loci for double-strand break repair. In order of increasing radiation sensitivity one finds: rad57-1(23 0 )> rad51-1(30 0 )> rad54-3(36 0 ). At 36 0 , rad54-3 cells cannot repair double-strand breaks, while 23 0 , they can. Strains with the rad57-1 mutation can rejoin broken chromosomes at both temperatures. However, the low survival at 36 0 shows that the assay is not distinguishing large DNA fragments which allow cell survival from those which cause cell death. A rad51-1 strain could also rejoin broken chromosomes, and was thus capable of incomplete repair. The data can be explained with the hypothesis that rad54-3 cells are blocked in an early step of repair, while rad51-1 and rad57-1 strains are blocked in a later step of repair. The fate of double-strand breaks when they are left unrepaired was investigated with the rad54-3 mutation. If breaks are prevented from entering the RAD54 repair pathway they become uncommitted lesions. These lesions are repaired slower than the original breaks. One possible fate for an uncommitted lesion is conversion into a fixed lesion, which is likely to be an unrepairable or misrepaired double-strand break. The presence of protein synthesis after irradiation increases the probability that a break will enter the repair pathway. Evidence shows that increased probability of repair results from enhanced synthesis of repair proteins shortly after radiation

  12. Induction of double-strand breaks in DNA of prokaryotes and eukaryotes and their repair. 1. Application of elastoviscosimetry for studying double-strand breaks in DNA of Escherichia coli induced by. gamma. -irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Bresler, S E; Noskin, L A; Suslov, A V [AN SSSR, Leningrad. Inst. Yadernoj Fiziki

    1980-11-01

    It is shown that the method of elastoviscosimetry gives a possibility to record the formation of DNA double-strand breaks in Escherichia coli cells induced by ..gamma.. irradiation at doses close to D/sub 37/. The dependence of changes of elastoviscosity parameter on the dose (tau/sub 0/) passes through the maximum. It is shown that the ascending section of this curve (at minimum ..gamma.. irradiation doses) characterizes the relaxation process of the superspiralised chromosome in nucleotide of the E. coli. This relaxation is observed due to ..gamma.. induced damages which are not double-strand breaks. By the maximum position one can judge on a dose yield of the first DNA double-strand break, the descending part of the dose curve describes the kinetics of accumulation of breaks with the dose increase. The analysis of the data obtained gives the possibility to come to the conclusion that when applying a usual technique of irradiation and lysis of cells not providing for special measures on inhibition of endo-and exonuclease activity in ..gamma.. irradiated cells, the dose yield of double-strand breaks noticeably increases (by 4.2 times). In the case of an essential, though incomplete, inhibition of nuclease activities in ..gamma.. irradiated cells the dose yield of breaks approximately corresponds to the dose curve of inactivation of these cells (D/sub 37/12.5+-3.0 krad, the first double-strand break -at 14.5+-2.4 krad).

  13. Induction of double-strand breaks in DNA of prokaryotes and eukaryotes and their repair. 1. Application of elastoviscosimetry for studying double-strand breaks in DNA of Escherichia coli induced by γ-irradiation

    International Nuclear Information System (INIS)

    Bresler, S.E.; Noskin, L.A.; Suslov, A.V.

    1980-01-01

    It is shown that the method of elastoviscosimetry gives a possibility to record the formation of DNA double-strand breaks in Escherichia coli cells induced by γ irradiation at doses close to D 37 . The dependence of changes of elastoviscosity parameter on the dose (tau 0 ) passes through the maximum. It is shown that the ascending section of this curve (at minimum γ irradiation doses) characterizes the relaxation process of the superspiralised chromosome in nucleotide of the E. coli. This relaxation is observed due to γ induced damages which are not double-strand breaks. By the maximum position one can judge on a dose yield of the first DNA double-strand break, the descending part of the dose curve describes the kinetics of accumulation of breaks with the dose increase. The analysis of the data obtained gives the possibility to come to the conclusion that when applying a usual technique of irradiation and lysis of cells not providing for special measures on inhibition of endo-and exonuclease activity in γ irradiated cells, the dose yield of double-strand breaks noticeably increases (by 4.2 times). In the case of an essential, though incomplete, inhibition of nuclease activities in γ irradiated cells the dose yield of breaks approximately corresponds to the dose curve of inactivation of these cells (D 37 12.5+-3.0 krad, the first double-strand break -at 14.5+-2.4 krad)

  14. Double Strand Break Repair, one mechanism can hide another: Alternative non-homologous end joining

    International Nuclear Information System (INIS)

    Rass, E.; Grabarz, A.; Bertrand, P.; Lopez, B.S.

    2012-01-01

    DNA double strand breaks are major cytotoxic lesions encountered by the cells. They can be induced by ionizing radiation or endogenous stress and can lead to genetic instability. Two mechanisms compete for the repair of DNA double strand breaks: homologous recombination and non-homologous end joining (NHEJ). Homologous recombination requires DNA sequences homology and is initiated by single strand resection. Recently, advances have been made concerning the major steps and proteins involved in resection. NHEJ, in contrast, does not require sequence homology. The existence of a DNA double strand break repair mechanism, independent of KU and ligase IV, the key proteins of the canonical non homologous end joining pathway, has been revealed lately and named alternative non homologous end joining. The hallmarks of this highly mutagenic pathway are deletions at repair junctions and frequent use of distal micro-homologies. This mechanism is also initiated by a single strand resection of the break. The aim of this review is firstly to present recent data on single strand resection, and secondly the alternative NHEJ pathway, including a discussion on the fidelity of NHEJ. Based on current knowledge, canonical NHEJ does not appear as an intrinsically mutagenic mechanism, but in contrast, as a conservative one. The structure of broken DNA ends actually dictates the quality repair of the alternative NHEJ and seems the actual responsible for the mutagenesis attributed beforehand to the canonical NHEJ. The existence of this novel DNA double strand breaks repair mechanism needs to be taken into account in the development of radiosensitizing strategies in order to optimise the efficiency of radiotherapy. (authors)

  15. The Human L1 Element Causes DNA Double-Strand Breaks in Breast Cancer

    Science.gov (United States)

    2006-08-01

    cancer is complex. However, defects in DNA repair genes in the double-strand break repair pathway are cancer predisposing. My lab has characterized...a new potentially important source of double-strand breaks (DSBs) in human cells and are interested in characterizing which DNA repair genes act on...this particular source of DNA damage. Selfish DNA accounts for 45% of the human genome. We have recently demonstrated that one particular selfish

  16. Perspective on Adeno-Associated Virus Capsid Modification for Duchenne Muscular Dystrophy Gene Therapy.

    Science.gov (United States)

    Nance, Michael E; Duan, Dongsheng

    2015-12-01

    Duchenne muscular dystrophy (DMD) is a X-linked, progressive childhood myopathy caused by mutations in the dystrophin gene, one of the largest genes in the genome. It is characterized by skeletal and cardiac muscle degeneration and dysfunction leading to cardiac and/or respiratory failure. Adeno-associated virus (AAV) is a highly promising gene therapy vector. AAV gene therapy has resulted in unprecedented clinical success for treating several inherited diseases. However, AAV gene therapy for DMD remains a significant challenge. Hurdles for AAV-mediated DMD gene therapy include the difficulty to package the full-length dystrophin coding sequence in an AAV vector, the necessity for whole-body gene delivery, the immune response to dystrophin and AAV capsid, and the species-specific barriers to translate from animal models to human patients. Capsid engineering aims at improving viral vector properties by rational design and/or forced evolution. In this review, we discuss how to use the state-of-the-art AAV capsid engineering technologies to overcome hurdles in AAV-based DMD gene therapy.

  17. ATM is required for the repair of Topotecan-induced replication-associated double-strand breaks

    International Nuclear Information System (INIS)

    Köcher, Sabrina; Spies-Naumann, Anja; Kriegs, Malte; Dahm-Daphi, Jochen; Dornreiter, Irena

    2013-01-01

    Purpose: DNA replication is a promising target for anti-cancer therapies. Therefore, the understanding of replication-associated DNA repair mechanisms is of great interest. One key factor of DNA double-strand break (DSB) repair is the PIK kinase Ataxia-Telangiectasia Mutated (ATM) but it is still unclear whether ATM is involved in the repair of replication-associated DSBs. Here, we focused on the involvement of ATM in homology-directed repair (HDR) of indirect DSBs associated with replication. Material and methods: Experiments were performed using ATM-deficient and -proficient human cells. Replication-associated DSBs were induced with Topotecan (TPT) and compared with γ-irradiation (IR). Cell survival was measured by clonogenic assay. Overall DSB repair and HDR were evaluated by detecting residual γH2AX/53BP1 and Rad51 foci, respectively. Cell cycle distribution was analysed by flow cytometry and protein expression by Western blot. Results: ATM-deficiency leads to enhanced numbers of residual DSBs, resulting in a pronounced S/G2-block and decreased survival upon TPT-treatment. In common with IR, persisting Rad51 foci were detected following TPT-treatment. Conclusions: These results demonstrate that ATM is essentially required for the completion of HR-mediated repair of TPT-induced DSBs formed indirectly at replication forks

  18. Repair of double-strand breaks in Micrococcus radiodurans

    International Nuclear Information System (INIS)

    Burrell, A.D.; Dean, C.J.

    1975-01-01

    Micrococcus radiodurans has been shown to sustain double-strand breaks in its DNA after exposure to x-radiation. Following sublethal doses of x-rays (200 krad in oxygen or less), the cells were able to repair these breaks, and an intermediate fast-sedimenting DNA component seemed to be involved in the repair process

  19. Regulation of adeno-associated virus DNA replication by the cellular TAF-I/set complex.

    Science.gov (United States)

    Pegoraro, Gianluca; Marcello, Alessandro; Myers, Michael P; Giacca, Mauro

    2006-07-01

    The Rep proteins of the adeno-associated virus (AAV) are required for viral replication in the presence of adenovirus helper functions and as yet poorly characterized cellular factors. In an attempt to identify such factors, we purified Flag-Rep68-interacting proteins from human cell lysates. Several polypeptides were identified by mass spectrometry, among which was ANP32B, a member of the acidic nuclear protein 32 family which takes part in the formation of the template-activating factor I/Set oncoprotein (TAF-I/Set) complex. The N terminus of Rep was found to specifically bind the acidic domain of ANP32B; through this interaction, Rep was also able to recruit other members of the TAF-I/Set complex, including the ANP32A protein and the histone chaperone TAF-I/Set. Further experiments revealed that silencing of ANP32A and ANP32B inhibited AAV replication, while overexpression of all of the components of the TAF-I/Set complex increased de novo AAV DNA synthesis in permissive cells. Besides being the first indication that the TAF-I/Set complex participates in wild-type AAV replication, these findings have important implications for the generation of recombinant AAV vectors since overexpression of the TAF-I/Set components was found to markedly increase viral vector production.

  20. Tyrosine phosphorylation of AAV2 vectors and its consequences on viral intracellular trafficking and transgene expression

    Science.gov (United States)

    Zhong, Li; Li, Baozheng; Jayandharan, Giridhararao; Mah, Cathryn S.; Govindasamy, Lakshmanan; Agbandje-McKenna, Mavis; Herzog, Roland W.; Weigel-Van Aken, Kirsten A.; Hobbs, Jacqueline A.; Zolotukhin, Sergei; Muzyczka, Nicholas; Srivastava, Arun

    2008-01-01

    We have documented that epidermal growth factor receptor protein tyrosine kinase (EGFR-PTK) signaling negatively affects intracellular trafficking and transduction efficiency of recombinant adeno-associated virus 2 (AAV2) vectors. Specifically, inhibition of EGFR-PTK signaling leads to decreased ubiquitination of AAV2 capsid proteins, which in turn, facilitates viral nuclear transport by limiting proteasome-mediated degradation of AAV2 vectors. In the present studies, we observed that AAV capsids can indeed be phosphorylated at tyrosine residues by EGFR-PTK in in vitro phosphorylation assays and that phosphorylated AAV capsids retain their structural integrity. However, although phosphorylated AAV vectors enter cells as efficiently as their unphosphorylated counterparts, their transduction efficiency is significantly reduced. This reduction is not due to impaired viral second-strand DNA synthesis since transduction efficiency of both single-stranded AAV (ssAAV) and self-complementary AAV (scAAV) vectors is decreased by ~68% and ~74%, respectively. We also observed that intracellular trafficking of tyrosine-phosphorylated AAV vectors from cytoplasm to nucleus is significantly decreased, which leads to ubiquitination of AAV capsids followed by proteasome-mediated degradation, although downstream consequences of capsid ubiquitination may also be affected by tyrosine-phosphorylation. These studies provide new insights into the role of tyrosine-phosphorylation of AAV capsids in various steps in the virus life cycle, which has implications in the optimal use of recombinant AAV vectors in human gene therapy. PMID:18834608

  1. Tyrosine-phosphorylation of AAV2 vectors and its consequences on viral intracellular trafficking and transgene expression

    International Nuclear Information System (INIS)

    Zhong Li; Li Baozheng; Jayandharan, Giridhararao; Mah, Cathryn S.; Govindasamy, Lakshmanan; Agbandje-McKenna, Mavis; Herzog, Roland W.

    2008-01-01

    We have documented that epidermal growth factor receptor protein tyrosine kinase (EGFR-PTK) signaling negatively affects intracellular trafficking and transduction efficiency of recombinant adeno-associated virus 2 (AAV2) vectors. Specifically, inhibition of EGFR-PTK signaling leads to decreased ubiquitination of AAV2 capsid proteins, which in turn, facilitates viral nuclear transport by limiting proteasome-mediated degradation of AAV2 vectors. In the present studies, we observed that AAV capsids can indeed be phosphorylated at tyrosine residues by EGFR-PTK in in vitro phosphorylation assays and that phosphorylated AAV capsids retain their structural integrity. However, although phosphorylated AAV vectors enter cells as efficiently as their unphosphorylated counterparts, their transduction efficiency is significantly reduced. This reduction is not due to impaired viral second-strand DNA synthesis since transduction efficiency of both single-stranded AAV (ssAAV) and self-complementary AAV (scAAV) vectors is decreased by ∼ 68% and ∼ 74%, respectively. We also observed that intracellular trafficking of tyrosine-phosphorylated AAV vectors from cytoplasm to nucleus is significantly decreased, which results from ubiquitination of AAV capsids followed by proteasome-mediated degradation, although downstream consequences of capsid ubiquitination may also be affected by tyrosine-phosphorylation. These studies provide new insights into the role of tyrosine-phosphorylation of AAV capsids in various steps in the virus life cycle, which has implications in the optimal use of recombinant AAV vectors in human gene therapy

  2. Myocardial gene delivery using molecular cardiac surgery with recombinant adeno-associated virus vectors in vivo

    Science.gov (United States)

    White, JD; Thesier, DM; Swain, JBD; Katz, MG; Tomasulo, C; Henderson, A; Wang, L; Yarnall, C; Fargnoli, A; Sumaroka, M; Isidro, A; Petrov, M; Holt, D; Nolen-Walston, R; Koch, WJ; Stedman, HH; Rabinowitz, J; Bridges, CR

    2013-01-01

    We use a novel technique that allows for closed recirculation of vector genomes in the cardiac circulation using cardiopulmonary bypass, referred to here as molecular cardiac surgery with recirculating delivery (MCARD). We demonstrate that this platform technology is highly efficient in isolating the heart from the systemic circulation in vivo. Using MCARD, we compare the relative efficacy of single-stranded (ss) adeno-associated virus (AAV)6, ssAAV9 and self-complimentary (sc)AAV6-encoding enhanced green fluorescent protein, driven by the constitutive cytomegalovirus promoter to transduce the ovine myocardium in situ. MCARD allows for the unprecedented delivery of up to 48 green fluorescent protein genome copies per cell globally in the sheep left ventricular (LV) myocardium. We demonstrate that scAAV6-mediated MCARD delivery results in global, cardiac-specific LV gene expression in the ovine heart and provides for considerably more robust and cardiac-specific gene delivery than other available delivery techniques such as intramuscular injection or intracoronary injection; thus, representing a potential, clinically translatable platform for heart failure gene therapy. PMID:21228882

  3. Delivery and evaluation of recombinant adeno-associated viral vectors in the equine distal extremity for the treatment of laminitis.

    Science.gov (United States)

    Mason, J B; Gurda, B L; Van Wettere, A; Engiles, J B; Wilson, J M; Richardson, D W

    2017-01-01

    Our long-term aim is to develop a gene therapy approach for the prevention of laminitis in the contralateral foot of horses with major musculoskeletal injuries and non-weightbearing lameness. The goal of this study was to develop a practical method to efficiently deliver therapeutic proteins deep within the equine foot. Randomised in vivo experiment. We used recombinant adeno-associated viral vectors (rAAVs) to deliver marker genes using regional limb perfusion through the palmar digital artery of the horse. Vector serotypes rAAV2/1, 2/8 and 2/9 all successfully transduced equine foot tissues and displayed similar levels and patterns of transduction. The regional distribution of transduction within the foot decreased with decreasing vector dose. The highest transduction values were seen in the sole and coronary regions and the lowest transduction values were detected in the dorsal hoof-wall region. The use of a surfactant-enriched vector diluent increased regional distribution of the vector and improved the transduction in the hoof-wall region. The hoof-wall region of the foot, which exhibited the lowest levels of transduction using saline as the vector diluent, displayed a dramatic increase in transduction when surfactant was included in the vector diluent (9- to 81-fold increase). In transduced tissues, no significant difference was observed between promoters (chicken β-actin vs. cytomegalovirus) for gene expression. All horses tested for vector-neutralising antibodies were positive for serotype-specific neutralising antibodies to rAAV2/5. The current experiments demonstrate that transgenes can be successfully delivered to the equine distal extremity using rAAV vectors and that serotypes 2/8, 2/9 and 2/1 can successfully transduce tissues of the equine foot. When the vector was diluted with surfactant-containing saline, the level of transduction increased dramatically. The increased level of transduction due to the addition of surfactant also improved the

  4. Quantitation of the repair of gamma-radiation-induced double-strand DNA breaks in human fibroblasts

    International Nuclear Information System (INIS)

    Woods, W.G.

    1981-01-01

    The quantitation and repair of double-strand DNA breaks in human fibroblasts has been determined using a method involving the nondenaturing elution of DNA from a filter. DNA from cells from two human fibroblast lines exposed to γ-radiation from 0 to 10000 rad showed increasing retention on a filter with decreasing radiation dose, and the data suggest a linear relationship between double-strand breaks induced and radiation dose. The ability of normal human fibroblasts to repair double-strand breaks with various doses of radiation was demonstrated, with a tsub(1/2) of 10 min for repair of 5000 rad exposure and 39 min for repair of 10000 rad damage. The kinetics of the DNA rejoining were not linear and suggest that, as in the repair of single-strand breaks, both an initial fast and a later slow mechanism may be involved. (Auth.)

  5. What is DNA damage? Risk of double-strand break and its individual variation

    International Nuclear Information System (INIS)

    Hanaoka, Fumio

    2011-01-01

    The author discusses about the title subject in an aspect of possible spreading of Fukushima radioactive substances mainly in eastern north area of Japan where carcinogenic incidence may be increased as the ionizing radiation injures the gene (DNA). At first, explained is that cancer is a disease of genes with infinitive proliferation of cells, there are systems to prevent it by repairing the damaged DNA and by other mechanisms like exclusion of cells damaged too much or killing cancer cells with immunity, and individual difference of the repairing capability exists. DNA is always damaged even under ordinary living conditions by sunlight UV ray, cosmic radiation and chemicals externally and by active oxygen species and thermal water movement internally. Concomitantly, DNA damaged by many mechanisms like deletion, dimmer formation, chemical modification of bases, single and double strand breaks is always repaired by concerned enzymes. Double-strand damage by high-energy radiation like gamma ray is quite risky because its repair sometimes accompanies error as concerned enzymes are from more multiple genes. There are many syndromes derived from gene deficit of those repairing enzymes. The diseases concerned with repair of the double-strand damage teach that fetus and infant are more sensitive to radiation than adult as their young body cells are more actively synthesizing DNA, during which, if DNA is injured by radiation, risk of repairing error is higher as the double strand break more frequently occurs. It cannot be simply said that a certain radiation dose limit is generally permissible. There is an individual difference of radiation sensitivity and a possible method to find out an individual weak to radiation is the lymphocyte screening in vitro using anticancer bleomycin which breaks the double strand. (T.T.)

  6. The next step in gene delivery: molecular engineering of adeno-associated virus serotypes.

    Science.gov (United States)

    Wang, Jinhui; Faust, Susan M; Rabinowitz, Joseph E

    2011-05-01

    Delivery is at the heart of gene therapy. Viral DNA delivery systems are asked to avoid the immune system, transduce specific target cell types while avoiding other cell types, infect dividing and non-dividing cells, insert their cargo within the host genome without mutagenesis or to remain episomal, and efficiently express transgenes for a substantial portion of a lifespan. These sought-after features cannot be associated with a single delivery system, or can they? The Adeno-associated virus family of gene delivery vehicles has proven to be highly malleable. Pseudotyping, using AAV serotype 2 terminal repeats to generate designer shells capable of transducing selected cell types, enables the packaging of common genomes into multiple serotypes virions to directly compare gene expression and tropism. In this review the ability to manipulate this virus will be examined from the inside out. The influence of host cell factors and organism biology including the immune response on the molecular fate of the viral genome will be discussed as well as differences in cellular trafficking patterns and uncoating properties that influence serotype transduction. Re-engineering the prototype vector AAV2 using epitope insertion, chemical modification, and molecular evolution not only demonstrated the flexibility of the best-studied serotype, but now also expanded the tool kit for molecular modification of all AAV serotypes. Current AAV research has changed its focus from examination of wild-type AAV biology to the feedback of host cell/organism on the design and development of a new generation of recombinant AAV delivery vehicles. This article is part of a Special Section entitled "Special Section: Cardiovascular Gene Therapy". Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Meta-analysis of DNA double-strand break response kinetics

    NARCIS (Netherlands)

    Kochan, Jakub A.; Desclos, Emilie C. B.; Bosch, Ruben; Meister, Luna; Vriend, Lianne E. M.; Attikum, Haico V.; Krawczyk, Przemek M.

    2017-01-01

    Most proteins involved in the DNA double-strand break response (DSBR) accumulate at the damage sites, where they perform functions related to damage signaling, chromatin remodeling and repair. Over the last two decades, studying the accumulation of many DSBR proteins provided information about their

  8. Normal formation and repair of γ-radiation-induced single and double strand DNA breaks in Down syndrome fibroblasts

    International Nuclear Information System (INIS)

    Steiner, M.E.; Woods, W.G.

    1982-01-01

    Fibroblasts from patients with Down syndrome (Trisomy 21) were examined for repair capability of γ-radiation-induced single strand and double strand DNA breaks. Formation and repair of DNA breaks were determined by DNA alkaline and non-denaturing elution techniques. Down syndrome fibroblasts were found to repair single strand and double strand breaks as well as fibroblasts from normal controls. (orig.)

  9. Double strand breaks in DNA in vivo and in vitro after 60Co-γ-irradiation

    International Nuclear Information System (INIS)

    Huelsewede, J.W.

    1985-01-01

    The questions of what the correlation is between double strand breaks in DNA in the cell and lethal radiation damage and by means of which possible mechanisms DNA double strand breaks could occur were studied. E. coli served as test system. In addition to this the molecular weight of the DNA from irradiated E. coli as a function of the radiation dose under various conditions was measured. This data was compared on the one hand to the survival of the cell and on the other hand to the formation of DNA double strand breaks in an aqueous buffer system, which in its ionic characteristics was similar to cell fluids. (orig./MG) [de

  10. Intrathecal long-term gene expression by self-complementary adeno-associated virus type 1 suitable for chronic pain studies in rats

    Directory of Open Access Journals (Sweden)

    Janssen William GM

    2006-01-01

    Full Text Available Abstract Background Intrathecal (IT gene transfer is an attractive approach for targeting spinal mechanisms of nociception but the duration of gene expression achieved by reported methods is short (up to two weeks impairing their utility in the chronic pain setting. The overall goal of this study was to develop IT gene transfer yielding true long-term transgene expression defined as ≥ 3 mo following a single vector administration. We defined "IT" administration as atraumatic injection into the lumbar cerebrospinal fluid (CSF modeling a lumbar puncture. Our studies focused on recombinant adeno-associated virus (rAAV, one of the most promising vector types for clinical use. Results Conventional single stranded rAAV2 vectors performed poorly after IT delivery in rats. Pseudotyping of rAAV with capsids of serotypes 1, 3, and 5 was tested alone or in combination with a modification of the inverted terminal repeat. The former alters vector tropism and the latter allows packaging of self-complementary rAAV (sc-rAAV vectors. Combining both types of modification led to the identification of sc-rAAV2/l as a vector that performed superiorly in the IT space. IT delivery of 3 × 10e9 sc-rAAV2/l particles per animal led to stable expression of enhanced green fluorescent protein (EGFP for ≥ 3 mo detectable by Western blotting, quantitative PCR, and in a blinded study by confocal microscopy. Expression was strongest in the cauda equina and the lower sections of the spinal cord and only minimal in the forebrain. Microscopic examination of the SC fixed in situ with intact nerve roots and meninges revealed strong EGFP fluorescence in the nerve roots. Conclusion sc-rAAVl mediates stable IT transgene expression for ≥ 3 mo. Our findings support the underlying hypothesis that IT target cells for gene transfer lack the machinery for efficient conversion of the single-stranded rAAV genome into double-stranded DNA and favor uptake of serotype 1 vectors over 2

  11. Mouse RAD54 affects DNA double-strand break repair and sister chromatid exchange

    NARCIS (Netherlands)

    H.B. Beverloo (Berna); R.D. Johnson (Roger); M. Jasin (Maria); R. Kanaar (Roland); J.H.J. Hoeijmakers (Jan); M.L.G. Dronkert (Mies)

    2000-01-01

    textabstractCells can achieve error-free repair of DNA double-strand breaks (DSBs) by homologous recombination through gene conversion with or without crossover. In contrast, an alternative homology-dependent DSB repair pathway, single-strand annealing (SSA), results in deletions. In this study, we

  12. Ultrasound Targeted Microbubble Destruction Stimulates Cellular Endocytosis in Facilitation of Adeno-Associated Virus Delivery

    Directory of Open Access Journals (Sweden)

    Lian-Fang Du

    2013-05-01

    Full Text Available The generally accepted mechanism for ultrasound targeted microbubble destruction (UTMD to enhance drug and gene delivery is through sonoporation. However, passive uptake of adeno-associated virus (AAV into cells following sonoporation does not adequately explain observations of enhanced transduction by UTMD. This study investigated alternative mechanisms of UTMD enhancement in AAV delivery. UTMD significantly enhanced transduction efficiency of AAV in a dose-dependent manner. UTMD stimulated a persistent uptake of AAV into the cytoplasm and nucleus. This phenomenon occurred over several hours, suggesting that some viral particles are endocytosed by cells rather than exclusively passing through pores created by sonoporation. Additionally, UTMD enhanced clathrin expression and accumulation at the plasma membrane suggesting greater clathrin-mediated endocytosis following UTMD. Transmission electron microscopy (TEM revealed that UTMD stimulated formation of clathrin-coated pits (CPs and uncoated pits (nCPs. Furthermore, inhibition of clathrin-mediated endocytosis partially blocked the enhancement of AAV uptake following UTMD. The results of this study implicate endocytosis as a mechanism that contributes to UTMD-enhanced AAV delivery.

  13. Formation of newly synthesized adeno-associated virus capsids in the cell nucleus.

    Science.gov (United States)

    Bell, Peter; Vandenberghe, Luk H; Wilson, James M

    2014-06-01

    Adeno-associated virus (AAV) particles inside the nucleus of a HEK 293 cell are shown by electron microscopy. Cells have been triple-transfected for vector production and were analyzed for capsid formation three days later. Newly assembled particle are visible as seemingly unstructured conglomerates or crystal-like arrays.

  14. Protected DNA strand displacement for enhanced single nucleotide discrimination in double-stranded DNA

    OpenAIRE

    Khodakov, Dmitriy A.; Khodakova, Anastasia S.; Huang, David M.; Linacre, Adrian; Ellis, Amanda V.

    2015-01-01

    Single nucleotide polymorphisms (SNPs) are a prime source of genetic diversity. Discriminating between different SNPs provides an enormous leap towards the better understanding of the uniqueness of biological systems. Here we report on a new approach for SNP discrimination using toehold-mediated DNA strand displacement. The distinctiveness of the approach is based on the combination of both 3- and 4-way branch migration mechanisms, which allows for reliable discrimination of SNPs within doubl...

  15. Defective double-strand DNA break repair and chromosomal translocations by MYC overexpression.

    Science.gov (United States)

    Karlsson, Asa; Deb-Basu, Debabrita; Cherry, Athena; Turner, Stephanie; Ford, James; Felsher, Dean W

    2003-08-19

    DNA repair mechanisms are essential for the maintenance of genomic integrity. Disruption of gene products responsible for DNA repair can result in chromosomal damage. Improperly repaired chromosomal damage can result in the loss of chromosomes or the generation of chromosomal deletions or translocations, which can lead to tumorigenesis. The MYC protooncogene is a transcription factor whose overexpression is frequently associated with human neoplasia. MYC has not been previously implicated in a role in DNA repair. Here we report that the overexpression of MYC disrupts the repair of double-strand DNA breaks, resulting in a several-magnitude increase in chromosomal breaks and translocations. We found that MYC inhibited the repair of gamma irradiation DNA breaks in normal human cells and blocked the repair of a single double-strand break engineered to occur in an immortal cell line. By spectral karyotypic analysis, we found that MYC even within one cell division cycle resulted in a several-magnitude increase in the frequency of chromosomal breaks and translocations in normal human cells. Hence, MYC overexpression may be a previously undescribed example of a dominant mutator that may fuel tumorigenesis by inducing chromosomal damage.

  16. Defective-interfering particles of the human parvovirus adeno-associated virus

    International Nuclear Information System (INIS)

    Laughlin, C.A.; Myers, M.W.; Risin, D.L.; Carter, B.J.

    1979-01-01

    We have previously shown that adeno-associated virus (AAV) grown in KB cells with a helper adenovirus, produced several classes of particles defined by their buoyant density in CsCl. The predominant density classes were referred to as AAV(1.45), AAV(1.41), AAV (1.35), and AAV(1.32), respectively, where the density of the particle was written in the parentheses. The AAV(1.45) and AAV(1.41) particles which contained standard genomes were the only infectious AAV these infectious AAV particles exhibited autointerference. The ligh-density AAV(1.35) and (1.32) particles contained aberrant (deleted and/or snap-back) genomes. We report here experiments which show that the light-density AAV particles were noninfectious but interfered with the replication of AAV(1.41). The interference was intracellular and resulted in inhibition of synthesis of standard (14.5S) AAV genomes. In some cases there was also a concomitant increase in synthesis of aberrant, shorter AAV DNA. The inhibitory activity of the light-density particles was abolished by uv irradiation. These results show that the population of light AAV particles contained DI particles. The observed autointerference of AAV(1.45) or AAV(1.41) virus is postulated to be due to AAV DI particles. Replication of AAV DI genomes appeared to require the presence of replicating, standard AAV genomes. This is interpreted to mean that progeny strand replication of AAV requires an AAV-specified product, presumably the AAV capsid protein. In contrast to standard, infectious AAV, the AAV DI particles alone do not inhibit replication of the helper adenovirus

  17. Efficient gene transfer into nondividing cells by adeno-associated virus-based vectors.

    Science.gov (United States)

    Podsakoff, G; Wong, K K; Chatterjee, S

    1994-09-01

    Gene transfer vectors based on adeno-associated virus (AAV) are emerging as highly promising for use in human gene therapy by virtue of their characteristics of wide host range, high transduction efficiencies, and lack of cytopathogenicity. To better define the biology of AAV-mediated gene transfer, we tested the ability of an AAV vector to efficiently introduce transgenes into nonproliferating cell populations. Cells were induced into a nonproliferative state by treatment with the DNA synthesis inhibitors fluorodeoxyuridine and aphidicolin or by contact inhibition induced by confluence and serum starvation. Cells in logarithmic growth or DNA synthesis arrest were transduced with vCWR:beta gal, an AAV-based vector encoding beta-galactosidase under Rous sarcoma virus long terminal repeat promoter control. Under each condition tested, vCWR:beta Gal expression in nondividing cells was at least equivalent to that in actively proliferating cells, suggesting that mechanisms for virus attachment, nuclear transport, virion uncoating, and perhaps some limited second-strand synthesis of AAV vectors were present in nondividing cells. Southern hybridization analysis of vector sequences from cells transduced while in DNA synthetic arrest and expanded after release of the block confirmed ultimate integration of the vector genome into cellular chromosomal DNA. These findings may provide the basis for the use of AAV-based vectors for gene transfer into quiescent cell populations such as totipotent hematopoietic stem cells.

  18. Poly(ADP-ribose polymerase (PARP-1 is not involved in DNA double-strand break recovery

    Directory of Open Access Journals (Sweden)

    Fernet Marie

    2003-07-01

    Full Text Available Abstract Background The cytotoxicity and the rejoining of DNA double-strand breaks induced by γ-rays, H2O2 and neocarzinostatin, were investigated in normal and PARP-1 knockout mouse 3T3 fibroblasts to determine the role of poly(ADP-ribose polymerase (PARP-1 in DNA double-strand break repair. Results PARP-1-/- were considerably more sensitive than PARP-1+/+ 3T3s to induced cell kill by γ-rays and H2O2. However, the two cell lines did not show any significant difference in the susceptibility to neocarzinostatin below 1.5 nM drug. Restoration of PARP-1 expression in PARP-1-/- 3T3s by retroviral transfection of the full PARP-1 cDNA did not induce any change in neocarzinostatin response. Moreover the incidence and the rejoining kinetics of neocarzinostatin-induced DNA double-strand breaks were identical in PARP-1+/+ and PARP-1-/- 3T3s. Poly(ADP-ribose synthesis following γ-rays and H2O2 was observed in PARP-1-proficient cells only. In contrast neocarzinostatin, even at supra-lethal concentration, was unable to initiate PARP-1 activation yet it induced H2AX histone phosphorylation in both PARP1+/+ and PARP-1-/- 3T3s as efficiently as γ-rays and H2O2. Conclusions The results show that PARP-1 is not a major determinant of DNA double-strand break recovery with either strand break rejoining or cell survival as an endpoint. Even though both PARP-1 and ATM activation are major determinants of the cell response to γ-rays and H2O2, data suggest that PARP-1-dependent poly(ADP-ribose synthesis and ATM-dependent H2AX phosphorylation, are not inter-related in the repair pathway of neocarzinostatin-induced DNA double-strand breaks.

  19. Nucleic Acid Analogue Induced Transcription of Double Stranded DNA

    DEFF Research Database (Denmark)

    1998-01-01

    RNA is transcribed from a double stranded DNA template by forming a complex by hybridizing to the template at a desired transcription initiation site one or more oligonucleic acid analogues of the PNA type capable of forming a transcription initiation site with the DNA and exposing the complex...... to the action of a DNA dependant RNA polymerase in the presence of nucleoside triphosphates. Equal length transcripts may be obtained by placing a block to transcription downstream from the initiation site or by cutting the template at such a selected location. The initiation site is formed by displacement...... of one strand of the DNA locally by the PNA hybridization....

  20. Stable producer cell lines for adeno-associated virus (AAV) assembly.

    Science.gov (United States)

    Chadeuf, Gilliane; Salvetti, Anna

    2010-10-01

    Stable producer cell lines containing both the rep and cap genes and recombinant adeno-associated virus (rAAV) vectors can be infected with a helper virus to provide reliable and efficient production of rAAV stocks. However, the development of these cell lines is time-consuming. The procedure described here is therefore recommended only for studies requiring the production of high amounts of rAAV, such as preclinical studies performed in large animals.

  1. Importance of the efficiency of double-stranded DNA formation in cDNA synthesis for the imprecision of microarray expression analysis.

    Science.gov (United States)

    Thormar, Hans G; Gudmundsson, Bjarki; Eiriksdottir, Freyja; Kil, Siyoen; Gunnarsson, Gudmundur H; Magnusson, Magnus Karl; Hsu, Jason C; Jonsson, Jon J

    2013-04-01

    The causes of imprecision in microarray expression analysis are poorly understood, limiting the use of this technology in molecular diagnostics. Two-dimensional strandness-dependent electrophoresis (2D-SDE) separates nucleic acid molecules on the basis of length and strandness, i.e., double-stranded DNA (dsDNA), single-stranded DNA (ssDNA), and RNA·DNA hybrids. We used 2D-SDE to measure the efficiency of cDNA synthesis and its importance for the imprecision of an in vitro transcription-based microarray expression analysis. The relative amount of double-stranded cDNA formed in replicate experiments that used the same RNA sample template was highly variable, ranging between 0% and 72% of the total DNA. Microarray experiments showed an inverse relationship between the difference between sample pairs in probe variance and the relative amount of dsDNA. Approximately 15% of probes showed between-sample variation (P cDNA synthesized can be an important component of the imprecision in T7 RNA polymerase-based microarray expression analysis. © 2013 American Association for Clinical Chemistry

  2. Intra- and inter-subunit disulfide bond formation is nonessential in adeno-associated viral capsids.

    Directory of Open Access Journals (Sweden)

    Nagesh Pulicherla

    Full Text Available The capsid proteins of adeno-associated viruses (AAV have five conserved cysteine residues. Structural analysis of AAV serotype 2 reveals that Cys289 and Cys361 are located adjacent to each other within each monomer, while Cys230 and Cys394 are located on opposite edges of each subunit and juxtaposed at the pentamer interface. The Cys482 residue is located at the base of a surface loop within the trimer region. Although plausible based on molecular dynamics simulations, intra- or inter-subunit disulfides have not been observed in structural studies. In the current study, we generated a panel of Cys-to-Ser mutants to interrogate the potential for disulfide bond formation in AAV capsids. The C289S, C361S and C482S mutants were similar to wild type AAV with regard to titer and transduction efficiency. However, AAV capsid protein subunits with C230S or C394S mutations were prone to proteasomal degradation within the host cells. Proteasomal inhibition partially blocked degradation of mutant capsid proteins, but failed to rescue infectious virions. While these results suggest that the Cys230/394 pair is critical, a C394V mutant was found viable, but not the corresponding C230V mutant. Although the exact nature of the structural contribution(s of Cys230 and Cys394 residues to AAV capsid formation remains to be determined, these results support the notion that disulfide bond formation within the Cys289/361 or Cys230/394 pair appears to be nonessential. These studies represent an important step towards understanding the role of inter-subunit interactions that drive AAV capsid assembly.

  3. Molecular design for recombinant adeno-associated virus (rAAV) vector production.

    Science.gov (United States)

    Aponte-Ubillus, Juan Jose; Barajas, Daniel; Peltier, Joseph; Bardliving, Cameron; Shamlou, Parviz; Gold, Daniel

    2018-02-01

    Recombinant adeno-associated virus (rAAV) vectors are increasingly popular tools for gene therapy applications. Their non-pathogenic status, low inflammatory potential, availability of viral serotypes with different tissue tropisms, and prospective long-lasting gene expression are important attributes that make rAAVs safe and efficient therapeutic options. Over the last three decades, several groups have engineered recombinant AAV-producing platforms, yielding high titers of transducing vector particles. Current specific productivity yields from different platforms range from 10 3 to 10 5 vector genomes (vg) per cell, and there is an ongoing effort to improve vector yields in order to satisfy high product demands required for clinical trials and future commercialization.Crucial aspects of vector production include the molecular design of the rAAV-producing host cell line along with the design of AAV genes, promoters, and regulatory elements. Appropriately, configuring and balancing the expression of these elements not only contributes toward high productivity, it also improves process robustness and product quality. In this mini-review, the rational design of rAAV-producing expression systems is discussed, with special attention to molecular strategies that contribute to high-yielding, biomanufacturing-amenable rAAV production processes. Details on molecular optimization from four rAAV expression systems are covered: adenovirus, herpesvirus, and baculovirus complementation systems, as well as a recently explored yeast expression system.

  4. Double-stranded endonuclease activity in Bacillus halodurans clustered regularly interspaced short palindromic repeats (CRISPR)-associated Cas2 protein.

    Science.gov (United States)

    Nam, Ki Hyun; Ding, Fran; Haitjema, Charles; Huang, Qingqiu; DeLisa, Matthew P; Ke, Ailong

    2012-10-19

    The CRISPR (clustered regularly interspaced short palindromic repeats) system is a prokaryotic RNA-based adaptive immune system against extrachromosomal genetic elements. Cas2 is a universally conserved core CRISPR-associated protein required for the acquisition of new spacers for CRISPR adaptation. It was previously characterized as an endoribonuclease with preference for single-stranded (ss)RNA. Here, we show using crystallography, mutagenesis, and isothermal titration calorimetry that the Bacillus halodurans Cas2 (Bha_Cas2) from the subtype I-C/Dvulg CRISPR instead possesses metal-dependent endonuclease activity against double-stranded (ds)DNA. This activity is consistent with its putative function in producing new spacers for insertion into the 5'-end of the CRISPR locus. Mutagenesis and isothermal titration calorimetry studies revealed that a single divalent metal ion (Mg(2+) or Mn(2+)), coordinated by a symmetric Asp pair in the Bha_Cas2 dimer, is involved in the catalysis. We envision that a pH-dependent conformational change switches Cas2 into a metal-binding competent conformation for catalysis. We further propose that the distinct substrate preferences among Cas2 proteins may be determined by the sequence and structure in the β1-α1 loop.

  5. A link between double-strand break-related repair and V(D)J recombination: the scid mutation

    International Nuclear Information System (INIS)

    Hendrickson, E.A.; Qin, X.Q.; Bump, E.A.; Schatz, D.G.; Oettinger, M.; Weaver, D.T.

    1991-01-01

    We show here that mammalian site-specific recombination and DNA-repair pathways share a common factor. The effects of DNA-damaging agents on cell lines derived from mice homozygous for the scid (severe combined immune deficiency) mutation were studied. Surprisingly, all scid cell lines exhibited a profound hypersensitivity to DNA-damaging agents that caused double-strand breaks (x-irradiation and bleomycin) but not to other chemicals that caused single-strand breaks or cross-links. Neutral filter elution assays demonstrated that the x-irradiation hypersensitivity could be correlated with a deficiency in repairing double-strand breaks. These data suggest that the scid gene product is involved in two pathways: DNA repair of random double-strand breaks and the site-specific and lymphoid-restricted variable-(diversity)-joining [V(D)J] DNA rearrangement process. We propose that the scid gene product performs a similar function in both pathways and may be a ubiquitous protein

  6. Characterization of cognitive deficits in rats overexpressing human alpha-synuclein in the ventral tegmental area and medial septum using recombinant adeno-associated viral vectors.

    Science.gov (United States)

    Hall, Hélène; Jewett, Michael; Landeck, Natalie; Nilsson, Nathalie; Schagerlöf, Ulrika; Leanza, Giampiero; Kirik, Deniz

    2013-01-01

    Intraneuronal inclusions containing alpha-synuclein (a-syn) constitute one of the pathological hallmarks of Parkinson's disease (PD) and are accompanied by severe neurodegeneration of A9 dopaminergic neurons located in the substantia nigra. Although to a lesser extent, A10 dopaminergic neurons are also affected. Neurodegeneration of other neuronal populations, such as the cholinergic, serotonergic and noradrenergic cell groups, has also been documented in PD patients. Studies in human post-mortem PD brains and in rodent models suggest that deficits in cholinergic and dopaminergic systems may be associated with the cognitive impairment seen in this disease. Here, we investigated the consequences of targeted overexpression of a-syn in the mesocorticolimbic dopaminergic and septohippocampal cholinergic pathways. Rats were injected with recombinant adeno-associated viral vectors encoding for either human wild-type a-syn or green fluorescent protein (GFP) in the ventral tegmental area and the medial septum/vertical limb of the diagonal band of Broca, two regions rich in dopaminergic and cholinergic neurons, respectively. Histopathological analysis showed widespread insoluble a-syn positive inclusions in all major projections areas of the targeted nuclei, including the hippocampus, neocortex, nucleus accumbens and anteromedial striatum. In addition, the rats overexpressing human a-syn displayed an abnormal locomotor response to apomorphine injection and exhibited spatial learning and memory deficits in the Morris water maze task, in the absence of obvious spontaneous locomotor impairment. As losses in dopaminergic and cholinergic immunoreactivity in both the GFP and a-syn expressing animals were mild-to-moderate and did not differ from each other, the behavioral impairments seen in the a-syn overexpressing animals appear to be determined by the long term persisting neuropathology in the surviving neurons rather than by neurodegeneration.

  7. Mutations Abrogating VP35 Interaction with Double-Stranded RNA Render Ebola Virus Avirulent in Guinea Pigs

    Energy Technology Data Exchange (ETDEWEB)

    Prins, Kathleen C.; Delpeut, Sebastien; Leung, Daisy W.; Reynard, Olivier; Volchkova, Valentina A.; Reid, St. Patrick; Ramanan, Parameshwaran; Cárdenas, Washington B.; Amarasinghe, Gaya K.; Volchkov, Viktor E.; Basler, Christopher F. (CNRS-INSERM); (Mount Sinai Hospital); (LB-Ecuador); (Iowa State)

    2010-10-11

    Ebola virus (EBOV) protein VP35 is a double-stranded RNA (dsRNA) binding inhibitor of host interferon (IFN)-{alpha}/{beta} responses that also functions as a viral polymerase cofactor. Recent structural studies identified key features, including a central basic patch, required for VP35 dsRNA binding activity. To address the functional significance of these VP35 structural features for EBOV replication and pathogenesis, two point mutations, K319A/R322A, that abrogate VP35 dsRNA binding activity and severely impair its suppression of IFN-{alpha}/{beta} production were identified. Solution nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography reveal minimal structural perturbations in the K319A/R322A VP35 double mutant and suggest that loss of basic charge leads to altered function. Recombinant EBOVs encoding the mutant VP35 exhibit, relative to wild-type VP35 viruses, minimal growth attenuation in IFN-defective Vero cells but severe impairment in IFN-competent cells. In guinea pigs, the VP35 mutant virus revealed a complete loss of virulence. Strikingly, the VP35 mutant virus effectively immunized animals against subsequent wild-type EBOV challenge. These in vivo studies, using recombinant EBOV viruses, combined with the accompanying biochemical and structural analyses directly correlate VP35 dsRNA binding and IFN inhibition functions with viral pathogenesis. Moreover, these studies provide a framework for the development of antivirals targeting this critical EBOV virulence factor.

  8. Dissimilar kinetic behavior of electrically manipulated single- and double-stranded DNA tethered to a gold surface.

    Science.gov (United States)

    Rant, Ulrich; Arinaga, Kenji; Tornow, Marc; Kim, Yong Woon; Netz, Roland R; Fujita, Shozo; Yokoyama, Naoki; Abstreiter, Gerhard

    2006-05-15

    We report on the electrical manipulation of single- and double-stranded oligodeoxynucleotides that are end tethered to gold surfaces in electrolyte solution. The response to alternating repulsive and attractive electric surface fields is studied by time-resolved fluorescence measurements, revealing markedly distinct dynamics for the flexible single-stranded and stiff double-stranded DNA, respectively. Hydrodynamic simulations rationalize this finding and disclose two different kinetic mechanisms: stiff polymers undergo rotation around the anchoring pivot point; flexible polymers, on the other hand, are pulled onto the attracting surface segment by segment.

  9. Methods of treating Parkinson's disease using viral vectors

    Energy Technology Data Exchange (ETDEWEB)

    Bankiewicz, Krystof; Cunningham, Janet

    2016-11-15

    Methods of delivering viral vectors, particularly recombinant adeno-associated virus (rAAV) virions, to the central nervous system (CNS) using convection enhanced delivery (CED) are provided. The rAAV virions include a nucleic acid sequence encoding a therapeutic polypeptide. The methods can be used for treating CNS disorders such as for treating Parkinson's Disease.

  10. Crystallization and preliminary X-ray structural studies of adeno-associated virus serotype 6

    International Nuclear Information System (INIS)

    Xie, Qing; Ongley, Heather M.; Hare, Joan; Chapman, Michael S.

    2008-01-01

    Adeno-associated virus type 6, a human DNA virus that is being developed as a vector for gene therapy, has been crystallized in a form suitable for structure determination at about 3.2 Å resolution. Adeno-associated viruses are being developed as vectors for gene therapy and have been used in a number of clinical trials. Vectors to date have been based on the type species AAV-2, the structure of which was published in 2002. There is growing interest in modulating the cellular tropism and immune neutralization of AAV-2 with variants inspired by the properties of other serotypes. Towards the determination of a structure for AAV type 6, this paper reports the high-yield production, purification, crystallization and preliminary diffraction studies of infectious AAV-6 virions. The crystals diffracted to 3.2 Å resolution using synchrotron radiation. The most promising crystal form belonged to space group R3 and appeared to be suitable for initial structure determination

  11. Use of self-complementary adeno-associated virus serotype 2 as a tracer for labeling axons: implications for axon regeneration.

    Directory of Open Access Journals (Sweden)

    Yingpeng Liu

    Full Text Available Various types of tracers are available for use in axon regeneration, but they require an extra operational tracer injection, time-consuming immunohistochemical analysis and cause non-specific labeling. Considerable efforts over the past years have explored other methodologies, especially the use of viral vectors, to investigate axon regeneration after injury. Recent studies have demonstrated that self-complementary Adeno-Associated Virus (scAAV induced a high transduction efficiency and faster expression of transgenes. Here, we describe for the first time the use of scAAV2-GFP to label long-projection axons in the corticospinal tract (CST, rubrospinal tract (RST and the central axons of dorsal root ganglion (DRG in the normal and lesioned animal models. We found that scAAV2-GFP could efficiently transduce neurons in the sensorimotor cortex, red nucleus and DRG. Strong GFP expression could be transported anterogradely along the axon to label the numerous axon fibers from CST, RST and central axons of DRG separately. Comparison of the scAAV2 vector with single-stranded (ss AAV2 vector in co-labeled sections showed that the scAAV2 vector induced a faster and stronger transgene expression than the ssAAV2 vector in DRG neurons and their axons. In both spinal cord lesion and dorsal root crush injury models, scAAV-GFP could efficiently label the lesioned and regenerated axons around the lesion cavity and the dorsal root entry zone (DREZ respectively. Further, scAAV2-GFP vector could be combined with traditional tracer to specifically label sensory and motor axons after spinal cord lesion. Thus, we show that using scAAV2-GFP as a tracer is a more effective and efficient way to study axon regeneration following injury.

  12. Human Cell Assays for Synthesis-Dependent Strand Annealing and Crossing over During Double-Strand Break Repair.

    Science.gov (United States)

    Zapotoczny, Grzegorz; Sekelsky, Jeff

    2017-04-03

    DNA double-strand breaks (DSBs) are one of the most deleterious types of lesions to the genome. Synthesis-dependent strand annealing (SDSA) is thought to be a major pathway of DSB repair, but direct tests of this model have only been conducted in budding yeast and Drosophila To better understand this pathway, we developed an SDSA assay for use in human cells. Our results support the hypothesis that SDSA is an important DSB repair mechanism in human cells. We used siRNA knockdown to assess the roles of a number of helicases suggested to promote SDSA. None of the helicase knockdowns reduced SDSA, but knocking down BLM or RTEL1 increased SDSA. Molecular analysis of repair products suggests that these helicases may prevent long-tract repair synthesis. Since the major alternative to SDSA (repair involving a double-Holliday junction intermediate) can lead to crossovers, we also developed a fluorescent assay that detects crossovers generated during DSB repair. Together, these assays will be useful in investigating features and mechanisms of SDSA and crossover pathways in human cells. Copyright © 2017 Zapotoczny and Sekelsky.

  13. Human Cell Assays for Synthesis-Dependent Strand Annealing and Crossing over During Double-Strand Break Repair

    Directory of Open Access Journals (Sweden)

    Grzegorz Zapotoczny

    2017-04-01

    Full Text Available DNA double-strand breaks (DSBs are one of the most deleterious types of lesions to the genome. Synthesis-dependent strand annealing (SDSA is thought to be a major pathway of DSB repair, but direct tests of this model have only been conducted in budding yeast and Drosophila. To better understand this pathway, we developed an SDSA assay for use in human cells. Our results support the hypothesis that SDSA is an important DSB repair mechanism in human cells. We used siRNA knockdown to assess the roles of a number of helicases suggested to promote SDSA. None of the helicase knockdowns reduced SDSA, but knocking down BLM or RTEL1 increased SDSA. Molecular analysis of repair products suggests that these helicases may prevent long-tract repair synthesis. Since the major alternative to SDSA (repair involving a double-Holliday junction intermediate can lead to crossovers, we also developed a fluorescent assay that detects crossovers generated during DSB repair. Together, these assays will be useful in investigating features and mechanisms of SDSA and crossover pathways in human cells.

  14. Cisplatin enhances the formation of DNA single- and double-strand breaks by hydrated electrons and hydroxyl radicals.

    Science.gov (United States)

    Rezaee, Mohammad; Sanche, Léon; Hunting, Darel J

    2013-03-01

    The synergistic interaction of cisplatin with ionizing radiation is the clinical rationale for the treatment of several cancers including head and neck, cervical and lung cancer. The underlying molecular mechanism of the synergy has not yet been identified, although both DNA damage and repair processes are likely involved. Here, we investigate the indirect effect of γ rays on strand break formation in a supercoiled plasmid DNA (pGEM-3Zf-) covalently modified by cisplatin. The yields of single- and double-strand breaks were determined by irradiation of DNA and cisplatin/DNA samples with (60)Co γ rays under four different scavenging conditions to examine the involvement of hydrated electrons and hydroxyl radicals in inducing the DNA damage. At 5 mM tris in an N2 atmosphere, the presence of an average of two cisplatins per plasmid increased the yields of single- and double-strand breaks by factors of 1.9 and 2.2, respectively, relative to the irradiated unmodified DNA samples. Given that each plasmid of 3,200 base pairs contained an average of two cisplatins, this represents an increase in radiosensitivity of 3,200-fold on a per base pair basis. When hydrated electrons were scavenged by saturating the samples with N2O, these enhancement factors decreased to 1.5 and 1.2, respectively, for single- and double-strand breaks. When hydroxyl radicals were scavenged using 200 mM tris, the respective enhancement factors were 1.2 and 1.6 for single- and double-strand breaks, respectively. Furthermore, no enhancement in DNA damage by cisplatin was observed after scavenging both hydroxyl radicals and hydrated electrons. These findings show that hydrated electrons can induce both single- and double-strand breaks in the platinated DNA, but not in unmodified DNA. In addition, cisplatin modification is clearly an extremely efficient means of increasing the formation of both single- and double-strand breaks by the hydrated electrons and hydroxyl radicals created by ionizing

  15. siRNA-like double-stranded RNAs are specifically protected against degradation in human cell extract.

    Directory of Open Access Journals (Sweden)

    John A H Hoerter

    Full Text Available RNA interference (RNAi is a set of intracellular pathways in eukaryotes that controls both exogenous and endogenous gene expression. The power of RNAi to knock down (silence any gene of interest by the introduction of synthetic small-interfering (siRNAs has afforded powerful insight into biological function through reverse genetic approaches and has borne a new field of gene therapeutics. A number of questions are outstanding concerning the potency of siRNAs, necessitating an understanding of how short double-stranded RNAs are processed by the cell. Recent work suggests unmodified siRNAs are protected in the intracellular environment, although the mechanism of protection still remains unclear. We have developed a set of doubly-fluorophore labeled RNAs (more precisely, RNA/DNA chimeras to probe in real-time the stability of siRNAs and related molecules by fluorescence resonance energy transfer (FRET. We find that these RNA probes are substrates for relevant cellular degradative processes, including the RNase H1 mediated degradation of an DNA/RNA hybrid and Dicer-mediated cleavage of a 24-nucleotide (per strand double-stranded RNA. In addition, we find that 21- and 24-nucleotide double-stranded RNAs are relatively protected in human cytosolic cell extract, but less so in blood serum, whereas an 18-nucleotide double-stranded RNA is less protected in both fluids. These results suggest that RNAi effector RNAs are specifically protected in the cellular environment and may provide an explanation for recent results showing that unmodified siRNAs in cells persist intact for extended periods of time.

  16. Visualization of DNA double-strand break repair: From molecules to cells

    NARCIS (Netherlands)

    Krawczyk, Przemek M.; Stap, Jan; Aten, Jacob A.

    2008-01-01

    DNA double-strand break (DSB) signaling and repair processes are positioned at the crossroad of nuclear pathways that regulate DNA replication, cell division, senescence and apoptosis. Importantly, errors in DSB repair may lead to lethal or potentially tumorigenic chromosome rearrangements.

  17. The production and repair of double strand breaks in cells from normal humans and patients with ataxia telangiectasia

    International Nuclear Information System (INIS)

    Lehman, A.R.; Stevens, S.

    1977-01-01

    The production and repair of double strand breaks induced by γ-rays in the DNA of human fibroblasts have been measured by sedimentation in sucrose gradients under non-denaturing conditions. Unirradiated DNA formed a rapidly sedimenting gel. Low doses of radiation released freely sedimenting DNA molecules from this gel. Higher doses reduced the rate of sedimentation of the free DNA due to the introduction of double strand breaks. The breakage efficiency was 1 break/1.3x10 10 daltons of DNA/krad. Postirradiation incubation after a high dose of radiation resulted in an increase in molecular weight of the free DNA molecules, and after a low dose the rapidly-sedimenting gel was reformed. These data suggest that double strand breaks are repaired in human fibroblasts. No significant differences were found between fibroblasts from two normal donors and four patients with the radiosensitive disorder, ataxia telangiectasia, in either the production or repair of double strand breaks

  18. Twinned crystals of adeno-associated virus serotype 3b prove suitable for structural studies

    International Nuclear Information System (INIS)

    Lerch, Thomas F.; Xie, Qing; Ongley, Heather M.; Hare, Joan; Chapman, Michael S.

    2009-01-01

    Crystals of adeno-associated virus serotype 3b, a human DNA virus with promise as a vector for gene therapy, have been grown, diffract X-rays to ∼2.6 Å resolution and are suitable for structure determination in spite of twinning. Adeno-associated viruses (AAVs) are leading candidate vectors for gene-therapy applications. The AAV-3b capsid is closely related to the well characterized AAV-2 capsid (87% identity), but sequence and presumably structural differences lead to distinct cell-entry and immune-recognition properties. In an effort to understand these differences and to perhaps harness them, diffraction-quality crystals of purified infectious AAV-3b particles have been grown and several partial diffraction data sets have been recorded. The crystals displayed varying levels of merohedral twinning that in earlier times would have rendered them unsuitable for structure determination, but here is shown to be a tractable complication

  19. Dengue viral RNA levels in peripheral blood mononuclear cells are associated with disease severity and preexisting dengue immune status.

    Directory of Open Access Journals (Sweden)

    Anon Srikiatkhachorn

    Full Text Available Infection with dengue viruses (DENV causes a wide range of manifestations from asymptomatic infection to a febrile illness called dengue fever (DF, to dengue hemorrhagic fever (DHF. The in vivo targets of DENV and the relation between the viral burden in these cells and disease severity are not known.The levels of positive and negative strand viral RNA in peripheral blood monocytes, T/NK cells, and B cells and in plasma of DF and DHF cases were measured by quantitative RT-PCR.Positive strand viral RNA was detected in monocytes, T/NK cells and B cells with the highest amounts found in B cells. Viral RNA levels in CD14+ cells and plasma were significantly higher in DHF compared to DF, and in cases with a secondary infection compared to those undergoing a primary infection. The distribution of viral RNA among cell subpopulations was similar in DF and DHF cases. Small amounts of negative strand RNA were found in a few cases only. The severity of plasma leakage correlated with viral RNA levels in plasma and in CD14+ cells.B cells were the principal cells containing DENV RNA in peripheral blood, but overall there was little active DENV RNA replication detectable in peripheral blood mononuclear cells (PBMC. Secondary infection and DHF were associated with higher viral burden in PBMC populations, especially CD14+ monocytes, suggesting that viral infection of these cells may be involved in disease pathogenesis.

  20. Strand-Specific Analysis of DNA Synthesis and Proteins Association with DNA Replication Forks in Budding Yeast.

    Science.gov (United States)

    Yu, Chuanhe; Gan, Haiyun; Zhang, Zhiguo

    2018-01-01

    DNA replication initiates at DNA replication origins after unwinding of double-strand DNA(dsDNA) by replicative helicase to generate single-stranded DNA (ssDNA) templates for the continuous synthesis of leading-strand and the discontinuous synthesis of lagging-strand. Therefore, methods capable of detecting strand-specific information will likely yield insight into the association of proteins at leading and lagging strand of DNA replication forks and the regulation of leading and lagging strand synthesis during DNA replication. The enrichment and Sequencing of Protein-Associated Nascent DNA (eSPAN), which measure the relative amounts of proteins at nascent leading and lagging strands of DNA replication forks, is a step-wise procedure involving the chromatin immunoprecipitation (ChIP) of a protein of interest followed by the enrichment of protein-associated nascent DNA through BrdU immunoprecipitation. The isolated ssDNA is then subjected to strand-specific sequencing. This method can detect whether a protein is enriched at leading or lagging strand of DNA replication forks. In addition to eSPAN, two other strand-specific methods, (ChIP-ssSeq), which detects potential protein-ssDNA binding and BrdU-IP-ssSeq, which can measure synthesis of both leading and lagging strand, were developed along the way. These methods can provide strand-specific and complementary information about the association of the target protein with DNA replication forks as well as synthesis of leading and lagging strands genome wide. Below, we describe the detailed eSPAN, ChIP-ssSeq, and BrdU-IP-ssSeq protocols.

  1. Chromatin mobility is increased at sites of DNA double-strand breaks

    NARCIS (Netherlands)

    Krawczyk, P. M.; Borovski, T.; Stap, J.; Cijsouw, T.; ten Cate, R.; Medema, J. P.; Kanaar, R.; Franken, N. A. P.; Aten, J. A.

    2012-01-01

    DNA double-strand breaks (DSBs) can efficiently kill cancer cells, but they can also produce unwanted chromosome rearrangements when DNA ends from different DSBs are erroneously joined. Movement of DSB-containing chromatin domains might facilitate these DSB interactions and promote the formation of

  2. Down-Regulation of p53 by Double-Stranded RNA Modulates the Antiviral Response

    Science.gov (United States)

    Marques, Joao T.; Rebouillat, Dominique; Ramana, Chilakamarti V.; Murakami, Junko; Hill, Jason E.; Gudkov, Andrei; Silverman, Robert H.; Stark, George R.; Williams, Bryan R. G.

    2005-01-01

    p53 has been well characterized as a tumor suppressor gene, but its role in antiviral defense remains unclear. A recent report has demonstrated that p53 can be induced by interferons and is activated after vesicular stomatitis virus (VSV) infection. We observed that different nononcogenic viruses, including encephalomyocarditis virus (EMCV) and human parainfluenza virus type 3 (HPIV3), induced down-regulation of p53 in infected cells. Double-stranded RNA (dsRNA) and a mutant vaccinia virus lacking the dsRNA binding protein E3L can also induce this effect, indicating that dsRNA formed during viral infection is likely the trigger for down-regulation of p53. The mechanism of down-regulation of p53 by dsRNA relies on translation inhibition mediated by the PKR and RNase L pathways. In the absence of p53, the replication of both EMCV and HPIV3 was retarded, whereas, conversely, VSV replication was enhanced. Cell cycle analysis indicated that wild-type (WT) but not p53 knockout (KO) fibroblasts undergo an early-G1 arrest following dsRNA treatment. Moreover, in WT cells the onset of dsRNA-induced apoptosis begins after p53 levels are down-regulated, whereas p53 KO cells, which lack the early-G1 arrest, rapidly undergo apoptosis. Hence, our data suggest that the down-regulation of p53 facilitates apoptosis, thereby limiting viral replication. PMID:16103161

  3. Time-lapse crystallography snapshots of a double-strand break repair polymerase in action.

    Science.gov (United States)

    Jamsen, Joonas A; Beard, William A; Pedersen, Lars C; Shock, David D; Moon, Andrea F; Krahn, Juno M; Bebenek, Katarzyna; Kunkel, Thomas A; Wilson, Samuel H

    2017-08-15

    DNA polymerase (pol) μ is a DNA-dependent polymerase that incorporates nucleotides during gap-filling synthesis in the non-homologous end-joining pathway of double-strand break repair. Here we report time-lapse X-ray crystallography snapshots of catalytic events during gap-filling DNA synthesis by pol μ. Unique catalytic intermediates and active site conformational changes that underlie catalysis are uncovered, and a transient third (product) metal ion is observed in the product state. The product manganese coordinates phosphate oxygens of the inserted nucleotide and PP i . The product metal is not observed during DNA synthesis in the presence of magnesium. Kinetic analyses indicate that manganese increases the rate constant for deoxynucleoside 5'-triphosphate insertion compared to magnesium. The likely product stabilization role of the manganese product metal in pol μ is discussed. These observations provide insight on structural attributes of this X-family double-strand break repair polymerase that impact its biological function in genome maintenance.DNA polymerase (pol) μ functions in DNA double-strand break repair. Here the authors use time-lapse X-ray crystallography to capture the states of pol µ during the conversion from pre-catalytic to product complex and observe a third transiently bound metal ion in the product state.

  4. Viral single-strand DNA induces p53-dependent apoptosis in human embryonic stem cells.

    Science.gov (United States)

    Hirsch, Matthew L; Fagan, B Matthew; Dumitru, Raluca; Bower, Jacquelyn J; Yadav, Swati; Porteus, Matthew H; Pevny, Larysa H; Samulski, R Jude

    2011-01-01

    Human embryonic stem cells (hESCs) are primed for rapid apoptosis following mild forms of genotoxic stress. A natural form of such cellular stress occurs in response to recombinant adeno-associated virus (rAAV) single-strand DNA genomes, which exploit the host DNA damage response for replication and genome persistence. Herein, we discovered a unique DNA damage response induced by rAAV transduction specific to pluripotent hESCs. Within hours following rAAV transduction, host DNA damage signaling was elicited as measured by increased gamma-H2AX, ser15-p53 phosphorylation, and subsequent p53-dependent transcriptional activation. Nucleotide incorporation assays demonstrated that rAAV transduced cells accumulated in early S-phase followed by the induction of apoptosis. This lethal signaling sequalae required p53 in a manner independent of transcriptional induction of Puma, Bax and Bcl-2 and was not evident in cells differentiated towards a neural lineage. Consistent with a lethal DNA damage response induced upon rAAV transduction of hESCs, empty AAV protein capsids demonstrated no toxicity. In contrast, DNA microinjections demonstrated that the minimal AAV origin of replication and, in particular, a 40 nucleotide G-rich tetrad repeat sequence, was sufficient for hESC apoptosis. Our data support a model in which rAAV transduction of hESCs induces a p53-dependent lethal response that is elicited by a telomeric sequence within the AAV origin of replication.

  5. Viral single-strand DNA induces p53-dependent apoptosis in human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Matthew L Hirsch

    Full Text Available Human embryonic stem cells (hESCs are primed for rapid apoptosis following mild forms of genotoxic stress. A natural form of such cellular stress occurs in response to recombinant adeno-associated virus (rAAV single-strand DNA genomes, which exploit the host DNA damage response for replication and genome persistence. Herein, we discovered a unique DNA damage response induced by rAAV transduction specific to pluripotent hESCs. Within hours following rAAV transduction, host DNA damage signaling was elicited as measured by increased gamma-H2AX, ser15-p53 phosphorylation, and subsequent p53-dependent transcriptional activation. Nucleotide incorporation assays demonstrated that rAAV transduced cells accumulated in early S-phase followed by the induction of apoptosis. This lethal signaling sequalae required p53 in a manner independent of transcriptional induction of Puma, Bax and Bcl-2 and was not evident in cells differentiated towards a neural lineage. Consistent with a lethal DNA damage response induced upon rAAV transduction of hESCs, empty AAV protein capsids demonstrated no toxicity. In contrast, DNA microinjections demonstrated that the minimal AAV origin of replication and, in particular, a 40 nucleotide G-rich tetrad repeat sequence, was sufficient for hESC apoptosis. Our data support a model in which rAAV transduction of hESCs induces a p53-dependent lethal response that is elicited by a telomeric sequence within the AAV origin of replication.

  6. Raw Sewage Harbors Diverse Viral Populations

    Science.gov (United States)

    Cantalupo, Paul G.; Calgua, Byron; Zhao, Guoyan; Hundesa, Ayalkibet; Wier, Adam D.; Katz, Josh P.; Grabe, Michael; Hendrix, Roger W.; Girones, Rosina; Wang, David; Pipas, James M.

    2011-01-01

    ABSTRACT At this time, about 3,000 different viruses are recognized, but metagenomic studies suggest that these viruses are a small fraction of the viruses that exist in nature. We have explored viral diversity by deep sequencing nucleic acids obtained from virion populations enriched from raw sewage. We identified 234 known viruses, including 17 that infect humans. Plant, insect, and algal viruses as well as bacteriophages were also present. These viruses represented 26 taxonomic families and included viruses with single-stranded DNA (ssDNA), double-stranded DNA (dsDNA), positive-sense ssRNA [ssRNA(+)], and dsRNA genomes. Novel viruses that could be placed in specific taxa represented 51 different families, making untreated wastewater the most diverse viral metagenome (genetic material recovered directly from environmental samples) examined thus far. However, the vast majority of sequence reads bore little or no sequence relation to known viruses and thus could not be placed into specific taxa. These results show that the vast majority of the viruses on Earth have not yet been characterized. Untreated wastewater provides a rich matrix for identifying novel viruses and for studying virus diversity. Importance At this time, virology is focused on the study of a relatively small number of viral species. Specific viruses are studied either because they are easily propagated in the laboratory or because they are associated with disease. The lack of knowledge of the size and characteristics of the viral universe and the diversity of viral genomes is a roadblock to understanding important issues, such as the origin of emerging pathogens and the extent of gene exchange among viruses. Untreated wastewater is an ideal system for assessing viral diversity because virion populations from large numbers of individuals are deposited and because raw sewage itself provides a rich environment for the growth of diverse host species and thus their viruses. These studies suggest that

  7. Mechanism of membranous tunnelling nanotube formation in viral genome delivery.

    Directory of Open Access Journals (Sweden)

    Bibiana Peralta

    2013-09-01

    Full Text Available In internal membrane-containing viruses, a lipid vesicle enclosed by the icosahedral capsid protects the genome. It has been postulated that this internal membrane is the genome delivery device of the virus. Viruses built with this architectural principle infect hosts in all three domains of cellular life. Here, using a combination of electron microscopy techniques, we investigate bacteriophage PRD1, the best understood model for such viruses, to unveil the mechanism behind the genome translocation across the cell envelope. To deliver its double-stranded DNA, the icosahedral protein-rich virus membrane transforms into a tubular structure protruding from one of the 12 vertices of the capsid. We suggest that this viral nanotube exits from the same vertex used for DNA packaging, which is biochemically distinct from the other 11. The tube crosses the capsid through an aperture corresponding to the loss of the peripentonal P3 major capsid protein trimers, penton protein P31 and membrane protein P16. The remodeling of the internal viral membrane is nucleated by changes in osmolarity and loss of capsid-membrane interactions as consequence of the de-capping of the vertices. This engages the polymerization of the tail tube, which is structured by membrane-associated proteins. We have observed that the proteo-lipidic tube in vivo can pierce the gram-negative bacterial cell envelope allowing the viral genome to be shuttled to the host cell. The internal diameter of the tube allows one double-stranded DNA chain to be translocated. We conclude that the assembly principles of the viral tunneling nanotube take advantage of proteo-lipid interactions that confer to the tail tube elastic, mechanical and functional properties employed also in other protein-membrane systems.

  8. Molecular characterization of a complex site-specific radiation-induced DNA double-strand break

    International Nuclear Information System (INIS)

    Datta, K.; Dizdaroglu, M.; Jaruga, P.; Neumann, R.D.; Winters, T.A.

    2003-01-01

    Radiation lethality is a function of radiation-induced DNA double-strand breaks (DSB). Current models propose the lethality of a DSB to be a function of its structural complexity. We present here for the first time a map of damage associated with a site-specific double-strand break produced by decay of 125 I in a plasmid bound by a 125 I-labeled triplex forming oligonucleotide ( 125 I-TFO). The E. coli DNA repair enzymes, endonuclease IV (endo IV), endonuclease III (endo III), and formamidopyrimidine-DNA glycosylase (Fpg), which recognize AP sites, and pyrimidine and purine base damage respectively, were used as probes in this study. 125 I-TFO bound plasmid was incubated with and without DMSO at -80 deg C for 1 month. No significant difference in DSB yield was observed under these conditions. A 32 base pair fragment from the upstream side of the decay site was isolated by restriction digestion and enzymatically probed to identify damage sites. Endo IV treatment of the 5'-end labeled upper strand indicated clustering of AP sites within 3 bases downstream and 7 bases upstream of the targeted base. Also, repeated experiments consistently detected an AP site 4 bases upstream of the 125 Itarget base. This was further supported by complementary results with the 3'-end labeled upper strand. Endo IV analysis of the lower strand also shows clustering of AP sites near the DSB end. Endo III and Fpg probing demonstrated that base damage is also clustered near the targeted break site. DSBs produced in the absence of DMSO displayed a different pattern of enzyme sensitive damage than those produced in the presence of DMSO. Identification of specific base damage types within the restriction fragment containing the DSB end was achieved with GC/MS. Base damage consisted of 8-hydroguanine, 8-hydroxyadenine, and 5-hydroxycytosine. These lesions were observed at relative yields of 8-hydroguanine and 5-hydroxycytosine to 8-hydroxyadenine of 7.4:1 and 4.7:1, respectively, in the absence

  9. Double-stranded DNA-dependent ATPase Irc3p is directly involved in mitochondrial genome maintenance.

    Science.gov (United States)

    Sedman, Tiina; Gaidutšik, Ilja; Villemson, Karin; Hou, YingJian; Sedman, Juhan

    2014-12-01

    Nucleic acid-dependent ATPases are involved in nearly all aspects of DNA and RNA metabolism. Previous studies have described a number of mitochondrial helicases. However, double-stranded DNA-dependent ATPases, including translocases or enzymes remodeling DNA-protein complexes, have not been identified in mitochondria of the yeast Saccharomyces cerevisae. Here, we demonstrate that Irc3p is a mitochondrial double-stranded DNA-dependent ATPase of the Superfamily II. In contrast to the other mitochondrial Superfamily II enzymes Mss116p, Suv3p and Mrh4p, which are RNA helicases, Irc3p has a direct role in mitochondrial DNA (mtDNA) maintenance. Specific Irc3p-dependent mtDNA metabolic intermediates can be detected, including high levels of double-stranded DNA breaks that accumulate in irc3Δ mutants. irc3Δ-related topology changes in rho- mtDNA can be reversed by the deletion of mitochondrial RNA polymerase RPO41, suggesting that Irc3p counterbalances adverse effects of transcription on mitochondrial genome stability. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Velocity and processivity of helicase unwinding of double-stranded nucleic acids

    International Nuclear Information System (INIS)

    Betterton, M D; Juelicher, F

    2005-01-01

    Helicases are molecular motors which unwind double-stranded nucleic acids (dsNA) in cells. Many helicases move with directional bias on single-stranded (ss) nucleic acids, and couple their directional translocation to strand separation. A model of the coupling between translocation and unwinding uses an interaction potential to represent passive and active helicase mechanisms. A passive helicase must wait for thermal fluctuations to open dsNA base pairs before it can advance and inhibit NA closing. An active helicase directly destabilizes dsNA base pairs, accelerating the opening rate. Here we extend this model to include helicase unbinding from the nucleic-acid strand. The helicase processivity depends on the form of the interaction potential. A passive helicase has a mean attachment time which does not change between ss translocation and ds unwinding, while an active helicase in general shows a decrease in attachment time during unwinding relative to ss translocation. In addition, we describe how helicase unwinding velocity and processivity vary if the base-pair binding free energy is changed

  11. Clinical Results of Flexor Tendon Repair in Zone II Using a six Strand Double Loop Technique.

    Science.gov (United States)

    Savvidou, Christiana; Tsai, Tsu-Min

    2015-06-01

    The purpose of this study is to report the clinical results after repair of flexor tendon zone II injuries utilizing a 6-strand double-loop technique and early post-operative active rehabilitation. We retrospectively reviewed 22 patients involving 51 cases with zone II flexor tendon repair using a six strand double loop technique from September 1996 to December 2012. Most common mechanism of injuries was sharp lacerations (86.5 %). Tendon injuries occurred equally in manual and non-manual workers and were work-related in 33 % of the cases. The Strickland score for active range of motion (ROM) postoperatively was excellent and good in the majority of the cases (81 %). The rupture rate was 1.9 %. The six strand double loop technique for Zone II flexor tendon repair leads to good and excellent motion in the majority of patients and low re- rupture rate. It is clinically effective and allows for early postoperative active rehabilitation.

  12. Efficient gene transfer into nondividing cells by adeno-associated virus-based vectors.

    OpenAIRE

    Podsakoff, G; Wong, K K; Chatterjee, S

    1994-01-01

    Gene transfer vectors based on adeno-associated virus (AAV) are emerging as highly promising for use in human gene therapy by virtue of their characteristics of wide host range, high transduction efficiencies, and lack of cytopathogenicity. To better define the biology of AAV-mediated gene transfer, we tested the ability of an AAV vector to efficiently introduce transgenes into nonproliferating cell populations. Cells were induced into a nonproliferative state by treatment with the DNA synthe...

  13. APOBEC3 cytidine deaminases in double-strand DNA break repair and cancer promotion.

    Science.gov (United States)

    Nowarski, Roni; Kotler, Moshe

    2013-06-15

    High frequency of cytidine to thymidine conversions was identified in the genome of several types of cancer cells. In breast cancer cells, these mutations are clustered in long DNA regions associated with single-strand DNA (ssDNA), double-strand DNA breaks (DSB), and genomic rearrangements. The observed mutational pattern resembles the deamination signature of cytidine to uridine carried out by members of the APOBEC3 family of cellular deaminases. Consistently, APOBEC3B (A3B) was recently identified as the mutational source in breast cancer cells. A3G is another member of the cytidine deaminases family predominantly expressed in lymphoma cells, where it is involved in mutational DSB repair following ionizing radiation treatments. This activity provides us with a new paradigm for cancer cell survival and tumor promotion and a mechanistic link between ssDNA, DSBs, and clustered mutations. Cancer Res; 73(12); 3494-8. ©2013 AACR. ©2013 AACR.

  14. Human RECQ5 helicase promotes repair of DNA double-strand breaks by synthesis-dependent strand annealing

    Czech Academy of Sciences Publication Activity Database

    Paliwal, S.; Kanagaraj, R.; Sturzenegger, A.; Burdová, Kamila; Janščák, Pavel

    2014-01-01

    Roč. 42, č. 4 (2014), s. 2380-2390 ISSN 0305-1048 R&D Projects: GA ČR GA204/09/0565; GA ČR GAP305/10/0281 Grant - others:Swiss National Science Foundation(CH) 31003A-129747; Swiss National Science Foundation(CH) 31003A_146206 Institutional support: RVO:68378050 Keywords : Human RECQ5 helicase * DNA double-strand breaks * mitotic homologous recombination Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 9.112, year: 2014

  15. Optimizing viral and non-viral gene transfer methods for genetic modification of porcine mesenchymal stem cells

    DEFF Research Database (Denmark)

    Stiehler, Maik; Duch, Mogens R.; Mygind, Tina

    2006-01-01

    -old Danish landrace pigs by Ficoll step gradient separation and polystyrene adherence technique. Vectors expressing enhanced green fluorescent protein (eGFP) and human bone morphogenetic protein-2 (BMP-2) were transferred to the cells by different non-viral methods and by use of recombinant adeno...

  16. Targeting abnormal DNA double strand break repair in cancer

    OpenAIRE

    Rassool, Feyruz V.; Tomkinson, Alan E.

    2010-01-01

    A major challenge in cancer treatment is the development of therapies that target cancer cells with little or no toxicity to normal tissues and cells. Alterations in DNA double strand break (DSB) repair in cancer cells include both elevated and reduced levels of key repair proteins and changes in the relative contributions of the various DSB repair pathways. These differences can result in increased sensitivity to DSB-inducing agents and increased genomic instability. The development of agent...

  17. Different responses to muon implantation in single- and double-stranded DNA

    International Nuclear Information System (INIS)

    Hubbard, Penny L.; Tani, Akiko; Oganesyan, Vasily S.; Butt, Julea N.; Cottrell, Stephen P.; Jayasooriya, Upali A.

    2006-01-01

    A model-free analysis of the longitudinal muon spin relaxation of muons implanted into single- and double-stranded DNA samples is reported. These samples show distinctly different responses to implanted muons with discontinuities of the integrated asymmetries at temperatures where these molecules are likely to have onset of molecular and electron dynamics

  18. Biophysical characterization of the association of histones with single-stranded DNA.

    Science.gov (United States)

    Wang, Ying; van Merwyk, Luis; Tönsing, Katja; Walhorn, Volker; Anselmetti, Dario; Fernàndez-Busquets, Xavier

    2017-11-01

    Despite the profound current knowledge of the architecture and dynamics of nucleosomes, little is known about the structures generated by the interaction of histones with single-stranded DNA (ssDNA), which is widely present during replication and transcription. Non-denaturing gel electrophoresis, transmission electron microscopy, atomic force microscopy, magnetic tweezers. Histones have a high affinity for ssDNA in 0.15M NaCl ionic strength, with an apparent binding constant similar to that calculated for their association with double-stranded DNA (dsDNA). The length of DNA (number of nucleotides in ssDNA or base pairs in dsDNA) associated with a fixed core histone mass is the same for both ssDNA and dsDNA. Although histone-ssDNA complexes show a high tendency to aggregate, nucleosome-like structures are formed at physiological salt concentrations. Core histones are able to protect ssDNA from digestion by micrococcal nuclease, and a shortening of ssDNA occurs upon its interaction with histones. The purified (+) strand of a cloned DNA fragment of nucleosomal origin has a higher affinity for histones than the purified complementary (-) strand. At physiological ionic strength histones have high affinity for ssDNA, possibly associating with it into nucleosome-like structures. In the cell nucleus histones may spontaneously interact with ssDNA to facilitate their participation in the replication and transcription of chromatin. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Repair pathways for heavy ion-induced complex DNA double strand breaks

    International Nuclear Information System (INIS)

    Yajima, Hirohiko; Nakajima, Nakako; Hirakawa, Hirokazu; Murakami, Takeshi; Okayasu, Ryuichi; Fujimori, Akira

    2012-01-01

    DNA double strand break (DSB) induced by ionizing radiation (IR) is a deleterious damage leading to cell death and genome instability if not properly repaired. It is well known that DSB is repaired by two major pathways, non-homologous end-joining (NHEJ) and homologous recombination (HR). It is also known that NHEJ is dominant throughout the cell cycle after X- or gamma-ray irradiation in mammalian cells, Meanwhile, it is thought that heavy-ion radiation (e.g., carbon-ions, iron-ions) gives rise to clustered DNA damages consisting of not only strand breaks but also aberrant bases in the vicinity of DSBs (complex DSBs). Our previous work suggested that the efficiency of NHEJ is diminished for repair of complex DSBs induced by heavy-ion radiation. We thought that this difficulty in NHEJ process associated with heavy ion induced complex DNA damage might be extended to HR process in cells exposed to heavy ions. In order to find out if this notion is true or not, exposed human cells to X-rays and heavy-ions, and studied HR associated processes at the molecular level. Our result indicates that complex DSBs induced by heavy ions effectively evoke DNA end resection activity during the HR process. Together with our results, a relevant recent progress in the field of DNA DSB repair will be discussed. (author)

  20. Double strand DNA breaks response in Huntington´s disease

    Czech Academy of Sciences Publication Activity Database

    Šolc, Petr; Valášek, Jan; Rausová, Petra; Juhásová, Jana; Juhás, Štefan; Motlík, Jan

    2015-01-01

    Roč. 78, Suppl 2 (2015), s. 15-15 ISSN 1210-7859. [Conference on Animal Models for neurodegenerative Diseases /3./. 08.11.2015-10.11.2015, Liblice] R&D Projects: GA MŠk ED2.1.00/03.0124; GA MŠk(CZ) 7F14308 Institutional support: RVO:67985904 Keywords : Huntington ´s disease * DNA damage * double strand DNA breaks Subject RIV: FH - Neurology

  1. A model treating the DNA double-strand break repair inhibition by damage clustering

    International Nuclear Information System (INIS)

    Rosemann, M.; Abel, H.; Regel, K.

    1992-01-01

    A microdosimetric model for the interpretation of radiation induced irreparable DNA double-strand breaks was applied to the biological endpoint of chromosomal aberrations. The model explains irreparable DNA double-strand breaks in terms of break clustering in DNA subunits. The model predicts quite good chromosomal aberrations in gamma- and X-ray irradiated V79 cells and human lymphocytes. In the case of α-particle irradiation the presumption had to be made, that only the cells with indirect events in the nucleus (due to delta-electrons) reach the metaphase and are analysed. With the help of this model we are able to explain the peculiar effectiveness of ultrasoft C-X-rays in human lymphocytes. In addition, an interpretation of experiments with accelerated and spatially correlated particles is given. (author)

  2. An alternative mechanism for radioprotection by dimethyl sulfoxide. Possible facilitation of DNA double-strand break repair

    International Nuclear Information System (INIS)

    Kashino, Genro; Liu, Yong; Suzuki, Minoru; Masunaga, Shin-ichiro; Kinashi, Yuko; Ono, Koji; Tano, Keizo; Watanabe, Masami

    2010-01-01

    The radioprotective effects of dimethyl sulfoxide (DMSO) have been known for many years, and the suppression of hydroxyl (OH) radicals induced by ionizing radiation has been thought to be the main cause of this effect. However, the DMSO concentration used was very high, and might be toxic, in earlier studies. In the present study, we administered a lower, non-toxic concentration (0.5%, id est (i.e.), 64 mM) of DMSO before irradiation and examined its radioprotective effects. Colony formation assay and micronucleus assay showed significant radioprotective effects in Chinese hamster ovary (CHO), but not in xrs5, which is defective in the repair function of DNA double-strand breaks. The levels of phosphorylated H2AX and the formation of 53BP1 foci 15 minutes after irradiation, which might reflect initial DNA double-strand breaks, in DMSO-treated CHO cells were similar to those in non-treated cells, suggesting that the radioprotective effects were not attributable to the suppression of general indirect action in the lower concentration of DMSO. On the other hand, 2 hours after irradiation, the average number of 53BP1 foci, which might reflect residual DNA double-strand breaks, was significantly decreased in DMSO-treated CHO cells compared to non-treated cells. The results indicated that low concentration of DMSO exerts radioprotective effects through the facilitation of DNA double-strand break repair rather than through the suppression of indirect action. (author)

  3. An alternative mechanism for radioprotection by dimethyl sulfoxide; possible facilitation of DNA double-strand break repair.

    Science.gov (United States)

    Kashino, Genro; Liu, Yong; Suzuki, Minoru; Masunaga, Shin-ichiro; Kinashi, Yuko; Ono, Koji; Tano, Keizo; Watanabe, Masami

    2010-01-01

    The radioprotective effects of dimethyl sulfoxide (DMSO) have been known for many years, and the suppression of hydroxyl (OH) radicals induced by ionizing radiation has been thought to be the main cause of this effect. However, the DMSO concentration used was very high, and might be toxic, in earlier studies. In the present study, we administered a lower, non-toxic concentration (0.5%, i.e., 64 mM) of DMSO before irradiation and examined its radioprotective effects. Colony formation assay and micronucleus assay showed significant radioprotective effects in CHO, but not in xrs5, which is defective in the repair function of DNA double-strand breaks. The levels of phosphorylated H2AX and the formation of 53BP1 foci 15 minutes after irradiation, which might reflect initial DNA double-strand breaks, in DMSO-treated CHO cells were similar to those in non-treated cells, suggesting that the radioprotective effects were not attributable to the suppression of general indirect action in the lower concentration of DMSO. On the other hand, 2 hours after irradiation, the average number of 53BP1 foci, which might reflect residual DNA double-strand breaks, was significantly decreased in DMSO-treated CHO cells compared to non-treated cells. The results indicated that low concentration of DMSO exerts radioprotective effects through the facilitation of DNA double-strand break repair rather than through the suppression of indirect action.

  4. Ionizing radiation damage to the folded chromosome of Escherichia coli K-12: repair of double-strand breaks in deoxyribonucleic acid

    International Nuclear Information System (INIS)

    Ulmer, M.K.; Gomez, R.F.; Sinskevy, A.J.

    1979-01-01

    The extremely gentle lysis and unfolding procedures that have been developed for the isolation of nucleoid deoxyribonucleic acid yield undamaged, replicating genomes, thus permitting direct measurement of the formation and repair of DNA double-strand breaks at biologically significant doses of ionizing radiation. Repair of ionizing radiation damage to folded chromosomes of Escherichia coli K-12 strain AB2497 was observed within 2 to 3 h of post-irradiation incubation in growth medium. Such behavior was not observed after post-irradiation incubation in growth medium of a recA13 strain (strain AB2487). A model based on recombinational repair is proposed to explain the formation of 2,200 to 2,300S material during early stages of incubation and to explain subsequent changes in the gradient profiles. Association of unrepaired DNA with the plasma membrane is proposed to explain the formation of a peak of rapidly sedimenting material (greater than 3,100S) during the later stage of repair. Direct evidence of repair of double-strand breaks during post-irradiation incubation in growth medium was obtained from gradient profiles of DNA from ribonuclease-digested chromosomes. The sedimentation coefficient of broken molecules was restored to the value of unirradiated DNA after 2 to 3 h of incubation, and the fraction of the DNA repaired in this fashion was equal to the fraction of cells that survived at the same dose. An average of 2.7 double-strand breaks per genome per lethal event was observed, suggesting that one to two double-strand breaks per genome are repairable in E. coli K-12 strain AB2497

  5. Measurement of intracellular DNA double-strand break induction and rejoining along the track of carbon and neon particle beams in water

    International Nuclear Information System (INIS)

    Heilmann, Johannes; Taucher-Scholz, Gisela; Haberer, Thomas; Scholz, Michael; Kraft, Gerhard

    1996-01-01

    Purpose: The study was aimed at the measurement of effect-depth distributions of intracellularly induced DNA damage in water as tissue equivalent after heavy ion irradiation with therapy particle beams. Methods and Materials: An assay involving embedding of Chinese hamster ovary (CHO-K1) cells in large agarose plugs and electrophoretic elution of radiation induced DNA fragments by constant field gel electrophoresis was developed. Double-strand break production was quantified by densitometric analysis of DNA-fluorescence after staining with ethidium-bromide and determination of the fraction of DNA eluted out of the agarose plugs. Intracellular double-strand break induction and the effect of a 3 h rejoining incubation were investigated following irradiation with 250 kV x-rays and 190 MeV/u carbon- and 295 MeV/u neon-ions. Results and Conclusion: While the DNA damage induced by x-irradiation decreased continuously with penetration depth, a steady increase in the yield of double-strand breaks was observed for particle radiation, reaching distinct maxima at the position of the physical Bragg peaks. Beyond this, the extent of radiation damage dropped drastically. From comparison of DNA damage and calculated dose profiles, relative biological efficiencies (RBEs) for both double-strand break induction and unrejoined strand breaks after 3 h were determined. While RBE for the induction of DNA double-strand breaks decreased continuously with penetration depth, RBE maxima greater than unity were found with carbon- and neon-ions for double-strand break rejoining near the maximum range of the particles. The method presented here allows for a fast and accurate determination of depth profiles of relevant radiobiological effects for mixed particle fields in tissue equivalent

  6. associated virus (AAV)-mediated expression of small interfering RNA

    African Journals Online (AJOL)

    user

    2011-04-11

    Apr 11, 2011 ... disadvantages. In this study, a siRNA expression recombinant adeno-associated virus (AAV) was .... cleotides were designed, which contained a sense strand of p53 or ..... During MJ, Kaplitt MG, Stem MB, Eidelberg D (2001).

  7. A structural model of the genome packaging process in a membrane-containing double stranded DNA virus.

    Directory of Open Access Journals (Sweden)

    Chuan Hong

    2014-12-01

    Full Text Available Two crucial steps in the virus life cycle are genome encapsidation to form an infective virion and genome exit to infect the next host cell. In most icosahedral double-stranded (ds DNA viruses, the viral genome enters and exits the capsid through a unique vertex. Internal membrane-containing viruses possess additional complexity as the genome must be translocated through the viral membrane bilayer. Here, we report the structure of the genome packaging complex with a membrane conduit essential for viral genome encapsidation in the tailless icosahedral membrane-containing bacteriophage PRD1. We utilize single particle electron cryo-microscopy (cryo-EM and symmetry-free image reconstruction to determine structures of PRD1 virion, procapsid, and packaging deficient mutant particles. At the unique vertex of PRD1, the packaging complex replaces the regular 5-fold structure and crosses the lipid bilayer. These structures reveal that the packaging ATPase P9 and the packaging efficiency factor P6 form a dodecameric portal complex external to the membrane moiety, surrounded by ten major capsid protein P3 trimers. The viral transmembrane density at the special vertex is assigned to be a hexamer of heterodimer of proteins P20 and P22. The hexamer functions as a membrane conduit for the DNA and as a nucleating site for the unique vertex assembly. Our structures show a conformational alteration in the lipid membrane after the P9 and P6 are recruited to the virion. The P8-genome complex is then packaged into the procapsid through the unique vertex while the genome terminal protein P8 functions as a valve that closes the channel once the genome is inside. Comparing mature virion, procapsid, and mutant particle structures led us to propose an assembly pathway for the genome packaging apparatus in the PRD1 virion.

  8. A structural model of the genome packaging process in a membrane-containing double stranded DNA virus.

    Science.gov (United States)

    Hong, Chuan; Oksanen, Hanna M; Liu, Xiangan; Jakana, Joanita; Bamford, Dennis H; Chiu, Wah

    2014-12-01

    Two crucial steps in the virus life cycle are genome encapsidation to form an infective virion and genome exit to infect the next host cell. In most icosahedral double-stranded (ds) DNA viruses, the viral genome enters and exits the capsid through a unique vertex. Internal membrane-containing viruses possess additional complexity as the genome must be translocated through the viral membrane bilayer. Here, we report the structure of the genome packaging complex with a membrane conduit essential for viral genome encapsidation in the tailless icosahedral membrane-containing bacteriophage PRD1. We utilize single particle electron cryo-microscopy (cryo-EM) and symmetry-free image reconstruction to determine structures of PRD1 virion, procapsid, and packaging deficient mutant particles. At the unique vertex of PRD1, the packaging complex replaces the regular 5-fold structure and crosses the lipid bilayer. These structures reveal that the packaging ATPase P9 and the packaging efficiency factor P6 form a dodecameric portal complex external to the membrane moiety, surrounded by ten major capsid protein P3 trimers. The viral transmembrane density at the special vertex is assigned to be a hexamer of heterodimer of proteins P20 and P22. The hexamer functions as a membrane conduit for the DNA and as a nucleating site for the unique vertex assembly. Our structures show a conformational alteration in the lipid membrane after the P9 and P6 are recruited to the virion. The P8-genome complex is then packaged into the procapsid through the unique vertex while the genome terminal protein P8 functions as a valve that closes the channel once the genome is inside. Comparing mature virion, procapsid, and mutant particle structures led us to propose an assembly pathway for the genome packaging apparatus in the PRD1 virion.

  9. The actin-like MreB cytoskeleton organizes viral DNA replication in bacteria.

    Science.gov (United States)

    Muñoz-Espín, Daniel; Daniel, Richard; Kawai, Yoshikazu; Carballido-López, Rut; Castilla-Llorente, Virginia; Errington, Jeff; Meijer, Wilfried J J; Salas, Margarita

    2009-08-11

    Little is known about the organization or proteins involved in membrane-associated replication of prokaryotic genomes. Here we show that the actin-like MreB cytoskeleton of the distantly related bacteria Escherichia coli and Bacillus subtilis is required for efficient viral DNA replication. Detailed analyses of B. subtilis phage ϕ29 showed that the MreB cytoskeleton plays a crucial role in organizing phage DNA replication at the membrane. Thus, phage double-stranded DNA and components of the ϕ29 replication machinery localize in peripheral helix-like structures in a cytoskeleton-dependent way. Importantly, we show that MreB interacts directly with the ϕ29 membrane-protein p16.7, responsible for attaching viral DNA at the cell membrane. Altogether, the results reveal another function for the MreB cytoskeleton and describe a mechanism by which viral DNA replication is organized at the bacterial membrane.

  10. 125I-induced DNA double strand breaks: use in calibration of the neutral filter elution technique and comparison with X-ray induced breaks

    International Nuclear Information System (INIS)

    Radford, I.R.; Hodgson, G.S.

    1985-01-01

    The neutral filter elution assay, for measurement of DNA double strand breakage, has been calibrated using mouse L cells and Chinese hamster V79 cells labelled with [ 125 I]dUrd and then held at liquid nitrogen temperature to accumulate decays. The basis of the calibration is the observation that each 125 I decay, occurring in DNA, produces a DNA double strand break. Linear relationships between 125 I decays per cell and lethal lesions per cell (minus natural logarithm survival) and the level of elution, were found. Using the calibration data, it was calculated that the yield of DNA double strand breaks after X-irradiation of both cell types was from 6 to 9 x 10 -12 DNA double strand breaks per Gy per dalton of DNA, for doses greater than 6 Gy. Neutral filter elution and survival data for X-irradiated and 125 I-labelled cells suggested that the relationships between lethal lesions and DNA double strand breakage were significantly different for both cell types. An attempt was made to study the repair kinetics for 125 I-induced DNA double strand breaks, but was frustrated by the rapid DNA degradation which occurs in cells that have been killed by the freezing-thawing process. (author)

  11. Differences in heavy-ion-induced DNA double-strand breaks in a mouse DNA repair-deficient mutant cell line (SL3-147) before and after chromatin proteolysis

    International Nuclear Information System (INIS)

    Murakami, Masahiro; Eguchi-Kasai, Kiyomi; Sato, Koki; Minohara, Shinichi; Kanai, Tatsuaki; Yatagai, Fumio.

    1995-01-01

    DNA double-strand breaks induced by X- or neon beam-irradiation in a DNA double-strand break-repair-deficient mutant cell line (SL3-147) were examined. The increase in the number of DNA double-strand breaks was dose-depend after irradiation with X-rays and neon beams and was enhanced by chromatin-proteolysis treatment before irradiation. These results suggest that the induction of DNA double-strand breaks by ionizing radiation, including heavy-ions, is influenced by the chromatin structure. (author)

  12. FBH1 co-operates with MUS81 in inducing DNA double-strand breaks and cell death following replication stress

    DEFF Research Database (Denmark)

    Fugger, Kasper; Chu, Wai Kit; Haahr, Peter

    2013-01-01

    The molecular events occurring following the disruption of DNA replication forks are poorly characterized, despite extensive use of replication inhibitors such as hydroxyurea in the treatment of malignancies. Here, we identify a key role for the FBH1 helicase in mediating DNA double-strand break...... formation following replication inhibition. We show that FBH1-deficient cells are resistant to killing by hydroxyurea, and exhibit impaired activation of the pro-apoptotic factor p53, consistent with decreased DNA double-strand break formation. Similar findings were obtained in murine ES cells carrying...... of replication stress. Our data suggest that FBH1 helicase activity is required to eliminate cells with excessive replication stress through the generation of MUS81-induced DNA double-strand breaks....

  13. REV7 counteracts DNA double-strand break resection and affects PARP inhibition

    NARCIS (Netherlands)

    Xu, Guotai; Chapman, J. Ross; Brandsma, Inger; Yuan, Jingsong; Mistrik, Martin; Bouwman, Peter; Bartkova, Jirina; Gogola, Ewa; Warmerdam, Daniël; Barazas, Marco; Jaspers, Janneke E.; Watanabe, Kenji; Pieterse, Mark; Kersbergen, Ariena; Sol, Wendy; Celie, Patrick H. N.; Schouten, Philip C.; van den Broek, Bram; Salman, Ahmed; Nieuwland, Marja; de Rink, Iris; de Ronde, Jorma; Jalink, Kees; Boulton, Simon J.; Chen, Junjie; van Gent, Dik C.; Bartek, Jiri; Jonkers, Jos; Borst, Piet; Rottenberg, Sven

    2015-01-01

    Error-free repair of DNA double-strand breaks (DSBs) is achieved by homologous recombination (HR), and BRCA1 is an important factor for this repair pathway(1). In the absence of BRCA1-mediated HR, the administration of PARP inhibitors induces synthetic lethality of tumour cells of patients with

  14. Evidence for multiple repair pathways of double-strand DNA breaks in Chinese hamster cells

    International Nuclear Information System (INIS)

    Giaccia, A.J.; Weistein, R.; Stamato, T.D.; Roosa, R.

    1984-01-01

    XR-1 is a mutant of the Chinese hamster cell (CHO-K1) which is abnormally sensitive to killing by gamma rays in G/sub 1/ (D37 = 27 rads vs. 318 for parent) and early S phases of the cell cycle but has near normal resistance in late S and early G/sub 2/ (Somatic Cell Genetics, 9:165-173, 1983). Complementation studies between XR-1 and its parent indicate that this sensitivity to gamma rays is a recessive phenotype. Both the XR-1 and its parent cell are able to repair single strand DNA breaks. However, in comparison to its parental cell, the XR-1 cell is markedly deficient in the repair of double strand DNA breaks introduced by gamma irradiation during the sensitive G/sub 1/-early S period, while in the late S-G/sub 2/ resistant period the repair is similar in both cells. This correlation suggests that an unrepaired double strand DNA break is the lethal lesion and that at least two pathways for the repair of these lesions exist in mammalian cells

  15. Gene therapy with adeno-associated virus vector 5-human factor IX in adults with hemophilia B

    DEFF Research Database (Denmark)

    Miesbach, Wolfgang; Meijer, Karina; Coppens, Michiel

    2018-01-01

    Hemophilia B gene therapy aims to ameliorate bleeding risk and provide endogenous factor IX (FIX) activity/synthesis through a single treatment, eliminating the requirement for FIX concentrate. AMT-060 combines an adeno-associated virus-5 (AAV5) vector with a liver-specific promoter driving expre...

  16. Mouse but not human embryonic stem cells are deficient in rejoining of ionizing radiation-induced DNA double-strand breaks.

    Science.gov (United States)

    Bañuelos, C A; Banáth, J P; MacPhail, S H; Zhao, J; Eaves, C A; O'Connor, M D; Lansdorp, P M; Olive, P L

    2008-09-01

    Mouse embryonic stem (mES) cells will give rise to all of the cells of the adult mouse, but they failed to rejoin half of the DNA double-strand breaks (dsb) produced by high doses of ionizing radiation. A deficiency in DNA-PK(cs) appears to be responsible since mES cells expressed strand breaks more rapidly. Consistent with more rapid dsb rejoining, H2AX(-/-) mES cells also expressed 6 times more DNA-PK(cs) than wild-type mES cells. Similar results were obtained for ATM(-/-) mES cells. Differentiation of mES cells led to an increase in DNA-PK(cs), an increase in dsb rejoining rate, and a decrease in Ku70/80. Unlike mouse ES, human ES cells were proficient in rejoining of dsb and expressed high levels of DNA-PK(cs). These results confirm the importance of homologous recombination in the accurate repair of double-strand breaks in mES cells, they help explain the chromosome abnormalities associated with deficiencies in H2AX and ATM, and they add to the growing list of differences in the way rodent and human cells deal with DNA damage.

  17. Transcription-associated processes cause DNA double-strand breaks and translocations in neural stem/progenitor cells.

    Science.gov (United States)

    Schwer, Bjoern; Wei, Pei-Chi; Chang, Amelia N; Kao, Jennifer; Du, Zhou; Meyers, Robin M; Alt, Frederick W

    2016-02-23

    High-throughput, genome-wide translocation sequencing (HTGTS) studies of activated B cells have revealed that DNA double-strand breaks (DSBs) capable of translocating to defined bait DSBs are enriched around the transcription start sites (TSSs) of active genes. We used the HTGTS approach to investigate whether a similar phenomenon occurs in primary neural stem/progenitor cells (NSPCs). We report that breakpoint junctions indeed are enriched around TSSs that were determined to be active by global run-on sequencing analyses of NSPCs. Comparative analyses of transcription profiles in NSPCs and B cells revealed that the great majority of TSS-proximal junctions occurred in genes commonly expressed in both cell types, possibly because this common set has higher transcription levels on average than genes transcribed in only one or the other cell type. In the latter context, among all actively transcribed genes containing translocation junctions in NSPCs, those with junctions located within 2 kb of the TSS show a significantly higher transcription rate on average than genes with junctions in the gene body located at distances greater than 2 kb from the TSS. Finally, analysis of repair junction signatures of TSS-associated translocations in wild-type versus classical nonhomologous end-joining (C-NHEJ)-deficient NSPCs reveals that both C-NHEJ and alternative end-joining pathways can generate translocations by joining TSS-proximal DSBs to DSBs on other chromosomes. Our studies show that the generation of transcription-associated DSBs is conserved across divergent cell types.

  18. Application of Laser Micro-irradiation for Examination of Single and Double Strand Break Repair in Mammalian Cells.

    Science.gov (United States)

    Holton, Nathaniel W; Andrews, Joel F; Gassman, Natalie R

    2017-09-05

    Highly coordinated DNA repair pathways exist to detect, excise and replace damaged DNA bases, and coordinate repair of DNA strand breaks. While molecular biology techniques have clarified structure, enzymatic functions, and kinetics of repair proteins, there is still a need to understand how repair is coordinated within the nucleus. Laser micro-irradiation offers a powerful tool for inducing DNA damage and monitoring the recruitment of repair proteins. Induction of DNA damage by laser micro-irradiation can occur with a range of wavelengths, and users can reliably induce single strand breaks, base lesions and double strand breaks with a range of doses. Here, laser micro-irradiation is used to examine repair of single and double strand breaks induced by two common confocal laser wavelengths, 355 nm and 405 nm. Further, proper characterization of the applied laser dose for inducing specific damage mixtures is described, so users can reproducibly perform laser micro-irradiation data acquisition and analysis.

  19. Modeling the yield of double-strand breaks due to formation of multiply damaged sites in irradiated plasmid DNA

    International Nuclear Information System (INIS)

    Xapsos, M.A.; Pogozelski, W.K.

    1996-01-01

    Although double-strand breaks have long been recognized as an important type of DNa lesion, it is well established that this broad class of damage does not correlate well with indicators of the effectiveness of radiation as the cellular level. Assays of double-strand breaks do not distinguish the degree of complexity or clustering of singly damaged sites produced in a single energy deposition event, which is currently hypothesized to be key to understanding cellular end points. As a step toward this understanding, double-strand breaks that are formed proportionally to dose in plasmid DNA are analyzed from the mechanistic aspect to evaluate the yield that arises from multiply damaged sites as hypothesized by Ward (Prog. Nucleic Acid Res. Mol. Biol. 35, 95-125, 1988) and Goodhead (Int. J. Radiat. Biol. 65, 7-17, 1994) as opposed to the yield that arises form single hydroxyl radicals as hypothesized by Siddiqi and Bothe (Radiat. Res. 112, 449-463, 1987). For low-LET radiation such as γ rays, the importance of multiply damaged sites is shown to increase with the solution's hydroxyl radical scavenging capacity. For moderately high-LET radiation such as 100 keV/μm helium ions, a much different behavior is observed. In this case, a large fraction of double-strand breaks are formed as a result of multiply damaged sties over a broad range of scavenging conditions. Results also indicate that the RBE for common cellular end points correlates more closely with the RBE for common cellular end points correlates more closely with the RBE for multiply damaged sites than with the RBE for total double-strand breaks over a range of LET up to at least 100 keV/μm. 22 refs., 3 figs., 2 tabs

  20. Restoration of central nervous system alpha-N-acetylglucosaminidase activity and therapeutic benefits in mucopolysaccharidosis IIIB mice by a single intracisternal recombinant adeno-associated viral type 2 vector delivery.

    Science.gov (United States)

    Fu, Haiyan; DiRosario, Julianne; Kang, Lu; Muenzer, Joseph; McCarty, Douglas M

    2010-07-01

    Finding efficient central nervous system (CNS) delivery approaches has been the major challenge facing therapeutic development for treating diseases with global neurological manifestation, such as mucopolysaccharidosis (MPS) IIIB, a lysosomal storage disease, caused by autosomal recessive defect of alpha-N-acetylglucosaminidase (NaGlu). Previously, we developed an approach, intracisternal (i.c.) injection, to deliver recombinant adeno-associated viral (rAAV) vector to the CNS of mice, leading to a widespread periventricular distribution of transduction. In the present study, we delivered rAAV2 vector expressing human NaGlu into the CNS of MPS IIIB mice by an i.c. injection approach, to test its therapeutic efficacy and feasibility for treating the neurological manifestation of the disease. We demonstrated significant functional neurological benefits of a single i.c. vector infusion in adult MPS IIIB mice. The treatment slowed the disease progression by mediating widespread recombinant NaGlu expression in the CNS, resulting in the reduction of brain lysosomal storage pathology, significantly improved cognitive function and prolonged survival. However, persisting motor function deficits suggested that pathology in areas outside the CNS contributes to the MPS IIIB behavioral phenotype. The therapeutic benefit of i.c. rAAV2 delivery was dose-dependent and could be attribute solely to the CNS transduction because the procedure did not lead to detectable transduction in somatic tissues. A single IC rAAV2 gene delivery is functionally beneficial for treating the CNS disease of MPS IIIB in mice. It is immediately clinically translatable, with the potential of improving the quality of life for patients with MPS IIIB.

  1. Current topics in DNA double-strand break repair

    International Nuclear Information System (INIS)

    Kobayashi, Junya; Takata, Minoru; Iwabuchi, Kuniyoshi; Miyagawa, Kiyoshi; Sonoda, Eiichiro; Suzuki, Keiji; Tauchi, Hiroshi

    2008-01-01

    DNA double strand break (DSB) is one of the most critical types of damage which is induced by ionizing radiation. In this review, we summarize current progress in investigations on the function of DSB repair-related proteins. We focused on recent findings in the analysis of the function of proteins such as 53BP1, histone H2AX, Mus81-Eme1, Fanc complex, and UBC13, which are found to be related to homologous recombination repair or to non-homologous end joining. In addition to the function of these proteins in DSB repair, the biological function of nuclear foci formation following DSB induction is discussed. (author)

  2. Deficiency of Double-Strand DNA Break Repair Does Not Impair Mycobacterium tuberculosis Virulence in Multiple Animal Models of Infection

    OpenAIRE

    Heaton, Brook E.; Barkan, Daniel; Bongiorno, Paola; Karakousis, Petros C.; Glickman, Michael S.

    2014-01-01

    Mycobacterium tuberculosis persistence within its human host requires mechanisms to resist the effector molecules of host immunity, which exert their bactericidal effects through damaging pathogen proteins, membranes, and DNA. Substantial evidence indicates that bacterial pathogens, including M. tuberculosis, require DNA repair systems to repair the DNA damage inflicted by the host during infection, but the role of double-strand DNA break (DSB) repair systems is unclear. Double-strand DNA bre...

  3. Intracellular route and biological activity of exogenously delivered Rep proteins from the adeno-associated virus type 2

    International Nuclear Information System (INIS)

    Awedikian, Rafi; Francois, Achille; Guilbaud, Mickael; Moullier, Philippe; Salvetti, Anna

    2005-01-01

    The two large Rep proteins, Rep78 and Rep68, from the adeno-associated virus type 2 (AAV-2) are required for AAV-2 DNA replication, site-specific integration, and for the regulation of viral gene expression. The study of their activities is dependent on the ability to deliver these proteins to the cells in a time and dose-dependent manner. We evaluated the ability of a protein transduction domain (PTD) derived from the human immunodeficiency virus 1 (HIV-1) TAT protein to drive the cellular internalization of exogenously delivered PTD-fused Rep68 proteins. This analysis unexpectedly revealed that recombinant Rep68 alone, in the absence of any PTD, could be endocytosed by the cells. Rep68 as the chimeric TAT-Rep68 proteins were internalized through endocytosis in clathrin-coated vesicles and retained in late endosomes/lysosomes with no detectable nuclear localization. In the presence of adenovirus, the Rep proteins could translocate into the nucleus where they displayed a biological activity. These findings support recent reports on the mechanism of entry of TAT-fused proteins and also revealed a new property of Rep68

  4. Temperature-dependent conformations of exciton-coupled Cy3 dimers in double-stranded DNA

    Science.gov (United States)

    Kringle, Loni; Sawaya, Nicolas P. D.; Widom, Julia; Adams, Carson; Raymer, Michael G.; Aspuru-Guzik, Alán; Marcus, Andrew H.

    2018-02-01

    Understanding the properties of electronically interacting molecular chromophores, which involve internally coupled electronic-vibrational motions, is important to the spectroscopy of many biologically relevant systems. Here we apply linear absorption, circular dichroism, and two-dimensional fluorescence spectroscopy to study the polarized collective excitations of excitonically coupled cyanine dimers (Cy3)2 that are rigidly positioned within the opposing sugar-phosphate backbones of the double-stranded region of a double-stranded (ds)-single-stranded (ss) DNA fork construct. We show that the exciton-coupling strength of the (Cy3)2-DNA construct can be systematically varied with temperature below the ds-ss DNA denaturation transition. We interpret spectroscopic measurements in terms of the Holstein vibronic dimer model, from which we obtain information about the local conformation of the (Cy3)2 dimer, as well as the degree of static disorder experienced by the Cy3 monomer and the (Cy3)2 dimer probe locally within their respective DNA duplex environments. The properties of the (Cy3)2-DNA construct we determine suggest that it may be employed as a useful model system to test fundamental concepts of protein-DNA interactions and the role of electronic-vibrational coherence in electronic energy migration within exciton-coupled bio-molecular arrays.

  5. The Ku Heterodimer and the Metabolism of Single-Ended DNA Double-Strand Breaks

    NARCIS (Netherlands)

    A. Balestrini (Alessia); D. Ristic (Dejan); I. Dionne (Isabelle); X.Z. Liu (Xiao); C. Wyman (Claire); R.J. Wellinger (Raymund); J.H.J. Petrini (John)

    2013-01-01

    textabstractSingle-ended double-strand breaks (DSBs) are a common form of spontaneous DNA break, generated when the replisome encounters a discontinuity in the DNA template. Given their prevalence, understanding the mechanisms governing the fate(s) of single-ended DSBs is important. We describe the

  6. Regulation of DNA double-strand break repair by ubiquitin and ubiquitin-like modifiers

    DEFF Research Database (Denmark)

    Schwertman, Petra; Bekker-Jensen, Simon; Mailand, Niels

    2016-01-01

    DNA double-strand breaks (DSBs) are highly cytotoxic DNA lesions. The swift recognition and faithful repair of such damage is crucial for the maintenance of genomic stability, as well as for cell and organismal fitness. Signalling by ubiquitin, SUMO and other ubiquitin-like modifiers (UBLs...

  7. Structure-spectrophotometric selectivity relationship in interactions of quercetin related flavonoids with double stranded and single stranded RNA

    Science.gov (United States)

    Piantanida, Ivo; Mašić, Lozika; Rusak, Gordana

    2009-04-01

    Interactions of five flavonoids with dsRNA and single stranded ssRNA were studied by UV/vis titrations. The results obtained supported the intercalative binding mode as a dominant interaction of studied flavonoids with dsRNA as well as major interaction with ssRNA. Furthermore, changes of the UV/vis spectra of flavonoids induced by addition of poly G or poly C, respectively, are significantly stronger than changes induced by double stranded poly G-poly C, pointing to essential role of the free poly G or poly C sequence (not hydrogen bonded in double helix). Exclusively poly G caused significant batochromic shift of the UV/vis maxima of all studied flavonoids, whereby the intensity of batochromic shift is nicely correlated to the number of OH groups of flavonoid. Unlikely to poly G, addition of poly A and poly U induced measurable changes only in the UV/vis spectra of flavonoids characterised by no OH (galangin) or three OH groups (myricetin) on the phenyl part of the molecule. Consequently, flavonoids with one- or two-OH groups on the phenyl part of the molecule (luteolin, fisetin, kaempferol) specifically differentiate between poly A, poly U (negligible changes in the UV/Vis spectra) and poly G (strong changes in the UV/Vis spectra) as well as poly C (moderate changes in the UV/Vis spectra).

  8. Double-strand break repair-adox: Restoration of suppressed double-strand break repair during mitosis induces genomic instability.

    Science.gov (United States)

    Terasawa, Masahiro; Shinohara, Akira; Shinohara, Miki

    2014-12-01

    Double-strand breaks (DSBs) are one of the severest types of DNA damage. Unrepaired DSBs easily induce cell death and chromosome aberrations. To maintain genomic stability, cells have checkpoint and DSB repair systems to respond to DNA damage throughout most of the cell cycle. The failure of this process often results in apoptosis or genomic instability, such as aneuploidy, deletion, or translocation. Therefore, DSB repair is essential for maintenance of genomic stability. During mitosis, however, cells seem to suppress the DNA damage response and proceed to the next G1 phase, even if there are unrepaired DSBs. The biological significance of this suppression is not known. In this review, we summarize recent studies of mitotic DSB repair and discuss the mechanisms of suppression of DSB repair during mitosis. DSB repair, which maintains genomic integrity in other phases of the cell cycle, is rather toxic to cells during mitosis, often resulting in chromosome missegregation and aberration. Cells have multiple safeguards to prevent genomic instability during mitosis: inhibition of 53BP1 or BRCA1 localization to DSB sites, which is important to promote non-homologous end joining or homologous recombination, respectively, and also modulation of the non-homologous end joining core complex to inhibit DSB repair. We discuss how DSBs during mitosis are toxic and the multiple safeguard systems that suppress genomic instability. © 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  9. Inhibition of APOBEC3G Activity Impedes Double-Strand DNA Repair

    Science.gov (United States)

    Prabhu, Ponnandy; Shandilya, Shivender; Britan-Rosich, Elena; Nagler, Adi; Schiffer, Celia A.; Kotler, Moshe

    2015-01-01

    The cellular cytidine deaminase APOBEC3G (A3G) was first described as an anti-HIV-1 restriction factor by directly deaminating reverse transcripts of the viral genome. HIV-1 Vif neutralizes the activity of A3G, primarily by mediating degradation of A3G to establish effective infection in host target cells. Lymphoma cells, which express high amounts of A3G, can restrict Vif-deficient HIV-1. Interestingly, these cells are more stable in the face of treatments that result in dsDNA damage, such as ionizing irradiation (IR) and chemotherapies. Previously, we showed that the Vif-derived peptide (Vif25-39) efficiently inhibits A3G deamination, and increases sensitivity of lymphoma cells to IR. In the current study, we show that additional peptides derived from Vif, A3G and A3F, which contain the LYYF motif, inhibit deamination activity. Each residue in the Vif25-39 sequence moderately contributes to the inhibitory effect, while, replacing a single amino acid in the LYYF motif completely abrogate inhibition of deamination. Treatment of A3G-expressing lymphoma cells exposed to ionizing radiation with the new inhibitory peptides reduces double-strand break (DSB) repair after radiation. Incubation of cultured irradiated lymphoma cells with peptides that inhibit DSB repair halts their propagation. These results suggest that A3G may be a potential therapeutic target amenable to peptide and peptidomimetic inhibition. PMID:26460502

  10. DNA double-strand break rejoining in human follicular lymphoma and glioblastoma tumor cells

    NARCIS (Netherlands)

    Macann, AMJ; Britten, RA; Poppema, S; Pearcey, R; Rosenberg, E; Allalunis-Turner, MJ; Murray, D

    2000-01-01

    Follicle center cell lymphoma is among the most radioresponsive of human cancers. To assess whether this radioresponsiveness might be a result of a compromised ability of the tumor cells to accomplish the biologically-effective repair of DNA double-strand breaks (DSBs), we have measured i) the

  11. The opportunistic pathogen Pseudomonas aeruginosa activates the DNA double-strand break signaling and repair pathway in infected cells

    International Nuclear Information System (INIS)

    Elsen, S.; Collin-Faure, V.; Gidrol, X.; Lemercier, C.

    2013-01-01

    Highly hazardous DNA double-strand breaks can be induced in eukaryotic cells by a number of agents including pathogenic bacterial strains. We have investigated the genotoxic potential of Pseudomonas aeruginosa, an opportunistic pathogen causing devastating nosocomial infections in cystic fibrosis or immunocompromised patients. Our data revealed that infection of immune or epithelial cells by P. aeruginosa triggered DNA strand breaks and phosphorylation of histone H2AX (γH2AX), a marker of DNA double-strand breaks. Moreover, it induced formation of discrete nuclear repair foci similar to gamma-irradiation-induced foci, and containing γH2AX and 53BP1, an adaptor protein mediating the DNA-damage response pathway. Gene deletion, mutagenesis, and complementation in P. aeruginosa identified ExoS bacterial toxin as the major factor involved in γH2AX induction. Chemical inhibition of several kinases known to phosphorylate H2AX demonstrated that Ataxia Telangiectasia Mutated (ATM) was the principal kinase in P. aeruginosa-induced H2AX phosphorylation. Finally, infection led to ATM kinase activation by an auto-phosphorylation mechanism. Together, these data show for the first time that infection by P. aeruginosa activates the DNA double-strand break repair machinery of the host cells. This novel information sheds new light on the consequences of P. aeruginosa infection in mammalian cells. As pathogenic Escherichia coli or carcinogenic Helicobacter pylori can alter genome integrity through DNA double-strand breaks, leading to chromosomal instability and eventually cancer, our findings highlight possible new routes for further investigations of P. aeruginosa in cancer biology and they identify ATM as a potential target molecule for drug design. (authors)

  12. Monitoring of the antiviral potential of bee venom and wax extracts against Adeno-7 (DNA) and Rift Valley fever virus (RNA) viruses models.

    Science.gov (United States)

    Hassan, Mostafa I; Mohamed, Aly F; Amer, Moner A; Hammad, Kotb M; Riad, Saber A

    2015-04-01

    This study monitored the antiviral potential of bee venom and four wax extracts, ethanol white and black beeswax (EWW/EBW) and acetone white and black beeswax (AWW/ABW) extracts. Two different virus models namely Adeno-7 as DNA model and RVFV as RNA virus models. End point calculation assay was used to calculate virus depletion titer. The depletion of viral infectivity titer of ABW to Adeno-7 virus showed strong antiviral activity recorded a depletion of viral infectivity titer (1.66 log (10)/ ml) that gave equal action with bee venom and more than interferon IFN (1 log (10)/ ml). On the other hand, antiviral activity of EBW showed a moderate potential, while AWW showed no antiviral activity. Finally EWW showed synergetic activity against Adeno-7 virus activity. Thus, activity of wax extracts to RVFV was arranged in order of IFN bee venom > AWW & EBW > EWW and ABW recorded 3.34, 0.65, 0.5, 0.34 respectively. It is the first time to study the beeswax effect against DNA and RNA virus' models; acetone black beeswax recorded a depletion titer 1.66 log (10)/ml.

  13. Determination and analysis of site-specific 125I decay-induced DNA double-strand break end-group structures.

    Science.gov (United States)

    Datta, Kamal; Weinfeld, Michael; Neumann, Ronald D; Winters, Thomas A

    2007-02-01

    End groups contribute to the structural complexity of radiation-induced DNA double-strand breaks (DSBs). As such, end-group structures may affect a cell's ability to repair DSBs. The 3'-end groups of strand breaks caused by gamma radiation, or oxidative processes, under oxygenated aqueous conditions have been shown to be distributed primarily between 3'-phosphoglycolate and 3'-phosphate, with 5'-phosphate ends in both cases. In this study, end groups of the high-LET-like DSBs caused by 125I decay were investigated. Site-specific DNA double-strand breaks were produced in plasmid pTC27 in the presence or absence of 2 M DMSO by 125I-labeled triplex-forming oligonucleotide targeting. End-group structure was assessed enzymatically as a function of the DSB end to serve as a substrate for ligation and various forms of end labeling. Using this approach, we have demonstrated 3'-hydroxyl (3'-OH) and 3'-phosphate (3'-P) end groups and 5'-ends (> or = 42%) terminated by phosphate. A 32P postlabeling assay failed to detect 3'-phosphoglycolate in a restriction fragment terminated by the 125I-induced DNA double-strand break, and this is likely due to restricted oxygen diffusion during irradiation as a frozen aqueous solution. Even so, end-group structure and relative distribution varied as a function of the free radical scavenging capacity of the irradiation buffer.

  14. Contribution of sleep to the repair of neuronal DNA double-strand breaks: evidence from flies and mice

    OpenAIRE

    Bellesi, Michele; Bushey, Daniel; Chini, Mattia; Tononi, Giulio; Cirelli, Chiara

    2016-01-01

    Exploration of a novel environment leads to neuronal DNA double-strand breaks (DSBs). These DSBs are generated by type 2 topoisomerase to relieve topological constrains that limit transcription of plasticity-related immediate early genes. If not promptly repaired, however, DSBs may lead to cell death. Since the induction of plasticity-related genes is higher in wake than in sleep, we asked whether it is specifically wake associated with synaptic plasticity that leads to DSBs, and whether slee...

  15. Antiviral RNA silencing initiated in the absence of RDE-4, a double-stranded RNA binding protein, in Caenorhabditis elegans.

    Science.gov (United States)

    Guo, Xunyang; Zhang, Rui; Wang, Jeffrey; Lu, Rui

    2013-10-01

    Small interfering RNAs (siRNAs) processed from double-stranded RNA (dsRNA) of virus origins mediate potent antiviral defense through a process referred to as RNA interference (RNAi) or RNA silencing in diverse organisms. In the simple invertebrate Caenorhabditis elegans, the RNAi process is initiated by a single Dicer, which partners with the dsRNA binding protein RDE-4 to process dsRNA into viral siRNAs (viRNAs). Notably, in C. elegans this RNA-directed viral immunity (RDVI) also requires a number of worm-specific genes for its full antiviral potential. One such gene is rsd-2 (RNAi spreading defective 2), which was implicated in RDVI in our previous studies. In the current study, we first established an antiviral role by showing that rsd-2 null mutants permitted higher levels of viral RNA accumulation, and that this enhanced viral susceptibility was reversed by ectopic expression of RSD-2. We then examined the relationship of rsd-2 with other known components of RNAi pathways and established that rsd-2 functions in a novel pathway that is independent of rde-4 but likely requires the RNA-dependent RNA polymerase RRF-1, suggesting a critical role for RSD-2 in secondary viRNA biogenesis, likely through coordinated action with RRF-1. Together, these results suggest that RDVI in the single-Dicer organism C. elegans depends on the collective actions of both RDE-4-dependent and RDE-4-independent mechanisms to produce RNAi-inducing viRNAs. Our study reveals, for the first time, a novel siRNA-producing mechanism in C. elegans that bypasses the need for a dsRNA-binding protein.

  16. Trans-activation of the 5' to 3' viral DNA strand transfer by nucleocapsid protein during reverse transcription of HIV1 RNA.

    Science.gov (United States)

    Darlix, J L; Vincent, A; Gabus, C; de Rocquigny, H; Roques, B

    1993-08-01

    Two DNA strand transfer reactions take place during reverse transcription of the retroviral genome. The first transfer, that of the minus-strand strong stop DNA from the 5' end of the viral RNA to the 3' end, has been studied in vitro with two RNAs mimicking the 5' and 3' regions of the HIV1 genome and with nucleocapsid protein, NCp7, and reverse transcriptase. The results show that NCp7 strongly activates the 5' to 3' DNA strand transfer during reverse transcription while a basic peptide resembling NCp7 is inactive. Activation of the first transfer by several NCp7 derived peptides and the influence of the terminal redundancies (R) present at the 5' and 3' ends of HIV1 RNA were also examined. The first transfer is optimal in the presence of intact NCp7 and necessitates R on both the 5' and 3' RNAs. Sequencing of full length viral DNA products reveals approximately 40% misincorporations at the first nucleotide beyond the transfer point. If such base misincorporations occur during proviral DNA synthesis with possible homologous recombinations it may well contribute to the high level of genetic variability of HIV.

  17. Unrestricted Hepatocyte Transduction with Adeno-Associated Virus Serotype 8 Vectors in Mice

    Science.gov (United States)

    Nakai, Hiroyuki; Fuess, Sally; Storm, Theresa A.; Muramatsu, Shin-ichi; Nara, Yuko; Kay, Mark A.

    2005-01-01

    Recombinant adeno-associated virus (rAAV) vectors can mediate long-term stable transduction in various target tissues. However, with rAAV serotype 2 (rAAV2) vectors, liver transduction is confined to only a small portion of hepatocytes even after administration of extremely high vector doses. In order to investigate whether rAAV vectors of other serotypes exhibit similar restricted liver transduction, we performed a dose-response study by injecting mice with β-galactosidase-expressing rAAV1 and rAAV8 vectors via the portal vein. The rAAV1 vector showed a blunted dose-response similar to that of rAAV2 at high doses, while the rAAV8 vector dose-response remained unchanged at any dose and ultimately could transduce all the hepatocytes at a dose of 7.2 × 1012 vector genomes/mouse without toxicity. This indicates that all hepatocytes have the ability to process incoming single-stranded vector genomes into duplex DNA. A single tail vein injection of the rAAV8 vector was as efficient as portal vein injection at any dose. In addition, intravascular administration of the rAAV8 vector at a high dose transduced all the skeletal muscles throughout the body, including the diaphragm, the entire cardiac muscle, and substantial numbers of cells in the pancreas, smooth muscles, and brain. Thus, rAAV8 is a robust vector for gene transfer to the liver and provides a promising research tool for delivering genes to various target organs. In addition, the rAAV8 vector may offer a potential therapeutic agent for various diseases affecting nonhepatic tissues, but great caution is required for vector spillover and tight control of tissue-specific gene expression. PMID:15596817

  18. Effects of 3-Deoxyadenosine (Cordycepin) on the repair of X-ray-induced DNA single- and double-strand breaks in chinese hamster V79 cells

    International Nuclear Information System (INIS)

    Hiraoka, Wakako; Kuwabara, Mikinori; Sato, Fumiaki

    1990-01-01

    The ability of cordycepin to inhibit the repair of DNA strand breaks was examined with X-irradiated Chinese hamster V79 cells in log-phase culture. A filter elution technique revealed that 70 μM cordycepin did not inhibit the repair of single-strand breaks but inhibited the repair of double-strand breaks. These findings confirmed the fact that the increase in the lethality of cordycepin in X-irradiated cultured mammalian cells was attributable to unrepaired DNA double-strand breaks. (author)

  19. Distinct genetic control of homologous recombination repair of Cas9-induced double-strand breaks, nicks and paired nicks

    NARCIS (Netherlands)

    Vriend, Lianne E. M.; Prakash, Rohit; Chen, Chun-Chin; Vanoli, Fabio; Cavallo, Francesca; Zhang, Yu; Jasin, Maria; Krawczyk, Przemek M.

    2016-01-01

    DNA double-strand breaks (DSBs) are known to be powerful inducers of homologous recombination (HR), but single-strand breaks (nicks) have also been shown to trigger HR. Both DSB- and nick-induced HR ((nick)HR) are exploited in advanced genome-engineering approaches based on the bacterial RNA-guided

  20. DNA strand breaks, repair, and survival in x-irradiated mammalian cells

    International Nuclear Information System (INIS)

    Dugle, D.L.; Gillespie, C.J.; Chapman, J.D.

    1976-01-01

    The yields of unrepairable single- and double-strand breaks in the DNA of x-irradiated Chinese hamster cells were measured by low-speed neutral and alkaline sucrose density gradient sedimentation in order to investigate the relation between these lesions and reproductive death. After maximal single-strand rejoining, at all doses, the number of residual single-strand breaks was twice the number of residual double-strand breaks. Both double-strand and unrepairable single-strand breaks were proportional to the square of absorbed dose, in the range 10-50 krad. No rejoining of double-strand breaks was observed. These observations suggest that, in mammalian cells, most double-strand breaks are not repairable, while all single-strand breaks are repaired except those that are sufficiently close on complementary strands to constitute double-strand breaks. Comparison with cell survival measurements at much lower doses suggests that loss of reproductive capacity corresponds to induction of approximately one double-strand break

  1. SAMHD1 Sheds Moonlight on DNA Double-Strand Break Repair.

    Science.gov (United States)

    Cabello-Lobato, Maria Jose; Wang, Siyue; Schmidt, Christine Katrin

    2017-12-01

    SAMHD1 (sterile α motif and histidine (H) aspartate (D) domain-containing protein 1) is known for its antiviral activity of hydrolysing deoxynucleotides required for virus replication. Daddacha et al. identify a hydrolase-independent, moonlighting function of SAMHD1 that facilitates homologous recombination of DNA double-strand breaks (DSBs) by promoting recruitment of C-terminal binding protein interacting protein (CTIP), a DNA-end resection factor, to damaged DNA. These findings could benefit anticancer treatment. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Protein kinase CK2 localizes to sites of DNA double-strand break regulating the cellular response to DNA damage

    Directory of Open Access Journals (Sweden)

    Olsen Birgitte B

    2012-03-01

    Full Text Available Abstract Background The DNA-dependent protein kinase (DNA-PK is a nuclear complex composed of a large catalytic subunit (DNA-PKcs and a heterodimeric DNA-targeting subunit Ku. DNA-PK is a major component of the non-homologous end-joining (NHEJ repair mechanism, which is activated in the presence of DNA double-strand breaks induced by ionizing radiation, reactive oxygen species and radiomimetic drugs. We have recently reported that down-regulation of protein kinase CK2 by siRNA interference results in enhanced cell death specifically in DNA-PKcs-proficient human glioblastoma cells, and this event is accompanied by decreased autophosphorylation of DNA-PKcs at S2056 and delayed repair of DNA double-strand breaks. Results In the present study, we show that CK2 co-localizes with phosphorylated histone H2AX to sites of DNA damage and while CK2 gene knockdown is associated with delayed DNA damage repair, its overexpression accelerates this process. We report for the first time evidence that lack of CK2 destabilizes the interaction of DNA-PKcs with DNA and with Ku80 at sites of genetic lesions. Furthermore, we show that CK2 regulates the phosphorylation levels of DNA-PKcs only in response to direct induction of DNA double-strand breaks. Conclusions Taken together, these results strongly indicate that CK2 plays a prominent role in NHEJ by facilitating and/or stabilizing the binding of DNA-PKcs and, possibly other repair proteins, to the DNA ends contributing to efficient DNA damage repair in mammalian cells.

  3. The occurrence of double strand DNA breaks is not the sole condition for meiotic crossing over in Drosophila melanogaster.

    Science.gov (United States)

    Portin, P; Rantanen, M

    2000-01-01

    Analysis of the interchromosomal effects of In(2L + 2R)Cy, In(3L + 3R)LVM and their joint effect on the frequencies of single and double crossovers in the cv-v-f region of the X chromosome as well as interference showed that both inversions, occurring separately, increased the frequency of single as well as double crossovers and the coefficient of coincidence. However, when the inversions occurred together the frequencies of single crossovers no longer increased, but the frequency of double crossovers, as well as the coefficient of coincidence did increase. These results indicate firstly that the interchromosomal effects influence some precondition of exchange, but that this precondition is not an occurrence of double strand DNA breaks. Thus, the occurrence of double strand DNA breaks is not the sole condition for crossing over in Drosophila melanogaster.

  4. Adeno-associated virus-mediated gene transfer.

    Science.gov (United States)

    Srivastava, Arun

    2008-09-01

    Although the remarkable versatility and efficacy of recombinant adeno-associated virus 2 (AAV2) vectors in transducing a wide variety of cells and tissues in vitro, and in numerous pre-clinical animal models of human diseases in vivo, have been well established, the published literature is replete with controversies with regard to the efficacy of AAV2 vectors in hematopoietic stem cell (HSC) transduction. A number of factors have contributed to these controversies, the molecular bases of which have begun to come to light in recent years. With the availability of several novel serotypes (AAV1 through AAV12), rational design of AAV capsid mutants, and strategies (self-complementary vector genomes, hematopoietic cell-specific promoters), it is indeed becoming feasible to achieve efficient transduction of HSC by AAV vectors. Using a murine serial bone marrow transplantation model in vivo, we have recently documented stable integration of the proviral AAV genome into mouse chromosomes, which does not lead to any overt hematological abnormalities. Thus, a better understanding of the AAV-HSC interactions, and the availability of a vast repertoire of novel serotype and capsid mutant vectors, are likely to have significant implications in the use of AAV vectors in high-efficiency transduction of HSCs as well as in gene therapy applications involving the hematopoietic system. (c) 2008 Wiley-Liss, Inc.

  5. The adsorption-desorption transition of double-stranded DNA interacting with an oppositely charged dendrimer induced by multivalent anions.

    Science.gov (United States)

    Jiang, Yangwei; Zhang, Dong; Zhang, Yaoyang; Deng, Zhenyu; Zhang, Linxi

    2014-05-28

    The adsorption-desorption transition of DNA in DNA-dendrimer solutions is observed when high-valence anions, such as hexavalent anions, are added to the DNA-dendrimer solutions. In the DNA-dendrimer solutions with low-valence anions, dendrimers bind tightly with the V-shaped double-stranded DNA. When high-valence anions, such as pentavalent or hexavalent anions, are added to the DNA-dendrimer solutions, the double-stranded DNA chains can be stretched straightly and the dendrimers are released from the double-stranded DNA chains. In fact, adding high-valence anions to the solutions can change the charge spatial distribution in the DNA-dendrimer solutions, and weaken the electrostatic interactions between the positively charged dendrimers and the oppositely charged DNA chains. Adsorption-desorption transition of DNA is induced by the overcharging of dendrimers. This investigation is capable of helping us understand how to control effectively the release of DNA in gene/drug delivery because an effective gene delivery for dendrimers includes non-covalent DNA-dendrimer binding and the effective release of DNA in gene therapy.

  6. Long-Term Efficacy Following Readministration of an Adeno-Associated Virus Vector in Dogs with Glycogen Storage Disease Type Ia

    Science.gov (United States)

    Demaster, Amanda; Luo, Xiaoyan; Curtis, Sarah; Williams, Kyha D.; Landau, Dustin J.; Drake, Elizabeth J.; Kozink, Daniel M.; Bird, Andrew; Crane, Bayley; Sun, Francis; Pinto, Carlos R.; Brown, Talmage T.; Kemper, Alex R.

    2012-01-01

    Abstract Glycogen storage disease type Ia (GSD-Ia) is the inherited deficiency of glucose-6-phosphatase (G6Pase), primarily found in liver and kidney, which causes life-threatening hypoglycemia. Dogs with GSD-Ia were treated with double-stranded adeno-associated virus (AAV) vectors encoding human G6Pase. Administration of an AAV9 pseudotyped (AAV2/9) vector to seven consecutive GSD-Ia neonates prevented hypoglycemia during fasting for up to 8 hr; however, efficacy eventually waned between 2 and 30 months of age, and readministration of a new pseudotype was eventually required to maintain control of hypoglycemia. Three of these dogs succumbed to acute hypoglycemia between 7 and 9 weeks of age; however, this demise could have been prevented by earlier readministration an AAV vector, as demonstrated by successful prevention of mortality of three dogs treated earlier in life. Over the course of this study, six out of nine dogs survived after readministration of an AAV vector. Of these, each dog required readministration on average every 9 months. However, two were not retreated until >34 months of age, while one with preexisting antibodies was re-treated three times in 10 months. Glycogen content was normalized in the liver following vector administration, and G6Pase activity was increased in the liver of vector-treated dogs in comparison with GSD-Ia dogs that received only with dietary treatment. G6Pase activity reached approximately 40% of normal in two female dogs following AAV2/9 vector administration. Elevated aspartate transaminase in absence of inflammation indicated that hepatocellular turnover in the liver might drive the loss of vector genomes. Survival was prolonged for up to 60 months in dogs treated by readministration, and all dogs treated by readministration continue to thrive despite the demonstrated risk for recurrent hypoglycemia and mortality from waning efficacy of the AAV2/9 vector. These preclinical data support the further translation of AAV

  7. Use of orthogonal field alternational gel electrophoresis (OFAGE) for studying DNA double strand breakage and repair

    International Nuclear Information System (INIS)

    Contopoulou, C.R.; Cook, V.; Mortimer, R.K.

    1987-01-01

    The study of DNA double strand breakage and repair has normally been carried by using neutral sucrose gradient or neutral elution techniques. The authors have applied OFAGE procedures to study x-ray induced double strand breaks and repair. Breakage of chromosomes is seen by a decrease in intensity of individual chromosome bands; as expected, this decrease becomes more pronounced as chromosome size increases. The fragments of broken chromosomes appears as a broad smear in the size range 100 kb to 1000 kb. Following repair, these fragments partially disappear and the chromosomal bands increase in intensity. In four repair deficient mutants, rad51, rad52, rad54, rad55, no increase in chromosomal band intensity was seen. These results have been confirmed by blotting for a specific chromosome

  8. Evaluation of the neutral comet assay for detection of alpha-particle induced DNA-double-strand-breaks

    International Nuclear Information System (INIS)

    Hofbauer, Daniela

    2010-01-01

    Aim of this study was to differentiate DNA-double-strand-breaks from DNA-single-strand-breaks on a single cell level, using the comet assay after α- and γ-irradiation. Americium-241 was used as a alpha-irradiation-source, Caesium-137 was used for γ-irradiation. Because of technical problems with both the neutral and alkaline comet assay after irradiation of gastric cancer cells and human lymphocytes, no definite differentiation of DNA-damage was possible.

  9. Calibration of pulsed field gel electrophoresis for measurement of DNA double-strand breaks

    International Nuclear Information System (INIS)

    Ager, D.D.; Dewey, W.C.

    1990-01-01

    Pulsed field gel electrophoresis (PFGE) assay was calibrated for the measurement of X-ray induced DNA double-strand breaks in Chinese hamster ovary (CHO) cells. Calibration was conducted by incorporating [ 125 I] deoxyuridine into DNA, which induces one double-strand break for every disintegration that occurs in frozen cells. Based on the percentage of DNA migrating into the gel, the number of breaks/dalton/Gy was estimated to be (9.3±1.0) x 10 -12 . This value is close to (10 to 12) x 10 -12 determined by neutral filter elution using similar cell lysis procedures at 24 o C and at pH8.0. The estimate is in good agreement with the value of (11.7±2) x 10 -12 breaks/dalton/Gy as measured in Ehrlich ascites tumour cells using the neutral sucrose gradient method (Bloecher 1988), and (6 to 9) x 10 -12 breaks/dalton/Gy as measured in mouse L and Chinese hamster V79 cells using neutral filter elution (Radford and Hodgson 1985). (author)

  10. Phase 2 clinical trial of a recombinant adeno-associated viral vector expressing α1-antitrypsin: interim results.

    LENUS (Irish Health Repository)

    Flotte, Terence R

    2011-10-01

    Recombinant adeno-associated virus (rAAV) vectors offer promise for the gene therapy of α(1)-antitrypsin (AAT) deficiency. In our prior trial, an rAAV vector expressing human AAT (rAAV1-CB-hAAT) provided sustained, vector-derived AAT expression for >1 year. In the current phase 2 clinical trial, this same vector, produced by a herpes simplex virus complementation method, was administered to nine AAT-deficient individuals by intramuscular injection at doses of 6.0×10(11), 1.9×10(12), and 6.0×10(12) vector genomes\\/kg (n=3 subjects\\/dose). Vector-derived expression of normal (M-type) AAT in serum was dose dependent, peaked on day 30, and persisted for at least 90 days. Vector administration was well tolerated, with only mild injection site reactions and no serious adverse events. Serum creatine kinase was transiently elevated on day 30 in five of six subjects in the two higher dose groups and normalized by day 45. As expected, all subjects developed anti-AAV antibodies and interferon-γ enzyme-linked immunospot responses to AAV peptides, and no subjects developed antibodies to AAT. One subject in the mid-dose group developed T cell responses to a single AAT peptide unassociated with any clinical effects. Muscle biopsies obtained on day 90 showed strong immunostaining for AAT and moderate to marked inflammatory cell infiltrates composed primarily of CD3-reactive T lymphocytes that were primarily of the CD8(+) subtype. These results support the feasibility and safety of AAV gene therapy for AAT deficiency, and indicate that serum levels of vector-derived normal human AAT >20 μg\\/ml can be achieved. However, further improvements in the design or delivery of rAAV-AAT vectors will be required to achieve therapeutic target serum AAT concentrations.

  11. A novel and highly efficient production system for recombinant adeno-associated virus vector.

    Science.gov (United States)

    Wu, Zhijian; Wu, Xiaobing; Cao, Hui; Dong, Xiaoyan; Wang, Hong; Hou, Yunde

    2002-02-01

    Recombinant adeno-associated virus (rAAV) has proven to be a promising gene delivery vector for human gene therapy. However, its application has been limited by difficulty in obtaining enough quantities of high-titer vector stocks. In this paper, a novel and highly efficient production system for rAAV is described. A recombinant herpes simplex virus type 1 (rHSV-1) designated HSV1-rc/DeltaUL2, which expressed adeno-associated virus type2 (AAV-2) Rep and Cap proteins, was constructed previously. The data confirmed that its functions were to support rAAV replication and packaging, and the generated rAAV was infectious. Meanwhile, an rAAV proviral cell line designated BHK/SG2, which carried the green fluorescent protein (GFP) gene expression cassette, was established by transfecting BHK-21 cells with rAAV vector plasmid pSNAV-2-GFP. Infecting BHK/SG2 with HSV1-rc/DeltaUL2 at an MOI of 0.1 resulted in the optimal yields of rAAV, reaching 250 transducing unit (TU) or 4.28x10(4) particles per cell. Therefore, compared with the conventional transfection method, the yield of rAAV using this "one proviral cell line, one helper virus" strategy was increased by two orders of magnitude. Large-scale production of rAAV can be easily achieved using this strategy and might meet the demands for clinical trials of rAAV-mediated gene therapy.

  12. Delivery of Human EV71 Receptors by Adeno-Associated Virus Increases EV71 Infection-Induced Local Inflammation in Adult Mice

    Directory of Open Access Journals (Sweden)

    Hung-Bo Hsiao

    2014-01-01

    Full Text Available Enterovirus71 (EV71 is now recognized as an emerging neurotropic virus in Asia and one major causative agent of hand-foot-mouth diseases (HFMD. However potential animal models for vaccine development are limited to young mice. In this study, we used an adeno-associated virus (AAV vector to introduce the human EV71 receptors P-selectin glycoprotein ligand-1 (hPSGL1 or a scavenger receptor class-B member-2 (hSCARB2 into adult ICR mice to change their susceptibility to EV71 infection. Mice were administered AAV-hSCARB2 or AAV-hPSGL1 through intravenous and oral routes. After three weeks, expression of human SCARB2 and PSGL1 was detected in various organs. After infection with EV71, we found that the EV71 viral load in AAV-hSCARB2- or AAV-hPSGL1-transduced mice was higher than that of the control mice in both the brain and intestines. The presence of EV71 viral particles in tissues was confirmed using immunohistochemistry analysis. Moreover, inflammatory cytokines were induced in the brain and intestines of AAV-hSCARB2- or AAV-hPSGL1-transduced mice after EV71 infection but not in wild-type mice. However, neurological disease was not observed in these animals. Taken together, we successfully infected adult mice with live EV71 and induced local inflammation using an AAV delivery system.

  13. IDN2 Interacts with RPA and Facilitates DNA Double-Strand Break Repair by Homologous Recombination in Arabidopsis.

    Science.gov (United States)

    Liu, Mingming; Ba, Zhaoqing; Costa-Nunes, Pedro; Wei, Wei; Li, Lanxia; Kong, Fansi; Li, Yan; Chai, Jijie; Pontes, Olga; Qi, Yijun

    2017-03-01

    Repair of DNA double-strand breaks (DSBs) is critical for the maintenance of genome integrity. We previously showed that DSB-induced small RNAs (diRNAs) facilitate homologous recombination-mediated DSB repair in Arabidopsis thaliana Here, we show that INVOLVED IN DE NOVO2 (IDN2), a double-stranded RNA binding protein involved in small RNA-directed DNA methylation, is required for DSB repair in Arabidopsis. We find that IDN2 interacts with the heterotrimeric replication protein A (RPA) complex. Depletion of IDN2 or the diRNA binding ARGONAUTE2 leads to increased accumulation of RPA at DSB sites and mislocalization of the recombination factor RAD51. These findings support a model in which IDN2 interacts with RPA and facilitates the release of RPA from single-stranded DNA tails and subsequent recruitment of RAD51 at DSB sites to promote DSB repair. © 2017 American Society of Plant Biologists. All rights reserved.

  14. Adaptation of the neutral bacterial comet assay to assess antimicrobial-mediated DNA double-strand breaks in Escherichia coli

    Science.gov (United States)

    SOLANKY, DIPESH; HAYDEL, SHELLEY E.

    2012-01-01

    This study aimed to determine the mechanism of action of a natural antibacterial clay mineral mixture, designated CB, by investigating the induction of DNA double-strand breaks (DSBs) in Escherichia coli. To quantify DNA damage upon exposure to soluble antimicrobial compounds, we modified a bacterial neutral comet assay, which primarily associates the general length of an electrophoresed chromosome, or comet, with the degree of DSB-associated DNA damage. To appropriately account for antimicrobial-mediated strand fragmentation, suitable control reactions consisting of exposures to water, ethanol, kanamycin, and bleomycin were developed and optimized for the assay. Bacterial exposure to the CB clay resulted in significantly longer comet lengths, compared to water and kanamycin exposures, suggesting that the induction of DNA DSBs contributes to the killing activity of this antibacterial clay mineral mixture. The comet assay protocol described herein provides a general technique for evaluating soluble antimicrobial-derived DNA damage and for comparing DNA fragmentation between experimental and control assays. PMID:22940101

  15. Investigation on accordance of DNA double-strand break of blood between in vivo and in vitro irradiation using single cell gel electrophoresis

    International Nuclear Information System (INIS)

    Liu Qiang; Jiang Enhai; Li Jin; Tang Weisheng; Wang Zhiquan; Zhao Yongcheng; Fan Feiyue

    2006-01-01

    Objective: To observe the consistency of DNA double-strand break between in vivo and in vitro irradiation, as a prophase study in radiation biodosimetry using single cell gel electrophoresis (SCGE). Methods: Detect DNA double-strand break after whole-body and in vitro radiation in mice lymphocytes using neutral single cell gel electrophoresis. The comet images were processed by CASP software and all the data were analysed by SPSS12.0. Results: There is no difference between in vivo and in vitro irradiation group in HDNA%, TDNA%, CL, TL, TM and OTM. Conclusion: The result of neutral single cell gel electrophoresis shortly after in vitro irradiation can precisely reflect the DNA double-strand break of lymphocytes in whole-body irradiation. (authors)

  16. Effect and Mechanism of Mitomycin C Combined with Recombinant Adeno-Associated Virus Type II against Glioma

    Directory of Open Access Journals (Sweden)

    Hong Ma

    2013-12-01

    Full Text Available The effect of chemotherapy drug Mitomycin C (MMC in combination with recombinant adeno-associated virus II (rAAV2 in cancer therapy was investigated, and the mechanism of MMC affecting rAAV2’s bioactivity was also studied. The combination effect was evaluated by the level of GFP and TNF expression in a human glioma cell line, and the mechanism of MMC effects on rAAV mediated gene expression was investigated by AAV transduction related signal molecules. C57 and BALB/c nude mice were injected with rAAV-EGFP or rAAV-TNF alone, or mixed with MMC, to evaluate the effect of MMC on AAV-mediated gene expression and tumor suppression. MMC was shown to improve the infection activity of rAAV2 both in vitro and in vivo. Enhancement was found to be independent of initial rAAV2 receptor binding stage or subsequent second-strand synthesis of target DNA, but was related to cell cycle retardation followed by blocked genome degradation. In vivo injection of MMC combined with rAAV2 into the tumors of the animals resulted in significant suppression of tumor growth. It was thus demonstrated for the first time that MMC could enhance the expression level of the target gene mediated by rAAV2. The combination of rAAV2 and MMC may be a promising strategy in cancer therapy.

  17. Role of alfalfa mosaic virus coat protein in regulation of the balance between viral plus and minus strand RNA synthesis

    NARCIS (Netherlands)

    van der Kuyl, A. C.; Neeleman, L.; Bol, J. F.

    1991-01-01

    Replication of wild type RNA 3 of alfalfa mosaic virus (AIMV) and mutants with frameshifts in the P3 or coat protein (CP) genes was studied in protoplasts from tobacco plants transformed with DNA copies of AIMV RNAs 1 and 2. Accumulation of viral plus and minus strand RNAs was monitored with

  18. Coronavirus minus-strand RNA synthesis and effect of cycloheximide on coronavirus RNA synthesis

    International Nuclear Information System (INIS)

    Sawicki, S.G.; Sawicki, D.L.

    1986-01-01

    The temporal sequence of coronavirus plus-strand and minus-strand RNA synthesis was determined in 17CL1 cells infected with the A59 strain of mouse hepatitis virus (MHV). MHV-induced fusion was prevented by keeping the pH of the medium below pH 6.8. This had no effect on the MHV replication cycle, but gave 5- to 10-fold-greater titers of infectious virus and delayed the detachment of cells from the monolayer which permitted viral RNA synthesis to be studied conveniently until at least 10 h postinfection. Seven species of poly(A)-containing viral RNAs were synthesized at early and late times infection, in nonequal but constant ratios. MHV minus-strand RNA synthesis was first detected at about 3 h after infection and was found exclusively in the viral replicative intermediates and was not detected in 60S single-stranded form in infected cells. Early in the replication cycle, from 45 to 65% of the [ 3 H]uridine pulse-labeled RF core of purified MHV replicative intermediates was in minus-strand RNA. The rate of minus-strand synthesis peaked at 5 to 6 h postinfection and then declined to about 20% of the maximum rate. The addition of cycloheximide before 3 h postinfection prevented viral RNA synthesis, whereas the addition of cycloheximide after viral RNA synthesis had begun resulted in the inhibition of viral RNA synthesis. The synthesis of both genome and subgenomic mRNAs and of viral minus strands required continued protein synthesis, and minis-strand RNA synthesis was three- to fourfold more sensitive to inhibition of cycloheximide than was plus-strand synthesis

  19. Viral Small-RNA Analysis of Bombyx mori Larval Midgut during Persistent and Pathogenic Cytoplasmic Polyhedrosis Virus Infection.

    Science.gov (United States)

    Zografidis, Aris; Van Nieuwerburgh, Filip; Kolliopoulou, Anna; Apostolou-Karampelis, Konstantinos; Head, Steven R; Deforce, Dieter; Smagghe, Guy; Swevers, Luc

    2015-11-01

    The lepidopteran innate immune response against RNA viruses remains poorly understood, while in other insects several studies have highlighted an essential role for the exo-RNAi pathway in combating viral infection. Here, by using deep-sequencing technology for viral small-RNA (vsRNA) assessment, we provide evidence that exo-RNAi is operative in the silkworm Bombyx mori against both persistent and pathogenic infection of B. mori cytoplasmic polyhedrosis virus (BmCPV) which is characterized by a segmented double-stranded RNA (dsRNA) genome. Further, we show that Dicer-2 predominantly targets viral dsRNA and produces 20-nucleotide (nt) vsRNAs, whereas an additional pathway is responsive to viral mRNA derived from segment 10. Importantly, vsRNA distributions, which define specific hot and cold spot profiles for each viral segment, to a considerable degree overlap between Dicer-2-related (19 to 21 nt) and Dicer-2-unrelated vsRNAs, suggesting a common origin for these profiles. We found a degenerate motif significantly enriched at the cut sites of vsRNAs of various lengths which link an unknown RNase to the origins of vsRNAs biogenesis and distribution. Accordingly, the indicated RNase activity may be an important early factor for the host's antiviral defense in Lepidoptera. This work contributes to the elucidation of the lepidopteran antiviral response against infection of segmented double-stranded RNA (dsRNA) virus (CPV; Reoviridae) and highlights the importance of viral small-RNA (vsRNA) analysis for getting insights into host-pathogen interactions. Three vsRNA pathways are implicated in antiviral defense. For dsRNA, two pathways are proposed, either based on Dicer-2 cleavage to generate 20-nucleotide vsRNAs or based on the activity of an uncharacterized endo-RNase that cleaves the viral RNA substrate at a degenerate motif. The analysis also indicates the existence of a degradation pathway that targets the positive strand of segment 10. Copyright © 2015, American

  20. Compound Poisson Processes and Clustered Damage of Radiation Induced DNA Double Strand Breaks

    International Nuclear Information System (INIS)

    Gudowska-Nowak, E.; Ritter, S.; Taucher-Scholz, G.; Kraft, G.

    2000-01-01

    Recent experimental data have demonstrated that DNA damage induced by densely ionizing radiation in mammalian cells is distributed along the DNA molecule in the form of clusters. The principal constituent of DNA damage are double-strand breaks (DSB) which are formed when the breaks occur in both DNA strands and are directly opposite or separated by only a few base pairs. DSBs are believed to be most important lesions produced in chromosomes by radiation; interaction between DSBs can lead to cell killing, mutation or carcinogenesis. The paper discusses a model of clustered DSB formation viewed in terms of compound Poisson process along with the predictive essay of the formalism in application to experimental data. (author)

  1. In vivo quantification of DNA double strand breaks

    International Nuclear Information System (INIS)

    Simonsson, M.; Qvarnstroem, F.; Turesson, I.; Johansson, K.-A.; Nyman, J.; Hermansson, I.; Oden, A.; Book, M.

    2003-01-01

    DNA double strand breaks (DSBs) can be introduced in the genome by exposure to exogenous agents such as ionising radiation and radio-mimetic chemicals. The biological importance of these breaks is significant even at low numbers. Inaccurate repair or lack of repair of a single DSB has the potential to kill a cell or lead to tumourigenesis. Thus the induction and repair of DSBs are crucial events in the onset of malignancies. Following the induction of DSBs, the core histone H2AX is rapidly phosphorylated at residue serine 139. This phosphorylated form of H2AX is referred to as gH2AX. Histones wrapped in megabase regions flanking these breaks are involved in this process, which results in the formation of discrete nuclear foci. It has previously been shown that a single DSB is sufficient to produce a detectable focus. So far there has been a lack of methods capable of measuring the amount of DSBs at clinically relevant quantities. Such a method would embrace a wide field of applications. It could be applied as a biological dosimeter when studying carcinogenic effects and provide the basis for an assay predicting individual radiosensitivity. We describe a measurement procedure that detects and quantifies small amounts of DSBs in vivo. This is accomplished using immunofluorescence detection of the molecular marker gH2AX. The gH2AX foci are quantified in histological sections using basic digital image analysis methods as the main component. In a primary assessment of the procedure we analysed the in vivo dose response of prostate cancer patients in clinical practice undergoing radiotherapy. Epidermal nucleated cells in skin biopsies taken 30 minutes following the first single dose delivered show linear dose response for low doses ranging from 0 - 1.2 Gy. The described procedure for double strand break quantification can detect dose changes as low as 0.18 Gy

  2. A novel single fluorophore-labeled double-stranded oligonucleotide probe for fluorescence-enhanced nucleic acid detection based on the inherent quenching ability of deoxyguanosine bases and competitive strand-displacement reaction.

    Science.gov (United States)

    Zhang, Yingwei; Tian, Jingqi; Li, Hailong; Wang, Lei; Sun, Xuping

    2012-01-01

    We develop a novel single fluorophore-labeled double-stranded oligonucleotide (OND) probe for rapid, nanostructure-free, fluorescence-enhanced nucleic acid detection for the first time. We further demonstrate such probe is able to well discriminate single-base mutation in nucleic acid. The design takes advantage of an inherent quenching ability of guanine bases. The short strand of the probe is designed with an end-labeled fluorophore that is placed adjacent to two guanines as the quencher located on the long opposite strand, resulting in great quenching of dye fluorescence. In the presence of a target complementary to the long strand of the probe, a competitive strand-displacement reaction occurs and the long strand forms a more stable duplex with the target, resulting in the two strands of the probe being separated from each other. As a consequence of this displacement, the fluorophore and the quencher are no longer in close proximity and dye fluorescence increases, signaling the presence of target.

  3. Restriction endonucleases from invasive Neisseria gonorrhoeae cause double-strand breaks and distort mitosis in epithelial cells during infection.

    Directory of Open Access Journals (Sweden)

    Linda Weyler

    Full Text Available The host epithelium is both a barrier against, and the target for microbial infections. Maintaining regulated cell growth ensures an intact protective layer towards microbial-induced cellular damage. Neisseria gonorrhoeae infections disrupt host cell cycle regulation machinery and the infection causes DNA double strand breaks that delay progression through the G2/M phase. We show that intracellular gonococci upregulate and release restriction endonucleases that enter the nucleus and damage human chromosomal DNA. Bacterial lysates containing restriction endonucleases were able to fragment genomic DNA as detected by PFGE. Lysates were also microinjected into the cytoplasm of cells in interphase and after 20 h, DNA double strand breaks were identified by 53BP1 staining. In addition, by using live-cell microscopy and NHS-ester stained live gonococci we visualized the subcellular location of the bacteria upon mitosis. Infected cells show dysregulation of the spindle assembly checkpoint proteins MAD1 and MAD2, impaired and prolonged M-phase, nuclear swelling, micronuclei formation and chromosomal instability. These data highlight basic molecular functions of how gonococcal infections affect host cell cycle regulation, cause DNA double strand breaks and predispose cellular malignancies.

  4. Restriction endonucleases from invasive Neisseria gonorrhoeae cause double-strand breaks and distort mitosis in epithelial cells during infection.

    Science.gov (United States)

    Weyler, Linda; Engelbrecht, Mattias; Mata Forsberg, Manuel; Brehwens, Karl; Vare, Daniel; Vielfort, Katarina; Wojcik, Andrzej; Aro, Helena

    2014-01-01

    The host epithelium is both a barrier against, and the target for microbial infections. Maintaining regulated cell growth ensures an intact protective layer towards microbial-induced cellular damage. Neisseria gonorrhoeae infections disrupt host cell cycle regulation machinery and the infection causes DNA double strand breaks that delay progression through the G2/M phase. We show that intracellular gonococci upregulate and release restriction endonucleases that enter the nucleus and damage human chromosomal DNA. Bacterial lysates containing restriction endonucleases were able to fragment genomic DNA as detected by PFGE. Lysates were also microinjected into the cytoplasm of cells in interphase and after 20 h, DNA double strand breaks were identified by 53BP1 staining. In addition, by using live-cell microscopy and NHS-ester stained live gonococci we visualized the subcellular location of the bacteria upon mitosis. Infected cells show dysregulation of the spindle assembly checkpoint proteins MAD1 and MAD2, impaired and prolonged M-phase, nuclear swelling, micronuclei formation and chromosomal instability. These data highlight basic molecular functions of how gonococcal infections affect host cell cycle regulation, cause DNA double strand breaks and predispose cellular malignancies.

  5. Analysis of native cellular DNA after heavy ion irradiation: DNA double-strand breaks in CHO-K1 cells

    International Nuclear Information System (INIS)

    Heilmann, J.; Taucher-Scholz, G.; Kraft, G.

    1994-11-01

    A fast assay for the detection of DNA double-strand breaks was developed involving constant field gel electrophoresis (Taucher-Scholz et al., 1994) and densitometric scanning of agarose gels stained with ethidium bromide. With this technique, DSB induction was investigated after irradiation of CHO cells with carbon ions with LET values between 14 keV/μm and 400 keV/μm. In parallel, a computer code was developed to simulate both the principle of the electrophoretic detection of DNA double-strand breaks and the action of radiations of different ionization density. The results of the experiments and the calculations are presented here and compared with each other. (orig./HSI)

  6. Genetic recombination induced by DNA double-strand break in bacteriophage T4: nature of the left/right bias.

    Science.gov (United States)

    Shcherbakov, Victor P; Shcherbakova, Tamara; Plugina, Lidiya; Sizova, Svetlana; Kudryashova, Elena; Granovsky, Igor

    2008-06-01

    The experimental system combining double-strand breaks (DSBs), produced site-specifically by SegC endonuclease, with the famous advantages of the bacteriophage T4 rII mutant recombination analysis was used here to elucidate the origin of the recombination bias on two sides of the DSB, especially pronounced in gene 39 (topoisomerase II) and gene 59 (41-helicase loader) mutants. Three sources were found to contribute to the bias: (1) the SegC endonuclease may remain bound to the end of the broken DNA and thus protect it from exonuclease degradation; (2) in heteroduplex heterozygotes (HHs), arising as the recombinant products in the left-hand crosses, the transcribed strands are of rII mutant phenotype, so they, in contrast to the right-hand HHs, do not produce plaques on the lawn of the lambda-lysogenic host; and (3) the intrinsic polarity of T4 chromosome, reflected in transcription, may be a cause for discrimination of promoter-proximal and promoter-distal DNA sequences. It is shown that the apparent recombination bias does not imply one-sidedness of the DSB repair but just reflects a different depth of the end processing. It is inferred that the cause, underlying the "intrinsic" bias, might be interference between strand exchange and transcription. Topoisomerase and helicase functions are necessary to turn the process in favor of strand exchange. The idea is substantiated that the double-stranded to single-stranded DNA transition edge (not ss-DNA tip) serves as an actual recombinogenic element.

  7. Integration of adeno-associated virus vectors in CD34+ human hematopoietic progenitor cells after transduction.

    Science.gov (United States)

    Fisher-Adams, G; Wong, K K; Podsakoff, G; Forman, S J; Chatterjee, S

    1996-07-15

    Gene transfer vectors based on adeno-associated virus (AAV) appear promising because of their high transduction frequencies regardless of cell cycle status and ability to integrate into chromosomal DNA. We tested AAV-mediated gene transfer into a panel of human bone marrow or umbilical cord-derived CD34+ hematopoietic progenitor cells, using vectors encoding several transgenes under the control of viral and cellular promoters. Gene transfer was evaluated by (1) chromosomal integration of vector sequences and (2) analysis of transgene expression. Southern hybridization and fluorescence in situ hybridization analysis of transduced CD34 genomic DNA showed the presence of integrated vector sequences in chromosomal DNA in a portion of transduced cells and showed that integrated vector sequences were replicated along with cellular DNA during mitosis. Transgene expression in transduced CD34 cells in suspension cultures and in myeloid colonies differentiating in vitro from transduced CD34 cells approximated that predicted by the multiplicity of transduction. This was true in CD34 cells from different donors, regardless of the transgene or selective pressure. Comparisons of CD34 cell transduction either before or after cytokine stimulation showed similar gene transfer frequencies. Our findings suggest that AAV transduction of CD34+ hematopoietic progenitor cells is efficient, can lead to stable integration in a population of transduced cells, and may therefore provide the basis for safe and efficient ex vivo gene therapy of the hematopoietic system.

  8. scid mutation in mice confers hypersensitivity to ionizing radiation and a deficiency in DNA double-strand break repair

    International Nuclear Information System (INIS)

    Biedermann, K.A.; Sun, J.R.; Giaccia, A.J.; Tosto, L.M.; Brown, J.M.

    1991-01-01

    C.B-17 severe combined immunodeficient (scid) mice carry the scid mutation and are severely deficient in both T cell- and B cell-mediated immunity, apparently as a result of defective V(D)J joining of the immunoglobulin and T-cell receptor gene elements. In the present studies, we have defined the tissue, cellular, and molecular basis of another characteristic of these mice: their hypersensitivity to ionizing radiation. Bone marrow stem cells, intestinal crypt cells, and epithelial skin cells from scid mice are 2- to 3-fold more sensitive when irradiated in situ than are congenic BALB/c or C.B-17 controls. Two independently isolated embryo fibroblastic scid mouse cell lines display similar hypersensitivities to gamma-rays. In addition, these cell lines are sensitive to cell killing by bleomycin, which also produces DNA strand breaks, but not by the DNA crosslinking agent mitomycin C or UV irradiation. Measurement of the rejoining of gamma-ray-induced DNA double-strand breaks by pulsed-field gel electrophoresis indicates that these animals are defective in this repair system. This suggests that the gamma-ray sensitivity of the scid mouse fibroblasts could be the result of reduced repair of DNA double-strand breaks. Therefore, a common factor may participate in both the repair of DNA double-strand breaks as well as V(D)J rejoining during lymphocyte development. This murine autosomal recessive mutation should prove extremely useful in fundamental studies of radiation-induced DNA damage and repair

  9. The role of DNA double-strand breaks in spontaneous homologous recombination in S. cerevisiae

    DEFF Research Database (Denmark)

    Lettier, Gaëlle; Feng, Q.; Mayolo, A.A. de

    2006-01-01

    of meiosis and result from the induction of a large number of DNA double-strand breaks (DSBs). By analogy, it is generally believed that the rare spontaneous mitotic HR events are due to repair of DNA DSBs that accidentally occur during mitotic growth. Here we provide the first direct evidence that most...

  10. Tyrosine-phosphorylation of AAV2 vectors and its consequences on viral intracellular trafficking and transgene expression

    OpenAIRE

    Zhong, Li; Li, Baozheng; Jayandharan, Giridhararao; Mah, Cathryn S.; Govindasamy, Lakshmanan; Agbandje-McKenna, Mavis; Herzog, Roland W.; Weigel-Van Aken, Kirsten A.; Hobbs, Jacqueline A.; Zolotukhin, Sergei; Muzyczka, Nicholas; Srivastava, Arun

    2008-01-01

    We have documented that epidermal growth factor receptor protein tyrosine kinase (EGFR-PTK) signaling negatively affects intracellular trafficking and transduction efficiency of recombinant adeno-associated virus 2 (AAV2) vectors. Specifically, inhibition of EGFR-PTK signaling leads to decreased ubiquitination of AAV2 capsid proteins, which in turn, facilitates viral nuclear transport by limiting proteasome-mediated degradation of AAV2 vectors. In the present studies, we observed that AAV cap...

  11. Combined Triplex/Duplex Invasion of Double-Stranded DNA by "Tail-Clamp" Peptide Nucleic Acid

    DEFF Research Database (Denmark)

    Bentin, Thomas; Larsen, H. J.; Nielsen, Peter E.

    2003-01-01

    as determined by T-m measurements. Binding to double-stranded (ds) DNA occurred by combined triplex and duplex invasion as analyzed by permanganate probing. Furthermore, C-50 measurements revealed that tail-clamp PNAs consistently bound the dsDNA target more efficiently, and kinetics experiments revealed...

  12. The ubiquitin-selective segregase VCP/p97 orchestrates the response to DNA double-strand breaks

    DEFF Research Database (Denmark)

    Meerang, Mayura; Ritz, Danilo; Paliwal, Shreya

    2011-01-01

    Unrepaired DNA double-strand breaks (DSBs) cause genetic instability that leads to malignant transformation or cell death. Cells respond to DSBs with the ordered recruitment of signalling and repair proteins to the site of lesion. Protein modification with ubiquitin is crucial for the signalling ...

  13. An RNA Domain Imparts Specificity and Selectivity to a Viral DNA Packaging Motor

    Science.gov (United States)

    Zhao, Wei; Jardine, Paul J.

    2015-01-01

    ABSTRACT During assembly, double-stranded DNA viruses, including bacteriophages and herpesviruses, utilize a powerful molecular motor to package their genomic DNA into a preformed viral capsid. An integral component of the packaging motor in the Bacillus subtilis bacteriophage ϕ29 is a viral genome-encoded pentameric ring of RNA (prohead RNA [pRNA]). pRNA is a 174-base transcript comprised of two domains, domains I and II. Early studies initially isolated a 120-base form (domain I only) that retains high biological activity in vitro; hence, no function could be assigned to domain II. Here we define a role for this domain in the packaging process. DNA packaging using restriction digests of ϕ29 DNA showed that motors with the 174-base pRNA supported the correct polarity of DNA packaging, selectively packaging the DNA left end. In contrast, motors containing the 120-base pRNA had compromised specificity, packaging both left- and right-end fragments. The presence of domain II also provides selectivity in competition assays with genomes from related phages. Furthermore, motors with the 174-base pRNA were restrictive, in that they packaged only one DNA fragment into the head, whereas motors with the 120-base pRNA packaged several fragments into the head, indicating multiple initiation events. These results show that domain II imparts specificity and stringency to the motor during the packaging initiation events that precede DNA translocation. Heteromeric rings of pRNA demonstrated that one or two copies of domain II were sufficient to impart this selectivity/stringency. Although ϕ29 differs from other double-stranded DNA phages in having an RNA motor component, the function provided by pRNA is carried on the motor protein components in other phages. IMPORTANCE During virus assembly, genome packaging involves the delivery of newly synthesized viral nucleic acid into a protein shell. In the double-stranded DNA phages and herpesviruses, this is accomplished by a powerful

  14. An RNA Domain Imparts Specificity and Selectivity to a Viral DNA Packaging Motor.

    Science.gov (United States)

    Zhao, Wei; Jardine, Paul J; Grimes, Shelley

    2015-12-01

    During assembly, double-stranded DNA viruses, including bacteriophages and herpesviruses, utilize a powerful molecular motor to package their genomic DNA into a preformed viral capsid. An integral component of the packaging motor in the Bacillus subtilis bacteriophage ϕ29 is a viral genome-encoded pentameric ring of RNA (prohead RNA [pRNA]). pRNA is a 174-base transcript comprised of two domains, domains I and II. Early studies initially isolated a 120-base form (domain I only) that retains high biological activity in vitro; hence, no function could be assigned to domain II. Here we define a role for this domain in the packaging process. DNA packaging using restriction digests of ϕ29 DNA showed that motors with the 174-base pRNA supported the correct polarity of DNA packaging, selectively packaging the DNA left end. In contrast, motors containing the 120-base pRNA had compromised specificity, packaging both left- and right-end fragments. The presence of domain II also provides selectivity in competition assays with genomes from related phages. Furthermore, motors with the 174-base pRNA were restrictive, in that they packaged only one DNA fragment into the head, whereas motors with the 120-base pRNA packaged several fragments into the head, indicating multiple initiation events. These results show that domain II imparts specificity and stringency to the motor during the packaging initiation events that precede DNA translocation. Heteromeric rings of pRNA demonstrated that one or two copies of domain II were sufficient to impart this selectivity/stringency. Although ϕ29 differs from other double-stranded DNA phages in having an RNA motor component, the function provided by pRNA is carried on the motor protein components in other phages. During virus assembly, genome packaging involves the delivery of newly synthesized viral nucleic acid into a protein shell. In the double-stranded DNA phages and herpesviruses, this is accomplished by a powerful molecular motor

  15. Protection against {sup 131}I-induced Double Strand DNA Breaks in Thyroid Cells

    Energy Technology Data Exchange (ETDEWEB)

    Hershman, J.M.; Okunyan, A.; Cannon, S.; Hogen, V. [Endocrinology, UCLA-VA, Los Angeles (United States); Rivina, Y. [Radiation Biology, UCLA, Los Angeles (United States)

    2012-07-01

    Radioiodine-131 (I{sup 131}) released from nuclear reactor accidents has dramatically increased the incidence of papillary thyroid cancer in exposed individuals, especially young children. The accepted measure for prevention of radiation-induced thyroid cancer is potassium iodide tablets that contain 100 mg iodide taken daily to block thyroid uptake of I{sup 131}. The deposition of ionizing radiation in cells results in double-strand DNA breaks (DSB) at fragile sites, and this early event can generate oncogenic rearrangements that eventually cause the cancer. We have developed a thyroid cell model to quantify the mitogenic effect of I{sup 131}. I{sup 131} causes double strand DNA breaks in FRTL-5 cells detected by 53BP1 or gamma H2AX and had no effect on cells that do not transport iodide. Perchlorate, iodide, and thiocyanate protect against DSB induced by I{sup 131}. Preincubation with the anion or radioprotective compounds prevents DSB; delayed addition of the anion is much less effective. These data provide a basis for studies of radioprotection against DSB induced by I{sup 131} in animals in order to refine the prevention of thyroid cancer resulting from nuclear fallout

  16. Functional characterization of a conserved archaeal viral operon revealing single-stranded DNA binding, annealing and nuclease activities

    DEFF Research Database (Denmark)

    Guo, Yang; Kragelund, Birthe Brandt; White, Malcolm F.

    2015-01-01

    encoding proteins of unknown function and forming an operon with ORF207 (gp19). SIRV2 gp17 was found to be a single-stranded DNA (ssDNA) binding protein different in structure from all previously characterized ssDNA binding proteins. Mutagenesis of a few conserved basic residues suggested a U......-shaped binding path for ssDNA. The recombinant gp18 showed an ssDNA annealing activity often associated with helicases and recombinases. To gain insight into the biological role of the entire operon, we characterized SIRV2 gp19 and showed it to possess a 5'→3' ssDNA exonuclease activity, in addition...... for rudiviruses and the close interaction among the ssDNA binding, annealing and nuclease proteins strongly point to a role of the gene operon in genome maturation and/or DNA recombination that may function in viral DNA replication/repair....

  17. Fumarase is involved in DNA double-strand break resection through a functional interaction with Sae2

    DEFF Research Database (Denmark)

    Leshets, Michael; Ramamurthy, Dharanidharan; Lisby, Michael

    2018-01-01

    One of the most severe forms of DNA damage is the double-strand break (DSB). Failure to properly repair the damage can cause mutation, gross chromosomal rearrangements and lead to the development of cancer. In eukaryotes, homologous recombination (HR) and non-homologous end joining (NHEJ) are the......One of the most severe forms of DNA damage is the double-strand break (DSB). Failure to properly repair the damage can cause mutation, gross chromosomal rearrangements and lead to the development of cancer. In eukaryotes, homologous recombination (HR) and non-homologous end joining (NHEJ......) are the main DSB repair pathways. Fumarase is a mitochondrial enzyme which functions in the tricarboxylic acid cycle. Intriguingly, the enzyme can be readily detected in the cytosolic compartment of all organisms examined, and we have shown that cytosolic fumarase participates in the DNA damage response...

  18. Interaction between the cellular protein eEF1A and the 3'-terminal stem-loop of West Nile virus genomic RNA facilitates viral minus-strand RNA synthesis.

    Science.gov (United States)

    Davis, William G; Blackwell, Jerry L; Shi, Pei-Yong; Brinton, Margo A

    2007-09-01

    RNase footprinting and nitrocellulose filter binding assays were previously used to map one major and two minor binding sites for the cell protein eEF1A on the 3'(+) stem-loop (SL) RNA of West Nile virus (WNV) (3). Base substitutions in the major eEF1A binding site or adjacent areas of the 3'(+) SL were engineered into a WNV infectious clone. Mutations that decreased, as well as ones that increased, eEF1A binding in in vitro assays had a negative effect on viral growth. None of these mutations affected the efficiency of translation of the viral polyprotein from the genomic RNA, but all of the mutations that decreased in vitro eEF1A binding to the 3' SL RNA also decreased viral minus-strand RNA synthesis in transfected cells. Also, a mutation that increased the efficiency of eEF1A binding to the 3' SL RNA increased minus-strand RNA synthesis in transfected cells, which resulted in decreased synthesis of genomic RNA. These results strongly suggest that the interaction between eEF1A and the WNV 3' SL facilitates viral minus-strand synthesis. eEF1A colocalized with viral replication complexes (RC) in infected cells and antibody to eEF1A coimmunoprecipitated viral RC proteins, suggesting that eEF1A facilitates an interaction between the 3' end of the genome and the RC. eEF1A bound with similar efficiencies to the 3'-terminal SL RNAs of four divergent flaviviruses, including a tick-borne flavivirus, and colocalized with dengue virus RC in infected cells. These results suggest that eEF1A plays a similar role in RNA replication for all flaviviruses.

  19. Oncogenic ras-driven cancer cell vesiculation leads to emission of double-stranded DNA capable of interacting with target cells

    International Nuclear Information System (INIS)

    Lee, Tae Hoon; Chennakrishnaiah, Shilpa; Audemard, Eric; Montermini, Laura; Meehan, Brian; Rak, Janusz

    2014-01-01

    Highlights: • Oncogenic H-ras stimulates emission of extracellular vesicles containing double-stranded DNA. • Vesicle-associated extracellular DNA contains mutant N-ras sequences. • Vesicles mediate intercellular transfer of mutant H-ras DNA to normal fibroblasts where it remains for several weeks. • Fibroblasts exposed to vesicles containing H-ras DNA exhibit increased proliferation. - Abstract: Cell free DNA is often regarded as a source of genetic cancer biomarkers, but the related mechanisms of DNA release, composition and biological activity remain unclear. Here we show that rat epithelial cell transformation by the human H-ras oncogene leads to an increase in production of small, exosomal-like extracellular vesicles by viable cancer cells. These EVs contain chromatin-associated double-stranded DNA fragments covering the entire host genome, including full-length H-ras. Oncogenic N-ras and SV40LT sequences were also found in EVs emitted from spontaneous mouse brain tumor cells. Disruption of acidic sphingomyelinase and the p53/Rb pathway did not block emission of EV-related oncogenic DNA. Exposure of non-transformed RAT-1 cells to EVs containing mutant H-ras DNA led to the uptake and retention of this material for an extended (30 days) but transient period of time, and stimulated cell proliferation. Thus, our study suggests that H-ras-mediated transformation stimulates vesicular emission of this histone-bound oncogene, which may interact with non-transformed cells

  20. Oncogenic ras-driven cancer cell vesiculation leads to emission of double-stranded DNA capable of interacting with target cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tae Hoon; Chennakrishnaiah, Shilpa [Montreal Children’s Hospital, Research Institute of McGill University Health Centre, McGill University, Montreal, Quebec (Canada); Audemard, Eric [McGill University and Genome Quebec Innovation Centre, Montreal, Quebec (Canada); Montermini, Laura; Meehan, Brian [Montreal Children’s Hospital, Research Institute of McGill University Health Centre, McGill University, Montreal, Quebec (Canada); Rak, Janusz, E-mail: janusz.rak@mcgill.ca [Montreal Children’s Hospital, Research Institute of McGill University Health Centre, McGill University, Montreal, Quebec (Canada)

    2014-08-22

    Highlights: • Oncogenic H-ras stimulates emission of extracellular vesicles containing double-stranded DNA. • Vesicle-associated extracellular DNA contains mutant N-ras sequences. • Vesicles mediate intercellular transfer of mutant H-ras DNA to normal fibroblasts where it remains for several weeks. • Fibroblasts exposed to vesicles containing H-ras DNA exhibit increased proliferation. - Abstract: Cell free DNA is often regarded as a source of genetic cancer biomarkers, but the related mechanisms of DNA release, composition and biological activity remain unclear. Here we show that rat epithelial cell transformation by the human H-ras oncogene leads to an increase in production of small, exosomal-like extracellular vesicles by viable cancer cells. These EVs contain chromatin-associated double-stranded DNA fragments covering the entire host genome, including full-length H-ras. Oncogenic N-ras and SV40LT sequences were also found in EVs emitted from spontaneous mouse brain tumor cells. Disruption of acidic sphingomyelinase and the p53/Rb pathway did not block emission of EV-related oncogenic DNA. Exposure of non-transformed RAT-1 cells to EVs containing mutant H-ras DNA led to the uptake and retention of this material for an extended (30 days) but transient period of time, and stimulated cell proliferation. Thus, our study suggests that H-ras-mediated transformation stimulates vesicular emission of this histone-bound oncogene, which may interact with non-transformed cells.

  1. Measurement of anti-double-stranded DNA antibodies in major immunoglobulin classes

    Energy Technology Data Exchange (ETDEWEB)

    Aotsuka, S; Okawa, M; Ikebe, K; Yokohari, R [Division of Clinical Immunology, Clinical Research Institute, National Medical Center Hospital, Shinjuku-ku, Tokyo, Japan

    1979-07-10

    A solid-phase radioimmunoassay for quantitating anti-double-stranded deoxyribonucleic acid antibodies (anti-dsDNA) in IgG, IgM and IgA classes has been devised. A distinct feature of the method is an application of polystyrene tubes coated with poly-L-lysine, through which dsDNA could be bound firmly to a solid phase. Studies on patients sera as well as normal sera revealed that anti-dsDNA was not qualitatively but quantitatively characteristic of systematic lupus erythematosus (SLE) and that IgG anti-dsDNA levels correlated well with the disease activity.

  2. Second-strand cDNA synthesis: classical method

    International Nuclear Information System (INIS)

    Gubler, U.

    1987-01-01

    The classical scheme for the synthesis of double-stranded cDNA as it was reported in 1976 is described. Reverse transcription of mRNA with oligo(dT) as the primer generates first strands with a small loop at the 3' end of the cDNA (the end that corresponds to the 5' end of the mRNA). Subsequent removal of the mRNA by alkaline hydrolysis leaves single-stranded cDNA molecules again with a small 3' loop. This loop can be used by either reverse transcriptase or Klenow fragment of DNA polymerase I as a primer for second-strand synthesis. The resulting products are double-stranded cDNA molecules that are covalently closed at the end corresponding to the 5' end of the original mRNA. Subsequent cleavage of the short piece of single-stranded cDNA within the loop with the single-strand-specific S 1 nuclease generate open double-stranded molecules that can be used for molecular cloning in plasmids or in phage. Useful variations of this scheme have been described

  3. DNA double-strand breaks as potential indicators for the biological effects of ionising radiation exposure from cardiac CT and conventional coronary angiography: a randomised, controlled study

    Energy Technology Data Exchange (ETDEWEB)

    Geisel, Dominik; Zimmermann, Elke; Rief, Matthias; Greupner, Johannes; Hamm, Bernd [Charite Medical School, Department of Radiology, Berlin (Germany); Laule, Michael; Knebel, Fabian [Charite Medical School, Department of Cardiology, Berlin (Germany); Dewey, Marc [Charite Medical School, Department of Radiology, Berlin (Germany); Charite, Institut fuer Radiologie, Berlin (Germany)

    2012-08-15

    To prospectively compare induced DNA double-strand breaks by cardiac computed tomography (CT) and conventional coronary angiography (CCA). 56 patients with suspected coronary artery disease were randomised to undergo either CCA or cardiac CT. DNA double-strand breaks were assessed in fluorescence microscopy of blood lymphocytes as indicators of the biological effects of radiation exposure. Radiation doses were estimated using dose-length product (DLP) and dose-area product (DAP) with conversion factors for CT and CCA, respectively. On average there were 0.12 {+-} 0.06 induced double-strand breaks per lymphocyte for CT and 0.29 {+-} 0.18 for diagnostic CCA (P < 0.001). This relative biological effect of ionising radiation from CCA was 1.9 times higher (P < 0.001) than the effective dose estimated by conversion factors would have suggested. The correlation between the biological effects and the estimated radiation doses was excellent for CT (r = 0.951, P < 0.001) and moderate to good for CCA (r = 0.862, P < 0.001). One day after radiation, a complete repair of double-strand breaks to background levels was found in both groups. Conversion factors may underestimate the relative biological effects of ionising radiation from CCA. DNA double-strand break assessment may provide a strategy for individualised assessments of radiation. (orig.)

  4. Optimizing viral and non-viral gene transfer methods for genetic modification of porcine mesenchymal stem cells

    DEFF Research Database (Denmark)

    Stiehler, Maik; Duch, Mogens; Mygind, Tina

    2006-01-01

    INTRODUCTION: Mesenchymal stem cells (MSCs) provide an excellent source of pluripotent progenitor cells for tissue-engineering applications due to their proliferation capacity and differentiation potential. Genetic modification of MSCs with genes encoding tissue-specific growth factors...... viral and non-viral ex vivo gene delivery systems with respect to gene transfer efficiency, maintenance of transgene expression, and safety issues using primary porcine MSCs as target cells. MATERIALS AND METHODS: MSCs were purified from bone marrow aspirates from the proximal tibiae of four 3-month......-old Danish landrace pigs by Ficoll step gradient separation and polystyrene adherence technique. Vectors expressing enhanced green fluorescent protein (eGFP) and human bone morphogenetic protein-2 (BMP-2) were transferred to the cells by different non-viral methods and by use of recombinant adeno...

  5. The DNA-dependent protein kinase: a multifunctional protein kinase with roles in DNA double strand break repair and mitosis

    Science.gov (United States)

    Jette, Nicholas; Lees-Miller, Susan P.

    2015-01-01

    The DNA-dependent protein kinase (DNA-PK) is a serine/threonine protein kinase composed of a large catalytic subunit (DNA-PKcs) and the Ku70/80 heterodimer. Over the past two decades, significant progress has been made in elucidating the role of DNA-PK in non-homologous end joining (NHEJ), the major pathway for repair of ionizing radiation-induced DNA double strand breaks in human cells and recently, additional roles for DNA-PK have been reported. In this review, we will describe the biochemistry, structure and function of DNA-PK, its roles in DNA double strand break repair and its newly described roles in mitosis and other cellular processes. PMID:25550082

  6. DNA double strand breaks in the acute phase after synchrotron pencilbeam irradiation

    International Nuclear Information System (INIS)

    Fernandez-Palomo, C; Trippel, M; Schroll, C; Nikkhah, G; Schültke, E; Bräuer-Krisch, E; Requardt, H; Bartzsch, S

    2013-01-01

    Introduction. At the biomedical beamline of the European Synchrotron Radiation Facility (ESRF), we have established a method to study pencilbeam irradiation in-vivoin small animal models. The pencilbeam irradiation technique is based on the principle of microbeam irradiation, a concept of spatially fractionated high-dose irradiation. Using γH2AX as marker, we followed the development of DNA double strand breaks over 48 hrs after whole brain irradiation with the pencilbeam technique. Method. Almost square pencilbeams with an individual size of 51 × 50 μm were produced with an MSC collimator using a step and shoot approach, while the animals were moved vertically through the beam. The center-to-center distance (ctc) was 400 μm, with a peak-to-valley dose ratio (PVDR) of about 400. Five groups of healthy adult mice received peak irradiation doses of either 330 Gy or 2,460 Gy and valley doses of 0.82 Gy and 6.15 Gy, respectively. Animals were sacrificed at 2, 12 and 48 hrs after irradiation. Results. DNA double strand breaks are observed in the path of the pencilbeam. The size of the damaged volume undergoes changes within the first 48 hours after irradiation. Conclusions. The extent of DNA damage caused by pencilbeam irradiation, as assessed by H2AX antibody staining, is dose- dependent

  7. Reduction in deformed wing virus infection in larval and adult honey bees (Apis mellifera L.) by double-stranded RNA ingestion.

    Science.gov (United States)

    Desai, S D; Eu, Y-J; Whyard, S; Currie, R W

    2012-08-01

    Deformed wing virus (DWV) is a serious pathogen of the honey bee, Apis mellifera L., vectored by the parasitic mite Varroa destructor. The virus is associated with wing deformity in symptomatic bees, and premature death and reduced colony performance in asymptomatic bees. In the present study we reduced DWV infection by feeding both first instar larvae and adult A. mellifera with a double-stranded (ds) RNA construct, DWV-dsRNA, which is specific to DWV in DWV-inoculated bees, by mixing it with their food. We showed that feeding DWV to larvae causes wing deformity in adult bees in the absence of varroa mites and decreases survival rates of adult bees relative to bees not fed DWV. Feeding larvae with DWV-dsRNA in advance of inoculation with virus reduced the DWV viral level and reduced wing deformity relative to larvae fed DWV or DWV with green fluorescent protein-dsRNA (probably a result of RNA silencing), but did not affect survival to the adult stage. Feeding DWV-dsRNA did not affect larval survival rates, which suggests that dsRNA is non-toxic to larvae. Feeding adult workers with DWV-dsRNA in advance of inoculation with virus increased their longevity and reduced DWV concentration relative to controls. © 2012 The Authors. Insect Molecular Biology © 2012 The Royal Entomological Society.

  8. Prevalent and persistent viral infection in cultures of the coral algal endosymbiont Symbiodinium

    KAUST Repository

    Weynberg, Karen D.; Neave, Matthew J.; Clode, Peta L.; Voolstra, Christian R.; Brownlee, Christopher; Laffy, Patrick; Webster, Nicole S.; Levin, Rachel A.; Wood-Charlson, Elisha M.; Oppen, Madeleine J. H.

    2017-01-01

    Reef corals are under threat from bleaching and disease outbreaks that target both the host animal and the algal symbionts within the coral holobiont. A viral origin for coral bleaching has been hypothesized, but direct evidence has remained elusive. Using a multifaceted approach incorporating flow cytometry, transmission electron microscopy, DNA and RNA virome sequencing, we show that type C1 Symbiodinium cultures host a nucleocytoplasmic large double-stranded DNA virus (NCLDV) related to Phycodnaviridae and Mimiviridae, a novel filamentous virus of unknown phylogenetic affiliation, and a single-stranded RNA virus related to retroviruses. We discuss implications of these findings for laboratory-based experiments using Symbiodinium cultures.

  9. Prevalent and persistent viral infection in cultures of the coral algal endosymbiont Symbiodinium

    Science.gov (United States)

    Weynberg, Karen D.; Neave, Matthew; Clode, Peta L.; Voolstra, Christian R.; Brownlee, Christopher; Laffy, Patrick; Webster, Nicole S.; Levin, Rachel A.; Wood-Charlson, Elisha M.; van Oppen, Madeleine J. H.

    2017-09-01

    Reef corals are under threat from bleaching and disease outbreaks that target both the host animal and the algal symbionts within the coral holobiont. A viral origin for coral bleaching has been hypothesized, but direct evidence has remained elusive. Using a multifaceted approach incorporating flow cytometry, transmission electron microscopy, DNA and RNA virome sequencing, we show that type C1 Symbiodinium cultures host a nucleocytoplasmic large double-stranded DNA virus (NCLDV) related to Phycodnaviridae and Mimiviridae, a novel filamentous virus of unknown phylogenetic affiliation, and a single-stranded RNA virus related to retroviruses. We discuss implications of these findings for laboratory-based experiments using Symbiodinium cultures.

  10. Prevalent and persistent viral infection in cultures of the coral algal endosymbiont Symbiodinium

    KAUST Repository

    Weynberg, Karen D.

    2017-03-17

    Reef corals are under threat from bleaching and disease outbreaks that target both the host animal and the algal symbionts within the coral holobiont. A viral origin for coral bleaching has been hypothesized, but direct evidence has remained elusive. Using a multifaceted approach incorporating flow cytometry, transmission electron microscopy, DNA and RNA virome sequencing, we show that type C1 Symbiodinium cultures host a nucleocytoplasmic large double-stranded DNA virus (NCLDV) related to Phycodnaviridae and Mimiviridae, a novel filamentous virus of unknown phylogenetic affiliation, and a single-stranded RNA virus related to retroviruses. We discuss implications of these findings for laboratory-based experiments using Symbiodinium cultures.

  11. Rejoining of DNA double-strand breaks in human fibroblasts and its impairment in one ataxia telangiectasia and two Fanconi strains

    International Nuclear Information System (INIS)

    Coquerelle, T.M.; Weibezahn, K.F.

    1981-01-01

    Using the technique of neutral elution through polycarbonate filters as a measure of DNA length, and hence of the number of double-strand breaks incurred as a result of radiation damage, we found that normal human fibroblasts rejoin 50% of all breaks within only 3 min (37 degrees C). This fast rejoining was impaired in fibroblasts from one patient with Ataxia telangiectasia and in fibroblasts from two patients with Fanconi's anemia. Also the number of residual breaks after several hours of repair was higher than in control cells. Other cases with the same diseases were normal in their rejoining of double-strand breaks

  12. Relative frequency of formation of base radioproduct, single and double strand breaks on irradiation of diluted aqueous solution of DNA

    International Nuclear Information System (INIS)

    Ryznar, L.; Drasil, V.

    1975-01-01

    Diluted aqueous solution of DNA labelled with 6- 3 H-TdR was irradiated in the absence of oxygen and numbers of formed single and double strand breaks and the 5,6-dihydrothymine (DHT) yield were determined. The results indicate that, under given conditions, a molecule of a base radioproduct is formed approximately 10 times more frequently than one single strand break. The occurence of a single strand break is 20 times higher than that of a double strand break. The DNA labelled with 6- 3 H-TdR was isolated from mice fibroblasts of L-strain according to Marmur (specific activity 3.0 MBq/82 μCi/mg DNA, molecular weight M/sub n/=9.32x10 6 dalton). Solution of DNA was irradiated in the absence of oxygen (180 Gy /1.8x10 4 rads/, absorbed dose rate 0.3 Gy/s). It was lyophilized with an addition of non-labelled thymine, thymidine and DHT and then hydrolysed with 90% formic acid. The dried hydrolysate was chromatographed with irradiated non-labelled thymine added as a carrier. (F.G.)

  13. Safe and bodywide muscle transduction in young adult Duchenne muscular dystrophy dogs with adeno-associated virus.

    Science.gov (United States)

    Yue, Yongping; Pan, Xiufang; Hakim, Chady H; Kodippili, Kasun; Zhang, Keqing; Shin, Jin-Hong; Yang, Hsiao T; McDonald, Thomas; Duan, Dongsheng

    2015-10-15

    The ultimate goal of muscular dystrophy gene therapy is to treat all muscles in the body. Global gene delivery was demonstrated in dystrophic mice more than a decade ago using adeno-associated virus (AAV). However, translation to affected large mammals has been challenging. The only reported attempt was performed in newborn Duchenne muscular dystrophy (DMD) dogs. Unfortunately, AAV injection resulted in growth delay, muscle atrophy and contracture. Here we report safe and bodywide AAV delivery in juvenile DMD dogs. Three ∼2-m-old affected dogs received intravenous injection of a tyrosine-engineered AAV-9 reporter or micro-dystrophin (μDys) vector at the doses of 1.92-6.24 × 10(14) viral genome particles/kg under transient or sustained immune suppression. DMD dogs tolerated injection well and their growth was not altered. Hematology and blood biochemistry were unremarkable. No adverse reactions were observed. Widespread muscle transduction was seen in skeletal muscle, the diaphragm and heart for at least 4 months (the end of the study). Nominal expression was detected in internal organs. Improvement in muscle histology was observed in μDys-treated dogs. In summary, systemic AAV gene transfer is safe and efficient in young adult dystrophic large mammals. This may translate to bodywide gene therapy in pediatric patients in the future. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. A robust network of double-strand break repair pathways governs genome integrity during C. elegans development.

    NARCIS (Netherlands)

    Pontier, D.B.; Tijsterman, M.

    2009-01-01

    To preserve genomic integrity, various mechanisms have evolved to repair DNA double-strand breaks (DSBs). Depending on cell type or cell cycle phase, DSBs can be repaired error-free, by homologous recombination, or with concomitant loss of sequence information, via nonhomologous end-joining (NHEJ)

  15. MO-AB-BRA-04: Radiation Measurements with a DNA Double-Strand-Break Dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Obeidat, M; Cline, K; Stathakis, S; Papanikolaou, N; Rasmussen, K; Gutierrez, A; Ha, CS; Lee, SE; Shim, EY; Kirby, N [University of Texas HSC SA, San Antonio, TX (United States)

    2016-06-15

    Purpose: Many types of dosimeters are used to measure radiation, but none of them directly measures the biological effect of this dose. The purpose here is to create a dosimeter that can measure the probability of double-strand breaks (DSB) for DNA, which is directly related to the biological effect of radiation. Methods: The dosimeter has DNA strands, which are labeled on one end with biotin and on the other with fluorescein. The biotin attaches these strands to magnetic beads. We suspended the DNA dosimeter in phosphate-buffered saline (PBS) as it matches the internal environment of the body. We placed small volumes (50µL) of the DNA dosimeter into tubes and irradiated these samples in a water-equivalent plastic phantom with several doses (three samples per dose). After irradiating the samples, a magnet was placed against the tubes. The fluorescein attached to broken DNA strands was extracted (called the supernatant) and placed into a different tube. The fluorescein on the unbroken strands remained attached to the beads in the tube and was re-suspended with 50µL of PBS. A fluorescence reader was used to measure the fluorescence for both the re-suspended beads and supernatant. To prove that we are measuring DSB, we tested dosimeter response with two different lengths of attached DNA strands (1 and 4 kilo-base pair). Results: The probability of DSB at the dose levels of 5, 10, 25, and 50 Gy were 0.05, 0.08, 0.12, and 0.19, respectively, while the coefficients of variation were 0.14, 0.07, 0.02, and 0.01, respectively. The 4 kilo-base-pair dosimeter produced 5.3 times the response of the 1 kilo-base-pair dosimeter. Conclusion: The DNA dosimeter yields a measurable response to dose that scales with the DNA strand length. The goal now is to refine the dosimeter fabrication to reproducibly create a low coefficient of variation for the lower doses. This work was supported in part by Yarmouk University (Irbid, Jordan) and CPRIT (RP140105)

  16. MO-AB-BRA-04: Radiation Measurements with a DNA Double-Strand-Break Dosimeter

    International Nuclear Information System (INIS)

    Obeidat, M; Cline, K; Stathakis, S; Papanikolaou, N; Rasmussen, K; Gutierrez, A; Ha, CS; Lee, SE; Shim, EY; Kirby, N

    2016-01-01

    Purpose: Many types of dosimeters are used to measure radiation, but none of them directly measures the biological effect of this dose. The purpose here is to create a dosimeter that can measure the probability of double-strand breaks (DSB) for DNA, which is directly related to the biological effect of radiation. Methods: The dosimeter has DNA strands, which are labeled on one end with biotin and on the other with fluorescein. The biotin attaches these strands to magnetic beads. We suspended the DNA dosimeter in phosphate-buffered saline (PBS) as it matches the internal environment of the body. We placed small volumes (50µL) of the DNA dosimeter into tubes and irradiated these samples in a water-equivalent plastic phantom with several doses (three samples per dose). After irradiating the samples, a magnet was placed against the tubes. The fluorescein attached to broken DNA strands was extracted (called the supernatant) and placed into a different tube. The fluorescein on the unbroken strands remained attached to the beads in the tube and was re-suspended with 50µL of PBS. A fluorescence reader was used to measure the fluorescence for both the re-suspended beads and supernatant. To prove that we are measuring DSB, we tested dosimeter response with two different lengths of attached DNA strands (1 and 4 kilo-base pair). Results: The probability of DSB at the dose levels of 5, 10, 25, and 50 Gy were 0.05, 0.08, 0.12, and 0.19, respectively, while the coefficients of variation were 0.14, 0.07, 0.02, and 0.01, respectively. The 4 kilo-base-pair dosimeter produced 5.3 times the response of the 1 kilo-base-pair dosimeter. Conclusion: The DNA dosimeter yields a measurable response to dose that scales with the DNA strand length. The goal now is to refine the dosimeter fabrication to reproducibly create a low coefficient of variation for the lower doses. This work was supported in part by Yarmouk University (Irbid, Jordan) and CPRIT (RP140105)

  17. A role for small RNAs in DNA double-strand break repair

    DEFF Research Database (Denmark)

    Wei, W.; Ba, Z.; Wu, Y.

    2012-01-01

    Eukaryotes have evolved complex mechanisms to repair DNA double-strand breaks (DSBs) through coordinated actions of protein sensors, transducers, and effectors. Here we show that ∼21-nucleotide small RNAs are produced from the sequences in the vicinity of DSB sites in Arabidopsis and in human cells....... We refer to these as diRNAs for DSB-induced small RNAs. In Arabidopsis, the biogenesis of diRNAs requires the PI3 kinase ATR, RNA polymerase IV (Pol IV), and Dicer-like proteins. Mutations in these proteins as well as in Pol V cause significant reduction in DSB repair efficiency. In Arabidopsis, di...

  18. How quantum entanglement in DNA synchronizes double-strand breakage by type II restriction endonucleases.

    Science.gov (United States)

    Kurian, P; Dunston, G; Lindesay, J

    2016-02-21

    Macroscopic quantum effects in living systems have been studied widely in pursuit of fundamental explanations for biological energy transport and sensing. While it is known that type II endonucleases, the largest class of restriction enzymes, induce DNA double-strand breaks by attacking phosphodiester bonds, the mechanism by which simultaneous cutting is coordinated between the catalytic centers remains unclear. We propose a quantum mechanical model for collective electronic behavior in the DNA helix, where dipole-dipole oscillations are quantized through boundary conditions imposed by the enzyme. Zero-point modes of coherent oscillations would provide the energy required for double-strand breakage. Such quanta may be preserved in the presence of thermal noise by the enzyme's displacement of water surrounding the DNA recognition sequence. The enzyme thus serves as a decoherence shield. Palindromic mirror symmetry of the enzyme-DNA complex should conserve parity, because symmetric bond-breaking ceases when the symmetry of the complex is violated or when physiological parameters are perturbed from optima. Persistent correlations in DNA across longer spatial separations-a possible signature of quantum entanglement-may be explained by such a mechanism. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Growth of the parvovirus minute virus of mice MVMp3 in EL4 lymphocytes is restricted after cell entry and before viral DNA amplification: cell-specific differences in virus uncoating in vitro.

    Science.gov (United States)

    Previsani, N; Fontana, S; Hirt, B; Beard, P

    1997-10-01

    Two murine parvoviruses with genomic sequences differing only in 33 nucleotides (8 amino acids) in the region coding for the capsid proteins show different host cell specificities: MVMi grows in EL4 T lymphocytes and MVMp3 grows in A9 fibroblasts. In this study we compared the courses of infections with these two viruses in EL4 cells in order to investigate at which step(s) the infection process of MVMp3 is interrupted. The two viruses bound equally well to EL4 cells, and similar amounts of MVMi and MVMp3 input virion DNA appeared in the nuclear fractions of EL4 cells 1 h after infection. However, double-stranded replicative-form (RF) DNA of the two viruses appeared at different times, at 10 h postinfection with MVMi and at 24 h postinfection with MVMp3. The amount of MVMp3 RF DNA detected at 24 h was very small because it was produced only in a tiny subset of the population of EL4 cells that proved to be permissive for MVMp3. Replication of double-stranded viral DNA in EL4 cells was measured after transfection of purified RF DNA, cloned viral DNA, and cloned viral DNA with a mutation preventing synthesis of the capsid proteins. In each of these cases, DNA replication was comparable for MVMi and MVMp3. Production of virus particles also appeared to be similar after transfection of the two types of RF DNA into EL4 cells. Conversion of incoming 32P-labeled single-stranded MVM DNA to 32P-labeled double-stranded RF DNA was detected only after RF DNA amplification, indicating that few molecules serve as templates for viral DNA amplification. We showed that extracts of EL4 cells contain a factor which can destabilize MVMi virions but not MVMp3 by testing the sensitivity of viral DNA to DNase and by CsCl gradient analyses of viral particles. We therefore conclude that the MVMp3 life cycle is arrested after the transport of virions to the nucleus and prior to the replication of RF DNA, most likely at the stage of viral decapsidation.

  20. Ku recruits XLF to DNA double-strand breaks.

    Science.gov (United States)

    Yano, Ken-ichi; Morotomi-Yano, Keiko; Wang, Shih-Ya; Uematsu, Naoya; Lee, Kyung-Jong; Asaithamby, Aroumougame; Weterings, Eric; Chen, David J

    2008-01-01

    XRCC4-like factor (XLF)--also known as Cernunnos--has recently been shown to be involved in non-homologous end-joining (NHEJ), which is the main pathway for the repair of DNA double-strand breaks (DSBs) in mammalian cells. XLF is likely to enhance NHEJ by stimulating XRCC4-ligase IV-mediated joining of DSBs. Here, we report mechanistic details of XLF recruitment to DSBs. Live cell imaging combined with laser micro-irradiation showed that XLF is an early responder to DSBs and that Ku is essential for XLF recruitment to DSBs. Biochemical analysis showed that Ku-XLF interaction occurs on DNA and that Ku stimulates XLF binding to DNA. Unexpectedly, XRCC4 is dispensable for XLF recruitment to DSBs, although photobleaching analysis showed that XRCC4 stabilizes the binding of XLF to DSBs. Our observations showed the direct involvement of XLF in the dynamic assembly of the NHEJ machinery and provide mechanistic insights into DSB recognition.

  1. Construction of adeno-associated virus packaging plasmids and cells that directly select for AAV helper functions.

    Science.gov (United States)

    Whiteway, Alistair; Deru, Wale; Prentice, H Grant; Anderson, Robert

    2003-12-01

    Recombinant adeno-associated virus type 2 (rAAV) has promise for use as a gene therapy vector. Potential problems in the production of rAAV stocks are both the limited amount of recombinant virus that is produced by traditional methods and the possibility of wild-type replication competent adeno-associated virus (wtAAV) contamination. The presence of these contaminants is largely dependent upon the helper plasmid used. Whilst wtAAV is not a pathogen, the presence of these contaminants is undesirable as they may affect experiments concerning the biology of rAAV. Additionally as protocols using rAAV with altered tropism are becoming more prevalent, it is important that no recombination be permitted that may cause the creation of a replication competent AAV with modified (targeting) capsids. Many experimental protocols require the generation of large amounts of high titre rAAV stocks. We describe the production of several AAV helper plasmids and cell lines designed to achieve this goal. These plasmids possess split AAV rep and cap genes to eliminate the production of wtAAV and they possess a selection mechanism which is operatively linked to expression from the AAV cap gene. This allows positive selection of those cells expressing the highest level of the structural capsid proteins and therefore those cells which yield the highest amount of rAAV.

  2. Heterochromatinization associated with cell differentiation as a model to study DNA double strand break induction and repair in the context of higher-order chromatin structure

    Czech Academy of Sciences Publication Activity Database

    Falk, Martin; Lukášová, Emilie; Štefančíková, Lenka; Baranová, E.; Falková, Iva; Ježková, L.; Davídková, Marie; Bačíková, Alena; Vachelová, Jana; Michaelidesová, Anna; Kozubek, Stanislav

    2014-01-01

    Roč. 83, Jan (2014), s. 177-185 ISSN 0969-8043 R&D Projects: GA MŠk(CZ) LD12039 Institutional support: RVO:68081707 ; RVO:61389005 Keywords : DNA double strand break (DSB) repair * Immature and terminally differentiated granulocytes * gamma H2AX/53BP1 repair foci Subject RIV: BO - Biophysics; BO - Biophysics (UJF-V) Impact factor: 1.231, year: 2014

  3. Down-Regulation of p53 by Double-Stranded RNA Modulates the Antiviral Response

    OpenAIRE

    Marques, Joao T.; Rebouillat, Dominique; Ramana, Chilakamarti V.; Murakami, Junko; Hill, Jason E.; Gudkov, Andrei; Silverman, Robert H.; Stark, George R.; Williams, Bryan R. G.

    2005-01-01

    p53 has been well characterized as a tumor suppressor gene, but its role in antiviral defense remains unclear. A recent report has demonstrated that p53 can be induced by interferons and is activated after vesicular stomatitis virus (VSV) infection. We observed that different nononcogenic viruses, including encephalomyocarditis virus (EMCV) and human parainfluenza virus type 3 (HPIV3), induced down-regulation of p53 in infected cells. Double-stranded RNA (dsRNA) and a mutant vaccinia virus la...

  4. Use of Cellular Decapping Activators by Positive-Strand RNA Viruses

    Directory of Open Access Journals (Sweden)

    Jennifer Jungfleisch

    2016-12-01

    Full Text Available Positive-strand RNA viruses have evolved multiple strategies to not only circumvent the hostile decay machinery but to trick it into being a priceless collaborator supporting viral RNA translation and replication. In this review, we describe the versatile interaction of positive-strand RNA viruses and the 5′-3′ mRNA decay machinery with a focus on the viral subversion of decapping activators. This highly conserved viral trickery is exemplified with the plant Brome mosaic virus, the animal Flock house virus and the human hepatitis C virus.

  5. Contribution of DNA double-strand break repair gene XRCC3 genotypes to oral cancer susceptibility in Taiwan.

    Science.gov (United States)

    Tsai, Chia-Wen; Chang, Wen-Shin; Liu, Juhn-Cherng; Tsai, Ming-Hsui; Lin, Cheng-Chieh; Bau, Da-Tian

    2014-06-01

    The DNA repair gene X-ray repair cross complementing protein 3 (XRCC3) is thought to play a major role in double-strand break repair and in maintaining genomic stability. Very possibly, defective double-strand break repair of cells can lead to carcinogenesis. Therefore, a case-control study was performed to reveal the contribution of XRCC3 genotypes to individual oral cancer susceptibility. In this hospital-based research, the association of XRCC3 rs1799794, rs45603942, rs861530, rs3212057, rs1799796, rs861539, rs28903081 genotypes with oral cancer risk in a Taiwanese population was investigated. In total, 788 patients with oral cancer and 956 age- and gender-matched healthy controls were genotyped. The results showed that there was significant differential distribution among oral cancer and controls in the genotypic (p=0.001428) and allelic (p=0.0013) frequencies of XRCC3 rs861539. As for the other polymorphisms, there was no difference between case and control groups. In gene-lifestyle interaction analysis, we have provided the first evidence showing that there is an obvious joint effect of XRCC3 rs861539 genotype with individual areca chewing habits on oral cancer risk. In conclusion, the T allele of XRCC3 rs861539, which has an interaction with areca chewing habit in oral carcinogenesis, may be an early marker for oral cancer in Taiwanese. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  6. Viral vector-based tools advance knowledge of basal ganglia anatomy and physiology.

    Science.gov (United States)

    Sizemore, Rachel J; Seeger-Armbruster, Sonja; Hughes, Stephanie M; Parr-Brownlie, Louise C

    2016-04-01

    Viral vectors were originally developed to deliver genes into host cells for therapeutic potential. However, viral vector use in neuroscience research has increased because they enhance interpretation of the anatomy and physiology of brain circuits compared with conventional tract tracing or electrical stimulation techniques. Viral vectors enable neuronal or glial subpopulations to be labeled or stimulated, which can be spatially restricted to a single target nucleus or pathway. Here we review the use of viral vectors to examine the structure and function of motor and limbic basal ganglia (BG) networks in normal and pathological states. We outline the use of viral vectors, particularly lentivirus and adeno-associated virus, in circuit tracing, optogenetic stimulation, and designer drug stimulation experiments. Key studies that have used viral vectors to trace and image pathways and connectivity at gross or ultrastructural levels are reviewed. We explain how optogenetic stimulation and designer drugs used to modulate a distinct pathway and neuronal subpopulation have enhanced our mechanistic understanding of BG function in health and pathophysiology in disease. Finally, we outline how viral vector technology may be applied to neurological and psychiatric conditions to offer new treatments with enhanced outcomes for patients. Copyright © 2016 the American Physiological Society.

  7. Viral recombination blurs taxonomic lines: examination of single-stranded DNA viruses in a wastewater treatment plant

    Directory of Open Access Journals (Sweden)

    Victoria M. Pearson

    2016-10-01

    Full Text Available Understanding the structure and dynamics of microbial communities, especially those of economic concern, is of paramount importance to maintaining healthy and efficient microbial communities at agricultural sites and large industrial cultures, including bioprocessors. Wastewater treatment plants are large bioprocessors which receive water from multiple sources, becoming reservoirs for the collection of many viral families that infect a broad range of hosts. To examine this complex collection of viruses, full-length genomes of circular ssDNA viruses were isolated from a wastewater treatment facility using a combination of sucrose-gradient size selection and rolling-circle amplification and sequenced on an Illumina MiSeq. Single-stranded DNA viruses are among the least understood groups of microbial pathogens due to genomic biases and culturing difficulties, particularly compared to the larger, more often studied dsDNA viruses. However, the group contains several notable well-studied examples, including agricultural pathogens which infect both livestock and crops (Circoviridae and Geminiviridae, and model organisms for genetics and evolution studies (Microviridae. Examination of the collected viral DNA provided evidence for 83 unique genotypic groupings, which were genetically dissimilar to known viral types and exhibited broad diversity within the community. Furthermore, although these genomes express similarities to known viral families, such as Circoviridae, Geminiviridae, and Microviridae, many are so divergent that they may represent new taxonomic groups. This study demonstrated the efficacy of the protocol for separating bacteria and large viruses from the sought after ssDNA viruses and the ability to use this protocol to obtain an in-depth analysis of the diversity within this group.

  8. Influence of RNA Strand Rigidity on Polyion Complex Formation with Block Catiomers.

    Science.gov (United States)

    Hayashi, Kotaro; Chaya, Hiroyuki; Fukushima, Shigeto; Watanabe, Sumiyo; Takemoto, Hiroyasu; Osada, Kensuke; Nishiyama, Nobuhiro; Miyata, Kanjiro; Kataoka, Kazunori

    2016-03-01

    Polyion complexes (b-PICs) are prepared by mixing single- or double-stranded oligo RNA (aniomer) with poly(ethylene glycol)-b-poly(L-lysine) (PEG-PLL) (block catiomer) to clarify the effect of aniomer chain rigidity on association behaviors at varying concentrations. Here, a 21-mer single-stranded RNA (ssRNA) (persistence length: 1.0 nm) and a 21-mer double-stranded RNA (small interfering RNA, siRNA) (persistence length: 62 nm) are compared. Both oligo RNAs form a minimal charge-neutralized ionomer pair with a single PEG-PLL chain, termed unit b-PIC (uPIC), at low concentrations (<≈ 0.01 mg mL(-1)). Above the critical association concentration (≈ 0.01 mg mL(-1)), ssRNA b-PICs form secondary associates, PIC micelles, with sizes up to 30-70 nm, while no such multimolecular assembly is observed for siRNA b-PICs. The entropy gain associated with the formation of a segregated PIC phase in the multimolecular PIC micelles may not be large enough for rigid siRNA strands to compensate with appreciably high steric repulsion derived from PEG chains. Chain rigidity appears to be a critical parameter in polyion complex association. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Synthesis and optical resolution of a Cu(I) double-stranded helicate with ketimine-bridged tris(bipyridine) ligands.

    Science.gov (United States)

    Furusho, Yoshio; Goto, Hidetoshi; Itomi, Ken; Katagiri, Hiroshi; Miyagawa, Toyoharu; Yashima, Eiji

    2011-09-21

    A tetranuclear Cu(I) double-stranded helicate was synthesized from ketimine-bridged tris(bipyridine) ligands and Cu(I) ions, and the racemate was successfully resolved by diastereomeric salt formation using an optically pure phosphate anion followed by anion exchange with NaPF(6) without racemization.

  10. Binding to the minor groove of the double-strand, tau protein prevents DNA from damage by peroxidation.

    Science.gov (United States)

    Wei, Yan; Qu, Mei-Hua; Wang, Xing-Sheng; Chen, Lan; Wang, Dong-Liang; Liu, Ying; Hua, Qian; He, Rong-Qiao

    2008-07-02

    Tau, an important microtubule associated protein, has been found to bind to DNA, and to be localized in the nuclei of both neurons and some non-neuronal cells. Here, using electrophoretic mobility shifting assay (EMSA) in the presence of DNA with different chain-lengths, we observed that tau protein favored binding to a 13 bp or a longer polynucleotide. The results from atomic force microscopy also showed that tau protein preferred a 13 bp polynucleotide to a 12 bp or shorter polynucleotide. In a competitive assay, a minor groove binder distamycin A was able to replace the bound tau from the DNA double helix, indicating that tau protein binds to the minor groove. Tau protein was able to protect the double-strand from digestion in the presence of DNase I that was bound to the minor groove. On the other hand, a major groove binder methyl green as a negative competitor exhibited little effect on the retardation of tau-DNA complex in EMSA. This further indicates the DNA minor groove as the binding site for tau protein. EMSA with truncated tau proteins showed that both the proline-rich domain (PRD) and the microtubule-binding domain (MTBD) contributed to the interaction with DNA; that is to say, both PRD and MTBD bound to the minor groove of DNA and bent the double-strand, as observed by electron microscopy. To investigate whether tau protein is able to prevent DNA from the impairment by hydroxyl free radical, the chemiluminescence emitted by the phen-Cu/H(2)O(2)/ascorbate was measured. The emission intensity of the luminescence was markedly decreased when tau protein was present, suggesting a significant protection of DNA from the damage in the presence of hydroxyl free radical.

  11. Visualizing double-stranded RNA distribution and dynamics in living cells by dsRNA binding-dependent fluorescence complementation

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Xiaofei [Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3 (Canada); College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036 (China); Deng, Ping; Cui, Hongguang [Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3 (Canada); Wang, Aiming, E-mail: aiming.wang@agr.gc.ca [Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3 (Canada)

    2015-11-15

    Double-stranded RNA (dsRNA) is an important type of RNA that plays essential roles in diverse cellular processes in eukaryotic organisms and a hallmark in infections by positive-sense RNA viruses. Currently, no in vivo technology has been developed for visualizing dsRNA in living cells. Here, we report a dsRNA binding-dependent fluorescence complementation (dRBFC) assay that can be used to efficiently monitor dsRNA distribution and dynamics in vivo. The system consists of two dsRNA-binding proteins, which are fused to the N- and C-terminal halves of the yellow fluorescent protein (YFP). Binding of the two fusion proteins to a common dsRNA brings the split YFP halves in close proximity, leading to the reconstitution of the fluorescence-competent structure and restoration of fluorescence. Using this technique, we were able to visualize the distribution and trafficking of the replicative RNA intermediates of positive-sense RNA viruses in living cells. - Highlights: • A live-cell imaging system was developed for visualizing dsRNA in vivo. • It uses dsRNA binding proteins fused with two halves of a fluorescent protein. • Binding to a common dsRNA enables the reporter to become fluorescent. • The system can efficiently monitor viral RNA replication in living cells.

  12. Visualizing double-stranded RNA distribution and dynamics in living cells by dsRNA binding-dependent fluorescence complementation

    International Nuclear Information System (INIS)

    Cheng, Xiaofei; Deng, Ping; Cui, Hongguang; Wang, Aiming

    2015-01-01

    Double-stranded RNA (dsRNA) is an important type of RNA that plays essential roles in diverse cellular processes in eukaryotic organisms and a hallmark in infections by positive-sense RNA viruses. Currently, no in vivo technology has been developed for visualizing dsRNA in living cells. Here, we report a dsRNA binding-dependent fluorescence complementation (dRBFC) assay that can be used to efficiently monitor dsRNA distribution and dynamics in vivo. The system consists of two dsRNA-binding proteins, which are fused to the N- and C-terminal halves of the yellow fluorescent protein (YFP). Binding of the two fusion proteins to a common dsRNA brings the split YFP halves in close proximity, leading to the reconstitution of the fluorescence-competent structure and restoration of fluorescence. Using this technique, we were able to visualize the distribution and trafficking of the replicative RNA intermediates of positive-sense RNA viruses in living cells. - Highlights: • A live-cell imaging system was developed for visualizing dsRNA in vivo. • It uses dsRNA binding proteins fused with two halves of a fluorescent protein. • Binding to a common dsRNA enables the reporter to become fluorescent. • The system can efficiently monitor viral RNA replication in living cells.

  13. De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks

    KAUST Repository

    Mahfouz, Magdy M.; Li, Lixin; Shamimuzzaman, Md.; Wibowo, Anjar Tri; Fang, Xiaoyun; Zhu, Jian-Kang

    2011-01-01

    Site-specific and rare cutting nucleases are valuable tools for genome engineering. The generation of double-strand DNA breaks (DSBs) promotes homologous recombination in eukaryotes and can facilitate gene targeting, additions, deletions

  14. Mycobacteria exploit three genetically distinct DNA double-strand break repair pathways.

    Science.gov (United States)

    Gupta, Richa; Barkan, Daniel; Redelman-Sidi, Gil; Shuman, Stewart; Glickman, Michael S

    2011-01-01

    Bacterial pathogens rely on their DNA repair pathways to resist genomic damage inflicted by the host. DNA double-strand breaks (DSBs) are especially threatening to bacterial viability. DSB repair by homologous recombination (HR) requires nucleases that resect DSB ends and a strand exchange protein that facilitates homology search. RecBCD and RecA perform these functions in Escherichia coli and constitute the major pathway of error-free DSB repair. Mycobacteria, including the human pathogen M. tuberculosis, elaborate an additional error-prone pathway of DSB repair via non-homologous end-joining (NHEJ) catalysed by Ku and DNA ligase D (LigD). Little is known about the relative contributions of HR and NHEJ to mycobacterial chromosome repair, the factors that dictate pathway choice, or the existence of additional DSB repair pathways. Here we demonstrate that Mycobacterium smegmatis has three DSB repair pathway options: HR, NHEJ and a novel mechanism of single-strand annealing (SSA). Inactivation of NHEJ or SSA is compensated by elevated HR. We find that mycobacterial RecBCD does not participate in HR or confer resistance to ionizing radiation (IR), but is required for the RecA-independent SSA pathway. In contrast, the mycobacterial helicase-nuclease AdnAB participates in the RecA-dependent HR pathway, and is a major determinant of resistance to IR and oxidative DNA damage. These findings reveal distinctive features of mycobacterial DSB repair, most notably the dedication of the RecBCD and AdnAB helicase-nuclease machines to distinct repair pathways. © 2010 Blackwell Publishing Ltd.

  15. Treating respiratory viral diseases with chemically modified, second generation intranasal siRNAs.

    Science.gov (United States)

    Barik, Sailen

    2009-01-01

    Chemically synthesized short interfering RNA (siRNA) of pre-determined sequence has ushered a new era in the application of RNA interference (RNAi) against viral genes. We have paid particular attention to respiratory viruses that wreak heavy morbidity and mortality worldwide. The clinically significant ones include respiratory syncytial virus (RSV), parainfluenza virus (PIV) and influenza virus. As the infection by these viruses is clinically restricted to the respiratory tissues, mainly the lungs, the logical route for the application of the siRNA was also the same, i.e., via the nasal route. Following the initial success of intranasal siRNA against RSV, second-generation siRNAs were made against the viral polymerase large subunit (L) that were chemically modified and screened for improved stability, activity and pharmacokinetics. 2'-O-methyl (2'-O-Me) and 2'-deoxy-2'-fluoro (2'-F) substitutions in the ribose ring were incorporated in different positions of the sense and antisense strands and the resultant siRNAs were tested with various transfection reagents intranasally against RSV. Based on these results, we propose the following consensus for designing intranasal antiviral siRNAs: (i) modified 19-27 nt long double-stranded siRNAs are functional in the lung, (ii) excessive 2'-OMe and 2'-F modifications in either or both strands of these siRNAs reduce efficacy, and (iii) limited modifications in the sense strand are beneficial, although their precise efficacy may be position-dependent.

  16. γ-ray dose rate effect in DNA double-strand break repair deficient murine cells

    International Nuclear Information System (INIS)

    Li Liya; Li Peiwen

    2002-01-01

    Objective: To analyze the dose rate effect and potentially lethal damage repair in DNA double-strand break repair deficient murine cells (SCID) irradiated by γ-ray. Methods: The wild type (CB.17+/+) and SCID cells were exposed to γ-ray at high and low dose rates. The high dose rate exposure was fractionated into two equal doses at 24 h intervals. The survival rates of irradiated cells were calculated by clone-forming analysis. Results: When γ-ray was given to wild type (CB.17+/+) cells in two fractions at 24 h intervals, the survival rate was significantly higher than that when the same total dose was given singly. In contrast, there was no difference in the survival rates between the single and fractionated exposure in SCID cells. SCID cells were more sensitive than CB.17+/+ cells to both low and high dose rates γ-ray exposure for cell killing. The survival rate by low dose rate exposure was significantly higher than that by high dose rate exposure, not only in CB.17+/+ cells but also in SCID cells. Conclusions: SCID cells are deficient in repairing γ-ray induced double-strand breaks. There is dose rate effect in both SCID and CB.17+/+ cells

  17. High-efficiency targeted editing of large viral genomes by RNA-guided nucleases.

    Science.gov (United States)

    Bi, Yanwei; Sun, Le; Gao, Dandan; Ding, Chen; Li, Zhihua; Li, Yadong; Cun, Wei; Li, Qihan

    2014-05-01

    A facile and efficient method for the precise editing of large viral genomes is required for the selection of attenuated vaccine strains and the construction of gene therapy vectors. The type II prokaryotic CRISPR-Cas (clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas)) RNA-guided nuclease system can be introduced into host cells during viral replication. The CRISPR-Cas9 system robustly stimulates targeted double-stranded breaks in the genomes of DNA viruses, where the non-homologous end joining (NHEJ) and homology-directed repair (HDR) pathways can be exploited to introduce site-specific indels or insert heterologous genes with high frequency. Furthermore, CRISPR-Cas9 can specifically inhibit the replication of the original virus, thereby significantly increasing the abundance of the recombinant virus among progeny virus. As a result, purified recombinant virus can be obtained with only a single round of selection. In this study, we used recombinant adenovirus and type I herpes simplex virus as examples to demonstrate that the CRISPR-Cas9 system is a valuable tool for editing the genomes of large DNA viruses.

  18. High-efficiency targeted editing of large viral genomes by RNA-guided nucleases.

    Directory of Open Access Journals (Sweden)

    Yanwei Bi

    2014-05-01

    Full Text Available A facile and efficient method for the precise editing of large viral genomes is required for the selection of attenuated vaccine strains and the construction of gene therapy vectors. The type II prokaryotic CRISPR-Cas (clustered regularly interspaced short palindromic repeats (CRISPR-associated (Cas RNA-guided nuclease system can be introduced into host cells during viral replication. The CRISPR-Cas9 system robustly stimulates targeted double-stranded breaks in the genomes of DNA viruses, where the non-homologous end joining (NHEJ and homology-directed repair (HDR pathways can be exploited to introduce site-specific indels or insert heterologous genes with high frequency. Furthermore, CRISPR-Cas9 can specifically inhibit the replication of the original virus, thereby significantly increasing the abundance of the recombinant virus among progeny virus. As a result, purified recombinant virus can be obtained with only a single round of selection. In this study, we used recombinant adenovirus and type I herpes simplex virus as examples to demonstrate that the CRISPR-Cas9 system is a valuable tool for editing the genomes of large DNA viruses.

  19. Recombinant adeno-associated virus: efficient transduction of the rat VMH and clearance from blood.

    Directory of Open Access Journals (Sweden)

    Margriet A van Gestel

    Full Text Available To promote the efficient and safe application of adeno-associated virus (AAV vectors as a gene transfer tool in the central nervous system (CNS, transduction efficiency and clearance were studied for serotypes commonly used to transfect distinct areas of the brain. As AAV2 was shown to transduce only small volumes in several brain regions, this study compares the transduction efficiency of three AAV pseudotyped vectors, namely AAV2/1, AAV2/5 and AAV2/8, in the ventromedial nucleus of the hypothalamus (VMH. No difference was found between AAV2/1 and AAV2/5 in transduction efficiency. Both AAV2/1 and AAV2/5 achieved a higher transduction rate than AAV2/8. One hour after virus administration to the brain, no viral particles could be traced in blood, indicating that no or negligible numbers of virions crossed the blood-brain barrier. In order to investigate survival of AAV in blood, clearance was determined following systemic AAV administration. The half-life of AAV2/1, AAV2/2, AAV2/5 and AAV2/8 was calculated by determining virus clearance rates from blood after systemic injection. The half-life of AAV2/2 was 4.2 minutes, which was significantly lower than the half-lives of AAV2/1, AAV2/5 and AAV2/8. With a half-life of more than 11 hours, AAV2/8 particles remained detectable in blood significantly longer than AAV2/5. We conclude that application of AAV in the CNS is relatively safe as no AAV particles are detectable in blood after injection into the brain. With a half-life of 1.67 hours of AAV2/5, a systemic injection with 1×109 genomic copies of AAV would be fully cleared from blood after 2 days.

  20. The Molecular Basis of Double-Strand DNA Break Repair: The Critical Structure of the RAD52/RPA Complex

    National Research Council Canada - National Science Library

    Jackson, Dobra

    2001-01-01

    .... RAD52 has specific interactions with RAD51, RPA and DNA (1,2,3). The binding of RAD52 to ends of double-strand breaks has been found to be a key initiation step to DNA repair by homologous recombination...

  1. Latency of Epstein-Barr virus is stabilized by antisense-mediated control of the viral immediate-early gene BZLF-1.

    Science.gov (United States)

    Prang, N; Wolf, H; Schwarzmann, F

    1999-12-01

    The ability of the Epstein-Barr virus (EBV) to avoid lytic replication and to establish a latent infection in B-lymphocytes is fundamental for its lifelong persistence and the pathogenesis of various EBV-associated diseases. The viral immediate-early gene BZLF-1 plays a key role for the induction of lytic replication and its activity is strictly regulated on different levels of gene expression. Recently, it was demonstrated that BZLF-1 is also controlled by a posttranscriptional mechanism. Transient synthesis of a mutated competitor RNA saturated this mechanism and caused both expression of the BZLF-1 protein and the induction of lytic viral replication. Using short overlapping fragments of the competitor, it is shown that this control acts on the unspliced primary transcript. RT-PCR demonstrated unspliced BZLF-1 RNA in latently infected B-lymphocytes in the absence of BZLF-1 protein. Due to the complementarity of the gene BZLF-1 and the latency-associated gene EBNA-1 on the opposite strand of the genome, we propose an antisense-mediated mechanism. RNase protection assays demonstrated transcripts in antisense orientation to the BZLF-1 transcript during latency, which comprise a comparable constellation to other herpesviruses. A combined RNAse protection/RT-PCR assay detected the double-stranded hybrid RNA, consisting of the unspliced BZLF-1 transcript and a noncoding intron of the EBNA-1 gene. Binding of BZLF-1 transcripts is suggested to be an important backup control mechanism in addition to transcriptional regulation, stabilizing latency and preventing inappropriate lytic viral replication in vivo. Copyright 1999 Wiley-Liss, Inc.

  2. Viral diseases of marine invertebrates

    Science.gov (United States)

    Johnson, P. T.

    1984-03-01

    Approximately 40 viruses are known from marine sponges; turbellarian and monogenetic flatworms; cephalopod, bivalve, and gastropod mollusks; nereid polychaetes; and isopod and decapod crustaceans. Most of the viruses can be tentatively assigned to the Herpesviridae, Baculoviridae, Iridoviridae, Adenoviridae, Papovaviridae, Reoviridae, “Birnaviridae”, Bunyaviridae, Rhabdoviridae, and Picornaviridae. Viruslike particles found in oysters might be representatives of the Togaviridae and Retroviridae. Enveloped single-stranded RNA viruses from crustaceans have developmental and morphological characteristics intermediate between families, and some show evidence of relationships to the Paramyxoviridae as well as the Bunyaviridae or Rhabdoviridae. Certain small viruses of shrimp cannot be assigned, even tentatively, to a particular family. Some viruses cause disease in wild and captive hosts, others are associated with disease states but may not be primary instigators, and many occur in apparently normal animals. The frequency of viral disease in natural populations of marine invertebrates is unknown. Several viruses that cause disease in captive animals, with or without experimental intervention, have also been found in diseased wild hosts, including herpeslike viruses of crabs and oysters, iridovirus of octopus, and reolike and bunyalike viruses of crabs. Iridolike viruses have been implicated in massive mortalities of cultured oysters. Baculoviruses, and IHHN virus, which is of uncertain affinities, cause economically damaging diseases in cultured penaeid shrimp. Double or multiple viral infection is common in crabs. For example, a reolike virus and associated rhabdolike virus act synergistically to cause paralytic and fatal disease in Callinectes sapidus. Information on host range, most susceptible stage, and viral latency is available only for viruses of shrimp. One baculovirus attacks five species of New World penaeid shrimp. IHHN virus infects three species of

  3. Thermodynamics for the Formation of Double-Stranded DNA-Single-Walled Carbon Nanotube Hybrids.

    Science.gov (United States)

    Shiraki, Tomohiro; Tsuzuki, Akiko; Toshimitsu, Fumiyuki; Nakashima, Naotoshi

    2016-03-24

    For the first time, the thermodynamics are described for the formation of double-stranded DNA (ds-DNA)-single-walled carbon nanotube (SWNT) hybrids. This treatment is applied to the exchange reaction of sodium cholate (SC) molecules on SWNTs and the ds-DNAs d(A)20 -d(T)20 and nuclear factor (NF)-κB decoy. UV/Vis/near-IR spectroscopy with temperature variations was used for analyzing the exchange reaction on the SWNTs with four different chiralities: (n,m)=(8,3), (6,5), (7,5), and (8,6). Single-stranded DNAs (ss-DNAs), including d(A)20 and d(T)20, are also used for comparison. The d(A)20-d(T)20 shows a drastic change in its thermodynamic parameters around the melting temperature (Tm ) of the DNA oligomer. No such Tm dependency was measured, owing to high Tm in the NF-κB decoy DNA and no Tm in the ss-DNA. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Virtual Cross-Linking of the Active Nemorubicin Metabolite PNU-159682 to Double-Stranded DNA.

    Science.gov (United States)

    Scalabrin, Matteo; Quintieri, Luigi; Palumbo, Manlio; Riccardi Sirtori, Federico; Gatto, Barbara

    2017-02-20

    The DNA alkylating mechanism of PNU-159682 (PNU), a highly potent metabolite of the anthracycline nemorubicin, was investigated by gel-electrophoretic, HPLC-UV, and micro-HPLC/mass spectrometry (MS) measurements. PNU quickly reacted with double-stranded oligonucleotides, but not with single-stranded sequences, to form covalent adducts which were detectable by denaturing polyacrylamide gel electrophoresis (DPAGE). Ion-pair reverse-phase HPLC-UV analysis on CG rich duplex sequences having a 5'-CCCGGG-3' central core showed the formation of two types of adducts with PNU, which were stable and could be characterized by micro-HPLC/MS. The first type contained one alkylated species (and possibly one reversibly bound species), and the second contained two alkylated species per duplex DNA. The covalent adducts were found to produce effective bridging of DNA complementary strands through the formation of virtual cross-links reminiscent of those produced by classical anthracyclines in the presence of formaldehyde. Furthermore, the absence of reactivity of PNU with CG-rich sequence containing a TA core (CGTACG), and the minor reactivity between PNU and CGC sequences (TACGCG·CGCGTA) pointed out the importance of guanine sequence context in modulating DNA alkylation.

  5. Complex Dynamic Development of Poliovirus Membranous Replication Complexes

    Science.gov (United States)

    Nair, Vinod; Hansen, Bryan T.; Hoyt, Forrest H.; Fischer, Elizabeth R.; Ehrenfeld, Ellie

    2012-01-01

    Replication of all positive-strand RNA viruses is intimately associated with membranes. Here we utilize electron tomography and other methods to investigate the remodeling of membranes in poliovirus-infected cells. We found that the viral replication structures previously described as “vesicles” are in fact convoluted, branching chambers with complex and dynamic morphology. They are likely to originate from cis-Golgi membranes and are represented during the early stages of infection by single-walled connecting and branching tubular compartments. These early viral organelles gradually transform into double-membrane structures by extension of membranous walls and/or collapsing of the luminal cavity of the single-membrane structures. As the double-membrane regions develop, they enclose cytoplasmic material. At this stage, a continuous membranous structure may have double- and single-walled membrane morphology at adjacent cross-sections. In the late stages of the replication cycle, the structures are represented mostly by double-membrane vesicles. Viral replication proteins, double-stranded RNA species, and actively replicating RNA are associated with both double- and single-membrane structures. However, the exponential phase of viral RNA synthesis occurs when single-membrane formations are predominant in the cell. It has been shown previously that replication complexes of some other positive-strand RNA viruses form on membrane invaginations, which result from negative membrane curvature. Our data show that the remodeling of cellular membranes in poliovirus-infected cells produces structures with positive curvature of membranes. Thus, it is likely that there is a fundamental divergence in the requirements for the supporting cellular membrane-shaping machinery among different groups of positive-strand RNA viruses. PMID:22072780

  6. Adeno-associated virus Rep-mediated targeting of integrase-defective retroviral vector DNA circles into human chromosome 19

    International Nuclear Information System (INIS)

    Huang, Shuohao; Kawabe, Yoshinori; Ito, Akira; Kamihira, Masamichi

    2012-01-01

    Highlights: ► Adeno-associated virus (AAV) is capable of targeted integration in human cells. ► Integrase-defective retroviral vector (IDRV) enables a circular DNA delivery. ► A targeted integration system of IDRV DNA using the AAV integration mechanism. ► Targeted IDRV integration ameliorates the safety concerns for retroviral vectors. -- Abstract: Retroviral vectors have been employed in clinical trials for gene therapy owing to their relative large packaging capacity, alterable cell tropism, and chromosomal integration for stable transgene expression. However, uncontrollable integrations of transgenes are likely to cause safety issues, such as insertional mutagenesis. A targeted transgene integration system for retroviral vectors, therefore, is a straightforward way to address the insertional mutagenesis issue. Adeno-associated virus (AAV) is the only known virus capable of targeted integration in human cells. In the presence of AAV Rep proteins, plasmids possessing the p5 integration efficiency element (p5IEE) can be integrated into the AAV integration site (AAVS1) in the human genome. In this report, we describe a system that can target the circular DNA derived from non-integrating retroviral vectors to the AAVS1 site by utilizing the Rep/p5IEE integration mechanism. Our results showed that after G418 selection 30% of collected clones had retroviral DNA targeted at the AAVS1 site.

  7. Toward exascale production of recombinant adeno-associated virus for gene transfer applications.

    Science.gov (United States)

    Cecchini, S; Negrete, A; Kotin, R M

    2008-06-01

    To gain acceptance as a medical treatment, adeno-associated virus (AAV) vectors require a scalable and economical production method. Recent developments indicate that recombinant AAV (rAAV) production in insect cells is compatible with current good manufacturing practice production on an industrial scale. This platform can fully support development of rAAV therapeutics from tissue culture to small animal models, to large animal models, to toxicology studies, to Phase I clinical trials and beyond. Efforts to characterize, optimize and develop insect cell-based rAAV production have culminated in successful bioreactor-scale production of rAAV, with total yields potentially capable of approaching the exa-(10(18)) scale. These advances in large-scale AAV production will allow us to address specific catastrophic, intractable human diseases such as Duchenne muscular dystrophy, for which large amounts of recombinant vector are essential for successful outcome.

  8. Convection Enhanced Delivery of Recombinant Adeno-associated Virus into the Mouse Brain.

    Science.gov (United States)

    Nash, Kevin R; Gordon, Marcia N

    2016-01-01

    Recombinant adeno-associated virus (rAAV) has become an extremely useful tool for the study of gene over expression or knockdown in the central nervous system of experimental animals. One disadvantage of intracranial injections of rAAV vectors into the brain parenchyma has been restricted distribution to relatively small volumes of the brain. Convection enhanced delivery (CED) is a method for delivery of clinically relevant amounts of therapeutic agents to large areas of the brain in a direct intracranial injection procedure. CED uses bulk flow to increase the hydrostatic pressure and thus improve volume distribution. The CED method has shown robust gene transfer and increased distribution within the CNS and can be successfully used for different serotypes of rAAV for increased transduction of the mouse CNS. This chapter details the surgical injection of rAAV by CED into a mouse brain.

  9. Systemic gene delivery to the central nervous system using Adeno-associated virus

    Directory of Open Access Journals (Sweden)

    Mathieu eBOURDENX

    2014-06-01

    Full Text Available Adeno-associated virus (AAV-mediated gene delivery has emerged as an effective and safe tool for both preclinical and clinical studies of neurological disorders. The recent discovery that several serotypes are able to cross the blood-brain-barrier when administered systemically has been a real breakthrough in the field of neurodegenerative diseases. Widespread transgene expression after systemic injection could spark interest as a therapeutic approach. Such strategy will avoid invasive brain surgery and allow non-focal gene therapy promising for CNS diseases affecting large portion of the brain. Here, we will review the recent results achieved through different systemic routes of injection generated in the last decade using systemic AAV-mediated delivery and propose a brief assessment of their values. In particular, we emphasize how the methods used for virus engineering could improve brain transduction after peripheral delivery.

  10. DNA double-strand break repair: a tale of pathway choices

    Institute of Scientific and Technical Information of China (English)

    Jing Li; Xingzhi Xu

    2016-01-01

    Deoxyribonucleic acid double-strand breaks (DSBs) are cytotoxic lesions that must be repaired either through homologous recombination (HR) or non-homologous end-joining (NHEJ) pathways.DSB repair is critical for genome integrity,cellular homeostasis and also constitutes the biological foundation for radiotherapy and the majority of chemotherapy.The choice between HR and NHEJ is a complex yet not completely understood process that will entail more future efforts.Herein we review our current understandings about how the choice is made over an antagonizing balance between p53-binding protein 1 and breast cancer 1 in the context of cell cycle stages,downstream effects,and distinct chromosomal histone marks.These exciting areas of research will surely bring more mechanistic insights about DSB repair and be utilized in the clinical settings.

  11. In vivo formation and repair of DNA double-strand breaks after computed tomography examinations

    OpenAIRE

    Löbrich, Markus; Rief, Nicole; Kühne, Martin; Heckmann, Martina; Fleckenstein, Jochen; Rübe, Christian; Uder, Michael

    2005-01-01

    Ionizing radiation can lead to a variety of deleterious effects in humans, most importantly to the induction of cancer. DNA double-strand breaks (DSBs) are among the most significant genetic lesions introduced by ionizing radiation that can initiate carcinogenesis. We have enumerated γ-H2AX foci as a measure for DSBs in lymphocytes from individuals undergoing computed tomography examination of the thorax and/or the abdomen. The number of DSBs induced by computed tomography examination was fou...

  12. Adeno-associated virus-mediated gene delivery into the scala media of the normal and deafened adult mouse ear.

    Science.gov (United States)

    Kilpatrick, L A; Li, Q; Yang, J; Goddard, J C; Fekete, D M; Lang, H

    2011-06-01

    Murine models are ideal for studying cochlear gene transfer, as many hearing loss-related mutations have been discovered and mapped within the mouse genome. However, because of the small size and delicate nature, the membranous labyrinth of the mouse is a challenging target for the delivery of viral vectors. To minimize injection trauma, we developed a procedure for the controlled release of adeno-associated viruses (AAVs) into the scala media of adult mice. This procedure poses minimal risk of injury to structures of the cochlea and middle ear, and allows for near-complete preservation of low and middle frequency hearing. In this study, transduction efficiency and cellular specificity of AAV vectors (serotypes 1, 2, 5, 6 and 8) were investigated in normal and drug-deafened ears. Using the cytomegalovirus promoter to drive gene expression, a variety of cell types were transduced successfully, including sensory hair cells and supporting cells, as well as cells in the auditory nerve and spiral ligament. Among all five serotypes, inner hair cells were the most effectively transduced cochlear cell type. All five serotypes of AAV vectors transduced cells of the auditory nerve, though serotype 8 was the most efficient vector for transduction. Our findings indicate that efficient AAV inoculation (via the scala media) can be performed in adult mouse ears, with hearing preservation a realistic goal. The procedure we describe may also have applications for intra-endolymphatic drug delivery in many mouse models of human deafness.

  13. Association of the Endobiont Double-Stranded RNA Virus LRV1 With Treatment Failure for Human Leishmaniasis Caused by Leishmania braziliensis in Peru and Bolivia

    Science.gov (United States)

    Adaui, Vanessa; Lye, Lon-Fye; Akopyants, Natalia S.; Zimic, Mirko; Llanos-Cuentas, Alejandro; Garcia, Lineth; Maes, Ilse; De Doncker, Simonne; Dobson, Deborah E.; Arevalo, Jorge; Dujardin, Jean-Claude; Beverley, Stephen M.

    2016-01-01

    Cutaneous and mucosal leishmaniasis, caused in South America by Leishmania braziliensis, is difficult to cure by chemotherapy (primarily pentavalent antimonials [SbV]). Treatment failure does not correlate well with resistance in vitro, and the factors responsible for treatment failure in patients are not well understood. Many isolates of L. braziliensis (>25%) contain a double-stranded RNA virus named Leishmaniavirus 1 (LRV1), which has also been reported in Leishmania guyanensis, for which an association with increased pathology, metastasis, and parasite replication was found in murine models. Here we probed the relationship of LRV1 to drug treatment success and disease in 97 L. braziliensis–infected patients from Peru and Bolivia. In vitro cultures were established, parasites were typed as L. braziliensis, and the presence of LRV1 was determined by reverse transcription–polymerase chain reaction, followed by sequence analysis. LRV1 was associated significantly with an increased risk of treatment failure (odds ratio, 3.99; P = .04). There was no significant association with intrinsic SbV resistance among parasites, suggesting that treatment failure arises from LRV1-mediated effects on host metabolism and/or parasite survival. The association of LRV1 with clinical drug treatment failure could serve to guide more-effective treatment of tegumentary disease caused by L. braziliensis. PMID:26123565

  14. Definition of herpes simplex virus type 1 helper activities for adeno-associated virus early replication events.

    Directory of Open Access Journals (Sweden)

    Nathalie Alazard-Dany

    2009-03-01

    Full Text Available The human parvovirus Adeno-Associated Virus (AAV type 2 can only replicate in cells co-infected with a helper virus, such as Adenovirus or Herpes Simplex Virus type 1 (HSV-1; whereas, in the absence of a helper virus, it establishes a latent infection. Previous studies demonstrated that the ternary HSV-1 helicase/primase (HP complex (UL5/8/52 and the single-stranded DNA-Binding Protein (ICP8 were sufficient to induce AAV-2 replication in transfected cells. We independently showed that, in the context of a latent AAV-2 infection, the HSV-1 ICP0 protein was able to activate rep gene expression. The present study was conducted to integrate these observations and to further explore the requirement of other HSV-1 proteins during early AAV replication steps, i.e. rep gene expression and AAV DNA replication. Using a cellular model that mimics AAV latency and composite constructs coding for various sets of HSV-1 genes, we first confirmed the role of ICP0 for rep gene expression and demonstrated a synergistic effect of ICP4 and, to a lesser extent, ICP22. Conversely, ICP27 displayed an inhibitory effect. Second, our analyses showed that the effect of ICP0, ICP4, and ICP22 on rep gene expression was essential for the onset of AAV DNA replication in conjunction with the HP complex and ICP8. Third, and most importantly, we demonstrated that the HSV-1 DNA polymerase complex (UL30/UL42 was critical to enhance AAV DNA replication to a significant level in transfected cells and that its catalytic activity was involved in this process. Altogether, this work represents the first comprehensive study recapitulating the series of early events taking place during HSV-1-induced AAV replication.

  15. Single and double strand breaks induced by 3H incorporated in DNA of cultured human kidney cells

    International Nuclear Information System (INIS)

    Tisljar-Lentulis, G.; Henneberg, P.; Mielke, T.; Feinendegen, L.E.

    1978-01-01

    In the course of the investigations of the biological effects of radionuclides incorporated in DNA single (SSB) and double strand breaks (DSB) caused tritium-decay were measured and compared with respective data resulting from 125 I. Tritium bound to thymidine and iododeoxyuridine seems to be more effective than tritium bound to other DNA-precursors. On the basis of decay, methyl- 3 H thymidine appears to be more effective with regard to the production of strand breaks than 3 H in position 6 of the pyrimidine ring. Based on the numbers of strand-breaks per rad, position 6 is more effective in accordance with data obtained by F. Krasin et al. The ratio of SSBs to DSBs per tritium decay appears to be approximately 8 in mammlian cells. Not only SSBs but also DSBs induced by 3 H in mammalian cells are reapairable. (orig./AJ) [de

  16. Chlamydomonas chloroplasts can use short dispersed repeats and multiple pathways to repair a double-strand break in the genome.

    Science.gov (United States)

    Odom, Obed W; Baek, Kwang-Hyun; Dani, Radhika N; Herrin, David L

    2008-03-01

    Certain group I introns insert into intronless DNA via an endonuclease that creates a double-strand break (DSB). There are two models for intron homing in phage: synthesis-dependent strand annealing (SDSA) and double-strand break repair (DSBR). The Cr.psbA4 intron homes efficiently from a plasmid into the chloroplast psbA gene in Chlamydomonas, but little is known about the mechanism. Analysis of co-transformants selected using a spectinomycin-resistant 16S gene (16S(spec)) provided evidence for both pathways. We also examined the consequences of the donor DNA having only one-sided or no homology with the psbA gene. When there was no homology with the donor DNA, deletions of up to 5 kb involving direct repeats that flank the psbA gene were obtained. Remarkably, repeats as short as 15 bp were used for this repair, which is consistent with the single-strand annealing (SSA) pathway. When the donor had one-sided homology, the DSB in most co-transformants was repaired using two DNAs, the donor and the 16S(spec) plasmid, which, coincidentally, contained a region that is repeated upstream of psbA. DSB repair using two separate DNAs provides further evidence for the SDSA pathway. These data show that the chloroplast can repair a DSB using short dispersed repeats located proximally, distally, or even on separate molecules relative to the DSB. They also provide a rationale for the extensive repertoire of repeated sequences in this genome.

  17. Creating Directed Double-strand Breaks with the Ref Protein: A Novel Rec A-Dependent Nuclease from Bacteriophage P1

    Energy Technology Data Exchange (ETDEWEB)

    Gruenig, Marielle C.; Lu, Duo; Won, Sang Joon; Dulberger, Charles L.; Manlick, Angela J.; Keck, James L.; Cox, Michael M. (UW)

    2012-03-16

    The bacteriophage P1-encoded Ref protein enhances RecA-dependent recombination in vivo by an unknown mechanism. We demonstrate that Ref is a new type of enzyme; that is, a RecA-dependent nuclease. Ref binds to ss- and dsDNA but does not cleave any DNA substrate until RecA protein and ATP are added to form RecA nucleoprotein filaments. Ref cleaves only where RecA protein is bound. RecA functions as a co-nuclease in the Ref/RecA system. Ref nuclease activity can be limited to the targeted strands of short RecA-containing D-loops. The result is a uniquely programmable endonuclease activity, producing targeted double-strand breaks at any chosen DNA sequence in an oligonucleotide-directed fashion. We present evidence indicating that cleavage occurs in the RecA filament groove. The structure of the Ref protein has been determined to 1.4 {angstrom} resolution. The core structure, consisting of residues 77-186, consists of a central 2-stranded {beta}-hairpin that is sandwiched between several {alpha}-helical and extended loop elements. The N-terminal 76 amino acid residues are disordered; this flexible region is required for optimal activity. The overall structure of Ref, including several putative active site histidine residues, defines a new subclass of HNH-family nucleases. We propose that enhancement of recombination by Ref reflects the introduction of directed, recombinogenic double-strand breaks.

  18. Chromosomal Integrity after UV Irradiation Requires FANCD2-Mediated Repair of Double Strand Breaks.

    Science.gov (United States)

    Federico, María Belén; Vallerga, María Belén; Radl, Analía; Paviolo, Natalia Soledad; Bocco, José Luis; Di Giorgio, Marina; Soria, Gastón; Gottifredi, Vanesa

    2016-01-01

    Fanconi Anemia (FA) is a rare autosomal recessive disorder characterized by hypersensitivity to inter-strand crosslinks (ICLs). FANCD2, a central factor of the FA pathway, is essential for the repair of double strand breaks (DSBs) generated during fork collapse at ICLs. While lesions different from ICLs can also trigger fork collapse, the contribution of FANCD2 to the resolution of replication-coupled DSBs generated independently from ICLs is unknown. Intriguingly, FANCD2 is readily activated after UV irradiation, a DNA-damaging agent that generates predominantly intra-strand crosslinks but not ICLs. Hence, UV irradiation is an ideal tool to explore the contribution of FANCD2 to the DNA damage response triggered by DNA lesions other than ICL repair. Here we show that, in contrast to ICL-causing agents, UV radiation compromises cell survival independently from FANCD2. In agreement, FANCD2 depletion does not increase the amount of DSBs generated during the replication of UV-damaged DNA and is dispensable for UV-induced checkpoint activation. Remarkably however, FANCD2 protects UV-dependent, replication-coupled DSBs from aberrant processing by non-homologous end joining, preventing the accumulation of micronuclei and chromatid aberrations including non-homologous chromatid exchanges. Hence, while dispensable for cell survival, FANCD2 selectively safeguards chromosomal stability after UV-triggered replication stress.

  19. Synthetic scaffold coating with adeno-associated virus encoding BMP2 to promote endogenous bone repair.

    Science.gov (United States)

    Dupont, Kenneth M; Boerckel, Joel D; Stevens, Hazel Y; Diab, Tamim; Kolambkar, Yash M; Takahata, Masahiko; Schwarz, Edward M; Guldberg, Robert E

    2012-03-01

    Biomaterial scaffolds functionalized to stimulate endogenous repair mechanisms via the incorporation of osteogenic cues offer a potential alternative to bone grafting for the treatment of large bone defects. We first quantified the ability of a self-complementary adeno-associated viral vector encoding bone morphogenetic protein 2 (scAAV2.5-BMP2) to enhance human stem cell osteogenic differentiation in vitro. In two-dimensional culture, scAAV2.5-BMP2-transduced human mesenchymal stem cells (hMSCs) displayed significant increases in BMP2 production and alkaline phosphatase activity compared with controls. hMSCs and human amniotic-fluid-derived stem cells (hAFS cells) seeded on scAAV2.5-BMP2-coated three-dimensional porous polymer Poly(ε-caprolactone) (PCL) scaffolds also displayed significant increases in BMP2 production compared with controls during 12 weeks of culture, although only hMSC-seeded scaffolds displayed significantly increased mineral formation. PCL scaffolds coated with scAAV2.5-BMP2 were implanted into critically sized immunocompromised rat femoral defects, both with or without pre-seeding of hMSCs, representing ex vivo and in vivo gene therapy treatments, respectively. After 12 weeks, defects treated with acellular scAAV2.5-BMP2-coated scaffolds displayed increased bony bridging and had significantly higher bone ingrowth and mechanical properties compared with controls, whereas defects treated with scAAV2.5-BMP2 scaffolds pre-seeded with hMSCs failed to display significant differences relative to controls. When pooled, defect treatment with scAAV2.5-BMP2-coated scaffolds, both with or without inclusion of pre-seeded hMSCs, led to significant increases in defect mineral formation at all time points and increased mechanical properties compared with controls. This study thus presents a novel acellular bone-graft-free endogenous repair therapy for orthotopic tissue-engineered bone regeneration.

  20. Induction of virus resistance by exogenous application of double-stranded RNA.

    Science.gov (United States)

    Mitter, Neena; Worrall, Elizabeth A; Robinson, Karl E; Xu, Zhi Ping; Carroll, Bernard J

    2017-10-01

    Exogenous application of double-stranded RNA (dsRNA) for virus resistance in plants represents a very attractive alternative to virus resistant transgenic crops or pesticides targeting virus vectors. However, the instability of dsRNA sprayed onto plants is a major challenge as spraying naked dsRNA onto plants provides protection against homologous viruses for only 5 days. Innovative approaches, such as the use of nanoparticles as carriers of dsRNA for improved stability and sustained release, are emerging as key disruptive technologies. Knowledge is still limited about the mechanism of entry, transport and processing of exogenously applied dsRNA in plants. Cost of dsRNA and regulatory framework will be key influencers towards practical adoption of this technology. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. The hepatitis C virus Core protein is a potent nucleic acid chaperone that directs dimerization of the viral (+) strand RNA in vitro.

    Science.gov (United States)

    Cristofari, Gaël; Ivanyi-Nagy, Roland; Gabus, Caroline; Boulant, Steeve; Lavergne, Jean-Pierre; Penin, François; Darlix, Jean-Luc

    2004-01-01

    The hepatitis C virus (HCV) is an important human pathogen causing chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. HCV is an enveloped virus with a positive-sense, single-stranded RNA genome encoding a single polyprotein that is processed to generate viral proteins. Several hundred molecules of the structural Core protein are thought to coat the genome in the viral particle, as do nucleocapsid (NC) protein molecules in Retroviruses, another class of enveloped viruses containing a positive-sense RNA genome. Retroviral NC proteins also possess nucleic acid chaperone properties that play critical roles in the structural remodelling of the genome during retrovirus replication. This analogy between HCV Core and retroviral NC proteins prompted us to investigate the putative nucleic acid chaperoning properties of the HCV Core protein. Here we report that Core protein chaperones the annealing of complementary DNA and RNA sequences and the formation of the most stable duplex by strand exchange. These results show that the HCV Core is a nucleic acid chaperone similar to retroviral NC proteins. We also find that the Core protein directs dimerization of HCV (+) RNA 3' untranslated region which is promoted by a conserved palindromic sequence possibly involved at several stages of virus replication.

  2. A positive-strand RNA virus uses alternative protein-protein interactions within a viral protease/cofactor complex to switch between RNA replication and virion morphogenesis.

    Science.gov (United States)

    Dubrau, Danilo; Tortorici, M Alejandra; Rey, Félix A; Tautz, Norbert

    2017-02-01

    The viruses of the family Flaviviridae possess a positive-strand RNA genome and express a single polyprotein which is processed into functional proteins. Initially, the nonstructural (NS) proteins, which are not part of the virions, form complexes capable of genome replication. Later on, the NS proteins also play a critical role in virion formation. The molecular basis to understand how the same proteins form different complexes required in both processes is so far unknown. For pestiviruses, uncleaved NS2-3 is essential for virion morphogenesis while NS3 is required for RNA replication but is not functional in viral assembly. Recently, we identified two gain of function mutations, located in the C-terminal region of NS2 and in the serine protease domain of NS3 (NS3 residue 132), which allow NS2 and NS3 to substitute for uncleaved NS2-3 in particle assembly. We report here the crystal structure of pestivirus NS3-4A showing that the NS3 residue 132 maps to a surface patch interacting with the C-terminal region of NS4A (NS4A-kink region) suggesting a critical role of this contact in virion morphogenesis. We show that destabilization of this interaction, either by alanine exchanges at this NS3/4A-kink interface, led to a gain of function of the NS3/4A complex in particle formation. In contrast, RNA replication and thus replicase assembly requires a stable association between NS3 and the NS4A-kink region. Thus, we propose that two variants of NS3/4A complexes exist in pestivirus infected cells each representing a basic building block required for either RNA replication or virion morphogenesis. This could be further corroborated by trans-complementation studies with a replication-defective NS3/4A double mutant that was still functional in viral assembly. Our observations illustrate the presence of alternative overlapping surfaces providing different contacts between the same proteins, allowing the switch from RNA replication to virion formation.

  3. A positive-strand RNA virus uses alternative protein-protein interactions within a viral protease/cofactor complex to switch between RNA replication and virion morphogenesis

    Science.gov (United States)

    Rey, Félix A.

    2017-01-01

    The viruses of the family Flaviviridae possess a positive-strand RNA genome and express a single polyprotein which is processed into functional proteins. Initially, the nonstructural (NS) proteins, which are not part of the virions, form complexes capable of genome replication. Later on, the NS proteins also play a critical role in virion formation. The molecular basis to understand how the same proteins form different complexes required in both processes is so far unknown. For pestiviruses, uncleaved NS2-3 is essential for virion morphogenesis while NS3 is required for RNA replication but is not functional in viral assembly. Recently, we identified two gain of function mutations, located in the C-terminal region of NS2 and in the serine protease domain of NS3 (NS3 residue 132), which allow NS2 and NS3 to substitute for uncleaved NS2-3 in particle assembly. We report here the crystal structure of pestivirus NS3-4A showing that the NS3 residue 132 maps to a surface patch interacting with the C-terminal region of NS4A (NS4A-kink region) suggesting a critical role of this contact in virion morphogenesis. We show that destabilization of this interaction, either by alanine exchanges at this NS3/4A-kink interface, led to a gain of function of the NS3/4A complex in particle formation. In contrast, RNA replication and thus replicase assembly requires a stable association between NS3 and the NS4A-kink region. Thus, we propose that two variants of NS3/4A complexes exist in pestivirus infected cells each representing a basic building block required for either RNA replication or virion morphogenesis. This could be further corroborated by trans-complementation studies with a replication-defective NS3/4A double mutant that was still functional in viral assembly. Our observations illustrate the presence of alternative overlapping surfaces providing different contacts between the same proteins, allowing the switch from RNA replication to virion formation. PMID:28151973

  4. A positive-strand RNA virus uses alternative protein-protein interactions within a viral protease/cofactor complex to switch between RNA replication and virion morphogenesis.

    Directory of Open Access Journals (Sweden)

    Danilo Dubrau

    2017-02-01

    Full Text Available The viruses of the family Flaviviridae possess a positive-strand RNA genome and express a single polyprotein which is processed into functional proteins. Initially, the nonstructural (NS proteins, which are not part of the virions, form complexes capable of genome replication. Later on, the NS proteins also play a critical role in virion formation. The molecular basis to understand how the same proteins form different complexes required in both processes is so far unknown. For pestiviruses, uncleaved NS2-3 is essential for virion morphogenesis while NS3 is required for RNA replication but is not functional in viral assembly. Recently, we identified two gain of function mutations, located in the C-terminal region of NS2 and in the serine protease domain of NS3 (NS3 residue 132, which allow NS2 and NS3 to substitute for uncleaved NS2-3 in particle assembly. We report here the crystal structure of pestivirus NS3-4A showing that the NS3 residue 132 maps to a surface patch interacting with the C-terminal region of NS4A (NS4A-kink region suggesting a critical role of this contact in virion morphogenesis. We show that destabilization of this interaction, either by alanine exchanges at this NS3/4A-kink interface, led to a gain of function of the NS3/4A complex in particle formation. In contrast, RNA replication and thus replicase assembly requires a stable association between NS3 and the NS4A-kink region. Thus, we propose that two variants of NS3/4A complexes exist in pestivirus infected cells each representing a basic building block required for either RNA replication or virion morphogenesis. This could be further corroborated by trans-complementation studies with a replication-defective NS3/4A double mutant that was still functional in viral assembly. Our observations illustrate the presence of alternative overlapping surfaces providing different contacts between the same proteins, allowing the switch from RNA replication to virion formation.

  5. Endogenous viral elements in animal genomes.

    Directory of Open Access Journals (Sweden)

    Aris Katzourakis

    2010-11-01

    Full Text Available Integration into the nuclear genome of germ line cells can lead to vertical inheritance of retroviral genes as host alleles. For other viruses, germ line integration has only rarely been documented. Nonetheless, we identified endogenous viral elements (EVEs derived from ten non-retroviral families by systematic in silico screening of animal genomes, including the first endogenous representatives of double-stranded RNA, reverse-transcribing DNA, and segmented RNA viruses, and the first endogenous DNA viruses in mammalian genomes. Phylogenetic and genomic analysis of EVEs across multiple host species revealed novel information about the origin and evolution of diverse virus groups. Furthermore, several of the elements identified here encode intact open reading frames or are expressed as mRNA. For one element in the primate lineage, we provide statistically robust evidence for exaptation. Our findings establish that genetic material derived from all known viral genome types and replication strategies can enter the animal germ line, greatly broadening the scope of paleovirological studies and indicating a more significant evolutionary role for gene flow from virus to animal genomes than has previously been recognized.

  6. Adeno-associated virus vector-mediated transduction in the cat brain.

    Science.gov (United States)

    Vite, Charles H; Passini, Marco A; Haskins, Mark E; Wolfe, John H

    2003-10-01

    Adeno-associated virus (AAV) vectors are capable of delivering a therapeutic gene to the mouse brain that can result in long-term and widespread protein production. However, the human infant brain is more than 1000 times larger than the mouse brain, which will make the treatment of global neurometabolic disorders in children more difficult. In this study, we evaluated the ability of three AAV serotypes (1,2, and 5) to transduce cells in the cat brain as a model of a large mammalian brain. The human lysosomal enzyme beta-glucuronidase (GUSB) was used as a reporter gene, because it can be distinguished from feline GUSB by heat stability. The vectors were injected into the cerebral cortex, caudate nucleus, thalamus, corona radiata, internal capsule, and centrum semiovale of 8-week-old cats. The brains were evaluated for gene expression using in situ hybridization and enzyme histochemistry 10 weeks after surgery. The AAV2 vector was capable of transducing cells in the gray matter, while the AAV1 vector resulted in greater transduction of the gray matter than AAV2 as well as transduction of the white matter. AAV5 did not result in detectable transduction in the cat brain.

  7. Enrichment of Phosphatidylethanolamine in Viral Replication Compartments via Co-opting the Endosomal Rab5 Small GTPase by a Positive-Strand RNA Virus.

    Directory of Open Access Journals (Sweden)

    Kai Xu

    2016-10-01

    Full Text Available Positive-strand RNA viruses build extensive membranous replication compartments to support replication and protect the virus from antiviral responses by the host. These viruses require host factors and various lipids to form viral replication complexes (VRCs. The VRCs built by Tomato bushy stunt virus (TBSV are enriched with phosphatidylethanolamine (PE through a previously unknown pathway. To unravel the mechanism of PE enrichment within the TBSV replication compartment, in this paper, the authors demonstrate that TBSV co-opts the guanosine triphosphate (GTP-bound active form of the endosomal Rab5 small GTPase via direct interaction with the viral replication protein. Deletion of Rab5 orthologs in a yeast model host or expression of dominant negative mutants of plant Rab5 greatly decreases TBSV replication and prevents the redistribution of PE to the sites of viral replication. We also show that enrichment of PE in the viral replication compartment is assisted by actin filaments. Interestingly, the closely related Carnation Italian ringspot virus, which replicates on the boundary membrane of mitochondria, uses a similar strategy to the peroxisomal TBSV to hijack the Rab5-positive endosomes into the viral replication compartments. Altogether, usurping the GTP-Rab5-positive endosomes allows TBSV to build a PE-enriched viral replication compartment, which is needed to support peak-level replication. Thus, the Rab family of small GTPases includes critical host factors assisting VRC assembly and genesis of the viral replication compartment.

  8. Viral DNA Replication Orientation and hnRNPs Regulate Transcription of the Human Papillomavirus 18 Late Promoter.

    Science.gov (United States)

    Wang, Xiaohong; Liu, Haibin; Ge, Hui; Ajiro, Masahiko; Sharma, Nishi R; Meyers, Craig; Morozov, Pavel; Tuschl, Thomas; Klar, Amar; Court, Donald; Zheng, Zhi-Ming

    2017-05-30

    The life cycle of human papillomaviruses (HPVs) is tightly linked to keratinocyte differentiation. Although expression of viral early genes is initiated immediately upon virus infection of undifferentiated basal cells, viral DNA amplification and late gene expression occur only in the mid to upper strata of the keratinocytes undergoing terminal differentiation. In this report, we show that the relative activity of HPV18 TATA-less late promoter P 811 depends on its orientation relative to that of the origin (Ori) of viral DNA replication and is sensitive to the eukaryotic DNA polymerase inhibitor aphidicolin. Additionally, transfected 70-nucleotide (nt)-long single-strand DNA oligonucleotides that are homologous to the region near Ori induce late promoter activity. We also found that promoter activation in raft cultures leads to production of the late promoter-associated, sense-strand transcription initiation RNAs (tiRNAs) and splice-site small RNAs (spliRNAs). Finally, a cis -acting AAGTATGCA core element that functions as a repressor to the promoter was identified. This element interacts with hnRNP D0B and hnRNP A/B factors. Point mutations in the core prevented binding of hnRNPs and increased the promoter activity. Confirming this result, knocking down the expression of both hnRNPs in keratinocytes led to increased promoter activity. Taking the data together, our study revealed the mechanism of how the HPV18 late promoter is regulated by DNA replication and host factors. IMPORTANCE It has been known for decades that the activity of viral late promoters is associated with viral DNA replication among almost all DNA viruses. However, the mechanism of how DNA replication activates the viral late promoter and what components of the replication machinery are involved remain largely unknown. In this study, we characterized the P 811 promoter region of HPV18 and demonstrated that its activation depends on the orientation of DNA replication. Using single-stranded

  9. Structure, sequence and expression of the hepatitis delta (δ) viral genome

    Science.gov (United States)

    Wang, Kang-Sheng; Choo, Qui-Lim; Weiner, Amy J.; Ou, Jing-Hsiung; Najarian, Richard C.; Thayer, Richard M.; Mullenbach, Guy T.; Denniston, Katherine J.; Gerin, John L.; Houghton, Michael

    1986-10-01

    Biochemical and electron microscopic data indicate that the human hepatitis δ viral agent contains a covalently closed circular and single-stranded RNA genome that has certain similarities with viroid-like agents from plants. The sequence of the viral genome (1,678 nucleotides) has been determined and an open reading frame within the complementary strand has been shown to encode an antigen that binds specifically to antisera from patients with chronic hepatitis δ viral infections.

  10. Molecular Basis for DNA Double-Strand Break Annealing and Primer Extension by an NHEJ DNA Polymerase

    Directory of Open Access Journals (Sweden)

    Nigel C. Brissett

    2013-11-01

    Full Text Available Nonhomologous end-joining (NHEJ is one of the major DNA double-strand break (DSB repair pathways. The mechanisms by which breaks are competently brought together and extended during NHEJ is poorly understood. As polymerases extend DNA in a 5′-3′ direction by nucleotide addition to a primer, it is unclear how NHEJ polymerases fill in break termini containing 3′ overhangs that lack a primer strand. Here, we describe, at the molecular level, how prokaryotic NHEJ polymerases configure a primer-template substrate by annealing the 3′ overhanging strands from opposing breaks, forming a gapped intermediate that can be extended in trans. We identify structural elements that facilitate docking of the 3′ ends in the active sites of adjacent polymerases and reveal how the termini act as primers for extension of the annealed break, thus explaining how such DSBs are extended in trans. This study clarifies how polymerases couple break-synapsis to catalysis, providing a molecular mechanism to explain how primer extension is achieved on DNA breaks.

  11. The Assembly-Activating Protein Promotes Stability and Interactions between AAV’s Viral Proteins to Nucleate Capsid Assembly

    Directory of Open Access Journals (Sweden)

    Anna C. Maurer

    2018-05-01

    Full Text Available Summary: The adeno-associated virus (AAV vector is a preferred delivery platform for in vivo gene therapy. Natural and engineered variations of the AAV capsid affect a plurality of phenotypes relevant to gene therapy, including vector production and host tropism. Fundamental to these aspects is the mechanism of AAV capsid assembly. Here, the role of the viral co-factor assembly-activating protein (AAP was evaluated in 12 naturally occurring AAVs and 9 putative ancestral capsid intermediates. The results demonstrate increased capsid protein stability and VP-VP interactions in the presence of AAP. The capsid’s dependence on AAP can be partly overcome by strengthening interactions between monomers within the assembly, as illustrated by the transfer of a minimal motif defined by a phenotype-to-phylogeny mapping method. These findings suggest that the emergence of AAP within the Dependovirus genus relaxes structural constraints on AAV assembly in favor of increasing the degrees of freedom for the capsid to evolve. : Maurer et al. describe a phenotype-to-phylogeny mapping strategy correlating phenotypic variation in AAVs to a reconstructed phylogeny, revealing capsid structure-function relationships relevant to that phenotype. Dependence on the viral co-factor AAP for capsid assembly is examined, and capsid functional motifs, in addition to mechanistic roles of AAP, are elucidated. Keywords: AAV, AAP, adeno-associated virus, capsid assembly, manufacturing, capsid, vector engineering, structure-function, gene therapy

  12. Activation of a yeast replication origin near a double-stranded DNA break.

    Science.gov (United States)

    Raghuraman, M K; Brewer, B J; Fangman, W L

    1994-03-01

    Irradiation in the G1 phase of the cell cycle delays the onset of DNA synthesis and transiently inhibits the activation of replication origins in mammalian cells. It has been suggested that this inhibition is the result of the loss of torsional tension in the DNA after it has been damaged. Because irradiation causes DNA damage at an undefined number of nonspecific sites in the genome, it is not known how cells respond to limited DNA damage, and how replication origins in the immediate vicinity of a damage site would behave. Using the sequence-specific HO endonuclease, we have created a defined double-stranded DNA break in a centromeric plasmid in G1-arrested cells of the yeast Saccharomyces cerevisiae. We show that replication does initiate at the origin on the cut plasmid, and that the plasmid replicates early in the S phase after linearization in vivo. These observations suggest that relaxation of a supercoiled DNA domain in yeast need not inactivate replication origins within that domain. Furthermore, these observations rule out the possibility that the late replication context associated with chromosomal termini is a consequence of DNA ends.

  13. Reading the viral signature by Toll-like receptors and other pattern recognition receptors.

    Science.gov (United States)

    Mogensen, Trine H; Paludan, Søren R

    2005-03-01

    Successful host defense against viral infections relies on early production of type I interferon (IFN) and subsequent activation of a cellular cytotoxic response. The acute IFN and inflammatory response against virus infections is mediated by cellular pattern-recognition receptors (PRRs) that recognize specific molecular structures on viral particles or products of viral replication. Toll-like receptors (TLRs) constitute a class of membrane-bound PRRs capable of detecting microbial infections. While TLR2 and TLR4, which were first identified to recognize Gram-positive and Gram-negative bacteria, respectively, sense specific viral proteins on the cell surface, TLRs 3, 7, 8, and 9 serve as receptors for viral nucleic acids in endosomic compartments. In addition to TLRs, cells express cytoplasmic PRRs such as the RNA helicase retinoic acid inducible gene I and the kinase double-stranded RNA-activated protein kinase R, both of which sense dsRNA, a characteristic signature of viral replication, and initiate a protective cellular response. Here we review the recent progress in our understanding of PRRs and viral infections and discuss the molecular and cellular responses evoked by virus-activated PRRs. Finally, we look into what is currently known about the role of PRRs in viral infections in vivo.

  14. SIRT6 stabilizes DNA-dependent protein kinase at chromatin for DNA double-strand break repair

    DEFF Research Database (Denmark)

    McCord, Ronald A; Michishita, Eriko; Hong, Tao

    2009-01-01

    -PKcs) to chromatin in response to DNA damage and stabilizes DNA-PKcs at chromatin adjacent to an induced site-specific DSB. Abrogation of these SIRT6 activities leads to impaired resolution of DSBs. Together, these findings elucidate a mechanism whereby regulation of dynamic interaction of a DNA repair factor......-dependent protein kinase) and promotes DNA DSB repair. In response to DSBs, SIRT6 associates dynamically with chromatin and is necessary for an acute decrease in global cellular acetylation levels on histone H3 Lysine 9. Moreover, SIRT6 is required for mobilization of the DNA-PK catalytic subunit (DNA......, and SIRT6 knockout cells exhibit genomic instability and DNA damage hypersensitivity. However, the molecular mechanisms underlying these defects are not fully understood. Here, we show that SIRT6 forms a macromolecular complex with the DNA double-strand break (DSB) repair factor DNA-PK (DNA...

  15. Effects of DNA double-strand and single-strand breaks on intrachromosomal recombination events in cell-cycle-arrested yeast cells

    International Nuclear Information System (INIS)

    Galli, A.; Schiestl, R.H.

    1998-01-01

    Intrachromosomal recombination between repeated elements can result in deletion (DEL recombination) events. We investigated the inducibility of such intrachromosomal recombination events at different stages of the cell cycle and the nature of the primary DNA lesions capable of initiating these events. Two genetic systems were constructed in Saccharomyces cerevisiae that select for DEL recombination events between duplicated alleles of CDC28 and TUB2. We determined effects of double-strand breaks (DSBs) and single-strand breaks (SSBs) between the duplicated alleles on DEL recombination when induced in dividing cells or cells arrested in G1 or G2. Site-specific DSBs and SSBs were produced by overexpression of the I-Sce I endonuclease and the gene II protein (gIIp), respectively. I-Sce I-induced DSBs caused an increase in DEL recombination frequencies in both dividing and cell-cycle-arrested cells, indicating that G1- and G2-arrested cells are capable of completing DSB repair. In contrast, gIIp-induced SSBs caused an increase in DEL recombination frequency only in dividing cells. To further examine these phenomena we used both γ-irradiation, inducing DSBs as its most relevant lesion, and UV, inducing other forms of DNA damage. UV irradiation did not increase DEL recombination frequencies in G1 or G2, whereas γ-rays increased DEL recombination frequencies in both phases. Both forms of radiation, however, induced DEL recombination in dividing cells. The results suggest that DSBsbut not SSBs induce DEL recombination, probably via the single-strand annealing pathway. Further, DSBs in dividing cells may result from the replication of a UV or SSB-damaged template. Alternatively, UV induced events may occur by replication slippage after DNA polymerase pausing in front of the damage. (author)

  16. Numt-mediated double-strand break repair mitigates deletions during primate genome evolution.

    Directory of Open Access Journals (Sweden)

    Einat Hazkani-Covo

    2008-10-01

    Full Text Available Non-homologous end joining (NHEJ is the major mechanism of double-strand break repair (DSBR in mammalian cells. NHEJ has traditionally been inferred from experimental systems involving induced double strand breaks (DSBs. Whether or not the spectrum of repair events observed in experimental NHEJ reflects the repair of natural breaks by NHEJ during chromosomal evolution is an unresolved issue. In primate phylogeny, nuclear DNA sequences of mitochondrial origin, numts, are inserted into naturally occurring chromosomal breaks via NHEJ. Thus, numt integration sites harbor evidence for the mechanisms that act on the genome over evolutionary timescales. We have identified 35 and 55 lineage-specific numts in the human and chimpanzee genomes, respectively, using the rhesus monkey genome as an outgroup. One hundred and fifty two numt-chromosome fusion points were classified based on their repair patterns. Repair involving microhomology and repair leading to nucleotide additions were detected. These repair patterns are within the experimentally determined spectrum of classical NHEJ, suggesting that information from experimental systems is representative of broader genetic loci and end configurations. However, in incompatible DSBR events, small deletions always occur, whereas in 54% of numt integration events examined, no deletions were detected. Numts show a statistically significant reduction in deletion frequency, even in comparison to DSBR involving filler DNA. Therefore, numts show a unique mechanism of integration via NHEJ. Since the deletion frequency during numt insertion is low, native overhangs of chromosome breaks are preserved, allowing us to determine that 24% of the analyzed breaks are cohesive with overhangs of up to 11 bases. These data represent, to the best of our knowledge, the most comprehensive description of the structure of naturally occurring DSBs. We suggest a model in which the sealing of DSBs by numts, and probably by other filler

  17. Viral Diversity in Hot Springs of Pozzuoli, Italy, and Characterization of a Unique Archaeal Virus, Acidianus Bottle-Shaped Virus, from a New Family, the Ampullaviridae

    DEFF Research Database (Denmark)

    Häring, M.; Rachel, R.; Peng, Xu

    2005-01-01

    not involved in adsorption. ABV virions contain six proteins in the size range 15 to 80 kDa and a 23.9-kb linear, double-stranded DNA genome. Virus replication does not cause lysis of host cells. On the basis of its unique morphotype and structure, we propose to assign ABV to a new viral family...

  18. Thioflavin T binds dimeric parallel-stranded GA-containing non-G-quadruplex DNAs: a general approach to lighting up double-stranded scaffolds.

    Science.gov (United States)

    Liu, Shuangna; Peng, Pai; Wang, Huihui; Shi, Lili; Li, Tao

    2017-12-01

    A molecular rotor thioflavin T (ThT) is usually used as a fluorescent ligand specific for G-quadruplexes. Here, we demonstrate that ThT can tightly bind non-G-quadruplex DNAs with several GA motifs and dimerize them in a parallel double-stranded mode, accompanied by over 100-fold enhancement in the fluorescence emission of ThT. The introduction of reverse Watson-Crick T-A base pairs into these dimeric parallel-stranded DNA systems remarkably favors the binding of ThT into the pocket between G•G and A•A base pairs, where ThT is encapsulated thereby restricting its two rotary aromatic rings in the excited state. A similar mechanism is also demonstrated in antiparallel DNA duplexes where several motifs of two consecutive G•G wobble base pairs are incorporated and serve as the active pockets for ThT binding. The insight into the interactions of ThT with non-G-quadruplex DNAs allows us to introduce a new concept for constructing DNA-based sensors and devices. As proof-of-concept experiments, we design a DNA triplex containing GA motifs in its Hoogsteen hydrogen-bonded two parallel strands as a pH-driven nanoswitch and two GA-containing parallel duplexes as novel metal sensing platforms where C-C and T-T mismatches are included. This work may find further applications in biological systems (e.g. disease gene detection) where parallel duplex or triplex stretches are involved. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. The Ku Heterodimer and the Metabolism of Single-Ended DNA Double-Strand Breaks

    Directory of Open Access Journals (Sweden)

    Alessia Balestrini

    2013-06-01

    Full Text Available Single-ended double-strand breaks (DSBs are a common form of spontaneous DNA break, generated when the replisome encounters a discontinuity in the DNA template. Given their prevalence, understanding the mechanisms governing the fate(s of single-ended DSBs is important. We describe the influence of the Ku heterodimer and Mre11 nuclease activity on processing of single-ended DSBs. Separation-of-function alleles of yku70 were derived that phenocopy Ku deficiency with respect to single-ended DSBs but remain proficient for NHEJ. The Ku mutants fail to regulate Exo1 activity, and bypass the requirement for Mre11 nuclease activity in the repair of camptothecin-induced single-ended DSBs. Ku mutants exhibited reduced affinity for DNA ends, manifest as both reduced end engagement and enhanced probability of diffusing inward on linear DNA. This study reveals an interplay between Ku and Mre11 in the metabolism of single-ended DSBs that is distinct from repair pathway choice at double-ended DSBs.

  20. Heterochromatinization associated with cell differentiation as a model to study DNA double strand break induction and repair in the context of higher-order chromatin structure

    International Nuclear Information System (INIS)

    Falk, Martin; Lukášová, Emilie; Štefančíková, Lenka; Baranová, Elena; Falková, Iva; Ježková, Lucie; Davídková, Marie; Bačíková, Alena; Vachelová, Jana; Michaelidesová, Anna; Kozubek, Stanislav

    2014-01-01

    Cell differentiation is associated with extensive gene silencing, heterochromatinization and potentially decreasing need for repairing DNA double-strand breaks (DSBs). Differentiation stages of blood cells thus represent an excellent model to study DSB induction, repair and misrepair in the context of changing higher-order chromatin structure. We show that immature granulocytes form γH2AX and 53BP1 foci, contrary to the mature cells; however, these foci colocalize only rarely and DSB repair is inefficient. Moreover, specific chromatin structure of granulocytes probably influences DSB induction. - Highlights: ► DSB repair is absent in mature granulocytes with condensed chromatin. ► Repair proteins and γH2AX appear in immature stages but rarely colocalize. ► γH2AX persist long times in these cells and DSB repair is inefficient. ► Even though, γH2AX foci “move” out of the dense chromatin. ► 53BP1 enters HP1β domains only after their decondensation

  1. Analysis of DNA Double-Strand Breaks and Cytotoxicity after 7 Tesla Magnetic Resonance Imaging of Isolated Human Lymphocytes

    Science.gov (United States)

    Guttek, Karina; Hartig, Roland; Godenschweger, Frank; Roggenbuck, Dirk; Ricke, Jens; Reinhold, Dirk; Speck, Oliver

    2015-01-01

    The global use of magnetic resonance imaging (MRI) is constantly growing and the field strengths increasing. Yet, only little data about harmful biological effects caused by MRI exposure are available and published research analyzing the impact of MRI on DNA integrity reported controversial results. This in vitro study aimed to investigate the genotoxic and cytotoxic potential of 7 T ultra-high-field MRI on isolated human peripheral blood mononuclear cells. Hence, unstimulated mononuclear blood cells were exposed to 7 T static magnetic field alone or in combination with maximum permissible imaging gradients and radiofrequency pulses as well as to ionizing radiation during computed tomography and γ-ray exposure. DNA double-strand breaks were quantified by flow cytometry and automated microscopy analysis of immunofluorescence stained γH2AX. Cytotoxicity was studied by CellTiter-Blue viability assay and [3H]-thymidine proliferation assay. Exposure of unstimulated mononuclear blood cells to 7 T static magnetic field alone or combined with varying gradient magnetic fields and pulsed radiofrequency fields did not induce DNA double-strand breaks, whereas irradiation with X- and γ-rays led to a dose-dependent induction of γH2AX foci. The viability assay revealed a time- and dose-dependent decrease in metabolic activity only among samples exposed to γ-radiation. Further, there was no evidence for altered proliferation response after cells were exposed to 7 T MRI or low doses of ionizing radiation (≤ 0.2 Gy). These findings confirm the acceptance of MRI as a safe non-invasive diagnostic imaging tool, but whether MRI can induce other types of DNA lesions or DNA double-strand breaks during altered conditions still needs to be investigated. PMID:26176601

  2. Chromosomal Integrity after UV Irradiation Requires FANCD2-Mediated Repair of Double Strand Breaks.

    Directory of Open Access Journals (Sweden)

    María Belén Federico

    2016-01-01

    Full Text Available Fanconi Anemia (FA is a rare autosomal recessive disorder characterized by hypersensitivity to inter-strand crosslinks (ICLs. FANCD2, a central factor of the FA pathway, is essential for the repair of double strand breaks (DSBs generated during fork collapse at ICLs. While lesions different from ICLs can also trigger fork collapse, the contribution of FANCD2 to the resolution of replication-coupled DSBs generated independently from ICLs is unknown. Intriguingly, FANCD2 is readily activated after UV irradiation, a DNA-damaging agent that generates predominantly intra-strand crosslinks but not ICLs. Hence, UV irradiation is an ideal tool to explore the contribution of FANCD2 to the DNA damage response triggered by DNA lesions other than ICL repair. Here we show that, in contrast to ICL-causing agents, UV radiation compromises cell survival independently from FANCD2. In agreement, FANCD2 depletion does not increase the amount of DSBs generated during the replication of UV-damaged DNA and is dispensable for UV-induced checkpoint activation. Remarkably however, FANCD2 protects UV-dependent, replication-coupled DSBs from aberrant processing by non-homologous end joining, preventing the accumulation of micronuclei and chromatid aberrations including non-homologous chromatid exchanges. Hence, while dispensable for cell survival, FANCD2 selectively safeguards chromosomal stability after UV-triggered replication stress.

  3. Double stranded viral RNA induces inflammation and insulin resistance in skeletal muscle from pregnant women in vitro.

    Science.gov (United States)

    Lappas, Martha

    2015-05-01

    Maternal peripheral insulin resistance and increased inflammation are two features of pregnancies complicated by pre-existing maternal obesity and gestational diabetes mellitus (GDM). There is now increasing evidence that activation of Toll-like receptor (TLR) signalling pathways by viral products may play a role in the pathophysiology of diabetes. Thus, the aim of this study was to assess the effect of the TLR3 ligand and viral dsRNA analogue polyinosinic polycytidilic acid (poly(I:C)) on inflammation and the insulin signalling pathway in skeletal muscle from pregnant women. Human skeletal muscle tissue explants were performed to determine the effect of poly(I:C) on the expression and secretion of markers of inflammation, and the insulin signalling pathway and glucose uptake. Poly(I:C) significantly increased the expression of a number of inflammatory markers in skeletal muscle from pregnant women. Specifically, there was an increase in the expression and/or secretion of the pro-inflammatory cytokines TNF-α, and IL-6 and the pro-inflammatory chemokines IL-8 and MCP-1. These effect of poly(I:C) appear to mediated via a number of signalling molecules including the pro-inflammatory transcription factor NF-κB, and the serine threonine kinases GSK3 and AMPKα. Additionally, poly(I:C) decreased insulin stimulated GLUT-4 expression and glucose uptake in skeletal muscle from pregnant women. The in vitro data presented in this study suggests that viral infection may contribute to the pathophysiology of pregnancies complicated by pre-existing maternal obesity and/or GDM. It should be noted that the in vitro studies cannot be directly used to infer the same outcomes in the intact subject. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Sequence and phylogenetic analyses of novel totivirus-like double-stranded RNAs from field-collected powdery mildew fungi.

    Science.gov (United States)

    Kondo, Hideki; Hisano, Sakae; Chiba, Sotaro; Maruyama, Kazuyuki; Andika, Ida Bagus; Toyoda, Kazuhiro; Fujimori, Fumihiro; Suzuki, Nobuhiro

    2016-02-02

    The identification of mycoviruses contributes greatly to understanding of the diversity and evolutionary aspects of viruses. Powdery mildew fungi are important and widely studied obligate phytopathogenic agents, but there has been no report on mycoviruses infecting these fungi. In this study, we used a deep sequencing approach to analyze the double-stranded RNA (dsRNA) segments isolated from field-collected samples of powdery mildew fungus-infected red clover plants in Japan. Database searches identified the presence of at least ten totivirus (genus Totivirus)-like sequences, termed red clover powdery mildew-associated totiviruses (RPaTVs). The majority of these sequences shared moderate amino acid sequence identity with each other (powdery mildew fungus populations infecting red clover plants in the field. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Bacterial and viral pathogens detected in sea turtles stranded along the coast of Tuscany, Italy.

    Science.gov (United States)

    Fichi, G; Cardeti, G; Cersini, A; Mancusi, C; Guarducci, M; Di Guardo, G; Terracciano, G

    2016-03-15

    During 2014, six loggerhead turtles, Caretta caretta and one green turtle, Chelonia mydas, found stranded on the Tuscany coast of Italy, were examined for the presence of specific bacterial and viral agents, along with their role as carriers of fish and human pathogens. Thirteen different species of bacteria, 10 Gram negative and 3 Gram positive, were identified. Among them, two strains of Vibrio parahaemolyticus and one strain of Lactococcus garviae were recovered and confirmed by specific PCR protocols. No trh and tdh genes were detected in V. parahaemolyticus. The first isolation of L. garviae and the first detection of Betanodavirus in sea turtles indicate the possibility for sea turtles to act as carriers of fish pathogens. Furthermore, the isolation of two strains of V. parahaemolyticus highlights the possible role of these animals in human pathogens' diffusion. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. DNA hybrids suggesting a recombination process repairing radiation-induced DNA double-strand breaks in Ehrlich Ascites tumor cells

    International Nuclear Information System (INIS)

    Barthel, H.R.

    1984-01-01

    The results presented suggest the possibility of repair of DNA double-strand breaks by recombination, at least in the S and G 2 -phases of the cell cycle, in mammalian cells. Further experiments with synchronized cell cultures will have to show whether this process may also occur in the G 1 -phase of the cell cycle. (orig./AJ) [de

  7. Effects of heavy ions on inactivation and DNA double strand breaks in Deinococcus radiodurans R1.

    Science.gov (United States)

    Zimmermann, H; Schafer, M; Schmitz, C; Bucker, H

    1994-10-01

    Inactivation and double strand break (dsb) induction after heavy ion irradiation were studied in stationary phase cells of the highly radiation resistant bacterium Deinococcus radiodurans R1. There is evidence that the radiation sensitivity of this bacterium is nearly independent on energy in the range of up to 15 MeV/u for lighter ions (Ar). The responses to dsb induction for charged particles show direct relationship between increasing radiation dose and residual intact DNA.

  8. SV40 Utilizes ATM Kinase Activity to Prevent Non-homologous End Joining of Broken Viral DNA Replication Products

    Science.gov (United States)

    Sowd, Gregory A.; Mody, Dviti; Eggold, Joshua; Cortez, David; Friedman, Katherine L.; Fanning, Ellen

    2014-01-01

    Simian virus 40 (SV40) and cellular DNA replication rely on host ATM and ATR DNA damage signaling kinases to facilitate DNA repair and elicit cell cycle arrest following DNA damage. During SV40 DNA replication, ATM kinase activity prevents concatemerization of the viral genome whereas ATR activity prevents accumulation of aberrant genomes resulting from breakage of a moving replication fork as it converges with a stalled fork. However, the repair pathways that ATM and ATR orchestrate to prevent these aberrant SV40 DNA replication products are unclear. Using two-dimensional gel electrophoresis and Southern blotting, we show that ATR kinase activity, but not DNA-PKcs kinase activity, facilitates some aspects of double strand break (DSB) repair when ATM is inhibited during SV40 infection. To clarify which repair factors associate with viral DNA replication centers, we examined the localization of DSB repair proteins in response to SV40 infection. Under normal conditions, viral replication centers exclusively associate with homology-directed repair (HDR) and do not colocalize with non-homologous end joining (NHEJ) factors. Following ATM inhibition, but not ATR inhibition, activated DNA-PKcs and KU70/80 accumulate at the viral replication centers while CtIP and BLM, proteins that initiate 5′ to 3′ end resection during HDR, become undetectable. Similar to what has been observed during cellular DSB repair in S phase, these data suggest that ATM kinase influences DSB repair pathway choice by preventing the recruitment of NHEJ factors to replicating viral DNA. These data may explain how ATM prevents concatemerization of the viral genome and promotes viral propagation. We suggest that inhibitors of DNA damage signaling and DNA repair could be used during infection to disrupt productive viral DNA replication. PMID:25474690

  9. SV40 utilizes ATM kinase activity to prevent non-homologous end joining of broken viral DNA replication products.

    Directory of Open Access Journals (Sweden)

    Gregory A Sowd

    2014-12-01

    Full Text Available Simian virus 40 (SV40 and cellular DNA replication rely on host ATM and ATR DNA damage signaling kinases to facilitate DNA repair and elicit cell cycle arrest following DNA damage. During SV40 DNA replication, ATM kinase activity prevents concatemerization of the viral genome whereas ATR activity prevents accumulation of aberrant genomes resulting from breakage of a moving replication fork as it converges with a stalled fork. However, the repair pathways that ATM and ATR orchestrate to prevent these aberrant SV40 DNA replication products are unclear. Using two-dimensional gel electrophoresis and Southern blotting, we show that ATR kinase activity, but not DNA-PK(cs kinase activity, facilitates some aspects of double strand break (DSB repair when ATM is inhibited during SV40 infection. To clarify which repair factors associate with viral DNA replication centers, we examined the localization of DSB repair proteins in response to SV40 infection. Under normal conditions, viral replication centers exclusively associate with homology-directed repair (HDR and do not colocalize with non-homologous end joining (NHEJ factors. Following ATM inhibition, but not ATR inhibition, activated DNA-PK(cs and KU70/80 accumulate at the viral replication centers while CtIP and BLM, proteins that initiate 5' to 3' end resection during HDR, become undetectable. Similar to what has been observed during cellular DSB repair in S phase, these data suggest that ATM kinase influences DSB repair pathway choice by preventing the recruitment of NHEJ factors to replicating viral DNA. These data may explain how ATM prevents concatemerization of the viral genome and promotes viral propagation. We suggest that inhibitors of DNA damage signaling and DNA repair could be used during infection to disrupt productive viral DNA replication.

  10. Photosensitization by iodinated DNA minor groove binding ligands: Evaluation of DNA double-strand break induction and repair.

    Science.gov (United States)

    Briggs, Benjamin; Ververis, Katherine; Rodd, Annabelle L; Foong, Laura J L; Silva, Fernando M Da; Karagiannis, Tom C

    2011-05-03

    Iodinated DNA minor groove binding bibenzimidazoles represent a unique class of UVA photosensitizer and their extreme photopotency has been previously characterized. Earlier studies have included a comparison of three isomers, referred to as ortho-, meta- and para-iodoHoechst, which differ only in the location of the iodine substituent in the phenyl ring of the bibenzimidazole. DNA breakage and clonogenic survival studies in human erythroleukemic K562 cells have highlighted the higher photo-efficiency of the ortho-isomer (subsequently designated UV(A)Sens) compared to the meta- and para-isomers. In this study, the aim was to compare the induction and repair of DNA double-strand breaks induced by the three isomers in K562 cells. Further, we examined the effects of the prototypical broad-spectrum histone deacetylase inhibitor, Trichostatin A, on ortho-iodoHoechst/UVA-induced double-strand breaks in K562 cells. Using γH2AX as a molecular marker of the DNA lesions, our findings indicate a disparity in the induction and particularly, in the repair kinetics of double-strand breaks for the three isomers. The accumulation of γH2AX foci induced by the meta- and para-isomers returned to background levels within 24 and 48 h, respectively; the number of γH2AX foci induced by ortho-iodoHoechst remained elevated even after incubation for 96 h post-irradiation. These findings provide further evidence that the extreme photopotency of ortho-iodoHoechst is due to not only to the high quantum yield of dehalogenation, but also to the severity of the DNA lesions which are not readily repaired. Finally, our findings which indicate that Trichostatin A has a remarkable potentiating effect on ortho-iodoHoechst/UVA-induced DNA lesions are encouraging, particularly in the context of cutaneous T-cell lymphoma, for which a histone deacetylase inhibitor is already approved for therapy. This finding prompts further evaluation of the potential of combination therapies. Copyright © 2011

  11. The Pacific Ocean virome (POV: a marine viral metagenomic dataset and associated protein clusters for quantitative viral ecology.

    Directory of Open Access Journals (Sweden)

    Bonnie L Hurwitz

    Full Text Available Bacteria and their viruses (phage are fundamental drivers of many ecosystem processes including global biogeochemistry and horizontal gene transfer. While databases and resources for studying function in uncultured bacterial communities are relatively advanced, many fewer exist for their viral counterparts. The issue is largely technical in that the majority (often 90% of viral sequences are functionally 'unknown' making viruses a virtually untapped resource of functional and physiological information. Here, we provide a community resource that organizes this unknown sequence space into 27 K high confidence protein clusters using 32 viral metagenomes from four biogeographic regions in the Pacific Ocean that vary by season, depth, and proximity to land, and include some of the first deep pelagic ocean viral metagenomes. These protein clusters more than double currently available viral protein clusters, including those from environmental datasets. Further, a protein cluster guided analysis of functional diversity revealed that richness decreased (i from deep to surface waters, (ii from winter to summer, (iii and with distance from shore in surface waters only. These data provide a framework from which to draw on for future metadata-enabled functional inquiries of the vast viral unknown.

  12. The Pacific Ocean virome (POV): a marine viral metagenomic dataset and associated protein clusters for quantitative viral ecology.

    Science.gov (United States)

    Hurwitz, Bonnie L; Sullivan, Matthew B

    2013-01-01

    Bacteria and their viruses (phage) are fundamental drivers of many ecosystem processes including global biogeochemistry and horizontal gene transfer. While databases and resources for studying function in uncultured bacterial communities are relatively advanced, many fewer exist for their viral counterparts. The issue is largely technical in that the majority (often 90%) of viral sequences are functionally 'unknown' making viruses a virtually untapped resource of functional and physiological information. Here, we provide a community resource that organizes this unknown sequence space into 27 K high confidence protein clusters using 32 viral metagenomes from four biogeographic regions in the Pacific Ocean that vary by season, depth, and proximity to land, and include some of the first deep pelagic ocean viral metagenomes. These protein clusters more than double currently available viral protein clusters, including those from environmental datasets. Further, a protein cluster guided analysis of functional diversity revealed that richness decreased (i) from deep to surface waters, (ii) from winter to summer, (iii) and with distance from shore in surface waters only. These data provide a framework from which to draw on for future metadata-enabled functional inquiries of the vast viral unknown.

  13. Carbon ion induced DNA double-strand breaks in melanophore B16

    International Nuclear Information System (INIS)

    Wei Zengquan; Zhou Guangming; Wang Jufang; He Jing; Li Qiang; Li Wenjian; Xie Hongmei; Cai Xichen; Tao Huang; Dang Bingrong; Han Guangwu

    1997-01-01

    DNA double-strand breaks (DSBs) in melanophore B 16 induced by plateau and extended Bragg peak of 75 MeV/u 12 C 6+ ions were studied by using a technique of inverse pulsed-field gel electrophoresis (PIGE). DNA fragment lengths were distributed in two ranges: the larger in 1.4 Mbp-3.2 Mbp and the smaller in less than 1.2 Mbp. It indicates that distribution of DNA fragments induced by heavy ion irradiation is not stochastic and there probably are sensitive sites to heavy ions in DNA molecules of B 16 . Percentage of DNA released from plug (PR) increased and trended towards a quasi-plateau ∝85% as dose increased. Content of the larger fragments decreased and flattened with increasing dose while content of the smaller ones increased and trended towards saturation. (orig.)

  14. Push back to respond better: regulatory inhibition of the DNA double-strand break response.

    Science.gov (United States)

    Panier, Stephanie; Durocher, Daniel

    2013-10-01

    Single DNA lesions such as DNA double-strand breaks (DSBs) can cause cell death or trigger genome rearrangements that have oncogenic potential, and so the pathways that mend and signal DNA damage must be highly sensitive but, at the same time, selective and reversible. When initiated, boundaries must be set to restrict the DSB response to the site of the lesion. The integration of positive and, crucially, negative control points involving post-translational modifications such as phosphorylation, ubiquitylation and acetylation is key for building fast, effective responses to DNA damage and for mitigating the impact of DNA lesions on genome integrity.

  15. Synthesis of double-stranded RNA in a virus-enriched fraction from Agaricus bisporus

    International Nuclear Information System (INIS)

    Sriskantha, A.; Wach, P.; Schlagnhaufer, B.; Romaine, C.P.

    1986-01-01

    Partially purified virus preparations from sporophores of Agaricus bisporus affected with LaFrance disease had up to a 15-fold-higher RNA-dependent RNA polymerase activity than did comparable preparations from health sporophores. Enzyme activity was dependent upon the presence of Mg 2+ and the four nucleoside triphosphates and was insensitive to actinomycin D, α-amanitin, and rifampin. The 3 H-labeled enzyme reaction products were double-stranded RNA (dsRNA) as indicated by CF-11 cellulose column chromatography and by their ionic-strength-dependent sensitivity to hydrolysis by RNase A. The principal dsRNA products had estimated molecular weights of 4.3 /times/ 10 6 and 1.4 /times/ 10 6 . Cs 2 SO 4 equilibrium centrifugation of the virus preparation resolved a single peak of RNA polymerase activity that banded with a 35-nm spherical virus particle containing dsRNAs with molecular weights of 4.3 /times/ 10 6 and 1.4 /times/ 10 6 . The data suggest that the RNA-dependent RNA polymerase associated with the 35-nm spherical virus is a replicase which catalyzes the synthesis of the genomic dsRNAs

  16. Radiation-induced DNA double strand breaks in Ehrlich ascites tumour cells and their possible effects on cell survival

    International Nuclear Information System (INIS)

    Bloecher, D.

    1981-01-01

    A method to prepare high-molecular, pure DNA with the aid of enzymes, detergents, and heat treatment is presented. A sedimentation technique with neutral density gradients has been introduced which permits mass separation and molecular mass analysis of high-molecular DNA (msub(r) 10 ). Using this method, the induction of DNA double strand breaks (DSB) in the dose range between 10 Gy [de

  17. Association of the Endobiont Double-Stranded RNA Virus LRV1 With Treatment Failure for Human Leishmaniasis Caused by Leishmania braziliensis in Peru and Bolivia.

    Science.gov (United States)

    Adaui, Vanessa; Lye, Lon-Fye; Akopyants, Natalia S; Zimic, Mirko; Llanos-Cuentas, Alejandro; Garcia, Lineth; Maes, Ilse; De Doncker, Simonne; Dobson, Deborah E; Arevalo, Jorge; Dujardin, Jean-Claude; Beverley, Stephen M

    2016-01-01

    Cutaneous and mucosal leishmaniasis, caused in South America by Leishmania braziliensis, is difficult to cure by chemotherapy (primarily pentavalent antimonials [Sb(V)]). Treatment failure does not correlate well with resistance in vitro, and the factors responsible for treatment failure in patients are not well understood. Many isolates of L. braziliensis (>25%) contain a double-stranded RNA virus named Leishmaniavirus 1 (LRV1), which has also been reported in Leishmania guyanensis, for which an association with increased pathology, metastasis, and parasite replication was found in murine models. Here we probed the relationship of LRV1 to drug treatment success and disease in 97 L. braziliensis-infected patients from Peru and Bolivia. In vitro cultures were established, parasites were typed as L. braziliensis, and the presence of LRV1 was determined by reverse transcription-polymerase chain reaction, followed by sequence analysis. LRV1 was associated significantly with an increased risk of treatment failure (odds ratio, 3.99; P = .04). There was no significant association with intrinsic Sb(V) resistance among parasites, suggesting that treatment failure arises from LRV1-mediated effects on host metabolism and/or parasite survival. The association of LRV1 with clinical drug treatment failure could serve to guide more-effective treatment of tegumentary disease caused by L. braziliensis. © The Author 2015. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  18. Recombinant Adeno-Associated Virus-Mediated microRNA Delivery into the Postnatal Mouse Brain Reveals a Role for miR-134 in Dendritogenesis in Vivo

    DEFF Research Database (Denmark)

    Christensen, Mette; Larsen, Lars A; Kauppinen, Sakari

    2010-01-01

    delivery of microRNAs in vivo by use of recombinant adeno-associated virus (rAAV). rAAV-mediated overexpression of miR-134 in neurons of the postnatal mouse brain provided evidence for a negative role of miR-134 in dendritic arborization of cortical layer V pyramidal neurons in vivo, thereby confirming...

  19. Next generation of adeno-associated virus 2 vectors: Point mutations in tyrosines lead to high-efficiency transduction at lower doses

    OpenAIRE

    Zhong, Li; Li, Baozheng; Mah, Cathryn S.; Govindasamy, Lakshmanan; Agbandje-McKenna, Mavis; Cooper, Mario; Herzog, Roland W.; Zolotukhin, Irene; Warrington, Kenneth H.; Weigel-Van Aken, Kirsten A.; Hobbs, Jacqueline A.; Zolotukhin, Sergei; Muzyczka, Nicholas; Srivastava, Arun

    2008-01-01

    Recombinant adeno-associated virus 2 (AAV2) vectors are in use in several Phase I/II clinical trials, but relatively large vector doses are needed to achieve therapeutic benefits. Large vector doses also trigger an immune response as a significant fraction of the vectors fails to traffic efficiently to the nucleus and is targeted for degradation by the host cell proteasome machinery. We have reported that epidermal growth factor receptor protein tyrosine kinase (EGFR-PTK) signaling negatively...

  20. Interspecific Transmission of Double-Stranded RNA and Hypovirulence from Sclerotinia sclerotiorum to S. minor.

    Science.gov (United States)

    Melzer, M S; Ikeda, S S; Boland, G J

    2002-07-01

    ABSTRACT Interspecific transmission of a hypovirulence-associated double-stranded RNA (dsRNA) and hypovirulent phenotype was attempted from hypovirulent isolate Ss275 of Sclerotinia sclerotiorum to five virulent isolates of S. minor. dsRNA and the hypovirulent phenotype were successfully transmitted to one of the five isolates, Sm10. Three putative converted isolates of Sm10 were slow growing and developed atypical colony morphologies characteristic of the hypovirulent phenotype. These isolates were assayed for virulence and produced significantly smaller lesions than isolate Sm10 on detached leaves of Romaine lettuce. One of these putative converted isolates, designated Sm10T, was tested to confirm interspecific transmission of dsRNA. In northern hybridizations, dsRNA isolated from Sm10T hybridized with a digoxigenin-labeled cDNA probe prepared from dsRNA isolated from Ss275. Random amplified polymorphic DNA analysis confirmed that isolate Sm10T was derived from Sm10 and not from Ss275 or a hybrid of the two species. The dsRNA and hypovirulent phenotype were subsequently transmitted intraspecifically from Sm10T to Sm8. To our knowledge, this is the first report of interspecific transmission of dsRNA and an associated hypovirulent phenotype between fungal plant pathogens by hyphal anastomosis.

  1. Intravenous administration of the adeno-associated virus-PHP.B capsid fails to upregulate transduction efficiency in the marmoset brain.

    Science.gov (United States)

    Matsuzaki, Yasunori; Konno, Ayumu; Mochizuki, Ryuta; Shinohara, Yoichiro; Nitta, Keisuke; Okada, Yukihiro; Hirai, Hirokazu

    2018-02-05

    Intravenous administration of adeno-associated virus (AAV)-PHP.B, a capsid variant of AAV9 containing seven amino acid insertions, results in a greater permeability of the blood brain barrier (BBB) than standard AAV9 in mice, leading to highly efficient and global transduction of the central nervous system (CNS). The present study aimed to examine whether the enhanced BBB penetrance of AAV-PHP.B observed in mice also occurs in non-human primates. Thus, a young adult (age, 1.6 years) and an old adult (age, 7.2 years) marmoset received an intravenous injection of AAV-PHP.B expressing enhanced green fluorescent protein (EGFP) under the control of the constitutive CBh promoter (a hybrid of cytomegalovirus early enhancer and chicken β-actin promoter). Age-matched control marmosets were treated with standard AAV9-capsid vectors. The animals were sacrificed 6 weeks after the viral injection. Based on the results, only limited transduction of neurons (0-2%) and astrocytes (0.1-2.5%) was observed in both AAV-PHP.B- and AAV9-treated marmosets. One noticeable difference between AAV-PHP.B and AAV9 was the marked transduction of the peripheral dorsal root ganglia neurons. Indeed, the soma and axons in the projection from the spinal cord to the nucleus cuneatus in the medulla oblongata were strongly labeled with EGFP by AAV-PHP.B. Thus, except for the peripheral dorsal root ganglia neurons, the AAV-PHP.B transduction efficiency in the CNS of marmosets was comparable to that of AAV9 vectors. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Scavenger receptors in human airway epithelial cells: role in response to double-stranded RNA.

    Directory of Open Access Journals (Sweden)

    Audrey Dieudonné

    Full Text Available Scavenger receptors and Toll-like receptors (TLRs cooperate in response to danger signals to adjust the host immune response. The TLR3 agonist double stranded (dsRNA is an efficient activator of innate signalling in bronchial epithelial cells. In this study, we aimed at defining the role played by scavenger receptors expressed by bronchial epithelial cells in the control of the innate response to dsRNA both in vitro and in vivo. Expression of several scavenger receptor involved in pathogen recognition was first evaluated in human bronchial epithelial cells in steady-state and inflammatory conditions. Their implication in the uptake of dsRNA and the subsequent cell activation was evaluated in vitro by competition with ligand of scavenger receptors including maleylated ovalbumin and by RNA silencing. The capacity of maleylated ovalbumin to modulate lung inflammation induced by dsRNA was also investigated in mice. Exposure to tumor necrosis factor-α increased expression of the scavenger receptors LOX-1 and CXCL16 and the capacity to internalize maleylated ovalbumin, whereas activation by TLR ligands did not. In contrast, the expression of SR-B1 was not modulated in these conditions. Interestingly, supplementation with maleylated ovalbumin limited dsRNA uptake and inhibited subsequent activation of bronchial epithelial cells. RNA silencing of LOX-1 and SR-B1 strongly blocked the dsRNA-induced cytokine production. Finally, administration of maleylated ovalbumin in mice inhibited the dsRNA-induced infiltration and activation of inflammatory cells in bronchoalveolar spaces and lung draining lymph nodes. Together, our data characterize the function of SR-B1 and LOX-1 in bronchial epithelial cells and their implication in dsRNA-induced responses, a finding that might be relevant during respiratory viral infections.

  3. Correlation between slowly repairable double-strand breaks and thermal radiosensitization in the human HeLa S3 cell line

    NARCIS (Netherlands)

    Kampinga, HH; Hiemstra, YS; Konings, AWT; Dikomey, E

    The effect of heat on double-strand breaks (dsb) repair was compared with thermal radiosensitization using HeLa S3 cells. Cells were exposed to a combined treatment of X-irradiation followed by heat (44 degrees C, 0.5 h) separated by time intervals up to 8h. DNA dsb were measured by PFGE and

  4. Combined quantum-mechanics/molecular-mechanics dynamics simulation of A-DNA double strands irradiated by ultra-low-energy carbon ions

    Energy Technology Data Exchange (ETDEWEB)

    Ngaojampa, C.; Nimmanpipug, P. [Computer Simulation and Modeling Laboratory (CSML), Department of Chemistry and Center for Innovation Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, L.D., E-mail: yuld@fnrf.science.cmu.ac.t [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Anuntalabhochai, S. [Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Lee, V.S., E-mail: vannajan@gmail.co [Computer Simulation and Modeling Laboratory (CSML), Department of Chemistry and Center for Innovation Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2011-02-15

    In order to promote understanding of the fundamentals of ultra-low-energy ion interaction with DNA, molecular dynamics simulations using combined quantum-mechanics/molecular-mechanics of poly-AT and poly-GC A-DNA double strands irradiated by <200 eV carbon ions were performed to investigate the molecular implications of mutation bias. The simulations were focused on the responses of the DNA backbones and nitrogenous bases to irradiation. Analyses of the root mean square displacements of the backbones and non-hydrogen atoms of base rings of the simulated DNA structure after irradiation revealed a potential preference of DNA double strand separation, dependent on the irradiating energy. The results show that for the backbones, the large difference in the displacement between poly-GC and poly-AT in the initial time period could be the reason for the backbone breakage; for the nitrogenous base pairs, A-T is 30% more sensitive or vulnerable to ion irradiation than G-C, demonstrating a preferential, instead of random, effect of irradiation-induced mutation.

  5. Combined quantum-mechanics/molecular-mechanics dynamics simulation of A-DNA double strands irradiated by ultra-low-energy carbon ions

    International Nuclear Information System (INIS)

    Ngaojampa, C.; Nimmanpipug, P.; Yu, L.D.; Anuntalabhochai, S.; Lee, V.S.

    2011-01-01

    In order to promote understanding of the fundamentals of ultra-low-energy ion interaction with DNA, molecular dynamics simulations using combined quantum-mechanics/molecular-mechanics of poly-AT and poly-GC A-DNA double strands irradiated by <200 eV carbon ions were performed to investigate the molecular implications of mutation bias. The simulations were focused on the responses of the DNA backbones and nitrogenous bases to irradiation. Analyses of the root mean square displacements of the backbones and non-hydrogen atoms of base rings of the simulated DNA structure after irradiation revealed a potential preference of DNA double strand separation, dependent on the irradiating energy. The results show that for the backbones, the large difference in the displacement between poly-GC and poly-AT in the initial time period could be the reason for the backbone breakage; for the nitrogenous base pairs, A-T is 30% more sensitive or vulnerable to ion irradiation than G-C, demonstrating a preferential, instead of random, effect of irradiation-induced mutation.

  6. The Ku heterodimer and the metabolism of single-ended DNA double-strand breaks.

    Science.gov (United States)

    Balestrini, Alessia; Ristic, Dejan; Dionne, Isabelle; Liu, Xiao Z; Wyman, Claire; Wellinger, Raymund J; Petrini, John H J

    2013-06-27

    Single-ended double-strand breaks (DSBs) are a common form of spontaneous DNA break, generated when the replisome encounters a discontinuity in the DNA template. Given their prevalence, understanding the mechanisms governing the fate(s) of single-ended DSBs is important. We describe the influence of the Ku heterodimer and Mre11 nuclease activity on processing of single-ended DSBs. Separation-of-function alleles of yku70 were derived that phenocopy Ku deficiency with respect to single-ended DSBs but remain proficient for NHEJ. The Ku mutants fail to regulate Exo1 activity, and bypass the requirement for Mre11 nuclease activity in the repair of camptothecin-induced single-ended DSBs. Ku mutants exhibited reduced affinity for DNA ends, manifest as both reduced end engagement and enhanced probability of diffusing inward on linear DNA. This study reveals an interplay between Ku and Mre11 in the metabolism of single-ended DSBs that is distinct from repair pathway choice at double-ended DSBs. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Influence of different iodinated contrast media on the induction of DNA double-strand breaks after in vitro X-ray irradiation.

    Science.gov (United States)

    Deinzer, Christoph K W; Danova, Daniela; Kleb, Beate; Klose, Klaus J; Heverhagen, Johannes T

    2014-01-01

    The objective of this work was to examine differences in DNA double-strand break induction in peripheral blood lymphocytes after in vitro X-ray irradiation between iodinated contrast agents. Four different iodinated X-ray contrast agents--three of them with two different iodine concentrations--and mannitol (negative control; concentration of 150 mg mannitol per ml blood) were pipetted into blood samples so that there was a concentration of 0, 7.5 or 15 mg of iodine per ml blood in the samples. Negative controls without contrast medium (0 mg of iodine per ml blood) were also processed for every irradiation dose. The tubes were exposed to 0, 20 or 500 mGy in vitro X-ray irradiation. After that, the lymphocytes were separated by using density-gradient centrifugation. Fluorescence microscopy was applied to determine the average number of γH2AX-foci per lymphocyte in the presence or absence of different contrast media or mannitol. Differences in the number of γH2AX-foci were statistically analysed by one-way ANOVA and post-hoc Tukey's honestly significant difference test. Iodinated contrast agents led to a statistically significant increase in DNA double-strand breaks after in vitro irradiation. This effect increased statistically significant with rising radiation dose and appeared independent of the contrast agent used (iopromid, iodixanol, iomeprol, iopamidol). A statistically significant difference in DNA damage between the different tested contrast agents was not found. Therefore, the increase in DNA double-strand breaks depends solely on the amount of iodine applied. For evaluation of clinical consequences, our findings could be tested in further animal studies. Copyright © 2014 John Wiley & Sons, Ltd.

  8. Evidence for induction of DNA double strand breaks in the bystander response to targeted soft X-rays in CHO cells

    International Nuclear Information System (INIS)

    Kashino, Genro; Prise, Kevin M.; Schettino, Giuseppe; Folkard, Melvyn; Vojnovic, Borivoj; Michael, Barry D.; Suzuki, Keiji; Kodama, Seiji; Watanabe, Masami

    2004-01-01

    This study investigated the role of DNA double strand breaks and DNA base damage in radiation-induced bystander responses in Chinese hamster ovary (CHO) cell lines. Two CHO repair-deficient clones, xrs5 (DNA double strand break repair-deficient) and EM9 (DNA base excision repair-deficient) were used in addition to the wild type (CHO). The Gray Cancer Institute ultrasoft X-ray microprobe is a powerful tool for investigating the bystander response, because it permits the irradiation of only a single nucleus of a cell, as reported previously. In order to investigate the bystander effect in each repair-deficient cell line, we irradiated a single cell within a population and scored the formation of micronuclei. When a single nucleus in the population was targeted with 1 Gy, elevated numbers of micronuclei were induced in the neighbouring unirradiated cells in the EM9 and xrs5 cell lines, whereas induction was not observed in CHO. The induction of micronuclei in xrs5 was significantly higher than that in EM9. Under these conditions, the surviving fraction in the neighbouring cells was significantly lower in xrs5 than in the other cell lines, showing a higher cell killing effect in xrs5. To confirm that bystander factors secreted from irradiated cells caused these effects, we carried out medium transfer experiments using conventional X-irradiation. Medium conditioned for 24 h with irradiated cells was transferred to unirradiated cells and elevated induction of micronuclei was observed in xrs5. These results suggest that DNA double strand breaks rather than base damage are caused by factors secreted in the medium from irradiated cells

  9. A Co-Opted DEAD-Box RNA helicase enhances tombusvirus plus-strand synthesis.

    Directory of Open Access Journals (Sweden)

    Nikolay Kovalev

    2012-02-01

    Full Text Available Replication of plus-strand RNA viruses depends on recruited host factors that aid several critical steps during replication. In this paper, we show that an essential translation factor, Ded1p DEAD-box RNA helicase of yeast, directly affects replication of Tomato bushy stunt virus (TBSV. To separate the role of Ded1p in viral protein translation from its putative replication function, we utilized a cell-free TBSV replication assay and recombinant Ded1p. The in vitro data show that Ded1p plays a role in enhancing plus-strand synthesis by the viral replicase. We also find that Ded1p is a component of the tombusvirus replicase complex and Ded1p binds to the 3'-end of the viral minus-stranded RNA. The data obtained with wt and ATPase deficient Ded1p mutants support the model that Ded1p unwinds local structures at the 3'-end of the TBSV (-RNA, rendering the RNA compatible for initiation of (+-strand synthesis. Interestingly, we find that Ded1p and glyceraldehyde-3-phosphate dehydrogenase (GAPDH, which is another host factor for TBSV, play non-overlapping functions to enhance (+-strand synthesis. Altogether, the two host factors enhance TBSV replication synergistically by interacting with the viral (-RNA and the replication proteins. In addition, we have developed an in vitro assay for Flock house virus (FHV, a small RNA virus of insects, that also demonstrated positive effect on FHV replicase activity by the added Ded1p helicase. Thus, two small RNA viruses, which do not code for their own helicases, seems to recruit a host RNA helicase to aid their replication in infected cells.

  10. DNA double-strand break and apoptosis induction in human lymphocytes in different cycle cell phases by 60Co gamma rays and Bragg peak protons of a medical beam

    International Nuclear Information System (INIS)

    Khachenkova, A.A.; Boreyko, A.V.; Mozhaeva, A.V.; Chausov, V.N.; Ravnachka, I.I.; Amov, I.; Tiunchik, S.I.

    2009-01-01

    A comparative analysis is made of the regularities in the formation of DNA double-strand break and apoptosis induction in peripheral human blood lymphocytes in different cell cycle phases after 60 Co gamma and extended Bragg peak proton irradiation. It is shown that the formation of apoptotic cells in a lymphocyte population increases linearly in all the cell cycle stages after proton irradiation. The maximal DNA double-strand break and apoptosis yield in lymphocytes is observed in the S phase of the cell cycle

  11. Comparison of the oxygen enhancement ratio for γ-ray-induced double-strand breaks in the DNA of bacteriophage T7 as determined by two different methods of analysis

    International Nuclear Information System (INIS)

    Schans, G.P. van der; Drift, A.C.M. van der.

    1975-01-01

    Bacteriophage T7 was irradiated in a protecting medium under nitrogen and oxygen with 60 Co gamma rays. Double-strand breaks were measured by sucrose gradient sedimentation and by boundary sedimentation analysis. Both methods showed that the presence of oxygen during irradiation enhances the production of double-strand breaks. This is in contrast to a recent report which suggests that boundary sedimentation analysis does not show the effect of oxygen. The discrepancy must be ascribed to differences in the interpretation of the sedimentation data

  12. Accelerated heavy ions induced DNA double-strand breaks in yeast cells

    International Nuclear Information System (INIS)

    Akpa, T.C.

    1993-01-01

    Yeast cells of strain cerevisiae, were irradiated with monoenergetic heavy ions, X-rays and α particles and assayed for DNA double-strand breaks and cell survival. The method of neutral sucrose gradient velocity sedimentation was used for all heavy-ion experiments because it is a well established technique.The method of pulsed-field gel electrophoresis was used for X-rays, α particles and argon ions. Results show that within the range of LET of the particles used (300 - 10 5 KeV/μm) the induction cross-section for DNA double-strand break is constant between 300 and around 7000 KeV/μm and increases at higher LET values. The inactivation cross-section follow the same trend. The DSB-induction and inactivation cross-section was shown to be linearly related with a slope of (1.01±0.15)/109 gmol-i. The RBE for DSB -induced decreases with LET and tails off at high LET values also. These results when compared with results from literature shows that the trend of induction is first monotonic rise of rate of DSB-induction up to 100keV/μm, followed by a plateau and a further rise which is due to increased effect of energetic γ-rays formed as shown for survival studies and predicted is possible to separate the cell DNA contents into 13 to 15 chromosome bands. The relative decrease in DNA content of the first band as determined by ethidium bromide-UV fluorescence decreases exponentially. The cross-section for DSB-induction determined by this method are (9.8±0.01)dsb/10 12 gmol - 1 Gy - 1, for 80 kV X-rays in haploid 211 yeast strain; (0.04+0.003)dsb/109gmol - 1μm 2 for Am-radioisotope α particles in haploid cells, (0.184±0.034) dsb/10 9 gmol - 1μm 2 in diploid 211*B cells and (0.55±0.04) dsb/10 9 gmol - 1μm 2 for 7MeV Argon ion in the diploid cells. The values are comparable to those obtained with velocity sedimentation technique. However, the reason for the low value obtained for a particle induced DSB in haploid cells is not clear

  13. UVA-induced DNA double-strand breaks result from the repair of clustered oxidative DNA damages

    Science.gov (United States)

    Greinert, R.; Volkmer, B.; Henning, S.; Breitbart, E. W.; Greulich, K. O.; Cardoso, M. C.; Rapp, Alexander

    2012-01-01

    UVA (320–400 nm) represents the main spectral component of solar UV radiation, induces pre-mutagenic DNA lesions and is classified as Class I carcinogen. Recently, discussion arose whether UVA induces DNA double-strand breaks (dsbs). Only few reports link the induction of dsbs to UVA exposure and the underlying mechanisms are poorly understood. Using the Comet-assay and γH2AX as markers for dsb formation, we demonstrate the dose-dependent dsb induction by UVA in G1-synchronized human keratinocytes (HaCaT) and primary human skin fibroblasts. The number of γH2AX foci increases when a UVA dose is applied in fractions (split dose), with a 2-h recovery period between fractions. The presence of the anti-oxidant Naringin reduces dsb formation significantly. Using an FPG-modified Comet-assay as well as warm and cold repair incubation, we show that dsbs arise partially during repair of bi-stranded, oxidative, clustered DNA lesions. We also demonstrate that on stretched chromatin fibres, 8-oxo-G and abasic sites occur in clusters. This suggests a replication-independent formation of UVA-induced dsbs through clustered single-strand breaks via locally generated reactive oxygen species. Since UVA is the main component of solar UV exposure and is used for artificial UV exposure, our results shine new light on the aetiology of skin cancer. PMID:22941639

  14. Force-induced rupture of double-stranded DNA in the absence and presence of covalently bonded anti-tumor drugs: Insights from molecular dynamics simulations

    Science.gov (United States)

    Upadhyaya, Anurag; Nath, Shesh; Kumar, Sanjay

    2018-06-01

    DNA intra-strand cross-link (ICL) agents are widely used in the treatment of cancer. ICLs are thought to form a link between the same strand (intra-strand) or complimentary strand (inter-strand) and thereby increase the stability of DNA, which forbids the processes like replication and transcription. As a result, cell death occurs. In this work, we have studied the enhanced stability of a double stranded DNA in the presence of ICLs and compared our findings with the results obtained in the absence of these links. Using atomistic simulations with explicit solvent, a force is applied along and perpendicular to the direction of the helix and we measured the rupture force and the unzipping force of DNA-ICL complexes. Our results show that the rupture and the unzipping forces increase significantly in the presence of these links. The ICLs bind to the minor groove of DNA, which enhance the DNA stabilisation. Such information may be used to design alternative drugs that can stall replication and transcription that are critical to a growing number of anticancer drug discovery efforts.

  15. Human cytomegalovirus uracil DNA glycosylase associates with ppUL44 and accelerates the accumulation of viral DNA

    Directory of Open Access Journals (Sweden)

    Dixon Melissa

    2005-07-01

    Full Text Available Abstract Background Human cytomegalovirus UL114 encodes a uracil-DNA glycosylase homolog that is highly conserved in all characterized herpesviruses that infect mammals. Previous studies demonstrated that the deletion of this nonessential gene delays significantly the onset of viral DNA synthesis and results in a prolonged replication cycle. The gene product, pUL114, also appears to be important in late phase DNA synthesis presumably by introducing single stranded breaks. Results A series of experiments was performed to formally assign the observed phenotype to pUL114 and to characterize the function of the protein in viral replication. A cell line expressing pUL114 complemented the observed phenotype of a UL114 deletion virus in trans, confirming that the observed defects were the result of a deficiency in this gene product. Stocks of recombinant viruses without elevated levels of uracil were produced in the complementing cells; however they retained the phenotype of poor growth in normal fibroblasts suggesting that poor replication was unrelated to uracil content of input genomes. Recombinant viruses expressing epitope tagged versions of this gene demonstrated that pUL114 was expressed at early times and that it localized to viral replication compartments. This protein also coprecipitated with the DNA polymerase processivity factor, ppUL44 suggesting that these proteins associate in infected cells. This apparent interaction did not appear to require other viral proteins since ppUL44 could recruit pUL114 to the nucleus in uninfected cells. An analysis of DNA replication kinetics revealed that the initial rate of DNA synthesis and the accumulation of progeny viral genomes were significantly reduced compared to the parent virus. Conclusion These data suggest that pUL114 associates with ppUL44 and that it functions as part of the viral DNA replication complex to increase the efficiency of both early and late phase viral DNA synthesis.

  16. Induction of sustained hypercholesterolemia by single adeno-associated virus-mediated gene transfer of mutant hPCSK9.

    Science.gov (United States)

    Roche-Molina, Marta; Sanz-Rosa, David; Cruz, Francisco M; García-Prieto, Jaime; López, Sergio; Abia, Rocío; Muriana, Francisco J G; Fuster, Valentín; Ibáñez, Borja; Bernal, Juan A

    2015-01-01

    Patients with mutations in the proprotein convertase subtilisin/kexin type 9 (PCSK9) gene have hypercholesterolemia and are at high risk of adverse cardiovascular events. We aimed to stably express the pathological human D374Y gain-of-function mutant form of PCSK9 (PCSK9(DY)) in adult wild-type mice to generate a hyperlipidemic and proatherogenic animal model, achieved with a single systemic injection with adeno-associated virus (AAV). We constructed an AAV-based vector to support targeted transfer of the PCSK9(DY) gene to liver. After injection with 3.5×10(10) viral particles, mice in the C57BL/6J, 129/SvPasCrlf, or FVB/NCrl backgrounds developed long-term hyperlipidemia with a strong increase in serum low-density lipoprotein. Macroscopic and histological analysis showed atherosclerotic lesions in the aortas of AAV-PCSK9(DY) mice fed a high-fat-diet. Advanced lesions in these high-fat-diet-fed mice also showed evidence of macrophage infiltration and fibrous cap formation. Hepatic AAV-PCSK9(DY) infection did not result in liver damage or signs of immunologic response. We further tested the use of AAV-PCSK9(DY) to study potential genetic interaction with the ApoE gene. Histological analysis of ApoE(-/-) AAV-PCSK9(DY) mice showed a synergistic response to ApoE deficiency, with aortic lesions twice as extensive in ApoE(-/-) AAV-PCSK9(DY)-transexpressing mice as in ApoE(-/-) AAV-Luc controls without altering serum cholesterol levels. Single intravenous AAV-PCSK9(DY) injection is a fast, easy, and cost-effective approach, resulting in rapid and long-term sustained hyperlipidemia and atherosclerosis. We demonstrate as a proof of concept the synergy between PCSK9(DY) gain-of-function and ApoE deficiency. This methodology could allow testing of the genetic interaction of several mutations without the need for complex and time-consuming backcrosses. © 2014 American Heart Association, Inc.

  17. Rapid Recruitment of BRCA1 to DNA Double-Strand Breaks Is Dependent on Its Association with Ku80▿ †

    Science.gov (United States)

    Wei, Leizhen; Lan, Li; Hong, Zehui; Yasui, Akira; Ishioka, Chikashi; Chiba, Natsuko

    2008-01-01

    BRCA1 is the first susceptibility gene to be linked to breast and ovarian cancers. Although mounting evidence has indicated that BRCA1 participates in DNA double-strand break (DSB) repair pathways, its precise mechanism is still unclear. Here, we analyzed the in situ response of BRCA1 at DSBs produced by laser microirradiation. The amino (N)- and carboxyl (C)-terminal fragments of BRCA1 accumulated independently at DSBs with distinct kinetics. The N-terminal BRCA1 fragment accumulated immediately after laser irradiation at DSBs and dissociated rapidly. In contrast, the C-terminal fragment of BRCA1 accumulated more slowly at DSBs but remained at the sites. Interestingly, rapid accumulation of the BRCA1 N terminus, but not the C terminus, at DSBs depended on Ku80, which functions in the nonhomologous end-joining (NHEJ) pathway, independently of BARD1, which binds to the N terminus of BRCA1. Two small regions in the N terminus of BRCA1 independently accumulated at DSBs and interacted with Ku80. Missense mutations found within the N terminus of BRCA1 in cancers significantly changed the kinetics of its accumulation at DSBs. A P142H mutant failed to associate with Ku80 and restore resistance to irradiation in BRCA1-deficient cells. These might provide a molecular basis of the involvement of BRCA1 in the NHEJ pathway of the DSB repair process. PMID:18936166

  18. Single-Molecule Manipulation of Double-Stranded DNA Using Optical Tweezers: Interaction Studies of DNA with RecA and YOYO-1

    NARCIS (Netherlands)

    Bennink, Martin L.; Scharer, Orlando D.; Kanaar, Ronald; Sakata-Sogawa, Kumiko; Schins, J.M.; Kanger, Johannes S.; de Grooth, B.G.; Greve, Jan

    1999-01-01

    By using optical tweezers and a specially designed flow cell with an integrated glass micropipette, we constructed a setup similar to that of Smith et al. (Science 271:795-799, 1996) in which an individual double-stranded DNA (dsDNA) molecule can be captured between two polystyrene beads. The first

  19. Structural features in the HIV-1 repeat region facilitate strand transfer during reverse transcription

    NARCIS (Netherlands)

    Berkhout, B.; Vastenhouw, N. L.; Klasens, B. I.; Huthoff, H.

    2001-01-01

    Two obligatory DNA strand transfers take place during reverse transcription of a retroviral RNA genome. The first strand transfer is facilitated by terminal repeat (R) elements in the viral genome. This strand-transfer reaction depends on base pairing between the cDNA of the 5'R and the 3'R. There

  20. Induction and repair of DNA double-strand breaks in rat cerebellar cortex exposed to 60Co γ-rays

    Science.gov (United States)

    Bulanova, T. S.; Zadneprianetc, M. G.; Ježková, L.; Kruglyakova, E. A.; Smirnova, E. V.; Boreyko, A. V.

    2018-01-01

    The induction and repair of DNA double-strand breaks are studied using the immunohistochemical staining procedure of paraffin-embedded rat cerebellum tissues after exposure to γ-rays of 60Co. The dose dependence of radiation-induced colocalized γH2AX/53BP1 foci is studied and its linear character is established. It is shown that these foci are efficiently eliminated 24 h after irradiation.

  1. Induction of immunity to antigens expressed by recombinant adeno-associated virus depends on the route of administration.

    Science.gov (United States)

    Brockstedt, D G; Podsakoff, G M; Fong, L; Kurtzman, G; Mueller-Ruchholtz, W; Engleman, E G

    1999-07-01

    Recombinant adeno-associated virus (rAAV) is a replication-defective parvovirus which is being explored as a vector for gene therapy because of its broad host range, excellent safety profile, and durable transgene expression in infected hosts. rAAV has also been reported by several groups to induce little or no immune response to its encoded transgene products. In this study we examined the immunogenicity of rAAV by studying the immune response of C57BL/6 mice to a single dose of rAAV-encoding ovalbumin (AAV-Ova) administered by a variety of routes. Mice injected with AAV-Ova intraperitoneally (ip), intravenously, or subcutaneously developed potent ovalbumin-specific cytotoxic T lymphocytes (CTL) as well as anti-ovalbumin antibodies and antibodies to AAV. In contrast, mice injected with AAV-Ova intramuscularly developed a humoral response to the virus and the transgene but minimal ovalbumin-specific CTLs. The induced CTL response after ip administration of AAV-Ova protected mice against a subsequent tumor challenge with an ovalbumin-transfected B16 melanoma cell line. Studies of the mechanism by which AAV-Ova induces CTL confirmed that the virus delivers the transgene product into the classical MHC class I pathway of antigen processing. Mice that previously had been exposed to rAAV vectors failed to develop ovalbumin-specific CTL following administration of AAV-Ova. Analysis of these mice revealed the presence of circulating anti-AAV antibodies that blocked rAAV transduction in vitro and inhibited CTL induction in vivo. These results suggest a possible role for rAAV in the immunotherapy of malignancies and viral infections, although induced antibody responses to AAV may limit its ability to be administered for repeated vaccinations. Copyright 1999 Academic Press.

  2. Factors influencing recombinant adeno-associated virus production.

    Science.gov (United States)

    Salvetti, A; Orève, S; Chadeuf, G; Favre, D; Cherel, Y; Champion-Arnaud, P; David-Ameline, J; Moullier, P

    1998-03-20

    Recombinant adeno-associated virus (rAAV) is produced by transfecting cells with two constructs: the rAAV vector plasmid and the rep-cap plasmid. After subsequent adenoviral infection, needed for rAAV replication and assembly, the virus is purified from total cell lysates through CsCl gradients. Because this is a long and complex procedure, the precise titration of rAAV stocks, as well as the measure of the level of contamination with adenovirus and rep-positive AAV, are essential to evaluate the transduction efficiency of these vectors in vitro and in vivo. Our vector core is in charge of producing rAAV for outside investigators as part of a national network promoted by the Association Française contre les Myopathies/Généthon. We report here the characterization of 18 large-scale rAAV stocks produced during the past year. Three major improvements were introduced and combined in the rAAV production procedure: (i) the titration and characterization of rAAV stocks using a stable rep-cap HeLa cell line in a modified Replication Center Assay (RCA); (ii) the use of different rep-cap constructs to provide AAV regulatory and structural proteins; (iii) the use of an adenoviral plasmid to provide helper functions needed for rAAV replication and assembly. Our results indicate that: (i) rAAV yields ranged between 10(11) to 5 x 10(12) total particles; (ii) the physical particle to infectious particle (measured by RCA) ratios were consistently below 50 when using a rep-cap plasmid harboring an ITR-deleted AAV genome; the physical particle to transducing particle ratios ranged between 400 and 600; (iii) the use of an adenoviral plasmid instead of an infectious virion did not affect the particles or the infectious particles yields nor the above ratio. Most of large-scale rAAV stocks (7/9) produced using this plasmid were free of detectable infectious adenovirus as determined by RCA; (iv) all the rAAV stocks were contaminated with rep-positive AAV as detected by RCA. In summary

  3. Lipofection of purified adeno-associated virus Rep68 protein: toward a chromosome-targeting nonviral particle.

    Science.gov (United States)

    Lamartina, S; Roscilli, G; Rinaudo, D; Delmastro, P; Toniatti, C

    1998-09-01

    Adeno-associated virus (AAV) integrates very efficiently into a specific site (AAVS1) of human chromosome 19. Two elements of the AAV genome are sufficient: the inverted terminal repeats (ITRs) and the Rep78 or Rep68 protein. The incorporation of the AAV integration machinery in nonviral delivery systems is of great interest for gene therapy. We demonstrate that purified recombinant Rep68 protein is functionally active when directly delivered into human cells by using the polycationic liposome Lipofectamine, promoting the rescue-replication of a codelivered ITR-flanked cassette in adenovirus-infected cells and its site-specific integration in noninfected cells. The sequencing of cloned virus-host DNA junctions confirmed that lipofected Rep68 protein triggers site-specific integration at the same sites in chromosome 19 already characterized in cells latently infected with AAV.

  4. Treatment of lysosomal storage disease in MPS VII mice using a recombinant adeno-associated virus.

    Science.gov (United States)

    Watson, G L; Sayles, J N; Chen, C; Elliger, S S; Elliger, C A; Raju, N R; Kurtzman, G J; Podsakoff, G M

    1998-12-01

    Mucopolysaccharidosis type VII (MPS VII) is a lysosomal storage disease caused by a genetic deficiency of beta-glucuronidase (GUS). We used a recombinant adeno-associated virus vector (AAV-GUS) to deliver GUS cDNA to MPS VII mice. The route of vector administration had a dramatic effect on the extent and distribution of GUS activity. Intramuscular injection of AAV-GUS resulted in high, localized production of GUS, while intravenous administration produced low GUS activity in several tissues. This latter treatment of MPS VII mice reduced glycosaminoglycan levels in the liver to normal and reduced storage granules dramatically. We show that a single administration of AAV-GUS can provide sustained expression of GUS in a variety of cell types and is sufficient to reverse the disease phenotype at least in the liver.

  5. Immediate and repair induced DNA double strand breaks in mammalian cells

    International Nuclear Information System (INIS)

    Bryant, P.E.

    1986-01-01

    It seems logical to postulate that double strand breaks (dsb) arising both at the time of irradiation and via repair processes are potentially equally damaging for a cell in terms of the potential to induce chromosomal aberrations. However, in some cell systems the repair of double es or es-ssb sites may run concurrently with the incision so that these lesions do not remain open for long: hence the lack of accumulation of dsb during repair. The rate of incision will thus determine both the accumulation and the probability of exchanges leading to chromosomal aberrations between these and other frank dsb. Rapid incision leading to a large additional pool of dsb appears to be the case in Chinese hamster V79 cells. Some evidence also exists for the conversion of base damage, via dsb, into deletion type chromatid aberrations which accumulate in irradiated G2 human cells treated with ara C. A small fraction of dsb, probably arising both at the time of irradiation as well as enzymatically during repair of base or sugar damage, appears to be either left unrepaired, yielding deletion type chromosomal aberrations, or is misrepaired, yielding exchange aberrations. The induction of these aberrations appears to be of central importance in the biological effects of ionizing radiation such as mutations, oncogenic transformation, and cell death. 52 refs., 5 figs

  6. The basic tilted helix bundle domain of the prolyl isomerase FKBP25 is a novel double-stranded RNA binding module

    Science.gov (United States)

    Dilworth, David; Bonnafous, Pierre; Edoo, Amiirah Bibi; Bourbigot, Sarah; Pesek-Jardim, Francy; Gudavicius, Geoff; Serpa, Jason J.; Petrotchenko, Evgeniy V.; Borchers, Christoph H.

    2017-01-01

    Abstract Prolyl isomerases are defined by a catalytic domain that facilitates the cis–trans interconversion of proline residues. In most cases, additional domains in these enzymes add important biological function, including recruitment to a set of protein substrates. Here, we report that the N-terminal basic tilted helix bundle (BTHB) domain of the human prolyl isomerase FKBP25 confers specific binding to double-stranded RNA (dsRNA). This binding is selective over DNA as well as single-stranded oligonucleotides. We find that FKBP25 RNA-association is required for its nucleolar localization and for the vast majority of its protein interactions, including those with 60S pre-ribosome and early ribosome biogenesis factors. An independent mobility of the BTHB and FKBP catalytic domains supports a model by which the N-terminus of FKBP25 is anchored to regions of dsRNA, whereas the FKBP domain is free to interact with neighboring proteins. Apart from the identification of the BTHB as a new dsRNA-binding module, this domain adds to the growing list of auxiliary functions used by prolyl isomerases to define their primary cellular targets. PMID:29036638

  7. The Clustered, Regularly Interspaced, Short Palindromic Repeats-associated Endonuclease 9 (CRISPR/Cas9)-created MDM2 T309G Mutation Enhances Vitreous-induced Expression of MDM2 and Proliferation and Survival of Cells.

    Science.gov (United States)

    Duan, Yajian; Ma, Gaoen; Huang, Xionggao; D'Amore, Patricia A; Zhang, Feng; Lei, Hetian

    2016-07-29

    The G309 allele of SNPs in the mouse double minute (MDM2) promoter locus is associated with a higher risk of cancer and proliferative vitreoretinopathy (PVR), but whether SNP G309 contributes to the pathogenesis of PVR is to date unknown. The clustered regularly interspaced short palindromic repeats (CRISPR)-associated endonuclease (Cas) 9 from Streptococcus pyogenes (SpCas9) can be harnessed to manipulate a single or multiple nucleotides in mammalian cells. Here we delivered SpCas9 and guide RNAs using dual adeno-associated virus-derived vectors to target the MDM2 genomic locus together with a homologous repair template for creating the mutation of MDM2 T309G in human primary retinal pigment epithelial (hPRPE) cells whose genotype is MDM2 T309T. The next-generation sequencing results indicated that there was 42.51% MDM2 G309 in the edited hPRPE cells using adeno-associated viral CRISPR/Cas9. Our data showed that vitreous induced an increase in MDM2 and subsequent attenuation of p53 expression in MDM2 T309G hPRPE cells. Furthermore, our experimental results demonstrated that MDM2 T309G in hPRPE cells enhanced vitreous-induced cell proliferation and survival, suggesting that this SNP contributes to the pathogenesis of PVR. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Quantification and genome-wide mapping of DNA double-strand breaks.

    Science.gov (United States)

    Grégoire, Marie-Chantal; Massonneau, Julien; Leduc, Frédéric; Arguin, Mélina; Brazeau, Marc-André; Boissonneault, Guylain

    2016-12-01

    DNA double-strand breaks (DSBs) represent a major threat to the genetic integrity of the cell. Knowing both their genome-wide distribution and number is important for a better assessment of genotoxicity at a molecular level. Available methods may have underestimated the extent of DSBs as they are based on markers specific to those undergoing active repair or may not be adapted for the large diversity of naturally occurring DNA ends. We have established conditions for an efficient first step of DNA nick and gap repair (NGR) allowing specific determination of DSBs by end labeling with terminal transferase. We used DNA extracted from HeLa cells harboring an I-SceI cassette to induce a targeted nick or DSB and demonstrated by immunocapture of 3'-OH that a prior step of NGR allows specific determination of loci-specific or genome wide DSBs. This method can be applied to the global determination of DSBs using radioactive end labeling and can find several applications aimed at understanding the distribution and kinetics of DSBs formation and repair. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Viral metagenomics: Analysis of begomoviruses by illumina high-throughput sequencing

    KAUST Repository

    Idris, Ali; Al-Saleh, Mohammed; Piatek, Marek J.; Al-Shahwan, Ibrahim; Ali, Shahjahan; Brown, Judith K.

    2014-01-01

    Traditional DNA sequencing methods are inefficient, lack the ability to discern the least abundant viral sequences, and ineffective for determining the extent of variability in viral populations. Here, populations of single-stranded DNA plant

  10. Single helically folded aromatic oligoamides that mimic the charge surface of double-stranded B-DNA

    Science.gov (United States)

    Ziach, Krzysztof; Chollet, Céline; Parissi, Vincent; Prabhakaran, Panchami; Marchivie, Mathieu; Corvaglia, Valentina; Bose, Partha Pratim; Laxmi-Reddy, Katta; Godde, Frédéric; Schmitter, Jean-Marie; Chaignepain, Stéphane; Pourquier, Philippe; Huc, Ivan

    2018-05-01

    Numerous essential biomolecular processes require the recognition of DNA surface features by proteins. Molecules mimicking these features could potentially act as decoys and interfere with pharmacologically or therapeutically relevant protein-DNA interactions. Although naturally occurring DNA-mimicking proteins have been described, synthetic tunable molecules that mimic the charge surface of double-stranded DNA are not known. Here, we report the design, synthesis and structural characterization of aromatic oligoamides that fold into single helical conformations and display a double helical array of negatively charged residues in positions that match the phosphate moieties in B-DNA. These molecules were able to inhibit several enzymes possessing non-sequence-selective DNA-binding properties, including topoisomerase 1 and HIV-1 integrase, presumably through specific foldamer-protein interactions, whereas sequence-selective enzymes were not inhibited. Such modular and synthetically accessible DNA mimics provide a versatile platform to design novel inhibitors of protein-DNA interactions.

  11. A quantitative model of the major pathways for radiation-induced DNA double-strand break repair

    International Nuclear Information System (INIS)

    Belov, O.V.; Krasavin, E.A.; Lyashko, M.S.; Batmunkh, M.; Sweilam, N.H.

    2014-01-01

    We have developed a model approach to simulate the major pathways of DNA double-strand break (DSB) repair in mammalian and human cells. The proposed model shows a possible mechanistic explanation of the basic regularities of DSB processing through the nonhomologous end-joining (NHEJ), homologous recombination (HR), and single-strand annealing (SSA). It reconstructs the time-courses of radiation-induced foci specific to particular repair processes including the major intermediate stages. The model is validated for ionizing radiations of a wide range of linear energy transfer (0.2-236 keV/μm) including a relatively broad spectrum of heavy ions. The appropriate set of reaction rate constants was suggested to satisfy the kinetics of DSB rejoining for the considered types of exposure. The simultaneous assessment of three repair pathways allows one to describe their possible biological relations in response to radiation. With the help of the proposed approach, we reproduce several experimental data sets on γ-H2AX foci remaining in different types of cells including those defective in NHEJ, HR, or SSA functions.

  12. Contribution of sleep to the repair of neuronal DNA double-strand breaks: evidence from flies and mice.

    Science.gov (United States)

    Bellesi, Michele; Bushey, Daniel; Chini, Mattia; Tononi, Giulio; Cirelli, Chiara

    2016-11-10

    Exploration of a novel environment leads to neuronal DNA double-strand breaks (DSBs). These DSBs are generated by type 2 topoisomerase to relieve topological constrains that limit transcription of plasticity-related immediate early genes. If not promptly repaired, however, DSBs may lead to cell death. Since the induction of plasticity-related genes is higher in wake than in sleep, we asked whether it is specifically wake associated with synaptic plasticity that leads to DSBs, and whether sleep provides any selective advantage over wake in their repair. In flies and mice, we find that enriched wake, more than simply time spent awake, induces DSBs, and their repair in mice is delayed or prevented by subsequent wake. In both species the repair of irradiation-induced neuronal DSBs is also quicker during sleep, and mouse genes mediating the response to DNA damage are upregulated in sleep. Thus, sleep facilitates the repair of neuronal DSBs.

  13. Crystallographic and Modeling Studies of RNase III Suggest a Mechanism for Double-Stranded RNA Cleavage | Center for Cancer Research

    Science.gov (United States)

    Background: Ribonuclease III belongs to the family of Mg2+-dependent endonucleases that show specificity for double-stranded RNA (dsRNA). RNase III is conserved in all known bacteria and eukaryotes and has 1–2 copies of a 9-residue consensus sequence, known as the RNase III signature motif. The bacterial RNase III proteins are the simplest, consisting of two domains: an

  14. Viral-bacterial associations in acute apical abscesses.

    Science.gov (United States)

    Ferreira, Dennis C; Rôças, Isabela N; Paiva, Simone S M; Carmo, Flávia L; Cavalcante, Fernanda S; Rosado, Alexandre S; Santos, Kátia R N; Siqueira, José F

    2011-08-01

    Viral-bacterial and bacterial synergism have been suggested to contribute to the pathogenesis of several human diseases. This study sought to investigate the possible associations between 9 candidate endodontic bacterial pathogens and 9 human viruses in samples from acute apical abscesses. DNA extracts from purulent exudate aspirates of 33 cases of acute apical abscess were surveyed for the presence of 9 selected bacterial species using a 16S ribosomal RNA gene-based nested polymerase chain reaction (PCR) approach. Single or nested PCR assays were used for detection of the human papillomavirus (HPV) and herpesviruses types 1 to 8. Two-thirds of the abscess samples were positive for at least one of the target viruses. Specifically, the most frequently detected viruses were HHV-8 (54.5%); HPV (9%); and varicella zoster virus (VZV), Epstein-Barr virus (EBV), and HHV-6 (6%). Bacterial DNA was present in all cases and the most prevalent bacterial species were Treponema denticola (70%), Tannerella forsythia (67%), Porphyromonas endodontalis (67%), Dialister invisus (61%), and Dialister pneumosintes (57.5%). HHV-8 was positively associated with 7 of the target bacterial species and HPV with 4, but all these associations were weak. Several bacterial pairs showed a moderate positive association. Viral coinfection was found in 6 abscess cases, but no significant viral association could be determined. Findings demonstrated that bacterial and viral DNA occurred concomitantly in two-thirds of the samples from endodontic abscesses. Although this may suggest a role for viruses in the etiology of apical abscesses, the possibility also exists that the presence of viruses in abscess samples is merely a consequence of the bacterially induced disease process. Further studies are necessary to clarify the role of these viral-bacterial interactions, if any, in the pathogenesis of acute apical abscesses. Copyright © 2011 Mosby, Inc. All rights reserved.

  15. Evaluation of the efficacy of radiation-modifying compounds using γH2AX as a molecular marker of DNA double-strand breaks.

    Science.gov (United States)

    Mah, Li-Jeen; Orlowski, Christian; Ververis, Katherine; Vasireddy, Raja S; El-Osta, Assam; Karagiannis, Tom C

    2011-01-25

    Radiation therapy is a widely used therapeutic approach for cancer. To improve the efficacy of radiotherapy there is an intense interest in combining this modality with two broad classes of compounds, radiosensitizers and radioprotectors. These either enhance tumour-killing efficacy or mitigate damage to surrounding non-malignant tissue, respectively. Radiation exposure often results in the formation of DNA double-strand breaks, which are marked by the induction of H2AX phosphorylation to generate γH2AX. In addition to its essential role in DDR signalling and coordination of double-strand break repair, the ability to visualize and quantitate γH2AX foci using immunofluorescence microscopy techniques enables it to be exploited as an indicator of therapeutic efficacy in a range of cell types and tissues. This review will explore the emerging applicability of γH2AX as a marker for monitoring the effectiveness of radiation-modifying compounds.

  16. Xrcc1-dependent and Ku-dependent DNA double-strand break repair kinetics in Arabidopsis plants.

    Science.gov (United States)

    Charbonnel, Cyril; Gallego, Maria E; White, Charles I

    2010-10-01

    Double-strand breakage (DSB) of DNA involves loss of information on the two strands of the DNA fibre and thus cannot be repaired by simple copying of the complementary strand which is possible with single-strand DNA damage. Homologous recombination (HR) can precisely repair DSB using another copy of the genome as template and non-homologous recombination (NHR) permits repair of DSB with little or no dependence on DNA sequence homology. In addition to the well-characterised Ku-dependent non-homologous end-joining (NHEJ) pathway, much recent attention has been focused on Ku-independent NHR. The complex interrelationships and regulation of NHR pathways remain poorly understood, even more so in the case of plants, and we present here an analysis of Ku-dependent and Ku-independent repair of DSB in Arabidopsis thaliana. We have characterised an Arabidopsis xrcc1 mutant and developed quantitative analysis of the kinetics of appearance and loss of γ-H2AX foci as a tool to measure DSB repair in dividing root tip cells of γ-irradiated plants in vivo. This approach has permitted determination of DSB repair kinetics in planta following a short pulse of γ-irradiation, establishing the existence of a Ku-independent, Xrcc1-dependent DSB repair pathway. Furthermore, our data show a role for Ku80 during the first minutes post-irradiation and that Xrcc1 also plays such a role, but only in the absence of Ku. The importance of Xrcc1 is, however, clearly visible at later times in the presence of Ku, showing that alternative end-joining plays an important role in DSB repair even in the presence of active NHEJ. © 2010 The Authors. Journal compilation © 2010 Blackwell Publishing Ltd.

  17. ⁹⁹mTc pyrene derivative complex causes double-strand breaks in dsDNA mainly through cluster-mediated indirect effect in aqueous solution.

    Directory of Open Access Journals (Sweden)

    Wei-Ju Chung

    Full Text Available Radiation therapy for cancer patients works by ionizing damage to nuclear DNA, primarily by creating double-strand breaks (DSB. A major shortcoming of traditional radiation therapy is the set of side effect associated with its long-range interaction with nearby tissues. Low-energy Auger electrons have the advantage of an extremely short effective range, minimizing damage to healthy tissue. Consequently, the isotope ⁹⁹mTc, an Auger electron source, is currently being studied for its beneficial potential in cancer treatment. We examined the dose effect of a pyrene derivative ⁹⁹mTc complex on plasmid DNA by using gel electrophoresis in both aqueous and methanol solutions. In aqueous solutions, the average yield per decay for double-strand breaks is 0.011±0.005 at low dose range, decreasing to 0.0005±0.0003 in the presence of 1 M dimethyl sulfoxide (DMSO. The apparent yield per decay for single-strand breaks (SSB is 0.04±0.02, decreasing to approximately a fifth with 1 M DMSO. In methanol, the average yield per decay of DSB is 0.54±0.06 and drops to undetectable levels in 2 M DMSO. The SSB yield per decay is 7.2±0.2, changing to 0.4±0.2 in the presence of 2 M DMSO. The 95% decrease in the yield of DSB in DMSO indicates that the main mechanism for DSB formation is through indirect effect, possibly by cooperative binding or clustering of intercalators. In the presence of non-radioactive ligands at a near saturation concentration, where radioactive Tc compounds do not form large clusters, the yield of SSB stays the same while the yield of DSB decreases to the value in DMSO. DSBs generated by ⁹⁹mTc conjugated to intercalators are primarily caused by indirect effects through clustering.

  18. ⁹⁹mTc pyrene derivative complex causes double-strand breaks in dsDNA mainly through cluster-mediated indirect effect in aqueous solution.

    Science.gov (United States)

    Chung, Wei-Ju; Cui, Yujia; Huang, Feng-Yun J; Tu, Tzu-Hui; Yang, Tzu-Sen; Lo, Jem-Mau; Chiang, Chi-Shiun; Hsu, Ian C

    2014-01-01

    Radiation therapy for cancer patients works by ionizing damage to nuclear DNA, primarily by creating double-strand breaks (DSB). A major shortcoming of traditional radiation therapy is the set of side effect associated with its long-range interaction with nearby tissues. Low-energy Auger electrons have the advantage of an extremely short effective range, minimizing damage to healthy tissue. Consequently, the isotope ⁹⁹mTc, an Auger electron source, is currently being studied for its beneficial potential in cancer treatment. We examined the dose effect of a pyrene derivative ⁹⁹mTc complex on plasmid DNA by using gel electrophoresis in both aqueous and methanol solutions. In aqueous solutions, the average yield per decay for double-strand breaks is 0.011±0.005 at low dose range, decreasing to 0.0005±0.0003 in the presence of 1 M dimethyl sulfoxide (DMSO). The apparent yield per decay for single-strand breaks (SSB) is 0.04±0.02, decreasing to approximately a fifth with 1 M DMSO. In methanol, the average yield per decay of DSB is 0.54±0.06 and drops to undetectable levels in 2 M DMSO. The SSB yield per decay is 7.2±0.2, changing to 0.4±0.2 in the presence of 2 M DMSO. The 95% decrease in the yield of DSB in DMSO indicates that the main mechanism for DSB formation is through indirect effect, possibly by cooperative binding or clustering of intercalators. In the presence of non-radioactive ligands at a near saturation concentration, where radioactive Tc compounds do not form large clusters, the yield of SSB stays the same while the yield of DSB decreases to the value in DMSO. DSBs generated by ⁹⁹mTc conjugated to intercalators are primarily caused by indirect effects through clustering.

  19. DNA double-strand breaks induced by high-energy neon and iron ions in human fibroblasts. I. Pulsed-field gel electrophoresis method

    International Nuclear Information System (INIS)

    Rydberg, B.; Loebrich, M.; Cooper, P.K.

    1994-01-01

    The relative effectiveness of high-energy neon and iron ions for the production of DNA double-strand breaks was measured in one transformed and one nontransformed human fibroblast cell line using pulsed-field gel electrophoresis. The DNA released from the gel plug (fraction of activity released: FAR) as well as the size distribution of the DNA entering the gel were used to compare the effects of the heavy-ion exposure with X-ray exposure. Both methods gave similar results, indicating similar distributions of breaks over megabase-pair distances for the heavy ions and the X rays. The relative biological effectiveness (RBE) compared to 225 kVp X rays of initially induced DNA double-strand breaks was found to be 0.85 for 425 MeV/u neon ions (LET 32 keV/μm) and 0.42-0.55 for 250-600 MeV/u iron ions (LET 190-350 keV/μm). Postirradiation incubation showed less efficient repair of breaks induced by the neon ions and the 600 MeV/u iron ions compared to X rays. Survival experiments demonstrated RBE values larger than one for cell killing by the heavy ions in parallel experiments (neon: RBE = 1.2, iron: RBE = 2.3-3.0, based on D 10 values). It is concluded that either the initial yield of DNA double-strand breaks induced by the high-energy particles is lower than the yield for X rays, or the breaks induced by heavy ions are present in clusters that cannot be resolved with the technique used. These results are confirmed in the accompanying paper. 48 refs., 5 figs., 2 tabs

  20. Relevance of Assembly-Activating Protein for Adeno-associated Virus Vector Production and Capsid Protein Stability in Mammalian and Insect Cells.

    Science.gov (United States)

    Grosse, Stefanie; Penaud-Budloo, Magalie; Herrmann, Anne-Kathrin; Börner, Kathleen; Fakhiri, Julia; Laketa, Vibor; Krämer, Chiara; Wiedtke, Ellen; Gunkel, Manuel; Ménard, Lucie; Ayuso, Eduard; Grimm, Dirk

    2017-10-15

    The discovery that adeno-associated virus 2 (AAV2) encodes an eighth protein, called assembly-activating protein (AAP), transformed our understanding of wild-type AAV biology. Concurrently, it raised questions about the role of AAP during production of recombinant vectors based on natural or molecularly engineered AAV capsids. Here, we show that AAP is indeed essential for generation of functional recombinant AAV2 vectors in both mammalian and insect cell-based vector production systems. Surprisingly, we observed that AAV2 capsid proteins VP1 to -3 are unstable in the absence of AAP2, likely due to rapid proteasomal degradation. Inhibition of the proteasome led to an increase of intracellular VP1 to -3 but neither triggered assembly of functional capsids nor promoted nuclear localization of the capsid proteins. Together, this underscores the crucial and unique role of AAP in the AAV life cycle, where it rapidly chaperones capsid assembly, thus preventing degradation of free capsid proteins. An expanded analysis comprising nine alternative AAV serotypes (1, 3 to 9, and rh10) showed that vector production always depends on the presence of AAP, with the exceptions of AAV4 and AAV5, which exhibited AAP-independent, albeit low-level, particle assembly. Interestingly, AAPs from all 10 serotypes could cross-complement AAP-depleted helper plasmids during vector production, despite there being distinct intracellular AAP localization patterns. These were most pronounced for AAP4 and AAP5, congruent with their inability to rescue an AAV2/AAP2 knockout. We conclude that AAP is key for assembly of genuine capsids from at least 10 different AAV serotypes, which has implications for vectors derived from wild-type or synthetic AAV capsids. IMPORTANCE Assembly of adeno-associated virus 2 (AAV2) is regulated by the assembly-activating protein (AAP), whose open reading frame overlaps with that of the viral capsid proteins. As the majority of evidence was obtained using virus

  1. CD133 positive U87 glioma stem cell radiosensitivity and DNA double-strand break repair

    International Nuclear Information System (INIS)

    Li Ping; Zong Tianzhou; Ji Xiaoqin; Lu Xueguan

    2013-01-01

    Objective: To explore the radiosensitivity and DNA double-strand break repair of CD133 + U87 glioma stem cell. Methods: CD133 + and CD133 - cells were isolated from glioma U87 cell lines by flow cytometry sorter system. After irradiated vertically by 4 Gy X-rays, the radiosensitivity of cells was determined by clonogenic assay. The radiation-induced DNA double-strand break repair of CD133 + and CD133 - cells was determined by the neutral comet assay,and the expression of phosphorylated histone H2AX (γ-H2AX) and Rad51 foci were measured by immunofluorescence. Results: The clone forming rate of CD133 + cells was higher than CD133 - cells (t=3.66, P<0.01) with no radiation. The clone forming rate of CD133 + cells irradiated by 4 Gy X-rays has no significant changes compared to that of the non-irradiation cells (t=0.71, P>0.05), but for CD133 - cells, it decreased compared to non-irradiation cells (t=2.91, P<0.05). The tailmoment between CD133 + cells and CD133 - cells had no difference at 0.5 h after irradiation (t=1.44, P>0.05); the tailmoment of CD133 + cells was lower than CD133 - cells at 6 and 24 h after irradiation,respectively (t=5.31 and 8.09, P<0.01). There was no significant difference in the expression of γ-H2AX foci between CD133 + and CD133 - cells at 0.5 and 6 h after irradiation (t=0.12 and 0.99, P>0.05), γ-H2AX foci of CD133 + cells was significantly decreased compared to CD133 - cells at 24 h after irradiation (t=4.99, P<0.01). For Rad 51 foci, there was no difference between CD133 + and CD133 - cells at 0.5 h after irradiation (t=1.12, P>0.05). The expression of Rad 51 foci of CD133 - cells was decreased compared to that of CD133 + cells at 6 and 24 h after irradiation,respectively (t=22.88 and 12.43, P<0.01). And the expression of Rad51 foci of CD133 + cells had no significant changes at 6-24 h after irradiation. Conclusions: Glioma stem cells is more radioresistive than glioma non-stem cells. The probable mechanism is that the DNA double-strand

  2. Carbon ion induced DNA double-strand breaks in melanophore B{sub 16}

    Energy Technology Data Exchange (ETDEWEB)

    Zengquan, Wei; Guangming, Zhou; Jufang, Wang; Jing, He; Qiang, Li; Wenjian, Li; Hongmei, Xie; Xichen, Cai; Huang, Tao; Bingrong, Dang; Guangwu, Han [Chinese Academy of Sciences, Lanzhou (China). Inst. of Modern Physics; Qingxiang, Gao [Lanzhou Univ. (China)

    1997-09-01

    DNA double-strand breaks (DSBs) in melanophore B{sub 16} induced by plateau and extended Bragg peak of 75 MeV/u {sup 12}C{sup 6+} ions were studied by using a technique of inverse pulsed-field gel electrophoresis (PIGE). DNA fragment lengths were distributed in two ranges: the larger in 1.4 Mbp-3.2 Mbp and the smaller in less than 1.2 Mbp. It indicates that distribution of DNA fragments induced by heavy ion irradiation is not stochastic and there probably are sensitive sites to heavy ions in DNA molecules of B{sub 16}. Percentage of DNA released from plug (PR) increased and trended towards a quasi-plateau {proportional_to}85% as dose increased. Content of the larger fragments decreased and flattened with increasing dose while content of the smaller ones increased and trended towards saturation. (orig.)

  3. Reprint of "Sequence and phylogenetic analyses of novel totivirus-like double-stranded RNAs from field-collected powdery mildew fungi".

    Science.gov (United States)

    Kondo, Hideki; Hisano, Sakae; Chiba, Sotaro; Maruyama, Kazuyuki; Andika, Ida Bagus; Toyoda, Kazuhiro; Fujimori, Fumihiro; Suzuki, Nobuhiro

    2016-07-02

    The identification of mycoviruses contributes greatly to understanding of the diversity and evolutionary aspects of viruses. Powdery mildew fungi are important and widely studied obligate phytopathogenic agents, but there has been no report on mycoviruses infecting these fungi. In this study, we used a deep sequencing approach to analyze the double-stranded RNA (dsRNA) segments isolated from field-collected samples of powdery mildew fungus-infected red clover plants in Japan. Database searches identified the presence of at least ten totivirus (genus Totivirus)-like sequences, termed red clover powdery mildew-associated totiviruses (RPaTVs). The majority of these sequences shared moderate amino acid sequence identity with each other (powdery mildew fungus populations infecting red clover plants in the field. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks

    KAUST Repository

    Mahfouz, Magdy M.

    2011-01-24

    Site-specific and rare cutting nucleases are valuable tools for genome engineering. The generation of double-strand DNA breaks (DSBs) promotes homologous recombination in eukaryotes and can facilitate gene targeting, additions, deletions, and inactivation. Zinc finger nucleases have been used to generate DSBs and subsequently, for genome editing but with low efficiency and reproducibility. The transcription activator-like family of type III effectors (TALEs) contains a central domain of tandem repeats that could be engineered to bind specific DNA targets. Here, we report the generation of a Hax3-based hybrid TALE nuclease with a user-selected DNA binding specificity. We show that the engineered TALE nuclease can bind to its target sequence in vitro and that the homodimeric TALE nuclease can cleave double-stranded DNA in vitro if the DNA binding sites have the proper spacing and orientation. Transient expression assays in tobacco leaves suggest that the hybrid nuclease creates DSB in its target sequence, which is subsequently repaired by nonhomologous end-joining repair. Taken together, our data show the feasibility of engineering TALE-based hybrid nucleases capable of generating site-specific DSBs and the great potential for site-specific genome modification in plants and eukaryotes in general.

  5. ZIP4H (TEX11 deficiency in the mouse impairs meiotic double strand break repair and the regulation of crossing over.

    Directory of Open Access Journals (Sweden)

    Carrie A Adelman

    2008-03-01

    Full Text Available We have recently shown that hypomorphic Mre11 complex mouse mutants exhibit defects in the repair of meiotic double strand breaks (DSBs. This is associated with perturbation of synaptonemal complex morphogenesis, repair and regulation of crossover formation. To further assess the Mre11 complex's role in meiotic progression, we identified testis-specific NBS1-interacting proteins via two-hybrid screening in yeast. In this screen, Zip4h (Tex11, a male germ cell specific X-linked gene was isolated. Based on sequence and predicted structural similarity to the S. cerevisiae and A. thaliana Zip4 orthologs, ZIP4H appears to be the mammalian ortholog. In S. cerevisiae and A. thaliana, Zip4 is a meiosis-specific protein that regulates the level of meiotic crossovers, thus influencing homologous chromosome segregation in these organisms. As is true for hypomorphic Nbs1 (Nbs1(DeltaB/DeltaB mice, Zip4h(-/Y mutant mice were fertile. Analysis of spermatocytes revealed a delay in meiotic double strand break repair and decreased crossover formation as inferred from DMC1 and MLH1 staining patterns, respectively. Achiasmate chromosomes at the first meiotic division were also observed in Zip4h(-/Y mutants, consistent with the observed reduction in MLH1 focus formation. These results indicate that meiotic functions of Zip4 family members are conserved and support the view that the Mre11 complex and ZIP4H interact functionally during the execution of the meiotic program in mammals.

  6. More efficient repair of DNA double-strand breaks in skeletal muscle stem cells compared to their committed progeny

    OpenAIRE

    Leyla Vahidi Ferdousi; Pierre Rocheteau; Romain Chayot; Benjamin Montagne; Zayna Chaker; Patricia Flamant; Shahragim Tajbakhsh; Miria Ricchetti

    2014-01-01

    International audience; The loss of genome integrity in adult stem cells results in accelerated tissue aging and is possibly cancerogenic. Adult stem cells in different tissues appear to react robustly to DNA damage. We report that adult skeletal stem (satellite) cells do not primarily respond to radiation-induced DNA double-strand breaks (DSBs) via differentiation and exhibit less apoptosis compared to other myogenic cells. Satellite cells repair these DNA lesions more efficiently than their...

  7. Double-stranded DNA translocase activity of transcription factor TFIIH and the mechanism of RNA polymerase II open complex formation.

    Science.gov (United States)

    Fishburn, James; Tomko, Eric; Galburt, Eric; Hahn, Steven

    2015-03-31

    Formation of the RNA polymerase II (Pol II) open complex (OC) requires DNA unwinding mediated by the transcription factor TFIIH helicase-related subunit XPB/Ssl2. Because XPB/Ssl2 binds DNA downstream from the location of DNA unwinding, it cannot function using a conventional helicase mechanism. Here we show that yeast TFIIH contains an Ssl2-dependent double-stranded DNA translocase activity. Ssl2 tracks along one DNA strand in the 5' → 3' direction, implying it uses the nontemplate promoter strand to reel downstream DNA into the Pol II cleft, creating torsional strain and leading to DNA unwinding. Analysis of the Ssl2 and DNA-dependent ATPase activity of TFIIH suggests that Ssl2 has a processivity of approximately one DNA turn, consistent with the length of DNA unwound during transcription initiation. Our results can explain why maintaining the OC requires continuous ATP hydrolysis and the function of TFIIH in promoter escape. Our results also suggest that XPB/Ssl2 uses this translocase mechanism during DNA repair rather than physically wedging open damaged DNA.

  8. Breaks in plasmid DNA strand induced by laser radiation at a wavelength of 193 nm

    International Nuclear Information System (INIS)

    Gurzadyan, G.G.; Shul'te Frolinde, D.

    1996-01-01

    DNA of plasmid pB322 irradiated with laser at a wavelength of 193 nm was treated with an extract containing proteins from E.coli K12 AB1157 (wild-type). The enzymes were found to produce single- and double-strand DNA breaks, which was interpreted as a transformation of a portion of cyclobutane pyrimidine dimers and (6-4) photoproducts into nonrepairable single-strand DNA breaks. The products resulted from ionization of DNA, in particular, single-strand breaks, transform to double-strand breaks. A comparison of these data with the data on survival of plasmid upon transformation of E.coli K12 AB1157 enables one to assess the biological significance of single- and double-strand breaks. The inactivation of the plasmid is mainly determined by the number of directly formed laser-induced single-strand breaks. 26 refs.; 2 figs

  9. DNA Double Strand Break Response and Limited Repair Capacity in Mouse Elongated Spermatids

    Directory of Open Access Journals (Sweden)

    Emad A. Ahmed

    2015-12-01

    Full Text Available Spermatids are extremely sensitive to genotoxic exposures since during spermiogenesis only error-prone non homologous end joining (NHEJ repair pathways are available. Hence, genomic damage may accumulate in sperm and be transmitted to the zygote. Indirect, delayed DNA fragmentation and lesions associated with apoptotic-like processes have been observed during spermatid elongation, 27 days after irradiation. The proliferating spermatogonia and early meiotic prophase cells have been suggested to retain a memory of a radiation insult leading later to this delayed fragmentation. Here, we used meiotic spread preparations to localize phosphorylate histone H2 variant (γ-H2AX foci marking DNA double strand breaks (DSBs in elongated spermatids. This technique enabled us to determine the background level of DSB foci in elongated spermatids of RAD54/RAD54B double knockout (dko mice, severe combined immunodeficiency SCID mice, and poly adenosine diphosphate (ADP-ribose polymerase 1 (PARP1 inhibitor (DPQ-treated mice to compare them with the appropriate wild type controls. The repair kinetics data and the protein expression patterns observed indicate that the conventional NHEJ repair pathway is not available for elongated spermatids to repair the programmed and the IR-induced DSBs, reflecting the limited repair capacity of these cells. However, although elongated spermatids express the proteins of the alternative NHEJ, PARP1-inhibition had no effect on the repair kinetics after IR, suggesting that DNA damage may be passed onto sperm. Finally, our genetic mutant analysis suggests that an incomplete or defective meiotic recombinational repair of Spo11-induced DSBs may lead to a carry-over of the DSB damage or induce a delayed nuclear fragmentation during the sensitive programmed chromatin remodeling occurring in elongated spermatids.

  10. Mapping the Structural Determinants Responsible for Enhanced T Cell Activation to the Immunogenic Adeno-Associated Virus Capsid from Isolate Rhesus 32.33

    Science.gov (United States)

    Mays, Lauren E.; Wang, Lili; Tenney, Rebeca; Bell, Peter; Nam, Hyun-Joo; Lin, Jianping; Gurda, Brittney; Van Vliet, Kim; Mikals, Kyle; Agbandje-McKenna, Mavis

    2013-01-01

    Avoiding activation of immunity to vector-encoded proteins is critical to the safe and effective use of adeno-associated viral (AAV) vectors for gene therapy. While commonly used serotypes, such as AAV serotypes 1, 2, 7, 8, and 9, are often associated with minimal and/or dysfunctional CD8+ T cell responses in mice, the threshold for immune activation appears to be lower in higher-order species. We have modeled this discrepancy within the mouse by identifying two capsid variants with differential immune activation profiles: AAV serotype 8 (AAV8) and a hybrid between natural rhesus isolates AAVrh32 and AAVrh33 (AAVrh32.33). Here, we aimed to characterize the structural determinants of the AAVrh32.33 capsid that augment cellular immunity to vector-encoded proteins or those of AAV8 that may induce tolerance. We hypothesized that the structural domain responsible for differential immune activation could be mapped to surface-exposed regions of the capsid, such as hypervariable regions (HVRs) I to IX of VP3. To test this, a series of hybrid AAV capsids was constructed by swapping domains between AAV8 and AAVrh32.33. By comparing their ability to generate transgene-specific T cells in vivo versus the stability of transgene expression in the muscle, we confirmed that the functional domain lies within the VP3 portion of the capsid. Our studies were able to exclude the regions of VP3 which are not sufficient for augmenting the cellular immune response, notably, HVRs I, II, and V. We have also identified HVR IV as a region of interest in conferring the efficiency and stability of muscle transduction to AAVrh32.33. PMID:23720715

  11. Targeted In Situ Gene Correction of Dysfunctional APOE Alleles to Produce Atheroprotective Plasma ApoE3 Protein

    Directory of Open Access Journals (Sweden)

    Ioannis Papaioannou

    2012-01-01

    Full Text Available Cardiovascular disease is the leading worldwide cause of death. Apolipoprotein E (ApoE is a 34-kDa circulating glycoprotein, secreted by the liver and macrophages with pleiotropic antiatherogenic functions and hence a candidate to treat hypercholesterolaemia and atherosclerosis. Here, we describe atheroprotective properties of ApoE, though also potential proatherogenic actions, and the prevalence of dysfunctional isoforms, outline conventional gene transfer strategies, and then focus on gene correction therapeutics that can repair defective APOE alleles. In particular, we discuss the possibility and potential benefit of applying in combination two technical advances to repair aberrant APOE genes: (i an engineered endonuclease to introduce a double-strand break (DSB in exon 4, which contains the common, but dysfunctional, ε2 and ε4 alleles; (ii an efficient and selectable template for homologous recombination (HR repair, namely, an adeno-associated viral (AAV vector, which harbours wild-type APOE sequence. This technology is applicable ex vivo, for example to target haematopoietic or induced pluripotent stem cells, and also for in vivo hepatic gene targeting. It is to be hoped that such emerging technology will eventually translate to patient therapy to reduce CVD risk.

  12. Novel recombinant adeno-associated viruses for Cre activated and inactivated transgene expression in neurons

    Science.gov (United States)

    Saunders, Arpiar; Johnson, Caroline A.; Sabatini, Bernardo L.

    2012-01-01

    Understanding the organization of the nervous system requires methods for dissecting the contributions of each component cell type to circuit function. One widely used approach combines genetic targeting of Cre recombinase to specific cell populations with infection of recombinant adeno-associated viruses (rAAVs) whose transgene expression is activated by Cre (“Cre-On”). Distinguishing how the Cre-expressing neurons differ functionally from neighboring Cre-negative neurons requires rAAVs that are inactivated by Cre (“Cre-Off”) and can be used in tandem with Cre-On viruses. Here we introduce two rAAV vectors that are inactivated by Cre and carry different fluorophore and optogenetic constructs. We demonstrate single and dual rAAV systems to achieve Cre-On and Cre-Off expression in spatially-intermingled cell populations of the striatum. Using these systems, we uncovered cryptic genomic interactions that occur between multiple Cre-sensitive rAAVs or between Cre-sensitive rAAVs and somatic Cre-conditional alleles and devised methods to avoid these interactions. Our data highlight both important experimental caveats associated with Cre-dependent rAAV use as well as opportunities for the development of improved rAAVs for gene delivery. PMID:22866029

  13. TH-CD-201-11: Optimizing the Response and Cost of a DNA Double-Strand Break Dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Obeidat, M; Cline, K; Stathakis, S; Papanikolaou, N; Rasmussen, K; Gutierrez, A; Ha, CS; Lee, SE; Shim, EY; Kirby, N [University of Texas HSC SA, San Antonio, TX (United States)

    2016-06-15

    Purpose: A DNA double-strand break (DSB) dosimeter was developed to measure the biological effect of radiation. The goal here is to refine the fabrication method of this dosimeter to reproducibly create a low coefficient of variation (CoV) and reduce the cost for the dosimeter. Methods: Our dosimeter consists of 4 kilo-base pair DNA strands (labeled on one end with biotin and on the other with fluorescein) attached to streptavidin magnetic beads. The final step of the DNA dosimeter fabrication is to suspend these attached beads in phosphate-buffered saline (PBS). The amount of PBS used to suspend the attached beads and the relative volume of the DNA strands to the beads both affect the CoV and dosimeter cost. We diluted the beads attached with DNA in different volumes of PBS (100, 200, and 400 µL) to create different concentrations of the DNA dosimeter. Then we irradiated these dosimeters (50 µL samples) in a water-equivalent plastic phantom at 25 and 50 Gy (three samples per dose) and calculated the CoV for each dosimeter concentration. Also, we used different masses of DNA strands (1, 2, 8, 16, 24, and 32 µg) to attach to the same volume of magnetic beads (100 µL) to explore how this affects the cost of the dosimeter. Results: The lowest CoV was produced for the highest concentration of dosimeter (100 µL of PBS), which created CoV of 2.0 and 1.0% for 25 and 50 Gy, respectively. We found that the lowest production cost for the dosimeter occurs by attaching 16 µg of DNA strands with 100 µL of beads. Conclusion: : We optimized the fabrication of the DNA dosimeter to produce low CoV and cost, but we still need to explore ways to further improve the dosimeter for use at lower doses. This work was supported in part by Yarmouk University (Irbid, Jordan) and CPRIT (RP140105)

  14. CRISPR/Cas9 delivery with one single adenoviral vector devoid of all viral genes.

    Science.gov (United States)

    Ehrke-Schulz, Eric; Schiwon, Maren; Leitner, Theo; Dávid, Stephan; Bergmann, Thorsten; Liu, Jing; Ehrhardt, Anja

    2017-12-07

    The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 system revolutionized the field of gene editing but viral delivery of the CRISPR/Cas9 system has not been fully explored. Here we adapted clinically relevant high-capacity adenoviral vectors (HCAdV) devoid of all viral genes for the delivery of the CRISPR/Cas9 machinery using a single viral vector. We present a platform enabling fast transfer of the Cas9 gene and gRNA expression units into the HCAdV genome including the option to choose between constitutive or inducible Cas9 expression and gRNA multiplexing. Efficacy and versatility of this pipeline was exemplified by producing different CRISPR/Cas9-HCAdV targeting the human papillomavirus (HPV) 18 oncogene E6, the dystrophin gene causing Duchenne muscular dystrophy (DMD) and the HIV co-receptor C-C chemokine receptor type 5 (CCR5). All CRISPR/Cas9-HCAdV proved to be efficient to deliver the respective CRISPR/Cas9 expression units and to introduce the desired DNA double strand breaks at their intended target sites in immortalized and primary cells.

  15. RPA Mediates Recruitment of MRX to Forks and Double-Strand Breaks to Hold Sister Chromatids Together.

    Science.gov (United States)

    Seeber, Andrew; Hegnauer, Anna Maria; Hustedt, Nicole; Deshpande, Ishan; Poli, Jérôme; Eglinger, Jan; Pasero, Philippe; Gut, Heinz; Shinohara, Miki; Hopfner, Karl-Peter; Shimada, Kenji; Gasser, Susan M

    2016-12-01

    The Mre11-Rad50-Xrs2 (MRX) complex is related to SMC complexes that form rings capable of holding two distinct DNA strands together. MRX functions at stalled replication forks and double-strand breaks (DSBs). A mutation in the N-terminal OB fold of the 70 kDa subunit of yeast replication protein A, rfa1-t11, abrogates MRX recruitment to both types of DNA damage. The rfa1 mutation is functionally epistatic with loss of any of the MRX subunits for survival of replication fork stress or DSB recovery, although it does not compromise end-resection. High-resolution imaging shows that either the rfa1-t11 or the rad50Δ mutation lets stalled replication forks collapse and allows the separation not only of opposing ends but of sister chromatids at breaks. Given that cohesin loss does not provoke visible sister separation as long as the RPA-MRX contacts are intact, we conclude that MRX also serves as a structural linchpin holding sister chromatids together at breaks. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Effects of garlic on cellular doubling time and DNA strand breaks caused by UV light and BPL, enhanced with catechol and TPA

    International Nuclear Information System (INIS)

    Baturay, N.Z.; Gayle, F.; Liu, S.; Kreidinger, C.

    1995-01-01

    3T3 cell cultures were exposed to UV light and Beta-Propiolactone. Neoplastic cell transformation (TF) was demonstrated after concurrent addition of catechol, or repeated addition of TPA. Addition of garlic to all fluences/concentrations of the carcinogen/cocarcinogen/promoter groups reduced the number of transformed foci/dish by at least 40%. Since the cell cycle is prolonged following exposure to carcinogens, it is likely the cell requires a longer time to repair this damage. The doubling time (DT) was extended from 12 to 36 hrs. when cells were exposed to BPL and from 12 o 28 hrs. when cells were exposed to 3.0J/M2/sec. If an anticarcinogenic compound is also added, it is reasonable to assume that the cell cycle may be further elongated. The cell cycle, denoted by DT was lengthened from 12 to 47 hrs and from 12 to 86 hrs for BPL and UVC, respectively. The extensions occurred in a dope dependent manner. The concentrations of the cocarcinogen and promoter remained constant throughout the experiment. When strand breaks were determined at the same dose sequences, by alkaline elution, more repair was seen with garlic where the lowest and middle doses of BPL were used and almost no decrease in % DNA eluted was seen with UVC exposed cells. With catechol, there was a two-fold decrease in % DNA eluted at the lowest and middle fluences. When TPA was added, all three fluences of UVC showed more than a threefold decrease in % DNA eluted. BPS with both TPA and catechol, again showed a reduction in strand breaks only low and middle doses. Both a direct-acting alkylating agent, BPL, and a physical carcinogen, UVC, were homogeneously affected, in terms of doubling time, but not when strand break repair was examined. A separate mechanism may be responsible for repair, and the mechanism associated with combinations of physical carcinogen enhancing agents combined with some non-carcinogens may be more profoundly affected by some natural products

  17. Novel chaperonins are prevalent in the virioplankton and demonstrate links to viral biology and ecology.

    Science.gov (United States)

    Marine, Rachel L; Nasko, Daniel J; Wray, Jeffrey; Polson, Shawn W; Wommack, K Eric

    2017-11-01

    Chaperonins are protein-folding machinery found in all cellular life. Chaperonin genes have been documented within a few viruses, yet, surprisingly, analysis of metagenome sequence data indicated that chaperonin-carrying viruses are common and geographically widespread in marine ecosystems. Also unexpected was the discovery of viral chaperonin sequences related to thermosome proteins of archaea, indicating the presence of virioplankton populations infecting marine archaeal hosts. Virioplankton large subunit chaperonin sequences (GroELs) were divergent from bacterial sequences, indicating that viruses have carried this gene over long evolutionary time. Analysis of viral metagenome contigs indicated that: the order of large and small subunit genes was linked to the phylogeny of GroEL; both lytic and temperate phages may carry group I chaperonin genes; and viruses carrying a GroEL gene likely have large double-stranded DNA (dsDNA) genomes (>70 kb). Given these connections, it is likely that chaperonins are critical to the biology and ecology of virioplankton populations that carry these genes. Moreover, these discoveries raise the intriguing possibility that viral chaperonins may more broadly alter the structure and function of viral and cellular proteins in infected host cells.

  18. Deficiency of double-strand DNA break repair does not impair Mycobacterium tuberculosis virulence in multiple animal models of infection.

    Science.gov (United States)

    Heaton, Brook E; Barkan, Daniel; Bongiorno, Paola; Karakousis, Petros C; Glickman, Michael S

    2014-08-01

    Mycobacterium tuberculosis persistence within its human host requires mechanisms to resist the effector molecules of host immunity, which exert their bactericidal effects through damaging pathogen proteins, membranes, and DNA. Substantial evidence indicates that bacterial pathogens, including M. tuberculosis, require DNA repair systems to repair the DNA damage inflicted by the host during infection, but the role of double-strand DNA break (DSB) repair systems is unclear. Double-strand DNA breaks are the most cytotoxic form of DNA damage and must be repaired for chromosome replication to proceed. M. tuberculosis elaborates three genetically distinct DSB repair systems: homologous recombination (HR), nonhomologous end joining (NHEJ), and single-strand annealing (SSA). NHEJ, which repairs DSBs in quiescent cells, may be particularly relevant to M. tuberculosis latency. However, very little information is available about the phenotype of DSB repair-deficient M. tuberculosis in animal models of infection. Here we tested M. tuberculosis strains lacking NHEJ (a Δku ΔligD strain), HR (a ΔrecA strain), or both (a ΔrecA Δku strain) in C57BL/6J mice, C3HeB/FeJ mice, guinea pigs, and a mouse hollow-fiber model of infection. We found no difference in bacterial load, histopathology, or host mortality between wild-type and DSB repair mutant strains in any model of infection. These results suggest that the animal models tested do not inflict DSBs on the mycobacterial chromosome, that other repair pathways can compensate for the loss of NHEJ and HR, or that DSB repair is not required for M. tuberculosis pathogenesis. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  19. Adeno-associated virus vectors can be efficiently produced without helper virus.

    Science.gov (United States)

    Matsushita, T; Elliger, S; Elliger, C; Podsakoff, G; Villarreal, L; Kurtzman, G J; Iwaki, Y; Colosi, P

    1998-07-01

    The purpose of this work was to develop an efficient method for the production of adeno-associated virus (AAV) vectors in the absence of helper virus. The adenovirus regions that mediate AAV vector replication were identified and assembled into a helper plasmid. These included the VA, E2A and E4 regions. When this helper plasmid was cotransfected into 293 cells, along with plasmids encoding the AAV vector, and rep and cap genes, AAV vector was produced as efficiently as when using adenovirus infection as a source of help. CMV-driven constructs expressing the E4orf6 and the 72-M(r), E2A proteins were able to functionally replace the E4 and E2A regions, respectively. Therefore the minimum set of genes required to produce AAV helper activity equivalent to that provided by adenovirus infection consists of, or is a subset of, the following genes: the E4orf6 gene, the 72-M(r), E2A protein gene, the VA RNA genes and the E1 region. AAV vector preparations made with adenovirus and by the helper virus-free method were essentially indistinguishable with respect to particle density, particle to infectivity ratio, capsimer ratio and efficiency of muscle transduction in vivo. Only AAV vector preparations made by the helper virus-free method were not reactive with anti-adenovirus sera.

  20. Induction of DNA double-strand breaks in hepatoma cell SMMC-7721 by accelerated carbon ion 12C6+

    International Nuclear Information System (INIS)

    Lei Suwen; Su Xu; Wang Jufang; Zhao Jing; Li Wenjian

    2004-01-01

    DNA lesions, especially DNA double-strand breaks (dsbs), are looked upon as the dominant molecular effect of radiation action. Dsbs mark the beginning of a cascade of cellular processes that either results in complete repair of the DNA damage or lead to deleterious stages such as mutation, transformation or even cell death. Changing the radiation quality can influence the radiosensitivity of cells in culture. Accelerated particles provide an excellent means of varying the ionization density of the test radiation. With ion beams, the molecular mechanisms underlying the biological consequences of high linear energy transfer (LET) irradiation can be studied and describing radiation action with biophysical models can be tested. In this paper, radiation-induced DNA double-strand breaks (dsbs) were measured in hepatoma SMMC-7721 cells by means of an experimental approach involving pulsed-field gel electrophoresis and densitometric scanning of ethidium bromide stained gels. With this set-up, the induction of dsbs was investigated in SMMC-7721 cells after irradiation with accelerated carbon ions with specific LET 70 keV/μm. The fraction of DNA retained was taken as quantitative measure to calculate absolute yields of induced DNA dsbs. Experimental data shows that the induction of DNA dsbs increasing with the dose of irradiation. Data are compared with published results on dsbs induction in mammalian cells by radiations of comparable LET

  1. UGGT1 enhances enterovirus 71 pathogenicity by promoting viral RNA synthesis and viral replication.

    Directory of Open Access Journals (Sweden)

    Peng-Nien Huang

    2017-05-01

    Full Text Available Positive-strand RNA virus infections can induce the stress-related unfolded protein response (UPR in host cells. This study found that enterovirus A71 (EVA71 utilizes host UDP-glucose glycoprotein glucosyltransferase 1 (UGGT1, a key endoplasmic reticulum protein (ER involved in UPR, to enhance viral replication and virulence. EVA71 forms replication complexes (RCs on cellular membranes that contain a mix of host and viral proteins to facilitate viral replication, but the components and processes involved in the assembly and function of RCs are not fully understood. Using EVA71 as a model, this study found that host UGGT1 and viral 3D polymerase co-precipitate along with other factors on membranous replication complexes to enhance viral replication. Increased UGGT1 levels elevated viral growth rates, while viral pathogenicity was observed to be lower in heterozygous knockout mice (Uggt1 +/- mice. These findings provide important insight on the role of UPR and host UGGT1 in regulating RNA virus replication and pathogenicity.

  2. Double strand break repair: two mechanisms in competition but tightly linked to cell cycle

    International Nuclear Information System (INIS)

    Delacote, F.

    2002-11-01

    DNA double strand breaks (DSB) are highly toxic damage although they can be induced to create genetic diversity. Two distinct pathways can repair DSB: Homologous Recombination (HR) and Non Homologous End Joining (NHEJ). If un- or mis-repaired, this damage can lead to cancer. Thus, it is essential to investigate how these two pathways are regulated for DSB repair. NHEJ inhibition leads to HR DSB repair stimulation. However, this channeling to HR is tightly linked to cell cycle since NHEJ and HR are active in G1/early S and late S/G2, respectively. Our results suggest that G1-unrepaired DSB go through S phase to be repaired by HR in G2. Those results allow a better understanding of DSB repair mechanisms regulation. (author)

  3. DNA double-strand braks serve as a major factor for the expression of Arabidopsis Argonaute 2

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Beom; Chung, Moon Soo; Lee, Gun Woong; Chung, Byung Yeoup [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2017-02-15

    Argonaute 2 (AtAGO2) is a well characterized effector protein in Arabidopsis for its functionalities associated with DNA double-strand break (DSB)-induced small RNAs (diRNAs) and for its inducible expression upon γ-irradiation. However, its transcriptional regulation depending on the recovery time after the irradiation and on the specific response to DSBs has been poorly understood. We analyzed the 1,313 bp promoter sequence of the AtAGO2 gene (1.3kb{sub pro}) to characterize the transcriptional regulation of AtAGO2 at various recovery times after γ-irradiation. A stable transformant harboring 1.3kbpro fused with GUS gene showed that the AtAGO2 is highly expressed in response to γ-irradiation, after which the expression of the gene is gradually decreased until 5 days of DNA damage recovery. We also confrm that the AtAGO2 expression patterns are similar to that of γ-irradiation after the treatments of radiomimetic genotoxins (bleomycin and zeocin). However, methyl methanesulfonate and mitomycin C, which are associated with the inhibition of DNA replication, do not induce the expression of the AtAGO2, suggesting that the expression of the AtAGO2 is closely related with DNA DSBs rather than DNA replication.

  4. The Mismatch-Binding Factor MutSβ Can Mediate ATR Activation in Response to DNA Double-Strand Breaks

    Czech Academy of Sciences Publication Activity Database

    Burdová, Kamila; Mihaljevic, B.; Sturzenegger, A.; Chappidi, N.; Janščák, Pavel

    2015-01-01

    Roč. 59, č. 4 (2015), s. 603-614 ISSN 1097-2765 R&D Projects: GA ČR GAP305/10/0281; GA ČR(CZ) GA14-05743S Grant - others:Oncosuisse(CH) KLS-02344-02-2009; Swiss National Science Foundation(CH) 31003A_146206; Novartis Foundation for Medical and Biological Research(CH) 11A16 Institutional support: RVO:68378050 Keywords : Ataxia telangiectasia-mutated and Rad3-related (ATR) protein kinase * DNA-damage response * DNA Double-Strand Breaks Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 13.958, year: 2015

  5. Detection and Repair of Ionizing Radiation-Induced DNA Double Strand Breaks: New Developments in Nonhomologous End Joining

    International Nuclear Information System (INIS)

    Wang, Chen; Lees-Miller, Susan P.

    2013-01-01

    DNA damage can occur as a result of endogenous metabolic reactions and replication stress or from exogenous sources such as radiation therapy and chemotherapy. DNA double strand breaks are the most cytotoxic form of DNA damage, and defects in their repair can result in genome instability, a hallmark of cancer. The major pathway for the repair of ionizing radiation-induced DSBs in human cells is nonhomologous end joining. Here we review recent advances on the mechanism of nonhomologous end joining, as well as new findings on its component proteins and regulation

  6. Detection and Repair of Ionizing Radiation-Induced DNA Double Strand Breaks: New Developments in Nonhomologous End Joining

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chen [Departments of Biochemistry and Molecular Biology and Oncology, and Southern Alberta Cancer Research Institute, University of Calgary, Calgary (Canada); Lees-Miller, Susan P., E-mail: leesmill@ucalgary.ca [Departments of Biochemistry and Molecular Biology and Oncology, and Southern Alberta Cancer Research Institute, University of Calgary, Calgary (Canada)

    2013-07-01

    DNA damage can occur as a result of endogenous metabolic reactions and replication stress or from exogenous sources such as radiation therapy and chemotherapy. DNA double strand breaks are the most cytotoxic form of DNA damage, and defects in their repair can result in genome instability, a hallmark of cancer. The major pathway for the repair of ionizing radiation-induced DSBs in human cells is nonhomologous end joining. Here we review recent advances on the mechanism of nonhomologous end joining, as well as new findings on its component proteins and regulation.

  7. Age-dependent change of HMGB1 and DNA double-strand break accumulation in mouse brain

    International Nuclear Information System (INIS)

    Enokido, Yasushi; Yoshitake, Ayaka; Ito, Hikaru; Okazawa, Hitoshi

    2008-01-01

    HMGB1 is an evolutionarily conserved non-histone chromatin-associated protein with key roles in maintenance of nuclear homeostasis; however, the function of HMGB1 in the brain remains largely unknown. Recently, we found that the reduction of nuclear HMGB1 protein level in the nucleus associates with DNA double-strand break (DDSB)-mediated neuronal damage in Huntington's disease [M.L. Qi, K. Tagawa, Y. Enokido, N. Yoshimura, Y. Wada, K. Watase, S. Ishiura, I. Kanazawa, J. Botas, M. Saitoe, E.E. Wanker, H. Okazawa, Proteome analysis of soluble nuclear proteins reveals that HMGB1/2 suppress genotoxic stress in polyglutamine diseases, Nat. Cell Biol. 9 (2007) 402-414]. In this study, we analyze the region- and cell type-specific changes of HMGB1 and DDSB accumulation during the aging of mouse brain. HMGB1 is localized in the nuclei of neurons and astrocytes, and the protein level changes in various brain regions age-dependently. HMGB1 reduces in neurons, whereas it increases in astrocytes during aging. In contrast, DDSB remarkably accumulates in neurons, but it does not change significantly in astrocytes during aging. These results indicate that HMGB1 expression during aging is differentially regulated between neurons and astrocytes, and suggest that the reduction of nuclear HMGB1 might be causative for DDSB in neurons of the aged brain

  8. Viral Cre-LoxP tools aid genome engineering in mammalian cells.

    Science.gov (United States)

    Sengupta, Ranjita; Mendenhall, Amy; Sarkar, Nandita; Mukherjee, Chandreyee; Afshari, Amirali; Huang, Joseph; Lu, Biao

    2017-01-01

    Targeted nucleases have transformed genome editing technology, providing more efficient methods to make targeted changes in mammalian genome. In parallel, there is an increasing demand of Cre-LoxP technology for complex genome manipulation such as large deletion, addition, gene fusion and conditional removal of gene sequences at the target site. However, an efficient and easy-to-use Cre-recombinase delivery system remains lacking. We designed and constructed two sets of expression vectors for Cre-recombinase using two highly efficient viral systems, the integrative lentivirus and non-integrative adeno associated virus. We demonstrate the effectiveness of those methods in Cre-delivery into stably-engineered HEK293 cells harboring LoxP-floxed red fluorescent protein (RFP) and puromycin (Puro) resistant reporters. The delivered Cre recombinase effectively excised the floxed RFP-Puro either directly or conditionally, therefore validating the function of these molecular tools. Given the convenient options of two selections markers, these viral-based systems offer a robust and easy-to-use tool for advanced genome editing, expanding complicated genome engineering to a variety of cell types and conditions. We have developed and functionally validated two viral-based Cre-recombinase delivery systems for efficient genome manipulation in various mammalian cells. The ease of gene delivery with the built-in reporters and inducible element enables live cell monitoring, drug selection and temporal knockout, broadening applications of genome editing.

  9. A polycomb group protein, PHF1, is involved in the response to DNA double-strand breaks in human cell

    OpenAIRE

    Hong, Zehui; Jiang, Jie; Lan, Li; Nakajima, Satoshi; Kanno, Shin-ichiro; Koseki, Haruhiko; Yasui, Akira

    2008-01-01

    DNA double-strand breaks (DSBs) represent the most toxic DNA damage arisen from endogenous and exogenous genotoxic stresses and are known to be repaired by either homologous recombination or nonhomologous end-joining processes. Although many proteins have been identified to participate in either of the processes, the whole processes still remain elusive. Polycomb group (PcG) proteins are epigenetic chromatin modifiers involved in gene silencing, cancer development and the maintenance of embry...

  10. Crystal structure of clustered regularly interspaced short palindromic repeats (CRISPR)-associated Csn2 protein revealed Ca2+-dependent double-stranded DNA binding activity.

    Science.gov (United States)

    Nam, Ki Hyun; Kurinov, Igor; Ke, Ailong

    2011-09-02

    Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated protein genes (cas genes) are widespread in bacteria and archaea. They form a line of RNA-based immunity to eradicate invading bacteriophages and malicious plasmids. A key molecular event during this process is the acquisition of new spacers into the CRISPR loci to guide the selective degradation of the matching foreign genetic elements. Csn2 is a Nmeni subtype-specific cas gene required for new spacer acquisition. Here we characterize the Enterococcus faecalis Csn2 protein as a double-stranded (ds-) DNA-binding protein and report its 2.7 Å tetrameric ring structure. The inner circle of the Csn2 tetrameric ring is ∼26 Å wide and populated with conserved lysine residues poised for nonspecific interactions with ds-DNA. Each Csn2 protomer contains an α/β domain and an α-helical domain; significant hinge motion was observed between these two domains. Ca(2+) was located at strategic positions in the oligomerization interface. We further showed that removal of Ca(2+) ions altered the oligomerization state of Csn2, which in turn severely decreased its affinity for ds-DNA. In summary, our results provided the first insight into the function of the Csn2 protein in CRISPR adaptation by revealing that it is a ds-DNA-binding protein functioning at the quaternary structure level and regulated by Ca(2+) ions.

  11. APOBEC3 Interference during Replication of Viral Genomes

    Directory of Open Access Journals (Sweden)

    Luc Willems

    2015-06-01

    Full Text Available Co-evolution of viruses and their hosts has reached a fragile and dynamic equilibrium that allows viral persistence, replication and transmission. In response, infected hosts have developed strategies of defense that counteract the deleterious effects of viral infections. In particular, single-strand DNA editing by Apolipoprotein B Editing Catalytic subunits proteins 3 (APOBEC3s is a well-conserved mechanism of mammalian innate immunity that mutates and inactivates viral genomes. In this review, we describe the mechanisms of APOBEC3 editing during viral replication, the viral strategies that prevent APOBEC3 activity and the consequences of APOBEC3 modulation on viral fitness and host genome integrity. Understanding the mechanisms involved reveals new prospects for therapeutic intervention.

  12. Biological defense mechanisms against DNA double-strand break and their possible medical applications

    International Nuclear Information System (INIS)

    Matsumoto, Yoshihisa

    2011-01-01

    Radiation is now widely used for clinical diagnosis and therapeutics. On the other hand, radiation influences various tissues represented by immunological and reproductive systems, and is also recognized as one of the cause of carcinogenesis. Such pleiotropic effects of radiation are mediated through generation of damages on DNA molecule, vitally important genetic macromolecule. Among various types of DNA damages, double-strand break (DSB) is considered most critical and, therefore, responsible for biological effects. DSB is repaired mainly through two pathways: non-homologous end joining (NHEJ) and homologous recombination (HR). Understanding of these mechanisms has been greatly deepened in past 20 years and is now providing a promising approach toward cancer therapy. We have studied the mechanisms of NHEJ, focusing especially on the role of phosphorylation and the assembly of machinery therein, which will be introduced below. (author)

  13. Cyclic perylene diimide: Selective ligand for tetraplex DNA binding over double stranded DNA.

    Science.gov (United States)

    Vasimalla, Suresh; Sato, Shinobu; Takenaka, Fuminori; Kurose, Yui; Takenaka, Shigeori

    2017-12-15

    Synthesized cyclic perylene diimide, cPDI, showed the binding constant of 6.3 × 10 6  M -1 with binding number of n = 2 with TA-core as a tetraplex DNA in 50 mM Tris-HCl buffer (pH = 7.4) containing 100 mM KCl using Schatchard analysis and showed a higher preference for tetraplex DNA than for double stranded DNA with over 10 3 times. CD spectra showed that TA-core induced its antiparallel conformation upon addition of cPDI in the absence or presence of K + or Na + ions. The cPDI inhibits the telomerase activity with IC 50 of 0.3 µM using TRAP assay which is potential anti-cancer drug with low side effect. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Ionizing-radiation induced DNA double-strand breaks: A direct and indirect lighting up

    International Nuclear Information System (INIS)

    Vignard, Julien; Mirey, Gladys; Salles, Bernard

    2013-01-01

    The occurrence of DNA double-strand breaks (DSBs) induced by ionizing radiation has been extensively studied by biochemical or cell imaging techniques. Cell imaging development relies on technical advances as well as our knowledge of the cell DNA damage response (DDR) process. The DDR involves a complex network of proteins that initiate and coordinate DNA damage signaling and repair activities. As some DDR proteins assemble at DSBs in an established spatio-temporal pattern, visible nuclear foci are produced. In addition, post-translational modifications are important for the signaling and the recruitment of specific partners at damaged chromatin foci. We briefly review here the most widely used methods to study DSBs. We also discuss the development of indirect methods, using reporter expression or intra-nuclear antibodies, to follow the production of DSBs in real time and in living cells

  15. Efficient photoreceptor-targeted gene expression in vivo by recombinant adeno-associated virus.

    Science.gov (United States)

    Flannery, J G; Zolotukhin, S; Vaquero, M I; LaVail, M M; Muzyczka, N; Hauswirth, W W

    1997-06-24

    We describe a general approach for achieving efficient and cell type-specific expression of exogenous genes in photoreceptor cells of the mammalian retina. Recombinant adeno-associated virus (rAAV) vectors were used to transfer the bacterial lacZ gene or a synthetic green fluorescent protein gene (gfp) to mouse or rat retinas after injection into the subretinal space. Using a proximal murine rod opsin promoter (+86 to -385) to drive expression, reporter gene product was found exclusively in photoreceptors, not in any other retinal cell type or in the adjacent retinal pigment epithelium. GFP-expressing photoreceptors typically encompassed 10-20% of the total retinal area after a single 2-microl injection. Photoreceptors were transduced with nearly 100% efficiency in the region directly surrounding the injection site. We estimate approximately 2.5 million photoreceptors were transduced as a result of the single subretinal inoculation. This level of gene transfer and expression suggests the feasibility of genetic therapy for retinal disease. The gfp-containing rAAV stock was substantially free of both adenovirus and wild-type AAV, as judged by plaque assay and infectious center assay, respectively. Thus, highly purified, helper virus-free rAAV vectors can achieve high-frequency tissue-specific transduction of terminally differentiated, postmitotic photoreceptor cells.

  16. Correlation between residual level of DNA double-strand breaks and the radiosensitivity of cancer cells

    International Nuclear Information System (INIS)

    Sun Jianxiang; Sun Weijian; Sui Jianli; Zhou Pingkun

    2008-01-01

    Objective: To understand the variation of the DNA double-strand break rejoining capacity among different cultured cancer cell lines and the primary cancer cells from brain cancer patients, and to explore the predictor of radiotherapy responses of cancers. Methods: DNA double-strand breaks (DSBs) were induced by 60 Co γ-irradiation. Pulsed-field gel electrophoresis was used to analyze the initial production and rejoining of DNA DSBs. Radiosensitivity was determined by in vitro assay of clonogenic-forming capacity. Results: A wide variation of radiosensitivity, e.g. the survival parameter of Do varied from 0.65 to 2.15 Gy, was displayed among the eight cell lines derived from different type of cancers. Although differential level of initial DNA DSBs induced by 20 Gy γ-rays was observed among various cell lines, it was not correlated with the radiosensitivity. The deficiency of DNA DSB rejoining in radiosensitive cell lines was shown either in the early rapid-rejoining phase (SX-10 cells) or in the late slow-rejoining phase (A2780 cells). A significant relationship was observed between the residual level of DNA DSBs measured at 2 h post-20 Gy irradiation and the cellular radiosensitivity (D 0 or SF 2 ). The kinetic curves of rejoining DNA DSBs in the primary human brain tumor cells indicated a variation on DSB rejoining capacity among different individual tumor. The residual level of DNA DSBs after 2 h of rejoining post 20 Gy irradiation in primary human brain tumor cells is compatible to the results obtained in vitro culture cancer cell lines. Conclusions: The residual level of DNA DSBs is correlated with radioresistance of cancer cells, and the residual DNA damage is a useful parameter in predicting the response of tumor tissue to radiotherapy. (authors)

  17. Duplex PCR assay for the detection of avian adeno virus and chicken anemia virus prevalent in Pakistan

    Directory of Open Access Journals (Sweden)

    Iqbal Aqib

    2011-09-01

    Full Text Available Abstract Avian Adeno viruses and Chicken Anemia Viruses cause serious economic losses to the poultry industry of Pakistan each year. Timely and efficient diagnosis of the viruses is needed in order to practice prevention and control strategies. In the first part of this study, we investigated broilers, breeder and Layer stocks for morbidity and mortality rates due to AAV and CAV infections and any co-infections by examining signs and symptoms typical of their infestation or post mortem examination. In the second part of the study, we developed a duplex PCR assay for the detection of AAV and CAV which is capable to simultaneously detect both the viral types prevalent in Pakistan with high sensitivity and 100% specificity.

  18. ENDEMIC INFECTION OF STRANDED SOUTHERN SEA OTTERS (ENHYDRA LUTRIS NEREIS) WITH NOVEL PARVOVIRUS, POLYOMAVIRUS, AND ADENOVIRUS.

    Science.gov (United States)

    Siqueira, Juliana D; Ng, Terry F; Miller, Melissa; Li, Linlin; Deng, Xutao; Dodd, Erin; Batac, Francesca; Delwart, Eric

    2017-07-01

    Over the past century, the southern sea otter (SSO; Enhydra lutris nereis) population has been slowly recovering from near extinction due to overharvest. The SSO is a threatened subspecies under federal law and a fully protected species under California law, US. Through a multiagency collaborative program, stranded animals are rehabilitated and released, while deceased animals are necropsied and tissues are cryopreserved to facilitate scientific study. Here, we processed archival tissues to enrich particle-associated viral nucleic acids, which we randomly amplified and deeply sequenced to identify viral genomes through sequence similarities. Anelloviruses and endogenous retroviral sequences made up over 50% of observed viral sequences. Polyomavirus, parvovirus, and adenovirus sequences made up most of the remaining reads. We characterized and phylogenetically analyzed the full genome of sea otter polyomavirus 1 and the complete coding sequence of sea otter parvovirus 1 and found that the closest known viruses infect primates and domestic pigs ( Sus scrofa domesticus), respectively. We tested archived tissues from 69 stranded SSO necropsied over 14 yr (2000-13) by PCR. Polyomavirus, parvovirus, and adenovirus infections were detected in 51, 61, and 29% of examined animals, respectively, with no significant increase in frequency over time, suggesting endemic infection. We found that 80% of tested SSO were infected with at least one of the three DNA viruses, whose tissue distribution we determined in 261 tissue samples. Parvovirus DNA was most frequently detected in mesenteric lymph node, polyomavirus DNA in spleen, and adenovirus DNA in multiple tissues (spleen, retropharyngeal and mesenteric lymph node, lung, and liver). This study describes the virome in tissues of a threatened species and shows that stranded SSO are frequently infected with multiple viruses, warranting future research to investigate associations between these infections and observed lesions.

  19. Repair-induced DNA double strand breaks after ultraviolet-light and either aphidocolin or 1-β-D-arabinofuranosylcytosine/hydroxyurea

    International Nuclear Information System (INIS)

    Bradley, M.O.; Taylor, V.I.

    1983-01-01

    A study was performed to determine whether 'repair-induced double strand breaks' (RDSBs) occur in IMR-90 cells at low u.v. doses and whether the RDSBs are themselves repairable by holding open the excision-repair induced gaps by inhibiting nucleotide polymerization after u.v. light with hydroxyurea/ara C or aphidocolin. The results show as little as 2.5 J.m -2 of u.v. light induces RDSBs during repair incubation when repair inhibitors are present. This suggests that 'hot spots' of high lesion frequency occur and the overlapping excision in these areas will produce RDSBs. Removing aphidocolin showed that RDSBs are only partially repairable with between 15 and 40% of the breaks unrepaired at 24 h. Because the lesions are partially repairable they should not always cause toxicity and may be involved in processes such as mutation, transformation, and chromosome or chromatid type aberrations of the sort associated with human tumors. (author)

  20. MicroRNA Expression during Viral Infection or PolyI:C Stimulation in a Fish Model

    DEFF Research Database (Denmark)

    Kristensen, Lasse Bøgelund Juel; Schyth, Brian Dall; Lorenzen, Niels

    Fish are important as small vertebrate models for studying various aspects of development and disease. MicroRNA regulation in fish has so far received attention especially in studies of their expression and function during embryonic development. In the studies carried out at the National Veterinary...... Institute in Århus we aim at using fish models for studying microRNA regulation during viral infection. In the studies presented here we make use of a qPCR method to detect miRNAs in fish cells. We present results regarding the expression of the immunologically relevant microRNAs, miR-155, miR-146a and mi......R-146b in fish cells during infection with the fish pathogenic virus viral hemorrhagic septicemia virus (VHSV) and during immune stimulation with double stranded RNA (polyI:C). We highlight the need of finding stable normalization genes for microRNA detection....

  1. Rotavirus NSP2 interferes with the core lattice protein VP2 in initiation of minus-strand synthesis

    International Nuclear Information System (INIS)

    Vende, Patrice; Tortorici, M. Alejandra; Taraporewala, Zenobia F.; Patton, John T.

    2003-01-01

    The rotavirus nonstructural protein NSP2 self-assembles into stable octameric structures that possess nonspecific affinity for single-stranded (ss)RNA and RNA-RNA helix-destabilizing and NTPase activities. Furthermore, NSP2 is a component of replication intermediates with replicase activity and plays a critical role in the packaging and replication of the segmented dsRNA genome of rotavirus. To better understand the function of the protein in genome replication, we examined the effect that purified recombinant NSP2 had on the synthesis of dsRNA by the open core replication system. The results showed that NSP2 inhibited the synthesis of dsRNA from viral mRNA in vitro, in a concentration-dependent manner. The inhibition was overcome by adding increasing amounts of viral mRNA or nonviral ssRNA to the system, indicating that the inhibition was mediated by the nonspecific RNA-binding activity of NSP2. Further analysis revealed that NSP2 interfered with the ability of the open core proteins, GTP, and viral mRNA to form the initiation complex for (-) strand synthesis. Additional experiments indicated that NSP2 did not perturb recognition of viral mRNA by the viral RNA polymerase VP1, but rather interfered with the function of VP2, a protein that is essential for (-) strand initiation and dsRNA synthesis and that forms the T = 1 lattice of the virion core. In contrast to initiation, NSP2 did not inhibit (-) strand elongation. Collectively, the findings provide evidence that the temporal order of interaction of RNA-binding proteins with viral mRNA is a crucial factor impacting the formation of replication intermediates

  2. Strand displacement activated peroxidase activity of hemin for fluorescent DNA sensing.

    Science.gov (United States)

    Wang, Quanbo; Xu, Nan; Gui, Zhen; Lei, Jianping; Ju, Huangxian; Yan, Feng

    2015-10-07

    To efficiently regulate the catalytic activity of the peroxidase mimic hemin, this work designs a double-stranded DNA probe containing an intermolecular dimer of hemin, whose peroxidase activity can be activated by a DNA strand displacement reaction. The double-stranded probe is prepared by annealing two strands of hemin labelled DNA oligonucleotides. Using the fluorescent oxidation product of tyramine by H2O2 as a tracing molecule, the low peroxidase activity of the hemin dimer ensures a low fluorescence background. The strand displacement reaction of the target DNA dissociates the hemin dimer and thus significantly increases the catalytic activity of hemin to produce a large amount of dityramine for fluorescence signal readout. Based on the strand displacement regulated peroxidase activity, a simple and sensitive homogeneous fluorescent DNA sensing method is proposed. The detection can conveniently be carried out in a 96-well plate within 20 min with a detection limit of 0.18 nM. This method shows high specificity, which can effectively distinguish single-base mismatched DNA from perfectly matched target DNA. The DNA strand displacement regulated catalytic activity of hemin has promising application in the determination of various DNA analytes.

  3. Tip60 degradation by adenovirus relieves transcriptional repression of viral transcriptional activator EIA.

    Science.gov (United States)

    Gupta, A; Jha, S; Engel, D A; Ornelles, D A; Dutta, A

    2013-10-17

    Adenoviruses are linear double-stranded DNA viruses that infect human and rodent cell lines, occasionally transform them and cause tumors in animal models. The host cell challenges the virus in multifaceted ways to restrain viral gene expression and DNA replication, and sometimes even eliminates the infected cells by programmed cell death. To combat these challenges, adenoviruses abrogate the cellular DNA damage response pathway. Tip60 is a lysine acetyltransferase that acetylates histones and other proteins to regulate gene expression, DNA damage response, apoptosis and cell cycle regulation. Tip60 is a bona fide tumor suppressor as mice that are haploid for Tip60 are predisposed to tumors. We have discovered that Tip60 is degraded by adenovirus oncoproteins EIB55K and E4orf6 by a proteasome-mediated pathway. Tip60 binds to the immediate early adenovirus promoter and suppresses adenovirus EIA gene expression, which is a master regulator of adenovirus transcription, at least partly through retention of the virally encoded repressor pVII on this promoter. Thus, degradation of Tip60 by the adenoviral early proteins is important for efficient viral early gene transcription and for changes in expression of cellular genes.

  4. Characterization of the adenoassociated virus Rep protein complex formed on the viral origin of DNA replication

    International Nuclear Information System (INIS)

    Li Zengi; Brister, J. Rodney; Im, Dong-Soo; Muzyczka, Nicholas

    2003-01-01

    Interaction between the adenoassociated virus (AAV) replication proteins, Rep68 and 78, and the viral terminal repeats (TRs) is mediated by a DNA sequence termed the Rep-binding element (RBE). This element is necessary for Rep-mediated unwinding of duplex DNA substrates, directs Rep catalyzed cleavage of the AAV origin of DNA replication, and is required for viral transcription and proviral integration. Six discrete Rep complexes with the AAV TR substrates have been observed in vitro, and cross-linking studies suggest these complexes contain one to six molecules of Rep. However, the functional relationship between Rep oligomerization and biochemical activity is unclear. Here we have characterized Rep complexes that form on the AAV TR. Both Rep68 and Rep78 appear to form the same six complexes with the AAV TR, and ATP seems to stimulate formation of specific, higher order complexes. When the sizes of these Rep complexes were estimated on native polyacrylamide gels, the four slower migrating complexes were larger than predicted by an amount equivalent to one or two TRs. To resolve this discrepancy, the molar ratio of protein and DNA was calculated for the three largest complexes. Data from these experiments indicated that the larger complexes included multiple TRs in addition to multiple Rep molecules and that the Rep-to-TR ratio was approximately 2. The two largest complexes were also associated with increased Rep-mediated, origin cleavage activity. Finally, we characterized a second, Rep-mediated cleavage event that occurs adjacent to the normal nicking site, but on the opposite strand. This second site nicking event effectively results in double-stranded DNA cleavage at the normal nicking site

  5. Novel double-stranded RNA viruses of plant-feeding insects encode a serine-alanine-proline rich protein and a polymerase distantly related to fungal viruses

    Science.gov (United States)

    Novel double stranded RNAs (~8 kbp) were isolated from the three cornered alfalfa hopper (Spissistilus festinus) and beet leafhopper (Circulifer tenellus), two plant-feeding hemipteran insect pests. Genome organization of the two new viruses, designated as Spissistilus festinus virus 1 (SpFV1) and ...

  6. Human microglia and astrocytes express cGAS-STING viral sensing components.

    Science.gov (United States)

    Jeffries, Austin M; Marriott, Ian

    2017-09-29

    While microglia and astrocytes are known to produce key inflammatory and anti-viral mediators following infection with replicative DNA viruses, the mechanisms by which these cell types perceive such threats are poorly understood. Recently, cyclic GMP-AMP synthase (cGAS) has been identified as an important cytosolic sensor for DNA viruses and retroviruses in peripheral leukocytes. Here we confirm the ability of human microglial and astrocytic cell lines and primary human glia to respond to foreign intracellular double stranded DNA. Importantly, we provide the first demonstration that human microglia and astrocytes show robust levels of cGAS protein expression at rest and following activation. Furthermore, we show these cell types also constitutively express the critical downstream cGAS adaptor protein, stimulator of interferon genes (STING). The present finding that human glia express the principle components of the cGAS-STING pathway provides a foundation for future studies to investigate the relative importance of these molecules in clinically relevant viral CNS infections. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. NSs protein of rift valley fever virus induces the specific degradation of the double-stranded RNA-dependent protein kinase.

    Science.gov (United States)

    Habjan, Matthias; Pichlmair, Andreas; Elliott, Richard M; Overby, Anna K; Glatter, Timo; Gstaiger, Matthias; Superti-Furga, Giulio; Unger, Hermann; Weber, Friedemann

    2009-05-01

    Rift Valley fever virus (RVFV) continues to cause large outbreaks of acute febrile and often fatal illness among humans and domesticated animals in Africa, Saudi Arabia, and Yemen. The high pathogenicity of this bunyavirus is mainly due to the viral protein NSs, which was shown to prevent transcriptional induction of the antivirally active type I interferons (alpha/beta interferon [IFN-alpha/beta]). Viruses lacking the NSs gene induce synthesis of IFNs and are therefore attenuated, whereas the noninducing wild-type RVFV strains can only be inhibited by pretreatment with IFN. We demonstrate here in vitro and in vivo that a substantial part of the antiviral activity of IFN against RVFV is due to a double-stranded RNA-dependent protein kinase (PKR). PKR-mediated virus inhibition, however, was much more pronounced for the strain Clone 13 with NSs deleted than for the NSs-expressing strain ZH548. In vivo, Clone 13 was nonpathogenic for wild-type (wt) mice but could regain pathogenicity if mice lacked the PKR gene. ZH548, in contrast, killed both wt and PKR knockout mice indiscriminately. ZH548 was largely resistant to the antiviral properties of PKR because RVFV NSs triggered the specific degradation of PKR via the proteasome. The NSs proteins of the related but less virulent sandfly fever Sicilian virus and La Crosse virus, in contrast, had no such anti-PKR activity despite being efficient suppressors of IFN induction. Our data suggest that RVFV NSs has gained an additional anti-IFN function that may explain the extraordinary pathogenicity of this virus.

  8. DNA double strand break repair in a radioresistant cell line

    International Nuclear Information System (INIS)

    Koval, T.M.; Kazmar, E.R.

    1987-01-01

    TN-368 lepidopteran insect cells are on the order of 100 times more resistant to the lethal effects of ionizing radiation than cultured mammalian cells. DNA double strand breaks (DSB) are believed by many to be the critical molecular lesion leading to cell death. The authors therefore measured the rejoining of DSB in TN-368 and V79 Chinese hamster cells. Cells were irradiated on ice with /sup 137/Cs γ rays at a dose rate of 2.5 Gy/min, incubated for various periods of time, and assayed for DNA DSB using the method of neutral elution. The kinetics of DSB rejoining following a dose of 90.2 Gy are similar for both cell lines. Approximately 80% of the DSB are rejoined in both lines by 1 hr postirradiation. However, no further rejoining occurs in the TN-368 cells through at least 6 hr postirradiation, whereas 90% of the DSB are rejoined in the V79 cells by 2 hr postirradiation. Other studies (from 22.6 to 226 Gy) demonstrate that the amount of rejoining of DSB varies inversely with dose for the V79 cells but remains constant for the TN-368 cells. These findings do not support the hypothesis that unrejoined DNA DSB represent the major lesion resulting in cell death

  9. Analysis of DNA double-strand break repair pathways in mice

    International Nuclear Information System (INIS)

    Brugmans, Linda; Kanaar, Roland; Essers, Jeroen

    2007-01-01

    During the last years significant new insights have been gained into the mechanism and biological relevance of DNA double-strand break (DSB) repair in relation to genome stability. DSBs are a highly toxic DNA lesion, because they can lead to chromosome fragmentation, loss and translocations, eventually resulting in cancer. DSBs can be induced by cellular processes such as V(D)J recombination or DNA replication. They can also be introduced by exogenous agents DNA damaging agents such as ionizing radiation or mitomycin C. During evolution several pathways have evolved for the repair of these DSBs. The most important DSB repair mechanisms in mammalian cells are nonhomologous end-joining and homologous recombination. By using an undamaged repair template, homologous recombination ensures accurate DSB repair, whereas the untemplated nonhomologous end-joining pathway does not. Although both pathways are active in mammals, the relative contribution of the two repair pathways to genome stability differs in the different cell types. Given the potential differences in repair fidelity, it is of interest to determine the relative contribution of homologous recombination and nonhomologous end-joining to DSB repair. In this review, we focus on the biological relevance of DSB repair in mammalian cells and the potential overlap between nonhomologous end-joining and homologous recombination in different tissues

  10. Highly Stable Double-Stranded DNA Containing Sequential Silver(I)-Mediated 7-Deazaadenine/Thymine Watson-Crick Base Pairs.

    Science.gov (United States)

    Santamaría-Díaz, Noelia; Méndez-Arriaga, José M; Salas, Juan M; Galindo, Miguel A

    2016-05-17

    The oligonucleotide d(TX)9 , which consists of an octadecamer sequence with alternating non-canonical 7-deazaadenine (X) and canonical thymine (T) as the nucleobases, was synthesized and shown to hybridize into double-stranded DNA through the formation of hydrogen-bonded Watson-Crick base pairs. dsDNA with metal-mediated base pairs was then obtained by selectively replacing W-C hydrogen bonds by coordination bonds to central silver(I) ions. The oligonucleotide I adopts a duplex structure in the absence of Ag(+) ions, and its stability is significantly enhanced in the presence of Ag(+) ions while its double-helix structure is retained. Temperature-dependent UV spectroscopy, circular dichroism spectroscopy, and ESI mass spectrometry were used to confirm the selective formation of the silver(I)-mediated base pairs. This strategy could become useful for preparing stable metallo-DNA-based nanostructures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Effects of guidelines on adeno-tonsillar surgery on the clinical behaviour of otorhinolaryngologists in Italy

    Directory of Open Access Journals (Sweden)

    Motta Giovanni

    2013-01-01

    Full Text Available Abstract Background Several guidelines on adeno-tonsillar disease have been proposed in recent years and some discrepancies in relation both to clinical manifestations and indications for surgical treatment have emerged. The aim of the study was to verify what influence (adeno-tonsillectomy guidelines have had on the clinical behaviour of ENT specialists in Italy. Our study is a retrospective and multi-centre case series with chart review. Methods The survey involved 14,770 children, aged between the ages of 2 and 11, who had undergone adeno-tonsillar surgery between 2002 and 2008 in fourteen Italian tertiary and secondary referral centres. Anova test was used for the statistical analysis, assuming p Results The frequency of adeno-tonsillar surgeries did not change significantly (p>0.05 during the study period and following the Italian policy document publication. Overall, adeno-tonsillectomy was the most frequent intervention (64.1%, followed by adenoidectomy (31.1% and tonsillectomy (4.8%. The indications for surgery did not change significantly for each of the operations (p>0.05, with the exception of adeno-tonsillectomy in case of feverish episodes due to acute recurrent tonsillitis ≥ 5 without nasal obstruction (decreased p= 0.010 , even when the feverish episodes due to acute recurrent tonsillitis were Conclusions The recommendations first developed in Italy in a 2003 policy document and then resumed in guidelines in 2008, were not implemented by ENT units involved in the survey. The study highlights the fact that the indications for adeno-tonsillar operations are based on the overall clinical presentation (comorbidity rather than on a single symptom. Guidelines are necessary to give coherent recommendations based on both the findings obtained through randomized controlled trials and the data collected from observational studies.

  12. Near-Complete Genome Sequence of a Novel Single-Stranded RNA Virus Discovered in Indoor Air.

    Science.gov (United States)

    Rosario, Karyna; Fierer, Noah; Breitbart, Mya

    2018-03-22

    Viral metagenomic analysis of heating, ventilation, and air conditioning (HVAC) filters recovered the near-complete genome sequence of a novel virus, named HVAC-associated R NA v irus 1 (HVAC-RV1). The HVAC-RV1 genome is most similar to those of picorna-like viruses identified in arthropods but encodes a small domain observed only in negative-sense single-stranded RNA viruses. Copyright © 2018 Rosario et al.

  13. Pathways for double-strand break repair in genetically unstable Z-DNA-forming sequences.

    Science.gov (United States)

    Kha, Diem T; Wang, Guliang; Natrajan, Nithya; Harrison, Lynn; Vasquez, Karen M

    2010-05-14

    DNA can adopt many structures that differ from the canonical B-form, and several of these non-canonical DNA structures have been implicated in genetic instability associated with human disease. Earlier, we found that Z-DNA causes DNA double-strand breaks (DSBs) in mammalian cells that can result in large-scale deletions and rearrangements. In contrast, the same Z-DNA-forming CG repeat in Escherichia coli resulted in only small contractions or expansions within the repeat. This difference in the Z-DNA-induced mutation spectrum between mammals and bacteria might be due to different mechanisms for DSB repair; in mammalian cells, non-homologous end-joining (NHEJ) is a major DSB repair pathway, while E. coli do not contain this system and typically use homologous recombination (HR) to process DSBs. To test the extent to which the different DSB repair pathways influenced the Z-DNA-induced mutagenesis, we engineered bacterial E.coli strains to express an inducible NHEJ system, to mimic the situation in mammalian cells. Mycobacterium tuberculosis NHEJ proteins Ku and ligase D (LigD) were expressed in E.coli cells in the presence or absence of HR, and the Z-DNA-induced mutations were characterized. We found that the presence of the NHEJ mechanism markedly shifted the mutation spectrum from small deletions/insertions to large-scale deletions (from 2% to 24%). Our results demonstrate that NHEJ plays a role in the generation of Z-DNA-induced large-scale deletions, suggesting that this pathway is associated with DNA structure-induced destabilization of genomes from prokaryotes to eukaryotes. (c) 2010 Elsevier Ltd. All rights reserved.

  14. Cryo-electron Microscopy Reconstruction and Stability Studies of the Wild Type and the R432A Variant of Adeno-associated Virus Type 2 Reveal that Capsid Structural Stability Is a Major Factor in Genome Packaging.

    Science.gov (United States)

    Drouin, Lauren M; Lins, Bridget; Janssen, Maria; Bennett, Antonette; Chipman, Paul; McKenna, Robert; Chen, Weijun; Muzyczka, Nicholas; Cardone, Giovanni; Baker, Timothy S; Agbandje-McKenna, Mavis

    2016-10-01

    The adeno-associated viruses (AAV) are promising therapeutic gene delivery vectors and better understanding of their capsid assembly and genome packaging mechanism is needed for improved vector production. Empty AAV capsids assemble in the nucleus prior to genome packaging by virally encoded Rep proteins. To elucidate the capsid determinants of this process, structural differences between wild-type (wt) AAV2 and a packaging deficient variant, AAV2-R432A, were examined using cryo-electron microscopy and three-dimensional image reconstruction both at an ∼5.0-Å resolution (medium) and also at 3.8- and 3.7-Å resolutions (high), respectively. The high resolution structures showed that removal of the arginine side chain in AAV2-R432A eliminated hydrogen bonding interactions, resulting in altered intramolecular and intermolecular interactions propagated from under the 3-fold axis toward the 5-fold channel. Consistent with these observations, differential scanning calorimetry showed an ∼10°C decrease in thermal stability for AAV2-R432A compared to wt-AAV2. In addition, the medium resolution structures revealed differences in the juxtaposition of the less ordered, N-terminal region of their capsid proteins, VP1/2/3. A structural rearrangement in AAV2-R432A repositioned the βA strand region under the icosahedral 2-fold axis rather than antiparallel to the βB strand, eliminating many intramolecular interactions. Thus, a single amino acid substitution can significantly alter the AAV capsid integrity to the extent of reducing its stability and possibly rendering it unable to tolerate the stress of genome packaging. Furthermore, the data show that the 2-, 3-, and 5-fold regions of the capsid contributed to producing the packaging defect and highlight a tight connection between the entire capsid in maintaining packaging efficiency. The mechanism of AAV genome packaging is still poorly understood, particularly with respect to the capsid determinants of the required capsid

  15. Pharmacokinetics and Toxicity in Rats and Monkeys of coDbait: A Therapeutic Double-stranded DNA Oligonucleotide Conjugated to Cholesterol

    Directory of Open Access Journals (Sweden)

    Anne Schlegel

    2012-01-01

    Full Text Available Increased DNA repair activity in cancer cells is one of their primary mechanisms of resistance to current radio- and chemotherapies. The molecule coDbait is the first candidate in a new class of drugs that target the double-strand DNA break repair pathways with the aim of overcoming these resistances. coDbait is a 32-base pair (bp double-stranded DNA molecule with a cholesterol moiety covalently attached to its 5′-end to facilitate its cellular uptake. We report here the preclinical pharmacokinetic and toxicology studies of subcutaneous coDbait administration in rodents and monkeys. Maximum plasma concentration occurred between 2 to 4 hours in rats and at 4 hours in monkeys. Increase in mean AUC0–24h was linear with dose reaching 0.5 mg·h/ml for the highest dose injected (32 mg for both rats and monkeys. No sex-related differences in maximum concentration (Cmax nor AUC0–24h were observed. We extrapolated these pharmacokinetic results to humans as the subcutaneous route has been selected for evaluation in clinical trials. Tri-weekly administration of coDbait (from 8 to 32 mg per dose for 4 weeks was overall well tolerated in rats and monkeys as no morbidity/mortality nor changes in clinical chemistry and histopathology parameters considered to be adverse effects have been observed.

  16. A model capturing novel strand symmetries in bacterial DNA

    International Nuclear Information System (INIS)

    Sobottka, Marcelo; Hart, Andrew G.

    2011-01-01

    Highlights: → We propose a simple stochastic model to construct primitive DNA sequences. → The model provide an explanation for Chargaff's second parity rule in primitive DNA sequences. → The model is also used to predict a novel type of strand symmetry in primitive DNA sequences. → We extend the results for bacterial DNA sequences and compare distributional properties intrinsic to the model to statistical estimates from 1049 bacterial genomes. → We find out statistical evidences that the novel type of strand symmetry holds for bacterial DNA sequences. -- Abstract: Chargaff's second parity rule for short oligonucleotides states that the frequency of any short nucleotide sequence on a strand is approximately equal to the frequency of its reverse complement on the same strand. Recent studies have shown that, with the exception of organellar DNA, this parity rule generally holds for double-stranded DNA genomes and fails to hold for single-stranded genomes. While Chargaff's first parity rule is fully explained by the Watson-Crick pairing in the DNA double helix, a definitive explanation for the second parity rule has not yet been determined. In this work, we propose a model based on a hidden Markov process for approximating the distributional structure of primitive DNA sequences. Then, we use the model to provide another possible theoretical explanation for Chargaff's second parity rule, and to predict novel distributional aspects of bacterial DNA sequences.

  17. Transformation of Saccharomyces cerevisiae with UV-irradiated single-stranded plasmid.

    Science.gov (United States)

    Zgaga, Z

    1991-08-01

    UV-irradiated single-stranded replicative plasmids were used to transform different yeast strains. The low doses of UV used in this study (10-75 J/m2) caused a significant decrease in the transforming efficiency of plasmid DNA in the Rad+ strain, while they had no effect on transformation with double-stranded plasmids of comparable size. Neither the rev3 mutation, nor the rad18 or rad52 mutations influenced the efficiency of transformation with irradiated single-stranded plasmid. However, it was found to be decreased in the double rev3 rad52 mutant. Extracellular irradiation of plasmid that contains both URA3 and LEU2 genes (psLU) gave rise to up to 5% Leu- transformants among selected Ura+ ones in the repair-proficient strain. Induction of Leu- transformants was dose-dependent and only partially depressed in the rev3 mutant. These results suggest that both mutagenic and recombinational repair processes operate on UV-damaged single-stranded DNA in yeast.

  18. Effect of cellular glutathione content on the induction of DNA double strand breaks by 25 MeV electrons

    Energy Technology Data Exchange (ETDEWEB)

    Frankenberg, D.; Kistler, M.; Eckhardt-Schupp, F.

    1987-08-01

    The effect of endogenous glutathione (GSH) on the induction of DNA double strand breaks (dsb) by 25 MeV electrons was investigated using stationary haploid yeast cells defective in ..gamma..-glutamyl-cysteine-synthetase (gsh 1) containing less than 5 per cent of the normal GSH content. In gsh 1 cells the induction of dsb is increased by a factor of 1.5 under oxic and 1.8 under anoxic irradiation conditions whereas the oxygen enhancement ratio was only slightly decreased (1.9) compared to wild-type cells (2.4).

  19. Effect of cellular glutathione content on the induction of DNA double strand breaks by 25 MeV electrons

    International Nuclear Information System (INIS)

    Frankenberg, D.; Kistler, M.; Eckhardt-Schupp, F.

    1987-01-01

    The effect of endogenous glutathione (GSH) on the induction of DNA double strand breaks (dsb) by 25 MeV electrons was investigated using stationary haploid yeast cells defective in γ-glutamyl-cysteine-synthetase (gsh 1) containing less than 5 per cent of the normal GSH content. In gsh 1 cells the induction of dsb is increased by a factor of 1.5 under oxic and 1.8 under anoxic irradiation conditions whereas the oxygen enhancement ratio was only slightly decreased (1.9) compared to wild-type cells (2.4). (author)

  20. Asymmetric strand segregation: epigenetic costs of genetic fidelity?

    Directory of Open Access Journals (Sweden)

    Diane P Genereux

    2009-06-01

    Full Text Available Asymmetric strand segregation has been proposed as a mechanism to minimize effective mutation rates in epithelial tissues. Under asymmetric strand segregation, the double-stranded molecule that contains the oldest DNA strand is preferentially targeted to the somatic stem cell after each round of DNA replication. This oldest DNA strand is expected to have fewer errors than younger strands because some of the errors that arise on daughter strands during their synthesis fail to be repaired. Empirical findings suggest the possibility of asymmetric strand segregation in a subset of mammalian cell lineages, indicating that it may indeed function to increase genetic fidelity. However, the implications of asymmetric strand segregation for the fidelity of epigenetic information remain unexplored. Here, I explore the impact of strand-segregation dynamics on epigenetic fidelity using a mathematical-modelling approach that draws on the known molecular mechanisms of DNA methylation and existing rate estimates from empirical methylation data. I find that, for a wide range of starting methylation densities, asymmetric -- but not symmetric -- strand segregation leads to systematic increases in methylation levels if parent strands are subject to de novo methylation events. I found that epigenetic fidelity can be compromised when enhanced genetic fidelity is achieved through asymmetric strand segregation. Strand segregation dynamics could thus explain the increased DNA methylation densities that are observed in structured cellular populations during aging and in disease.

  1. Sub-ensemble monitoring of DNA strand displacement using multiparameter single-molecule FRET

    OpenAIRE

    Baltierra Jasso, Laura; Morten, Michael; Magennis, Steven William

    2018-01-01

    Non-enzymatic DNA strand displacement is an important mechanism in dynamic DNA nanotechnology. Here we show that the large parameter space that is accessible by single-molecule FRET is ideal for the simultaneous monitoring of multiple reactants and products of DNA strand exchange reactions. We monitored the strand displacement from double-stranded DNA (dsDNA) by single-stranded DNA (ssDNA) at 37 °C; the data were modelled as a second-order reaction approaching equilibrium, with a rate constan...

  2. Assessment of DNA double-strand breaks induced by intravascular iodinated contrast media following in vitro irradiation and in vivo, during paediatric cardiac catheterization.

    Science.gov (United States)

    Gould, Richard; McFadden, Sonyia L; Horn, Simon; Prise, Kevin M; Doyle, Philip; Hughes, Ciara M

    2016-01-01

    Paediatric cardiac catheterizations may result in the administration of substantial amounts of iodinated contrast media and ionizing radiation. The aim of this work was to investigate the effect of iodinated contrast media in combination with in vitro and in vivo X-ray radiation on lymphocyte DNA. Six concentrations of iodine (15, 17.5, 30, 35, 45, and 52.5 mg of iodine per mL blood) represented volumes of iodinated contrast media used in the clinical setting. Blood obtained from healthy volunteers was mixed with iodinated contrast media and exposed to radiation doses commonly used in paediatric cardiac catheterizations (0 mGy, 70 mGy, 140 mGy, 250 mGy and 450 mGy). Control samples contained no iodine. For in vivo experimentation, pre and post blood samples were collected from children undergoing cardiac catheterization, receiving iodine concentrations of up to 51 mg of iodine per mL blood and radiation doses of up to 400 mGy. Fluorescence microscopy was performed to assess γH2AX-foci induction, which corresponded to the number of DNA double-strand breaks. The presence of iodine in vitro resulted in significant increases of DNA double-strand breaks beyond that induced by radiation for ≥ 17.5 mg/mL iodine to blood. The in vivo effects of contrast media on children undergoing cardiac catheterization resulted in a 19% increase in DNA double-strand breaks in children receiving an average concentration of 19 mg/mL iodine to blood. A larger investigation is required to provide further information of the potential benefit of lowering the amount of iodinated contrast media received during X-ray radiation investigations. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Specific interaction of the nonstructural protein NS1 of minute virus of mice (MVM) with [ACCA](2) motifs in the centre of the right-end MVM DNA palindrome induces hairpin-primed viral DNA replication.

    Science.gov (United States)

    Willwand, Kurt; Moroianu, Adela; Hörlein, Rita; Stremmel, Wolfgang; Rommelaere, Jean

    2002-07-01

    The linear single-stranded DNA genome of minute virus of mice (MVM) is replicated via a double-stranded replicative form (RF) intermediate DNA. Amplification of viral RF DNA requires the structural transition of the right-end palindrome from a linear duplex into a double-hairpin structure, which serves for the repriming of unidirectional DNA synthesis. This conformational transition was found previously to be induced by the MVM nonstructural protein NS1. Elimination of the cognate NS1-binding sites, [ACCA](2), from the central region of the right-end palindrome next to the axis of symmetry was shown to markedly reduce the efficiency of hairpin-primed DNA replication, as measured in a reconstituted in vitro replication system. Thus, [ACCA](2) sequence motifs are essential as NS1-binding elements in the context of the structural transition of the right-end MVM palindrome.

  4. Plant-feeding insects harbor double-stranded RNA viruses encoding a novel proline-alanine rich protein and a polymerase distantly related to that of fungal viruses

    Science.gov (United States)

    Novel double-stranded RNAs (~8 kbp) were isolated from three cornered alfalfa hopper (Spissistilus festinus) and beet leafhopper (Circulifer tenellus), two plant-feeding hemipteran insect pests. Genomes of the two new viruses, designated as Spissistilus festinus virus 1 (SpFV1) and Circulifer tenell...

  5. Smoking cessation reverses DNA double-strand breaks in human mononuclear cells.

    Directory of Open Access Journals (Sweden)

    Mari Ishida

    Full Text Available OBJECTIVE: Cigarette smoking is a major risk factor for atherosclerotic cardiovascular disease, which is responsible for a significant proportion of smoking-related deaths. However, the precise mechanism whereby smoking induces this pathology has not been fully delineated. Based on observation of DNA double-strand breaks (DSBs, the most harmful type of DNA damage, in atherosclerotic lesions, we hypothesized that there is a direct association between smoking and DSBs. The goal of this study was to investigate whether smoking induces DSBs and smoking cessation reverses DSBs in vivo through examination of peripheral mononuclear cells (MNCs. APPROACH AND RESULTS: Immunoreactivity of oxidative modification of DNA and DSBs were increased in human atherosclerotic lesions but not in the adjacent normal area. DSBs in human MNCs isolated from the blood of volunteers can be detected as cytologically visible "foci" using an antibody against the phosphorylated form of the histone H2AX (γ-H2AX. Young healthy active smokers (n = 15 showed increased γ-H2AX foci number when compared with non-smokers (n = 12 (foci number/cell: median, 0.37/cell; interquartile range [IQR], 0.31-0.58 vs. 4.36/cell; IQR, 3.09-7.39, p<0.0001. Smoking cessation for 1 month reduced the γ-H2AX foci number (median, 4.44/cell; IQR, 4.36-5.24 to 0.28/cell; IQR, 0.12-0.53, p<0.05. A positive correlation was noted between γ-H2AX foci number and exhaled carbon monoxide levels (r = 0.75, p<0.01. CONCLUSIONS: Smoking induces DSBs in human MNCs in vivo, and importantly, smoking cessation for 1 month resulted in a decrease in DSBs to a level comparable to that seen in non-smokers. These data reinforce the notion that the cigarette smoking induces DSBs and highlight the importance of smoking cessation.

  6. Elevated Subclinical Double-Stranded DNA Antibodies and Future Proliferative Lupus Nephritis

    Science.gov (United States)

    Lee, Jessica J.; Prince, Lisa K.; Baker, Thomas P.; Papadopoulos, Patricia; Edison, Jess; Abbott, Kevin C.

    2013-01-01

    Summary Background and objectives Elevated anti–double-stranded DNA (dsDNA) antibody and C-reactive protein are associated with proliferative lupus nephritis (PLN). Progression of quantitative anti-dsDNA antibody in patients with PLN has not been compared with that in patients with systemic lupus erythematosus (SLE) without LN before diagnosis. The temporal relationship between anti-dsDNA antibody and C-reactive protein elevation has also not been evaluated. Design, setting, participants, & measurements This case-control Department of Defense Serum Repository (established in 1985) study compared longitudinal prediagnostic quantitative anti-dsDNA antibody and C-reactive protein levels in 23 patients with biopsy-proven PLN (Walter Reed Army Medical Center, 1993–2009) with levels in 21 controls with SLE but without LN matched for patient age, sex, race, and age of serum sample. The oldest (median, 2601 days; 25%, 1245 days, 75%, 3075 days), the second to last (368; 212, 635 days), and the last (180; 135, 477 days) serum sample before diagnosis were analyzed. Results More patients with PLN had an elevated anti-dsDNA antibody level than did the matched controls at any point (78% versus 5%; P4 years (33% versus 0%; P=0.04) before diagnosis. A rate of increase >1 IU/ml per year (70% versus 0%; P<0.001) was most specific for PLN. The anti-dsDNA antibody levels increased before C-reactive protein did in most patients with an antecedent elevation (92% versus 8%; P<0.001). Conclusions Elevated anti-dsDNA antibody usually precedes both clinical and subclinical evidence of proliferative LN, which suggests direct pathogenicity. Absolute anti-dsDNA antibody level and rate of increase could better establish risk of future PLN in patients with SLE. PMID:23833315

  7. Autophosphorylation of DNA-PKCS regulates its dynamics at DNA double-strand breaks.

    Science.gov (United States)

    Uematsu, Naoya; Weterings, Eric; Yano, Ken-ichi; Morotomi-Yano, Keiko; Jakob, Burkhard; Taucher-Scholz, Gisela; Mari, Pierre-Olivier; van Gent, Dik C; Chen, Benjamin P C; Chen, David J

    2007-04-23

    The DNA-dependent protein kinase catalytic subunit (DNA-PK(CS)) plays an important role during the repair of DNA double-strand breaks (DSBs). It is recruited to DNA ends in the early stages of the nonhomologous end-joining (NHEJ) process, which mediates DSB repair. To study DNA-PK(CS) recruitment in vivo, we used a laser system to introduce DSBs in a specified region of the cell nucleus. We show that DNA-PK(CS) accumulates at DSB sites in a Ku80-dependent manner, and that neither the kinase activity nor the phosphorylation status of DNA-PK(CS) influences its initial accumulation. However, impairment of both of these functions results in deficient DSB repair and the maintained presence of DNA-PK(CS) at unrepaired DSBs. The use of photobleaching techniques allowed us to determine that the kinase activity and phosphorylation status of DNA-PK(CS) influence the stability of its binding to DNA ends. We suggest a model in which DNA-PK(CS) phosphorylation/autophosphorylation facilitates NHEJ by destabilizing the interaction of DNA-PK(CS) with the DNA ends.

  8. Hepatitis C virus genotypes: A plausible association with viral loads

    Directory of Open Access Journals (Sweden)

    Salma Ghulam Nabi

    2013-01-01

    Full Text Available Background and Aim: The basic aim of this study was to find out the association of genotypes with host age, gender and viral load. Material and Methods: The present study was conducted at Social Security Hospital, Pakistan. This study included 320 patients with chronic hepatitis C virus (HCV infection who were referred to the hospital between November 2011 and July 2012. HCV viral detection and genotyping was performed and the association was seen between genotypes and host age, gender and viral load. Results : The analysis revealed the presence of genotypes 1 and 3 with further subtypes 1a, 1b, 3a, 3b and mixed genotypes 1b + 3a, 1b + 3b and 3a + 3b. Viral load quantification was carried out in all 151 HCV ribonucleic acid (RNA positive patients. The genotype 3a was observed in 124 (82.12% patients, 3b was found in 21 (13.91%, 1a was seen in 2 (1.32%, 1b in 1 (0.66%, mixed infection with 1b + 3a in 1 (0.66%, 1b + 3b in 1 (0.66% and 3a + 3b was also found in 1 (0.66% patient. Viral load quantification was carried out in all 151 HCV RNA positive patients and was compared between the various genotypes. The mean viral load in patients infected with genotype 1a was 2.75 × 10 6 , 1b 3.9 × 10 6 , 3a 2.65 × 10 6 , 3b 2.51 × 10 6 , 1b + 3a 3.4 × 106, 1b + 3b 2.7 × 106 and 3a + 3b 3.5 × 10 6 . An association between different types of genotypes and viral load was observed. Conclusion : Further studies should be carried out to determine the association of viral load with different genotypes so that sufficient data is available and can be used to determine the type and duration of therapy needed and predict disease outcome.

  9. 3′-Terminal Sequence in Poliovirus Negative-Strand Templates Is the Primary cis-Acting Element Required for VPgpUpU-Primed Positive-Strand Initiation

    OpenAIRE

    Sharma, Nidhi; O'Donnell, Brian J.; Flanegan, James B.

    2005-01-01

    The 5′ cloverleaf in poliovirus RNA has a direct role in regulating the stability, translation, and replication of viral RNA. In this study, we investigated the role of stem a in the 5′ cloverleaf in regulating the stability and replication of poliovirus RNA in HeLa S10 translation-replication reactions. Our results showed that disrupting the duplex structure of stem a destabilized viral RNA and inhibited efficient negative-strand synthesis. Surprisingly, the duplex structure of stem a was no...

  10. Studies on the interaction of the food colorant tartrazine with double stranded deoxyribonucleic acid.

    Science.gov (United States)

    Basu, Anirban; Suresh Kumar, Gopinatha

    2016-05-01

    Interaction of the food additive tartrazine with double-stranded DNA was studied by spectroscopic and calorimetric techniques. Absorbance studies revealed that tartrazine exhibited hypochromism in the presence of DNA without any bathochromic effects. Minor groove displacement assay of DAPI and Hoechst 33258 suggested that tartrazine binds in the minor groove of DNA. The complexation was predominantly entropy driven with a smaller but favorable enthalpic contribution to the standard molar Gibbs energy. The equilibrium constant was evaluated to be (3.68 ± .08) × 10(4) M(-1) at 298.15 K. The negative standard molar heat capacity value along with an enthalpy-entropy compensation phenomenon proposed the involvement of dominant hydrophobic forces in the binding process. Tartrazine enhanced the thermal stability of DNA by 7.53 K under saturation conditions.

  11. Small Rad51 and Dmc1 Complexes Often Co-occupy Both Ends of a Meiotic DNA Double Strand Break.

    Directory of Open Access Journals (Sweden)

    M Scott Brown

    2015-12-01

    Full Text Available The Eukaryotic RecA-like proteins Rad51 and Dmc1 cooperate during meiosis to promote recombination between homologous chromosomes by repairing programmed DNA double strand breaks (DSBs. Previous studies showed that Rad51 and Dmc1 form partially overlapping co-foci. Here we show these Rad51-Dmc1 co-foci are often arranged in pairs separated by distances of up to 400 nm. Paired co-foci remain prevalent when DSBs are dramatically reduced or when strand exchange or synapsis is blocked. Super-resolution dSTORM microscopy reveals that individual foci observed by conventional light microscopy are often composed of two or more substructures. The data support a model in which the two tracts of ssDNA formed by a single DSB separate from one another by distances of up to 400 nm, with both tracts often bound by one or more short (about 100 nt Rad51 filaments and also by one or more short Dmc1 filaments.

  12. Constitutional chromothripsis rearrangements involve clustered double-stranded DNA breaks and nonhomologous repair mechanisms.

    Science.gov (United States)

    Kloosterman, Wigard P; Tavakoli-Yaraki, Masoumeh; van Roosmalen, Markus J; van Binsbergen, Ellen; Renkens, Ivo; Duran, Karen; Ballarati, Lucia; Vergult, Sarah; Giardino, Daniela; Hansson, Kerstin; Ruivenkamp, Claudia A L; Jager, Myrthe; van Haeringen, Arie; Ippel, Elly F; Haaf, Thomas; Passarge, Eberhard; Hochstenbach, Ron; Menten, Björn; Larizza, Lidia; Guryev, Victor; Poot, Martin; Cuppen, Edwin

    2012-06-28

    Chromothripsis represents a novel phenomenon in the structural variation landscape of cancer genomes. Here, we analyze the genomes of ten patients with congenital disease who were preselected to carry complex chromosomal rearrangements with more than two breakpoints. The rearrangements displayed unanticipated complexity resembling chromothripsis. We find that eight of them contain hallmarks of multiple clustered double-stranded DNA breaks (DSBs) on one or more chromosomes. In addition, nucleotide resolution analysis of 98 breakpoint junctions indicates that break repair involves nonhomologous or microhomology-mediated end joining. We observed that these eight rearrangements are balanced or contain sporadic deletions ranging in size between a few hundred base pairs and several megabases. The two remaining complex rearrangements did not display signs of DSBs and contain duplications, indicative of rearrangement processes involving template switching. Our work provides detailed insight into the characteristics of chromothripsis and supports a role for clustered DSBs driving some constitutional chromothripsis rearrangements. Copyright © 2012 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Viral-Associated GN: Hepatitis C and HIV.

    Science.gov (United States)

    Kupin, Warren L

    2017-08-07

    Viruses are capable of inducing a wide spectrum of glomerular disorders that can be categorized on the basis of the duration of active viremia: acute, subacute, or chronic. The variable responses of the adaptive immune system to each time period of viral infection results mechanistically in different histologic forms of glomerular injury. The unique presence of a chronic viremic carrier state with either hepatitis C (HCV) or HIV has led to the opportunity to study in detail various pathogenic mechanisms of viral-induced glomerular injury, including direct viral infection of renal tissue and the development of circulating immune complexes composed of viral antigens that deposit along the glomerular basement membrane. Epidemiologic data show that approximately 25%-30% of all HIV patients are coinfected with HCV and 5%-10% of all HCV patients are coinfected with HIV. This situation can often lead to a challenging differential diagnosis when glomerular disease occurs in this dual-infected population and requires the clinician to be familiar with the clinical presentation, laboratory workup, and pathophysiology behind the development of renal disease for both HCV and HIV. Both of these viruses can be categorized under the new classification of infection-associated GN as opposed to being listed as causes of postinfectious GN as has previously been applied to them. Neither of these viruses lead to renal injury after a latent period of controlled and inactive viremia. The geneses of HCV- and HIV-associated glomerular diseases share a total dependence on the presence of active viral replication to sustain renal injury so the renal disease cannot be listed under "postinfectious" GN. With the new availability of direct-acting antivirals for HCV and more effective combined antiretroviral therapy for HIV, successful remission and even regression of glomerular lesions can be achieved if initiated at an early stage. Copyright © 2017 by the American Society of Nephrology.

  14. The DNA-dependent protein kinase: a multifunctional protein kinase with roles in DNA double strand break repair and mitosis

    OpenAIRE

    Jette, Nicholas; Lees-Miller, Susan P.

    2014-01-01

    The DNA-dependent protein kinase (DNA-PK) is a serine/threonine protein kinase composed of a large catalytic subunit (DNA-PKcs) and the Ku70/80 heterodimer. Over the past two decades, significant progress has been made in elucidating the role of DNA-PK in non-homologous end joining (NHEJ), the major pathway for repair of ionizing radiation-induced DNA double strand breaks in human cells and recently, additional roles for DNA-PK have been reported. In this review, we will describe the biochemi...

  15. Structure-guided evolution of antigenically distinct adeno-associated virus variants for immune evasion.

    Science.gov (United States)

    Tse, Longping Victor; Klinc, Kelli A; Madigan, Victoria J; Castellanos Rivera, Ruth M; Wells, Lindsey F; Havlik, L Patrick; Smith, J Kennon; Agbandje-McKenna, Mavis; Asokan, Aravind

    2017-06-13

    Preexisting neutralizing antibodies (NAbs) against adeno-associated viruses (AAVs) pose a major, unresolved challenge that restricts patient enrollment in gene therapy clinical trials using recombinant AAV vectors. Structural studies suggest that despite a high degree of sequence variability, antibody recognition sites or antigenic hotspots on AAVs and other related parvoviruses might be evolutionarily conserved. To test this hypothesis, we developed a structure-guided evolution approach that does not require selective pressure exerted by NAbs. This strategy yielded highly divergent antigenic footprints that do not exist in natural AAV isolates. Specifically, synthetic variants obtained by evolving murine antigenic epitopes on an AAV serotype 1 capsid template can evade NAbs without compromising titer, transduction efficiency, or tissue tropism. One lead AAV variant generated by combining multiple evolved antigenic sites effectively evades polyclonal anti-AAV1 neutralizing sera from immunized mice and rhesus macaques. Furthermore, this variant displays robust immune evasion in nonhuman primate and human serum samples at dilution factors as high as 1:5, currently mandated by several clinical trials. Our results provide evidence that antibody recognition of AAV capsids is conserved across species. This approach can be applied to any AAV strain to evade NAbs in prospective patients for human gene therapy.

  16. Inhibition of DNA-double strand break repair by antimony compounds

    International Nuclear Information System (INIS)

    Takahashi, Sentaro; Sato, Hiroshi; Kubota, Yoshihisa; Utsumi, Hiroshi; Bedford, Joel S.; Okayasu, Ryuichi

    2002-01-01

    DNA double strand breaks (DSBs), induced by γ-irradiation in Chinese hamster ovary cells, were used to examine whether antimony compounds affect the repair of DNA damage. The cells were first incubated with antimony trichloride or antimony potassium tartrate (both Sb(III)) for 2 h, and then irradiated with γ-rays at a dose of 40 Gy. The DNA DSB was quantified with pulsed field gel electrophoresis immediately after irradiation (non-repair group) as well as at 30 min post-irradiation (repair group). The degree of repair inhibition was determined by the differences in the amount of DNA DSB between non-repair and repair groups. Both antimony compounds inhibited repair of DNA DSB in a dose dependent manner. In trichloride, 0.2 mM antimony significantly inhibited the rejoining of DSB, while 0.4 mM was necessary in potassium antimony tartrate. The mean lethal doses, D 0 , for the treatment with antimony trichloride and antimony potassium tartrate, were approximately 0.21 and 0.12 mM, respectively. This indicates that the repair inhibition by antimony trichloride occurred in the dose range near D 0 , but the antimony potassium tartrate inhibited the repair at doses where most cells lost their proliferating ability. This is the first report to indicate that antimony compounds may inhibit the repair of radiation-induced DNA DSB

  17. DNA double-strand-break complexity levels and their possible contributions to the probability for error-prone processing and repair pathway choice.

    Science.gov (United States)

    Schipler, Agnes; Iliakis, George

    2013-09-01

    Although the DNA double-strand break (DSB) is defined as a rupture in the double-stranded DNA molecule that can occur without chemical modification in any of the constituent building blocks, it is recognized that this form is restricted to enzyme-induced DSBs. DSBs generated by physical or chemical agents can include at the break site a spectrum of base alterations (lesions). The nature and number of such chemical alterations define the complexity of the DSB and are considered putative determinants for repair pathway choice and the probability that errors will occur during this processing. As the pathways engaged in DSB processing show distinct and frequently inherent propensities for errors, pathway choice also defines the error-levels cells opt to accept. Here, we present a classification of DSBs on the basis of increasing complexity and discuss how complexity may affect processing, as well as how it may cause lethal or carcinogenic processing errors. By critically analyzing the characteristics of DSB repair pathways, we suggest that all repair pathways can in principle remove lesions clustering at the DSB but are likely to fail when they encounter clusters of DSBs that cause a local form of chromothripsis. In the same framework, we also analyze the rational of DSB repair pathway choice.

  18. Differential Expression of Tomato Spotted Wilt Virus-Derived Viral Small RNAs in Infected Commercial and Experimental Host Plants

    Science.gov (United States)

    Mitter, Neena; Koundal, Vikas; Williams, Sarah; Pappu, Hanu

    2013-01-01

    Background Viral small RNAs (vsiRNAs) in the infected host can be generated from viral double-stranded RNA replicative intermediates, self-complementary regions of the viral genome or from the action of host RNA-dependent RNA polymerases on viral templates. The vsiRNA abundance and profile as well as the endogenous small RNA population can vary between different hosts infected by the same virus influencing viral pathogenicity and host response. There are no reports on the analysis of vsiRNAs of Tomato spotted wilt virus (TSWV), a segmented negative stranded RNA virus in the family Bunyaviridae, with two of its gene segments showing ambisense gene arrangement. The virus causes significant economic losses to numerous field and horticultural crops worldwide. Principal Findings Tomato spotted wilt virus (TSWV)-specific vsiRNAs were characterized by deep sequencing in virus-infected experimental host Nicotiana benthamiana and a commercial, susceptible host tomato. The total small (s) RNA reads in TSWV-infected tomato sample showed relatively equal distribution of 21, 22 and 24 nt, whereas N. benthamiana sample was dominated by 24 nt total sRNAs. The number of vsiRNA reads detected in tomato was many a magnitude (~350:1) higher than those found in N. benthamiana, however the profile of vsiRNAs in terms of relative abundance 21, 22 and 24 nt class size was similar in both the hosts. Maximum vsiRNA reads were obtained for the M RNA segment of TSWV while the largest L RNA segment had the least number of vsiRNAs in both tomato and N. benthamiana. Only the silencing suppressor, NSs, of TSWV recorded higher antisense vsiRNA with respect to the coding frame among all the genes of TSWV. Significance Details of the origin, distribution and abundance of TSWV vsiRNAs could be useful in designing efficient targets for exploiting RNA interference for virus resistance. It also has major implications toward our understanding of the differential processing of vsiRNAs in antiviral

  19. Differential expression of tomato spotted wilt virus-derived viral small RNAs in infected commercial and experimental host plants.

    Directory of Open Access Journals (Sweden)

    Neena Mitter

    Full Text Available BACKGROUND: Viral small RNAs (vsiRNAs in the infected host can be generated from viral double-stranded RNA replicative intermediates, self-complementary regions of the viral genome or from the action of host RNA-dependent RNA polymerases on viral templates. The vsiRNA abundance and profile as well as the endogenous small RNA population can vary between different hosts infected by the same virus influencing viral pathogenicity and host response. There are no reports on the analysis of vsiRNAs of Tomato spotted wilt virus (TSWV, a segmented negative stranded RNA virus in the family Bunyaviridae, with two of its gene segments showing ambisense gene arrangement. The virus causes significant economic losses to numerous field and horticultural crops worldwide. PRINCIPAL FINDINGS: Tomato spotted wilt virus (TSWV-specific vsiRNAs were characterized by deep sequencing in virus-infected experimental host Nicotiana benthamiana and a commercial, susceptible host tomato. The total small (s RNA reads in TSWV-infected tomato sample showed relatively equal distribution of 21, 22 and 24 nt, whereas N. benthamiana sample was dominated by 24 nt total sRNAs. The number of vsiRNA reads detected in tomato was many a magnitude (~350:1 higher than those found in N. benthamiana, however the profile of vsiRNAs in terms of relative abundance 21, 22 and 24 nt class size was similar in both the hosts. Maximum vsiRNA reads were obtained for the M RNA segment of TSWV while the largest L RNA segment had the least number of vsiRNAs in both tomato and N. benthamiana. Only the silencing suppressor, NSs, of TSWV recorded higher antisense vsiRNA with respect to the coding frame among all the genes of TSWV. SIGNIFICANCE: Details of the origin, distribution and abundance of TSWV vsiRNAs could be useful in designing efficient targets for exploiting RNA interference for virus resistance. It also has major implications toward our understanding of the differential processing of vsi

  20. Schrödinger's Cheshire Cat: Are Haploid Emiliania huxleyi Cells Resistant to Viral Infection or Not?

    Science.gov (United States)

    Mordecai, Gideon J; Verret, Frederic; Highfield, Andrea; Schroeder, Declan C

    2017-03-18

    Emiliania huxleyi is the main calcite producer on Earth and is routinely infected by a virus (EhV); a double stranded DNA (dsDNA) virus belonging to the family Phycodnaviridae . E. huxleyi exhibits a haplodiploid life cycle; the calcified diploid stage is non-motile and forms extensive blooms. The haploid phase is a non-calcified biflagellated cell bearing organic scales. Haploid cells are thought to resist infection, through a process deemed the "Cheshire Cat" escape strategy; however, a recent study detected the presence of viral lipids in the same haploid strain. Here we report on the application of an E. huxleyi CCMP1516 EhV-86 combined tiling array (TA) that further confirms an EhV infection in the RCC1217 haploid strain, which grew without any signs of cell lysis. Reverse transcription polymerase chain reaction (RT-PCR) and PCR verified the presence of viral RNA in the haploid cells, yet indicated an absence of viral DNA, respectively. These infected cells are an alternative stage of the virus life cycle deemed the haplococcolithovirocell. In this instance, the host is both resistant to and infected by EhV, i.e., the viral transcriptome is present in haploid cells whilst there is no evidence of viral lysis. This superimposed state is reminiscent of Schrödinger's cat; of being simultaneously both dead and alive.

  1. Mouse embryonic stem cells, but not somatic cells, predominantly use homologous recombination to repair double-strand DNA breaks.

    Science.gov (United States)

    Tichy, Elisia D; Pillai, Resmi; Deng, Li; Liang, Li; Tischfield, Jay; Schwemberger, Sandy J; Babcock, George F; Stambrook, Peter J

    2010-11-01

    Embryonic stem (ES) cells give rise to all cell types of an organism. Since mutations at this embryonic stage would affect all cells and be detrimental to the overall health of an organism, robust mechanisms must exist to ensure that genomic integrity is maintained. To test this proposition, we compared the capacity of murine ES cells to repair DNA double-strand breaks with that of differentiated cells. Of the 2 major pathways that repair double-strand breaks, error-prone nonhomologous end joining (NHEJ) predominated in mouse embryonic fibroblasts, whereas the high fidelity homologous recombinational repair (HRR) predominated in ES cells. Microhomology-mediated end joining, an emerging repair pathway, persisted at low levels in all cell types examined. The levels of proteins involved in HRR and microhomology-mediated end joining were highly elevated in ES cells compared with mouse embryonic fibroblasts, whereas those for NHEJ were quite variable, with DNA Ligase IV expression low in ES cells. The half-life of DNA Ligase IV protein was also low in ES cells. Attempts to increase the abundance of DNA Ligase IV protein by overexpression or inhibition of its degradation, and thereby elevate NHEJ in ES cells, were unsuccessful. When ES cells were induced to differentiate, however, the level of DNA Ligase IV protein increased, as did the capacity to repair by NHEJ. The data suggest that preferential use of HRR rather than NHEJ may lend ES cells an additional layer of genomic protection and that the limited levels of DNA Ligase IV may account for the low level of NHEJ activity.

  2. Clustering of double strand break-containing chromosome domains is not inhibited by inactivation of major repair proteins

    International Nuclear Information System (INIS)

    Krawczyk, P. M.; Stap, C.; Van Oven, C.; Hoebe, R.; Aten, J. A.

    2006-01-01

    For efficient repair of DNA double strand breaks (DSBs) cells rely on a process that involves the Mre11/Rad50/Nbs1 complex, which may help to protect non-repaired DNA ends from separating until they can be rejoined by DNA repair proteins. It has been observed that as a secondary effect, this process can lead to unintended clustering of multiple, initially separate, DSB-containing chromosome domains. This work demonstrates that neither inactivation of the major repair proteins XRCC3 and the DNA-dependent protein kinase (DNA-PK) nor inhibition of DNA-PK by vanillin influences the aggregation of DSB-containing chromosome domains. (authors)

  3. A new analgesia regimen after (adeno) tonsillectomy in children: a pilot study.

    Science.gov (United States)

    Syed, M I; Magos, T A; Singh, J; Montague, M L

    2016-12-01

    The objective was to ascertain the efficacy of a new analgesic regimen introduced in children undergoing (adeno)tonsillectomy in view of the ban on codeine use in children codeine, albeit one should bear in mind that parental concerns and adverse effects of the drug were seen in a minority of patients (n = 11) and anaesthetists were reluctant to prescribe the drug in cases of severe OSA or associated central apnoeas (n = 7). © 2015 John Wiley & Sons Ltd.

  4. Age-dependent decline in rejoining of X-ray-induced DNA double-strand breaks in normal human lymphocytes

    International Nuclear Information System (INIS)

    Mayer, P.J.; Lange, C.S.; Bradley, M.O.; Nichols, W.W.

    1989-01-01

    Unstimulated human peripheral bloodlymphocytes (HPBL), separated by density centrifugation from anticoagulated whole blood, were X-irradiated on ice and incubated in medium at 37 0 C for repair times of 15, 30 and 120 min. Blood donors were 18 normotensive, non-smoking Caucasians aged 23-78, free from overt pathology and not taking any medications. Neutral filter elution was used to assay DNA double-strand break (DSB) induction and completeness of DSB rejoining. After 30 or 120 min repair incubation, the percentage of DSBs rejoined by cells from oder donors was less than half the percentage of DSBs rejoined by cells from younger donors. When data from the 3 age groups were pooled, the age-related decline in percent DSBs rejoined was significant for repair times 30 min and 120 min but not for 15 min. These age-related declines were observed even though DNA from older donors sustained fewer strand breaks as demonstrated by the negative correlation between donor age and DSB induction. These results suggest that the efficacy of X-ray-induced DSB repair diminishes with in vivo age in unstimulated HPBL. (author). 38 refs.; 2 figs.; 1 tab

  5. Real Estate in the DNA Damage Response: Ubiquitin and SUMO Ligases Home in on DNA Double-Strand Breaks.

    Science.gov (United States)

    Dantuma, Nico P; Pfeiffer, Annika

    2016-01-01

    Ubiquitin and the ubiquitin-like modifier SUMO are intimately connected with the cellular response to various types of DNA damage. A striking feature is the local accumulation of these proteinaceous post-translational modifications in the direct vicinity to DNA double-strand breaks, which plays a critical role in the formation of ionizing radiation-induced foci. The functional significance of these modifications is the coordinated recruitment and removal of proteins involved in DNA damage signaling and repair in a timely manner. The central orchestrators of these processes are the ubiquitin and SUMO ligases that are responsible for accurately tagging a broad array of chromatin and chromatin-associated proteins thereby changing their behavior or destination. Despite many differences in the mode of action of these enzymes, they share some striking features that are of direct relevance for their function in the DNA damage response. In this review, we outline the molecular mechanisms that are responsible for the recruitment of ubiquitin and SUMO ligases and discuss the importance of chromatin proximity in this process.

  6. Adeno-Associated Virus Vectors and Stem Cells: Friends or Foes?

    Science.gov (United States)

    Brown, Nolan; Song, Liujiang; Kollu, Nageswara R; Hirsch, Matthew L

    2017-06-01

    The infusion of healthy stem cells into a patient-termed "stem-cell therapy"-has shown great promise for the treatment of genetic and non-genetic diseases, including mucopolysaccharidosis type 1, Parkinson's disease, multiple sclerosis, numerous immunodeficiency disorders, and aplastic anemia. Stem cells for cell therapy can be collected from the patient (autologous) or collected from another "healthy" individual (allogeneic). The use of allogenic stem cells is accompanied with the potentially fatal risk that the transplanted donor T cells will reject the patient's cells-a process termed "graft-versus-host disease." Therefore, the use of autologous stem cells is preferred, at least from the immunological perspective. However, an obvious drawback is that inherently as "self," they contain the disease mutation. As such, autologous cells for use in cell therapies often require genetic "correction" (i.e., gene addition or editing) prior to cell infusion and therefore the requirement for some form of nucleic acid delivery, which sets the stage for the AAV controversy discussed herein. Despite being the most clinically applied gene delivery context to date, unlike other more concerning integrating and non-integrating vectors such as retroviruses and adenovirus, those based on adeno-associated virus (AAV) have not been employed in the clinic. Furthermore, published data regarding AAV vector transduction of stem cells are inconsistent in regards to vector transduction efficiency, while the pendulum swings far in the other direction with demonstrations of AAV vector-induced toxicity in undifferentiated cells. The variation present in the literature examining the transduction efficiency of AAV vectors in stem cells may be due to numerous factors, including inconsistencies in stem-cell collection, cell culture, vector preparation, and/or transduction conditions. This review summarizes the controversy surrounding AAV vector transduction of stem cells, hopefully setting the

  7. Synapsis-Defective Mutants Reveal a Correlation Between Chromosome Conformation and the Mode of Double-Strand Break Repair During Caenorhabditis elegans Meiosis

    OpenAIRE

    Smolikov, Sarit; Eizinger, Andreas; Hurlburt, Allison; Rogers, Eric; Villeneuve, Anne M.; Colaiácovo, Mónica P.

    2007-01-01

    SYP-3 is a new structural component of the synaptonemal complex (SC) required for the regulation of chromosome synapsis. Both chromosome morphogenesis and nuclear organization are altered throughout the germlines of syp-3 mutants. Here, our analysis of syp-3 mutants provides insights into the relationship between chromosome conformation and the repair of meiotic double-strand breaks (DSBs). Although crossover recombination is severely reduced in syp-3 mutants, the production of viable offspri...

  8. Role for Artemis nuclease in the repair of radiation-induced DNA double strand breaks by alternative end joining.

    Science.gov (United States)

    Moscariello, Mario; Wieloch, Radi; Kurosawa, Aya; Li, Fanghua; Adachi, Noritaka; Mladenov, Emil; Iliakis, George

    2015-07-01

    Exposure of cells to ionizing radiation or radiomimetic drugs generates DNA double-strand breaks that are processed either by homologous recombination repair (HRR), or by canonical, DNA-PKcs-dependent non-homologous end-joining (C-NHEJ). Chemical or genetic inactivation of factors involved in C-NHEJ or HRR, but also their local failure in repair proficient cells, promotes an alternative, error-prone end-joining pathway that serves as backup (A-EJ). There is evidence for the involvement of Artemis endonuclease, a protein deficient in a human radiosensitivity syndrome associated with severe immunodeficiency (RS-SCID), in the processing of subsets of DSBs by HRR or C-NHEJ. It is thought that within HRR or C-NHEJ Artemis processes DNA termini at complex DSBs. Whether Artemis has a role in A-EJ remains unknown. Here, we analyze using pulsed-field gel electrophoresis (PFGE) and specialized reporter assays, DSB repair in wild-type pre-B NALM-6 lymphocytes, as well as in their Artemis(-/-), DNA ligase 4(-/-) (LIG4(-/-)), and LIG4(-/-)/Artemis(-/-) double mutant counterparts, under conditions allowing evaluation of A-EJ. Our results substantiate the suggested roles of Artemis in C-NHEJ and HRR, but also demonstrate a role for the protein in A-EJ that is confirmed in Artemis deficient normal human fibroblasts. We conclude that Artemis is a nuclease participating in DSB repair by all major repair pathways. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Systemic Errors in Quantitative Polymerase Chain Reaction Titration of Self-Complementary Adeno-Associated Viral Vectors and Improved Alternative Methods

    Science.gov (United States)

    Fagone, Paolo; Wright, J. Fraser; Nathwani, Amit C.; Nienhuis, Arthur W.; Davidoff, Andrew M.

    2012-01-01

    Abstract Self-complementary AAV (scAAV) vector genomes contain a covalently closed hairpin derived from a mutated inverted terminal repeat that connects the two monomer single-stranded genomes into a head-to-head or tail-to-tail dimer. We found that during quantitative PCR (qPCR) this structure inhibits the amplification of proximal amplicons and causes the systemic underreporting of copy number by as much as 10-fold. We show that cleavage of scAAV vector genomes with restriction endonuclease to liberate amplicons from the covalently closed terminal hairpin restores quantitative amplification, and we implement this procedure in a simple, modified qPCR titration method for scAAV vectors. In addition, we developed and present an AAV genome titration procedure based on gel electrophoresis that requires minimal sample processing and has low interassay variability, and as such is well suited for the rigorous quality control demands of clinical vector production facilities. PMID:22428975

  10. DNA strand breakage by 125I-decay in oligoDNA

    International Nuclear Information System (INIS)

    Lobachevsky, P.; Martin, R.F.

    1996-01-01

    Full text: A double-stranded oligodeoxynucleotide containing 125 I-dC in a defined location, with 5'- or 3'- 32 P-end-labelling of either strand, was used to investigate DNA strand breakage resulting from 125 I decay. Samples of the 32 P-end-labelled and 125 I-dC containing oligoDNA were incubated in 20 mM phosphate buffer (PB), or PB + 2 M dimethylsulphoxide (DMSO) at 4 deg during 18-20 days. The 32 P-end-labelled DNA fragments produced by 125 I decays were separated on denaturing polyacrylamide gels, and the 3P activity in each fragment was determined by scintillation counting after elution from the gel. The fragment size distribution was then converted to a distribution of single stranded break probabilities at each nucleotide position. The results indicate that each 125 I decay event produces at least one break in the 125 I-dC containing strand, and causes breakage of the opposite strand in 75-80% of events. Thus, the double stranded break is produced by 125 I decay with probability ∼0.8. Most of single stranded breaks (around 90%) occurred within 5-6 nucleotides of the 125 I-dC, however DNA breaks were detected up to 18-20 nucleotides from the decay site. The average numbers of single stranded breaks per decay are 3.7 (PB) and 3.3 (PB+DMSO) in 125 I-dC containing strand, and 1.5 (PB) and 1.3 (PB+DMSO) in the opposite strand. Deconvolution of strand break probabilities as a function of separation from the 125 I, in terms of both distance (to target deoxyribosyl carbon atoms, in B-DNA) and nucleotide number, show that the latter is an important parameter for the shorter-range damage. This could indicate a role for attenuation/dissipation of damage through the stacked bases. In summary, the results represent a much more extensive set of data than available from earlier experiments on DNA breakage from l25 I-decay, and may provide new mechanistic insights

  11. Mycobacterial nonhomologous end joining mediates mutagenic repair of chromosomal double-strand DNA breaks.

    Science.gov (United States)

    Stephanou, Nicolas C; Gao, Feng; Bongiorno, Paola; Ehrt, Sabine; Schnappinger, Dirk; Shuman, Stewart; Glickman, Michael S

    2007-07-01

    Bacterial nonhomologous end joining (NHEJ) is a recently described DNA repair pathway best characterized in mycobacteria. Bacterial NHEJ proteins LigD and Ku have been analyzed biochemically, and their roles in linear plasmid repair in vivo have been verified genetically; yet the contributions of NHEJ to repair of chromosomal DNA damage are unknown. Here we use an extensive set of NHEJ- and homologous recombination (HR)-deficient Mycobacterium smegmatis strains to probe the importance of HR and NHEJ in repairing diverse types of chromosomal DNA damage. An M. smegmatis Delta recA Delta ku double mutant has no apparent growth defect in vitro. Loss of the NHEJ components Ku and LigD had no effect on sensitivity to UV radiation, methyl methanesulfonate, or quinolone antibiotics. NHEJ deficiency had no effect on sensitivity to ionizing radiation in logarithmic- or early-stationary-phase cells but was required for ionizing radiation resistance in late stationary phase in 7H9 but not LB medium. In addition, NHEJ components were required for repair of I-SceI mediated chromosomal double-strand breaks (DSBs), and in the absence of HR, the NHEJ pathway rapidly mutates the chromosomal break site. The molecular outcomes of NHEJ-mediated chromosomal DSB repair involve predominantly single-nucleotide insertions at the break site, similar to previous findings using plasmid substrates. These findings demonstrate that prokaryotic NHEJ is specifically required for DSB repair in late stationary phase and can mediate mutagenic repair of homing endonuclease-generated chromosomal DSBs.

  12. The RNA synthesis machinery of negative-stranded RNA viruses

    International Nuclear Information System (INIS)

    Ortín, Juan; Martín-Benito, Jaime

    2015-01-01

    The group of Negative-Stranded RNA Viruses (NSVs) includes many human pathogens, like the influenza, measles, mumps, respiratory syncytial or Ebola viruses, which produce frequent epidemics of disease and occasional, high mortality outbreaks by transmission from animal reservoirs. The genome of NSVs consists of one to several single-stranded, negative-polarity RNA molecules that are always assembled into mega Dalton-sized complexes by association to many nucleoprotein monomers. These RNA-protein complexes or ribonucleoproteins function as templates for transcription and replication by action of the viral RNA polymerase and accessory proteins. Here we review our knowledge on these large RNA-synthesis machines, including the structure of their components, the interactions among them and their enzymatic activities, and we discuss models showing how they perform the virus transcription and replication programmes. - Highlights: • Overall organisation of NSV RNA synthesis machines. • Structure and function of the ribonucleoprotein components: Atomic structure of the RNA polymerase complex. • Commonalities and differences between segmented- and non-segmented NSVs. • Transcription versus replication programmes

  13. The RNA synthesis machinery of negative-stranded RNA viruses

    Energy Technology Data Exchange (ETDEWEB)

    Ortín, Juan, E-mail: jortin@cnb.csic.es [Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CSIC) and CIBER de Enfermedades Respiratorias (ISCIII), Madrid (Spain); Martín-Benito, Jaime, E-mail: jmartinb@cnb.csic.es [Department of Macromolecular Structures, Centro Nacional de Biotecnología (CSIC), Madrid (Spain)

    2015-05-15

    The group of Negative-Stranded RNA Viruses (NSVs) includes many human pathogens, like the influenza, measles, mumps, respiratory syncytial or Ebola viruses, which produce frequent epidemics of disease and occasional, high mortality outbreaks by transmission from animal reservoirs. The genome of NSVs consists of one to several single-stranded, negative-polarity RNA molecules that are always assembled into mega Dalton-sized complexes by association to many nucleoprotein monomers. These RNA-protein complexes or ribonucleoproteins function as templates for transcription and replication by action of the viral RNA polymerase and accessory proteins. Here we review our knowledge on these large RNA-synthesis machines, including the structure of their components, the interactions among them and their enzymatic activities, and we discuss models showing how they perform the virus transcription and replication programmes. - Highlights: • Overall organisation of NSV RNA synthesis machines. • Structure and function of the ribonucleoprotein components: Atomic structure of the RNA polymerase complex. • Commonalities and differences between segmented- and non-segmented NSVs. • Transcription versus replication programmes.

  14. Acid polypeptides as inhibitors of the repair of double-strand DNA breaks induced by γ-irradiation of Hela cells

    International Nuclear Information System (INIS)

    Medvedev, A.I.; Revina, G.I.; Kuzin, A.M.

    1990-01-01

    The effect of natural modificator's synthetic analogue -polyaspartylglytamate (AG) - on the repair of radiation-induced double-strand DNA breaks is studies. The radiation and modificator effects were determined by the criterion of the formation of chromosome recombinations and reproductive death of cells on Hela cell culture and in Chinese hamsters. It is shown that the incubation of Hela cells with AG doubles and triples the degradation effect of rdiation at 50 and 10 Gy doses. When radiation dose equals 1 Gy and repair time is G-22 h, 1.5 - 3 time - increased yield of chromotide and chromosome abberations is detected in Chinese hamster cells in the presence of the modificator during all periods of cell fixation. The effect of radiation mutagenic action enhancement by the modificator is not observed during the incubation of cells with AG 30-45 min after irradiation

  15. Short distance movement of genomic negative strands in a host and nonhost for Sugarcane mosaic virus (SCMV

    Directory of Open Access Journals (Sweden)

    Hernández-Vela Juan

    2011-01-01

    Full Text Available Abstract Background In order to obtain an initial and preliminary understanding of host and nonhost resistance in the initial step of potyvirus replication, both positive and negative Sugarcane mosaic virus (SCMV strands where traced in inoculated and systemic leaves in host and nonhost resistant maize and sugarcane for one Mexican potyviral isolate (SCMV-VER1. Intermediary replication forms, such as the negative viral strand, seem to only move a short distance as surveyed by RT-PCR analysis and ELISA in different leaves. Virus purification was also done in leaves and stems. Results Susceptible maize plants allowed for viral SCMV replication, cell-to-cell, and long distance movement, as indicated by the presence of the coat protein along the plant. In the host resistant maize plants for the SCMV-VER1 isolate, the virus was able to establish the disease though the initial steps of virus replication, as detected by the presence of negative strands, in the basal area of the inoculated leaves at six and twelve days post inoculation. The nonhost sugarcane for SCMV-VER1 and the host sugarcane for SCMV-CAM6 also allowed the initial steps of viral replication for the VER1 isolate in the local inoculated leaf. SCMV-VER1 virions could be extracted from stems of susceptible maize with higher titers than leaves. Conclusion Nonhost and host resistance allow the initial steps of potyvirus SCMV replication, as shown by the negative strands' presence. Furthermore, both hosts allow the negative viral strands' local movement, but not their systemic spread through the stem. The presence of larger amounts of extractable virions from the stem (as compared to the leaves in susceptible maize lines suggests their long distance movement as assembled particles. This will be the first report suggesting the long distance movement of a monocot potyvirus as a virion.

  16. Uncovering Viral Protein-Protein Interactions and their Role in Arenavirus Life Cycle

    Directory of Open Access Journals (Sweden)

    Nora López

    2012-09-01

    Full Text Available The Arenaviridae family includes widely distributed pathogens that cause severe hemorrhagic fever in humans. Replication and packaging of their single-stranded RNA genome involve RNA recognition by viral proteins and a number of key protein-protein interactions. Viral RNA synthesis is directed by the virus-encoded RNA dependent-RNA polymerase (L protein and requires viral RNA encapsidation by the Nucleoprotein. In addition to the role that the interaction between L and the Nucleoprotein may have in the replication process, polymerase activity appears to be modulated by the association between L and the small multifunctional Z protein. Z is also a structural component of the virions that plays an essential role in viral morphogenesis. Indeed, interaction of the Z protein with the Nucleoprotein is critical for genome packaging. Furthermore, current evidence suggests that binding between Z and the viral envelope glycoprotein complex is required for virion infectivity, and that Z homo-oligomerization is an essential step for particle assembly and budding. Efforts to understand the molecular basis of arenavirus life cycle have revealed important details on these viral protein-protein interactions that will be reviewed in this article.

  17. Identification of rep-associated factors in herpes simplex virus type 1-induced adeno-associated virus type 2 replication compartments.

    Science.gov (United States)

    Nicolas, Armel; Alazard-Dany, Nathalie; Biollay, Coline; Arata, Loredana; Jolinon, Nelly; Kuhn, Lauriane; Ferro, Myriam; Weller, Sandra K; Epstein, Alberto L; Salvetti, Anna; Greco, Anna

    2010-09-01

    Adeno-associated virus (AAV) is a human parvovirus that replicates only in cells coinfected with a helper virus, such as adenovirus or herpes simplex virus type 1 (HSV-1). We previously showed that nine HSV-1 factors are able to support AAV rep gene expression and genome replication. To elucidate the strategy of AAV replication in the presence of HSV-1, we undertook a proteomic analysis of cellular and HSV-1 factors associated with Rep proteins and thus potentially recruited within AAV replication compartments (AAV RCs). This study resulted in the identification of approximately 60 cellular proteins, among which factors involved in DNA and RNA metabolism represented the largest functional categories. Validation analyses indicated that the cellular DNA replication enzymes RPA, RFC, and PCNA were recruited within HSV-1-induced AAV RCs. Polymerase delta was not identified but subsequently was shown to colocalize with Rep within AAV RCs even in the presence of the HSV-1 polymerase complex. In addition, we found that AAV replication is associated with the recruitment of components of the Mre11/Rad50/Nbs1 complex, Ku70 and -86, and the mismatch repair proteins MSH2, -3, and -6. Finally, several HSV-1 factors were also found to be associated with Rep, including UL12. We demonstrated for the first time that this protein plays a role during AAV replication by enhancing the resolution of AAV replicative forms and AAV particle production. Altogether, these analyses provide the basis to understand how AAV adapts its replication strategy to the nuclear environment induced by the helper virus.

  18. Chromatin- and temperature-dependent modulation of radiation-induced double-strand breaks.

    Science.gov (United States)

    Elmroth, K; Nygren, J; Stenerlöw, B; Hultborn, R

    2003-10-01

    To investigate the influence of chromatin organization and scavenging capacity in relation to irradiation temperature on the induction of double-strand breaks (DSB) in structures derived from human diploid fibroblasts. Agarose plugs with different chromatin structures (intact cells+/-wortmannin, permeabilized cells with condensed chromatin, nucleoids and DNA) were prepared and irradiated with X-rays at 2 or 37 degrees C and lysed using two different lysis protocols (new ice-cold lysis or standard lysis at 37 degrees C). Induction of DSB was determined by constant-field gel electrophoresis. The dose-modifying factor (DMF(temp)) for irradiation at 37 compared with 2 degrees C was 0.92 in intact cells (i.e. more DSB induced at 2 degrees C), but gradually increased to 1.5 in permeabilized cells, 2.2 in nucleoids and 2.6 in naked DNA, suggesting a role of chromatin organization for temperature modulation of DNA damage. In addition, DMF(temp) was influenced by the presence of 0.1 M DMSO or 30 mM glutathione, but not by post-irradiation temperature. The protective effect of low temperature was correlated to the indirect effects of ionizing radiation and was not dependent on post-irradiation temperature. Reasons for a dose modifying factor <1 in intact cells are discussed.

  19. Methylproamine protects against ionizing radiation by preventing DNA double-strand breaks

    International Nuclear Information System (INIS)

    Sprung, Carl N.; Vasireddy, Raja S.; Karagiannis, Tom C.; Loveridge, Shanon J.; Martin, Roger F.; McKay, Michael J.

    2010-01-01

    Purpose: The majority of cancer patients will receive radiotherapy (RT), therefore, investigations into advances of this modality are important. Conventional RT dose intensities are limited by adverse responses in normal tissues and a primary goal is to ameliorate adverse normal tissue effects. The aim of these experiments is to further our understanding regarding the mechanism of radioprotection by the DNA minor groove binder, methylproamine, in a cellular context at the DNA level. Materials and methods: We used immunocytochemical methods to measure the accumulation of phosphorylated H2AX (γH2AX) foci following ionizing radiation (IR) in patient-derived lymphoblastoid cells exposed to methylproamine. Furthermore, we performed pulsed field gel electrophoresis DNA damage and repair assays to directly interrogate the action of methylproamine on DNA in irradiated cells. Results: We found that methylproamine-treated cells had fewer γH2AX foci after IR compared to untreated cells. Also, the presence of methylproamine decreased the amount of lower molecular weight DNA entering the gel as shown by the pulsed field gel electrophoresis assay. Conclusions: These results suggest that methylproamine acts by preventing the formation of DNA double-strand breaks (dsbs) and support the hypothesis that radioprotection by methylproamine is mediated, at least in part, by decreasing initial DNA damage.

  20. The multiple personalities of Watson and Crick strands.

    Science.gov (United States)

    Cartwright, Reed A; Graur, Dan

    2011-02-08

    In genetics it is customary to refer to double-stranded DNA as containing a "Watson strand" and a "Crick strand." However, there seems to be no consensus in the literature on the exact meaning of these two terms, and the many usages contradict one another as well as the original definition. Here, we review the history of the terminology and suggest retaining a single sense that is currently the most useful and consistent. The Saccharomyces Genome Database defines the Watson strand as the strand which has its 5'-end at the short-arm telomere and the Crick strand as its complement. The Watson strand is always used as the reference strand in their database. Using this as the basis of our standard, we recommend that Watson and Crick strand terminology only be used in the context of genomics. When possible, the centromere or other genomic feature should be used as a reference point, dividing the chromosome into two arms of unequal lengths. Under our proposal, the Watson strand is standardized as the strand whose 5'-end is on the short arm of the chromosome, and the Crick strand as the one whose 5'-end is on the long arm. Furthermore, the Watson strand should be retained as the reference (plus) strand in a genomic database. This usage not only makes the determination of Watson and Crick unambiguous, but also allows unambiguous selection of reference stands for genomics. This article was reviewed by John M. Logsdon, Igor B. Rogozin (nominated by Andrey Rzhetsky), and William Martin.

  1. The multiple personalities of Watson and Crick strands

    Directory of Open Access Journals (Sweden)

    Graur Dan

    2011-02-01

    Full Text Available Abstract Background In genetics it is customary to refer to double-stranded DNA as containing a "Watson strand" and a "Crick strand." However, there seems to be no consensus in the literature on the exact meaning of these two terms, and the many usages contradict one another as well as the original definition. Here, we review the history of the terminology and suggest retaining a single sense that is currently the most useful and consistent. Proposal The Saccharomyces Genome Database defines the Watson strand as the strand which has its 5'-end at the short-arm telomere and the Crick strand as its complement. The Watson strand is always used as the reference strand in their database. Using this as the basis of our standard, we recommend that Watson and Crick strand terminology only be used in the context of genomics. When possible, the centromere or other genomic feature should be used as a reference point, dividing the chromosome into two arms of unequal lengths. Under our proposal, the Watson strand is standardized as the strand whose 5'-end is on the short arm of the chromosome, and the Crick strand as the one whose 5'-end is on the long arm. Furthermore, the Watson strand should be retained as the reference (plus strand in a genomic database. This usage not only makes the determination of Watson and Crick unambiguous, but also allows unambiguous selection of reference stands for genomics. Reviewers This article was reviewed by John M. Logsdon, Igor B. Rogozin (nominated by Andrey Rzhetsky, and William Martin.

  2. Aphidicolin synchronization of mouse L cells perturbs the relationship between cell killing and DNA double-strand breakage after X-irradiation

    International Nuclear Information System (INIS)

    Radford, I.R.; Broadhurst, S.

    1988-01-01

    The relationship between X-ray-induced cell killing and DNA double-strand breakage was examined for synchronized mouse L cells that had entered S-phase, G2-phase, mitosis, and G1-phase following release from aphidicolin and compared to asynchronous culture response. Aphidicolin-synchronized cells showed cycle phase-dependent changes in dose-responses for both killing and DNA dsb. However, on the basis of DNA dsb per unit length of DNA required to produce a lethal lesion, aphidicolin-synchronized cells were more sensitive to X-rays than asynchronous cultures. This sensitivity peaked 2 h after release from aphidicolin treatment, and then progressively declined towards the asynchronous culture value. It is argued that results are due to deregulation of the temporal order of DNA replication following aphidicolin treatment, and can be incorporated into the critical DNA target size model by postulating that the targets for radiation action in mammalian cells are DNA-associated with potentially transcriptionally active proto-oncogenes or constitutive fragile sites. (author)

  3. Crystal Structure of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated Csn2 Protein Revealed Ca[superscript 2+]-dependent Double-stranded DNA Binding Activity

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Ki Hyun; Kurinov, Igor; Ke, Ailong (Cornell); (NWU)

    2012-05-22

    Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated protein genes (cas genes) are widespread in bacteria and archaea. They form a line of RNA-based immunity to eradicate invading bacteriophages and malicious plasmids. A key molecular event during this process is the acquisition of new spacers into the CRISPR loci to guide the selective degradation of the matching foreign genetic elements. Csn2 is a Nmeni subtype-specific cas gene required for new spacer acquisition. Here we characterize the Enterococcus faecalis Csn2 protein as a double-stranded (ds-) DNA-binding protein and report its 2.7 {angstrom} tetrameric ring structure. The inner circle of the Csn2 tetrameric ring is {approx}26 {angstrom} wide and populated with conserved lysine residues poised for nonspecific interactions with ds-DNA. Each Csn2 protomer contains an {alpha}/{beta} domain and an {alpha}-helical domain; significant hinge motion was observed between these two domains. Ca{sup 2+} was located at strategic positions in the oligomerization interface. We further showed that removal of Ca{sup 2+} ions altered the oligomerization state of Csn2, which in turn severely decreased its affinity for ds-DNA. In summary, our results provided the first insight into the function of the Csn2 protein in CRISPR adaptation by revealing that it is a ds-DNA-binding protein functioning at the quaternary structure level and regulated by Ca{sup 2+} ions.

  4. REC-1 and HIM-5 distribute meiotic crossovers and function redundantly in meiotic double-strand break formation in Caenorhabditis elegans.

    Science.gov (United States)

    Chung, George; Rose, Ann M; Petalcorin, Mark I R; Martin, Julie S; Kessler, Zebulin; Sanchez-Pulido, Luis; Ponting, Chris P; Yanowitz, Judith L; Boulton, Simon J

    2015-09-15

    The Caenorhabditis elegans gene rec-1 was the first genetic locus identified in metazoa to affect the distribution of meiotic crossovers along the chromosome. We report that rec-1 encodes a distant paralog of HIM-5, which was discovered by whole-genome sequencing and confirmed by multiple genome-edited alleles. REC-1 is phosphorylated by cyclin-dependent kinase (CDK) in vitro, and mutation of the CDK consensus sites in REC-1 compromises meiotic crossover distribution in vivo. Unexpectedly, rec-1; him-5 double mutants are synthetic-lethal due to a defect in meiotic double-strand break formation. Thus, we uncovered an unexpected robustness to meiotic DSB formation and crossover positioning that is executed by HIM-5 and REC-1 and regulated by phosphorylation. © 2015 Chung et al.; Published by Cold Spring Harbor Laboratory Press.

  5. Novel strategy for generation and titration of recombinant adeno-associated virus vectors.

    Science.gov (United States)

    Shiau, Ai-Li; Liu, Pu-Ste; Wu, Chao-Liang

    2005-01-01

    Recombinant adeno-associated virus (rAAV) vectors have many advantages for gene therapeutic applications compared with other vector systems. Several methods that use plasmids or helper viruses have been reported for the generation of rAAV vectors. Unfortunately, the preparation of large-scale rAAV stocks is labor-intensive. Moreover, the biological titration of rAAV is still difficult, which may limit its preclinical and clinical applications. For this study, we developed a novel strategy to generate and biologically titrate rAAV vectors. A recombinant pseudorabies virus (PrV) with defects in its gD, gE, and thymidine kinase genes was engineered to express the AAV rep and cap genes, yielding PS virus, which served as a packaging and helper virus for the generation of rAAV vectors. PS virus was useful not only for generating high-titer rAAV vectors by cotransfection with an rAAV vector plasmid, but also for amplifying rAAV stocks. Notably, the biological titration of rAAV vectors was also feasible when cells were coinfected with rAAV and PS virus. Based on this strategy, we produced an rAAV that expresses prothymosin alpha (ProT). Expression of the ProT protein in vitro and in vivo mediated by rAAV/ProT gene transfer was detected by immunohistochemistry and a bioassay. Taken together, our results demonstrate that the PrV vector-based system is useful for generating rAAV vectors carrying various transgenes.

  6. Performance Characteristics of Different Anti-Double-Stranded DNA Antibody Assays in the Monitoring of Systemic Lupus Erythematosus

    Directory of Open Access Journals (Sweden)

    Michael Mahler

    2017-01-01

    Full Text Available Objective. We sought to evaluate different anti-double-stranded DNA assays for their performance characteristics in monitoring disease activity fluctuations in systemic lupus erythematosus (SLE. Methods. 36 active SLE patients were followed monthly. At each study visit (total n=371, blood was collected and disease activity was scored using the SELENA-SLEDAI (excluding anti-dsDNA or complement components and by a physician’s global assessment (PGA. Four anti-dsDNA tests were compared. Linear mixed-effects models with random intercept and fixed slopes were used to evaluate the relationship between the longitudinal fluctuations of disease activity and anti-dsDNA titers. Results. At enrollment, positivity for QUANTA Lite and high-avidity anti-dsDNA assay was both 64% and significantly lower than anti-dsDNA positivity by QUANTA Flash (83% and CLIFT (96%. Linear mixed-effects modeling indicated that the change in clinical SELENA-SLEDAI scores was associated with the titers of all anti-dsDNA with QUANTA Flash yielding the highest marginal R2 (0.15; p<0.01. QUANTA Flash was the only anti-dsDNA assay significantly associated with the change in PGA (marginal R2=0.05; p<0.01. Conclusion. These data indicate that anti-dsDNA antibodies determined by QUANTA Flash have a value in monitoring SLE disease activity.

  7. DNA with Parallel Strand Orientation: A Nanometer Distance Study with Spin Labels in the Watson-Crick and the Reverse Watson-Crick Double Helix.

    Science.gov (United States)

    Wunnicke, Dorith; Ding, Ping; Yang, Haozhe; Seela, Frank; Steinhoff, Heinz-Jürgen

    2015-10-29

    Parallel-stranded (ps) DNA characterized by its sugar-phosphate backbones pointing in the same direction represents an alternative pairing system to antiparallel-stranded (aps) DNA with the potential to inhibit transcription and translation. 25-mer oligonucleotides were selected containing only dA·dT base pairs to compare spin-labeled nucleobase distances over a range of 10 or 15 base pairs in ps DNA with those in aps DNA. By means of the copper(I)-catalyzed Huisgen-Meldal-Sharpless alkyne-azide cycloaddition, the spin label 4-azido-2,2,6,6-tetramethylpiperidine-1-oxyl was clicked to 7-ethynyl-7-deaza-2'-deoxyadenosine or 5-ethynyl-2'-deoxyuridine to yield 25-mer oligonucleotides incorporating two spin labels. The interspin distances between spin labeled residues were determined by pulse EPR spectroscopy. The results reveal that in ps DNA these distances are between 5 and 10% longer than in aps DNA when the labeled DNA segment is located near the center of the double helix. The interspin distance in ps DNA becomes shorter compared with aps DNA when one of the spin labels occupies a position near the end of the double helix.

  8. Schrödinger’s Cheshire Cat: Are Haploid Emiliania huxleyi Cells Resistant to Viral Infection or Not?

    Directory of Open Access Journals (Sweden)

    Gideon J. Mordecai

    2017-03-01

    Full Text Available Emiliania huxleyi is the main calcite producer on Earth and is routinely infected by a virus (EhV; a double stranded DNA (dsDNA virus belonging to the family Phycodnaviridae. E. huxleyi exhibits a haplodiploid life cycle; the calcified diploid stage is non-motile and forms extensive blooms. The haploid phase is a non-calcified biflagellated cell bearing organic scales. Haploid cells are thought to resist infection, through a process deemed the “Cheshire Cat” escape strategy; however, a recent study detected the presence of viral lipids in the same haploid strain. Here we report on the application of an E. huxleyi CCMP1516 EhV-86 combined tiling array (TA that further confirms an EhV infection in the RCC1217 haploid strain, which grew without any signs of cell lysis. Reverse transcription polymerase chain reaction (RT-PCR and PCR verified the presence of viral RNA in the haploid cells, yet indicated an absence of viral DNA, respectively. These infected cells are an alternative stage of the virus life cycle deemed the haplococcolithovirocell. In this instance, the host is both resistant to and infected by EhV, i.e., the viral transcriptome is present in haploid cells whilst there is no evidence of viral lysis. This superimposed state is reminiscent of Schrödinger’s cat; of being simultaneously both dead and alive.

  9. Schrödinger’s Cheshire Cat: Are Haploid Emiliania huxleyi Cells Resistant to Viral Infection or Not?

    Science.gov (United States)

    Mordecai, Gideon J.; Verret, Frederic; Highfield, Andrea; Schroeder, Declan C.

    2017-01-01

    Emiliania huxleyi is the main calcite producer on Earth and is routinely infected by a virus (EhV); a double stranded DNA (dsDNA) virus belonging to the family Phycodnaviridae. E. huxleyi exhibits a haplodiploid life cycle; the calcified diploid stage is non-motile and forms extensive blooms. The haploid phase is a non-calcified biflagellated cell bearing organic scales. Haploid cells are thought to resist infection, through a process deemed the “Cheshire Cat” escape strategy; however, a recent study detected the presence of viral lipids in the same haploid strain. Here we report on the application of an E. huxleyi CCMP1516 EhV-86 combined tiling array (TA) that further confirms an EhV infection in the RCC1217 haploid strain, which grew without any signs of cell lysis. Reverse transcription polymerase chain reaction (RT-PCR) and PCR verified the presence of viral RNA in the haploid cells, yet indicated an absence of viral DNA, respectively. These infected cells are an alternative stage of the virus life cycle deemed the haplococcolithovirocell. In this instance, the host is both resistant to and infected by EhV, i.e., the viral transcriptome is present in haploid cells whilst there is no evidence of viral lysis. This superimposed state is reminiscent of Schrödinger’s cat; of being simultaneously both dead and alive. PMID:28335465

  10. Colocalization of somatic and meiotic double strand breaks near the Myc oncogene on mouse chromosome 15.

    Science.gov (United States)

    Ng, Siemon H; Maas, Sarah A; Petkov, Petko M; Mills, Kevin D; Paigen, Kenneth

    2009-10-01

    Both somatic and meiotic recombinations involve the repair of DNA double strand breaks (DSBs) that occur at preferred locations in the genome. Improper repair of DSBs during either mitosis or meiosis can lead to mutations, chromosomal aberration such as translocations, cancer, and/or cell death. Currently, no model exists that explains the locations of either spontaneous somatic DSBs or programmed meiotic DSBs or relates them to each other. One common class of tumorigenic translocations arising from DSBs is chromosomal rearrangements near the Myc oncogene. Myc translocations have been associated with Burkitt lymphoma in humans, plasmacytoma in mice, and immunocytoma in rats. Comparing the locations of somatic and meiotic DSBs near the mouse Myc oncogene, we demonstrated that the placement of these DSBs is not random and that both events clustered in the same short discrete region of the genome. Our work shows that both somatic and meiotic DSBs tend to occur in proximity to each other within the Myc region, suggesting that they share common originating features. It is likely that some regions of the genome are more susceptible to both somatic and meiotic DSBs, and the locations of meiotic hotspots may be an indicator of genomic regions more susceptible to DNA damage. (c) 2009 Wiley-Liss, Inc.

  11. Novel Vector Design and Hexosaminidase Variant Enabling Self-Complementary Adeno-Associated Virus for the Treatment of Tay-Sachs Disease.

    Science.gov (United States)

    Karumuthil-Melethil, Subha; Nagabhushan Kalburgi, Sahana; Thompson, Patrick; Tropak, Michael; Kaytor, Michael D; Keimel, John G; Mark, Brian L; Mahuran, Don; Walia, Jagdeep S; Gray, Steven J

    2016-07-01

    GM2 gangliosidosis is a family of three genetic neurodegenerative disorders caused by the accumulation of GM2 ganglioside (GM2) in neuronal tissue. Two of these are due to the deficiency of the heterodimeric (α-β), "A" isoenzyme of lysosomal β-hexosaminidase (HexA). Mutations in the α-subunit (encoded by HEXA) lead to Tay-Sachs disease (TSD), whereas mutations in the β-subunit (encoded by HEXB) lead to Sandhoff disease (SD). The third form results from a deficiency of the GM2 activator protein (GM2AP), a substrate-specific cofactor for HexA. In their infantile, acute forms, these diseases rapidly progress with mental and psychomotor deterioration resulting in death by approximately 4 years of age. After gene transfer that overexpresses one of the deficient subunits, the amount of HexA heterodimer formed would empirically be limited by the availability of the other endogenous Hex subunit. The present study used a new variant of the human HexA α-subunit, μ, incorporating critical sequences from the β-subunit that produce a stable homodimer (HexM) and promote functional interactions with the GM2AP- GM2 complex. We report the design of a compact adeno-associated viral (AAV) genome using a synthetic promoter-intron combination to allow self-complementary (sc) packaging of the HEXM gene. Also, a previously published capsid mutant, AAV9.47, was used to deliver the gene to brain and spinal cord while having restricted biodistribution to the liver. The novel capsid and cassette design combination was characterized in vivo in TSD mice for its ability to efficiently transduce cells in the central nervous system when delivered intravenously in both adult and neonatal mice. This study demonstrates that the modified HexM is capable of degrading long-standing GM2 storage in mice, and it further demonstrates the potential of this novel scAAV vector design to facilitate widespread distribution of the HEXM gene or potentially other similar-sized genes to the nervous system.

  12. Toxin MqsR Cleaves Single-Stranded mRNA with Various 5 Ends

    Science.gov (United States)

    2016-08-24

    either protein ORIGINAL RESEARCH Toxin MqsR cleaves single- stranded mRNA with various 5’ ends Nityananda Chowdhury1,*, Brian W. Kwan1,*, Louise C...in which a single 5′- GCU site was predicted to be single- stranded (ssRNA), double- stranded (dsRNA), in the loop of a stem - loop (slRNA), or in a...single- stranded 5′- GCU sites since cleavage was approximately 20- fold higher than cleavage seen with the 5′- GCU site in the stem - loop and

  13. Meiotic double-strand breaks at the interface of chromosome movement, chromosome remodeling, and reductional division

    Science.gov (United States)

    Storlazzi, Aurora; Tessé, Sophie; Gargano, Silvana; James, Françoise; Kleckner, Nancy; Zickler, Denise

    2003-01-01

    Chromosomal processes related to formation and function of meiotic chiasmata have been analyzed in Sordaria macrospora. Double-strand breaks (DSBs), programmed or γ-rays-induced, are found to promote four major events beyond recombination and accompanying synaptonemal complex formation: (1) juxtaposition of homologs from long-distance interactions to close presynaptic coalignment at midleptotene; (2) structural destabilization of chromosomes at leptotene/zygotene, including sister axis separation and fracturing, as revealed in a mutant altered in the conserved, axis-associated cohesin-related protein Spo76/Pds5p; (3) exit from the bouquet stage, with accompanying global chromosome movements, at zygotene/pachytene (bouquet stage exit is further found to be a cell-wide regulatory transition and DSB transesterase Spo11p is suggested to have a new noncatalytic role in this transition); (4) normal occurrence of both meiotic divisions, including normal sister separation. Functional interactions between DSBs and the spo76-1 mutation suggest that Spo76/Pds5p opposes local destabilization of axes at developing chiasma sites and raise the possibility of a regulatory mechanism that directly monitors the presence of chiasmata at metaphase I. Local chromosome remodeling at DSB sites appears to trigger an entire cascade of chromosome movements, morphogenetic changes, and regulatory effects that are superimposed upon a foundation of DSB-independent processes. PMID:14563680

  14. Co-stimulation with TLR3 and TLR21 ligands synergistically up-regulates Th1-cytokine IFN-gamma and regulatory cytokine IL-10 expression in chicken monocytes

    Science.gov (United States)

    Toll-like receptors (TLRs) are the pattern recognition receptors of the innate immune system for various conserved pathogen-associated molecular motifs. The chicken TLR3 and TLR21 (avian equivalent to mammalian TLR9) recognize poly I:C (viral double-stranded RNA) and CpG-ODN (a CpG-motif containing...

  15. Focused genetic recombination of bacteriophage t4 initiated by double-strand breaks.

    Science.gov (United States)

    Shcherbakov, Victor; Granovsky, Igor; Plugina, Lidiya; Shcherbakova, Tamara; Sizova, Svetlana; Pyatkov, Konstantin; Shlyapnikov, Michael; Shubina, Olga

    2002-10-01

    A model system for studying double-strand-break (DSB)-induced genetic recombination in vivo based on the ets1 segCDelta strain of bacteriophage T4 was developed. The ets1, a 66-bp DNA fragment of phage T2L containing the cleavage site for the T4 SegC site-specific endonuclease, was inserted into the proximal part of the T4 rIIB gene. Under segC(+) conditions, the ets1 behaves as a recombination hotspot. Crosses of the ets1 against rII markers located to the left and to the right of ets1 gave similar results, thus demonstrating the equal and symmetrical initiation of recombination by either part of the broken chromosome. Frequency/distance relationships were studied in a series of two- and three-factor crosses with other rIIB and rIIA mutants (all segC(+)) separated from ets1 by 12-2100 bp. The observed relationships were readily interpretable in terms of the modified splice/patch coupling model. The advantages of this localized or focused recombination over that distributed along the chromosome, as a model for studying the recombination-replication pathway in T4 in vivo, are discussed.

  16. Application of laser-accelerated protons to the demonstration of DNA double-strand breaks in human cancer cells

    Science.gov (United States)

    Yogo, A.; Sato, K.; Nishikino, M.; Mori, M.; Teshima, T.; Numasaki, H.; Murakami, M.; Demizu, Y.; Akagi, S.; Nagayama, S.; Ogura, K.; Sagisaka, A.; Orimo, S.; Nishiuchi, M.; Pirozhkov, A. S.; Ikegami, M.; Tampo, M.; Sakaki, H.; Suzuki, M.; Daito, I.; Oishi, Y.; Sugiyama, H.; Kiriyama, H.; Okada, H.; Kanazawa, S.; Kondo, S.; Shimomura, T.; Nakai, Y.; Tanoue, M.; Sasao, H.; Wakai, D.; Bolton, P. R.; Daido, H.

    2009-05-01

    We report the demonstrated irradiation effect of laser-accelerated protons on human cancer cells. In vitro (living) A549 cells are irradiated with quasimonoenergetic proton bunches of 0.8-2.4 MeV with a single bunch duration of 15 ns. Irradiation with the proton dose of 20 Gy results in a distinct formation of γ-H2AX foci as an indicator of DNA double-strand breaks generated in the cancer cells. This is a pioneering result that points to future investigations of the radiobiological effects of laser-driven ion beams. Unique high-current and short-bunch features make laser-driven proton bunches an excitation source for time-resolved determination of radical yields.

  17. Breaking DNA strands by extreme-ultraviolet laser pulses in vacuum

    Czech Academy of Sciences Publication Activity Database

    Nováková, Eva; Vyšín, Luděk; Burian, Tomáš; Juha, Libor; Davídková, Marie; Múčka, V.; Čuba, V.; Grisham, M. E.; Heinbuch, S.; Rocca, J.J.

    2015-01-01

    Roč. 91, č. 4 (2015), "042718-1"-"042718-8" ISSN 1539-3755 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA ČR GA13-28721S Institutional support: RVO:68378271 ; RVO:61389005 Keywords : XUV * DNA damages * single- strand breaks (SSBs) * double- strand breaks (DSBs) Subject RIV: BO - Biophysics Impact factor: 2.288, year: 2014

  18. DNA Double-Strand Break Rejoining in Complex Normal Tissues

    International Nuclear Information System (INIS)

    Ruebe, Claudia E.; Dong, Xiaorong; Kuehne, Martin; Fricke, Andreas; Kaestner, Lars; Lipp, Peter; Ruebe, Christian

    2008-01-01

    Purpose: The clinical radiation responses of different organs vary widely and likely depend on the intrinsic radiosensitivities of their different cell populations. Double-strand breaks (DSBs) are the most deleterious form of DNA damage induced by ionizing radiation, and the cells' capacity to rejoin radiation-induced DSBs is known to affect their intrinsic radiosensitivity. To date, only little is known about the induction and processing of radiation-induced DSBs in complex normal tissues. Using an in vivo model with repair-proficient mice, the highly sensitive γH2AX immunofluorescence was established to investigate whether differences in DSB rejoining could account for the substantial differences in clinical radiosensitivity observed among normal tissues. Methods and Materials: After whole body irradiation of C57BL/6 mice (0.1, 0.5, 1.0, and 2.0 Gy), the formation and rejoining of DSBs was analyzed by enumerating γH2AX foci in various organs representative of both early-responding (small intestine) and late-responding (lung, brain, heart, kidney) tissues. Results: The linear dose correlation observed in all analyzed tissues indicated that γH2AX immunofluorescence allows for the accurate quantification of DSBs in complex organs. Strikingly, the various normal tissues exhibited identical kinetics for γH2AX foci loss, despite their clearly different clinical radiation responses. Conclusion: The identical kinetics of DSB rejoining measured in different organs suggest that tissue-specific differences in radiation responses are independent of DSB rejoining. This finding emphasizes the fundamental role of DSB repair in maintaining genomic integrity, thereby contributing to cellular viability and functionality and, thus, tissue homeostasis

  19. Effect of elevated postirradiation pH on the yield of double-strand breaks in DNA from irradiated bacterial cells

    International Nuclear Information System (INIS)

    Tilby, M.J.; Loverock, P.S.; Fielden, E.M.

    1984-01-01

    Exposure of DNA isolated from irradiated cells of Escherichia coli to a pH of 9.6 caused a marked increase in the yield of double-strand breaks (dsb). After incubation for 4 hr at 37 0 C and pH 9.6 the dsb yields were 95% and 71% higher than when incubation was at pH 7.0 for irradiation under oxic and anoxic conditions, respectively. This effect was not apparent when dsb were induced enzymatically and it was linearly related to radiation dose. After oxic irradiation, the increase in dsb at pH 9.6 was consistent with first-order kinetics over >2 half-lives (t/sub 1/2/ = 1.6 hr at 37 0 C). It is propsoed that the effects of elevated pH revealed the presence in intracellularly irradiated DNA of previously unidentified sites where both strands of the DNA were damaged as a result of single radiation events. The possible nature of the proposed sites and the relevance of these findings to the ''neutral'' elution technique are discussed

  20. A correlation between residual radiation-induced DNA double-strand breaks in cultured fibroblasts and late radiotherapy reactions in breast cancer patients

    International Nuclear Information System (INIS)

    Kiltie, A.E.; Ryan, A.J.; Swindell, R.; Barber, J.B.P.; West, C.M.L.; Magee, B.; Hendry, J.H.

    1999-01-01

    Background and purpose: Prediction of late normal tissue reactions to radiotherapy would permit tailoring of dosage to each patient. Measurement of residual DNA double strand breaks using pulsed field gel electrophoresis (PFGE) shows promise in this field. The aim of this study was to test the predictive potential of PFGE in a group of retrospectively studied breast cancer patients.Materials and methods: Thirty nine patients, treated uniformly for breast cancer 9-15 years previously, with excision of the tumour and radiotherapy to the breast and drainage areas, were assessed clinically using the LENT SOMA scale, and a 5-mm punch biopsy taken from the buttock. Fibroblast cell strains were established and used to study residual DNA double strand breaks, using PFGE.Results: There were significant correlations between the DNA assay results and the fibrosis score (r s =0.46; P=0.003), the combined fibrosis and retraction score (r s =0.45, P=0.004) and the overall LENT score (r s =0.43; P=0.006). Using polychotomous logistic regression, the fibroblast DNA assay result was an independent prognostic factor for fibrosis severity.Conclusions: There is a relationship between residual radiation-induced DNA damage in fibroblasts and the severity of the late normal tissue damage seen in the patients from whom the cells were cultured. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)