WorldWideScience

Sample records for double-beta decay experiment

  1. Double beta decay: experiments

    International Nuclear Information System (INIS)

    Fiorini, Ettore

    2006-01-01

    The results obtained so far and those of the running experiments on neutrinoless double beta decay are reviewed. The plans for second generation experiments, the techniques to be adopted and the expected sensitivities are compared and discussed

  2. Double Beta Decay Experiments

    International Nuclear Information System (INIS)

    Piepke, A.

    2005-01-01

    The experimental observation of neutrino oscillations and thus neutrino mass and mixing gives a first hint at new particle physics. The absolute values of the neutrino mass and the properties of neutrinos under CP-conjugation remain unknown. The experimental investigation of the nuclear double beta decay is one of the key techniques for solving these open problems

  3. Neutrinoless Double Beta Decay Experiments

    International Nuclear Information System (INIS)

    Garfagnini, A.

    2014-08-01

    Neutrinoless double beta decay is the only process known so far able to test the neutrino intrinsic nature: its experimental observation would imply that the lepton number is violated by two units and prove that neutrinos have a Majorana mass components, being their own anti-particle. While several experiments searching for such a rare decay have been per- formed in the past, a new generation of experiments using different isotopes and techniques have recently released their results or are taking data and will provide new limits, should no signal be observed, in the next few years to come. The present contribution reviews the latest public results on double beta decay searches and gives an overview on the expected sensitivities of the experiments in construction which will be able to set stronger limits in the near future. EXO and KamLAND-Zen experiments are based on the decay of Xe 136 , GERDA and MAJORANA experiments are based on the decay of Ge 76 , and the CUORE experiment is based on the decay of Te 130

  4. Experiments on double beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Busto, J [Neuchatel Univ. (Switzerland). Inst. de Physique

    1996-11-01

    The Double Beta Decay, and especially ({beta}{beta}){sub 0{nu}} mode, is an excellent test of Standard Model as well as of neutrino physics. From experimental point of view, a very large number of different techniques are or have been used increasing the sensitivity of this experiments quite a lot (the factor of 10{sup 4} in the last 20 years). In future, in spite of several difficulties, the sensitivity would be increased further, keeping the interest of this very important process. (author) 4 figs., 5 tabs., 21 refs.

  5. Review of modern double beta decay experiments

    Science.gov (United States)

    Barabash, A. S.

    2015-10-01

    The review of modern experiments on search and studying of double beta decay processes is done. Results of the most sensitive current experiments are discussed. The main attention is paid to EXO-200, KamLAND-Zen, GERDA-I and CUORE-0 experiments. Modern values of T1/2(2ν) and best present limits on neutrinoless double beta decay and double beta decay with Majoron emission are presented. Conservative limits on effective mass of a Majorana neutrino ( at the level of ˜ 0.01-0.1 eV are discussed.

  6. Review of modern double beta decay experiments

    Energy Technology Data Exchange (ETDEWEB)

    Barabash, A. S., E-mail: barabash@itep.ru [Institute of Theoretical and Experimental Physics (NRC ”Kurchatov Institute”), B. Cheremushkinskaya 25, Moscow (Russian Federation)

    2015-10-28

    The review of modern experiments on search and studying of double beta decay processes is done. Results of the most sensitive current experiments are discussed. The main attention is paid to EXO-200, KamLAND-Zen, GERDA-I and CUORE-0 experiments. Modern values of T{sub 1/2}(2ν) and best present limits on neutrinoless double beta decay and double beta decay with Majoron emission are presented. Conservative limits on effective mass of a Majorana neutrino (〈m{sub ν}〉 < 0.46 eV) and a coupling constant of Majoron to neutrino (〈g{sub ee}〉 < 1.3 · 10{sup −5}) are obtained. Prospects of search for neutrinoless double beta decay in new experiments with sensitivity to 〈m{sub ν}〉 at the level of ∼ 0.01-0.1 eV are discussed.

  7. A background free double beta decay experiment

    International Nuclear Information System (INIS)

    Giomataris, I

    2011-01-01

    We present a new detection scheme for rejecting backgrounds in neutrino-less double beta decay experiments. It relies on the detection of Cherenkov light emitted by electrons in the MeV region. The momentum threshold is tuned to reach a good discrimination between background and good events. We consider many detector concepts and a range of target materials. The most promising is the high-pressure 136 Xe emitter where the required energy threshold is easily adjusted. Combination of this concept and a high pressure Time Projection Chamber could provide an optimal solution. A simple and low cost effective solution is the use of the Spherical Proportional Counter that provides, using a single read-out channel, two delayed signals from ionization and Cherenkov light. In solid-state double beta decay emitters, because of its higher density, the considered process is out of energy range. An escape will be the fabrication of double decay emitters having lower density by using for instance the aerogel technique. It is surprising that a technology used for particle identification in high-energy physics becomes a powerful tool for rejecting backgrounds in such low-energy experiments.

  8. The Majorana Double Beta Decay Experiment: Present Status

    Energy Technology Data Exchange (ETDEWEB)

    Aguayo, Estanislao; Avignone, Frank T.; Back, Henning O.; Barabash, Alexander S.; Beene, Jim; Bergevin, M.; Bertrand, F.; Boswell, M.; Brudanin, V.; Busch, Matthew; Chan, Yuen-Dat; Christofferson, C. D.; Collar, J. I.; Combs, Dustin C.; Cooper, R. J.; Detwiler, Jason A.; Doe, Peter J.; Efremenko, Yuri; Egorov, Viatcheslav; Ejiri, H.; Elliott, S. R.; Esterline, James H.; Fast, James E.; Fields, N.; Finnerty, P.; Fraenkle, Florian; Gehman, Victor M.; Giovanetti, G. K.; Green, M. P.; Guiseppe, V. E.; Gusey, K.; Hallin, A. L.; Hazama, R.; Henning, Reyco; Hime, Andrew; Hoppe, Eric W.; Horton, Mark; Howard, Stanley; Howe, M. A.; Johnson, R. A.; Keeter, K.; Keller, C.; Kidd, M. F.; Knecht, A.; Kochetov, Oleg; Konovalov, S.; Kouzes, Richard T.; Laferriere, Brian D.; LaRoque, B. H.; Leon, Jonathan D.; Leviner, L.; Loach, J. C.; MacMullin, S.; Marino, Michael G.; Martin, R. D.; Mei, Dong-Ming; Merriman, Jason H.; Miller, M. L.; Mizouni, Leila; Nomachi, Masaharu; Orrell, John L.; Overman, Nicole R.; Phillips II, D. G.; Poon, Alan; Perumpilly, Gopakumar; Prior, Gersende; Radford, D. C.; Rielage, Keith; Robertson, R. G. H.; Ronquest, M. C.; Schubert, Alexis G.; Shima, T.; Shirchenko, M.; Snavely, Kyle J.; Steele, David; Strain, J.; Thomas, K.; Timkin, V.; Tornow, W.; Vanyushin, I.; Varner, R. L.; Vetter, Kai; Vorren, Kris R.; Wilkerson, J. F.; Yakushev, E.; Young, A.; Yu, Chang-Hong; Yumatov, Vladimir; Zhang, C.

    2013-06-01

    The Majorana collaboration is actively pursuing research and development aimed at a tonne-scale 76Ge neutrinoless double-beta decay experiment, an R&D effort that will field approximately 40 kg of germanium detectors with mixed enrichment levels. This article provides a status update on the construction of the Demonstrator

  9. The Majorana Double Beta Decay Experiment:. Present Status

    Science.gov (United States)

    Aguayo, E.; Avignone, F. T.; Back, H. O.; Barabash, A. S.; Beene, J. R.; Bergevin, M.; Bertrand, F. E.; Boswell, M.; Brudanin, V.; Busch, M.; Chan, Y.-D.; Christofferson, C. D.; Collar, J. I.; Combs, D. C.; Cooper, R. J.; Detwiler, J. A.; Doe, P. J.; Efremenko, Yu.; Egorov, V.; Ejiri, H.; Elliott, S. R.; Esterline, J.; Fast, J. E.; Fields, N.; Finnerty, P.; Fraenkle, F. M.; Gehman, V. M.; Giovanetti, G. K.; Green, M. P.; Guiseppe, V. E.; Gusey, K.; Hallin, A. L.; Hazama, R.; Henning, R.; Hime, A.; Hoppe, E. W.; Horton, M.; Howard, S.; Howe, M. A.; Johnson, R. A.; Keeter, K. J.; Keller, C.; Kidd, M. F.; Knecht, A.; Kochetov, O.; Konovalov, S. I.; Kouzes, R. T.; Laferriere, B. D.; Laroque, B. H.; Leon, J.; Leviner, L. E.; Loach, J. C.; Macmullin, S.; Marino, M. G.; Martin, R. D.; Mei, D.-M.; Merriman, J. H.; Miller, M. L.; Mizouni, L.; Nomachi, M.; Orrell, J. L.; Overman, N. R.; Phillips, D. G.; Poon, A. W. P.; Perumpilly, G.; Prior, G.; Radford, D. C.; Rielage, K.; Robertson, R. G. H.; Ronquest, M. C.; Schubert, A. G.; Shima, T.; Shirchenko, M.; Snavely, K. J.; Steele, D.; Strain, J.; Thomas, K.; Timkin, V.; Tornow, W.; Vanyushin, I.; Varner, R. L.; Vetter, K.; Vorren, K.; Wilkerson, J. F.; Yakushev, E.; Young, A. R.; Yu, C.-H.; Yumatov, V. I.; Zhang, C.

    2013-11-01

    The Majorana collaboration is actively pursuing research and development aimed at a tonne-scale 76Ge neutrinoless double-beta decay (0νββ) experiment. The current, primary focus is the construction of the Majorana Demonstrator experiment, an R&D effort that will field approximately 40 kg of germanium detectors with mixed enrichment levels. This article provides a status update on the construction of the Demonstrator.

  10. Extra dimensions and neutrinoless double beta decay experiments

    International Nuclear Information System (INIS)

    Gozdz, Marek; Kaminski, Wieslaw A.; Faessler, Amand

    2005-01-01

    The neutrinoless double beta decay is one of the few phenomena, belonging to the nonstandard physics, which is extensively being sought for in experiments. In the present paper the link between the half-life of the neutrinoless double beta decay and theories with large extra dimensions is explored. The use of the sensitivities of currently planned 0ν2β experiments: DAMA, CANDLES, COBRA, DCBA, CAMEO, GENIUS, GEM, MAJORANA, MOON, CUORE, EXO, and XMASS, gives the possibility for a nondirect 'experimental' verification of various extra dimensional scenarios. We discuss also the results of the Heidelberg-Moscow Collaboration. The calculations are based on the Majorana neutrino mass generation mechanism in the Arkani-Hamed-Dimopoulos-Dvali model

  11. The GERDA Neutrinoless Double Beta-Decay Experiment

    International Nuclear Information System (INIS)

    Majorovits, Bela A.

    2007-01-01

    Neutrinoless double beta (0νββ)-decay is the key process to gain understanding of the nature of neutrinos. The GErmanium Detector Array (GERDA) is designed to search for 0νββ-decay of the isotope 76 Ge. Germanium crystals enriched in 76 Ge, acting as source and detector simultaneously, will be submerged directly into an ultra pure cooling medium that also serves as a radiation shield. This concept will allow for a reduction of the background by up to two orders of magnitudes with respect to earlier experiments

  12. PandaX-III neutrinoless double beta decay experiment

    Science.gov (United States)

    Wang, Shaobo; PandaX-III Collaboration

    2017-09-01

    The PandaX-III experiment uses high pressure Time Projection Chambers (TPCs) to search for neutrinoless double-beta decay of Xe-136 with high energy resolution and sensitivity at the China Jin-Ping underground Laboratory II (CJPL-II). Fine-pitch Microbulk Micromegas will be used for charge amplification and readout in order to reconstruct both the energy and track of the neutrinoless double-beta decay event. In the first phase of the experiment, the detector, which contains 200 kg of 90% Xe-136 enriched gas operated at 10 bar, will be immersed in a large water tank to ensure 5 m of water shielding. For the second phase, a ton-scale experiment with multiple TPCs will be constructed to improve the detection probability and sensitivity. A 20-kg scale prototype TPC with 7 Micromegas modules has been built to optimize the design of Micromegas readout module, study the energy calibration of TPC and develop algorithm of 3D track reconstruction.

  13. The SNO+ experiment for neutrinoless double-beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Lozza, Valentina; Krosigk, Belina von; Soerensen, Arnd; Zuber, Kai [Institut fuer Kern- und Teilchenphysik, Dresden (Germany)

    2015-07-01

    SNO+ is a large liquid scintillator based experiment that re-uses the Sudbury Neutrino Observatory detector. The detector, located 2 km underground in a mine near Sudbury, Canada, consists of a 12 m diameter acrylic vessel which will be filled with 780 tonnes of liquid scintillator. The main physics goal of SNO+ is to search for the neutrinoless double-beta (0n2b) decay of {sup 130}Te. During the double-beta phase, the liquid scintillator will be initially loaded with 0.3% natural tellurium (nearly 800 kg of {sup 130}Te). During this demonstration phase we anticipate that we will achieve a sensitivity in the region just above the inverted neutrino mass hierarchy. Recently the possibility to deploy up to 10 times more natural tellurium is being developed, by which SNO+ could explore, in the near future, deep into the parameter space for the inverted hierarchy. Designed as a general purpose neutrino experiment, SNO+ can additionally measure the reactor neutrino oscillations, geo-neutrinos in a geologically-interesting location, watch supernova neutrinos and measure low energy solar neutrinos. A first commissioning phase with the detector filled with water has started in autumn 2014, while full running with water will take place in 2015. Transition to the scintillator phase will start towards the end of 2015. The 0n2b decay phase is foreseen for the 2016.

  14. Neutrinoless double beta decay

    Indian Academy of Sciences (India)

    2012-10-06

    Oct 6, 2012 ... Anyhow, the 'multi-isotope' ansatz is needed to compensate for matrix element ... The neccessary half-life requirement to touch this ... site energy depositions (like double beta decay) and multiple site interactions (most of.

  15. Semiconductor-based experiments for neutrinoless double beta decay search

    International Nuclear Information System (INIS)

    Barnabé Heider, Marik

    2012-01-01

    Three experiments are employing semiconductor detectors in the search for neutrinoless double beta (0νββ) decay: COBRA, Majorana and GERDA. COBRA is studying the prospects of using CdZnTe detectors in terms of achievable energy resolution and background suppression. These detectors contain several ββ emitters and the most promising for 0νββ-decay search is 116 Cd. Majorana and GERDA will use isotopically enriched high purity Ge detectors to search for 0νββ-decay of 76 Ge. Their aim is to achieve a background ⩽10 −3 counts/(kg⋅y⋅keV) at the Q improvement compared to the present state-of-art. Majorana will operate Ge detectors in electroformed-Cu vacuum cryostats. A first cryostat housing a natural-Ge detector array is currently under preparation. In contrast, GERDA is operating bare Ge detectors submerged in liquid argon. The construction of the GERDA experiment is completed and a commissioning run started in June 2010. A string of natural-Ge detectors is operated to test the complete experimental setup and to determine the background before submerging the detectors enriched in 76 Ge. An overview and a comparison of these three experiments will be presented together with the latest results and developments.

  16. Search of Neutrinoless Double Beta Decay with the GERDA Experiment

    Science.gov (United States)

    Agostini, M.; Allardt, M.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Baudis, L.; Bauer, C.; Becerici-Schmidt, N.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Budjáš, D.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; Domula, A.; Doroshkevich, E.; Egorov, V.; Falkenstein, R.; Fedorova, O.; Freund, K.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Gooch, C.; Gotti, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hampel, W.; Hegai, A.; Heisel, M.; Hemmer, S.; Heusser, G.; Hoffmann, W.; Hult, M.; Inzhechik, L. V.; Ioannucci, L.; Janicksó Csáthy, J.; Jochum, J.; Junker, M.; Kazalov, V.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Klimenko, A.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Marissens, G.; Medinaceli, E.; Misiaszek, M.; Moseev, P.; Nemchenok, I.; Nisi, S.; Palioselitis, D.; Panas, K.; Pandola, L.; Pelczar, K.; Pessina, G.; Pullia, A.; Reissfelder, M.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salathe, M.; Schmitt, C.; Schneider, B.; Schreiner, J.; Schulz, O.; Schwingenheuer, B.; Schönert, S.; Seitz, H.; Selivalenko, O.; Shevchik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Stepaniuk, M.; Strecker, H.; Ur, C. A.; Vanhoefer, L.; Vasenko, A. A.; Veresnikova, A.; von Sturm, K.; Wagner, V.; Walter, M.; Wegmann, A.; Wester, T.; Wiesinger, C.; Wilsenach, H.; Wojcik, M.; Yanovich, E.; Zavarise, P.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.

    2016-04-01

    The GERDA (GERmanium Detector Array) is an experiment for the search of neutrinoless double beta decay (0 νββ) in 76Ge, located at Laboratori Nazionali del Gran Sasso of INFN (Italy). In the first phase of the experiment, a 90% confidence level (C.L.) sensitivity of 2.4 ṡ1025 yr on the 0 νββ decay half-life was achieved with a 21.6 kgṡyr exposure and an unprecedented background index in the region of interest of 10-2 counts/(keVṡkgṡyr). No excess of signal events was found, and an experimental lower limit on the half-life of 2.1 ṡ 1025 yr (90% C.L.) was established. Correspondingly, the limit on the effective Majorana neutrino mass is mee < 0.2- 0.4 eV, depending on the considered nuclear matrix element. The previous claim for evidence of a 0 νββ decay signal is strongly disfavored, and the field of research is open again.

  17. The CUORE neutrinoless double-beta decay experiment

    International Nuclear Information System (INIS)

    Banks, T.I.

    2014-01-01

    CUORE is an upcoming experiment designed to search for neutrinoless double-beta decay (0νββ) decay in 130 Te. Observation of the process would be a major finding because it would unambiguously establish that neutrinos are Majorana particles (i.e., their own antiparticles) as well as provide information about the absolute neutrino mass scale. The CUORE detector will consist of 988 identical TeO 2 crystal bolometers (containing 206 kg of 130 Te in total) arranged into 19 towers and cooled to about 10 mK at the underground Gran Sasso National Laboratory (LNGS), Italy, which provides the low-background environment necessary for rare event searches of this kind. A predecessor experiment, Cuoricino, ran from 2003-2008 at LNGS and served as a learning ground for CUORE, which will be 20 times larger and exhibit much lower backgrounds. The CUORE detector assembly line has produced its first tower, designated CUORE-0, which is expected to come online in the former Cuoricino cryostat in October 2012 and take data for about 2 years while 19 CUORE towers are assembled. CUORE data taking is expected for 2015-2019. (author)

  18. The MAJORANA DEMONSTRATOR Neutrinoless Double-Beta Decay Experiment

    Directory of Open Access Journals (Sweden)

    N. Abgrall

    2014-01-01

    Full Text Available The Majorana Demonstrator will search for the neutrinoless double-beta (ββ0ν decay of the isotope Ge with a mixed array of enriched and natural germanium detectors. The observation of this rare decay would indicate that the neutrino is its own antiparticle, demonstrate that lepton number is not conserved, and provide information on the absolute mass scale of the neutrino. The Demonstrator is being assembled at the 4850-foot level of the Sanford Underground Research Facility in Lead, South Dakota. The array will be situated in a low-background environment and surrounded by passive and active shielding. Here we describe the science goals of the Demonstrator and the details of its design.

  19. Neutron Interactions in the CUORE Neutrinoless Double Beta Decay Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Dolinski, Michelle Jean [Univ. of California, Berkeley, CA (United States)

    2008-10-01

    Neutrinoless double beta decay (0vDBD) is a lepton-number violating process that can occur only for a massive Majorana neutrino. The search for 0vDBD is currently the only practical experimental way to determine whether neutrinos are identical to their own antiparticles (Majorana neutrinos) or have distinct particle and anti-particle states (Dirac neutrinos). In addition, the observation of 0vDBD can provide information about the absolute mass scale of the neutrino. The Cuoricino experiment was a sensitive search for 0vDBD, as well as a proof of principle for the next generation experiment, CUORE. CUORE will search for 0vDBD of 130Te with a ton-scale array of unenriched TeO2 bolometers. By increasing mass and decreasing the background for 0vDBD, the half-life sensitivity of CUORE will be a factor of twenty better than that of Cuoricino. The site for both of these experiments is the Laboratori Nazionali del Gran Sasso, an underground laboratory with 3300 meters water equivalent rock overburden and a cosmic ray muon attenuation factor of 10-6. Because of the extreme low background requirements for CUORE, it is important that all potential sources of background in the 0vDBD peak region at 2530 keV are well understood. One potential source of background for CUORE comes from neutrons, which can be produced underground both by (α,n) reactions and by fast cosmic ray muon interactions. Preliminary simulations by the CUORE collaboration indicate that these backgrounds will be negligible for CUORE. However, in order to accurately simulate the expected neutron background, it is important to understand the cross sections for neutron interactions with detector materials. In order to help refine these simulations, I have measured the gamma-ray production cross sections for interactions of neutrons on the abundant stable isotopes of Te using the GEANIE detector array at the Los Alamos Neutron Science Center. In addition, I have used the GEANIE

  20. Double Beta Decay

    International Nuclear Information System (INIS)

    Fiorini, Ettore

    2008-01-01

    The importance of neutrinoless Double Beta Decay (DBD) is stressed in view of the recent results of experiments on neutrino oscillations which indicate that the difference between the squared masses of two neutrinos of different flavours is finite [For a recent review including neutrino properties and recent results see: Review of Particle Physics, J. of Phys. G: Nuclear and Particle Physics 33, 1]. As a consequence the mass of at least one neutrino has to be different from zero and it becomes imperative to determine its absolute value. The various experimental techniques to search for DBD are discussed together with the difficult problems of the evaluation of the corresponding nuclear matrix elements. The upper limits on neutrino mass coming from the results of the various experiments are reported together with the indication for a non zero value by one of them not confirmed so far. The two presently running experiments on neutrinoless DBD are briefly described together with the already approved or designed second generation searches aiming to reach the values on the absolute neutrino mass indicated by the results on neutrino oscillations

  1. Double Beta Decay Experiments: Present Status and Prospects for the Future

    Science.gov (United States)

    Barabash, A. S.

    The review of modern experiments on search and studying of double beta decay processes is done. Results of the most sensitive current experiments are discussed. The main attention is paid to EXO-200, KamLAND-Zen, GERDA-I and CUORE-0 experiments. Modern values of T1/2(2ν) and best present limits on neutrinoless double beta decay and double beta decay with Majoron emission are presented. Conservative limits on effective mass of a Majorana neutrino ( at the level of ˜ (0.01-0.1) eV are discussed. The main attention is paid to experiments of CUORE, GERDA, MAJORANA, EXO, KamLAND-Zen-2, SuperNEMO and SNO+. Possibilities of low-temperature scintillating bolometers on the basis of inorganic crystals (ZnSe, ZnMoO4, Li2MoO4, CaMoO4 and CdWO4) are considered too.

  2. The MAJORANA experiment: an ultra-low background search for neutrinoless double-beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, D.; Aguayo Navarrete, Estanislao; Avignone, Frank T.; Back, Henning O.; Barabash, Alexander S.; Bergevin, M.; Bertrand, F.; Boswell, M.; Brudanin, V.; Busch, Matthew; Chan, Yuen-Dat; Christofferson, Cabot-Ann; Collar, J. I.; Combs, Dustin C.; Cooper, R. J.; Detwiler, Jason A.; Doe, Peter J.; Efremenko, Yuri; Egorov, Viatcheslav; Ejiri, H.; Elliott, Steven R.; Esterline, James H.; Fast, James E.; Fields, N.; Finnerty, P.; Fraenkle, Florian; Gehman, Victor; Giovanetti, G. K.; Green, Matthew P.; Guiseppe, Vincente; Gusey, K.; Hallin, A. L.; Hazama, R.; Henning, Reyco; Hime, Andrew; Hoppe, Eric W.; Horton, Mark; Howard, Stanley; Howe, M. A.; Johnson, R. A.; Keeter, K.; Keller, C.; Kidd, Mary; Knecht, A.; Kochetov, Oleg; Konovalov, S.; Kouzes, Richard T.; LaFerriere, Brian D.; LaRoque, B. H.; Leon, Jonathan D.; Leviner, L.; Loach, J. C.; MacMullin, S.; Marino, Michael G.; Martin, R. D.; Mei, Dong-Ming; Merriman, Jason H.; Miller, M. L.; Mizouni, Leila; Nomachi, Masaharu; Orrell, John L.; Overman, Nicole R.; Poon, Alan; Perumpilly, Gopakumar; Prior, Gersende; Radford, D. C.; Rielage, Keith; Robertson, R. G. H.; Ronquest, M. C.; Schubert, Alexis G.; Shima, T.; Shirchenko, M.; Snavely, Kyle J.; Steele, David; Strain, J.; Thomas, K.; Timkin, V.; Tornow, W.; Vanyushin, I.; Varner, R. L.; Vetter, Kai; Vorren, Kris R.; Wilkerson, J. F.; Wolfe, B. A.; Yakushev, E.; Young, A.; Yu, Chang-Hong; Yumatov, Vladimir; Zhang, C.

    2012-12-01

    The observation of neutrinoless double-beta decay would resolve the Majorana nature of the neutrino and could provide information on the absolute scale of the neutrino mass. The initial phase of the Majorana Experiment, known as the Demonstrator, will house 40 kg of Ge in an ultra-low background shielded environment at the 4850' level of the Sanford Underground Laboratory in Lead, SD. The objective of the Demonstrator is to validate whether a future 1-tonne experiment can achieve a background goal of one count per tonne-year in a narrow region of interest around the 76Ge neutrinoless double-beta decay peak.

  3. Status of the Frejus experiment on the neutrinoless double beta decay of the 76Ge

    International Nuclear Information System (INIS)

    Morales, A.; Nunez-Lagos, R.; Morales, J.; Puimedon, J.; Villar, J.A.; Dassie, D.; Hubbert, Ph.; Leccia, F.; Mennrath, P.; Villard, M.

    1987-01-01

    A brief account of the design, experimental set up and status of the Frejus experiments on the neutrinoless double beta decay of 76 Ge is presented. The theoretical implications and expectatives of this experimental research are analized. A comparison with other dedicated experiments is also reported. (author)

  4. Status of double beta decay experiments using isotopes other than 136Xe

    Science.gov (United States)

    Pandola, L.

    2014-09-01

    Neutrinoless double beta decay is a lepton-number violating process predicted by many extensions of the standard model. It is actively searched for in several candidate isotopes within many experimental projects. The status of the experimental initiatives which are looking for the neutrinoless double beta decay in isotopes other than 136Xe is reviewed, with special emphasis given to the projects that passed the R&D phase. The results recently released by the experiment GERDA are also summarized and discussed. The GERDA data give no positive indication of neutrinoless double beta decay of 76Ge and disfavor in a model-independent way the long-standing observation claim on the same isotope. The lower limit reported by GERDA for the half-life of neutrinoless double beta decay of 76Ge is T1/20ν > 2.1 ṡ1025 yr (90% C.L.), or T1/20ν > 3.0 ṡ1025 yr, when combined with the results of other 76Ge predecessor experiments.

  5. Double beta decay: Comparison of theory to experiment

    International Nuclear Information System (INIS)

    Haxton, W.C.

    1992-01-01

    I review ββ decay in the standard model and as a test of Majorana neutrino masses and right-handed couplings. A summary is given of some of the nuclear physics issues involved in evaluating 2 ν and 0ν matrix elements. Dirac and pseudoDirac limits are discussed to illustrate how quantities constrained on 0ν ββ decay depend on the parameters of the mass matrix. Implications of 0ν ββ decay for models with 17 keV neutrinos, for models with massive Majorana neutrinos, and for Majorons are discussed. It is argued that a recent remeasurement of the total ββ decay rate of 126 Te is important in constraining (nonstandard) Majoron models

  6. New Technique for Barium Daughter Ion Identification in a Liquid Xe-136 Double Beta Decay Experiment

    International Nuclear Information System (INIS)

    Fairbank, William

    2016-01-01

    This work addresses long-standing issues of fundamental interest in elementary particle physics. The most important outcome of this work is a new limit on neutrinoless double beta decay. This is an extremely rare and long-sought-after type of radioactive decay. If discovered, it would require changes in the standard model of the elementary constituents of matter, and would prove that neutrinos and antineutrinos are the same, a revolutionary concept in particle physics. Neutrinos are major components of the matter in the universe that are so small and so weakly interacting with other matter that their masses have not yet been discovered. A discovery of neutrinoless double beta decay could help determine the neutrino masses. An important outcome of the work on this project was the Colorado State University role in operating the EXO-200 neutrinoless double beta decay experiment and in analysis of the data from this experiment. One type of double beta decay of the isotope "1"3"6Xe, the two-neutrino variety, was discovered in this work. Although the other type of double beta decay, the neutrinoless variety, was not yet discovered in this work, a world's best sensitivity of 1.9x10"2"5 year half-life was obtained. This result rules out a previous claim of a positive result in a different isotope. This work also establishes that the masses of the neutrinos are less than one millionth of that of electrons. A unique EXO-200 analysis, in which the CSU group had a leading role, has established for the first time ever in a liquid noble gas the fraction of daughter atoms from alpha and beta decay that are ionized. This result has important impact on other pending studies, including nucleon decay and barium tagging. Novel additional discoveries include multiphoton ionization of liquid xenon with UV pulsed lasers, which may find application in calibration of future noble liquid detectors, and studies of association and dissociation reactions of Ba"+ ions in gaseous xenon. Through

  7. Challenges in Double Beta Decay

    Directory of Open Access Journals (Sweden)

    Oliviero Cremonesi

    2014-01-01

    Full Text Available In the past ten years, neutrino oscillation experiments have provided the incontrovertible evidence that neutrinos mix and have finite masses. These results represent the strongest demonstration that the electroweak Standard Model is incomplete and that new Physics beyond it must exist. In this scenario, a unique role is played by the Neutrinoless Double Beta Decay searches which can probe lepton number conservation and investigate the Dirac/Majorana nature of the neutrinos and their absolute mass scale (hierarchy problem with unprecedented sensitivity. Today Neutrinoless Double Beta Decay faces a new era where large-scale experiments with a sensitivity approaching the so-called degenerate-hierarchy region are nearly ready to start and where the challenge for the next future is the construction of detectors characterized by a tonne-scale size and an incredibly low background. A number of new proposed projects took up this challenge. These are based either on large expansions of the present experiments or on new ideas to improve the technical performance and/or reduce the background contributions. In this paper, a review of the most relevant ongoing experiments is given. The most relevant parameters contributing to the experimental sensitivity are discussed and a critical comparison of the future projects is proposed.

  8. Gerda: A new 76Ge Double Beta Decay Experiment at Gran Sasso

    International Nuclear Information System (INIS)

    Simgen, Hardy

    2005-01-01

    In the new 76 Ge double beta decay experiment Gerda [I. Abt et al., arXiv hep-ex/0404039; Gerda proposal, to be submitted to the Gran Sasso scientific committee] bare diodes of enriched 76 Ge will be operated in highly pure liquid nitrogen or argon. The goal is to reduce the background around Q ββ =2039 keV below 10 -3 counts/(kg-bar keV-bar y). With presently available diodes from the Igex and HdMs experiments the current evidence for neutrinoless double beta decay [H.-V. Klapdor-Kleingrothaus, et al., Mod. Phys. Lett. A16 (2001) 2409ff] can unambigously be checked within one year of measurement

  9. The Milano-Gran Sasso double beta decay experiment: toward a 20-crystal array

    International Nuclear Information System (INIS)

    Alessandrello, A.; Brofferio, C.; Bucci, C.; Cremonesi, O.; Fiorini, E.; Giuliani, A.; Nucciotti, A.; Pavan, M.; Pessina, G.; Previtali, E.; Zanotti, L.

    1996-01-01

    TeO 2 thermal detectors are being used by the Milano group to search for neutrinoless double beta decay of 130 Te. An upper limit for neutrinoless decay half life of 2.1 x 10 22 yr at 90% CL obtained with a 334 g TeO 2 detector has been previously reported. To improve the sensitivity of the experiment an array of twenty 340 g TeO 2 crystals will be realised in the next future. As a first step toward the realisation of that experiment a 4 crystal detector has been tested in the Gran Sasso refrigerator. Detector performances, data acquisition and analysis are discussed. (orig.)

  10. Combining and comparing neutrinoless double beta decay experiments using different nuclei

    Science.gov (United States)

    Bergström, Johannes

    2013-02-01

    We perform a global fit of the most relevant neutrinoless double beta decay experiments within the standard model with massive Majorana neutrinos. Using Bayesian inference makes it possible to take into account the theoretical uncertainties on the nuclear matrix elements in a fully consistent way. First, we analyze the data used to claim the observation of neutrinoless double beta decay in 76Ge, and find strong evidence (according to Jeffrey's scale) for a peak in the spectrum and moderate evidence for that the peak is actually close to the energy expected for the neutrinoless decay. We also find a significantly larger statistical error than the original analysis, which we include in the comparison with other data. Then, we statistically test the consistency between this claim with that of recent measurements using 136Xe. We find that the two data sets are about 40 to 80 times more probable under the assumption that they are inconsistent, depending on the nuclear matrix element uncertainties and the prior on the smallest neutrino mass. Hence, there is moderate to strong evidence of incompatibility, and for equal prior probabilities the posterior probability of compatibility is between 1.3% and 2.5%. If one, despite such evidence for incompatibility, combines the two data sets, we find that the total evidence of neutrinoless double beta decay is negligible. If one ignores the claim, there is weak evidence against the existence of the decay. We also perform approximate frequentist tests of compatibility for fixed ratios of the nuclear matrix elements, as well as of the no signal hypothesis. Generalization to other sets of experiments as well as other mechanisms mediating the decay is possible.

  11. Constraining neutrinoless double beta decay

    International Nuclear Information System (INIS)

    Dorame, L.; Meloni, D.; Morisi, S.; Peinado, E.; Valle, J.W.F.

    2012-01-01

    A class of discrete flavor-symmetry-based models predicts constrained neutrino mass matrix schemes that lead to specific neutrino mass sum-rules (MSR). We show how these theories may constrain the absolute scale of neutrino mass, leading in most of the cases to a lower bound on the neutrinoless double beta decay effective amplitude.

  12. Monte Carlo Simulation for the Majorana Neutrinoless Double-beta Decay Experiment

    International Nuclear Information System (INIS)

    Henning, Reyco; Majorana Collaboration

    2005-01-01

    The Majorana experiment is a proposed HPGe detector array that will primarily search for neutrinoless double-beta decay and dark matter. It will rely on pulse-shape discrimination and crystal segmentation to suppress backgrounds following careful materials selection. A critical aspect of the design phase of Majorana is a reliable simulation of the detector response, pulse formation, and its radioactive backgrounds. We are developing an adaptable and complete simulation based on GEANT 4 to address these requirements and the requirements of a modern, large collaboration experiment. The salient aspects of the simulation are presented. The Majorana experiment is presented in a parallel poster by Kareem Kazkaz

  13. New Technique for Barium Daughter Ion Identification in a Liquid Xe-136 Double Beta Decay Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Fairbank, William [Colorado State Univ., Fort Collins, CO (United States)

    2016-06-08

    This work addresses long-standing issues of fundamental interest in elementary particle physics. The most important outcome of this work is a new limit on neutrinoless double beta decay. This is an extremely rare and long-sought-after type of radioactive decay. If discovered, it would require changes in the standard model of the elementary constituents of matter, and would prove that neutrinos and antineutrinos are the same, a revolutionary concept in particle physics. Neutrinos are major components of the matter in the universe that are so small and so weakly interacting with other matter that their masses have not yet been discovered. A discovery of neutrinoless double beta decay could help determine the neutrino masses. An important outcome of the work on this project was the Colorado State University role in operating the EXO-200 neutrinoless double beta decay experiment and in analysis of the data from this experiment. One type of double beta decay of the isotope 136Xe, the two-neutrino variety, was discovered in this work. Although the other type of double beta decay, the neutrinoless variety, was not yet discovered in this work, a world’s best sensitivity of 1.9x1025 year half-life was obtained. This result rules out a previous claim of a positive result in a different isotope. This work also establishes that the masses of the neutrinos are less than one millionth of that of electrons. A unique EXO-200 analysis, in which the CSU group had a leading role, has established for the first time ever in a liquid noble gas the fraction of daughter atoms from alpha and beta decay that are ionized. This result has important impact on other pending studies, including nucleon decay and barium tagging. Novel additional discoveries include multiphoton ionization of liquid xenon with UV pulsed lasers, which may find application in calibration of future noble liquid detectors, and studies of association and dissociation reactions of Ba

  14. Neutrinoless double-beta decay search with CUORE and CUORE-0 experiments

    Directory of Open Access Journals (Sweden)

    Moggi N.

    2015-01-01

    Full Text Available The Cryogenic Underground Observatory for Rare Events (CUORE is an upcoming experiment designed to search for the neutrinoless double-beta decays. Observation of the process would unambiguously establish that neutrinos are Majorana particles and provide information on their absolute mass scale hierarchy. CUORE is now under construction and will consist of an array of 988 TeO2 crystal bolometers operated at 10 mK, but the first tower (CUORE-0 is already taking data. The experimental techniques used will be presented as well as the preliminary CUORE-0 results. The current status of the full-mass experiment and its expected sensitivity will then be discussed.

  15. Ice shielding in the large scale GENIUS experiment for double beta decay and dark matter search

    International Nuclear Information System (INIS)

    Klapdor-Kleingrothaus, H.V.; Zdesenko, Yu.G.

    1998-01-01

    We suggest here the use of ice as shielding material in the large scale GENIUS experiment for the ultimate sensitive double beta decay and dark matter search. The idea is to pack a working volume of several tons of liquid nitrogen, which contains the ''naked'' Ge detectors, inside an ice shielding. Very thin plastic foil would be used in order to prevent leakage of the liquid nitrogen. Due to the excellent advantages of ice shielding (high purity and low cost, self-supporting ability, thermo-isolation and optical properties, safety) this could be another possible way of realization of the GENIUS project. (orig.)

  16. Search for Neutrinoless Double-Beta Decay

    OpenAIRE

    Tornow, Werner

    2014-01-01

    After the pioneering work of the Heidelberg-Moscow (HDM) and International Germanium Experiment (IGEX) groups, the second round of neutrinoless double-$\\beta$ decay searches currently underway has or will improve the life-time limits of double-$\\beta$ decay candidates by a factor of two to three, reaching in the near future the $T_{1/2} = 3 \\times 10^{25}$ yr level. This talk will focus on the large-scale experiments GERDA, EXO-200, and KamLAND-Zen, which have reported already lower half-life...

  17. Results on neutrinoless double beta decay of 76Ge from the GERDA experiment

    Science.gov (United States)

    Palioselitis, Dimitrios

    2015-05-01

    The Germanium Detector Array (GERDA) experiment is searching for neutrinoless double beta (0νββ) decay of 76Ge, a lepton number violating nuclear process predicted by extensions of the Standard Model. GERDA is an array of bare germanium diodes immersed in liquid argon located at the Gran Sasso National Laboratory (LNGS) in Italy. The results of the GERDA Phase I data taking with a total exposure of 21.6 kg yr and a background index of 0.01 cts/(keV kg yr) are presented in this paper. No signal was observed and a lower limit of T1/20ν > 2.1×1025 yr (90% C.L.) was derived for the half-life of the 0νββ decay of 76Ge. Phase II of the experiment aims to reduce the background around the region of interest by a factor of ten.

  18. Research and Development Supporting a Next Generation Germanium Double Beta Decay Experiment

    Science.gov (United States)

    Rielage, Keith; Elliott, Steve; Chu, Pinghan; Goett, Johnny; Massarczyk, Ralph; Xu, Wenqin

    2015-10-01

    To improve the search for neutrinoless double beta decay, the next-generation experiments will increase in source mass and continue to reduce backgrounds in the region of interest. A promising technology for the next generation experiment is large arrays of Germanium p-type point contact detectors enriched in 76-Ge. The experience, expertise and lessons learned from the MAJORANA DEMONSTRATOR and GERDA experiments naturally lead to a number of research and development activities that will be useful in guiding a future experiment utilizing Germanium. We will discuss some R&D activities including a hybrid cryostat design, background reduction in cabling, connectors and electronics, and modifications to reduce assembly time. We acknowledge the support of the U.S. Department of Energy through the LANL/LDRD Program.

  19. Background constrains of the SuperNEMO experiment for neutrinoless double beta-decay searches

    Energy Technology Data Exchange (ETDEWEB)

    Povinec, Pavel P.

    2017-02-11

    The SuperNEMO experiment is a new generation of experiments dedicated to the search for neutrinoless double beta-decay, which if observed, would confirm the existence of physics beyond the Standard Model. It is based on the tracking and calorimetry techniques, which allow the reconstruction of the final state topology, including timing and kinematics of the double beta-decay transition events, offering a powerful tool for background rejection. While the basic detection strategy of the SuperNEMO detector remains the same as of the NEMO-3 detector, a number of improvements were accomplished for each of detector main components. Upgrades of the detector technologies and development of low-level counting techniques ensure radiopurity control of construction parts of the SuperNEMO detector. A reference material made of glass pellets has been developed to assure quality management and quality control of radiopurity measurements. The first module of the SuperNEMO detector (Demonstrator) is currently under construction in the Modane underground laboratory. No background event is expected in the neutrinoless double beta-decay region in 2.5 years of its operation using 7 kg of {sup 82}Se. The half-life sensitivity of the Demonstrator is expected to be >6.5·10{sup 24} y, corresponding to an effective Majorana neutrino mass sensitivity of |0.2−0.4| eV (90% C.L.). The full SuperNEMO experiment comprising of 20 modules with 100 kg of {sup 82}Se source should reach an effective Majorana neutrino mass sensitivity of |0.04−0.1| eV, and a half-life limit 1·10{sup 26} y. - Highlights: • SuperNEMO detector for 2β0ν-decay of {sup 82}Se should reach half-life limit of 10{sup 26} y. • Radiopurity of the SuperNEMO internal detector parts was checked down to 0.1 mBq/kg. • Reference material of glass pellets was developed for underground γ-spectrometry.

  20. Double beta decay: recent developments and projections

    International Nuclear Information System (INIS)

    Avignone, F.T. III; Brodzinski, R.L.; Brown, D.P.; Evans, J.C. Jr.; Hensley, W.K.; Reeves, J.H.; Wogman, N.A.

    1983-08-01

    A report of recent events in both theoretical and experimental aspects of double beta decay is given. General theoretical considerations, recent developments in nuclear structure theory, geochronological determinations of half lives and ratios as well as laboratory experiments are discussed with emphasis on the past three years. Some projections are given. 28 references

  1. Phase II Upgrade of the GERDA Experiment for the Search of Neutrinoless Double Beta Decay

    Science.gov (United States)

    Majorovits, B.

    Observation of neutrinoless double beta decay could answer the question regarding the Majorana or Dirac nature of neutrinos. The GERDA experiment utilizes HPGe detectors enriched with the isotope 76Ge to search for this process. Recently the GERDA collaboration has unblinded data of Phase I of the experiment. In order to further improve the sensitivity of the experiment, additionally to the coaxial detectors used, 30 BEGe detectors made from germanium enriched in 76Ge will be deployed in GERDA Phase II. BEGe detectors have superior PSD capability, thus the background can be further reduced. The liquid argon surrounding the detector array will be instrumented in order to reject background by detecting scintillation light induced in the liquid argon by radiation. After a short introduction the hardware preparations for GERDA Phase II as well as the processing and characterization of the 30 BEGe detectors are discussed.

  2. Radiopurity control in the NEXT-100 double beta decay experiment: procedures and initial measurements

    International Nuclear Information System (INIS)

    Álvarez, V; Cárcel, S; Cervera, A; Díaz, J; Ferrario, P; Bandac, I; Bettini, A; Castel, J; Cebrián, S; Dafni, T; Borges, F I G M; Conde, C A N; Dias, T H V T; Fernandes, L M P; Freitas, E D C; Egorov, M; Gehman, V M; Esteve, R; Evtoukhovitch, P; Ferreira, A L

    2013-01-01

    The ''Neutrino Experiment with a Xenon Time-Projection Chamber'' (NEXT) is intended to investigate the neutrinoless double beta decay of 136 Xe, which requires a severe suppression of potential backgrounds. An extensive screening and material selection process is underway for NEXT since the control of the radiopurity levels of the materials to be used in the experimental set-up is a must for rare event searches. First measurements based on Glow Discharge Mass Spectrometry and gamma-ray spectroscopy using ultra-low background germanium detectors at the Laboratorio Subterr and apos;aneo de Canfranc (Spain) are described here. Activity results for natural radioactive chains and other common radionuclides are summarized, being the values obtained for some materials like copper and stainless steel very competitive. The implications of these results for the NEXT experiment are also discussed.

  3. The Majorana Zero-Neutrino Double-Beta Decay Experiment White Paper

    International Nuclear Information System (INIS)

    Gaitskell, R.; Barabash, A.; Konovalov, S.; Stekhanov, V.; Umatov, V.; Brudanin, V.; Egorov, S.; Webb, J.; Miley, Harry S.; Aalseth, Craig E.; Anderson, Dale N.; Bowyer, Ted W.; Brodzinski, Ronald L.; Jordan, David B.; Kouzes, Richard T.; Smith, Eric E.; Thompson, Robert C.; Warner, Ray A.; Tornow, W.; Young, A.; Collar, J.I.; Avignone, Frank T.; Palms, John M.; Doe, P J.; Elliott, Steven R.; Kazkaz, K.; Robertson, Hamish; Wilkerson, John

    2002-01-01

    The goal of the Majorana Experiment is to determine the effective Majorana mass of the electron neutrino. Detection of the neutrino mass implied by oscillation results in within our grasp. This exciting physics goal is best pursued using double-beta decay of germanium because of the historical and emerging advances in eliminating competing signals from radioactive backgrounds. The Majorana Experiment will consist of a large mass of 76Ge in the form of high-resolution detectors deep underground, searching for a sharp peak at the BB endpoint. We present here an overview of the entire project in order to help put in perspective the scope, the level and technical risk, and the readiness of the Collaboration to begin the undertaking

  4. Pulse-shape discrimination techniques for the COBRA double beta-decay experiment at LNGS

    Science.gov (United States)

    Zatschler, S.; COBRA Collaboration

    2017-09-01

    In modern elementary particle physics several questions arise from the fact that neutrino oscillation experiments have found neutrinos to be massive. Among them is the so far unknown nature of neutrinos: either they act as so-called Majorana particles, where one cannot distinguish between particle and antiparticle, or they are Dirac particles like all the other fermions in the Standard Model. The study of neutrinoless double beta-decay (0νββ-decay), where the lepton number conservation is violated by two units, could answer the question regarding the underlying nature of neutrinos and might also shed light on the mechanism responsible for the mass generation. So far there is no experimental evidence for the existence of 0νββ-decay, hence, existing experiments have to be improved and novel techniques should be explored. One of the next-generation experiments dedicated to the search for this ultra-rare decay is the COBRA experiment. This article gives an overview of techniques to identify and reject background based on pulse-shape discrimination.

  5. Exploration of Pixelated detectors for double beta decay searches within the COBRA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Schwenke, M., E-mail: schwenke@asp.tu-dresden.de [Institut fuer Kern- und Teilchenphysik, Technische Universitaet Dresden, Zellescher Weg 19, 01069 Dresden (Germany); Zuber, K.; Janutta, B. [Institut fuer Kern- und Teilchenphysik, Technische Universitaet Dresden, Zellescher Weg 19, 01069 Dresden (Germany); He, Z.; Zeng, F. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109-2104 (United States); Anton, G.; Michel, T.; Durst, J.; Lueck, F.; Gleixner, T. [Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); Goessling, C.; Schulz, O.; Koettig, T. [Technische Universitaet Dortmund, Physik E IV, 44221 Dortmund (Germany); Krawczynski, H.; Martin, J. [Department of Physics, Washington University in St. Louis, Campus Box 1105, One Brookings Drive, St. Louis, MO 63130-4899 (United States); Stekl, I.; Cermak, P. [Institute of Experimental and Applied Physics, Czech Technical University in Prague, Horska 3a/22, 128 00 Prague (Czech Republic)

    2011-09-11

    The aim of the COBRA experiment is the search for neutrinoless double beta decay events in Cadmium Zinc Telluride (CdZnTe) room temperature semiconductor detectors. The development of pixelated detectors provides the potential for clear event identification and thus major background reduction. The tracking option of a semiconductor is a unique approach in this field. For initial studies, several possible detector systems are considered with a special regard for low background applications: the large volume system Polaris with a pixelated CdZnTe sensor, Timepix detectors with Si and enriched CdTe sensor material and a CdZnTe pixel system developed at the Washington University in St. Louis, USA. For all detector systems first experimental background measurements taken at underground laboratories (Gran Sasso Underground Laboratory in Italy, LNGS and the Niederniveau Messlabor Felsenkeller in Dresden, Germany) and additionally for the Timepix detectors simulation results are presented.

  6. Status of the CUORE and results from the CUORE-0 neutrinoless double beta decay experiments

    Science.gov (United States)

    Sisti, M.; Artusa, D. R.; Avignone, F. T.; Azzolini, O.; Balata, M.; Banks, T. I.; Bari, G.; Beeman, J.; Bellini, F.; Bersani, A.; Biassoni, M.; Brofferio, C.; Bucci, C.; Cai, X. Z.; Camacho, A.; Caminata, A.; Canonica, L.; Cao, X. G.; Capelli, S.; Cappelli, L.; Carbone, L.; Cardani, L.; Casali, N.; Cassina, L.; Chiesa, D.; Chott, N.; Clemenza, M.; Copello, S.; Cosmelli, C.; Cremonesi, O.; Creswick, R. J.; Cushman, J. S.; Dafinei, I.; Dally, A.; Datskov, V.; Dell'Oro, S.; Deninno, M. M.; Di Domizio, S.; di Vacri, M. L.; Drobizhev, A.; Ejzak, L.; Fang, D. Q.; Farach, H. A.; Faverzani, M.; Fernandes, G.; Ferri, E.; Ferroni, F.; Fiorini, E.; Franceschi, M. A.; Freedman, S. J.; Fujikawa, B. K.; Giachero, A.; Gironi, L.; Giuliani, A.; Gorla, P.; Gotti, C.; Gutierrez, T. D.; Haller, E. E.; Han, K.; Heeger, K. M.; Hennings-Yeomans, R.; Hickerson, K. P.; Huang, H. Z.; Kadel, R.; Keppel, G.; Kolomensky, Yu. G.; Li, Y. L.; Ligi, C.; Lim, K. E.; Liu, X.; Ma, Y. G.; Maiano, C.; Maino, M.; Martinez, M.; Maruyama, R. H.; Mei, Y.; Moggi, N.; Morganti, S.; Napolitano, T.; Nastasi, M.; Nisi, S.; Nones, C.; Norman, E. B.; Nucciotti, A.; O'Donnell, T.; Orio, F.; Orlandi, D.; Ouellet, J. L.; Pagliarone, C. E.; Pallavicini, M.; Palmieri, V.; Pattavina, L.; Pavan, M.; Pedretti, M.; Pessina, G.; Pettinacci, V.; Piperno, G.; Pira, C.; Pirro, S.; Pozzi, S.; Previtali, E.; Rosenfeld, C.; Rusconi, C.; Sala, E.; Sangiorgio, S.; Scielzo, N. D.; Smith, A. R.; Taffarello, L.; Tenconi, M.; Terranova, F.; Tian, W. D.; Tomei, C.; Trentalange, S.; Ventura, G.; Vignati, M.; Wang, B. S.; Wang, H. W.; Wielgus, L.; Wilson, J.; Winslow, L. A.; Wise, T.; Woodcraft, A.; Zanotti, L.; Zarra, C.; Zhang, G. Q.; Zhu, B. X.; Zucchelli, S.

    2016-04-01

    CUORE is a 741 kg array of TeO2 bolometers for the search of neutrinoless double beta decay of 130Te. The detector is being constructed at the Laboratori Nazionali del Gran Sasso, Italy, where it will start taking data in 2015. If the target background of 0.01 counts / (keV ṡkg ṡy) will be reached, in five years of data taking CUORE will have a 1σ half life sensitivity of 1026 y. CUORE-0 is a smaller experiment constructed to test and demonstrate the performances expected for CUORE. The detector is a single tower of 52 CUORE-like bolometers that started taking data in spring 2013. The status and perspectives of CUORE will be discussed, and the first CUORE-0 data will be presented.

  7. The search for Majorana neutrinos with neutrinoless double beta decays: From CUORICINO to LUCIFER experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bellini, F. [Dipartimento di Fisica, Sapienza Universita di Roma, Roma I-00185 (Italy) and INFN - Sezione di Roma, Roma I-00185 (Italy)

    2012-11-20

    The study of neutrino properties is one of the fundamental challenges in particle physics nowadays. Fifty years of investigations established that neutrinos are massive but the absolute mass scale has not yet been measured. Moreover its true nature is still unknown. Is the neutrino its own antiparticle (thus violating the lepton number) as proposed by Majorana in 1937? The only way to probe the neutrino nature is through the observation of Neutrinoless Double Beta Decay (0{nu}{beta}{beta}), a very rare spontaneous nuclear transition which emits two electrons and no neutrinos. In this paper, after a brief introduction to the theoretical framework of Majorana's neutrino, a presentation of experimental challenges posed by 0{nu}{beta}{beta} search will be given as well as an overview of present status and future perpectives of experiments.

  8. Theoretical aspects of double beta decay

    International Nuclear Information System (INIS)

    Haxton, W.C.

    1984-01-01

    Considerable effort has been expended recently in theoretical studies of double beta decay. Much of this work has focussed on the constraints this process places on gauge theories of the weak interaction, in general, and on the neutrino mass matrix, in particular. In addition, interesting nuclear structure questions have arisen in studies of double beta decay matrix elements. After briefly reviewing the theory of double beta decay, some of the progress that has been made in these areas is summarized. 25 references

  9. Double-beta decay investigation with highly pure enriched {sup 82}Se for the LUCIFER experiment

    Energy Technology Data Exchange (ETDEWEB)

    Beeman, J. W. [Lawrence Berkeley National Laboratory, 94720, Berkeley, CA (United States); Bellini, F. [Dipartimento di Fisica, Sapienza Università di Roma, 00185, Rome (Italy); INFN, Sezione di Roma, 00185, Rome (Italy); Benetti, P. [Dipartimento di Chimica, Università di Pavia, 27100, Pavia (Italy); INFN, Sezione di Pavia, 27100, Pavia (Italy); Cardani, L. [Dipartimento di Fisica, Sapienza Università di Roma, 00185, Rome (Italy); Physics Department, Princeton University, 08544, Princeton, NJ (United States); Casali, N. [Dipartimento di Fisica, Sapienza Università di Roma, 00185, Rome (Italy); INFN, Sezione di Roma, 00185, Rome (Italy)

    2015-12-13

    The LUCIFER project aims at deploying the first array of enriched scintillating bolometers for the investigation of neutrinoless double-beta decay of {sup 82}Se. The matrix which embeds the source is an array of ZnSe crystals, where enriched {sup 82}Se is used as decay isotope. The radiopurity of the initial components employed for manufacturing crystals, that can be operated as bolometers, is crucial for achieving a null background level in the region of interest for double-beta decay investigations. In this work, we evaluated the radioactive content in 2.5 kg of 96.3 % enriched {sup 82}Se metal, measured with a high-purity germanium detector at the Gran Sasso deep underground laboratory. The limits on internal contaminations of primordial decay chain elements of {sup 232}Th, {sup 238}U and {sup 235}U are respectively: <61, <110 and <74 μBq/kg at 90 % C.L. The extremely low-background conditions in which the measurement was carried out and the high radiopurity of the {sup 82}Se allowed us to establish the most stringent lower limits on the half-lives of the double-beta decay of {sup 82}Se to 0{sub 1}{sup +}, 2{sub 2}{sup +} and 2{sub 1}{sup +} excited states of {sup 82}Kr of 3.4·10{sup 22}, 1.3·10{sup 22} and 1.0·10{sup 22} y, respectively, with a 90 % C.L.

  10. Double-beta decay investigation with highly pure enriched {sup 82}Se for the LUCIFER experiment

    Energy Technology Data Exchange (ETDEWEB)

    Beeman, J.W. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Bellini, F.; Casali, N.; Ferroni, F.; Piperno, G. [Sapienza Universita di Roma, Dipartimento di Fisica, Rome (Italy); INFN, Sezione di Roma, Rome (Italy); Benetti, P. [Universita di Pavia, Dipartimento di Chimica, Pavia (Italy); INFN, Sezione di Pavia, Pavia (Italy); Cardani, L. [Sapienza Universita di Roma, Dipartimento di Fisica, Rome (Italy); Princeton University, Physics Department, Princeton, NJ (United States); Chiesa, D.; Clemenza, M.; Gironi, L.; Maino, M. [Universita di Milano-Bicocca, Dipartimento di Fisica, Milan (Italy); INFN, Sezione di Milano Bicocca, Milan (Italy); Dafinei, I.; Orio, F.; Tomei, C.; Vignati, M. [INFN, Sezione di Roma, Rome (Italy); Di Domizio, S. [INFN, Sezione di Genova, Genoa (Italy); Universita di Genova, Dipartimento di Fisica, Genoa (Italy); Giuliani, A. [Centre de Spectrometrie de Masse, Orsay (France); Gotti, C.; Pessina, G.; Previtali, E.; Rusconi, C. [INFN, Sezione di Milano Bicocca, Milan (Italy); Laubenstein, M.; Nisi, S.; Pattavina, L.; Pirro, S.; Schaeffner, K. [INFN, Laboratori Nazionali del Gran Sasso, Assergi (L' Aquila) (Italy); Nagorny, S.; Pagnanini, L. [Gran Sasso Science Institute, L' Aquila (Italy); Nones, C. [SPP Centre de Saclay, CEA, Irfu, Gif-sur-Yvette (France)

    2015-12-15

    The LUCIFER project aims at deploying the first array of enriched scintillating bolometers for the investigation of neutrinoless double-beta decay of {sup 82}Se. The matrix which embeds the source is an array of ZnSe crystals, where enriched {sup 82}Se is used as decay isotope. The radiopurity of the initial components employed for manufacturing crystals, that can be operated as bolometers, is crucial for achieving a null background level in the region of interest for double-beta decay investigations. In this work, we evaluated the radioactive content in 2.5 kg of 96.3 % enriched {sup 82}Se metal, measured with a high-purity germanium detector at the Gran Sasso deep underground laboratory. The limits on internal contaminations of primordial decay chain elements of {sup 232}Th, {sup 238}U and {sup 235}U are respectively: <61, <110 and <74 μBq/kg at 90 % C.L. The extremely low-background conditions in which the measurement was carried out and the high radiopurity of the {sup 82}Se allowed us to establish the most stringent lower limits on the half-lives of the double-beta decay of {sup 82}Se to 0{sub 1}{sup +}, 2{sub 2}{sup +} and 2{sub 1}{sup +} excited states of {sup 82}Kr of 3.4.10{sup 22}, 1.3.10{sup 22} and 1.0.10{sup 22} y, respectively, with a 90 % C.L. (orig.)

  11. Majorana neutrinos and double beta-decay

    International Nuclear Information System (INIS)

    Shchepkin, M.G.

    1986-01-01

    Problem, related to neutrino mass and lepton charge L conservation is briefly discussed. A possibility to experimentally test L conservation in different processes and to produce limitations for neutrino mass in double beta-decay processes is considered. Planned experiments on studying the double neutrinoless (2β) beta-decays and searching 2β(2ν)-decays, permitted by the conservation laws, are discussed. It is stressed, that comparison of the existing theoretical predictions of 2β(2ν)-decay probability with experimental results will make it possible to choose the most adequate approach to the calculation of double β-transition nuclear amplitudes

  12. The large enriched germanium experiment for neutrinoless double beta decay (LEGEND)

    Science.gov (United States)

    Abgrall, N.; Abramov, A.; Abrosimov, N.; Abt, I.; Agostini, M.; Agartioglu, M.; Ajjaq, A.; Alvis, S. I.; Avignone, F. T.; Bai, X.; Balata, M.; Barabanov, I.; Barabash, A. S.; Barton, P. J.; Baudis, L.; Bezrukov, L.; Bode, T.; Bolozdynya, A.; Borowicz, D.; Boston, A.; Boston, H.; Boyd, S. T. P.; Breier, R.; Brudanin, V.; Brugnera, R.; Busch, M.; Buuck, M.; Caldwell, A.; Caldwell, T. S.; Camellato, T.; Carpenter, M.; Cattadori, C.; Cederkäll, J.; Chan, Y.-D.; Chen, S.; Chernogorov, A.; Christofferson, C. D.; Chu, P.-H.; Cooper, R. J.; Cuesta, C.; Demidova, E. V.; Deng, Z.; Deniz, M.; Detwiler, J. A.; Di Marco, N.; Domula, A.; Du, Q.; Efremenko, Yu.; Egorov, V.; Elliott, S. R.; Fields, D.; Fischer, F.; Galindo-Uribarri, A.; Gangapshev, A.; Garfagnini, A.; Gilliss, T.; Giordano, M.; Giovanetti, G. K.; Gold, M.; Golubev, P.; Gooch, C.; Grabmayr, P.; Green, M. P.; Gruszko, J.; Guinn, I. S.; Guiseppe, V. E.; Gurentsov, V.; Gurov, Y.; Gusev, K.; Hakenmüeller, J.; Harkness-Brennan, L.; Harvey, Z. R.; Haufe, C. R.; Hauertmann, L.; Heglund, D.; Hehn, L.; Heinz, A.; Hiller, R.; Hinton, J.; Hodak, R.; Hofmann, W.; Howard, S.; Howe, M. A.; Hult, M.; Inzhechik, L. V.; Csáthy, J. Janicskó; Janssens, R.; Ješkovský, M.; Jochum, J.; Johansson, H. T.; Judson, D.; Junker, M.; Kaizer, J.; Kang, K.; Kazalov, V.; Kermadic, Y.; Kiessling, F.; Kirsch, A.; Kish, A.; Klimenko, A.; Knöpfle, K. T.; Kochetov, O.; Konovalov, S. I.; Kontul, I.; Kornoukhov, V. N.; Kraetzschmar, T.; Kröninger, K.; Kumar, A.; Kuzminov, V. V.; Lang, K.; Laubenstein, M.; Lazzaro, A.; Li, Y. L.; Li, Y.-Y.; Li, H. B.; Lin, S. T.; Lindner, M.; Lippi, I.; Liu, S. K.; Liu, X.; Liu, J.; Loomba, D.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Ma, H.; Majorovits, B.; Mamedov, F.; Martin, R. D.; Massarczyk, R.; Matthews, J. A. J.; McFadden, N.; Mei, D.-M.; Mei, H.; Meijer, S. J.; Mengoni, D.; Mertens, S.; Miller, W.; Miloradovic, M.; Mingazheva, R.; Misiaszek, M.; Moseev, P.; Myslik, J.; Nemchenok, I.; Nilsson, T.; Nolan, P.; O'Shaughnessy, C.; Othman, G.; Panas, K.; Pandola, L.; Papp, L.; Pelczar, K.; Peterson, D.; Pettus, W.; Poon, A. W. P.; Povinec, P. P.; Pullia, A.; Quintana, X. C.; Radford, D. C.; Rager, J.; Ransom, C.; Recchia, F.; Reine, A. L.; Riboldi, S.; Rielage, K.; Rozov, S.; Rouf, N. W.; Rukhadze, E.; Rumyantseva, N.; Saakyan, R.; Sala, E.; Salamida, F.; Sandukovsky, V.; Savard, G.; Schönert, S.; Schütz, A.-K.; Schulz, O.; Schuster, M.; Schwingenheuer, B.; Selivanenko, O.; Sevda, B.; Shanks, B.; Shevchik, E.; Shirchenko, M.; Simkovic, F.; Singh, L.; Singh, V.; Skorokhvatov, M.; Smolek, K.; Smolnikov, A.; Sonay, A.; Spavorova, M.; Stekl, I.; Stukov, D.; Tedeschi, D.; Thompson, J.; Van Wechel, T.; Varner, R. L.; Vasenko, A. A.; Vasilyev, S.; Veresnikova, A.; Vetter, K.; von Sturm, K.; Vorren, K.; Wagner, M.; Wang, G.-J.; Waters, D.; Wei, W.-Z.; Wester, T.; White, B. R.; Wiesinger, C.; Wilkerson, J. F.; Willers, M.; Wiseman, C.; Wojcik, M.; Wong, H. T.; Wyenberg, J.; Xu, W.; Yakushev, E.; Yang, G.; Yu, C.-H.; Yue, Q.; Yumatov, V.; Zeman, J.; Zeng, Z.; Zhitnikov, I.; Zhu, B.; Zinatulina, D.; Zschocke, A.; Zsigmond, A. J.; Zuber, K.; Zuzel, G.

    2017-10-01

    The observation of neutrinoless double-beta decay (0νββ) would show that lepton number is violated, reveal that neu-trinos are Majorana particles, and provide information on neutrino mass. A discovery-capable experiment covering the inverted ordering region, with effective Majorana neutrino masses of 15 - 50 meV, will require a tonne-scale experiment with excellent energy resolution and extremely low backgrounds, at the level of ˜0.1 count /(FWHM.t.yr) in the region of the signal. The current generation 76Ge experiments GERDA and the Majorana Demonstrator, utilizing high purity Germanium detectors with an intrinsic energy resolution of 0.12%, have achieved the lowest backgrounds by over an order of magnitude in the 0νββ signal region of all 0νββ experiments. Building on this success, the LEGEND collaboration has been formed to pursue a tonne-scale 76Ge experiment. The collaboration aims to develop a phased 0νββ experimental program with discovery potential at a half-life approaching or at 1028 years, using existing resources as appropriate to expedite physics results.

  13. Radiopurity assessment of the energy readout for the NEXT double beta decay experiment

    Science.gov (United States)

    Cebrián, S.; Pérez, J.; Bandac, I.; Labarga, L.; Álvarez, V.; Azevedo, C. D. R.; Benlloch-Rodríguez, J. M.; Borges, F. I. G. M.; Botas, A.; Cárcel, S.; Carrión, J. V.; Conde, C. A. N.; Díaz, J.; Diesburg, M.; Escada, J.; Esteve, R.; Felkai, R.; Fernandes, L. M. P.; Ferrario, P.; Ferreira, A. L.; Freitas, E. D. C.; Goldschmidt, A.; Gómez-Cadenas, J. J.; González-Díaz, D.; Gutiérrez, R. M.; Hauptman, J.; Henriques, C. A. O.; Hernandez, A. I.; Hernando Morata, J. A.; Herrero, V.; Jones, B. J. P.; Laing, A.; Lebrun, P.; Liubarsky, I.; López-March, N.; Losada, M.; Martín-Albo, J.; Martínez-Lema, G.; Martínez, A.; McDonald, A. D.; Monrabal, F.; Monteiro, C. M. B.; Mora, F. J.; Moutinho, L. M.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Nygren, D. R.; Palmeiro, B.; Para, A.; Querol, M.; Renner, J.; Ripoll, L.; Rodríguez, J.; Rogers, L.; Santos, F. P.; dos Santos, J. M. F.; Simón, A.; Sofka, C.; Sorel, M.; Stiegler, T.; Toledo, J. F.; Torrent, J.; Tsamalaidze, Z.; Veloso, J. F. C. A.; Villar, J. A.; Webb, R.; White, J. T.; Yahlali, N.

    2017-08-01

    The "Neutrino Experiment with a Xenon Time-Projection Chamber" (NEXT) experiment intends to investigate the neutrinoless double beta decay of 136Xe, and therefore requires a severe suppression of potential backgrounds. An extensive material screening and selection process was undertaken to quantify the radioactivity of the materials used in the experiment. Separate energy and tracking readout planes using different sensors allow us to combine the measurement of the topological signature of the event for background discrimination with the energy resolution optimization. The design of radiopure readout planes, in direct contact with the gas detector medium, was especially challenging since the required components typically have activities too large for experiments demanding ultra-low background conditions. After studying the tracking plane, here the radiopurity control of the energy plane is presented, mainly based on gamma-ray spectroscopy using ultra-low background germanium detectors at the Laboratorio Subterr&aposaneo de Canfranc (Spain). All the available units of the selected model of photomultiplier have been screened together with most of the components for the bases, enclosures and windows. According to these results for the activity of the relevant radioisotopes, the selected components of the energy plane would give a contribution to the overall background level in the region of interest of at most 2.4×10-4 counts keV-1 kg-1 y-1, satisfying the sensitivity requirements of the NEXT experiment.

  14. MaGe: a Monte Carlo framework for the Gerda and Majorana double beta decay experiments

    International Nuclear Information System (INIS)

    Bauer, M; Belogurov, S; Chan, Yd; Descovich, M; Detwiler, J; Di Marco, M; Fujikawa, B; Franco, D; Gehman, V; Henning, R; Hudek, K; Johnson, R; Jordan, D; Kazkaz, K; Klimenko, A; Knapp, M; Kroeninger, K; Lesko, K; Liu, X; Marino, M; Mokhtarani, A; Pandola, L; Perry, M; Poon, A; Radford, D; Tomei, C; Tull, C

    2006-01-01

    The Gerda and Majorana projects, both searching for the neutrinoless double beta-decay of 76 Ge, are developing a joint Monte-Carlo simulation framework called MaGe. Such an approach has many benefits: the workload for the development of general tools is shared between more experts, the code is tested in more detail, and more experimental data is made available for validation

  15. Development of segmented germanium detectors for neutrinoless double beta decay experiments

    International Nuclear Information System (INIS)

    Liu, Jing

    2009-01-01

    The results from neutrino oscillation experiments indicate that at least two neutrinos have mass. However, the value of the masses and whether neutrinos and anti-neutrinos are identical, i.e., Majorana particles, remain unknown. Neutrinoless double beta decay experiments can help to improve our understanding in both cases and are the only method currently possible to tackle the second question. The GERmanium Detector Array (GERDA) experiment, which will search for the neutrinoless double beta decay of 76 Ge, is currently under construction in Hall A of the INFN Gran Sasso National Laboratory (LNGS), Italy. In order to achieve an extremely low background level, segmented germanium detectors are considered to be operated directly in liquid argon which serves simultaneously as cooling and shielding medium. Several test cryostats were built at the Max-Planck-Institut fuer Physik in Muenchen to operate segmented germanium detectors both in vacuum and submerged in cryogenic liquid. The performance and the background discrimination power of segmented germanium detectors were studied in detail. It was proven for the first time that segmented germanium detectors can be operated stably over long periods submerged in a cryogenic liquid. It was confirmed that the segmentation scheme employed does well in the identification of photon induced background and demonstrated for the first time that also neutron interactions can be identified. The C++ Monte Carlo framework, MaGe (Majorana-GERDA), is a joint development of the Majorana and GERDA collaborations. It is based on GEANT4, but tailored especially to simulate the response of ultra-low background detectors to ionizing radiation. The predictions of the simulation were veri ed to be accurate for a wide range of conditions. Some shortcomings were found and corrected. Pulse shape analysis is complementary to segmentation in identifying background events. Its efficiency can only be correctly determined using reliable pulse shape

  16. Development of segmented germanium detectors for neutrinoless double beta decay experiments

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jing

    2009-06-09

    The results from neutrino oscillation experiments indicate that at least two neutrinos have mass. However, the value of the masses and whether neutrinos and anti-neutrinos are identical, i.e., Majorana particles, remain unknown. Neutrinoless double beta decay experiments can help to improve our understanding in both cases and are the only method currently possible to tackle the second question. The GERmanium Detector Array (GERDA) experiment, which will search for the neutrinoless double beta decay of {sup 76}Ge, is currently under construction in Hall A of the INFN Gran Sasso National Laboratory (LNGS), Italy. In order to achieve an extremely low background level, segmented germanium detectors are considered to be operated directly in liquid argon which serves simultaneously as cooling and shielding medium. Several test cryostats were built at the Max-Planck-Institut fuer Physik in Muenchen to operate segmented germanium detectors both in vacuum and submerged in cryogenic liquid. The performance and the background discrimination power of segmented germanium detectors were studied in detail. It was proven for the first time that segmented germanium detectors can be operated stably over long periods submerged in a cryogenic liquid. It was confirmed that the segmentation scheme employed does well in the identification of photon induced background and demonstrated for the first time that also neutron interactions can be identified. The C++ Monte Carlo framework, MaGe (Majorana-GERDA), is a joint development of the Majorana and GERDA collaborations. It is based on GEANT4, but tailored especially to simulate the response of ultra-low background detectors to ionizing radiation. The predictions of the simulation were veri ed to be accurate for a wide range of conditions. Some shortcomings were found and corrected. Pulse shape analysis is complementary to segmentation in identifying background events. Its efficiency can only be correctly determined using reliable pulse

  17. The slow control system of the GERDA double beta decay experiment at Gran Sasso

    International Nuclear Information System (INIS)

    Brugnera, R; Garfagnini, A; Gigante, G; Hemmer, S; Zinato, D; Costa, F; Lippi, I; Michelotto, M; Ur, C

    2012-01-01

    GERDA is an experiment designed and built to study double beta decays of 76 Ge. It is currently in operation at the Gran Sasso underground laboratories (LNGS). A custom slow control system has been designed to monitor and control all the critical parameters for the proper functioning of the experiment. The main sub-components of the experiment (Cryostat, Clean Room, Water Tank, electronic crates and temperatures, High Voltage Systems, Radon Monitor and Source Insertion System) are constantly monitored by several distributed clients which write acquired data to a relational database (PostgreSQL). The latter allows to maintain a history of the whole experiment and, performing correlation between different and independent components, is useful to debug possible system malfunctions. The system is complemented by a Web server, a lightweight and efficient interface to the user on shifts and to the on-call experts, and by a dedicated Alarm dispatcher which distributes the errors generated by the components to the users allowing to react in short time. The whole project has been built around open source and custom software.

  18. LBL/UCSB 76Ge double beta decay experiment: first results

    International Nuclear Information System (INIS)

    Goulding, F.S.; Cork, C.P.; Landis, D.A.

    1984-10-01

    A paper given at the IEEE Nuclear Science Symposium last year presented the scientific justification for this experiment and discussed the design of the detector system. At the present time two of the dual detector systems (i.e., four out of a final total of eight detectors) are operating in the complete active/passive shield in the low background laboratory at LBL. Early results (1620 h) of an experiment using two detectors yield a limit of 4 x 10 22 years (68% confidence) for the half life of the neutrinoless double beta decay (ββ/sub o nu/) of 76 Ge. Although this experiment was carried out above ground, the result approaches those achieved by other groups in deep underground laboratories. Based on studies of the origins of background in our system, we hope to reach a limit of 3 x 10 23 years (or more) in a two month/four detector experiment to be carried out soon in an underground facility

  19. Radon-induced surface contaminations in neutrinoless double beta decay and dark matter experiments

    International Nuclear Information System (INIS)

    Pattavina, L.

    2011-01-01

    In experiments looking for rare events, like neutrinoless double beta decay (DBD0ν) and dark matter search (DM), one of the main issues is to increase the experimental sensitivity through the material selection and production. The background contribution coming from the materials used for the detector realization has to be minimized. Moreover the net reduction of the background produced by the bulk part of the apparatus has raised concerns about the background contribution coming from the surfaces. Many procedures and techniques were developed during the last years in order to remove and to minimize the presence of possible contaminants on detector surfaces. To succeed in this strategy a big effort was put in defining all possible mechanisms that lead to surface contaminations, as well as specific cleaning procedures, which are able to reduce and control the surface radioactivity. The presence in air and gases of possible radioactive elements that can stick on the detector surfaces can lead to a recontamination process that will vanish all the applied cleaning procedures. Here is presented and analyzed the contribution to the background of rare events experiments like CUORE experiment (DBD0ν) and EDELWEISS experiment (DM) produced by an exposure of their detector components to a big activity of 222 Rn, radioactive daughter isotope from the 238 U chain. (author)

  20. Double beta decays and neutrino masses

    International Nuclear Information System (INIS)

    Ejiri, Hiro

    2006-01-01

    Neutrino-less double beta decays(0νββ) are of great interest for studying the Majorana nature of ν's and the absolute ν-mass scale. The present report is a brief review of the 0νββ studies with emphasis on future experiments with the mass sensitivity of an order of 25∼100 meV and on experimental probes for investigating 0νββ nuclear matrix elements

  1. A scintillating bolometer array for double beta decay studies: The LUCIFER experiment

    Energy Technology Data Exchange (ETDEWEB)

    Gironi, L., E-mail: luca.gironi@mib.infn.it [Università degli Studi di Milano-Bicocca, Milano (Italy); INFN – Sezione di Milano-Bicocca, Milano (Italy)

    2016-07-11

    The main goal of the LUCIFER experiment is to study the neutrinoless double beta decay, a rare process allowed if neutrinos are Majorana particles. Although aiming at a discovery, in the case of insufficient sensitivity the LUCIFER technique will be the demonstrator for a higher mass experiment able to probe the entire inverted hierarchy region of the neutrino mass. In order to achieve this challenging result, high resolution detectors with active background discrimination capability are required. This very interesting possibility can be largely fulfilled by scintillating bolometers thanks to the simultaneous read-out of heat and light emitted by the interactions in the detector or by pulse shape analysis. - Highlights: • The LUCIFER technique will be the demonstrator for a higher mass experiment. • Scintillating bolometers allow high energy resolution and background discrimination. • The first choice for the LUCIFER tower are ZnSe crystals. • The LUCIFER setup will consist of an array of 30 individual single module detectors. • An array of ZnMoO4 crystals allowed the bolometric observation of the 2vDBD of {sup 100}Mo.

  2. Radon and material radiopurity assessment for the NEXT double beta decay experiment

    Energy Technology Data Exchange (ETDEWEB)

    Cebrián, S.; Dafni, T.; González-Díaz, D.; Herrera, D. C.; Irastorza, I. G.; Luzón, G.; Ortiz de Solórzano, A.; Villar, J. A. [Laboratorio de Física Nuclear y Astropartículas, Universidad de Zaragoza, C/ Pedro Cerbuna 12, 50009 Zaragoza (Spain); Laboratorio Subterráneo de Canfranc, Paseo de los Ayerbe s/n, 22880 Canfranc Estación, Huesca (Spain); Pérez, J. [Instituto de Física Teórica, UAM/CSIC, Campus de Cantoblanco, 28049 Madrid (Spain); Bandac, I. [Laboratorio Subterráneo de Canfranc, Paseo de los Ayerbe s/n, 22880 Canfranc Estación, Huesca (Spain); Labarga, L. [Dpto. de Física Teórica, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid (Spain); Álvarez, V.; Cárcel, S.; Cervera, A.; Díaz, J.; Ferrario, P.; Gómez-Cadenas, J. J.; Laing, A.; Liubarsky, I.; López-March, N. [Instituto de Física Corpuscular, CSIC & Universitat de València, C/ Catedrático José Beltrán, 2, 46980 Paterna, Valencia (Spain); and others

    2015-08-17

    The ”Neutrino Experiment with a Xenon TPC” (NEXT), intended to investigate the neutrinoless double beta decay using a high-pressure xenon gas TPC filled with Xe enriched in {sup 136}Xe at the Canfranc Underground Laboratory in Spain, requires ultra-low background conditions demanding an exhaustive control of material radiopurity and environmental radon levels. An extensive material screening process is underway for several years based mainly on gamma-ray spectroscopy using ultra-low background germanium detectors in Canfranc but also on mass spectrometry techniques like GDMS and ICPMS. Components from shielding, pressure vessel, electroluminescence and high voltage elements and energy and tracking readout planes have been analyzed, helping in the final design of the experiment and in the construction of the background model. The latest measurements carried out will be presented and the implication on NEXT of their results will be discussed. The commissioning of the NEW detector, as a first step towards NEXT, has started in Canfranc; in-situ measurements of airborne radon levels were taken there to optimize the system for radon mitigation and will be shown too.

  3. The NEXT-100 experiment for neutrinoless double beta decay searches (Conceptual Design Report)

    CERN Document Server

    Álvarez, V; Batallé, M; Bayarri, J; Borges, F I G; Cárcel, S; Carmona, J M; Castel, J; Catalá, J M; Cebrián, S; Cervera-Villanueva, A; Chan, D; Conde, C A N; Dafni, T; Dias, T H V T; Díaz, J; Esteve, R; Evtoukhovitch, P; Fernandes, L M P; Ferrario, P; Ferrer-Ribas, E; Ferreira, A L; Freitas, E D C; Gil, A; Giomataris, I; Goldschmidt, A; Gómez, E; Gómez, H; Gómez-Cadenas, J J; Gónzález, K; Gutiérrez, R M; Hernando-Morata, J A; Herrera, D C; Herrero, V; Iguaz, F; Irastorza, I G; Kalinnikov, V; Kustov, A; Liubarsky, I; Lopes, J A M; Lorca, D; Losada, M; Luzón, G; Martín-Albo, J; Méndez, A; Miller, T; Moisenko, A; Mols, J P; Monrabal, F; Monteiro, C M B; Monzó, J M; Mora, F J; Muñoz-Vidal, J; da Luz, H Natal; Navarro, G; Nebot, M; Nygren, D; Oliveira, C A B; Palma, R; Pérez-Aparicio, J L; Renner, J; Ripoll, L; Rodríguez, A; Rodríguez, J; Santos, F P; Santos, J M F dos; Seguí, L; Serra, L; Sofka, C; Sorel, M; Spieler, H; Toledo, J F; Tomás, A; Tsamalaidze, Z; Vázquez, D; Velicheva, E; Veloso, J F C A; Villar, J A; Webb, R; Weber, T; White, J; Yahlali, N

    2011-01-01

    We propose an EASY (Electroluminescent ApparatuS of high Yield) and SOFT (Separated Optimized FuncTion) time-projection chamber for the NEXT experiment, that will search for neutrinoless double beta decay (bb0nu) in Xe-136. Our experiment must be competitive with the new generation of bb0nu searches already in operation or in construction. This requires a detector with very good energy resolution (<1%), very low background con- tamination (1E-4 counts/(keV \\bullet kg \\bullet y)) and large target mass. In addition, it needs to be operational as soon as possible. The design described here optimizes energy resolution thanks to the use of proportional electroluminescent amplification (EL); it is compact, as the Xe gas is under high pressure; and it allows the measurement of the topological signature of the event to further reduce the background contamination. The SOFT design uses different sensors for tracking and calorimetry. We propose the use of SiPMs (MPPCs) coated with a suitable wavelength shifter for th...

  4. Introductory remarks on double beta decay and nuclear physics

    International Nuclear Information System (INIS)

    Rosen, S.P.

    1986-01-01

    The particle physics aspects of double beta decay and the theory of the phenomenon are briefly reviewed. The distinction between Dirac and Majorana neutrinos is drawn by comparing the neutrino that accompanies a negatively charged lepton in some hadronic decay process with that which accompanies a positively charged lepton in some other decay process. Two modes of double beta decay are examined - one emitting two neutrinos and the other emitting no neutrinos. What can be learned from the existing data on double beta decay is considered, de-emphasizing the question of bounds on neutrino mass and concentrating on the properties of the phenomenon itself. Possible future experiments are anticipated. 16 refs

  5. Simulation of complex detection systems in neutrinoless double beta decay experiments

    International Nuclear Information System (INIS)

    Larrea, A.; Morales, A.; Morales, J.; Nunez-Lagos, R.; Puimedon, J.; Villar, J.A.

    1988-01-01

    The estimated efficiency of several detection systems dedicated to the search of the neutrinoless double beta decay of 76 Ge is reported. In order to perform this work, we have developed the GEOM macro library system which can handle highly complex geometries in simulation problems, allowing to include an accurate description of the experimental setup in a very simple way. Also an internal mechanism for checking the correct location of every boundary defining the geometrical regions is included. The present version of GEOM is implemented in the EGS4 code of Monte Carlo simulation of photons and electron/positron showers, but it can be easily extended to other simulation codes. (orig.)

  6. Measurement of Radon-Induced Backgrounds in the NEXT Double Beta Decay Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Novella, P.; et al.

    2018-04-02

    The measurement of the internal 222Rn activity in the NEXT-White detector during the so-called Run-II period with 136Xe-depleted xenon is discussed in detail, together with its implications for double beta decay searches in NEXT. The activity is measured through the alpha production rate induced in the fiducial volume by 222Rn and its alpha-emitting progeny. The specific activity is measured to be $(37.5\\pm 2.3~\\mathrm{(stat.)}\\pm 5.9~\\mathrm{(syst.)})$~mBq/m$^3$. Radon-induced electrons have also been characterized from the decay of the 214Bi daughter ions plating out on the cathode of the time projection chamber. From our studies, we conclude that radon-induced backgrounds are sufficiently low to enable a successful NEXT-100 physics program, as the projected rate contribution should not exceed 0.2~counts/yr in the neutrinoless double beta decay sample.

  7. Purifications of calcium carbonate and molybdenum oxide powders for neutrinoless double beta decay experiment, AMoRE

    International Nuclear Information System (INIS)

    Park, HyangKyu

    2015-01-01

    The AMoRE (Advanced Mo based Rare process Experiment) collaboration is going to use calcium molybdate crystals to search for neutrinoless double beta decay of 100 Mo isotope. In order to make the crystal, we use calcium carbonate and molybdenum oxide powders as raw materials. Therefore it is highly necessary to reduce potential sources for radioactive backgrounds such as U and Th in the powders. In this talk, we will present our studies for purification of calcium carbonate and molybdenum oxide powders

  8. Double beta decay of 82Se

    International Nuclear Information System (INIS)

    Elliott, S.R.; Hahn, A.A.; Moe, M.K.; Nelson, M.A.; Vient, M.A.

    1992-01-01

    The two-neutrino double beta decay of 82 Se has been measured during a 20 244 h run resulting in a half-life of 1.08 -0.06 +0.26 x10 20 years (68% C.L.). No candidate events for the zero-neutrino double beta decay during 21 924 h results in a half-life limit of 2.7x10 22 years at the 68% confidence level

  9. NEUTRINOLESS DOUBLE BETA DECAY: AN EXTREME CHALLENGE

    Directory of Open Access Journals (Sweden)

    Fernando Ferroni

    2013-12-01

    Full Text Available Neutrino-less Double Beta Decay is the only known way to possibly resolve the nature of neutrino mass. The chances to cover the mass region predicted by the inverted hierarchy require a step forward in detector capability. A possibility is to make use of scintillating bolometers. These devices shall have a great power in distinguishing signals from alfa particles from those induced by electrons. This feature might lead to an almost background-free experiment. Here the Lucifer concept will be introduced and the prospects related to this project will be discussed.

  10. A segmented, enriched N-type germanium detector for neutrinoless double beta-decay experiments

    Science.gov (United States)

    Leviner, L. E.; Aalseth, C. E.; Ahmed, M. W.; Avignone, F. T.; Back, H. O.; Barabash, A. S.; Boswell, M.; De Braeckeleer, L.; Brudanin, V. B.; Chan, Y.-D.; Egorov, V. G.; Elliott, S. R.; Gehman, V. M.; Hossbach, T. W.; Kephart, J. D.; Kidd, M. F.; Konovalov, S. I.; Lesko, K. T.; Li, Jingyi; Mei, D.-M.; Mikhailov, S.; Miley, H.; Radford, D. C.; Reeves, J.; Sandukovsky, V. G.; Umatov, V. I.; Underwood, T. A.; Tornow, W.; Wu, Y. K.; Young, A. R.

    2014-01-01

    We present data characterizing the performance of the first segmented, N-type Ge detector, isotopically enriched to 85% 76Ge. This detector, based on the Ortec PT6×2 design and referred to as SEGA (Segmented, Enriched Germanium Assembly), was developed as a possible prototype for neutrinoless double beta-decay measurements by the MAJORANA collaboration. We present some of the general characteristics (including bias potential, efficiency, leakage current, and integral cross-talk) for this detector in its temporary cryostat. We also present an analysis of the resolution of the detector, and demonstrate that for all but two segments there is at least one channel that reaches the MAJORANA resolution goal below 4 keV FWHM at 2039 keV, and all channels are below 4.5 keV FWHM.

  11. Neutrinoless double beta decay search with SNO+

    Directory of Open Access Journals (Sweden)

    Lozza V.

    2014-01-01

    Full Text Available The SNO+ experiment is the follow up of SNO. The detector is located 2 km underground in the Vale Canada Ltd.’s Creighton Mine near Sudbury, Ontario, Canada. The active volume of the detector consists of 780 tonnes of Linear Alkyl Benzene (LAB in an acrylic vessel of 12 m diameter, surrounded by about 9500 PMTs. The main goal of the SNO+ experiment is the search for neutrinoless double beta decay of 130Te. With an initial loading of 0.3% of natural tellurium (nearly 800 kg of 130Te, it is expected to reach a sensitivity on the effective Majorana neutrino mass of about 100 meV after several years of data taking. Designed as a general purpose neutrino experiment, other exciting physical goals can be explored, like the measurement of reactor neutrino oscillations and geo-neutrinos in a geologically-interesting location, watch of supernova neutrinos and studies of solar neutrinos. A first commissioning phase with water filled detector will start at the end of 2013, while the double beta decay phase will start in 2015.

  12. Double beta decay: A theoretical overview

    International Nuclear Information System (INIS)

    Rosen, S.P.

    1988-01-01

    This paper reviews the theoretical possibility of double beta decay. The titles of the main sections of this paper are: Nuclear physics setting; Particle physics requirements; Kinematical features of the decay modes; Nuclear matrix elements; the Shell model and two-neutrino decay; Quasi-particle random phase approximation; and Future considerations. 18 refs., 7 tabs

  13. Why search for double beta decay?

    International Nuclear Information System (INIS)

    Kayser, B.

    1988-01-01

    Searching for neutrinoless double beta decay is the only known practical method for trying to determine whether neutrinos are their own antiparticles. The theoretical motivation for supposing that they may indeed be their own antiparticles is described. The reason that it is so difficult to ascertain experimentally whether they are or are not is explained, as is the special sensitivity of neutrinoless double beta decay. The potential implications of the observation of this reaction for neutrino mass and for the physics of neutrinos is discussed

  14. Double beta decay searches with thermal detectors

    International Nuclear Information System (INIS)

    Pirro, Stefano

    2006-01-01

    Double beta decay searches have become more and more important in the last few years. The 'second generation' experiments will allow to explore the inverse hierarchy region but, due to the uncertainties in the nuclear matrix elements, none of them will be able to cover completely the allowed region. Thus the need to investigate different DBD emitters becomes more important. The bolometric technique is only one able to study different nuclei with the proper energy resolution, key point for the future experiments. The possibility to reject the natural background arising from fast neutrons and alpha particles was recently directly proved with thermal bolometers, using the double read out (heat and scintillation). This new technique offers the possibility to reach background levels two orders of magnitude smaller with respect to the ones of the next planned experiments, aiming the possibility to investigate direct hierarchy region. (author)

  15. Nuclear structure and double beta decay

    International Nuclear Information System (INIS)

    Vogel, P.

    1988-01-01

    Double beta decay is a rare transition between two nuclei of the same mass number A involving a change of the nuclear charge Z by two units. It has long been recognized that the Oν mode of double beta decay, where two electrons and no neutrinos are emitted, is a powerful tool for the study of neutrino properties. Its observation would constitute a convincing proof that there exists a massive Majorana neutrino which couples to electrons. Double beta decay is a process involving an intricate mixture of particle physics and physics of the nucleus. The principal nuclear physics issues have to do with the evaluation of the nuclear matrix elements responsible for the decay. If the authors wish to arrive at quantitative answers for the neutrino properties the authors have no choice but to learn first how to understand the nuclear mechanisms. The authors describe first the calculation of the decay rate of the 2ν mode of double beta decay, in which two electrons and two antineutrinos are emitted

  16. Novel field cage design for the PandaX III double beta decay experiment

    Science.gov (United States)

    Chaiyabin, P.; Giboni, K. L.; Han, K.; Ji, X.; Juyal, P.; Kobdaj, C.; Liu, J.; Lomon, J.; Pasaja, N.; Poolcharuansin, P.; Rujirawat, S.; Songsiriritthigul, P.; Yan, Y.; Zhao, L.

    2017-10-01

    PandaX III is a High Pressure gaseous xenon Time Projection Chamber for Double Beta Decay detection. It will be installed deep underground in the JinPing Laboratory in Szechuan province, China. During its first phase the detector will operate with 200 kg of enriched 136Xe. The detector consists of a mesh cathode in the center of a cylindrical vessel and Micro-Bulk Micro-Megas at both ends to read out the drifting charges. The active volume is surrounded by an array of electrodes to shape the homogeneous drift field, the so called field cage. Gaseous xenon, however, is a poor dielectric. It would require in excess of 10 cm to safely stand off the HV between these electrodes and the grounded detector walls. Nearly a quarter of our available xenon would be wasted in this dead space. In a new design the electric field outside the field shaping is totally contained in a cylinder 1.6 m diameter and 2 m long. For manufacturing two 50 mm thick Acrylic plates are bend into half cylinders and bonded together. The outside surface of the cylinder is covered with a copper mesh as ground plane. The gap between field cage and detector vessel can be now reduced to 1 mm, and this gap is field free. The amount of wasted xenon is reduced by a factor 100. The field shaping electrodes and the resistive divider network are mounted on 5 mm thick Acrylic panels suspended on the inside of the field cage. This design is realized with low radioactivity materials.

  17. Tables of double beta decay data

    International Nuclear Information System (INIS)

    Tretyak, V.I.

    1995-01-01

    A compilation of experimental data on double beta decay is presented. The tables contain the most stringent known experimental limits or positive results of 2β transitions of 69 natural nuclides to ground and excited states of daughter nuclei for different channels (2β - ; 2β + ; εβ + ; 2ε) and modes (0ν; 2ν; 0νM) of decay. (authors). 189 refs., 9 figs., 3 tabs

  18. Tables of double beta decay data

    Energy Technology Data Exchange (ETDEWEB)

    Tretyak, V.I. [AN Ukrainskoj SSR, Kiev (Ukraine)]|[Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Zdesenko, Y.G. [AN Ukrainskoj SSR, Kiev (Ukraine)

    1995-12-31

    A compilation of experimental data on double beta decay is presented. The tables contain the most stringent known experimental limits or positive results of 2{beta} transitions of 69 natural nuclides to ground and excited states of daughter nuclei for different channels (2{beta}{sup -}; 2{beta}{sup +}; {epsilon}{beta}{sup +}; 2{epsilon}) and modes (0{nu}; 2{nu}; 0{nu}M) of decay. (authors). 189 refs., 9 figs., 3 tabs.

  19. Nuclear aspects of double-beta decay

    International Nuclear Information System (INIS)

    Stoica, S.; Paun, V.

    2002-01-01

    Calculations of the neutrinoless double-beta decay (0νββ) matrix elements are performed with the second quasi random phase approximation (SQRPA) method for several nuclei. The results display a weak dependence on the single particle basis used and the Ikeda sum rule is fulfilled with good accuracy. Comparing our calculations with similar ones performed with other QRPA-based methods we estimate the accuracy of these methods in the prediction of the (0νββ) decay matrix elements and neutrino mass parameter, which is settled to about 50% from their calculated values. Taking the most recent experimental limits for the neutrinoless double beta decay half-lives, we also deduced new limits for the neutrino mass parameter. (authors)

  20. Neutrinoless double beta decay in Gerda

    Science.gov (United States)

    Grabmayr, Peter; Gerda Collaboration

    2015-10-01

    The Germanium Detector Array (Gerda) experiment searches for the neutrinoless double beta decay in 76Ge. This lepton number violating process is predicted by extensions of the standard model. Gerda follows a staged approach by increasing mass and lowering the background level from phase to phase. Gerda is setup at the Gran Sasso underground laboratory of INFN, Italy. An array of high-purity germanium detectors is lowered directly in liquid argon for shielding and cooling. Further background reduction is achieved by an instrumented water buffer. In Phase I an exposure of 21.6 kg yr was collected at a background level of 10-2 cts/(keV kg yr). The lower limit on the half-life of 76Ge > 2 . 1 .1025 yr (90% C.L.) has been published. Further analyses search for decay into excited states or the accompanied Majoron decay. Presently, Phase II is in preparation which intends to reach a background level of 10-3 cts/(keV kg yr) and to increase the exposure to 100 kg yr. About 20 kg of novel thick-window BEGe (Broad Energy Germanium) detectors will be added and the liquid argon will be instrumented. The status of Phase II preparation and results from the commissioning runs will be presented as well as some further results from Phase I.

  1. A measurement of the 2 neutrino double beta decay rate of Te-130 in the CUORICINO experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kogler, Laura K. [Univ. of California, Berkeley, CA (United States)

    2011-11-30

    CUORICINO was a cryogenic bolometer experiment designed to search for neutrinoless double beta decay and other rare processes, including double beta decay with two neutrinos (2vββ). The experiment was located at Laboratori Nazionali del Gran Sasso and ran for a period of about 5 years, from 2003 to 2008. The detector consisted of an array of 62 TeO2 crystals arranged in a tower and operated at a temperature of 10 mK. Events depositing energy in the detectors, such as radioactive decays or impinging particles, produced thermal pulses in the crystals which were read out using sensitive thermistors. The experiment included 4 enriched crystals, 2 enriched with 130Te and 2 with 128Te, in order to aid in the measurement of the 2vββ rate. The enriched crystals contained a total of 350 g 130Te. The 128-enriched (130-depleted) crystals were used as background monitors, so that the shared backgrounds could be subtracted from the energy spectrum of the 130- enriched crystals. Residual backgrounds in the subtracted spectrum were fit using spectra generated by Monte-Carlo simulations of natural radioactive contaminants located in and on the crystals. The 2vββ half-life was measured to be T2v1/2 = [9.81± 0.96(stat)± 0.49(syst)] x1020 y.

  2. Search for new physics with neutrinoless double beta decay

    International Nuclear Information System (INIS)

    Klapdor-Kleingrothaus, H.V.; Baudis, L.; Hellmig, J.; Hirsch, M.; Kolb, S.; Paes, H.; Ramachers, Y.

    1999-01-01

    Neutrinoless double beta decay (0νββ) is one of the most sensitive approaches to test particle physics beyond the standard model. During the last years, besides the most restrictive limit on the effective Majorana neutrino mass, the analysis of new contributions by the Heidelberg group led to bounds on left-right-symmetric models, leptoquarks and R-parity violating models competitive to recent accelerator limits, which are of special interest in view of the HERA anomaly at large Q 2 and x. These new results deduced from the Heidelberg-Moscow double beta decay experiment are reviewed. Also an outlook on the future of double beta decay, the GENIUS proposal, is given

  3. Relativistic pn-QRPA to the double beta decay

    International Nuclear Information System (INIS)

    Conti, Claudio de; Krmpotic, F.; Carlson, Brett Vern

    2010-01-01

    Full text: In nature there are about 50 nuclear systems where the single beta-decay is energetically forbidden, and double- beta decay turns out to be only possible mode of disintegration. It is the nuclear pairing force which causes such an 'anomaly', by making the mass of the odd-odd isobar, (N - 1;Z + 1), to be greater than the masses of its even-even neighbors, (N;Z) and (N - 2;Z +2). The modes by which the double-beta decay can take place are connected with the neutrino and antineutrino distinction. In case the lepton number is strictly conserved the neutrino is a Dirac fermion and the two-neutrino mode is the only possible mode of disintegration. On the other hand, if this conservation is violated, the neutrino is a Majorana particle and neutrinoless double-beta decay also can occur. Both two-neutrino and neutrinoless double-beta decay processes have attracted much attention, because a comparison between experiment and theory for the first, provides a measure of confidence one may have in the nuclear wave function employed for extracting the unknown parameters from neutrinoless lifetime measurements. The proton-neutron (pn) quasiparticle random phase approximation (QRPA) has turned out be the most simple model for calculating the nuclear wave function involved in the double-beta decay transitions. In this work the transition matrix elements for 0 + -> 0 + double-beta decay are calculated for 48 Ca, 76 Ge, 82 Se, 100 Mo, 128 Te and 130 Te nuclei, using a relativistic pn-QRPA based on Hartree-Bogoliubov approximation to the single-particle motion. (author)

  4. Relativistic pn-QRPA to the double beta decay

    International Nuclear Information System (INIS)

    Conti, Claudio de; Krmpotic, Francisco; Carlson, Brett Vern

    2011-01-01

    Full text: In nature there are about 50 nuclear systems where the single beta-decay is energetically forbidden, and double-beta decay turns out to be only possible mode of disintegration. It is the nuclear pairing force which causes such an 'anomaly', by making the mass of the odd-odd isobar, (N - 1;Z + 1), to be greater than the masses of its even-even neighbors, (N;Z) and (N - 2;Z +2). The modes by which the double-beta decay can take place are connected with the neutrino and antineutrino distinction. In case the lepton number is strictly conserved the neutrino is a Dirac fermion and the two-neutrino mode is the only possible mode of disintegration. On the other hand, if this conservation is violated, the neutrino is a Majorana particle and neutrinoless double-beta decay also can occur. Both two-neutrino and neutrinoless double-beta decay processes have attracted much attention, because a comparison between experiment and theory for the first, provides a measure of confidence one may have in the nuclear wave function employed for extracting the unknown parameters from neutrinoless lifetime measurements. The proton-neutron (pn) quasiparticle random phase approximation (QRPA) has turned out be the most simple model for calculating the nuclear wave function involved in the double-beta decay transitions. In this work the transition matrix elements for 0 + → 0 + double-beta decay are calculated for 48 Ca, 76 Ge, 82 Se, 100 Mo, 128 Te and 130 Te nuclei, using a relativistic pn-QRPA based on Hartree-Bogoliubov approximation to the single-particle motion. (author)

  5. Is neutrinoless double beta decay suppressed

    International Nuclear Information System (INIS)

    Tomoda, T.

    1989-01-01

    Much effort has been devoted to the study of nuclear double beta decay, since the observation of a neutrinoless double beta (OνΒΒ) decay would be clear evidence that the electron neutrino is a Majorana particle. The OνΒΒ decay is caused by a finite Majorana neutrino mass and/or an admixture of right-handed leptonic currents. In order to relate these quantities to OνΒΒ decay rates, we need nuclear matrix elements, which are model dependent. One of the possibilities of testing nuclear models employed in such analysis is to calculate the experimentally known rates of ΒΒ decay with emission of two neutrinos (2νΒΒ decay) which occurs independently of the nature of the neutrino. There was a long-standing difficulty in such attempts that the calculated 2νΒΒ decay rates turned out to be always too large by one to two orders of magnitude. Trying to overcome such difficulty, Klapdor and Grotz as well as Vogel and Zirnbauer showed in their calculation using schematic effective interactions such that 2νΒΒ decay rates can get reduced considerably due to the nuclear ground state correlations. This paper reports that the suppression is ascribed to that of the virtual Gamow-Teller transitions from the excited 1 + states of the intermediate odd-odd -even nucleus

  6. Future of double beta decay and dark matter searches - GENIUS

    International Nuclear Information System (INIS)

    Klapdor-Kleingrothaus, H. V.; Baudis, L.; Heusser, G.; Krivosheina, I. V.; Kolb, S.; Majorovits, B.; Nabi, J.-U.; Paes, H.

    1999-01-01

    The recent results from the HEIDELBERG-MOSCOW experiment have demonstrated the large potential of double beta decay to search for new physics beyond the standard model. To increase further by a major step the present sensitivity for double beta decay and dark matter searches, we describe here a project, proposed recently [1], which would operate one tonne of 'naked' enriched germanium-detectors in liquid nitrogen as shielding in an underground set-up (GENIUS). It improves the sensitivity of neutrino masses to 0.01 eV. A 10 tonne version would probe neutrino masses even down to 10 -3 eV

  7. Neutron-induced Backgrounds in 134Xe for Large-Scale Neutrinoless Double-Beta Decay Experiments

    Science.gov (United States)

    Moriguchi, Nina; Kidd, Mary; Tornow, Werner

    2016-09-01

    136Xe is used in large neutrinoless double-beta (0 νββ) decay experiments, such as KamLAND- Zen and EXO 200. Though highly purified, 136Xe still contains a significant amount of 134Xe. Recently, a new nuclear energy level was found in 134Xe. If 134Xe decays from this proposed excited state, it will emit a 2485.7 keV gamma ray. Because this energy lies near the region of interest of 136Xe νββ decay experiments (Q value 2457.8 keV), it could make a significant contribution to the background. A purified gaseous sample of 134Xe will be irradiated with neutrons of an incident energy of 4.0 MeV at Triangle Universities Nuclear Laboratory and monitored with high-purity germanium detectors. The spectra obtained from these detectors will be analyzed for the presence of the 2581 keV gamma ray. We will report on the status of this experiment. Future plans include expanding this measurement to higher initial neutron energies. Tennesse Tech University CISE Grant program.

  8. Simulated progress in double-beta decay

    International Nuclear Information System (INIS)

    Miley, H.S.; Arthur, R.J.; Avignone, F.T.

    1993-09-01

    A Monte Carlo code has been developed to accurately simulate double-beta decay measurements. Coincident gamma rays, beta spectra, and angular correlations have been added to adequately simulate a complete 100 Mo nuclear decay and provide corrections to experimentally determined detector efficiencies. This code has been used to strip certain low-background spectra obtained in the Homestake gold mine in Lead, SD, for the purpose of extremely sensitive materials assay for the construction of new, large, enriched germanium detectors. Assays as low as 9 μBq/g of 210 Pb in lead shielding were obtained

  9. Nuclear transparency and double beta decay of molybdenum 100

    International Nuclear Information System (INIS)

    Nicholson, H.W.

    1992-08-01

    Data taking is now complete on a double beta decay experiment which has been carried out with collaborators from the Lawrence Berkeley Laboratory, the University of New Mexico, and the Idaho National Engineering Laboratory, and work is continuing on a second collaborative experiment, AGS experiment 850 at the Brookhaven National Laboratory to study nuclear color transparency. In March, the experimental apparatus used to search for double beta decay in molybdenum 100 in the Consil silver mine in Osburn, Idaho was dismantled, and the data analysis is in its final stages. No evidence has been seen for the O + → O + mode of zero neutrino double beta decay collaborators with a 1σ lifetime limit of 3 x 10 22 years. This limit is 7.5 times greater than the limit we published previously in Physical Review Letters in 1989. Backgrounds have been simulated and fits are currently underway to a simulated O + → 2 + mode of zero neutrino double beta decay to improve on a very preliminary 1σ lifetime limit of 2.3 x 10 21 years presented at the April, 1992 meeting of the APS in Washington. A scintillating fiber detector with three Hamamatsu, H4140, 256 channel multianode phototubes has been built, instrumented, and tested in the May--July 1992 run in the EVA detector at Brookhaven Laboratory's AGS. Preliminary results from this detector have been disappointing. it is likely that the detector will have to be substantially redesigned before the 1993 AGS run

  10. Double beta decay and neutrino mass models

    Energy Technology Data Exchange (ETDEWEB)

    Helo, J.C. [Universidad Técnica Federico Santa María, Centro-Científico-Tecnológico de Valparaíso, Casilla 110-V, Valparaíso (Chile); Hirsch, M. [AHEP Group, Instituto de Física Corpuscular - C.S.I.C./Universitat de València, Edificio de Institutos de Paterna, Apartado 22085, E-46071 València (Spain); Ota, T. [Department of Physics, Saitama University, Shimo-Okubo 255, 338-8570 Saitama-Sakura (Japan); Santos, F.A. Pereira dos [Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro,Rua Marquês de São Vicente 225, 22451-900 Gávea, Rio de Janeiro (Brazil)

    2015-05-19

    Neutrinoless double beta decay allows to constrain lepton number violating extensions of the standard model. If neutrinos are Majorana particles, the mass mechanism will always contribute to the decay rate, however, it is not a priori guaranteed to be the dominant contribution in all models. Here, we discuss whether the mass mechanism dominates or not from the theory point of view. We classify all possible (scalar-mediated) short-range contributions to the decay rate according to the loop level, at which the corresponding models will generate Majorana neutrino masses, and discuss the expected relative size of the different contributions to the decay rate in each class. Our discussion is general for models based on the SM group but does not cover models with an extended gauge. We also work out the phenomenology of one concrete 2-loop model in which both, mass mechanism and short-range diagram, might lead to competitive contributions, in some detail.

  11. Exchange effects in double beta decay

    International Nuclear Information System (INIS)

    Stephenson, G.J. Jr.; Goldman, T.; Maltman, K.R.; Schmidt, K.E.

    1988-01-01

    The motivation underlying the resurgence of interest in double beta decay is the hope that the observation of or limits on the 0-neutrino mode will provide information about the nature of the neutrino. This clearly requires confidence in the nuclear matrix elements involved in the transition. The shell model calculations do not agree well with the geochemical values for 130 Te, which has lead to a spate of papers offering specific fixes for the problem. In this contribution we shall not comment on any of the specific nuclear calculations, rather we make some remarks which should be relevant to any model calculation

  12. Double beta decay in gauge theories

    International Nuclear Information System (INIS)

    Vergados, J.D.

    2002-01-01

    Neutrinoless double beta decay is a very important process both from the particle and nuclear physics point of view. From the elementary particle point of view it pops up in almost every model, giving rise among others to the following mechanisms: a) The traditional contributions like the light neutrino mass mechanism as well as the j L - j R leptonic interference (λ and η terms). b) The exotic R-parity violating supersymmetric (SUSY) contributions. From the nuclear physics point of view it is challenging, because: 1) The nuclei, which can undergo double beta decay, have complicated nuclear structure. 2) The energetically allowed transitions are suppressed (exhaust a small part of all the strength). 3) Since in some mechanisms the intermediate particles are very heavy one must cope with the short distance behavior of the transition operators. 4) The intermediate momenta involved are quite high and one has to consider momentum dependent terms of the nucleon current. Taking the above effects into account from the experimental limits on the interesting nuclei A=76, 82, 96, 100, 116, 128, 130, 136 and 150, we have extracted new limits on the various lepton violating parameters. In particular we get a stringent limit on the R-parity violating parameter λ' 111 -4 . (author)

  13. Simulation studies of muon-produced background events deep underground and consequences for double beta decay experiments

    Science.gov (United States)

    Massarczyk, Ralph; Majorana Collaboration

    2015-10-01

    Cosmic radiation creates a significant background for low count rate experiments. The Majorana demonstrator experiment is located at the Sanford Underground Research Facility at a depth of 4850ft below the surface but it can still be penetrated by cosmic muons with initial energies above the TeV range. The interaction of muons with the rock, the shielding material in the lab and the detector itself can produce showers of secondary particles, like fast neutrons, which are able to travel through shielding material and can produce high-energy γ-rays via capture or inelastic scattering. The energy deposition of these γ rays in the detector can overlap with energy region of interest for the neutrino-less double beta decay. Recent studies for cosmic muons penetrating the Majorana demonstrator are made with the Geant4 code. The results of these simulations will be presented in this talk and an overview of the interaction of the shower particles with the detector, shielding and veto system will be given. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, the Particle Astrophysics Program of the National Science Foundation, and the Sanford Underground Research Facility. Supported by U.S. Department of Energy through the LANL/LDRD Program.

  14. Main features of detectors and isotopes to investigate double beta decay with increased sensitivity

    Science.gov (United States)

    Barabash, A. S.

    2018-03-01

    The current situation in double beta decay experiments, the characteristics of modern detectors and the possibility of increasing the sensitivity to neutrino mass in future experiments are discussed. The issue of the production and use of enriched isotopes in double beta decay experiments is discussed in addition.

  15. Neutrinoless double beta decay searches with 76Ge

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    The search for neutrinoless double beta decay might be the only window to observe lepton number violation. Its observation would favour the leptogenesis mechanism for the explanation of the baryon asymmetry of the universe and is therefore considered to be of highest relevance. The isotope 76Ge has historically been most important for this search and the ongoing experiment GERDA has the lowest background of all experiments in the field. The talk reviews the motivation, the current status of experiments and future programs.

  16. Search for neutrinoless double beta decay beyond GERDA

    Energy Technology Data Exchange (ETDEWEB)

    Schwingenheuer, Bernhard [MPI Kernphysik, Heidelberg (Germany)

    2016-07-01

    The search for neutrinoless double beta decay might be the only window to observe lepton number violation and to determine the nature of neutrinos. Is is therefore considered to be of highest relevance. The isotope Ge-76 has historically been most important for this search and the ongoing experiment GERDA has the lowest background of all experiments in the field. The proposed experimental program beyond GERDA (and Majorana) is presented.

  17. Double beta decay: a new formalism

    International Nuclear Information System (INIS)

    Hirsch, J.; Krmpotic, F.

    1990-01-01

    A study is made of the validity of those methods consisting in an average of solutions from initial and final solutions within the quasi-particle random phase approximation (QRPA) for double beta decay. A new method is developed that works with a single QRPA equation for the intermediate nucleus in which the correlations of the ground state for β - transitions are β + and vice versa. Numerical results agree in the different formulations, which avails the known averaging procedures while showing the greater operative simplicity of the proposed method for the case of the two neutrino mode in which the diagonalization process may be substituted by a matrix inversion. (Author). 13 refs., 1 fig., 1 tab

  18. Double-beta decay processes from lattice quantum chromodynamics

    Science.gov (United States)

    Davoudi, Zohreh; Tiburzi, Brian; Wagman, Michael; Winter, Frank; Chang, Emmanuel; Detmold, William; Orginos, Kostas; Savage, Martin; Shanahan, Phiala; Nplqcd Collaboration

    2017-09-01

    While an observation of neutrinoless double-beta decay in upcoming experiments will establish that the neutrinos are Majorana particles, the underlying new physics responsible for this decay can only be constrained if the theoretical predictions of the rate are substantially refined. This talk demonstrates the roadmap in connecting the underlying high-scale theory to the corresponding nuclear matrix elements, focusing mainly on the nucleonic matrix elements in the simplest extension of Standard Model in which a light Majorana neutrino is mediating the process. The role of lattice QCD and effective field theory in this program, in particular, the prospect of a direct matching of the nn to pp amplitude to lattice QCD will be discussed. As a first step towards this goal, the results of the first lattice QCD calculation of the relevant matrix element for neutrinofull double-beta decay will be presented, albeit with unphysical quark masses, along with important lessons that could impact the calculations of nuclear matrix elements involved in double-beta decays of realistic nuclei.

  19. Discovery potential of xenon-based neutrinoless double beta decay experiments in light of small angular scale CMB observations

    International Nuclear Information System (INIS)

    Gómez-Cadenas, J.J.; Martín-Albo, J.; Vidal, J. Muñoz; Peña-Garay, C.

    2013-01-01

    The South Pole Telescope (SPT) has probed an expanded angular range of the CMB temperature power spectrum. Their recent analysis of the latest cosmological data prefers nonzero neutrino masses, with Σm ν = (0.32±0.11) eV. This result, if confirmed by the upcoming Planck data, has deep implications on the discovery of the nature of neutrinos. In particular, the values of the effective neutrino mass m ββ involved in neutrinoless double beta decay (ββ0ν) are severely constrained for both the direct and inverse hierarchy, making a discovery much more likely. In this paper, we focus in xenon-based ββ0ν experiments, on the double grounds of their good performance and the suitability of the technology to large-mass scaling. We show that the current generation, with effective masses in the range of 100 kg and conceivable exposures in the range of 500 kg·year, could already have a sizeable opportunity to observe ββ0ν events, and their combined discovery potential is quite large. The next generation, with an exposure in the range of 10 ton·year, would have a much more enhanced sensitivity, in particular due to the very low specific background that all the xenon technologies (liquid xenon, high-pressure xenon and xenon dissolved in liquid scintillator) can achieve. In addition, a high-pressure xenon gas TPC also features superb energy resolution. We show that such detector can fully explore the range of allowed effective Majorana masses, thus making a discovery very likely

  20. Theory of neutrinoless double beta decay

    CERN Document Server

    Vergados, J.D.; Simkovic, F.

    2012-01-01

    Neutrinoless double beta decay, which is a very old and yet elusive process, is reviewed. Its observation will signal that lepton number is not conserved and the neutrinos are Majorana particles. More importantly it is our best hope for determining the absolute neutrino mass scale at the level of a few tens of meV. To achieve the last goal certain hurdles have to be overcome involving particle, nuclear and experimental physics. Nuclear physics is important for extracting the useful information from the data. One must accurately evaluate the relevant nuclear matrix elements, a formidable task. To this end, we review the sophisticated nuclear structure approaches recently been developed, which give confidence that the needed nuclear matrix elements can be reliably calculated. From an experimental point of view it is challenging, since the life times are long and one has to fight against formidable backgrounds. If a signal is found, it will be a tremendous accomplishment. Then, of course, the real task is going ...

  1. Meson exchange currents and two neutrino double beta decay

    International Nuclear Information System (INIS)

    Simkovic, F.

    1995-01-01

    By using a field theory approach a detailed analysis of the two neutrino double beta decay amplitude has been performed. We have shown that the summation over the intermediate nuclear states in the present two neutrino double beta decay studies corresponds to a summation over a class of meson exchange diagrams. We offer some arguments showing that the two nucleon mechanism considered at present does not provide the main contribution to the two neutrino double beta decay amplitude. A new electron-gamma exchange mechanism for this process is suggested. 31 refs., 1 fig

  2. The majorana {sup 76}Ge double-beta decay project

    Energy Technology Data Exchange (ETDEWEB)

    Aalseth, C.E.; Adles, E.; Anderson, D.; Avignone, F.T.; Barabash, A.; Bowyer, T.W.; Brodzinski, R.L.; Brudanin, V.; Champangne, A.; Collar, J.I.; Doe, P.J.; Egorov, S.; Elliott, S.R.; Farach, H.A.; Gaitskell, R.; Jordan, D.; Jain, R.K.; Kazkaz, K.; King, G.; Kochetov, O.; Konovalov, S.; Kouzes, R.; Miley, H.S.; Palms, J.M.; Pitts, W.K.; Reeves, J.H.; Robertson, R.G.H.; Rohm, R.; Sandukovsky, S.; Smith, L.E.; Stekhanov, V.; Thompson, R.C.; Tornow, W.; Umatov' , V.; Warner, R.; Webb, J.; Wilkerson, J.F.; Young, A

    2003-07-01

    The interest and relevance of next-generation 0{sub v} {beta}{beta}-decay experiments is increasing. Even with nonzero neutrino mass strongly suggested by solar and atmospheric neutrino experiments sensitive to {delta}m{sup 2}, 0{sub v} {beta}{beta}-decay experiments are still the only way to establish the Dirac or Majorana nature of neutrinos by measuring the effective electron neutrino mass, . In addition, the atmospheric neutrino oscillation experiments imply that at least one neutrino has a mass greater than about 50 meV. The Majorana Experiment expects to probe an effective neutrino mass near this critical value. Majorana is a next-generation {sup 76}Ge double-beta decay search. It will employ 500 kg of Ge, isotopically enriched to 86% in {sup 76}Ge, in the form of {approx} 200 detectors in a close-packed array. Each crystal will be electronically segmented and each segment fitted with pulse-shape analysis electronics. This combination of segmentation and pulse-shape analysis significantly improves our ability to discriminate neutrinoless double beta-decay from internal cosmogenic {sup 68}Ge and {sup 60}Co. The half-life sensitivity is estimated to be 4.2 x 10{sup 27} y corresponding to a range of {<=} 20 - 70 meV, depending on the nuclear matrix elements used to interpret the data.

  3. Scalar-mediated double beta decay and LHC

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, L. [Universidad Técnica Federico Santa María, Centro-Científico-Tecnológico de Valparaíso,Casilla 110-V, Valparaíso (Chile); Helo, J.C. [Universidad Técnica Federico Santa María, Centro-Científico-Tecnológico de Valparaíso,Casilla 110-V, Valparaíso (Chile); Departamento de Física, Facultad de Ciencias, Universidad de La Serena,Avenida Cisternas 1200, La Serena (Chile); Hirsch, M. [AHEP Group, Instituto de Física Corpuscular - C.S.I.C./Universitat de València,Edificio de Institutos de Paterna, Apartado 22085, E-46071 València (Spain); Kovalenko, S.G. [Universidad Técnica Federico Santa María, Centro-Científico-Tecnológico de Valparaíso,Casilla 110-V, Valparaíso (Chile)

    2016-12-23

    The decay rate of neutrinoless double beta (0νββ) decay could be dominated by Lepton Number Violating (LNV) short-range diagrams involving only heavy scalar intermediate particles, known as “topology-II” diagrams. Examples are diagrams with diquarks, leptoquarks or charged scalars. Here, we compare the LNV discovery potentials of the LHC and 0νββ-decay experiments, resorting to three example models, which cover the range of the optimistic-pessimistic cases for 0νββ decay. We use the LHC constraints from dijet as well as leptoquark searches and find that already with 20/fb the LHC will test interesting parts of the parameter space of these models, not excluded by the current limits on 0νββ-decay.

  4. Scalar-mediated double beta decay and LHC

    International Nuclear Information System (INIS)

    Gonzalez, L.; Helo, J.C.; Hirsch, M.; Kovalenko, S.G.

    2016-01-01

    The decay rate of neutrinoless double beta (0νββ) decay could be dominated by Lepton Number Violating (LNV) short-range diagrams involving only heavy scalar intermediate particles, known as “topology-II” diagrams. Examples are diagrams with diquarks, leptoquarks or charged scalars. Here, we compare the LNV discovery potentials of the LHC and 0νββ-decay experiments, resorting to three example models, which cover the range of the optimistic-pessimistic cases for 0νββ decay. We use the LHC constraints from dijet as well as leptoquark searches and find that already with 20/fb the LHC will test interesting parts of the parameter space of these models, not excluded by the current limits on 0νββ-decay.

  5. Experimental search for double beta decay of 100Mo

    International Nuclear Information System (INIS)

    Alston-Garnjost, M.; Dougherty, B.L.; Kenney, R.W.; Krivicich, J.M.; Tripp, R.D.; Nicholson, H.W.; Dieterle, B.D.; Leavitt, C.P.

    1986-01-01

    An experiment is proposed to search for double beta decay in 100 Mo using thin silicon solid state detectors. We expect to be sensitive to a half life limit of over 2 x 10 23 years for the neutrinoless mode and 2 x 10 20 years for the two-neutrino mode in one year's running. This is a substantial improvement in the measurement of the limits on electron neutrino mass and/or right-handed current admixtures over present 76 Ge experiments. 16 refs., 12 figs., 9 tabs

  6. On the nuclear double beta decay: microscopic description

    International Nuclear Information System (INIS)

    Civitarese, Osvaldo

    1989-01-01

    This paper is devoted to the discussion of some problems related with microscopic descriptions of the nuclear double beta decay. It has been organized in the following order: 1) Review of the experimental situation; 2) Brief discussion of the theoretical aspects related to the current algebra, weak interaction, neutrino and majoron's status and 3) Elements of the standard nuclear theory involved in the calculation of transition densities for the nuclear double beta decay. (Author) [es

  7. Analysis method for the search for neutrinoless double beta decay in the NEMO3 experiment: study of the background and first results

    International Nuclear Information System (INIS)

    Etienvre, A.I.

    2003-04-01

    The NEMO3 detector, installed in the Frejus Underground Laboratory, is dedicated to the study of neutrinoless double beta decay: the observation of this process would sign the massive and Majorana nature of neutrino. The experiment consists in very thin central source foils (the total mass is equal to 10 kg), a tracking detector made of drift cells operating in Geiger mode, a calorimeter made of plastic scintillators associated to photomultipliers, a coil producing a 30 gauss magnetic field and two shields, dedicated to the reduction of the γ-ray and neutron fluxes. In the first part, I describe the implications of several mechanisms, related to trilinear R-parity violation, on double beta decay. The second part is dedicated to a detailed study of the tracking detector of the experiment: after a description of the different working tests, I present the determination of the characteristics of the tracking reconstruction (transverse and longitudinal resolution, by Geiger cell and precision on vertex determination, charge recognition). The last part corresponds to the analysis of the data taken by the experiment. On the one hand, an upper limit on the Tl 208 activity of the sources has been determined: it is lower than 68 mBq/kg, at 90% of confidence level. On the other hand, I have developed and tested on these data a method in order to analyse the neutrinoless double beta decay signal; this method is based on a maximum of likelihood using all the available information. Using this method, I could determine a first and very preliminary upper limit on the effective mass of the neutrino. (author)

  8. Probing new physics models of neutrinoless double beta decay with SuperNEMO

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, R. [CNRS/IN2P3, IPHC, Universite de Strasbourg, Strasbourg (France); Augier, C.; Bongrand, M.; Garrido, X.; Jullian, S.; Sarazin, X.; Simard, L. [CNRS/IN2P3, LAL, Universite Paris-Sud 11, Orsay (France); Baker, J.; Caffrey, A.J.; Horkley, J.J.; Riddle, C.L. [INL, Idaho Falls, ID (United States); Barabash, A.S.; Konovalov, S.I.; Umatov, V.I.; Vanyushin, I.A. [Institute of Theoretical and Experimental Physics, Moscow (Russian Federation); Basharina-Freshville, A.; Evans, J.J.; Flack, R.; Holin, A.; Kauer, M.; Richards, B.; Saakyan, R.; Thomas, J.; Vasiliev, V.; Waters, D. [University College London, London (United Kingdom); Brudanin, V.; Egorov, V.; Kochetov, O.; Nemchenok, I.; Timkin, V.; Tretyak, V.; Vasiliev, R. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Cebrian, S.; Dafni, T.; Irastorza, I.G.; Gomez, H.; Iguaz, F.J.; Luzon, G.; Rodriguez, A. [University of Zaragoza, Zaragoza (Spain); Chapon, A.; Durand, D.; Guillon, B.; Mauger, F. [Universite de Caen, LPC Caen, ENSICAEN, Caen (France); Chauveau, E.; Hubert, P.; Hugon, C.; Lutter, G.; Marquet, C.; Nachab, A.; Nguyen, C.H.; Perrot, F.; Piquemal, F.; Ricol, J.S. [UMR 5797, Universite de Bordeaux, Centre d' Etudes Nucleaires de Bordeaux Gradignan, Gradignan (France); UMR 5797, CNRS/IN2P3, Centre d' Etudes Nucleaires de Bordeaux Gradignan, Gradignan (France); Deppisch, F.F.; Jackson, C.M.; Nasteva, I.; Soeldner-Rembold, S. [Univ. of Manchester (United Kingdom); Diaz, J.; Monrabal, F.; Serra, L.; Yahlali, N. [CSIC - Univ. de Valencia, IFIC (Spain); Fushima, K.I. [Tokushima Univ., Tokushima (Japan); Holy, K.; Povinec, P.P.; Simkovic, F. [Comenius Univ., FMFI, Bratislava (Slovakia); Ishihara, N. [KEK, Tsukuba, Ibaraki (Japan); Kovalenko, V. [CNRS/IN2P3, IPHC, Univ. de Strasbourg (France); Joint Inst. for Nuclear Research, Dubna (Russian Federation); Lamhamdi, T. [USMBA, Fes (Morocco); Lang, K.; Pahlka, R.B. [Univ. of Texas, Austin, TX (United States)] (and others)

    2010-12-15

    The possibility to probe new physics scenarios of light Majorana neutrino exchange and right-handed currents at the planned next generation neutrinoless double {beta} decay experiment SuperNEMO is discussed. Its ability to study different isotopes and track the outgoing electrons provides the means to discriminate different underlying mechanisms for the neutrinoless double {beta} decay by measuring the decay half-life and the electron angular and energy distributions. (orig.)

  9. Neutrinoless double beta decay and lepton flavor violation

    International Nuclear Information System (INIS)

    Cirigliano, V.; Kurylov, A.; Vogel, P.; Ramsey-Musolf, M.J.

    2004-01-01

    We point out that extensions of the standard model with low scale (∼TeV) lepton number violation (LNV) generally lead to a pattern of lepton flavor violation (LFV) experimentally distinguishable from the one implied by models with grand unified theory scale LNV. As a consequence, muon LFV processes provide a powerful diagnostic tool to determine whether or not the effective neutrino mass can be deduced from the rate of neutrinoless double beta decay. We discuss the role of μ→eγ and μ→e conversion in nuclei, which will be studied with high sensitivity in forthcoming experiments

  10. Present status of radiochemical double beta decay study (238U)

    International Nuclear Information System (INIS)

    Madic, C.; Maillard, C.; Chevallier, A.; Chevallier, J.; Escoubes, B.; Schulz, N.; Sens, J.C.

    1989-01-01

    A sensitive experiment has been designed that will be able to measure an assumed half-life of 1.9x10 22 yr. This double beta corresponds to the activity of 27000 238 Pu nuclei formed during a year, in a 200 m deep mine, from 300 kg of 238 U, giving 210 alpha decays per year. Plutonium 238 et 239 will be determined by alpha spectroscopy after extraction chromatography. Experimental studies were undertaken to select the best conditions for running the extraction chromatography cycles

  11. Neutrinoless double-beta decay - Status of evidence and future

    International Nuclear Information System (INIS)

    Klapdor-Kleingrothaus, H.V.

    2002-01-01

    Double-beta decay is indispensable to solve the question of the neutrino mass matrix together with ν oscillation experiments. Recent analysis of the most sensitive experiment in the last eight years - the Heidelberg-Moscow experiment in Gran Sasso - yields evidence for the neutrinoless decay mode at a 97% C.L. This result is the first indication for lepton number violation and for the neutrino to be a Majorana particle. We give the present status of the analysis in these proceedings. It excludes several of the neutrino mass scenarios allowed from present neutrino oscillation experiments - essentially only degenerate and partially degenerate mass scenarios survive. To improve the present result, considerably enlarged experiments are required, such as GENIUS. A GENIUS Test Facility has just been funded and will come into operation by the end of 2002

  12. The Majorana Demonstrator: Progress towards showing the feasibility of a tonne-scale 76Ge neutrinoless double-beta decay experiment

    Science.gov (United States)

    Finnerty, P.; Aguayo, E.; Amman, M.; Avignone, F. T., Iii; Barabash, A. S.; Barton, P. J.; Beene, J. R.; Bertrand, F. E.; Boswell, M.; Brudanin, V.; Busch, M.; Chan, Y.-D.; Christofferson, C. D.; Collar, J. I.; Combs, D. C.; Cooper, R. J.; Detwiler, J. A.; Doe, P. J.; Efremenko, Yu; Egorov, V.; Ejiri, H.; Elliott, S. R.; Esterline, J.; Fast, J. E.; Fields, N.; Fraenkle, F. M.; Galindo-Uribarri, A.; Gehman, V. M.; Giovanetti, G. K.; Green, M. P.; Guiseppe, V. E.; Gusey, K.; Hallin, A. L.; Hazama, R.; Henning, R.; Hoppe, E. W.; Horton, M.; Howard, S.; Howe, M. A.; Johnson, R. A.; Keeter, K. J.; Kidd, M. F.; Knecht, A.; Kochetov, O.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; Leviner, L. E.; Loach, J. C.; Luke, P. N.; MacMullin, S.; Marino, M. G.; Martin, R. D.; Merriman, J. H.; Miller, M. L.; Mizouni, L.; Nomachi, M.; Orrell, J. L.; Overman, N. R.; Perumpilly, G.; Phillips, D. G., Ii; Poon, A. W. P.; Radford, D. C.; Rielage, K.; Robertson, R. G. H.; Ronquest, M. C.; Schubert, A. G.; Shima, T.; Shirchenko, M.; Snavely, K. J.; Steele, D.; Strain, J.; Timkin, V.; Tornow, W.; Varner, R. L.; Vetter, K.; Vorren, K.; Wilkerson, J. F.; Yakushev, E.; Yaver, H.; Young, A. R.; Yu, C.-H.; Yumatov, V.; Majorana Collaboration

    2014-03-01

    The Majorana Demonstrator will search for the neutrinoless double-beta decay (0vββ) of the 76Ge isotope with a mixed array of enriched and natural germanium detectors. The observation of this rare decay would indicate the neutrino is its own anti-particle, demonstrate that lepton number is not conserved, and provide information on the absolute mass-scale of the neutrino. The Demonstrator is being assembled at the 4850 foot level of the Sanford Underground Research Facility in Lead, South Dakota. The array will be contained in a low-background environment and surrounded by passive and active shielding. The goals for the Demonstrator are: demonstrating a background rate less than 3 t-1 y-1 in the 4 keV region of interest (ROI) surrounding the 2039 keV 76Ge endpoint energy; establishing the technology required to build a tonne-scale germanium based double-beta decay experiment; testing the recent claim of observation of 0vββ [1]; and performing a direct search for light WIMPs (3-10 GeV/c2).

  13. Double Charge Exchange Reactions and Double Beta Decay

    Science.gov (United States)

    Auerbach, N.

    2018-05-01

    The subject of this presentation is at the forefront of nuclear physics, namely double beta decay. In particular one is most interested in the neutrinoless process of double beta decay, when the decay proceeds without the emission of two neutrinos. The observation of such decay would mean that the lepton conservation symmetry is violated and that the neutrinos are of Majorana type, meaning that they are their own anti-particles. The life time of this process has two unknowns, the mass of the neutrino and the nuclear matrix element. Determining the nuclear matrix element and knowing the cross-section well will set limits on the neutrino mass. There is a concentrated effort among the nuclear physics community to calculate this matrix element. Usually these matrix elements are a very small part of the total strength of the transition operators involved in the process. There is no simple way to “calibrate” the nuclear double beta decay matrix element. The double beta decay is a double charge exchange process, therefore it is proposed that double charge exchange reactions using ion projectiles on nuclei that are candidates for double beta decay, will provide additional necessary information about the nuclear matrix elements.

  14. First results of neutrinoless double beta decay search with the GERmanium Detector Array "GERDA"

    Science.gov (United States)

    Janicskó Csáthy, József

    2014-06-01

    The study of neutrinoless double beta decay is the most powerful approach to the fundamental question if the neutrino is a Majorana particle, i.e. its own anti-particle. The observation of the lepton number violating neutrinoless double beta decay would establish the Majorana nature of the neutrino. Until now neutrinoless double beta decay was not observed. The GERmanium Detector Array, GERDA is a double beta decay experiment located at the INFN Gran Sasso National Laboratory, Italy. GERDA operates bare Ge diodes enriched in 76Ge in liquid argon supplemented by a water shield. The exposure accumulated adds up to 21.6 kg· yr with a background level of 1.8 · 10-2 cts/(keV·kg·yr). The results of the Phase I of the experiment are presented and the preparation of the Phase II is briefly discussed.

  15. The processing of enriched germanium for the MAJORANA DEMONSTRATOR and R&D for a next generation double-beta decay experiment

    Science.gov (United States)

    Abgrall, N.; Arnquist, I. J.; Avignone, F. T., III; Barabash, A. S.; Bertrand, F. E.; Bradley, A. W.; Brudanin, V.; Busch, M.; Buuck, M.; Caja, J.; Caja, M.; Caldwell, T. S.; Christofferson, C. D.; Chu, P.-H.; Cuesta, C.; Detwiler, J. A.; Dunagan, C.; Dunstan, D. T.; Efremenko, Yu.; Ejiri, H.; Elliott, S. R.; Gilliss, T.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guinn, I. S.; Guiseppe, V. E.; Haufe, C. R. S.; Henning, R.; Hoppe, E. W.; Jasinski, B. R.; Kidd, M. F.; Konovalov, S. I.; Kouzes, R. T.; Lopez, A. M.; MacMullin, J.; Martin, R. D.; Massarczyk, R.; Meijer, S. J.; Mertens, S.; Meyer, J. H.; Myslik, J.; O'Shaughnessy, C.; Poon, A. W. P.; Radford, D. C.; Rager, J.; Reine, A. L.; Reising, J. A.; Rielage, K.; Robertson, R. G. H.; Shanks, B.; Shirchenko, M.; Suriano, A. M.; Tedeschi, D.; Toth, L. M.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, C.-H.; Yumatov, V.; Zhitnikov, I.; Zhu, B. X.

    2018-01-01

    The MAJORANA DEMONSTRATOR is an array of point-contact Ge detectors fabricated from Ge isotopically enriched to 88% in 76 Ge to search for neutrinoless double beta decay. The processing of Ge for germanium detectors is a well-known technology. However, because of the high cost of Ge enriched in 76 Ge special procedures were required to maximize the yield of detector mass and to minimize exposure to cosmic rays. These procedures include careful accounting for the material; shielding it to reduce cosmogenic generation of radioactive isotopes; and development of special reprocessing techniques for contaminated solid germanium, shavings, grindings, acid etchant and cutting fluids from detector fabrication. Processing procedures were developed that resulted in a total yield in detector mass of 70%. However, none of the acid-etch solution and only 50% of the cutting fluids from detector fabrication were reprocessed. Had they been processed, the projections for the recovery yield would be between 80% and 85%. Maximizing yield is critical to justify a possible future ton-scale experiment. A process for recovery of germanium from the acid-etch solution was developed with yield of about 90%. All material was shielded or stored underground whenever possible to minimize the formation of 68Ge by cosmic rays, which contributes background in the double-beta decay region of interest and cannot be removed by zone refinement and crystal growth. Formation of 68Ge was reduced by a significant factor over that in natural abundance detectors not protected from cosmic rays.

  16. Sensitivity of NEXT-100 to neutrinoless double beta decay

    CERN Document Server

    Martín-Albo, J.; Ferrario, P.; Nebot-Guinot, M.; Gómez-Cadenas, J.J.; Álvarez, V.; Azevedo, C.D.R.; Borges, F.I.G.; Cárcel, S.; Cebrián, S.; Cervera, A.; Conde, C.A.N.; Díaz, J.; Diesburg, M.; Esteve, R.; Fernandes, L.M.P.; Ferreira, A.L.; Freitas, E.D.C.; Gehman, V.M.; Goldschmidt, A.; González-Díaz, D.; Gutiérrez, R.M.; Henriques, C.A.O.; Hernando Morata, J.A.; Labarga, L.; Laing, A.; Lebrun, P.; Liubarsky, I.; López-March, N.; Lorca, D.; Losada, M.; Martínez-Lema, G.; Martínez, A.; Miller, T.; Monrabal, F.; Monserrate, M.; Monteiro, C.M.B.; Mora, F.J.; Moutinho, L.M.; Novella, P.; Nygren, D.; Para, A.; Perez, J.; Perez Aparicio, J.L.; Querol, M.; Renner, J.; Ripoll, L.; Rodríguez, J.; Santos, F.P.; dos Santos, J.M.F.; Serra, L.; Shuman, D.; Simón, A.; Sofka, C.; Sorel, M.; Stiegler, T.; Toledo, J.F.; Torrent, J.; Tsamalaidze, Z.; Veloso, J.F.C.A.; Villar, J.A.; Webb, R.; White, J.T.; Yahlali, N.; Yepes-Ramírez, H.; Hauptman, J.

    2016-01-01

    NEXT-100 is an electroluminescent high-pressure xenon gas time projection chamber that will search for the neutrinoless double beta decay of Xe-136. The detector possesses two features of great value in neutrinoless double beta decay searches: very good energy resolution (better than 1% FWHM at the Q value of Xe-136) and track reconstruction for the discrimination of signal and background events. This combination results in excellent sensitivity, as discussed in this paper. Detailed Monte Carlo detector simulations and material-screening measurements predict a background rate for NEXT-100 of at most 0.0004 counts/(keV kg yr). Accordingly, the detector will reach a sensitivity to the neutrinoless double beta decay half-life of 6.E25 years after running for 3 effective years.

  17. Search for the Neutrino Less Double Beta Decay

    Energy Technology Data Exchange (ETDEWEB)

    Efremenko, Yuri [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Physics and Astronomy

    2016-07-11

    During the past few years our understanding of neutrino properties has reached a new level, with experiments such as Super-K, SNO, KamLAND, and others obtaining exciting results. Major questions such as “Do neutrinos have mass?” and “Do neutrinos oscillate?” now have positive answers. However, an extensive program of neutrino research remains. Undoubtedly, the most important of these is the question pointed out by the National Research Council in its February 2002 report “Connecting Quarks with the Cosmos”, specifically: What are the masses of neutrinos and how have they shaped the evolution of the Universe? The MAJORANA collaboration has proposed to build the world’s most sensitive one-ton scale experiment to search for neutrino less double beta decay to answer this question. In its initial stage, the collaboration is building a prototype MAJORANA DEMONSTRATOR (MJD) experiment consisting of detectors made out of enriched Ge76 with a total sensitive mass of ~30 kg. This will accomplish two goals. First, it will test not yet confirmed claim for observation of neutrino-less double beta decay. Second, it will establish that the selected technology is capable of extension to a one-ton experiment with sufficient sensitivity to measure neutrino mass mββ down to 10 meV. To achieve the last goal, collaboration must demonstrate that a background level of 1 count per year per 4 keV per ton of detector is achievable. The University of Tennessee (UT) neutrino group has made a major commitment to the MJD. P.I. accepted the responsibility for one of the major tasks of the experiment, “Materials and Assay Task” which is crucial to the achievement of low background levels required for the experiment. In addition, the UT group is committed to construct, commission, and operate the MJD active veto system. Those activities were supported by NP-DOE via program funding for “Search for the Neutrino Less Double Beta Decay” at the University

  18. GERDA - a new neutrinoless double beta experiment using 76Ge

    International Nuclear Information System (INIS)

    Meierhofer, G

    2011-01-01

    The search for neutrinoless double beta decay (0νssss) has been a very active field for the last decades. While double beta decay has been observed, 0νssss decay still waits for its experimental proof. The GErmanium Detector Array (GERDA) uses 76 Ge, an ideal candidate as it is acting as source and detector simultaneously. Germanium detectors, isotopically enriched in 76 Ge are submerged directly into an ultra pure cryo liquid, which serves as coolant and radiation shield. This concept will allow to reduce the background by up to two orders of magnitude with respect to earlier experiments. GERDA has been constructed in hall A of the underground laboratory LNGS of the INFN in Italy. The experiment started recently with a test run.

  19. Results on neutrinoless double beta decay from GERDA phase I

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    After motivating searches of double beta decay and lepton number violation details about the construction, operation and analysis of GERDA will be given. Results of the recently completed phase I of data taking will then be presented and interpreted. Finally an outlook on future plans will be given.

  20. New developments in the calculation of double beta decay

    International Nuclear Information System (INIS)

    Engel, J.

    1990-01-01

    I review recent work on computing double beta decay rates. After a discussion of shell model and Quasiparticle Random Phase calculations, I argue for a model based on the notion of generalized seniority that combines the advantages of both earlier approaches. (orig.)

  1. Computer code for double beta decay QRPA based calculations

    Energy Technology Data Exchange (ETDEWEB)

    Barbero, C. A.; Mariano, A. [Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina and Instituto de Física La Plata, CONICET, La Plata (Argentina); Krmpotić, F. [Instituto de Física La Plata, CONICET, La Plata, Argentina and Instituto de Física Teórica, Universidade Estadual Paulista, São Paulo (Brazil); Samana, A. R.; Ferreira, V. dos Santos [Departamento de Ciências Exatas e Tecnológicas, Universidade Estadual de Santa Cruz, BA (Brazil); Bertulani, C. A. [Department of Physics, Texas A and M University-Commerce, Commerce, TX (United States)

    2014-11-11

    The computer code developed by our group some years ago for the evaluation of nuclear matrix elements, within the QRPA and PQRPA nuclear structure models, involved in neutrino-nucleus reactions, muon capture and β{sup ±} processes, is extended to include also the nuclear double beta decay.

  2. Majorana neutrino masses and the neutrinoless double-beta decay

    International Nuclear Information System (INIS)

    Faessler, A.

    2006-01-01

    Neutrinoless double-beta decay is forbidden in the Standard Model of electroweak and strong interaction but allowed in most Grand Unified Theories (GUTs). Only if the neutrino is a Majorana particle (identical with its antiparticle) and if it has a mass is neutrinoless double-beta decay allowed. Apart from one claim that the neutrinoless double-beta decay in 76 Ge is measured, one has only upper limits for this transition probability. But even the upper limits allow one to give upper limits for the electron Majorana neutrino mass and upper limits for parameters of GUTs and the minimal R-parity-violating supersymmetric model. One further can give lower limits for the vector boson mediating mainly the right-handed weak interaction and the heavy mainly right-handed Majorana neutrino in left-right symmetric GUTs. For that, one has to assume that the specific mechanism is the leading one for neutrinoless double-beta decay and one has to be able to calculate reliably the corresponding nuclear matrix elements. In the present work, one discusses the accuracy of the present status of calculating of the nuclear matrix elements and the corresponding limits of GUTs and supersymmetric parameters

  3. Two-neutrino double-beta decay

    International Nuclear Information System (INIS)

    Guerard, O.

    1992-01-01

    Two previous independent reports of 2νββ-decay by the ITEP-YPI collaboration, T 2ν 1/2 = (9 ± 1) x 10 20 yr (1σ), were confirmed using a 0.25 Kg Ge(Li) detector isotopically enriched to 86% in 76 Ge. The detector was operated in the PNL-USC ultralow background facility in the Homestake gold mine for 168 days. Following a single correction to the data, a spectrum resembling that of the earlier PNL-USC experiment, with about the same intensity per 76 Ge atom, per year, was observed with a measured half life of T 2ν 1/2 = (9.2 +0.7 -0.2 ) x 10 21 y (90% C.L.), by observing the 590.76 and 539.53 keV gamma rays emitted in the 0 + 1 → 2 + → 0 + de-excitation cascade. A review of the most relevant nuclear structure calculations is given, and their predictions are compared to the measurements from the present two experiments

  4. Exploration of the neutrinoless double beta decay of 136Xe nucleus by the 'KamLAND-Zen' experiment. Results of the first phase and future prospect

    International Nuclear Information System (INIS)

    Yamada, Satoru; Shirai, Junpei

    2013-01-01

    Exploration of the double beta decay without neutrino production (0 ν ββ decay) has come to be considered as one of the clues to the new physics beyond the standard model in the recent years. Searching for this phenomenon is the only possible method to verify if the neutrino itself be the equal particle of the antineutrino (Majorana particle) or not. If this decay process is found, it is the discovery of the nonconservative process of the total lepton number which goes beyond the standard theory. At the same time, it confirms that the neutrinos are the Majorana particles. In addition, from the decay half-lives, the absolute value of neutrino mass and hierarchy as well as the new knowledge of the CP violation in the lepton sector are expected to be obtained. Further progress is expected toward the development of the research of the particle creation mechanism at the beginning of the universe. Strong competitions are now being developed throughout the world to become the first to discover the phenomenon to go beyond the standard theory. In this text, the underground facility of KamLAND-Zen experiment with remodeled KamLAND detector with large amount of 136 Xe isotope is introduced and the results of the data obtained and analyzed by June 2012 are reported. Future prospect is described finally. (S. Funahashi)

  5. Neutrinoless double beta decay in GERDA Phase II

    International Nuclear Information System (INIS)

    Macolino, C.

    2014-01-01

    The GERmanium Detector Array, GERDA, is designed to search for neutrinoless double beta (0νββ) decay of 76 Ge and it is installed in the Laboratori Nazionali del Gran Sasso (LNGS) of INFN, Italy. The GERDA experiment has completed the Phase I with a total collected exposure of 21.6 kg yr and a background index (BI) of the order of BI ≃ 10 −2 cts/(keVkg yr). No excess of events from 0νββ decay has been observed and a lower limit on the half-life on the 0νββ decay for 76 Ge has been estimated: T 0ν 1 /2 > 2.1·10 25 yr at 90% CL. The goal of GERDA Phase II is to reach the target sensitivity of T 0ν 1 /2 ≃ 1.4 · 10 26 yr, with an increased total mass of the enriched material and a reduced background level. In this paper the results from GERDA Phase I and the major improvements planned for Phase II are discussed.

  6. Search for neutrinoless double beta decay with GERDA phase II

    Science.gov (United States)

    Agostini, M.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Baudis, L.; Bauer, C.; Bellotti, E.; Belogurov, S.; Bettini, A.; Bezrukov, L.; Bode, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; Di Marco, N.; Domula, A.; Doroshkevich, E.; Egorov, V.; Falkenstein, R.; Gangapshev, A.; Garfagnini, A.; Gooch, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hakenmüller, J.; Hegai, A.; Heisel, M.; Hemmer, S.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Csáthy, J. Janicskó; Jochum, J.; Junker, M.; Kazalov, V.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Kish, A.; Klimenko, A.; Kneißl, R.; Knies, J.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Liao, H. Y.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Majorovits, B.; Maneschg, W.; Marissens, G.; Miloradovic, M.; Mingazheva, R.; Misiaszek, M.; Moseev, P.; Nemchenok, I.; Panas, K.; Pandola, L.; Pelczar, K.; Pullia, A.; Ransom, C.; Reissfelder, M.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salamida, F.; Schmitt, C.; Schneider, B.; Schönert, S.; Schreiner, J.; Schulz, O.; Schütz, A.-K.; Schwingenheuer, B.; Seitz, H.; Selivanenko, O.; Shevchik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Vanhoefer, L.; Vasenko, A. A.; Veresnikova, A.; von Sturm, K.; Wagner, V.; Wegmann, A.; Wester, T.; Wiesinger, C.; Wojcik, M.; Yanovich, E.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.

    2017-10-01

    The GERmanium Detector Array (gerda) experiment, located at the Gran Sasso underground laboratory in Italy, is one of the leading experiments for the search of 0νββ decay. In Phase II of the experiment 35.6 kg of enriched germanium detectors are operated. The application of active background rejection methods, such as a liquid argon scintillation light read-out and pulse shape discrimination of germanium detector signals, allowed to reduce the background index to the intended level of 10-3 cts/(keV.kg.yr). In the first five month of data taking 10.8 kg yr of exposure were accumulated. No signal has been found and together with data from Phase I a new limit for the neutrinoless double beta decay half-life of 76Ge of 5.3 . 1025 yr at 90% C.L. was established in June 2016. Phase II data taking is ongoing and will allow the exploration of half-lifes in the 1026 yr regime. The current status of data taking and an update on the background index are presented.

  7. Search for double-beta decay of 136Xe to excited states of 136Ba with the KamLAND-Zen experiment

    Science.gov (United States)

    Asakura, K.; Gando, A.; Gando, Y.; Hachiya, T.; Hayashida, S.; Ikeda, H.; Inoue, K.; Ishidoshiro, K.; Ishikawa, T.; Ishio, S.; Koga, M.; Matsuda, S.; Mitsui, T.; Motoki, D.; Nakamura, K.; Obara, S.; Otani, M.; Oura, T.; Shimizu, I.; Shirahata, Y.; Shirai, J.; Suzuki, A.; Tachibana, H.; Tamae, K.; Ueshima, K.; Watanabe, H.; Xu, B. D.; Yoshida, H.; Kozlov, A.; Takemoto, Y.; Yoshida, S.; Fushimi, K.; Banks, T. I.; Berger, B. E.; Fujikawa, B. K.; O'Donnell, T.; Winslow, L. A.; Efremenko, Y.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Detwiler, J. A.; Enomoto, S.; Decowski, M. P.

    2016-02-01

    A search for double-beta decays of 136Xe to excited states of 136Ba has been performed with the first phase data set of the KamLAND-Zen experiment. The 01+, 21+ and 22+ transitions of 0 νββ decay were evaluated in an exposure of 89.5 kg ṡyr of 136Xe, while the same transitions of 2 νββ decay were evaluated in an exposure of 61.8 kg ṡyr. No excess over background was found for all decay modes. The lower half-life limits of the 21+ state transitions of 0 νββ and 2 νββ decay were improved to T1/20ν (0+ →21+) > 2.6 ×1025 yr and T1/22ν (0+ →21+) > 4.6 ×1023 yr (90% C.L.), respectively. We report on the first experimental lower half-life limits for the transitions to the 01+ state of 136Xe for 0 νββ and 2 νββ decay. They are T1/20ν (0+ →01+) > 2.4 ×1025 yr and T1/22ν (0+ → 01+) > 8.3 ×1023 yr (90% C.L.). The transitions to the 22+ states are also evaluated for the first time to be T1/20ν (0+ →22+) > 2.6 ×1025 yr and T1/22ν (0+ →22+) > 9.0 ×1023 yr (90% C.L.). These results are compared to recent theoretical predictions.

  8. The Majorana Experiment: a Straightforward Neutrino Mass Experiment Using The Double-Beta Decay of Ge-76

    International Nuclear Information System (INIS)

    Miley, Harry S.; Y Suzuki; M Nakahata; Y Itow; M Shiozawa; Y Obayashi

    2004-01-01

    The Majorana Experiment proposes to measure the effective mass of the electron neutrino to as low as 0.02 eV using well-tested technology. A half life of about 4E27 y, corresponding to a mass range of [0.02 - 0.07] eV can be reached by operating 500 kg of germanium enriched to 86% in Ge-76 deep underground. Radiological backgrounds of cosmogenic or primordial origin will be greatly reduced by ultra-low background screening of detector, structural, and shielding materials, by chemical processing of materials, and by electronic rejection of multi-site events in the detector. Electronic background reduction is achieved with pulse shape analysis, detector segmentation, and detector-to detector coincidence rejection

  9. The Majorana experiment. A straightforward neutrino mass experiment using the double-beta decay of 76Ge

    International Nuclear Information System (INIS)

    Miley, H.S.

    2004-01-01

    The Majorana Experiment proposes to measure the effective mass of the electron neutrino to as low as 0.02 eV using well-tested technology. A half-life of about 4E27 y, corresponding to a mass range of [0.02 - 0.07] eV can be reached by operating 500 kg of germanium enriched to 86% in 76 Ge deep underground. Radiological backgrounds of cosmogenic or primordial origin will be greatly reduced by ultra-low-background screening of detector, structural, and shielding materials, by chemical processing of materials, and by electronic rejection of multi-site events in the detector. Electronic background reduction is achieved with pulse-shape analysis, detector segmentation, and detector-to-detector coincidence rejection. Sensitivity calculations assuming worst-case germanium cosmogenic activation predict rapid growth in mass sensitivity (T1/2 at 90%CL) after the beginning of detector production: [0.08-0.28] eV at ∼1 year, [0.04-0.14] eV at ∼2.5 years, [0.03-0.10] eV at ∼5 years, and [0.02-0.07] eV at ∼10 years. The impact of primordial backgrounds in structural and electronic components is being studied at the 1 μBq/kg level, and appears to be controllable to below levels needed to attain these results. (author)

  10. The Majorana Experiment:. a Straightforward Neutrino Mass Experiment Using the Double-Beta Decay of 76GE

    Science.gov (United States)

    Miley, H. S.

    2004-04-01

    The Majorana Experiment proposes to measure the effective mass of the electron neutrino to as low as 0.02 eV using well-tested technology. A half-life of about 4E27 y, corresponding to a mass range of [0.02 - 0.07] eV can be reached by operating 500 kg of germanium enriched to 86% in 76Ge deep underground. Radiological backgrounds of cosmogenic or primordial origin will be greatly reduced by ultra-low-background screening of detector, structural, and shielding materials, by chemical processing of materials, and by electronic rejection of multi-site events in the detector. Electronic background reduction is achieved with pulse-shape analysis, detector segmentation, and detector-to-detector coincidence rejection. Sensitivity calculations assuming worst-case germanium cosmogenic activation predict rapid growth in mass sensitivity (T1/2 at 90%CL) after the beginning of detector production: [0.08-0.28] eV at ~1 year, [0.04-0.14] eV at ~2.5 years, [0.03-0.10] eV at ~5 years, and [0.02 - 0.07] eV at ~10 years. The impact of primordial backgrounds in structural and electronic components is being studied at the 1 μBq/kg level, and appears to be controllable to below levels needed to attain these results.

  11. Improving the physics impact of next-generation 76Ge neutrinoless double-beta decay experiments

    Energy Technology Data Exchange (ETDEWEB)

    Hossbach, Todd W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2009-01-01

    It was shown that segmentation and pulse-shape discrimination can improve the discovery sensitivity of a next-gen 0vBB-decay experiment by 90%. - However, when practical aspects are considered (such as instrumenting each segment with front-end electronics), the discovery sensitivity is decreased by 19%. - This has extremely important consequences to proposed next-gen experiments since the two active collaborations have strongly advocated the use of segmented detectors for all or part of the experiment. - New germanium detector technology, currently under development, has demonstrated excellent multi-site background rejection capabilities without the complexity of segmentation or complicated PSD algorithms. - The physically-segmented p-type germanium detector technology has proven to be a useful and practical tool in modern nuclear physics. The PSEG technology deserves further development as it has the potential for use in a variety of applications.

  12. Grand unification and the double beta-decay

    International Nuclear Information System (INIS)

    Faessler, A.

    1992-01-01

    Models of the unification of the electroweak and the strong interaction predict that the neutrino is a Majorana particle and therefore essentially identical with its own antiparticle. In such grand unified models the neutrino has also a finite mass and a slight right-handed weak interaction, since the model is left-right symmetric. These models have also left handed and right-handed vector bosons to mediate the weak interactions. If these models are correct the neutrinoless double beta-decay is feasable. Thus if one finds the neutrinoless double beta-decay one knows that the standard model can not be correct in which the neutrino is a Dirac particle and therefore different from its antiparticle. Although the neutrinoless double beta-decay has not been seen it is possible to extract from the lower limits of the lifetime against the double neutrinoless beta-decay upper limits for the effective electron-neutrino mass and for the effective mixing angle of the right-handed and the left-handed vector bosons mediating the weak interaction. One also can obtain an effective upper limit for the mass ratio of the light and the heavy vector bosons. The extraction of this physical quantities from the data is made difficult due to the fact that the weak interaction must not be diagonal in the representation of the mass matrix of the six neutrinos requested by such left-right symmetric models. (author)

  13. Pionic Contribution to Neutrinoless Double Beta Decay

    CERN Document Server

    Vergados, J D; Toki, H

    2010-01-01

    It is well known that neutrinoless double decay is going to play a crucial role in settling the neutrino properties, which cannot be extracted from the neutrino oscillation data. It is, in particular, expected to settle the absolute scale of neutrino mass and determine whether the neutrinos are Majorana particles, i.e. they coincide with their own antiparticles. In order to extract the average neutrino mass from the data one must be able to estimate the contribution all possible high mass intermediate particles. The latter, which occur in practically all extensions of the standard model, can, in principle, be differentiated from the usual mass term, if data from various targets are available. One, however, must first be able reliably calculate the corresponding nuclear matrix elements. Such calculations are extremely difficult since the effective transition operators are very short ranged. For such operators processes like pionic contributions, which are usually negligible, turn out to be dominant. We study s...

  14. Measurement of the two-neutrino double-beta decay half-life of {sup 130}Te with the CUORE-0 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Alduino, C.; Avignone, F.T.; Chott, N.; Creswick, R.J.; Rosenfeld, C.; Wilson, J. [University of South Carolina, Department of Physics and Astronomy, Columbia, SC (United States); Alfonso, K.; Hickerson, K.P.; Huang, H.Z.; Liu, X.; Trentalange, S.; Zhu, B.X. [University of California, Department of Physics and Astronomy, Los Angeles, CA (United States); Artusa, D.R. [University of South Carolina, Department of Physics and Astronomy, Columbia, SC (United States); INFN-Laboratori Nazionali del Gran Sasso, Assergi, L' Aquila (Italy); Azzolini, O.; Camacho, A.; Keppel, G.; Palmieri, V.; Pira, C. [INFN-Laboratori Nazionali di Legnaro, Legnaro, Padova (Italy); Banks, T.I.; Drobizhev, A.; Freedman, S.J.; Hennings-Yeomans, R.; O' Donnell, T.; Wagaarachchi, S.L. [University of California, Department of Physics, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Bari, G.; Deninno, M.M. [INFN-Sezione di Bologna, Bologna (Italy); Beeman, J.W. [Lawrence Berkeley National Laboratory, Materials Science Division, Berkeley, CA (United States); Bellini, F.; Cardani, L.; Casali, N.; Cosmelli, C.; Ferroni, F. [Sapienza Universita di Roma, Dipartimento di Fisica, Rome (Italy); INFN-Sezione di Roma, Rome (Italy); Bersani, A.; Caminata, A. [INFN-Sezione di Genova, Genova (Italy); Biassoni, M.; Carbone, L.; Cremonesi, O.; Ferri, E.; Giachero, A.; Pessina, G.; Previtali, E.; Rusconi, C. [INFN-Sezione di Milano Bicocca, Milan (Italy); Brofferio, C.; Capelli, S.; Carniti, P.; Cassina, L.; Chiesa, D.; Clemenza, M.; Faverzani, M.; Fiorini, E.; Gironi, L.; Gotti, C.; Maino, M.; Nucciotti, A.; Pavan, M.; Pozzi, S.; Sisti, M.; Terranova, F.; Zanotti, L. [Universita di Milano-Bicocca, Dipartimento di Fisica, Milan (Italy); INFN-Sezione di Milano Bicocca, Milan (Italy); Bucci, C.; Cappelli, L.; D' Addabbo, A.; Di Vacri, M.L.; Gorla, P.; Pattavina, L.; Pirro, S. [INFN-Laboratori Nazionali del Gran Sasso, Assergi, L' Aquila (Italy); Canonica, L. [INFN-Laboratori Nazionali del Gran Sasso, Assergi, L' Aquila (Italy); Massachusetts Institute of Technology, Cambridge, MA (United States); Cao, X.G.; Fang, D.Q.; Ma, Y.G.; Wang, H.W.; Zhang, G.Q. [Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Shanghai (China); Copello, S.; Di Domizio, S.; Fernandes, G.; Marini, L.; Pallavicini, M. [INFN-Sezione di Genova, Genova (Italy); Universita di Genova, Dipartimento di Fisica, Genova (Italy); Cushman, J.S.; Davis, C.J.; Heeger, K.M.; Lim, K.E.; Maruyama, R.H. [Yale University, Department of Physics, New Haven, CT (United States); Dafinei, I.; Morganti, S.; Mosteiro, P.J.; Orio, F.; Pettinacci, V.; Tomei, C.; Vignati, M. [INFN-Sezione di Roma, Rome (Italy); Dell' Oro, S. [INFN-Laboratori Nazionali del Gran Sasso, Assergi, L' Aquila (Italy); INFN-Gran Sasso Science Institute, L' Aquila (Italy); Feintzeig, J.; Fujikawa, B.K.; Mei, Y.; Smith, A.R. [Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Franceschi, M.A.; Ligi, C.; Napolitano, T.; Piperno, G. [INFN-Laboratori Nazionali di Frascati, Frascati, Rome (Italy); Giuliani, A.; Tenconi, M. [Universite Paris-Saclay, CSNSM, Univ. Paris-Sud, CNRS/IN2P3, Orsay (France); Gladstone, L.; Leder, A.; Winslow, L.A. [Massachusetts Institute of Technology, Cambridge, MA (United States); Gutierrez, T.D. [California Polytechnic State University, Physics Department, San Luis Obispo, CA (United States); Haller, E.E. [Lawrence Berkeley National Laboratory, Materials Science Division, Berkeley, CA (United States); University of California, Department of Materials Science and Engineering, Berkeley, CA (United States); Han, K. [Yale University, Department of Physics, New Haven, CT (United States); Shanghai Jiao Tong University, Department of Physics and Astronomy, Shanghai (China); Hansen, E. [University of California, Department of Physics and Astronomy, Los Angeles, CA (United States); Massachusetts Institute of Technology, Cambridge, MA (United States); Kadel, R. [Lawrence Berkeley National Laboratory, Physics Division, Berkeley, CA (United States); Kolomensky, Yu.G. [University of California, Department of Physics, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Physics Division, Berkeley, CA (United States); Martinez, M. [Sapienza Universita di Roma, Dipartimento di Fisica, Rome (Italy); INFN-Sezione di Roma, Rome (Italy); Universidad de Zaragoza, Laboratorio de Fisica Nuclear y Astroparticulas, Zaragoza (Spain); Moggi, N. [INFN-Sezione di Bologna, Bologna (Italy); Alma Mater Studiorum-Universita di Bologna, Dipartimento di Scienze per la Qualita della Vita, Bologna (Italy); Nones, C. [Service de Physique des Particules, CEA/Saclay, Gif-sur-Yvette (France); Norman, E.B.; Wang, B.S. [Lawrence Livermore National Laboratory, Livermore, CA (United States); University of California, Department of Nuclear Engineering, Berkeley, CA (United States); Ouellet, J.L. [University of California, Department of Physics, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Massachusetts Institute of Technology, Cambridge, MA (United States); Pagliarone, C.E. [INFN-Laboratori Nazionali del Gran Sasso, Assergi, L' Aquila (Italy); Universita degli Studi di Cassino e del Lazio Meridionale, Dipartimento di Ingegneria Civile e Meccanica, Cassino (Italy); Sangiorgio, S.; Scielzo, N.D. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Santone, D. [INFN-Laboratori Nazionali del Gran Sasso, Assergi, L' Aquila (Italy); Universita dell' Aquila, Dipartimento di Scienze Fisiche e Chimiche, L' Aquila (Italy); Singh, V. [University of California, Department of Physics, Berkeley, CA (US); Taffarello, L. [INFN-Sezione di Padova, Padova (IT); Wise, T. [Yale University, Department of Physics, New Haven, CT (US); University of Wisconsin, Department of Physics, Madison, WI (US); Woodcraft, A. [University of Edinburgh, SUPA, Institute for Astronomy, Edinburgh (GB); Zimmermann, S. [Lawrence Berkeley National Laboratory, Engineering Division, Berkeley, CA (US); Zucchelli, S. [INFN-Sezione di Bologna, Bologna (IT); Alma Mater Studiorum-Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (IT)

    2017-01-15

    We report on the measurement of the two-neutrino double-beta decay half-life of {sup 130}Te with the CUORE-0 detector. From an exposure of 33.4 kg year of TeO{sub 2}, the half-life is determined to be T{sub 1/2}{sup 2ν} = [8.2 ± 0.2 (stat.) ± 0.6 (syst.)] x 10{sup 20} year. This result is obtained after a detailed reconstruction of the sources responsible for the CUORE-0 counting rate, with a specific study of those contributing to the {sup 130}Te neutrinoless double-beta decay region of interest. (orig.)

  15. Double beta decay of tellurium-130

    International Nuclear Information System (INIS)

    Richardson, J.F.; Manuel, O.K.; Sinha, B.; Thorpe, R.I.

    1986-01-01

    The isotopic composition of xenon is reported in four, neutron-irradiated tellurium minerals - tellurobismuthite from Boliden, Sweden, native tellurium from the Good Hope Mine of Gunnison County, Colorado, altaite from the Kirkland Lake area, Ontario, and altaite from the Mattagami Lake area, Quebec. From the amount of radiogenic 130 Xe and pile-produced 131 Xe in these samples, it is concluded that the half-life of 130 Te for ββ-decay is 21 y based on measured values of (1.0+-0.3) . 10 21 y and higher. Our results demonstrate that there has been no significant partial leakage of radiogenic 130 Xe from these minerals over geologic time. Larger values of Tsub(1/2), as indicated from some of the analysis reported here and in other studies, are attributed to recrystallization of the soft telluride minerals and complete resetting of the Te-Xe system after mineralization. The value obtained here for the half-life of 130 Te is substantiated by recent measurements on xenon in tellurides from Kalgoorlie, Western Australia. (orig.)

  16. Searching Neutrinoless Double Beta Decay with GERDA Phase II

    Science.gov (United States)

    Agostini, M.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Baudis, L.; Bauer, C.; Bellotti, E.; Belogurov, S.; Bettini, A.; Bezrukov, L.; Bode, T.; Brudanin, V.; Brugnera, R.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; Comellato, T.; D’Andrea, V.; Demidova, E. V.; di Marco, N.; Domula, A.; Doroshkevich, E.; Egorov, V.; Falkenstein, R.; Gangapshev, A.; Garfagnini, A.; Giordano, M.; Gooch, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hahne, C.; Hakenmüller, J.; Hegai, A.; Heisel, M.; Hemmer, S.; Hiller, R.; Hofmann, W.; Holl, P.; Hult, M.; Inzhechik, L. V.; Ioannucci, L.; Csáthy, J. Janicskó; Jochum, J.; Junker, M.; Kazalov, V.; Kermaidic, Y.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Kish, A.; Klimenko, A.; Kneißl, R.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Marissens, G.; Miloradovic, M.; Mingazheva, R.; Misiaszek, M.; Moseev, P.; Nemchenok, I.; Nisi, S.; Panas, K.; Pandola, L.; Pelczar, K.; Pullia, A.; Ransom, C.; Reissfelder, M.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Sala, E.; Salamida, F.; Schmitt, C.; Schneider, B.; Schreiner, J.; Schulz, O.; Schweisshelm, B.; Schwingenheuer, B.; Schönert, S.; Schütz, A.-K.; Seitz, H.; Selivanenko, O.; Shevchik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Vanhoefer, L.; Vasenko, A. A.; Veresnikova, A.; von Sturm, K.; Wagner, V.; Wegmann, A.; Wester, T.; Wiesinger, C.; Wojcik, M.; Yanovich, E.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zschocke, A.; Zsigmond, A. J.; Zuber, K.; Zuzel, G.

    An observation of neutrinoless double beta (0νββ) decay would allow to shed light onto the nature of neutrinos. GERDA (GERmanium Detector Array) aims to discover this process in a background-free search using 76Ge. The experiment is located at the Laboratori Nazionali del Gran Sasso (LNGS) of the Istituto Nazionale di Fisica Nucleare (INFN) in Italy. Bare, isotopically enriched, high purity germanium detectors are operated in liquid argon. GERDA follows a staged approach. In Phase II 35.6 kg of enriched germanium detectors are operated since December 2015. The application of active background rejection methods, such as a liquid argon scintillation light read-out and pulse shape discrimination of germanium detector signals, allows to reduce the background index to the intended level of 10‑3 cts/(keVṡkgṡyr). No evidence for the 0νββ decay has been found in 23.2 kgṡyr of Phase II data, and together with data from Phase I the up-to-date most stringent half-life limit for this process in 76Ge has been established, at a median sensitivity of 5.8ṡ1025yr the 90% C.L. lower limit is 8.0ṡ1025yr.

  17. Neutrinoless double-beta decay and dark matter search with GENIUS

    International Nuclear Information System (INIS)

    Klapdor-Kleingrothaus, H.V.; Kolb, S.

    2000-01-01

    The potential of the GENIUS (GErmanium in liquid NItrogen Underground Setup) experiment, proposed the successor of the Heidelberg-Moscow experiment, for the search for neutrinoless double-beta decay, the direct search for neutralino Cold Dark Matter and for other physics beyond the Standard Model are presented. The current status of the Heidelberg-Moscow experiment will be reviewed [ru

  18. Neutrinoless double-beta decay and dark matter search with GENIUS

    International Nuclear Information System (INIS)

    Klapdor-Kleingrothaus, H.V.; Kolb, St.

    2000-01-01

    The potential of the GENIUS (GErmanium in liquid NItrogen Underground Setup) experiment, proposed as the successor of the Heidelberg-Moscow experiment, for the search for neutrinoless double-beta decay, the direct search for neutralino Cold Dark Matter, and for other physics beyond the Standard Model will be presented. The current status of the Heidelberg-Moscow experiment will be reviewed

  19. New physics in the new millennium with GENIUS: double beta decay, dark matter, solar neutrinos

    International Nuclear Information System (INIS)

    Klapdor-Kleingrothaus, H.V.

    2001-01-01

    Double beta decay is indispensable to solve the question of the neutrino mass matrix together with ν oscillation experiments. The most sensitive experiment since eight years - the HEIDELBERG - MOSCOW experiment in Gran Sasso - already now, with the experimental limit of ν > 7 Be) solar neutrinos. A GENIUS Test Facility has just been funded and will come into operation by the end of 2001

  20. The MAJORANA DEMONSTRATOR: A Search for Neutrinoless Double-beta Decay of Germanium-76

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, Alexis G.; Aguayo, Estanislao; Avignone, F. T.; Zhang, C.; Back, Henning O.; Barabash, Alexander S.; Bergevin, M.; Bertrand, F.; Boswell, M.; Brudanin, V.; Busch, Matthew; Chan, Yuen-Dat; Christofferson, Cabot-Ann; Collar, J. I.; Combs, Dustin C.; Cooper, R. J.; Detwiler, Jason A.; Leon, Jonathan D.; Doe, Peter J.; Efremenko, Yuri; Egorov, Viatcheslav; Ejiri, H.; Elliott, S. R.; Esterline, James H.; Fast, James E.; Fields, N.; Finnerty, P.; Fraenkle, Florian; Gehman, Victor M.; Giovanetti, G. K.; Green, M.; Guiseppe, Vincente; Gusey, K.; Hallin, A. L.; Hazama, R.; Henning, Reyco; Hime, Andrew; Hoppe, Eric W.; Horton, Mark; Howard, Stanley; Howe, Mark; Johnson, R. A.; Keeter, K.; Keillor, Martin E.; Keller, C.; Kephart, Jeremy D.; Kidd, M. F.; Knecht, A.; Kochetov, Oleg; Konovalov, S.; Kouzes, Richard T.; LaFerriere, Brian D.; LaRoque, B. H.; Leviner, L.; Loach, J. C.; MacMullin, S.; Marino, Michael G.; Martin, R. D.; Mei, Dong-Ming; Merriman, Jason H.; Miller, M. L.; Mizouni, Leila; Nomachi, Masaharu; Orrell, John L.; Overman, Nicole R.; Phillips, D.; Poon, Alan; Perumpilly, Gopakumar; Prior, Gersende; Radford, D. C.; Rielage, Keith; Robertson, R. G. H.; Ronquest, M. C.; Shima, T.; Shirchenko, M.; Snavely, Kyle J.; Sobolev, V.; Steele, David; Strain, J.; Thomas, K.; Timkin, V.; Tornow, Werner; Vanyushin, I.; Varner, R. L.; Vetter, Kai; Vorren, Kris R.; Wilkerson, J. F.; Wolfe, B. A.; Yakushev, E.; Young, A.; Yu, Chang-Hong; Yumatov, Vladimir

    2012-09-28

    The observation of neutrinoless double-beta decay would determine whether the neutrino is a Majorana particle and provide information on the absolute scale of neutrino mass. The MAJORANA Collaboration is constructing the DEMONSTRATOR, an array of germanium detectors, to search for neutrinoless double-beta decay of 76Ge. The DEMONSTRATOR will contain 40 kg of germanium; up to 30 kg will be enriched to 86% in 76Ge. The DEMONSTRATOR will be deployed deep underground in an ultra-low-background shielded environment. Operation of the DEMONSTRATOR aims to determine whether a future tonne-scale germanium experiment can achieve a background goal of one count per tonne-year in a 4-keV region of interest around the 76Ge neutrinoless double-beta decay Q-value of 2039 keV.

  1. Search for neutrinoless double beta decay in {sup 136}Xe with EXO-200

    Energy Technology Data Exchange (ETDEWEB)

    Feldmeier, Wolfhart

    2015-02-19

    Several properties of neutrinos, such as their absolute mass, their possible Majorana nature or the mechanisms that lead to small neutrino masses, are still unknown. The EXO-200 experiment is trying to answer some of these questions by searching for the hypothetical neutrinoless double beta decay of the isotope {sup 136}Xe. This thesis describes an analysis of two years of detector data, which yields a lower limit on the half-life of neutrinoless double beta decay of {sup 136}Xe of 1.1 x 10{sup 25} years.

  2. Project for detecting the double beta decay of 136Xe

    International Nuclear Information System (INIS)

    Miyajima, M.; Sasaki, S.; Tawara, H.

    1992-01-01

    For detecting the nuclear double beta decay of 136 Xe, a liquid-xenon positive-ion collector and a time-of-flight mass spectrometer are under development for detecting the decay product 136 Ba. Two sets of lasers are used with the mass spectrometer. An Nd-YAG laser is used for sampling 136 Ba from the surface of the positive-ion collector electrode, and a dye laser pumped by an Nd-YAG laser is used for the selective ionization of 136 Ba. The principle of measurements as well as the experimental apparatus and procedures are described in detail, together with our future plans. (orig.)

  3. Double beta decay in the generalized seniority scheme

    International Nuclear Information System (INIS)

    Pittel, S.; Engel, J.; Vogel, P.; Ji Xiangdong

    1990-01-01

    A generalized-seniority truncation scheme is used in shell-model calculations of double beta decay matrix elements. Calculations are carried out for 78 Ge, 82 Se and 128,130 Te. Matrix elements calculated for the two-neutrino decay mode are small compared to weak-coupling shell-model calculations and support the suppression mechanism first observed in the quasi-particle random phase approximation. Matrix elements for the neutrinoless mode are similar to those of the weak-coupling shell model, suggesting that these matrix elements can be pinned down fairly accurately. (orig.)

  4. First scintillating bolometer tests of a CLYMENE R&D on Li2MoO4 scintillators towards a large-scale double-beta decay experiment

    Science.gov (United States)

    Buşe, G.; Giuliani, A.; de Marcillac, P.; Marnieros, S.; Nones, C.; Novati, V.; Olivieri, E.; Poda, D. V.; Redon, T.; Sand, J.-B.; Veber, P.; Velázquez, M.; Zolotarova, A. S.

    2018-05-01

    A new R&D on lithium molybdate scintillators has begun within a project CLYMENE (Czochralski growth of Li2MoO4 crYstals for the scintillating boloMeters used in the rare EveNts sEarches). One of the main goals of the CLYMENE is a realization of a Li2MoO4 crystal growth line to be complementary to the one recently developed by LUMINEU in view of a mass production capacity for CUPID, a next-generation tonne-scale bolometric experiment to search for neutrinoless double-beta decay. In the present paper we report the investigation of performance and radiopurity of 158-g and 13.5-g scintillating bolometers based on a first large-mass (230 g) Li2MoO4 crystal scintillator developed within the CLYMENE project. In particular, a good energy resolution (2-7 keV FWHM in the energy range of 0.2-5 MeV), one of the highest light yield (0.97 keV/MeV) amongst Li2MoO4 scintillating bolometers, an efficient alpha particles discrimination (10 σ) and potentially low internal radioactive contamination (below 0.2-0.3 mBq/kg of U/Th, but 1.4 mBq/kg of 210Po) demonstrate prospects of the CLYMENE in the development of high quality and radiopure Li2MoO4 scintillators for CUPID.

  5. The Gerda search for neutrinoless double beta decay

    Science.gov (United States)

    O'Shaughnessy, Christopher; Gerda Collaboration

    2013-10-01

    The Germanium Detector Array (Gerda) is a search for the neutrinoless double beta decay of 76Ge. High Purity Germanium (HPGe) detectors enriched in the isotope-76 are operated bare in liquid argon (LAr). LAr is used for both cooling of the HPGe diodes to their operating temperatures and for shielding from external radiation sources. From the measurements of the first phase that began data taking on 1 Nov. 2011 it is expected to have a sensitivity on the level of T1/2>2E25 yr at a 90% CL after 15 kġyr. The goal of this phase will be to probe the claim of an observation by part of the Heidelberg-Moscow collaboration. Efforts will then focus on increasing the sensitivity of the experiment by deploying additional enriched detectors that are in an advanced stage of production and by reducing the background index further by making use of pulse shape discrimination techniques as well as an active LAr veto. While the 0νββ region of interest continues to remain blinded, here the status of Phase-I data taking is presented along with the work towards improving the experimental sensitivity.

  6. The 76Ge Program to Search for Neutrinoless Double-Beta Decay

    Science.gov (United States)

    Guiseppe, Vincente

    2017-09-01

    Neutrinoless double-beta decay searches play a major role in determining the nature of neutrinos, the existence of a lepton violating process, and the effective Majorana neutrino mass. The Majorana and Gerda Collaborations are operating arrays of high purity Ge detectors to search for neutrinoless double-beta decay in 76Ge. The Majorana Demonstrator is operating at the Sanford Underground Research Facility in South Dakota while the Gerda experiment is operating at LNGS in Italy. The Gerda and Majorana Demonstrator experiments have achieved the lowest backgrounds in the neutrinoless double-beta decay region of interest. These results, coupled with the superior energy resolution (0.1%) of Ge detectors demonstrate that 76Ge is an ideal isotope for a large next generation experiment. The LEGEND collaboration, with 220 members from 47 institutions around the world, has been formed to pursue a ton scale 76Ge experiment. Building on the successes of Gerda and Majorana, the LEGEND collaboration aims to develop a phased neutrinoless double-beta decay experimental program with discovery potential at a half-life significantly longer than 1027 years. This talk will present the initial results from the Majorana Demonstrator and Gerda experiments and the plan for the LEGEND program.

  7. Analysis of the data from the NEMO3 experiment and search for neutrinoless double beta decay - Study of systematic bias of the calorimeter and development of analysis tools

    International Nuclear Information System (INIS)

    Hugon, C.

    2012-11-01

    The NEMO3 experiment was researching the neutrinoless double-β (0ndb) decay by using various sources of double beta decay isotopes (mainly 100 Mo, 82 Se, 116 Cd and 130 Te for about 10 kg in total). The detector was located in the underground laboratory of Modane (Italy) in the halfway point of the Frejus tunnel. This experiment demonstrated that the 'tracko-calo' technology is really competitive and, in addition, it gives new results for the 2-neutrinos double-β (2ndb) decay and the (0ndb) decays research. Moreover it opened an new way for its successor SuperNEMO, which aim is to reach a mass of 100 kg of 82 Se (for a sensitivity of 10 26 years). The main goal of the thesis is to measure the 2ndb and 0ndb decay of the 100 Mo to the excited state 0 1 + of the 100 Ru thanks to the whole NEMO3 data, with new original methods of analysis and through the development of the collaboration analysis software. The results obtained for the ground states (gs) and excited states 2ndb of the 100 Mo are for the half-lives: T(2nbd, gs)=[7.05±0.01(stat)±0.54(syst)]*10 18 years and T(2ndb, 0 1 + )=[6.15±1.1(sta)±0.78]*10 20 years. Those results are compatibles with the last ones published by the collaboration. For the 0ndb(0 1 + ), this work gave a half-life of T(0ndb, 0 1 + ) > 2.6*10 23 years, improving significantly the last published results. Furthermore those methods also allowed to present a new and more exhaustive background noise model for this experiment. The second point of this work was to measure the systematics errors of the NEMO3 calorimeter, among others due to the wavelength of the NEMO3 calibration systems. This work was done using a new test bench based on LED. This bench also allowed to contribute to the development of the SuperNEMO calorimeter, especially in the time characteristic and the energy linearity measurement of the photomultiplier intended to the demonstrator of the experiments. (author)

  8. Schematic model studies of double beta decay processes

    International Nuclear Information System (INIS)

    Civitarese, O.

    1996-01-01

    Some features of the nuclear matrix elements, for double beta decay transitions to a final ground state and to a final excited one and two-quadrupole phonon states, are presented and discussed in the framework of a schematic model. The competition between spin-flip and non-spin-flip transitions on the relevant nuclear matrix elements, the effects due to proton-neutron pairing correlations and the effects due to the inclusion of exchange terms in the QRPA matrix are discussed. (Author)

  9. Neutrinoless double beta decay in type I+II seesaw models

    Energy Technology Data Exchange (ETDEWEB)

    Borah, Debasish [Department of Physics, Tezpur University,Tezpur-784028 (India); Dasgupta, Arnab [Institute of Physics, Sachivalaya Marg,Bhubaneshwar-751005 (India)

    2015-11-30

    We study neutrinoless double beta decay in left-right symmetric extension of the standard model with type I and type II seesaw origin of neutrino masses. Due to the enhanced gauge symmetry as well as extended scalar sector, there are several new physics sources of neutrinoless double beta decay in this model. Ignoring the left-right gauge boson mixing and heavy-light neutrino mixing, we first compute the contributions to neutrinoless double beta decay for type I and type II dominant seesaw separately and compare with the standard light neutrino contributions. We then repeat the exercise by considering the presence of both type I and type II seesaw, having non-negligible contributions to light neutrino masses and show the difference in results from individual seesaw cases. Assuming the new gauge bosons and scalars to be around a TeV, we constrain different parameters of the model including both heavy and light neutrino masses from the requirement of keeping the new physics contribution to neutrinoless double beta decay amplitude below the upper limit set by the GERDA experiment and also satisfying bounds from lepton flavor violation, cosmology and colliders.

  10. An experimental investigation of double beta decay of 100Mo

    International Nuclear Information System (INIS)

    Dougherty, B.L.

    1988-01-01

    New limits on half-lives for several double beta decay modes of 100 Mo were obtained with a novel experimental system which included thin source films interleaved with a coaxial array of windowless silicon detectors. Segmentation and timing information allowed backgrounds originating in the films to be studied in some detail. Dummy films containing 96 Mo were used to assess remaining backgrounds. With 0.1 mole years of 100 Mo data collected, the lower half-life limits at 90% confidence were 2.7 /times/ 10 18 years for decay via the two-neutrino mode, 5.2 /times/10 19 years for decay with the emission of a Majoron, and 1.6 /times/ 10 20 years and 2.2 /times/ 10 21 years for neutrinoless 0 + → 2 + and 0 + → 0 + transitions, respectively. 50 refs., 38 figs., 11 tabs

  11. Double Beta Decay with Ge-detectors - and the future of Double Beta and Dark Matter Search (GENIUS)

    International Nuclear Information System (INIS)

    Klapdor-Kleingrothaus, H.V.

    1999-01-01

    Nuclear double beta decay provides an extraordinarily broad potential to search for beyond Standard Model physics, probing already now the TeV scale, on which new physics should manifest itself. These possibilities are reviewed here. First, the results of present generation experiments are presented. The most sensitive one of them - the Heidelberg-Moscow experiment in the Gran Sasso, using enriched 76 Ge - probes the electron neutrino mass now in the sub eV region and will reach a limit of ∼ 0.1 eV in a few years. Basing to a large extent on the theoretical work of the Heidelberg Double Beta Group in the last two years, results are obtained also for SUSY models (R-parity breaking, sneutrino mass), leptoquarks (leptoquark-Higgs coupling), compositeness, right-handed W boson mass and others. These results are comfortably competitive to corresponding results from high-energy accelerators like TEVATRON, HERA, etc. Second, future perspectives of ββ research are discussed. A new Heidelberg experimental proposal (GENIUS) is presented which would allow to increase the sensitivity for Majorana neutrino masses from the present level of at best 0.1 eV down to 0.01 or even 0.001 eV. Its physical potential would be a breakthrough into the multi-TeV range for many beyond standard models. Its sensitivity for neutrino oscillation parameters would be larger than of all present terrestrial neutrino oscillation experiments and of those planned for the future. It would further, already in a first step, cover almost the full MSSM parameter space for prediction of neutralinos as cold dark matter, making the experiment competitive to LHC in the search for supersymmetry

  12. Simulation of double beta decay in the 'SeXe' TPC

    Energy Technology Data Exchange (ETDEWEB)

    Mauger, F [LPC Caen and University of Caen, ENSICAEN, 6 Bd Marechal Juin, 14050 CAEN CEDEX 4 (France)

    2007-04-15

    In 2004, the NEMO collaboration has started some preliminary studies for a next-generation double beta decay experiment: SuperNEMO. The possibility to use a large gaseous TPC has been investigated using simulation and extrapolation of former experiments. In this talk, I report on the reasons why such techniques have not been selected in 2004 and led the NEMO collaboration to reuse the techniques implemented within the NEMO3 detector.

  13. Simulation of double beta decay in the ''SeXe'' TPC

    Science.gov (United States)

    Mauger, F.

    2007-04-01

    In 2004, the NEMO collaboration has started some preliminary studies for a next-generation double beta decay experiment: SuperNEMO. The possibility to use a large gaseous TPC has been investigated using simulation and extrapolation of former experiments. In this talk, I report on the reasons why such techniques have not been selected in 2004 and led the NEMO collaboration to reuse the techniques implemented within the NEMO3 detector.

  14. Neutrinoless Double Beta Decay with CUORE-0: Physics Results and Detector Performance

    Science.gov (United States)

    Canonica, L.

    2016-08-01

    The CUORE-0 experiment searches for neutrinoless double beta decay in ^{130}Te. It consists of an array of 52 tellurium dioxide crystals, operated as bolometers at a temperature of 10 mK, with a total mass of about 39 kg of TeO_2. CUORE-0 has been built to test the performance of the upcoming CUORE experiment and represents the largest ^{130}Te bolometric setup currently in operation. This experiment has been running in the Gran Sasso National Laboratory, Italy, since March 2013. We report the results of a search for neutrinoless double beta decay in 9.8 kg years ^{130}Te exposure, which allowed us to set the most stringent limit to date on this half-life. The performance of the detector in terms of background rate and energy resolution are also reported.

  15. A large scale double beta and dark matter experiment: GENIUS

    International Nuclear Information System (INIS)

    Hellmig, J.; Klapdor-Kleingrothaus, H.V.

    1997-01-01

    The recent results from the HEIDELBERG-MOSCOW experiment have demonstrated the large potential of double beta decay to search for new physics beyond the Standard Model. To increase by a major step the present sensitivity for double beta decay and dark matter search much bigger source strengths and much lower backgrounds are needed than used in experiments under operation at present or under construction. We present here a study of a project proposed recently, which would operate one ton of 'naked' enriched germanium-detectors in liquid nitrogen as shielding in an underground setup (GENIUS). It improves the sensitivity to neutrino masses to 0.01 eV. A ten ton version would probe neutrino masses even down to 10 -3 eV. The first version would allow to test the atmospheric neutrino problem, the second at least part of the solar neutrino problem. Both versions would allow in addition significant contributions to testing several classes of GUT models. These are especially tests of R-parity breaking supersymmetry models, leptoquark masses and mechanism and right-handed W-boson masses comparable to LHC. The second issue of the experiment is the search for dark matter in the universe. The entire MSSM parameter space for prediction of neutralinos as dark matter particles could be covered already in a first step of the full experiment with the same purity requirements, but using only 100 kg of 76 Ge or even of natural Ge making the experiment competitive to LHC in the search for supersymmetry.The layout of the proposed experiment is discussed and the shielding and purity requirements are studied using GEANT Monte Carlo simulations. As a demonstration of the feasibility of theexperiment first results of operating a 'naked' Ge detector in liquid nitrogen are presented. (orig.)

  16. Status of evidence for neutrinoless double beta decay, and the future. Genius and genius-TF

    International Nuclear Information System (INIS)

    Klapdor-Kleingrothaus, H.V.

    2004-01-01

    The first evidence for neutrinoless double beta decay has been observed in the HEIDELBERG-MOSCOW experiment, which is the most sensitive double beta decay experiment since ten years. This is the first evidence for lepton number violation and proves that the neutrino is a Majorana particle. It further shows that neutrino masses are degenerate. In addition it puts several stringent constraints on other physics beyond the Standard Model. The result from the HEIDEL-BERG-MOSCOW experiment is consistent with recent results from CMB investigations, with high energy cosmic rays, with the result from the g-2 experiment and with recent theoretical work. It is indirectly supported by the analysis of other Ge double beta experiments. The new project GENIUS will cover a wide range of the parameter space of predictions of SUSY for neutralinos as cold dark matter. Further it has the potential to be a real-time detector for low-energy (pp and 7 Be) solar neutrinos. A GENIUS Test Facility has come into operation on May 5, 2003. This is the first time that this novel technique for extreme background reduction in search for rare decays is applied under the background conditions of an underground laboratory. (author)

  17. Nuclear transparency, B physics, and double beta decay. Annual report, February 1, 1996 - January 31, 1997

    International Nuclear Information System (INIS)

    Nicholson, H.W.

    1996-07-01

    This report describes the publication of results of a search for neutrinoless double-beta decay of molybdenum 100 and preparation of a paper on statistical analysis techniques used, developments related to purification techniques for the molybdenum, and other related work; progress in redesign, rebuilding, and installation of the Brookhaven EVA detector's superconducting magnet and cryogenic system; and the testing of detector components for SLAC's BaBar experiment. 3 refs

  18. Hamiltonian Markov Chain Monte Carlo Methods for the CUORE Neutrinoless Double Beta Decay Sensitivity

    Science.gov (United States)

    Graham, Eleanor; Cuore Collaboration

    2017-09-01

    The CUORE experiment is a large-scale bolometric detector seeking to observe the never-before-seen process of neutrinoless double beta decay. Predictions for CUORE's sensitivity to neutrinoless double beta decay allow for an understanding of the half-life ranges that the detector can probe, and also to evaluate the relative importance of different detector parameters. Currently, CUORE uses a Bayesian analysis based in BAT, which uses Metropolis-Hastings Markov Chain Monte Carlo, for its sensitivity studies. My work evaluates the viability and potential improvements of switching the Bayesian analysis to Hamiltonian Monte Carlo, realized through the program Stan and its Morpho interface. I demonstrate that the BAT study can be successfully recreated in Stan, and perform a detailed comparison between the results and computation times of the two methods.

  19. Signal and background studies for the search of neutrinoless double beta decay in GERDA

    International Nuclear Information System (INIS)

    Agostini, Matteo

    2013-01-01

    The GERDA experiment searches for the neutrinoless double beta decay in Ge-76, by operating bare HPGe detectors in ultra-pure liquid Ar. This dissertation presents a first decomposition of the background measured in the current data-taking phase. The background at the energy of interest was found to be dominated by 214 Bi, 208 Tl and 42 K gamma-rays, with secondary contributions from 42 K and 214 Bi beta-rays, and 210 Po alpha-rays. For the forthcoming upgrade of the apparatus, a new HPGe detector design (BEGe) has been studied, with focus on its capability of suppressing the identified backgrounds through pulse shape analysis. This included the development of a comprehensive modeling of the detectors and the experimental characterization of their response to surface interactions. The achieved results show that GERDA can improve the present limit on the neutrinoless double beta decay half-life by an order of magnitude.

  20. Sensitivity and Discovery Potential of CUORE to Neutrinoless Double-Beta Decay

    Energy Technology Data Exchange (ETDEWEB)

    Alessandria, F; Ardito, R; Artusa, DR; III, FTA; Azzolini, O; Balata, M; Banks, TI; Bari, G; Beeman, J; Bellini, F; Bersani, A; Biassoni, M; Bloxham, T; Brofferio, C; Bucci, C; Cai, XZ; Canonica, L; Cao, X; Capelli, S; Carbone, L; Cardani, L; Carrettoni, M; Casali, N; Chiesa, D; Chott, N; Clemenza, M; Cosmelli, C; Cremonesi, O; Creswick, RJ; Dafinei, I; Dally, A; Datskov, V; Biasi, AD; Deninno, MM; Domizio, SD; Vacri, MLD; Ejzak, L; Faccini, R; Fang, DQ; Farach, HA; Faverzani, M; Fernandes, G; Ferri, E; Ferroni, F; Fiorini, E; Franceschi, MA; Freedman, SJ; Fujikawa, BK; Giachero, A; Gironi, L; Giuliani, A; Goett, J; Gorla, P; Gotti, C; Guardincerri, E; Gutierrez, TD; Haller, EE; Han, K; Heeger, KM; Huang, HZ; Kadel, R; Kazkaz, K; Keppel, G; Kogler, L; Kolomensky, YG; Lenz, D; Li, YL; Ligi, C; Liu, X; Ma, YG; Maiano, C; Maino, M; Martinez, M; Maruyama, RH; Mei, Y; Moggi, N; Morganti, S; Napolitano, T; Newman, S; Nisi, S; Nones, C; Norman, EB; Nucciotti, A; O' Donnell, T; Orio, F; Orlandi, D; Ouellet, JL; Pallavicini, M; Palmieri, V; Pattavina, L; Pavan, M; Pedretti, M; Pessina, G; Piperno, G; Pirro, S; Previtali, E; Rampazzo, V; Rimondi, F; Rosenfeld, C; Rusconi, C; Sala, E; Sangiorgio, S; Scielzo, ND; Sisti, M; Smith, AR; Stivanello, F; Taffarello, L; Tenconi, M; Tian, WD; Tomei, C; Trentalange, S; Ventura, G; Vignati, M; Wang, BS; Wang, HW; Wise, T; Woodcraft, A; Zanotti, L; Zarra, C; Zhu, BX; Zucchelli, S

    2017-07-06

    We present a study of the sensitivity and discovery potential of CUORE, a bolometric double-beta decay experiment under construction at the Laboratori Nazionali del Gran Sasso in Italy. Two approaches to the computation of experimental sensitivity for various background scenarios are presented, and an extension of the sensitivity formulation to the discovery potential case is also discussed. Assuming a background rate of 10-2 cts/(keV kg y), we find that, after 5 years of live time, CUORE has a 1 sigma sensitivity to the neutrinoless double-beta decay half-life of T$0v\\atop{1/2}$(1θ) = 1.6 \\times 1026 y and thus a potential to probe the effective Majorana neutrino mass down to 40-100 meV; the sensitivity at 1.64 sigma, which corresponds to 90% C.L., will be T$0v\\atop{1/2}$(1.64θ) = 9.5 \\times 1025 y. This range is compared with the claim of observation of neutrinoless double-beta decay in 76Ge and the preferred range of the neutrino mass parameter space from oscillation results.

  1. Constraining neutrino mass from neutrinoless double beta decay

    Science.gov (United States)

    Dev, P. S. Bhupal; Goswami, Srubabati; Mitra, Manimala; Rodejohann, Werner

    2013-11-01

    We study the implications of the recent results on neutrinoless double beta decay (0νββ) from GERDA-I (Ge76) and KamLAND-Zen+EXO-200 (Xe136) and the upper limit on the sum of light neutrino masses from Planck. We show that the upper limits on the effective neutrino mass from Xe136 are stronger than those from Ge76 for most of the recent calculations of the nuclear matrix elements (NMEs). We also analyze the compatibility of these limits with the claimed observation in Ge76 and show that while the updated claim value is still compatible with the recent GERDA limit as well as the individual Xe136 limits for a few NME calculations, it is inconsistent with the combined Xe136 limit for all but one NME. Imposing the most stringent limit from Planck, we find that the canonical light neutrino contribution cannot saturate the current limit, irrespective of the NME uncertainties. Saturation can be reached by inclusion of the right-handed (RH) neutrino contributions in TeV-scale left-right symmetric models with type-II seesaw. This imposes a lower limit on the lightest neutrino mass. Using the 0νββ bounds, we also derive correlated constraints in the RH sector, complimentary to those from direct searches at the LHC.

  2. Localizability of tachyonic particles and neutrinoless double beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Jentschura, U.D. [Missouri University of Science and Technology, Department of Physics, Rolla, MO (United States); Institut fuer Theoretische Physik, Heidelberg (Germany); Wundt, B.J. [Missouri University of Science and Technology, Department of Physics, Rolla, MO (United States)

    2012-02-15

    The quantum field theory of superluminal (tachyonic) particles is plagued by a number of problems, which include the Lorentz non-invariance of the vacuum state, the ambiguous separation of the field operator into creation and annihilation operators under Lorentz transformations, and the necessity of a complex reinterpretation principle for quantum processes. Another unsolved question concerns the treatment of subluminal components of a tachyonic wave packet in the field-theoretical formalism, and the calculation of the time-ordered propagator. After a brief discussion on related problems, we conclude that rather painful choices have to be made in order to incorporate tachyonic spin- (1)/(2) particles into field theory. We argue that the field theory needs to be formulated such as to allow for localizable tachyonic particles, even if that means that a slight unitarity violation is introduced into the S matrix, and we write down field operators with unrestricted momenta. We find that once these choices have been made, the propagator for the neutrino field can be given in a compact form, and the left-handedness of the neutrino as well as the right-handedness of the antineutrino follow naturally. Consequences for neutrinoless double beta decay and superluminal propagation of neutrinos are briefly discussed. (orig.)

  3. Localizability of tachyonic particles and neutrinoless double beta decay

    International Nuclear Information System (INIS)

    Jentschura, U.D.; Wundt, B.J.

    2012-01-01

    The quantum field theory of superluminal (tachyonic) particles is plagued by a number of problems, which include the Lorentz non-invariance of the vacuum state, the ambiguous separation of the field operator into creation and annihilation operators under Lorentz transformations, and the necessity of a complex reinterpretation principle for quantum processes. Another unsolved question concerns the treatment of subluminal components of a tachyonic wave packet in the field-theoretical formalism, and the calculation of the time-ordered propagator. After a brief discussion on related problems, we conclude that rather painful choices have to be made in order to incorporate tachyonic spin- (1)/(2) particles into field theory. We argue that the field theory needs to be formulated such as to allow for localizable tachyonic particles, even if that means that a slight unitarity violation is introduced into the S matrix, and we write down field operators with unrestricted momenta. We find that once these choices have been made, the propagator for the neutrino field can be given in a compact form, and the left-handedness of the neutrino as well as the right-handedness of the antineutrino follow naturally. Consequences for neutrinoless double beta decay and superluminal propagation of neutrinos are briefly discussed. (orig.)

  4. Results on neutrinoless double beta decay of 76Ge from GERDA Phase I

    International Nuclear Information System (INIS)

    Palioselitis, Dimitrios

    2015-01-01

    The Germanium Detector Array (GERDA) experiment is searching for the neutrinoless double beta (0νββ) decay of 76 Ge by operating bare germanium diodes in liquid argon. GERDA is located at the Gran Sasso National Laboratory (LNGS) in Italy. During Phase I, a total exposure of 21.6 kg yrand a background index of 0.01 cts/(keVkg yr) were reached. No signal was observed and a lower limit of T 0ν 1/2 > 2.1 · 10 25 yr(90% C.L.) is derived for the half life of the 0νββ decay of 76 Ge. (paper)

  5. Results on neutrinoless double beta decay of 76Ge from GERDA Phase I

    Science.gov (United States)

    Palioselitis, Dimitrios; GERDA Collaboration

    2015-05-01

    The Germanium Detector Array (GERDA) experiment is searching for the neutrinoless double beta (0νββ) decay of 76Ge by operating bare germanium diodes in liquid argon. GERDA is located at the Gran Sasso National Laboratory (LNGS) in Italy. During Phase I, a total exposure of 21.6 kg yrand a background index of 0.01 cts/(keVkg yr) were reached. No signal was observed and a lower limit of T0ν1/2 > 2.1 · 1025 yr(90% C.L.) is derived for the half life of the 0νββ decay of 76Ge.

  6. Weak decays and double beta decay. Annual progress report, January 1, 1982-December 31, 1982

    International Nuclear Information System (INIS)

    Nicholson, H.W.

    1982-08-01

    Work has continued in collaboration with experimenters from Yale, Brookhaven and Pittsburgh (Brookhaven experiment 702) to measure asymmetries in the decays of polarized Σ + 's into protons and neutral pions and of polarized Σ - 's into neutrons and negative pions. A short experiment was carried out in the Brookhaven AGS A2 test beam to measure the efficiency of a cylindrical shower counter essential for measuring the asymmetry parameter in the rare decay of polarized Σ + 's into protons and gammas. An electronic controller to stabilize the magnetic field of the superconducting, polarized target magnet was also designed and built at Mount Holyoke, and it functioned extremely well during a six week May to June run. Also, the design of an experiment to search for double beta decay in Molybdenum 100 is briefly described. A group consisting of five experimenters from LBL and two from Mount Holyoke hope to make a formal proposal in September to the LBL administration to begin work on this experiment late this year and during the next calendar year

  7. Pions in nuclei and manifestations of supersymmetry in neutrinoless double beta decay

    International Nuclear Information System (INIS)

    Faessler, A.; Kovalenko, S.; Simkovic, F.

    1998-01-01

    We examine the pion realization of the short ranged supersymmetric (SUSY) mechanism of neutrinoless double beta decay (0νββ-decay). It originates from the R-parity violating quark-lepton interactions of the SUSY extensions of the standard model of the electroweak interactions. We argue that pions are dominant SUSY mediators in 0νββ-decay. The corresponding nuclear matrix elements for potentially 0νββ-decaying isotopes are calculated within the proton-neutron renormalized quasiparticle random phase approximation (pn-RQRPA). We define those isotopes which are most sensitive to the SUSY signal and outlook the present experimental situation with the 0νββ-decay searches for the SUSY. Upper limits on the R-parity violating 1st generation Yukawa coupling λ' 111 are derived from various 0νββ - experiments

  8. Nuclear transparency and double beta decay of molybdenum 100. Annual report, February 1, 1995 - January 31, 1996

    International Nuclear Information System (INIS)

    Nicholson, H.W.

    1995-07-01

    This report describes progress in data analysis for a search for neutrinoless double-beta decay of molybdenum 100 and related work, Brookhaven National Laboratory's Experiment 850 on color transparency, and work on Brookhaven's EVA detector and the Stanford Linear Accelerator Center's B factory experiment. 6 refs

  9. Neutrinoless double beta decay search for 130Te: cuoricino status and cuore prospects

    International Nuclear Information System (INIS)

    Sangiorgio, S.; Artusa, D.R.; And others

    2006-01-01

    CUORE is a ∼ I-ton experiment to search for Neutrinoless Double Beta Decay of 130 Te using 988 TeO 2 bolometers. It aims at reaching a sensitivity of the order of few tens of MeV on the effective neutrino mass. CUORICINO, a single CUORE tower running since 2003 in the Gran Sasso Underground Laboratory (LNGS), plays an important role as a standing alone experiment and for developing the future CUORE setup. Present results already achieved and studies that are underway are presented and discussed

  10. Search for evidence of lepton number violation by neutrinoless double beta decay process from 82Se and 150Nd in NEMO-3 experiment: Bi-Po decay study from thoron chain

    International Nuclear Information System (INIS)

    Lemiere, Y.

    2008-09-01

    The NEMO-3 experiment searches for a neutrinoless double beta decay signal (ββ0ν) with an expected sensitivity in terms of the half-life limit of the order of 10 24 years. The discovery of this signal, forbidden in the Standard Model, would imply the violation of leptonic number conservation and would allow to determine the nature of this particle (Dirac or Majorana) and measure the neutrino mass scale. The goal of this work is to study high energy events from 82 Se and 150 Nd ββ decay used in NEMO-3 detector. The first part of this work consists in the elaboration of a background model using NEMO-3 data. In the second part, the ββ2ν half-life and a lower limit of the ββ0ν half-life are computed using massive Majorana neutrino exchange hypothesis, we have got: T(0ν) > 1.44*10 22 years for 150 Nd and T(0ν) > 1.82*10 23 years for 82 Se. The upper limits for the effective mass of the Majorana neutrinos are also computed, we obtain: m ββ 150 Nd and m ββ 82 Se. In the last part, the measurement of some specific thallium contamination is performed thanks to the NEMO-3 capability to detect the 212 Bi-Po decay. The measured value of the surface contamination of the calorimeter is about (150 ± 30) μBq/m 3 . So the surface contamination is too low to intervene in the data analysis of NEMO-3 but appears important for next generation scintillators

  11. Limit on Neutrinoless Double Beta Decay of 76Ge by GERDA

    Science.gov (United States)

    Agostini, M.; Allardt, M.; Andreotti, E.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Heider, M. Barabè; Barros, N.; Baudis, L.; Bauer, C.; Becerici-Schmidt, N.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Brudanin, V.; Brugnera, R.; Budjáš, D.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; Cossavella, F.; Demidova, E. V.; Domula, A.; Egorov, V.; Falkenstein, R.; Ferella, A.; Freund, K.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Gotti, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Guthikonda, K. K.; Hampel, W.; Hegai, A.; Heisel, M.; Hemmer, S.; Heusser, G.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Csáthy, J. Janicskó; Jochum, J.; Junker, M.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Klimenko, A.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Machado, A. A.; Macolino, C.; Majorovits, B.; Maneschg, W.; Misiaszek, M.; Nemchenok, I.; Nisi, S.; Shaughnessy, C. O.'.; Pandola, L.; Pelczar, K.; Pessina, G.; Pullia, A.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salathe, M.; Schmitt, C.; Schreiner, J.; Schulz, O.; Schwingenheuer, B.; Schönert, S.; Shevchik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Strecker, H.; Tarka, M.; Ur, C. A.; Vasenko, A. A.; Volynets, O.; von Sturm, K.; Wagner, V.; Walter, M.; Wegmann, A.; Wester, T.; Wojcik, M.; Yanovich, E.; Zavarise, P.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.

    The Gerda experiment at the Laboratori Nazionali del Gran Sasso in Italy uses germanium detectors made from material with an enriched 76Ge isotope fraction to search for neutrinoless double beta decay of this nucleus. Applying a blind analysis we find no signal after an exposure of 21.6 kg·yr and a background of about 0.01 cts/(keV·kg·yr). A half-life limit of Tov1/2> 2.1 · 1025 yr (90% C.L.) is extracted. The previous claim of a signal for 76Ge is excluded with 99% probability in a model independent way.

  12. Double beta decay searches of 134Xe, 126Xe and 124Xe with large scale Xe detectors

    International Nuclear Information System (INIS)

    Barros, N; Thurn, J; Zuber, K

    2014-01-01

    The sensitivity for double beta decay studies of 134 Xe and 124 Xe is investigated assuming a potential large scale Xe experiment developed for dark matter searches depleted in 136 Xe. The opportunity for an observation of the 2νββ - decay of 134 Xe is explored for various scenarios. A positive observation should be possible for all calculated nuclear matrix elements. The detection of 2ν ECEC of 124 Xe can be probed in all scenarios covering the theoretical predicted half-life uncertainties and a potential search for 126 Xe is discussed. The sensitivity to β + EC decay of 124 Xe is discussed and a positive observation might be possible, while β + β + decay still remains unobservable. The performed studies take into account solar pp–neutrino interactions, 85 Kr beta decay and remaining 136 Xe double beta decay as background components in the depleted detector. (paper)

  13. Future perspectives of double beta decay and dark matter search - GENIUS

    International Nuclear Information System (INIS)

    Klapdor-Kleingrothaus, H.V.; Hellmig, J.; Hirsch, M.

    1998-01-01

    The recent results from the HEIDELBERG-MOSCOW experiment have demonstrated the large potential of double beta decay to search for new physics beyond the standard model. To increase by a major step the present sensitivity for double beta decay and dark matter search, much bigger source strengths and much lower backgrounds are needed than used in experiments under operation at present or under construction. We describe here a project which would operate one tonne of 'naked' enriched germanium-detectors in liquid nitrogen as shielding in an underground set-up (GENIUS). It improves the sensitivity of neutrino masses to 0.01 eV. A 10 tonne version would probe neutrino masses even down to 10 -3 eV. The first version would allow us to test the atmospheric neutrino problem, the second at least part of the solar neutrino problem. Both versions would allow, in addition, significant contributions to testing several classes of GUT models. These are especially tests of R-parity breaking and conserving supersymmetry models - including sneutrino masses - leptoquark masses and mechanism and right-handed W-boson masses comparable with LHC. The second issue of the experiment is the search for dark matter in the universe. The full MSSM parameter space for the prediction of neutralinos as dark matter particles could be covered already in a first step of the full experiment using only 100 kg of 76 Ge or even of natural Ge making the experiment competitive with LHC in the search for supersymmetry. (author)

  14. The next enriched xenon observatory. A search for neutrinoless double beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Bayerlein, Reimund; Hufschmidt, Patrick; Jamil, Ako; Schneider, Judith; Wagenpfeil, Michael; Wrede, Gerrit; Ziegler, Tobias; Hoessl, Juergen; Anton, Gisela; Michel, Thilo [ECAP, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (Germany)

    2016-07-01

    The question whether the neutrino could be its own antiparticle is still not answered. The most practical way to test this is the search for the neutrinoless double beta decay. The half-life of this decay is related to the value of a linear combination of the masses of the neutrino mass eigenstates and therefore provides information about the absolute mass scale of neutrinos. The nEXO experiment - the successor of EXO200 - is currently under research and development. The baseline concept comprises a single-phase liquid xenon (LXe) time projection chamber (TPC) filled with about 5 tons of liquid xenon enriched to about 80% Xe-136 as the double beta decay nuclide. In order to fully cover the range of the effective Majorana neutrino mass in the inverted hierarchy scheme, excellent energy resolution is required. Therefore, a position-resolving, low-noise charge readout and very efficient light collection and detection are mandatory. For the purpose of very low background levels radiopure Silicon Photomultipliers (SiPMs) have to be used to detect the scintillation light of LXe. Due to the large half-life a huge detector mass and long term measurement are needed. In this talk the baseline-concept of the experimental setup is presented.

  15. Double Beta Decay in Xenon-136. Measuring the Neutrino-Emitting Mode and Searching for Majoron-Emitting Modes

    Energy Technology Data Exchange (ETDEWEB)

    Herrin, Steven [Stanford Univ., CA (United States)

    2013-06-01

    Observations of neutrino flavor oscillations have demonstrated that neutrinos have mass. Since the discovery of these oscillations, much progress has been made at mea- suring the neutrino mass-squared differences and lepton mixing angles that character- ize them. However, the origin and absolute scale of neutrino masses remain unknown. Unique among fermions, neutrinos can be Majorana particles, which could provide an explanation for neutrino masses. Discovery of a hypothetical process known as neutrinoless double beta decay would show that neutrinos are Majorana particles and determine the mass scale for neutrinos. The Enriched Xenon Observatory (EXO) is a series of experiments searching for the neutrinoless double beta decay of 136Xe. The first experiment, EXO-200, began operation in 2011 and makes use of 200 kg of xenon enriched to 80.6% in 136Xe. The analysis presented here makes use of data from EXO-200 to obtain a more precise measurement of the half-life for the two-neutrino-emitting mode of double beta decay than previously reported. The analysis also sets limits on the half-lives for exotic, Majoron-emitting modes of neutrinoless double beta decay. Data from EXO-200 is also used to produce a measurement of the cosmic muon flux at the WIPP under- ground site where EXO-200 is located.

  16. Search for neutrinoless double beta decay of Ge-76 with the GERmanium Detector Array '' GERDA ''

    International Nuclear Information System (INIS)

    Brugnera, R.

    2009-01-01

    The study of neutrinoless double beta decay (DBD) is the most powerful approach to the fundamental question if the neutrino is a Majorana particle, i.e. its own anti-particle. The observation of neutrinoless DBD would not only establish the Majorana nature of the neutrino but also represent a determination of its effective mass if the nuclear matrix element is given. So far, the most sensitive results have been obtained with Ge-76, and the group of Klapdor-Kleingrothaus has made a claim of discovery. Future experiments have to reduce radioactive backgrounds to increase the sensitivity. '' GERDA '' is a new double beta-decay experiment which is currently under construction in the INFN Gran Sasso National Laboratory, Italy. It is implementing a new shielding concept by operating bare Ge diodes - enriched in Ge-76 - in high purity liquid argon supplemented by a water shield. The aim of '' GERDA '' is to verify or refute the recent claim of discovery, and, in a second phase, to achieve a two orders of magnitude lower background index than recent experiments, increasing the sensitive mass and reaching exposure of 100 kg yr. It be will discuss design, physics reach, and status of construction of '' GERDA '', and present results from various R efforts including long term stability of bare Ge diodes in cryogenic liquids, material screening, cryostat performance, detector segmentation, cryogenic precision electronics, safety aspects, and Monte Carlo simulations. (author)

  17. GERDA and the search for neutrinoless double beta decay: first results and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, Matteo [Physik Department and Excellence Cluster Universe, Technische Universitaet Muenchen (Germany); Collaboration: GERDA-Collaboration

    2014-07-01

    Neutrinoless double beta decay is a lepton-number-violating nuclear transition predicted by several extensions of the Standard Model. The Gerda experiment searches for this transition in {sup 76}Ge by operating bare Ge detectors in liquid Ar. The talk focuses on the results of data acquired during Phase I of the experiment, in which 21.6 kg.yr of exposure were accumulated with a background index of about 0.01 cts/(keV.kg.yr). No signal was observed and a lower limit was derived for the half-life of neutrinoless double beta decay of {sup 76}Ge, T{sub 1/2} > 2.1 . 10{sup 25} yr (90% C.L.). The experiment is currently undergoing a major upgrade in preparation for the next phase of data taking. Thanks to an increased target mass, an improved energy resolution and the introduction of novel background reduction techniques, the sensitivity of Gerda will increase of about one order of magnitude in a few years of operation.

  18. Facilities for studying the double beta decay processes

    International Nuclear Information System (INIS)

    Zdesenko, Yu.G.

    1980-01-01

    Modern state, tendencies and perspectiVes of the development of experimental installations to study double β-decay are treated. The main peculiarities of direct recognition and full experiments on the study of double β-decay are considered. A simple ratio is obtained from statistical considerations which connects the life time limits of the nuclei with the facility parameters to conduct direct recognition experiments. Possibilities of different detectors are evaluated on the basis of the ratio. Requirements for the modern technique for complete investigation of double β-decay are formulated and two designs of facilities meeting the requirements are considered. It is shown that the facility with proportional chambers is more perspective. On the basis of the analysis of the facility development to study double β-decay, conclusion is made that the final and unambiguous proof of the existence of double β-decay process can be obtained only directly in the experiments with immediate recording of the decay acts. Possibilities of the existing and developed facilities to conduct recognition (direct) experiments are such, that with their help life time limits as to neutronless double β-decay at the level of 10 21 -10 22 years can be established. Counters on the basis of the condensed noble gases, semiconductor detectors made of TeCd, scintillators of big volume are the most perspective detectors. To conduct complete experiments it is necessary to develop a facility with sensitivity sufficient for the detection of two-neutrino double β-activeness when Tsub(1/2)=10sup(21) years [ru

  19. Double beta decays and related subjects for particle and nuclear physics

    International Nuclear Information System (INIS)

    Ejiri, Hiroyasu

    1991-01-01

    Present status and some perspectives in 1990's are briefly given on double beta decays and related subjects. Subjects discussed are as follows I) Double beta decays without neutrinos, which require lepton number non-conservations and finite neutrino mass. II) Double beta decays followed by two neutrinos. III) Double weak processes with strangeness change ΔS = 2, leading to the H particle with 6 quarks of ss uu dd. IV) Charge non-conservation and electron decays. These are very rare nuclear processes studied by Ultra RAre-process NUclear Spectroscopy (URANUS). It is shown that URANUS is an important detector frontier of non-accelerator nuclear physics in 1990's. (orig.)

  20. Signal and background studies for the search of neutrinoless double beta decay in GERDA

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, Matteo

    2013-04-24

    The GERDA experiment searches for the neutrinoless double beta decay in Ge-76, by operating bare HPGe detectors in ultra-pure liquid Ar. This dissertation presents a first decomposition of the background measured in the current data-taking phase. The background at the energy of interest was found to be dominated by {sup 214}Bi, {sup 208}Tl and {sup 42}K gamma-rays, with secondary contributions from {sup 42}K and {sup 214}Bi beta-rays, and {sup 210}Po alpha-rays. For the forthcoming upgrade of the apparatus, a new HPGe detector design (BEGe) has been studied, with focus on its capability of suppressing the identified backgrounds through pulse shape analysis. This included the development of a comprehensive modeling of the detectors and the experimental characterization of their response to surface interactions. The achieved results show that GERDA can improve the present limit on the neutrinoless double beta decay half-life by an order of magnitude.

  1. Observation of Two-Neutrino Double-Beta Decay in Xe-136 with EXO-200

    Energy Technology Data Exchange (ETDEWEB)

    Ackerman, N.; /SLAC; Aharmim, B.; /Laurentian U.; Auger, M.; /Bern U.; Auty, D.J.; /Alabama U.; Barbeau, P.S.; Barry, K.; Bartoszek, L.; /Stanford U., Phys. Dept.; Beauchamp, E.; /Laurentian U.; Belov, V.; /Moscow, ITEP; Benitez-Medina, C.; /Colorado State U.; Breidenbach, M.; /SLAC; Burenkov, A.; /Moscow, ITEP; Cleveland, B.; /Laurentian U.; Conley, R.; Conti, E.; /SLAC; Cook, J.; /Massachusetts U., Amherst; Cook, S.; /Colorado State U.; Coppens, A.; /Carleton U.; Counts, I.; /Stanford U., Phys. Dept.; Craddock, W.; /SLAC; Daniels, T.; /Massachusetts U., Amherst /Moscow, ITEP /Maryland U. /Stanford U., Phys. Dept. /Alabama U. /Maryland U. /Moscow, ITEP /Stanford U., Phys. Dept. /Laurentian U. /Carleton U. /Colorado State U. /Laurentian U. /Munich, Tech. U. /Bern U. /SLAC /Bern U. /Carleton U. /Stanford U., Phys. Dept. /Carleton U. /Maryland U. /Colorado State U. /SLAC /Carleton U. /SLAC /Alabama U. /SLAC /Moscow, ITEP /Indiana U. /Stanford U., Phys. Dept. /Moscow, ITEP /Stanford U., Phys. Dept. /Massachusetts U., Amherst /Seoul U. /Carleton U. /Stanford U., Phys. Dept.; /more authors..

    2012-09-14

    We report the observation of two-neutrino double-beta decay in {sup 136}Xe with T{sub 1/2} = 2.11 {+-} 0.04(stat) {+-} 0.21(syst) x 10{sup 21} yr. This second-order process, predicted by the standard model, has been observed for several nuclei but not for {sup 136}Xe. The observed decay rate provides new input to matrix element calculations and to the search for the more interesting neutrinoless double-beta decay, the most sensitive probe for the existence of Majorana particles and the measurement of the neutrino mass scale.

  2. Neutrino mass from laboratory: contribution of double beta decay to the neutrino mass matrix

    International Nuclear Information System (INIS)

    Klapdor-Kleingrothaus, H.V.

    2001-01-01

    Double beta decay is indispensable to solve the question of the neutrino mass matrix together with ν oscillation experiments. The most sensitive experiment - since eight years the HEIDELBERG-MOSCOW experiment in Gran-Sasso - already now, with the experimental limit of ν > < 0.26 eV practically excludes degenerate ν mass scenarios allowing neutrinos as hot dark matter in the universe for the smallangle MSW solution of the solar neutrino problem. It probes cosmological models including hot dark matter already now on the level of future satellite experiments MAP and PLANCK. It further probes many topics of beyond SM physics at the TeV scale. Future experiments should give access to the multi-TeV range and complement on many ways the search for new physics at future colliders like LHC and NLC. For neutrino physics some of them (GENIUS) will allow to test almost all neutrino mass scenarios allowed by the present neutrino oscillation experiments

  3. Double beta decay: introduction, motivations and last results

    International Nuclear Information System (INIS)

    Hubert, P.

    1986-01-01

    The double β decay process is the direct desexcitation from a nucleus (Z,A) to a nucleus (Z+2, A). Since long time ago, study of this process has been recognized as a very sensitive test of the lepton number non-conservation and therefore the double β decay process is strongly connected to the neutrino properties. This review starts with the main definitions and main motivations for such studies. Then the different experiments actually running and the most recent experimental results are exposed [fr

  4. Double beta decay - physics beyond the standard model now, and in future (Genius)

    Energy Technology Data Exchange (ETDEWEB)

    Klapdor-Kleingrothaus, H.V.

    1998-08-01

    Nuclear double beta decay provides an extraordinarily broad potential to search for beyond standard model physics, probing already now the TeV scale, on which new physics should manifest itself. These possibilities are reviewed here. First, the results of present generation experiments are presented. The most sensitive one of them - the Heidelberg-Moscow experiment in the Gran Sasso - probes the electron mass now in the sub eV region and will reach a limit of {proportional_to}0.1 eV in a few years. Basing to a large extent on the theoretical work of the Heidelberg double beta group in the last two years, results are obtained also for SUSY models (R-parity breaking, sneutrino mass), leptoquarks (leptoquark-Higgs coupling), compositeness, right-handed W boson mass and others. These results are comfortably competitive to corresponding results from high-energy accelerators like TEVATRON, HERA, etc. Second, future perspectives of {beta}{beta} research are discussed. A new Heidelberg experimental proposal (GENIUS) is presented which would allow to increase the sensitivity for Majorana neutrino masses from the present level of at best 0.1 eV down to 0.01 or even 0.001 eV. Its physical potential would be a breakthrough into the multi-TeV range for many beyond standard models. Its sensitivity for neutrino oscillation parameters would be larger than of all present terrestrial neutrino oscillation experiments and of those planned for the future. (orig.)

  5. Double beta decay - physics beyond the standard model now, and in future (Genius)

    International Nuclear Information System (INIS)

    Klapdor-Kleingrothaus, H.V.

    1998-01-01

    Nuclear double beta decay provides an extraordinarily broad potential to search for beyond standard model physics, probing already now the TeV scale, on which new physics should manifest itself. These possibilities are reviewed here. First, the results of present generation experiments are presented. The most sensitive one of them - the Heidelberg-Moscow experiment in the Gran Sasso - probes the electron mass now in the sub eV region and will reach a limit of ∝0.1 eV in a few years. Basing to a large extent on the theoretical work of the Heidelberg double beta group in the last two years, results are obtained also for SUSY models (R-parity breaking, sneutrino mass), leptoquarks (leptoquark-Higgs coupling), compositeness, right-handed W boson mass and others. These results are comfortably competitive to corresponding results from high-energy accelerators like TEVATRON, HERA, etc. Second, future perspectives of ββ research are discussed. A new Heidelberg experimental proposal (GENIUS) is presented which would allow to increase the sensitivity for Majorana neutrino masses from the present level of at best 0.1 eV down to 0.01 or even 0.001 eV. Its physical potential would be a breakthrough into the multi-TeV range for many beyond standard models. Its sensitivity for neutrino oscillation parameters would be larger than of all present terrestrial neutrino oscillation experiments and of those planned for the future. (orig.)

  6. Internal Energy Loss of the Electrons Ejected in Neutrinoless Double Beta Decay

    International Nuclear Information System (INIS)

    Drukarev, E. G.; Amusia, M. Ya.; Chernysheva, L. V.

    2017-01-01

    The excitations of the electron shell in neutrinoless double beta decay shifts the limiting energy available for ejected electrons. We present the general equations for this shift and make computations for the decays of two nuclei—germanium and xenon. (author)

  7. Double beta decay and majorana neutrinos. Right-handed currents or nonzero masses

    International Nuclear Information System (INIS)

    Rosen, S.P.; Perlmutter, A.

    1981-01-01

    This chapter describes some new developments concerning the mechanism for lepton number nonconservation in no-neutrino double beta decay. Explains that lepton number nonconservation in no-neutrino double beta decay comes about either because both left- and right-handed components of a Majorano neutrino are coupled to the electron in the weak leptonic current, or because the neutrino has nonzero mass. Shows that while nuclear ground-state to ground-state transitions arise from right-handed currents and from neutrino mass terms, transitions to low-lying excited states with J /SUP P/ =2 + can arise only from right-handed currents. Emphasizes that the possibilities of detecting small admixtures of right-handed currents, and of setting limits on neutrino masses that are either very small or very large, make double beta decay a most rewarding phenomenon to study

  8. Q values of the 76Ge and 100Mo double-beta decays

    International Nuclear Information System (INIS)

    Rahaman, S.; Elomaa, V.-V.; Eronen, T.; Hakala, J.; Jokinen, A.; Julin, J.; Kankainen, A.; Saastamoinen, A.; Suhonen, J.; Weber, C.; Aystoe, J.

    2008-01-01

    Penning trap measurements using mixed beams of 76 Ge- 76 Se and 100 Mo- 100 Ru have been utilized to determine the double-beta decay Q-values of 76 Ge and 100 Mo with uncertainties less than 200 eV. The value for 76 Ge, 2039.04(16) keV is in agreement with the published SMILETRAP value, 2039.006(50) keV. The new value for 100 Mo, 3034.40(17) keV is 30 times more precise than the previous literature value, sufficient for the ongoing neutrinoless double-beta decay searches in 100 Mo. Moreover, the precise Q-value is used to calculate the phase-space integrals and the experimental nuclear matrix element of double-beta decay

  9. Search for 136Xe neutrinoless double beta decay with the Enriched Xenon Observatory (EXO)

    International Nuclear Information System (INIS)

    Giroux, G.

    2014-01-01

    The EXO collaboration is searching for the neutrinoless double beta decay of 136 Xe. Such observation would determine an absolute mass scale for the neutrinos, establish their Majorana nature, and uncover physics beyond the Standard Model. The EXO-200 detector is a single phase liquid xenon ultra low background TPC (Time Projection Chamber), with an active mass of 110 kg of 80.6% enriched xenon in the isotope 136. The detector is currently operating at the WIPP site and has been collecting data with enriched xenon since May 2011. The data collected give a lower limit for the neutrinoless double beta decay half-life of 136 Xe: T > 1.6*10 25 years at 90% C.L. The same data give a lower limit for the 2 neutrinos double beta decay of 136 Xe: T > 2.23*10 21 years that agrees with experimental values found in the literature

  10. New approach to the search for neutrinoless double beta decay

    International Nuclear Information System (INIS)

    Raghavan, R.S.

    1994-01-01

    Sub-eV Majorana neutrino masses left-angle m ν right-angle, can be explored by a new approach to neutrinoless double β decay using 136 Xe in a Xe gas-loaded, multiton liquid scintillator installed in a very low background detector such as the Kamiokande facility. With enriched 136 Xe, a readily implementable, 10 ton detector experiment can establish an left-angle m ν right-angle=0.45 eV at 3σ in 1 yr (or exclude an left-angle m ν right-angle ν right-angle ν right-angle <1.3 eV

  11. Results of a search for neutrinoless double-beta decay using the COBRA demonstrator

    Energy Technology Data Exchange (ETDEWEB)

    Quante, Thomas; Goessling, Claus; Kroeninger, Kevin [TU Dortmund, Exp. Physik IV, Dortmund (Germany)

    2016-07-01

    COBRA is an experiment aiming to search for neutrinoless double-beta-decay (0νββ-decay) using CdZnTe semiconductor detectors. The main focus is on {sup 116}Cd, with a Q-value of 2813.5 keV well above the highest dominant naturally occurring gamma lines. By measuring the half-life of the 0νββ-decay, it is possible to clarify the nature of the neutrino as either Dirac or Majorana particle and furthermore to determine its effective Majorana mass. The COBRA collaboration operates a demonstrator to search for these decays at the Laboratori Nazionali del Gran Sasso in Italy. The exposure of 234.7 kg d considered in this analysis was collected between September 2011 and February 2015. The analysis focuses on the decay of the nuclides {sup 114}Cd, {sup 128}Te, {sup 70}Zn, {sup 130}Te and {sup 116}Cd. A Bayesian analysis is performed to estimate the signal strength of 0νββ-decay.

  12. LUCIFER, a potentially background-free approach to the search for neutrinoless double beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Nones, C. [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, Bat. 108 Orsay Campus - Orsay (France)

    2011-08-15

    LUCIFER (Low-background Underground Cryogenic Installation For Elusive Rates) is a new project for the study of neutrinoless Double Beta Decay, based on the technology of scintillating bolometers. These devices promise a very efficient rejection of the alpha background, opening the way to a virtual background-free experiment if candidates with a transition energy higher than 2615 keV are investigated. The baseline candidate for LUCIFER is {sup 82}Se. This isotope will be embedded in ZnSe crystals grown with enriched selenium and operated as scintillating bolometers in a low-radioactivity underground dilution refrigerator. In this paper, the LUCIFER concept will be introduced. The sensitivity and the very promising prospects related to this project will be discussed.

  13. Observed double beta decay spectra from 82Se, 100Mo, and 150Nd

    International Nuclear Information System (INIS)

    Elliott, S.R.; Moe, M.K.; Nelson, M.A.; Vient, M.A.

    1993-01-01

    Two-electron events resembling double beta decay are being observed at energies beyond the die-off of the spectrum predicted for the two-neutrino mode. The anomaly appears in three isotopes having different half lives and Q-values. Tests are now underway to determine its origin. (orig.)

  14. Double Beta Decay and Neutrino Masses Accuracy of the Nuclear Matrix Elements

    International Nuclear Information System (INIS)

    Faessler, Amand

    2005-01-01

    The neutrinoless double beta decay is forbidden in the standard model of the electroweak and strong interaction but allowed in most Grand Unified Theories (GUT's). Only if the neutrino is a Majorana particle (identical with its antiparticle) and if it has a mass, the neutrinoless double beta decay is allowed. Apart of one claim that the neutrinoless double beta decay in 76 Ge is measured, one has only upper limits for this transition probability. But even the upper limits allow to give upper limits for the electron Majorana neutrino mass and upper limits for parameters of GUT's and the minimal R-parity violating supersymmetric model. One further can give lower limits for the vector boson mediating mainly the right-handed weak interaction and the heavy mainly right-handed Majorana neutrino in left-right symmetric GUT's. For that one has to assume that the specific mechanism is the leading one for the neutrinoless double beta decay and one has to be able to calculate reliably the corresponding nuclear matrix elements. In the present contribution, one discusses the accuracy of the present status of calculating the nuclear matrix elements and the corresponding limits of GUT's and supersymmetric parameters

  15. Testing Left-Right extensions of the standard model of electroweak interactions with double-beta decay and LHC measurements

    Science.gov (United States)

    Civitarese, O.; Suhonen, J.; Zuber, K.

    2015-07-01

    The minimal extension of the standard model of electroweak interactions allows for massive neutrinos, a massive right-handed boson WR, and a left-right mixing angle ζ. While an estimate of the light (electron) neutrino can be extracted from the non-observation of the neutrinoless double beta decay, the limits on the mixing angle and the mass of the righthanded (RH) boson may be extracted from a combined analysis of the double beta decay measurements (GERDA, EXO-200 and KamLAND-Zen collaborations) and ATLAS data on the two-jets two-leptons signals following the excitation of a virtual RH boson mediated by a heavy-mass neutrino. In this work we shall compare results of both types of experiments, and show that the estimates are not in tension.

  16. Double Beta Decay - Physics Beyond the Standard Model Now, and in Future (GENIUS)

    Science.gov (United States)

    Klapdor-Kleingrothaus, H. V.

    Nuclear double beta decay provides an extraordinarily broad potential to search for beyond Standard Model physics, probing already now the TeV scale, on which new physics should manifest itself. These possibilities are reviewed here. First, the results of present generation experiments are presented. The most sensitive one of them - the Heidelberg-Moscow experiment in the Gran Sasso - probes the electron mass now in the sub eV region and will reach a limit of ˜ 0.1 eV in a few years. Basing to a large extent on the theoretical work of the Heidelberg Double Beta Group in the last two years, results are obtained also for SUSY models (R-parity breaking, sneutrino mass), leptoquarks (leptoquark-Higgs coupling), com-positeness, right-handed W boson mass and others. These results are comfortably competitive to corresponding results from high-energy accelerators like TEVA-TRON, HERA, etc. Second, future perspectives of ʲʲ research are discussed. A new Heidelberg experimental proposal (GENIUS) is presented which would allow to increase the sensitivity for Majorana neutrino masses from the present level of at best 0.1 eV down to 0.01 or even 0.001 eV. Its physical potential would be a breakthrough into the multi-TeV range for many beyond standard models. Its sensitivity for neutrino oscillation parameters would be larger than of all present terrestrial neutrino oscillation experiments and of those planned for the future. It would further, already in a first step, cover almost the full MSSM parameter space for prediction of neutralinos as cold dark matter, making the experiment competitive to LHC in the search for supersymmetry.

  17. Neutrino-Less Double Beta Decay - Experimentum Crucis of Neutrino Physics

    International Nuclear Information System (INIS)

    Sujkowski, Z.

    2003-01-01

    The presently most wanted information on neutrino properties concerns their mass values and their transformation properties under charge conjugation. The recent oscillation experiments prove that at least one of the three neutrino species has a non-vanishing rest mass and that the lepton flavour is not conserved. These findings have to be supplemented by data from phenomena of different kind in order to deduce the information needed. The most promising method proposed thus far to determine Majorana neutrino mass and thus to answer the two leading questions is to observe the neutrino-less double beta decay and to measure its rate. The physics of this process is discussed and the on-going and planned experimental search is reviewed. This search concentrates on the 0 + →0 + ground-to-ground state decay of β - β - emitters using calorimetric or β - -β - coincidence tracking techniques. The β + β + or β + EC decays are usually considered as less favourable because of longer half-lives, even though they offer some advantages in combating the background. The recent proposition of measuring the monoenergetic photon spectra accompanying the radiative neutrino-less double electron capture decay is discussed. The experimental advantages of this technique may off-set the generally longer life-times expected. (author)

  18. Double-beta decay: Physics beyond the standard model now and in the future (GENIUS)

    International Nuclear Information System (INIS)

    Klapdor-Kleingrothaus, H.V.

    1998-01-01

    Nuclear double beta decay has an extraordinarily broad potential in searches for physics beyond the Standard Model, probing already now the TeV scale, at which new physics is expected to manifest itself. These possibilities are reviewed here. First, the result of present-generation experiments are discussed. The most sensitive one of these, the Heidelberg-Moscow experiment at the Gran Sasso underground laboratory, probes the electron mass now in the sub-eV region and will reach a limit of some 0.1 eV in a few years. On the basis of a large amount of theoretical work done by the Heidelberg Double Beta Group in the last two years, results are obtained also for SUSY models (R-parity breaking and neutrino mass), for leptoquarks (leptoquark-Higgs boson coupling), for compositeness, for right-handed W-boson mass, and for some other problems. These results are comfortably competitive with corresponding results from high-energy accelerators like Tevatron, HERA, etc. Future prospects for ββ research are discussed. A new Heidelberg experimental proposal (GENIUS) is presented, which would make it possible to increase the sensitivity for the Majorana neutrino masses from the present level of at best 0.1 eV down to 0.01 or even 0.001 eV. Its physical potential would be a breakthrough into the multi-TeV range for many models beyond standard. Its sensitivity for neutrino-oscillation parameters would be higher than that of all present terrestrial neutrino-oscillation experiments and that of those planned for the future. It would further, even at a first step, cover almost the full MSSM parameter space for prediction of neutralinos as cold dark matter, making the experimental competitive with LHC in searches for supersymmetry

  19. Preliminary results from a study of the double beta decay of 150Nd

    International Nuclear Information System (INIS)

    Perillo, I.M.C.; Chan, Y.D.; Hurley, D.; Lesko, K.T.; McDonald, R.J.; Moorhead, M.E.; Norman, E.B.; Smith, A.R.; Stokstad, R.G.

    1996-01-01

    We report the preliminary results from a study of the double beta decay of 150 Nd to the first 0 + excited state of 150 Sm. Our data consists of 50 days of counting 5 kg of natural Nd 2 O 3 at the LBNL-Oroville low background facility. The deduced lower limit for the half life of this decay mode is 4.9.10 19 years. (orig.)

  20. Neutrino mass bounds from neutrinoless double beta-decays and ...

    Indian Academy of Sciences (India)

    2016-01-21

    Jan 21, 2016 ... CMD model. In addition, we explore the interacting neutrino dark-energy model, where the ... This decay has a small energy release (E0 ≃ 18.6 keV) and a convenient lifetime (T1/2 = 12.3 yr). As the ...... Research Programme funded by the Korean Ministry of Science, ICT and Future Planning. (Grant No.

  1. Searching for Neutrinoless Double-Beta Decay of 130Te with CUORE

    Directory of Open Access Journals (Sweden)

    D. R. Artusa

    2015-01-01

    Full Text Available Neutrinoless double-beta (0νββ decay is a hypothesized lepton-number-violating process that offers the only known means of asserting the possible Majorana nature of neutrino mass. The Cryogenic Underground Observatory for Rare Events (CUORE is an upcoming experiment designed to search for 0νββ decay of 130Te using an array of 988 TeO2 crystal bolometers operated at 10 mK. The detector will contain 206 kg of 130Te and have an average energy resolution of 5 keV; the projected 0νββ decay half-life sensitivity after five years of livetime is 1.6 × 1026 y at 1σ (9.5 × 1025 y at the 90% confidence level, which corresponds to an upper limit on the effective Majorana mass in the range 40–100 meV (50–130 meV. In this paper, we review the experimental techniques used in CUORE as well as its current status and anticipated physics reach.

  2. Neutrinoless double beta decay and the solar neutrino problem

    International Nuclear Information System (INIS)

    Petcov, S.T.; Smirnov, A.Yu.

    1993-10-01

    The MSW or vacuum oscillation solution of the solar neutrino problem can be reconciled with possible existence of the (ββ) oν decay with a half-line corresponding to an effective Majorana mass of the electron neutrino modul m ee approx. (0.1 - 1.0) eV. The phenomenological consequences of such a possibility are analyzed and the implications for the mechanisms of neutrino mass generation are considered. (author). 31 refs, 2 figs

  3. Long-range contributions to double beta decay revisited

    Energy Technology Data Exchange (ETDEWEB)

    Helo, J.C. [Universidad Técnica Federico Santa María, Centro-Científico-Tecnológico de Valparaíso,Casilla 110-V, Valparaíso (Chile); Departamento de Física, Facultad de Ciencias, Universidad de La Serena, Avenida Cisternas 1200, La Serena (Chile); Hirsch, M. [HEP Group, Instituto de Física Corpuscular,C.S.I.C./Universitat de València Edificio Institutos de Investigacion,Parc Cientific de Paterna, Apartado 22085, E-46071 València (Spain); Ota, T. [Department of Physics, Saitama University,Shimo-Okubo 255, 338-8570 Saitama-Sakura (Japan)

    2016-06-01

    We discuss the systematic decomposition of all dimension-7 (d=7) lepton number violating operators. These d=7 operators produce momentum enhanced contributions to the long-range part of the 0νββ decay amplitude and thus are severely constrained by existing half-live limits. In our list of possible models one can find contributions to the long-range amplitude discussed previously in the literature, such as the left-right symmetric model or scalar leptoquarks, as well as some new models not considered before. The d=7 operators generate Majorana neutrino mass terms either at tree-level, 1-loop or 2-loop level. We systematically compare constraints derived from the mass mechanism to those derived from the long-range 0νββ decay amplitude and classify our list of models accordingly. We also study one particular example decomposition, which produces neutrino masses at 2-loop level, can fit oscillation data and yields a large contribution to the long-range 0νββ decay amplitude, in some detail.

  4. Development of {sup 100}Mo-containing scintillating bolometers for a high-sensitivity neutrinoless double-beta decay search

    Energy Technology Data Exchange (ETDEWEB)

    Armengaud, E.; Gros, M.; Herve, S.; Magnier, P.; Navick, X.F.; Nones, C.; Paul, B.; Penichot, Y.; Zolotarova, A.S. [Universite Paris-Saclay, IRFU, CEA, Gif-sur-Yvette (France); Augier, C.; Billard, J.; Cazes, A.; Charlieux, F.; Jesus, M. de; Gascon, J.; Juillard, A.; Queguiner, E.; Sanglard, V.; Vagneron, L. [Univ Lyon, Universite Lyon 1, CNRS/IN2P3, IPN-Lyon, Villeurbanne (France); Barabash, A.S.; Konovalov, S.I.; Umatov, V.I. [National Research Centre Kurchatov Institute, Institute of Theoretical and Experimental Physics, Moscow (Russian Federation); Beeman, J.W. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Bekker, T.B. [V.S. Sobolev Institute of Geology and Mineralogy of the Siberian Branch of the RAS, Novosibirsk (Russian Federation); Bellini, F.; Ferroni, F. [Sapienza Universita di Roma, Dipartimento di Fisica, Rome (Italy); INFN, Sezione di Roma, Rome (Italy); Benoit, A.; Camus, P. [CNRS-Neel, Grenoble (France); Berge, L.; Chapellier, M.; Dumoulin, L.; Humbert, V.; Le Sueur, H.; Marcillac, P. de; Marnieros, S.; Marrache-Kikuchi, C.; Novati, V.; Olivieri, E.; Plantevin, O. [CSNSM, Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, Orsay (France); Bergmann, T.; Kleifges, M.; Tcherniakhovski, D.; Weber, M. [Karlsruhe Institute of Technology, Institut fuer Prozessdatenverarbeitung und Elektronik, Karlsruhe (Germany); Boiko, R.S.; Danevich, F.A.; Kobychev, V.V.; Nikolaichuk, M.O.; Tretyak, V.I. [Institute for Nuclear Research, Kyiv (Ukraine); Broniatowski, A. [CSNSM, Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, Orsay (France); Karlsruhe Institute of Technology, Institut fuer Experimentelle Teilchenphysik, Karlsruhe (Germany); Brudanin, V.; Rozov, S.; Yakushev, E. [JINR, Laboratory of Nuclear Problems, Dubna, Moscow Region (Russian Federation); Capelli, S.; Gironi, L.; Pavan, M.; Pessina, G. [Universita di Milano Bicocca, Dipartimento di Fisica, Milan (Italy); INFN, Sezione di Milano Bicocca, Milan (Italy); Cardani, L.; Casali, N.; Dafinei, I.; Tomei, C.; Vignati, M. [INFN, Sezione di Roma, Rome (Italy); Chernyak, D.M. [Institute for Nuclear Research, Kyiv (Ukraine); The University of Tokyo, Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, Kashiwa, Chiba (Japan); Combarieu, M. de; Pari, P. [Universite Paris-Saclay, IRAMIS, CEA, Gif-sur-Yvette (France); Coron, N.; Redon, T. [Universite Paris-Sud, IAS, CNRS, Orsay (France); Devoyon, L.; Koskas, F.; Strazzer, O. [Universite Paris-Saclay, Orphee, CEA, Gif-sur-Yvette (France); Di Domizio, S. [Universita di Genova, Dipartimento di Fisica, Genoa (Italy); INFN Sezione di Genova, Genoa (Italy); Eitel, K.; Siebenborn, B. [Karlsruhe Institute of Technology, Institut fuer Kernphysik, Karlsruhe (Germany); Enss, C.; Fleischmann, A.; Gastaldo, L. [Heidelberg University, Kirchhoff Institute for Physics, Heidelberg (Germany); Foerster, N.; Kozlov, V. [Karlsruhe Institute of Technology, Institut fuer Experimentelle Teilchenphysik, Karlsruhe (Germany); Giuliani, A. [CSNSM, Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, Orsay (France); Universita dell' Insubria, DISAT, Como (Italy); Grigorieva, V.D.; Ivannikova, N.V.; Ivanov, I.M.; Makarov, E.P.; Shlegel, V.N.; Vasiliev, Ya.V. [Nikolaev Institute of Inorganic Chemistry, Novosibirsk (Russian Federation); Hehn, L. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Karlsruhe Institute of Technology, Institut fuer Kernphysik, Karlsruhe (Germany); Jin, Y. [Laboratoire de Photonique et de Nanostructures, CNRS, Marcoussis (France); Kraus, H. [University of Oxford, Department of Physics, Oxford (United Kingdom); Kudryavtsev, V.A. [University of Sheffield, Department of Physics and Astronomy, Sheffield (United Kingdom); Laubenstein, M.; Nagorny, S.; Pattavina, L.; Pirro, S. [INFN, Laboratori Nazionali del Gran Sasso, Assergi, AQ (Italy); Loidl, M.; Rodrigues, M. [CEA-Saclay, CEA, LIST, Laboratoire National Henri Becquerel (LNE-LNHB), Gif-sur-Yvette Cedex (France); Mancuso, M. [CSNSM, Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, Orsay (France); Universita dell' Insubria, DISAT, Como (Italy); Max-Planck-Institut fuer Physik, Munich (Germany); Pagnanini, L.; Schaeffner, K. [INFN, Laboratori Nazionali del Gran Sasso, Assergi, AQ (Italy); INFN, Gran Sasso Science Institute, L' Aquila (Italy); Piperno, G. [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Poda, D.V. [CSNSM, Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, Orsay (France); Institute for Nuclear Research, Kyiv (Ukraine); Rusconi, C. [INFN, Laboratori Nazionali del Gran Sasso, Assergi, AQ (Italy); University of South Carolina, Department of Physics and Astronomy, Columbia, SC (United States); Scorza, S. [Karlsruhe Institute of Technology, Institut fuer Experimentelle Teilchenphysik, Karlsruhe (Germany); SNOLAB, Lively, ON (Canada); Velazquez, M. [Universite de Bordeaux, ICMCB, CNRS, Pessac (France)

    2017-11-15

    This paper reports on the development of a technology involving {sup 100}Mo-enriched scintillating bolometers, compatible with the goals of CUPID, a proposed next-generation bolometric experiment to search for neutrinoless double-beta decay. Large mass (∝ 1 kg), high optical quality, radiopure {sup 100}Mo-containing zinc and lithium molybdate crystals have been produced and used to develop high performance single detector modules based on 0.2-0.4 kg scintillating bolometers. In particular, the energy resolution of the lithium molybdate detectors near the Q-value of the double-beta transition of {sup 100}Mo (3034 keV) is 4-6 keV FWHM. The rejection of the α-induced dominant background above 2.6 MeV is better than 8σ. Less than 10 μBq/kg activity of {sup 232}Th({sup 228}Th) and {sup 226}Ra in the crystals is ensured by boule recrystallization. The potential of {sup 100}Mo-enriched scintillating bolometers to perform high sensitivity double-beta decay searches has been demonstrated with only 10 kg x d exposure: the two neutrino double-beta decay half-life of {sup 100}Mo has been measured with the up-to-date highest accuracy as T{sub 1/2} = [6.90 ± 0.15(stat.) ± 0.37(syst.)] x 10{sup 18} years. Both crystallization and detector technologies favor lithium molybdate, which has been selected for the ongoing construction of the CUPID-0/Mo demonstrator, containing several kg of {sup 100}Mo. (orig.)

  5. Double-beta decay with majoron emission in GERDA Phase I

    Science.gov (United States)

    Hemmer, Sabine

    2015-07-01

    Neutrinoless double-beta decay with emission of one or two majorons (0 νββχ( χ)) is predicted by several beyond-Standard-Model theories. This article reviews the results of a search for 0 νββχ( χ) of 76Ge using data from the Germanium Detector Array (GERDA) experiment, located underground at the INFN Laboratori Nazionali del Gran Sasso (LNGS) in Italy. The analysis comprised data with an exposure of 20.3 kg·yr from the first phase of the experiment. No indication of contributions to the observed energy spectra was detected for any of the majoron models. The lower limit on the half-life for the ordinary majoron model (spectral index n = 1 was determined to be T {1/2/0 νβ } > 4.2 · 1023 yr (90% quantile). This limit and the limits derived for the other majoron modes constitute the most stringent limits on 0 νββχ( χ) decay of 76Ge measured to date.

  6. LUCIFER: Scintillating bolometers for the search of Neutrinoless Double Beta Decay

    Energy Technology Data Exchange (ETDEWEB)

    Vignati, M. [Sapienza Universita di Roma and INFN Sezione di Roma, Roma, I-00185 (Italy)

    2012-08-15

    The nature of neutrino mass is one of the frontier problems of particle physics. Neutrinoless Double Beta Decay (0{nu}DBD) is a powerful tool to measure the neutrino mass and to test possible extensions of the Standard Model. Bolometers are excellent detectors to search for this rare decay, thanks to their good energy resolution and to the low background conditions in which they can operate. The current challenge consists in the reduction of the background, represented by environmental {gamma}'s and {alpha}'s, in view of a zero background experiment. We present the LUCIFER R and D, funded by an European grant, in which the background can be reduced by an order of magnitude with respect to the present generation experiments. The technique is based on the simultaneous bolometric measurement of the heat and of the scintillation light produced by a particle, that allows to discriminate between {beta} and {alpha} particles. The {gamma} background is reduced by choosing 0{nu}DBD candidate isotopes with transition energy above the environmental {gamma}'s spectrum. The prospect of this R and D are discussed.

  7. Exploring the neutrinoless double beta decay in the inverted neutrino hierarchy with bolometric detectors

    Energy Technology Data Exchange (ETDEWEB)

    Artusa, D.R. [University of South Carolina, Department of Physics and Astronomy, Columbia, SC (United States); INFN-Laboratori Nazionali del Gran Sasso, Assergi, L' Aquila (Italy); Avignone, F.T.; Chott, N.; Creswick, R.J.; Farach, H.A.; Rosenfeld, C.; Wilson, J. [University of South Carolina, Department of Physics and Astronomy, Columbia, SC (United States); Azzolini, O.; Camacho, A.; De Biasi, A.; Keppel, G.; Palmieri, V.; Pira, C.; Rampazzo, V. [INFN-Laboratori Nazionali di Legnaro, Legnaro, Padua (Italy); Balata, M.; Bucci, C.; Canonica, L.; Casali, N.; Di Vacri, M.L.; Goett, J.; Gorla, P.; Nisi, S.; Orlandi, D.; Pattavina, L.; Pirro, S.; Zarra, C. [INFN-Laboratori Nazionali del Gran Sasso, Assergi, L' Aquila (Italy); Banks, T.I. [INFN-Laboratori Nazionali del Gran Sasso, Assergi, L' Aquila (Italy); University of California, Department of Physics, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Bari, G.; Deninno, M.M.; Moggi, N. [INFN-Sezione di Bologna, Bologna (Italy); Beeman, J. [Lawrence Berkeley National Laboratory, Materials Science Division, Berkeley, CA (United States); Bellini, F.; Cardani, L.; Cosmelli, C.; Ferroni, F.; Piperno, G. [Sapienza Universita di Roma, Dipartimento di Fisica, Rome (Italy); INFN-Sezione di Roma, Rome (Italy); Bersani, A. [INFN-Sezione di Genova, Genoa (Italy); Biassoni, M.; Brofferio, C.; Capelli, S.; Carrettoni, M.; Chiesa, D.; Clemenza, M.; Faverzani, M.; Ferri, E.; Fiorini, E.; Giachero, A.; Gironi, L.; Gotti, C.; Maiano, C.; Maino, M.; Nucciotti, A.; Pavan, M.; Sala, E.; Sisti, M.; Terranova, F.; Zanotti, L. [Universita di Milano-Bicocca, Dipartimento di Fisica, Milan (Italy); INFN-Sezione di Milano Bicocca, Milan (Italy); Cai, X.Z.; Cao, X.G.; Fang, D.Q.; Li, Y.L.; Ma, Y.G.; Tian, W.D.; Wang, H.W. [Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Shanghai (China); Carbone, L.; Cremonesi, O.; Datskov, V.; Pessina, G.; Previtali, E.; Rusconi, C. [INFN-Sezione di Milano Bicocca, Milan (Italy); Dafinei, I.; Morganti, S.; Orio, F.; Pettinacci, V.; Tomei, C.; Vignati, M. [INFN-Sezione di Roma, Rome (Italy); Dally, A.; Ejzak, L.; Wielgus, L. [University of Wisconsin, Department of Physics, Madison, WI (United States); Di Domizio, S.; Fernandes, G.; Pallavicini, M. [INFN-Sezione di Genova, Genoa (Italy); Universita di Genova, Dipartimento di Fisica, Genoa (Italy); Franceschi, M.A.; Ligi, C.; Napolitano, T. [INFN-Laboratori Nazionali di Frascati, Frascati, Rome (Italy); Freedman, S.J. [University of California, Department of Physics, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Fujikawa, B.K.; Han, K.; Mei, Y.; Smith, A.R. [Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Giuliani, A.; Tenconi, M. [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, Orsay (France); Gutierrez, T.D. [California Polytechnic State University, Physics Department, San Luis Obispo, CA (United States); Haller, E.E. [Lawrence Berkeley National Laboratory, Materials Science Division, Berkeley, CA (United States); University of California, Department of Materials Science and Engineering, Berkeley, CA (United States); Heeger, K.M.; Maruyama, R.H. [Yale University, Department of Physics, New Haven, CT (United States); Hennings-Yeomans, R.; O' Donnell, T. [University of California, Department of Physics, Berkeley, CA (United States); Huang, H.Z.; Liu, X.; Trentalange, S.; Winslow, L.A.; Zhu, B.X. [University of California, Department of Physics and Astronomy, Los Angeles, CA (United States); Kadel, R. [Lawrence Berkeley National Laboratory, Physics Division, Berkeley, CA (United States); Kazkaz, K.; Pedretti, M.; Sangiorgio, S.; Scielzo, N.D. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Kolomensky, Yu.G. [University of California, Department of Physics, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Physics Division, Berkeley, CA (United States); Martinez, M. [Universidad de Zaragoza, Laboratorio de Fisica Nuclear y Astroparticulas, Saragossa (Spain); Nones, C. [CEA/Saclay, Service de Physique des Particules, Gif-sur-Yvette (France); Norman, E.B.; Wang, B.S. [Lawrence Livermore National Laboratory, Livermore, CA (United States); University of California, Department of Nuclear Engineering, Berkeley, CA (United States); Ouellet, J.L. [University of California, Department of Physics, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Taffarello, L. [INFN-Sezione di Padova, Padua (Italy); Ventura, G. [Universita di Firenze, Dipartimento di Fisica, Florence (Italy); INFN-Sezione di Firenze, Florence (Italy); Wise, T. [University of Wisconsin, Department of Physics, Madison, WI (United States); Yale University, Department of Physics, New Haven, CT (United States); Woodcraft, A. [University of Edinburgh, SUPA, Institute for Astronomy, Edinburgh (United Kingdom); Zucchelli, S. [INFN-Sezione di Bologna, Bologna (Italy); Universita di Bologna, Dipartimento di Fisica, Bologna (Italy)

    2014-10-15

    Neutrinoless double beta decay (0νββ) is one of the most sensitive probes for physics beyond the Standard Model, providing unique information on the nature of neutrinos. In this paper we review the status and outlook for bolometric 0νββ decay searches. We summarize recent advances in background suppression demonstrated using bolometers with simultaneous readout of heat and light signals. We simulate several configurations of a future CUORE-like bolometer array which would utilize these improvements and present the sensitivity reach of a hypothetical next-generation bolometric 0νββ experiment. We demonstrate that a bolometric experiment with the isotope mass of about 1 ton is capable of reaching the sensitivity to the effective Majorana neutrino mass (vertical stroke m{sub ee} vertical stroke) of order 10-20 meV, thus completely exploring the so-called inverted neutrino mass hierarchy region. We highlight the main challenges and identify priorities for an R and D program addressing them. (orig.)

  8. Front-end electronics for accurate energy measurement of double beta decays

    International Nuclear Information System (INIS)

    Gil, A.; Díaz, J.; Gómez-Cadenas, J.J.; Herrero, V.; Rodriguez, J.; Serra, L.; Toledo, J.; Esteve, R.; Monzó, J.M.; Monrabal, F.; Yahlali, N.

    2012-01-01

    NEXT, a double beta decay experiment that will operate in Canfranc Underground Laboratory (Spain), aims at measuring the neutrinoless double-β decay of the 136Xe isotope using a TPC filled with enriched Xenon gas at high pressure operated in electroluminescence mode. One technological challenge of the experiment is to achieve resolution better than 1% in the energy measurement using a plane of UV sensitive photomultipliers readout with appropriate custom-made front-end electronics. The front-end is designed to be sensitive to the single photo-electron to detect the weak primary scintillation light produced in the chamber, and also to be able to cope with the electroluminescence signal (several hundred times higher and with a duration of microseconds). For efficient primary scintillation detection and precise energy measurement of the electroluminescent signals the front-end electronics features low noise and adequate amplification. The signal shaping provided allows the digitization of the signals at a frequency as low as 40 MHz.

  9. Neutrinoless Double Beta Decay Matrix Elements in Light Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Pastore, S.; Carlson, J.; Cirigliano, V.; Dekens, W.; Mereghetti, E.; Wiringa, R. B.

    2018-01-17

    We present the first ab initio calculations of neutrinoless double-β decay matrix elements in A=6-12 nuclei using variational Monte Carlo wave functions obtained from the Argonne v18 two-nucleon potential and Illinois-7 three-nucleon interaction. We study both light Majorana neutrino exchange and potentials arising from a large class of multi-TeV mechanisms of lepton-number violation. Our results provide benchmarks to be used in testing many-body methods that can be extended to the heavy nuclei of experimental interest. In light nuclei we also study the impact of two-body short-range correlations and the use of different forms for the transition operators, such as those corresponding to different orders in chiral effective theory.

  10. Neutrinoless double beta decay with 82SeF6 and direct ion imaging

    Science.gov (United States)

    Nygren, D. R.; Jones, B. J. P.; López-March, N.; Mei, Y.; Psihas, F.; Renner, J.

    2018-03-01

    We present a new neutrinoless double beta decay concept: the high pressure selenium hexafluoride gas time projection chamber. A promising new detection technique is outlined which combines techniques pioneered in high pressure xenon gas, such as topological discrimination, with the high Q-value afforded by the double beta decay isotope 82Se. The lack of free electrons in SeF6 mandates the use of an ion TPC. The microphysics of ion production and drift, which have many nuances, are explored. Background estimates are presented, suggesting that such a detector may achieve background indices of better than 1 count per ton per year in the region of interest at the 100 kg scale, and still better at the ton-scale.

  11. Double-beta decay measurement of 100Mo to the excited 01+ state of 100Ru in the NEMO3 experiment - R/D program for SuperNEMO: development of a BiPo detector to measure ultra low contaminations in the source foils

    International Nuclear Information System (INIS)

    Chapon, A.

    2011-10-01

    The NEMO3 detector was designed for the study of double beta decay and in particular the search for neutrinoless double beta decay (ββ0ν). The quantity of 100 Mo in the detector (7 kg) allows also a competitive measurement of the two-neutrino double beta decay (ββ2ν) of 100 Mo to the excited 0 1 + state of 100 Ru (eeNγ channel). Monte-Carlo simulations of the effect and of all the possible sources of background have been studied in order to determine their contributions to the full NEMO3 experimental data (2003-2011). These one have then been analysed: the ββ2ν decay half-life has been measured, and a limit on the ββ0ν decay has been obtained. Moreover, the SuperNEMO experiment aims to reach a sensitivity up to 10 26 years on the half-life of neutrinoless double beta decay. The SuperNEMO detector radioactivity has to be as low as possible. Especially radio-purity levels of 2 μBq*kg -1 in 208 Tl and 10 μBq*kg -1 in 214 Bi are required for the source foils. The gamma-spectrometry can not measure such low contamination levels. Hence, a BiPo dedicated detector has been developed to measure 208 Tl and 214 Bi contaminations, identifying the Bi→Po→Pb β-α chains. A proof of principle has been performed and the detector background has been measured. Assuming these values, a full BiPo detector of 3.6 m 2 can achieve the required sensitivities for the SuperNEMO source foils within six months of measurement. (author)

  12. Neutrinoless double beta decay in an SU(3)L x U(1)N model

    International Nuclear Information System (INIS)

    Pleitez, V.; Tonasse, M.D.

    1993-01-01

    A model for the electroweak interactions with SU (3) L x U(1) N gauge symmetry is considered. It is shown that, it is the conservation of F = L + B which forbids massive neutrinos and the neutrinoless double beta decay, (β β) On u. Explicit and spontaneous breaking of F imply that the neutrinos have an arbitrary mass and (β β) On u proceeds also with some contributions that do not depend explicitly on the neutrino mass. (author)

  13. The double beta decay spectra of 82Se, 100Mo, and 150Nd

    International Nuclear Information System (INIS)

    Nelson, M.A.; Moe, M.K.; Vient, M.A.; Elliott, S.R.

    1992-01-01

    The double beta decay electron energy spectra of 82 Se, 100 Mo, and 150 Nd have been measured with a time projection chamber, and departures from the expected two-neutrino spectral shapes have been observed. Efforts to reduce possible background contamination have been made, and tests are now being done in an effort to determine whether the anomalous signals are real effects, or simply experimental artifacts

  14. Results on Neutrinoless Double-Beta Decay from Gerda Phase I

    Science.gov (United States)

    Macolino, Carla

    2014-12-01

    The GERmanium Detector Array, GERDA, is designed to search for neutrinoless double-beta (0νββ) decay of 76Ge and it is installed in the Laboratori Nazionali del Gran Sasso (LNGS) of INFN, Italy. In this review, the detection principle and detector setup of GERDA are described. Also, the main physics results by GERDA Phase I, are discussed. They include the measurement of the half-life of 2νββ decay, the background decomposition of the energy spectrum and the techniques for the discrimination of the background, based on the pulse shape of the signal. In the last part of this review, the estimation of a limit on the half-life of 0νββ (T0ν 1/2>2.1ḑot 1025 yr at 90% C.L.) and the comparison with previous results are discussed. GERDA data from Phase I strongly disfavor the recent claim of 0νββ discovery, based on data from the Heidelberg-Moscow experiment.

  15. LUCIFER: a scintillating bolometer array for the search of neutrinoless double beta decay

    International Nuclear Information System (INIS)

    Cardani, Laura

    2011-01-01

    In spite of the high precision achieved in the field of neutrino oscillations, there are some fundamental questions that can not be addressed by a study of ths phenomenon. We do not know in fact the absolute mass of neutrino and weather it is a Dirac or a Majorana particle. The LUCIFER experiment, financed by the ERC-AdG, will play an important role in this field. This project aims to push beyond the actual technological limits the possibility of observation of the Neutrinoless Double Beta Decay (0νDBD). The detection of this extremely rare decay would indeed demonstrate that neutrino is a Majorana particle and, at the same time, would allow to set its absolute mass scale. LUCIFER will study the 0νDBD do 82 Se through ZnSe scintillating bolometers. Thanks to the simultaneous red-out of the heat and light produced by an interaction in the crystal, the background rate in the region of interest will be lower than 10 -3 counts/kg/keV/years. In the following, the expected performance of LUCIFER are discussed.

  16. Results on neutrinoless double beta decay search in GERDA. Background modeling and limit setting

    Energy Technology Data Exchange (ETDEWEB)

    Becerici Schmidt, Neslihan

    2014-07-22

    The search for the neutrinoless double beta decay (0νββ) process is primarily motivated by its potential of revealing the possible Majorana nature of the neutrino, in which the neutrino is identical to its antiparticle. It has also the potential to yield information on the intrinsic properties of neutrinos, if the underlying mechanism is the exchange of a light Majorana neutrino. The Gerda experiment is searching for 0νββ decay of {sup 76}Ge by operating high purity germanium (HPGe) detectors enriched in the isotope {sup 76}Ge (∝ 87%), directly in ultra-pure liquid argon (LAr). The first phase of physics data taking (Phase I) was completed in 2013 and has yielded 21.6 kg.yr of data. A background index of B∼10{sup -2} cts/(keV.kg.yr) at Q{sub ββ}=2039 keV has been achieved. A comprehensive background model of the Phase I energy spectrum is presented as the major topic of this dissertation. Decomposition of the background energy spectrum into the individual contributions from different processes provides many interesting physics results. The specific activity of {sup 39}Ar has been determined. The obtained result, A=(1.15±0.11) Bq/kg, is in good agreement with the values reported in literature. The contribution from {sup 42}K decays in LAr to the background spectrum has yielded a {sup 42}K({sup 42}Ar) specific activity of A=(106.2{sub -19.2}{sup +12.7}) μBq/kg, for which only upper limits exist in literature. The analysis of high energy events induced by α decays in the {sup 226}Ra chain indicated a total {sup 226}Ra activity of (3.0±0.9) μBq and a total initial {sup 210}Po activity of (0.18±0.01) mBq on the p{sup +} surfaces of the enriched semi-coaxial HPGe detectors. The half life of the two-neutrino double beta (2νββ) decay of {sup 76}Ge has been determined as T{sub 1/2}{sup 2ν}=(1.926±0.094).10{sup 21} yr, which is in good agreement with the result that was obtained with lower exposure and has been published by the Gerda collaboration

  17. Results on neutrinoless double beta decay search in GERDA. Background modeling and limit setting

    International Nuclear Information System (INIS)

    Becerici Schmidt, Neslihan

    2014-01-01

    The search for the neutrinoless double beta decay (0νββ) process is primarily motivated by its potential of revealing the possible Majorana nature of the neutrino, in which the neutrino is identical to its antiparticle. It has also the potential to yield information on the intrinsic properties of neutrinos, if the underlying mechanism is the exchange of a light Majorana neutrino. The Gerda experiment is searching for 0νββ decay of 76 Ge by operating high purity germanium (HPGe) detectors enriched in the isotope 76 Ge (∝ 87%), directly in ultra-pure liquid argon (LAr). The first phase of physics data taking (Phase I) was completed in 2013 and has yielded 21.6 kg.yr of data. A background index of B∼10 -2 cts/(keV.kg.yr) at Q ββ =2039 keV has been achieved. A comprehensive background model of the Phase I energy spectrum is presented as the major topic of this dissertation. Decomposition of the background energy spectrum into the individual contributions from different processes provides many interesting physics results. The specific activity of 39 Ar has been determined. The obtained result, A=(1.15±0.11) Bq/kg, is in good agreement with the values reported in literature. The contribution from 42 K decays in LAr to the background spectrum has yielded a 42 K( 42 Ar) specific activity of A=(106.2 -19.2 +12.7 ) μBq/kg, for which only upper limits exist in literature. The analysis of high energy events induced by α decays in the 226 Ra chain indicated a total 226 Ra activity of (3.0±0.9) μBq and a total initial 210 Po activity of (0.18±0.01) mBq on the p + surfaces of the enriched semi-coaxial HPGe detectors. The half life of the two-neutrino double beta (2νββ) decay of 76 Ge has been determined as T 1/2 2ν =(1.926±0.094).10 21 yr, which is in good agreement with the result that was obtained with lower exposure and has been published by the Gerda collaboration. According to the model, the background in Q ββ ±5 keV window is resulting from close

  18. The contribution of light Majorana neutrinos to neutrinoless double beta decay and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Dell’Oro, S.; Marcocci, S. [INFN, Gran Sasso Science Institute,Viale F. Crispi 7, 67100 L’Aquila (Italy); Viel, M. [INAF, Osservatorio Astronomico di Trieste,Via G.B. Tiepolo 11, 34131 Trieste (Italy); INFN, Sezione di Trieste,Via Valerio 2, 34127 Trieste (Italy); Vissani, F. [INFN, Laboratori Nazionali del Gran Sasso,Via G. Acitelli 22, 67100 Assergi (AQ) (Italy); INFN, Gran Sasso Science Institute,Viale F. Crispi 7, 67100 L’Aquila (Italy)

    2015-12-11

    Cosmology is making impressive progress and it is producing stringent bounds on the sum of the neutrino masses Σ, a parameter of great importance for the current laboratory experiments. In this letter, we exploit the potential relevance of the analysis of Palanque-Delabrouille et al. to the neutrinoless double beta decay (0νββ) search. This analysis indicates small values for the lightest neutrino mass, since the authors find Σ<84 meV at 1σ C.L., and provides a 1σ preference for the normal hierarchy. The allowed values for the Majorana effective mass, probed by 0νββ, turn out to be <75 meV at 3σ C.L. and lower down to less than 20 meV at 1σ C.L. . If this indication is confirmed, the impact on the 0νββ experiments will be tremendous since the possibility of detecting a signal will be out of the reach of the next generation of experiments.

  19. An investigation of proton pair correlations relevant to the neutrinoless double beta decay of 76Ge

    Science.gov (United States)

    Ticehurst, David R.

    The observation of neutrinoless double beta decay (0nubetabeta ) would demonstrate that the neutrino is a Majorana particle and allow determination of its mass by comparing the measured decay rate to the calculated rate. The main uncertainty in the calculation of the 0 nubetabeta rate is due to uncertainties in the nuclear structure models used in the computation of the nuclear matrix elements for the decay process. This project tested the validity of using wavefunctions for the nuclear states involved in the 0nubetabeta process that are based on a first-order application of the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity. In the BCS approximation, most of the strength for two-nucleon transfer reactions should be for transitions to the 0 + ground state of the final nucleus (i.e., little strength should go to the 0+ excited states). This experiment measured the strength to the first 0+ excited state for the 74Ge( 3He,n)76Se and 76Ge( 3He,n)78Se reactions relative to the strength for transition to the 0+ ground state in selenium. For both nuclei, and at 3He beam energies of 15 and 21 MeV, the observed relative strength for transfer to the first 0+ excited state was less than 13%. This result supports the validity of using the BCS approximation to describe the ground state of both 76Se and 78Se and is consistent with the results of recent ( 3He,n) cross section measurements on 74Ge and 76Ge. In addition, the magnitude and shape of the measured angular distributions suggest that contribution of the sequential two-nucleon transfer process, which is an indicator of long-range nucleon-nucleon correlations, is over-predicted by the DWBA code FRESCO.

  20. Consistency check of pulse shape discrimination for broad energy germanium detectors using double beta decay data

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Heng-Ye [Max-Planck-Institut fuer Physik, Muenchen (Germany); Collaboration: GERDA-Collaboration

    2013-07-01

    The Gerda (GERmanium Detector Array) experiment was built to study fundamental neutrino properties via neutrinoless double beta decay (0νββ). 0νββ events are single-site events (SSE) confined to a scale about millimeter. However, most of backgrounds are multi-site events (MSE). Broad Energy Germanium detectors (BEGes) offer the potential merits of improved pulse shape recognition efficiencies of SSE/MSE. They allow us to reach the goal of Phase II with a background index of 10{sup -3} cts/(keV.kg.yr) in the ROI. BEGe detectors with a total target mass of 3.63 kg have been installed to the Gerda setup in the Laboratori Nazionali del Gran Sasso (LNGS) in July 2012 and are collecting data since. A consistency check of the pulse shape discrimination (PSD) efficiencies by comparison of calibration data and 2νββ data will be presented. The PSD power of these detectors is demonstrated.

  1. Search for the neutrinoless double beta decay (0νββ) of {sup 76}Ge: GERDA Phase II commissioning

    Energy Technology Data Exchange (ETDEWEB)

    Bode, Tobias [Physik-Department E15, Technische Universitaet Muenchen (Germany); Collaboration: GERDA-Collaboration

    2015-07-01

    After successful completion of Phase I the Gerda (Germanium Detector Array) experiment underwent a major upgrade of the experimental apparatus. These upgrades include additional 20 kg of custom-made detectors with improved background rejection capabilities, accompanied by improved front-end electronics and an active liquid argon scintillation light veto. A sensitivity on the neutrinoless double beta decay half-life (T{sub 1/2}{sup 0ν}) of 10{sup 26} yr should be reached after a few years of data taking (Phase II). First results of Phase II commissioning and latest results from Phase I analyses are presented in this talk.

  2. Analysis method for the search for neutrinoless double beta decay in the NEMO3 experiment: study of the background and first results; Methode d'analyse pour la recherche de la double desintegration {beta} sans emission de neutrinos dans l'experience NEMO3. Etude du bruit de fond et premiers resultats

    Energy Technology Data Exchange (ETDEWEB)

    Etienvre, A I

    2003-04-15

    The NEMO3 detector, installed in the Frejus Underground Laboratory, is dedicated to the study of neutrinoless double beta decay: the observation of this process would sign the massive and Majorana nature of neutrino. The experiment consists in very thin central source foils (the total mass is equal to 10 kg), a tracking detector made of drift cells operating in Geiger mode, a calorimeter made of plastic scintillators associated to photomultipliers, a coil producing a 30 gauss magnetic field and two shields, dedicated to the reduction of the {gamma}-ray and neutron fluxes. In the first part, I describe the implications of several mechanisms, related to trilinear R-parity violation, on double beta decay. The second part is dedicated to a detailed study of the tracking detector of the experiment: after a description of the different working tests, I present the determination of the characteristics of the tracking reconstruction (transverse and longitudinal resolution, by Geiger cell and precision on vertex determination, charge recognition). The last part corresponds to the analysis of the data taken by the experiment. On the one hand, an upper limit on the Tl{sup 208} activity of the sources has been determined: it is lower than 68 mBq/kg, at 90% of confidence level. On the other hand, I have developed and tested on these data a method in order to analyse the neutrinoless double beta decay signal; this method is based on a maximum of likelihood using all the available information. Using this method, I could determine a first and very preliminary upper limit on the effective mass of the neutrino. (author)

  3. Analysis method for the search for neutrinoless double beta decay in the NEMO3 experiment: study of the background and first results; Methode d'analyse pour la recherche de la double desintegration {beta} sans emission de neutrinos dans l'experience NEMO3. Etude du bruit de fond et premiers resultats

    Energy Technology Data Exchange (ETDEWEB)

    Etienvre, A.I

    2003-04-15

    The NEMO3 detector, installed in the Frejus Underground Laboratory, is dedicated to the study of neutrinoless double beta decay: the observation of this process would sign the massive and Majorana nature of neutrino. The experiment consists in very thin central source foils (the total mass is equal to 10 kg), a tracking detector made of drift cells operating in Geiger mode, a calorimeter made of plastic scintillators associated to photomultipliers, a coil producing a 30 gauss magnetic field and two shields, dedicated to the reduction of the {gamma}-ray and neutron fluxes. In the first part, I describe the implications of several mechanisms, related to trilinear R-parity violation, on double beta decay. The second part is dedicated to a detailed study of the tracking detector of the experiment: after a description of the different working tests, I present the determination of the characteristics of the tracking reconstruction (transverse and longitudinal resolution, by Geiger cell and precision on vertex determination, charge recognition). The last part corresponds to the analysis of the data taken by the experiment. On the one hand, an upper limit on the Tl{sup 208} activity of the sources has been determined: it is lower than 68 mBq/kg, at 90% of confidence level. On the other hand, I have developed and tested on these data a method in order to analyse the neutrinoless double beta decay signal; this method is based on a maximum of likelihood using all the available information. Using this method, I could determine a first and very preliminary upper limit on the effective mass of the neutrino. (author)

  4. GERDA results and the future perspectives for the neutrinoless double beta decay search using 76Ge

    Science.gov (United States)

    Agostini, M.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Baudis, L.; Bauer, C.; Bellotti, E.; Belogurov, S.; Bettini, A.; Bezrukov, L.; Biernat, J.; Bode, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; Comellato, T.; D’Andrea, V.; Demidova, E. V.; di Marco, N.; Domula, A.; Doroshkevich, E.; Egorov, V.; Gangapshev, A.; Garfagnini, A.; Giordano, M.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hakenmüller, J.; Heisel, M.; Hemmer, S.; Hiller, R.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Janicskó Csáthy, J.; Jochum, J.; Junker, M.; Kazalov, V.; Kermaidic, Y.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Klimenko, A.; Kneißl, R.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Miloradovic, M.; Mingazheva, R.; Misiaszek, M.; Moseev, P.; Nemchenok, I.; Panas, K.; Pandola, L.; Pelczar, K.; Pertoldi, L.; Pullia, A.; Ransom, C.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salamida, F.; Schneider, B.; Schönert, S.; Schreiner, J.; Schütz, A.-K.; Schulz, O.; Schwingenheuer, B.; Selivanenko, O.; Shevchik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Vanhoefer, L.; Vasenko, A. A.; Veresnikova, A.; von Sturm, K.; Wagner, V.; Wegmann, A.; Wester, T.; Wiesinger, C.; Wojcik, M.; Yanovich, E.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zschocke, A.; Zsigmond, A. J.; Zuber, K.; Zuzel, G.

    2018-03-01

    The GERmanium Detector Array (GERDA) is a low background experiment at the Laboratori Nazionali del Gran Sasso (LNGS) of INFN designed to search for the rare neutrinoless double beta decay (0νββ) of 76Ge. In the first phase (Phase I) of the experiment, high purity germanium diodes were operated in a “bare” mode and immersed in liquid argon. The overall background level of 10‑2cts/(keV ṡkg ṡyr) was a factor of ten better than those of its predecessors. No signal was found and a lower limit was set on the half-life for the 0νββ decay of 76Ge T1/20ν > 2.1 × 1025 yr (90% CL), while the corresponding median sensitivity was 2.4 × 1025 yr (90% CL). A second phase (Phase II) started at the end of 2015 after a major upgrade. Thanks to the increased detector mass and performance of the enriched germanium diodes and due to the introduction of liquid argon instrumentation techniques, it was possible to reduce the background down to 10‑3cts/(keV ṡkg ṡyr). After analyzing 23.2 kgṡyr of these new data no signal was seen. Combining these with the data from Phase I a stronger half-life limit of the 76Ge 0νββ decay was obtained: T1/20ν > 8.0 × 1025 yr (90% CL), reaching a sensitivity of 5.8 × 1025 yr (90% CL). Phase II will continue for the collection of an exposure of 100 kg ṡyr. If no signal is found by then the GERDA sensitivity will have reached 1.4 × 1026 yr for setting a 90% CL. limit. After the end of GERDA Phase II, the flagship experiment for the search of 0νββ decay of 76Ge will be LEGEND. LEGEND experiment is foreseen to deploy up to 1-ton of 76Ge. After ten years of data taking, it will reach a sensitivity beyond 1028 yr, and hence fully cover the inverted hierarchy region.

  5. Neutrinoless double beta decay in chiral effective field theory: lepton number violation at dimension seven

    Science.gov (United States)

    Cirigliano, V.; Dekens, W.; de Vries, J.; Graesser, M. L.; Mereghetti, E.

    2017-12-01

    We analyze neutrinoless double beta decay (0 νββ) within the framework of the Standard Model Effective Field Theory. Apart from the dimension-five Weinberg operator, the first contributions appear at dimension seven. We classify the operators and evolve them to the electroweak scale, where we match them to effective dimension-six, -seven, and -nine operators. In the next step, after renormalization group evolution to the QCD scale, we construct the chiral Lagrangian arising from these operators. We develop a power-counting scheme and derive the two-nucleon 0 νββ currents up to leading order in the power counting for each lepton-number-violating operator. We argue that the leading-order contribution to the decay rate depends on a relatively small number of nuclear matrix elements. We test our power counting by comparing nuclear matrix elements obtained by various methods and by different groups. We find that the power counting works well for nuclear matrix elements calculated from a specific method, while, as in the case of light Majorana neutrino exchange, the overall magnitude of the matrix elements can differ by factors of two to three between methods. We calculate the constraints that can be set on dimension-seven lepton-number-violating operators from 0 νββ experiments and study the interplay between dimension-five and -seven operators, discussing how dimension-seven contributions affect the interpretation of 0 νββ in terms of the effective Majorana mass m ββ .

  6. Double beta decay, neutrino physics, nuclear structure and isospin and spin-isospin symmetries

    International Nuclear Information System (INIS)

    Krmpotic, F.

    1989-12-01

    Prominent features of the double beta decay processes are reviewed. Emphasis is placed on the neutrino masses and the quasiparticle random phase approximation (GRPA). The suppression mechanism for the ββ-decay transition rates, proposed by Vogel and Zirnbauer, is found to be closely related to the restoration of SU(4) symmetry. It is suggested that the extreme sensitivity of the ββ-decay amplitude on the proton-neutron coupling is a consequence of the explicit violation of the SU(4) symmetry and therefore an artifact of the model. A prescription is given for fixing this interaction strength within the GRPA itself, which in this way acquires predicting power on both single and double β-decay lifetimes. (author) [pt

  7. The double beta decay spectrum of 100Mo as measured with a TPC

    International Nuclear Information System (INIS)

    Elliott, S.R.; Moe, M.K.; Nelson, M.A.; Vient, M.A.

    1991-01-01

    A time projection chamber with 8.3 grams of enriched 100 MoO 3 as the central electrode has been operating approximately five months in an underground laboratory. A preliminary analysis of the two-electron sum energy spectrum, the spectrum of those same electrons taken singly, and the opening angle distribution yields a half life of 1.16 -0.08 +0.34 x10 19 y at the 68% confidence level for two-neutrino double beta decay of 100 Mo. (author)

  8. The Majorana Demonstrator: A search for neutrinoless double-beta decay of germanium-76

    Science.gov (United States)

    Elliott, S. R.; Abgrall, N.; Aguayo, E.; Avignone, F. T., III; Barabash, A. S.; Bertrand, F. E.; Boswell, M.; Brudanin, V.; Busch, M.; Caldwell, A. S.; Chan, Y.-D.; Christofferson, C. D.; Combs, D. C.; Detwiler, J. A.; Doe, P. J.; Efremenko, Yu.; Egorov, V.; Ejiri, H.; Esterline, J.; Fast, J. E.; Finnerty, P.; Fraenkle, F. M.; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guiseppe, V. E.; Gusev, K.; Hallin, A. L.; Hazama, R.; Hegai, A.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Keeter, K. J.; Kidd, M. F.; Kochetov, O.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; Leviner, L. E.; Loach, J. C.; MacMullin, S.; Martin, R. D.; Mertens, S.; Mizouni, L.; Nomachi, M.; Orrell, J. L.; O'Shaughnessy, C.; Overman, N. R.; Phillips, D. G., II; Poon, A. W. P.; Pushkin, K.; Radford, D. C.; Rielage, K.; Robertson, R. G. H.; Ronquest, M. C.; Schubert, A. G.; Shanks, B.; Shima, T.; Shirchenko, M.; Snavely, K. J.; Snyder, N.; Soin, A.; Strain, J.; Suriano, A. M.; Timkin, V.; Tornow, W.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Xu, W.; Yakushev, E.; Young, A. R.; Yu, C.-H.; Yumatov, V.

    2013-12-01

    The Majorana collaboration is searching for neutrinoless double beta decay using 76Ge, which has been shown to have a number of advantages in terms of sensitivities and backgrounds. The observation of neutrinoless double-beta decay would show that lepton number is violated and that neutrinos are Majorana particles and would simultaneously provide information on neutrino mass. Attaining sensitivities for neutrino masses in the inverted hierarchy region, 15 - 50 meV, will require large, tonne-scale detectors with extremely low backgrounds, at the level of ˜1 count/t-y or lower in the region of the signal. The Majorana collaboration, with funding support from DOE Office of Nuclear Physics and NSF Particle Astrophysics, is constructing the Demonstrator, an array consisting of 40 kg of p-type point-contact high-purity germanium (HPGe) detectors, of which ˜30 kg will be enriched to 87% in 76Ge. The Demonstrator is being constructed in a clean room laboratory facility at the 4850' level (4300 m.w.e.) of the Sanford Underground Research Facility (SURF) in Lead, SD. It utilizes a compact graded shield approach with the inner portion consisting of ultra-clean Cu that is being electroformed and machined underground. The primary aim of the Demonstrator is to show the feasibility of a future tonne-scale measurement in terms of backgrounds and scalability.

  9. Investigation of double beta decay of {sup 100}Mo to excited states of {sup 100}Ru

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, R. [IPHC, UPL, CNRS/IN2P3, F-67037 Strasbourg (France); Augier, C. [LAL, Univ Paris-Sud, CNRS/IN2P3, F-91405 Orsay (France); Barabash, A.S. [ITEP, Institute of Theoretical and Experimental Physics, 117218 Moscow (Russian Federation); Basharina-Freshville, A. [University College London, London WC1E 6BT (United Kingdom); Blondel, S. [LAL, Univ Paris-Sud, CNRS/IN2P3, F-91405 Orsay (France); Blot, S. [University of Manchester, Manchester M13 9PL (United Kingdom); Bongrand, M. [LAL, Univ Paris-Sud, CNRS/IN2P3, F-91405 Orsay (France); Brudanin, V. [JINR, Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Busto, J. [CPPM, Université de Marseille, CNRS/IN2P3, F-13288 Marseille (France); Caffrey, A.J. [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Čermák, P. [IEAP, Czech Technical University in Prague, CZ-12800 Prague (Czech Republic); Cerna, C. [CENBG, Université Bordeaux, CNRS/IN2P3, F-33175 Gradignan (France); Chapon, A. [LPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, F-14050 Caen (France); Chauveau, E. [University of Manchester, Manchester M13 9PL (United Kingdom); Dragounová, L. [National Radiation Protection Institute, CZ-14000 Prague (Czech Republic); Duchesneau, D. [LAPP, Université de Savoie, CNRS/IN2P3, F-74941 Annecy-le-Vieux (France); Durand, D. [LPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, F-14050 Caen (France); Egorov, V. [JINR, Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Eurin, G. [LAL, Univ Paris-Sud, CNRS/IN2P3, F-91405 Orsay (France); University College London, London WC1E 6BT (United Kingdom); Evans, J.J. [University of Manchester, Manchester M13 9PL (United Kingdom); and others

    2014-05-15

    Double beta decay of {sup 100}Mo to the excited states of daughter nuclei has been studied using a 600 cm{sup 3} low-background HPGe detector and an external source consisting of 2588 g of 97.5% enriched metallic {sup 100}Mo, which was formerly inside the NEMO-3 detector and used for the NEMO-3 measurements of {sup 100}Mo. The half-life for the two-neutrino double beta decay of {sup 100}Mo to the excited 0{sub 1}{sup +} state in {sup 100}Ru is measured to be T{sub 1/2}=[7.5±0.6(stat)±0.6(syst)]⋅10{sup 20} yr. For other (0ν+2ν) transitions to the 2{sub 1}{sup +}, 2{sub 2}{sup +}, 0{sub 2}{sup +}, 2{sub 3}{sup +} and 0{sub 3}{sup +} levels in {sup 100}Ru, limits are obtained at the level of ∼(0.25–1.1)⋅10{sup 22} yr.

  10. The Search for Neutrinoless Double Beta Decay with 130Te with CUORE-0

    International Nuclear Information System (INIS)

    Ouellet, Jonathan Loren

    2015-01-01

    This thesis describes the design, operation and results of an experimental search for neutrinoless double beta decay (0νββ) of 130 Te using the CUORE-0 detector. The discovery of 0νββ would have profound implications for particle physics and our understanding of the Universe. Its discovery would demonstrate the violation of lepton number and imply that neutrinos are Majorana fermions and therefore their own anti-particles. Combined with other experimental results, the discovery of 0νββ could also have implications for understanding the absolute neutrino mass scale as well as the presently unknown neutrino mass hierarchy. The CUORE experiment is a ton-scale search for 0νββ in 130 Te expected to begin operation in late 2015. The first stage of this experiment is a smaller 39-kg active-mass detector called CUORE-0. This detector contains 11 kg of 130 Te and operates in the Laboratori Nazionali del Gran Sasso lab in Italy from 2013-2015. The results presented here are based on a nat TeO 2 exposure of 35.2 kg·yr, or 9.8 kg·yr exposure of 130 Te collected between 2013-2015. We see no evidence of 0νββ and place an upper limit on the 0νββ decay rate of Γ 0νββ <0.25x10 24 yr 1 (90 % C.L.), corresponding to a lower limit on the half-life of T 1/2 0ν >2.8x10 24 yr (90 % C.L.). We combine the present result with the results of previous searches in 130 Te. Combining it with the 1.2 kg·Te exposure from the Three Towers Test run we place a half-life limit of T 1/2 03 ν>3.3x10 24 yr (90 % C.L.). And combining these results with the 19.75 kg·yr 130 Te exposure from Cuoricino, we place the strongest limit on the 0νββ half-life of 130 Te to date, at T 1/2 0ν >4.5x10 24 yr (90 % C.L.). Using the present nuclear matrix element calculations for 130 Te, this result corresponds to a 90 % upper limit range on the effective Majorana mass of m ββ <250-710 meV.

  11. Demonstration of Single-Barium-Ion Sensitivity for Neutrinoless Double-Beta Decay Using Single-Molecule Fluorescence Imaging

    Science.gov (United States)

    McDonald, A. D.; Jones, B. J. P.; Nygren, D. R.; Adams, C.; Álvarez, V.; Azevedo, C. D. R.; Benlloch-Rodríguez, J. M.; Borges, F. I. G. M.; Botas, A.; Cárcel, S.; Carrión, J. V.; Cebrián, S.; Conde, C. A. N.; Díaz, J.; Diesburg, M.; Escada, J.; Esteve, R.; Felkai, R.; Fernandes, L. M. P.; Ferrario, P.; Ferreira, A. L.; Freitas, E. D. C.; Goldschmidt, A.; Gómez-Cadenas, J. J.; González-Díaz, D.; Gutiérrez, R. M.; Guenette, R.; Hafidi, K.; Hauptman, J.; Henriques, C. A. O.; Hernandez, A. I.; Hernando Morata, J. A.; Herrero, V.; Johnston, S.; Labarga, L.; Laing, A.; Lebrun, P.; Liubarsky, I.; López-March, N.; Losada, M.; Martín-Albo, J.; Martínez-Lema, G.; Martínez, A.; Monrabal, F.; Monteiro, C. M. B.; Mora, F. J.; Moutinho, L. M.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Para, A.; Pérez, J.; Querol, M.; Repond, J.; Renner, J.; Riordan, S.; Ripoll, L.; Rodríguez, J.; Rogers, L.; Santos, F. P.; dos Santos, J. M. F.; Simón, A.; Sofka, C.; Sorel, M.; Stiegler, T.; Toledo, J. F.; Torrent, J.; Tsamalaidze, Z.; Veloso, J. F. C. A.; Webb, R.; White, J. T.; Yahlali, N.; NEXT Collaboration

    2018-03-01

    A new method to tag the barium daughter in the double-beta decay of Xe 136 is reported. Using the technique of single molecule fluorescent imaging (SMFI), individual barium dication (Ba++ ) resolution at a transparent scanning surface is demonstrated. A single-step photobleach confirms the single ion interpretation. Individual ions are localized with superresolution (˜2 nm ), and detected with a statistical significance of 12.9 σ over backgrounds. This lays the foundation for a new and potentially background-free neutrinoless double-beta decay technology, based on SMFI coupled to high pressure xenon gas time projection chambers.

  12. Demonstration of Single-Barium-Ion Sensitivity for Neutrinoless Double-Beta Decay Using Single-Molecule Fluorescence Imaging

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, A. D.; Jones, B. J. P.; Nygren, D. R.; Adams, C.; Álvarez, V.; Azevedo, C. D. R.; Benlloch-Rodríguez, J. M.; Borges, F. I. G. M.; Botas, A.; Cárcel, S.; Carrión, J. V.; Cebrián, S.; Conde, C. A. N.; Díaz, J.; Diesburg, M.; Escada, J.; Esteve, R.; Felkai, R.; Fernandes, L. M. P.; Ferrario, P.; Ferreira, A. L.; Freitas, E. D. C.; Goldschmidt, A.; Gómez-Cadenas, J. J.; González-Díaz, D.; Gutiérrez, R. M.; Guenette, R.; Hafidi, K.; Hauptman, J.; Henriques, C. A. O.; Hernandez, A. I.; Hernando Morata, J. A.; Herrero, V.; Johnston, S.; Labarga, L.; Laing, A.; Lebrun, P.; Liubarsky, I.; López-March, N.; Losada, M.; Martín-Albo, J.; Martínez-Lema, G.; Martínez, A.; Monrabal, F.; Monteiro, C. M. B.; Mora, F. J.; Moutinho, L. M.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Para, A.; Pérez, J.; Querol, M.; Repond, J.; Renner, J.; Riordan, S.; Ripoll, L.; Rodríguez, J.; Rogers, L.; Santos, F. P.; dos Santos, J. M. F.; Simón, A.; Sofka, C.; Sorel, M.; Stiegler, T.; Toledo, J. F.; Torrent, J.; Tsamalaidze, Z.; Veloso, J. F. C. A.; Webb, R.; White, J. T.; Yahlali, N.

    2018-03-01

    A new method to tag the barium daughter in the double beta decay of $^{136}$Xe is reported. Using the technique of single molecule fluorescent imaging (SMFI), individual barium dication (Ba$^{++}$) resolution at a transparent scanning surface has been demonstrated. A single-step photo-bleach confirms the single ion interpretation. Individual ions are localized with super-resolution ($\\sim$2~nm), and detected with a statistical significance of 12.9~$\\sigma$ over backgrounds. This lays the foundation for a new and potentially background-free neutrinoless double beta decay technology, based on SMFI coupled to high pressure xenon gas time projection chambers.

  13. The LUCIFER/CUPID-0 demonstrator: searching for the neutrinoless double-beta decay with Zn82Se scintillating bolometers

    Science.gov (United States)

    Artusa, D. R.; Balzoni, A.; Beeman, J. W.; Bellini, F.; Biassoni, M.; Brofferio, C.; Camacho, A.; Capelli, S.; Cardani, L.; Carniti, P.; Casali, N.; Cassina, L.; Clemenza, M.; Cremonesi, O.; Cruciani, A.; D'Addabbo, A.; Dafinei, I.; Di Domizio, S.; di Vacri, M. L.; Ferroni, F.; Gironi, L.; Giuliani, A.; Gotti, C.; Keppel, G.; Maino, M.; Mancuso, M.; Martinez, M.; Morganti, S.; Nagorny, S. S.; Nastasi, M.; Nisi, S.; Nones, C.; Orlandi, D.; Pagnanini, L.; Pallavicini, M.; Palmieri, V.; Pattavina, L.; Pavan, M.; Pessina, G.; Pettinacci, V.; Pirro, S.; Pozzi, S.; Previtali, E.; Puiu, A.; Rusconi, C.; Schäffner, K.; Tomei, C.; Vignati, M.; Zolotarova, A.

    2017-09-01

    Future experiments on neutrinoless double beta-decay with the aim of exploring the inverted hierarchy region have to employ detectors with excellent energy resolution and zero background in the energy region of interest. Cryogenic scintillating bolometers turn out to be a suitable candidate since they offer particle discrimination: the dual channel detection of the heat and the scintillation light signal allows for particle identification. In particular such detectors permit for a suppression of α-induced backgrounds, a key-issue for next-generation tonne-scale bolometric experiments. We report on the progress and current status of the LUCIFER/CUPID-0 demonstrator, the first array of scintillating bolometers based on enriched Zn82Se crystals which is expected to start data taking in 2016 and the potential of this detection technique for a future tonne-scale bolometric experiment after CUORE.

  14. Double beta decays studied by β-γ spectroscopy with a drift chamber

    International Nuclear Information System (INIS)

    Okada, K.; Ejiri, H.; Shibata, T.

    1986-01-01

    A large scale ultra low background β-γ spectrometer ELEGANTS-V for studying double beta decays(ββ) of /sup 100/Mo and/or /sup 150/Nd is designed and is now under construction. It consists of drift chambers for identification of tracks and vertex of two β-rays, thin NaI(T1) or plastic scintillators for β-rays energy and NaI(T1) counters for γ- and cosmic-rays. Specifications of the spectrometer; energy resolution, detection efficiency, possible background counting rate and available ββ sources, have been evaluated. The spectrometer has extremely high sensitivities of the neutrinoless ββ decays (0νββ), two neutrino ββ decays (2νββ) and neutrinoless ββ decays followed one boson (Majoron). It may detect 0νββ decays with half lives up to T/sub 1/2/ = 1.2- 1.7 . 10/sup 23/ year. This limit corresponds to one part of million for the Majoran neutrino mass in units of the electron mass and for the right-handed weak current in units of the left handed one

  15. Possible test of grand unification in the double beta-decay

    International Nuclear Information System (INIS)

    Faessler, A.

    1988-01-01

    The more successful grand unified theories predict that the neutrino is identical with its antiparticle and therefore is a Majorana neutrino which violates lepton number conservation. Such a neutrino should have a finite mass and also a small right handed weak interaction. If the double neutrinoless beta decay is observed with the full decay energy in the two electrons, it would establish that the electron neutrino is a Majorana particle. It is shown that the relativistic corrections of the nucleonic wave functions are essential for determining an upper limit of the right handedness from the measured lower limit of the life-time against the neutrinoless double beta decay. The upper limit for the right handedness of the weak interaction derived from the lower limit of the life-times against the neutrinoless beta decay is vertical stroke vertical stroke -8 and the upper limit for the neutrino mass is vertical stroke ν m>vertical stroke + -decay in proton rich nuclei, one can explain the long standing puzzle of the quenching of the Gamow-Teller strength in agreement with the data. (orig.)

  16. Few active mechanisms of the neutrinoless double beta-decay and effective mass of Majorana neutrinos

    CERN Document Server

    Simkovic, Fedor; Faessler, Amand

    2010-01-01

    It is well known that there exist many mechanisms that may contribute to neutrinoless double beta decay (0nbb-decay). By exploiting the fact that the associated nuclear matrix elements are target dependent we show that, given definite experimental results on a sufficient number of targets, one can determine or sufficiently constrain all lepton violating parameters including the mass term. As a specific example we show that, assuming the observation of the 0nbb-decay in three different nuclei, e.g., 76Ge, 100Mo and 130Te, and just three lepton number violating mechanisms (light and heavy neutrino mass mechanisms as well as R-parity breaking SUSY mechanism) being active, there are only four different solutions for the lepton violating parameters, provided that they are relatively real. In particular, assuming evidence of the 0nbb-decay of 76Ge, the effective neutrino Majorana mass |m_bb| can be almost uniquely extracted by utilizing other existing constraints (cosmological observations and tritium beta-decay ex...

  17. Neutrinoless double-beta decay in left-right symmetric models

    International Nuclear Information System (INIS)

    Picciotto, C.E.; Zahir, M.S.

    1982-06-01

    Neutrinoless double-beta decay is calculated via doubly charged Higgs, which occur naturally in left-right symmetric models. We find that the comparison with known half-lives yields values of phenomenological parameters which are compatible with earlier analyses of neutral current data. In particular, we obtain a right-handed gauge-boson mass lower bound of the order of 240 GeV. Using this result and expressions for neutrino masses derived in a parity non-conserving left-right symmetric model, we obtain msub(νsub(e)) < 1.5 eV, msub(νsub(μ)) < 0.05 MeV and msub(νsub(tau)) < 18 MeV

  18. Neutrino nuclear responses for double beta decays and astro neutrinos by charge exchange reactions

    Science.gov (United States)

    Ejiri, Hiroyasu

    2014-09-01

    Neutrino nuclear responses are crucial for neutrino studies in nuclei. Charge exchange reactions (CER) are shown to be used to study charged current neutrino nuclear responses associated with double beta decays(DBD)and astro neutrino interactions. CERs to be used are high energy-resolution (He3 ,t) reactions at RCNP, photonuclear reactions via IAR at NewSUBARU and muon capture reactions at MUSIC RCNP and MLF J-PARC. The Gamow Teller (GT) strengths studied by CERs reproduce the observed 2 neutrino DBD matrix elements. The GT and spin dipole (SD) matrix elements are found to be reduced much due to the nucleon spin isospin correlations and the non-nucleonic (delta isobar) nuclear medium effects. Impacts of the reductions on the DBD matrix elements and astro neutrino interactions are discussed.

  19. The NUMEN project: NUclear Matrix Elements for Neutrinoless double beta decay

    Science.gov (United States)

    Cappuzzello, F.; Agodi, C.; Cavallaro, M.; Carbone, D.; Tudisco, S.; Lo Presti, D.; Oliveira, J. R. B.; Finocchiaro, P.; Colonna, M.; Rifuggiato, D.; Calabretta, L.; Calvo, D.; Pandola, L.; Acosta, L.; Auerbach, N.; Bellone, J.; Bijker, R.; Bonanno, D.; Bongiovanni, D.; Borello-Lewin, T.; Boztosun, I.; Brunasso, O.; Burrello, S.; Calabrese, S.; Calanna, A.; Chávez Lomelí, E. R.; D'Agostino, G.; De Faria, P. N.; De Geronimo, G.; Delaunay, F.; Deshmukh, N.; Ferreira, J. L.; Fisichella, M.; Foti, A.; Gallo, G.; Garcia-Tecocoatzi, H.; Greco, V.; Hacisalihoglu, A.; Iazzi, F.; Introzzi, R.; Lanzalone, G.; Lay, J. A.; La Via, F.; Lenske, H.; Linares, R.; Litrico, G.; Longhitano, F.; Lubian, J.; Medina, N. H.; Mendes, D. R.; Moralles, M.; Muoio, A.; Pakou, A.; Petrascu, H.; Pinna, F.; Reito, S.; Russo, A. D.; Russo, G.; Santagati, G.; Santopinto, E.; Santos, R. B. B.; Sgouros, O.; da Silveira, M. A. G.; Solakci, S. O.; Souliotis, G.; Soukeras, V.; Spatafora, A.; Torresi, D.; Magana Vsevolodovna, R.; Yildirim, A.; Zagatto, V. A. B.

    2018-05-01

    The article describes the main achievements of the NUMEN project together with an updated and detailed overview of the related R&D activities and theoretical developments. NUMEN proposes an innovative technique to access the nuclear matrix elements entering the expression of the lifetime of the double beta decay by cross section measurements of heavy-ion induced Double Charge Exchange (DCE) reactions. Despite the fact that the two processes, namely neutrinoless double beta decay and DCE reactions, are triggered by the weak and strong interaction respectively, important analogies are suggested. The basic point is the coincidence of the initial and final state many-body wave functions in the two types of processes and the formal similarity of the transition operators. First experimental results obtained at the INFN-LNS laboratory for the 40Ca(18O,18Ne)40Ar reaction at 270MeV give an encouraging indication on the capability of the proposed technique to access relevant quantitative information. The main experimental tools for this project are the K800 Superconducting Cyclotron and MAGNEX spectrometer. The former is used for the acceleration of the required high resolution and low emittance heavy-ion beams and the latter is the large acceptance magnetic spectrometer for the detection of the ejectiles. The use of the high-order trajectory reconstruction technique, implemented in MAGNEX, allows to reach the experimental resolution and sensitivity required for the accurate measurement of the DCE cross sections at forward angles. However, the tiny values of such cross sections and the resolution requirements demand beam intensities much larger than those manageable with the present facility. The on-going upgrade of the INFN-LNS facilities in this perspective is part of the NUMEN project and will be discussed in the article.

  20. MAJORANA Neutrinoless Double-Beta Decay DUSEL R and D. Final report

    International Nuclear Information System (INIS)

    Wilkerson, John F.

    2009-01-01

    The Majorana research and development is addressing key issues and risks related to the collaboration's goal of undertaking a search for neutrinoless double-beta decay (0νββ) in 76 Ge using an array of hyper-pure Ge-diodes (HPGe). The observation of this decay would provide critical insight into our understanding of neutrinos, yielding definitive evidence that neutrinos are Majorana particles and providing information on the absolute mass of neutrinos. Achieving sensitivities to 0νββ decay half-lives on the order of 10 26 years requires ultra-low backgrounds in the 2039 keV region where a 0νββ decay peak would be observed. The goal of our R and D program has been to demonstrate the feasibility of all components of Majorana and to provide an integrated evaluation framework, allowing for optimization of these components in terms of background, background suppression, and signal detection efficiency and acceptance. This report covers work carried out by Majorana collaboration members at the University of Washington as part of the overall Majorana collaboration activities. Specifically the Majorana group at the University of Washington was involved in moving forward on demonstrating technology for clean large-scale cryostats and mounting the HPGe crystals in low-mass holders. The UW activities included assistance in the procurement and assembly of an electroforming system for large size cryostats, and design and fabrication of prototype crystal mounting hardware.

  1. A review of superheated superconducting granules as a detector for dark matter, solar neutrinos, monopoles and double beta decay

    International Nuclear Information System (INIS)

    Pretzl, K.P.

    1987-11-01

    The use of superheated superconducting granules as a particle detector is reviewed. Their application for the detection of dark matter, solar neutrinos, monopoles, and double beta decay is described. A status report on the experimental development of these devices is given. (orig.)

  2. Measuring nuclear reaction cross sections to extract information on neutrinoless double beta decay

    Science.gov (United States)

    Cavallaro, M.; Cappuzzello, F.; Agodi, C.; Acosta, L.; Auerbach, N.; Bellone, J.; Bijker, R.; Bonanno, D.; Bongiovanni, D.; Borello-Lewin, T.; Boztosun, I.; Branchina, V.; Bussa, M. P.; Calabrese, S.; Calabretta, L.; Calanna, A.; Calvo, D.; Carbone, D.; Chávez Lomelí, E. R.; Coban, A.; Colonna, M.; D'Agostino, G.; De Geronimo, G.; Delaunay, F.; Deshmukh, N.; de Faria, P. N.; Ferraresi, C.; Ferreira, J. L.; Finocchiaro, P.; Fisichella, M.; Foti, A.; Gallo, G.; Garcia, U.; Giraudo, G.; Greco, V.; Hacisalihoglu, A.; Kotila, J.; Iazzi, F.; Introzzi, R.; Lanzalone, G.; Lavagno, A.; La Via, F.; Lay, J. A.; Lenske, H.; Linares, R.; Litrico, G.; Longhitano, F.; Lo Presti, D.; Lubian, J.; Medina, N.; Mendes, D. R.; Muoio, A.; Oliveira, J. R. B.; Pakou, A.; Pandola, L.; Petrascu, H.; Pinna, F.; Reito, S.; Rifuggiato, D.; Rodrigues, M. R. D.; Russo, A. D.; Russo, G.; Santagati, G.; Santopinto, E.; Sgouros, O.; Solakci, S. O.; Souliotis, G.; Soukeras, V.; Spatafora, A.; Torresi, D.; Tudisco, S.; Vsevolodovna, R. I. M.; Wheadon, R. J.; Yildirin, A.; Zagatto, V. A. B.

    2018-02-01

    Neutrinoless double beta decay (0vββ) is considered the best potential resource to access the absolute neutrino mass scale. Moreover, if observed, it will signal that neutrinos are their own anti-particles (Majorana particles). Presently, this physics case is one of the most important research “beyond Standard Model” and might guide the way towards a Grand Unified Theory of fundamental interactions. Since the 0vββ decay process involves nuclei, its analysis necessarily implies nuclear structure issues. In the NURE project, supported by a Starting Grant of the European Research Council (ERC), nuclear reactions of double charge-exchange (DCE) are used as a tool to extract information on the 0vββ Nuclear Matrix Elements. In DCE reactions and ββ decay indeed the initial and final nuclear states are the same and the transition operators have similar structure. Thus the measurement of the DCE absolute cross-sections can give crucial information on ββ matrix elements. In a wider view, the NUMEN international collaboration plans a major upgrade of the INFN-LNS facilities in the next years in order to increase the experimental production of nuclei of at least two orders of magnitude, thus making feasible a systematic study of all the cases of interest as candidates for 0vββ.

  3. First test of an enriched {sup 116}CdWO{sub 4} scintillating bolometer for neutrinoless double-beta-decay searches

    Energy Technology Data Exchange (ETDEWEB)

    Barabash, A.S.; Konovalov, S.I.; Umatov, V.I. [ITEP, National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Danevich, F.A. [MSP, Institute for Nuclear Research, Kyiv (Ukraine); Gimbal-Zofka, Y. [Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, CSNSM, Orsay (France); Linnaeus University, Department of Physics and Electrical Engineering, Kalmar (Sweden); Giuliani, A.; Mancuso, M. [Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, CSNSM, Orsay (France); DISAT, Universita dell' Insubria, Como (Italy); Marcillac, P. de; Marnieros, S.; Novati, V.; Olivieri, E. [Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, CSNSM, Orsay (France); Nones, C.; Zolotarova, A.S. [DSM/IRFU, CEA Saclay, Gif-sur-Yvette Cedex (France); Poda, D.V. [MSP, Institute for Nuclear Research, Kyiv (Ukraine); Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, CSNSM, Orsay (France); Shlegel, V.N. [Nikolaev Institute of Inorganic Chemistry, Novosibirsk (Russian Federation); Tretyak, V.I. [MSP, Institute for Nuclear Research, Kyiv (Ukraine); INFN, Sezione di Roma, Rome (Italy)

    2016-09-15

    For the first time, a cadmium tungstate crystal scintillator enriched in {sup 116}Cd has been succesfully tested as a scintillating bolometer. The measurement was performed above ground at a temperature of 18 mK. The crystal mass was 34.5 g and the enrichment level ∝ 82 %. Despite a substantial pile-up effect due to above-ground operation, the detector demonstrated high energy resolution (2-7 keV FWHM in 0.2-2.6 MeV γ energy range and 7.5 keV FWHM at the {sup 116}Cd double-beta decay transition energy of 2813 keV), a powerful particle identification capability and a high level of internal radio-purity. These results prove that cadmium tungstate is a promising detector material for a next-generation neutrinoless double-beta decay bolometric experiment, like that proposed in the CUPID project (CUORE Upgrade with Particle IDentification). (orig.)

  4. Nd loaded liquid scintillator to search for 150Nd neutrinoless double beta decay

    International Nuclear Information System (INIS)

    Barabanov, I; Bezrukov, L; Yanovich, E; Cattadori, C; Danilov, N; Di Vacri, A; Ianni, A; Nisi, S; Ortica, F; Romani, A; Salvo, C; Smirnov, O

    2008-01-01

    The 150 Nd is considered one of the most attractive candidate for searching neutrinoless double beta (0νββ-) decay, thanks to its high Q-value (3.367 MeV), that makes the external background issue less significative respect to other isotopes, and favorable computed matrix elements. The isotopic abundance of this isotope in natural neodimium is only 5.6% and up to now, it has been investigated only in low mass experiments. The next step is to increase the sensitivity of the experiments using larger mass of neodymium (10 ton-1 kton). This could be possible with a Nd loaded liquid scintillator (LS). At the Gran Sasso National Laboratory (LNGS), a joint INFN (Istituto Nazionale di Fisica Nucleare) and INR (Institute for Nuclear Research of Moscow) working group has been carrying out since 2001 an R and D activity aiming to develop organic liquid scintillators (LS) doped with metals. The achieved know-how and the satisfactory results obtained both with In and Gd allowed to face the development and production of Nd doped LS. The development of metal doped LS is challenging because the metal has to be embedded in a proper organic system that makes it soluble in an organic solvent minimizing the impact of the metal-organic compound on the optical and scintillation properties of the LS. A further challenge in the case of Nd is the presence of absorption bands of this element in the optical region with a transparent region around 400 nm, which is about at the maximum of the scintillator emission spectrum. A 2.5 1 Nd loaded LS has been produced diluting an originally developed Nd-Carboxylic (Nd-CBX) salt in pseudocumene (PC), the solvent of the Borexino liquid scintillator. The measured light yield, at [Nd] = 6.5 g/1 and [PPO] = 1.5 g/1, is ∼ 75% of pure PC at the same fluor concentration (∼ 10000 ph/MeV). The Nd doped LS has been tested in a 2 1 quartz cell (wrapped by VM2000 reflector film) having dimensions 5x5x100 cm 3 . The light propagates in the cell by total

  5. Limits on neutrino-less double beta decay of 100Mo

    International Nuclear Information System (INIS)

    Ejiri, H.; Fushimi, K.; Hayashi, K.; Kishimoto, T.; Kudomi, N.; Ohsumi, H.; Okada, K.; Shima, T.; Tanaka, J.

    1996-01-01

    Exclusive measurements of neutrino-less double beta decays (0νββ) of 100 Mo were made by means of ELEGANT V. Most stringent lower limits on the half-lives for the ground-state transition were obtained for the 0νββ processes as T 1/2 0ν (m ν ) > 5.2 x 10 22 y, T 1/2 0ν (λ) > 3.9 x 10 22 y and T 1/2 0ν (η) > 5.1 x 10 22 y, for the mass term left angle m ν right angle, for the right-handed current terms of left angle λ right angle and left angle η right angle, respectively, and as T 1/2 0νB > 5.4 x 10 21 y for the process (0νββB) followed by a Majoron (B). These limits lead to the upper limits of left angle m ν right angle -6 , left angle η right angle -8 and left angle g B right angle -5 with g B being the coupling of B with the neutrino field. Limits on other possible processes beyond the standard theory are discussed. (orig.)

  6. Characterization of a ZnSe scintillating bolometer prototype for neutrinoless double beta decay search

    Directory of Open Access Journals (Sweden)

    Tenconi M.

    2014-01-01

    Full Text Available As proposed in the LUCIFER project, ZnSe crystals are attractive materials to realize scintillating bolometers aiming at the search for neutrinoless double beta decay of the promising isotope 82Se. However, the optimization of the ZnSe-based detectors is rather complex and requires a wide-range investigation of the crystal features: optical properties, crystalline quality, scintillation yields and bolometric behaviour. Samples tested up to now show problems in the reproducibility of crucial aspects of the detector performance. In this work, we present the results obtained with a scintillating bolometer operated aboveground at about 25 mK. The detector energy absorber was a single 1 cm3 ZnSe crystal. The good energy resolution of the heat channel (about 14 keV at 1460 keV and the excellent alpha/beta discrimination capability are very encouraging for a successful realization of the LUCIFER program. The bolometric measurements were completed by optical tests on the crystal (optical transmission and luminescence measurements down to 10 K and investigation of the crystalline structure. The work here described provides a set of parameters and procedures useful for a complete pre-characterization of ZnSe crystals in view of the realization of highly performing scintillating bolometers.

  7. A neutrino mass-mixing sum rule from SO(10) and neutrinoless double beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Buccella, F. [INFN, Sezione di Napoli,Complesso University Monte S. Angelo, I-80126 Napoli (Italy); Chianese, M. [INFN, Sezione di Napoli,Complesso University Monte S. Angelo, I-80126 Napoli (Italy); Dipartimento di Fisica Ettore Pancini, Università di Napoli Federico II,Complesso University Monte S. Angelo, I-80126 Napoli (Italy); Mangano, G. [INFN, Sezione di Napoli,Complesso University Monte S. Angelo, I-80126 Napoli (Italy); Miele, G.; Morisi, S.; Santorelli, P. [INFN, Sezione di Napoli,Complesso University Monte S. Angelo, I-80126 Napoli (Italy); Dipartimento di Fisica Ettore Pancini, Università di Napoli Federico II,Complesso University Monte S. Angelo, I-80126 Napoli (Italy)

    2017-04-03

    Minimal SO(10) grand unified models provide phenomenological predictions for neutrino mass patterns and mixing. These are the outcome of the interplay of several features, namely: i) the seesaw mechanism; ii) the presence of an intermediate scale where B-L gauge symmetry is broken and the right-handed neutrinos acquire a Majorana mass; iii) a symmetric Dirac neutrino mass matrix whose pattern is close to the up-type quark one. In this framework two natural characteristics emerge. Normal neutrino mass hierarchy is the only allowed, and there is an approximate relation involving both light-neutrino masses and mixing parameters. This differs from what occurring when horizontal flavour symmetries are invoked. In this case, in fact, neutrino mixing or mass relations have been separately obtained in literature. In this paper we discuss an example of such comprehensive mixing-mass relation in a specific realization of SO(10) and, in particular, analyse its impact on the expected neutrinoless double beta decay effective mass parameter 〈m{sub ee}〉, and on the neutrino mass scale. Remarkably a lower limit for the lightest neutrino mass is obtained (m{sub lightest}≳7.5×10{sup −4} eV, at 3 σ level).

  8. Minimally allowed neutrinoless double beta decay rates within an anarchical framework

    International Nuclear Information System (INIS)

    Jenkins, James

    2009-01-01

    Neutrinoless double beta decay (ββ0ν) is the only realistic probe of the Majorana nature of the neutrino. In the standard picture, its rate is proportional to m ee , the e-e element of the Majorana neutrino mass matrix in the flavor basis. I explore minimally allowed m ee values within the framework of mass matrix anarchy where neutrino parameters are defined statistically at low energies. Distributions of mixing angles are well defined by the Haar integration measure, but masses are dependent on arbitrary weighting functions and boundary conditions. I survey the integration measure parameter space and find that for sufficiently convergent weightings, m ee is constrained between (0.01-0.4) eV at 90% confidence. Constraints from neutrino mixing data lower these bounds. Singular integration measures allow for arbitrarily small m ee values with the remaining elements ill-defined, but this condition constrains the flavor structure of the model's ultraviolet completion. ββ0ν bounds below m ee ∼5x10 -3 eV should indicate symmetry in the lepton sector, new light degrees of freedom, or the Dirac nature of the neutrino.

  9. Probing new physics in the neutrinoless double beta decay using electron angular correlation

    Energy Technology Data Exchange (ETDEWEB)

    Ali, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Borisov, A.V.; Zhuridov, D.V. [Moscow State Univ. (Russian Federation). Faculty of Physics

    2007-06-15

    The angular correlation of the electrons emitted in the neutrinoless double beta decay (0{nu}2{beta}) is presented using a general Lorentz invariant effective Lagrangian for the leptonic and hadronic charged weak currents. We show that the coefficient K in the angular correlation d{gamma}/dcos {theta} {proportional_to}(1-K cos {theta}) is essentially independent of the nuclear matrix element models and present its numerical values for the five nuclei of interest ({sup 76}Ge, {sup 82}Se, {sup 100}Mo, {sup 130}Te, and {sup 136}Xe), assuming that the 0{nu}2{beta}-decays in these nuclei are induced solely by a light Majorana neutrino, {nu}{sub M}. This coefficient varies between K=0.82 (for the {sup 76}Ge nucleus) and K=0.88 (for the {sup 82}Se and {sup 100}Mo nuclei), calculated taking into account the effects from the nucleon recoil, the S and P-waves for the outgoing electrons and the electron mass. Deviation of K from its values derived here would indicate the presence of New Physics (NP) in addition to a light Majorana neutrino, and we work out the angular coefficients in several {nu}{sub M}+NP scenarios for the {sup 76}Ge nucleus. As an illustration of the correlations among the 0{nu}2{beta} observables (half-life T{sub 1/2}, the coefficient K, and the effective Majorana neutrino mass vertical stroke left angle m right angle vertical stroke) and the parameters of the underlying NP model, we analyze the left-right symmetric models, taking into account current phenomenological bounds on the right-handed W{sub R}-boson mass and the left-right mixing parameter {zeta}. (orig.)

  10. New underground neutrino observatory-GENIUS-in the new millenium for solar neutrinos, dark matter and double beta decay

    CERN Document Server

    Klapdor-Kleingrothaus, H V

    2001-01-01

    Double beta decay is indispensable to solve the question of the neutrino mass matrix together with nu oscillation experiments. The most sensitive experiment for eight years-the HEIDELBERG-MOSCOW experiment in Gran-Sasso-already now, with the experimental limit of (m/sub nu /)<0.26 eV excludes degenerate nu mass scenarios allowing neutrinos as hot dark matter in the Universe for the small angle MSW solution of the solar neutrino problem. It probes cosmological models including hot dark matter already now on the level of future satellite experiments MAP and PLANCK. It further probes many topics of beyond standard model physics at the TeV scale. Future experiments should give access to the multiTeV range and complement on many ways the search for new physics at future colliders like LHC and NLC. For neutrino physics GENIUS will allow to test almost all neutrino mass scenarios allowed by the present neutrino oscillation experiments. At the same time GENIUS will cover a wide range of the parameter space of pred...

  11. PandaX-III: Searching for neutrinoless double beta decay with high pressure 136Xe gas time projection chambers

    Science.gov (United States)

    Chen, Xun; Fu, ChangBo; Galan, Javier; Giboni, Karl; Giuliani, Franco; Gu, LingHui; Han, Ke; Ji, XiangDong; Lin, Heng; Liu, JiangLai; Ni, KaiXiang; Kusano, Hiroki; Ren, XiangXiang; Wang, ShaoBo; Yang, Yong; Zhang, Dan; Zhang, Tao; Zhao, Li; Sun, XiangMing; Hu, ShouYang; Jian, SiYu; Li, XingLong; Li, XiaoMei; Liang, Hao; Zhang, HuanQiao; Zhao, MingRui; Zhou, Jing; Mao, YaJun; Qiao, Hao; Wang, SiGuang; Yuan, Ying; Wang, Meng; Khan, Amir N.; Raper, Neill; Tang, Jian; Wang, Wei; Dong, JiaNing; Feng, ChangQing; Li, Cheng; Liu, JianBei; Liu, ShuBin; Wang, XiaoLian; Zhu, DanYang; Castel, Juan F.; Cebrián, Susana; Dafni, Theopisti; Garza, Javier G.; Irastorza, Igor G.; Iguaz, Francisco J.; Luzón, Gloria; Mirallas, Hector; Aune, Stephan; Berthoumieux, Eric; Bedfer, Yann; Calvet, Denis; d'Hose, Nicole; Delbart, Alain; Diakaki, Maria; Ferrer-Ribas, Esther; Ferrero, Andrea; Kunne, Fabienne; Neyret, Damien; Papaevangelou, Thomas; Sabatié, Franck; Vanderbroucke, Maxence; Tan, AnDi; Haxton, Wick; Mei, Yuan; Kobdaj, Chinorat; Yan, Yu-Peng

    2017-06-01

    Searching for the neutrinoless double beta decay (NLDBD) is now regarded as the topmost promising technique to explore the nature of neutrinos after the discovery of neutrino masses in oscillation experiments. PandaX-III (particle and astrophysical xenon experiment III) will search for the NLDBD of 136Xe at the China Jin Ping Underground Laboratory (CJPL). In the first phase of the experiment, a high pressure gas Time Projection Chamber (TPC) will contain 200 kg, 90% 136Xe enriched gas operated at 10 bar. Fine pitch micro-pattern gas detector (Microbulk Micromegas) will be used at both ends of the TPC for the charge readout with a cathode in the middle. Charge signals can be used to reconstruct the electron tracks of the NLDBD events and provide good energy and spatial resolution. The detector will be immersed in a large water tank to ensure 5 m of water shielding in all directions. The second phase, a ton-scale experiment, will consist of five TPCs in the same water tank, with improved energy resolution and better control over backgrounds.

  12. A large scale double beta and dark matter experiment: On the physics potential of GENIUS

    International Nuclear Information System (INIS)

    Klapdor-Kleingrothaus, H.V.; Hirsch, M.

    1997-01-01

    The physics potential of GENIUS, a recently proposed double beta decay anddark matter experiment is discussed. The experiment will allow to probe neutrino masses down to 10 -(2-3) eV. GENIUS will test the structure of the neutrino mass matrix, and therefore implicitly neutrino oscillation parameters comparable or superior in sensitivity to the best proposed dedicated terrestrial neutrino oscillation experiments. If the 10 -3 eV level is reached, GENIUS will even allow to test the large angle MSW solution of the solar neutrino problem. Even in its first stage GENIUS will confirm or rule out degenerate or inverted neutrino mass scenarios, which have been widely discussed in the literature as a possible solution to current hints on finite neutrino masses and also test the ν e ν μ hypothesis of the atmospheric neutrino problem.GENIUS would contribute to the search for R-parity violating SUSY and right-handed W-bosons on a scale similar or superior to LHC. In addition, GENIUS would largely improve the current 0νββ decay searches for R-parity conserving SUSY and leptoquarks. Concerning cold dark matter (CDM) search, the low background anticipated for GENIUS would, for thefirst time ever, allow to cover the complete MSSM neutralino parameter space, making GENIUS competitive to LHC in SUSY discovery. If GENIUS could find SUSY CDM as a by-product it would confirm that R-parity must be conserved exactly. GENIUS will thus be a major tool for future non-accelerator particle physics. (orig.)

  13. New limit for the half-life of double beta decay of {sup 94}Zr to the first excited state of {sup 94}Mo

    Energy Technology Data Exchange (ETDEWEB)

    Dokania, N.; Nanal, V.; Gupta, G.; Pillay, R.G.; Ghosh, C. [Tata Institute of Fundamental Research, Department of Nuclear and Atomic Physics, Mumbai (India); Pal, S. [Tata Institute of Fundamental Research, Pelletron Linac Facility, Mumbai (India); Rath, P.K. [University of Lucknow, Department of Physics, Lucknow (India); Tretyak, V.I. [Institute for Nuclear Research, Kyiv (Ukraine); Garai, A.; Krishnamoorthy, H. [Tata Institute of Fundamental Research, India-based Neutrino Observatory, Mumbai (India); Homi Bhabha National Institute, Mumbai (India); Raina, P.K. [Indian Institute of Technology, Department of Physics, Rupnagar (India); Bhushan, K.G. [Bhabha Atomic Research Centre, Technical Physics Division, Mumbai (India)

    2017-04-15

    Neutrinoless double beta decay is a phenomenon of fundamental interest in particle physics. The decay rates of double beta decay transitions to the excited states can provide input for Nuclear Transition Matrix Element calculations for the relevant two neutrino double beta decay process. It can be useful as supplementary information for the calculation of Nuclear Transition Matrix Element for the neutrinoless double beta decay process. In the present work, double beta decay of {sup 94}Zr to the 2{sup +}{sub 1} excited state of {sup 94}Mo at 871.1 keV is studied using a low background ∝ 230 cm{sup 3} HPGe detector. No evidence of this decay was found with a 232 g.y exposure of natural zirconium. The lower half-life limit obtained for the double beta decay of {sup 94}Zr to the 2{sup +}{sub 1} excited state of {sup 94}Mo is T{sub 1/2}(0ν + 2ν) > 3.4 x 10{sup 19} y at 90% C.L., an improvement by a factor of ∝ 4 over the existing experimental limit at 90% C.L. The sensitivity is estimated to be T{sub 1/2} (0ν + 2ν) > 2.0 x 10{sup 19} y at 90% C.L. using the Feldman-Cousins method. (orig.)

  14. Search for double beta decay processes of {sup 124}Xe with XENON100 and XENON1T

    Energy Technology Data Exchange (ETDEWEB)

    Fieguth, Alexander [IKP, Westfaelische-Wilhelms-Universitaet Muenster (Germany)

    2016-07-01

    Driven by the search for dark matter particles the XENON dark matter project recently installed its next stage multi-ton experiment XENON1T at the LNGS, which will probe the spin-indpendent-WIMP-Nucleon cross section down to 2.10{sup -47} cm{sup 2}. Besides its main purpose different particle physics topics can be addressed by the taken data. One example are the double beta decay processes of natural isotope {sup 124}Xe. This isotope is expected to decay via two-neutrino double electron capture (2νECEC) and due to its high Q-value of 2864 keV additionally through 2νβ{sup +}β{sup +}. Since these processes have not been detected so far, there is only a lower limit the respective half-life (e.g. > 4.7.10{sup 21} yr for 2νECEC). A detection of the 2νECEC is possible using XENON1T data by looking for its clear signature of secondary X-rays or Auger electrons and at least new lower half-life limits for all other decay channels can be obtained. While these processes are expected from standard model physics, a detection of a decay without neutrinos (e.g 0νECEC) would hint towards beyond the standard model physics and could derive conclusions on the neutrino mass. Until XENON1T is taking data, the search for all processes can be tested in the recorded data of its predecessor XENON100.

  15. Gaseous time projection chambers for rare event detection: results from the T-REX project. I. Double beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Irastorza, I.G.; Aznar, F.; Castel, J., E-mail: igor.irastorza@cern.ch, E-mail: faznar@unizar.es, E-mail: jfcastel@unizar.es [Grupo de Física Nuclear y Astropartículas, Departamento de Física Teórica, Universidad de Zaragoza, C/ P. Cerbuna 12, Zaragoza, 50009 (Spain); and others

    2016-01-01

    As part of the T-REX project, a number of R and D and prototyping activities have been carried out during the last years to explore the applicability of gaseous Time Projection Chambers (TPCs) with Micromesh Gas Structures (Micromegas) in rare event searches like double beta decay, axion research and low-mass WIMP searches. In both this and its companion paper, we compile the main results of the project and give an outlook of application prospects for this detection technique. While in the companion paper we focus on axions and WIMPs, in this paper we focus on the results regarding the measurement of the double beta decay (DBD) of {sup 136}Xe in a high pressure Xe (HPXe) TPC. Micromegas of the microbulk type have been extensively studied in high pressure Xe and Xe mixtures. Particularly relevant are the results obtained in Xe + trimethylamine (TMA) mixtures, showing very promising results in terms of gain, stability of operation, and energy resolution at high pressures up to 10 bar. The addition of TMA at levels of ∼ 1% reduces electron diffusion by up to a factor of 10 with respect to pure Xe, improving the quality of the topological pattern, with a positive impact on the discrimination capability. Operation with a medium size prototype of 30 cm diameter and 38 cm of drift (holding about 1 kg of Xe at 10 bar in the fiducial volume, enough to contain high energy electron tracks in the detector volume) has allowed to test the detection concept in realistic experimental conditions. Microbulk Micromegas are able to image the DBD ionization signature with high quality while, at the same time, measuring its energy deposition with a resolution of at least a ∼ 3% FWHM @ Q{sub ββ}. This value was experimentally demonstrated for high-energy extended tracks at 10 bar, and is probably improvable down to the ∼ 1% FWHM levels as extrapolated from low energy events. In addition, first results on the topological signature information (one straggling track ending in two

  16. Two neutrino double-beta decay of 100Mo to the first excited 0+ state in 100Ru

    International Nuclear Information System (INIS)

    Barabash, A.S.; Avignone, F.T. III; Guerard, C.K.; Umatov, V.I.

    1992-06-01

    Double-beta decay from the ground state of 100 Mo to the O + excited state at 1,130.29 keV in 100 Ru has been observed. A sample of 956q of Mo metal powder isotopically enriched to 98.468% of 100 Mo was counted in a Marinelli geometry with a well shielded, ultralow-background germanium detector. The cascade gamma-rays at 539.53 and 590.76 keV were observed. The resulting decay half-life is 1.1 -0.2 +0.3 x 10 21 y at 68% CL

  17. The effective neutrino mass of neutrinoless double-beta decays: how possible to fall into a well

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Zhi-zhong [University of Chinese Academy of Sciences, Institute of High Energy Physics and School of Physical Sciences, Beijing (China); Peking University, Center of High Energy Physics, Beijing (China); Zhao, Zhen-hua [Liaoning Normal University, Department of Physics, Dalian (China)

    2017-03-15

    The neutrinoless double-beta (0ν2β) decay is currently the only feasible process in particle and nuclear physics to probe whether massive neutrinos are the Majorana fermions. If they are of a Majorana nature and have a normal mass ordering, the effective neutrino mass term left angle m right angle {sub ee} of a 0ν2β decay may suffer significant cancellations among its three components and thus sink into a decline, resulting in a ''well'' in the three-dimensional graph of vertical stroke left angle m right angle {sub ee} vertical stroke against the smallest neutrino mass m{sub 1} and the relevant Majorana phase ρ. We present a new and complete analytical understanding of the fine issues inside such a well, and identify a novel threshold of vertical stroke left angle m right angle {sub ee} vertical stroke in terms of the neutrino masses and flavor mixing angles: vertical stroke left angle m right angle {sub ee} vertical stroke {sub *} = m{sub 3}sin{sup 2}θ{sub 13} in connection with tanθ{sub 12} = √(m{sub 1}/m{sub 2}) and ρ = π. This threshold point, which links the local minimum and maximum of vertical stroke left angle m right angle {sub ee} vertical stroke, can be used to signify observability or sensitivity of the future 0ν2β-decay experiments. Given current neutrino oscillation data, the possibility of vertical stroke left angle m right angle {sub ee} vertical stroke < vertical stroke left angle m right angle {sub ee} vertical stroke {sub *} is found to be very small. (orig.)

  18. The 76Ge(n,p)76Ga reaction and its relevance to searches for the neutrino-less double-beta decay of 76Ge

    Science.gov (United States)

    Tornow, W.; Bhike, Megha; Fallin, B.; Krishichayan, Fnu

    2015-10-01

    The 76Ge(n,p)76Ga reaction and the subsequent β decay of 76Ga to 76Ge has been used to excite the 3951.9 keV state of 76Ge, which decays by emission of a 2040.7 keV γ ray. Using HPGe detectors, the associated pulse-height signal may be undistinguishable from the potential signal produced in neutrino-less double-beta decay of 76Ge with its Q-value of 2039.0 keV. In the neutron energy range between 10 and 20 MeV the production cross section of the 2040.7 keV γ ray is approximately 0.1 mb. In the same experiment γ rays of energy 2037.9 keV resulting from the 76Ge(n, γ)77Ge reaction were clearly observed. Adding the 76Ge(n,n' γ)76Ge reaction, which also produces the 2040.7 keV γ ray with a cross section value of the order of 0.1 mb clearly shows that great care has to be taken to eliminate neutron-induced backgrounds in searches for neutrino-less double-beta decay of 76Ge. This work was supported by the U.S. DOE under Grant NO. DE-FG02-97ER41033.

  19. The Search for Neutrino-less Double-Beta Decay: A Decade of Discovery or Despair?

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    The search for "neutrino-less double-bete decay" decay in candidate nuclear isotopes remains a central focus in contemporary particle physics, with the main goal of establishing whether the neutrino is its own anti-particle. A positive detection would also establish the presence of lepton number violation in this decay, and suggest the existence of processes beyond the Standard Model and reach of terrestrial accelerators. With the discovery and quantitative assessment of neutrino flavor oscillation, guaranteeing the presence of a non-zero neutrino mass – a requirement for "neutrino-less double-bete decay" decay to occur – motivation has surged. In a review of the present diverse and vigorous current experimental situation, I must focus on just a few approaches and candidate isotopes, in particular on 136Xe and a new experimental effort, NEXT, exploiting the unfamiliar phenomenon of electroluminescence. But, even if the neutrino is its own anti-particle, experiments may see no decays! Stil...

  20. Radiative corrections to light neutrino masses in low scale type I seesaw scenarios and neutrinoless double beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Pavon, J. [SISSA and INFN - sezione di Trieste, via Bonomea 265, 34136 Trieste (Italy); Molinaro, E. [CP-Origins and Danish Institute for Advanced Study, University of Southern Denmark,Campusvej 55, DK-5230 Odense M (Denmark); Petcov, S.T. [SISSA and INFN - sezione di Trieste, via Bonomea 265, 34136 Trieste (Italy); Kavli IPMU (WPI), University of Tokyo, 5-1-5 Kashiwanoha, 277-8583 Kashiwa (Japan)

    2015-11-05

    We perform a detailed analysis of the one-loop corrections to the light neutrino mass matrix within low scale type I seesaw extensions of the Standard Model and their implications in experimental searches for neutrinoless double beta decay. We show that a sizable contribution to the effective Majorana neutrino mass from the exchange of heavy Majorana neutrinos is always possible, provided one requires a fine-tuned cancellation between the tree-level and one-loop contribution to the light neutrino masses. We quantify the level of fine-tuning as a function of the seesaw parameters and introduce a generalisation of the Casas-Ibarra parametrization of the neutrino Yukawa matrix, which easily allows to include the one-loop corrections to the light neutrino masses.

  1. Extending two Higgs doublet models for two-loop neutrino mass generation and one-loop neutrinoless double beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhen, E-mail: liu-zhen@sjtu.edu.cn; Gu, Pei-Hong, E-mail: peihong.gu@sjtu.edu.cn

    2017-02-15

    We extend some two Higgs doublet models, where the Yukawa couplings for the charged fermion mass generation only involve one Higgs doublet, by two singlet scalars respectively carrying a singly electric charge and a doubly electric charge. The doublet and singlet scalars together can mediate a two-loop diagram to generate a tiny Majorana mass matrix of the standard model neutrinos. Remarkably, the structure of the neutrino mass matrix is fully determined by the symmetric Yukawa couplings of the doubly charged scalar to the right-handed leptons. Meanwhile, a one-loop induced neutrinoless double beta decay can arrive at a testable level even if the electron neutrino has an extremely small Majorana mass. We also study other experimental constraints and implications including some rare processes and Higgs phenomenology.

  2. Extending two Higgs doublet models for two-loop neutrino mass generation and one-loop neutrinoless double beta decay

    Directory of Open Access Journals (Sweden)

    Zhen Liu

    2017-02-01

    Full Text Available We extend some two Higgs doublet models, where the Yukawa couplings for the charged fermion mass generation only involve one Higgs doublet, by two singlet scalars respectively carrying a singly electric charge and a doubly electric charge. The doublet and singlet scalars together can mediate a two-loop diagram to generate a tiny Majorana mass matrix of the standard model neutrinos. Remarkably, the structure of the neutrino mass matrix is fully determined by the symmetric Yukawa couplings of the doubly charged scalar to the right-handed leptons. Meanwhile, a one-loop induced neutrinoless double beta decay can arrive at a testable level even if the electron neutrino has an extremely small Majorana mass. We also study other experimental constraints and implications including some rare processes and Higgs phenomenology.

  3. Novel measurement method of heat and light detection for neutrinoless double beta decay

    Science.gov (United States)

    Kim, G. B.; Choi, J. H.; Jo, H. S.; Kang, C. S.; Kim, H. L.; Kim, I.; Kim, S. R.; Kim, Y. H.; Lee, C.; Lee, H. J.; Lee, M. K.; Li, J.; Oh, S. Y.; So, J. H.

    2017-05-01

    We developed a cryogenic phonon-scintillation detector to search for 0νββ decay of 100Mo. The detector module, a proto-type setup of the AMoRE experiment, has a scintillating 40Ca100MoO4 absorber composed of 100Mo-enriched and 48Ca-depleted elements. This new detection method employs metallic magnetic calorimeters (MMCs) as the sensor technology for simultaneous detection of heat and light signals. It is designed to have high energy and timing resolutions to increase sensitivity to probe the rare event. The detector, which is composed of a 200 g 40Ca100MoO4 crystal and phonon/photon sensors, showed an energy resolution of 8.7 keV FWHM at 2.6 MeV, with a weak temperature dependence in the range of 10-40 mK. Using rise-time and mean-time parameters and light/heat ratios, the proposed method showed a strong capability of rejecting alpha-induced events from electron events with as good as 20σ separation. Moreover, we discussed how the signal rise-time improves the rejection efficiency for random coincidence signals.

  4. Beta-gamma spectroscopy for double beta decays and Lepton number conservation

    International Nuclear Information System (INIS)

    Ejiri, H.; Takahashi, N.; Shibata, T.; Nagai, Y.; Okada, K.; Kamikubota, N.; Watanabe, T.

    1984-01-01

    In this paper neutrino-less double β decays (Oν ββ) of /sup 76/Ge were studied by means of the newly developed ELEGANTS (Electron gamma-ray neutrino spectrometer). It consists of a 171 cc pure Ge detector surrounded bu a big 4π-NaI detector, and active and inactive filters. Measurement of both the electron signal from the Ge detector and γ-ray signals from the 4π-NaI detector made it possible to select the true double decay events from background events due to the other radio-active isotopes and cosmic rays. The ELEGANTS showed the highest sensitivity for detecting the neutrino-less double β decay. The preliminary data obtained so far give a lower limit of the half life T/sub 1/2/≥2.2 10/sup 22/y for the O/sup +/→O/sup +/ Oν ββ decay and T/sub 1/2/ ≥1.5.10/sup 22/y for the O/sup +/→2/sup +/ Oν ββ decay of /sup 76/Ge

  5. Study of tracking detector of NEMO3 experiment - simulation of the measurement of the ultra low {sup 208}Tl radioactivity in the source foils used as neutrinoless double beta decay emitters in NEMO3 experiment; Etude du detecteur de traces de l'experience NEMO3. Simulation de la mesure de l'ultra-faible radioactivite en {sup 208}Tl des sources de l'experience NEMO3 candidates a la double desintegration {beta} sans emission de neutrino

    Energy Technology Data Exchange (ETDEWEB)

    Errahmane, K

    2001-04-01

    The purpose of NEMO3 experiment is the research of the neutrinoless double beta decay. This low energy process can sign the massive and Majorana nature of neutrino. This experiment, with a very low radioactive background and containing 10 kg of enriched isotopes, studies mainly {sup 100}Mo. Installed at the Frejus underground laboratory, NEMO3 is a cylindrical detector, which consists in very thin central source foils, in a tracking detector made up of vertical drift cells operating in Geiger mode, in a calorimeter and in a suitable shielding. This thesis is divided in two different parts. The first part is a full study of the features of the tracking detector. With a prototype composed of 9 drift cells, we characterised the longitudinal and transverse reconstruction of position of the ionisation created by a LASER. With the first 3 modules under operation, we used radioactive external neutron sources to measure the transverse resolution of ionisation position in a drift cell for high energy electrons. To study the vertex reconstruction on the source foil, sources of {sup 207}Bi, which produced conversion electrons, were used inside the 3 modules. The second part of this thesis, we show, with simulations, that we can measure, with NEMO3 detector itself, the ultra low level of contamination in {sup 208}Tl of the source foil, which comes from the natural radioactive chain of thorium. Using electron-photons channels, we can obtain the {sup 208}Tl activity in the sources. With an analysis on the energy and on the time of flight of particles, NEMO3 is able to reach a sensitivity of 20{mu}Bq/kg after only 2 months of measurement. This sensitivity is the maximum {sup 208}Tl activity, which we accepted for the sources in the NEMO3 proposal. (author)

  6. Neutrino mass, the right-handed interaction and the double beta decay, 1

    International Nuclear Information System (INIS)

    Doi, Masaru; Kotani, Tsuneyuki; Nishiura, Hiroyuki; Okuda, Kazuko; Takasugi, Eiichi.

    1981-01-01

    In order to shed light on the important question whether neutrinos are Dirac or Majorana particles, the double β decay is investigated within a general form of weak interaction Hamiltonian. The systematic study is made on the 0 + → J + nuclear transitions for the two-neutrino and neutrinoless modes both in the two-nucleon- and N*-mechanism. It is shown that for the neutrinoless mode, only the 0 + → 0 + transition in the two-nucleon mechanism is allowed if there is no right-handed interaction. When the right-handed interaction gives a sizable contribution, the role of the 0 + → 2 + transition becomes as important as the 0 + → 0 + transition. The comparison of our results with the previous ones is also presented. (author)

  7. Neutrino mass, the right-handed interaction and the double beta decay, 2

    International Nuclear Information System (INIS)

    Doi, Masaru; Kotani, Tsuneyuki; Nishiura, Hiroyuki; Okuda, Kazuko; Takasugi, Eiichi.

    1981-01-01

    Based on the formulae for the double β decay obtained in the previous paper, the general properties of 0 + → J + transitions are discussed and the analysis of the experimental data is presented. It is found that, for the two neutrino mode, the 0 + → 0 + transition in the two nucleon (2n)-mechanism dominates over the 0 + → 2 + transition as well as the contribution from the N*-mechanism. For the neutrinoless mode, only the 0 + → 0 + transition in the 2n-mechanism is allowed if there is no right-handed interaction. When the right-handed interaction gives a sizable contribution, the role of the 0 + → 2 + transition becomes as important as the 0 + → 0 + transition in this mode. It is concluded that the experimental data on the ratio of the 128 Te to 130 Te half-lives by Hennecke et al. suggest that neutrinos are Majorana particles, if we take the Vergados estimation of the nuclear matrix elements. Moreover, we find that the weighted average of neutrino masses is around 34 eV if there is no right-handed interaction. (author)

  8. Predictions for the Majorana CP violation phases in the neutrino mixing matrix and neutrinoless double beta decay

    Science.gov (United States)

    Girardi, I.; Petcov, S. T.; Titov, A. V.

    2016-10-01

    We obtain predictions for the Majorana phases α21 / 2 and α31 / 2 of the 3 × 3 unitary neutrino mixing matrix U = Ue† Uν, Ue and Uν being the 3 × 3 unitary matrices resulting from the diagonalisation of the charged lepton and neutrino Majorana mass matrices, respectively. We focus on forms of Ue and Uν permitting to express α21 / 2 and α31 / 2 in terms of the Dirac phase δ and the three neutrino mixing angles of the standard parametrisation of U, and the angles and the two Majorana-like phases ξ21 / 2 and ξ31 / 2 present, in general, in Uν. The concrete forms of Uν considered are fixed by, or associated with, symmetries (tri-bimaximal, bimaximal, etc.), so that the angles in Uν are fixed. For each of these forms and forms of Ue that allow to reproduce the measured values of the three neutrino mixing angles θ12, θ23 and θ13, we derive predictions for phase differences (α21 / 2 -ξ21 / 2), (α31 / 2 -ξ31 / 2), etc., which are completely determined by the values of the mixing angles. We show that the requirement of generalised CP invariance of the neutrino Majorana mass term implies ξ21 = 0 or π and ξ31 = 0 or π. For these values of ξ21 and ξ31 and the best fit values of θ12, θ23 and θ13, we present predictions for the effective Majorana mass in neutrinoless double beta decay for both neutrino mass spectra with normal and inverted ordering.

  9. LUCIFER: A Scintillating Bolometer Array for the Search of Neutrinoless Double Beta Decay

    International Nuclear Information System (INIS)

    Cardani, L

    2012-01-01

    One of the main limitations in the study of 0vDBD is the presence of a radioactive background in the energy region of interest. This limit can be overcome by the technological approach of the LUCIFER project, which is based the double read-out of the heat and scintillation light produced by ZnSe scintillating bolometers. This experiment aims at a background lower than 10 −3 counts/keV/kg/y in the energy region of the 0νDBD of 82 Se. Such a low background level will provide a sensitivity on the effective neutrino mass of the order of 100 meV. In the following, the results of the recent R and D activity are discussed, the single module for the LUCIFER detector is described, and the process for the production of 82 Se-enriched ZnSe crystals is presented.

  10. Double beta decay of Uranium-238: Proton reactions of 238U in 5--12 MeV range. Final report, April 15, 1987--March 31, 1992

    International Nuclear Information System (INIS)

    Turkevich, A.; Economou, T.E.

    1993-01-01

    This report is in two parts. The first part reports on the experimental work determining the half-life for double beta decay of 238 U to 238 PU to be (2.0 ± 0.6) x 10 21 years. This is the first evidence for a third mode of decay of this heaviest naturally occurring nucleus. This rate is about 10 6 times slower than spontaneous fission, which itself is about 10 6 times slower than alpha decay. The implication of this double beta decay to neutrino masses depends on uncertain theoretical calculations of the rate for such a heavy nucleus. The second part reports on yields of principal fission products from 5.6, 7.3, 9.4, and 11.5 MeV proton interactions with 238 U. The yields at 11.5 MeV are similar to those from 14 MeV neutron fission of 238 U. At the same time, the production cross sections of 238 Np at the same energies are determined. This nuclide is produced as often as fission at the lowest energy but only 3.8% as often at the highest energy

  11. New results for double-beta decay of {sup 100}Mo to excited final states of {sup 100}Ru using the TUNL-ITEP apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Kidd, M.F.; Esterline, J.H. [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Tornow, W. [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States)], E-mail: tornow@tunl.duke.edu; Barabash, A.S.; Umatov, V.I. [Institute for Theoretical and Experimental Physics, 117259 Moscow (Russian Federation)

    2009-04-15

    The coincidence detection efficiency of the TUNL-ITEP apparatus designed for measuring half-life times of two-neutrino double-beta (2{nu}{beta}{beta}) decay transitions to excited final states in daughter nuclei has been measured with a factor of 2.4 improved accuracy. In addition, the previous measuring time of 455 days for the study of the {sup 100}Mo 2{nu}{beta}{beta} decay to the first excited 0{sub 1}{sup +} state in {sup 100}Ru has been increased by 450 days, and a new result (combined with the previous measurement obtained with the same apparatus) for this transition is presented: T{sub 1/2}=[5.5{sub -0.8}{sup +1.2}(stat){+-}0.3(syst)]x10{sup 20} yr. Measured 2{nu}{beta}{beta} decay half-life times to excited states can be used to test the reliability of nuclear matrix element calculations needed for determining the effective neutrino mass from zero-neutrino double-beta decay data. We also present new limits for transitions to higher excited states in {sup 100}Ru which, if improved, may be of interest for more exotic conjectures, like a bosonic component to neutrino statistics.

  12. New results for double-beta decay of 100Mo to excited final states of 100Ru using the TUNL-ITEP apparatus

    International Nuclear Information System (INIS)

    Kidd, M.F.; Esterline, J.H.; Tornow, W.; Barabash, A.S.; Umatov, V.I.

    2009-01-01

    The coincidence detection efficiency of the TUNL-ITEP apparatus designed for measuring half-life times of two-neutrino double-beta (2νββ) decay transitions to excited final states in daughter nuclei has been measured with a factor of 2.4 improved accuracy. In addition, the previous measuring time of 455 days for the study of the 100 Mo 2νββ decay to the first excited 0 1 + state in 100 Ru has been increased by 450 days, and a new result (combined with the previous measurement obtained with the same apparatus) for this transition is presented: T 1/2 =[5.5 -0.8 +1.2 (stat)±0.3(syst)]x10 20 yr. Measured 2νββ decay half-life times to excited states can be used to test the reliability of nuclear matrix element calculations needed for determining the effective neutrino mass from zero-neutrino double-beta decay data. We also present new limits for transitions to higher excited states in 100 Ru which, if improved, may be of interest for more exotic conjectures, like a bosonic component to neutrino statistics.

  13. Surface Alpha Interactions in P-Type Point-Contact HPGe Detectors: Maximizing Sensitivity of 76Ge Neutrinoless Double-Beta Decay Searches

    Science.gov (United States)

    Gruszko, Julieta

    Though the existence of neutrino oscillations proves that neutrinos must have non-zero mass, Beyond-the-Standard-Model physics is needed to explain the origins of that mass. One intriguing possibility is that neutrinos are Majorana particles, i.e., they are their own anti-particles. Such a mechanism could naturally explain the observed smallness of the neutrino masses, and would have consequences that go far beyond neutrino physics, with implications for Grand Unification and leptogenesis. If neutrinos are Majorana particles, they could undergo neutrinoless double-beta decay (0nBB), a hypothesized rare decay in which two antineutrinos annihilate one another. This process, if it exists, would be exceedingly rare, with a half-life over 1E25 years. Therefore, searching for it requires experiments with extremely low background rates. One promising technique in the search for 0nBB is the use of P-type point-contact (P-PC) high-purity Germanium (HPGe) detectors enriched in 76Ge, operated in large low-background arrays. This approach is used, with some key differences, by the MAJORANA and GERDA Collaborations. A problematic background in such large granular detector arrays is posed by alpha particles incident on the surfaces of the detectors, often caused by 222Rn contamination of parts or of the detectors themselves. In the MAJORANA DEMONSTRATOR, events have been observed that are consistent with energy-degraded alphas originating near the passivated surface of the detectors, leading to a potential background contribution in the region-of-interest for neutrinoless double-beta decay. However, it is also observed that when energy deposition occurs very close to the passivated surface, high charge trapping occurs along with subsequent slow charge re-release. This leads to both a reduced prompt signal and a measurable change in slope of the tail of a recorded pulse. Here we discuss the characteristics of these events and the development of a filter that can identify the

  14. Addendum to: ''The SNO solar neutrino data, neutrinoless double beta-decay and neutrino mass spectrum'' [Phys. Lett. B 544 (2002) 239

    International Nuclear Information System (INIS)

    Pascoli, S.; Petcov, S.T.

    2004-01-01

    We update our earlier study [Phys. Lett. B 544 (2002) 239], which was inspired by the 2002 SNO data, on the implications of the results of the solar neutrino experiments for the predictions of the effective Majorana mass in neutrinoless double beta-decay, vertical bar vertical bar. We obtain predictions for vertical bar vertical bar using the values of the neutrino oscillation parameters, obtained in the analyzes of the presently available solar neutrino data, including the just published data from the salt phase of the SNO experiment, the atmospheric neutrino and CHOOZ data and the first data from the KamLAND experiment. The main conclusion reached in the previous study [Phys. Lett. B 544 (2002) 239] of the existence of significant lower bounds on vertical bar vertical bar in the cases of neutrino mass spectrum of inverted hierarchical (IH) and quasi-degenerate (QD) type is strongly reinforced by fact that combined solar neutrino data (i) exclude the possibility of cos2θ o =0 at more than 5 s.d., (ii) determine as a best fit value cos2θ o =0.40, and (iii) imply at 95% C.L. that cos2θ o ∼>0.22, θ o being the solar neutrino mixing angle. For the IH and QD spectra we get using, e.g., the 90% C.L. allowed ranges of values of the oscillation parameters, vertical bar vertical bar ∼>0.010 eV and vertical bar vertical bar ∼>0.043 eV, respectively. We also comment on the possibility to get information on the neutrino mass spectrum and on the CP-violation in the lepton sector due to Majorana CP-violating phases

  15. Results of the BiPo-1 prototype for radiopurity measurements for the SuperNEMO double beta decay source foils

    Energy Technology Data Exchange (ETDEWEB)

    Argyriades, J. [LAL, Universite Paris-Sud, CNRS/IN2P3, F-91405 Orsay (France); Arnold, R. [IPHC, Universite de Strasbourg, CNRS/IN2P3, F-67037 Strasbourg (France); Augier, C. [LAL, Universite Paris-Sud, CNRS/IN2P3, F-91405 Orsay (France); Baker, J. [INL, Idaho Falls, ID 83415 (United States); Barabash, A.S. [Institute of Theoretical and Experimental Physics, 117259 Moscow (Russian Federation); Basharina-Freshville, A. [University College London, WC1E 6BT London (United Kingdom); Bongrand, M.; Bourgeois, C.; Breton, D.; Briere, M.; Broudin-Bay, G. [LAL, Universite Paris-Sud, CNRS/IN2P3, F-91405 Orsay (France); Brudanin, V.B. [Joint Institute for Neear Research, 141980 Dubna (Russian Federation); Caffrey, A.J. [INL, Idaho Falls, ID 83415 (United States); Carcel, S. [Instituto de Fisica Corpuscular, CSIC, Universidad de Valencia, Valencia (Spain); Cebrian, S. [Instituto de Fisica Nuclear y Altas Energias, Universidad de Zaragoza, Zaragoza (Spain); Chapon, A. [LPC Caen, ENSICAEN, Universite de Caen, CNRS/IN2P3, F-14032 Caen (France); Chauveau, E. [CNRS/IN2P3, Centre d' Etudes Nucleaires de Bordeaux Gradignan, UMR 5797, F-33175 Gradignan (France); Universite de Bordeaux, Centre d' Etudes Nucleaires de Bordeaux Gradignan, UMR 5797, F-33175 Gradignan (France); Dafni, Th. [Instituto de Fisica Nuclear y Altas Energias, Universidad de Zaragoza, Zaragoza (Spain); Diaz, J. [Instituto de Fisica Corpuscular, CSIC, Universidad de Valencia, Valencia (Spain); Durand, D. [LPC Caen, ENSICAEN, Universite de Caen, CNRS/IN2P3, F-14032 Caen (France)

    2010-10-01

    The development of BiPo detectors is dedicated to the measurement of extremely high radiopurity in {sup 208}Tl and {sup 214}Bi for the SuperNEMO double beta decay source foils. A modular prototype, called BiPo-1, with 0.8 m{sup 2} of sensitive surface area, has been running in the Modane Underground Laboratory since February, 2008. The goal of BiPo-1 is to measure the different components of the background and in particular the surface radiopurity of the plastic scintillators that make up the detector. The first phase of data collection has been dedicated to the measurement of the radiopurity in {sup 208}Tl. After more than one year of background measurement, a surface activity of the scintillators of A({sup 208}Tl)=1.5{mu}Bq/m{sup 2} is reported here. Given this level of background, a larger BiPo detector having 12 m{sup 2} of active surface area, is able to qualify the radiopurity of the SuperNEMO selenium double beta decay foils with the required sensitivity of A({sup 208}Tl)<2{mu}Bq/kg (90% C.L.) with a six month measurement.

  16. Results of a search for the neutrinoless double beta decay of 76Ge to the first excited state of 76Se

    International Nuclear Information System (INIS)

    Morales, A.; Morales, J.; Nunez-Lagos, R.; Puimedon, J.; Villar, J.A.; Larrea, A.

    1988-01-01

    A search for the neutrinoless double beta decay of 76 Ge to the first excited state E=559.1 KeV of 76 Se has been carried out in the Frejus tunnel using a coincidence technique between Ge and NaI detectors. No peak has been observed in the electron energy spectrum at the value of 1482 KeV. That implies a half-life lower limit of 6 x 10 22 years. However the experimental data display a coincidence, at the level of 2.5 σ, between an energy deposition of 1483.7 ± 0.5 KeV in the Ge detector and 558 ± 15 KeV in the NaI detector. The main features of such a coincidence effect are analysed and, in spite of its small statistical significance, its possible interpretation is discussed

  17. Nuclear transparency and double beta decay of molybdenum 100. Annual progress report, February 1, 1994--January 31, 1995

    International Nuclear Information System (INIS)

    Nicholson, H.W.

    1994-07-01

    During the past year, work has been nearly completed on a Physical Review paper with final results of a search for neutrinoless double-β decay of molybdenum 100 with collaborators from LBL, the University of New Mexico, and the Idaho Engineering Laboratory. Major part of this work was to carry out an extensive statistical analysis of the data. During the spring of 1994, Sean Sutton spent the majority of this time at Orsay, France working on NEMO 3, a next generation double-β decay experiment involving molybdenum 100 and other isotopes. Nicholson and Sutton have designed and built a scintillating fiber hadoscope used in the May--July AGS high energy physics run at BNL in AGS experiment 850 to measure color transparency. Professor Nicholson has had primary responsibility for the design, construction, and installation of this hodoscope and for overseeing the construction and installation of two scintillating counter upstream hodoscopes. To date, the fiber hodoscope had handled total beam rates exceeding 20 MHz with beam rates as high as 10 MHz on a single fiber. Light intensification and readout electronics to be used in the CsI(Tl) calorimeter in the SLAC B factory has just begun this summer

  18. Excitation functions of proton-induced reactions on natural Nd and production of radionuclides relevant for double beta decay: Completing measurement in 5-35 MeV energy range

    Czech Academy of Sciences Publication Activity Database

    Lebeda, Ondřej; Lozza, V.; Petzoldt, J.; Štursa, Jan; Zdychová, Vlasta; Zuber, K.

    2014-01-01

    Roč. 929, SEP (2014), s. 129-142 ISSN 0375-9474 R&D Projects: GA MŠk(XE) LM2011019 Institutional support: RVO:61389005 Keywords : proton activation * double beta decay * cross-section * production rates * natural neodymium Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 2.202, year: 2014

  19. Study of the background of the neutrinoless double {beta} decay with the detector NEMO 2: contribution arising from the radon diffusion and internal pollution of the source {sup 214}Bi have been estimated; Etude du bruit de fond de la double-desintegration {beta} sans emission de neutrino dans le detecteur NEMO 2: contribution du radon ambiant et mesure de la pollution interne de la source en {sup 214}Bi

    Energy Technology Data Exchange (ETDEWEB)

    Mauger, F.

    1995-02-01

    The NEMO experiment is designed to understand the nature of the neutrino by studying the double beta decay of Mo-100 which is related to the Majorana neutrino effective mass. In this kind of experiment a good understanding of the different sources of background is crucial as only few events are expected per year at the required level of sensitivity. In this thesis we present the main theoretical and experimental aspects of the measurement of the neutrinoless double beta decay of Mo-100 with the prototype detector NEMO2. The goal of this study is to obtain a realistic interpretation of the few events detected at high energy in the two-electron channel as a background to neutrinoless double beta decay. In particular, the contribution arising from Bi-214 has been investigated. These events have been selected and analysed by means of the beta-alpha decays of Bi-214 into Pb-210. The events are characterized by a delayed track in the wire chamber and the corresponding signal is rather clean. The study has demonstrated the diffusion of Rn-222 into the detector and its contribution to Bi-214 pollution has been estimated. A measurement of the Bi-214 internal contamination of the source has been made as well as an estimation of the Bi-214 deposit due to Rn-222. As a result of this study it appears that, under the conditions of the NEMO2 experiment, the Bi and Rn contributions are of the same order of magnitude as the background induced at high energy by two-neutrino double beta decay. In conclusion, the backgrounds of the neutrinoless double beta decay of Mo-100 are well understood in the NEMO2 experiment leading to an extrapolation for the NEMO3 experiment. (authors).

  20. Measurement of the two neutrino double beta decay half-life of Zr-96 with the NEMO-3 detector

    Energy Technology Data Exchange (ETDEWEB)

    Argyriades, J. [LAL, Universite Paris-Sud 11, CNRS/IN2P3, F-91405 Orsay (France); Arnold, R. [IPHC, Universite de Strasbourg, CNRS/IN2P3, F-67037 Strasbourg (France); Augier, C. [LAL, Universite Paris-Sud 11, CNRS/IN2P3, F-91405 Orsay (France); Baker, J. [INL, Idaho National Laboratory, 83415 Idaho Falls (United States); Barabash, A.S. [ITEP, Institute of Theoretical and Experimental Physics, 117259 Moscow (Russian Federation); Basharina-Freshville, A. [University College London, WC1E 6BT London (United Kingdom); Bongrand, M. [LAL, Universite Paris-Sud 11, CNRS/IN2P3, F-91405 Orsay (France); Broudin-Bay, G. [Universite Bordeaux, CENBG, UMR 5797, F-33175 Gradignan (France); CNRS/IN2P3, Centre d' Etudes Nucleaires de Bordeaux Gradignan, UMR5797, F-33175 Gradignan (France); Brudanin, V. [JINR, Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Caffrey, A.J. [INL, Idaho National Laboratory, 83415 Idaho Falls (United States); Chapon, A. [LPC, ENSICAEN, Universite de Caen, CNRS/IN2P3, F-14032 Caen (France); Chauveau, E. [Universite Bordeaux, CENBG, UMR 5797, F-33175 Gradignan (France); CNRS/IN2P3, Centre d' Etudes Nucleaires de Bordeaux Gradignan, UMR5797, F-33175 Gradignan (France); Daraktchieva, Z. [University College London, WC1E 6BT London (United Kingdom); Durand, D. [LPC, ENSICAEN, Universite de Caen, CNRS/IN2P3, F-14032 Caen (France); Egorov, V. [JINR, Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Fatemi-Ghomi, N. [University of Manchester, M13 9PL Manchester (United Kingdom); Flack, R. [University College London, WC1E 6BT London (United Kingdom); Guillon, B. [LPC, ENSICAEN, Universite de Caen, CNRS/IN2P3, F-14032 Caen (France); Hubert, Ph. [Universite Bordeaux, CENBG, UMR 5797, F-33175 Gradignan (France); CNRS/IN2P3, Centre d' Etudes Nucleaires de Bordeaux Gradignan, UMR5797, F-33175 Gradignan (France); Jullian, S. [LAL, Universite Paris-Sud 11, CNRS/IN2P3, F-91405 Orsay (France)

    2010-12-08

    Using 9.4 g of {sup 96}Zr isotope and 1221 days of data from the NEMO-3 detector corresponding to 0.031 kg y, the obtained 2{nu}{beta}{beta} decay half-life measurement is T{sub 1/2}{sup 2{nu}=}[2.35{+-}0.14(stat){+-}0.16(syst)]x10{sup 19} yr. Different characteristics of the final state electrons have been studied, such as the energy sum, individual electron energy, and angular distribution. The 2{nu} nuclear matrix element is extracted using the measured 2{nu}{beta}{beta} half-life and is M{sup 2{nu}=}0.049{+-}0.002. Constraints on 0{nu}{beta}{beta} decay have also been set.

  1. Double beta radioactivity and physics of the neutrino. Study of the background noise at 3 MeV in the search of 100Mo beta beta decay

    International Nuclear Information System (INIS)

    Piquemal, F.

    1994-05-01

    Double beta decay without neutrino emission provides a test of the mass and nature of neutrinos (Majorana or Dirac). Experimental proof would be the observation of a peak at the transition energy in the spectrum of the two emitted electrons. The expected half-life of the process is extremely long (about 10 25 years for 100 Mo). So, being thus, it is very important to get a good knowledge of the origins and contributions of background noise in the region where the signal could occur. The main origins of the background noise in the region where the signal could occur. The main origins of the background noise are found to be e + - e - pairs induced by heavy energy gamma rays. These gamma rays follow the thermal neutron capture by the components of the detector. Another factor in the production of background noise is natural radio-activity. For example, the presence of Radon in the laboratory has been observed to produce deposits of 214 Bi on the sides of the detector. Data taken with the NEMO 2 prototype and an enriched molybdenum source foil indicates that the background limit reached is of the order of 1 event per year in the 3 MeV region. Results of this work have proven the necessity to have a magnetic field in NEMO 3 in order to reject e + - e - pairs. (author)

  2. Searches for double beta decay of Xe134 with EXO-200

    Energy Technology Data Exchange (ETDEWEB)

    Albert, J. B.; Anton, G.; Badhrees, I.; Barbeau, P. S.; Bayerlein, R.; Beck, D.; Belov, V.; Breidenbach, M.; Brunner, T.; Cao, G. F.; Cen, W. R.; Chambers, C.; Cleveland, B.; Coon, M.; Craycraft, A.; Cree, W.; Daniels, T.; Danilov, M.; Daugherty, S. J.; Daughhetee, J.; Davis, J.; Delaquis, S.; Der Mesrobian-Kabakian, A.; DeVoe, R.; Didberidze, T.; Dilling, J.; Dolgolenko, A.; Dolinski, M. J.; Fairbank, W.; Farine, J.; Feyzbakhsh, S.; Fierlinger, P.; Fudenberg, D.; Gornea, R.; Graham, K.; Gratta, G.; Hall, C.; Hoessl, J.; Hufschmidt, P.; Hughes, M.; Jamil, A.; Jewell, M. J.; Johnson, A.; Johnston, S.; Karelin, A.; Kaufman, L. J.; Koffas, T.; Kravitz, S.; Krücken, R.; Kuchenkov, A.; Kumar, K. S.; Lan, Y.; Leonard, D. S.; Li, S.; Licciardi, C.; Lin, Y. H.; MacLellan, R.; Marino, M. G.; Michel, T.; Mong, B.; Moore, D.; Murray, K.; Nelson, R.; Njoya, O.; Odian, A.; Ostrovskiy, I.; Piepke, A.; Pocar, A.; Retière, F.; Rowson, P. C.; Russell, J. J.; Schubert, A.; Sinclair, D.; Smith, E.; Stekhanov, V.; Tarka, M.; Tolba, T.; Tsang, R.; Vogel, P.; Vuilleumier, J. -L.; Wagenpfeil, M.; Waite, A.; Walton, J.; Walton, T.; Weber, M.; Wen, L. J.; Wichoski, U.; Yang, L.; Yen, Y. -R.; Zeldovich, O. Ya.; Zettlemoyer, J.; Ziegler, T.

    2017-11-01

    Searches for double beta decay of 134Xe were performed with EXO-200, a single-phase liquid xenon detector designed to search for neutrinoless double beta decay of 136Xe. Using an exposure of 29.6 kg · yr, the lower limits of T2νββ 1=2 > 8.7 × 1020 yr and T0νββ 1=2 > 1.1 × 1023 yr at 90% confidence level were derived, with corresponding half-life sensitivities of 1.2 × 1021 yr and 1.9 × 1023 yr. These limits exceed those in the literature for 134Xe, improving by factors of nearly 105 and 2 for the two antineutrino and neutrinoless modes, respectively.

  3. GENIUS and the Genius TF: A New Observatory for WIMP Dark Matter and Neutrinoless Double Beta Decay

    OpenAIRE

    Klapdor-Kleingrothaus, H. V.; Majorovits, B.

    2001-01-01

    The GENIUS proposal is described and some of it's physics potential is outlined. Also in the light of the contradictive results from the DAMA and CDMS experiments the Genius TF, a new experimental setup is proposed. The Genius TF could probe the DAMA evidence region using the WIMP nucleus recoil signal and WIMP annual modulation signature simultaneously. Besides that it can prove the long term feasibility of the detector technique to be implemented into the GENIUS setup and will in this sense...

  4. Future of neutrino experiments

    Indian Academy of Sciences (India)

    them are under construction. The next generation double beta decay experiments are sensitive to the inverted mass hierarchy. In order to explore the normal mass hierarchy, the sensitivity of the experiments still needs to be improved substantially. For example, see [32] for more details of the double beta decay experiments.

  5. Status of LUMINEU program to search for neutrinoless double beta decay of {sup 100}Mo with cryogenic ZnMoO{sub 4} scintillating bolometers

    Energy Technology Data Exchange (ETDEWEB)

    Danevich, F. A., E-mail: danevich@kinr.kiev.ua; Boiko, R. S.; Chernyak, D. M.; Kobychev, V. V. [Institute for Nuclear Research, MSP 03680 Kyiv (Ukraine); Bergé, L.; Chapellier, M.; Drillien, A.-A.; Dumoulin, L.; Humbert, V.; Marcillac, P. de; Marnieros, S.; Marrache-Kikuchi, C.; Olivieri, E.; Plantevin, O.; Tenconi, M. [Centre de Sciences Nucléaires et de Sciences de la Matière, CNRS/IN2P3, Université Paris-Sud, 91405 Orsay (France); Coron, N.; Redon, T.; Torres, L. [IAS, CNRS, Université Paris-Sud, 91405 Orsay (France); Devoyon, L.; Koskas, F. [CEA, Centre d’Etudes Saclay, Orphée, 91191 Gif-Sur-Yvette Cedex (France); and others

    2015-10-28

    The LUMTNEU program aims at performing a pilot experiment on 0ν2β decay of {sup 100}Mo using radiopure ZnMoO{sub 4} crystals enriched in {sup 100}Mo operated as cryogenic scintillating bolometers. Large volume ZnMoO{sub 4} crystal scintillators (∼ 0.3 kg) were developed and tested showing high performance in terms of radiopurity, energy resolution and α/β particle discrimination capability. Zinc molybdate crystal scintillators enriched in {sup 100}Mo were grown for the first time by the low-thermal-gradient Czochralski technique with a high crystal yield and an acceptable level of enriched molybdenum irrecoverable losses. A background level of ∼ 0.5 counts/(yr keV ton) in the region of interest can be reached in a large detector array thanks to the excellent detectors radiopurity and particle discrimination capability, suppression of randomly coinciding events by pulse-shape analysis, and anticoincidence cut. These results pave the way to future sensitive searches based on the LUMTNEU technology, capable of approachingand exploring the inverted hierarchy region of the neutrino mass pattern.

  6. The search for 0νββ decay with the GERDA experiment: Status and prospects

    Science.gov (United States)

    Majorovits, B.

    2015-08-01

    The GERDA experiment is designed to search for neutrinoless double beta decay of 76Ge using HPGe detectors directly immersed into liquid argon. In its first phase the GERDA experiment has yielded a half life limit on this decay of T1/2 0 v>2.1 ṡ1025 . A background model has been developed. It explains the measured spectrum well, taking into account only components with distances to the detectors less then 2 cm. Competitive limits on Majoron accompanied double beta decay have been derived. Phase II of the experiment, now with additional liquid argon veto installed, is presently starting its commissioning phase. First commissioning spectra from calibration measurements are shown, proving that the liquid argon veto leads to a significant reduction of background events.

  7. The Gerda experiment for the search of 0{nu}{beta}{beta} decay in {sup 76}Ge

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, K.H.; Altmann, M.; Becerici-Schmidt, N.; Caldwell, A.; Cossavella, F.; Lenz, D.; Liao, H.; Majorovits, B.; Mayer, S.; O' Shaughnessy, C.; Schubert, J.; Schulz, O.; Seitz, H.; Stelzer, F.; Vogt, S.; Volynets, O. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Agostini, M.; Bode, T.; Budjas, D.; Janicsko Csathy, J.; Lazzaro, A.; Schoenert, S. [Technische Universitaet Muenchen, Physik Department and Excellence Cluster Universe, Munich (Germany); Allardt, M.; Barros, N.; Domula, A.; Lehnert, B.; Zuber, K. [Technische Universitaet Dresden, Institut fuer Kern- und Teilchenphysik, Dresden (Germany); Andreotti, E. [Institute for Reference Materials and Measurements, Geel (Belgium); Eberhard Karls Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); Bakalyarov, A.M.; Belyaev, S.T.; Lebedev, V.I.; Zhukov, S.V. [National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Balata, M.; Ioannucci, L.; Junker, M.; Laubenstein, M.; Nisi, S.; Pandola, L. [LNGS, INFN Laboratori Nazionali del Gran Sasso, Assergi (Italy); Barabanov, I.; Bezrukov, L.; Denisov, A.; Gurentsov, V.; Kianovsky, S.; Kusminov, V.; Lubsandorzhiev, B.; Yanovich, E. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Barnabe Heider, M. [Max Planck Institut fuer Kernphysik, Heidelberg (Germany); Technische Universitaet Muenchen, Physik Department and Excellence Cluster Universe, Munich (Germany); CEGEP St-Hyacinthe, Quebec (Canada); Baudis, L.; Benato, G.; Ferella, A.; Froborg, F.; Guthikonda, K.K.; Tarka, M.; Walter, M. [Physik Institut der Universitaet Zuerich, Zuerich (Switzerland); Bauer, C.; Hampel, W.; Heisel, M.; Heusser, G.; Hofmann, W.; Kankanyan, R.; Kihm, T.; Kiko, J.; Kirsch, A.; Knoepfle, K.T.; Lindner, M.; Lubashevskiy, A.; Machado, A.A.; Maneschg, W.; Oehm, J.; Salathe, M.; Schreiner, J.; Schwan, U.; Schwingenheuer, B.; Simgen, H.; Smolnikov, A.; Strecker, H.; Wagner, V.; Wegmann, A. [Max Planck Institut fuer Kernphysik, Heidelberg (Germany); Bellotti, E. [Universita Milano Bicocca, Dipartimento di Fisica, Milano (Italy); INFN Milano Bicocca, Milano (Italy); Belogurov, S.; Kornoukhov, V.N. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Bettini, A.; Brugnera, R.; Garfagnini, A.; Hemmer, S.; Sada, C. [Dipartimento di Fisica e Astronomia dell' Universita di Padova, Padova (Italy); INFN Padova, Padova (Italy); Brudanin, V.; Egorov, V.; Kochetov, O.; Nemchenok, I.; Shevchik, E.; Zhitnikov, I.; Zinatulina, D. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Cattadori, C. [INFN Milano Bicocca, Milano (Italy); Chernogorov, A.; Demidova, E.V.; Kirpichnikov, I.V.; Vasenko, A.A. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Chkvorets, O. [Max Planck Institut fuer Kernphysik, Heidelberg (Germany); Laurentian University, Sudbury (Canada); D' Andragora, A. [LNGS, INFN Laboratori Nazionali del Gran Sasso, Assergi (Italy); Brookhaven National Laboratory, Upton, NY (United States); Di Vacri, A. [LNGS, INFN Laboratori Nazionali del Gran Sasso, Assergi (Italy); University ' ' G. d' Annunzio' ' di Chieti-Pescara, Department of Neurosciences and Imaging, Chieti (Italy); Falkenstein, R.; Freund, K.; Grabmayr, P.; Hegai, A.; Jochum, J.; Knapp, M.; Niedermeier, L.; Schmitt, C.; Sturm, K. von [Eberhard Karls Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); Frodyma, N.; Pelczar, K.; Wojcik, M.; Zuzel, G. [Jagiellonian University, Institute of Physics, Cracow (Poland); Gangapshev, A. [Max Planck Institut fuer Kernphysik, Heidelberg (Germany); Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Gasparro, J. [Institute for Reference Materials and Measurements, Geel (Belgium); National Physical Laboratory, Teddigton (United Kingdom); Gazzana, S. [LNGS, INFN Laboratori Nazionali del Gran Sasso, Assergi (Italy); Max Planck Institut fuer Kernphysik, Heidelberg (Germany); Gonzalez de Orduna, R.; Hult, M.; Marissens, G. [Institute for Reference Materials and Measurements, Geel (Belgium); Gusev, K. [Joint Institute for Nuclear Research, Dubna (Russian Federation); National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Technische Universitaet Muenchen, Physik Department and Excellence Cluster Universe, Munich (Germany); Inzhechik, L.V. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Moscow Institute of Physics and Technology, Moscow (Russian Federation); Klimenko, A. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Max Planck Institut fuer Kernphysik, Heidelberg (Germany); Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Kroeninger, K. [Max-Planck-Institut fuer Physik, Muenchen (Germany); U. Goettingen, II. Physikalisches Institut, Goettingen (Germany); U. Siegen, Department Physik, Siegen (Germany); Lippi, I.; Rossi Alvarez, C.; Stanco, L.; Ur, C.A. [INFN Padova, Padova (Italy); Liu, J. [Max-Planck-Institut fuer Physik, Muenchen (Germany); University of Tokyo, Kavli IPMU, Tokyo (Japan); Liu, X. [Shanghai Jiaotong University, Shanghai (China); Meierhofer, G. [Eberhard Karls Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); TUeV-SUeD, Muenchen (Germany); Peiffer, P. [Max Planck Institut fuer Kernphysik, Heidelberg (Germany); Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Pullia, A.; Riboldi, S. [Universita degli Studi di Milano (Italy); INFN Milano, Dipartimento di Fisica, Milano (Italy); Ritter, F. [Eberhard Karls Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); Robert Bosch GmbH, Reutlingen (Germany); Shirchenko, M. [Joint Institute for Nuclear Research, Dubna (Russian Federation); National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Trunk, U. [Max Planck Institut fuer Kernphysik, Heidelberg (Germany); DESY, Photon-Science Detector Group, Hamburg (Germany); Zavarise, P. [LNGS, INFN Laboratori Nazionali del Gran Sasso, Assergi (Italy); University of L' Aquila, Dipartimento di Fisica, L' Aquila (Italy)

    2013-03-15

    The Gerda collaboration is performing a search for neutrinoless double beta decay of {sup 76}Ge with the eponymous detector. The experiment has been installed and commissioned at the Laboratori Nazionali del Gran Sasso and has started operation in November 2011. The design, construction and first operational results are described, along with detailed information from the R and D phase. (orig.)

  8. Status of the Majorana Demonstrator experiment

    Science.gov (United States)

    Martin, R. D.; Abgrall, N.; Aguayo, E.; Avignone, F. T., III; Barabash, A. S.; Bertrand, F. E.; Boswell, M.; Brudanin, V.; Busch, M.; Caldwell, A. S.; Chan, Y.-D.; Christofferson, C. D.; Combs, D. C.; Detwiler, J. A.; Doe, P. J.; Efremenko, Yu.; Egorov, V.; Ejiri, H.; Elliott, S. R.; Esterline, J.; Fast, J. E.; Finnerty, P.; Fraenkle, F. M.; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guiseppe, V. E.; Gusev, K.; Hallin, A. L.; Hazama, R.; Hegai, A.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Keeter, K. J.; Kidd, M. F.; Kochetov, O.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; Leviner, L. E.; Loach, J. C.; MacMullin, J.; MacMullin, S.; Mertens, S.; Mizouni, L.; Nomachi, M.; Orrell, J. L.; O'Shaughnessy, C.; Overman, N. R.; Phillips, D. G., II; Poon, A. W. P.; Pushkin, K.; Radford, D. C.; Rielage, K.; Robertson, R. G. H.; Romero-Romero, E.; Ronquest, M. C.; Schubert, A. G.; Shanks, B.; Shima, T.; Shirchenko, M.; Snavely, K. J.; Snyder, N.; Soin, A.; Suriano, A. M.; Thompson, J.; Timkin, V.; Tornow, W.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Xu, W.; Yakushev, E.; Young, A. R.; Yu, C.-H.; Yumatov, V.

    2014-06-01

    The Majorana Demonstrator neutrinoless double beta-decay experiment is currently under construction at the Sanford Underground Research Facility in South Dakota, USA. An overview and status of the experiment are given.

  9. Results on neutrinoless double-β decay of 76Ge from phase I of the GERDA experiment.

    Science.gov (United States)

    Agostini, M; Allardt, M; Andreotti, E; Bakalyarov, A M; Balata, M; Barabanov, I; Barnabé Heider, M; Barros, N; Baudis, L; Bauer, C; Becerici-Schmidt, N; Bellotti, E; Belogurov, S; Belyaev, S T; Benato, G; Bettini, A; Bezrukov, L; Bode, T; Brudanin, V; Brugnera, R; Budjáš, D; Caldwell, A; Cattadori, C; Chernogorov, A; Cossavella, F; Demidova, E V; Domula, A; Egorov, V; Falkenstein, R; Ferella, A; Freund, K; Frodyma, N; Gangapshev, A; Garfagnini, A; Gotti, C; Grabmayr, P; Gurentsov, V; Gusev, K; Guthikonda, K K; Hampel, W; Hegai, A; Heisel, M; Hemmer, S; Heusser, G; Hofmann, W; Hult, M; Inzhechik, L V; Ioannucci, L; Janicskó Csáthy, J; Jochum, J; Junker, M; Kihm, T; Kirpichnikov, I V; Kirsch, A; Klimenko, A; Knöpfle, K T; Kochetov, O; Kornoukhov, V N; Kuzminov, V V; Laubenstein, M; Lazzaro, A; Lebedev, V I; Lehnert, B; Liao, H Y; Lindner, M; Lippi, I; Liu, X; Lubashevskiy, A; Lubsandorzhiev, B; Lutter, G; Macolino, C; Machado, A A; Majorovits, B; Maneschg, W; Misiaszek, M; Nemchenok, I; Nisi, S; O'Shaughnessy, C; Pandola, L; Pelczar, K; Pessina, G; Pullia, A; Riboldi, S; Rumyantseva, N; Sada, C; Salathe, M; Schmitt, C; Schreiner, J; Schulz, O; Schwingenheuer, B; Schönert, S; Shevchik, E; Shirchenko, M; Simgen, H; Smolnikov, A; Stanco, L; Strecker, H; Tarka, M; Ur, C A; Vasenko, A A; Volynets, O; von Sturm, K; Wagner, V; Walter, M; Wegmann, A; Wester, T; Wojcik, M; Yanovich, E; Zavarise, P; Zhitnikov, I; Zhukov, S V; Zinatulina, D; Zuber, K; Zuzel, G

    2013-09-20

    Neutrinoless double beta decay is a process that violates lepton number conservation. It is predicted to occur in extensions of the standard model of particle physics. This Letter reports the results from phase I of the Germanium Detector Array (GERDA) experiment at the Gran Sasso Laboratory (Italy) searching for neutrinoless double beta decay of the isotope (76)Ge. Data considered in the present analysis have been collected between November 2011 and May 2013 with a total exposure of 21.6 kg yr. A blind analysis is performed. The background index is about 1 × 10(-2) counts/(keV kg yr) after pulse shape discrimination. No signal is observed and a lower limit is derived for the half-life of neutrinoless double beta decay of (76)Ge, T(1/2)(0ν) >2.1 × 10(25) yr (90% C.L.). The combination with the results from the previous experiments with (76)Ge yields T(1/2)(0ν)>3.0 × 10(25) yr (90% C.L.).

  10. Results on Neutrinoless Double-β Decay of Ge76 from Phase I of the GERDA Experiment

    Science.gov (United States)

    Agostini, M.; Allardt, M.; Andreotti, E.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Barnabé Heider, M.; Barros, N.; Baudis, L.; Bauer, C.; Becerici-Schmidt, N.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Brudanin, V.; Brugnera, R.; Budjáš, D.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; Cossavella, F.; Demidova, E. V.; Domula, A.; Egorov, V.; Falkenstein, R.; Ferella, A.; Freund, K.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Gotti, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Guthikonda, K. K.; Hampel, W.; Hegai, A.; Heisel, M.; Hemmer, S.; Heusser, G.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Ioannucci, L.; Janicskó Csáthy, J.; Jochum, J.; Junker, M.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Klimenko, A.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Liu, X.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Machado, A. A.; Majorovits, B.; Maneschg, W.; Misiaszek, M.; Nemchenok, I.; Nisi, S.; O'Shaughnessy, C.; Pandola, L.; Pelczar, K.; Pessina, G.; Pullia, A.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salathe, M.; Schmitt, C.; Schreiner, J.; Schulz, O.; Schwingenheuer, B.; Schönert, S.; Shevchik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Strecker, H.; Tarka, M.; Ur, C. A.; Vasenko, A. A.; Volynets, O.; von Sturm, K.; Wagner, V.; Walter, M.; Wegmann, A.; Wester, T.; Wojcik, M.; Yanovich, E.; Zavarise, P.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.

    2013-09-01

    Neutrinoless double beta decay is a process that violates lepton number conservation. It is predicted to occur in extensions of the standard model of particle physics. This Letter reports the results from phase I of the Germanium Detector Array (GERDA) experiment at the Gran Sasso Laboratory (Italy) searching for neutrinoless double beta decay of the isotope Ge76. Data considered in the present analysis have been collected between November 2011 and May 2013 with a total exposure of 21.6 kg yr. A blind analysis is performed. The background index is about 1×10-2counts/(keVkgyr) after pulse shape discrimination. No signal is observed and a lower limit is derived for the half-life of neutrinoless double beta decay of Ge76, T1/20ν>2.1×1025yr (90% C.L.). The combination with the results from the previous experiments with Ge76 yields T1/20ν>3.0×1025yr (90% C.L.).

  11. Future prospects of baryon istability search in p-decay and n n(bar) oscillation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ball, S.J.; Kamyshkov, Y.A. [ed.

    1996-11-01

    These proceedings contain thirty-one papers which review both the theoretical and the experimental status and near future of baryon instability research. Baryon instability is investigated from the vantage point of supersymmetric and unified theories. The interplay between baryogenesis and antimatter is examined. Double beta decay experiments are discussed. The huge Icarus experiment is described with its proton decay capabilities. Neutron-antineutron oscillations investigations are presented, especially efforts with ultra-cold neutrons. Individual papers are indexed separately on the Energy Data Base.

  12. Soudan 2 nucleon decay experiment

    International Nuclear Information System (INIS)

    Thron, J.L.

    1986-01-01

    The Soudan 2 nucleon decay experiment consists of a 1.1 Kton fine grained iron tracking calorimeter. It has a very isotropic detection structure which along with its flexible trigger will allow detection of multiparticle and neutrino proton decay modes. The detector has now entered its construction stage

  13. Limit on neutrinoless ββ decay of 136Xe from the first phase of KamLAND-Zen and comparison with the positive claim in 76Ge

    NARCIS (Netherlands)

    Gando, A.; Gando, Y.; Hanakago, H.; Ikeda, H.; Inoue, K.; Ishidoshiro, K.; Kato, R.; Koga, M.; Matsuda, S.; Mitsui, T.; Motoki, D.; Nakada, T.; Nakamura, K.; Obata, A.; Oki, A.; Ono, Y.; Otani, M.; Shimizu, I.; Shirai, J.; Suzuki, A.; Takemoto, Y.; Tamae, K.; Ueshima, K.; Watanabe, H.; Xu, B.D.; Yamada, S.; Yoshida, H.; Kozlov, A.; Yoshida, S.; Banks, T.I.; Freedman, S.J.; Fujikawa, B.K.; Han, K.; O’Donnell, T.; Berger, B.E.; Efremenko, Y.; Karwowski, H.J.; Markoff, D.M.; Tornow, W.; Detwiler, J.A.; Enomoto, S.; Decowski, M.P.

    2013-01-01

    We present results from the first phase of the KamLAND-Zen double-beta decay experiment, corresponding to an exposure of 89.5 kg yr of Xe136. We obtain a lower limit for the neutrinoless double-beta decay half-life of T0ν1/2>1.9×1025  yr at 90% C.L. The combined results from KamLAND-Zen and EXO-200

  14. The Gotthard experiment on 136Xe ββ decay

    International Nuclear Information System (INIS)

    Boehm, F.; Busto, J.; Farine, J.; Gabathuler, K.; Gervasio, G.; Henrikson, H.; Joergens, V.; Lou, K.; Luescher, R.; Paic, A.

    1995-01-01

    The Gotthard experiment measuring the double beta decay of 136 Xe is now running with an improved version of the TPC. The whole charge readout system has been redesigned in order to reduce the radioactive background. Signal-to-noise ratio is further enhanced by the tracking capability that allows to select events with two electron tracks emerging from the same point, and reject with high efficiency those background components such as internal β and α radioactivity, Compton electrons, and cosmic rays. After the first 2200 hours of data taking, a reduction of the count rate has been observed. The most recent 90% C.L. half life limits for the different ββ modes are: 4 x 10 23 yr, corresponding to a Majorana mass of 1.9-2.5 eV, for the neutrinoless channel; 1.1 x 10 22 yr for the majoron, and 4.6 x 10 20 yr for the 2ν channel. (K.A.)

  15. Induced Double-Beta Processes in Electron Fluxes as Resonance Reactions in Weak Interaction

    International Nuclear Information System (INIS)

    Gaponov, Yu.V.

    2004-01-01

    A theory of induced double-beta processes in electron beams is developed. It is shown that a resonance mechanism of the excitation of the ground state of an intermediate nucleus is realized in them, this mechanism being described in the single-state-dominance approximation, where the process in question is broken down into two stages, the excitation of a dominant state and its decay. This approximation is valid irrespective of the features of this state, both for allowed (for a 1 + state of the intermediate nucleus) and for forbidden transitions. An analysis of the resonance mechanism reveals that its inclusion in double-beta-decay processes requires introducing additional diagrams that describe the gamma decay of virtual intermediate states. The inclusion of such corrections may lead to a decrease in the expected half-life and to a change in the beta spectrum. Effects associated with the interference between the two stages of a double-beta process are estimated, and it is shown that their influence can be significant if the time interval between these stages is less than or on the order of the lifetime of the dominant state

  16. Double beta radioactivity and physics of the neutrino. Study of the background noise at 3 MeV in the search of {sup 100}Mo beta beta decay; Double radioactivite beta et physique du neutrino. Etude du bruit de fond a 3 MeV dans la recherche de la desintegration beta beta du {sup 100}Mo

    Energy Technology Data Exchange (ETDEWEB)

    Piquemal, F

    1994-05-01

    Double beta decay without neutrino emission provides a test of the mass and nature of neutrinos (Majorana or Dirac). Experimental proof would be the observation of a peak at the transition energy in the spectrum of the two emitted electrons. The expected half-life of the process is extremely long (about 10{sup 25} years for {sup 100}Mo). So, being thus, it is very important to get a good knowledge of the origins and contributions of background noise in the region where the signal could occur. The main origins of the background noise in the region where the signal could occur. The main origins of the background noise are found to be e{sup +} - e{sup -} pairs induced by heavy energy gamma rays. These gamma rays follow the thermal neutron capture by the components of the detector. Another factor in the production of background noise is natural radio-activity. For example, the presence of Radon in the laboratory has been observed to produce deposits of {sup 214}Bi on the sides of the detector. Data taken with the NEMO 2 prototype and an enriched molybdenum source foil indicates that the background limit reached is of the order of 1 event per year in the 3 MeV region. Results of this work have proven the necessity to have a magnetic field in NEMO 3 in order to reject e{sup +} - e{sup -}pairs. (author).

  17. Search for the neutrinoless ββ decay in 76Ge with the GERDA experiment

    International Nuclear Information System (INIS)

    Cattadori, C.; Knapp, M.; Kröninger, K.; Liu, X.; Pandola, L.; Pullia, A.; Tomei, C.; Ur, C.; Zocca, F.

    2011-01-01

    The GERmanium Detector Array, GERDA, [Gerda Collaboration, Abt I et al., Proposal, a (http://www.mpi-hd.mpg.de/ge76/home.html)] is designed to search for neutrinoless double beta (0νββ)-decay of 76 Ge. The importance of such a search is emphasized by the evidence of a non-zero neutrino mass from flavour oscillation experiments and by the recent claim [Klapdor-Kleingrothaus H V et al., Phys. Lett. B 586, 198 (2004)] based on data of the Heidelberg-Moscow experiment. GERDA will be installed in the Hall A of the Gran Sasso underground Laboratory (LNGS), Italy. The construction of GERDA will start in 2006.

  18. Excited state transitions in 2νββ decays of {sup 76}Ge from phase I of the GERDA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Wester, Thomas [IKTP, TU Dresden (Germany); Collaboration: GERDA-Collaboration

    2015-07-01

    The Germanium Detector Array GERDA is an experiment searching for the neutrinoless double beta decay in {sup 76}Ge. The observation of such a decay would prove the Majorana character of the neutrino and could provide a hint about the neutrino mass and possibly identify the mass hierarchy scheme. The half life of the neutrino accompanied double beta decay (2νββ) of {sup 76}Ge has been measured by GERDA Phase I with unprecedented precision. The observed spectrum comes mostly from the transition from the 0{sup +} ground state of {sup 76}Ge to the 0{sup +} ground state of {sup 76}Se. However, phase space suppressed 2νββ transitions to excited states of {sup 76}Se exist as well. At current state, the predicted half lives for such decays vary by several orders of magnitude, due to the large uncertainties in the nuclear matrix elements and the available nuclear models. An observation would therefore help to constrain model parameters and decrease those uncertainties. This study investigates the 2νββ decay of {sup 76}Ge into various excited states of {sup 76}Se using the data from GERDA Phase I. An event counting method is performed based on coincident events between two germanium detectors. Several analysis parameters are optimized with the help of Monte Carlo simulations to maximize the sensitivity. The presentation discusses the procedure and results of this analysis.

  19. Influence of pairing in double beta decay of 48Ca

    Indian Academy of Sciences (India)

    Proton–neutron pairing is expected to play a significant role in the calculation of ... probability, one can only extract upper limit for the effective electron–neutrino mass .... The matrices for (FN,Z(θ))αβ and (fN,Z)αβ have been developed. In the.

  20. Present and future strategies for neutrinoless double beta decay ...

    Indian Academy of Sciences (India)

    The scope of this paper is not only to review the present results reached in the field by the different groups and technologies worldwide, but also to illustrate and comment on the (near and long-term) future strategies that experimentalists are trying to pursue to reach the needed sensitivity required to explore the inverted ...

  1. Present and future strategies for neutrinoless double beta decay ...

    Indian Academy of Sciences (India)

    doubled exposure, with signal shape analysis to discard Compton events, a heavy ... sonable amount to put stringent (and competitive) limits on 0νDBD. ..... with an impressive reduced electronic noise and an almost eliminated risk of de-.

  2. Anatomy of double beta decay nuclear matrix elements

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Petr, E-mail: pxv@caltech.ed [Kellogg Radiation Laboratory 106-38 Caltech. Pasadena, CA 91125 (United States)

    2009-06-01

    The necessary ingredients for a realistic evaluation of the 0vbetabeta nuclear matrix elements are reviewed. It is argued that the short range nucleon correlations, nucleon finite size, and higher order nuclear currents need to be included in the calculation, even though a consensus on the best way to treat all of these effects has not been reached. Another positive development is the realization that the two alternative and complementary methods, the Quasiparticle Random Phase Approximation and the Nuclear Shell Model, agree on many aspects of the calculation, in particular on the competition, or cancelation, between the contribution of nuclear pairing on one hand, and the other pieces of interaction that result in admixtures of broken pairs or higher seniority states on the other hand. The relatively short range (r <= 2-3 fm) of the effective 0vbetabeta operator found in both methods is a consequence of that competition.

  3. GERDA, a GERmanium Detector Array for the search for neutrinoless ββ decay in 76Ge

    International Nuclear Information System (INIS)

    Pandola, L.; Tomei, C.

    2006-01-01

    The GERDA project, searching for neutrinoless double beta-decay of 76Ge with enriched germanium detectors submerged in a cryogenic bath, has been approved for installation at the Gran Sasso National Laboratory (LNGS), Italy. The GERDA technique is aiming at a dramatic reduction of the background due to radioactive contaminations of the materials surrounding the detectors. This will lead to a sensitivity of about 1026 years on the half-life of neutrinoless double beta decay. Already in the first phase of the experiment, GERDA will be able to investigate with high statistical significance the claimed evidence for neutrinoless double beta decay of 76Ge based on the data of the Heidelberg-Moscow experiment

  4. The Majorana Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Aalseth, Craig E.; Aguayo Navarrete, Estanislao; Amman, M.; Avignone, F. T.; Back, Henning O.; Bai, Xinhua; Barabash, Alexander S.; Barbeau, P. S.; Bergevin, M.; Bertrand, F.; Boswell, M.; Brudanin, V.; Bugg, William; Burritt, Tom H.; Busch, Matthew; Capps, Greg L.; Chan, Yuen-Dat; Collar, J. I.; Cooper, R. J.; Creswick, R.; Detwiler, Jason A.; Diaz, J.; Doe, Peter J.; Efremenko, Yuri; Egorov, Viatcheslav; Ejiri, H.; Elliott, S. R.; Ely, James H.; Esterline, James H.; Farach, H. A.; Fast, James E.; Fields, N.; Finnerty, P.; Fraenkle, Florian; Gehman, Victor M.; Giovanetti, G. K.; Green, M.; Guiseppe, Vincente; Gusey, K.; Hallin, A. L.; Harper, Gregory; Hazama, R.; Henning, Reyco; Hime, Andrew; Hong, H.; Hoppe, Eric W.; Hossbach, Todd W.; Howard, Stanley; Howe, M. A.; Johnson, R. A.; Keeter, K.; Keillor, Martin E.; Keller, C.; Kephart, Jeremy D.; Kidd, M. F.; Knecht, A.; Kochetov, Oleg; Konovalov, S.; Kouzes, Richard T.; LaRoque, B. H.; Leviner, L.; Loach, J. C.; Luke, P.; MacMullin, S.; Marino, Michael G.; Martin, R. D.; Medlin, D.; Mei, Dong-Ming; Miley, Harry S.; Miller, M. L.; Mizouni, Leila; Myers, Allan W.; Nomachi, Masaharu; Orrell, John L.; Peterson, David; Phillips, D.; Poon, Alan; Perevozchikov, O.; Perumpilly, Gopakumar; Prior, Gersende; Radford, D. C.; Reid, Douglas J.; Rielage, Keith; Robertson, R. G. H.; Rodriguez, Larry; Ronquest, M. C.; Salazar, Harold; Schubert, Alexis G.; Shima, T.; Shirchenko, M.; Sobolev, V.; Steele, David; Strain, J.; Swift, Gary; Thomas, K.; Timkin, V.; Tornow, W.; Van Wechel, T. D.; Vanyushin, I.; Varner, R. L.; Vetter, Kai; Vorren, Kris R.; Wilkerson, J. F.; Wolfe, B. A.; Xiang, W.; Yakushev, E.; Yaver, Harold; Young, A.; Yu, Chang-Hong; Yumatov, V.; Zhang, C.

    2011-08-01

    The Majorana Collaboration is assembling an array of HPGe detectors to search for neutrinoless double-beta decay in 76Ge. Initially, Majorana aims to construct a prototype module to demonstrate the potential of a future 1-tonne experiment. The design and potential reach of this prototype Demonstrator module are presented.

  5. Double beta and dark matter search-window to new physics beyond the Standard Model of particle physics

    International Nuclear Information System (INIS)

    Klapdor-Kleingrothaus, H.V.

    1999-01-01

    Nuclear double beta decay provides an extraordinarily broad potential to search beyond Standard Model physics, probing already now the TeV scale, on which new physics should manifest itself. These possibilities are reviewed here. First, the results of present generation experiments are presented. The most sensitive one of them - the Heidelberg-Moscow experiment in the Gran Sasso - probes the electron mass now in the sub eV region and will reach a limit of ∼ 0.1 eV in a few years. Basing to a large extend on the theoretical work of the Heidelberg Double Beta Group in the last two years, results are obtained also for SUSY models (R-parity breaking, sneutrino mass), leptoquarks (leptoquark-Higgs coupling), compositeness, right-handed W boson mass, test of special relativity and equivalence principle in the neutrino sector and others. These results are comfortably competitive to corresponding results from high-energy accelerators like TEVATRON, HERA, etc. One of the enriched 76 Ge detectors also yields the most stringent limits for cold dark matter (WIMPs) to date by using raw data. Second, future perspectives of ββ research are discussed. A new Heidelberg experimental proposal (GENIUS) is described which would allow to increase the sensitivity for Majorana neutrino masses from the present level at best 0.1 eV down to 0.01 eV or even 0.001 eV. Its physical potential would be a breakthrough into the multi-TeV range for many beyond standard models. Its sensitivity for neutrino oscillation parameters would be larger than of all present terrestrial neutrino oscillation experiments and of those planned for the future. It could probe directly the atmospheric neutrino problem and the large angle, and for almost degenerate neutrino mass scenarios even the small angle solution of the solar neutrino problem. It would further, already in a first step using only 100 kg of natural Ge detectors, cover almost the full MSSM parameter space for prediction of neutralinos as cold

  6. Status report on the International Germanium Experiment

    International Nuclear Information System (INIS)

    Brodzinski, R.L.; Hensley, W.K.; Miley, H.S.; Reeves, J.H.; Avignone, F.T.; Collar, J.I.; Guerard, C.K.; Courant, H.; Ruddick, K.; Kirpichnikov, I.V.; Starostin, A.S.; Osetrov, S.B.; Pomansky, A.A.; Smolnikov, A.A.; Vasiliev, S.I.

    1992-06-01

    Phase II detector fabrication for the International Germanium Experiment is awaiting resolution of technical details observed during Phase I. Measurements of fiducial volume, configuration of the tansistor-reset preamplifier stage, and sources of background are discussed. Cosmogenic 7 Be is measured in germanium. Radium contamination in electroformed copper reported. The 2ν double- beta decay half-life of 76 Ge measured with a Phase I detector is in reasonable agreement with previously reported values. No events are observed in the vicinity of the Oν double-beta decay energy

  7. Kaon decay experiments at J-PARC

    International Nuclear Information System (INIS)

    Nanjo, Hajime

    2015-01-01

    Three kaon-decay experiments, E14 (KOTO), E36, and E06 (TREK), are being performed or planned in the Hadron Experimental Facility of J-PARC. The J-PARC accelerator provides 30-GeV intense proton beam with a slow-extraction method, which is one of the key points to achieve the physics goals for the experiments. In this article, the features of the kaon decay as a tool to explore new physics beyond the Standard Model are explained. The J-PARC accelerator and the Hadron Experimental Facility are briefly described. The three kaon-decay experiments are introduced, all of which are sensitive to the new physics beyond the Standard Model. (author)

  8. The MAJORANA Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Aguayo Navarrete, Estanislao; Avignone, F. T.; Back, Henning O.; Barabash, Alexander S.; Bergevin, M.; Bertrand, F.; Boswell, M.; Brudanin, V.; Busch, Matthew; Chan, Yuen-Dat; Christofferson, Cabot-Ann; Collar, J. I.; Combs, Dustin C.; Cooper, R. J.; Detwiler, Jason A.; Doe, Peter J.; Efremenko, Yuri; Egorov, Viatcheslav; Ejiri, H.; Elliott, Steven R.; Esterline, James H.; Fast, James E.; Fields, N.; Finnerty, P.; Fraenkle, Florian; Gehman, Victor M.; Giovanetti, G. K.; Green, Matthew P.; Guiseppe, Vincente; Gusey, K.; Hallin, A. L.; Hazama, R.; Henning, R.; Hime, Andrew; Hoppe, Eric W.; Horton, Mark; Howard, Stanley; Howe, M. A.; Johnson, R. A.; Keeter, K.; Keillor, Martin E.; Keller, C.; Kephart, Jeremy D.; Kidd, Mary; Knecht, A.; Kochetov, Oleg; Konovalov, S.; Kouzes, Richard T.; LaFerriere, Brian D.; LaRoque, B. H.; Leon, Jonathan D.; Leviner, L.; Loach, J. C.; MacMullin, S.; Marino, Michael G.; Martin, R. D.; Mei, Dong-Ming; Merriman, Jason H.; Miller, M. L.; Mizouni, Leila; Nomachi, Masaharu; Orrell, John L.; Overman, Nicole R.; Phillips, D.; Poon, Alan; Perumpilly, Gopakumar; Prior, Gersende; Radford, D. C.; Rielage, Keith; Robertson, R. G. H.; Ronquest, M. C.; Schubert, Alexis G.; Shima, T.; Shirchenko, M.; Snavely, Kyle J.; Sobolev, V.; Steele, David; Strain, J.; Thomas, K.; Timkin, V.; Tornow, W.; Vanyushin, I.; Varner, R. L.; Vetter, Kai; Vorren, Kris R.; Wilkerson, John; Wolfe, B. A.; Yakushev, E.; Young, A.; Yu, Chang-Hong; Yumatov, Vladimir; Zhang, C.

    2011-10-01

    The Majorana collaboration is actively pursuing research and development aimed at a tonne-scale {sup 76}Ge neutrinoless double-beta decay ({beta}{beta}(0{nu})-decay) experiment. The current, primary focus is the construction of the Majorana Demonstrator experiment, an R and D effort that will field approximately 40 kg of germanium detectors with mixed enrichment levels. This article provides a status update on the construction of the Demonstrator.

  9. Rare K+ decays from experiment E787

    International Nuclear Information System (INIS)

    Jain, V.

    2000-01-01

    This paper presents the latest results from experiment E787, at Brookhaven National Laboratory, on K + -> π + νbar ν and radiative K + decays. The result for K + -> π + νbar ν uses data collected in runs taken during 1995, 1996 and 1997. In addition, they discuss plans for future measurements of K + -> π + νbar ν

  10. Measurement of the 2νββ decay of 100Mo to the excited 01+ state in the NEMO3 experiment

    International Nuclear Information System (INIS)

    Vala, L.

    2003-09-01

    The NEMO3 detector was designed for the study of double beta decay and in particular to search for the neutrinoless double beta decay process (0νββ). The intended sensitivity in terms of a half-life limit for the 0νββ decay is of the order of 10 25 y which corresponds to an effective neutrino mass m ν on the level of (0.3 - 0.1) eV. The 0νββ process is today the most promising test of the Majorana nature of the neutrino. The detector was constructed in the Modane Underground Laboratory (LSM) in France by an international collaboration including France, Russia, the Czech Republic, the USA, the UK, Finland, and Japan. The experiment has been taking data since May 2002. The quantity of 100 Mo in the detector (7 kg) allows an efficient measurement of the two-neutrino double beta decay (2νββ) of 100 Mo to the excited 0 1 + state (eeNγ channel). Monte-Carlo simulations of the effect and of all the relative sources of background have been produced in order to define a set of appropriate selection criteria. Both Monte-Carlo simulations and special runs with sources of 208 Tl and 214 Bi showed that the only significant background in the eeNγ channel comes from radon that penetrated inside the wire chamber of NEMO3. The experimental data acquired from May 2002 to May 2003 have been analysed in order to determine the signal from the 2νββ decay of 100 Mo to the excited 0 1 + state and the corresponding background level. The physical result, which was obtained at the level of four standard deviations, is given in the form of an interval of half-life values at 95% confidence level: [5.84*10 20 , 2.26*10 21 ] y for method A and [5.83*10 20 , 1.71*10 21 ] y for method B. (author)

  11. Measurement of the 2{nu}{beta}{beta} decay of {sup 100}Mo to the excited 0{sub 1}{sup +} state in the NEMO3 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Vala, L

    2003-09-01

    The NEMO3 detector was designed for the study of double beta decay and in particular to search for the neutrinoless double beta decay process (0{nu}{beta}{beta}). The intended sensitivity in terms of a half-life limit for the 0{nu}{beta}{beta} decay is of the order of 10{sup 25} y which corresponds to an effective neutrino mass m{sub {nu}} on the level of (0.3 - 0.1) eV. The 0{nu}{beta}{beta} process is today the most promising test of the Majorana nature of the neutrino. The detector was constructed in the Modane Underground Laboratory (LSM) in France by an international collaboration including France, Russia, the Czech Republic, the USA, the UK, Finland, and Japan. The experiment has been taking data since May 2002. The quantity of {sup 100}Mo in the detector (7 kg) allows an efficient measurement of the two-neutrino double beta decay (2{nu}{beta}{beta}) of {sup 100}Mo to the excited 0{sub 1}{sup +} state (eeN{gamma} channel). Monte-Carlo simulations of the effect and of all the relative sources of background have been produced in order to define a set of appropriate selection criteria. Both Monte-Carlo simulations and special runs with sources of {sup 208}Tl and {sup 214}Bi showed that the only significant background in the eeN{gamma} channel comes from radon that penetrated inside the wire chamber of NEMO3. The experimental data acquired from May 2002 to May 2003 have been analysed in order to determine the signal from the 2{nu}{beta}{beta} decay of {sup 100}Mo to the excited 0{sub 1}{sup +} state and the corresponding background level. The physical result, which was obtained at the level of four standard deviations, is given in the form of an interval of half-life values at 95% confidence level: [5.84*10{sup 20}, 2.26*10{sup 21}] y for method A and [5.83*10{sup 20}, 1.71*10{sup 21}] y for method B. (author)

  12. The Soudan 2 proton decay experiment

    International Nuclear Information System (INIS)

    Thron, J.L.

    1989-01-01

    The Soudan 2 proton decay experiment is now 1/4 complete and assembled at the bottom of the Soudan iron mine in northern Minnesota, USA. When completed, it will be an 100 ton, fine grained, iron calorimeter. It is comprised of 256 identical modules. The cavity is 14 /times/ 72 /times/ 11 /times/ m (w /times/ 1 /times/ h) large enough to accommodate a 3300 ton detector of similar design. The detector samples track positions every 15, 10, and 2mm along the three spatial coordinations. Thus, the detector will have excellent tracking capabilities for the low energy charged particles and electromagnetic showers expected from nucleon decay candidates and neutrino background events. In addition, for such events the energy of particles observed is sufficiently low that they will stop inside the detector. The measurement of the ionization deposited as a function of track length allows the determination of track and will yield some information on the particle type. In addition to the dE/dx measurements the Soudan 2 detector has several advantages over previous nucleon decay detectors. The honeycomb geometry has very isotropic detection compared with other tracking detectors. The thin steel and local triggering system produces a low trigger threshold giving excellent efficiency for multiparticle decay nodes or ones with missing energy due to neutrinos. 8 figs

  13. A search of the neutrinoless decay of 76Ge to the first excited state of 76Se in the Canfranc tunnel

    International Nuclear Information System (INIS)

    Morales, A.; Morales, J.; Nunez-Lagos, R.; Puimedon, J.; Villar, J.A.; Larrea, A.; Garcia, E.

    1991-01-01

    To further investigate a small, unexplained coincidence effect, close to the region where a neutrinoless, 0 + →2 + 76 Ge double beta decay should be expected, which we found in a previous experiment in the Frejus tunnel, a new experiment, with improved background conditions is being performed in the Canfranc railroad tunnel. The details of the experimental set-up are given and the first results, corresponding to t=4375 hours, are presented. (author)

  14. Prospects for studying penguin decays in LHCb experiments

    International Nuclear Information System (INIS)

    Barsuk, S. Ya.; Pakhlova, G. V.; Belyaev, I. M.

    2006-01-01

    Investigation of loop penguin decays of beauty hadrons seems promising in testing the predictions of the Standard Model of electroweak and strong interactions and in seeking new phenomena beyond the Standard Model. The possibility of studying the radiative penguin decays B 0 → K* 0 γ, B 0 s → φγ, and B 0 → ωγ and the gluonic penguin decays B 0 → φK 0 S and B 0 s → φφ in LHCb experiments is discussed

  15. $B$ flavour tagging using charm decays at the LHCb experiment

    CERN Document Server

    Aaij, Roel; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Anderson, Jonathan; Andreassi, Guido; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; d'Argent, Philippe; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Bel, Lennaert; Bellee, Violaine; Belloli, Nicoletta; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bertolin, Alessandro; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Billoir, Pierre; Bird, Thomas; Birnkraut, Alex; Bizzeti, Andrea; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Braun, Svende; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Brook, Nicholas; Buchanan, Emma; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Capriotti, Lorenzo; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carniti, Paolo; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cavallero, Giovanni; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dall'Occo, Elena; Dalseno, Jeremy; David, Pieter; Davis, Adam; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Demmer, Moritz; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Dey, Biplab; Di Canto, Angelo; Di Ruscio, Francesco; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dreimanis, Karlis; Dufour, Laurent; Dujany, Giulio; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farley, Nathanael; Farry, Stephen; Fay, Robert; Ferguson, Dianne; Fernandez Albor, Victor; Ferrari, Fabio; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fohl, Klaus; Fol, Philip; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; García Pardiñas, Julián; Garra Tico, Jordi; Garrido, Lluis; Gascon, David; Gaspar, Clara; Gauld, Rhorry; Gavardi, Laura; Gazzoni, Giulio; Gerick, David; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianelle, Alessio; Gianì, Sebastiana; Gibson, Valerie; Girard, Olivier Göran; Giubega, Lavinia-Helena; Gligorov, V.V.; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graverini, Elena; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadavizadeh, Thomas; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; He, Jibo; Head, Timothy; Heijne, Veerle; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Humair, Thibaud; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jawahery, Abolhassan; Jing, Fanfan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Karbach, Moritz; Karodia, Sarah; Kecke, Matthieu; Kelsey, Matthew; Kenyon, Ian; Kenzie, Matthew; Ketel, Tjeerd; Khanji, Basem; Khurewathanakul, Chitsanu; Klaver, Suzanne; Klimaszewski, Konrad; Kochebina, Olga; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Kozeiha, Mohamad; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krocker, Georg; Krokovny, Pavel; Kruse, Florian; Krzemien, Wojciech; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kuonen, Axel Kevin; Kurek, Krzysztof; Kvaratskheliya, Tengiz; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lanfranchi, Gaia; Langenbruch, Christoph; Langhans, Benedikt; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Likhomanenko, Tatiana; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Liu, Xuesong; Loh, David; Longstaff, Iain; Lopes, Jose; Lucchesi, Donatella; Lucio Martinez, Miriam; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Lusiani, Alberto; Machefert, Frederic; Maciuc, Florin; Maev, Oleg; Maguire, Kevin; Malde, Sneha; Malinin, Alexander; Manca, Giulia; Mancinelli, Giampiero; Manning, Peter Michael; Mapelli, Alessandro; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Marks, Jörg; Martellotti, Giuseppe; Martin, Morgan; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massafferri, André; Matev, Rosen; Mathad, Abhijit; Mathe, Zoltan; Matteuzzi, Clara; Mauri, Andrea; Maurin, Brice; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; Meadows, Brian; Meier, Frank; Meissner, Marco; Melnychuk, Dmytro; Merk, Marcel; Michielin, Emanuele; Milanes, Diego Alejandro; Minard, Marie-Noelle; Mitzel, Dominik Stefan; Molina Rodriguez, Josue; Monroy, Ignacio Alberto; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Muller, Dominik; Müller, Janine; Müller, Katharina; Müller, Vanessa; Mussini, Manuel; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nandi, Anita; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Ninci, Daniele; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Osorio Rodrigues, Bruno; Otalora Goicochea, Juan Martin; Otto, Adam; Owen, Patrick; Oyanguren, Maria Aranzazu; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Pappenheimer, Cheryl; Parkes, Christopher; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Perret, Pascal; Pescatore, Luca; Petridis, Konstantinos; Petrolini, Alessandro; Petruzzo, Marco; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pilař, Tomas; Pinci, Davide; Pistone, Alessandro; Piucci, Alessio; Playfer, Stephen; Plo Casasus, Maximo; Poikela, Tuomas; Polci, Francesco; Poluektov, Anton; Polyakov, Ivan; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Price, Eugenia; Price, Joseph David; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Quagliani, Renato; Rachwal, Bartolomiej; Rademacker, Jonas; Rama, Matteo; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Redi, Federico; Reichert, Stefanie; Reid, Matthew; dos Reis, Alberto; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vincente; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Lopez, Jairo Alexis; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Ronayne, John William; Rotondo, Marcello; Rouvinet, Julien; Ruf, Thomas; Ruiz, Hugo; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sagidova, Naylya; Sail, Paul; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santimaria, Marco; Santovetti, Emanuele; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmelzer, Timon; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schubiger, Maxime; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Siddi, Benedetto Gianluca; Silva Coutinho, Rafael; Silva de Oliveira, Luiz Gustavo; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skillicorn, Ian; Skwarnicki, Tomasz; Smith, Edmund; Smith, Eluned; Smith, Iwan Thomas; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Stefkova, Slavorima; Steinkamp, Olaf; Stenyakin, Oleg; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szczypka, Paul; Szumlak, Tomasz; T'Jampens, Stephane; Tayduganov, Andrey; Tekampe, Tobias; Teklishyn, Maksym; Tellarini, Giulia; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Todd, Jacob; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Trabelsi, Karim; Tran, Minh Tâm; Tresch, Marco; Trisovic, Ana; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Vollhardt, Achim; Volyanskyy, Dmytro; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wandernoth, Sebastian; Wang, Jianchun; Ward, David; Watson, Nigel; Websdale, David; Weiden, Andreas; Whitehead, Mark; Wilkinson, Guy; Wilkinson, Michael; Williams, Mark Richard James; Williams, Matthew; Williams, Mike; Williams, Timothy; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wright, Simon; Wyllie, Kenneth; Xie, Yuehong; Xu, Zhirui; Yang, Zhenwei; Yu, Jiesheng; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang; Zucchelli, Stefano

    2015-10-05

    An algorithm is described for tagging the flavour content at production of neutral $B$ mesons in the LHCb experiment. The algorithm exploits the correlation of the flavour of a $B$ meson with the charge of a reconstructed secondary charm hadron from the decay of the other $b$ hadron produced in the proton-proton collision. Charm hadron candidates are identified in a number of fully or partially reconstructed Cabibbo-favoured decay modes. The algorithm is calibrated on the self-tagged decay modes $B^+ \\to J/\\psi \\, K^+$ and $B^0 \\to J/\\psi \\, K^{*0}$ using $3.0\\mathrm{\\,fb}^{-1}$ of data collected by the LHCb experiment at $pp$ centre-of-mass energies of $7\\mathrm{\\,TeV}$ and $8\\mathrm{\\,TeV}$. Its tagging power on these samples of $B \\to J/\\psi \\, X$ decays is $(0.30 \\pm 0.01 \\pm 0.01) \\%$.

  16. General classification and analysis of neutron β-decay experiments

    International Nuclear Information System (INIS)

    Gudkov, V.; Greene, G.L.; Calarco, J.R.

    2006-01-01

    A general analysis of the sensitivities of neutron β-decay experiments to manifestations of possible interaction beyond the standard model is carried out. In a consistent fashion, we take into account all known radiative and recoil corrections arising in the standard model. This provides a description of angular correlations in neutron decay in terms of one parameter, which is accurate to the level of ∼10 -5 . Based on this general expression, we present an analysis of the sensitivities to new physics for selected neutron decay experiments. We emphasize that the usual parametrization of experiments in terms of the tree-level coefficients a,A, and B is inadequate when the experimental sensitivities are at the same or higher level relative to the size of the corrections to the tree-level description

  17. Proceedings of workshop on K-decay experiments

    International Nuclear Information System (INIS)

    Nakai, Kozi

    1989-08-01

    The elementary particle experiment using the 12 GeV proton synchrotron in the National Laboratory for High Energy Physics (KEK) develops centering around the large scale experiment on K-meson decay. In this case, the ideal precision physics is pursued, and efforts have been exerted to improve the experimental techniques. At present the experiment on searching for rare K-decay is advancing. Next, the experiment on searching for CP nonconservation process will be begun. However, these experiments are in severe competition with those in BNL and Fermilab which have powerful accelerators, therefore it is desirable to grasp well the development of the international research plans. Therefore, in order to obtain the quideline for the experimental plan using the KEK proton synchrotron hereafter, the workshop on K-decay was held on July 11∼12, 1989. In this workshop, Arisaka (UCLA), Numao (TRIUMF) and Yamanaka (Fermilab) returned from USA and lectured on the present status of the experiment and the future perspective. The impression of the planner of the proton synchrotron experiment plan on the experiments are recorded. (K.I.)

  18. SOUDAN 2 nuclear decay experiment. Progress report

    International Nuclear Information System (INIS)

    Minnesota; Argonne; Oxford; Rutherford; Tufts Collaboration.

    1984-01-01

    Construction of the experiment cavern on the 27th level of the SOUDAN iron mine in northern Minnesota began early this year and will be complete early in 1985. The first 1200 tons of the detector itself is also under construction in the US and UK; installation will begin in mid 1985. Physics exploitation will begin early in 1986 and the first 1200 ton module will be complete early in 1987. The detector may be expanded to between 3 and 5 such modules in the cavern. The detector is an iron tracking calorimeter (rho = 2) consisting of stacks of corrugated steel sheets each 1.2 mm thick. The corrugations form hexagonal channels 1 m long and 16 mm in diameter. A uniform electric field along these channels is provided by the voltage grading arising from the constant standing current in the Hytrel tubes (rho = 2 x 10 12 Ω cm) that line each channel. The tubes are insulated from the steel by sheets of mylar. Ionization in the gas in the tubes drifts in the uniform field to the end of the tube where it is amplified linearly and detected by a matrix of anode wires and cathode strips. The electronics registers both the drift time and the pulse height of all signals

  19. Introduction to charm decay analysis in fixed target experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bediaga, Ignacio; Goebel, Carla

    1996-01-01

    We present an introduction to data analysis in Experimental High Energy Physics, and some concepts and useful tools are discussed. To illustrate, we use the data of E-791, a fixed target experiment recently realized at Fermilab. In particular, we analyse decay modes of D{sup +} meson with three charged particles in the final state. (author). 8 refs., 22 figs., 1 tab.

  20. Introduction to charm decay analysis in fixed target experiments

    International Nuclear Information System (INIS)

    Bediaga, Ignacio; Goebel, Carla.

    1996-01-01

    We present an introduction to data analysis in Experimental High Energy Physics, and some concepts and useful tools are discussed. To illustrate, we use the data of E-791, a fixed target experiment recently realized at Fermilab. In particular, we analyse decay modes of D + meson with three charged particles in the final state. (author). 8 refs., 22 figs., 1 tab

  1. Improvements in 130Te double beta decay search with cryogenic TeO2 array detectors

    International Nuclear Information System (INIS)

    Alessandrello, A.; Brofferio, C.; Bucci, C.; Caspani, P.; Cremonesi, O.; Fiorini, E.; Giuliani, A.; Nucciotti, A.; Pavan, M.; Pessina, G.; Previtali, E.; Zanotti, L.

    1996-01-01

    Single crystal TeO 2 bolometers have been used since 5 years ago to search for neutrinoless DBD of 130 Te. During the last year, our group has been studying and preparing the first array of 4 crystals, 340 g each, opening this technique to new frontiers in rare events' physics. The results and perspectives of this second generation cryogenic detectors are here reported and discussed, with particular emphasis on the peculiarities which make them feasible for a consistent upgrading of our previous result in DBD search. (orig.)

  2. Scintillating bolometers: A promising tool for rare decays search

    Energy Technology Data Exchange (ETDEWEB)

    Pattavina, L., E-mail: luca.pattavina@mib.infn.it

    2013-12-21

    The idea of using a scintillating bolometer was first suggested for solar neutrino experiments in 1989. After many years of developments, now we are able to exploit this experimental technique, based on the calorimetric approach with cryogenic particle detectors, to investigate rare events such as Neutrinoless Double Beta Decay and interaction of Dark Matter candidates. The possibility to have high resolution detectors in which a very large part of the natural background can be discriminated with respect to the weak expected signal is very appealing. The goal to distinguish the different types of interactions in the detector can be achieved by means of scintillating bolometer. The simultaneous read-out of the heat and scintillation signals made with two independent bolometers enable this precious feature leading to possible background free experiment. In the frame of the LUCIFER project we report on how exploiting this technique to investigate Double Beta Decay for different isotope candidates. Moreover we demonstrate how scintillating bolometers are suited for investigating other rare events such as α decays of long living isotopes of lead and bismuth.

  3. Muon-induced backgrounds in the CUORICINO experiment

    Energy Technology Data Exchange (ETDEWEB)

    Andreotti, E.; Arnaboldi, C.; Avignone III, F. T.; Balata, M.; Bandac, I.; Barucci, M.; Beeman, J. W.; Bellini, F.; Bloxham, T.; Brofferio, C.; Bryant, A.; Bucci, C.; Canonica, L.; Capelli, S.; Carbone, L.; Carrettoni, M.; Clemenza, M.; Cremonesi, O.; Creswick, R. J.; Domizio, S. Di; Dolinski, M. J.; Ejzak, L.; Faccini, R.; Farach, H. A.; Ferri, E.; Ferroni, F.; Fiorini, E.; Foggetta, L.; Giachero, A.; Gironi, L.; Giuliani, A.; Gorla, P.; Guardincerri, E.; Gutierrez, T. D.; Haller, E. E.; Kadel, R.; Kazkaz, K.; Kraft, S.; Kogler, L.; Kolomensky, Yu. G.; Maiano, C.; Maruyama, R. H.; Martinez, C.; Martinez, M.; Mizouni, L.; Morganti, S.; Nisi, S.; Nones, C.; Norman, E. B.; Nucciotti, A.; Orio, F.; Pallavicini, M.; Palmieri, V.; Pattavina, L.; Pavan, M.; Pedretti, M.; Pessina, G.; Pirro, S.; Previtali, E.; Risegari, L.; Rosenfeld, C.; Rusconi, C.; Salvioni, C.; Sangiorgio, S.; Schaeffer, D.; Scielzo, N. D.; Sisti, M.; Smith, A. R.; Tomei, C.; Ventura, G.; Vignati, M.

    2010-04-15

    To better understand the contribution of cosmic ray muons to the CUORICINO background, ten plastic scintillator detectors were installed at the CUORICINO siteand operated during the final 3 months of the experiment. From these measurements, an upper limit of 0.0021 counts/(keV.kg.yr) (95percent c.l.) was obtained on the cosmicray induced background in the neutrinoless double beta decay region of interest. The measurements were also compared to Geant4 simulations.

  4. Neutrino Physics without Neutrinos: Recent results from the NEMO-3 experiment and plans for SuperNEMO

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    The observation of neutrino oscillations has proved that neutrinos have mass. This discovery has renewed and strengthened the interest in neutrinoless double beta decay experiments which provide the only practical way to determine whether neutrinos are Majorana or Dirac particles. The recently completed NEMO-3 experiment, located in the Laboratoire Souterrain de Modane in the Frejus Tunnel, was an experiment searching for neutrinoless double beta decays using a powerful technique for detecting a two-electron final state by employing an apparatus combining tracking, calorimetry, and the time-of-flight measurements. We will present latest results from NEMO-3 and will discuss the status of SuperNEMO, the next generation experiment that will exploit the same experimental technique to extend the sensitivity of the current search.

  5. Limit on neutrinoless ββ decay of 136Xe from the first phase of KamLAND-Zen and comparison with the positive claim in 76Ge.

    Science.gov (United States)

    Gando, A; Gando, Y; Hanakago, H; Ikeda, H; Inoue, K; Ishidoshiro, K; Kato, R; Koga, M; Matsuda, S; Mitsui, T; Motoki, D; Nakada, T; Nakamura, K; Obata, A; Oki, A; Ono, Y; Otani, M; Shimizu, I; Shirai, J; Suzuki, A; Takemoto, Y; Tamae, K; Ueshima, K; Watanabe, H; Xu, B D; Yamada, S; Yoshida, H; Kozlov, A; Yoshida, S; Banks, T I; Freedman, S J; Fujikawa, B K; Han, K; O'Donnell, T; Berger, B E; Efremenko, Y; Karwowski, H J; Markoff, D M; Tornow, W; Detwiler, J A; Enomoto, S; Decowski, M P

    2013-02-08

    We present results from the first phase of the KamLAND-Zen double-beta decay experiment, corresponding to an exposure of 89.5 kg yr of (136)Xe. We obtain a lower limit for the neutrinoless double-beta decay half-life of T(1/2)(0ν)>1.9×10(25) yr at 90% C.L. The combined results from KamLAND-Zen and EXO-200 give T(1/2)(0ν)>3.4×10(25) yr at 90% C.L., which corresponds to a Majorana neutrino mass limit of <(120-250) meV based on a representative range of available matrix element calculations. Using those calculations, this result excludes the Majorana neutrino mass range expected from the neutrinoless double-beta decay detection claim in (76)Ge, reported by a part of the Heidelberg-Moscow Collaboration, at more than 97.5% C.L.

  6. Ordinary muon capture as a probe of virtual transitions of ββ decay

    International Nuclear Information System (INIS)

    Kortelainen, M.; Suhonen, J.

    2002-01-01

    A reliable theoretical description of double-beta-decay processes needs a possibility to test the involved virtual transitions against experimental data. Unfortunately, only the lowest virtual transition can be probed by the traditional electron capture of β - decay experiments. In this article we propose that calculated amplitudes for many virtual transitions can be probed by experiments measuring rates of ordinary muon capture (OMC) to the relevant intermediate states. The first results form such experiments are expected to appear soon. As an example, we discuss the ββ decays of 76 Ge and 106 Cd and the corresponding OMC for the 76 Se and 106 Cd nuclei in the framework of the proton-neutron QRPA with realistic interactions. It is found that the OMC observables, just like the 2νββ-decay amplitudes, strongly depend on the strength of the particle-particle part of the proton-neutron interaction. (author)

  7. Charm and beauty decays in the ALEPH experiment

    International Nuclear Information System (INIS)

    Boucrot, J.

    1992-05-01

    Results of the ALEPH experiment at LEP are presented on charm and beauty decays, from data taken in 1990 and 1991. Several exclusive channels of charm and beauty mesons are seen. Evidence is given for the production of beauty baryons from correlations between a high Pt lepton and a Λ 0 or a Λ c baryon. Finally, first evidence is given for the production of the strange B meson, from Ds-lepton correlations. (author) 7 refs., 7 figs

  8. Selected Measurements of Rare Decays at the LHCb Experiment

    CERN Document Server

    Pikies, Malgorzata

    2016-01-01

    Experimental results of rare decays B$^0$$\\to K*^0\\mu\\mu$, B$^0 \\to K*^0$ee, $\\Lambda_b\\to\\Lambda\\mu\\mu$ and B$^0_s$ governed by Flavour Changing Neutral Current transitions are discussed in this paper. The angular distributions and differential branching fractions measurements were performed using data corresponding to an integrated luminosity of 3:0 fb$^{-1}$ collected at the LHCb experiment.

  9. An overview of current experiments in search of proton decay

    International Nuclear Information System (INIS)

    Goldhaber, M.; Sulak, L.R.

    1981-01-01

    Detectors being used in current experiments dedicated to the search for proton decay, fall into two classes, totally active water Cherenkov detectors with light collected by phototubes, and sampling calorimeters with particle ionization tracked by gas tube arrays. An example of each type is considered in detail, the features of other detectors in the two classes are pointed out and compared with those of the same type. (U.K.)

  10. Charm and beauty decays in the ALEPH experiment

    International Nuclear Information System (INIS)

    Boucrot, J.

    1992-01-01

    Results of the ALEPH experiment at LEP are presented on charm and beauty decays, from data taken in 1990 and 1991. Several exclusive channels of charm and beauty mesons are seen. Evidence is given for the production of beauty baryons from correlations between a high Pt lepton and a Λ 0 or a Λ c baryon. Finally, first evidence is given for the production of the strange B meson, from Ds-lepton correlations. (author) 7 refs.; 7 figs

  11. Search for 0νββ-decay with gerda phase II

    Science.gov (United States)

    Majorovits, B.

    2018-01-01

    The Gerda experiment is designed to search for neutrinoless double beta decay of 76Ge. From data taken during Phase I of the experiment some knowledge on background contributions important for future experiments could be obtained: limits on the bulk contamination of HPGe with primordial uranium and thorium are presented and first evidence for observation of the decay of the meta-stable state of 77mGe due to neutron capture on 76Ge is discussed. In Phase II of the Gerda experiment 37 HPGe detectors enriched in the isotope 76Ge are deployed into the Gerda cryostat. From non-observation of a peak at 2039 keV a half-life limit on neutrinoless double beta decay of 76Ge of T1/2 > 5.3 . 1025 yr has been obtained. The background rate in the energy region of interest, after pulse shape discrimination and liquid argon veto cuts is in the range of a few Cts//ROI ton yr). This makes Gerda the first 0νββ-experiment that has a background so low that <1 counts are expected in the RoI within the anticipated life time of the experiment.

  12. Cellular automaton and elastic net for event reconstruction in the NEMO-2 experiment

    International Nuclear Information System (INIS)

    Kisel, I.; Kovalenko, V.; Laplanche, F.

    1997-01-01

    A cellular automaton for track searching combined with an elastic net for charged particle trajectory fitting is presented. The advantages of the methods are: the simplicity of the algorithms, the fast and stable convergency to real tracks, and a good reconstruction efficiency. The combination of techniques have been used with success for event reconstruction on the data of the NEMO-2 double-beta (ββ) decay experiments. (orig.)

  13. A CP violation and rare kaon decay experiment at Fermilab

    International Nuclear Information System (INIS)

    Yamanaka, Taku.

    1989-02-01

    The E731 collaboration at Fermilab has collected enough K → 2π events to give a statistical error of ∼0.5 /times/ 10/sup /minus/3/ on the CP violation parameter ε'/ε. Improvements have been made to reduce the systematic error. The experiment is also sensitive to many rare decays, and it set a new limit on the branching ratio of K/sub L/ → π 0 e + e/sup /minus//, < 4.2 /times/ 10/sup /minus/8/ (90% CL). 10 refs., 15 figs., 1 tab

  14. Software for physics of tau lepton decay in LHC experiments

    CERN Document Server

    Przedzinski, Tomasz

    2010-01-01

    Software development in high energy physics experiments offers unique experience with rapidly changing environment and variety of different standards and frameworks that software must be adapted to. As such, regular methods of software development are hard to use as they do not take into account how greatly some of these changes influence the whole structure. The following thesis summarizes development of TAUOLA C++ Interface introducing tau decays to new event record standard. Documentation of the program is already published. That is why it is not recalled here again. We focus on the development cycle and methodology used in the project, starting from the definition of the expectations through planning and designing the abstract model and concluding with the implementation. In the last part of the paper we present installation of the software within different experiments surrounding Large Hadron Collider and the problems that emerged during this process.

  15. Pulse shape analysis for the GERDA experiment to set a new limit on the half-life of 0νββ decay of {sup 76}Ge

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Victoria Elisabeth

    2017-01-25

    The GERDA experiment searches for neutrinoless double beta (0νββ) decay of {sup 76}Ge using high purity germanium (HPGe) detectors operated in liquid argon (LAr). The aim is to explore half-lives of the order of 10{sup 26} yr. Therefore, GERDA relies on improved active background reduction techniques such as pulse shape discrimination (PSD) in which the time structure of the germanium signals is analyzed to discriminate signal- from background-like events. Two types of HPGe detectors are operated: semi-coaxial detectors previously used in the Heidelberg-Moscow and IGEX experiments and new Broad Energy Germanium (BEGe) detectors which feature an improved energy resolution and enhanced PSD. In Phase I of the experiment, five enriched BEGe detectors were used for the first time in the search for 0νββ decay. A PSD based on a single parameter, the ratio of the maximum current amplitude over the energy A/E is applied. 83% of the background events in a 232 keV region around Q{sub ββ} are rejected with a high signal efficiency of (92.1 ± 1.9) %. The achieved background index (BI) is (5.4{sup +4.1}{sub -3.4}) . 10{sup -3} (counts)/(keV.kg.yr). This is an improvement by a factor of 10 compared to previous germanium based 0νββ experiments. Phase II of the experiment includes a major upgrade: for further background rejection, the LAr cryostat is instrumented to detect argon scintillation light. Additional 25 BEGe detectors are installed. After PSD and LAr veto a BI of (0.7{sup +1.3}{sub -0.5}) . 10{sup -3} (counts)/(keV.kg.yr) is achieved. This is the best BI achieved in 0νββ experiments so far. A frequentist statistical analysis is performed on the combined data collected in GERDA Phase I and the first Phase II release. A new limit on the half-life of 0νββ decay of {sup 76}Ge is set to T{sup 0ν}{sub 1/2}>5.3.10{sup 25} yr at 90% C.L., with a median sensitivity of T{sup 0ν}{sub 1/2}>4.0.10{sup 25} yr at 90% C.L.

  16. STATUS OF THE CUORE EXPERIMENT

    Directory of Open Access Journals (Sweden)

    Claudia Tomei

    2013-12-01

    Full Text Available The CUORE (Cryogenic Underground Observatory for Rare Events experiment will search for neutrinoless double beta decay of 130Te, a rare nuclear process that, if observed, would demonstrate the Majorana nature of the neutrino and enable measurements of the effective Majorana mass. The CUORE setup consists of an array of 988 tellurium dioxide crystals, operated as bolometers, with a total mass of about 200 kg of 130Te. The experiment is under construction at the Gran Sasso National Laboratory in Italy. As a first step towards CUORE, the first tower (CUORE-0 has been assembled and will soon be in operation.

  17. The NA62 rare Kaon decay experiment Photon Veto System

    International Nuclear Information System (INIS)

    Perfetto, F.

    2009-01-01

    The NA62 experiment at CERN SPS is aimed at measuring the rare decay K + →π + νν-bar. This poses very stringent requirements on the particle identification capabilities of the apparatus in order to reject the overwhelming K + →μ + ν and K + →π + π 0 background. In particular, a π 0 rejection at level of 10 -8 is needed to complement the kinematical rejection of π + π 0 events. In order to have a full acceptance from 0 to 50 mrad, partly covered by NA48 liquid Kripton calorimeter, a set of veto anti-counters should be placed along the vacuum decay tank, to catch large angle photons with a detection efficiency better than 10 -4 in a wide energy range: from few hundreds MeV to 35 GeV. Intense R and D programs have been carried out in order to study different technological solutions: a lead-scintillating fibers calorimeter, lead-scintillator sandwich calorimeter and finally an original re-use of the existing barrel of the OPAL lead-glass electromagnetic calorimeter. We present the results on detector performances and compare the three solutions.

  18. First Results from CUORE: A Search for Lepton Number Violation via 0 ν β β Decay of Te 130

    Science.gov (United States)

    Alduino, C.; Alessandria, F.; Alfonso, K.; Andreotti, E.; Arnaboldi, C.; Avignone, F. T.; Azzolini, O.; Balata, M.; Bandac, I.; Banks, T. I.; Bari, G.; Barucci, M.; Beeman, J. W.; Bellini, F.; Benato, G.; Bersani, A.; Biare, D.; Biassoni, M.; Bragazzi, F.; Branca, A.; Brofferio, C.; Bryant, A.; Buccheri, A.; Bucci, C.; Bulfon, C.; Camacho, A.; Caminata, A.; Canonica, L.; Cao, X. G.; Capelli, S.; Capodiferro, M.; Cappelli, L.; Cardani, L.; Cariello, M.; Carniti, P.; Carrettoni, M.; Casali, N.; Cassina, L.; Cereseto, R.; Ceruti, G.; Chiarini, A.; Chiesa, D.; Chott, N.; Clemenza, M.; Conventi, D.; Copello, S.; Cosmelli, C.; Cremonesi, O.; Crescentini, C.; Creswick, R. J.; Cushman, J. S.; D'Addabbo, A.; D'Aguanno, D.; Dafinei, I.; Datskov, V.; Davis, C. J.; Del Corso, F.; Dell'Oro, S.; Deninno, M. M.; di Domizio, S.; di Vacri, M. L.; di Paolo, L.; Drobizhev, A.; Ejzak, L.; Faccini, R.; Fang, D. Q.; Faverzani, M.; Ferri, E.; Ferroni, F.; Fiorini, E.; Franceschi, M. A.; Freedman, S. J.; Fujikawa, B. K.; Gaigher, R.; Giachero, A.; Gironi, L.; Giuliani, A.; Gladstone, L.; Goett, J.; Gorla, P.; Gotti, C.; Guandalini, C.; Guerzoni, M.; Gutierrez, T. D.; Haller, E. E.; Han, K.; Hansen, E. V.; Heeger, K. M.; Hennings-Yeomans, R.; Hickerson, K. P.; Huang, H. Z.; Iannone, M.; Ioannucci, L.; Kadel, R.; Keppel, G.; Kogler, L.; Kolomensky, Yu. G.; Leder, A.; Ligi, C.; Lim, K. E.; Liu, X.; Ma, Y. G.; Maiano, C.; Maino, M.; Marini, L.; Martinez, M.; Martinez Amaya, C.; Maruyama, R. H.; Mei, Y.; Moggi, N.; Morganti, S.; Mosteiro, P. J.; Nagorny, S. S.; Napolitano, T.; Nastasi, M.; Nisi, S.; Nones, C.; Norman, E. B.; Novati, V.; Nucciotti, A.; Nutini, I.; O'Donnell, T.; Olcese, M.; Olivieri, E.; Orio, F.; Orlandi, D.; Ouellet, J. L.; Pagliarone, C. E.; Pallavicini, M.; Palmieri, V.; Pattavina, L.; Pavan, M.; Pedretti, M.; Pedrotta, R.; Pelosi, A.; Pessina, G.; Pettinacci, V.; Piperno, G.; Pira, C.; Pirro, S.; Pozzi, S.; Previtali, E.; Reindl, F.; Rimondi, F.; Risegari, L.; Rosenfeld, C.; Rossi, C.; Rusconi, C.; Sakai, M.; Sala, E.; Salvioni, C.; Sangiorgio, S.; Santone, D.; Schaeffer, D.; Schmidt, B.; Schmidt, J.; Scielzo, N. D.; Singh, V.; Sisti, M.; Smith, A. R.; Stivanello, F.; Taffarello, L.; Tatananni, L.; Tenconi, M.; Terranova, F.; Tessaro, M.; Tomei, C.; Ventura, G.; Vignati, M.; Wagaarachchi, S. L.; Wallig, J.; Wang, B. S.; Wang, H. W.; Welliver, B.; Wilson, J.; Wilson, K.; Winslow, L. A.; Wise, T.; Zanotti, L.; Zarra, C.; Zhang, G. Q.; Zhu, B. X.; Zimmermann, S.; Zucchelli, S.; Cuore Collaboration

    2018-03-01

    The CUORE experiment, a ton-scale cryogenic bolometer array, recently began operation at the Laboratori Nazionali del Gran Sasso in Italy. The array represents a significant advancement in this technology, and in this work we apply it for the first time to a high-sensitivity search for a lepton-number-violating process: Te 130 neutrinoless double-beta decay. Examining a total TeO2 exposure of 86.3 kg yr, characterized by an effective energy resolution of (7.7 ±0.5 ) keV FWHM and a background in the region of interest of (0.014 ±0.002 ) counts /(keV kg yr ) , we find no evidence for neutrinoless double-beta decay. Including systematic uncertainties, we place a lower limit on the decay half-life of T1/2 0 ν(Te 130 )>1.3 ×1025 yr (90% C.L.); the median statistical sensitivity of this search is 7.0 ×1024 yr . Combining this result with those of two earlier experiments, Cuoricino and CUORE-0, we find T1/2 0 ν(Te 130 )>1.5 ×1025 yr (90% C.L.), which is the most stringent limit to date on this decay. Interpreting this result as a limit on the effective Majorana neutrino mass, we find mβ β<(110 -520 ) meV , where the range reflects the nuclear matrix element estimates employed.

  19. Semi- and dileptonic top pair decays at the ATLAS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mameghani, Raphael

    2008-05-15

    The Large Hadron Collider, starting in 2008, will be a 'top factory' as top-antitop (t anti t) pairs will be produced with a cross section of about 830 pb at an instantaneous luminosity of 10{sup 33}cm{sup -2}s{sup -1} during the first year. With about 30% probability top pairs decay semileptonically into a final state with four jets, lepton (electron or muon) and respective neutrino. For another 5% of the t anti t events a dileptonic decay is expected. Here the final state signature is composed of two jets, two leptons and two neutrinos. In this thesis the precision for a t anti t cross section measurement at the ATLAS experiment in the semileptonic and dileptonic channels with cut based analyses, applicable to the first data, was estimated. The analysis of the semileptonic decay focused especially on the study of background from QCD events either with leptons from semileptonic hadron decays or from hadrons falsely identified as electrons by the calorimeter. For the first 10 fb{sup -1} and assuming a fake electron probability of 10{sup -3} a precision for the cross section times the branching ratio of {delta}({sigma}{sub t} {sub anti} {sub t}.B(t anti t{yields}bq anti q' anti bl anti {nu}))={+-}0.5(stat){+-}30.4(syst){+-}24.0(lumi) pb has been estimated, corresponding to a relative precision of 16% for the theoretically predicted cross section times branching ratio of about 240 pb. The analysis in the dileptonic channel achieves a precision of {delta}({sigma}{sub t} {sub anti} {sub t}.B(t anti t{yields}b anti l{nu} anti bl anti {nu}))={+-}0.2(stat){+-}2.5(syst){+-}2.6(lumi) pb which translates into a relative error of 10% for the cross section times branching ratio of around 38 pb. The errors for both the semileptonic and the dileptonic channel are expected to improve as progress is made on the luminosity determination and the knowledge of the backgrounds from comparisons with measured data. A measurement of the cross-section ratio between the

  20. Semi- and dileptonic top pair decays at the ATLAS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mameghani, Raphael

    2008-05-15

    The Large Hadron Collider, starting in 2008, will be a 'top factory' as top-antitop (t anti t) pairs will be produced with a cross section of about 830 pb at an instantaneous luminosity of 10{sup 33}cm{sup -2}s{sup -1} during the first year. With about 30% probability top pairs decay semileptonically into a final state with four jets, lepton (electron or muon) and respective neutrino. For another 5% of the t anti t events a dileptonic decay is expected. Here the final state signature is composed of two jets, two leptons and two neutrinos. In this thesis the precision for a t anti t cross section measurement at the ATLAS experiment in the semileptonic and dileptonic channels with cut based analyses, applicable to the first data, was estimated. The analysis of the semileptonic decay focused especially on the study of background from QCD events either with leptons from semileptonic hadron decays or from hadrons falsely identified as electrons by the calorimeter. For the first 10 fb{sup -1} and assuming a fake electron probability of 10{sup -3} a precision for the cross section times the branching ratio of {delta}({sigma}{sub t} {sub anti} {sub t}.B(t anti t{yields}bq anti q' anti bl anti {nu}))={+-}0.5(stat){+-}30.4(syst){+-}24.0(lumi) pb has been estimated, corresponding to a relative precision of 16% for the theoretically predicted cross section times branching ratio of about 240 pb. The analysis in the dileptonic channel achieves a precision of {delta}({sigma}{sub t} {sub anti} {sub t}.B(t anti t{yields}b anti l{nu} anti bl anti {nu}))={+-}0.2(stat){+-}2.5(syst){+-}2.6(lumi) pb which translates into a relative error of 10% for the cross section times branching ratio of around 38 pb. The errors for both the semileptonic and the dileptonic channel are expected to improve as progress is made on the luminosity determination and the knowledge of the backgrounds from comparisons with measured data. A measurement of the cross-section ratio between the dileptonic and

  1. Semi- and dileptonic top pair decays at the ATLAS experiment

    International Nuclear Information System (INIS)

    Mameghani, Raphael

    2008-05-01

    The Large Hadron Collider, starting in 2008, will be a ''top factory'' as top-antitop (t anti t) pairs will be produced with a cross section of about 830 pb at an instantaneous luminosity of 10 33 cm -2 s -1 during the first year. With about 30% probability top pairs decay semileptonically into a final state with four jets, lepton (electron or muon) and respective neutrino. For another 5% of the t anti t events a dileptonic decay is expected. Here the final state signature is composed of two jets, two leptons and two neutrinos. In this thesis the precision for a t anti t cross section measurement at the ATLAS experiment in the semileptonic and dileptonic channels with cut based analyses, applicable to the first data, was estimated. The analysis of the semileptonic decay focused especially on the study of background from QCD events either with leptons from semileptonic hadron decays or from hadrons falsely identified as electrons by the calorimeter. For the first 10 fb -1 and assuming a fake electron probability of 10 -3 a precision for the cross section times the branching ratio of Δ(σ t anti t .B(t anti t→bq anti q' anti bl anti ν))=±0.5(stat)±30.4(syst)±24.0(lumi) pb has been estimated, corresponding to a relative precision of 16% for the theoretically predicted cross section times branching ratio of about 240 pb. The analysis in the dileptonic channel achieves a precision of Δ(σ t anti t .B(t anti t→b anti lν anti bl anti ν))=±0.2(stat)±2.5(syst)±2.6(lumi) pb which translates into a relative error of 10% for the cross section times branching ratio of around 38 pb. The errors for both the semileptonic and the dileptonic channel are expected to improve as progress is made on the luminosity determination and the knowledge of the backgrounds from comparisons with measured data. A measurement of the cross-section ratio between the dileptonic and semileptonic channel is sensitive to scenarios of new phenomena with competitive top quark decay modes

  2. Results from non-accelerator experiments

    International Nuclear Information System (INIS)

    Wilkerson, J.F.

    1992-01-01

    The diversity of non-accelerator experiments is at first look both dazzling and even daunting. However, nearly all of these experiments strive to attain the same goal, to search for new physics, beyond the current Standard Model. These measurements are also unified in the fact that their results are often dominated by systematic uncertainties. This review necessarily covers only a limited subset of non-accelerator experiments, and will concentrate on the experimental areas where there has been significant recent progress. The topics reviewed include neutrino mazes, double beta decay, solar neutrino, and long-baseline neutrino oscillation measurements

  3. Development and installation of the GERDA experiment

    International Nuclear Information System (INIS)

    Smolnikov, A

    2010-01-01

    The progress in the development of the GERDA (GErmanium Detector Array) experiment is presented. The goal of the experiment is the search for neutrinoless double beta decay of 76 Ge with considerable reduction of background in comparison with predecessor experiments. GERDA will operate bare germanium semiconductor detectors (enriched in 76 Ge) submerged in high purity liquid argon supplemented by a water shield. The experimental set up is currently under construction in the underground facility of LNGS, Italy. The results of various R and D efforts and the main steps of the GERDA set up design and installation are given as well as several novel methods for background reduction are described.

  4. Particle and photon detection for a neutron radiative decay experiment

    Energy Technology Data Exchange (ETDEWEB)

    Gentile, T.R. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States)], E-mail: thomas.gentile@nist.gov; Dewey, M.S.; Mumm, H.P.; Nico, J.S.; Thompson, A.K. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Chupp, T.E. [University of Michigan, Ann Arbor, MI 48109 (United States); Cooper, R.L. [University of Michigan, Ann Arbor, MI 48109 (United States)], E-mail: cooperrl@umich.edu; Fisher, B.M.; Kremsky, I.; Wietfeldt, F.E. [Tulane University, New Orleans, LA 70118 (United States); Kiriluk, K.G.; Beise, E.J. [University of Maryland, College Park, MD 20742 (United States)

    2007-08-21

    We present the particle and photon detection methods employed in a program to observe neutron radiative beta-decay. The experiment is located at the NG-6 beam line at the National Institute of Standards and Technology Center for Neutron Research. Electrons and protons are guided by a 4.6 T magnetic field and detected by a silicon surface barrier detector. Photons with energies between 15 and 750 keV are registered by a detector consisting of a bismuth germanate scintillator coupled to a large area avalanche photodiode. The photon detector operates at a temperature near 80 K in the bore of a superconducting magnet. We discuss CsI as an alternative scintillator, and avalanche photodiodes for direct detection of photons in the 0.1-10 keV range.

  5. Improved limits on beta(-) and beta(-) decays of Ca-48

    Czech Academy of Sciences Publication Activity Database

    Bakalyarov, A.; Balysh, A.; Barabash, AS.; Beneš, P.; Briancon, C.; Brudanin, V. B.; Čermák, P.; Egorov, V.; Hubert, F.; Hubert, P.; Korolev, NA.; Kosjakov, VN.; Kovalík, Alojz; Lebedev, NA.; Novgorodov, A. F.; Rukhadze, NI.; Štekl, NI.; Timkin, VV.; Veleshko, IE.; Vylov, T.; Umatov, VI.

    2002-01-01

    Roč. 76, č. 9 (2002), s. 545-547 ISSN 0021-3640 Institutional research plan: CEZ:AV0Z1048901 Keywords : beta decay * double beta decay * Ca-48 Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.483, year: 2002

  6. A triggerless digital data acquisition system for nuclear decay experiments

    Energy Technology Data Exchange (ETDEWEB)

    Agramunt, J.; Tain, J. L.; Albiol, F.; Algora, A.; Estevez, E.; Giubrone, G.; Jordan, M. D.; Molina, F.; Rubio, B.; Valencia, E. [Instituto de Fisica Corpuscular, Centro Mixto C.S.I.C. - Univ. Valencia, Apdo. Correos 22085, 46071 Valencia (Spain)

    2013-06-10

    In nuclear decay experiments an important goal of the Data Acquisition (DAQ) system is to allow the reconstruction of time correlations between signals registered in different detectors. Classically DAQ systems are based in a trigger that starts the event acquisition, and all data related with the event of that trigger are collected as one compact structure. New technologies and electronics developments offer new possibilities to nuclear experiments with the use of sampling ADC-s. This type of ADC-s is able to provide the pulse shape, height and a time stamp of the signal. This new feature (time stamp) allows new systems to run without an event trigger. Later, the event can be reconstructed using the time stamp information. In this work we present a new DAQ developed for {beta}-delayed neutron emission experiments. Due to the long moderation time of neutrons, we opted for a self-trigger DAQ based on commercial digitizers. With this DAQ a negligible acquisition dead time was achieved while keeping a maximum of event information and flexibility in time correlations.

  7. Study of rare neutron induced processes and coincidence analyses to identify and reduce background contributions in the COBRA experiment

    International Nuclear Information System (INIS)

    Timm, Jan Horst Karl

    2015-11-01

    The aim of the COBRA experiment is the observation of neutrinoless double-beta decay, primarily of the isotope 116 Cd. The applied semiconductor detectors of cadmium zinc telluride that are 90% to be enriched enable both the detection and the source of this decay. The half-lives of decays of this kind are expected in the range of more than 10 26 years. Therefore, the reduction of contributions to the background is of decisive importance. The main subjects of this work are, on the one hand, the time synchronization of the data, which provides the basis for coincidence analysis. This analysis method has access not only to identification of contributions to the background, but also to observe decays involving positron annihilation and decays into excited states. In this study, the intrinsic detector contamination of some decay products of 238 U and 232 Th was measured and sensitivities to the half-lives of the decays like 120 Te and 128 Te in each case to the first excited state of daughter products are given. On the other hand, qualitative studies on the importance of neutrons in the COBRA experiment were conducted. These have shown that fast neutrons, thus with energies greater than 10 keV, only result in an insignificant contribution to the background for the detection of neutrinoless double-beta decay of the 116 Cd. Previous studies have also shown that the thermal neutron flux can be in situ determined by coincidence analysis.

  8. Background reduction in the SNO+ experiment

    Energy Technology Data Exchange (ETDEWEB)

    Segui, L. [University of Oxford, Denys Wilkinson Building, Keble Road, OX1 Oxford (United Kingdom)

    2015-08-17

    SNO+ is a large multi-purpose liquid scintillator experiment, which first aim is to detect the neutrinoless double beta decay of {sup 130}Te. It is placed at SNOLAB, at 6000 m.w.e. and it is based on the SNO infrastructure. SNO+ will contain approximately 780 tonnes of liquid scintillator, loaded with {sup 130}Te inside an acrylic vessel (AV) with an external volume of ultra pure water to reduce the external backgrounds. Light produced in the scintillator by the interaction of particles will be detected with about 9,000 photomultiplier’s. For the neutrinoless double beta decay phase, due to its the extremely low rate expected, the control, knowledge and reduction of the background is essential. Moreover, it will also benefit other phases of the experiment focused on the study of solar neutrinos, nucleon decay, geoneutrinos and supernovae. In order to reduce the internal background level, a novel purification technique for tellurium loaded scintillators has been developed by the collaboration that reduces the U/Th concentration and several cosmic-activated isotopes by at least a factor 10{sup 2} -10{sup 3} in a single pass. In addition, different rejection techniques have been developed for the remaining internal backgrounds based on Monte-Carlo simulations. In this work, the scintillator purification technique and the levels obtained with it will be discussed. Furthermore, an overview of the different backgrounds for the double-beta phase will be presented, highlighting some of the techniques developed to reject the remained decays based on their expected timing differences.

  9. Measurement of CP Violation Parameters in B Quark Decays to Charm Anticharm Down Quarks, Exclusive Decays at the BABAR Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Albert, Justin E.

    2003-04-03

    The BABAR experiment at SLAC provides an opportunity for measurement of CP violation in B decays. A measurement of time-dependent CP violating asymmetries using exclusive B meson decays where the b quark decays to c{bar c}d (including B{sup 0} {yields} D*{sup +}D*{sup -} and B{sup 0} {yields} D*{sup {+-}}D{sup {-+}} decays) is presented here. This is the first measurement of CP violation in a mode sensitive to the Unitarity Triangle parameter sin2{beta} outside of decays containing charmonium. It provides a comparison to measurements of sin2{beta} using b {yields} c{bar c}s, and permits an observation into potential new physics sources of CP violation, such as supersymmetry, via differences between these measurements and those of B{sup 0} {yields} J/{psi} K{sub S}{sup 0} as statistics of reconstructed neutral B decays to D{sup (*)+} D{sup (*)-} increase. The measured value of the time-dependent CP violating asymmetries are: S = 0.38 {+-} 0.88(stat) {+-} 0.12(syst) and C = -0.30 {+-} 0.50(stat) {+-} 0.13(syst) for B{sup 0} {yields} D*{sup -} D{sup +}; S = -0.43 {+-} 1.41(stat) {+-} 0.23(syst) and C = 0.53 {+-} 0.74(stat) {+-} 0.15(syst) for B{sup 0} {yields} D*{sup +} D{sup -}; and S = -0.05 {+-} 0.45(stat) {+-} 0.05(syst) and C = 0.12 {+-} 0.30(stat) {+-} 0.05(syst) for B{sup 0} {yields} D*{sup -} D{sup +}; where S corresponds to CP violation in the interference of mixing and decay and C corresponds to CP violation in decay.

  10. Operation of CdZnTe Semiconductor Detectors in Liquid Scintillator for the COBRA Experiment

    International Nuclear Information System (INIS)

    Oldorf, Christian

    2015-08-01

    COBRA, the Cadmium-Zinc-Telluride O-neutrino double-Beta Research Apparatus, is an experiment aiming for the measurement of the neutrinoless double beta decay with several isotopes, in particular 116 Cd, 106 Cd and 130 Te. A highly granular large scale experiment with about 400 kg of CdZnTe semiconductor detectors is currently under development. To provide evidence for the neutrinoless double beta decay of 116 Cd, a background rate in the order of 10 -3 counts/keV/kg/a is needed to achieve the required half-life sensitivity of at least 2 . 10 26 years. To reach this target, the detectors have to be operated in a highly pure environment, shielded from external radiation. Liquid scintillator is a promising candidate as a circum fluent replacement for the currently used lacquer. Next to the function as highly pure passivation material, liquid scintillator also acts as a neutron shield and active veto for external gammas. Within this thesis, the design, construction and assembly of a test set-up is described. The operation of four CdZnTe detectors after several years of storage in liquid scintillator is demonstrated. Next to extensive material compatibility tests prior to the assembly, the commissioning of the set-up and the characterization of the detectors are shown. Finally, results concerning the background reduction capability of liquid scintillator and the detection of cosmic muons are presented and compared to a Monte Carlo simulation.

  11. CP-violation in B-decays and B-decay properties at ATLAS experiment

    CERN Document Server

    Smizanska, Maria; The ATLAS collaboration

    2015-01-01

    ATLAS has a wide programme to study the production cross section and decay properties of particles with beauty, as well as charmonium and bottomonium states. The main part of the talk will discuss the ATLAS full Run-1 analysis of mixing and CP violation in the decay of Bs meson to J/psi Phi, observed in the final state mu+mu-K+K-. The different amplitudes contributing to the process are studied through the time dependence of the angular distribution, and the average lifetime and lifetime difference between the two eigenstate BH and BL, and of the CP violating phase phi_s are extracted. The presentation will also cover selected latest ATLAS studies in the field of B-hadron decay properties.

  12. The LPCTrap facility for in-trap decay experiments

    International Nuclear Information System (INIS)

    Rodriguez, D.; Ban, G.; Durand, D.; Duval, F.; Flechard, X.; Herbane, M.; Lienard, E.; Mauger, F.; Mery, A.; Naviliat-Cuncic, O.; Thomas, J.-C.

    2007-01-01

    The LPCTrap facility is coupled to the low-energy beam line LIRAT of the SPIRAL source at GANIL (France). The facility comprises an RFQ trap for beam preparation and a transparent Paul trap for in-trap decay studies. The system has been tested for several ion species. The Paul trap has been fully characterized for 6 Li + and 23 Na + ions. This characterization together with GEANT4 simulations of the in-trap decay setup (Paul trap and detection system) has permitted to predict the effect of the size of the ion cloud on the decay study of 6 He + .

  13. Identification of hadronically decaying tau leptons with the ATLAS experiment

    CERN Document Server

    Duschinger, D; The ATLAS collaboration

    2014-01-01

    The offline identification algorithm employed for hadronic decays of tau leptons for the data collected in 2012 with the ATLAS detector at the LHC operating at a center-of-mass energy of 8 TeV is described. It consists of two Boosted Decision Trees including both tracking and calorimetric information to discriminate hadronically decaying tau leptons from hadronic jets and electrons. The performance of this algorithms is measured in most cases with Z decays to tau leptons. The offline tau identification efficiency is measured with a precision of (2-3)% for hadronically decaying tau leptons with one associated track, and of (4-5)% for the case of three associated tracks, inclusive in $\\eta$; and for a visible transverse momentum greater than 20 GeV. Stability of the performance and through the data taking period is observed with respect to the number of concurrent proton-proton interactions.

  14. Readout and triggering of the Soudan 2 nucleon decay experiment

    International Nuclear Information System (INIS)

    Thron, J.L.

    1984-01-01

    The readout and triggering electronics for the Soudan 2 proton decay detector is presented. Pratically all the electronics is implemented in CMOS. The triggering scheme is highly flexible and software controllable

  15. Dipole strength distributions from HIGS Experiments

    Science.gov (United States)

    Werner, V.; Cooper, N.; Goddard, P. M.; Humby, P.; Ilieva, R. S.; Rusev, G.; Beller, J.; Bernards, C.; Crider, B. P.; Isaak, J.; Kelley, J. H.; Kwan, E.; Löher, B.; Peters, E. E.; Pietralla, N.; Romig, C.; Savran, D.; Scheck, M.; Tonchev, A. P.; Tornow, W.; Yates, S. W.; Zweidinger, M.

    2015-05-01

    A series of photon scattering experiments has been performed on the double-beta decay partners 76Ge and 76Se, in order to investigate their dipole response up to the neutron separation threshold. Gamma-ray beams from bremsstrahlung at the S-DALINAC and from Compton-backscattering at HIGS have been used to measure absolute cross sections and parities of dipole excited states, respectively. The HIGS data allows for indirect measurement of averaged branching ratios, which leads to significant corrections in the observed excitation cross sections. Results are compared to statistical calculations, to test photon strength functions and the Axel-Brink hypothesis

  16. Status report of the GERDA experiment phase I

    International Nuclear Information System (INIS)

    Riboldi, Stefano

    2013-01-01

    Phase I of GERDA, aimed at investigating neutrino-less double beta decay of 76 Ge is in the active phase since November 2011 at the Gran Sasso National Laboratory of INFN—Italy. GERDA Ge detectors are non-encapsulated and operate immersed in liquid argon, equipped with a front-end readout electronics consisting of cryogenic charge sensitive preamplifiers designed and manufactured to cope with the characteristics of the GERDA experiment (radio-purity, long and resistive cables, etc.). The presentation will report on the current status of the GERDA experiment phase I, focusing on Ge detectors performance in terms of energy resolution, stability over time, counting rate and related issues

  17. Status report of the GERDA experiment phase I

    Science.gov (United States)

    Riboldi, Stefano; Gerda Collaboration

    2013-08-01

    Phase I of GERDA, aimed at investigating neutrino-less double beta decay of 76Ge is in the active phase since November 2011 at the Gran Sasso National Laboratory of INFN-Italy. GERDA Ge detectors are non-encapsulated and operate immersed in liquid argon, equipped with a front-end readout electronics consisting of cryogenic charge sensitive preamplifiers designed and manufactured to cope with the characteristics of the GERDA experiment (radio-purity, long and resistive cables, etc.). The presentation will report on the current status of the GERDA experiment phase I, focusing on Ge detectors performance in terms of energy resolution, stability over time, counting rate and related issues.

  18. Proceedings of the 1982 summer workshop on proton decay experiments

    International Nuclear Information System (INIS)

    Ayres, D.S.

    1982-01-01

    Separate abstracts were prepared for 18 of the 21 papers presented. Three papers were previously included in the data base. Also included in the proceedings are a workshop summary, working group reports, and a report of the Technical assessment Panel on Proton Decay

  19. The projected background for the CUORE experiment

    Energy Technology Data Exchange (ETDEWEB)

    Alduino, C.; Avignone, F.T.; Chott, N.; Creswick, R.J.; Rosenfeld, C.; Wilson, J. [University of South Carolina, Department of Physics and Astronomy, Columbia, SC (United States); Alfonso, K.; Hickerson, K.P.; Huang, H.Z.; Sakai, M.; Schmidt, J.; Trentalange, S.; Zhu, B.X. [University of California, Department of Physics and Astronomy, Los Angeles, CA (United States); Artusa, D.R.; Rusconi, C. [University of South Carolina, Department of Physics and Astronomy, Columbia, SC (United States); INFN-Laboratori Nazionali del Gran Sasso, L' Aquila (Italy); Azzolini, O.; Camacho, A.; Keppel, G.; Palmieri, V.; Pira, C. [INFN-Laboratori Nazionali di Legnaro, Padua (Italy); Banks, T.I.; Drobizhev, A.; Freedman, S.J.; Hennings-Yeomans, R.; Kolomensky, Yu.G.; Wagaarachchi, S.L. [University of California, Department of Physics, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Bari, G.; Deninno, M.M. [INFN-Sezione di Bologna, Bologna (Italy); Beeman, J.W. [Lawrence Berkeley National Laboratory, Materials Science Division, Berkeley, CA (United States); Bellini, F.; Cosmelli, C.; Ferroni, F.; Piperno, G. [Sapienza Universita di Roma, Dipartimento di Fisica, Rome (Italy); INFN-Sezione di Roma, Rome (Italy); Benato, G.; Singh, V. [University of California, Department of Physics, Berkeley, CA (United States); Bersani, A.; Caminata, A. [INFN-Sezione di Genova, Genoa (Italy); Biassoni, M.; Brofferio, C.; Capelli, S.; Carniti, P.; Cassina, L.; Chiesa, D.; Clemenza, M.; Faverzani, M.; Fiorini, E.; Gironi, L.; Gotti, C.; Maino, M.; Nastasi, M.; Nucciotti, A.; Pavan, M.; Pozzi, S.; Sisti, M.; Terranova, F.; Zanotti, L. [Universita di Milano-Bicocca, Dipartimento di Fisica, Milan (Italy); INFN-Sezione di Milano Bicocca, Milan (Italy); Branca, A.; Taffarello, L. [INFN-Sezione di Padova, Padua (Italy); Bucci, C.; Cappelli, L.; D' Addabbo, A.; Gorla, P.; Pattavina, L.; Pirro, S.; Laubenstein, M. [INFN-Laboratori Nazionali del Gran Sasso, L' Aquila (Italy); Canonica, L. [INFN-Laboratori Nazionali del Gran Sasso, L' Aquila (Italy); Massachusetts Institute of Technology, Cambridge, MA (United States); Cao, X.G.; Fang, D.Q.; Ma, Y.G.; Wang, H.W.; Zhang, G.Q. [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai (China); Carbone, L.; Cremonesi, O.; Ferri, E.; Giachero, A.; Pessina, G.; Previtali, E. [INFN-Sezione di Milano Bicocca, Milan (Italy); Cardani, L.; Casali, N.; Dafinei, I.; Morganti, S.; Mosteiro, P.J.; Pettinacci, V.; Tomei, C.; Vignati, M. [INFN-Sezione di Roma, Rome (Italy); Copello, S.; Di Domizio, S.; Fernandes, G.; Marini, L.; Pallavicini, M. [INFN-Sezione di Genova, Genoa (Italy); Universita di Genova, Dipartimento di Fisica, Genoa (Italy); Cushman, J.S.; Davis, C.J.; Heeger, K.M.; Lim, K.E.; Maruyama, R.H. [Yale University, Department of Physics, New Haven, CT (United States); Dell' Oro, S. [INFN-Laboratori Nazionali del Gran Sasso, L' Aquila (Italy); INFN-Gran Sasso Science Institute, L' Aquila (Italy); Di Vacri, M.L.; Santone, D. [INFN-Laboratori Nazionali del Gran Sasso, L' Aquila (Italy); Universita dell' Aquila, Dipartimento di Scienze Fisiche e Chimiche, L' Aquila (Italy); Franceschi, M.A.; Ligi, C.; Napolitano, T. [INFN-Laboratori Nazionali di Frascati, Rome (Italy); Fujikawa, B.K.; Mei, Y.; Schmidt, B.; Smith, A.R.; Welliver, B. [Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Giuliani, A.; Novati, V.; Tenconi, M. [Universit Paris-Saclay, CSNSM, Univ. Paris-Sud, CNRS/IN2P3, Orsay (France); Gladstone, L.; Leder, A.; Ouellet, J.L.; Winslow, L.A. [Massachusetts Institute of Technology, Cambridge, MA (United States); Gutierrez, T.D. [California Polytechnic State University, Physics Department, San Luis Obispo, CA (United States); Haller, E.E. [Lawrence Berkeley National Laboratory, Materials Science Division, Berkeley, CA (United States); University of California, Department of Materials Science and Engineering, Berkeley, CA (United States); Han, K. [Shanghai Jiao Tong University, Department of Physics and Astronomy, Shanghai (China); Hansen, E. [University of California, Department of Physics and Astronomy, Los Angeles, CA (United States); Massachusetts Institute of Technology, Cambridge, MA (United States); Kadel, R. [Lawrence Berkeley National Laboratory, Physics Division, Berkeley, CA (United States); Martinez, M. [Sapienza Universita di Roma, Dipartimento di Fisica, Rome (Italy); INFN-Sezione di Roma, Rome (Italy); Universidad de Zaragoza, Laboratorio de Fisica Nuclear y Astroparticulas, Zaragoza (Spain); Moggi, N. [INFN-Sezione di Bologna, Bologna (Italy); Alma Mater Studiorum-Universita di Bologna, Dipartimento di Scienze per la Qualita della Vita, Bologna (Italy); Nones, C. [CEA/Saclay, Service de Physique des Particules, Gif-sur-Yvette (France); Norman, E.B.; Wang, B.S. [Lawrence Livermore National Laboratory, Livermore, CA (United States); University of California, Department of Nuclear Engineering, Berkeley, CA (United States); O' Donnell, T. [Virginia Polytechnic Institute and State University, Center for Neutrino Physics, Blacksburg, VA (United States); Pagliarone, C.E. [INFN-Laboratori Nazionali del Gran Sasso, L' Aquila (Italy); Universita degli Studi di Cassino e del Lazio Meridionale, Dipartimento di Ingegneria Civile e Meccanica, Cassino (Italy); Sangiorgio, S.; Scielzo, N.D. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Wise, T. [Yale University, Department of Physics, New Haven, CT (United States); University of Wisconsin, Department of Physics, Madison, WI (United States); Woodcraft, A. [University of Edinburgh, SUPA, Institute for Astronomy, Edinburgh (United Kingdom); Zimmermann, S. [Lawrence Berkeley National Laboratory, Engineering Division, Berkeley, CA (United States); Zucchelli, S. [INFN-Sezione di Bologna, Bologna (Italy); Alma Mater Studiorum-Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy)

    2017-08-15

    The Cryogenic Underground Observatory for Rare Events (CUORE) is designed to search for neutrinoless double beta decay of {sup 130}Te with an array of 988 TeO{sub 2} bolometers operating at temperatures around 10 mK. The experiment is currently being commissioned in Hall A of Laboratori Nazionali del Gran Sasso, Italy. The goal of CUORE is to reach a 90% C.L. exclusion sensitivity on the {sup 130}Te decay half-life of 9 x 10{sup 25} years after 5 years of data taking. The main issue to be addressed to accomplish this aim is the rate of background events in the region of interest, which must not be higher than 10{sup -2} counts/keV/kg/year. We developed a detailed Monte Carlo simulation, based on results from a campaign of material screening, radioassays, and bolometric measurements, to evaluate the expected background. This was used over the years to guide the construction strategies of the experiment and we use it here to project a background model for CUORE. In this paper we report the results of our study and our expectations for the background rate in the energy region where the peak signature of neutrinoless double beta decay of {sup 130}Te is expected. (orig.)

  20. The projected background for the CUORE experiment

    Science.gov (United States)

    Alduino, C.; Alfonso, K.; Artusa, D. R.; Avignone, F. T.; Azzolini, O.; Banks, T. I.; Bari, G.; Beeman, J. W.; Bellini, F.; Benato, G.; Bersani, A.; Biassoni, M.; Branca, A.; Brofferio, C.; Bucci, C.; Camacho, A.; Caminata, A.; Canonica, L.; Cao, X. G.; Capelli, S.; Cappelli, L.; Carbone, L.; Cardani, L.; Carniti, P.; Casali, N.; Cassina, L.; Chiesa, D.; Chott, N.; Clemenza, M.; Copello, S.; Cosmelli, C.; Cremonesi, O.; Creswick, R. J.; Cushman, J. S.; D'Addabbo, A.; Dafinei, I.; Davis, C. J.; Dell'Oro, S.; Deninno, M. M.; Di Domizio, S.; Di Vacri, M. L.; Drobizhev, A.; Fang, D. Q.; Faverzani, M.; Fernandes, G.; Ferri, E.; Ferroni, F.; Fiorini, E.; Franceschi, M. A.; Freedman, S. J.; Fujikawa, B. K.; Giachero, A.; Gironi, L.; Giuliani, A.; Gladstone, L.; Gorla, P.; Gotti, C.; Gutierrez, T. D.; Haller, E. E.; Han, K.; Hansen, E.; Heeger, K. M.; Hennings-Yeomans, R.; Hickerson, K. P.; Huang, H. Z.; Kadel, R.; Keppel, G.; Kolomensky, Yu. G.; Leder, A.; Ligi, C.; Lim, K. E.; Ma, Y. G.; Maino, M.; Marini, L.; Martinez, M.; Maruyama, R. H.; Mei, Y.; Moggi, N.; Morganti, S.; Mosteiro, P. J.; Napolitano, T.; Nastasi, M.; Nones, C.; Norman, E. B.; Novati, V.; Nucciotti, A.; O'Donnell, T.; Ouellet, J. L.; Pagliarone, C. E.; Pallavicini, M.; Palmieri, V.; Pattavina, L.; Pavan, M.; Pessina, G.; Pettinacci, V.; Piperno, G.; Pira, C.; Pirro, S.; Pozzi, S.; Previtali, E.; Rosenfeld, C.; Rusconi, C.; Sakai, M.; Sangiorgio, S.; Santone, D.; Schmidt, B.; Schmidt, J.; Scielzo, N. D.; Singh, V.; Sisti, M.; Smith, A. R.; Taffarello, L.; Tenconi, M.; Terranova, F.; Tomei, C.; Trentalange, S.; Vignati, M.; Wagaarachchi, S. L.; Wang, B. S.; Wang, H. W.; Welliver, B.; Wilson, J.; Winslow, L. A.; Wise, T.; Woodcraft, A.; Zanotti, L.; Zhang, G. Q.; Zhu, B. X.; Zimmermann, S.; Zucchelli, S.; Laubenstein, M.

    2017-08-01

    The Cryogenic Underground Observatory for Rare Events (CUORE) is designed to search for neutrinoless double beta decay of ^{130}Te with an array of 988 TeO_2 bolometers operating at temperatures around 10 mK. The experiment is currently being commissioned in Hall A of Laboratori Nazionali del Gran Sasso, Italy. The goal of CUORE is to reach a 90% C.L. exclusion sensitivity on the ^{130}Te decay half-life of 9 × 10^{25} years after 5 years of data taking. The main issue to be addressed to accomplish this aim is the rate of background events in the region of interest, which must not be higher than 10^{-2} counts/keV/kg/year. We developed a detailed Monte Carlo simulation, based on results from a campaign of material screening, radioassays, and bolometric measurements, to evaluate the expected background. This was used over the years to guide the construction strategies of the experiment and we use it here to project a background model for CUORE. In this paper we report the results of our study and our expectations for the background rate in the energy region where the peak signature of neutrinoless double beta decay of ^{130}Te is expected.

  1. Decay heat experiment and validation of calculation code systems for fusion reactor

    International Nuclear Information System (INIS)

    Maekawa, Fujio; Ikeda, Yujiro; Wada, Masayuki

    1999-10-01

    Although accurate estimation of decay heat value is essential for safety analyses of fusion reactors against loss of coolant accidents and so on, no experimental work has been devoted to validating the estimation. Hence, a decay heat measurement experiment was performed as a task (T-339) of ITER/EDA. A new detector, the Whole Energy Absorption Spectrometer (WEAS), was developed for accurate and efficient measurements of decay heat. Decay heat produced in the thirty-two sample materials which were irradiated by 14-MeV neutrons at FNS/JAERI were measured with WEAS for a wide cooling time period from 1 min to 400 days. The data presently obtained were the first experimental decay heat data in the field of fusion. Validity of decay heat calculation codes of ACT4 and CINAC-V4, activation cross section libraries of FENDL/A-2.0 and JENDL Activation File, and decay data was investigated through analyses of the experiment. As a result, several points that should be modified were found in the codes and data. After solving the problems, it was demonstrated that decay heat valued calculated for most of samples were in good agreement with the experimental data. Especially for stainless steel 316 and copper, which were important materials for ITER, decay heat could be predicted with accuracy of ±10%. (author)

  2. Decay heat experiment and validation of calculation code systems for fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Fujio; Ikeda, Yujiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Wada, Masayuki

    1999-10-01

    Although accurate estimation of decay heat value is essential for safety analyses of fusion reactors against loss of coolant accidents and so on, no experimental work has been devoted to validating the estimation. Hence, a decay heat measurement experiment was performed as a task (T-339) of ITER/EDA. A new detector, the Whole Energy Absorption Spectrometer (WEAS), was developed for accurate and efficient measurements of decay heat. Decay heat produced in the thirty-two sample materials which were irradiated by 14-MeV neutrons at FNS/JAERI were measured with WEAS for a wide cooling time period from 1 min to 400 days. The data presently obtained were the first experimental decay heat data in the field of fusion. Validity of decay heat calculation codes of ACT4 and CINAC-V4, activation cross section libraries of FENDL/A-2.0 and JENDL Activation File, and decay data was investigated through analyses of the experiment. As a result, several points that should be modified were found in the codes and data. After solving the problems, it was demonstrated that decay heat valued calculated for most of samples were in good agreement with the experimental data. Especially for stainless steel 316 and copper, which were important materials for ITER, decay heat could be predicted with accuracy of {+-}10%. (author)

  3. Beta decay of 30Na: experiment and theory

    International Nuclear Information System (INIS)

    Baumann, P.; Dessagne, P.; Huck, A.; Klotz, A.; Knipper, A.; Miehe, C.; Ramdane, M.; Walter, G.; Marguier, G.; Poves, A.

    1988-01-01

    The 30 Na β decay was studied on-line by means of mass-separation techniques. Gamma-ray, gamma-gamma, neutron-gamma spectra, neutron time-of-flight singles and γ-coincidence measurements, were registered. High-energy neutron branches (E n >2 MeV) were found complementing previouly reported data. A 30 Na β-decay scheme to 30 Mg bound and unbound states is established. The distribution of the transition strength as a function of the excitation energy for particle-unbound levels in 30 Mg is compared to shell-model calculations performed in the 0-12 MeV excitation energy range. An overall renormalization yields a B(GT) quenching factor of 0.28 substantially lower than generally observed in this mass region. Three levels in 29 Mg which are strongly populated via the 1n-channel are related to negative parity intruder states

  4. Self-similar current decay experiment in RFX-mod

    International Nuclear Information System (INIS)

    Zanca, Paolo

    2007-01-01

    The self-similar current decay (SSCD) has been suggested as a promising operation for reversed field pinch devices by numerical simulations, which show a decrease in modes amplitude and stochasticity when the magnetic field is forced to decay at a suitable rate at a fixed radial profile (Nebel et al 2002 Phys. Plasmas 9 4968). The first experimental test of SSCD has recently been performed in RFX-mod. An initial fast decrease in the mode amplitudes (about 40% of the initial value) is observed. After that, a regime characterized by transient states close to the single-helicity condition (Cappello and Paccagnella 1992 Phys. Fluids B 4 611, Finn et al 1992 Phys. Fluids B 4 1262) is established. This brings about a 50% increase in the global confinement parameters

  5. Undergraduate cosmic ray muon decay experiments with computer interfacing

    International Nuclear Information System (INIS)

    Sutton, C.S.; MacIntire, D.A.; Egan, S.J.; Caraley, A.

    1987-01-01

    The physics departments of a consortium of higher education in Western Massachusetts, the Five Colleges Incorporated, are developing an advanced undergraduate laboratory course. The participating institutions are Amherst College, Mount Holyoke College, Smith College, and the University of Massachusetts. The course is designed to expose students to a variety of state-of-the-art equipment that would normally exceed reasonable financial commitments and faculty expertise of a single institution. The course is divided into experimental modules, one of which is the cosmic ray muon decay module developed at Smith College. The module is designed to investigate the dependence of the muon lifetime as a function of the medium in which it decays. Useful background information and a description of the module is given in this article

  6. The role of 210Po and 210Pb in low radioactivity experiments and ultrapure water

    International Nuclear Information System (INIS)

    Giammarch, Marco G.

    2013-01-01

    210 Po and 210 Pb isotopes constitute a major background for low background nuclear physics experiments searching for rare events. Searches for solar neutrinos, double beta decay, dark matter and other rare phenomena need to control and monitor radioactivity from Po and Pb through measurements and purification processes. Ultrapure water is often used in these experiments; therefore the issue of minimizing Po and Pb content in water will also be discussed. Finally, the role of 214 Po and 212 Po in low background experiments will be briefly recalled. (author)

  7. Study of the doubly-charmed decays of B mesons with the experiment BABAR in SLAC

    International Nuclear Information System (INIS)

    Robbe, P.

    2002-04-01

    The BABAR experiment at SLAC (Stanford linear acceleration center) has been studying since 1999 B meson decays from e + e - collisions at the γ(4S) resonance. The first goal of the collaboration was to measure the sin (2β) CP-violation parameter within the standard model. This measurement requires to know with precision the absolute length scale of the detector. A method to test this scale was developed using nuclear interactions in the beam-pipe material. The longitudinal length scale was then determined at the 1 % level precision. The systematic error associated with length measurement in the detector concerning B meson lifetime and B meson oscillation frequency is then negligible with respect to the other errors. The K meson content of B decays is a key ingredient of the sin (2β) measurement and is used to tag the flavour of the other B in events containing a B decaying to a CP eigenstate. The K charge is correlated to the B flavour. Wrong sign kaons, which can dilute B tagging, can come from wrong sign D decays (B→ DX). Doubly charmed decays (B→ D (*) D-bar (*) K are one possibility to produce wrong sign D decays. The twenty-two decay modes are reconstructed exclusively. The total branching fraction is measured with enough precision to establish that B→ D (*) D-bar (*) K decays are not the only source of wrong sign D mesons in B decays. (author)

  8. Results of the Frejus experiment on nucleon decay

    International Nuclear Information System (INIS)

    Bourdarios, C.

    1988-06-01

    The Frejus detector has reached an integrated fiducial sensitivity of 1.4 kt.year. The data provide no evidence for nucleon decay, the number of selected events being consistent with the expected background due to atmospheric neutrino interactions. The lower lifetime limits obtained range from 0.9 10 31 to 2.9 10 31 years for the modes with a missing anti-neutrino in the final state, and from 0.8 10 31 to 5.1 10 31 years for the modes with one charged lepton in the final state

  9. Physics capabilities of the SNO+ experiment

    Science.gov (United States)

    Arushanova, E.; Back, A. R.; SNO+ Collaboration

    2017-09-01

    SNO+ will soon enter its first phase of physics data-taking. The Canadian-based detector forms part of the SNOLAB underground facility, in a Sudbury nickel mine; its location providing more than two kilometres of rock overburden. We present an overview of the SNO+ experiment and its physics capabilities. Our primary goal is the search for neutrinoless double-beta decay, where our expected sensitivity would place an upper limit of 1.9 × 1026 y, at 90% CL, on the half-life of neutrinoless double-beta decay in 130Te. We also intend to build on the success of SNO by studying the solar neutrino spectrum. In the unloaded scintillator phase SNO+ has the ability to make precision measurements of the fluxes of low-energy pep neutrinos and neutrinos from the CNO cycle. Other physics goals include: determining the spectrum of reactor antineutrinos, to further constrain Δ {m}122; detecting neutrinos produced by a galactic supernova and investigating certain modes of nucleon decay.

  10. Shielding of the GERDA experiment against external gamma background

    International Nuclear Information System (INIS)

    Barabanov, I.; Bezrukov, L.; Demidova, E.; Gurentsov, V.; Kianovsky, S.; Knoepfle, K.T.; Kornouhkov, V.; Schwingenheuer, B.; Vasenko, A.

    2009-01-01

    The GERmanium Detector Array (GERDA) experiment will search for neutrinoless double beta decay of 76 Ge and is currently under construction at the INFN Laboratori Nazionali del Gran Sasso (LNGS) in Italy. The basic design of GERDA is the use of cryogenic liquid and water of high purity as a superior shield against the hitherto dominant background from external gamma radiation. In this paper we show by Monte Carlo simulations and analytical calculations how GERDA was designed to suppress this background at Q ββ ( 76 Ge)=2039keV to a level of about 10 -4 cts/(keVkgy).

  11. A simulation toolkit for electroluminescence assessment in rare event experiments

    CERN Document Server

    Oliveira, C A B; Veenhof, R; Biagi, S; Monteiro, C M B; Santos, J M F dos; Ferreira, A L; Veloso, J F C A

    2011-01-01

    A good understanding of electroluminescence is a prerequisite when optimising double-phase noble gas detectors for Dark Matter searches and high-pressure xenon TPCs for neutrinoless double beta decay detection. A simulation toolkit for calculating the emission of light through electron impact on neon, argon, krypton and xenon has been developed using the Magboltz and Garfield programs. Calculated excitation and electroluminescence efficiencies, electroluminescence yield and associated statistical fluctuations are presented as a function of electric field. Good agreement with experiment and with Monte Carlo simulations has been obtained.

  12. Muon-induced backgrounds in the CUORICINO experiment

    Energy Technology Data Exchange (ETDEWEB)

    Andreotti, E; Arnaboldi, C; Avignone, F T; Balata, M; Bandac, I; Barucci, M; Beeman, J W; Bellini, F; Bloxham, T; Brofferio, C; Bryant, A; Bucci, C; Canonica, L; Capelli, S; Carbone, L; Carrettoni, M; Clemenza, M; Cremonesi, O; Creswick, R J; Domizio, S D; Dolinski, M J; Ejzak, L; Faccini, R; Farach, H A; Ferri, E; Ferroni, F; Firoini, E; Foggetta, L; Giachero, A; Gironi, L; Giuliani, A; Gorla, P; Guardincerri, E; Gutierrez, T D; Haller, E E; Kadel, R; Kazkaz, K; Kraft, S; Kogler, L; Kolomensky, Y G; Maiano, C; Maruyama, R H; Martinez, C; Martinez, M; Mizouni, L; Morganti, S; Nisi, S; Nones, C; Norman, E B; Nucciotti, A; Orio, F; Pallavicini, M; Palmieri, V; Pattavina, L; Pavan, M; Pedretti, M; Pessina, G; Pirro, S; Previtali, E; Risegari, L; Rosenfeld, C; Rusconi, C; Salvioni, C; Sangiorgio, S; Schaeffer, D; Scielzo, N D; Sisti, M; Smith, A R; Tomei, C; Ventura, G; Vignati, M

    2009-11-16

    To better understand the contribution of cosmic ray muons to the CUORICINO background, ten plastic scintillator detectors were installed at the CUORICINO site and operated during 3 months of the CUORICINO experiment. From these measurements, an upper limit of 0.0021 counts/keV {center_dot} kg {center_dot} yr (95% C.L.) was obtained on the cosmic ray induced background in the neutrinoless double beta decay region of interest. The measurements were compared to Geant4 simulations, which are similar to those that will be used to estimate the backgrounds in CUORE.

  13. Background modeling for the GERDA experiment

    Science.gov (United States)

    Becerici-Schmidt, N.; Gerda Collaboration

    2013-08-01

    The neutrinoless double beta (0νββ) decay experiment GERDA at the LNGS of INFN has started physics data taking in November 2011. This paper presents an analysis aimed at understanding and modeling the observed background energy spectrum, which plays an essential role in searches for a rare signal like 0νββ decay. A very promising preliminary model has been obtained, with the systematic uncertainties still under study. Important information can be deduced from the model such as the expected background and its decomposition in the signal region. According to the model the main background contributions around Qββ come from 214Bi, 228Th, 42K, 60Co and α emitting isotopes in the 226Ra decay chain, with a fraction depending on the assumed source positions.

  14. Background modeling for the GERDA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Becerici-Schmidt, N. [Max-Planck-Institut für Physik, München (Germany); Collaboration: GERDA Collaboration

    2013-08-08

    The neutrinoless double beta (0νββ) decay experiment GERDA at the LNGS of INFN has started physics data taking in November 2011. This paper presents an analysis aimed at understanding and modeling the observed background energy spectrum, which plays an essential role in searches for a rare signal like 0νββ decay. A very promising preliminary model has been obtained, with the systematic uncertainties still under study. Important information can be deduced from the model such as the expected background and its decomposition in the signal region. According to the model the main background contributions around Q{sub ββ} come from {sup 214}Bi, {sup 228}Th, {sup 42}K, {sup 60}Co and α emitting isotopes in the {sup 226}Ra decay chain, with a fraction depending on the assumed source positions.

  15. Progress report on the Los Alamos tritium beta decay experiment

    International Nuclear Information System (INIS)

    Wilkerson, J.F.; Bowles, T.J.; Knapp, D.A.; Robertson, R.G.H.; Wark, D.L.

    1988-01-01

    Measurements near the endpoint of the tritium beta-decay spectrum using a gaseous molecular tritium source yield an essentially model-independent upper limit of 27 eV on the /ovr ν//sub e/ mass at the 95% confidence level. Since demonstrating from this initial measurement the successful operation of a gaseous source based system, most of our effort has been concentrated towards the upgrade and optimization of the experimental apparatus. The emphasis of this work has been to eliminate or further reduce effects that generate systematic errors. Based on realistic projections from our initial measurement, an ultimate sensitivity to neutrino mass of 10 eV is expected. 12 refs., 1 fig

  16. Stereo: cylindrical drift chamber for muon decay experiments at LAMPF

    International Nuclear Information System (INIS)

    Bolton, R.D.; Carlini, R.D.; Cooper, M.D.; Frank, J.S.; Hart, V.E.; Matis, H.S.; Mischke, R.E.; Sandberg, V.D.; Sennhauser, U.

    1983-01-01

    A stereo, cylindrical drift chamber has been built for use in a search for rare decay modes of the muon at LAMPF. This chamber (part of the Crystal Box detector) has 728 cells on 8 concentric annuli at alternating angles of 10 0 to 16 0 from the chamber axis and with radii from 105 to 220 mm. The basic cell cross section is (9 x 10) mm 2 and the inter-layer spacing is 4.7 mm. Preliminary results show the single-wire efficiencies to be greater than 99%. Based on results obtained from prototype chambers, we hope to achieve 170-μm resolution (including multiple scattering) when TDC offsets and sense-wire locations found in a careful inspection of the endplates are added to the track-finding algorithm

  17. Conversion-electron experiment to characterize the decay of the 237Np shape isomer

    International Nuclear Information System (INIS)

    Henry, E.A.; Becker, J.A.; Bauer, R.W.; Gardner, D.G.; Decman, D.J.; Meyer, R.A.; Roy, N.; Sale, K.E.

    1987-01-01

    Conversion electrons from the decay of low-lying levels of 237 Np have been measured to detect the population of these levels by gamma-ray decay of the 237 Np shape isomer. Analysis of the 208-keV transition L conversion-electron peak gives an upper limit of about 17 μb for the population of the 3/2 - 267-keV level in 237 Np from the shape isomer decay. Model calculations are compared with the measured limit. Improvements are suggested for this experiment. 9 refs., 4 figs

  18. Spectroscopy and decay properties with b-hadrons at the ATLAS experiment

    CERN Document Server

    Toms, Konstantin; The ATLAS collaboration

    2015-01-01

    We present the latest results from the ATLAS experiment on hadron decays and spectroscopy, including observation of the B_c(2S) state, production of the B_c+ meson, branching ratio measurements of B_c->J/psiD(), extraction of fragmentation fractions fs/fd via reconstructed Bs->J/psiPhi and Bd->J/psiK decays, and studies of the decay properties of the Lambda_b. We also present the results of searches for the Xb, the bottomonium counterpart to the X(3872) exotic charmonium state.

  19. Reconstruction of photon conversions in {tau} lepton decays in the ATLAS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Boehler, Michael

    2009-04-15

    The ATLAS experiment is one of the experiments at the Large Hadron Collider (LHC) which is designed for the search of new elementary particles. To discover the Higgs boson or precisely measure SUSY scenarios, {tau} lepton final states are very powerful decay channels. Therefore the {tau} lepton decay modes have to be identified correctly. Due to interactions between photons from hadronic decay products of the {tau} lepton and detector material electron-positron pairs (photon conversions) may be produced. These lead to additional charged tracks changing the reconstructed {tau} lepton track multiplicity. To avoid such missidentifications, this thesis introduces an explicit photon conversion identification in the very dense {tau} lepton decay environment. Existing tools had to be modified and a new electron identification method has been developed especially for this task. As a first result, the corrected {tau} lepton track multiplicity is presented. (orig.)

  20. Reconstruction of photon conversions in τ lepton decays in the ATLAS experiment

    International Nuclear Information System (INIS)

    Boehler, Michael

    2009-04-01

    The ATLAS experiment is one of the experiments at the Large Hadron Collider (LHC) which is designed for the search of new elementary particles. To discover the Higgs boson or precisely measure SUSY scenarios, τ lepton final states are very powerful decay channels. Therefore the τ lepton decay modes have to be identified correctly. Due to interactions between photons from hadronic decay products of the τ lepton and detector material electron-positron pairs (photon conversions) may be produced. These lead to additional charged tracks changing the reconstructed τ lepton track multiplicity. To avoid such missidentifications, this thesis introduces an explicit photon conversion identification in the very dense τ lepton decay environment. Existing tools had to be modified and a new electron identification method has been developed especially for this task. As a first result, the corrected τ lepton track multiplicity is presented. (orig.)

  1. Research Proposal for an Experiment to Search for the Decay {\\mu} -> eee

    CERN Document Server

    Blondel, A.; Pohl, M.; Bachmann, S.; Berger, N.; Kiehn, M.; Schoning, A.; Wiedner, D.; Windelband, B.; Eckert, P.; Schultz-Coulon, H.-C.; Shen, W.; Fischer, P.; Peric, I.; Hildebrandt, M.; Kettle, P.-R.; Papa, A.; Ritt, S.; Stoykov, A.; Dissertori, G.; Grab, C.; Wallny, R.; Gredig, R.; Robmann, P.; Straumann, U.

    2013-01-01

    We propose an experiment (Mu3e) to search for the lepton flavour violating decay mu+ -> e+e-e+. We aim for an ultimate sensitivity of one in 10^16 mu-decays, four orders of magnitude better than previous searches. This sensitivity is made possible by exploiting modern silicon pixel detectors providing high spatial resolution and hodoscopes using scintillating fibres and tiles providing precise timing information at high particle rates.

  2. Recent results on weak decays of charmed mesons from the Mark III experiment

    International Nuclear Information System (INIS)

    Browder, T.E.

    1989-01-01

    Recent results from the Mark III experiment on weak decays of charmed mesons are presented. Measurements of the resonant substructure of D 0 → K - π + π - π + decays, the first model independent result on D s → φπ + , as well as limits on D s → ηπ + and D s → η'π + are described. The implications of these new results are also discussed. 37 refs., 7 figs., 4 tabs

  3. Detecting surface events at the COBRA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Tebruegge, Jan [Exp. Physik IV, TU Dortmund (Germany); Collaboration: COBRA-Collaboration

    2015-07-01

    The aim of the COBRA experiment is to prove the existence of neutrinoless double-beta-decay and to measure its half-life. For this purpose the COBRA demonstrator, a prototype for a large-scale experiment, is operated at the Gran Sasso Underground Laboratory (LNGS) in Italy. The demonstrator is a detector array made of 64 Cadmium-Zinc-Telluride (CdZnTe) semiconductor detectors in the coplanar grid anode configuration. Each detector is 1**1 ccm in size. This setup is used to investigate the experimental issues of operating CdZnTe detectors in low background mode and identify potential background components. As the ''detector=source'' principle is used, the neutrinoless double beta decay COBRA searches for happens within the whole detector volume. Consequently, events on the surface of the detectors are considered as background. These surface events are a main background component, stemming mainly from the natural radioactivity, especially radon. This talk explains to what extent surface events occur and shows how these are recognized and vetoed in the analysis using pulse shape discrimination algorithms.

  4. Optimized collection, storage and measurement of radon and radon decay products - school experiments

    International Nuclear Information System (INIS)

    Philipsborn, H. von; Geipel, R.; Just, G.

    1998-01-01

    Schools are expected more than ever to teach in physics and chemistry an understanding of radioactivity in its many aspects. Simple experiments on the occurrence, the measurement and the properties of radionuclides are necessary for true understanding. Such experiments are now possible with novel methods of collection and storage of ubiquitous radon and radon decay products from air, water and solids. (orig.) [de

  5. The final measurements of the muon decay parameters from the TWIST experiment

    International Nuclear Information System (INIS)

    Bayes, R

    2013-01-01

    The TWIST (TRIUMF Weak Interaction Symmetry Test) experiment probes the Lorentz structure of the weak interaction using muon decay. This structure has a very well defined form under the Standard Model (SM) which makes precise predictions for the shape of the decay positron spectrum with respect to momentum and angle. The shape of the spectrum may be described under some rather general assumptions using a set of decay parameters whose values according to the SM are ρ = δ = 3/4, η = 0, and ξ = 1. TWIST uses a large sample of muon decays in a large acceptance spectrometer to measure the decay parameters to an order of magnitude greater precision than previous measurements. This experiment saw its last year of data collection in 2007. As TWIST is a systematics dominated experiment, much effort has been spent on refinements of the estimates of the systematic uncertainties over previous TWIST results. These proceedings will discuss the measures taken to achieve the precision goal of parts in 10 4 , and the physics implications of the experiment.

  6. Strategy of HPGe screening measurements in the SuperNEMO experiment

    Energy Technology Data Exchange (ETDEWEB)

    Perrot, Frédéric [Université de Bordeaux, Centre d' Etudes Nucléaires de Bordeaux Gradignan, UMR 5797, Chemin du Solarium, Le Haut-Vigneau, BP120, F-33175 Gradignan, France and CNRS/IN2P3, Centre d' Etudes Nucléaires de Bordeaux Gradignan, UMR 5797 (France); Collaboration: SuperNEMO Collaboration

    2013-08-08

    SuperNEMO is a double beta decay experiment that will use a tracko-calorimeter technique. The goal is to reach a sensitivity of T{sub 1/2}(0ν)>10{sup 26} y corresponding to an effective Majorana neutrino mass of 0.04-0.11 eV with 100 kg of {sup 82}Se. The general strategy of the HPGe screening measurements is described for the materials of the SuperNEMO demonstrator, regarding their radiopurity and their location. The two platforms, PRISNA and LSM, used for this screening are also briefly described.

  7. In-trap decay spectroscopy for {beta}{beta} decays

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, Thomas

    2011-01-18

    detectors, for the detection of X-rays, were tested and installed. Several {beta} detectors were tested and mounted on especially designed holders. The feasibility of the in-trap decay spectroscopy technique has been demonstrated by successfully measuring the EC branching ratios of {sup 107}In and {sup 124}Cs. In the latter case, {sup 126}Cs was measured at the same time as {sup 124}Cs and used to calibrate the detection efficiency of the x-ray detector. During this measurement, up to 2.65(32) .10{sup 5} ions/bunch were stored in the trap while their decays were observed. Based on this measurement, the ECBR of {sup 124}Cs was determined to be (17.8{+-}2.5(stat.){+-}15(syst.))%. The large systematic uncertainty arises from an impedance mismatch between preamplifier and x-ray detector that was discovered after the experiment. Nevertheless, the new value agrees with the literature value of 10(9)% [NND10] and the statistical error was reduced by a factor of three. These measurements demonstrated the feasibility of this new method of in-trap decay spectroscopy. It was for the first time that an electron capture decay was observed of ions stored in a Penning trap. In the future, this technique will be applied to perform ECBR measurements of transition nuclei in double beta decays. (orig.)

  8. In-trap decay spectroscopy for ββ decays

    International Nuclear Information System (INIS)

    Brunner, Thomas

    2011-01-01

    tested and installed. Several β detectors were tested and mounted on especially designed holders. The feasibility of the in-trap decay spectroscopy technique has been demonstrated by successfully measuring the EC branching ratios of 107 In and 124 Cs. In the latter case, 126 Cs was measured at the same time as 124 Cs and used to calibrate the detection efficiency of the x-ray detector. During this measurement, up to 2.65(32) .10 5 ions/bunch were stored in the trap while their decays were observed. Based on this measurement, the ECBR of 124 Cs was determined to be (17.8±2.5(stat.)±15(syst.))%. The large systematic uncertainty arises from an impedance mismatch between preamplifier and x-ray detector that was discovered after the experiment. Nevertheless, the new value agrees with the literature value of 10(9)% [NND10] and the statistical error was reduced by a factor of three. These measurements demonstrated the feasibility of this new method of in-trap decay spectroscopy. It was for the first time that an electron capture decay was observed of ions stored in a Penning trap. In the future, this technique will be applied to perform ECBR measurements of transition nuclei in double beta decays. (orig.)

  9. Initial performance of the CUORE-0 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Artusa, D.R. [University of South Carolina, Department of Physics and Astronomy, Columbia, SC (United States); INFN-Laboratori Nazionali del Gran Sasso, L' Aquila (Italy); Avignone, F.T.; Chott, N.; Creswick, R.J.; Farach, H.A.; Rosenfeld, C.; Wilson, J. [University of South Carolina, Department of Physics and Astronomy, Columbia, SC (United States); Azzolini, O.; Keppel, G.; Palmieri, V. [INFN-Laboratori Nazionali di Legnaro, Padua (Italy); Balata, M.; Bucci, C.; Canonica, L.; Casali, N.; Di Vacri, M.L.; Goett, J.; Gorla, P.; Nisi, S.; Orlandi, D.; Pattavina, L.; Pirro, S.; Zarra, C. [INFN-Laboratori Nazionali del Gran Sasso, L' Aquila (Italy); Banks, T.I. [INFN-Laboratori Nazionali del Gran Sasso, L' Aquila (Italy); University of California, Department of Physics, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Bari, G.; Deninno, M.M.; Moggi, N. [INFN-Sezione di Bologna, Bologna (Italy); Beeman, J. [Lawrence Berkeley National Laboratory, Materials Science Division, Berkeley, CA (United States); Bellini, F.; Cardani, L.; Cosmelli, C.; Ferroni, F.; Piperno, G. [Sapienza Universita di Roma, Dipartimento di Fisica, Rome (Italy); INFN-Sezione di Roma, Rome (Italy); Bersani, A. [INFN-Sezione di Genova, Genoa (Italy); Biassoni, M.; Brofferio, C.; Capelli, S.; Carrettoni, M.; Chiesa, D.; Clemenza, M.; Faverzani, M.; Ferri, E.; Fiorini, E.; Giachero, A.; Gironi, L.; Gotti, C.; Maiano, C.; Maino, M.; Nucciotti, A.; Pavan, M.; Sala, E.; Sisti, M.; Terranova, F.; Zanotti, L. [Universita di Milano-Bicocca, Dipartimento di Fisica, Milan (Italy); INFN-Sezione di Milano Bicocca, Milan (Italy); Cai, X.Z.; Cao, X.G.; Fang, D.Q.; Li, Y.L.; Ma, Y.G.; Tian, W.D.; Wang, H.W. [Shanghai Institute of Applied Physics (Chinese Academy of Sciences), Shanghai (China); Carbone, L.; Cremonesi, O.; Datskov, V.; Pessina, G.; Previtali, E.; Rusconi, C. [INFN-Sezione di Milano Bicocca, Milan (Italy); Dafinei, I.; Morganti, S.; Orio, F.; Pettinacci, V.; Tomei, C.; Vignati, M. [INFN-Sezione di Roma, Rome (Italy); Dally, A.; Ejzak, L.; Wielgus, L. [University of Wisconsin, Department of Physics, Madison, WI (United States); Di Domizio, S.; Fernandes, G.; Pallavicini, M. [INFN-Sezione di Genova, Genoa (Italy); Universita di Genova, Dipartimento di Fisica, Genoa (Italy); Freedman, S.J. [University of California, Department of Physics, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Fujikawa, B.K.; Han, K.; Mei, Y. [Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Giuliani, A.; Tenconi, M. [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, Orsay Campus (France); Gutierrez, T.D. [California Polytechnic State University, Physics Department, San Luis Obispo, CA (United States); Haller, E.E. [Lawrence Berkeley National Laboratory, Materials Science Division, Berkeley, CA (United States); University of California, Department of Materials Science and Engineering, Berkeley, CA (United States); Heeger, K.M.; Lim, K.E.; Maruyama, R.H. [Yale University, Department of Physics, New Haven, CT (United States); Hennings-Yeomans, R.; Ouellet, J.L. [University of California, Department of Physics, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Huang, H.Z.; Liu, X.; Trentalange, S.; Winslow, L.A.; Zhu, B.X. [University of California, Department of Physics and Astronomy, Los Angeles, CA (United States); Kadel, R. [Lawrence Berkeley National Laboratory, Physics Division, Berkeley, CA (United States); Kazkaz, K.; Pedretti, M.; Sangiorgio, S.; Scielzo, N.D. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Kolomensky, Yu.G. [University of California, Department of Physics, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Physics Division, Berkeley, CA (United States); Martinez, M. [Universidad de Zaragoza, Laboratorio de Fisica Nuclear y Astroparticulas, Saragossa (Spain); Nones, C. [Service de Physique des Particules, CEA/Saclay, Gif-sur-Yvette (France); Norman, E.B.; Wang, B.S. [Lawrence Livermore National Laboratory, Livermore, CA (United States); University of California, Department of Nuclear Engineering, Berkeley, CA (United States); O' Donnell, T. [University of California, Department of Physics, Berkeley, CA (United States); Smith, A.R. [Lawrence Berkeley National Laboratory, EH and S Division, Berkeley, CA (United States); Taffarello, L. [INFN-Sezione di Padova, Padua (Italy); Ventura, G. [Universita di Firenze, Dipartimento di Fisica, Florence (Italy); INFN-Sezione di Firenze, Florence (Italy); Wise, T. [University of Wisconsin, Department of Physics, Madison, WI (United States); Yale University, Department of Physics, New Haven, CT (United States); Zucchelli, S. [INFN-Sezione di Bologna, Bologna (Italy); Universita di Bologna, Dipartimento di Fisica, Bologna (Italy)

    2014-08-15

    CUORE-0 is a cryogenic detector that uses an array of tellurium dioxide bolometers to search for neutrinoless double-beta decay of {sup 130}Te. We present the first data analysis with 7.1kg . y of total TeO{sub 2} exposure focusing on background measurements and energy resolution. The background rates in the neutrinoless double-beta decay region of interest (2.47 to 2.57MeV) and in the α backgrounddominated region (2.70 to 3.90 MeV) have been measured to be 0.071 ± 0.011 and 0.019 ± 0.002 counts/(keV . kg . y), respectively. The latter result represents a factor of 6 improvement from a predecessor experiment, Cuoricino. The results verify our understanding of the background sources in CUORE-0, which is the basis of extrapolations to the full CUORE detector. The obtained energy resolution (full width at half maximum) in the region of interest is 5.7 keV. Based on themeasured background rate and energy resolution in the region of interest, CUORE-0 half-life sensitivity is expected to surpass the observed lower bound of Cuoricino with one year of live time. (orig.)

  10. Status of the Los Alamos tritium beta decay experiment

    International Nuclear Information System (INIS)

    Robertson, R.G.H.; Bowles, T.J.; Wark, D.L.; Wilkerson, J.F.; Knapp, D.A.

    1989-01-01

    The Los Alamos tritium experiment employs a gaseous tritium source and a magnetic spectrometer to determine the mass of the electron antineutrino from the shape of the tritium beta spectrum. Since publication of the first result from this apparatus (m/sub nu/ < 27 eV at 95% confidence), work has concentrated on improving the data rates. A 96-element Si microstrip array detector has been installed to replace the single proportional counter at the spectrometer focus, resulting in greatly increased efficiency. Measurements of the 1s photoionization spectrum of Kr now obviate the need for reliance on the theoretical shakeup and shakeoff spectrum of Kr in determining the spectrometer resolution. 19 refs., 3 figs

  11. Aluminum as a source of background in low background experiments

    Energy Technology Data Exchange (ETDEWEB)

    Majorovits, B., E-mail: bela@mppmu.mpg.de [MPI fuer Physik, Foehringer Ring 6, 80805 Munich (Germany); Abt, I. [MPI fuer Physik, Foehringer Ring 6, 80805 Munich (Germany); Laubenstein, M. [Laboratori Nazionali del Gran Sasso, INFN, S.S.17/bis, km 18 plus 910, I-67100 Assergi (Italy); Volynets, O. [MPI fuer Physik, Foehringer Ring 6, 80805 Munich (Germany)

    2011-08-11

    Neutrinoless double beta decay would be a key to understanding the nature of neutrino masses. The next generation of High Purity Germanium experiments will have to be operated with a background rate of better than 10{sup -5} counts/(kg y keV) in the region of interest around the Q-value of the decay. Therefore, so far irrelevant sources of background have to be considered. The metalization of the surface of germanium detectors is in general done with aluminum. The background from the decays of {sup 22}Na, {sup 26}Al, {sup 226}Ra and {sup 228}Th introduced by this metalization is discussed. It is shown that only a special selection of aluminum can keep these background contributions acceptable.

  12. Conservation experiments applying radiation-curable impregnating agents to intact and artifically decayed wood samples

    International Nuclear Information System (INIS)

    Schaudy, R.; Slais, E.

    1983-02-01

    Conservation experiments have been performed applying 10 selected impregnating agents to intact and chemically as well as biologically decayed wood samples. The quality of the radiation-curable impregnating agents could be valued by determination of the monomer uptake, the alteration of dimensions and volume and the deformation of the samples. The results are to be discussed. (Author) [de

  13. Measurements of $B \\to \\mu^{+} \\mu^{-}$ decays using the LHCb experiment

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00400160

    This dissertation documents a study of very rare $B$-meson decays at the LHCb experiment, using data taken during the first experiment run of the Large Hadron Collider (LHC) and during the second experiment run until September 2016. The LHCb experiment was designed to test the Standard Model of particle physics and to search for New Physics effects that go beyond the scope of the Standard Model through the decay of $b$ hadrons produced in high energy proton-proton collisions at the LHC. The measurements described in this dissertation are made using data samples of proton-proton collisions with integrated luminosities of 1.0, 2.0 and 1.4 fb$^{-1}$, collected at centre-of-mass energies of 7, 8 and 13 TeV, respectively. The branching fractions of the very rare $B^{0} \\to \\mu^{+} \\mu^{-}$ and $B_{s}^{0} \\to \\mu^{+} \\mu^{-}$ decays and the effective lifetime of $B_{s}^{0} \\to \\mu^{+} \\mu^{-}$ decays are precisely predicted by the Standard Model and are sensitive to effects from New Physics. New Physics processes...

  14. Performance of high-resolution position-sensitive detectors developed for storage-ring decay experiments

    International Nuclear Information System (INIS)

    Yamaguchi, T.; Suzaki, F.; Izumikawa, T.; Miyazawa, S.; Morimoto, K.; Suzuki, T.; Tokanai, F.; Furuki, H.; Ichihashi, N.; Ichikawa, C.; Kitagawa, A.; Kuboki, T.; Momota, S.; Nagae, D.; Nagashima, M.; Nakamura, Y.; Nishikiori, R.; Niwa, T.; Ohtsubo, T.; Ozawa, A.

    2013-01-01

    Highlights: • Position-sensitive detectors were developed for storage-ring decay spectroscopy. • Fiber scintillation and silicon strip detectors were tested with heavy ion beams. • A new fiber scintillation detector showed an excellent position resolution. • Position and energy detection by silicon strip detectors enable full identification. -- Abstract: As next generation spectroscopic tools, heavy-ion cooler storage rings will be a unique application of highly charged RI beam experiments. Decay spectroscopy of highly charged rare isotopes provides us important information relevant to the stellar conditions, such as for the s- and r-process nucleosynthesis. In-ring decay products of highly charged RI will be momentum-analyzed and reach a position-sensitive detector set-up located outside of the storage orbit. To realize such in-ring decay experiments, we have developed and tested two types of high-resolution position-sensitive detectors: silicon strips and scintillating fibers. The beam test experiments resulted in excellent position resolutions for both detectors, which will be available for future storage-ring experiments

  15. Interfaces of nuclear structure studies-decay vs. in-beam experiments

    International Nuclear Information System (INIS)

    Grawe, H.; Gorska, M.; Hu, Z.; Roeckl, E.; Lipoglavsek, M.; Fahlander, C.; Rykaczewski, K.

    1999-05-01

    The common interface of β-decay and particle-decay experiments and in-beam studies following fusion, relativistic fission and projectile fragmentation is defined by the search for the best way to extract nuclear structure information. For a few examples selected from the exotic regions of nuclei around 100 Sn and between 68 Ni and 78 Ni it is demonstrated, that complementary spectroscopic data extracted by various methods lead to an understanding of the shell structure at these keypoints of the nuclidic chart. (orig.)

  16. PyFDAP: automated analysis of fluorescence decay after photoconversion (FDAP) experiments.

    Science.gov (United States)

    Bläßle, Alexander; Müller, Patrick

    2015-03-15

    We developed the graphical user interface PyFDAP for the fitting of linear and non-linear decay functions to data from fluorescence decay after photoconversion (FDAP) experiments. PyFDAP structures and analyses large FDAP datasets and features multiple fitting and plotting options. PyFDAP was written in Python and runs on Ubuntu Linux, Mac OS X and Microsoft Windows operating systems. The software, a user guide and a test FDAP dataset are freely available for download from http://people.tuebingen.mpg.de/mueller-lab. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Time reversal in polarized neutron decay: the emiT experiment

    CERN Document Server

    Jones, G L; Anaya, J M; Bowles, T J; Chupp, T E; Coulter, K P; Dewey, M S; Freedman, S J; Fujikawa, B K; García, A; Greene, G L; Hwang, S R; Lising, L J; Mumm, H P; Nico, J S; Robertson, R G H; Steiger, T D; Teasdale, W A; Thompson, A K; Wasserman, E G; Wietfeldt, F E; Wilkerson, J F

    2000-01-01

    The standard electro-weak model predicts negligible violation of time-reversal invariance in light quark processes. We report on an experimental test of time-reversal invariance in the beta decay of polarized neutrons as a search for physics beyond the standard model. The emiT collaboration has measured the time-reversal-violating triple-correlation in neutron beta decay between the neutron spin, electron momentum, and neutrino momentum often referred to as the D coefficient. The first run of the experiment produced 14 million events which are currently being analyzed. However, a second run with improved detectors should provide greater statistical precision and reduced systematic uncertainties.

  18. Study of rare and suppressed processes in B meson decays with the ATLAS experiment

    CERN Document Server

    Iengo, P; The ATLAS collaboration

    2014-01-01

    The large amount of Heavy Flavor data collected by the ATLAS experiment is potentially sensitive to New Physics, which could be evident in processes that are naturally suppressed in the Standard Model. The most recent results on the search for the rare decay Bs (B0) -> mu+mu- are presented, as well as results of the angular analysis of the semileptonic rare decay Bd → K*0 mu+mu- -> K+pi-mu+mu-, extracting the distribution parameter AFB and FL (the accuracy obtained from data collected in 2011 is comparable to the best previous measurement in the region q^2(mu+mu-) -> 16 GeV^2)

  19. B decays to wrong sign charm mesons at the DELPHI experiment

    International Nuclear Information System (INIS)

    Schwanda, C.

    2001-05-01

    In the present work, b hadron decays to 'wrong sign charm' mesons, b → D-bar 0 X, b → D - X and b → D s - X, are studied using the data collected by the DELPHI experiment in the years 1994 and 1995, and the corresponding branching fractions are extracted. Decays b → c-bar are expected to occur through the Cabibbo favored transitions b → cW - and W - → cbar s, and hence wrong sign charm decays are in fact double charm transitions. The interest in this type of b decays is triggered by different motivations. At first, wrong sign charm decays provide evidence for an alternative mechanism leading to the production of charmed mesons in b decay ('upper vertex charm'), and, second, the double charm rate is related to n c , the mean number of charm quarks (and anti-quarks) produced per b decay, n c =1 + Br(b → c c-bar s). Predictions of the semileptonic B meson branching fraction, based on the heavy quark effective theory (HQET) and the heavy quark expansion (HQE), also fix the value of n c . By measuring the double charm rate, we can thus probe these predictions. The measurement of the inclusive wrong sign branching fractions proceeds through the following steps: At first, the charmed meson decays D 0 → K - π + , D + → K - π + π + and D s + → φ π + → K + K - π + are exclusively reconstructed in the DELPHI data. The charge of the c quark confined inside the charmed meson is determined by the charge of the kaon (D 0 , D + ) or by the charge of the pion (D s + ). The b quark charge at decay time in the charmed meson hemisphere is estimated by using identified particles. A neural network approach is adopted. By correlating both charge informations, we obtain the main discriminant variable for selecting wrong sign mesons. We measure the following branching ratios: Br(b → D-bar X)=(9.3 ± 1.7(stat) ± 1.3(syst))% and Br(b → D s - X)=(10.3 ± 1.1(stat) ± 2.9(syst))% (the first error is statistical, the second one systematic). This result is

  20. Production of high energy η' in B meson decays from BaBar experiment

    International Nuclear Information System (INIS)

    Hicheur, A.

    2003-04-01

    The work presented in this thesis relies on the analysis of data collected between october 1999 and July 2002 by the BaBar experiment at the PEP-II collider located at SLAC (Stanford, California). Electron-positron collisions at a center of mass energy equal to the Υ(4S) resonance mass are used for the production of B meson pairs. In July 2001, the BaBar collaboration published the first measurement of CP violation in the neutral B mesons system. Since then, the precision of the measurement has been continually being improved with the increasing data sample. Two devices are dedicated to the reconstruction of charged particles: the Silicon Vertex Tracker and the Drift Chamber. The Silicon Vertex Tracker is crucial for the reconstruction of the B meson decay vertex. Its motion with regard to the Drift Chamber needs a rolling calibration of the corresponding alignment parameters roughly every two hours. The relation between the Drift Chamber geometry and the alignment has been studied. Beside CP violation, Heavy Flavour Physics is an other important issue of BaBar research program. Rare decays are of particular interest as they are sensible to a new physics beyond the Standard Model. The production of high energy η' in B decays has been studied through the two main contributions, B→ η' X s coming from the rare decay b → sg*, and B-bar 0 → η'D 0 coming from the internal tree color suppressed decay b → cud. The improvement of the measurement of the process B → η'X-s and the first. observation of the decay B-bar 0 → η'D 0 have led to the conclusion that the η' production is dominated by the decay b → sg* and enables to constrain its quark content. (author)

  1. Detection system for neutron β decay correlations in the UCNB and Nab experiments

    Energy Technology Data Exchange (ETDEWEB)

    Broussard, L.J., E-mail: broussardlj@ornl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Zeck, B.A. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); North Carolina State University, Raleigh, NC 27695 (United States); Adamek, E.R. [Indiana University, Bloomington, IN 47405 (United States); Baeßler, S. [University of Virginia, Charlottesville, VA 22904 (United States); Birge, N. [University of Tennessee, Knoxville, TN 37996 (United States); Blatnik, M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Cleveland State University, Cleveland, OH 44115 (United States); Bowman, J.D. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Brandt, A.E. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); North Carolina State University, Raleigh, NC 27695 (United States); Brown, M. [University of Kentucky, Lexington, KY 40506 (United States); Burkhart, J. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Callahan, N.B. [Indiana University, Bloomington, IN 47405 (United States); Clayton, S.M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Crawford, C. [University of Kentucky, Lexington, KY 40506 (United States); Cude-Woods, C. [North Carolina State University, Raleigh, NC 27695 (United States); Currie, S. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Dees, E.B. [North Carolina State University, Raleigh, NC 27695 (United States); Ding, X. [Virginia Polytechnic Institute & State University, Blacksburg, VA 24061 (United States); Fomin, N. [University of Tennessee, Knoxville, TN 37996 (United States); Frlez, E.; Fry, J. [University of Virginia, Charlottesville, VA 22904 (United States); and others

    2017-03-21

    We describe a detection system designed for precise measurements of angular correlations in neutron β decay. The system is based on thick, large area, highly segmented silicon detectors developed in collaboration with Micron Semiconductor, Ltd. The prototype system meets specifications for β electron detection with energy thresholds below 10 keV, energy resolution of ∼3 keV FWHM, and rise time of ∼50 ns with 19 of the 127 detector pixels instrumented. Using ultracold neutrons at the Los Alamos Neutron Science Center, we have demonstrated the coincident detection of β particles and recoil protons from neutron β decay. The fully instrumented detection system will be implemented in the UCNB and Nab experiments to determine the neutron β decay parameters B, a, and b.

  2. Construction and performance of a plastic scintillating fiber target for a rare kaon decay experiment

    International Nuclear Information System (INIS)

    Frank, J.S.; Strand, R.C.

    1988-01-01

    A K + stopping target consisting of 2269 plastic fibers, 2 mm diameter and 3.12 m long has been installed in an experiment searching for the rare decay K + to πν/bar nu/ at Brookhaven National Laboratory. The fibers are bundled onto 379 photomultiplier tube and base assemblies with single photoelectron resolution. After routing to the counting room, the signals are amplified and then distributed to TDC's and high-pass filter circuits that provide signals to ADC's and to fan-ins that provide a target energy-sum pulse used in the fast triggering logic. A minimum ionizing particle 3 m from the photomultiplier yields 1 photoelectron/mm path. The target provides transverse spatial resolution of 4 mm (FWHM) for the vertex of the K + decay and 2 ns timing resolution (FWHM) on the difference between the K + stop and the subsequent decay. Details of the target construction and operating performance are provided. 4 refs., 7 figs

  3. Search for heavy neutrino decays in the BEBC beam dump experiment

    Science.gov (United States)

    Cooper-Sarkar, A. M.; Haywood, S. J.; Parker, M. A.; Sarkar, S.; Barnham, K. W. J.; Bostock, P.; Faccini-Turluer, M. L.; Grässler, H.; Guy, J.; Hulth, P. O.; Hultqvist, K.; Idschok, U.; Klein, H.; Kreutzmann, H.; Krstic, J.; Mobayyen, M. M.; Morrison, D. R. O.; Nellen, B.; Talebzadeh, M.; Venus, W.; Vignaud, D.; Wachsmuth, H.; Wittek, W.; Wünsch, B.; WA66 Collaboration

    1985-10-01

    New limits on lepton mixing parameters are derived from a search for decays of heavy neutrinos in a proton beam dump experiment. The limits | Uøi| 2, | Ue i| 2 < 10 -6-10 -7 are obtained for neutrino mass eigenstates vi of mass between 0.5 and 1.75 GeV, which can be produced through mixing in charmed D meson decays. This is the first such limit on | Uøi| 2 for neutrino masses greater than 0.5 GeV. For the mass eigenstate v3 in particular, we obtain the limits | Uø3 | 2 < 10 -7-10 -8, | Ue3 | 2 < 10 -9-10 -10 for the mass range 150-190 MeV, assuming the v3 to be produced directly in charmed F meson decays.

  4. The SNO+ experiment. Current status and future prospects

    Energy Technology Data Exchange (ETDEWEB)

    Lozza, Valentina [Institut fuer Kern- und Teilchenphysik, Zellescher Weg 19, 01069 Dresden (Germany)

    2016-07-01

    SNO+ is a large liquid scintillator based experiment that reuses the Sudbury Neutrino Observatory detector. The detector, located 2 km underground in a mine near Sudbury, Canada, consists of a 12 m diameter acrylic vessel which will be filled with 780 tonnes of liquid scintillator. The main physics goal of SNO+ is to search for the neutrinoless double-beta (0νββ) decay of {sup 130}Te. During the double-beta phase, the liquid scintillator will be initially loaded with 0.3-0.5% natural tellurium. In 5 years of data taking, SNO+ expects to reach a sensitivity on the effective Majorana neutrino mass of 55-133 meV, just above the inverted neutrino mass hierarchy region. Recently, the possibility to deploy up to 10 times more natural tellurium has been investigated, by which SNO+ could explore deep into the parameter space for the inverted hierarchy in the near future. Designed as a general purpose neutrino experiment, SNO+ can additionally measure the reactor antineutrino oscillations, geo-neutrinos in a geologically-interesting location, watch supernova neutrinos and measure low-energy solar neutrinos. A first commissioning phase with the detector filled with water will begin soon. The scintillator phase is expected to start after few months of water data taking. The 0νββ decay phase is foreseen for the 2017. In this talk the current status and the broad physics program of SNO+ will be presented.

  5. Hadronic and rare B decays with the BaBar and Belle experiments

    Energy Technology Data Exchange (ETDEWEB)

    Prudent, Xavier [Technische Univ. Dresden, Dresden (Germany)

    2012-05-07

    We review recent experimental results on Bd and Bs mesons decays by the BaBar and Belle experiments. These include measurements of the color-suppressed decays B¯0 → D(*)0h0,h0 = π0,η,η',ω, observation of the baryonic decay B¯0 → Λc+Λ¯K, measurements of the charmless decays B → ηh,h = π,K, B → Kπ, and observation of CP eigenstates in the Bs decays: Bs0 → J/ψf0(980), Bs0 → J/ψf0(1370) and Bs0 → J/ψη. As a result, the theoretical implications of these results will be considered.ided

  6. Observation of W{yields} {tau}{nu}{sub {tau}} decays with the ATLAS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Nunes Hanninger, Guilherme

    2011-04-15

    Physics studies of processes with {tau} leptons in the final state, while challenging at hadron colliders, are of great importance at the LHC. The {tau} leptons provide important signatures in searches for the Higgs boson as well as for new physics in a wide range of theoretical models. Decays of Standard Model particles to {tau} leptons, in particular Z {yields} {tau}{tau} and W {yields} {tau}{nu}{sub {tau}}, are important background processes in those searches and their cross sections need to be measured first. This thesis reports the first observation of W {yields} {tau}{nu}{sub {tau}} decays and of hadronically decaying {tau} leptons with the ATLAS experiment at the LHC. The analysis is based on a data sample corresponding to an integrated luminosity of 546 nb{sup -1}, which was recorded at a proton-proton centre-of-mass energy of 7TeV. A total of 78 data events are selected, with an estimated background of 11.1 {+-} 2.3{sub (stat.)} {+-} 3.2{sub (syst.)} events from QCD processes, and of 11.8 {+-} 0.4{sub (stat.)} {+-} 3.7{sub (syst.)} events from other W and Z decays. The observed excess of data events over the total background is compatible with the SM expectation for W {yields} {tau}{nu}{sub {tau}} decays, both in the number of events and in the shapes of distributions of characteristic variables. (orig.)

  7. Mitigation of ^{42}Ar/^{42}K background for the GERDA Phase II experiment

    Science.gov (United States)

    Lubashevskiy, A.; Agostini, M.; Budjáš, D.; Gangapshev, A.; Gusev, K.; Heisel, M.; Klimenko, A.; Lazzaro, A.; Lehnert, B.; Pelczar, K.; Schönert, S.; Smolnikov, A.; Walter, M.; Zuzel, G.

    2018-01-01

    Background coming from the ^{42}Ar decay chain is considered to be one of the most relevant for the Gerda experiment, which searches for the neutrinoless double beta decay of ^{76}Ge. The sensitivity strongly relies on the absence of background around the Q-value of the decay. Background coming from ^{42}K, a progeny of ^{42}Ar, can contribute to that background via electrons from the continuous spectrum with an endpoint at 3.5 MeV. Research and development on the suppression methods targeting this source of background were performed at the low-background test facility LArGe . It was demonstrated that by reducing ^{42}K ion collection on the surfaces of the broad energy germanium detectors in combination with pulse shape discrimination techniques and an argon scintillation veto, it is possible to suppress ^{42}K background by three orders of magnitude. This is sufficient for Phase II of the Gerda experiment.

  8. Controls on coarse wood decay in temperate tree species: birth of the LOGLIFE experiment.

    Science.gov (United States)

    Cornelissen, Johannes H C; Sass-Klaassen, Ute; Poorter, Lourens; van Geffen, Koert; van Logtestijn, Richard S P; van Hal, Jurgen; Goudzwaard, Leo; Sterck, Frank J; Klaassen, René K W M; Freschet, Grégoire T; van der Wal, Annemieke; Eshuis, Henk; Zuo, Juan; de Boer, Wietse; Lamers, Teun; Weemstra, Monique; Cretin, Vincent; Martin, Rozan; Ouden, Jan den; Berg, Matty P; Aerts, Rien; Mohren, Godefridus M J; Hefting, Mariet M

    2012-01-01

    Dead wood provides a huge terrestrial carbon stock and a habitat to wide-ranging organisms during its decay. Our brief review highlights that, in order to understand environmental change impacts on these functions, we need to quantify the contributions of different interacting biotic and abiotic drivers to wood decomposition. LOGLIFE is a new long-term 'common-garden' experiment to disentangle the effects of species' wood traits and site-related environmental drivers on wood decomposition dynamics and its associated diversity of microbial and invertebrate communities. This experiment is firmly rooted in pioneering experiments under the directorship of Terry Callaghan at Abisko Research Station, Sweden. LOGLIFE features two contrasting forest sites in the Netherlands, each hosting a similar set of coarse logs and branches of 10 tree species. LOGLIFE welcomes other researchers to test further questions concerning coarse wood decay that will also help to optimise forest management in view of carbon sequestration and biodiversity conservation.

  9. The investigation of the 2νββ decay by Pyatov method within ...

    Indian Academy of Sciences (India)

    elements is analysed. Keywords. Pyatov method; Gamow–Teller; quasiparticle random phase approximation;. 2νββ. PACS Nos 21.60.Cs; 23.40.-S. 1. Introduction. Nuclear double beta decay process is a rare transition in which the nuclear charge changes by two units as the mass number remains the same. This process ...

  10. Measurement of the radiative decay of polarized muons in the MEG experiment

    Energy Technology Data Exchange (ETDEWEB)

    Baldini, A.M.; Bemporad, C.; Cei, F.; D' Onofrio, A.; Dussoni, S.; Galli, L.; Grassi, M.; Nicolo, D.; Sergiampietri, F.; Signorelli, G.; Tenchini, F. [INFN, Sezione di Pisa (Italy); Dipartimento di Fisica, Pisa Univ. (Italy); Bao, Y.; Hildebrandt, M.; Kettle, P.R.; Mtchedlishvili, A.; Papa, A.; Ritt, S. [Paul Scherrer Institut PSI, Villigen (Switzerland); Baracchini, E. [ICEPP, The University of Tokyo, Tokyo (Japan); INFN, Laboratori Nazionali di Frascati, Frascati, Rome (Italy); Berg, F.; Hodge, Z.; Rutar, G. [Paul Scherrer Institut PSI, Villigen (Switzerland); Swiss Federal Institute of Technology ETH, Zurich (Switzerland); Biasotti, M.; De Gerone, M.; Gatti, F.; Pizzigoni, G. [INFN, Sezione di Genova (Italy); Dipartimento di Fisica, Genoa Univ. (Italy); Boca, G.; Cattaneo, P.W.; De Bari, A.; Rossella, M. [INFN, Sezione di Pavia (Italy); Dipartimento di Fisica, Pavia Univ. (Italy); Cavoto, G.; Graziosi, A.; Piredda, G.; Ripiccini, E.; Voena, C. [INFN, Sezione di Roma (Italy); Dipartimento di Fisica, ' ' Sapienza' ' Univ. Rome (Italy); Chiarello, G.; Chiri, C.; Grancagnolo, F.; Panareo, M.; Pepino, A.; Tassielli, G.F. [INFN, Sezione di Lecce (Italy); Dipartimento di Matematica e Fisica, Salento Univ. Lecce (Italy); Fujii, Y.; Iwamoto, T.; Kaneko, D.; Mori, Toshinori; Nakaura, S.; Nishimura, M.; Ogawa, S.; Ootani, W.; Sawada, R.; Uchiyama, Y.; Yoshida, K. [ICEPP, The University of Tokyo, Tokyo (Japan); Grigoriev, D.N. [Budker Institute of Nuclear Physics of Siberian Branch of Russian Academy of Sciences, Novosibirsk (Russian Federation); Novosibirsk State Technical University, Novosibirsk (Russian Federation); Novosibirsk State University, Novosibirsk (Russian Federation); Haruyama, T.; Mihara, S.; Nishiguchi, H.; Yamamoto, A. [KEK, High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan); Ieki, K. [Paul Scherrer Institut PSI, Villigen (Switzerland); ICEPP, The University of Tokyo, Tokyo (Japan); Ignatov, F.; Khazin, B.I.; Popov, A.; Yudin, Yu.V. [Budker Institute of Nuclear Physics of Siberian Branch of Russian Academy of Sciences, Novosibirsk (Russian Federation); Novosibirsk State University, Novosibirsk (Russian Federation); Kang, Tae Im; Lim, G.M.A.; Molzon, W.; You, Z. [University of California, Irvine, CA (United States); Khomutov, N.; Korenchenko, A.; Kravchuk, N. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Renga, F. [Paul Scherrer Institut PSI, Villigen (Switzerland); INFN, Sezione di Roma (Italy); Dipartimento di Fisica, ' ' Sapienza' ' Univ. Rome (Italy); Venturini, M. [INFN Sezione di Pisa (Italy); Dipartimento di Fisica, Pisa Univ. (Italy); Scuola Normale Superiore, Pisa (Italy); Collaboration: The MEG Collaboration

    2016-03-15

    We studied the radiative muon decay μ{sup +} → e{sup +}νanti νγ by using for the first time an almost fully polarized muon source. We identified a large sample (∝13,000) of these decays in a total sample of 1.8 x 10{sup 14} positive muon decays collected in the MEG experiment in the years 2009-2010 and measured the branching ratio B(μ{sup +} → eνanti νγ) = (6.03 ± 0.14(stat.) ± 0.53(sys.)) x 10{sup -8} for E{sub e} > 45 MeV and E{sub γ} > 40 MeV, consistent with the Standard Model prediction. The precise measurement of this decay mode provides a basic tool for the timing calibration, a normalization channel, and a strong quality check of the complete MEG experiment in the search for μ{sup +} → e{sup +}γ process. (orig.)

  11. Isotensor Axial Polarizability and Lattice QCD Input for Nuclear Double- β Decay Phenomenology

    Energy Technology Data Exchange (ETDEWEB)

    Shanahan, Phiala E.; Tiburzi, Brian C.; Wagman, Michael L.; Winter, Frank; Chang, Emmanuel; Davoudi, Zohreh; Detmold, William; Orginos, Kostas; Savage, Martin J.

    2017-08-01

    The potential importance of short-distance nuclear effects in double-$\\beta$ decay is assessed using a lattice QCD calculation of the $nn\\rightarrow pp$ transition and effective field theory methods. At the unphysical quark masses used in the numerical computation, these effects, encoded in the isotensor axial polarisability, are found to be of similar magnitude to the nuclear modification of the single axial current, which phenomenologically is the quenching of the axial charge used in nuclear many-body calculations. This finding suggests that nuclear models for neutrinoful and neutrinoless double-$\\beta$ decays should incorporate this previously neglected contribution if they are to provide reliable guidance for next-generation neutrinoless double-$\\beta$ decay searches. The prospects of constraining the isotensor axial polarisabilities of nuclei using lattice QCD input into nuclear many-body calculations are discussed.

  12. Search for Tau Neutrinos in the τ → e Decay Channel in the OPERA Experiment

    OpenAIRE

    Hosseini, Behzad

    2015-01-01

    The OPERA (Oscillation Project with Emulsion tRacking Apparatus) experiment is a long baseline neutrino oscillation experiment that was designed to perform a conclusive test of the νμ → ντ oscillations hypothesis. The main aim of this experiment is a direct observation of τ leptons in ντ charged-current interactions. A good electromagnetic shower reconstruction is important for the τ detection in the τ → e decay channel. So far, 4 ντ candidates have been observed in the OPERA detector wi...

  13. Planning for the next generation of proton-decay experiments in the United States

    International Nuclear Information System (INIS)

    Ayres, D.S.

    1982-01-01

    There are now three well-developed proposals for new proton decay detectors to be built in the United States. These are the 1000 to 5000-ton Soudan 2 tracking calorimeter, the 1400-ton Homestake II liquid scintillator Tracking Spectrometer, and the 2500-ton University of Pennsylvania liquid-scintillator - proportional-drift-cell calorimeter. These proposals were reviewed by the Department of Energy Technical Assessment Panel on Proton Decay in February 1982. I shall describe the Soudan and Pennsylvania proposals, present the latest results from the 31-ton Soudan 1 experiment, and discuss the recommendations of the DOE Panel. Following these recommendations, a one-week workshop, to be held at Argonne in June, will focus on the optimization of techniques for future experiments

  14. Prompt neutron decay constant estimation of RSG-GAS at high power noise experiment

    International Nuclear Information System (INIS)

    Jujuratisbela, U.; Kristedjo; Tukiran; Pinem, S.; Iman, J.; Puryono; Sanjaya, A.; Suwarno

    1998-01-01

    The determination of prompt neutron decay constant (α) of RGS-GAS by using low power noise experiment method at the equilibrium core indicated that the result is not good. The bad result was due to the small ratio of the noise signal to background which was caused by low detector efficiency or contaminated core after long time operation. To solve the problem is tried by using noise experiment technique at high power. The voltage output of neutron detectors at power of 5, 12, and 23 MW were connected to preamplifier and filter then to the Dynamic Signal Analyzer Version-2 and then the power spectral density of each channel of JKT04 and JKT03, the cut off frequency of each channel can be determined by using linear regression technique such that the prompt neutron decay constant can be estimated

  15. Large scale experiments with a 5 MW sodium/air heat exchanger for decay heat removal

    International Nuclear Information System (INIS)

    Stehle, H.; Damm, G.; Jansing, W.

    1994-01-01

    Sodium experiments in the large scale test facility ILONA were performed to demonstrate proper operation of a passive decay heat removal system for LMFBRs based on pure natural convection flow. Temperature and flow distributions on the sodium and the air side of a 5 MW sodium/air heat exchanger in a natural draught stack were measured during steady state and transient operation in good agreement with calculations using a two dimensional computer code ATTICA/DIANA. (orig.)

  16. Observation of the $B^0_s \\to \\eta_c \\phi$ decay with the LHCb experiment

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00536869

    The interference between $B^0_s$ meson decay amplitudes to CP final state directly or via mixing gives rise to a measurable CP-violating phase $\\phi_s$, which is predicted to be $\\phi_s^{SM} = (-0.0370\\pm0.0006)~\\mathrm{rad}$ in the Standard Model. However, such process may receive contributions from New Physics and change the value of $\\phi_s$. At present, the most precise measurement of $\\phi_s$ is given by the LHCb experiment and the world average is $\\phi_s^{\\rm{exp}} = (-0.021\\pm 0.032)~\\mathrm{rad}$, with uncertainty still dominated by the statistics. In this context, a study of $B^0_s \\to \\eta_c \\phi$ decays is performed using $pp$ collision data corresponding to an integrated luminosity of~3.0\\,fb$^{-1}$, collected with the LHCb detector during the Run~1 of the LHC. The observation of the decay $B^0_s \\to \\eta_c \\phi$ is reported, where the $\\eta_c$ meson is reconstructed in the $p\\bar{p}$, $K^+K^-\\pi^+\\pi^-$, $\\pi^+\\pi^-\\pi^+\\pi^-$ and $K^+K^-K^+K^-$ decay modes and the $\\phi(1020)$ in t...

  17. Reconstruction of tau lepton decays and applications in the ATLAS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Peter [Rheinische Friedrich-Wilhelms-Universitaet Bonn (Germany)

    2016-07-01

    Final states with hadronically decaying tau leptons play an important part in the physics programme of the ATLAS experiment. Examples are measurements of Standard Model processes, evidence of the Higgs-boson Yukawa couplings to tau leptons, and searches for new physics phenomena, such as Supersymmetry. These analyses depended on robust tau reconstruction and excellent particle identification algorithms that provided suppression of backgrounds from jets, electrons and muons. I present a new ''particle flow'' method of reconstructing the individual charged and neutral hadrons in tau decays with the ATLAS detector which leads to a significant improvement in the tau energy and directional resolution. It further gives access to the individual charged and neutral hadron four-momenta and offers a high purity decay mode selection. These features will play a particularly important role in analyses that exploit tau spin information, such as a measurement of the CP mixture of the Higgs boson in H → ττ decays.

  18. Results from phase I of the GERDA experiment

    International Nuclear Information System (INIS)

    Wester, Thomas

    2015-01-01

    The GERmanium Detector Array Gerda at the Laboratori Nazionali del Gran Sasso of the INFN in Italy is an experiment dedicated to the search for the neutrinoless double beta (0νββ) decay in 76 Ge. The experiment employs high purity germanium detectors enriched in 76 Ge inside a 64 m 3 cryostat filled with liquid argon. Gerda was planned in two phases of data taking with the goal to reach a half-life sensitivity in the order of 10 26 yr. Phase I of Gerda was running from November 2011 until May 2013. With about 18 kg total detector mass, data with an exposure of 21.6 kg·yr was collected and a background index of 0.01 cts/(keV·kg·yr) was achieved in the region of interest. No signal was found for the 0νββ decay and a new limit of T 1/2 > 2.1 · 10 25 yr (90% C.L.) was obtained, strongly disfavoring the previous claim of observation. Furthermore, the 2νββ decay half-life of 76 Ge was measured with unprecedented precision. Other results include new half-life limits of the order of 10 23 yr for Majoron emitting double beta decay modes with spectral indices n = 1, 2, 3, 7 and new limits in the order of 10 23 yr for 2νββ decays to the first 3 excited states of 76 Se. In Phase II, currently in preparation, the detector mass will be doubled while reducing the background index by a factor of 10

  19. Results from phase I of the GERDA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Wester, Thomas [Institute of Nuclear and Particle Physics, TU Dresden, Zellescher Weg 19, Germany thomas.wester@tu-dresden.de (Germany)

    2015-10-28

    The GERmanium Detector Array Gerda at the Laboratori Nazionali del Gran Sasso of the INFN in Italy is an experiment dedicated to the search for the neutrinoless double beta (0νββ) decay in {sup 76}Ge. The experiment employs high purity germanium detectors enriched in {sup 76}Ge inside a 64 m{sup 3} cryostat filled with liquid argon. Gerda was planned in two phases of data taking with the goal to reach a half-life sensitivity in the order of 10{sup 26} yr. Phase I of Gerda was running from November 2011 until May 2013. With about 18 kg total detector mass, data with an exposure of 21.6 kg·yr was collected and a background index of 0.01 cts/(keV·kg·yr) was achieved in the region of interest. No signal was found for the 0νββ decay and a new limit of T{sub 1/2} > 2.1 · 10{sup 25} yr (90% C.L.) was obtained, strongly disfavoring the previous claim of observation. Furthermore, the 2νββ decay half-life of {sup 76}Ge was measured with unprecedented precision. Other results include new half-life limits of the order of 10{sup 23} yr for Majoron emitting double beta decay modes with spectral indices n = 1, 2, 3, 7 and new limits in the order of 10{sup 23} yr for 2νββ decays to the first 3 excited states of {sup 76}Se. In Phase II, currently in preparation, the detector mass will be doubled while reducing the background index by a factor of 10.

  20. Results from phase I of the GERDA experiment

    Science.gov (United States)

    Wester, Thomas

    2015-10-01

    The GERmanium Detector Array Gerda at the Laboratori Nazionali del Gran Sasso of the INFN in Italy is an experiment dedicated to the search for the neutrinoless double beta (0νββ) decay in 76Ge. The experiment employs high purity germanium detectors enriched in 76Ge inside a 64 m3 cryostat filled with liquid argon. Gerda was planned in two phases of data taking with the goal to reach a half-life sensitivity in the order of 1026 yr. Phase I of Gerda was running from November 2011 until May 2013. With about 18 kg total detector mass, data with an exposure of 21.6 kg.yr was collected and a background index of 0.01 cts/(keV.kg.yr) was achieved in the region of interest. No signal was found for the 0νββ decay and a new limit of T1/2 > 2.1 . 1025 yr (90% C.L.) was obtained, strongly disfavoring the previous claim of observation. Furthermore, the 2νββ decay half-life of 76Ge was measured with unprecedented precision. Other results include new half-life limits of the order of 1023 yr for Majoron emitting double beta decay modes with spectral indices n = 1, 2, 3, 7 and new limits in the order of 1023 yr for 2νββ decays to the first 3 excited states of 76Se. In Phase II, currently in preparation, the detector mass will be doubled while reducing the background index by a factor of 10.

  1. Nucleon Decay and Neutrino Experiments, Experiments at High Energy Hadron Colliders, and String Theor

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Chang Kee [State University of New York at Stony Brook; Douglas, Michaek [State University of New York at Stony Brook; Hobbs, John [State University of New York at Stony Brook; McGrew, Clark [State University of New York at Stony Brook; Rijssenbeek, Michael [State University of New York at Stony Brook

    2013-07-29

    This is the final report of the DOE grant DEFG0292ER40697 that supported the research activities of the Stony Brook High Energy Physics Group from November 15, 1991 to April 30, 2013. During the grant period, the grant supported the research of three Stony Brook particle physics research groups: The Nucleon Decay and Neutrino group, the Hadron Collider Group, and the Theory Group.

  2. The influence of the surprising decay properties of element 108 on search experiments for new elements

    International Nuclear Information System (INIS)

    Hofmann, S.; Armbruster, P.; Muenzenberg, G.; Reisdorf, W.; Schmidt, K.H.; Burkhard, H.G.; Hessberger, F.P.; Schoett, H.J.; Agarwal, Y.K.; Berthes, G.; Gollerthan, U.; Folger, H.; Hingmann, J.G.; Keller, J.G.; Leino, M.E.; Lemmertz, P.; Montoya, M.; Poppensieker, K.; Quint, B.; Zychor, I.

    1986-01-01

    Results of experiments to synthesize the heaviest elements are reported. Surprising is the high stability against fission not only of the odd and odd-odd nuclei but also of even isotopes of even elements. Alpha decay data gave an increasing stability of nuclei by shell effects up to 266 109, the heaviest known element. Theoretically, the high stability is explained by an island of nuclei with big quadrupole and hexadecapole deformations around Z=109 and N=162. Future experiments will be planned to prove the island character of these heavy nuclei. (orig.)

  3. Moments in inclusive semileptonic B meson decays at the Belle experiment

    Science.gov (United States)

    Schwanda, Christoph

    2015-04-01

    Since my return to Austria in the year 2003, I have measured observables in inclusive B meson decays at the Belle experiment and worked together with theorists on the interpretation of these measurements in terms of the Cabibbo-Kobayashi-Maskawa matrix element |Vcb|. And in fact, only this memorial book project made me fully aware of Kolya Uraltsev's ground breaking theoretical contributions to this field. He was not a theorist who talked a lot to an experimentalist like me, and maybe this is not a bad thing for good science. I certainly remember his enthusiasm from conferences, e.g., when I was powerless to keep his presentation to the scheduled time as a session chair at the CKM2005 workshop in San Diego. Still I feel there is some amount of irony in the fact, that I know so little about a person whose work has been so decisive for my career in high energy physics. To commemorate Kolya Uraltsev's pioneering work on inclusive semileptonic B meson decays B → Xcℓν and on the Heavy Quark Expansion (HQE), which has already been paid tribute to in other articles in this volume, I will review the measurement of the electron energy and the hadronic mass moments in B → Xcℓν decays performed at the Belle experiment. These measurements allow to both test his theoretical calculations and to extract |Vcb| and non-perturbative quantities, such as the b-quark mass, from his formulae.

  4. Looking for a hidden sector in exotic Higgs boson decays with the ATLAS experiment

    Directory of Open Access Journals (Sweden)

    Andrea Coccaro

    2015-12-01

    Full Text Available The nature of dark matter (DM is one of the most intriguing questions in particle physics. DM can be postulated to be part of a hidden sector whose interactions with the visible matter are not completely decoupled. The discovery of a fundamental scalar particle compatible with the Higgs boson predicted by the Standard Model paves the way for looking for DM with novel methods. An overview of the searches looking for a hidden sector in exotic Higgs decays and for invisible decays of the Higgs boson within the ATLAS experiment is presented. Prospects for searches with Large Hadron Collider data at a center-of-mass energy of 13 TeV are summarized.

  5. Search for the Decay of the Higgs Boson to Charm Quarks with the ATLAS Experiment.

    Science.gov (United States)

    Aaboud, M; Aad, G; Abbott, B; Abdinov, O; Abeloos, B; Abidi, S H; AbouZeid, O S; Abraham, N L; Abramowicz, H; Abreu, H; Abulaiti, Y; Acharya, B S; Adachi, S; Adamczyk, L; Adelman, J; Adersberger, M; Adye, T; Affolder, A A; Afik, Y; Agheorghiesei, C; Aguilar-Saavedra, J A; Ahlen, S P; Ahmadov, F; Aielli, G; Akatsuka, S; Åkesson, T P A; Akilli, E; Akimov, A V; Alberghi, G L; Albert, J; Albicocco, P; Alconada Verzini, M J; Alderweireldt, S; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexopoulos, T; Alhroob, M; Ali, B; Aliev, M; Alimonti, G; Alison, J; Alkire, S P; Allaire, C; Allbrooke, B M M; Allen, B W; Allport, P P; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Alshehri, A A; Alstaty, M I; Alvarez Gonzalez, B; Álvarez Piqueras, D; Alviggi, M G; Amadio, B T; Amaral Coutinho, Y; Ambroz, L; Amelung, C; Amidei, D; Amor Dos Santos, S P; Amoroso, S; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, J K; Anderson, K J; Andreazza, A; Andrei, V; Angelidakis, S; Angelozzi, I; Angerami, A; Anisenkov, A V; Annovi, A; Antel, C; Antonelli, M; Antonov, A; Antrim, D J; Anulli, F; Aoki, M; Aperio Bella, L; Arabidze, G; Arai, Y; Araque, J P; Araujo Ferraz, V; Araujo Pereira, R; Arce, A T H; Ardell, R E; Arduh, F A; Arguin, J-F; Argyropoulos, S; Armbruster, A J; Armitage, L J; Arnaez, O; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Artz, S; Asai, S; Asbah, N; Ashkenazi, A; Asquith, L; Assamagan, K; Astalos, R; Atkin, R J; Atkinson, M; Atlay, N B; Augsten, K; Avolio, G; Avramidou, R; Axen, B; Ayoub, M K; Azuelos, G; Baas, A E; Baca, M J; Bachacou, H; Bachas, K; Backes, M; Bagnaia, P; Bahmani, M; Bahrasemani, H; Baines, J T; Bajic, M; Baker, O K; Bakker, P J; Bakshi Gupta, D; Baldin, E M; Balek, P; Balli, F; Balunas, W K; Banas, E; Bandyopadhyay, A; Banerjee, Sw; Bannoura, A A E; Barak, L; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisits, M-S; Barkeloo, J T; Barklow, T; Barlow, N; Barnea, R; Barnes, S L; Barnett, B M; Barnett, R M; Barnovska-Blenessy, Z; Baroncelli, A; Barone, G; Barr, A J; Barranco Navarro, L; Barreiro, F; Barreiro Guimarães da Costa, J; Bartoldus, R; Barton, A E; Bartos, P; Basalaev, A; Bassalat, A; Bates, R L; Batista, S J; Batley, J R; Battaglia, M; Bauce, M; Bauer, F; Bauer, K T; Bawa, H S; Beacham, J B; Beattie, M D; Beau, T; Beauchemin, P H; Bechtle, P; Beck, H P; Beck, H C; Becker, K; Becker, M; Becot, C; Beddall, A J; Beddall, A; Bednyakov, V A; Bedognetti, M; Bee, C P; Beermann, T A; Begalli, M; Begel, M; Behera, A; Behr, J K; Bell, A S; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Belyaev, N L; Benary, O; Benchekroun, D; Bender, M; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez, J; Benjamin, D P; Benoit, M; Bensinger, J R; Bentvelsen, S; Beresford, L; Beretta, M; Berge, D; Bergeaas Kuutmann, E; Berger, N; Bergsten, L J; Beringer, J; Berlendis, S; Bernard, N R; Bernardi, G; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertram, I A; Bertsche, C; Besjes, G J; Bessidskaia Bylund, O; Bessner, M; Besson, N; Bethani, A; Bethke, S; Betti, A; Bevan, A J; Beyer, J; Bianchi, R M; Biebel, O; Biedermann, D; Bielski, R; Bierwagen, K; Biesuz, N V; Biglietti, M; Billoud, T R V; Bindi, M; Bingul, A; Bini, C; Biondi, S; Bisanz, T; Bittrich, C; Bjergaard, D M; Black, J E; Black, K M; Blair, R E; Blazek, T; Bloch, I; Blocker, C; Blue, A; Blumenschein, U; Blunier, Dr; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boerner, D; Bogavac, D; Bogdanchikov, A G; Bohm, C; Boisvert, V; Bokan, P; Bold, T; Boldyrev, A S; Bolz, A E; Bomben, M; Bona, M; Bonilla, J S; Boonekamp, M; Borisov, A; Borissov, G; Bortfeldt, J; Bortoletto, D; Bortolotto, V; Boscherini, D; Bosman, M; Bossio Sola, J D; Boudreau, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Boutle, S K; Boveia, A; Boyd, J; Boyko, I R; Bozson, A J; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Braren, F; Bratzler, U; Brau, B; Brau, J E; Breaden Madden, W D; Brendlinger, K; Brennan, A J; Brenner, L; Brenner, R; Bressler, S; Briglin, D L; Bristow, T M; Britton, D; Britzger, D; Brock, I; Brock, R; Brooijmans, G; Brooks, T; Brooks, W K; Brost, E; Broughton, J H; Bruckman de Renstrom, P A; Bruncko, D; Bruni, A; Bruni, G; Bruni, L S; Bruno, S; Brunt, B H; Bruschi, M; Bruscino, N; Bryant, P; Bryngemark, L; Buanes, T; Buat, Q; Buchholz, P; Buckley, A G; Budagov, I A; Buehrer, F; Bugge, M K; Bulekov, O; Bullock, D; Burch, T J; Burdin, S; Burgard, C D; Burger, A M; Burghgrave, B; Burka, K; Burke, S; Burmeister, I; Burr, J T P; Büscher, D; Büscher, V; Buschmann, E; Bussey, P; Butler, J M; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Buzykaev, A R; Cabras, G; Cabrera Urbán, S; Caforio, D; Cai, H; Cairo, V M M; Cakir, O; Calace, N; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Callea, G; Caloba, L P; Calvente Lopez, S; Calvet, D; Calvet, S; Calvet, T P; Calvetti, M; Camacho Toro, R; Camarda, S; Camarri, P; Cameron, D; Caminal Armadans, R; Camincher, C; Campana, S; Campanelli, M; Camplani, A; Campoverde, A; Canale, V; Cano Bret, M; Cantero, J; Cao, T; Cao, Y; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capua, M; Carbone, R M; Cardarelli, R; Cardillo, F; Carli, I; Carli, T; Carlino, G; Carlson, B T; Carminati, L; Carney, R M D; Caron, S; Carquin, E; Carrá, S; Carrillo-Montoya, G D; Casadei, D; Casado, M P; Casha, A F; Casolino, M; Casper, D W; Castelijn, R; Castillo Gimenez, V; Castro, N F; Catinaccio, A; Catmore, J R; Cattai, A; Caudron, J; Cavaliere, V; Cavallaro, E; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Celebi, E; Ceradini, F; Cerda Alberich, L; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chan, S K; Chan, W S; Chan, Y L; Chang, P; Chapman, J D; Charlton, D G; Chau, C C; Chavez Barajas, C A; Che, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, C; Chen, H; Chen, J; Chen, J; Chen, S; Chen, S; Chen, X; Chen, Y; Cheng, H C; Cheng, H J; Cheplakov, A; Cheremushkina, E; Cherkaoui El Moursli, R; Cheu, E; Cheung, K; Chevalier, L; Chiarella, V; Chiarelli, G; Chiodini, G; Chisholm, A S; Chitan, A; Chiu, I; Chiu, Y H; Chizhov, M V; Choi, K; Chomont, A R; Chouridou, S; Chow, Y S; Christodoulou, V; Chu, M C; Chudoba, J; Chuinard, A J; Chwastowski, J J; Chytka, L; Cinca, D; Cindro, V; Cioară, I A; Ciocio, A; Cirotto, F; Citron, Z H; Citterio, M; Clark, A; Clark, M R; Clark, P J; Clarke, R N; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Colasurdo, L; Cole, B; Colijn, A P; Collot, J; Conde Muiño, P; Coniavitis, E; Connell, S H; Connelly, I A; Constantinescu, S; Conti, G; Conventi, F; Cooper-Sarkar, A M; Cormier, F; Cormier, K J R; Corradi, M; Corrigan, E E; Corriveau, F; Cortes-Gonzalez, A; Costa, M J; Costanzo, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Crawley, S J; Creager, R A; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cristinziani, M; Croft, V; Crosetti, G; Cueto, A; Cuhadar Donszelmann, T; Cukierman, A R; Cummings, J; Curatolo, M; Cúth, J; Czekierda, S; Czodrowski, P; D'amen, G; D'Auria, S; D'eramo, L; D'Onofrio, M; Da Cunha Sargedas De Sousa, M J; Da Via, C; Dabrowski, W; Dado, T; Dahbi, S; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Dandoy, J R; Daneri, M F; Dang, N P; Dann, N S; Danninger, M; Dano Hoffmann, M; Dao, V; Darbo, G; Darmora, S; Dartsi, O; Dattagupta, A; Daubney, T; Davey, W; David, C; Davidek, T; Davis, D R; Davison, P; Dawe, E; Dawson, I; De, K; de Asmundis, R; De Benedetti, A; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Maria, A; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vasconcelos Corga, K; De Vivie De Regie, J B; Debenedetti, C; Dedovich, D V; Dehghanian, N; Deigaard, I; Del Gaudio, M; Del Peso, J; Delgove, D; Deliot, F; Delitzsch, C M; Dell'Acqua, A; Dell'Asta, L; Della Pietra, M; Della Volpe, D; Delmastro, M; Delporte, C; Delsart, P A; DeMarco, D A; Demers, S; Demichev, M; Denisov, S P; Denysiuk, D; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Dette, K; Devesa, M R; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Bello, F A; Di Ciaccio, A; Di Ciaccio, L; Di Clemente, W K; Di Donato, C; Di Girolamo, A; Di Micco, B; Di Nardo, R; Di Petrillo, K F; Di Simone, A; Di Sipio, R; Di Valentino, D; Diaconu, C; Diamond, M; Dias, F A; Diaz, M A; Dickinson, J; Diehl, E B; Dietrich, J; Díez Cornell, S; Dimitrievska, A; Dingfelder, J; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; Djuvsland, J I; do Vale, M A B; Dobre, M; Dodsworth, D; Doglioni, C; Dolejsi, J; Dolezal, Z; Donadelli, M; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Drechsler, E; Dreyer, E; Dris, M; Du, Y; Duarte-Campderros, J; Dubinin, F; Dubreuil, A; Duchovni, E; Duckeck, G; Ducourthial, A; Ducu, O A; Duda, D; Dudarev, A; Dudder, A Chr; Duffield, E M; Duflot, L; Dührssen, M; Dulsen, C; Dumancic, M; Dumitriu, A E; Duncan, A K; Dunford, M; Duperrin, A; Duran Yildiz, H; Düren, M; Durglishvili, A; Duschinger, D; Dutta, B; Duvnjak, D; Dyndal, M; Dziedzic, B S; Eckardt, C; Ecker, K M; Edgar, R C; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; El Kacimi, M; El Kosseifi, R; Ellajosyula, V; Ellert, M; Ellinghaus, F; Elliot, A A; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Ennis, J S; Epland, M B; Erdmann, J; Ereditato, A; Errede, S; Escalier, M; Escobar, C; Esposito, B; Estrada Pastor, O; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Ezzi, M; Fabbri, F; Fabbri, L; Fabiani, V; Facini, G; Fakhrutdinov, R M; Falciano, S; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farina, E M; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Faucci Giannelli, M; Favareto, A; Fawcett, W J; Fayard, L; Fedin, O L; Fedorko, W; Feickert, M; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, M; Fenton, M J; Fenyuk, A B; Feremenga, L; Fernandez Martinez, P; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; Ferreira de Lima, D E; Ferrer, A; Ferrere, D; Ferretti, C; Fiedler, F; Filipčič, A; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Fischer, C; Fischer, J; Fisher, W C; Flaschel, N; Fleck, I; Fleischmann, P; Fletcher, R R M; Flick, T; Flierl, B M; Flores, L M; Flores Castillo, L R; Fomin, N; Forcolin, G T; Formica, A; Förster, F A; Forti, A; Foster, A G; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Franchino, S; Francis, D; Franconi, L; Franklin, M; Frate, M; Fraternali, M; Freeborn, D; Fressard-Batraneanu, S M; Freund, B; Freund, W S; Froidevaux, D; Frost, J A; Fukunaga, C; Fusayasu, T; Fuster, J; Gabizon, O; Gabrielli, A; Gabrielli, A; Gach, G P; Gadatsch, S; Gadomski, S; Gadow, P; Gagliardi, G; Gagnon, L G; Galea, C; Galhardo, B; Gallas, E J; Gallop, B J; Gallus, P; Galster, G; Gamboa Goni, R; Gan, K K; Ganguly, S; Gao, Y; Gao, Y S; Garay Walls, F M; García, C; García Navarro, J E; García Pascual, J A; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Gasnikova, K; Gaudiello, A; Gaudio, G; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Gee, C N P; Geisen, J; Geisen, M; Geisler, M P; Gellerstedt, K; Gemme, C; Genest, M H; Geng, C; Gentile, S; Gentsos, C; George, S; Gerbaudo, D; Geßner, G; Ghasemi, S; Ghneimat, M; Giacobbe, B; Giagu, S; Giangiacomi, N; Giannetti, P; Gibson, S M; Gignac, M; Gilchriese, M; Gillberg, D; Gilles, G; Gingrich, D M; Giordani, M P; Giorgi, F M; Giraud, P F; Giromini, P; Giugliarelli, G; Giugni, D; Giuli, F; Giulini, M; Gkaitatzis, S; Gkialas, I; Gkougkousis, E L; Gkountoumis, P; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Goblirsch-Kolb, M; Godlewski, J; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gonçalo, R; Goncalves Gama, R; Gonella, G; Gonella, L; Gongadze, A; Gonnella, F; Gonski, J L; González de la Hoz, S; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorini, B; Gorini, E; Gorišek, A; Goshaw, A T; Gössling, C; Gostkin, M I; Gottardo, C A; Goudet, C R; Goujdami, D; Goussiou, A G; Govender, N; Goy, C; Gozani, E; Grabowska-Bold, I; Gradin, P O J; Graham, E C; Gramling, J; Gramstad, E; Grancagnolo, S; Gratchev, V; Gravila, P M; Gray, C; Gray, H M; Greenwood, Z D; Grefe, C; Gregersen, K; Gregor, I M; Grenier, P; Grevtsov, K; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grivaz, J-F; Groh, S; Gross, E; Grosse-Knetter, J; Grossi, G C; Grout, Z J; Grummer, A; Guan, L; Guan, W; Guenther, J; Guerguichon, A; Guescini, F; Guest, D; Gueta, O; Gugel, R; Gui, B; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Guo, J; Guo, W; Guo, Y; Gupta, R; Gurbuz, S; Gustavino, G; Gutelman, B J; Gutierrez, P; Gutierrez Ortiz, N G; Gutschow, C; Guyot, C; Guzik, M P; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Haddad, N; Hadef, A; Hageböck, S; Hagihara, M; Hakobyan, H; Haleem, M; Haley, J; Halladjian, G; Hallewell, G D; Hamacher, K; Hamal, P; Hamano, K; Hamilton, A; Hamity, G N; Han, K; Han, L; Han, S; Hanagaki, K; Hance, M; Handl, D M; Haney, B; Hankache, R; Hanke, P; Hansen, E; Hansen, J B; Hansen, J D; Hansen, M C; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Harkusha, S; Harrison, P F; Hartmann, N M; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauser, R; Hauswald, L; Havener, L B; Havranek, M; Hawkes, C M; Hawkings, R J; Hayden, D; Hays, C P; Hays, J M; Hayward, H S; Haywood, S J; Heck, T; Hedberg, V; Heelan, L; Heer, S; Heidegger, K K; Heim, S; Heim, T; Heinemann, B; Heinrich, J J; Heinrich, L; Heinz, C; Hejbal, J; Helary, L; Held, A; Hellesund, S; Hellman, S; Helsens, C; Henderson, R C W; Heng, Y; Henkelmann, S; Henriques Correia, A M; Herbert, G H; Herde, H; Herget, V; Hernández Jiménez, Y; Herr, H; Herten, G; Hertenberger, R; Hervas, L; Herwig, T C; Hesketh, G G; Hessey, N P; Hetherly, J W; Higashino, S; Higón-Rodriguez, E; Hildebrand, K; Hill, E; Hill, J C; Hiller, K H; Hillier, S J; Hils, M; Hinchliffe, I; Hirose, M; Hirschbuehl, D; Hiti, B; Hladik, O; Hlaluku, D R; Hoad, X; Hobbs, J; Hod, N; Hodgkinson, M C; Hoecker, A; Hoeferkamp, M R; Hoenig, F; Hohn, D; Hohov, D; Holmes, T R; Holzbock, M; Homann, M; Honda, S; Honda, T; Hong, T M; Hooberman, B H; Hopkins, W H; Horii, Y; Horton, A J; Horyn, L A; Hostachy, J-Y; Hostiuc, A; Hou, S; Hoummada, A; Howarth, J; Hoya, J; Hrabovsky, M; Hrdinka, J; Hristova, I; Hrivnac, J; Hryn'ova, T; Hrynevich, A; Hsu, P J; Hsu, S-C; Hu, Q; Hu, S; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Huhtinen, M; Hunter, R F H; Huo, P; Hupe, A M; Huseynov, N; Huston, J; Huth, J; Hyneman, R; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Idrissi, Z; Iengo, P; Igonkina, O; Iguchi, R; Iizawa, T; Ikegami, Y; Ikeno, M; Iliadis, D; Ilic, N; Iltzsche, F; Introzzi, G; Iodice, M; Iordanidou, K; Ippolito, V; Isacson, M F; Ishijima, N; Ishino, M; Ishitsuka, M; Issever, C; Istin, S; Ito, F; Iturbe Ponce, J M; Iuppa, R; Iwasaki, H; Izen, J M; Izzo, V; Jabbar, S; Jacka, P; Jackson, P; Jacobs, R M; Jain, V; Jakel, G; Jakobi, K B; Jakobs, K; Jakobsen, S; Jakoubek, T; Jamin, D O; Jana, D K; Jansky, R; Janssen, J; Janus, M; Janus, P A; Jarlskog, G; Javadov, N; Javůrek, T; Javurkova, M; Jeanneau, F; Jeanty, L; Jejelava, J; Jelinskas, A; Jenni, P; Jeske, C; Jézéquel, S; Ji, H; Jia, J; Jiang, H; Jiang, Y; Jiang, Z; Jiggins, S; Jimenez Pena, J; Jin, S; Jinaru, A; Jinnouchi, O; Jivan, H; Johansson, P; Johns, K A; Johnson, C A; Johnson, W J; Jon-And, K; Jones, R W L; Jones, S D; Jones, S; Jones, T J; Jongmanns, J; Jorge, P M; Jovicevic, J; Ju, X; Junggeburth, J J; Juste Rozas, A; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kahn, S J; Kaji, T; Kajomovitz, E; Kalderon, C W; Kaluza, A; Kama, S; Kamenshchikov, A; Kanjir, L; Kano, Y; Kantserov, V A; Kanzaki, J; Kaplan, B; Kaplan, L S; Kar, D; Karakostas, K; Karastathis, N; Kareem, M J; Karentzos, E; Karpov, S N; Karpova, Z M; Kartvelishvili, V; Karyukhin, A N; Kasahara, K; Kashif, L; Kass, R D; Kastanas, A; Kataoka, Y; Kato, C; Katre, A; Katzy, J; Kawade, K; Kawagoe, K; Kawamoto, T; Kawamura, G; Kay, E F; Kazanin, V F; Keeler, R; Kehoe, R; Keller, J S; Kellermann, E; Kempster, J J; Kendrick, J; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Keyes, R A; Khader, M; Khalil-Zada, F; Khanov, A; Kharlamov, A G; Kharlamova, T; Khodinov, A; Khoo, T J; Khovanskiy, V; Khramov, E; Khubua, J; Kido, S; Kiehn, M; Kilby, C R; Kim, H Y; Kim, S H; Kim, Y K; Kimura, N; Kind, O M; King, B T; Kirchmeier, D; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kitali, V; Kivernyk, O; Kladiva, E; Klapdor-Kleingrothaus, T; Klein, M H; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klingl, T; Klioutchnikova, T; Klitzner, F F; Kluge, E-E; Kluit, P; Kluth, S; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koffas, T; Koffeman, E; Köhler, N M; Koi, T; Kolb, M; Koletsou, I; Kondo, T; Kondrashova, N; Köneke, K; König, A C; Kono, T; Konoplich, R; Konstantinidis, N; Konya, B; Kopeliansky, R; Koperny, S; Korcyl, K; Kordas, K; Korn, A; Korolkov, I; Korolkova, E V; Kortner, O; Kortner, S; Kosek, T; Kostyukhin, V V; Kotwal, A; Koulouris, A; Kourkoumeli-Charalampidi, A; Kourkoumelis, C; Kourlitis, E; Kouskoura, V; Kowalewska, A B; Kowalewski, R; Kowalski, T Z; Kozakai, C; Kozanecki, W; Kozhin, A S; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Krauss, D; Kremer, J A; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Krizka, K; Kroeninger, K; Kroha, H; Kroll, J; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Krumnack, N; Kruse, M C; Kubota, T; Kuday, S; Kuechler, J T; Kuehn, S; Kugel, A; Kuger, F; Kuhl, T; Kukhtin, V; Kukla, R; Kulchitsky, Y; Kuleshov, S; Kulinich, Y P; Kuna, M; Kunigo, T; Kupco, A; Kupfer, T; Kuprash, O; Kurashige, H; Kurchaninov, L L; Kurochkin, Y A; Kurth, M G; Kuwertz, E S; Kuze, M; Kvita, J; Kwan, T; La Rosa, A; La Rosa Navarro, J L; La Rotonda, L; La Ruffa, F; Lacasta, C; Lacava, F; Lacey, J; Lack, D P J; Lacker, H; Lacour, D; Ladygin, E; Lafaye, R; Laforge, B; Lai, S; Lammers, S; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lanfermann, M C; Lang, V S; Lange, J C; Langenberg, R J; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Lapertosa, A; Laplace, S; Laporte, J F; Lari, T; Lasagni Manghi, F; Lassnig, M; Lau, T S; Laudrain, A; Law, A T; Laycock, P; Lazzaroni, M; Le, B; Le Dortz, O; Le Guirriec, E; Le Quilleuc, E P; LeBlanc, M; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, G R; Lee, S C; Lee, L; Lefebvre, B; Lefebvre, M; Legger, F; Leggett, C; Lehmann Miotto, G; Leight, W A; Leisos, A; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzi, B; Leone, R; Leone, S; Leonidopoulos, C; Lerner, G; Leroy, C; Les, R; Lesage, A A J; Lester, C G; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Lewis, D; Li, B; Li, C-Q; Li, H; Li, L; Li, Q; Li, Q; Li, S; Li, X; Li, Y; Liang, Z; Liberti, B; Liblong, A; Lie, K; Limosani, A; Lin, C Y; Lin, K; Lin, S C; Lin, T H; Linck, R A; Lindquist, B E; Lionti, A E; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lister, A; Litke, A M; Little, J D; Liu, B; Liu, H; Liu, H; Liu, J K K; Liu, J B; Liu, K; Liu, M; Liu, P; Liu, Y L; Liu, Y; Livan, M; Lleres, A; Llorente Merino, J; Lloyd, S L; Lo, C Y; Lo Sterzo, F; Lobodzinska, E M; Loch, P; Loebinger, F K; Loesle, A; Loew, K M; Lohse, T; Lohwasser, K; Lokajicek, M; Long, B A; Long, J D; Long, R E; Longo, L; Looper, K A; Lopez, J A; Lopez Paz, I; Lopez Solis, A; Lorenz, J; Lorenzo Martinez, N; Losada, M; Lösel, P J; Lou, X; Lounis, A; Love, J; Love, P A; Lu, H; Lu, N; Lu, Y J; Lubatti, H J; Luci, C; Lucotte, A; Luedtke, C; Luehring, F; Luise, I; Lukas, W; Luminari, L; Lund-Jensen, B; Lutz, M S; Luzi, P M; Lynn, D; Lysak, R; Lytken, E; Lyu, F; Lyubushkin, V; Ma, H; Ma, L L; Ma, Y; Maccarrone, G; Macchiolo, A; Macdonald, C M; Maček, B; Machado Miguens, J; Madaffari, D; Madar, R; Mader, W F; Madsen, A; Madysa, N; Maeda, J; Maeland, S; Maeno, T; Maevskiy, A S; Magerl, V; Maidantchik, C; Maier, T; Maio, A; Majersky, O; Majewski, S; Makida, Y; Makovec, N; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyukov, S; Mamuzic, J; Mancini, G; Mandić, I; Maneira, J; Manhaes de Andrade Filho, L; Manjarres Ramos, J; Mankinen, K H; Mann, A; Manousos, A; Mansoulie, B; Mansour, J D; Mantifel, R; Mantoani, M; Manzoni, S; Marceca, G; March, L; Marchese, L; Marchiori, G; Marcisovsky, M; Marin Tobon, C A; Marjanovic, M; Marley, D E; Marroquim, F; Marshall, Z; Martensson, M U F; Marti-Garcia, S; Martin, C B; Martin, T A; Martin, V J; Martin Dit Latour, B; Martinez, M; Martinez Outschoorn, V I; Martin-Haugh, S; Martoiu, V S; Martyniuk, A C; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Mason, L H; Massa, L; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Maznas, I; Mazza, S M; Mc Fadden, N C; Mc Goldrick, G; Mc Kee, S P; McCarn, A; McCarthy, T G; McClymont, L I; McDonald, E F; Mcfayden, J A; Mchedlidze, G; McKay, M A; McMahon, S J; McNamara, P C; McNicol, C J; McPherson, R A; Meadows, Z A; Meehan, S; Megy, T J; Mehlhase, S; Mehta, A; Meideck, T; Meier, K; Meirose, B; Melini, D; Mellado Garcia, B R; Mellenthin, J D; Melo, M; Meloni, F; Melzer, A; Menary, S B; Meng, L; Meng, X T; Mengarelli, A; Menke, S; Meoni, E; Mergelmeyer, S; Merlassino, C; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, J-P; Meyer, J; Meyer Zu Theenhausen, H; Miano, F; Middleton, R P; Miglioranzi, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milesi, M; Milic, A; Millar, D A; Miller, D W; Milov, A; Milstead, D A; Minaenko, A A; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Minegishi, Y; Ming, Y; Mir, L M; Mirto, A; Mistry, K P; Mitani, T; Mitrevski, J; Mitsou, V A; Miucci, A; Miyagawa, P S; Mizukami, A; Mjörnmark, J U; Mkrtchyan, T; Mlynarikova, M; Moa, T; Mochizuki, K; Mogg, P; Mohapatra, S; Molander, S; Moles-Valls, R; Mondragon, M C; Mönig, K; Monk, J; Monnier, E; Montalbano, A; Montejo Berlingen, J; Monticelli, F; Monzani, S; Moore, R W; Morange, N; Moreno, D; Moreno Llácer, M; Morettini, P; Morgenstern, M; Morgenstern, S; Mori, D; Mori, T; Morii, M; Morinaga, M; Morisbak, V; Morley, A K; Mornacchi, G; Morris, J D; Morvaj, L; Moschovakos, P; Mosidze, M; Moss, H J; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Moyse, E J W; Muanza, S; Mueller, F; Mueller, J; Mueller, R S P; Muenstermann, D; Mullen, P; Mullier, G A; Munoz Sanchez, F J; Murin, P; Murray, W J; Murrone, A; Muškinja, M; Mwewa, C; Myagkov, A G; Myers, J; Myska, M; Nachman, B P; Nackenhorst, O; Nagai, K; Nagai, R; Nagano, K; Nagasaka, Y; Nagata, K; Nagel, M; Nagy, E; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Naranjo Garcia, R F; Narayan, R; Narrias Villar, D I; Naryshkin, I; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Negri, A; Negrini, M; Nektarijevic, S; Nellist, C; Nelson, M E; Nemecek, S; Nemethy, P; Nessi, M; Neubauer, M S; Neumann, M; Newman, P R; Ng, T Y; Ng, Y S; Nguyen, H D N; Nguyen Manh, T; Nickerson, R B; Nicolaidou, R; Nielsen, J; Nikiforou, N; Nikolaenko, V; Nikolic-Audit, I; Nikolopoulos, K; Nilsson, P; Ninomiya, Y; Nisati, A; Nishu, N; Nisius, R; Nitsche, I; Nitta, T; Nobe, T; Noguchi, Y; Nomachi, M; Nomidis, I; Nomura, M A; Nooney, T; Nordberg, M; Norjoharuddeen, N; Novak, T; Novgorodova, O; Novotny, R; Nozaki, M; Nozka, L; Ntekas, K; Nurse, E; Nuti, F; O'Connor, K; O'Neil, D C; O'Rourke, A A; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, I; Ochoa-Ricoux, J P; Oda, S; Odaka, S; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Oide, H; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Oleiro Seabra, L F; Olivares Pino, S A; Oliveira Damazio, D; Oliver, J L; Olsson, M J R; Olszewski, A; Olszowska, J; Onofre, A; Onogi, K; Onyisi, P U E; Oppen, H; Oreglia, M J; Oren, Y; Orestano, D; Orgill, E C; Orlando, N; Orr, R S; Osculati, B; Ospanov, R; Otero Y Garzon, G; Otono, H; Ouchrif, M; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Owen, M; Owen, R E; Ozcan, V E; Ozturk, N; Pachal, K; Pacheco Pages, A; Pacheco Rodriguez, L; Padilla Aranda, C; Pagan Griso, S; Paganini, M; Paige, F; Palacino, G; Palazzo, S; Palestini, S; Palka, M; Pallin, D; Panagiotopoulou, E St; Panagoulias, I; Pandini, C E; Panduro Vazquez, J G; Pani, P; Pantea, D; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Paredes Hernandez, D; Parida, B; Parker, A J; Parker, M A; Parker, K A; Parodi, F; Parsons, J A; Parzefall, U; Pascuzzi, V R; Pasner, J M; Pasqualucci, E; Passaggio, S; Pastore, Fr; Pasuwan, P; Pataraia, S; Pater, J R; Pauly, T; Pearson, B; Pedraza Lopez, S; Pedro, R; Peleganchuk, S V; Penc, O; Peng, C; Peng, H; Penwell, J; Peralva, B S; Perego, M M; Perepelitsa, D V; Peri, F; Perini, L; Pernegger, H; Perrella, S; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petroff, P; Petrolo, E; Petrov, M; Petrucci, F; Pettersson, N E; Peyaud, A; Pezoa, R; Pham, T; Phillips, F H; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Pickering, M A; Piegaia, R; Pilcher, J E; Pilkington, A D; Pinamonti, M; Pinfold, J L; Pitt, M; Pleier, M-A; Pleskot, V; Plotnikova, E; Pluth, D; Podberezko, P; Poettgen, R; Poggi, R; Poggioli, L; Pogrebnyak, I; Pohl, D; Pokharel, I; Polesello, G; Poley, A; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Ponomarenko, D; Pontecorvo, L; Popeneciu, G A; Portillo Quintero, D M; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potti, H; Poulsen, T; Poveda, J; Pozo Astigarraga, M E; Pralavorio, P; Prell, S; Price, D; Primavera, M; Prince, S; Proklova, N; Prokofiev, K; Prokoshin, F; Protopopescu, S; Proudfoot, J; Przybycien, M; Puri, A; Puzo, P; Qian, J; Qin, Y; Quadt, A; Queitsch-Maitland, M; Qureshi, A; Radeka, V; Radhakrishnan, S K; Rados, P; Ragusa, F; Rahal, G; Raine, J A; Rajagopalan, S; Rashid, T; Raspopov, S; Ratti, M G; Rauch, D M; Rauscher, F; Rave, S; Ravinovich, I; Rawling, J H; Raymond, M; Read, A L; Readioff, N P; Reale, M; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reed, R G; Reeves, K; Rehnisch, L; Reichert, J; Reiss, A; Rembser, C; Ren, H; Rescigno, M; Resconi, S; Resseguie, E D; Rettie, S; Reynolds, E; Rezanova, O L; Reznicek, P; Richter, R; Richter, S; Richter-Was, E; Ricken, O; Ridel, M; Rieck, P; Riegel, C J; Rifki, O; Rijssenbeek, M; Rimoldi, A; Rimoldi, M; Rinaldi, L; Ripellino, G; Ristić, B; Ritsch, E; Riu, I; Rivera Vergara, J C; Rizatdinova, F; Rizvi, E; Rizzi, C; Roberts, R T; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Rocco, E; Roda, C; Rodina, Y; Rodriguez Bosca, S; Rodriguez Perez, A; Rodriguez Rodriguez, D; Rodríguez Vera, A M; Roe, S; Rogan, C S; Røhne, O; Röhrig, R; Roloff, J; Romaniouk, A; Romano, M; Romano Saez, S M; Romero Adam, E; Rompotis, N; Ronzani, M; Roos, L; Rosati, S; Rosbach, K; Rose, P; Rosien, N-A; Rossi, E; Rossi, L P; Rossini, L; Rosten, J H N; Rosten, R; Rotaru, M; Rothberg, J; Rousseau, D; Roy, D; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Russell, H L; Rutherfoord, J P; Ruthmann, N; Rüttinger, E M; Ryabov, Y F; Rybar, M; Rybkin, G; Ryu, S; Ryzhov, A; Rzehorz, G F; Saavedra, A F; Sabato, G; Sacerdoti, S; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Saha, P; Sahinsoy, M; Saimpert, M; Saito, M; Saito, T; Sakamoto, H; Salamanna, G; Salazar Loyola, J E; Salek, D; Sales De Bruin, P H; Salihagic, D; Salnikov, A; Salt, J; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sammel, D; Sampsonidis, D; Sampsonidou, D; Sánchez, J; Sanchez Pineda, A; Sandaker, H; Sander, C O; Sandhoff, M; Sandoval, C; Sankey, D P C; Sannino, M; Sano, Y; Sansoni, A; Santoni, C; Santos, H; Santoyo Castillo, I; Sapronov, A; Saraiva, J G; Sasaki, O; Sato, K; Sauvan, E; Savard, P; Savic, N; Sawada, R; Sawyer, C; Sawyer, L; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Schaarschmidt, J; Schacht, P; Schachtner, B M; Schaefer, D; Schaefer, L; Schaeffer, J; Schaepe, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Schegelsky, V A; Scheirich, D; Schenck, F; Schernau, M; Schiavi, C; Schier, S; Schildgen, L K; Schillaci, Z M; Schillo, C; Schioppa, E J; Schioppa, M; Schleicher, K E; Schlenker, S; Schmidt-Sommerfeld, K R; Schmieden, K; Schmitt, C; Schmitt, S; Schmitz, S; Schnoor, U; Schoeffel, L; Schoening, A; Schopf, E; Schott, M; Schouwenberg, J F P; Schovancova, J; Schramm, S; Schuh, N; Schulte, A; Schultz-Coulon, H-C; Schumacher, M; Schumm, B A; Schune, Ph; Schwartzman, A; Schwarz, T A; Schweiger, H; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Sciandra, A; Sciolla, G; Scornajenghi, M; Scuri, F; Scutti, F; Scyboz, L M; Searcy, J; Seema, P; Seidel, S C; Seiden, A; Seixas, J M; Sekhniaidze, G; Sekhon, K; Sekula, S J; Semprini-Cesari, N; Senkin, S; Serfon, C; Serin, L; Serkin, L; Sessa, M; Severini, H; Šfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shahinian, J D; Shaikh, N W; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Sharma, A S; Shatalov, P B; Shaw, K; Shaw, S M; Shcherbakova, A; Shehu, C Y; Shen, Y; Sherafati, N; Sherman, A D; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shipsey, I P J; Shirabe, S; Shiyakova, M; Shlomi, J; Shmeleva, A; Shoaleh Saadi, D; Shochet, M J; Shojaii, S; Shope, D R; Shrestha, S; Shulga, E; Sicho, P; Sickles, A M; Sidebo, P E; Sideras Haddad, E; Sidiropoulou, O; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silva, M; Silverstein, S B; Simic, L; Simion, S; Simioni, E; Simmons, B; Simon, M; Sinervo, P; Sinev, N B; Sioli, M; Siragusa, G; Siral, I; Sivoklokov, S Yu; Sjölin, J; Skinner, M B; Skubic, P; Slater, M; Slavicek, T; Slawinska, M; Sliwa, K; Slovak, R; Smakhtin, V; Smart, B H; Smiesko, J; Smirnov, N; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, J W; Smith, M N K; Smith, R W; Smizanska, M; Smolek, K; Snesarev, A A; Snyder, I M; Snyder, S; Sobie, R; Socher, F; Soffa, A M; Soffer, A; Søgaard, A; Soh, D A; Sokhrannyi, G; Solans Sanchez, C A; Solar, M; Soldatov, E Yu; Soldevila, U; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Son, H; Song, W; Sopczak, A; Sopkova, F; Sosa, D; Sotiropoulou, C L; Sottocornola, S; Soualah, R; Soukharev, A M; South, D; Sowden, B C; Spagnolo, S; Spalla, M; Spangenberg, M; Spanò, F; Sperlich, D; Spettel, F; Spieker, T M; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; St Denis, R D; Stabile, A; Stamen, R; Stamm, S; Stanecka, E; Stanek, R W; Stanescu, C; Stanitzki, M M; Stapf, B S; Stapnes, S; Starchenko, E A; Stark, G H; Stark, J; Stark, S H; Staroba, P; Starovoitov, P; Stärz, S; Staszewski, R; Stegler, M; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stevenson, T J; Stewart, G A; Stockton, M C; Stoicea, G; Stolte, P; Stonjek, S; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Strubig, A; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Suchek, S; Sugaya, Y; Suk, M; Sulin, V V; Sultan, Dms; Sultansoy, S; Sumida, T; Sun, S; Sun, X; Suruliz, K; Suster, C J E; Sutton, M R; Suzuki, S; Svatos, M; Swiatlowski, M; Swift, S P; Sydorenko, A; Sykora, I; Sykora, T; Ta, D; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Tahirovic, E; Taiblum, N; Takai, H; Takashima, R; Takasugi, E H; Takeda, K; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tanaka, J; Tanaka, M; Tanaka, R; Tanioka, R; Tannenwald, B B; Tapia Araya, S; Tapprogge, S; Tarek Abouelfadl Mohamed, A T; Tarem, S; Tarna, G; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Tavares Delgado, A; Tayalati, Y; Taylor, A C; Taylor, A J; Taylor, G N; Taylor, P T E; Taylor, W; Teixeira-Dias, P; Temple, D; Ten Kate, H; Teng, P K; Teoh, J J; Tepel, F; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Thais, S J; Theveneaux-Pelzer, T; Thiele, F; Thomas, J P; Thompson, P D; Thompson, A S; Thomsen, L A; Thomson, E; Tian, Y; Ticse Torres, R E; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tipton, P; Tisserant, S; Todome, K; Todorova-Nova, S; Todt, S; Tojo, J; Tokár, S; Tokushuku, K; Tolley, E; Tomoto, M; Tompkins, L; Toms, K; Tong, B; Tornambe, P; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Treado, C J; Trefzger, T; Tresoldi, F; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Trischuk, W; Trocmé, B; Trofymov, A; Troncon, C; Trovatelli, M; Truong, L; Trzebinski, M; Trzupek, A; Tsang, K W; Tseng, J C-L; Tsiareshka, P V; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tu, Y; Tudorache, A; Tudorache, V; Tulbure, T T; Tuna, A N; Turchikhin, S; Turgeman, D; Turk Cakir, I; Turra, R; Tuts, P M; Ucchielli, G; Ueda, I; Ughetto, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Uno, K; Urban, J; Urquijo, P; Urrejola, P; Usai, G; Usui, J; Vacavant, L; Vacek, V; Vachon, B; Vadla, K O H; Vaidya, A; Valderanis, C; Valdes Santurio, E; Valente, M; Valentinetti, S; Valero, A; Valéry, L; Vallier, A; Valls Ferrer, J A; Van Den Wollenberg, W; van der Graaf, H; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vaniachine, A; Vankov, P; Vari, R; Varnes, E W; Varni, C; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vasquez, J G; Vasquez, G A; Vazeille, F; Vazquez Furelos, D; Vazquez Schroeder, T; Veatch, J; Veloce, L M; Veloso, F; Veneziano, S; Ventura, A; Venturi, M; Venturi, N; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, A T; Vermeulen, J C; Vetterli, M C; Viaux Maira, N; Viazlo, O; Vichou, I; Vickey, T; Vickey Boeriu, O E; Viehhauser, G H A; Viel, S; Vigani, L; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinogradov, V B; Vishwakarma, A; Vittori, C; Vivarelli, I; Vlachos, S; Vogel, M; Vokac, P; Volpi, G; von Buddenbrock, S E; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vuillermet, R; Vukotic, I; Wagner, P; Wagner, W; Wagner-Kuhr, J; Wahlberg, H; Wahrmund, S; Wakamiya, K; Walder, J; Walker, R; Walkowiak, W; Wallangen, V; Wang, A M; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, Q; Wang, R-J; Wang, R; Wang, S M; Wang, T; Wang, W; Wang, W; Wang, Z; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Washbrook, A; Watkins, P M; Watson, A T; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, A F; Webb, S; Weber, M S; Weber, S M; Weber, S A; Webster, J S; Weidberg, A R; Weinert, B; Weingarten, J; Weirich, M; Weiser, C; Wells, P S; Wenaus, T; Wengler, T; Wenig, S; Wermes, N; Werner, M D; Werner, P; Wessels, M; Weston, T D; Whalen, K; Whallon, N L; Wharton, A M; White, A S; White, A; White, M J; White, R; Whiteson, D; Whitmore, B W; Wickens, F J; Wiedenmann, W; Wielers, M; Wiglesworth, C; Wiik-Fuchs, L A M; Wildauer, A; Wilk, F; Wilkens, H G; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, J A; Wingerter-Seez, I; Winkels, E; Winklmeier, F; Winston, O J; Winter, B T; Wittgen, M; Wobisch, M; Wolf, A; Wolf, T M H; Wolff, R; Wolter, M W; Wolters, H; Wong, V W S; Woods, N L; Worm, S D; Wosiek, B K; Wozniak, K W; Wu, M; Wu, S L; Wu, X; Wu, Y; Wyatt, T R; Wynne, B M; Xella, S; Xi, Z; Xia, L; Xu, D; Xu, H; Xu, L; Xu, T; Xu, W; Yabsley, B; Yacoob, S; Yajima, K; Yallup, D P; Yamaguchi, D; Yamaguchi, Y; Yamamoto, A; Yamanaka, T; Yamane, F; Yamatani, M; Yamazaki, T; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, S; Yang, Y; Yang, Y; Yang, Z; Yao, W-M; Yap, Y C; Yasu, Y; Yatsenko, E; Yau Wong, K H; Ye, J; Ye, S; Yeletskikh, I; Yigitbasi, E; Yildirim, E; Yorita, K; Yoshihara, K; Young, C; Young, C J S; Yu, J; Yu, J; Yuen, S P Y; Yusuff, I; Zabinski, B; Zacharis, G; Zaidan, R; Zaitsev, A M; Zakharchuk, N; Zalieckas, J; Zambito, S; Zanzi, D; Zeitnitz, C; Zemaityte, G; Zeng, J C; Zeng, Q; Zenin, O; Ženiš, T; Zerwas, D; Zhang, D; Zhang, D; Zhang, F; Zhang, G; Zhang, H; Zhang, J; Zhang, L; Zhang, L; Zhang, M; Zhang, P; Zhang, R; Zhang, R; Zhang, X; Zhang, Y; Zhang, Z; Zhao, X; Zhao, Y; Zhao, Z; Zhemchugov, A; Zhou, B; Zhou, C; Zhou, L; Zhou, M; Zhou, M; Zhou, N; Zhou, Y; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zhulanov, V; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, S; Zinonos, Z; Zinser, M; Ziolkowski, M; Živković, L; Zobernig, G; Zoccoli, A; Zorbas, T G; Zou, R; Zur Nedden, M; Zwalinski, L

    2018-05-25

    A direct search for the standard model Higgs boson decaying to a pair of charm quarks is presented. Associated production of the Higgs and Z bosons, in the decay mode ZH→ℓ^{+}ℓ^{-}cc[over ¯] is studied. A data set with an integrated luminosity of 36.1  fb^{-1} of pp collisions at sqrt[s]=13TeV recorded by the ATLAS experiment at the LHC is used. The H→cc[over ¯] signature is identified using charm-tagging algorithms. The observed (expected) upper limit on σ(pp→ZH)×B(H→cc[over ¯]) is 2.7 (3.9_{-1.1}^{+2.1}) pb at the 95% confidence level for a Higgs boson mass of 125 GeV, while the standard model value is 26 fb.

  6. aCORN: An experiment to measure the electron-antineutrino correlation in neutron decay

    Energy Technology Data Exchange (ETDEWEB)

    Wietfeldt, F.E., E-mail: few@tulane.ed [Department of Physics, Tulane University, New Orleans, LA 70118 (United States); Byrne, J. [University of Sussex (United Kingdom); Collett, B. [Physics Department, Hamilton College, Clinton, NY 13323 (United States); Dewey, M.S. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Jones, G.L. [Physics Department, Hamilton College, Clinton, NY 13323 (United States); Komives, A. [Physics Department, DePauw University, Greencastle, IN 46135 (United States); Laptev, A. [Department of Physics, Tulane University, New Orleans, LA 70118 (United States); Nico, J.S. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Noid, G.; Stephenson, E.J. [Indiana University Cyclotron Facility, Bloomington, IN 47408 (United States); Stern, I.; Trull, C. [Department of Physics, Tulane University, New Orleans, LA 70118 (United States); Yerozolimsky, B.G. [Physics Department, Harvard University, Cambridge, MA 02139 (United States)

    2009-12-11

    The aCORN experiment is designed to make a precision (<1%) measurement of the electron-antineutrino angular correlation (a-coefficient) in neutron beta decay. It uses a new method proposed in 1996 by Yerozolimsky and Mostovoy. Electrons and recoil protons from neutron decay in a cold beam are detected in coincidence. The momenta of the particles are selected so that the protons form two kinematically distinct time-of-flight groups as a function of electron energy. The count rate asymmetry in these two groups is proportional to the a-coefficient. Precision spectroscopy of the protons is not required. The apparatus is currently under construction. It will be integrated and tested at the Indiana University Cyclotron Facility (IUCF) and then moved to the NIST Center for Neutron Research for the initial physics run.

  7. Electromagnetic radiation by parametric decay of upper hybrid waves in ionospheric modification experiments

    International Nuclear Information System (INIS)

    Leyser, T.B.

    1994-01-01

    A nonlinear dispersion relation for the parametric decay of an electrostatic upper hybrid wave into an ordinary mode electromagnetic wave, propagating parallel to the ambient magnetic field, and an electrostatic low frequency wave, being either a lower hybrid wave or a high harmonic ion Bernstein wave, is derived. The coherent and resonant wave interaction is considered to take place in a weakly magnetized and collisionless Vlasov plasma. The instability growth rate is computed for parameter values typical of ionospheric modification experiments, in which a powerful high frequency electromagnetic pump wave is injected into the ionospheric F-region from ground-based transmitters. The electromagnetic radiation which is excited by the decaying upper hybrid wave is found to be consistent with the prominent and commonly observed downshifted maximum (DM) emission in the spectrum of stimulated electromagnetic emission

  8. Search for the decay of the Higgs boson to charm quarks with the ATLAS experiment

    CERN Document Server

    The ATLAS collaboration

    2017-01-01

    A direct search for the Standard Model Higgs boson decaying to a pair of charm quarks is presented. Associated production of the Higgs and $Z$ bosons, in the decay mode $ZH\\rightarrow \\cal{l}^{+} \\cal{l}^{-} c \\bar{c}$ is studied. A dataset with an integrated luminosity of $36.1\\,\\text{fb}^{-1}$ of $pp$ collisions at $\\sqrt{s}=13\\,\\text{TeV}$ recorded by the ATLAS experiment at the LHC is used. The $H\\rightarrow c\\bar{c}$ signature is identified using charm tagging algorithms. The observed (expected) upper limit on $\\sigma(pp \\rightarrow ZH) \\times \\mathcal{B}(H \\rightarrow c\\bar{c})$ is $2.7\\,(3.9^{+2.1}_{-1.1})\\,\\text{pb}$ at the 95% confidence level for a Higgs boson mass of $125\\,\\text{GeV}$, while the Standard Model value is $25.5\\,\\text{fb}$.

  9. Search for the Decay of the Higgs Boson to Charm Quarks with the ATLAS Experiment

    Science.gov (United States)

    Aaboud, M.; Aad, G.; Abbott, B.; Abdinov, O.; Abeloos, B.; Abidi, S. H.; Abouzeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abulaiti, Y.; Acharya, B. S.; Adachi, S.; Adamczyk, L.; Adelman, J.; Adersberger, M.; Adye, T.; Affolder, A. A.; Afik, Y.; Agheorghiesei, C.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akatsuka, S.; Åkesson, T. P. A.; Akilli, E.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albicocco, P.; Alconada Verzini, M. J.; Alderweireldt, S.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Ali, B.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allaire, C.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alshehri, A. A.; Alstaty, M. I.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amaral Coutinho, Y.; Ambroz, L.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amoroso, S.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Angerami, A.; Anisenkov, A. V.; Annovi, A.; Antel, C.; Antonelli, M.; Antonov, A.; Antrim, D. J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Araujo Ferraz, V.; Araujo Pereira, R.; Arce, A. T. H.; Ardell, R. E.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkin, R. J.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Avramidou, R.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Bagnaia, P.; Bahmani, M.; Bahrasemani, H.; Baines, J. T.; Bajic, M.; Baker, O. K.; Bakker, P. J.; Bakshi Gupta, D.; Baldin, E. M.; Balek, P.; Balli, F.; Balunas, W. K.; Banas, E.; Bandyopadhyay, A.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisits, M.-S.; Barkeloo, J. T.; Barklow, T.; Barlow, N.; Barnea, R.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska-Blenessy, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barranco Navarro, L.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bauer, K. T.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Beck, H. C.; Becker, K.; Becker, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beermann, T. A.; Begalli, M.; Begel, M.; Behera, A.; Behr, J. K.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez, J.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Bergsten, L. J.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernardi, G.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertram, I. A.; Bertsche, C.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Bethani, A.; Bethke, S.; Betti, A.; Bevan, A. J.; Beyer, J.; Bianchi, R. M.; Biebel, O.; Biedermann, D.; Bielski, R.; Bierwagen, K.; Biesuz, N. V.; Biglietti, M.; Billoud, T. R. V.; Bindi, M.; Bingul, A.; Bini, C.; Biondi, S.; Bisanz, T.; Bittrich, C.; Bjergaard, D. M.; Black, J. E.; Black, K. M.; Blair, R. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blue, A.; Blumenschein, U.; Blunier, Dr.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boerner, D.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bolz, A. E.; Bomben, M.; Bona, M.; Bonilla, J. S.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Boscherini, D.; Bosman, M.; Bossio Sola, J. D.; Boudreau, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozson, A. J.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Braren, F.; Bratzler, U.; Brau, B.; Brau, J. E.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Briglin, D. L.; Bristow, T. M.; Britton, D.; Britzger, D.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brost, E.; Broughton, J. H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruni, A.; Bruni, G.; Bruni, L. S.; Bruno, S.; Brunt, Bh; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burch, T. J.; Burdin, S.; Burgard, C. D.; Burger, A. M.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Burr, J. T. P.; Büscher, D.; Büscher, V.; Buschmann, E.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabras, G.; Cabrera Urbán, S.; Caforio, D.; Cai, H.; Cairo, V. M. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Callea, G.; Caloba, L. P.; Calvente Lopez, S.; Calvet, D.; Calvet, S.; Calvet, T. P.; Calvetti, M.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Cano Bret, M.; Cantero, J.; Cao, T.; Cao, Y.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carlson, B. T.; Carminati, L.; Carney, R. M. D.; Caron, S.; Carquin, E.; Carrá, S.; Carrillo-Montoya, G. D.; Casadei, D.; Casado, M. P.; Casha, A. F.; Casolino, M.; Casper, D. W.; Castelijn, R.; Castillo Gimenez, V.; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Celebi, E.; Ceradini, F.; Cerda Alberich, L.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, W. S.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Che, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, C.; Chen, H.; Chen, J.; Chen, J.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Cheu, E.; Cheung, K.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chiu, I.; Chiu, Y. H.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, Y. S.; Christodoulou, V.; Chu, M. C.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Cinca, D.; Cindro, V.; Cioarǎ, I. A.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Clark, A.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooper-Sarkar, A. M.; Cormier, F.; Cormier, K. J. R.; Corradi, M.; Corrigan, E. E.; Corriveau, F.; Cortes-Gonzalez, A.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Creager, R. A.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cueto, A.; Cuhadar Donszelmann, T.; Cukierman, A. R.; Cummings, J.; Curatolo, M.; Cúth, J.; Czekierda, S.; Czodrowski, P.; D'Amen, G.; D'Auria, S.; D'Eramo, L.; D'Onofrio, M.; da Cunha Sargedas de Sousa, M. J.; da Via, C.; Dabrowski, W.; Dado, T.; Dahbi, S.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Daneri, M. F.; Dang, N. P.; Dann, N. S.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dartsi, O.; Dattagupta, A.; Daubney, T.; Davey, W.; David, C.; Davidek, T.; Davis, D. R.; Davison, P.; Dawe, E.; Dawson, I.; de, K.; de Asmundis, R.; de Benedetti, A.; de Castro, S.; de Cecco, S.; de Groot, N.; de Jong, P.; de la Torre, H.; de Lorenzi, F.; de Maria, A.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vasconcelos Corga, K.; de Vivie de Regie, J. B.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delporte, C.; Delsart, P. A.; Demarco, D. A.; Demers, S.; Demichev, M.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Devesa, M. R.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; di Bello, F. A.; di Ciaccio, A.; di Ciaccio, L.; di Clemente, W. K.; di Donato, C.; di Girolamo, A.; di Micco, B.; di Nardo, R.; di Petrillo, K. F.; di Simone, A.; di Sipio, R.; di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Dickinson, J.; Diehl, E. B.; Dietrich, J.; Díez Cornell, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; Do Vale, M. A. B.; Dobre, M.; Dodsworth, D.; Doglioni, C.; Dolejsi, J.; Dolezal, Z.; Donadelli, M.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dreyer, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Dubinin, F.; Dubreuil, A.; Duchovni, E.; Duckeck, G.; Ducourthial, A.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudder, A. Chr.; Duffield, E. M.; Duflot, L.; Dührssen, M.; Dulsen, C.; Dumancic, M.; Dumitriu, A. E.; Duncan, A. K.; Dunford, M.; Duperrin, A.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Duvnjak, D.; Dyndal, M.; Dziedzic, B. S.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; El Kosseifi, R.; Ellajosyula, V.; Ellert, M.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Ennis, J. S.; Epland, M. B.; Erdmann, J.; Ereditato, A.; Errede, S.; Escalier, M.; Escobar, C.; Esposito, B.; Estrada Pastor, O.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Ezzi, M.; Fabbri, F.; Fabbri, L.; Fabiani, V.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, E. M.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feickert, M.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, M.; Fenton, M. J.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Fiedler, F.; Filipčič, A.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, R. R. M.; Flick, T.; Flierl, B. M.; Flores, L. M.; Flores Castillo, L. R.; Fomin, N.; Forcolin, G. T.; Formica, A.; Förster, F. A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Franchino, S.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Freund, B.; Freund, W. S.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fusayasu, T.; Fuster, J.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gadow, P.; Gagliardi, G.; Gagnon, L. G.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gamboa Goni, R.; Gan, K. K.; Ganguly, S.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; García, C.; García Navarro, J. E.; García Pascual, J. A.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gasnikova, K.; Gaudiello, A.; Gaudio, G.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gee, C. N. P.; Geisen, J.; Geisen, M.; Geisler, M. P.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; Gentsos, C.; George, S.; Gerbaudo, D.; Geßner, G.; Ghasemi, S.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giangiacomi, N.; Giannetti, P.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giordani, M. P.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugliarelli, G.; Giugni, D.; Giuli, F.; Giulini, M.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gkountoumis, P.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Gama, R.; Gonella, G.; Gonella, L.; Gongadze, A.; Gonnella, F.; Gonski, J. L.; González de La Hoz, S.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorini, B.; Gorini, E.; Gorišek, A.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Gottardo, C. A.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Goy, C.; Gozani, E.; Grabowska-Bold, I.; Gradin, P. O. J.; Graham, E. C.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, C.; Gray, H. M.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Grummer, A.; Guan, L.; Guan, W.; Guenther, J.; Guerguichon, A.; Guescini, F.; Guest, D.; Gueta, O.; Gugel, R.; Gui, B.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, W.; Guo, Y.; Gupta, R.; Gurbuz, S.; Gustavino, G.; Gutelman, B. J.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Guzik, M. P.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Hadef, A.; Hageböck, S.; Hagihara, M.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Han, K.; Han, L.; Han, S.; Hanagaki, K.; Hance, M.; Handl, D. M.; Haney, B.; Hankache, R.; Hanke, P.; Hansen, E.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Harkusha, S.; Harrison, P. F.; Hartmann, N. M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havener, L. B.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heer, S.; Heidegger, K. K.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Held, A.; Hellesund, S.; Hellman, S.; Helsens, C.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Henriques Correia, A. M.; Herbert, G. H.; Herde, H.; Herget, V.; Hernández Jiménez, Y.; Herr, H.; Herten, G.; Hertenberger, R.; Hervas, L.; Herwig, T. C.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Higashino, S.; Higón-Rodriguez, E.; Hildebrand, K.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hils, M.; Hinchliffe, I.; Hirose, M.; Hirschbuehl, D.; Hiti, B.; Hladik, O.; Hlaluku, D. R.; Hoad, X.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Hohov, D.; Holmes, T. R.; Holzbock, M.; Homann, M.; Honda, S.; Honda, T.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Horyn, L. A.; Hostachy, J.-Y.; Hostiuc, A.; Hou, S.; Hoummada, A.; Howarth, J.; Hoya, J.; Hrabovsky, M.; Hrdinka, J.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, P. J.; Hsu, S.-C.; Hu, Q.; Hu, S.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Huhtinen, M.; Hunter, R. F. H.; Huo, P.; Hupe, A. M.; Huseynov, N.; Huston, J.; Huth, J.; Hyneman, R.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iguchi, R.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Iliadis, D.; Ilic, N.; Iltzsche, F.; Introzzi, G.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Isacson, M. F.; Ishijima, N.; Ishino, M.; Ishitsuka, M.; Issever, C.; Istin, S.; Ito, F.; Iturbe Ponce, J. M.; Iuppa, R.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jacka, P.; Jackson, P.; Jacobs, R. M.; Jain, V.; Jakel, G.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansky, R.; Janssen, J.; Janus, M.; Janus, P. A.; Jarlskog, G.; Javadov, N.; Javå¯Rek, T.; Javurkova, M.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jelinskas, A.; Jenni, P.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiang, Z.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Jivan, H.; Johansson, P.; Johns, K. A.; Johnson, C. A.; Johnson, W. J.; Jon-And, K.; Jones, R. W. L.; Jones, S. D.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Junggeburth, J. J.; Juste Rozas, A.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kaji, T.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanjir, L.; Kano, Y.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kar, D.; Karakostas, K.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karpov, S. N.; Karpova, Z. M.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kay, E. F.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kellermann, E.; Kempster, J. J.; Kendrick, J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khader, M.; Khalil-Zada, F.; Khanov, A.; Kharlamov, A. G.; Kharlamova, T.; Khodinov, A.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kiehn, M.; Kilby, C. R.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; Kirchmeier, D.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kitali, V.; Kivernyk, O.; Kladiva, E.; Klapdor-Kleingrothaus, T.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klingl, T.; Klioutchnikova, T.; Klitzner, F. F.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Köhler, N. M.; Koi, T.; Kolb, M.; Koletsou, I.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Konya, B.; Kopeliansky, R.; Koperny, S.; Korcyl, K.; Kordas, K.; Korn, A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Koulouris, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kourlitis, E.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Krauss, D.; Kremer, J. A.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, M. C.; Kubota, T.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kulinich, Y. P.; Kuna, M.; Kunigo, T.; Kupco, A.; Kupfer, T.; Kuprash, O.; Kurashige, H.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kurth, M. G.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; La Ruffa, F.; Lacasta, C.; Lacava, F.; Lacey, J.; Lack, D. P. J.; Lacker, H.; Lacour, D.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lanfermann, M. C.; Lang, V. S.; Lange, J. C.; Langenberg, R. J.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Lapertosa, A.; Laplace, S.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Lau, T. S.; Laudrain, A.; Law, A. T.; Laycock, P.; Lazzaroni, M.; Le, B.; Le Dortz, O.; Le Guirriec, E.; Le Quilleuc, E. P.; Leblanc, M.; Lecompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, G. R.; Lee, S. C.; Lee, L.; Lefebvre, B.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehmann Miotto, G.; Leight, W. A.; Leisos, A.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Lerner, G.; Leroy, C.; Les, R.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Li, B.; Li, C.-Q.; Li, H.; Li, L.; Li, Q.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lie, K.; Limosani, A.; Lin, C. Y.; Lin, K.; Lin, S. C.; Lin, T. H.; Linck, R. A.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Little, J. D.; Liu, B.; Liu, H.; Liu, H.; Liu, J. K. K.; Liu, J. B.; Liu, K.; Liu, M.; Liu, P.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo, C. Y.; Lo Sterzo, F.; Lobodzinska, E. M.; Loch, P.; Loebinger, F. K.; Loesle, A.; Loew, K. M.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopez, J. A.; Lopez Paz, I.; Lopez Solis, A.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lu, Y. J.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Luise, I.; Lukas, W.; Luminari, L.; Lund-Jensen, B.; Lutz, M. S.; Luzi, P. M.; Lynn, D.; Lysak, R.; Lytken, E.; Lyu, F.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; MacDonald, C. M.; Maček, B.; Machado Miguens, J.; Madaffari, D.; Madar, R.; Mader, W. F.; Madsen, A.; Madysa, N.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A. S.; Magerl, V.; Maidantchik, C.; Maier, T.; Maio, A.; Majersky, O.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandić, I.; Maneira, J.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mankinen, K. H.; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Marceca, G.; March, L.; Marchese, L.; Marchiori, G.; Marcisovsky, M.; Marin Tobon, C. A.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marshall, Z.; Martensson, M. U. F.; Marti-Garcia, S.; Martin, C. B.; Martin, T. A.; Martin, V. J.; Martin Dit Latour, B.; Martinez, M.; Martinez Outschoorn, V. I.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Mason, L. H.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Maznas, I.; Mazza, S. M.; Mc Fadden, N. C.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; McFayden, J. A.; McHedlidze, G.; McKay, M. A.; McMahon, S. J.; McNamara, P. C.; McNicol, C. J.; McPherson, R. A.; Meadows, Z. A.; Meehan, S.; Megy, T. J.; Mehlhase, S.; Mehta, A.; Meideck, T.; Meier, K.; Meirose, B.; Melini, D.; Mellado Garcia, B. R.; Mellenthin, J. D.; Melo, M.; Meloni, F.; Melzer, A.; Menary, S. B.; Meng, L.; Meng, X. T.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Merlassino, C.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer Zu Theenhausen, H.; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Millar, D. A.; Miller, D. W.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Minegishi, Y.; Ming, Y.; Mir, L. M.; Mirto, A.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mizukami, A.; Mjörnmark, J. U.; Mkrtchyan, T.; Mlynarikova, M.; Moa, T.; Mochizuki, K.; Mogg, P.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, M.; Morgenstern, S.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Moschovakos, P.; Mosidze, M.; Moss, H. J.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Moyse, E. J. W.; Muanza, S.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Munoz Sanchez, F. J.; Murin, P.; Murray, W. J.; Murrone, A.; Muškinja, M.; Mwewa, C.; Myagkov, A. G.; Myers, J.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, M. E.; Nemecek, S.; Nemethy, P.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Newman, P. R.; Ng, T. Y.; Ng, Y. S.; Nguyen, H. D. N.; Nguyen Manh, T.; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikiforou, N.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishu, N.; Nisius, R.; Nitsche, I.; Nitta, T.; Nobe, T.; Noguchi, Y.; Nomachi, M.; Nomidis, I.; Nomura, M. A.; Nooney, T.; Nordberg, M.; Norjoharuddeen, N.; Novak, T.; Novgorodova, O.; Novotny, R.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'Connor, K.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Oleiro Seabra, L. F.; Olivares Pino, S. A.; Oliveira Damazio, D.; Oliver, J. L.; Olsson, M. J. R.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oppen, H.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orgill, E. C.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero Y Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Pacheco Rodriguez, L.; Padilla Aranda, C.; Pagan Griso, S.; Paganini, M.; Paige, F.; Palacino, G.; Palazzo, S.; Palestini, S.; Palka, M.; Pallin, D.; Panagiotopoulou, E. St.; Panagoulias, I.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parida, B.; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasner, J. M.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pasuwan, P.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearson, B.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Peri, F.; Perini, L.; Pernegger, H.; Perrella, S.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Pham, T.; Phillips, F. H.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pinamonti, M.; Pinfold, J. L.; Pitt, M.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Pluth, D.; Podberezko, P.; Poettgen, R.; Poggi, R.; Poggioli, L.; Pogrebnyak, I.; Pohl, D.; Pokharel, I.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Ponomarenko, D.; Pontecorvo, L.; Popeneciu, G. A.; Portillo Quintero, D. M.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potti, H.; Poulsen, T.; Poveda, J.; Pozo Astigarraga, M. E.; Pralavorio, P.; Prell, S.; Price, D.; Primavera, M.; Prince, S.; Proklova, N.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puri, A.; Puzo, P.; Qian, J.; Qin, Y.; Quadt, A.; Queitsch-Maitland, M.; Qureshi, A.; Radeka, V.; Radhakrishnan, S. K.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rashid, T.; Raspopov, S.; Ratti, M. G.; Rauch, D. M.; Rauscher, F.; Rave, S.; Ravinovich, I.; Rawling, J. H.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reed, R. G.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reiss, A.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Resseguie, E. D.; Rettie, S.; Reynolds, E.; Rezanova, O. L.; Reznicek, P.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ripellino, G.; Ristić, B.; Ritsch, E.; Riu, I.; Rivera Vergara, J. C.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Roberts, R. T.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Rocco, E.; Roda, C.; Rodina, Y.; Rodriguez Bosca, S.; Rodriguez Perez, A.; Rodriguez Rodriguez, D.; Rodríguez Vera, A. M.; Roe, S.; Rogan, C. S.; Røhne, O.; Röhrig, R.; Roloff, J.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Rosati, S.; Rosbach, K.; Rose, P.; Rosien, N.-A.; Rossi, E.; Rossi, L. P.; Rossini, L.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Rothberg, J.; Rousseau, D.; Roy, D.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Rüttinger, E. M.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, M.; Saito, T.; Sakamoto, H.; Salamanna, G.; Salazar Loyola, J. E.; Salek, D.; Sales de Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sampsonidou, D.; Sánchez, J.; Sanchez Pineda, A.; Sandaker, H.; Sander, C. O.; Sandhoff, M.; Sandoval, C.; Sankey, D. P. C.; Sannino, M.; Sano, Y.; Sansoni, A.; Santoni, C.; Santos, H.; Santoyo Castillo, I.; Sapronov, A.; Saraiva, J. G.; Sasaki, O.; Sato, K.; Sauvan, E.; Savard, P.; Savic, N.; Sawada, R.; Sawyer, C.; Sawyer, L.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, L.; Schaeffer, J.; Schaepe, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schegelsky, V. A.; Scheirich, D.; Schenck, F.; Schernau, M.; Schiavi, C.; Schier, S.; Schildgen, L. K.; Schillaci, Z. M.; Schillo, C.; Schioppa, E. J.; Schioppa, M.; Schleicher, K. E.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schopf, E.; Schott, M.; Schouwenberg, J. F. P.; Schovancova, J.; Schramm, S.; Schuh, N.; Schulte, A.; Schultz-Coulon, H.-C.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Sciandra, A.; Sciolla, G.; Scornajenghi, M.; Scuri, F.; Scutti, F.; Scyboz, L. M.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Semprini-Cesari, N.; Senkin, S.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Severini, H.; Šfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shahinian, J. D.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Sharma, A. S.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Shen, Y.; Sherafati, N.; Sherman, A. D.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shipsey, I. P. J.; Shirabe, S.; Shiyakova, M.; Shlomi, J.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shope, D. R.; Shrestha, S.; Shulga, E.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Sideras Haddad, E.; Sidiropoulou, O.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silva, M.; Silverstein, S. B.; Simic, L.; Simion, S.; Simioni, E.; Simmons, B.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Siral, I.; Sivoklokov, S. Yu.; Sjölin, J.; Skinner, M. B.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smiesko, J.; Smirnov, N.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, J. W.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, I. M.; Snyder, S.; Sobie, R.; Socher, F.; Soffa, A. M.; Soffer, A.; Søgaard, A.; Soh, D. A.; Sokhrannyi, G.; Solans Sanchez, C. A.; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Song, W.; Sopczak, A.; Sopkova, F.; Sosa, D.; Sotiropoulou, C. L.; Sottocornola, S.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spieker, T. M.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; St. Denis, R. D.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanitzki, M. M.; Stapf, B. S.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Stark, S. H.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Stegler, M.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, T. J.; Stewart, G. A.; Stockton, M. C.; Stoicea, G.; Stolte, P.; Stonjek, S.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultan, Dms; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Suruliz, K.; Suster, C. J. E.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Swift, S. P.; Sydorenko, A.; Sykora, I.; Sykora, T.; Ta, D.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Tahirovic, E.; Taiblum, N.; Takai, H.; Takashima, R.; Takasugi, E. H.; Takeda, K.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tanaka, J.; Tanaka, M.; Tanaka, R.; Tanioka, R.; Tannenwald, B. B.; Tapia Araya, S.; Tapprogge, S.; Tarek Abouelfadl Mohamed, A. T.; Tarem, S.; Tarna, G.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, A. C.; Taylor, A. J.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teixeira-Dias, P.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Thais, S. J.; Theveneaux-Pelzer, T.; Thiele, F.; Thomas, J. P.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Tian, Y.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorova-Nova, S.; Todt, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Tornambe, P.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Treado, C. J.; Trefzger, T.; Tresoldi, F.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tsang, K. W.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tu, Y.; Tudorache, A.; Tudorache, V.; Tulbure, T. T.; Tuna, A. N.; Turchikhin, S.; Turgeman, D.; Turk Cakir, I.; Turra, R.; Tuts, P. M.; Ucchielli, G.; Ueda, I.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Uno, K.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usui, J.; Vacavant, L.; Vacek, V.; Vachon, B.; Vadla, K. O. H.; Vaidya, A.; Valderanis, C.; Valdes Santurio, E.; Valente, M.; Valentinetti, S.; Valero, A.; Valéry, L.; Vallier, A.; Valls Ferrer, J. A.; van den Wollenberg, W.; van der Graaf, H.; van Gemmeren, P.; van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vari, R.; Varnes, E. W.; Varni, C.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vasquez, G. A.; Vazeille, F.; Vazquez Furelos, D.; Vazquez Schroeder, T.; Veatch, J.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, A. T.; Vermeulen, J. C.; Vetterli, M. C.; Viaux Maira, N.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vishwakarma, A.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vogel, M.; Vokac, P.; Volpi, G.; von Buddenbrock, S. E.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wagner, W.; Wagner-Kuhr, J.; Wahlberg, H.; Wahrmund, S.; Wakamiya, K.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, A. M.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, Q.; Wang, R.-J.; Wang, R.; Wang, S. M.; Wang, T.; Wang, W.; Wang, W.; Wang, Z.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, A. F.; Webb, S.; Weber, M. S.; Weber, S. M.; Weber, S. A.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weirich, M.; Weiser, C.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M. D.; Werner, P.; Wessels, M.; Weston, T. D.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A. S.; White, A.; White, M. J.; White, R.; Whiteson, D.; Whitmore, B. W.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winkels, E.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wobisch, M.; Wolf, A.; Wolf, T. M. H.; Wolff, R.; Wolter, M. W.; Wolters, H.; Wong, V. W. S.; Woods, N. L.; Worm, S. D.; Wosiek, B. K.; Wozniak, K. W.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xi, Z.; Xia, L.; Xu, D.; Xu, H.; Xu, L.; Xu, T.; Xu, W.; Yabsley, B.; Yacoob, S.; Yajima, K.; Yallup, D. P.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamanaka, T.; Yamane, F.; Yamatani, M.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, S.; Yang, Y.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yigitbasi, E.; Yildirim, E.; Yorita, K.; Yoshihara, K.; Young, C.; Young, C. J. S.; Yu, J.; Yu, J.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zacharis, G.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zambito, S.; Zanzi, D.; Zeitnitz, C.; Zemaityte, G.; Zeng, J. C.; Zeng, Q.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, L.; Zhang, M.; Zhang, P.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Y.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, M.; Zhou, M.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zhulanov, V.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zorbas, T. G.; Zou, R.; Zur Nedden, M.; Zwalinski, L.; Atlas Collaboration

    2018-05-01

    A direct search for the standard model Higgs boson decaying to a pair of charm quarks is presented. Associated production of the Higgs and Z bosons, in the decay mode Z H →ℓ+ℓ- c c ¯ is studied. A data set with an integrated luminosity of 36.1 fb-1 of p p collisions at √{s }=13 TeV recorded by the ATLAS experiment at the LHC is used. The H →c c ¯ signature is identified using charm-tagging algorithms. The observed (expected) upper limit on σ (p p →Z H )×B (H →c c ¯) is 2.7 (3.9-1.1+2.1 ) pb at the 95% confidence level for a Higgs boson mass of 125 GeV, while the standard model value is 26 fb.

  10. Search for neutral Higgs bosons decaying to tau pairs at the CMS experiment

    International Nuclear Information System (INIS)

    Choudhury, S.

    2012-01-01

    The thesis describes a study of the tau-pair final state in the semi-leptonic decay mode into muon and hadrons using proton-proton collisions data at a center-of-mass energy of 7 TeV using the CMS detector at the CERN Large Hadron Collider. The performance of tau-lepton reconstruction and identification algorithm is studied using a data sample of proton-proton collisions at √ = 7 TeV, corresponding to an integrated luminosity of 36 pb -1 . The tau leptons that decay into one charged hadron with or without the association of neutral hadrons is reconstructed using Particle-Flow object reconstruction technique with a novel tau identification algorithm called the Hadron Plus Strips (HPS) algorithm in the CMS tracker and electromagnetic calorimeter. The reconstruction efficiency of the algorithm is measured using τ leptons produced in Z-boson decays. The hadronically decaying tau lepton mis-identification rate for jets produced in association with a W boson is also determined. The first measurement of inclusive Z →ττ production in pp collisions at the LHC is presented in muon + hadrons final state using a data sample of 36 pb -1 . The measured cross-section is in good agreement with the next-to-next-to-leading order (NNLO) QCD prediction. After establishing the Z boson in di-tau decay mode, an inclusive search for neutral minimal supersymmetric standard model (MSSM) Higgs bosons in pp collisions is performed at a center-of-mass energy of 7 TeV. The results are based on a data sample corresponding to an integrated luminosity of 36 pb -1 and 4.6 fb -1 recorded by the CMS experiment in the year 2010 and 2011 respectively. The search uses decays of the Higgs bosons to tau pairs. No excess is observed in the tau-pair invariant-mass spectrum. The resulting upper limits on the Higgs boson production cross-section times the branching fraction to tau pairs, as a function of the pseudoscalar Higgs boson mass, yield stringent bounds in the MSSM parameter space. (author) [fr

  11. Present and Future Kaon Physics (Kaon Decays: Status and Prospects of Experiments)

    International Nuclear Information System (INIS)

    Bryman, Doug

    2005-01-01

    Study of the ultra-rare K → πν(bar ν) decays is highly motivated by their unique theoretical access to short distance physics allowing deep probing of physics beyond the Standard Model including possible new sources of CP violation and flavor symmetry breaking. It also appears that through the development of targeted experimental techniques, both the charged and neutral processes, K + → π + ν(bar ν) and K L 0 → π 0 ν(bar ν), are accessible to detailed measurement. Three events consistent with K + → π + ν(bar ν) decay have been observed by BNL E787/E949 and further measurements of this reaction are being planned. The new KOPIO experiment at BNL is aiming to study the special CP-violating decay K L 0 → π 0 ν(bar ν) with a precision of 10%. The motivations, experimental methods, prospects, and possible impact of KOPIO and other future measurements will be discussed.

  12. Production and muonic decay of the Z0 intermediate vector boson in the UA1 experiment

    International Nuclear Information System (INIS)

    Leuchs, R.

    1988-01-01

    In the years 1982 to 1985 the intermediate bosons W +- and Z 0 were detected in all the leptonic decay channels. In the present work we examined experimentally the production of the Z 0 in proton-antiproton collisions, followed by decay of the Z 0 into two muons. At present this is possible only in the UA1 experiment. Within the framework of this work I was initially responsible for the correct data readout from the muon detector. For this purpose it was necessary to build a monitoring system based on microprocessors, which could be used to monitor and test our apparatus. This monitoring system contains numerous programs for the diagnosis of the equipment. In the analysis I first selected the Z 0 events in the runs of 1984 and 1985, and then determined the efficiency of this selection. I also participated in setting up the p/sub t//sup μ/ > 15 GeV/c selection. Then the Z 0 sample was tested for completeness, and the background calculated anew. The methods of energy balance and mass fitting were refined and systematized. Thus the production properties and the mass of the Z 0 could be determined for the first time for the entire measurement period of the UA1. The determination of the parameters of the standard model was done by also including the results of analyses from other decay channels of the W and Z bosons. 149 refs., 60 figs., 14 tabs

  13. Search for heavy neutrino decays in the BEBC beam dump experiment

    International Nuclear Information System (INIS)

    Cooper-Sarkar, A.M.; Haywood, S.J.; Parker, M.A.; Sarkar, S.; Klein, H.; Morrison, D.R.O.; Wachsmuth, H.; Barnham, K.W.J.; Mobayyen, M.M.; Talebzadeh, M.; Bostock, P.; Krstic, J.; Graessler, H.

    1985-01-01

    New limits on lepton mixing parameters are derived from a search for decays of heavy neutrinos in a proton beam dump experiment. The limits vertical strokeUsub(μi)vertical stroke 2 , vertical strokeUsub(ei)vertical stroke 2 -6 -10 -7 are obtained for neutrino mass eigenstates νsub(i) of mass between 0.5 and 1.75 GeV, which can be produced through mixing in charmed D meson decays. This is the first such limit on vertical strokeUsub(νi)vertical stroke 2 for neutrino masses greater than 0.5 GeV. For the mass eigenstate ν 3 in particular, we obtain the limits vertical strokeUsub(μ3)vertical stroke 2 -7 -10 -8 . vertical strokeUsub(e3)vertical stroke 2 -9 -10 -10 for the mass range 150-190 MeV, assuming the ν 3 to be produced directly in charmed F meson decays. (orig.)

  14. Anomalous phenomena in ECRH experiments at toroidal devices and low-threshold parametric decay instabilities

    Directory of Open Access Journals (Sweden)

    Saveliev A.N.

    2012-09-01

    Full Text Available In the paper the possibility of total 3D trapping of electron Bernstein (EB waves in the tokamak equatorial plane in the vicinity of the local density maximum produced by electron pump-out-effect is demonstrated. Thresholds and growth rates of the associated absolute (temporally growing parametric decay instability (PDI leading to anomalous absorption is predicted in the range of less than 100 kW. Its possible role in explanation of ion acceleration observed in ECRH experiments as well as in redistribution of the deposited power is discussed.

  15. On active shieldings in (ββ)0ν 76Ge decay experiments

    International Nuclear Information System (INIS)

    Garcia, E.; Morales, A.; Morales, J.; Nunez-Lagos, R.; Ortiz de Solorzano, A.; Puimedon, J.; Saenz, C.; Salinas, A.; Sarsa, M.L.; Villar, J.A.

    1992-01-01

    The sensitivity of an ultra low background Ge detector for the (ββ) 0ν decay of 76 Ge is estimated in two different experimental set-ups. The main difference between them is the inclusion or not of an active NaI shielding. We find that sensitivity of the Ge detector is not improved by this active shielding either for the O + -->O + or the O + -->2 + (ββ) 0ν transitions. Our results provide a valuable information for future 76 Ge enriched experiments. (orig.)

  16. RELAP5 and SIMMER-III code assessment on CIRCE decay heat removal experiments

    International Nuclear Information System (INIS)

    Bandini, Giacomino; Polidori, Massimiliano; Meloni, Paride; Tarantino, Mariano; Di Piazza, Ivan

    2015-01-01

    Highlights: • The CIRCE DHR experiments simulate LOHS+LOF transients in LFR systems. • Decay heat removal by natural circulation through immersed heat exchangers is investigated. • The RELAP5 simulation of DHR experiments is presented. • The SIMMER-III simulation of DHR experiments is presented. • The focus is on the transition from forced to natural convection and stratification in a large pool. - Abstract: In the frame of THINS Project of the 7th Framework EU Program on Nuclear Fission Safety, some experiments were carried out on the large scale LBE-cooled CIRCE facility at the ENEA/Brasimone Research Center to investigate relevant safety aspects associated with the removal of decay heat through heat exchangers (HXs) immersed in the primary circuit of a pool-type lead fast reactor (LFR), under loss of heat sink (LOHS) accidental conditions. The start-up and operation of this decay heat removal (DHR) system relies on natural convection on the primary side and then might be affected by coolant mixing and temperature stratification phenomena occurring in the LBE pool. The main objectives of the CIRCE experimental campaign were to verify the behavior of the DHR system under representative accidental conditions and provide a valuable database for the assessment of both CFD and system codes. The reproduced accidental conditions refer to a station blackout scenario, namely a protected LOHS and loss of flow (LOF) transient. In this paper the results of 1D RELAP5 and 2D SIMMER-III simulations are compared with the experimental data of more representative DHR transients T-4 and T-5 in order to verify the capability of these codes to reproduce both forced and natural convection conditions observed in the primary circuit and the right operation of the DHR system for decay heat removal. Both codes are able to reproduce the stationary conditions and with some uncertainties the transition to natural convection conditions until the end of the transient phase. The trend

  17. An experiment for the precision measurement of the radiative decay mode of the neutron

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.L., E-mail: cooperrl@umich.ed [University of Michigan, Ann Arbor, MI 48109 (United States); Bass, C.D. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Beise, E.J.; Breuer, H. [University of Maryland, College Park, MD 20742 (United States); Byrne, J. [University of Sussex, BN1 9QH (United Kingdom); Chupp, T.E. [University of Michigan, Ann Arbor, MI 48109 (United States); Coakley, K.J. [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Dewey, M.S.; Fisher, B.M.; Fu, C.; Gentile, T.R. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); McGonagle, M. [University of Maryland, College Park, MD 20742 (United States); Mumm, H.P.; Nico, J.S.; Thompson, A.K. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Wietfeldt, F.E. [Tulane University, New Orleans, LA 70118 (United States)

    2009-12-11

    The familiar neutron decay into a proton, electron, and antineutrino can be accompanied by photons with sufficient energy to be detected. We recently reported the first observation of the radiative beta decay branch for the free neutron with photons of energy 15-340 keV. We performed the experiment in the bore of a superconducting magnet where electron, proton, and photon signals were measured. A bar of bismuth germanate scintillating crystal coupled to an avalanche photodiode served as the photon detector that operated in the cryogenic, high magnetic field environment. The branching ratio for this energy region was measured and is consistent with the theoretical calculation. An experiment is under way to measure the branching ratio with an improved precision of 1% relative standard uncertainty and to measure the photon energy spectrum. In this paper, the apparatus modifications to reduce the systematic uncertainties will be described. Central to these improvements is the development of a 12-element detector based on the original photon detector design that will improve the statistical sensitivity. During data acquisition, a detailed calibration program will be performed to improve the systematic uncertainties. The development of these modifications is currently under way, and the second run of the experiment commenced in July 2008.

  18. Survival analysis approach to account for non-exponential decay rate effects in lifetime experiments

    Energy Technology Data Exchange (ETDEWEB)

    Coakley, K.J., E-mail: kevincoakley@nist.gov [National Institute of Standards and Technology, 325 Broadway, Boulder, CO 80305 (United States); Dewey, M.S.; Huber, M.G. [National Institute of Standards and Technology, 100 Bureau Drive, Stop 8461, Gaithersburg, MD 20899 (United States); Huffer, C.R.; Huffman, P.R. [North Carolina State University, 2401 Stinson Drive, Box 8202, Raleigh, NC 27695 (United States); Triangle Universities Nuclear Laboratory, 116 Science Drive, Box 90308, Durham, NC 27708 (United States); Marley, D.E. [National Institute of Standards and Technology, 100 Bureau Drive, Stop 8461, Gaithersburg, MD 20899 (United States); North Carolina State University, 2401 Stinson Drive, Box 8202, Raleigh, NC 27695 (United States); Mumm, H.P. [National Institute of Standards and Technology, 100 Bureau Drive, Stop 8461, Gaithersburg, MD 20899 (United States); O' Shaughnessy, C.M. [University of North Carolina at Chapel Hill, 120 E. Cameron Ave., CB #3255, Chapel Hill, NC 27599 (United States); Triangle Universities Nuclear Laboratory, 116 Science Drive, Box 90308, Durham, NC 27708 (United States); Schelhammer, K.W. [North Carolina State University, 2401 Stinson Drive, Box 8202, Raleigh, NC 27695 (United States); Triangle Universities Nuclear Laboratory, 116 Science Drive, Box 90308, Durham, NC 27708 (United States); Thompson, A.K.; Yue, A.T. [National Institute of Standards and Technology, 100 Bureau Drive, Stop 8461, Gaithersburg, MD 20899 (United States)

    2016-03-21

    In experiments that measure the lifetime of trapped particles, in addition to loss mechanisms with exponential survival probability functions, particles can be lost by mechanisms with non-exponential survival probability functions. Failure to account for such loss mechanisms produces systematic measurement error and associated systematic uncertainties in these measurements. In this work, we develop a general competing risks survival analysis method to account for the joint effect of loss mechanisms with either exponential or non-exponential survival probability functions, and a method to quantify the size of systematic effects and associated uncertainties for lifetime estimates. As a case study, we apply our survival analysis formalism and method to the Ultra Cold Neutron lifetime experiment at NIST. In this experiment, neutrons can escape a magnetic trap before they decay due to a wall loss mechanism with an associated non-exponential survival probability function.

  19. Survival analysis approach to account for non-exponential decay rate effects in lifetime experiments

    International Nuclear Information System (INIS)

    Coakley, K.J.; Dewey, M.S.; Huber, M.G.; Huffer, C.R.; Huffman, P.R.; Marley, D.E.; Mumm, H.P.; O'Shaughnessy, C.M.; Schelhammer, K.W.; Thompson, A.K.; Yue, A.T.

    2016-01-01

    In experiments that measure the lifetime of trapped particles, in addition to loss mechanisms with exponential survival probability functions, particles can be lost by mechanisms with non-exponential survival probability functions. Failure to account for such loss mechanisms produces systematic measurement error and associated systematic uncertainties in these measurements. In this work, we develop a general competing risks survival analysis method to account for the joint effect of loss mechanisms with either exponential or non-exponential survival probability functions, and a method to quantify the size of systematic effects and associated uncertainties for lifetime estimates. As a case study, we apply our survival analysis formalism and method to the Ultra Cold Neutron lifetime experiment at NIST. In this experiment, neutrons can escape a magnetic trap before they decay due to a wall loss mechanism with an associated non-exponential survival probability function.

  20. Background studies of high energy γ rays from (n,γ) reactions in the CANDLES experiment

    Science.gov (United States)

    Nakajima, K.; Iida, T.; Akutagawa, K.; Batpurev, T.; Chan, W. M.; Dokaku, F.; Fushimi, K.; Kakubata, H.; Kanagawa, K.; Katagiri, S.; Kawasaki, K.; Khai, B. T.; Kino, H.; Kinoshita, E.; Kishimoto, T.; Hazama, R.; Hiraoka, H.; Hiyama, T.; Ishikawa, M.; Li, X.; Maeda, T.; Matsuoka, K.; Moser, M.; Nomachi, M.; Ogawa, I.; Ohata, T.; Sato, H.; Shamoto, K.; Shimada, M.; Shokati, M.; Takahashi, N.; Takemoto, Y.; Takihira, Y.; Tamagawa, Y.; Tozawa, M.; Teranishi, K.; Tetsuno, K.; Trang, V. T. T.; Tsuzuki, M.; Umehara, S.; Wang, W.; Yoshida, S.; Yotsunaga, N.

    2018-07-01

    High energy γ rays with several MeV produced by (n,γ) reactions can be a trouble for low background measurements in the underground laboratories such as double beta decay experiments. In the CANDLES project, which aimed to observe the neutrino-less double beta decay from 48Ca, γ rays caused by (n,γ) reactions were found to be the most significant background. The profile of the background was studied by measurements with a neutron source and a simulation with a validity check of neutron processes in Geant4. The observed spectrum of γ rays from (n,γ) reactions was well reproduced by the simulated spectra, which were originated from the surrounding rock and a detector tank made of stainless steel. The environmental neutron flux was derived by the observed event rate of γ rays from (n,γ) reactions using the simulation. The thermal and non-thermal neutron flux were found to be (1.3 ± 0.6) ×10-6 cm-2s-1 and (1.1 ± 0.5) ×10-5 cm-2s-1 , respectively. It is necessary to install an additional shield to reduce the background from (n,γ) reaction to the required level.

  1. Enriched TeO2 bolometers with active particle discrimination: Towards the CUPID experiment

    Directory of Open Access Journals (Sweden)

    D.R. Artusa

    2017-04-01

    Full Text Available We present the performances of two 92% enriched 130TeO2 crystals operated as thermal bolometers in view of a next generation experiment to search for neutrinoless double beta decay of 130Te. The crystals, 435 g each, show an energy resolution, evaluated at the 2615 keV γ-line of 208Tl, of 6.5 and 4.3 keV FWHM. The only observable internal radioactive contamination arises from 238U (15 and 8 μBq/kg, respectively. The internal activity of the most problematic nuclei for neutrinoless double beta decay, 226Ra and 228Th, are both evaluated as <3.1 μBq/kg for one crystal and <2.3 μBq/kg for the second. Thanks to the readout of the weak Cherenkov light emitted by β/γ particles by means of Neganov–Luke bolometric light detectors we were able to perform an event-by-event identification of β/γ events with a 95% acceptance level, while establishing a rejection factor of 98.21% and 99.99% for α particles.

  2. Online Selection of J/ψ → μ+μ− Decays in the CBM Experiment

    Directory of Open Access Journals (Sweden)

    Ablyazimov T.O.

    2016-01-01

    Full Text Available The Compressed Baryonic Matter (CBM experimental setup is currently being constructed at the Facility for Antiproton and Ion Research (FAIR acceleration complex at GSI (Darmstadt, Germany by an international collaboration that includes a team from JINR. One of the main goals of this experiment is to study the charmonium production in high-energy nuclear collisions. The experiment will operate at extreme interaction rates of up to 10 MHz. The expected dataflow rate will be of the order of 1 TB/s, making it impossible to store all the raw data from detectors in long-term buffers. It will demand the selection of J/ψ → μ+μ− decays in real-time. This paper presents criteria for the fast and effective selection of signal events by using exclusively data on charged muon hits collected in the Muon Chamber (MUCH coordinate stations and describes the software implementing these criteria. The possibility of this software to solve the problem of the online selection J/ψ → μ+μ− decays is proven.

  3. Analysis of $B^{0}_{d} \\to K^{*0}\\mu^{+}\\mu^{-}$ Decay with the ATLAS Experiment

    CERN Document Server

    Usanova, Anna

    ATLAS is a general-purpose experiment at the Large Hadron Collider. Beside other goals, it also aims at the study of B -hadrons. B -physics offers a large number of channels