The double scaling limit method in the Toda hierarchy
Energy Technology Data Exchange (ETDEWEB)
Martinez Alonso, L [Departamento de Fisica Teorica II, Universidad Complutense, E28040 Madrid (Spain); Medina, E [Departamento de Matematicas, Universidad de Cadiz, E11510 Puerto Real, Cadiz (Spain)
2008-08-22
Critical points of semiclassical expansions of solutions to the dispersionful Toda hierarchy are considered and a double scaling limit method of regularization is formulated. The analogues of the critical points characterized by the strong conditions in the Hermitian matrix model are analysed and the property of doubling of equations is proved. A wide family of sets of critical points is introduced and the corresponding double scaling limit expansions are discussed.
Double scaling limit for modified Jacobi-Angelesco polynomials
Deschout, Klaas
2011-01-01
We consider multiple orthogonal polynomials with respect to two modified Jacobi weights on touching intervals [a,0] and [0,1], with a < 0, and study a transition that occurs at a = -1. The transition is studied in a double scaling limit, where we let the degree n of the polynomial tend to infinity while the parameter a tends to -1 at a rate of O(n^{-1/2}). We obtain a Mehler-Heine type asymptotic formula for the polynomials in this regime. The method used to analyze the problem is the steepest descent technique for Riemann-Hilbert problems. A key point in the analysis is the construction of a new local parametrix.
Towards a double-scaling limit for tensor models: probing sub-dominant orders
Kaminski, Wojciech; Ryan, James P
2013-01-01
The definition of a double-scaling limit represents an important goal in the development of tensor models. We take the first steps towards this goal by extracting and analysing the next-to-leading order contributions, in the 1/N expansion, for the IID tensor models. We show that the radius of convergence of the NLO series coincides with that of the leading order melonic sector. Meanwhile, the value of the susceptibility exponent at NLO is 3/2, signaling a departure from the leading order behaviour. Both pieces of information provide clues for a non-trivial double-scaling limit, for which we put forward some precise conjecture.
Sum over topologies and double-scaling limit in 2D Lorentzian quantum gravity
Loll, R
2003-01-01
We construct a combined non-perturbative path integral over geometries and topologies for two-dimensional Lorentzian quantum gravity. The Lorentzian structure is used in an essential way to exclude geometries with unacceptably large causality violations. The remaining sum can be performed analytically and possesses a unique and well-defined double-scaling limit, a property which has eluded similar models of Euclidean quantum gravity in the past.
Quantum parameter space and double scaling limits in N=1 super Yang-Mills theory
Ferrari, Frank
2003-04-01
We study the physics of N=1 super Yang-Mills theory with the gauge group U(N) and one adjoint Higgs field, by using the recently derived exact effective superpotentials. Interesting phenomena occur for some special values of the Higgs potential couplings. We find critical points with massless glueballs and/or massless monopoles, confinement without a mass gap, and tensionless domain walls. We describe the transitions between regimes with different patterns of gauge symmetry breaking, or, in the matrix model language, between solutions with a different number of cuts. The standard large N expansion is singular near the critical points, with domain wall tensions scaling as a fractional power of N. We argue that the critical points are four-dimensional analogues of the Kazakov critical points that are commonly found in low dimensional matrix integrals. We define a double scaling limit that yields the exact tension of BPS two-branes in the resulting N=1, four-dimensional noncritical string theory. D-brane states can be deformed continuously into closed string solitonic states, and vice versa, along paths that go over regions where the string coupling is strong.
Quantum parameter space and double scaling limits in N=1 super Yang-Mills theory
Ferrari, F
2003-01-01
We study the physics of N=1 super Yang-Mills theory with gauge group U(Nc) and one adjoint Higgs field, by using the recently derived exact effective superpotentials. Interesting phenomena occur for some special values of the Higgs potential couplings. We find critical points with massless glueballs and/or massless monopoles, confinement without a mass gap, and tensionless domain walls. We describe the transitions between regimes with different patterns of gauge symmetry breaking, or, in the matrix model language, between solutions with a different number of cuts. The standard large Nc expansion is singular near the critical points, with domain walls tensions scaling as a fractional power of Nc. We argue that the critical points are four dimensional analogues of the Kazakov critical points that are commonly found in low dimensional matrix integrals. We define a double scaling limit that yields the exact tension of BPS two-branes in the resulting N=1, four dimensional non-critical string theory. D-brane states...
Kudashev, Vadim R.; Suleimanov, Bulat I.
1998-01-01
We construct a one-parametric family of the double-scaling limits in the hermitian matrix model $\\Phi^6$ for 2D quantum gravity. The known limit of Bresin, Marinari and Parisi belongs to this family. The family is represented by the Gurevich-Pitaevskii solution of the Korteveg-de Vries equation which describes the onset of nondissipative shock waves in media with small dispersion. Numerical simulation of the universal Gurevich-Pitaevskii solution is made.
Kudashev, Vadim R.; Suleimanov, Bulat I.
1998-01-01
We construct a one-parametric family of the double-scaling limits in the hermitian matrix model $\\Phi^6$ for 2D quantum gravity. The known limit of Bresin, Marinari and Parisi belongs to this family. The family is represented by the Gurevich-Pitaevskii solution of the Korteveg-de Vries equation which describes the onset of nondissipative shock waves in media with small dispersion. Numerical simulation of the universal Gurevich-Pitaevskii solution is made.
Scaling of Metabolic Scaling within Physical Limits
Directory of Open Access Journals (Sweden)
Douglas S. Glazier
2014-10-01
Full Text Available Both the slope and elevation of scaling relationships between log metabolic rate and log body size vary taxonomically and in relation to physiological or developmental state, ecological lifestyle and environmental conditions. Here I discuss how the recently proposed metabolic-level boundaries hypothesis (MLBH provides a useful conceptual framework for explaining and predicting much, but not all of this variation. This hypothesis is based on three major assumptions: (1 various processes related to body volume and surface area exert state-dependent effects on the scaling slope for metabolic rate in relation to body mass; (2 the elevation and slope of metabolic scaling relationships are linked; and (3 both intrinsic (anatomical, biochemical and physiological and extrinsic (ecological factors can affect metabolic scaling. According to the MLBH, the diversity of metabolic scaling relationships occurs within physical boundary limits related to body volume and surface area. Within these limits, specific metabolic scaling slopes can be predicted from the metabolic level (or scaling elevation of a species or group of species. In essence, metabolic scaling itself scales with metabolic level, which is in turn contingent on various intrinsic and extrinsic conditions operating in physiological or evolutionary time. The MLBH represents a “meta-mechanism” or collection of multiple, specific mechanisms that have contingent, state-dependent effects. As such, the MLBH is Darwinian in approach (the theory of natural selection is also meta-mechanistic, in contrast to currently influential metabolic scaling theory that is Newtonian in approach (i.e., based on unitary deterministic laws. Furthermore, the MLBH can be viewed as part of a more general theory that includes other mechanisms that may also affect metabolic scaling.
Sooting limit of a double diffusion flame
Energy Technology Data Exchange (ETDEWEB)
Kitano, Michio; Kobayashi, Hideaki; Nishiki, Nobuhiko (Tohoku Univ., Faculty of Engineering, Sendai, Japan Sony Corp., Tokyo (Japan))
1989-07-25
The soot exhaust from the flame of pot type burner for the domestic heating use was basically studied. Inside a fuel (secondary) diffusion flame in air atmosphere, which was an ordinary diffusion flame, an air (primary) diffusion flame in fuel atmosphere, which was reverse in relation between them, was formed by using propane fuel. For the sooting limit of that double diffusion flame, the effect of primary air ratio, distance between primary and secondary flames, thermal condition on wall surface and flow stretch being investigated by use of three different types of burner, the double diffusion flame method was studied in effectiveness on the soot exhaust and known to heighten the control against it, which heightening however depended in degree upon the locative relation between both the flames. The control was more heightened with a more lengthening in the secondary flame. Because the sooting limit is governed by the secondary flame temperature, the establishment of condition so as to heighten the flame temperature is necessary for the effective control against the soot exhaust. 11 refs., 11 figs.
Scaling Limits of Graphene Nanoelectrodes.
Sarwat, Syed Ghazi; Gehring, Pascal; Rodriguez Hernandez, Gerardo; Warner, Jamie H; Briggs, G Andrew D; Mol, Jan A; Bhaskaran, Harish
2017-06-14
Graphene nanogap electrodes have been of recent interest in a variety of fields, ranging from molecular electronics to phase change memories. Several recent reports have highlighted that scaling graphene nanogaps to even smaller sizes is a promising route to more efficient and robust molecular and memory devices. Despite the significant interest, the operating and scaling limits of these electrodes are completely unknown. In this paper, we report on our observations of consistent voltage driven resistance switching in sub-5 nm graphene nanogaps. We find that such electrical switching from an insulating state to a conductive state occurs at very low currents and voltages (0.06 μA and 140 mV), independent of the conditions (room ambient, low temperatures, as well as in vacuum), thus portending potential limits to scaling of functional devices with carbon electrodes. We then associate this phenomenon to the formation and rupture of carbon chains. Using a phase change material in the nanogap as a demonstrator device, fabricated using a self-alignment technique, we show that for gap sizes approaching 1 nm the switching is dominated by such carbon chain formation, creating a fundamental scaling limit for potential devices. These findings have important implications, not only for fundamental science, but also in terms of potential applications.
Double Scaling in Tensor Models with a Quartic Interaction
Dartois, Stephane; Rivasseau, Vincent
2013-01-01
In this paper we identify and analyze in detail the subleading contributions in the 1/N expansion of random tensors, in the simple case of a quartically interacting model. The leading order for this 1/N expansion is made of graphs, called melons, which are dual to particular triangulations of the D-dimensional sphere, closely related to the "stacked" triangulations. For D<6 the subleading behavior is governed by a larger family of graphs, hereafter called cherry trees, which are also dual to the D-dimensional sphere. They can be resummed explicitly through a double scaling limit. In sharp contrast with random matrix models, this double scaling limit is stable. Apart from its unexpected upper critical dimension 6, it displays a singularity at fixed distance from the origin and is clearly the first step in a richer set of yet to be discovered multi-scaling limits.
Uplink SDMA with Limited Feedback: Throughput Scaling
Directory of Open Access Journals (Sweden)
Jeffrey G. Andrews
2008-01-01
Full Text Available Combined space division multiple access (SDMA and scheduling exploit both spatial multiplexing and multiuser diversity, increasing throughput significantly. Both SDMA and scheduling require feedback of multiuser channel sate information (CSI. This paper focuses on uplink SDMA with limited feedback, which refers to efficient techniques for CSI quantization and feedback. To quantify the throughput of uplink SDMA and derive design guidelines, the throughput scaling with system parameters is analyzed. The specific parameters considered include the numbers of users, antennas, and feedback bits. Furthermore, different SNR regimes and beamforming methods are considered. The derived throughput scaling laws are observed to change for different SNR regimes. For instance, the throughput scales logarithmically with the number of users in the high SNR regime but double logarithmically in the low SNR regime. The analysis of throughput scaling suggests guidelines for scheduling in uplink SDMA. For example, to maximize throughput scaling, scheduling should use the criterion of minimum quantization errors for the high SNR regime and maximum channel power for the low SNR regime.
QCD-improved limits from neutrinoless double beta decay
Arbeláez, C.; González, M.; Kovalenko, S. G.; Hirsch, M.
2017-07-01
We analyze the impact of QCD corrections on limits derived from neutrinoless double beta decay (0 ν β β ). As demonstrated previously, the effect of the color mismatch arising from loops with gluons linking the quarks from different color-singlet currents participating in the effective operators has a dramatic impact on the predictions for some particular Wilson coefficients. Here, we consider all possible contributions from heavy particle exchange, i.e. the so-called short-range mechanism of 0 ν β β decay. All high-scale models (HSM) in this class match at some scale around a ˜ few TeV with the corresponding effective theory, containing a certain set of effective dimension-9 operators. Many of these HSM receive contributions from more than one of the basic operators and we calculate limits on these models using the latest experimental data. We also show with one nontrivial example, how to derive limits on more complicated models, in which many different Feynman diagrams contribute to 0 ν β β decay, using our general method.
DEFF Research Database (Denmark)
Pedersen, Kurt; Sørensen, Peter
2007-01-01
slaughterhouse merger in 1890/91 between the established private slaughterhouses and the rising co-operative ones. The article deals with the question of the relevance of Chandler's concepts to the negotiation process and with that of the limits to the explanatory power of the framework. In order to answer...
On the number of limit cycles in double homoclinic bifurcations
Institute of Scientific and Technical Information of China (English)
韩茂安; 陈健
2000-01-01
Let L be a double homoclinic loop of a Hamiltonian system on the plane. We obtain a condition under which L generates at most two large limit cycles by perturbations. We also give conditions for the existence of at most five or six limit cycles which appear near L under perturbations.
High power double-scale pulses from a gain-guided double-clad fiber laser
Zhang, Haitao; Gao, Gan; Li, Qinghua; Gong, Mali
2017-03-01
Generation of high power double-scale pulses from a gain-guided double-clad fiber laser is experimentally demonstrated. By employing the Yb-doped 10/130 double-clad fiber as the gain medium, the laser realizes an output power of 5.1 W and pulse energy of 0.175 µJ at repetition rate of 29.14 MHz. To the best of our knowledge, this average output power is the highest among the reported double-scale pulse oscillators. The autocorrelation trace of pulses contains the short (98 fs) and long (29.5 ps) components, and the spectral bandwidth of the pulse is 27.3 nm. Such double-scale pulses are well suited for seeding the high power MOPA (master oscillator power amplifier) systems, nonlinear frequency conversion and optical coherence tomography.
New limits on double beta processes in 106-Cd
Tretyak, V I; Bernabei, R; Brudanin, V B; Cappella, F; Caracciolo, V; Cerulli, R; Chernyak, D M; Danevich, F A; d'Angelo, S; Di Marco, A; Incicchitti, A; Laubenstein, M; Mokina, V M; Poda, D V; Polischuk, O G; Tupitsyna, I A
2016-01-01
A radiopure cadmium tungstate crystal scintillator, enriched in 106-Cd to 66%, with mass of 216 g (106-CdWO4) was used in coincidence with four ultra-low background HPGe detectors contained in a single cryostat to search for double beta decay processes in 106-Cd. New improved half-life limits on the double beta processes in 106-Cd have been set on the level of 1e20-1e21 yr after 13085 h of data taking deep underground (3600 m w.e.) at the Gran Sasso National Laboratories of INFN (Italy). In particular, the limit on the two neutrino electron capture with positron emission T1/2 >1.1e21 yr, has reached the region of theoretical predictions. The resonant neutrinoless double electron captures to the 2718, 2741 and 2748 keV excited states of 106-Pd are restricted on the level of T1/2 > 8.5e20 - 1.4e21 yr.
Physical limits for scaling of integrated circuits
Nawrocki, Waldemar
2010-11-01
In this paper we discuss some physical limits for scaling of devices and conducting paths inside of semiconductor integrated circuits (ICs). Since 40 years only a semiconductor technology, mostly the CMOS and the TTL technologies, are used for fabrication of integrated circuits in the industrial scale. Miniaturization of electronic devices in integrated circuits has technological limits and physical limits as well. In 2010 best parameters of commercial ICs shown the dual-core Intel Core i5-670 processor manufactured in the technology of 32 nm. Its clock frequency in turbo mode is 3.73 GHz. A forecast of the development of the semiconductor industry (ITRS 2009) predicts that sizes of electronic devices in ICs circuits will be smaller than 10 nm in the next 10 years. The physical gate length in a MOSFET will even amount 7 nm in the year 2024. At least 5 physical effects should be taken into account if we discuss limits of scaling of integrated circuits.
Growth Limits in Large Scale Networks
DEFF Research Database (Denmark)
Knudsen, Thomas Phillip
the fundamental technological resources in network technologies are analysed for scalability. Here several technological limits to continued growth are presented. The third step involves a survey of major problems in managing large scale networks given the growth of user requirements and the technological...... limitations. The rising complexity of network management with the convergence of communications platforms is shown as problematic for both automatic management feasibility and for manpower resource management. In the fourth step the scope is extended to include the present society with the DDN project as its...... main focus. Here the general perception of the nature and role in society of large scale networks as a fundamental infrastructure is analysed. This analysis focuses on the effects of the technical DDN projects and on the perception of network infrastructure as expressed by key decision makers...
Singular diffusionless limits of double-diffusive instabilities in magnetohydrodynamics
Kirillov, Oleg N
2016-01-01
We study local instabilities of a differentially rotating viscous flow of electrically conducting incompressible fluid subject to an external azimuthal magnetic field. In the presence of the magnetic field the hydrodynamically stable flow can demonstrate the azimuthal magnetorotational instability (AMRI) both in the diffusionless case and in the double--diffusive case with viscous and ohmic dissipation. Performing stability analysis of the amplitude transport equations of the short--wavelength approximation, we find that the threshold of the diffusionless AMRI via the Hamilton-Hopf bifurcation is a singular limit of the thresholds of the viscous and resistive AMRI corresponding to the dissipative Hopf bifurcation and manifests itself as the Whitney umbrella singular point. A smooth transition between the two types of instabilities is possible only if the magnetic Prandtl number is equal to unity, $\\rm Pm=1$. At a fixed ${\\rm Pm}\
Thermodynamic limit of bifacial double-junction tandem solar cells
Ryyan Khan, M.; Alam, Muhammad A.
2015-11-01
A traditional single-junction solar panel cannot harness ground-scattered light (albedo reflectance, RA ), and also suffers from the fundamental sub-band-gap and the thermalization losses. In this paper, we explain how a "bifacial tandem" panel would dramatically reduce these losses, with corresponding improvement in thermodynamic performance. Our study predicts (i) the optimum combination of the band-gaps, empirically given by Eg(t ) o p t≈Eg(b ) o p t(2 +RA)/3 +(1 -RA) and the (ii) corresponding optimum normalized output power given by ηT(op t ) *≈RA (2 ηSJ (o p t ) ) +(1 -RA ) ηDJ (o p t ) . Empirically, ηT(op t ) * interpolates between the thermodynamic efficiency limit of classical double-junction tandem cell ( ηDJ ) and twice that of a single-junction cell ( ηSJ ). We conclude by explaining how the fundamental loss mechanisms evolve with RA in a bifacial tandem cell.
Fabrication of a curved microlens array using double gray-scale digital maskless lithography
Luo, Ningning; Zhang, Zhimin
2017-03-01
Digital maskless lithography is considered to be a high-efficiency and low-cost approach for the fabrication of microstructures, but is limited by the gray scale capability of spatial light modulators. In this work, a novel method of double gray-scale digital maskless lithography is presented for forming a curved microlens array. The target exposure dose profile of the curved microlens array is first split into two individual 3D energy profiles, and then each 3D energy profile can be respectively realized by a single gray-scale digital lithography. Two gray-scale digital masks obtained by projection calculation are superposed on the substrate so as to realize the exposure dose profile of the curved microlens array. Thus, the effective steps that are achieved through the photoresist response to the modulated UV exposure are doubled, so a smoother profile with a steep gradient can be formed by the precise modulation of double gray-scale masks. As a result of the double gray-scale method, a curved microlens array with 183 micro lenslets on a 1024 µm × 768 µm spherical surface has been successfully fabricated.
Machining, Assembly, and Characterization of a Meso-Scale Double Shell Target
Energy Technology Data Exchange (ETDEWEB)
Bono, M J; Hibbard, R L
2003-10-21
Several issues related to the manufacture of precision meso-scale assemblies have been identified as part of an effort to fabricate an assembly consisting of machined polymer hemispherical shells and machined aerogel. The assembly, a double shell laser target, is composed of concentric spherical layers that were machined on a lathe and then assembled. This production effort revealed several meso-scale manufacturing techniques that worked well, such as the machining of aerogel with cutting tools to form low density structures, and the development of an assembly manipulator that allows control of the assembly forces to within a few milliNewtons. Limitations on the use of vacuum chucks for meso-scale components were also identified. Many of the lessons learned in this effort are not specific to double shell targets and may be relevant to the production of other meso-scale devices.
Emergence of double scaling law in complex system
Han, D D; Ma, Y G
2011-01-01
We introduce a stochastic model to explain a double power-law distribution which exhibits two different Paretian behaviors in the upper and the lower tail and widely exists in social and economic systems. The model incorporates fitness consideration and noise fluctuation. We find that if the number of variables (e.g. the degree of nodes in complex networks or people's incomes) grows exponentially, normal distributed fitness coupled with exponentially increasing variable is responsible for the emergence of the double power-law distribution. Fluctuations do not change the result qualitatively but contribute to the second-part scaling exponent. The evolution of Chinese airline network is taken as an example to show a nice agreement with our stochastic model.
Emergence of double scaling law in complex systems
Han, D. D.; Qian, J. H.; Ma, Y. G.
2011-04-01
We introduce a stochastic model to explain a double power-law distribution which exhibits two different Paretian behaviors in the upper and the lower tail and widely exists in social and economic systems. The model incorporates fitness consideration and noise fluctuation. We find that if the number of variables (e.g. the degree of nodes in complex networks or people's incomes) grows exponentially, the normal distributed fitness coupled with exponentially increasing variable is responsible for the emergence of the double power-law distribution. Fluctuations do not change the result qualitatively but contribute to the second-part scaling exponent. The evolution of the Chinese airline network is taken as an example to show a nice agreement with our stochastic model.
BIFURCATION OF LIMIT CYCLES FROM A DOUBLE HOMOCLINIC LOOP WITH A ROUGH SADDLE
Institute of Scientific and Technical Information of China (English)
HAN MAOAN; BI PING
2004-01-01
This paper concerns with the bifurcation of limit cycles from a double bomoclinic loop under multiple parameter perturbations for general planar systems. The existence conditions of 4 homoclinic bifurcation curves and small and large limit cycles are especially investigated.
Scaling limits of a model for selection at two scales
Luo, Shishi; Mattingly, Jonathan C.
2017-04-01
The dynamics of a population undergoing selection is a central topic in evolutionary biology. This question is particularly intriguing in the case where selective forces act in opposing directions at two population scales. For example, a fast-replicating virus strain outcompetes slower-replicating strains at the within-host scale. However, if the fast-replicating strain causes host morbidity and is less frequently transmitted, it can be outcompeted by slower-replicating strains at the between-host scale. Here we consider a stochastic ball-and-urn process which models this type of phenomenon. We prove the weak convergence of this process under two natural scalings. The first scaling leads to a deterministic nonlinear integro-partial differential equation on the interval [0,1] with dependence on a single parameter, λ. We show that the fixed points of this differential equation are Beta distributions and that their stability depends on λ and the behavior of the initial data around 1. The second scaling leads to a measure-valued Fleming–Viot process, an infinite dimensional stochastic process that is frequently associated with a population genetics.
Neutrinoless double $\\beta$ decay and low scale leptogenesis
Drewes, Marco
2016-01-01
The extension of the Standard Model by right handed neutrinos with masses in the GeV range can simultaneously explain the observed neutrino masses via the seesaw mechanism and the baryon asymmetry of the universe via leptogenesis. It has previously been claimed that the requirement for successful baryogenesis implies that the rate of neutrinoless double $\\beta$ decay in this scenario is always smaller than the standard prediction from light neutrino exchange alone. In contrast, we find that the rate for this process can also be enhanced due to a dominant contribution from heavy neutrino exchange. In a small part of the parameter space it even exceeds the current experimental limit, while the properties of the heavy neutrinos are consistent with all other experimental constraints and the observed baryon asymmetry is reproduced. This implies that neutrinoless double $\\beta$ decay experiments have already started to rule out part of the leptogenesis parameter space that is not constrained by any other experiment...
Ideal Quantum Gases with Planck Scale Limitations
Collier, Rainer
2015-01-01
A thermodynamic system of non-interacting quantum particles changes its statistical distribution formulas if there is a universal limitation for the size of energetic quantum leaps (magnitude of quantum leaps smaller than Planck energy). By means of a restriction of the a priori equiprobability postulate one can reach a thermodynamic foundation of these corrected distribution formulas. The number of microstates is determined by means of a suitable counting method and combined with thermodynamics via the Boltzmann principle. The result is that, for particle energies that come close to the Planck energy, the thermodynamic difference between fermion and boson distribution vanishes. Both distributions then approximate a Boltzmann distribution. The wave and particle character of the quantum particles, too, can be influenced by choosing the size of the temperature and particle energy parameters relative to the Planck energy, as you can see from the associated fluctuation formulas. In the case of non-relativistic de...
Neutrinoless double β decay and low scale leptogenesis
Drewes, Marco; Eijima, Shintaro
2016-12-01
The extension of the Standard Model by right handed neutrinos with masses in the GeV range can simultaneously explain the observed neutrino masses via the seesaw mechanism and the baryon asymmetry of the universe via leptogenesis. It has previously been claimed that the requirement for successful baryogenesis implies that the rate of neutrinoless double β decay in this scenario is always smaller than the standard prediction from light neutrino exchange alone. In contrast, we find that the rate for this process can also be enhanced due to a dominant contribution from heavy neutrino exchange. In a small part of the parameter space it even exceeds the current experimental limit, while the properties of the heavy neutrinos are consistent with all other experimental constraints and the observed baryon asymmetry is reproduced. This implies that neutrinoless double β decay experiments have already started to rule out part of the leptogenesis parameter space that is not constrained by any other experiment, and the lepton number violation that is responsible for the origin of baryonic matter in the universe may be observed in the near future.
Neutrinoless double β decay and low scale leptogenesis
Directory of Open Access Journals (Sweden)
Marco Drewes
2016-12-01
Full Text Available The extension of the Standard Model by right handed neutrinos with masses in the GeV range can simultaneously explain the observed neutrino masses via the seesaw mechanism and the baryon asymmetry of the universe via leptogenesis. It has previously been claimed that the requirement for successful baryogenesis implies that the rate of neutrinoless double β decay in this scenario is always smaller than the standard prediction from light neutrino exchange alone. In contrast, we find that the rate for this process can also be enhanced due to a dominant contribution from heavy neutrino exchange. In a small part of the parameter space it even exceeds the current experimental limit, while the properties of the heavy neutrinos are consistent with all other experimental constraints and the observed baryon asymmetry is reproduced. This implies that neutrinoless double β decay experiments have already started to rule out part of the leptogenesis parameter space that is not constrained by any other experiment, and the lepton number violation that is responsible for the origin of baryonic matter in the universe may be observed in the near future.
The limit order book on different time scales
Eisler, Zoltan; Lillo, Fabrizio
2007-01-01
Financial markets can be described on several time scales. We use data from the limit order book of the London Stock Exchange (LSE) to compare how the fluctuation dominated microstructure crosses over to a more systematic global behavior.
The limit order book on different time scales
Eisler, Zoltán; Kertész, János; Lillo, Fabrizio
2007-06-01
Financial markets can be described on several time scales. We use data from the limit order book of the London Stock Exchange (LSE) to compare how the fluctuation dominated microstructure crosses over to a more systematic global behavior.
Large-scale simulations of layered double hydroxide nanocomposite materials
Thyveetil, Mary-Ann
Layered double hydroxides (LDHs) have the ability to intercalate a multitude of anionic species. Atomistic simulation techniques such as molecular dynamics have provided considerable insight into the behaviour of these materials. We review these techniques and recent algorithmic advances which considerably improve the performance of MD applications. In particular, we discuss how the advent of high performance computing and computational grids has allowed us to explore large scale models with considerable ease. Our simulations have been heavily reliant on computational resources on the UK's NGS (National Grid Service), the US TeraGrid and the Distributed European Infrastructure for Supercomputing Applications (DEISA). In order to utilise computational grids we rely on grid middleware to launch, computationally steer and visualise our simulations. We have integrated the RealityGrid steering library into the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) 1 . which has enabled us to perform re mote computational steering and visualisation of molecular dynamics simulations on grid infrastruc tures. We also use the Application Hosting Environment (AHE) 2 in order to launch simulations on remote supercomputing resources and we show that data transfer rates between local clusters and super- computing resources can be considerably enhanced by using optically switched networks. We perform large scale molecular dynamics simulations of MgiAl-LDHs intercalated with either chloride ions or a mixture of DNA and chloride ions. The systems exhibit undulatory modes, which are suppressed in smaller scale simulations, caused by the collective thermal motion of atoms in the LDH layers. Thermal undulations provide elastic properties of the system including the bending modulus, Young's moduli and Poisson's ratios. To explore the interaction between LDHs and DNA. we use molecular dynamics techniques to per form simulations of double stranded, linear and plasmid DNA up
Advances in the Manufacture of Omega-scale Double-shell Targets
Bono, M.
2005-10-01
The double-shell ignition target design consists of a low-Z outer shell that absorbs hohlraum-generated x-rays, implodes, and collides with a high-Z inner shell containing DT fuel. Efforts are continuing to field scaled ignition-like double shells on the Omega laser facility over a range of inner-shell Z. Previous ignition-like double-shell implosions on Omega used a low-Z CH inner shell [1]. The current target contains a higher-Z glass inner shell of diameter 216 microns, which is supported by SiO2 aerogel inside a Br-doped CH ablator shell of diameter 550 microns. Fielding double-shell targets has historically been limited by the ability to successfully fabricate them, but several technological advances have recently been made in the manufacturing process. The inner capsule will be cast in SiO2 aerogel of density 50 mg/cc, whose outer contour will be machined concentric to the inner capsule. This piece will then be assembled between two hemispherical ablator shells that mate at a step-joint with an adhesive-filled gap of thickness 100 nm. Three-dimensional tomographs made of each target using an x-ray micro-tomography system will allow precise characterization of the targets. [1] P. Amendt et al., Phys. Rev. Lett. 94, 065004 (2005).
Scaling issues for analogue circuits using Double Gate SOI transistors
Lim, Tao Chuan; Armstrong, G. Alastair
2007-02-01
This work presents a systematic analysis on the impact of source-drain engineering using gate "non-overlapped" on the RF performance of nano-scaled fully depleted Double Gate SOI transistors, when used in the design of a typical two stage Operational Transconductance Amplifier (OTA). It is evident that for a gate length less than 40 nm, the incorporation of optimal source-drain engineering requiring a spacer length, which may exceed the length of the gate, is particularly beneficial in analogue applications. Lengthening the spacer reduces gate capacitance in the weak/moderate inversion region more than transconductance, improving cut-off frequency fT. This improvement is particularly significant in a circuit application where an optimal spacer of 1.5 times the gate length is proposed. This gate under-lapped concept with extended spacer can also significantly enhance DC gain of the OTA, by increasing the Early Voltage, while maximising the transconductance to current ratio in the weak to moderate inversion, close to threshold voltage. With optimally designed devices, the sensitivity of OTA circuit performance to doping profile is shown to be relatively low.
Limit on the radiative neutrinoless double electron capture of ^{36}Ar from GERDA Phase I
Agostini, M.; Allardt, M.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Barros, N.; Baudis, L.; Bauer, C.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; di Vacri, A.; Domula, A.; Doroshkevich, E.; Egorov, V.; Falkenstein, R.; Fedorova, O.; Freund, K.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Gooch, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hakenmüller, J.; Hegai, A.; Heisel, M.; Hemmer, S.; Heusser, G.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Csáthy, J. Janicskó; Jochum, J.; Junker, M.; Kazalov, V.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Kish, A.; Klimenko, A.; Kneißl, R.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Medinaceli, E.; Miloradovic, M.; Mingazheva, R.; Misiaszek, M.; Moseev, P.; Nemchenok, I.; Palioselitis, D.; Panas, K.; Pandola, L.; Pelczar, K.; Pullia, A.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salamida, F.; Salathe, M.; Schmitt, C.; Schneider, B.; Schönert, S.; Schreiner, J.; Schütz, A.-K.; Schulz, O.; Schwingenheuer, B.; Selivanenko, O.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Stepaniuk, M.; Vanhoefer, L.; Vasenko, A. A.; Veresnikova, A.; von Sturm, K.; Wagner, V.; Walter, M.; Wegmann, A.; Wester, T.; Wiesinger, C.; Wilsenach, H.; Wojcik, M.; Yanovich, E.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.
2016-12-01
Neutrinoless double electron capture is a process that, if detected, would give evidence of lepton number violation and the Majorana nature of neutrinos. A search for neutrinoless double electron capture of ^{36}Ar has been performed with germanium detectors installed in liquid argon using data from Phase I of the GERmanium Detector Array ( Gerda) experiment at the Gran Sasso Laboratory of INFN, Italy. No signal was observed and an experimental lower limit on the half-life of the radiative neutrinoless double electron capture of ^{36}Ar was established: T_{1/2} > 3.6 × 10^{21} years at 90% CI.
Limit on the radiative neutrinoless double electron capture of {sup 36}Ar from GERDA Phase I
Energy Technology Data Exchange (ETDEWEB)
Agostini, M.; Balata, M.; D' Andrea, V.; Di Vacri, A.; Junker, M.; Laubenstein, M. [INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, Assergi (Italy); Allardt, M.; Domula, A.; Lehnert, B.; Schneider, B.; Wester, T.; Wilsenach, H.; Zuber, K. [Technische Universitaet Dresden, Institut fuer Kern- und Teilchenphysik, Dresden (Germany); Bakalyarov, A.M.; Belyaev, S.T.; Lebedev, V.I.; Zhukov, S.V. [National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Barabanov, I.; Bezrukov, L.; Doroshkevich, E.; Fedorova, O.; Gurentsov, V.; Kazalov, V.; Kuzminov, V.V.; Lubsandorzhiev, B.; Moseev, P.; Selivanenko, O.; Veresnikova, A.; Yanovich, E. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Barros, N. [Technische Universitaet Dresden, Institut fuer Kern- und Teilchenphysik, Dresden (Germany); University of Pennsylvania, Philadelphia, PA (United States); Baudis, L.; Benato, G.; Kish, A.; Miloradovic, M.; Mingazheva, R.; Walter, M. [Physik Institut der Universitaet Zuerich, Zurich (Switzerland); Bauer, C.; Hakenmueller, J.; Heisel, M.; Heusser, G.; Hofmann, W.; Kihm, T.; Kirsch, A.; Knoepfle, K.T.; Lindner, M.; Maneschg, W.; Salathe, M.; Schreiner, J.; Schwingenheuer, B.; Simgen, H.; Smolnikov, A.; Stepaniuk, M.; Wagner, V.; Wegmann, A. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Bellotti, E. [Universita Milano Bicocca, Dipartimento di Fisica, Milan (Italy); INFN Milano Bicocca, Milan (Italy); Belogurov, S.; Kornoukhov, V.N. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Institute for Theoretical and Experimental Physics NRC ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Bettini, A.; Brugnera, R.; Garfagnini, A.; Medinaceli, E.; Sada, C.; Sturm, K. von [Dipartimento di Fisica e Astronomia dell' Universita di Padova, Padua (Italy); INFN Padova, Padua (Italy); Bode, T.; Csathy, J.J.; Lazzaro, A.; Schoenert, S.; Wiesinger, C. [Technische Universitaet Muenchen, Physik Department and Excellence Cluster Universe, Munich (Germany); Borowicz, D. [Jagiellonian University, Institute of Physics, Krakow (Poland); Joint Institute for Nuclear Research, Dubna (Russian Federation); Brudanin, V.; Egorov, V.; Kochetov, O.; Nemchenok, I.; Rumyantseva, N.; Zhitnikov, I.; Zinatulina, D. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Caldwell, A.; Gooch, C.; Kneissl, R.; Liao, H.Y.; Majorovits, B.; Palioselitis, D.; Schulz, O.; Vanhoefer, L. [Max-Planck-Institut fuer Physik, Munich (Germany); Cattadori, C.; Salamida, F. [INFN Milano Bicocca, Milan (Italy); Chernogorov, A.; Demidova, E.V.; Kirpichnikov, I.V.; Vasenko, A.A. [Institute for Theoretical and Experimental Physics NRC ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Falkenstein, R.; Freund, K.; Grabmayr, P.; Hegai, A.; Jochum, J.; Schmitt, C.; Schuetz, A.K. [Eberhard Karls Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); Frodyma, N.; Misiaszek, M.; Panas, K.; Pelczar, K.; Wojcik, M.; Zuzel, G. [Jagiellonian University, Institute of Physics, Krakow (Poland); Gangapshev, A. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Gusev, K. [Joint Institute for Nuclear Research, Dubna (Russian Federation); National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Technische Universitaet Muenchen, Physik Department and Excellence Cluster Universe, Munich (Germany); Hemmer, S.; Lippi, I.; Stanco, L. [INFN Padova, Padua (Italy); Hult, M.; Lutter, G. [European Commission, JRC-Geel, Geel (Belgium); Inzhechik, L.V. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Moscow Institute of Physics and Technology, Moscow (Russian Federation); Klimenko, A. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); International University for Nature, Society and Man ' ' Dubna' ' , Dubna (Russian Federation); Lubashevskiy, A. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Macolino, C. [INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, Assergi (Italy); LAL, CNRS/IN2P3, Universite Paris-Saclay, Orsay (France); Pandola, L. [INFN Laboratori Nazionali del Sud, Catania (Italy); Pullia, A.; Riboldi, S. [Universita degli Studi di Milano, Dipartimento di Fisica, Milan (Italy); INFN Milano (Italy); Shirchenko, M. [Joint Institute for Nuclear Research, Dubna (Russian Federation); National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Collaboration: GERDA collaboration
2016-12-15
Neutrinoless double electron capture is a process that, if detected, would give evidence of lepton number violation and the Majorana nature of neutrinos. A search for neutrinoless double electron capture of {sup 36}Ar has been performed with germanium detectors installed in liquid argon using data from Phase I of the GERmanium Detector Array (Gerda) experiment at the Gran Sasso Laboratory of INFN, Italy. No signal was observed and an experimental lower limit on the half-life of the radiative neutrinoless double electron capture of {sup 36}Ar was established: T{sub 1/2} > 3.6 x 10{sup 21} years at 90% CI. (orig.)
Limit on the Radiative Neutrinoless Double Electron Capture of $^{36}$Ar from GERDA Phase I
Agostini, M; Bakalyarov, A M; Balata, M; Barabanov, I; Barros, N; Baudis, L; Bauer, C; Bellotti, E; Belogurov, S; Belyaev, S T; Benato, G; Bettini, A; Bezrukov, L; Bode, T; Borowicz, D; Brudanin, V; Brugnera, R; Caldwell, A; Cattadori, C; Chernogorov, A; D'Andrea, V; Demidova, E V; di Vacri, A; Domula, A; Doroshkevich, E; Egorov, V; Falkenstein, R; Fedorova, O; Freund, K; Frodyma, N; Gangapshev, A; Garfagnini, A; Gooch, C; Grabmayr, P; Gurentsov, V; Gusev, K; Hakenmüller, J; Hegai, A; Heisel, M; Hemmer, S; Heusser, G; Hofmann, W; Hult, M; Inzhechik, L V; Csáthy, J Janicskó; Jochum, J; Junker, M; Kazalov, V; Kihm, T; Kirpichnikov, I V; Kirsch, A; Kish, A; Klimenko, A; Kneißl, R; Knöpfle, K T; Kochetov, O; Kornoukhov, V N; Kuzminov, V V; Laubenstein, M; Lazzaro, A; Lebedev, V I; Lehnert, B; Liao, H Y; Lindner, M; Lippi, I; Lubashevskiy, A; Lubsandorzhiev, B; Lutter, G; Macolino, C; Majorovits, B; Maneschg, W; Medinaceli, E; Miloradovic, M; Mingazheva, R; Misiaszek, M; Moseev, P; Nemchenok, I; Palioselitis, D; Panas, K; Pandola, L; Pelczar, K; Pullia, A; Riboldi, S; Rumyantseva, N; Sada, C; Salamida, F; Salathe, M; Schmitt, C; Schneider, B; Schönert, S; Schreiner, J; Schütz, A -K; Schulz, O; Schwingenheuer, B; Selivanenko, O; Shirchenko, M; Simgen, H; Smolnikov, A; Stanco, L; Stepaniuk, M; Vanhoefer, L; Vasenko, A A; Veresnikova, A; von Sturm, K; Wagner, V; Walter, M; Wegmann, A; Wester, T; Wiesinger, C; Wilsenach, H; Wojcik, M; Yanovich, E; Zhitnikov, I; Zhukov, S V; Zinatulina, D; Zuber, K; Zuzel, G
2016-01-01
Neutrinoless double electron capture is a process that, if detected, would give evidence of lepton number violation and the Majorana nature of neutrinos. A search for neutrinoless double electron capture of $^{36}$Ar has been performed with germanium detectors installed in liquid argon using data from Phase I of the GERmanium Detector Array (GERDA) experiment at the Gran Sasso Laboratory of INFN, Italy. No signal was observed and an experimental lower limit on the half-life of the radiative neutrinoless double electron capture of $^{36}$Ar was established: $T_{1/2} > $ 4.0 $\\times$ 10$^{21}$ yr at 90 % C.I.
Conformally invariant scaling limits in planar critical percolation
Sun, Nike
2009-01-01
This survey gives an account of the emergence of conformal invariance in the scaling limit of critical percolation on the triangular lattice, as the lattice mesh is taken to zero. The main purpose is to provide a mostly self-contained proof of the result, due to Smirnov and to Camia and Newman, that the percolation exploration path has a conformally invariant scaling limit. To motivate this proof, we will review the conformal invariance of planar Brownian motion, as well as its connection to harmonic functions. We then prove Smirnov's result on the conformal invariance of crossing probabilities in the scaling limit. The remainder of the article describes how to pass from this result to the conformally invariant scaling limit of the exploration path. To do this we give an introduction to the Schramm-Loewner evolutions SLE(k); it is known that the exploration path converges to SLE(6). We also discuss how to make a rigorous definition of the scaling limit of a random curve, and we present the proof of Aizenman a...
Scale invariance of subsurface flow patterns and its limitation
Hergarten, S.; Winkler, G.; Birk, S.
2016-05-01
Preferential flow patterns in the subsurface are of great importance for the availability and the quality of water resources. However, knowledge of their spatial structure is still behind their importance, so that understanding the nature of preferential flow patterns is a major issue in subsurface hydrology. Comparing the statistics of river catchment sizes and spring discharges, we found that the morphology of preferential subsurface flow patterns is probably scale invariant and similar to that of dendritic river networks. This result is not limited to karstic aquifers where the occurrence of dendritic structures has been known at least qualitatively for a long time. The scale invariance even seems to be independent of the lithology of the aquifer. However, scale invariance of river patterns seems to be only limited by the continental scale, while scale invariance of subsurface flow patterns breaks down at much smaller scales. The upper limit of scale invariance in subsurface flow patterns is highly variable. We found a range from thousands of square kilometers for limestone aquifers down to less than 1 km2 in the weathered zone and debris accumulations of crystalline rocks.
Modelling across bioreactor scales: methods, challenges and limitations
DEFF Research Database (Denmark)
Gernaey, Krist
Scale-up and scale-down of bioreactors are very important in industrial biotechnology, especially with the currently available knowledge on the occurrence of gradients in industrial-scale bioreactors. Moreover, it becomes increasingly appealing to model such industrial scale systems, considering...... that it is challenging and expensive to acquire experimental data of good quality that can be used for characterizing gradients occurring inside a large industrial scale bioreactor. But which model building methods are available? And how can one ensure that the parameters in such a model are properly estimated? And what...... are the limitations of different types of mod - els? This paper will provide examples of models that have been published in the literature for use across bioreactor scales, including computational fluid dynamics (CFD) and population balance models. Furthermore, the importance of good modeling practice...
Double soft limit of the graviton amplitude from the Cachazo-He-Yuan formalism
Saha, Arnab Priya
2017-08-01
We present a complete analysis for double soft limit of graviton scattering amplitude using the formalism proposed by Cachazo, He, and Yuan. Our results agree with that obtained via Britto-Cachazo-Feng-Witten (BCFW) recursion relations in [T. Klose, T. McLoughlin, D. Nandan, J. Plefka, and G. Travaglini, Double-soft limits of gluons and gravitons, J. High Energy Phys. 07 (2015) 135., 10.1007/JHEP07(2015)135]. In addition we find precise relations between degenerate and nondegenerate solutions of scattering equations with local and nonlocal terms in the soft factor.
Corrected Kondo temperature beyond the conventional Kondo scaling limit
Li, ZhenHua; Wei, JianHua; Zheng, Xiao; Yan, YiJing; Luo, Hong-Gang
2017-05-01
In the Kondo systems such as the magnetic impurity screened by the conduction electrons in a metal host, as well as the quantum dots connected by the leads, the low energy behaviors have universal dependence on the T/T\\text{K}0 or eV/{{k}\\text{B}}T\\text{K}0 , where T\\text{K}0 is the conventional Kondo temperature. However, it was shown that this scaling behavior is only valid at low-energy; this is called the Kondo scaling limit. Here we explore the extention of the scaling parameter range by introducing the corrected Kondo temperature T K, which may depend on the temperature and bias, as well as the other external parameters. We define the corrected Kondo temperature by scaling the local density of states near the Fermi level, obtained by accurate hierarchy of equations of motion approach at finite temperature and finite bias, and thus obtain a phenomenological expression of the corrected Kondo temperature. By using the corrected Kondo temperature as a characteristic energy scale, the conductance of the quantum dot can be well scaled in a wide parameter range, even two orders beyond the conventional scaling parameter range. Our work indicates that the Kondo scaling, although dominated by the conventional Kondo temperature in the low-energy of the Kondo system, could be extended to a higher energy regime, which is useful for analyzing the physics of the Kondo transport in non-equilibrium or high temperature cases.
Corrected Kondo temperature beyond the conventional Kondo scaling limit.
Li, ZhenHua; Wei, JianHua; Zheng, Xiao; Yan, YiJing; Luo, Hong-Gang
2017-02-20
In the Kondo systems such as the magnetic impurity screened by the conduction electrons in a metal host, as well as the quantum dots connected by the leads, the low energy behaviors have universal dependence on the [Formula: see text] or [Formula: see text], where [Formula: see text] is the conventional Kondo temperature. However, it was shown that this scaling behavior is only valid at low-energy; this is called the Kondo scaling limit. Here we explore the extention of the scaling parameter range by introducing the corrected Kondo temperature T K, which may depend on the temperature and bias, as well as the other external parameters. We define the corrected Kondo temperature by scaling the local density of states near the Fermi level, obtained by accurate hierarchy of equations of motion approach at finite temperature and finite bias, and thus obtain a phenomenological expression of the corrected Kondo temperature. By using the corrected Kondo temperature as a characteristic energy scale, the conductance of the quantum dot can be well scaled in a wide parameter range, even two orders beyond the conventional scaling parameter range. Our work indicates that the Kondo scaling, although dominated by the conventional Kondo temperature in the low-energy of the Kondo system, could be extended to a higher energy regime, which is useful for analyzing the physics of the Kondo transport in non-equilibrium or high temperature cases.
Towards Limited Scale-free Topology with Dynamic Peer Participation
Lu, Xiaoyan; Szymanski, Boleslaw
2016-01-01
Growth models have been proposed for constructing the scale-free overlay topology to improve the performance of unstructured peer-to-peer (P2P) networks. However, previous growth models are able to maintain the limited scale-free topology when nodes only join but do not leave the network; the case of nodes leaving the network while preserving a precise scaling parameter is not included in the solution. Thus, the full dynamic of node participation, inherent in P2P networks, is not considered in these models. In order to handle both nodes joining and leaving the network, we propose a robust growth model E-SRA, which is capable of producing the perfect limited scale-free overlay topology with user-defined scaling parameter and hard cut-offs. Scalability of our approach is ensured since no global information is required to add or remove a node. E-SRA is also tolerant to individual node failure caused by errors or attacks. Simulations have shown that E-SRA outperforms other growth models by producing topologies wi...
The double-soft limit in cosmological correlation functions and graviton exchange effects
Alinea, Allan L.; Kubota, Takahiro; Misumi, Nobuhiko
2017-01-01
The graviton exchange effect on cosmological correlation functions is examined by employing the double-soft limit technique. A new relation among correlation functions that contain the effects due to graviton exchange diagrams in addition to those due to scalar-exchange and scalar-contact-interaction, is derived by using the background field method and independently by the method of Ward identities associated with dilatation symmetry. We compare these three terms, putting small values for the slow-roll parameters and (1‑ns) ≈ 0.042, where ns is the scalar spectral index. It is argued that the graviton exchange effects are more dominant than the other two and could be observed in the trispectrum in the double-soft limit. Our observation strengthens the previous work by Seery, Sloth and Vernizzi, in which it has been argued that the graviton exchange dominates in the counter-collinear limit for single field slow-roll inflation.
Continuum-limit scaling of overlap fermions as valence quarks
Energy Technology Data Exchange (ETDEWEB)
Cichy, Krzysztof [Adam Mickiewicz Univ., Poznan (Poland). Faculty of Physics; Herdoiza, Gregorio; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2009-10-15
We present the results of a mixed action approach, employing dynamical twisted mass fermions in the sea sector and overlap valence fermions, with the aim of testing the continuum limit scaling behaviour of physical quantities, taking the pion decay constant as an example. To render the computations practical, we impose for this purpose a fixed finite volume with lattice size L{approx}1.3 fm. We also briefly review the techniques we have used to deal with overlap fermions. (orig.)
Institute of Scientific and Technical Information of China (English)
Yong-xi Gao; Yu-hai Wu; Li-xin Tian
2008-01-01
This paper concerns with the number and distributions of limit cycles of a quintic subject to a seven-degree perturbation. With the aid of numeric integral computation provided by Mathematica 4.1, at least 45 limit cycles are found in the above system by applying the method of double homoclinic loops bifurcation,Hopf bifurcation and qualitative analysis. The four configurations of 45 limit cycles of the system are also shown.The results obtained are useful to the study of the weakened 16th Hilbert Problem.
Biological conversion of synthesis gas. Limiting conditions/scale-up
Energy Technology Data Exchange (ETDEWEB)
Basu, R.; Klasson, K.T.; Takriff, M.; Clausen, E.C.; Gaddy, J.L.
1993-09-01
The purpose of this research is to develop a technically and economically feasible process for biologically producing H(sub 2) from synthesis gas while, at the same time, removing harmful sulfur gas compounds. Six major tasks are being studied: 1. Culture development, where the best cultures are selected and conditions optimized for simultaneous hydrogen production and sulfur gas removal; 2. Mass transfer and kinetic studies in which equations necessary for process design are developed; 3. Bioreactor design studies, where the cultures chosen in Task 1 are utilized in continuous reaction vessels to demonstrate process feasibility and define operating conditions; 4. Evaluation of biological synthetic gas conversion under limiting conditions in preparation for industrial demonstration studies; 5. Process scale-up where laboratory data are scaled to larger-size units in preparation for process demonstration in a pilot-scale unit; and 6. Economic evaluation, where process simulations are used to project process economics and identify high cost areas during sensitivity analyses.
Local versus basin-scale limitation of marine nitrogen fixation.
Weber, Thomas; Deutsch, Curtis
2014-06-17
Nitrogen (N) fixation by diazotrophic plankton is the primary source of this crucial nutrient to the ocean, but the factors limiting its rate and distribution are controversial. According to one view, the ecological niche of diazotrophs is primarily controlled by the ocean through internally generated N deficits that suppress the growth of their competitors. A second view posits an overriding limit from the atmosphere, which restricts diazotrophs to regions where dust deposition satisfies their high iron (Fe) requirement, thus separating N sources from sinks at a global scale. Here we use multiple geochemical signatures of N2 fixation to show that the Fe limitation of diazotrophs is strong enough to modulate the regional distribution of N2 fixation within ocean basins--particularly the Fe-poor Pacific--but not strong enough to influence its partition between basins, which is instead governed by rates of N loss. This scale-dependent limitation of N2 fixation reconciles local observations of Fe stress in diazotroph communities with an inferred spatial coupling of N sources and sinks. Within this regime of intermediate Fe control, the oceanic N reservoir would respond only weakly to enhanced dust fluxes during glacial climates, but strongly to the reduced fluxes hypothesized under anthropogenic climate warming.
Validity of double scaling analysis in semi-inclusive processes - $J/\\psi$ production at HERA
Sarkar, Tapobrata; Basu, Rahul
1997-01-01
In this paper we check the validity of the ideas of double scaling as given by Ball and Forte in a semi inclusive process like $J/\\psi$ production at HERA, in different kinematical regions, for low values of the Bjorken variable $x$. In particular, we study $J/\\psi$ production in the inelastic and diffractive (elastic) regimes using the double scaling form of the gluon distribution functions. We compare these predictions with data (wherever available) and with other standard parameterisations...
The double soft limit in cosmological correlation functions and graviton exchange effects
Alinea, Allan L; Misumi, Nobuhiko
2016-01-01
The graviton exchange effect on cosmological correlation functions is examined by employing the double soft limit technique. A new relation among correlation functions that contain the effects due to graviton exchange diagrams is derived by using the background field method and independently by the method of Ward identities associated with dilatation symmetry. The four point correlation function is shown to consist of three terms that come from scalar-exchange, scalar-contact-interaction and the graviton exchange. We compare these three terms, putting small values for the slow roll parameters and $(1-n_{s}) = 0.042$, where $n_{s}$ is the scalar spectral index. It is argued that the graviton exchange effects are more dominant than the other two and could be observed in the trispectrum in the double soft limit.
A Large Scale Double $\\beta$ and Dark Matter Experiment GENIUS
Hellmig, J
1997-01-01
The recent results from the HEIDELBERG-MOSCOW experiment have demonstrated the large potential of double beta decay to search for new physics beyond the Standard Model. To increase by a major step the present sensitivity for double beta decay and dark matter search much bigger source strengths and much lower backgrounds are needed than used in experiments under operation at present or under construction. We present here a study of a project proposed recently, which would operate one ton of 'naked' enriched GErmanium-detectors in liquid NItrogen as shielding in an Underground Setup (GENIUS). It improves the sensitivity to neutrino masses to 0.01 eV. A ten ton version would probe neutrino masses even down to 10^-3 eV. The first version would allow to test the atmospheric neutrino problem, the second at least part of the solar neutrino problem. Both versions would allow in addition significant contributions to testing several classes of GUT models. These are especially tests of R-parity breaking supersymmetry mo...
Some comments on the real limit for neutrinoless double beta decay of [sup 76]Ge
Energy Technology Data Exchange (ETDEWEB)
Kirpichnikov, I.V. (Inst. for Theoretical and Experimental Physics, Moscow (USSR))
1992-07-01
Results of the UCSB/LBL and ITEP/YePI searches for neutrinoless double beta decay of [sup 76]Ge have been revised in attempt to understand real accuracy of the claimed lifetime limits. New value of the total energy of the decay and existence of gross-structure in the collected spectra were taken into account. The limit was proved to be T[sub 1/2] > 1x10[sup 24]y (90% CL) from analysis of the ITEP/YePI results. (orig.).
Lithography-induced limits to scaling of design quality
Kahng, Andrew B.
2014-03-01
Quality and value of an IC product are functions of power, performance, area, cost and reliability. The forthcoming 2013 ITRS roadmap observes that while manufacturers continue to enable potential Moore's Law scaling of layout densities, the "realizable" scaling in competitive products has for some years been significantly less. In this paper, we consider aspects of the question, "To what extent should this scaling gap be blamed on lithography?" Non-ideal scaling of layout densities has been attributed to (i) layout restrictions associated with multi-patterning technologies (SADP, LELE, LELELE), as well as (ii) various ground rule and layout style choices that stem from misalignment, reliability, variability, device architecture, and electrical performance vs. power constraints. Certain impacts seem obvious, e.g., loss of 2D flexibility and new line-end placement constraints with SADP, or algorithmically intractable layout stitching and mask coloring formulations with LELELE. However, these impacts may well be outweighed by weaknesses in design methodology and tooling. Arguably, the industry has entered a new era in which many new factors - (i) standard-cell library architecture, and layout guardbanding for automated place-and-route: (ii) performance model guardbanding and signoff analyses: (iii) physical design and manufacturing handoff algorithms spanning detailed placement and routing, stitching and RET; and (iv) reliability guardbanding - all contribute, hand in hand with lithography, to a newly-identified "design capability gap". How specific aspects of process and design enablements limit the scaling of design quality is a fundamental question whose answer must guide future RandD investment at the design-manufacturing interface. terface.
On soft limits of large-scale structure correlation functions
Energy Technology Data Exchange (ETDEWEB)
Sagunski, Laura
2016-08-15
Large-scale structure surveys have the potential to become the leading probe for precision cosmology in the next decade. To extract valuable information on the cosmological evolution of the Universe from the observational data, it is of major importance to derive accurate theoretical predictions for the statistical large-scale structure observables, such as the power spectrum and the bispectrum of (dark) matter density perturbations. Hence, one of the greatest challenges of modern cosmology is to theoretically understand the non-linear dynamics of large-scale structure formation in the Universe from first principles. While analytic approaches to describe the large-scale structure formation are usually based on the framework of non-relativistic cosmological perturbation theory, we pursue another road in this thesis and develop methods to derive generic, non-perturbative statements about large-scale structure correlation functions. We study unequal- and equal-time correlation functions of density and velocity perturbations in the limit where one of their wavenumbers becomes small, that is, in the soft limit. In the soft limit, it is possible to link (N+1)-point and N-point correlation functions to non-perturbative 'consistency conditions'. These provide in turn a powerful tool to test fundamental aspects of the underlying theory at hand. In this work, we first rederive the (resummed) consistency conditions at unequal times by using the so-called eikonal approximation. The main appeal of the unequal-time consistency conditions is that they are solely based on symmetry arguments and thus are universal. Proceeding from this, we direct our attention to consistency conditions at equal times, which, on the other hand, depend on the interplay between soft and hard modes. We explore the existence and validity of equal-time consistency conditions within and beyond perturbation theory. For this purpose, we investigate the predictions for the soft limit of the
New limit on Lorentz violation using a double-pass optical ring cavity.
Michimura, Yuta; Matsumoto, Nobuyuki; Ohmae, Noriaki; Kokuyama, Wataru; Aso, Yoichi; Ando, Masaki; Tsubono, Kimio
2013-05-17
A search for Lorentz violation in electrodynamics was performed by measuring the resonant frequency difference between two counterpropagating directions of an optical ring cavity. Our cavity contains a dielectric element, which makes our cavity sensitive to the violation. The laser frequency is stabilized to the counterclockwise resonance of the cavity, and the transmitted light is reflected back into the cavity for resonant frequency comparison with the clockwise resonance. This double-pass configuration enables a null experiment and gives high common mode rejection of environmental disturbances. We found no evidence for odd-parity anisotropy at the level of δc/c ≲ 10(-14). Within the framework of the standard model extension, our result put more than 5 times better limits on three odd-parity parameters κ(o+)(JK) and a 12 times better limit on the scalar parameter κ(tr) compared with the previous best limits.
New Limits on Double Electron Capture of 40Ca and 180W
Angloher, G; Bauer, P; Bavykina, I; Bento, A; Bucci, C; Canonica, L; Ciemniak, C; Defay, X; Deuter, G; Erb, A; Feilitzsch, F v; Iachellini, N Ferreiro; Gorla, P; Gütlein, A; Hauff, D; Huff, P; Isaila, C; Jochum, J; Kiefer, M; Kimmerle, M; Kluck, H; Kraus, H; Lanfranchi, J -C; Loebell, J; Münster, A; Pagliarone, C; Petricca, F; Pfister, S; Potzel, W; Pröbst, F; Reindl, F; Roth, S; Rottler, K; Sailer, C; Schäffner, K; Schieck, J; Schmaler, J; Scholl, S; Schönert, S; Seidel, W; Sivers, M v; Stodolsky, L; Strandhagen, C; Strauss, R; Tanzke, A; Tretyak, V; Thi, H H Trinh; Türkoğlu, C; Uffinger, M; Ulrich, A; Usherov, I; Wawoczny, S; Willers, M; Wüstrich, M; Zöller, A
2016-01-01
We analyzed low-background data from the CRESST-II experiment with a total net exposure of 730 kg days to extract limits on double electron capture processes. We established new limits for 40Ca with T1/2 2v2K >9.9x10^21 y and T1/2 0v2EC >1.4x10^22 y and for 180W with T1/2 2v2K >3.1x10^19 y and T1/2 0v2EC >9.4x10^18 y at 90% CL. These values improve the currently best limits by up to a factor of ~30.
European Continental Scale Hydrological Model, Limitations and Challenges
Rouholahnejad, E.; Abbaspour, K.
2014-12-01
The pressures on water resources due to increasing levels of societal demand, increasing conflict of interest and uncertainties with regard to freshwater availability create challenges for water managers and policymakers in many parts of Europe. At the same time, climate change adds a new level of pressure and uncertainty with regard to freshwater supplies. On the other hand, the small-scale sectoral structure of water management is now reaching its limits. The integrated management of water in basins requires a new level of consideration where water bodies are to be viewed in the context of the whole river system and managed as a unit within their basins. In this research we present the limitations and challenges of modelling the hydrology of the continent Europe. The challenges include: data availability at continental scale and the use of globally available data, streamgauge data quality and their misleading impacts on model calibration, calibration of large-scale distributed model, uncertainty quantification, and computation time. We describe how to avoid over parameterization in calibration process and introduce a parallel processing scheme to overcome high computation time. We used Soil and Water Assessment Tool (SWAT) program as an integrated hydrology and crop growth simulator to model water resources of the Europe continent. Different components of water resources are simulated and crop yield and water quality are considered at the Hydrological Response Unit (HRU) level. The water resources are quantified at subbasin level with monthly time intervals for the period of 1970-2006. The use of a large-scale, high-resolution water resources models enables consistent and comprehensive examination of integrated system behavior through physically-based, data-driven simulation and provides the overall picture of water resources temporal and spatial distribution across the continent. The calibrated model and results provide information support to the European Water
Evaluating Feed Delivery Performance in Scaled Double-Shell Tanks
Energy Technology Data Exchange (ETDEWEB)
Lee, Kearn P.; Thien, Michael G.
2013-11-07
The Hanford Tank Operations Contractor (TOC) and the Hanford Waste Treatment and Immobilization Plant (WTP) contractor are both engaged in demonstrating mixing, sampling, and transfer system capability using simulated Hanford High-Level Waste (HLW) formulations. This work represents one of the remaining technical issues with the high-level waste treatment mission at Hanford. The TOCs' ability to adequately mix and sample high-level waste feed to meet the WTP WAC Data Quality Objectives must be demonstrated. The tank mixing and feed delivery must support both TOC and WTP operations. The tank mixing method must be able to remove settled solids from the tank and provide consistent feed to the WTP to facilitate waste treatment operations. Two geometrically scaled tanks were used with a broad spectrum of tank waste simulants to demonstrate that mixing using two rotating mixer jet pumps yields consistent slurry compositions as the tank is emptied in a series of sequential batch transfers. Testing showed that the concentration of slow settling solids in each transfer batch was consistent over a wide range of tank operating conditions. Although testing demonstrated that the concentration of fast settling solids decreased by up to 25% as the tank was emptied, batch-to-batch consistency improved as mixer jet nozzle velocity in the scaled tanks increased.
Group-delay Dispersion in Double-prism Pair and Limitation in Broadband Laser Pulses
Institute of Scientific and Technical Information of China (English)
程昭; 赵卫
2002-01-01
A general expression of group-delay dispersion is obtained without any approximation for a pair of double prisms with an arbitrary apex angle. This expression also includes the change of dispersion resulting from change in insertion of the prism material into the beam by translating prism-pairs. The high-order dispersion can be calculated by means of this expression. The limitation for generation of negative group-delay dispersion by use of prism-pairs is presented for ultrashort laser pulses with broadband spectrum.
On soft limits of large-scale structure correlation functions
Energy Technology Data Exchange (ETDEWEB)
Ben-Dayan, Ido; Konstandin, Thomas; Porto, Rafael A.; Sagunski, Laura [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group
2014-11-15
We study soft limits of correlation functions for the density and velocity fields in the theory of structure formation. First, we rederive the (resummed) consistency conditions at unequal times using the eikonal approximation. These are solely based on symmetry arguments and are therefore universal. Then, we explore the existence of equal-time relations in the soft limit which, on the other hand, depend on the interplay between soft and hard modes. We scrutinize two approaches in the literature: The time-flow formalism, and a background method where the soft mode is absorbed into a locally curved cosmology. The latter has been recently used to set up (angular averaged) 'equal-time consistency relations'. We explicitly demonstrate that the time-flow relations and 'equal-time consistency conditions' are only fulfilled at the linear level, and fail at next-to-leading order for an Einstein de-Sitter universe. While applied to the velocities both proposals break down beyond leading order, we find that the 'equal-time consistency conditions' quantitatively approximates the perturbative results for the density contrast. Thus, we generalize the background method to properly incorporate the effect of curvature in the density and velocity fluctuations on short scales, and discuss the reasons behind this discrepancy. We conclude with a few comments on practical implementations and future directions.
Analogue saturation limit of single and double 10 mm microchannel plate photomultiplier tubes
Milnes, J. S.; Conneely, T. M.; Horsfield, C. J.
2016-11-01
Photek are a well-established supplier of microchannel plate (MCP) photomultiplier tubes (PMTs) to the inertial confinement fusion community. The analogue signals produced at the major inertial confinement fusion facilities cover many orders of magnitude, therefore understanding the upper saturation limit of MCP-PMTs to large low rate signals takes on a high importance. Here we present a study of a single and a double MCP-PMT with 10 mm diameter active area. The saturation was studied for a range of optical pulse widths from 4 ns to 100 ns and at a range of electron gain values: 103 to 104 for the single and 104 to 106 for the double. We have shown that the saturation level of ˜1.2 nC depends only on the integrated charge of the pulse and is independent of pulse width and gain over this range, but that the level of charge available in deep saturation is proportional to the operating gain.
Institute of Scientific and Technical Information of China (English)
Minjie Huang; Zhijun Meng
2015-01-01
The transmission upper limit of a double-layer frequency selective surface (FSS) with two infinitely thin metal arrays is pre-sented based on the study of the general equivalent transmission line model of a double-layer FSS. Results of theoretical analyses, numerical simulations and experiments show that this transmis-sion upper limit is independent of the array and the element, which indicates that it is impossible to achieve a transmission upper limit higher than this one under a given incident and dielectric-supporting condition by the design of the periodic array. Both the applicable condition and the possible application of the transmis-sion upper limit are discussed. The results show that the transmis-sion upper limit not only has a good reachability, but also provides a key to effectively improve the transmission performance of a double-layer FSS or more complex frequency selective structures.
Energy Technology Data Exchange (ETDEWEB)
Domdey, Svend [Institut fuer Theoretische Physik, Heidelberg (Germany); Theory Division, CERN, Department of Physics, Geneve 23 (Switzerland); Pirner, Hans-Juergen [Institut fuer Theoretische Physik, Heidelberg (Germany); Wiedemann, Urs Achim [Theory Division, CERN, Department of Physics, Geneve 23 (Switzerland)
2010-01-15
The scale factor {sigma}{sub eff} is the effective cross section used to characterize the measured rate of inclusive double dijet production in high-energy hadron collisions. It is sensitive to the two-parton distributions in the hadronic projectile. In principle, the scale factor depends on the center of mass energy and on the minimal transverse energy E{sub T,min} of the jets contributing to the double dijet cross section. Here, we point out that proton-proton collisions at the LHC will provide for the first time experimental access to these scale dependences in a logarithmically wide, nominally perturbative kinematic range 10
Double-Paddle Oscillators as Probes of Quantum Turbulence in the Zero Temperature Limit
Schmoranzer, David; Jackson, Martin; Zemma, Elisa; Luzuriaga, Javier
2016-11-01
We present a technical report on our tests of a double-paddle oscillator as a detector of quantum turbulence in superfluid 4 He at low temperatures ranging from 20 to 1100 mK. The device, known to operate well in the two-fluid regime (Zemma and Luzuriaga in J Low Temp Phys 166:171-181, 2012), is also capable of detecting quantum turbulence in the zero temperature limit. The oscillator demonstrated Lorentzian responses with quality factors of order 10^5 in vacuum, and displayed negative-Duffing resonances in liquid, even at moderate drives. In superfluid He-II at low temperatures, its sensitivity was adversely affected by acoustic damping at higher harmonics. While it successfully created and detected the quantum turbulence, its overall performance does not compare favourably with other oscillators such as tuning forks.
Energetic Quantum Limit in Large-Scale Interferometers
Braginsky, Vladimir B.; Gorodetsky, Mikhail L.; Khalili, Farid Ya.; Thorne, Kip S.
1999-01-01
For each optical topology of an interferometric gravitational wave detector, quantum mechanics dictates a minimum optical power (the ``energetic quantum limit'') to achieve a given sensitivity. For standard topologies, when one seeks to beat the standard quantum limit by a substantial factor, the energetic quantum limit becomes impossibly large. Intracavity readout schemes may do so with manageable optical powers.
Double-pulse laser-induced breakdown spectroscopy analysis of scales from petroleum pipelines
Energy Technology Data Exchange (ETDEWEB)
Cavalcanti, G.H. [Physics Department of University Federal Fluminense, Av. Gal. Milton Tavares de Souza, s/n" o – CEP 24210-346 – Niterói, Rio de Janeiro (Brazil); Rocha, A.A. [Department of Analytical Chemistry of the Fluminense Federal University (UFF), Niterói, Rio de Janeiro CEP: 24020-141 (Brazil); Damasceno, R.N. [Biomass and Water Research Center of the Fluminense Federal University (NAB/UFF), Niterói, Rio de Janeiro (Brazil); Legnaioli, S.; Lorenzetti, G.; Pardini, L. [Institute of Chemistry of Organometallic Compounds Of CNR, Research Area of National Research Council, Via G. Moruzzi, 1 — 56124 Pisa (Italy); Palleschi, V., E-mail: vincenzo.palleschi@cnr.it [Institute of Chemistry of Organometallic Compounds Of CNR, Research Area of National Research Council, Via G. Moruzzi, 1 — 56124 Pisa (Italy)
2013-09-01
Pipeline scales from the Campos Bay Petroleum Field near Rio de Janeiro, Brazil have been analyzed by both Raman spectroscopy and by laser-induced breakdown spectroscopy (LIBS) using a double-pulse, calibration-free approach. Elements that are characteristic of petroleum (e.g. C, H, N, O, Mg, Na, Fe and V) were detected, in addition to the Ca, Al, and Si which form the matrix of the scale. The LIBS results were compared with the results of micro-Raman spectroscopy, which confirmed the nature of the incrustations inferred by the LIBS analysis. Results of this preliminary study suggest that diffusion of pipe material into the pipeline intake column plays an important role in the growth of scale. Thanks to the simplicity and relative low cost of equipment and to the fact that no special chemical pre-treatment of the samples is needed, LIBS can offer very fast acquisition of data and the possibility of in situ measurements. LIBS could thus represent an alternative or complementary method for the chemical characterization of the scales by comparison to conventional analytical techniques, such as X-ray diffraction or X-ray fluorescence. - Highlights: • Samples of scales from petroleum pipelines were analyzed using double pulse LIBS. • LIBS is proposed as an alternative method to conventional analytical techniques. • The scale growth is influenced by the product of corrosion in the column of production. • The diffusion of pipe material into the inlay is important for the growth of scale.
Bellou, S; Triantaphyllidou, I-E; Mizerakis, P; Aggelis, G
2016-09-20
Yarrowia lipolytica cultivated under double nitrogen and magnesium limitation, but not under single nitrogen or single magnesium limitation, produced 12.2g/l biomass containing 47.5% lipids, which corresponds to a lipid production 5.8g/l. These yields are the higher described in the literature for wild strains of Y. lipolytica. Transcription of ACL1 and ACL2, encoding for ATP-citrate lyase (ATP:CL) was observed even under non-oleaginous conditions but high activity of ATP:CL was only detected under oleaginous conditions induced by low or zero activity of NAD(+) dependent isocitrate dehydrogenase. The low activity of malic enzyme (ME), a NADPH donor in typical oleaginous microorganisms, indicated that ME may not be implicated in lipid biosynthesis in this yeast, and NADPH may be provided by the pentose phosphate pathway (PPP). These findings underline the essential role of magnesium in lipogenesis, which is currently quite unexplored. The presence of organic nitrogen in low concentrations during lipogenesis was also required, and this peculiarity was probably related with the PPP functioning, being the NADPH donor of lipogenic machinery in Y. lipolytica.
Olivieri, Giuseppe; Russo, Maria Elena; Marzocchella, Antonio; Salatino, Piero
2011-01-01
A mathematical model of an aerobic biofilm reactor is presented to investigate the bifurcational patterns and the dynamical behavior of the reactor as a function of different key operating parameters. Suspended cells and biofilm are assumed to grow according to double limiting kinetics with phenol inhibition (carbon source) and oxygen limitation. The model presented by Russo et al. is extended to embody key features of the phenomenology of the granular-supported biofilm: biofilm growth and detachment, gas-liquid oxygen transport, phenol, and oxygen uptake by both suspended and immobilized cells, and substrate diffusion into the biofilm. Steady-state conditions and stability, and local dynamic behavior have been characterized. The multiplicity of steady states and their stability depend on key operating parameter values (dilution rate, gas-liquid mass transfer coefficient, biofilm detachment rate, and inlet substrate concentration). Small changes in the operating conditions may be coupled with a drastic change of the steady-state scenario with transcritical and saddle-node bifurcations. The relevance of concentration profiles establishing within the biofilm is also addressed. When the oxygen level in the liquid phase is <10% of the saturation level, the biofilm undergoes oxygen starvation and the active biofilm fraction becomes independent of the dilution rate. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011.
DNA Double Strand Break Response and Limited Repair Capacity in Mouse Elongated Spermatids
Directory of Open Access Journals (Sweden)
Emad A. Ahmed
2015-12-01
Full Text Available Spermatids are extremely sensitive to genotoxic exposures since during spermiogenesis only error-prone non homologous end joining (NHEJ repair pathways are available. Hence, genomic damage may accumulate in sperm and be transmitted to the zygote. Indirect, delayed DNA fragmentation and lesions associated with apoptotic-like processes have been observed during spermatid elongation, 27 days after irradiation. The proliferating spermatogonia and early meiotic prophase cells have been suggested to retain a memory of a radiation insult leading later to this delayed fragmentation. Here, we used meiotic spread preparations to localize phosphorylate histone H2 variant (γ-H2AX foci marking DNA double strand breaks (DSBs in elongated spermatids. This technique enabled us to determine the background level of DSB foci in elongated spermatids of RAD54/RAD54B double knockout (dko mice, severe combined immunodeficiency SCID mice, and poly adenosine diphosphate (ADP-ribose polymerase 1 (PARP1 inhibitor (DPQ-treated mice to compare them with the appropriate wild type controls. The repair kinetics data and the protein expression patterns observed indicate that the conventional NHEJ repair pathway is not available for elongated spermatids to repair the programmed and the IR-induced DSBs, reflecting the limited repair capacity of these cells. However, although elongated spermatids express the proteins of the alternative NHEJ, PARP1-inhibition had no effect on the repair kinetics after IR, suggesting that DNA damage may be passed onto sperm. Finally, our genetic mutant analysis suggests that an incomplete or defective meiotic recombinational repair of Spo11-induced DSBs may lead to a carry-over of the DSB damage or induce a delayed nuclear fragmentation during the sensitive programmed chromatin remodeling occurring in elongated spermatids.
Evaluation of scaling correlations for mobilization of double-shell tank waste
Energy Technology Data Exchange (ETDEWEB)
Shekarriz, A.; Hammad, K.J.; Powell, M.R.
1997-09-01
In this report, we have examined some of the fundamental mechanisms expected to be at work during mobilization of the waste within the double-shell tanks at Hanford. The motivation stems from the idea that in order to properly apply correlations derived from scaled tests, one would have to ensure that appropriate scaling laws are utilized. Further, in the process of delineating the controlling mechanisms during mobilization, the currently used computational codes are being validated and strengthened based on these findings. Experiments were performed at 1/50-scale, different from what had been performed in the previous fiscal years (i.e., 1/12- and 1/25-scale). It was anticipated that if the current empirical correlations are to work, they should be scale invariant. The current results showed that linear scaling between the 1/25-scale and 1/50-scale correlations do not work well. Several mechanisms were examined in the scaled tests which might have contributed to the discrepancies between the results at these two scales. No deficiencies in the experimental approach and the data were found. Cognizant of these results, it was concluded that the use of the current empirical correlations for ECR should be done cautiously taking into account the appropriate properties of the material for yielding.
Scaling limits of Markov-Branching trees and applications
Haas, Bénédicte
2016-01-01
The goal of these lectures is to survey some of the recent progress on the description of large-scale structure of random trees. We use the framework of Markov-Branching sequences of trees and discuss several applications.
Physical Scaling Limits of FinFET Structure: A Simulation Study
Directory of Open Access Journals (Sweden)
Gaurav Saini
2011-03-01
Full Text Available In this work an attempt has been made to analyze the scaling limits of Double Gate (DG underlap andTriple Gate (TG overlap FinFET structure using 2D and 3D computer simulations respectively. Toanalyze the scaling limits of FinFET structure, simulations are performed using three variables: finthickness,fin-height and gate-length. From 2D simulation of DG FinFET, it is found that the gate-length(L and fin-thickness (Tfin ratio plays a key role while deciding the performance of the device. DrainInduced Barrier Lowering (DIBL and Subthreshold Swing (SS increase abruptly when (L/Tfin ratio goesbelow 1.5. So, there will be a trade-off in between SCEs and on- current of the device since on-off currentratio is found to be high at small dimensions. From 3D simulation study on TG FinFET, It is found thatboth fin-thickness (Tfin and fin-height (Hfin can control the SCEs. However, Tfin is found to be moredominant parameter than Hfin while deciding the SCEs. DIBL and SS increase as (Leff/Tfin ratiodecreases. The (Leff/Tfin ratio can be reduced below 1.5 unlike DG FinFET for the same SCEs. However,as this ratio approaches to 1, the SCEs can go beyond acceptable limits for TG FinFET structure. Therelative ratio of Hfin and Tfin should be maximum at a given Tfin and Leff to get maximum on-current perunit width. However, increasing Hfin degrades the fin stability and degrades SCEs.
Domdey, Svend; Wiedemann, Urs Achim
2010-01-01
The scale factor σ eff is the effective cross section used to characterize the measured rate of inclusive double dijet production in high energy hadron collisions. It is sensitive to the two-parton distributions in the hadronic projectile. In principle, the scale factor depends on the center of mass energy and on the minimal transverse energy of the jets contributing to the double dijet cross section. Here, we point out that proton-proton collisions at the LHC will provide for the first time experimental access to these scale dependences in a logarithmically wide, nominally perturbative kinematic range of minimal transverse energy between 10 GeV and 100 GeV. This constrains the dependence of two-parton distribution functions on parton momentum fractions and parton localization in impact parameter space. Novel information is to be expected about the transverse growth of hadronic distribution functions in the range of semi-hard Bjorken x (0.001 < x < 0.1) and high resolution Q^2. We discuss to what exten...
TeV scale double seesaw in left-right symmetric theories
Chakrabortty, Joydeep
2010-01-01
We extend the Type I and Type III seesaw mechanisms to generate neutrino masses within the left-right symmetric theories where parity is spontaneously broken. We construct a next to minimal left-right symmetric model where neutrino masses are generated through a variant $double$ seesaw mechanism. In our model at least one of the triplet fermions and the right handed neutrinos are at TeV scale and others are heavy. The phenomenological aspects and testability of the TeV scale particles at collider experiments are discussed. The decays of heavy fermions leading to leptogenesis are pointed out.
a Cosmological Lower Limit for Quark Compositeness Energy Scale
Chakrabarty, Somenath; Datta, Bhaskar; Sinha, Bikash
Baryon number density inhomogeneity in the very early universe, due to an assumed first order preon-to-quark phase transition, at or around the electroweak symmetry breaking energy is discussed. Conformity with primordial nucleosynthesis suggests that quark compositeness energy scale must be higher than 500 GeV.
A cosmological lower limit for quark compositeness energy scale
Energy Technology Data Exchange (ETDEWEB)
Chakrabarty, S.; Sinha, B. (Variable Energy Cyclotron Center, 1/af Bidham Nagar, Calcutta 700064 (India)); Datta, B. (Indian Inst. of Astrophysics, Bangalore (India))
1992-08-30
In this paper baryon number density inhomogeneity in the very early universe, due to an assumed first order preon-to-quark phase transition, at or around the electroweak symmetry breaking energy is discussed. Conformity with primordial nucleosynthesis suggests that quark compositeness energy scale must be higher than 500 GeV.
Scaling limit of a discrete prion dynamics model
Doumic, Marie; Lepoutre, Thomas
2009-01-01
This paper investigates the connection between discrete and continuous models describing prion proliferation. The scaling parameters are interpreted on biological grounds and we establish rigorous convergence statements. We also discuss, based on the asymptotic analysis, relevant boundary conditions that can be used to complete the continuous model.
Transcultural Factors in Hypnotizability Scales: Limits and Prospects.
Champigny, Claire M; Raz, Amir
2015-10-01
Hypnotic suggestibility--loosely termed hypnotizability--is difficult to assess across cultures. Investigators often use translated research instruments to guide their inquiry in disparate geographic locations. Present-day hypnosis researchers rely heavily on two primary scales that are more than half a century old: the Stanford Hypnotic Susceptibility Scale: Form C (SHSS:C) (Weitzenhoffer & Hilgard, 1959) and the Harvard Group Scale of Hypnotic Susceptibility: Form A (HGSHS:A) (Shor & Orne, 1962). Scholars typically translate these scales to measure hypnotizability transculturally. This approach, however, operates under the specious assumption that the concept of hypnotizability is largely monolithic or universal across cultures. Whereas translations likely conserve the linguistic content, they may arguably imply different cultural meanings and historical subtexts. Whereas social scientists acknowledge the importance of qualitative and phenomenological accounts in the study of altered consciousness, including suggestibility, researchers interested in hypnotizability consider the impact of findings from anthropology and ethnography too little. Clinicians and scholars of hypnosis would stand to benefit from incorporating the insights afforded by transcultural research in the overarching investigation of a concept as nuanced as hypnotizability.
The Brownian Cactus I. Scaling limits of discrete cactuses
Curien, Nicolas; Gall, Jean-François Le; Miermont, Grégory
2011-01-01
The cactus of a pointed graph is a discrete tree associated with this graph. Similarly, with every pointed geodesic metric space $E$, one can associate an $\\mathbb{R}$-tree called the continuous cactus of $E$. We prove under general assumptions that the cactus of random planar maps distributed according to Boltzmann weights and conditioned to have a fixed large number of vertices converges in distribution to a limiting space called the Brownian cactus, in the Gromov–Hausdorff sense. Moreover,...
Scaling limits for Hawkes processes and application to financial statistics
Bacry, Emmanuel; Hoffmann, Marc; Muzy, Jean François
2012-01-01
We prove a law of large numbers and a functional central limit theorem for multivariate Hawkes processes observed over a time interval $[0,T]$ in the limit $T \\rightarrow \\infty$. We further exhibit the asymptotic behaviour of the covariation of the increments of the components of a multivariate Hawkes process, when the observations are imposed by a discrete scheme with mesh $\\Delta$ over $[0,T]$ up to some further time shift $\\tau$. The behaviour of this functional depends on the relative size of $\\Delta$ and $\\tau$ with respect to $T$ and enables to give a full account of the second-order structure. As an application, we develop our results in the context of financial statistics. We introduced in a previous work a microscopic stochastic model for the variations of a multivariate financial asset, based on Hawkes processes and that is confined to live on a tick grid. We derive and characterise the exact macroscopic diffusion limit of this model and show in particular its ability to reproduce important empiric...
Scaling to Nanotechnology Limits with the PIMS Computer Architecture and a new Scaling Rule
Energy Technology Data Exchange (ETDEWEB)
Debenedictis, Erik P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-02-01
We describe a new approach to computing that moves towards the limits of nanotechnology using a newly formulated sc aling rule. This is in contrast to the current computer industry scali ng away from von Neumann's original computer at the rate of Moore's Law. We extend Moore's Law to 3D, which l eads generally to architectures that integrate logic and memory. To keep pow er dissipation cons tant through a 2D surface of the 3D structure requires using adiabatic principles. We call our newly proposed architecture Processor In Memory and Storage (PIMS). We propose a new computational model that integrates processing and memory into "tiles" that comprise logic, memory/storage, and communications functions. Since the programming model will be relatively stable as a system scales, programs repr esented by tiles could be executed in a PIMS system built with today's technology or could become the "schematic diagram" for implementation in an ultimate 3D nanotechnology of the future. We build a systems software approach that offers advantages over and above the technological and arch itectural advantages. Firs t, the algorithms may be more efficient in the conventional sens e of having fewer steps. Second, the algorithms may run with higher power efficiency per operation by being a better match for the adiabatic scaling ru le. The performance analysis based on demonstrated ideas in physical science suggests 80,000 x improvement in cost per operation for the (arguably) gene ral purpose function of emulating neurons in Deep Learning.
Scaling to Nanotechnology Limits with the PIMS Computer Architecture and a new Scaling Rule.
Energy Technology Data Exchange (ETDEWEB)
Debenedictis, Erik
2015-02-01
We describe a new approach to computing that moves towards the limits of nanotechnology using a newly formulated sc aling rule. This is in contrast to the current computer industry scali ng away from von Neumann's original computer at the rate of Moore's Law. We extend Moore's Law to 3D, which l eads generally to architectures that integrate logic and memory. To keep pow er dissipation cons tant through a 2D surface of the 3D structure requires using adiabatic principles. We call our newly proposed architecture Processor In Memory and Storage (PIMS). We propose a new computational model that integrates processing and memory into "tiles" that comprise logic, memory/storage, and communications functions. Since the programming model will be relatively stable as a system scales, programs repr esented by tiles could be executed in a PIMS system built with today's technology or could become the "schematic diagram" for implementation in an ultimate 3D nanotechnology of the future. We build a systems software approach that offers advantages over and above the technological and arch itectural advantages. Firs t, the algorithms may be more efficient in the conventional sens e of having fewer steps. Second, the algorithms may run with higher power efficiency per operation by being a better match for the adiabatic scaling ru le. The performance analysis based on demonstrated ideas in physical science suggests 80,000 x improvement in cost per operation for the (arguably) gene ral purpose function of emulating neurons in Deep Learning.
Depth Requirements for a Tonne-scale 76Ge Neutrinoless Double-beta Decay Experiment
Aguayo, E; Back, H O; Barabash, A S; Bergevin, M; Bertrand, F E; Boswell, M; Brudanin, V; Busch, M; Chan, Y-D; Christofferson, C D; Collar, J I; Combs, D C; Cooper, R J; Detwiler, J A; Doe, P J; Efremenko, Yu; Egorov, V; Ejiri, H; Elliott, S R; Esterline, J; Fast, J E; Fields, N; Finnerty, P; Fraenkle, F M; Gehman, V M; Giovanetti, G K; Green, M P; Guiseppe, V E; Gusey, K; Hallin, A L; Hazama, R; Henning, R; Hime, A; Hoppe, E W; Horton, M; Howard, S; Howe, M A; Johnson, R A; Keeter, K J; Keillor, M E; Keller, C; Kephart, J D; Kidd, M F; Knecht, A; Kochetov, O; Konovalov, S I; Kouzes, R T; LaFerriere, B D; LaRoque, B H; Leon, J; Leviner, L E; Loach, J C; MacMullin, S; Marino, M G; Martin, R D; Mei, D -M; Merriman, J H; Miller, M L; Mizouni, L; Nomachi, M; Orrell, J L; Overman, N R; Phillips, D G; Poon, A W P; Perumpilly, G; Prior, G; Radford, D C; Rielage, K; Robertson, R G H; Ronquest, M C; Schubert, A G; Shima, T; Shirchenko, M; Snavely, K J; Sobolev, V; Steele, D; Strain, J; Thomas, K; Timkin, V; Tornow, W; Vanyushin, I; Varner, R L; Vetter, K; Vorren, K; Wilkerson, J F; Wolfe, B A; Yakushev, E; Young, A R; Yu, C -H; Yumatov, V; Zhang, C
2011-01-01
Neutrinoless double-beta decay experiments can potentially determine the Majorana or Dirac nature of the neutrino, and aid in understanding the neutrino absolute mass scale and hierarchy. Future 76Ge-based searches target a half-life sensitivity of >10^27 y to explore the inverted neutrino mass hierarchy. Reaching this sensitivity will require a background rate of ~5200 meters water equivalent is required for a tonne-scale experiment with a compact shield similar to the planned 40-kg MAJORANA DEMONSTRATOR. The required overburden is highly dependent on the chosen shielding configuration and could be relaxed significantly if, for example, a liquid cryogen and water shield, or an active neutron shield were employed. Operation of the MAJORANA DEMONSTRATOR and GERDA detectors will serve to reduce the uncertainties on cosmic-ray background rates and will impact the choice of shielding style and location for a future tonne-scale experiment.
The Brownian Cactus I. Scaling limits of discrete cactuses
Curien, Nicolas; Miermont, Grégory
2011-01-01
The cactus of a pointed graph is a discrete tree associated with this graph. Similarly, with every pointed geodesic metric space $E$, one can associate an $\\R$-tree called the continuous cactus of $E$. We prove under general assumptions that the cactus of random planar maps distributed according to Boltzmann weights and conditioned to have a fixed large number of vertices converges in distribution to a limiting space called the Brownian cactus, in the Gromov-Hausdorff sense. Moreover, the Brownian cactus can be interpreted as the continuous cactus of the so-called Brownian map.
Energy Technology Data Exchange (ETDEWEB)
Augier, C
2005-06-15
After an introduction to this report in Chapter 1, I present a status of our knowledge in neutrino physics in Chapter 2. Then, I detail in Chapter 3 all the choices made for the design and realisation of the NEMO 3 detector for the research of double beta decay process. Performance of the detector is presented, concerning both the capacity of the detector to identify the backgrounds and the ability to study all the {beta}{beta} process. I also explain the methods chosen by the NEMO collaboration to reduce the radon activity inside the detector and to make this background negligible today. This chapter, which is written in English, is the 'Technical report of the NEMO 3 detector' and forms an independent report for the NEMO collaborators. I finish this report in Chapter 4 with a ten years prospect for experimental projects in physics, with both the SuperNEMO project and its experiment program, and also by comparing the most interesting experiments, CUORE and GERDA, showing as an example the effect of nuclear matrix elements on the neutrino effective mass measurement. (author)
On Soft Limits of Large-Scale Structure Correlation Functions
Ben-Dayan, Ido; Porto, Rafael A; Sagunski, Laura
2014-01-01
We study soft limits of correlation functions for the density and velocity fields in the theory of structure formation. First, we re-derive the (resummed) consistency conditions at unequal times using the eikonal approximation. These are solely based on symmetry arguments and are therefore universal. Then, we explore the existence of equal-time relations in the soft limit which, on the other hand, depend on the interplay between soft and hard modes. We scrutinize two approaches in the literature: The time-flow formalism, and a background method where the soft mode is absorbed into a locally curved cosmology. The latter has been recently used to set up (angular averaged) `equal-time consistency relations'. We explicitly demonstrate that the time-flow relations and `equal-time consistency conditions' are only fulfilled at the linear level, and fail at next-to-leading order for an Einstein de-Sitter universe. While applied to the velocities both proposals break down beyond leading order, we find that the `equal-...
Probabilistic models of population evolution scaling limits, genealogies and interactions
Pardoux, Étienne
2016-01-01
This expository book presents the mathematical description of evolutionary models of populations subject to interactions (e.g. competition) within the population. The author includes both models of finite populations, and limiting models as the size of the population tends to infinity. The size of the population is described as a random function of time and of the initial population (the ancestors at time 0). The genealogical tree of such a population is given. Most models imply that the population is bound to go extinct in finite time. It is explained when the interaction is strong enough so that the extinction time remains finite, when the ancestral population at time 0 goes to infinity. The material could be used for teaching stochastic processes, together with their applications. Étienne Pardoux is Professor at Aix-Marseille University, working in the field of Stochastic Analysis, stochastic partial differential equations, and probabilistic models in evolutionary biology and population genetics. He obtai...
Scaling Behaviour of Diffusion Limited Aggregation with Linear Seed
Institute of Scientific and Technical Information of China (English)
TANG Qiang; TIAN Ju-Ping; YAO Kai-Lun
2006-01-01
@@ We present a computer model of diffusion limited aggregation with linear seed. The clusters with varying linear seed lengths are simulated, and their pattern structure, fractal dimension and multifractal spectrum are obtained.The simulation results show that the linear seed length has little effect on the pattern structure of the aggregation clusters if its length is comparatively shorter. With its increasing, the linear seed length has stronger effects on the pattern structure, while the dimension Df decreases. When the linear seed length is larger, the corresponding pattern structure is cross alike. The larger the linear seed length is, the more obvious the cross-like structure with more particles clustering at the two ends of the linear seed and along the vertical direction to the centre of the linear seed. Furthermore, the multifractal spectra curve becomes lower and the range of singularity narrower.The longer the length of a linear seed is, the less irregular and nonuniform the pattern becomes.
Direct decarbonation of micrometer-scale layered double hydroxides without morphology damage
Institute of Scientific and Technical Information of China (English)
Kong Li Xu; Guang Ming Chen; Jian Quan Shen
2012-01-01
A direct decarbonation route without obvious morphology damage was developed for large micrometer-scale layered double hydroxides (LDHs).First,we synthesized pure,hexagonal-shaped LDHs with lateral dimension of micrometer-size by the recently reported urea hydrolysis method.Then,using HNO3-NaNO3 mixed solution,the obtained LDH with carbonate anions in the interlayer (LDH_CO3) was directly decarbonated to its nitrate form,LDH_NO3,its morphology and particle size were still unchanged.Compared with the recently published two-step decarbonation method,the direct decarbonation reported herein is very convenient.
First Principles Study of Double Photoionization of H2 UsingExterior Complex Scaling
Energy Technology Data Exchange (ETDEWEB)
Rescigno, Thomas N.; Vanroose, Wim; Horner, Daniel A.; Martin,Fernando; McCurdy, C. William
2006-07-21
Exterior complex scaling provides a practical path forfirst-principles studies of atomic and molecular ionizationproblemssince it avoids explicit enforcement of asymptotic boundary conditionsfor 3-body Coulomb breakup. We have used the method of exterior complexscaling, implemented with both the discrete variable representation andB-splines, to obtain the first-order wave function for molecular hydrogencorresponding to a single photon having been absorbed by a correlatedinitial state. These wave functions are used to construct convergedtriple differential cross sections for double photoionization of alignedH2 molecules.
Energy Technology Data Exchange (ETDEWEB)
Bamberger, Judith A.; Liljegren, Lucia M.; Enderlin, Carl W.; Meyer, Perry A.; Greenwood, Margaret S.; Titzler, Patricia A.; Terrones, Guillermo
2007-09-01
The objectives of these 1/12-scale scoping experiments were to: Determine which of the dimensionless parameters discussed in Bamberger and Liljegren (1994) affect the maximum concentration that can be suspended during jet mixer pump operation in the full-scale double-shell tanks; Develop empirical correlations to predict the nozzle velocity required for jet mixer pumps to suspend the contents of full-scale double-shell tanks; Apply the models to predict the nozzle velocity required to suspend the contents of Tank 241 AZ-101; Obtain experimental concentration data to compare with the TEMPEST( )(Trent and Eyler 1989) computational modeling predictions to guide further code development; Analyze the effects of changing nozzle diameter on exit velocity (U0) and U0D0 (the product of the exit velocity and nozzle diameter) required to suspend the contents of a tank. The scoping study experimentally evaluated uniformity in a 1/12-scale experiment varying the Reynolds number, Froude number, and gravitational settling parameter space. The initial matrix specified only tests at 100% U0D0 and 25% U0D0. After initial tests were conducted with small diameter, low viscosity simulant this matrix was revised to allow evaluation of a broader range of U0D0s. The revised matrix included full factorial test between 100% and 50% U0D0 and two half-factorial tests at 75% and 25% U0D0. Adding points at 75% U0D0 and 50% U0D0 allowed evaluation curvature. Eliminating points at 25% U0D0 decreased the testing time by several weeks. Test conditions were achieved by varying the simulant viscosity, the mean particle size, and the jet nozzle exit velocity. Concentration measurements at sampling locations throughout the tank were used to assess the degree of uniformity achieved during each test. Concentration data was obtained using a real time ultrasonic attenuation probe and discrete batch samples. The undissolved solids concentration at these locations was analyzed to determine whether the tank
Double-counting corrections to the LDA+DMFT method in the exact density limit
Plamada, Andrei Valentin; Staar, Peter; Kozhevnikov, Anton; Ydens, Bart; Schulthess, Thomas C.
2014-03-01
The LDA+U method is commonly used for ab-initio studies of strongly correlated electron materials, and it has been successful in predicting spectral properties of prototypical systems such as NiO when used in conjunction with Dynamical Mean Field Theory (DMFT). Presently the method still includes an empirical term to correct doubly counted correlations. Assuming the double-counting correction is a constant μDC multiplied by the identity operator in the correlated subspace and that the electron density is well approximated with the Local Density Approximation (LDA) to Density Functional Theory, we devise a method to determine μDC directly from LDA and DMFT calculations. The method has been validated for prototypical transition metal oxides and shows promising results that agree with commonly used values for the double counting correction in the respective systems.
Multi-machine scaling of the main SOL parallel heat flux width in tokamak limiter plasmas
Horacek, J.; Pitts, R. A.; Adamek, J.; Arnoux, G.; Bak, J.-G.; Brezinsek, S.; Dimitrova, M.; Goldston, R. J.; Gunn, J. P.; Havlicek, J.; Hong, S.-H.; Janky, F.; LaBombard, B.; Marsen, S.; Maddaluno, G.; Nie, L.; Pericoli, V.; Popov, Tsv; Panek, R.; Rudakov, D.; Seidl, J.; Seo, D. S.; Shimada, M.; Silva, C.; Stangeby, P. C.; Viola, B.; Vondracek, P.; Wang, H.; Xu, G. S.; Xu, Y.; Contributors, JET
2016-07-01
As in many of today’s tokamaks, plasma start-up in ITER will be performed in limiter configuration on either the inner or outer midplane first wall (FW). The massive, beryllium armored ITER FW panels are toroidally shaped to protect panel-to-panel misalignments, increasing the deposited power flux density compared with a purely cylindrical surface. The chosen shaping should thus be optimized for a given radial profile of parallel heat flux, {{q}||} in the scrape-off layer (SOL) to ensure optimal power spreading. For plasmas limited on the outer wall in tokamaks, this profile is commonly observed to decay exponentially as {{q}||}={{q}0}\\text{exp} ~≤ft(-r/λ q\\text{omp}\\right) , or, for inner wall limiter plasmas with the double exponential decay comprising a sharp near-SOL feature and a broader main SOL width, λ q\\text{omp} . The initial choice of λ q\\text{omp} , which is critical in ensuring that current ramp-up or down will be possible as planned in the ITER scenario design, was made on the basis of an extremely restricted L-mode divertor dataset, using infra-red thermography measurements on the outer divertor target to extrapolate to a heat flux width at the main plasma midplane. This unsatisfactory situation has now been significantly improved by a dedicated multi-machine ohmic and L-mode limiter plasma study, conducted under the auspices of the International Tokamak Physics Activity, involving 11 tokamaks covering a wide parameter range with R=\\text{0}\\text{.4--2}\\text{.8} \\text{m}, {{B}0}=\\text{1}\\text{.2--7}\\text{.5} \\text{T}, {{I}\\text{p}}=\\text{9--2500} \\text{kA}. Measurements of λ q\\text{omp} in the database are made exclusively on all devices using a variety of fast reciprocating Langmuir probes entering the plasma at a variety of poloidal locations, but with the majority being on the low field side. Statistical analysis of the database reveals nine reasonable engineering and dimensionless scalings. All yield, however, similar
A sub-kpc-scale binary AGN with double narrow-line regions
Woo, Jong-Hak; Husemann, Bernd; Komossa, S; Park, Daeseong; Bennert, Vardha
2014-01-01
We present the kinematic properties of a type-2 QSO, SDSS J132323.33-015941.9 at z~0.35, based on the analysis of Very Large Telescope integral field spectroscopy and Hubble Space Telescope (HST) imaging, which suggest that the target is a binary active galactic nucleus (AGN) with double narrow-line regions. The QSO features double-peaked emission lines ([OIII] and Hb) which can be decomposed into two kinematic components. The flux-weighted centroids of the blue and red components are separated by ~0.2" (0.8 kpc in projection) and coincide with the location of the two stellar cores detected in the HST broad-band images, implying that both stellar cores host an active black hole. The line-of-sight velocity of the blue component is comparable to the luminosity-weighted velocity of stars in the host galaxy while the red component is redshifted by ~240 km/s, consistent with typical velocity offsets of two cores in a late stage of a galaxy merger. If confirmed, the target is one of the rare cases of sub-kpc scale ...
Linear-scaling generation of potential energy surfaces using a double incremental expansion
König, Carolin
2016-01-01
We present a combination of the incremental expansion of potential energy surfaces (PESs), known as n-mode expansion, with the incremental evaluation of the electronic energy in a many-body approach. The application of semi-local coordinates in this context allows the generation of PESs in a very cost-efficient way. For this, we employ the recently introduced FALCON (Flexible Adaptation of Local COordinates of Nuclei) coordinates. By introducing an additional transformation step, concerning only a fraction of the vibrational degrees of freedom, we can achieve linear scaling of the accumulated cost of the single point calculations required in the PES generation. Numerical examples of these double incremental approaches for oligo-phenyl examples show fast convergence with respect to the maximum number of simultaneously treated fragments and only a modest error introduced by the additional transformation step. The approach, presented here, represents a major step towards the applicability of vibrational wave fun...
Li, Ruchun; Hu, Zhaoxia; Shao, Xiaofeng; Cheng, Pengpeng; Li, Shoushou; Yu, Wendan; Lin, Worong; Yuan, Dingsheng
2016-01-01
We report a new environmentally-friendly synthetic strategy for large-scale preparation of 16 nm-ultrathin NiCo based layered double hydroxides (LDH). The Ni50Co50-LDH electrode exhibited excellent specific capacitance of 1537 F g-1 at 0.5 A g-1 and 1181 F g-1 even at current density as high as 10 A g-1, which 50% cobalt doped enhances the electrical conductivity and porous and ultrathin structure is helpful with electrolyte diffusion to improve the material utilization. An asymmetric ultracapacitor was assembled with the N-doped graphitic ordered mesoporous carbon as negative electrode and the NiCo LDH as positive electrode. The device achieves a high energy density of 33.7 Wh kg-1 (at power density of 551 W kg-1) with a 1.5 V operating voltage.
A Single Nucleotide Resolution Model for Large-Scale Simulations of Double Stranded DNA
Fosado, Y A G; Allan, J; Brackley, C; Henrich, O; Marenduzzo, D
2016-01-01
The computational modelling of DNA is becoming crucial in light of new advances in DNA nanotechnology, single-molecule experiments and in vivo DNA tampering. Here we present a mesoscopic model for double stranded DNA (dsDNA) at the single nucleotide level which retains the characteristic helical structure, while being able to simulate large molecules -- up to a million base pairs -- for time-scales which are relevant to physiological processes. This is made possible by an efficient and highly-parallelised implementation of the model which we discuss here. We compare the behaviour of our model with single molecule experiments where dsDNA is manipulated by external forces or torques. We also present some results on the kinetics of denaturation of linear DNA.
Energy Technology Data Exchange (ETDEWEB)
McCurdy, C. William; Horner, Daniel A.; Rescigno, Thomas N.; Martin, Fernando
2004-02-19
Calculations of absolute triple differential and single differential cross sections for helium double photoionization are performed using an implementation of exterior complex scaling in B-splines. Results for cross sections, well-converged in partial waves, are presented and compared with both experiment and earlier theoretical calculations. These calculations establish the practicality and effectiveness of the complex B-spline approach to calculations of double ionization of atomic and molecular systems.
Energy Technology Data Exchange (ETDEWEB)
Orloff, D.I.
1992-08-01
Pilot-scale shoe press and roll press experiments have been conducted to compare impulse drying and double felted pressing. Both ceramic coated and Beloit Type C press rolls have been evaluated. The experiments show that impulse drying can provide significantly higher outgoing solids than double felled pressing at the same impulse. For example, at an impulse of 0.234 MPa seconds (34 psi seconds), sheets at an ingoing solids of 52% were impulse dried (using the Beloit Type C press roll) to 68% solids while optimized double felled pressing could only yield press dryness of, at most, 60%.
Directory of Open Access Journals (Sweden)
SÁVIO LEANDRO BERTOLI
2016-07-01
Full Text Available In the engineering courses the field of Transport Phenomena is of significant importance and it is in several disciplines relating to Fluid Mechanics, Heat and Mass Transfer. In these disciplines, problems involving these phenomena are mathematically formulated and analytical solutions are obtained whenever possible. The aim of this paper is to emphasize the possibility of extending aspects of the teaching-learning in this area by a method based on time scales and limit solutions. Thus, aspects relative to the phenomenology naturally arise during the definition of the scales and / or by determining the limit solutions. Aspects concerning the phenomenology of the limit problems are easily incorporated into the proposed development, which contributes significantly to the understanding of physics inherent in the mathematical modeling of each limiting case studied. Finally the study aims to disseminate the use of the limit solutions and of the time scales in the general fields of engineering.
Dynamics of large-scale solar-wind streams obtained by the double superposed epoch analysis
Yermolaev, Yu I; Nikolaeva, N S; Yermolaev, M Yu
2015-01-01
Using the OMNI data for period 1976-2000 we investigate the temporal profiles of 20 plasma and field parameters in the disturbed large-scale types of solar wind (SW): CIR, ICME (both MC and Ejecta) and Sheath as well as the interplanetary shock (IS). To take into account the different durations of SW types, we use the double superposed epoch analysis (DSEA) method: re-scaling the duration of the interval for all types in such a manner that, respectively, beginning and end for all intervals of selected type coincide. As the analyzed SW types can interact with each other and change parameters as a result of such interaction, we investigate separately 8 sequences of SW types: (1) CIR, (2) IS/CIR, (3) Ejecta, (4) Sheath/Ejecta, (5) IS/Sheath/Ejecta, (6) MC, (7) Sheath/MC, and (8) IS/Sheath/MC. The main conclusion is that the behavior of parameters in Sheath and in CIR are very similar both qualitatively and quantitatively. Both the high-speed stream (HSS) and the fast ICME play a role of pistons which push the pl...
Kesharwani, Manoj K; Brauer, Brina; Martin, Jan M L
2015-03-05
We have obtained uniform frequency scaling factors λ(harm) (for harmonic frequencies), λ(fund) (for fundamentals), and λ(ZPVE) (for zero-point vibrational energies (ZPVEs)) for the Weigend-Ahlrichs and other selected basis sets for MP2, SCS-MP2, and a variety of DFT functionals including double hybrids. For selected levels of theory, we have also obtained scaling factors for true anharmonic fundamentals and ZPVEs obtained from quartic force fields. For harmonic frequencies, the double hybrids B2PLYP, B2GP-PLYP, and DSD-PBEP86 clearly yield the best performance at RMSD = 10-12 cm(-1) for def2-TZVP and larger basis sets, compared to 5 cm(-1) at the CCSD(T) basis set limit. For ZPVEs, again, the double hybrids are the best performers, reaching root-mean-square deviations (RMSDs) as low as 0.05 kcal/mol, but even mainstream functionals like B3LYP can get down to 0.10 kcal/mol. Explicitly anharmonic ZPVEs only are marginally more accurate. For fundamentals, however, simple uniform scaling is clearly inadequate.
Scattering Equations, Twistor-string Formulas and Double-soft Limits in Four Dimensions
He, Song; Wu, Jun-Bao
2016-01-01
We study scattering equations and formulas for tree amplitudes of various theories in four dimensions, in terms of spinor helicity variables and on-shell superspace for supersymmetric theories. As originally obtained in Witten's twistor string theory and other twistor-string models, the equations can take either polynomial or rational forms, and we clarify the simple relation between them. We present new, four-dimensional formulas for all tree amplitudes in the non-linear sigma model, a special Galileon theory and the maximally supersymmetric completion of the Dirac-Born-Infeld theory. Furthermore, we apply the formulas to study various double-soft theorems in these theories, including the emissions of a pair of soft photons, fermions and scalars for super-amplitudes in super-DBI theory.
Tillman, Robert E.; Wooley, Andrea L.; Hughes, Maureen M.; Wehrly, Tara D.; Swat, Wojciech; Sleckman, Barry P.
2002-01-01
Antigen receptor loci are composed of numerous variable (V), diversity (D), and joining (J) gene segments, each flanked by recombination signal sequences (RSSs). The V(D)J recombination reaction proceeds through RSS recognition and DNA cleavage steps making it possible for multiple DNA double strand breaks (DSBs) to be introduced at a single locus. Here we use ligation-mediated PCR to analyze DNA cleavage intermediates in thymocytes from mice with targeted RSS mutations at the endogenous TCRβ locus. We show that DNA cleavage does not occur at individual RSSs but rather must be coordinated between RSS pairs flanking gene segments that ultimately form coding joins. Coordination of the DNA cleavage step occurs over great distances in the chromosome and favors intra- over interchromosomal recombination. Furthermore, through several restrictions imposed on the generation of both nonpaired and paired DNA DSBs, this requirement promotes antigen receptor gene integrity and genomic stability in developing lymphocytes undergoing V(D)J recombination. PMID:11828005
The corrections to scaling within Mazenko's theory in the limit of low and high dimensions
Indian Academy of Sciences (India)
N P Rapapa; M Fabiane
2009-06-01
We consider corrections to scaling within an approximate theory developed by Mazenko for nonconserved order parameter in the limit of low ( → 1) and high ( → ∞) dimensions. The corrections to scaling considered here follows from the departures of the initial condition from the scaling morphology. Including corrections to scaling, the equal time correlation function has the form: $C(r, t) = f_{0} (r/L) + L^{−} f_{1} (r/L) + \\cdots$, where is a characteristic length scale (i.e. domain size). The correction-to-scaling exponent ω and the correction-to-scaling functions 1() are calculated for both low and high dimensions. In both dimensions the value of ω is found to be ω = 4 similar to 1D Glauber model and OJK theory (the theory developed by Ohta, Jasnow and Kawasaki).
Double-well atom trap for fluorescence detection at the Heisenberg limit
Stroescu, Ion; Hume, David B.; Oberthaler, Markus K.
2015-01-01
We experimentally demonstrate an atom number detector capable of simultaneous detection of two mesoscopic ensembles with single-atom resolution. Such a sensitivity is a prerequisite for quantum metrology at a precision approaching the Heisenberg limit. Our system is based on fluorescence detection of atoms in a hybrid trap in which a dipole barrier divides a magneto-optical trap into two separated wells. We introduce a noise model describing the various sources contributing to the measurement error and report a limit of up to 500 atoms for single-atom resolution in the atom number difference.
Directory of Open Access Journals (Sweden)
DONG Jian
2017-06-01
Full Text Available After having analyzed the application deficiency of positive direction rolling ball transform according to the safety principle, and concerned essentially with the evaluation principles of depth precision, depth order isomorphism and hierarchical nesting of terrain information for morphologic fidelity of digital depth model (DDM for short multi-scale representation, a reality principle-compliant algorithm for DDM multi-scale representation had been proposed based on double direction rolling ball transform. Firstly, by the analysis of the variation tendency of sea floor relief feature point throughout the procedure of double direction rolling ball transform, and combined with the scale dependence character of positive direction rolling ball transform, both the traverse distribution range and the vertical distribution height of sea floor reliefs of a certain scale had been calculated. Secondly, based on the statistic characteristics of DDM grid point undulation extent, a rule of identifying detail (skeleton reliefs had been established. Finally, by preserving the skeleton reliefs of specific scale factor, the overall trend of the changes of marine topography had been kept to meet the requirement of depth precision principle of DDM multi-scale representation. Besides, the paper demonstrated the ordered isomorphism characteristic of equidistant surface transform, and by extracting equidistant surface through double direction rolling ball transform of detail reliefs, the local undulation morphology of marine topography had been maintained to fulfill the depth order isomorphism principle of DDM multi-scale representation. Furthermore, the hierarchical nesting characteristic of terrain information in the process of double direction rolling ball transform had been demonstrated. The experiment results showed that this algorithm overcomed positive direction rolling ball transform's inability to reserve concave skeleton reliefs and preserve undulating
Sine-Gordon solitons, auxiliary fields and singular limit of a double pendulums chain
Energy Technology Data Exchange (ETDEWEB)
Cadoni, Mariano [Dipartimento di Fisica, Universita di Cagliari and I.N.F.N., Sezione di Cagliari, Cittadella Universitaria, 09042 Monserrato (Italy); Leo, Roberto De [Dipartimento di Fisica, Universita di Cagliari and I.N.F.N., Sezione di Cagliari, Cittadella Universitaria, 09042 Monserrato (Italy); Gaeta, Giuseppe [Dipartimento di Matematica, Universita di Milano, via Saldini 50, 20133 Milano (Italy)
2007-10-26
We consider the continuum version of an elastic chain supporting topological and non-topological degrees of freedom; this generalizes a model for the dynamics of DNA recently proposed and investigated by ourselves. In a certain limit, the non-topological degrees of freedom are frozen, and the model reduces to the sine-Gordon equations and thus supports well-known topological soliton solutions. We consider a (singular) perturbative expansion around this limit and study in particular how the non-topological field assumes the role of an auxiliary field. This provides a more general framework for the slaving of this degree of freedom on the topological one, already observed elsewhere in the context of the mentioned DNA model; in this framework one expects such a phenomenon to arise in a quite large class of field-theoretical models.
ADE Double Scaled Little String Theories, Mock Modular Forms and Umbral Moonshine
Harvey, Jeffrey A; Nazaroglu, Caner
2014-01-01
We consider double scaled little string theory on $K3$. These theories are labelled by a positive integer $k \\ge 2$ and an $ADE$ root lattice with Coxeter number $k$. We count BPS fundamental string states in the holographic dual of this theory using the superconformal field theory $K3 \\times \\left( \\frac{SL(2,\\mathbb{R})_k}{U(1)} \\times \\frac{SU(2)_k}{U(1)} \\right) \\big/ \\mathbb{Z}_k$. We show that the BPS fundamental string states that are counted by the second helicity supertrace of this theory give rise to weight two mixed mock modular forms. We compute the helicity supertraces using two separate techniques: a path integral analysis that leads to a modular invariant but non-holomorphic answer, and a Hamiltonian analysis of the contribution from discrete states which leads to a holomorphic but not modular invariant answer. From a mathematical point of view the Hamiltonian analysis leads to a mixed mock modular form while the path integral gives the completion of this mixed mock modular form. We also compar...
Scaling laws and flow structures of double diffusive convection in the finger regime
Yang, Yantao; Lohse, Detlef
2016-01-01
Direct numerical simulations are conducted for double diffusive convection (DDC) bounded by two parallel plates, with fluid properties similar to the values of seawater. The DDC flow is driven by an unstable salinity difference and stabilized at the same time by a temperature difference. For these conditions the flow can be in the finger regime. We develop scaling laws for three key response parameters of the system: The non-dimensional salinity flux $Nu_S$ mainly depends on the salinity Rayleigh number $Ra_S$, which measures the strength of the salinity difference, and exhibits a very weak dependence on the density ratio $\\Lambda$, which is the ratio of the buoyancy forces induced by two scalar differences. The non-dimensional flow velocity $Re$ and the non-dimensional heat flux $Nu_T$ are dependent on both $Ra_S$ and $\\Lambda$. However, the rescaled Reynolds number $Re\\Lambda^{\\alpha^{\\rm eff}_u}$ and the rescaled convective heat flux $(Nu_T-1)\\Lambda^{\\alpha^{\\rm eff}_T}$ depend only on $Ra_S$. The two exp...
Fluorescence enhancement in large-scale self-assembled gold nanoparticle double arrays
Energy Technology Data Exchange (ETDEWEB)
Chekini, M.; Bierwagen, J.; Cunningham, A.; Bürgi, T., E-mail: Thomas.Buergi@unige.ch [Département de Chimie Physique, Université de Genève, 1211 Genève (Switzerland); Filter, R. [Institute of Condensed Matter Theory and Solid State Optics, Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, D-07743 Jena (Germany); Rockstuhl, C. [Institute of Nanotechnology, Karlsruhe Institute of Technology, D-76021 Karlsruhe (Germany); Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology, D-76131 Karlsruhe (Germany)
2015-12-21
Localized surface plasmon resonances excited in metallic nanoparticles confine and enhance electromagnetic fields at the nanoscale. This is particularly pronounced in dimers made from two closely spaced nanoparticles. When quantum emitters, such as dyes, are placed in the gap of those dimers, their absorption and emission characteristics can be modified. Both processes have to be considered when aiming to enhance the fluorescence from the quantum emitters. This is particularly challenging for dimers, since the electromagnetic properties and the enhanced fluorescence sensitively depend on the distance between the nanoparticles. Here, we use a layer-by-layer method to precisely control the distances in such systems. We consider a dye layer deposited on top of an array of gold nanoparticles or integrated into a central position of a double array of gold nanoparticles. We study the effect of the spatial arrangement and the average distance on the plasmon-enhanced fluorescence. We found a maximum of a 99-fold increase in the fluorescence intensity of the dye layer sandwiched between two gold nanoparticle arrays. The interaction of the dye layer with the plasmonic system also causes a spectral shift in the emission wavelengths and a shortening of the fluorescence life times. Our work paves the way for large-scale, high throughput, and low-cost self-assembled functionalized plasmonic systems that can be used as efficient light sources.
The large-scale magnetospheric electric field observed by Double Star TC-1
Directory of Open Access Journals (Sweden)
C. Carr
2010-09-01
Full Text Available The relationship between the average structure of the inner magnetospheric large-scale electric field and geomagnetic activity levels has been investigated by Double Star TC-1 data for radial distances ρ between 4.5 R_{E} and 12.5 R_{E} and MLT between 18:00 h and 06:00 h from July to October in 2004 and 2005. The sunward component of the electric field decreases monotonically as ρ increases and approaches zero as the distance off the Earth is greater than 10 R_{E}. The dawn-dusk component is always duskward. It decreases at about 6 R_{E} where the ring current is typically observed to be the strongest and shows strong asymmetry with respect to the magnetic local time. Surprisingly, the average electric field obtained from TC-1 for low activity is almost comparable to that observed during moderate activity, which is always duskward at the magnetotail (8 R_{E}~12 R_{E}.
Institute of Scientific and Technical Information of China (English)
Bambang Veriansyah; Eun-Seok Song; Jae-Duck Kim
2011-01-01
The destruction of methylphosphonic acid (MPA), a final product by hydrolysis/neutralization of organophosphorus agents such as satin and VX (O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothionate), was investigated in a a bench-scale, continuous concentric vertical double wall reactor under supercritical water oxidation condition. The experiments were conducted at a temperature range of 450-600~C and a fixed pressure of 25 MPa. Hydrogen peroxide was used as an oxidant. The destruction efficiency (DE) was monitored by analyzing total organic carbon (TOC) and MPA concentrations using ion chromatography on the liquid effluent samples. The results showed that the DE of MPA up to 99.999％ was achieved at a reaction temperature of 600~C, oxygen concentration of 113％ storichiometric requirement, and reactor residence time of 8 sec. On the basis of the data derived from experiments, a global kinetic rate equation for the DE of MPA and DE of TOC were developed by nonlinear regression analysis. The model predictions agreed well with the experimental data.
Bornemann, Folkmar
2016-08-01
By applying an idea of Borodin and Olshanski [J. Algebra 313 (2007), 40-60], we study various scaling limits of determinantal point processes with trace class projection kernels given by spectral projections of selfadjoint Sturm-Liouville operators. Instead of studying the convergence of the kernels as functions, the method directly addresses the strong convergence of the induced integral operators. We show that, for this notion of convergence, the Dyson, Airy, and Bessel kernels are universal in the bulk, soft-edge, and hard-edge scaling limits. This result allows us to give a short and unified derivation of the known formulae for the scaling limits of the classical random matrix ensembles with unitary invariance, that is, the Gaussian unitary ensemble (GUE), the Wishart or Laguerre unitary ensemble (LUE), and the MANOVA (multivariate analysis of variance) or Jacobi unitary ensemble (JUE).
A double-well atom trap for fluorescence detection at the Heisenberg limit
Stroescu, Ion; Oberthaler, Markus K
2014-01-01
We experimentally demonstrate an atom number detector capable of simultaneous detection of two mesoscopic ensembles with single atom resolution. Such a sensitivity is a prerequisite for going beyond quantum metrology with spin-squeezed states. Our system is based on fluorescence detection of atoms in a novel hybrid trap in which a dipole barrier divides a magneto-optical trap into two separated wells. We introduce a noise model describing the various sources contributing to the measurement error and report a limit of up to 500 atoms for the exact determination of the atom number difference.
Interaction-based quantum metrology showing scaling beyond the Heisenberg limit.
Napolitano, M; Koschorreck, M; Dubost, B; Behbood, N; Sewell, R J; Mitchell, M W
2011-03-24
Quantum metrology aims to use entanglement and other quantum resources to improve precision measurement. An interferometer using N independent particles to measure a parameter χ can achieve at best the standard quantum limit of sensitivity, δχ ∝ N(-1/2). However, using N entangled particles and exotic states, such an interferometer can in principle achieve the Heisenberg limit, δχ ∝ N(-1). Recent theoretical work has argued that interactions among particles may be a valuable resource for quantum metrology, allowing scaling beyond the Heisenberg limit. Specifically, a k-particle interaction will produce sensitivity δχ ∝ N(-k) with appropriate entangled states and δχ ∝ N(-(k-1/2)) even without entanglement. Here we demonstrate 'super-Heisenberg' scaling of δχ ∝ N(-3/2) in a nonlinear, non-destructive measurement of the magnetization of an atomic ensemble. We use fast optical nonlinearities to generate a pairwise photon-photon interaction (corresponding to k = 2) while preserving quantum-noise-limited performance. We observe super-Heisenberg scaling over two orders of magnitude in N, limited at large numbers by higher-order nonlinear effects, in good agreement with theory. For a measurement of limited duration, super-Heisenberg scaling allows the nonlinear measurement to overtake in sensitivity a comparable linear measurement with the same number of photons. In other situations, however, higher-order nonlinearities prevent this crossover from occurring, reflecting the subtle relationship between scaling and sensitivity in nonlinear systems. Our work shows that interparticle interactions can improve sensitivity in a quantum-limited measurement, and experimentally demonstrates a new resource for quantum metrology.
Murrock, Carolyn J; Bekhet, Abir; Zauszniewski, Jaclene A
2016-01-01
Enjoyment is an important construct for understanding physical activity participation, and it has not been examined in adults with functional limitations. This secondary analysis reported the reliability and validity of the Physical Activity Enjoyment Scale (PACES) in a convenience sample of 40 adults with functional limitations. The participants completed the PACES, Center for Epidemiological Studies Depression Scale (CES-D), and the Late Life Function and Disability Instrument (LLFDI) prior to beginning a 12-week feasibility dance intervention study. Results indicated reliability as Cronbach's alpha was .95 and mean inter-item correlation was .52. To further support reliability, homogeneity of the instrument was evaluated using item-to-total scale correlations. Homogeneity was supported as all items had corrected item-to-total correlations greater than .30. For validity, the PACES was significantly related to only the Physical Function component of the LLFDI (r = .38, p = .02), but not the CES-D. Exploratory factor analysis revealed a 3-factor structure that accounted for 73.76% of the variance. This feasibility intervention dance study represented the first attempt to examine the psychometric properties of the PACES in adults with functional limitations. The findings demonstrate support for the scale's reliability and validity among adults with functional limitations. Results are informative as further psychometric testing of the PACES is recommended using randomized clinical trials with larger sample sizes. Enjoyment for physical activity is an important construct for understanding physical activity participation in adults with functional limitations.
Madani, A.; Bolaños Quiñones, V. A.; Ma, L. B.; Miao, S. D.; Jorgensen, M. R.; Schmidt, O. G.
2016-04-01
Spatially and temporally overlapping double potential wells are realized in a hybrid optical microtube cavity due to the coexistence of an aggregate of luminescent quantum dots embedded in the tube wall and the cone-shaped tube's geometry. The double potential wells produce two independent sets of optical modes with different sets of mode numbers, indicating phase velocity separation for the modes overlapping at the same frequency. The overlapping mode position can be tuned by modifying the tube cavity, where these mode sets shift with different magnitudes, allowing for a vernier-scale-like tuning effect.
Children’s Self-Reports of Pain Intensity: Scale Selection, Limitations and Interpretation
Directory of Open Access Journals (Sweden)
Carl L von Baeyer
2006-01-01
Full Text Available Most children aged five years and older can provide meaningful self-reports of pain intensity if they are provided with age-appropriate tools and training. Self-reports of pain intensity are an oversimplification of the complexity of the experience of pain, but one that is necessary to evaluate and titrate pain-relieving treatments. There are many sources of bias and error in self-reports of pain, so ratings need to be interpreted in light of information from other sources such as direct observation of behaviour, knowledge of the circumstances of the pain and parents’ reports. The pain intensity scales most commonly used with children – faces scales, numerical rating scales, visual analogue scales and others – are briefly introduced. The selection, limitations and interpretation of self-report scales are discussed.
Electricity network limitations on large-scale deployment of wind energy
Energy Technology Data Exchange (ETDEWEB)
Fairbairn, R.J.
1999-07-01
This report sought to identify limitation on large scale deployment of wind energy in the UK. A description of the existing electricity supply system in England, Scotland and Wales is given, and operational aspects of the integrated electricity networks, licence conditions, types of wind turbine generators, and the scope for deployment of wind energy in the UK are addressed. A review of technical limitations and technical criteria stipulated by the Distribution and Grid Codes, the effects of system losses, and commercial issues are examined. Potential solutions to technical limitations are proposed, and recommendations are outlined.
A limit set trichotomy for order-preserving systems on time scales
Directory of Open Access Journals (Sweden)
Christian Poetzsche
2004-04-01
Full Text Available In this paper we derive a limit set trichotomy for abstract order-preserving 2-parameter semiflows in normal cones of strongly ordered Banach spaces. Additionally, to provide an example, Muller's theorem is generalized to dynamic equations on arbitrary time scales and applied to a model from population dynamics.
Cohen, S.A.; Hosea, J.C.; Timberlake, J.R.
1984-10-19
A limiter with a specially contoured front face is provided. The front face of the limiter (the plasma-side face) is flat with a central indentation. In addition, the limiter shape is cylindrically symmetric so that the limiter can be rotated for greater heat distribution. This limiter shape accommodates the various power scrape-off distances lambda p, which depend on the parallel velocity, V/sub parallel/, of the impacting particles.
Adkins, Jessica Y.; Roby, Daniel D.; Lyons, Donald E.; Courtot, Karen N.; Collis, Ken; Carter, Harry R.; Shuford, W. David; Capitolo, Phillip J.
2014-01-01
colonies by bald eagles (Haliaeetus leucocephalus) and humans are likely limiting factors on the growth of the western population at present. Because of differences in biology and management, the western population of double-crested cormorants warrants consideration as a separate management unit from the population east of the Continental Divide.
Myint Kyaw Soe; Goto, Ryosuke; Mishina, Akihiro; Nakanisi, Yoshiaki; Nakashima, Daisuke; Yoshida, Junya; Nakazawa, Kazuma
2017-03-01
An automatic track following system has been successfully developed to follow tracks in nuclear emulsion sheets exposed with beam up to the limit to be observed for the first time. The track followed rate of the system is 99.5% with the assistance of the new techniques. The working speed for a track is less than 1 min through one thick emulsion sheet, whereas it is 15 times faster than that of semiautomatic system with human. The system working for 24 h is applied for the E07 experiment at J-PARC and makes it possible to detect 102 nuclei with double strangeness (S=-2 nuclei) within one year. Regarding analyses to identify nuclear species of S=-2 nuclei, the system shows quite decent job for significant steps such as following tracks emitted to spherical directions from S=-2 nuclei, measurement of lengths of followed tracks, and so on.
A double-stage start-up structure to limit the inrush current used in current mode charge pump
Cong, Liu; Xinquan, Lai; Hanxiao, Du; Yuan, Chi
2016-06-01
A double-stage start-up structure to limit the inrush current used in current-mode charge pump with wide input range, fixed output and multimode operation is presented in this paper. As a widely utilized power source implement, a Li-battery is always used as the power supply for chips. Due to the internal resistance, a potential drop will be generated at the input terminal of the chip with an input current. A false shut down with a low supply voltage will happen if the input current is too large, leading to the degradation of the Li-battery's service life. To solve this problem, the inrush current is limited by introducing a new start-up state. All of the circuits have been implemented with the NUVOTON 0.6 μm CMOS process. The measurement results show that the inrush current can be limited below 1 A within all input supply ranges, and the power efficiency is higher than the conventional structure. Project supported by the National Natural Science Foundation of China (No. 61106026).
Song, Shuang; Levi, Dennis M; Pelli, Denis G
2014-05-05
Here, we systematically explore the size and spacing requirements for identifying a letter among other letters. We measure acuity for flanked and unflanked letters, centrally and peripherally, in normals and amblyopes. We find that acuity, overlap masking, and crowding each demand a minimum size or spacing for readable text. Just measuring flanked and unflanked acuity is enough for our proposed model to predict the observer's threshold size and spacing for letters at any eccentricity. We also find that amblyopia in adults retains the character of the childhood condition that caused it. Amblyopia is a developmental neural deficit that can occur as a result of either strabismus or anisometropia in childhood. Peripheral viewing during childhood due to strabismus results in amblyopia that is crowding limited, like peripheral vision. Optical blur of one eye during childhood due to anisometropia without strabismus results in amblyopia that is acuity limited, like blurred vision. Furthermore, we find that the spacing:acuity ratio of flanked and unflanked acuity can distinguish strabismic amblyopia from purely anisometropic amblyopia in nearly perfect agreement with lack of stereopsis. A scatter diagram of threshold spacing versus acuity, one point per patient, for several diagnostic groups, reveals the diagnostic power of flanked acuity testing. These results and two demonstrations indicate that the sensitivity of visual screening tests can be improved by using flankers that are more tightly spaced and letter like. Finally, in concert with Strappini, Pelli, Di Pace, and Martelli (submitted), we jointly report a double dissociation between acuity and crowding. Two clinical conditions-anisometropic amblyopia and apperceptive agnosia-each selectively impair either acuity A or the spacing:acuity ratio S/A, not both. Furthermore, when we specifically estimate crowding, we find a double dissociation between acuity and crowding. Models of human object recognition will need to
Simply and multiply scaled diffusion limits for continuous time random walks
Energy Technology Data Exchange (ETDEWEB)
Gorenflo, Rudolf [Erstes Mathematisches Institut, Freie Universitaet Berlin, Arnimallee 3, D-14195 Berlin (Germany); Mainardi, Francesco [Dipartimento di Fisica, Universita di Bologna and INFN, Via Irnerio 46, I-40126 Bologna (Italy)
2005-01-01
First a survey is presented on how space-time fractional diffusion processes can be obtained by well-scaled limiting from continuous time random walks under the sole assumption of asymptotic power laws (with appropriate exponents for the tail behaviour of waiting times and jumps). The spatial operator in the limiting pseudo-differential equation is the inverse of a general Riesz-Feller potential operator. The analysis is carried out via the transforms of Fourier and Laplace. Then mixtures of waiting time distributions, likewise of jump distributions, are considered, and it is shown that correct multiple scaling in the limit yields diffusion equations with distributed order fractional derivatives (fractional operators being replaced by integrals over such ones, with the order of differentiation as variable of integration). It is outlined how in this way super-fast and super-slow diffusion can be modelled.
The scaling limit of the energy correlations in non integrable Ising models
Giuliani, Alessandro; Mastropietro, Vieri
2012-01-01
We obtain an explicit expression for the multipoint energy correlations of a non solvable two-dimensional Ising models with nearest neighbor ferromagnetic interactions plus a weak finite range interaction of strength $\\lambda$, in a scaling limit in which we send the lattice spacing to zero and the temperature to the critical one. Our analysis is based on an exact mapping of the model into an interacting lattice fermionic theory, which generalizes the one originally used by Schultz, Mattis and Lieb for the nearest neighbor Ising model. The interacting model is then analyzed by a multiscale method first proposed by Pinson and Spencer. If the lattice spacing is finite, then the correlations cannot be computed in closed form: rather, they are expressed in terms of infinite, convergent, power series in $\\lambda$. In the scaling limit, these infinite expansions radically simplify and reduce to the limiting energy correlations of the integrable Ising model, up to a finite renormalization of the parameters. Explicit...
Roorda, Leo D; Roebroeck, Marij E; van Tilburg, Theo; Lankhorst, Gustaaf J; Bouter, Lex M
2004-06-01
To develop a hierarchical scale that measures activity limitations in climbing stairs in patients with lower-extremity disorders living at home. Cross-sectional study with Mokken scale analysis of 15 dichotomous items. Outpatient clinics of secondary and tertiary care centers. Patients (N=759; mean age +/- standard deviation, 59.8+/-15.0y; 48% men) living at home, with different lower-extremity disorders: stroke, poliomyelitis, osteoarthritis, amputation, complex regional pain syndrome type I, and diabetic foot problems. Not applicable. (1) Fit of the monotone homogeneity model, indicating whether items can be used for measuring patients; (2) fit of the double monotonicity model, indicating invariant (hierarchical) item ordering; (3) intratest reliability, indicating repeatability of the sum score; and (4) differential item functioning, addressing the validity of comparisons between subgroups of patients. There was (1) good fit of the monotone homogeneity model (coefficient H=.50) for all items for all patients, and for subgroups defined by age, gender, and diagnosis; (2) good fit of the double monotonicity model (coefficient H(T)=.58); (3) good intratest reliability (coefficient rho=.90); and (4) no differential item functioning with respect to age and gender, but differential item functioning for 4 items in amputees compared with nonamputees. A hierarchical scale, with excellent scaling characteristics, has been developed for measuring activity limitations in climbing stairs in patients with lower-extremity disorders who live at home. However, measurements should be interpreted with caution when comparisons are made between patients with and without amputation.
Energy Technology Data Exchange (ETDEWEB)
Horner, D.A.; Colgan, J.; Martin, F.; McCurdy, C.W.; Pindzola, M.S.; Rescigno, T.N.
2004-06-01
Symmetrized complex amplitudes for the double photoionization of helium are computed by the time-dependent close-coupling and exterior complex scaling methods, and it is demonstrated that both methods are capable of the direct calculation of these amplitudes. The results are found to be in excellent agreement with each other and in very good agreement with results of other ab initio methods and experiment.
The scaling limit of the energy correlations in non-integrable Ising models
Giuliani, Alessandro; Greenblatt, Rafael L.; Mastropietro, Vieri
2012-09-01
We obtain an explicit expression for the multipoint energy correlations of a non-solvable two-dimensional Ising models with nearest neighbor ferromagnetic interactions plus a weak finite range interaction of strength λ, in a scaling limit in which we send the lattice spacing to zero and the temperature to the critical one. Our analysis is based on an exact mapping of the model into an interacting lattice fermionic theory, which generalizes the one originally used by Schultz, Mattis, and Lieb for the nearest neighbor Ising model. The interacting model is then analyzed by a multiscale method first proposed by Pinson and Spencer. If the lattice spacing is finite, then the correlations cannot be computed in closed form: rather, they are expressed in terms of infinite, convergent, power series in λ. In the scaling limit, these infinite expansions radically simplify and reduce to the limiting energy correlations of the integrable Ising model, up to a finite renormalization of the parameters. Explicit bounds on the speed of convergence to the scaling limit are derived.
Energy Technology Data Exchange (ETDEWEB)
Wu, Jia-Lu; Gu, Bing, E-mail: gubing@seu.edu.cn; Liu, Dahui; Cui, Yiping, E-mail: cyp@seu.edu.cn [Advanced Photonics Center, Southeast University, Nanjing 210096 (China); Sheng, Ning [Advanced Photonics Center, Southeast University, Nanjing 210096 (China); Key Laboratory of Inorganic Chemistry in Universities of Shandong, Department of Chemistry and Chemical Engineering, Jining University, Qufu 273155 (China)
2014-10-27
Optical limiting (OL) effects can be enhanced by exploiting various limiting mechanisms and by designing nonlinear optical materials. In this work, we present the large enhancement of OL effects by manipulating the polarization distribution of the light field. Theoretically, we develop the Z-scan and nonlinear transmission theories on a two-photon absorber under the excitation of cylindrical vector beams. It is shown that both the sensitivity of Z-scan technique and the OL effect using radially polarized beams have the large enhancement compared with that using linearly polarized beams (LPBs). Experimentally, we investigate the nonlinear absorption properties of a double-decker Pr[Pc(OC{sub 8}H{sub 17}){sub 8}]{sub 2} rare earth complex by performing Z-scan measurements with femtosecond-pulsed radially polarized beams at 800 nm wavelength. The observed two-photon absorption process, which originates from strong intramolecular π–π interaction, is exploited for OL application. The results demonstrate the large enhancement of OL effects using radially polarized beams instead of LPBs.
A scaling limit theorem for the parabolic Anderson model with exponential potential
Lacoin, Hubert
2010-01-01
The parabolic Anderson problem is the Cauchy problem for the heat equation with random potential and localized initial condition. In this paper we consider potentials which are constant in time and independent exponentially distributed in space. We study the growth rate of the total mass of the solution in terms of weak and almost sure limit theorems, and the spatial spread of the mass in terms of a scaling limit theorem. The latter result shows that in this case, just like in the case of heavy tailed potentials, the mass gets trapped in a single relevant island with high probability.
Airy Equation for the Topological String Partition Function in a Scaling Limit
Alim, Murad; Yau, Shing-Tung; Zhou, Jie
2016-06-01
We use the polynomial formulation of the holomorphic anomaly equations governing perturbative topological string theory to derive the free energies in a scaling limit to all orders in perturbation theory for any Calabi-Yau threefold. The partition function in this limit satisfies an Airy differential equation in a rescaled topological string coupling. One of the two solutions of this equation gives the perturbative expansion and the other solution provides geometric hints of the non-perturbative structure of topological string theory. Both solutions can be expanded naturally around strong coupling.
The scaling limit of the energy correlations in non integrable Ising models
2012-01-01
We obtain an explicit expression for the multipoint energy correlations of a non solvable two-dimensional Ising models with nearest neighbor ferromagnetic interactions plus a weak finite range interaction of strength $\\lambda$, in a scaling limit in which we send the lattice spacing to zero and the temperature to the critical one. Our analysis is based on an exact mapping of the model into an interacting lattice fermionic theory, which generalizes the one originally used by Schultz, Mattis an...
Rowe, D. J.; Turner, P. S.; Rosensteel, G.
2004-11-01
The asymptotic spectra and scaling properties of a mixed-symmetry Hamiltonian, which exhibits a second-order phase transition in its macroscopic limit, are examined for a system of N interacting bosons. A second interacting boson-model Hamiltonian, which exhibits a first-order phase transition, is also considered. The latter shows many parallel characteristics and some notable differences, leaving it open to question as to the nature of its asymptotic critical-point properties.
Smirnov, Sergey V; Kobtsev, Sergey M; Kukarin, Sergey V
2014-01-13
For the first time we report the results of both numerical simulation and experimental observation of second-harmonic generation as an example of non-linear frequency conversion of pulses generated by passively mode-locked fiber master oscillator in different regimes including conventional (stable) and double-scale (partially coherent and noise-like) ones. We show that non-linear frequency conversion efficiency of double-scale pulses is slightly higher than that of conventional picosecond laser pulses with the same energy and duration despite strong phase fluctuations of double-scale pulses.
Nutrient limitation and physiology mediate the fine-scale (de)coupling of biogeochemical cycles.
Appling, Alison P; Heffernan, James B
2014-09-01
Nutrients in the environment are coupled over broad timescales (days to seasons) when organisms add or withdraw multiple nutrients simultaneously and in ratios that are roughly constant. But at finer timescales (seconds to days), nutrients become decoupled if physiological traits such as nutrient storage limits, circadian rhythms, or enzyme kinetics cause one nutrient to be processed faster than another. To explore the interactions among these coupling and decoupling mechanisms, we introduce a model in which organisms process resources via uptake, excretion, growth, respiration, and mortality according to adjustable trait parameters. The model predicts that uptake can couple the input of one nutrient to the export of another in a ratio reflecting biological demand stoichiometry, but coupling occurs only when the input nutrient is limiting. Temporal nutrient coupling may, therefore, be a useful indicator of ecosystem limitation status. Fine-scale patterns of nutrient coupling are further modulated by, and potentially diagnostic of, physiological traits governing growth, uptake, and internal nutrient storage. Together, limitation status and physiological traits create a complex and informative relationship between nutrient inputs and exports. Understanding the mechanisms behind that relationship could enrich interpretations of fine-scale time-series data such as those now emerging from in situ solute sensors.
Different types of scaling in the dynamics of period–doubling maps under external periodic driving
Directory of Open Access Journals (Sweden)
N. Yu. Ivank’ov
2000-01-01
Full Text Available Based on the renormalization group approach developed by Kuznetsov and Pikovsky (Phys. Lett., A140, 1989, 166 several types of scaling are discussed, which can be observed in a neighborhood of Feigenbaum’s critical point at small amplitudes of the driving. The type of scaling behavior depends on a structure of binary representation of the frequency parameter: F-scaling (Feigenbaum’s for finite binary fractions, P- and Q-scaling (periodic and quasiperiodic for periodic binary fractions, and S-scaling (statistical for non-periodic binary fractions. All types of scaling are illustrated by parameter-plane diagrams for the rescaled Lyapunov exponent.
Mutualist-mediated effects on species' range limits across large geographic scales.
Afkhami, Michelle E; McIntyre, Patrick J; Strauss, Sharon Y
2014-10-01
Understanding the processes determining species range limits is central to predicting species distributions under climate change. Projected future ranges are extrapolated from distribution models based on climate layers, and few models incorporate the effects of biotic interactions on species' distributions. Here, we show that a positive species interaction ameliorates abiotic stress, and has a profound effect on a species' range limits. Combining field surveys of 92 populations, 10 common garden experiments throughout the range, species distribution models and greenhouse experiments, we show that mutualistic fungal endophytes ameliorate drought stress and broaden the geographic range of their native grass host Bromus laevipes by thousands of square kilometres (~ 20% larger) into drier habitats. Range differentiation between fungal-associated and fungal-free grasses was comparable to species-level range divergence of congeners, indicating large impacts on range limits. Positive biotic interactions may be underappreciated in determining species' ranges and species' responses to future climates across large geographic scales.
Macroscopic and large scale phenomena coarse graining, mean field limits and ergodicity
Rademacher, Jens; Zagaris, Antonios
2016-01-01
This book is the offspring of a summer school school “Macroscopic and large scale phenomena: coarse graining, mean field limits and ergodicity”, which was held in 2012 at the University of Twente, the Netherlands. The focus lies on mathematically rigorous methods for multiscale problems of physical origins. Each of the four book chapters is based on a set of lectures delivered at the school, yet all authors have expanded and refined their contributions. Francois Golse delivers a chapter on the dynamics of large particle systems in the mean field limit and surveys the most significant tools and methods to establish such limits with mathematical rigor. Golse discusses in depth a variety of examples, including Vlasov--Poisson and Vlasov--Maxwell systems. Lucia Scardia focuses on the rigorous derivation of macroscopic models using $\\Gamma$-convergence, a more recent variational method, which has proved very powerful for problems in material science. Scardia illustrates this by various basic examples and a mor...
Hosseini, M.; Jamalpoor, A.; Bahreman, M.
2016-12-01
The present paper deals with the theoretical investigation of small-scale effect on the thermo-mechanical vibration of double viscoelastic nanoplate-system made of functionally graded materials (FGMs). The small scale effect is taken into consideration via Eringen's nonlocal elasticity theory. It is considered that a Kelvin-Voigt viscoelastic layer connects two parallel viscoelastic nano-plates that surrounded by a Pasternak elastic foundation. The material properties in the thickness direction vary according to power low distribution. On the basis of nonlocal elasticity theory and employing Hamilton's principle, the exact solution for complex natural frequencies of a double nanoplate-system is determined for two types of vibrations, out-of-phase and in-phase. The detailed manner of deriving equations based on Navier method are presented and numerical studies are carried out to illustrate the influence of structural damping of the nanoplates, damping coefficient of viscoelastic medium, nonlocal parameter, higher wave numbers, aspect ratio, temperature change and other factors on the behavior of double nanoplate-system. Results from the analytical solution reveal that the temperature raising decreases the natural frequencies.
Scaling of Average Weighted Receiving Time on Double-Weighted Koch Networks
Dai, Meifeng; Ye, Dandan; Hou, Jie; Li, Xingyi
2015-03-01
In this paper, we introduce a model of the double-weighted Koch networks based on actual road networks depending on the two weight factors w,r ∈ (0, 1]. The double weights represent the capacity-flowing weight and the cost-traveling weight, respectively. Denote by wFij the capacity-flowing weight connecting the nodes i and j, and denote by wCij the cost-traveling weight connecting the nodes i and j. Let wFij be related to the weight factor w, and let wCij be related to the weight factor r. This paper assumes that the walker, at each step, starting from its current node, moves to any of its neighbors with probability proportional to the capacity-flowing weight of edge linking them. The weighted time for two adjacency nodes is the cost-traveling weight connecting the two nodes. We define the average weighted receiving time (AWRT) on the double-weighted Koch networks. The obtained result displays that in the large network, the AWRT grows as power-law function of the network order with the exponent, represented by θ(w,r) = ½ log2(1 + 3wr). We show that the AWRT exhibits a sublinear or linear dependence on network order. Thus, the double-weighted Koch networks are more efficient than classic Koch networks in receiving information.
Chruslinska, Martyna; Bulik, Tomasz; Gladysz, Wojciech
2016-01-01
We employ population synthesis method to model the double neutron star (DNS) population and test various possibilities on natal kick velocities gained by neutron stars after their formation. We first choose natal kicks after standard core collapse SN from a Maxwellian distribution with velocity dispersion of sigma=265 km/s as proposed by Hobbs et al. (2005) and then modify this distribution by changing the velocity dispersion towards smaller and larger kick values. We also take into account the possibility of NS formation through electron capture supernova. In this case we test two scenarios: zero natal kick or small natal kick, drawn from Maxwellian distribution with sigma = 26.5 km/s. We calculate the present-day orbital parameters of binaries and compare the resulting eccentricities with those known for observed DNSs. As an additional test we calculate Galactic merger rates for our model populations and confront them with observational limits. We do not find any model unequivocally consistent with both obs...
Chruslinska, M.; Belczynski, K.; Bulik, T.; Gladysz, W.
2017-03-01
We employ population synthesis method to model the double neutron star (DNS) population and test various possibilities on natal kick velocities gained by neutron stars after their formation. We first choose natal kicks after standard core collapse supernovae (CCSN) from a Maxwellian distribution with velocity dispersion of σ = 265 km/s as proposed by Hobbs and then modify this distribution by changing σ toward smaller and larger kick values. We also take into account the possibility of NS formation through electron capture supernova. In this case we test two scenarios: zero natal kick or small natal kick, drawn from Maxwellian distribution with σ = 26.5 km/s. We calculate the present-day orbital parameters of binaries and compare the resulting eccentricities with those known for observed DNSs. As an additional test we calculate Galactic merger rates for our model populations and confront them with observational limits. We do not find any model unequivocally consistent with both observational constraints simultaneously. The models with low kicks after CCSN for binaries with the second NS forming through core collapse SN are marginally consistent with the observations. This means that either 14 observed DNSs are not representative of the intrinsic Galactic population, or that our modeling of DNS formation needs revision.
Emerging Nonvolatile Memories to Go Beyond Scaling Limits of Conventional CMOS Nanodevices
Directory of Open Access Journals (Sweden)
Lei Wang
2014-01-01
Full Text Available Continuous dimensional scaling of the CMOS technology, along with its cost reduction, has rendered Flash memory as one of the most promising nonvolatile memory candidates during the last decade. With the Flash memory technology inevitably approaching its fundamental limits, more advanced storage nanodevices, which can probably overcome the scaling limits of Flash memory, are being explored, bringing about a series of new paradigms such as FeRAM, MRAM, PCRAM, and ReRAM. These devices have indeed exhibited better scaling capability than Flash memory while also facing their respective physical drawbacks. The consequent tradeoffs therefore drive the information storage device technology towards further advancement; as a result, new types of nonvolatile memories, including carbon memory, Mott memory, macromolecular memory, and molecular memory have been proposed. In this paper, the nanomaterials used for these four emerging types of memories and the physical principles behind the writing and reading methods in each case are discussed, along with their respective merits and drawbacks when compared with conventional nonvolatile memories. The potential applications of each technology are also briefly assessed.
Charge and/or spin limits for black holes at a non-commutative scale
Paik, Biplab
2017-08-01
In the commutative geometrical background, one finds the total charge ( Q) and/or the total angular momentum ( J) of a generalized black hole of mass M to be bounded by the condition Q^2+( J{/}M) ^2≤ M^2, whereas the inclusion of the concept of non-commutativity in geometry leads to a much more richer result. It predicts that the upper limit to Q and/or J is not fixed but depends on the mass/length scale of black holes; it (the upper limit to Q and/or J) goes towards a `commutative limit' when {M≫ √{θ}} (√{θ} characterizes the minimal length scale) and rapidly diminishes towards zero with M decreasing in the strongly non-commutative regime, until approaching a perfect zero value for {M˜eq 1.904√{θ}}. We have performed separate calculations for a pure Kerr or a pure Reissner-Nordström black hole, and briefly done it for a generalized black hole.
Slow and fast scales for superprocess limits of age-structured populations
Méléard, Sylvie
2010-01-01
A superprocess limit for an interacting birth-death particle system modelling a population with trait and age-structures is established. Traits of newborn offspring are inherited from the parents except when mutations occur, while ages are set to zero. Because of interactions between individuals, standard approaches based on the Laplace transform do not hold. We use a martingale problem approach and a separation of the slow (trait) and fast (age) scales. While the trait marginals converge in a pathwise sense to a superprocess, the age dynamics, on another time scale, averages to an equilibrium that depends on traits. The convergence of the whole process depending on trait and age, only holds for finite-dimensional time-marginals. We apply our results to the study of examples illustrating different cases of trade-off between competition and senescence.
A Limit on Primordial Small-Scale Magnetic Fields from CMB Distortions
Jedamzik, K; Olinto, A V
2000-01-01
Spatially varying primordial magnetic fields may be efficiently dissipated prior to the epoch of recombination due to the large viscosity of the baryon-photon fluid. We show that this dissipation may result in observable chemical potential mu and Compton y distortions in the cosmic microwave background radiation (CMB) spectrum. Current upper limits on mu and y from FIRAS constrain magnetic fields to have strength B_0 < 3\\times 10^{-8}Gauss (scaled to the present) between comoving coherence length \\approx 400 pc and primordial magnetic fields to date.
Stochastic models for structured populations scaling limits and long time behavior
Meleard, Sylvie
2015-01-01
In this contribution, several probabilistic tools to study population dynamics are developed. The focus is on scaling limits of qualitatively different stochastic individual based models and the long time behavior of some classes of limiting processes. Structured population dynamics are modeled by measure-valued processes describing the individual behaviors and taking into account the demographic and mutational parameters, and possible interactions between individuals. Many quantitative parameters appear in these models and several relevant normalizations are considered, leading to infinite-dimensional deterministic or stochastic large-population approximations. Biologically relevant questions are considered, such as extinction criteria, the effect of large birth events, the impact of environmental catastrophes, the mutation-selection trade-off, recovery criteria in parasite infections, genealogical properties of a sample of individuals. These notes originated from a lecture series on Structured P...
Lubrication-related residue as a fundamental process scaling limit to gravure printed electronics.
Kitsomboonloha, Rungrot; Subramanian, Vivek
2014-04-01
In gravure printing, excess ink is removed from a patterned plate or roll by wiping with a doctor blade, leaving a thin lubrication film in the nonpatterned area. Reduction of this lubrication film is critical for gravure printing of electronics, since the resulting residue can lower device performance or even catastrophically impact circuit yield. We report on experiments and quantitative analysis of lubrication films in a highly scaled gravure printing process. We investigate the effects of ink viscosity, wiping speed, loading force, blade stiffness and blade angle on the lubrication film, and further, use the resulting data to investigate the relevant lubrication regimes associated with wiping during gravure printing. Based on this analysis, we are able to posit the lubrication regime associated with wiping during gravure printing, provide insight into the ultimate limits of residue reduction, and, furthermore, are able to provide process guidelines and design rules to achieve these limits.
Chaos, scaling and existence of a continuum limit in classical non-Abelian lattice gauge theory
Energy Technology Data Exchange (ETDEWEB)
Nielsen, H.B. [Niels Bohr Inst., Kobenhavn (Denmark); Rugh, H.H. [Univ. of Warwick, Coventry (United Kingdom); Rugh, S.E. [Los Alamos National Lab., NM (United States)
1996-12-31
We discuss space-time chaos and scaling properties for classical non-Abelian gauge fields discretized on a spatial lattice. We emphasize that there is a {open_quote}no go{close_quotes} for simulating the original continuum classical gauge fields over a long time span since there is a never ending dynamical cascading towards the ultraviolet. We note that the temporal chaotic properties of the original continuum gauge fields and the lattice gauge system have entirely different scaling properties thereby emphasizing that they are entirely different dynamical systems which have only very little in common. Considered as a statistical system in its own right the lattice gauge system in a situation where it has reached equilibrium comes closest to what could be termed a {open_quotes}continuum limit{close_quotes} in the limit of very small energies (weak non-linearities). We discuss the lattice system both in the limit for small energies and in the limit of high energies where we show that there is a saturation of the temporal chaos as a pure lattice artifact. Our discussion focuses not only on the temporal correlations but to a large extent also on the spatial correlations in the lattice system. We argue that various conclusions of physics have been based on monitoring the non-Abelian lattice system in regimes where the fields are correlated over few lattice units only. This is further evidenced by comparison with results for Abelian lattice gauge theory. How the real time simulations of the classical lattice gauge theory may reach contact with the real time evolution of (semi-classical aspects of) the quantum gauge theory (e.g. Q.C.D.) is left an important question to be further examined.
Two methods for estimating limits to large-scale wind power generation.
Miller, Lee M; Brunsell, Nathaniel A; Mechem, David B; Gans, Fabian; Monaghan, Andrew J; Vautard, Robert; Keith, David W; Kleidon, Axel
2015-09-08
Wind turbines remove kinetic energy from the atmospheric flow, which reduces wind speeds and limits generation rates of large wind farms. These interactions can be approximated using a vertical kinetic energy (VKE) flux method, which predicts that the maximum power generation potential is 26% of the instantaneous downward transport of kinetic energy using the preturbine climatology. We compare the energy flux method to the Weather Research and Forecasting (WRF) regional atmospheric model equipped with a wind turbine parameterization over a 10(5) km2 region in the central United States. The WRF simulations yield a maximum generation of 1.1 We⋅m(-2), whereas the VKE method predicts the time series while underestimating the maximum generation rate by about 50%. Because VKE derives the generation limit from the preturbine climatology, potential changes in the vertical kinetic energy flux from the free atmosphere are not considered. Such changes are important at night when WRF estimates are about twice the VKE value because wind turbines interact with the decoupled nocturnal low-level jet in this region. Daytime estimates agree better to 20% because the wind turbines induce comparatively small changes to the downward kinetic energy flux. This combination of downward transport limits and wind speed reductions explains why large-scale wind power generation in windy regions is limited to about 1 We⋅m(-2), with VKE capturing this combination in a comparatively simple way.
Flow cytometry is of limited utility in the early identification of "double-hit" B-cell lymphomas.
Platt, Mia Y; DeLelys, Michelle E; Preffer, Frederic I; Sohani, Aliyah R
2013-05-01
B-cell lymphomas with concurrent translocations of MYC and BCL2 or BCL6, also known as "double-hit" lymphomas (DHL), are rare malignancies characterized by aggressive clinical behavior and poor prognosis. Previous reports suggest that decreased CD20 and/or CD19 expression by flow cytometry is relatively common in DHL and may help to identify cases requiring additional cytogenetic analysis. We conducted a retrospective analysis of 26 cases of DHL, and compared their flow cytometric characteristics to cases of Burkitt lymphoma (BL) and diffuse large B-cell lymphoma (DLBCL). Cases were analyzed by four-color flow cytometry, and bivariate dot-plots were reviewed for light scatter characteristics, CD19, CD20, CD45, and surface light chain. Relatively few DHL cases showed dim expression of CD19 or CD20, and statistically significant differences were found only in the frequency of dim CD19 expression between DHL and BL or DLBCL. Although concomitant dim CD19 and CD20 expression was exclusive to DHL, it was present in only a minority of cases. We conclude that although a subset of DHL expresses aberrant levels of CD19 and/or CD20 by flow cytometry, these findings are of limited utility in identifying cases requiring cytogenetic analysis due to their low frequency. Until more sensitive pathologic parameters can be identified and validated, the decision to perform cytogenetic analysis should rest on a combination of clinical, morphologic, and immunophenotypic features suggestive of high-grade, aggressive disease. Copyright © 2013 International Clinical Cytometry Society.
Charge and/or spin limits for black holes at a non-commutative scale
Indian Academy of Sciences (India)
BIPLAB PAIK
2017-08-01
In the commutative geometrical background, one finds the total charge $\\mathcal{(Q)}$ and/or the total angular momentum $\\mathcal{(J)}$ of a generalized black hole of mass $M$ to be bounded by the condition $\\mathcal{Q^{2} + (J/M)^{2} \\leq M^{2}}$, whereas the inclusion of the concept of non-commutativity in geometry leads to a much more richer result. It predicts that the upper limit to $\\mathcal{Q}$ and/or $\\mathcal{J}$ is not fixed but depends on the mass/length scale of black holes; it (the upper limit to $\\mathcal{Q}$ and/or $\\mathcal{J}$ ) goes towards a ‘commutative limit’ when $M \\gg \\sqrt{\\vartheta} (\\sqrt{\\vartheta}$ characterizes the minimal length scale) and rapidly diminishes towards zero with $M$ decreasing in the strongly non-commutative regime, until approaching a perfect zero value for $M \\simeq 1.904\\sqrt{\\vartheta}$. We have performed separate calculations for a pure Kerr or a pure Reissner–Nordström black hole, and briefly done it for a generalized black hole.
Das, Siddhartha; Guha, Arnab; Mitra, Sushanta K
2013-12-04
In this paper, we unravel new scaling regimes for streaming potential and electroviscous effects in a nanocapillary with thick overlapping Electric Double Layers (EDLs). We observe that the streaming potential, for a given value of the capillary zeta (ζ) potential, varies with the EDL thickness and a dimensionless parameter R, quantifying the conduction current. Depending on the value of R, variation of the streaming potential with the EDL thickness demonstrates distinct scaling regimes: one can witness a Quadratic Regime where the streaming potential varies as the square of the EDL thickness, a Weak Regime where the streaming potential shows a weaker variation with the EDL thickness, and a Saturation Regime where the streaming potential ceases to vary with the EDL thickness. Effective viscosity, characterizing the electroviscous effect, obeys the variation of the streaming potential for smaller EDL thickness values; however, for larger EDL thickness the electroosmotic flow profile dictates the electroviscous effect, with insignificant contribution of the streaming potential.
Limits on GeV-scale WIMPs using charge signals in XENON100
Wall, Richard
2014-03-01
Various theoretical models and recent experimental results have led to growing interest in the search for WIMP-like dark matter in the mass range of a few GeV. One important class of detector used in this study is based on the liquid-gas, dual-phase Xenon time projection chamber (as in XENON100 and LUX). These detectors nominally use both scintillation (S1) and ionization (S2) signals to localize collision events in their sensitive volumes and thus reject background events, but it is known that the efficiency for detecting small S1 signals (such as are expected from a GeV-scale WIMP interaction) is much smaller than the efficiency for detecting an S2 from the same recoil. By removing the requirement of an observed S1 signal, one can thus effectively lower the energy threshold of the detector, and study GeV-scale WIMPs with greater sensitivity. With this in mind, we measure the rate of WIMP candidates in 225 live days of XENON100 data in events with small S2 signals (with or without an accompanying S1) and which pass other simple selection cuts optimized for GeV-scale WIMPs. This rate is then used to set a limit on the WIMP-nucleon cross-section for the mass range 1-10 GeV.
Laboratory-scale in situ bioremediation in heterogeneous porous media: biokinetics-limited scenario.
Song, Xin; Hong, Eunyoung; Seagren, Eric A
2014-03-01
Subsurface heterogeneities influence interfacial mass-transfer processes and affect the application of in situ bioremediation by impacting the availability of substrates to the microorganisms. However, for difficult-to-degrade compounds, and/or cases with inhibitory biodegradation conditions, slow biokinetics may also limit the overall bioremediation rate, or be as limiting as mass-transfer processes. In this work, a quantitative framework based on a set of dimensionless coefficients was used to capture the effects of the competing interfacial and biokinetic processes and define the overall rate-limiting process. An integrated numerical modeling and experimental approach was used to evaluate application of the quantitative framework for a scenario in which slow-biokinetics limited the overall bioremediation rate of a polycyclic aromatic hydrocarbon (naphthalene). Numerical modeling was conducted to simulate the groundwater flow and naphthalene transport and verify the system parameters, which were used in the quantitative framework application. The experiments examined the movement and biodegradation of naphthalene in a saturated, heterogeneous intermediate-scale flow cell with two layers of contrasting hydraulic conductivities. These experiments were conducted in two phases: Phase I, simulating an inhibited slow biodegradation; and Phase II, simulating an engineered bioremediation, with system perturbations selected to enhance the slow biodegradation rate. In Phase II, two engineered perturbations to the system were selected to examine their ability to enhance in situ biodegradation. In the first perturbation, nitrogen and phosphorus in excess of the required stoichiometric amounts were spiked into the influent solution to mimic a common remedial action taken in the field. The results showed that this perturbation had a moderate positive impact, consistent with slow biokinetics being the overall rate-limiting process. However, the second perturbation, which was to
Laboratory-scale in situ bioremediation in heterogeneous porous media: Biokinetics-limited scenario
Song, Xin; Hong, Eunyoung; Seagren, Eric A.
2014-03-01
Subsurface heterogeneities influence interfacial mass-transfer processes and affect the application of in situ bioremediation by impacting the availability of substrates to the microorganisms. However, for difficult-to-degrade compounds, and/or cases with inhibitory biodegradation conditions, slow biokinetics may also limit the overall bioremediation rate, or be as limiting as mass-transfer processes. In this work, a quantitative framework based on a set of dimensionless coefficients was used to capture the effects of the competing interfacial and biokinetic processes and define the overall rate-limiting process. An integrated numerical modeling and experimental approach was used to evaluate application of the quantitative framework for a scenario in which slow-biokinetics limited the overall bioremediation rate of a polycyclic aromatic hydrocarbon (naphthalene). Numerical modeling was conducted to simulate the groundwater flow and naphthalene transport and verify the system parameters, which were used in the quantitative framework application. The experiments examined the movement and biodegradation of naphthalene in a saturated, heterogeneous intermediate-scale flow cell with two layers of contrasting hydraulic conductivities. These experiments were conducted in two phases: Phase I, simulating an inhibited slow biodegradation; and Phase II, simulating an engineered bioremediation, with system perturbations selected to enhance the slow biodegradation rate. In Phase II, two engineered perturbations to the system were selected to examine their ability to enhance in situ biodegradation. In the first perturbation, nitrogen and phosphorus in excess of the required stoichiometric amounts were spiked into the influent solution to mimic a common remedial action taken in the field. The results showed that this perturbation had a moderate positive impact, consistent with slow biokinetics being the overall rate-limiting process. However, the second perturbation, which was to
Directory of Open Access Journals (Sweden)
Xiaowu Tang
2016-01-01
Full Text Available Permeability of soil plays an important role in geotechnical engineering and is commonly determined by methods combining measurements with theory. Using the double-scale asymptotic expansion method, the Navier-Stokes equation is numerically solved to calculate the permeability, based on the homogenization method and the assumption that the homogeneous microstructure of the relevant porous media is represented accurately as the Representative Elemental Volume (REV. In this study, the commonly used square model is tested in the calculation of sea clay permeability. The results show large deviations. It is suspected that the square model could not represent the flattened shape of the clay particles and the bound water film wrapping around them. Hence, the Rectangle Particle-Water Film Model (i.e., the R-W model is proposed. After determining the horizontal and vertical characteristic length of the unit cell using two pairs of initial data, the permeabilities of other different void ratios could be inversely calculated. The results of three types of clay obtained using the R-W model agree well with the experimental data. This shows the efficient feasibility and accuracy of the R-W model by providing a good representation of the clay particles when using the double-scale asymptotic expansion method to calculate clay permeability.
A dynamic routing strategy with limited buffer on scale-free network
Wang, Yufei; Liu, Feng
2016-04-01
In this paper, we propose an integrated routing strategy based on global static topology information and local dynamic data packet queue lengths to improve the transmission efficiency of scale-free networks. The proposed routing strategy is a combination of a global static routing strategy (based on the shortest path algorithm) and local dynamic queue length management, in which, instead of using an infinite buffer, the queue length of each node i in the proposed routing strategy is limited by a critical queue length Qic. When the network traffic is lower and the queue length of each node i is shorter than its critical queue length Qic, it forwards packets according to the global routing table. With increasing network traffic, when the buffers of the nodes with higher degree are full, they do not receive packets due to their limited buffers and the packets have to be delivered to the nodes with lower degree. The global static routing strategy can shorten the transmission time that it takes a packet to reach its destination, and the local limited queue length can balance the network traffic. The optimal critical queue lengths of nodes have been analysed. Simulation results show that the proposed routing strategy can get better performance than that of the global static strategy based on topology, and almost the same performance as that of the global dynamic routing strategy with less complexity.
Underdamped scaled Brownian motion: (non-)existence of the overdamped limit in anomalous diffusion
Bodrova, Anna S.; Chechkin, Aleksei V.; Cherstvy, Andrey G.; Safdari, Hadiseh; Sokolov, Igor M.; Metzler, Ralf
2016-07-01
It is quite generally assumed that the overdamped Langevin equation provides a quantitative description of the dynamics of a classical Brownian particle in the long time limit. We establish and investigate a paradigm anomalous diffusion process governed by an underdamped Langevin equation with an explicit time dependence of the system temperature and thus the diffusion and damping coefficients. We show that for this underdamped scaled Brownian motion (UDSBM) the overdamped limit fails to describe the long time behaviour of the system and may practically even not exist at all for a certain range of the parameter values. Thus persistent inertial effects play a non-negligible role even at significantly long times. From this study a general questions on the applicability of the overdamped limit to describe the long time motion of an anomalously diffusing particle arises, with profound consequences for the relevance of overdamped anomalous diffusion models. We elucidate our results in view of analytical and simulations results for the anomalous diffusion of particles in free cooling granular gases.
Saitow, Masaaki; Becker, Ute; Riplinger, Christoph; Valeev, Edward F; Neese, Frank
2017-04-28
The Coupled-Cluster expansion, truncated after single and double excitations (CCSD), provides accurate and reliable molecular electronic wave functions and energies for many molecular systems around their equilibrium geometries. However, the high computational cost, which is well-known to scale as O(N(6)) with system size N, has limited its practical application to small systems consisting of not more than approximately 20-30 atoms. To overcome these limitations, low-order scaling approximations to CCSD have been intensively investigated over the past few years. In our previous work, we have shown that by combining the pair natural orbital (PNO) approach and the concept of orbital domains it is possible to achieve fully linear scaling CC implementations (DLPNO-CCSD and DLPNO-CCSD(T)) that recover around 99.9% of the total correlation energy [C. Riplinger et al., J. Chem. Phys. 144, 024109 (2016)]. The production level implementations of the DLPNO-CCSD and DLPNO-CCSD(T) methods were shown to be applicable to realistic systems composed of a few hundred atoms in a routine, black-box fashion on relatively modest hardware. In 2011, a reduced-scaling CCSD approach for high-spin open-shell unrestricted Hartree-Fock reference wave functions was proposed (UHF-LPNO-CCSD) [A. Hansen et al., J. Chem. Phys. 135, 214102 (2011)]. After a few years of experience with this method, a few shortcomings of UHF-LPNO-CCSD were noticed that required a redesign of the method, which is the subject of this paper. To this end, we employ the high-spin open-shell variant of the N-electron valence perturbation theory formalism to define the initial guess wave function, and consequently also the open-shell PNOs. The new PNO ansatz properly converges to the closed-shell limit since all truncations and approximations have been made in strict analogy to the closed-shell case. Furthermore, given the fact that the formalism uses a single set of orbitals, only a single PNO integral transformation is
Principal Shapes and Squeezed Limits in the Effective Field Theory of Large Scale Structure
Bertolini, Daniele
2016-01-01
We apply an orthogonalization procedure on the effective field theory of large scale structure (EFT of LSS) shapes, relevant for the angle-averaged bispectrum and non-Gaussian covariance of the matter power spectrum at one loop. Assuming natural-sized EFT parameters, this identifies a linear combination of EFT shapes - referred to as the principal shape - that gives the dominant contribution for the whole kinematic plane, with subdominant combinations suppressed by a few orders of magnitude. For the covariance, our orthogonal transformation is in excellent agreement with a principal component analysis applied to available data. Additionally we find that, for both observables, the coefficients of the principal shapes are well approximated by the EFT coefficients appearing in the squeezed limit, and are thus measurable from power spectrum response functions. Employing data from N-body simulations for the growth-only response, we measure the single EFT coefficient describing the angle-averaged bispectrum with $\\...
Voss, Florian; Schmidt, Volker
2009-01-01
We consider spatial stochastic models, which can be applied e.g. to telecommunication networks with two hierarchy levels. In particular, we consider two Cox processes concentrated on the edge set of a random tessellation, where the points can describe the locations of low-level and high-level network components, respectively, and the edge set the underlying infrastructure of the network, like road systems, railways, etc. Furthermore, each low-level component is marked with the shortest path along the edge set to the nearest high-level component. We investigate the typical shortest path length of the resulting marked point process, which is an important characteristic e.g. in performance analysis and planning of telecommunication networks. In particular, we show that its distribution converges to simple parametric limit distributions if a certain scaling factor converges to zero and infinity, respectively. This can be used to approximate the density of the typical shortest path length by analytical formulae.
Zhang, Menghua; Ma, Xin; Rong, Xuewen; Tian, Xincheng; Li, Yibin
2016-08-01
In a practical application, overhead cranes are usually subjected to system parameter uncertainties, such as uncertain payload masses, cable lengths, frictions, and external disturbances, such as air resistance. Most existing crane control methods treat the payload swing as that of a single-pendulum. However, certain types of payloads and hoisting mechanisms result in double-pendulum dynamics. The double-pendulum effects will make most existing crane control methods fail to work normally. Therefore, an adaptive tracking controller for double-pendulum overhead cranes subject to parametric uncertainties and external disturbances is developed in this paper. The proposed adaptive tracking control method guarantees that the trolley tracking error is always within a prior set of boundary conditions and converges to zero rapidly. The asymptotic stability of the closed-loop system's equilibrium point is assured by Lyapunov techniques and Barbalat's Lemma. Simulation results show that the proposed adaptive tracking control method is robust with respect to system parametric uncertainties and external disturbances.
Néel-XXZ state overlaps: odd particle numbers and Lieb-Liniger scaling limit
Brockmann, M.; De Nardis, J.; Wouters, B.; Caux, J.-S.
2014-08-01
We specialize a recently-proposed determinant formula (Brockmann, De Nardis, Wouters and Caux 2014 J. Phys. A: Math. Theor. 47 145003) for the overlap of the zero-momentum Néel state with Bethe states of the spin-1/2 XXZ chain to the case of an odd number of downturned spins, showing that it is still of ‘Gaudin-like’ form, similar to the case of an even number of down spins. We generalize this result to the overlap of q-raised Néel states with parity-invariant Bethe states lying in a nonzero magnetization sector. The generalized determinant expression can then be used to derive the corresponding determinants and their prefactors in the scaling limit to the Lieb-Liniger (LL) Bose gas. The odd number of down spins directly translates to an odd number of bosons. We furthermore give a proof that the Néel state has no overlap with non-parity-invariant Bethe states. This is based on a determinant expression for overlaps with general Bethe states that was obtained in the context of the XXZ chain with open boundary conditions (Pozsgay 2013 arXiv:1309.4593, Kozlowski and Pozsgay 2012 J. Stat. Mech. P05021, Tsuchiya 1998 J. Math. Phys. 39 5946). The statement that overlaps with non-parity-invariant Bethe states vanish is still valid in the scaling limit to LL which means that the Bose-Einstein condensate state (De Nardis, Wouters, Brockmann and Caux 2014 Phys. Rev. A 89 033601) has zero overlap with non-parity-invariant LL Bethe states.
One-dimensional modelling of limit-cycle oscillation and H-mode power scaling
Wu, Xingquan; Xu, Guosheng; Wan, Baonian; Rasmussen, Jens Juul; Naulin, Volker; Nielsen, Anders Henry
2015-05-01
To understand the connection between the dynamics of microscopic turbulence and the macroscale power scaling in the L-I-H transition in magnetically confined plasmas, a new time-dependent, one-dimensional (in radius) model has been developed. The model investigates the radial force balance equation at the edge region of the plasma and applies the quenching effect of turbulence via the E × B flow shear rate exceeding the shear suppression threshold. By slightly ramping up the heating power, the spatio-temporal evolution of turbulence intensity, density and pressure profiles, poloidal flow and E × B flow self-consistently displays the L-H transition with an intermediate phase (I-phase) characterized by limit-cycle oscillations. Since the poloidal flow is partially damped to the neoclassical flow in the edge region, the numerical results reveal two different oscillation relationships between the E × B flow and the turbulence intensity depending on which oscillation of the diamagnetic flow or poloidal flow is dominant. Specifically, by including the effects of boundary conditions of density and temperature, the model results in a linear dependence of the H-mode access power on the density and magnetic field. These results imply that the microscopic turbulence dynamics and the macroscale power scaling for the L-H transition are strongly connected.
An integrated nano-scale approach to profile miRNAs in limited clinical samples
Seumois, Grégory; Vijayanand, Pandurangan; Eisley, Christopher J; Omran, Nada; Kalinke, Lukas; North, Mal; Ganesan, Asha P; Simpson, Laura J; Hunkapiller, Nathan; Moltzahn, Felix; Woodruff, Prescott G; Fahy, John V; Erle, David J; Djukanovic, Ratko; Blelloch, Robert; Ansel, K Mark
2012-01-01
Profiling miRNA expression in cells that directly contribute to human disease pathogenesis is likely to aid the discovery of novel drug targets and biomarkers. However, tissue heterogeneity and the limited amount of human diseased tissue available for research purposes present fundamental difficulties that often constrain the scope and potential of such studies. We established a flow cytometry-based method for isolating pure populations of pathogenic T cells from bronchial biopsy samples of asthma patients, and optimized a high-throughput nano-scale qRT-PCR method capable of accurately measuring 96 miRNAs in as little as 100 cells. Comparison of circulating and airway T cells from healthy and asthmatic subjects revealed asthma-associated and tissue-specific miRNA expression patterns. These results establish the feasibility and utility of investigating miRNA expression in small populations of cells involved in asthma pathogenesis, and set a precedent for application of our nano-scale approach in other human diseases. The microarray data from this study (Figure 7) has been submitted to the NCBI Gene Expression Omnibus (GEO; http://ncbi.nlm.nih.gov/geo) under accession no. GSE31030. PMID:23304658
Taylor's power law and fluctuation scaling explained by a central-limit-like convergence
Kendal, Wayne S.; Jørgensen, Bent
2011-06-01
A power function relationship observed between the variance and the mean of many types of biological and physical systems has generated much debate as to its origins. This Taylor's law (or fluctuation scaling) has been recently hypothesized to result from the second law of thermodynamics and the behavior of the density of states. This hypothesis is predicated on physical quantities like free energy and an external field; the correspondence of these quantities with biological systems, though, remains unproven. Questions can be posed as to the applicability of this hypothesis to the diversity of observed phenomena as well as the range of spatial and temporal scales observed with Taylor's law. We note that the cumulant generating functions derived from this thermodynamic model correspond to those derived over a quarter century earlier for a class of probabilistic models known as the Tweedie exponential dispersion models. These latter models are characterized by variance-to-mean power functions; their phenomenological basis rests with a central-limit-theorem-like property that causes many statistical systems to converge mathematically toward a Tweedie form. We review evaluations of the Tweedie Poisson-gamma model for Taylor's law and provide three further cases to test: the clustering of single nucleotide polymorphisms (SNPs) within the horse chromosome 1, the clustering of genes within human chromosome 8, and the Mertens function. This latter case is a number theoretic function for which a thermodynamic model cannot explain Taylor's law, but where Tweedie convergence remains applicable. The Tweedie models are applicable to diverse biological, physical, and mathematical phenomena that express power variance functions over a wide range of measurement scales; they provide a probabilistic description for Taylor's law that allows mechanistic insight into complex systems without the assumption of a thermodynamic mechanism.
Taylor's power law and fluctuation scaling explained by a central-limit-like convergence.
Kendal, Wayne S; Jørgensen, Bent
2011-06-01
A power function relationship observed between the variance and the mean of many types of biological and physical systems has generated much debate as to its origins. This Taylor's law (or fluctuation scaling) has been recently hypothesized to result from the second law of thermodynamics and the behavior of the density of states. This hypothesis is predicated on physical quantities like free energy and an external field; the correspondence of these quantities with biological systems, though, remains unproven. Questions can be posed as to the applicability of this hypothesis to the diversity of observed phenomena as well as the range of spatial and temporal scales observed with Taylor's law. We note that the cumulant generating functions derived from this thermodynamic model correspond to those derived over a quarter century earlier for a class of probabilistic models known as the Tweedie exponential dispersion models. These latter models are characterized by variance-to-mean power functions; their phenomenological basis rests with a central-limit-theorem-like property that causes many statistical systems to converge mathematically toward a Tweedie form. We review evaluations of the Tweedie Poisson-gamma model for Taylor's law and provide three further cases to test: the clustering of single nucleotide polymorphisms (SNPs) within the horse chromosome 1, the clustering of genes within human chromosome 8, and the Mertens function. This latter case is a number theoretic function for which a thermodynamic model cannot explain Taylor's law, but where Tweedie convergence remains applicable. The Tweedie models are applicable to diverse biological, physical, and mathematical phenomena that express power variance functions over a wide range of measurement scales; they provide a probabilistic description for Taylor's law that allows mechanistic insight into complex systems without the assumption of a thermodynamic mechanism.
Gulyas, H; Jain, H B; Susanto, A L; Malekpur, M; Harasiuk, K; Krawczyk, I; Choromanski, P; Furmanska, M
2005-05-01
Batchwise heterogeneous photocatalytic oxidation of model wastewater (solutions of the azo dye "Acid Orange 7" in tap water) has been performed in a laboratory-scale stirred vessel reactor with non-submerged UV-A lamps using titanium dioxide "P25" as photocatalyst. Comparison to results of solar pilot-scale Plexiglass double-skin sheet reactor (DSSR) experiments indicates that the lab-scale method may predict area demand for technical-scale DSSR design. Characteristic UV-A fluences leading to TOC or COD reduction to e(-1) of the initial concentrations were determined in lab-scale stirred vessel experiments for treated effluents of seven different industrial branches, secondary municipal effluent and biologically treated greywater. Predicted areas for solar photocatalytic oxidation of these effluents in DSSRs yielding mineralization of 95% of organics in 100 m3 of the respective effluents for a TiO2 concentration of 2 g l(-1) and a sky and solar radiation of 3.9kWh m(-2) d(-1) within one day greatly varied from below 6,000 m2 (biologically treated lubricating oil refinery effluent) to more than 100,000 m2 (highly saline biologically treated effluent of chemical industry). Especially municipal and refinery effluents (except oil reclaiming) have been identified as promising candidates for reuse after solar photocatalytic oxidation. Mineralization efficiency was decreasing with increasing alkalinity of effluents. This was interpreted by competition of hydrogen carbonate anions with organics for binding sites on photocatalyst surface and by OH radical scavenging by hydrogen carbonate. Dependence on alkalinity was superimposed by salinity influence as some effluents with high alkalinity also exhibited high salt concentrations (especially chloride).
Double Vagueness:Uncertainty in Multi-scale Fuzzy Assignment of Duneness
Institute of Scientific and Technical Information of China (English)
CHENG Tao; Pete Fisher; LI Zhilin
2004-01-01
In the automation of identification of landscape features the vagueness arises from the fact that the attributes and parameters that make up a landscape vary over space and scale. In most of existing studies, these two kinds of vagueness are studied separately. This paper investigates their combination in identification of coast landscape units. Fuzzy set theory is used to describe the vagueness of geomorphic features due to the continuity in space. The vagueness resulted from the scale of measurement is evaluated by statistic indicators. The differences of fuzzy objects derived from data at differing resolutions (in size from 3×3 cells to 25×25 cells) are studied in order to examine these higher-order uncertainties.
CMS Collaboration
2015-01-01
The double parton scattering (DPS) in proton-proton collisions at a center-of-mass energy of 8 TeV has been investigated using the same-sign W boson pair final state, with each W boson decaying into muon and associated neutrino. The data sample corresponds to an integrated luminosity of $19.7$ fb$^{-1}$ collected by the CMS detector at the Large Hadron Collider. The observables sensitive to double parton scattering are defined and studied, followed by a multivariate analysis in order to enhance the process sensitivity. A limit on the DPS yield, along with the corresponding limit on the production cross section ($\\sigma^{DPS}_{WW}$), has been evaluated.
Meng, Ge; Jiang, Lan; Li, Xin; Xu, Yongda; Shi, Xuesong; Yan, Ruyu; Lu, Yongfeng
2017-07-01
Novel dual-scale structures were obtained by femtosecond double pulse train (subpulse delay Δt > 0 ps) one-step irradiating silicon in water. The dual-scale structures consist of microspikes of ∼2 μm width and ∼0.5 μm height, and nanoripples with a mean period of 146 nm or nanoparticles with a mean diameter of 90 nm which entirely cover on the microspikes, for linearly polarized or circularly polarized femtosecond laser respectively. The formation of dual-scale structures involves the following processes: (1) Continuously laser energy deposited at femtosecond to picosecond timescales within silicon surfaces and central regions, will result in enhanced capillary waves and thinner melted silicon layers. Hence, the microspikes can be induced at laser fluences below ablation threshold; (2) Later (>500-800 pulses), a mass of debris and bubbles produced will lead to the remarkably and uniformly scattering or shielding of subsequent incident laser energy. Hence, the nanostructures can be induced. The novel structures exhibit high-sensitive surface enhanced Raman scattering with an enhancement factor of 108 for Rhodamine 6G detecting. Besides, the novel structures have application potentials in improving the silicon hydrophobicity, antireflection, etc.
Chakraborty, D.; Nandi, U. N.; Jana, D.; Dasgupta, P.; Poddar, A.
2017-01-01
Scaling analysis of nonOhmic electrical transport in double perovskite (DP) compounds like La2NiMnO6 and Sr2Fe0.3Mn0.7MoO6 is presented over a wide range of electric bias and temperatures. It is shown that the voltage V0(T) at which conductance deviates from its Ohmic value Σ0(T) scales with Σ0(T) as V0(T) ∼Σ0(T) xT , xT being the onset exponent characterizing the onset of nonOhmic conduction. Interestingly, it was found that xT is negative and insensitive to the nature of conduction mechanism in DPs but is related to the characteristic temperature T0 and the mean hopping length Hm. We provide a scaling formalism in terms of the parameters V0(T) and xT in DPs for deeper understanding of the spintronic application and the electrode functioning in solid oxide fuel cells (SOFC). Inelastic multi-step tunneling is found to be the suitable mechanism of electronic transport characterized completely by these two parameters.
Gomez-Cadenas, J J; Vidal, J Muñoz; Peña-Garay, C
2013-01-01
The South Pole Telescope (SPT) has probed an expanded angular range of the CMB temperature power spectrum. Their recent analysis of the latest cosmological data prefers nonzero neutrino masses, mnu = 0.32+-0.11 eV. This result, if confirmed by the upcoming Planck data, has deep implications on the discovery of the nature of neutrinos. In particular, the values of the effective neutrino mass involved in neutrinoless double beta decay (bb0nu) are severely constrained for both the direct and inverse hierarchy, making a discovery much more likely. In this paper, we focus in xenon-based bb0nu experiments, on the double grounds of their good performance and the suitability of the technology to large-mass scaling. We show that the current generation, with effective masses in the range of 100 kg and conceivable exposures in the range of 500 kg year, could already have a sizable opportunity to observe bb0nu events, and their combined discovery potential is quite large. The next generation, with an exposure in the rang...
Energy Technology Data Exchange (ETDEWEB)
Aalseth, Craig E; Amman, M; Amsbaugh, John F; Avignone, F. T.; Back, Henning O; Barabash, A; Barbeau, Phil; Beene, Jim; Bergevin, M; Bertrand, F; Boswell, M; Brudanin, V; Bugg, William; Burritt, Tom H; Chan, Yuen-Dat; Collar, J I; Cooper, R J; Creswick, R; Detwiler, Jason A; Doe, P J; Efremenko, Yuri; Egorov, Viatcheslav; Ejiri, H; Elliott, Steven R; Ely, James H; Esterline, James H; Farach, H A; Fast, James E; Fields, N; Finnerty, P; Fujikawa, Brian; Fuller, Erin S; Gehman, Victor; Giovanetti, G K; Guiseppe, Vincente; Gusey, K; Hallin, A L; Hazama, R; Henning, Reyco; Hime, Andrew; Hoppe, Eric W; Hossbach, Todd W; Howe, M A; Johnson, R A; Keeter, K; Keillor, Martin E; Keller, C; Kephart, Jeremy D; Kidd, Mary; Kochetov, Oleg; Konovalov, S; Kouzes, Richard T; Lesko, Kevin; Leviner, L; Loach, J C; Luke, P; MacMullin, S; Marino, Michael G; Mei, Dong-Ming; Miley, Harry S; Miller, M; Mizouni, Leila K; Montoya, A; Myers, A W; Nomachi, Masaharu; Odom, Brian; Orrell, John L; Phillips, D; Poon, Alan; Prior, Gersende; Qian, J; Radford, D C; Rielage, Keith; Robertson, R G. H.; Rodriguez, Larry; Rykaczewski, Krzysztof P; Schubert, Alexis G; Shima, T; Shirchenko, M; Strain, J; Thomas, K; Thompson, Robert C; Timkin, V; Tornow, W; Van Wechel, T D; Vanyushin, I; Vetter, Kai; Warner, Ray A; Wilkerson, J; Wouters, Jan; Yakushev, E; Young, A; Yu, Chang-Hong; Yumatov, Vladimir; Zhang, C L; Zimmerman, S
2009-12-17
The MAJORANA collaboration is pursuing the development of the so-called MAJORANA DEMONSTRATOR. The DEMONSTRATOR is intended to perform research and development towards a tonne-scale germanium-based experiment to search for the neutrinoless double-beta decay of 76Ge. The DEMONSTRATOR can also perform a competitive direct dark matter search for light WIMPs in the 1-10GeV/c2 mass range. It will consist of approximately 60 kg. of germanium detectors in an ultra-low background shield located deep underground at the Sanford Underground Laboratory in Lead, SD. The DEMONSTRATOR will also perform background and technology studies, and half of the detector mass will be enriched germanium. This talk will review the motivation, design, technology and status of the Demonstrator.
AN APPLICATION OF DOUBLE-SCALE METHOD TO THE STUDY OF NON-LINEAR DISSIPATIVE WAVES IN JEFFREYS MEDIA
Directory of Open Access Journals (Sweden)
Adelina Georgescu
2011-07-01
Full Text Available In previous papers we sketched out the general use of the doublescalemethod to nonlinear hyperbolic partial differential equations(PDEs in order to study the asymptotic waves and as an examplethe model governing the motion of a rheological medium (Maxwellmedium with one mechanical internal variable was studied. In thispaper the double scale method is applied to investigate non-linear dissipative waves in viscoanelastic media without memory of order one(Jeffreys media, that were studied by one of the authors (L. R. inmore classical way. For these media the equations of motion includesecond order derivative terms multiplied by a very small parameter. We give a physical interpretation of the new (fast variable, related to the surfaces across which the solutions or/and some of their derivatives vary steeply. The paper concludes with one-dimensional application containing original results.
Lopez-Pavon, J; Petcov, S T
2015-01-01
We perform a detailed analysis of the one-loop corrections to the light neutrino mass matrix within low scale type I seesaw extensions of the Standard Model and their implications in experimental searches for neutrinoless double beta decay. We show that a sizable contribution to the effective Majorana neutrino mass from the exchange of heavy Majorana neutrinos is always possible, provided one requires a fine-tuned cancellation between the tree-level and one-loop contribution to the light neutrino masses. We quantify the level of fine-tuning as a function of the seesaw parameters and introduce a generalisation of the Casas-Ibarra parametrization of the neutrino Yukawa matrix, which easily allows to include the one-loop corrections to the light neutrino masses.
Energy Doubling of 42 GeV Electrons in a Meter-scale Plasma Wakefield Accelerator
Energy Technology Data Exchange (ETDEWEB)
Blumenfeld, Ian; Clayton, Christopher E.; Decker, Franz-Josef; Hogan, Mark J.; Huang, Chengkun; Ischebeck, Rasmus; Iverson, Richard; Joshi, Chandrashekhar; Katsouleas,; Kirby, Neil; Lu, Wei; Marsh, Kenneth A.; Mori, Warren B.; Muggli, Patric; Oz, Erdem; Siemann, Robert H.; Walz, Dieter; Zhou, Miaomiao; /SLAC /UCLA /Southern California U.
2007-03-14
The energy frontier of particle physics is several trillion electron volts, but colliders capable of reaching this regime (such as the Large Hadron Collider and the International Linear Collider) are costly and time-consuming to build; it is therefore important to explore new methods of accelerating particles to high energies. Plasma-based accelerators are particularly attractive because they are capable of producing accelerating fields that are orders of magnitude larger than those used in conventional colliders. In these accelerators, a drive beam (either laser or particle) produces a plasma wave (wakefield) that accelerates charged particles. The ultimate utility of plasma accelerators will depend on sustaining ultrahigh accelerating fields over a substantial length to achieve a significant energy gain. Here we show that an energy gain of more than 42 GeV is achieved in a plasma wakefield accelerator of 85 cm length, driven by a 42 GeV electron beam at the Stanford Linear Accelerator Center (SLAC). The results are in excellent agreement with the predictions of three-dimensional particle-in-cell simulations. Most of the beam electrons lose energy to the plasma wave, but some electrons in the back of the same beam pulse are accelerated with a field of {approx} 52GV m{sup -1}. This effectively doubles their energy, producing the energy gain of the 3-km-long SLAC accelerator in less than a meter for a small fraction of the electrons in the injected bunch. This is an important step towards demonstrating the viability of plasma accelerators for high-energy physics applications.
Can limited area NWP and/or RCM models improve on large scales inside their domain?
Mesinger, Fedor; Veljovic, Katarina
2017-04-01
In a paper in press in Meteorology and Atmospheric Physics at the time this abstract is being written, Mesinger and Veljovic point out four requirements that need to be fulfilled by a limited area model (LAM), be it in NWP or RCM environment, to improve on large scales inside its domain. First, NWP/RCM model needs to be run on a relatively large domain. Note that domain size in quite inexpensive compared to resolution. Second, NWP/RCM model should not use more forcing at its boundaries than required by the mathematics of the problem. That means prescribing lateral boundary conditions only at its outside boundary, with one less prognostic variable prescribed at the outflow than at the inflow parts of the boundary. Next, nudging towards the large scales of the driver model must not be used, as it would obviously be nudging in the wrong direction if the nested model can improve on large scales inside its domain. And finally, the NWP/RCM model must have features that enable development of large scales improved compared to those of the driver model. This would typically include higher resolution, but obviously does not have to. Integrations showing improvements in large scales by LAM ensemble members are summarized in the mentioned paper in press. Ensemble members referred to are run using the Eta model, and are driven by ECMWF 32-day ensemble members, initialized 0000 UTC 4 October 2012. The Eta model used is the so-called "upgraded Eta," or "sloping steps Eta," which is free of the Gallus-Klemp problem of weak flow in the lee of the bell-shaped topography, seemed to many as suggesting the eta coordinate to be ill suited for high resolution models. The "sloping steps" in fact represent a simple version of the cut cell scheme. Accuracy of forecasting the position of jet stream winds, chosen to be those of speeds greater than 45 m/s at 250 hPa, expressed by Equitable Threat (or Gilbert) skill scores adjusted to unit bias (ETSa) was taken to show the skill at large scales
Lu-Lu, Zhang; Yu-Zhi, Song; Shou-Bao, Gao; Yuan, Zhang; Qing-Tian, Meng
2016-05-01
A globally accurate single-sheeted double many-body expansion potential energy surface is reported for the first excited state of HS2 by fitting the accurate ab initio energies, which are calculated at the multireference configuration interaction level with the aug-cc-pVQZ basis set. By using the double many-body expansion-scaled external correlation method, such calculated ab initio energies are then slightly corrected by scaling their dynamical correlation. A grid of 2767 ab initio energies is used in the least-square fitting procedure with the total root-mean square deviation being 1.406 kcal·mol-1. The topographical features of the HS2(A2A‧) global potential energy surface are examined in detail. The attributes of the stationary points are presented and compared with the corresponding ab initio results as well as experimental and other theoretical data, showing good agreement. The resulting potential energy surface of HS2(A2A‧) can be used as a building block for constructing the global potential energy surfaces of larger S/H molecular systems and recommended for dynamic studies on the title molecular system. Project supported by the National Natural Science Foundation of China (Grant No. 11304185), the Taishan Scholar Project of Shandong Province, China, the Shandong Provincial Natural Science Foundation, China (Grant No. ZR2014AM022), the Shandong Province Higher Educational Science and Technology Program, China (Grant No. J15LJ03), the China Postdoctoral Science Foundation (Grant No. 2014M561957), and the Post-doctoral Innovation Project of Shandong Province, China (Grant No. 201402013).
Energy Technology Data Exchange (ETDEWEB)
Orloff, D.I.
1992-08-01
Pilot-scale shoe press and roll press experiments have been conducted to compare impulse drying and double felted pressing. Both ceramic coated and Beloit Type C press rolls have been evaluated. The experiments show that impulse drying can provide significantly higher outgoing solids than double felled pressing at the same impulse. For example, at an impulse of 0.234 MPa seconds (34 psi seconds), sheets at an ingoing solids of 52% were impulse dried (using the Beloit Type C press roll) to 68% solids while optimized double felled pressing could only yield press dryness of, at most, 60%.
Energy Technology Data Exchange (ETDEWEB)
JACKSON VL
2011-08-31
The primary purpose of the tank mixing and sampling demonstration program is to mitigate the technical risks associated with the ability of the Hanford tank farm delivery and celtification systems to measure and deliver a uniformly mixed high-level waste (HLW) feed to the Waste Treatment and Immobilization Plant (WTP) Uniform feed to the WTP is a requirement of 24590-WTP-ICD-MG-01-019, ICD-19 - Interface Control Document for Waste Feed, although the exact definition of uniform is evolving in this context. Computational Fluid Dynamics (CFD) modeling has been used to assist in evaluating scaleup issues, study operational parameters, and predict mixing performance at full-scale.
A double-step truncation procedure for large-scale shell-model calculations
Coraggio, L; Itaco, N
2016-01-01
We present a procedure that is helpful to reduce the computational complexity of large-scale shell-model calculations, by preserving as much as possible the role of the rejected degrees of freedom in an effective approach. Our truncation is driven first by the analysis of the effective single-particle energies of the original large-scale shell-model hamiltonian, so to locate the relevant degrees of freedom to describe a class of isotopes or isotones, namely the single-particle orbitals that will constitute a new truncated model space. The second step is to perform an unitary transformation of the original hamiltonian from its model space into the truncated one. This transformation generates a new shell-model hamiltonian, defined in a smaller model space, that retains effectively the role of the excluded single-particle orbitals. As an application of this procedure, we have chosen a realistic shell-model hamiltonian defined in a large model space, set up by seven and five proton and neutron single-particle orb...
Global comparison reveals biogenic weathering as driven by nutrient limitation at ecosystem scale
Boy, Jens; Godoy, Roberto; Dechene, Annika; Shibistova, Olga; Amir, Hamid; Iskandar, Issi; Fogliano, Bruno; Boy, Diana; McCulloch, Robert; Andrino, Alberto; Gschwendtner, Silvia; Marin, Cesar; Sauheitl, Leopold; Dultz, Stefan; Mikutta, Robert; Guggenberger, Georg
2017-04-01
A substantial contribution of biogenic weathering in ecosystem nutrition, especially by symbiotic microorganisms, has often been proposed, but large-scale in vivo studies are still missing. Here we compare a set of ecosystems spanning from the Antarctic to tropical forests for their potential biogenic weathering and its drivers. To address biogenic weathering rates, we installed mineral mesocosms only accessible for bacteria and fungi for up to 4 years, which contained freshly broken and defined nutrient-baring minerals in soil A horizons of ecosystems along a gradient of soil development differing in climate and plant species communities. Alterations of the buried minerals were analyzed by grid-intersection, confocal lascer scanning microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy on the surface and on thin sections. On selected sites, carbon fluxes were tracked by 13C labeling, and microbial community was identified by DNA sequencing. In young ecosystems (protosoils) biogenic weathering is almost absent and starts after first carbon accumulation by aeolian (later litter) inputs and is mainly performed by bacteria. With ongoing soil development and appearance of symbiotic (mycorrhized) plants, nutrient availability in soil increasingly drove biogenic weathering, and fungi became the far more important players than bacteria. We found a close relation between fungal biogenic weathering and available potassium across all 16 forested sites in the study, regardless of the dominant mycorrhiza type (AM or EM), climate, and plant-species composition. We conclude that nutrient limitations at ecosystem scale are generally counteracted by adapted fungal biogenic weathering. The close relation between fungal weathering and plant-available nutrients over a large range of severely contrasting ecosystems points towards a direct energetic support of these weathering processes by the photoautotrophic community, making biogenic weathering a
Scaling of wingbeat frequency with body mass in bats and limits to maximum bat size.
Norberg, Ulla M Lindhe; Norberg, R Åke
2012-03-01
The ability to fly opens up ecological opportunities but flight mechanics and muscle energetics impose constraints, one of which is that the maximum body size must be kept below a rather low limit. The muscle power available for flight increases in proportion to flight muscle mass and wingbeat frequency. The maximum wingbeat frequency attainable among increasingly large animals decreases faster than the minimum frequency required, so eventually they coincide, thereby defining the maximum body mass at which the available power just matches up to the power required for sustained aerobic flight. Here, we report new wingbeat frequency data for 27 morphologically diverse bat species representing nine families, and additional data from the literature for another 38 species, together spanning a range from 2.0 to 870 g. For these species, wingbeat frequency decreases with increasing body mass as M(b)(-0.26). We filmed 25 of our 27 species in free flight outdoors, and for these the wingbeat frequency varies as M(b)(-0.30). These exponents are strikingly similar to the body mass dependency M(b)(-0.27) among birds, but the wingbeat frequency is higher in birds than in bats for any given body mass. The downstroke muscle mass is also a larger proportion of the body mass in birds. We applied these empirically based scaling functions for wingbeat frequency in bats to biomechanical theories about how the power required for flight and the power available converge as animal size increases. To this end we estimated the muscle mass-specific power required for the largest flying extant bird (12-16 kg) and assumed that the largest potential bat would exert similar muscle mass-specific power. Given the observed scaling of wingbeat frequency and the proportion of the body mass that is made up by flight muscles in birds and bats, we estimated the maximum potential body mass for bats to be 1.1-2.3 kg. The largest bats, extinct or extant, weigh 1.6 kg. This is within the range expected if it
Institute of Scientific and Technical Information of China (English)
XUE,Dong; CHENG,Ying-Chun; CUI,Xin; WANG,Qi-Wei; ZHU,Jin; DENG,Jin-Gen
2004-01-01
@@ The reduction of C = C double bonds is one of the most fundamental synthetic transformations and plays a key role in the manufacturing of a wide variety of bulk and fine chemicals. Hydrogenation of olefinic substrates can be achieved readily with molecular hydrogen in many cases, but transfer hydrogenation methods using suitable donor molecules such as formic acid or alcohols are receiving increasing attention as possible synthetic alternatives because it requires no special equipment and avoids the handling of potentially hazardous gaseous hydrogen.
Limits to metallic conduction in atomic-scale quasi-one-dimensional silicon wires.
Weber, Bent; Ryu, Hoon; Tan, Y-H Matthias; Klimeck, Gerhard; Simmons, Michelle Y
2014-12-12
The recent observation of ultralow resistivity in highly doped, atomic-scale silicon wires has sparked interest in what limits conduction in these quasi-1D systems. Here we present electron transport measurements of gated Si:P wires of widths 4.6 and 1.5 nm. At 4.6 nm we find an electron mobility, μ(el)≃60 cm²/V s, in excellent agreement with that of macroscopic Hall bars. Metallic conduction persists to millikelvin temperatures where we observe Gaussian conductance fluctuations of order δG∼e²/h. In thinner wires (1.5 nm), metallic conduction breaks down at G≲e²/h, where localization of carriers leads to Coulomb blockade. Metallic behavior is explained by the large carrier densities in Si:P δ-doped systems, allowing the occupation of all six valleys of the silicon conduction band, enhancing the number of 1D channels and hence the localization length.
Heisenberg scaling of time-limited quantum metrology with realistic decoherence
Hardy, Maxime; Coish, William A.
2012-02-01
The prospect of using entanglement to improve various metrology tasks is one of the most promising avenues for a near-term real-world benefit from genuine quantum phenomena [1]. However, in the standard scenario, history-independent Markovian dephasing removes the quantum advantage [2]. We revisit the problem of quantum metrology using the model of trapped ions subject to non-Markovian phase damping decoherence caused by Gaussian noise with finite correlation length and time (a slight generalization of the model used in Ref. [3]). Assuming a fixed available measurement time shorter than the noise correlation time (the non-Markovian limit) and a noise source that is local in space, we recover Heisenberg scaling (˜1/N). This allows one to measure an ``instantaneous'' frequency to a higher precision than the time-averaged noise amplitude and moreover to a higher precision than classically allowed. Interestingly, for this protocol we show that the optimal number of measurements to be performed within the measurement time is three. [4pt] [1] V. Giovannetti, S. Lloyd, and L. Maccone Nature Photonics 5, 222 (2011) [2] S. F. Huelga et al. Phys. Rev. Lett. 79, 3865 (1997 [3] T. Monz et al. Phys. Rev. Lett. 106, 130506 (2011)
Principal shapes and squeezed limits in the effective field theory of large scale structure
Bertolini, Daniele; Solon, Mikhail P.
2016-11-01
We apply an orthogonalization procedure on the effective field theory of large scale structure (EFT of LSS) shapes, relevant for the angle-averaged bispectrum and non-Gaussian covariance of the matter power spectrum at one loop. Assuming natural-sized EFT parameters, this identifies a linear combination of EFT shapes—referred to as the principal shape—that gives the dominant contribution for the whole kinematic plane, with subdominant combinations suppressed by a few orders of magnitude. For the covariance, our orthogonal transformation is in excellent agreement with a principal component analysis applied to available data. Additionally we find that, for both observables, the coefficients of the principal shapes are well approximated by the EFT coefficients appearing in the squeezed limit, and are thus measurable from power spectrum response functions. Employing data from N-body simulations for the growth-only response, we measure the single EFT coefficient describing the angle-averaged bispectrum with 𝒪(10%) precision. These methods of shape orthogonalization and measurement of coefficients from response functions are valuable tools for developing the EFT of LSS framework, and can be applied to more general observables.
Temperature at small scales: a lower limit for a thermodynamic description.
Simon, J-M; Rubi, J M
2011-02-17
We analyze the concept of equilibrium temperature in a set of interacting argon atoms, confined in a nanostructure, a zeolite with an intricate distribution of channels through which the atoms may move. The temperature is computed following two procedures: by averaging over the kinetic energy of the particles and over the forces acting on them. It is shown that for external surfaces and for regions which do not fall under the whole pattern of potential energy distribution, smaller than a quarter of a crystal unit cell, both temperatures, kinetic and configurational, show significant differences. The configurational temperature accounts for the different interactions on the particles in the different parts of the channels which makes them move in an energetically heterogeneous environment. The kinetic temperature is practically not affected by these inhomogeneities. The observed disparity between both temperatures disappears when averages are taken over larger regions of the zeolite. The size of these regions imposes a lower limit for a consistent thermodynamic description of a small-scale systems such as nanostructured materials, catalytic cells, and nano heat-exchangers.
Seymour, Roger S
2010-09-01
Effect of size of inflorescences, flowers and cones on maximum rate of heat production is analysed allometrically in 23 species of thermogenic plants having diverse structures and ranging between 1.8 and 600 g. Total respiration rate (, micromol s(-1)) varies with spadix mass (M, g) according to in 15 species of Araceae. Thermal conductance (C, mW degrees C(-1)) for spadices scales according to C = 18.5M(0.73). Mass does not significantly affect the difference between floral and air temperature. Aroids with exposed appendices with high surface area have high thermal conductance, consistent with the need to vaporize attractive scents. True flowers have significantly lower heat production and thermal conductance, because closed petals retain heat that benefits resident insects. The florets on aroid spadices, either within a floral chamber or spathe, have intermediate thermal conductance, consistent with mixed roles. Mass-specific rates of respiration are variable between species, but reach 900 nmol s(-1) g(-1) in aroid male florets, exceeding rates of all other plants and even most animals. Maximum mass-specific respiration appears to be limited by oxygen delivery through individual cells. Reducing mass-specific respiration may be one selective influence on the evolution of large size of thermogenic flowers.
Pooser, R; Pfister, Olivier; Pooser, Raphael
2003-01-01
We investigate the scaling of the phase sensitivity of a nonideal Heisenberg-limited interferometer with the particle number N, in the case of the Bayesian detection procedure proposed by Holland and Burnett [p.r.l. 71, p. 1355 (1993)] for twin boson input modes. Using Monte Carlo simulations for up to 10,000 bosons, we show that the phase error of a nonideal interferometer scales with the Heisenberg limit if the losses are of the order of N^-1. Greater losses degrade the scaling which is then in N^-1/2, like the shot-noise limit, yet the sensitivity stays sub-shot-noise as long as photon correlations are present. These results give the actual limits of Bayesian detection for twin-mode interferometry and prove that it is an experimentally feasible scheme, contrary to what is implied by the coincidence-detection analysis of Kim et al. [p.r.a. 60, p. 708 (1999)].
Directory of Open Access Journals (Sweden)
BALTA, H.
2013-05-01
Full Text Available This paper presents a study on the influence of the extrinsic information scaling coefficient value (eic on the bit and frame error rate (BER/FER, for single and double binary turbo codes (S/DBTC decoded with maximum a posteriori (MAP and maximum logarithmic MAP (MaxLogMAP component algorithms. Firstly, we estimate the distance spectrum of the code with the so-called error impulse method (EIM, and we analyze its dependence as well as the dependence of the asymptotic FER on eic. Secondly, we estimate the actual FER using Monte Carlo simulations with eic as a parameter. The comparison of the FER(eic curves obtained by the two methods allows us, on the one hand, to assess the quality of the decoding algorithms, and on the other hand, to estimate the very low BER/FER performance of TCs, where the Monte Carlo method is practically unusable. The results presented also provide a practical guide for the appreciation of the optimal value of the scaling factor, eic. We may notice that also the MAP algorithm performance could be improved using eic<1.
Dokania, N; Gupta, G; Pal, S; Pillay, R G; Rath, P K; Tretyak, V I; Garai, A; Krishnamoorthy, H; Ghosh, C; Raina, P K; Bhushan, K G
2016-01-01
Double Beta Decay is a phenomenon of fundamental interest for particle physics and the study of these transitions to the excited states is of relevance to the calculation of Nuclear Transition Matrix Element for the process. In the present work, double beta decay of $^{94}$Zr to the $2^{+}_{1}$ excited state of $^{94}$Mo at 871.1 keV is studied using a low background $\\sim$ 250 cm$^3$ HPGe detector. No evidence of this decay was found with a 232 g.y exposure of natural Zirconium. The lower half-life limit obtained for the double beta decay of $\\rm^{94}Zr$ to the $2^{+}_{1}$ excited state of $\\rm^{94}Mo$ is $T_{1/2} > 6.1 \\times 10^{19}$ y at 90\\% C.L. ($T_{1/2} > 2.0 \\times 10^{20}$ y at 68\\% C.L.), a significant improvement by an order of magnitude over the existing experimental limit at 68\\% C.L.
Energy Technology Data Exchange (ETDEWEB)
De Nolf, Wout [Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610, Antwerpen (Wilrijk) (Belgium)], E-mail: wout.denolf@ua.ac.be; Jaroszewicz, Jakub [Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610, Antwerpen (Wilrijk) (Belgium); Terzano, Roberto [Dipartimento di Biologia e Chimica Agro-forestale ed Ambientale, Via Amendola 165/A, I-70126, University of Bari, Bari (Italy); Lind, Ole Christian; Salbu, Brit [Isotope Laboratory, Norwegian University of Life Sciences, PO Box 5003, N-1432 As (Norway); Vekemans, Bart [Department of Analytical Chemistry, Ghent University, Krijgslaan 281 S12, B-9000 Gent (Belgium); Janssens, Koen [Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610, Antwerpen (Wilrijk) (Belgium); Falkenberg, Gerald [HASYLAB at DESY, Beamline L, Notkestraat 85, D-22603, Hamburg (Germany)
2009-08-15
The performance of a combined microbeam X-ray fluorescence/X-ray powder diffraction (XRF/XRPD) measurement station at Hamburger Synchrotronstrahlungslabor (HASYLAB) Beamline L is discussed in comparison to that at European Synchrotron Radiation Facility (ESRF) ID18F/ID22. The angular resolution in the X-ray diffractograms is documented when different combinations of X-ray source, optics and X-ray diffraction detectors are employed. Typical angular resolution values in the range 0.3-0.5 deg. are obtained at the bending magnet source when a 'pink' beam form of excitation is employed. A similar setup at European Synchrotron Radiation Facility beamlines ID18F and ID22 allows to reach angular resolution values of 0.1-0.15 deg. In order to document the possibilities and limitations for speciation of metals in environmental materials by means of Hamburger Synchrotronstrahlungslabor Beamline L X-ray fluorescence/X-ray powder diffraction setup, two case studies are discussed, one involved in the identification of the crystal phases in which heavy metals such as chromium, iron, barium and lead are present in polluted soils of an industrial site (Val Basento, Italy) and another involved in the speciation of uranium in depleted uranium particles (Ceja Mountains, Kosovo). In the former case, the angular resolution is sufficient to allow identification of most crystalline phases present while in the latter case, it is necessary to dispose of an angular resolution of ca. 0.2 deg. to distinguish between different forms of oxidized uranium.
Haris, Norshakila; Kyabaggu, Peter B. K.; Rezazadeh, Ali A.
2016-07-01
A microwave receiver protection limiter circuit has been designed, fabricated and tested using vertically stacked GaAs MMIC technology. The limiter circuit with a dimension of 2.5 × 1.3 mm2 is formed by using double-channel AlGaAs/InGaAs pseudomorphic HEMT (pHEMT) Schottky diodes integrated with a low-loss V-shaped coplanar waveguide multilayer structure. The electrical parameter characteristics of the pHEMT Schottky diodes are presented including the C-V profile showing the presence of a double channel in the device layer structure. This unique feature can also be seen from the double-peak responses of the electron density as a function of the device layer width, which represent the high electron concentration at two different 2-DEG layers of the structure. An equivalent circuit model of pHEMT Schottky diodes is demonstrated showing good agreement with the measurement results. At zero-bias condition, the devices show high performance in diode detector applications with voltage sensitivities of more than 89 mV μW-1 at 10 GHz and at least 5.4 mV μW-1 at 35 GHz. The measurement results of the limiter circuit demonstrated the blocking of input power signals greater than 20 dBm input power at 3 GHz. To the best of our knowledge this is the first demonstration of the use of pHEMT Schottky diodes in microwave power limiter applications.
Energy Technology Data Exchange (ETDEWEB)
Gómez-Cadenas, J.J.; Martín-Albo, J.; Vidal, J. Muñoz; Peña-Garay, C., E-mail: gomez@mail.cern.ch, E-mail: jmalbos@ific.uv.es, E-mail: jmunoz@ific.uv.es, E-mail: penya@ific.uv.es [Instituto de Física Corpuscular (IFIC), CSIC and Universitat de Valencia Calle Catedrático José Beltrán, 2, 46090 Paterna, Valencia (Spain)
2013-03-01
The South Pole Telescope (SPT) has probed an expanded angular range of the CMB temperature power spectrum. Their recent analysis of the latest cosmological data prefers nonzero neutrino masses, with Σm{sub ν} = (0.32±0.11) eV. This result, if confirmed by the upcoming Planck data, has deep implications on the discovery of the nature of neutrinos. In particular, the values of the effective neutrino mass m{sub ββ} involved in neutrinoless double beta decay (ββ0ν) are severely constrained for both the direct and inverse hierarchy, making a discovery much more likely. In this paper, we focus in xenon-based ββ0ν experiments, on the double grounds of their good performance and the suitability of the technology to large-mass scaling. We show that the current generation, with effective masses in the range of 100 kg and conceivable exposures in the range of 500 kg·year, could already have a sizeable opportunity to observe ββ0ν events, and their combined discovery potential is quite large. The next generation, with an exposure in the range of 10 ton·year, would have a much more enhanced sensitivity, in particular due to the very low specific background that all the xenon technologies (liquid xenon, high-pressure xenon and xenon dissolved in liquid scintillator) can achieve. In addition, a high-pressure xenon gas TPC also features superb energy resolution. We show that such detector can fully explore the range of allowed effective Majorana masses, thus making a discovery very likely.
Machine Learning for Big Data: A Study to Understand Limits at Scale
Energy Technology Data Exchange (ETDEWEB)
Sukumar, Sreenivas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Del-Castillo-Negrete, Carlos Emilio [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2015-12-21
This report aims to empirically understand the limits of machine learning when applied to Big Data. We observe that recent innovations in being able to collect, access, organize, integrate, and query massive amounts of data from a wide variety of data sources have brought statistical data mining and machine learning under more scrutiny, evaluation and application for gleaning insights from the data than ever before. Much is expected from algorithms without understanding their limitations at scale while dealing with massive datasets. In that context, we pose and address the following questions How does a machine learning algorithm perform on measures such as accuracy and execution time with increasing sample size and feature dimensionality? Does training with more samples guarantee better accuracy? How many features to compute for a given problem? Do more features guarantee better accuracy? Do efforts to derive and calculate more features and train on larger samples worth the effort? As problems become more complex and traditional binary classification algorithms are replaced with multi-task, multi-class categorization algorithms do parallel learners perform better? What happens to the accuracy of the learning algorithm when trained to categorize multiple classes within the same feature space? Towards finding answers to these questions, we describe the design of an empirical study and present the results. We conclude with the following observations (i) accuracy of the learning algorithm increases with increasing sample size but saturates at a point, beyond which more samples do not contribute to better accuracy/learning, (ii) the richness of the feature space dictates performance - both accuracy and training time, (iii) increased dimensionality often reflected in better performance (higher accuracy in spite of longer training times) but the improvements are not commensurate the efforts for feature computation and training and (iv) accuracy of the learning algorithms
Directory of Open Access Journals (Sweden)
TRIFINA, L.
2011-02-01
Full Text Available This paper analyzes the extrinsic information scaling coefficient influence on double-iterative decoding algorithm for space-time turbo codes with large number of antennas. The max-log-APP algorithm is used, scaling both the extrinsic information in the turbo decoder and the one used at the input of the interference-canceling block. Scaling coefficients of 0.7 or 0.75 lead to a 0.5 dB coding gain compared to the no-scaling case, for one or more iterations to cancel the spatial interferences.
Energy Technology Data Exchange (ETDEWEB)
Ballestini, G.; Masiero, N.; Tombola, G. [Universita degli Studi di Padova (Italy). Dipartimento di Architettura e Urbanistica; De Carli, M. [Universita degli Studi di Padova (Italy). Dipartimento di Fisica Tecnica
2005-07-15
There is an open discussion concerning how to improve energy performance of old dismissed industrial archaeology buildings and which could be the best choices for their sustainable re-use. In this work, a case study is analysed for investigating the possibility of application of passive solar systems in a Mediterranean climate on a dismissed silk factory, with particular reference to double-skin facade and natural ventilation, by means of dynamic simulations performed by coupling TRNSYS and LOOPDA simulations models. Natural ventilation in historical industrial buildings has been used in the past, by means of technical openings between floors and chimneys at the top. In this study the old airflow patterns are maintained and, due to the sunspace in winter and the night-cooling in summer, 12% of the energy might be saved in 1 year. (author)
DEFF Research Database (Denmark)
Liu, Mingzhe; Wittchen, Kim Bjarne; Heiselberg, Per
2014-01-01
with experimental data collected in a full-scale façade element test facility at Aalborg University (DK). Comparison was conducted between the simplified method and WIS software on the accuracy of calculating internal surface temperature of double glazing facade. The method is based on standards EN410 and EN673...
DEFF Research Database (Denmark)
Knecht, Stefan; Jensen, Hans Jørgen Aagaard; Fleig, Timo
2010-01-01
We present a parallel implementation of a large-scale relativistic double-group configuration interaction CIprogram. It is applicable with a large variety of two- and four-component Hamiltonians. The parallel algorithm is based on a distributed data model in combination with a static load balanci...
Comerford, Julia M; Stern, Daniel; Cooper, Michael C; Weiner, Benjamin J; Newman, Jeffrey A; Harrison, Fiona; Madsen, Kristin; Barrows, R Scott
2011-01-01
Merger-remnant galaxies with kpc-scale separation dual active galactic nuclei (AGNs) should be widespread as a consequence of galaxy mergers and triggered gas accretion onto supermassive black holes, yet very few dual AGNs have been observed. Galaxies with double-peaked narrow AGN emission lines in the Sloan Digital Sky Survey are plausible dual AGN candidates, but their double-peaked profiles could also be the result of gas kinematics or AGN-driven outflows and jets on small or large scales. To help distinguish between these scenarios, we have obtained spatial profiles of the AGN emission via follow-up longslit spectroscopy of 81 double-peaked narrow-line AGNs in SDSS at 0.03 < z < 0.36 using Lick, Palomar, and MMT Observatories. We find that all 81 systems exhibit double AGN emission components with ~kpc projected spatial separations on the sky, which suggests that they are produced by kpc-scale dual AGNs or kpc-scale outflows, jets, or rotating gaseous disks. In addition, we find that the subsample (...
Elagin, Andrey; Naranjo, Brian; Ouellet, Jonathan; Winslow, Lindley; Wongjirad, Taritree
2016-01-01
We present a technique for separating nuclear double beta decay ($\\beta\\beta$-decay) events from background neutrino interactions due to $^{8}$B decays in the sun. This background becomes dominant in a kiloton-scale liquid-scintillator detector deep underground and is usually considered as irreducible due to an overlap in deposited energy with the signal. However, electrons from 0$\
Abbott, B.; Abolins, M.; Abramov, V.; Acharya, B. S.; Adam, I.; Adams, D. L.; Adams, M.; Ahn, S.; Aihara, H.; Alves, G. A.; Amos, N.; Anderson, E. W.; Baarmand, M. M.; Babintsev, V. V.; Babukhadia, L.; Baden, A.; Baldin, B.; Banerjee, S.; Bantly, J.; Barberis, E.; Baringer, P.; Bartlett, J. F.; Belyaev, A.; Beri, S. B.; Bertram, I.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Bhattacharjee, M.; Biswas, N.; Blazey, G.; Blessing, S.; Bloom, P.; Boehnlein, A.; Bojko, N. I.; Borcherding, F.; Boswell, C.; Brandt, A.; Breedon, R.; Brock, R.; Bross, A.; Buchholz, D.; Burtovoi, V. S.; Butler, J. M.; Carvalho, W.; Casey, D.; Casilum, Z.; Castilla-Valdez, H.; Chakraborty, D.; Chang, S.-M.; Chekulaev, S. V.; Chen, W.; Choi, S.; Chopra, S.; Choudhary, B. C.; Christenson, J. H.; Chung, M.; Claes, D.; Clark, A. R.; Cobau, W. G.; Cochran, J.; Coney, L.; Cooper, W. E.; Cretsinger, C.; Cullen-Vidal, D.; Cummings, M. A.; Cutts, D.; Dahl, O. I.; Davis, K.; de, K.; del Signore, K.; Demarteau, M.; Denisov, D.; Denisov, S. P.; Diehl, H. T.; Diesburg, M.; di Loreto, G.; Draper, P.; Ducros, Y.; Dudko, L. V.; Dugad, S. R.; Dyshkant, A.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Engelmann, R.; Eno, S.; Eppley, G.; Ermolov, P.; Eroshin, O. V.; Evdokimov, V. N.; Fahland, T.; Fatyga, M. K.; Feher, S.; Fein, D.; Ferbel, T.; Finocchiaro, G.; Fisk, H. E.; Fisyak, Y.; Flattum, E.; Forden, G. E.; Fortner, M.; Frame, K. C.; Fuess, S.; Gallas, E.; Galyaev, A. N.; Gartung, P.; Gavrilov, V.; Geld, T. L.; Genik, R. J.; Genser, K.; Gerber, C. E.; Gershtein, Y.; Gibbard, B.; Gobbi, B.; Gómez, B.; Gómez, G.; Goncharov, P. I.; González Solís, J. L.; Gordon, H.; Goss, L. T.; Gounder, K.; Goussiou, A.; Graf, N.; Grannis, P. D.; Green, D. R.; Greenlee, H.; Grinstein, S.; Grudberg, P.; Grünendahl, S.; Guglielmo, G.; Guida, J. A.; Guida, J. M.; Gupta, A.; Gurzhiev, S. N.; Gutierrez, G.; Gutierrez, P.; Hadley, N. J.; Haggerty, H.; Hagopian, S.; Hagopian, V.; Hahn, K. S.; Hall, R. E.; Hanlet, P.; Hansen, S.; Hauptman, J. M.; Hedin, D.; Heinson, A. P.; Heintz, U.; Hernández-Montoya, R.; Heuring, T.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Hoftun, J. S.; Hsieh, F.; Hu, Tong; Ito, A. S.; Jaques, J.; Jerger, S. A.; Jesik, R.; Joffe-Minor, T.; Johns, K.; Johnson, M.; Jonckheere, A.; Jones, M.; Jöstlein, H.; Jun, S. Y.; Jung, C. K.; Kahn, S.; Kalbfleisch, G.; Karmanov, D.; Karmgard, D.; Kehoe, R.; Kelly, M. L.; Kim, S. K.; Klima, B.; Klopfenstein, C.; Ko, W.; Kohli, J. M.; Koltick, D.; Kostritskiy, A. V.; Kotcher, J.; Kotwal, A. V.; Kozelov, A. V.; Kozlovsky, E. A.; Krane, J.; Krishnaswamy, M. R.; Krzywdzinski, S.; Kuleshov, S.; Kulik, Y.; Kunori, S.; Landry, F.; Landsberg, G.; Lauer, B.; Leflat, A.; Li, J.; Li, Q. Z.; Lima, J. G.; Lincoln, D.; Linn, S. L.; Linnemann, J.; Lipton, R.; Lobkowicz, F.; Loken, S. C.; Lucotte, A.; Lueking, L.; Lyon, A. L.; Maciel, A. K.; Madaras, R. J.; Madden, R.; Magaña-Mendoza, L.; Manankov, V.; Mani, S.; Mao, H. S.; Markeloff, R.; Marshall, T.; Martin, M. I.; Mauritz, K. M.; May, B.; Mayorov, A. A.; McCarthy, R.; McDonald, J.; McKibben, T.; McKinley, J.; McMahon, T.; Melanson, H. L.; Merkin, M.; Merritt, K. W.; Miao, C.; Miettinen, H.; Mincer, A.; Mishra, C. S.; Mokhov, N.; Mondal, N. K.; Montgomery, H. E.; Mooney, P.; Mostafa, M.; da Motta, H.; Murphy, C.; Nang, F.; Narain, M.; Narasimham, V. S.; Narayanan, A.; Neal, H. A.; Negret, J. P.; Nemethy, P.; Norman, D.; Oesch, L.; Oguri, V.; Oliveira, E.; Oltman, E.; Oshima, N.; Owen, D.; Padley, P.; Para, A.; Park, Y. M.; Partridge, R.; Parua, N.; Paterno, M.; Pawlik, B.; Perkins, J.; Peters, M.; Piegaia, R.; Piekarz, H.; Pischalnikov, Y.; Pope, B. G.; Prosper, H. B.; Protopopescu, S.; Qian, J.; Quintas, P. Z.; Raja, R.; Rajagopalan, S.; Ramirez, O.; Reucroft, S.; Rijssenbeek, M.; Rockwell, T.; Roco, M.; Rubinov, P.; Ruchti, R.; Rutherfoord, J.; Sánchez-Hernández, A.; Santoro, A.; Sawyer, L.; Schamberger, R. D.; Schellman, H.; Sculli, J.; Shabalina, E.; Shaffer, C.; Shankar, H. C.; Shivpuri, R. K.; Shpakov, D.; Shupe, M.; Singh, H.; Singh, J. B.; Sirotenko, V.; Smith, E.; Smith, R. P.; Snihur, R.; Snow, G. R.; Snow, J.; Snyder, S.; Solomon, J.; Sosebee, M.; Sotnikova, N.; Souza, M.; Steinbrück, G.; Stephens, R. W.; Stevenson, M. L.; Stichelbaut, F.; Stoker, D.; Stolin, V.; Stoyanova, D. A.; Strauss, M.; Streets, K.; Strovink, M.; Sznajder, A.; Tamburello, P.; Tarazi, J.; Tartaglia, M.; Thomas, T. L.; Thompson, J.; Trippe, T. G.; Tuts, P. M.; Vaniev, V.; Varelas, N.; Varnes, E. W.; Vititoe, D.; Volkov, A. A.; Vorobiev, A. P.; Wahl, H. D.; Wang, G.; Warchol, J.; Watts, G.; Wayne, M.; Weerts, H.; White, A.; White, J. T.; Wightman, J. A.; Willis, S.; Wimpenny, S. J.; Wirjawan, J. V.; Womersley, J.; Won, E.; Wood, D. R.; Wu, Z.; Yamada, R.; Yamin, P.; Yasuda, T.; Yepes, P.
1999-06-01
We present a measurement of the Drell-Yan cross section at high dielectron invariant mass using 120 pb -1 of data collected in pp¯ collisions at s = 1.8 TeV by the D0 Collaboration during 1992-1996. No deviation from standard model expectations is observed. We use the data to set limits on the quark-electron compositeness scale. The 95% confidence level lower limits on the compositeness scale vary between 3.3 and 6.1 TeV depending on the assumed form of the effective contact interaction.
Zhang, Hengli; Liu, Xiaomeng; Li, Daijun; Shi, Peng; Schell, Alex; Haas, Claus Rüdige; Du, Keming
2007-09-10
A near-diffraction-limited, stable, 18 mJ green source with a pulse width of 16.7 ns was generated at a 1 kHz repetition rate by frequency doubling of diode stacks end-pumped electro-optically Q-switched slab Nd:YAG oscillator-amplifier system. The pump to green optical conversion efficiency was 10.7%. At the output energy of 15 mJ at 532 nm, the M2 factors were 1.3 and 1.7 in the unstable and stable directions, respectively. The energy pulse stability was approximately 0.8%.
Directory of Open Access Journals (Sweden)
William T Bean
Full Text Available Species distributions are known to be limited by biotic and abiotic factors at multiple temporal and spatial scales. Species distribution models, however, frequently assume a population at equilibrium in both time and space. Studies of habitat selection have repeatedly shown the difficulty of estimating resource selection if the scale or extent of analysis is incorrect. Here, we present a multi-step approach to estimate the realized and potential distribution of the endangered giant kangaroo rat. First, we estimate the potential distribution by modeling suitability at a range-wide scale using static bioclimatic variables. We then examine annual changes in extent at a population-level. We define "available" habitat based on the total suitable potential distribution at the range-wide scale. Then, within the available habitat, model changes in population extent driven by multiple measures of resource availability. By modeling distributions for a population with robust estimates of population extent through time, and ecologically relevant predictor variables, we improved the predictive ability of SDMs, as well as revealed an unanticipated relationship between population extent and precipitation at multiple scales. At a range-wide scale, the best model indicated the giant kangaroo rat was limited to areas that received little to no precipitation in the summer months. In contrast, the best model for shorter time scales showed a positive relation with resource abundance, driven by precipitation, in the current and previous year. These results suggest that the distribution of the giant kangaroo rat was limited to the wettest parts of the drier areas within the study region. This multi-step approach reinforces the differing relationship species may have with environmental variables at different scales, provides a novel method for defining "available" habitat in habitat selection studies, and suggests a way to create distribution models at spatial and
Double-Step Scaling Free CORDIC%免缩放因子双步旋转 CORDIC 算法
Institute of Scientific and Technical Information of China (English)
2014-01-01
CORDIC (Coordinate Rotation Digital Computer) can be an efficient vector rotation algorithm in the design of in-tegrated circuit .Many researches focus on the reduction of iteration times ,and to expand the scope of the convergence and reduce the cost of scaling factor compensation .This paper presents a double-step scaling-free CORDIC algorithm which uses two-step rota-tion strategies .The algorithm reduces the iteration times ,and extends the convergence range to the entire circumference .The experi-ments show that the algorithm has excellent performance in terms of calculation accuracy ,iteration times ,and the area consumption .%集成电路设计中经常使用 CORDIC 算法实现高效的向量旋转操作。当前对该算法的研究热点集中在减少该算法的迭代次数、扩展其收敛范围以及降低缩放因子补偿操作的代价等问题上。本文提出免缩放因子的双步旋转CORDIC 算法使用双步旋转策略，减少了免缩放因子 CORDIC 算法的迭代次数，将收敛区间扩展到了整个圆周区间。实验结果表明，该算法保持高计算精度的同时减少了迭代次数和面积消耗。
Electronic mobility limited by optical phonons in Al2O3/AlGaN/GaN double heterojunctions
Zhou, X. J.; Gu, Z.; Ban, S. L.; Wang, Z. P.
2016-09-01
Applying a finite difference method and modified random-element-isodisplacement model, the mobility of electrons in the two dimensional electron gas in Al2O3/AlGaN/GaN double heterojunctions is calculated in consideration of scattering from interface and half-space optical phonons based on the theory of force balance equation. Considering the effect of ternary mixed crystals and built-in electric fields, the electronic wave functions and corresponding eigen-energies are obtained by solving Schrödinger equations. The results show that electronic mobility decreases with increasing Al from a small component, and then increases with the increasing Al. Other effects such as the size, fixed charges at Al2O3/AlGaN interface, and temperature are also discussed. It is found that the thickness of AlGaN layer increases the mobility, and the fixed charges also increase the mobility but within a certain range, whereas the thickness of Al2O3 layer and temperature reduce the mobility. Some of our results are compared with the experimental data and our conclusion is helpful for designing high electron mobility transistors.
Directory of Open Access Journals (Sweden)
Daniela A Dungl
2015-10-01
Full Text Available Platinum-based chemotherapy is the cornerstone of ovarian cancer treatment, and its efficacy is dependent on the generation of DNA damage, with subsequent induction of apoptosis. Inappropriate or aberrant activation of the DNA damage response network is are associated with resistance to platinum, and defects in DNA repair pathways play critical roles in determining patient response to chemotherapy. In ovarian cancer, tumour cell defects in homologous recombination - a repair pathway activated in response to DNA double strand breaks (DSB - are most commonly associated with platinum sensitive disease. However, despite initial sensitivity, the emergence of resistance is frequent. Here, we review strategies for directly interfering with DNA repair pathways, with particular focus on direct inhibition of non-homologous end joining (NHEJ, another DSB repair pathway. DNA-PKcs is a core component of NHEJ and it has shown considerable promise as a chemosensitization target in numerous cancer types, including ovarian cancer where it functions to promote platinum-induced survival signalling, via AKT activation. The development of pharmacological inhibitors of DNA-PKcs is on-going, and clinic-ready agents offer real hope to patients with chemoresistant disease.
Scaling up ecohydrological processes: role of surface water flow in water-limited landscapes
CSIR Research Space (South Africa)
Popp, A
2009-11-01
Full Text Available microscale processes like ecohydrological feedback mechanisms and spatial exchange like surface water flow, the authors derive transition probabilities from a fine-scale simulation model. They applied two versions of the landscape model, one that includes...
Some scaled limit theorems for an immigration super-Brownian motion
Institute of Scientific and Technical Information of China (English)
ZHANG Mei
2008-01-01
In this paper, the small time limit behaviors for an immigration super-Brownian motion are studied, where the immigration is determined by Lebesgue measure. We first prove a functional central limit theorem, and then study the large and moderate deviations associated with this central tendency.
Some scaled limit theorems for an immigration super-Brownian motion
Institute of Scientific and Technical Information of China (English)
2008-01-01
In this paper,the small time limit behaviors for an immigration super-Brownian motion are studied,where the immigration is determined by Lebesgue measure.We first prove a functional central limit theorem,and then study the large and moderate deviations associated with this central tendency.
Lower limit on the gravitino mass in low-scale gauge mediation with mH≃125GeV
Directory of Open Access Journals (Sweden)
Masahiro Ibe
2017-01-01
Full Text Available We revisit low-scale gauge mediation models in light of recent observations of CMB Lensing and Cosmic Shear which put a severe upper limit on the gravitino mass, m3/2≲4.7eV. With such a stringent constraint, many models of low-scale gauge mediation are disfavored when the squark masses are required to be rather large to explain the observed Higgs boson mass unless the gravitino abundance is diluted by late time entropy production. In this note, we discuss a type of low-scale gauge mediation models which satisfy both the observed Higgs boson mass and the upper limit on the gravitino mass. We also show that the gravitino mass cannot be smaller than about 1 eV even in such models, which may be tested in future observations of 21 cm line fluctuations.
The Limits of Polycentrism at the City-regional Scale: The case of Luxembourg
Directory of Open Access Journals (Sweden)
Antoine Decoville
2014-02-01
Full Text Available Over the last fifteen years, promoters of the European spatial planning policy have presented polycentrism as the most promising strategy for answering the challenge of a more even spatial development. However, there is still no empirical evidence proving that this conceptual tool is adaptable to all scales. In this paper, we propose two different approaches of urban hierarchy with regards to its capacity to structure spatial development at a city-regional scale: the Grand Duchy of Luxembourg. The first one depicts a classical urban hierarchy based on the location of urban amenities. The second one, which takes into account the accessibility to these amenities, shows the polycentric model in a more nuanced manner. Our results underline the differences between these two models and call for caution with respect to the adoption of the polycentric model at this spatial scale, since it could potentially lead to an increase in urban sprawl.
Energy Technology Data Exchange (ETDEWEB)
Atanasov, Atanas Todorov, E-mail: atanastod@abv.bg [Department of Physics and Biophysics, Faculty of Medicine, Trakia University, 11 Armeiska Str., 6000 Stara Zagora (Bulgaria)
2014-10-06
The scaling of physical and biological characteristics of the living organisms is a basic method for searching of new biophysical laws. In series of previous studies the author showed that in Poikilotherms, Mammals and Aves, the volume to surface ratio V×S{sup −1} (m) of organisms is proportional to their generation time T{sub gt}(s) via growth rate v (m s{sup −1}): V×S{sup −1} = v{sub gr}×T{sup r}. The power and the correlation coefficients are near to 1.0. Aim of this study is: i) to prove with experimental data the validity of the above equation for Unicellular organisms and ii) to show that perhaps, the cells are quantum-mechanical systems. The data for body mass M (kg), density ρ (kg/m{sup 3}), minimum and maximum doubling time T{sub dt} (s) for 50 unicellular organisms are assembled from scientific sources, and the computer program ‘Statistics’ is used for calculations. In result i) the analytical relationship from type: V×S{sup −1} = 4.46⋅10{sup −11}×T{sub dt} was found, where v{sub gr} = 4.46×10{sup −11} m/s and ii) it is shown that the products between cell mass M, cell length expressed by V/S ratio and growth rate v{sub gr} satisfied the Heisenberg uncertainty principle i.e. the inequalities V/S×M×v{sub gr}>h/2π and T{sub dt}×M×v{sub gr}{sup 2}>h/2π are valid, where h= 6.626×10{sup −34} J⋅s is the Planck constant. This rise the question: do cells appear quantum-mechanical systems?.
Not finding Nemo: limited reef-scale retention in a coral reef fish
Nanninga, Gerrit B.
2015-02-03
The spatial scale of larval dispersal is a key predictor of marine metapopulation dynamics and an important factor in the design of reserve networks. Over the past 15 yr, studies of larval dispersal in coral reef fishes have generated accumulating evidence of consistently high levels of self-recruitment and local retention at various spatial scales. These findings have, to a certain degree, created a paradigm shift toward the perception that large fractions of locally produced recruitment may be the rule rather than the exception. Here we examined the degree of localized settlement in an anemonefish, Amphiprion bicinctus, at a solitary coral reef in the central Red Sea by integrating estimates of self-recruitment obtained from genetic parentage analysis with predictions of local retention derived from a biophysical dispersal model parameterized with real-time physical forcing. Self-recruitment at the reef scale (c. 0.7 km2) was virtually absent during two consecutive January spawning events (1.4 % in 2012 and 0 % in 2013). Predicted levels of local retention at the reef scale varied temporally, but were comparatively low for both simulations (7 % in 2012 and 0 % in 2013). At the same time, the spatial scale of simulated dispersal was restricted to approximately 20 km from the source. Model predictions of reef-scale larval retention were highly dependent on biological parameters, underlining the need for further empirical validations of larval traits over a range of species. Overall, our findings present an urgent caution when assuming the potential for self-replenishment in small marine reserves.
Not finding Nemo: limited reef-scale retention in a coral reef fish
Nanninga, G. B.; Saenz-Agudelo, P.; Zhan, P.; Hoteit, I.; Berumen, M. L.
2015-06-01
The spatial scale of larval dispersal is a key predictor of marine metapopulation dynamics and an important factor in the design of reserve networks. Over the past 15 yr, studies of larval dispersal in coral reef fishes have generated accumulating evidence of consistently high levels of self-recruitment and local retention at various spatial scales. These findings have, to a certain degree, created a paradigm shift toward the perception that large fractions of locally produced recruitment may be the rule rather than the exception. Here we examined the degree of localized settlement in an anemonefish, Amphiprion bicinctus, at a solitary coral reef in the central Red Sea by integrating estimates of self-recruitment obtained from genetic parentage analysis with predictions of local retention derived from a biophysical dispersal model parameterized with real-time physical forcing. Self-recruitment at the reef scale (c. 0.7 km2) was virtually absent during two consecutive January spawning events (1.4 % in 2012 and 0 % in 2013). Predicted levels of local retention at the reef scale varied temporally, but were comparatively low for both simulations (7 % in 2012 and 0 % in 2013). At the same time, the spatial scale of simulated dispersal was restricted to approximately 20 km from the source. Model predictions of reef-scale larval retention were highly dependent on biological parameters, underlining the need for further empirical validations of larval traits over a range of species. Overall, our findings present an urgent caution when assuming the potential for self-replenishment in small marine reserves.
General scaling limitations of ground-plane and isolated-object cloaks
Energy Technology Data Exchange (ETDEWEB)
Hashemi, Hila; Johnson, Steven G. [Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Oskooi, A. [Department of Electronic Science and Engineering, Kyoto University (Japan); Joannopoulos, J. D. [Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)
2011-08-15
We prove that, for arbitrary three-dimensional transformation-based invisibility cloaking of an object above a ground plane or of isolated objects, there are practical constraints that increase with the object size. In particular, we show that the cloak thickness must scale proportionally to the thickness of the object being cloaked, assuming bounded refractive indices, and that absorption discrepancies and other imperfections must scale inversely with the object thickness. For isolated objects, we also show that bounded refractive indices imply a lower bound on the effective cross section.
Directory of Open Access Journals (Sweden)
Huang Xing
2016-01-01
Full Text Available This paper constructed a multiobjective programming model and designed Particle Swarm Optimization (PSO algorithm for earthquake emergency to solve the optimal decision-making question of Multihub emergency supplies collection network with constrained demand period and collection time as fuzzy interval numbers and capacity limit to hub nodes. As for algorithm design, a two-stage parallel solution mode was employed to achieve the global optimal solution in the solution space. At first, the paper is based on the constraint to the total time of emergency supplies collection system and the capacity limited to Multihub; this paper allocated the emergency supplies at each demand point to Multihub from which the emergency supply would be transferred. Secondly, this paper searched for the optimal plans from some feasible plans to determine the distribution directions and emergency supplies collection amount at emergency supplies provision points as well as the optimal collection cost that meet the constraint of demand time. Finally, the result of case verification showed that, compared with simulated annealing (SA and sequential enumeration method (SEM, Multihub emergency supply collection model based on PSO parallel algorithm made a great improvement in the number of iterations and the optimal collection time, indicating that this model is feasible and effective and can be used in decision-making for earthquake emergency supply collection.
Milchev, A.; Müller, M.; Binder, K.; Landau, D. P.
2003-04-01
Using Monte Carlo simulations and finite-size scaling methods we study “wetting” in Ising systems in a L×L×Ly pore with quadratic cross section. Antisymmetric surface fields Hs act on the free L×Ly surfaces of the opposing wedges, and periodic boundary conditions are applied along the y direction. In the limit L→∞, Ly/L3=const, the system exhibits a new type of phase transition, which is the analog of the “filling transition” that occurs in a single wedge. It is characterized by critical exponents α=3/4, β=0, and γ=5/4 for the specific heat, order parameter, and susceptibility, respectively.
Milchev, A; Müller, M; Binder, K; Landau, D P
2003-04-04
Using Monte Carlo simulations and finite-size scaling methods we study "wetting" in Ising systems in a LxLxL(y) pore with quadratic cross section. Antisymmetric surface fields H(s) act on the free LxL(y) surfaces of the opposing wedges, and periodic boundary conditions are applied along the y direction. In the limit L--> infinity, L(y)/L(3)=const, the system exhibits a new type of phase transition, which is the analog of the "filling transition" that occurs in a single wedge. It is characterized by critical exponents alpha=3/4, beta=0, and gamma=5/4 for the specific heat, order parameter, and susceptibility, respectively.
Olatunji, Bunmi O.; Adams, Thomas; Ciesielski, Bethany; David, Bieke; Sarawgi, Shivali; Broman-Fulks, Joshua
2012-01-01
This investigation examined the measurement properties of the Three Domains of Disgust Scale (TDDS). Principal components analysis in Study 1 (n = 206) revealed three factors of Pathogen, Sexual, and Moral Disgust that demonstrated excellent reliability, including test-retest over 12 weeks. Confirmatory factor analyses in Study 2 (n = 406)…
The Role and Limitations of Small-Scale Initiatives in Educational Innovation.
Crossley, Michael
1984-01-01
While small-scale initiatives in educational innovation do have advantages, problems are often encountered during the process of project replication or extension. Increased awareness of potential hazards with regard to pilot projects is a prerequisite for successful educational planning and development. (RM)
Olatunji, Bunmi O.; Adams, Thomas; Ciesielski, Bethany; David, Bieke; Sarawgi, Shivali; Broman-Fulks, Joshua
2012-01-01
This investigation examined the measurement properties of the Three Domains of Disgust Scale (TDDS). Principal components analysis in Study 1 (n = 206) revealed three factors of Pathogen, Sexual, and Moral Disgust that demonstrated excellent reliability, including test-retest over 12 weeks. Confirmatory factor analyses in Study 2 (n = 406)…
One-dimensional modelling of limit-cycle oscillation and H-mode power scaling
DEFF Research Database (Denmark)
Wu, Xingquan; Xu, Guosheng; Wan, Baonian
2015-01-01
To understand the connection between the dynamics of microscopic turbulence and the macroscale power scaling in the L-I-H transition in magnetically confined plasmas, a new time-dependent, one-dimensional (in radius) model has been developed. The model investigates the radial force balance equati...
Energy Technology Data Exchange (ETDEWEB)
Comerford, Julia M. [Astronomy Department, University of Texas at Austin, Austin, TX 78712 (United States); Gerke, Brian F. [Kavli Institute for Particle Astrophysics and Cosmology, M/S 29, Stanford Linear Accelerator Center, 2575 Sand Hill Road, Menlo Park, CA 94725 (United States); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, MS 169-221, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Cooper, Michael C. [Center for Galaxy Evolution, Department of Physics and Astronomy, University of California, Irvine, 4129 Frederick Reines Hall, Irvine, CA 92697 (United States); Weiner, Benjamin J. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Newman, Jeffrey A. [Department of Physics and Astronomy, Pittsburgh Particle Physics, Astrophysics, and Cosmology Center, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Madsen, Kristin [Space Radiation Laboratory, California Institute of Technology, MS 105-24, Pasadena, CA 91125 (United States); Barrows, R. Scott [Arkansas Center for Space and Planetary Sciences, University of Arkansas, Fayetteville, AR 72701 (United States)
2012-07-01
Merger-remnant galaxies with kiloparsec (kpc) scale separation dual active galactic nuclei (AGNs) should be widespread as a consequence of galaxy mergers and triggered gas accretion onto supermassive black holes, yet very few dual AGNs have been observed. Galaxies with double-peaked narrow AGN emission lines in the Sloan Digital Sky Survey (SDSS) are plausible dual AGN candidates, but their double-peaked profiles could also be the result of gas kinematics or AGN-driven outflows and jets on small or large scales. To help distinguish between these scenarios, we have obtained spatial profiles of the AGN emission via follow-up long-slit spectroscopy of 81 double-peaked narrow-line AGNs in SDSS at 0.03 {<=} z {<=} 0.36 using Lick, Palomar, and MMT Observatories. We find that all 81 systems exhibit double AGN emission components with {approx}kpc projected spatial separations on the sky (0.2 h{sup -1}{sub 70} kpc <{Delta}x < 5.5 h{sup -1}{sub 70} kpc; median {Delta}x = 1.1 h{sup -1}{sub 70} kpc), which suggests that they are produced by kiloparsec-scale dual AGNs or kiloparsec-scale outflows, jets, or rotating gaseous disks. Further, the objects split into two subpopulations based on the spatial extent of the double emission components and the correlation between projected spatial separations and line-of-sight velocity separations. These results suggest that the subsample (58{sup +5}{sub -6}%) of the objects with spatially compact emission components may be preferentially produced by dual AGNs, while the subsample (42{sup +6}{sub -5}%) with spatially extended emission components may be preferentially produced by AGN outflows. We also find that for 32{sup +8}{sub -6}% of the sample the two AGN emission components are preferentially aligned with the host galaxy major axis, as expected for dual AGNs orbiting in the host galaxy potential. Our results both narrow the list of possible physical mechanisms producing the double AGN components, and suggest several observational
DEFF Research Database (Denmark)
Schaber, Matthias; Hinrichsen, Hans-Harald; Neuenfeldt, Stefan;
2009-01-01
Highly stratified marine ecosystems with dynamic features such as fronts or clines in salinity, temperature, or oxygen concentration challenge an individual's ability to select suitable living conditions. Ultimately,, environmental heterogeneity organizes the spatial distributions of populations...... and hence the spatial structure of the ecosystem. Our aim here is to present a method to resolve small-scale distribution on an individual level, as needed for the behaviorally-based prediction of habitat choice and limits. We focused on the small-scale vertical distribution of cod Gadus morhua L...
Thermal instability and current-voltage scaling in superconducting fault current limiters
Energy Technology Data Exchange (ETDEWEB)
Zeimetz, B [Department of Materials Science and Metallurgy, Cambridge University, Pembroke Street, Cambridge CB1 3QZ (United Kingdom); Tadinada, K [Department of Engineering, Cambridge University, Trumpington Road, Cambridge CB2 1PZ (United Kingdom); Eves, D E [Department of Engineering, Cambridge University, Trumpington Road, Cambridge CB2 1PZ (United Kingdom); Coombs, T A [Department of Engineering, Cambridge University, Trumpington Road, Cambridge CB2 1PZ (United Kingdom); Evetts, J E [Department of Materials Science and Metallurgy, Cambridge University, Pembroke Street, Cambridge CB1 3QZ (United Kingdom); Campbell, A M [Department of Engineering, Cambridge University, Trumpington Road, Cambridge CB2 1PZ (United Kingdom)
2004-04-01
We have developed a computer model for the simulation of resistive superconducting fault current limiters in three dimensions. The program calculates the electromagnetic and thermal response of a superconductor to a time-dependent overload voltage, with different possible cooling conditions for the surfaces, and locally variable superconducting and thermal properties. We find that the cryogen boil-off parameters critically influence the stability of a limiter. The recovery time after a fault increases strongly with thickness. Above a critical thickness, the temperature is unstable even for a small applied AC voltage. The maximum voltage and maximum current during a short fault are correlated by a simple exponential law.
Escapa, A; San-Martín, M I; Mateos, R; Morán, A
2015-03-01
Microbial electrolysis cells (MECs) have the potential to become a sustainable domestic wastewater (dWW) treatment system. However, new scale-up experiences are required to gain knowledge of critical issues in MEC designs. In this study we assess the ability of two twin membraneless MEC units (that are part of a modular pilot-scale MEC) to treat dWW. Batch tests yielded COD removal efficiencies as high as 92%, with most of the hydrogen (>80% of the total production) being produced during the first 48h. During the continuous tests, MECs performance deteriorated significantly (energy consumption was relatively high and COD removal efficiencies fell below 10% in many cases), which was attributed to an inadequate configuration of the anodic chamber, insufficient mixing inside this chamber, inefficient hydrogen management on the cathode side and finally to dWW in itself. Some alternatives to the current design are suggested.
Critical Age-Dependent Branching Markov Processes and their Scaling Limits
Indian Academy of Sciences (India)
Krishna B Athreya; Siva R Athreya; Srikanth K Iyer
2010-06-01
This paper studies: (i) the long-time behaviour of the empirical distribution of age and normalized position of an age-dependent critical branching Markov process conditioned on non-extinction; and (ii) the super-process limit of a sequence of age-dependent critical branching Brownian motions.
Non-analyticity in scale in the planar limit of QCD
Lohmayer, R
2011-01-01
Using methods of numerical Lattice Gauge Theory we show that in the limit of a large number of colors, properly regularized Wilson loops have an eigenvalue distribution which changes non-analytically as the overall size of the loop is increased. This establishes a large-N phase transition in continuum planar gauge theory, a fact whose precise implications remain to be worked out.
Thickness scaling of the space-charge-limited current in poly(p-phenylene vinylene)
Blom, PWM; Tanase, C; de Leeuw, DM; Coehoorn, R
2005-01-01
Charge transport in light-emitting diodes (LEDs) based on a polyp-phenylene vinylene) (PPV) derivative is investigated as a function of sample thickness. Via the thickness dependence, the contributions from the electric field and charge carrier density to the mobility in space-charge-limited (SCL) d
Increasing water productivity of irrigated crops under limited water supply at field scale
Vazifedoust, M.; Dam, van J.C.; Feddes, R.A.; Feizi, M.
2008-01-01
Borkhar district is located in an and to semi-arid region in Iran and regularly faces widespread drought. Given current water scarcity, the limited available water should be used as efficient and productive as possible. To explore on-farm strategies which result in higher economic gains and water pr
Thin-disk laser scaling limit due to thermal-lens induced misalignment instability
Schuhmann, Karsten; Nez, Francois; Pohl, Randolf; Antognini, Aldo
2016-01-01
We present an obstacle in power scaling of thin-disk lasers related with self-driven growth of misalignment due to thermal lens effects. This self-driven growth arises from the changes of the optical phase difference at the disk caused by the excursion of the laser eigen-mode from the optical axis. We found a criterion based on a simplified model of this phenomenon which can be appied to design laser resonators insensitive to this effect.
Gass, Carlton S; Odland, Anthony P
2014-01-01
The Minnesota Multiphasic Personality Inventory-2 (MMPI-2) Symptom Validity (Fake Bad Scale [FBS]) Scale is widely used to assist in determining noncredible symptom reporting, despite a paucity of detailed research regarding its itemmetric characteristics. Originally designed for use in civil litigation, the FBS is often used in a variety of clinical settings. The present study explored its fundamental psychometric characteristics in a sample of 303 patients who were consecutively referred for a comprehensive examination in a Veterans Affairs (VA) neuropsychology clinic. FBS internal consistency (reliability) was .77. Its underlying factor structure consisted of three unitary dimensions (Tiredness/Distractibility, Stomach/Head Discomfort, and Claimed Virtue of Self/Others) accounting for 28.5% of the total variance. The FBS's internal structure showed factoral discordance, as Claimed Virtue was negatively related to most of the FBS and to its somatic complaint components. Scores on this 12-item FBS component reflected a denial of socially undesirable attitudes and behaviors (Antisocial Practices Scale) that is commonly expressed by the 1,138 males in the MMPI-2 normative sample. These 12 items significantly reduced FBS reliability, introducing systematic error variance. In this VA neuropsychological referral setting, scores on the FBS have ambiguous meaning because of its structural discordance.
Díaz-Barrera, Alvaro; Gutierrez, Javiera; Martínez, Fabiola; Altamirano, Claudia
2014-06-01
The oxygen transfer rate (OTR) was evaluated as a scale-up criterion for alginate production in 3- and 14-L stirred fermentors. Batch cultures were performed at different agitation rates (200, 300, and 600 rpm) and airflow rates (0.25, 0.5, and 1 vvm), resulting in different maximum OTR levels (OTRmax). Although the two reactors had a similar OTRmax (19 mmol L(-1) h(-1)) and produced the same alginate concentration (3.8 g L(-1)), during the cell growth period the maximum molecular weight of the alginate was 1,250 kDa in the 3-L stirred fermentor and 590 kDa in 14-L stirred fermentor. The results showed for the first time the evolution of the molecular weight of alginate and OTR profiles for two different scales of stirred fermentors. There was a different maximum specific oxygen uptake rate between the two fermenters, reaching 8.3 mmol g(-1) h(-1) in 3-L bioreactor and 10.6 mmol g(-1) h(-1) in 14-L bioreactor, which could explain the different molecular weights observed. These findings open the possibility of using [Formula: see text] instead of OTRmax as a scaling criterion to produce polymers with similar molecular weights during fermentation.
Water limited agriculture in Africa: Climate change sensitivity of large scale land investments
Rulli, M. C.; D'Odorico, P.; Chiarelli, D. D.; Davis, K. F.
2015-12-01
The past few decades have seen unprecedented changes in the global agricultural system with a dramatic increase in the rates of food production fueled by an escalating demand for food calories, as a result of demographic growth, dietary changes, and - more recently - new bioenergy policies. Food prices have become consistently higher and increasingly volatile with dramatic spikes in 2007-08 and 2010-11. The confluence of these factors has heightened demand for land and brought a wave of land investment to the developing world: some of the more affluent countries are trying to secure land rights in areas suitable for agriculture. According to some estimates, to date, roughly 38 million hectares have been acquired worldwide by large scale investors, 16 million of which in Africa. More than 85% of large scale land acquisitions in Africa are by foreign investors. Many land deals are motivated not only by the need for fertile land but for the water resources required for crop production. Despite some recent assessments of the water appropriation associated with large scale land investments, their impact on the water resources of the target countries under present conditions and climate change scenarios remains poorly understood. Here we investigate irrigation water requirements by various crops planted in the acquired land as an indicator of the pressure likely placed by land investors on ("blue") water resources of target regions in Africa and evaluate the sensitivity to climate changes scenarios.
Advantages and limitations of the use of optogenetic approach in studying fast-scale spike encoding.
Directory of Open Access Journals (Sweden)
Aleksey Malyshev
Full Text Available Understanding single-neuron computations and encoding performed by spike-generation mechanisms of cortical neurons is one of the central challenges for cell electrophysiology and computational neuroscience. An established paradigm to study spike encoding in controlled conditions in vitro uses intracellular injection of a mixture of signals with fluctuating currents that mimic in vivo-like background activity. However this technique has two serious limitations: it uses current injection, while synaptic activation leads to changes of conductance, and current injection is technically most feasible in the soma, while the vast majority of synaptic inputs are located on the dendrites. Recent progress in optogenetics provides an opportunity to circumvent these limitations. Transgenic expression of light-activated ionic channels, such as Channelrhodopsin2 (ChR2, allows induction of controlled conductance changes even in thin distant dendrites. Here we show that photostimulation provides a useful extension of the tools to study neuronal encoding, but it has its own limitations. Optically induced fluctuating currents have a low cutoff (~70 Hz, thus limiting the dynamic range of frequency response of cortical neurons. This leads to severe underestimation of the ability of neurons to phase-lock their firing to high frequency components of the input. This limitation could be worked around by using short (2 ms light stimuli which produce membrane potential responses resembling EPSPs by their fast onset and prolonged decay kinetics. We show that combining application of short light stimuli to different parts of dendritic tree for mimicking distant EPSCs with somatic injection of fluctuating current that mimics fluctuations of membrane potential in vivo, allowed us to study fast encoding of artificial EPSPs photoinduced at different distances from the soma. We conclude that dendritic photostimulation of ChR2 with short light pulses provides a powerful tool to
Silk damping at a redshift of a billion: a new limit on small-scale adiabatic perturbations
Jeong, Donghui; Chluba, Jens; Kamionkowski, Marc
2014-01-01
We study the dissipation of small-scale adiabatic perturbations at early times when the Universe is hotter than T ~ 0.5 keV. When the wavelength falls below the damping scale 1/kD, the acoustic modes diffuse and thermalize, causing entropy production. Before neutrino decoupling, kD is primarily set by the neutrino shear viscosity, and we study the effect of acoustic damping on the relic neutrino number, primordial nucleosynthesis, dark-matter freeze-out, and baryogenesis. This sets a new limit on the amplitude of primordial fluctuations of DeltaR^2 < 0.007 at 10^4/Mpc< k < 10^5/Mpc and a model dependent limit of DeltaR^2 < 0.3 at k < 10^{20-25}/Mpc.
Energy Technology Data Exchange (ETDEWEB)
Grinstein, S.; Mostafa, M.; Piegaia, R. [Universidad de Buenos Aires, Buenos Aires (Argentina); Alves, G.A.; Carvalho, W.; Maciel, A.K.; da Motta, H.; Oliveira, E.; Santoro, A. [LAFEX, Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro (Brazil); Lima, J.G.; Oguri, V. [Universidade do Estado do Rio de Janeiro, Rio de Janeiro (Brazil); Gomez, B.; Hoeneisen, B.; Mooney, P.; Negret, J.P. [Universidad de los Andes, Bogota (Colombia); Ducros, Y. [DAPNIA/Service de Physique des Particules, CEA, Saclay (France); Beri, S.B.; Bhatnagar, V.; Kohli, J.M.; Singh, J.B. [Panjab University, Chandigarh (India); Shivpuri, R.K. [Delhi University, Delhi (India); Acharya, B.S.; Banerjee, S.; Dugad, S.R.; Gupta, A.; Krishnaswamy, M.R.; Mondal, N.K.; Narasimham, V.S.; Parua, N.; Shankar, H.C. [Tata Institute of Fundamental Research, Mumbai (India); Park, Y.M. [Kyungsung University, Pusan (Korea); Choi, S.; Kim, S.K. [Seoul National University, Seoul (Korea); Castilla-Valdez, H.; Gonzalez Solis, J.L.; Hernandez-Montoya, R.; Magana-Mendoza, L.; Sanchez-Hernandez, A. [CINVESTAV, Mexico City (Mexico); Pawlik, B. [Institute of Nuclear Physics, Krakow (Poland); Gavrilov, V.; Gershtein, Y.; Kuleshov, S. [Institute for Theoretical and Experimental Physics, Moscow (Russia); Belyaev, A.; Dudko, L.V.; Ermolov, P.; Karmanov, D.; Leflat, A.; Manankov, V.; Merkin, M.; Shabalina, E. [Moscow State University, Moscow (Russia); Abramov, V.; Babintsev, V.V.; Bezzubov, V.A.; Bojko, N.I.; Burtovoi, V.S.; Chekulaev, S.V.; Denisov, S.P.; Dyshkant, A.; Eroshin, O.V.; Evdokimov, V.N.; Galyaev, A.N.; Goncharov, P.I.; Gurzhiev, S.N.; Kostritskiy, A.V.; Kozelov, A.V.; Kozlovsky, E.A.; Mayorov, A.A. [Institute for High Energy Physics, Protvino (Russia); Babukhadia, L.; Davis, K.; Fein, D.; Forden, G.E.; Guida, J.A.; Johns, K.; Nang, F.; Narayanan, A.; Rutherfoord, J.; Shupe, M. [University of Arizona, Tucson, Arizona 85721 (United States); Aihara, H.; Barberis, E.; Clark, A.R.; and others
1999-06-01
We present a measurement of the Drell-Yan cross section at high dielectron invariant mass using 120 pb{sup {minus}1} of data collected in p{bar p} collisions at {radical} (s) =1.8 TeV by the D0 Collaboration during 1992{endash}1996. No deviation from standard model expectations is observed. We use the data to set limits on the quark-electron compositeness scale. The 95{percent} confidence level lower limits on the compositeness scale vary between 3.3 and 6.1thinspthinspTeV depending on the assumed form of the effective contact interaction. {copyright} {ital 1999} {ital The American Physical Society}
Araki, Keisuke
2015-01-01
The dynamics of an incompressible, dissipationless Hall magnetohydrodynamic medium are formulated as a Lagrangian dynamical system on a direct product of two volume-preserving diffeomorphism groups. The hybrid and magnetic helicities are shown to emerge, respectively, from the application of the particle relabeling symmetry for ion and electron flows to Noether's first theorem, while the constant of motion associated with the theorem is generally given by their arbitrary linear combination. Double Beltrami flows, which are obtained here as eigenfunctions of the linear operator that generates the action-preserving perturbation from the generalized velocity, are found to provide a family of orthogonal function bases that yields the spectral representation of the equation of motion with a remarkably simple form. Considering the influence of a uniform background magnetic field and the Hall term effect vanishing limit, the generalized Els\\"asser variables are found to be the most suitable for avoiding problems wit...
Deng, Yanbin; Huang, Changyu; Huang, Yong-Chang
2016-08-01
It was suggested by dimensional analysis that there exists a limit called the Planck energy scale coming close to which the gravitational effects of physical processes would inflate and struggle for equal rights so as to spoil the validity of pure nongravitational physical theories that governed well below the Planck energy. Near the Planck scale, the Planck charges, Planck currents, or Planck parameters can be defined and assigned to physical quantities such as the single particle electric charge and magnetic charge as the ceiling value obeyed by the low energy ordinary physics. The Dirac electric-magnetic charge quantization relation as one form of electric-magnetic duality dictates that, the present low value electric charge corresponds to a huge magnetic charge value already passed the Planck limit so as to render theories of magnetic monopoles into the strong coupling regime, and vice versa, that small and tractable magnetic charge values correspond to huge electric charge values. It suggests that for theoretic models in which the renormalization group equation provides rapid growth for the running electric coupling constant, it is easier for the dual magnetic monopoles to emerge at lower energy scales. Allowing charges to vary with the Dirac electric-magnetic charge quantization relation while keeping values under the Planck limit informs that the magnetic charge value drops below the Planck ceiling value into the manageable region when the electric coupling constant grows to one fourth at a model dependent energy scale, and continues dropping toward half the value of the Planck magnetic charge as the electric coupling constant continues growing at the model dependent rate toward one near Planck energy scale.
Efficient routing strategies in scale-free networks with limited bandwidth
Tang, Ming
2011-01-01
We study the traffic dynamics in complex networks where each link is assigned a limited and identical bandwidth. Although the first-in-first-out (FIFO) queuing rule is widely applied in the routing protocol of information packets, here we argue that if we drop this rule, the overall throughput of the network can be remarkably enhanced. We proposed some efficient routing strategies that do not strictly obey the FIFO rule. Comparing with the routine shortest path strategy, the throughput for both Barab\\'asi-Albert (BA) networks and the real Internet, the throughput can be improved more than five times. We calculate the theoretical limitation of the throughput. In BA networks, our proposed strategy can achieve 88% of the theoretical optimum, yet for the real Internet, it is about 12%, implying that we have a huge space to further improve the routing strategy for the real Internet. Finally we discuss possibly promising ways to design more efficient routing strategies for the Internet.
Large scale surveys suggest limited mercury availability in tropical north Queensland (Australia)
Energy Technology Data Exchange (ETDEWEB)
Jardine, Timothy D., E-mail: t.jardine@griffith.edu.au [Australian Rivers Institute and Tropical Rivers and Coastal Knowledge (TRaCK), Griffith University, Nathan, QLD 4111 (Australia); Halliday, Ian A. [Sustainable Fisheries Unit, Queensland Department of Employment, Economic Development and Innovation, Ecosciences Precinct, GPO Box 46, Brisbane QLD, 4001 (Australia); Howley, Christina [Howley Environmental Consulting and CYMAG Environmental, Cooktown, QLD (Australia); Sinnamon, Vivian [Kowanyama Aboriginal Land and Natural Resource Management Office, Kowanyama, QLD (Australia); Bunn, Stuart E. [Australian Rivers Institute and Tropical Rivers and Coastal Knowledge (TRaCK), Griffith University, Nathan, QLD 4111 (Australia)
2012-02-01
Little is known about the threat of mercury (Hg) to consumers in food webs of Australia's wet-dry tropics. This is despite high concentrations in similar biomes elsewhere and a recent history of gold mining that could lead to a high degree of exposure for biota. We analysed Hg in water, sediments, invertebrates and fishes in rivers and estuaries of north Queensland, Australia to determine its availability and biomagnification in food webs. Concentrations in water and sediments were low relative to other regions of Hg concern, with only four of 138 water samples and five of 60 sediment samples above detection limits of 0.1 {mu}g L{sup -1} and 0.1 {mu}g g{sup -1}, respectively. Concentrations of Hg in fishes and invertebrates from riverine and wetland food webs were well below international consumption guidelines, including those in piscivorous fishes, likely due to low baseline concentrations and limited rates of biomagnification (average slope of log Hg vs. {delta}{sup 15}N = 0.08). A large fish species of recreational, commercial, and cultural importance (the barramundi, Lates calcarifer), had low concentrations that were below consumption guidelines. Observed variation in Hg concentrations in this species was primarily explained by age and foraging location (floodplain vs. coastal), with floodplain feeders having higher Hg concentrations than those foraging at sea. These analyses suggest that there is a limited threat of Hg exposure for fish-eating consumers in this region. - Highlights: Black-Right-Pointing-Pointer Hg concentrations in freshwaters and sediments of north Queensland were low. Black-Right-Pointing-Pointer Biomagnification of Hg through riverine food webs was limited. Black-Right-Pointing-Pointer Barramundi, a predatory fish, had low concentrations meaning low risk for consumers. Black-Right-Pointing-Pointer Floodplain-feeding barramundi had higher Hg concentrations than coastal feeders.
Kisel, Yael; McInnes, Lynsey; Toomey, Nicola H.; Orme, C. David L.
2011-01-01
Species–area relationships (SARs) have mostly been treated from an ecological perspective, focusing on immigration, local extinction and resource-based limits to species coexistence. However, a full understanding across large regions is impossible without also considering speciation and global extinction. Rates of both speciation and extinction are known to be strongly affected by area and thus should contribute to spatial patterns of diversity. Here, we explore how variation in diversification rates and ecologically mediated diversity limits among regions of different sizes can result in the formation of SARs. We explain how this area-related variation in diversification can be caused by either the direct effects of area or the effects of factors that are highly correlated with area, such as habitat diversity and population size. We also review environmental, clade-specific and historical factors that affect diversification and diversity limits but are not highly correlated with region area, and thus are likely to cause scatter in observed SARs. We present new analyses using data on the distributions, ages and traits of mammalian species to illustrate these mechanisms; in doing so we provide an integrated perspective on the evolutionary processes shaping SARs. PMID:21807732
Combinatorial approach to the interpolation method and scaling limits in sparse random graphs
Bayati, Mohsen; Tetali, Prasad
2009-01-01
We establish the existence of free energy limits for several sparse random hypergraph models corresponding to certain combinatorial models on Erd{\\"o}s-R\\'{e}nyi graph $\\G(N,c/N)$ and random $r$-regular graph $\\G(N,r)$. For a variety of models, including independent sets, MAX-CUT, Coloring and K-SAT, we prove that the free energy both at a positive and zero temperature, appropriately rescaled, converges to a limit as the size of the underlying graph diverges to infinity. For example, as a special case we prove that the size of a largest independent set in these graphs, normalized by the number of nodes converges to a limit w.h.p., thus resolving an open problem, (see Conjecture 2.20 in \\cite{WormaldModelsRandomGraphs}, as well as \\cite{Aldous:FavoriteProblems}, \\cite{BollobasRiordanMetrics}, \\cite{JansonThomason}, and \\cite{AldousSteele:survey}). Our approach is based on extending and simplifying the interpolation method developed by Guerra and Toninelli \\cite{GuerraTon} and Franz and Leone \\cite{FranzLeone},...
Or, D.
2006-12-01
Interplay between capillary, gravity and viscous forces in unsaturated porous media gives rise to a range of complex flow phenomena that affect wetting front morphology, stability and dynamics (intermittency) of drainage. Different fluid distributions for similar average phase content may affect macroscopic transport properties of the unsaturated medium. Several unifying concepts emerge from scaling behavior in which gravitational force in excess of capillary pinning force scales linearly with the viscous force. The result is recast as a dimensionless generalized Bond number (difference between capillary and Bond number) that provides excellent predictive capabilities of wetting and drying front morphology. Evidence supports the generality of such scaling relationships for a wide range of flow regimes and drainage front morphologies. Based on limited experimental observations, the scaling relationships may define conditions for onset of unstable flows leading to enhanced liquid and gas entrapment, and provide a basis for delineation of the limits of applicability of the Richards equation for a certain range of generalized Bond number where capillary, gravity and viscous forces exert similar influences.
Berenstein, David
2016-01-01
We argue in this essay that for classical configurations of gravity in the AdS/CFT setup, it is in general impossible to reconstruct the bulk geometry from the leading asymptotic behavior of the classical fields in gravity alone. This is possible sufficiently near the vacuum, but not more generally. We argue this by using a counter-example that utilizes the supersymmetric geometries constructed by Lin, Lunin, and Maldacena. In the dual quantum field theory, the additional data required to complete the geometry is encoded in modes that near the vacuum geometry lie beyond the Planck scale.
Power ramp limitation and frequency support in large scale PVPPs without storage
DEFF Research Database (Denmark)
Craciun, Bogdan-Ionut; Spataru, Sergiu; Kerekes, Tamas
2013-01-01
. This is achieved by setting the PVPP under its MPP and ensuring a certain amount of reserve. The nature of the reserve has a dynamic character, being released during transients in irradiance and frequency. The entire components of the system are modeled in RSCAD and the performance evaluated on a Real Time Digital......Photovoltaic (PV) power generation started to become a mature technology and large scale PV Power Plants (PVPPs) operating in Maximum Power Point Tracking (MPPT) are not a solution anymore. During changes in the meteorological conditions, PVPPs output is directly influenced creating high power...
Binary jumps in continuum. II. Non-equilibrium process and a Vlasov-type scaling limit
Finkelshtein, Dmitri; Kutoviy, Oleksandr; Lytvynov, Eugene
2011-01-01
Let $\\Gamma$ denote the space of all locally finite subsets (configurations) in $\\mathbb R^d$. A stochastic dynamics of binary jumps in continuum is a Markov process on $\\Gamma$ in which pairs of particles simultaneously hop over $\\mathbb R^d$. We discuss a non-equilibrium dynamics of binary jumps. We prove the existence of an evolution of correlation functions on a finite time interval. We also show that a Vlasov-type mesoscopic scaling for such a dynamics leads to a generalized Boltzmann non-linear equation for the particle density.
Berenstein, David; Miller, Alexandra
2016-09-01
In this paper, we argue that for classical configurations of gravity in the AdS/CFT setup, it is in general impossible to reconstruct the bulk geometry from the leading asymptotic behavior of the classical fields in gravity alone. This is possible sufficiently near the vacuum, but not more generally. We argue this by using a counter-example that utilizes the supersymmetric geometries constructed by Lin, Lunin, and Maldacena. In the dual quantum field theory, the additional data required to complete the geometry is encoded in modes that near the vacuum geometry lie beyond the Planck scale.
Papoulakos, Konstantinos; Pollakis, Giorgos; Moustakis, Yiannis; Markopoulos, Apostolis; Iliopoulou, Theano; Dimitriadis, Panayiotis; Koutsoyiannis, Demetris; Efstratiadis, Andreas
2017-04-01
Small islands are regarded as promising areas for developing hybrid water-energy systems that combine multiple sources of renewable energy with pumped-storage facilities. Essential element of such systems is the water storage component (reservoir), which implements both flow and energy regulations. Apparently, the representation of the overall water-energy management problem requires the simulation of the operation of the reservoir system, which in turn requires a faithful estimation of water inflows and demands of water and energy. Yet, in small-scale reservoir systems, this task in far from straightforward, since both the availability and accuracy of associated information is generally very poor. For, in contrast to large-scale reservoir systems, for which it is quite easy to find systematic and reliable hydrological data, in the case of small systems such data may be minor or even totally missing. The stochastic approach is the unique means to account for input data uncertainties within the combined water-energy management problem. Using as example the Livadi reservoir, which is the pumped storage component of the small Aegean island of Astypalaia, Greece, we provide a simulation framework, comprising: (a) a stochastic model for generating synthetic rainfall and temperature time series; (b) a stochastic rainfall-runoff model, whose parameters cannot be inferred through calibration and, thus, they are represented as correlated random variables; (c) a stochastic model for estimating water supply and irrigation demands, based on simulated temperature and soil moisture, and (d) a daily operation model of the reservoir system, providing stochastic forecasts of water and energy outflows. Acknowledgement: This research is conducted within the frame of the undergraduate course "Stochastic Methods in Water Resources" of the National Technical University of Athens (NTUA). The School of Civil Engineering of NTUA provided moral support for the participation of the students
Matrix model calculations beyond the spherical limit
Energy Technology Data Exchange (ETDEWEB)
Ambjoern, J. (Niels Bohr Institute, Copenhagen (Denmark)); Chekhov, L. (L.P.T.H.E., Universite Pierre et Marie Curie, 75 - Paris (France)); Kristjansen, C.F. (Niels Bohr Institute, Copenhagen (Denmark)); Makeenko, Yu. (Institute of Theoretical and Experimental Physics, Moscow (Russian Federation))
1993-08-30
We propose an improved iterative scheme for calculating higher genus contributions to the multi-loop (or multi-point) correlators and the partition function of the hermitian one matrix model. We present explicit results up to genus two. We develop a version which gives directly the result in the double scaling limit and present explicit results up to genus four. Using the latter version we prove that the hermitian and the complex matrix model are equivalent in the double scaling limit and that in this limit they are both equivalent to the Kontsevich model. We discuss how our results away from the double scaling limit are related to the structure of moduli space. (orig.)
Directory of Open Access Journals (Sweden)
Xiliang Ni
2014-04-01
Full Text Available The ultimate goal of our multi-article series is to demonstrate the Allometric Scaling and Resource Limitation (ASRL approach for mapping tree heights and biomass. This third article tests the feasibility of the optimized ASRL model over China at both site (14 meteorological stations and continental scales. Tree heights from the Geoscience Laser Altimeter System (GLAS waveform data are used for the model optimizations. Three selected ASRL parameters (area of single leaf, α; exponent for canopy radius, η; and root absorption efficiency, γ are iteratively adjusted to minimize differences between the references and predicted tree heights. Key climatic variables (e.g., temperature, precipitation, and solar radiation are needed for the model simulations. We also exploit the independent GLAS and in situ tree heights to examine the model performance. The predicted tree heights at the site scale are evaluated against the GLAS tree heights using a two-fold cross validation (RMSE = 1.72 m; R2 = 0.97 and bootstrapping (RMSE = 4.39 m; R2 = 0.81. The modeled tree heights at the continental scale (1 km spatial resolution are compared to both GLAS (RMSE = 6.63 m; R2 = 0.63 and in situ (RMSE = 6.70 m; R2 = 0.52 measurements. Further, inter-comparisons against the existing satellite-based forest height maps have resulted in a moderate degree of agreements. Our results show that the optimized ASRL model is capable of satisfactorily retrieving tree heights over continental China at both scales. Subsequent studies will focus on the estimation of woody biomass after alleviating the discussed limitations.
The continuum limit of causal fermion systems from Planck scale structures to macroscopic physics
Finster, Felix
2016-01-01
This monograph introduces the basic concepts of the theory of causal fermion systems, a recent approach to the description of fundamental physics. The theory yields quantum mechanics, general relativity and quantum field theory as limiting cases and is therefore a candidate for a unified physical theory. From the mathematical perspective, causal fermion systems provide a general framework for describing and analyzing non-smooth geometries and "quantum geometries". The dynamics is described by a novel variational principle, called the causal action principle. In addition to the basics, the book provides all the necessary mathematical background and explains how the causal action principle gives rise to the interactions of the standard model plus gravity on the level of second-quantized fermionic fields coupled to classical bosonic fields. The focus is on getting a mathematically sound connection between causal fermion systems and physical systems in Minkowski space. The book is intended for graduate students e...
Limits to Seeing High-Redshift Galaxies Due to Planck-Scale-Induced Blurring
Steinbring, Eric
2015-01-01
In the last decade or so there has been debate over the possibility that the fuzzy quantum nature of spacetime might decohere wavefronts emanating from very distant sources. Consequences of that could be "blurred" or "faded" images of compact structures in galaxies, primarily at z>1 for their emitted X-rays and gamma-rays, but perhaps even in ultraviolet through optical light at higher redshift. So far there are only inconclusive hints of this from z~4 active-galactic nucleii and gamma-ray bursts viewed with Fermi and Hubble Space Telescope. If correct though, that would impose a significant, fundamental resolution limit for galaxies out to z~8 in the era of the James Webb Space Telescope and the next generation of ground-based telescopes using adaptive optics.
Directory of Open Access Journals (Sweden)
Isa S Abubakar
Full Text Available BACKGROUND: In West Africa, envenoming by saw-scaled or carpet vipers (Echis ocellatus causes great morbidity and mortality, but there is a crisis in supply of effective and affordable antivenom (ISRCTN01257358. METHODS: In a randomised, double-blind, controlled, non-inferiority trial, "EchiTAb Plus-ICP" (ET-Plus equine antivenom made by Instituto Clodomiro Picado was compared to "EchiTAb G" (ET-G ovine antivenom made by MicroPharm, which is the standard of care in Nigeria and was developed from the original EchiTAb-Fab introduced in 1998. Both are caprylic acid purified whole IgG antivenoms. ET-G is monospecific for Echis ocellatus antivenom (initial dose 1 vial and ET-Plus is polyspecific for E. ocellatus, Naja nigricollis and Bitis arietans (initial dose 3 vials. Both had been screened by pre-clinical and preliminary clinical dose-finding and safety studies. Patients who presented with incoagulable blood, indicative of systemic envenoming by E. ocellatus, were recruited in Kaltungo, north-eastern Nigeria. Those eligible and consenting were randomly allocated with equal probability to receive ET-Plus or ET-G. The primary outcome was permanent restoration of blood coagulability 6 hours after the start of treatment, assessed by a simple whole blood clotting test repeated 6, 12, 18, 24 and 48 hr after treatment. Secondary (safety outcomes were the incidences of anaphylactic, pyrogenic and late serum sickness-type antivenom reactions. FINDINGS: Initial doses permanently restored blood coagulability at 6 hours in 161/194 (83.0% of ET-Plus and 156/206 (75.7% of ET-G treated patients (Relative Risk [RR] 1.10 one-sided 95% CI lower limit 1.01; P = 0.05. ET-Plus caused early reactions on more occasions than did ET-G [50/194 (25.8% and 39/206 (18.9% respectively RR (1.36 one-sided 95% CI 1.86 upper limit; P = 0.06. These reactions were classified as severe in 21 (10.8% and 11 (5.3% of patients, respectively. CONCLUSION: At these doses, ET-Plus was
Thermally induced mode distortion and its limit to power scaling of fiber lasers.
Ke, Wei-Wei; Wang, Xiao-Jun; Bao, Xian-Feng; Shu, Xiao-Jian
2013-06-17
A general model is proposed to describe thermal-induced mode distortion in the step-index fiber (SIF) high power lasers. Two normalized parameters in the model are able to determine the mode characteristic in the heated SIFs completely. Shrinking of the mode fields and excitation of the high-order modes by the thermal-optic effect are investigated. A simplified power amplification model is used to describe the output power redistribution under various guiding modes. The results suggest that fiber with large mode area is more sensitive on the thermally induced mode distortion and hence is disadvantaged in keeping the beam quality in high power operation. The model is further applied to improve the power scaling analysis of Yb-doped fiber lasers. Here the thermal effect is considered to couple with the optical damage and the stimulated Raman scattering dynamically, whereas direct constraint from the thermal lens is relaxed. The resulting maximal output power is from 67kW to 97kW, depending on power fraction of the fundamental mode.
Finnerty, P; Amman, M; Avignone., F T; Barabash, A S; Barton, P J; Beene, J R; Bertrand, F E; Boswell, M; Brudanin, V; Busch, M; Chan, Y -D; Christofferson, C D; Collar, J I; Combs, D C; Cooper, R J; Detwiler, J A; Doe, P J; Efremenko, Yu; Egorov, V; Ejiri, H; Elliott, S R; Esterline, J; Fast, J E; Fields, N; Fraenkle, F M; Galindo-Uribarri, A; Gehman, V M; Giovanetti, G K; Green, M P; Guiseppe, V E; Gusey, K; Hallin, A L; Hazama, R; Henning, R; Hoppe, E W; Horton, M; Howard, S; Howe, M A; Johnson, R A; Keeter, K J; Kidd, M F; Knecht, A; Kochetov, O; Konovalov, S I; Kouzes, R T; LaFerriere, B D; Leon, J; Leviner, L E; Loach, J C; Luke, P N; MacMullin, S; Marino, M G; Martin, R D; Merriman, J H; Miller, M L; Mizouni, L; Nomachi, M; Orrell, J L; Overman, N R; Perumpilly, G; Phillips., D G; Poon, A W P; Radford, D C; Rielage, K; Robertson, R G H; Ronquest, M C; Schubert, A G; Shima, T; Shirchenko, M; Snavely, K J; Steele, D; Strain, J; Timkin, V; Tornow, W; Varner, R L; Vetter, K; Vorren, K; Wilkerson, J F; Yakushev, E; Yaver, H; Young, A R; Yumatov., C-H Yu and V
2012-01-01
The MAJORANA DEMONSTRATOR will search for the neutrinoless double-beta decay of the 76Ge isotope with a mixed array of enriched and natural germanium detectors. The observation of this rare decay would indicate the neutrino is its own anti-particle, demonstrate that lepton number is not conserved, and provide information on the absolute mass-scale of the neutrino. The DEMONSTRATOR is being assembled at the 4850 foot level of the Sanford Underground Research Facility in Lead, South Dakota. The array will be contained in a low-background environment and surrounded by passive and active shielding. The goals for the DEMONSTRATOR are: demonstrating a background rate less than 3 t$^{-1}$ y$^{-1}$ in the 4 keV region of interest (ROI) surrounding the 2039 keV 76Ge endpoint energy; establishing the technology required to build a tonne-scale germanium based double-beta decay experiment; testing the recent claim of observation of neutrinoless double-beta decay [H. V. Klapdor-Kleingrothaus and I. V. Krivosheina, Mod. Ph...
A New Limit on Planck Scale Lorentz Violation from Gamma-ray Burst Polarization
Stecker, Floyd W.
2011-01-01
Constraints on possible Lorentz invariance violation (UV) to first order in E/M(sub Plank) for photons in the framework of effective field theory (EFT) are discussed, taking cosmological factors into account. Then. using the reported detection of polarized soft gamma-ray emission from the gamma-ray burst GRB041219a that is indicative' of an absence of vacuum birefringence, together with a very recent improved method for estimating the redshift of the burst, we derive constraints on the dimension 5 Lorentz violating modification to the Lagrangian of an effective local QFT for QED. Our new constraints are more than five orders of magnitude better than recent constraints from observations of the Crab Nebula.. We obtain the upper limit on the Lorentz violating dimension 5 EFT parameter absolute value of zeta of 2.4 x 10(exp -15), corresponding to a constraint on the dimension 5 standard model extension parameter. Kappa (sup 5) (sub (v)oo) much less than 4.2 X 10(exp -3)4 / GeV.
Nanogram-scale preparation and NMR analysis for mass-limited small volatile compounds.
Directory of Open Access Journals (Sweden)
Satoshi Nojima
Full Text Available Semiochemicals are often produced in infinitesimally small quantities, so their isolation requires large amounts of starting material, not only requiring significant effort in sample preparation, but also resulting in a complex mixture of compounds from which the bioactive compound needs to be purified and identified. Often, compounds cannot be unambiguously identified by their mass spectra alone, and NMR analysis is required for absolute chemical identification, further exacerbating the situation because NMR is relatively insensitive and requires large amounts of pure analyte, generally more than several micrograms. We developed an integrated approach for purification and NMR analysis of <1 µg of material. Collections from high performance preparative gas-chromatography are directly eluted with minimal NMR solvent into capillary NMR tubes. With this technique, (1H-NMR spectra were obtained on 50 ng of geranyl acetate, which served as a model compound, and reasonable H-H COSY NMR spectra were obtained from 250 ng of geranyl acetate. This simple off-line integration of preparative GC and NMR will facilitate the purification and chemical identification of novel volatile compounds, such as insect pheromones and other semiochemicals, which occur in minute (sub-nanogram, and often limited, quantities.
The dentin organic matrix - limitations of restorative dentistry hidden on the nanometer scale
Energy Technology Data Exchange (ETDEWEB)
Bertassoni, Luiz E; Orgel, Joseph P.R.; Antipova, Olga; Swain, Michael V [IIT; (Sydney)
2012-07-25
The prevention and treatment of dental caries are major challenges occurring in dentistry. The foundations for modern management of this dental disease, estimated to affect 90% of adults in Western countries, rest upon the dependence of ultrafine interactions between synthetic polymeric biomaterials and nanostructured supramolecular assemblies that compose the tooth organic substrate. Research has shown, however, that this interaction imposes less than desirable long-term prospects for current resin-based dental restorations. Here we review progress in the identification of the nanostructural organization of the organic matrix of dentin, the largest component of the tooth structure, and highlight aspects relevant to understating the interaction of restorative biomaterials with the dentin substrate. We offer novel insights into the influence of the hierarchically assembled supramolecular structure of dentin collagen fibrils and their structural dependence on water molecules. Secondly, we review recent evidence for the participation of proteoglycans in composing the dentin organic network. Finally, we discuss the relation of these complexly assembled nanostructures with the protease degradative processes driving the low durability of current resin-based dental restorations. We argue in favour of the structural limitations that these complexly organized and inherently hydrated organic structures may impose on the clinical prospects of current hydrophobic and hydrolyzable dental polymers that establish ultrafine contact with the tooth substrate.
The dentin organic matrix – limitations of restorative dentistry hidden on the nanometer scale
Bertassoni, Luiz E.; Orgel, Joseph P.R.; Antipova, Olga; Swain, Michael V.
2012-01-01
The prevention and treatment of dental caries are major challenges occurring in dentistry. The foundations for modern management of this dental disease, estimated to affect 90% of adults in Western countries, rest upon the dependence of ultrafine interactions between synthetic polymeric biomaterials and nanostructured supramolecular assemblies that compose the tooth organic substrate. Research has shown, however, that this interaction imposes less than desirable long-term prospects for current resin-based dental restorations. Here we review progress in the identification of the nanostructural organization of the organic matrix of dentin, the largest component of the tooth structure, and highlight aspects relevant to understating the interaction of restorative biomaterials with the dentin substrate. We offer novel insights into the influence of the hierarchically assembled supramolecular structure of dentin collagen fibrils and their structural dependence on water molecules. Secondly, we review recent evidence for the participation of proteoglycans in composing the dentin organic network. Finally, we discuss the relation of these complexly assembled nanostructures with the protease degradative processes driving the low durability of current resin-based dental restorations. We argue in favour of the structural limitations that these complexly organized and inherently hydrated organic structures may impose on the clinical prospects of current hydrophobic and hydrolyzable dental polymers that establish ultrafine contact with the tooth substrate. PMID:22414619
Time Reversal in Subwavelength-Scaled Resonant Media: Beating the Diffraction Limit
Directory of Open Access Journals (Sweden)
Fabrice Lemoult
2011-01-01
Full Text Available Time reversal is a physical concept that can focus waves both spatially and temporally regardless of the complexity of the propagation medium. Time reversal mirrors have been demonstrated first in acoustics, then with electromagnetic waves, and are being intensively studied in many fields ranging from underwater communications to sensing. In this paper, we will review the principles of time reversal and in particular its ability to focus waves in complex media. We will show that this focusing effect depends on the complexity of the propagation medium rather than on the time reversal mirror itself. A modal approach will be utilized to explain the physical mechanism underlying the concept. A particular focus will be given on the possibility to break the diffraction barrier from the far field using time reversal. We will show that finite size media made out of coupled subwavelength resonators support modes which can radiate efficiently in the far field spatial information of the near field of a source. We will show through various examples that such a process, due to reversibility, permits to beat the diffraction limit using far field time reversal, and especially that this result occurs owing to the broadband inherent nature of time reversal.
Some mathematical aspects of the scaling limit of critical two-dimensional systems
Indian Academy of Sciences (India)
Wendelin Werner
2005-05-01
It has been observed long ago that many systems from statistical physics behave randomly on macroscopic level at their critical temperature. In two dimensions, these phenomena have been classified by theoretical physicists thanks to conformal field theory, that led to the derivation of the exact value of various critical exponents that describe their behavior near the critical temperature. In the last couple of years, combining ideas of complex analysis and probability theory, mathematicians have constructed and studied a family of random fractals (called `Schramm–Loewner evolutions' or SLE) that describe the only possible conformally invariant limits of the interfaces for these models. This gives a concrete construction of these random systems, puts various predictions on a rigorous footing, and leads to further understanding of their behavior. The goal of this paper is to survey some of these recent mathematical developments, and to describe a couple of basic underlying ideas. We will also briefly describe some very recent and ongoing developments relating SLE, Brownian loop soups and conformal field theory.
Altitude-Limiting Airbrake System for Small to Medium Scale Rockets
Aaron, Robert F., III
2013-01-01
The goal of the overall internship opportunity this semester was to learn and practice the elements of engineering design through direct exposure to real engineering problems. The primary exposure was to design and manufacture an airbrake device for use with small-medium scale rocket applications. The idea was to take the presented concept of a solution and transform said concept into a reliable fully-functioning and reusable mechanism. The mechanism was to be designed as an insurance feature so that the overall altitude of a rocket with relatively undetermined engine capabilities does not unexpectedly exceed the imposed 10,000 foot ceiling, per range requirements. The airbrake concept was introduced to the Prototype Development Lab as a rotation-driven four tiered offset track pin mechanism, i.e. the airbrake was deployed by rotating a central shaft attached directly to the bottom plate. The individual airbrake fins were subsequently deployed using multiple plates with tracks of offset curvature. The fins were created with guide pins to follow the tracks in each of the offset plates, thus allowing the simultaneous rotational deployment of all fins by only rotating one plate. The concept of this solution was great; though it did not function in application. The rotating plates alone brought up problems like the entire back half of the rocket rotating according to the motion of the aforementioned base plate. Subsequently, the solution currently under development became a static linear actuator-driven spring-loaded fin release system. This solution is almost instantaneously triggered electronically when the avionics detect that the rocket has reached the calculated altitude of deceleration. This altitude will allow enough time remaining to the overall ceiling to adequately decelerate the rocket prior to reaching the ceiling.
Bayesian multi-scale smoothing of photon-limited images with applications to astronomy and medicine
White, John
Multi-scale models for smoothing Poisson signals or images have gained much attention over the past decade. A new Bayesian model is developed using the concept of the Chinese restaurant process to find structures in two-dimensional images when performing image reconstruction or smoothing. This new model performs very well when compared to other leading methodologies for the same problem. It is developed and evaluated theoretically and empirically throughout Chapter 2. The newly developed Bayesian model is extended to three-dimensional images in Chapter 3. The third dimension has numerous different applications, such as different energy spectra, another spatial index, or possibly a temporal dimension. Empirically, this method shows promise in reducing error with the use of simulation studies. A further development removes background noise in the image. This removal can further reduce the error and is done using a modeling adjustment and post-processing techniques. These details are given in Chapter 4. Applications to real world problems are given throughout. Photon-based images are common in astronomical imaging due to the collection of different types of energy such as X-Rays. Applications to real astronomical images are given, and these consist of X-ray images from the Chandra X-ray observatory satellite. Diagnostic medicine uses many types of imaging such as magnetic resonance imaging and computed tomography that can also benefit from smoothing techniques such as the one developed here. Reducing the amount of radiation a patient takes will make images more noisy, but this can be mitigated through the use of image smoothing techniques. Both types of images represent the potential real world use for these methods.
Lindsey, Peter A; Barnes, Jonathan; Nyirenda, Vincent; Pumfrett, Belinda; Tambling, Craig J; Taylor, W Andrew; t'Sas Rolfes, Michael
2013-01-01
The number and area of wildlife ranches in Zambia increased from 30 and 1,420 km(2) in 1997 to 177 and ∼6,000 km(2) by 2012. Wild ungulate populations on wildlife ranches increased from 21,000 individuals in 1997 to ∼91,000 in 2012, while those in state protected areas declined steeply. Wildlife ranching and crocodile farming have a turnover of ∼USD15.7 million per annum, compared to USD16 million from the public game management areas which encompass an area 29 times larger. The wildlife ranching industry employs 1,200 people (excluding jobs created in support industries), with a further ∼1,000 individuals employed through crocodile farming. Wildlife ranches generate significant quantities of meat (295,000 kg/annum), of which 30,000 kg of meat accrues to local communities and 36,000 kg to staff. Projected economic returns from wildlife ranching ventures are high, with an estimated 20-year economic rate of return of 28%, indicating a strong case for government support for the sector. There is enormous scope for wildlife ranching in Zambia due to the availability of land, high diversity of wildlife and low potential for commercial livestock production. However, the Zambian wildlife ranching industry is small and following completion of field work for this study, there was evidence of a significant proportion of ranchers dropping out. The industry is performing poorly, due to inter alia: rampant commercial bushmeat poaching; failure of government to allocate outright ownership of wildlife to landowners; bureaucratic hurdles; perceived historical lack of support from the Zambia Wildlife Authority and government; a lack of a clear policy on wildlife ranching; and a ban on hunting on unfenced lands including game ranches. For the wildlife ranching industry to develop, these limitations need to be addressed decisively. These findings are likely to apply to other savanna countries with large areas of marginal land potentially suited to wildlife ranching.
Limited impact on decadal-scale climate change from increased use of natural gas.
McJeon, Haewon; Edmonds, Jae; Bauer, Nico; Clarke, Leon; Fisher, Brian; Flannery, Brian P; Hilaire, Jérôme; Krey, Volker; Marangoni, Giacomo; Mi, Raymond; Riahi, Keywan; Rogner, Holger; Tavoni, Massimo
2014-10-23
The most important energy development of the past decade has been the wide deployment of hydraulic fracturing technologies that enable the production of previously uneconomic shale gas resources in North America. If these advanced gas production technologies were to be deployed globally, the energy market could see a large influx of economically competitive unconventional gas resources. The climate implications of such abundant natural gas have been hotly debated. Some researchers have observed that abundant natural gas substituting for coal could reduce carbon dioxide (CO2) emissions. Others have reported that the non-CO2 greenhouse gas emissions associated with shale gas production make its lifecycle emissions higher than those of coal. Assessment of the full impact of abundant gas on climate change requires an integrated approach to the global energy-economy-climate systems, but the literature has been limited in either its geographic scope or its coverage of greenhouse gases. Here we show that market-driven increases in global supplies of unconventional natural gas do not discernibly reduce the trajectory of greenhouse gas emissions or climate forcing. Our results, based on simulations from five state-of-the-art integrated assessment models of energy-economy-climate systems independently forced by an abundant gas scenario, project large additional natural gas consumption of up to +170 per cent by 2050. The impact on CO2 emissions, however, is found to be much smaller (from -2 per cent to +11 per cent), and a majority of the models reported a small increase in climate forcing (from -0.3 per cent to +7 per cent) associated with the increased use of abundant gas. Our results show that although market penetration of globally abundant gas may substantially change the future energy system, it is not necessarily an effective substitute for climate change mitigation policy.
Positivity bounds on double parton distributions
Energy Technology Data Exchange (ETDEWEB)
Diehl, Markus; Kasemets, Tomas
2013-03-15
Double hard scattering in proton-proton collisions is described in terms of double parton distributions. We derive bounds on these distributions that follow from their interpretation as probability densities, taking into account all possible spin correlations between two partons in an unpolarized proton. These bounds constrain the size of the polarized distributions and can for instance be used to set upper limits on the effects of spin correlations in double hard scattering. We show that the bounds are stable under leading-order DGLAP evolution to higher scales.
DEFF Research Database (Denmark)
Liu, Mingzhe; Wittchen, Kim Bjarne; Heiselberg, Per;
2013-01-01
glazing facade with the night insulation. The calculation result of the internal glazing surface temperature has been validated with experimental data collected in a full-scale fac¸ ade element test facility at Aalborg University (DK). With the help of the simplified method, dynamic U-value of the facade......The study aims to develop a simplified calculation method to simulate the performance of double glazing fac¸ ade with night insulation. This paper describes the method to calculate the thermal properties (Uvalue) and comfort performance (internal surface temperature of glazing) of the double...... with night insulation is calculated and compared with that of the facade without the night insulation. Based on standards EN 410 and EN 673, the method takes the thermal mass of glazing and the infiltration between the insulation layer and glazing into account. Furthermore it is capable of implementing whole...
Directory of Open Access Journals (Sweden)
Peter A Lindsey
Full Text Available The number and area of wildlife ranches in Zambia increased from 30 and 1,420 km(2 in 1997 to 177 and ∼6,000 km(2 by 2012. Wild ungulate populations on wildlife ranches increased from 21,000 individuals in 1997 to ∼91,000 in 2012, while those in state protected areas declined steeply. Wildlife ranching and crocodile farming have a turnover of ∼USD15.7 million per annum, compared to USD16 million from the public game management areas which encompass an area 29 times larger. The wildlife ranching industry employs 1,200 people (excluding jobs created in support industries, with a further ∼1,000 individuals employed through crocodile farming. Wildlife ranches generate significant quantities of meat (295,000 kg/annum, of which 30,000 kg of meat accrues to local communities and 36,000 kg to staff. Projected economic returns from wildlife ranching ventures are high, with an estimated 20-year economic rate of return of 28%, indicating a strong case for government support for the sector. There is enormous scope for wildlife ranching in Zambia due to the availability of land, high diversity of wildlife and low potential for commercial livestock production. However, the Zambian wildlife ranching industry is small and following completion of field work for this study, there was evidence of a significant proportion of ranchers dropping out. The industry is performing poorly, due to inter alia: rampant commercial bushmeat poaching; failure of government to allocate outright ownership of wildlife to landowners; bureaucratic hurdles; perceived historical lack of support from the Zambia Wildlife Authority and government; a lack of a clear policy on wildlife ranching; and a ban on hunting on unfenced lands including game ranches. For the wildlife ranching industry to develop, these limitations need to be addressed decisively. These findings are likely to apply to other savanna countries with large areas of marginal land potentially suited to wildlife
Energy Technology Data Exchange (ETDEWEB)
Gratia, Pierre [Department of Physics, University of Chicago,South Ellis Avenue, Chicago, IL 60637 (United States); Hu, Wayne [Department of Astronomy and Astrophysics, University of Chicago,South Ellis Avenue, Chicago, IL 60637 (United States); Enrico Fermi Institute and Kavli Institute for Cosmological Physics, University of Chicago,South Ellis Avenue, Chicago, IL 60637 (United States); Joyce, Austin [Enrico Fermi Institute and Kavli Institute for Cosmological Physics, University of Chicago,South Ellis Avenue, Chicago, IL 60637 (United States); Ribeiro, Raquel H. [School of Physics and Astronomy, Queen Mary University of London,Mile End Road, London, E1 4NS (United Kingdom)
2016-06-15
Attempts to modify gravity in the infrared typically require a screening mechanism to ensure consistency with local tests of gravity. These screening mechanisms fit into three broad classes; we investigate theories which are capable of exhibiting more than one type of screening. Specifically, we focus on a simple model which exhibits both Vainshtein and kinetic screening. We point out that due to the two characteristic length scales in the problem, the type of screening that dominates depends on the mass of the sourcing object, allowing for different phenomenology at different scales. We consider embedding this double screening phenomenology in a broader cosmological scenario and show that the simplest examples that exhibit double screening are radiatively stable.
Directory of Open Access Journals (Sweden)
Ramautarsing Reshmie
2010-06-01
Full Text Available Abstract Although access to antiretroviral therapy (ART for the treatment of HIV has increased during the last decade, many patients are still in need of treatment. With limited funds to provide ART to millions of patients worldwide, there is a need for alternative ways to scale up ART in resource limited settings. This review provides an overview of pharmacokinetic, safety and efficacy studies of generic and reduced dose ART. The production of generic ART has greatly influenced the decline in drug prices and the increased in ART access. Generic ART has good pharmacokinetic profile, safety and efficacy. Toxicity is however the main cause for ART discontinuation. Several dose reduction studies have shown adequate pharmacokinetic parameters and short term efficacy with reduced dose ART. Ethnicity may affect drug metabolism; several pharmacokinetic studies have confirmed higher plasma ART concentration in Asians. Randomized efficacy trial of reduced versus standard ART is warranted.
Kessler, David A.; Levine, Herbert
2015-02-01
One of the most popular models for quantitatively understanding the emergence of drug resistance both in bacterial colonies and in malignant tumors was introduced long ago by Luria and Delbrück. Here, individual resistant mutants emerge randomly during the birth events of an exponentially growing sensitive population. A most interesting limit of this process occurs when the population size is large and mutation rates are low, but not necessarily small compared to . Here we provide a scaling solution valid in this limit, making contact with the theory of Levy -stable distributions, in particular one discussed long ago by Landau. One consequence of this association is that moments of the distribution are highly misleading as far as characterizing typical behavior. A key insight that enables our solution is that working in the fixed population size ensemble is not the same as working in a fixed time ensemble. Some of our results have been presented previously in abbreviated form [12].
Directory of Open Access Journals (Sweden)
Rao Govind
2009-01-01
Full Text Available Abstract Background Small-scale microbial fermentations are often assumed to be homogeneous, and oxygen limitation due to inadequate micromixing is often overlooked as a potential problem. To assess the relative degree of micromixing, and hence propensity for oxygen limitation, a new cellular oxygen sensor has been developed. The oxygen responsive E. coli nitrate reductase (nar promoter was used to construct an oxygen reporter plasmid (pNar-GFPuv which allows cell-based reporting of oxygen limitation. Because there are greater than 109 cells in a fermentor, one can outfit a vessel with more than 109 sensors. Our concept was tested in high density, lab-scale (5 L, fed-batch, E. coli fermentations operated with varied mixing efficiency – one verses four impellers. Results In both cases, bioreactors were maintained identically at greater than 80% dissolved oxygen (DO during batch phase and at approximately 20% DO during fed-batch phase. Trends for glucose consumption, biomass and DO showed nearly identical behavior. However, fermentations with only one impeller showed significantly higher GFPuv expression than those with four, indicating a higher degree of fluid segregation sufficient for cellular oxygen deprivation. As the characteristic time for GFPuv expression (approx 90 min. is much larger than that for mixing (approx 10 s, increased specific fluorescence represents an averaged effect of oxygen limitation over time and by natural extension, over space. Conclusion Thus, the pNar-GFPuv plasmid enabled bioreactor-wide oxygen sensing in that bacterial cells served as individual recirculating sensors integrating their responses over space and time. We envision cell-based oxygen sensors may find utility in a wide variety of bioprocessing applications.
Kato, Akio
2006-11-14
The invention provides methods for chromosome doubling in plants. The technique overcomes the low yields of doubled progeny associated with the use of prior techniques for doubling chromosomes in plants such as grasses. The technique can be used in large scale applications and has been demonstrated to be highly effective in maize. Following treatment in accordance with the invention, plants remain amenable to self fertilization, thereby allowing the efficient isolation of doubled progeny plants.
Maruyoshi, Keisuke; Iuga, Dinu; Watts, Abigail E; Hughes, Colan E; Harris, Kenneth D M; Brown, Steven P
2017-07-25
The lower detection limit for 2 distinct crystalline phases by (1)H magic-angle spinning (MAS) solid-state nuclear magnetic resonance (NMR) is investigated for a minority amount of cimetidine (anhydrous polymorph A) in a physical mixture with the anhydrous HCl salt of cimetidine. Specifically, 2-dimensional (1)H double-quantum (DQ) MAS NMR spectra of polymorph A and the anhydrous HCl salt constitute fingerprints for the presence of each of these solid forms. For solid-state NMR data recorded at a (1)H Larmor frequency of 850 MHz and a MAS frequency of 30 kHz on ∼10 mg of sample, it is shown that, by following the pair of cross-peaks at a (1)H DQ frequency of 7.4 + 11.6 = 19.0 ppm that are unique to polymorph A, the level of detection for polymorph A in a physical mixture with the anhydrous HCl salt is a concentration of 1% w/w. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Directory of Open Access Journals (Sweden)
Turjanicová J.
2014-12-01
Full Text Available This paper deals with the multiscale description of a single osteon of cortical bones. The cortical bone tissue is modeled as a double-porous medium decomposed into the solid matrix and the fluid saturated canals. The resulting homogenized model describes deformation of such medium in response to a static loading by external forces and to an injection of slightly compressible fluid. Three numerical examples are presented, showing the influence of selected lower-scales geometrical features on the macroscopic body behavior.
Awasthi, Ram Lal; Mitra, Manimala
2015-01-01
Inspired by the recent diboson excess observed at the LHC and possible interpretation within a TeV-scale Left-Right symmetric framework, we explore its implications for low-energy experiments searching for lepton number and flavor violation. Assuming a simple Type-II seesaw mechanism for neutrino masses, we show that for the right-handed (RH) gauge boson mass and coupling values required to explain the LHC anomalies, the RH contribution to the lepton number violating process of neutrinoless double beta decay ($0\
Haberer, Jessica E; Sabin, Lora; Amico, K Rivet; Orrell, Catherine; Galárraga, Omar; Tsai, Alexander C; Vreeman, Rachel C; Wilson, Ira; Sam-Agudu, Nadia A; Blaschke, Terrence F; Vrijens, Bernard; Mellins, Claude A; Remien, Robert H; Weiser, Sheri D; Lowenthal, Elizabeth; Stirratt, Michael J; Sow, Papa Salif; Thomas, Bruce; Ford, Nathan; Mills, Edward; Lester, Richard; Nachega, Jean B; Bwana, Bosco Mwebesa; Ssewamala, Fred; Mbuagbaw, Lawrence; Munderi, Paula; Geng, Elvin; Bangsberg, David R
2017-01-01
Introduction: Successful population-level antiretroviral therapy (ART) adherence will be necessary to realize both the clinical and prevention benefits of antiretroviral scale-up and, ultimately, the end of AIDS. Although many people living with HIV are adhering well, others struggle and most are likely to experience challenges in adherence that may threaten virologic suppression at some point during lifelong therapy. Despite the importance of ART adherence, supportive interventions have generally not been implemented at scale. The objective of this review is to summarize the recommendations of clinical, research, and public health experts for scalable ART adherence interventions in resource-limited settings. Methods: In July 2015, the Bill and Melinda Gates Foundation convened a meeting to discuss the most promising ART adherence interventions for use at scale in resource-limited settings. This article summarizes that discussion with recent updates. It is not a systematic review, but rather provides practical considerations for programme implementation based on evidence from individual studies, systematic reviews, meta-analyses, and the World Health Organization Consolidated Guidelines for HIV, which include evidence from randomized controlled trials in low- and middle-income countries. Interventions are categorized broadly as education and counselling; information and communication technology-enhanced solutions; healthcare delivery restructuring; and economic incentives and social protection interventions. Each category is discussed, including descriptions of interventions, current evidence for effectiveness, and what appears promising for the near future. Approaches to intervention implementation and impact assessment are then described. Results and discussion: The evidence base is promising for currently available, effective, and scalable ART adherence interventions for resource-limited settings. Numerous interventions build on existing health care
Bridel-Bertomeu, Thibault; Gicquel, L. Y. M.; Staffelbach, G.
2017-06-01
Rotating cavity flows are essential components of industrial applications but their dynamics are still not fully understood when it comes to the relation between the fluid organization and monitored pressure fluctuations. From computer hard-drives to turbo-pumps of space launchers, designed devices often produce flow oscillations that can either destroy the component prematurely or produce too much noise. In such a context, large scale dynamics of high Reynolds number rotor/stator cavities need better understanding especially at the flow limit-cycle or associated statistically stationary state. In particular, the influence of curvature as well as cavity aspect ratio on the large scale organization and flow stability at a fixed rotating disc Reynolds number is fundamental. To probe such flows, wall-resolved large eddy simulation is applied to two different rotor/stator cylindrical cavities and one annular cavity. Validation of the predictions proves the method to be suited and to capture the disc boundary layer patterns reported in the literature. It is then shown that in complement to these disc boundary layer analyses, at the limit-cycle the rotating flows exhibit characteristic patterns at mid-height in the homogeneous core pointing the importance of large scale features. Indeed, dynamic modal decomposition reveals that the entire flow dynamics are driven by only a handful of atomic modes whose combination links the oscillatory patterns observed in the boundary layers as well as in the core of the cavity. These fluctuations form macro-structures, born in the unstable stator boundary layer and extending through the homogeneous inviscid core to the rotating disc boundary layer, causing its instability under some conditions. More importantly, the macro-structures significantly differ depending on the configuration pointing the need for deeper understanding of the influence of geometrical parameters as well as operating conditions.
Miller, Lee M; Kleidon, Axel
2016-11-29
Wind turbines generate electricity by removing kinetic energy from the atmosphere. Large numbers of wind turbines are likely to reduce wind speeds, which lowers estimates of electricity generation from what would be presumed from unaffected conditions. Here, we test how well wind power limits that account for this effect can be estimated without explicitly simulating atmospheric dynamics. We first use simulations with an atmospheric general circulation model (GCM) that explicitly simulates the effects of wind turbines to derive wind power limits (GCM estimate), and compare them to a simple approach derived from the climatological conditions without turbines [vertical kinetic energy (VKE) estimate]. On land, we find strong agreement between the VKE and GCM estimates with respect to electricity generation rates (0.32 and 0.37 We m(-2)) and wind speed reductions by 42 and 44%. Over ocean, the GCM estimate is about twice the VKE estimate (0.59 and 0.29 We m(-2)) and yet with comparable wind speed reductions (50 and 42%). We then show that this bias can be corrected by modifying the downward momentum flux to the surface. Thus, large-scale limits to wind power use can be derived from climatological conditions without explicitly simulating atmospheric dynamics. Consistent with the GCM simulations, the approach estimates that only comparatively few land areas are suitable to generate more than 1 We m(-2) of electricity and that larger deployment scales are likely to reduce the expected electricity generation rate of each turbine. We conclude that these atmospheric effects are relevant for planning the future expansion of wind power.
Energy Technology Data Exchange (ETDEWEB)
Baroncini, C.; Boccia, O.; Chella, F.; Zazzini, P. [D.S.S.A.R.R. Faculty of Architecture, University ' ' G. D' Annunzio' ' Viale Pindaro 42, 65127 Pescara (Italy)
2010-02-15
In this paper the authors present the double light pipe, an innovative technological device, designed as an evolution of a traditional light pipe, which distributes daylight to underground areas of a building, illuminating, at the same time, the passage areas thanks to a larger collector and a second transparent pipe attached to the first one. Unlike the traditional light pipe, thanks to this double illuminating function it can be located in the middle of a room, despite its encumbrance. In this paper the technological design of the double light pipe is presented and the results of an experimental analysis on a reduced scale (1:2) model are shown. Internal illuminance data over horizontal and vertical work-planes were measured in various sky conditions with or without direct solar radiation. Being this innovative device obtained by a light pipe integrated with a second pipe, it performs like a traditional light pipe for the final room and, at the same time, illuminates the intermediate room giving it uniform and high quality light, particularly indicated for wide plant areas, such as show-rooms or museums. (author)
Fagan, Mike; Dueben, Peter; Palem, Krishna; Carver, Glenn; Chantry, Matthew; Palmer, Tim; Schlacter, Jeremy
2017-04-01
It has been shown that a mixed precision approach that judiciously replaces double precision with single precision calculations can speed-up global simulations. In particular, a mixed precision variation of the Integrated Forecast System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF) showed virtually the same quality model results as the standard double precision version (Vana et al., Single precision in weather forecasting models: An evaluation with the IFS, Monthly Weather Review, in print). In this study, we perform detailed measurements of savings in computing time and energy using a mixed precision variation of the -OpenIFS- model. The mixed precision variation of OpenIFS is analogous to the IFS variation used in Vana et al. We (1) present results for energy measurements for simulations in single and double precision using Intel's RAPL technology, (2) conduct a -scaling- study to quantify the effects that increasing model resolution has on both energy dissipation and computing cycles, (3) analyze the differences between single core and multicore processing, and (4) compare the effects of different compiler technologies on the mixed precision OpenIFS code. In particular, we compare intel icc/ifort with gnu gcc/gfortran.
Probabilistic double guarantee kidnapping detection in SLAM.
Tian, Yang; Ma, Shugen
2016-01-01
For determining whether kidnapping has happened and which type of kidnapping it is while a robot performs autonomous tasks in an unknown environment, a double guarantee kidnapping detection (DGKD) method has been proposed. The good performance of DGKD in a relative small environment is shown. However, a limitation of DGKD is found in a large-scale environment by our recent work. In order to increase the adaptability of DGKD in a large-scale environment, an improved method called probabilistic double guarantee kidnapping detection is proposed in this paper to combine probability of features' positions and the robot's posture. Simulation results demonstrate the validity and accuracy of the proposed method.
Kubo, Takayuki
2014-01-01
The field limit of superconducting radio-frequency cavity made of type II superconductor with a large Ginzburg-Landau parameter is studied with taking effects of nano-scale surface topography into account. If the surface is ideally flat, the field limit is imposed by the superheating field. On the surface of cavity, however, nano-defects almost continuously distribute and suppress the superheating field everywhere. The field limit is imposed by an effective superheating field given by the product of the superheating field for ideal flat surface and a suppression factor that contains effects of nano-defects. A nano-defect is modeled by a triangular groove with a depth smaller than the penetration depth. An analytical formula for the suppression factor of bulk and multilayer superconductors are derived in the framework of the London theory. As an immediate application, the suppression factor of the dirty Nb processed by the electropolishing is evaluated by using results of surface topographic study. The estimat...
Bonnard, Charles-Henri; Sirois, Frédéric; Lacroix, Christian; Didier, Gaëtan
2017-01-01
In order to plan the integration of superconducting fault current limiters (SFCLs) in power systems, accurate models of SFCLs must be made available in commercial power system transient simulators. In this context, we developed such a model for the EMTP-RV software package, a power system transient simulator widely used by power utilities. The model can be used with any resistive-type SFCL (rSFCL) made of high temperature superconductor (HTS) tapes, which are discretized in ‘electro-thermal elements’. Those elements consist solely of electric circuit components, and are used to represent portions of tape of various sizes and dimensions (a ‘multi-scale’ approach). Both the electrical and thermal behaviors of the tape are modeled, including interfacial effects, nonlinear properties of materials and heat transfer to the surrounding environment. Such a multi-scale model can simulate accurately both the local quench dynamics of HTS tapes (microscopic scale) and the global impact of the rSFCL on the power system (macroscopic/system scale). In this paper, the model is used to compute phenomena such as propagation velocity of a hot spot and heat diffusion through the thickness of the tape. Results were verified by comparing EMTP-RV results with finite element simulations. In addition to the development of the multi-scale model itself, which is the major contribution of this paper, the use of the model allowed us to determine the conditions of validity of the commonly used ‘homogenization’ of the thermal properties across the tape thickness. Indeed, when the current flowing into the rSFCL is slightly above its critical current I c (and up to 2{I}{{c}}), very important errors in the power waveforms arise, leading to potentially wrong decisions of protection systems. Homogenized thermal models should thus be used with great care in practice.
Navarrete, Sergio A.; Wieters, Evie A.; Broitman, Bernardo R.; Castilla, Juan Carlos
2005-01-01
Large and usually unpredictable variation in species interaction strength has been a major roadblock to applying local experimental results to large-scale management and conservation issues. Recent studies explicitly considering benthic-pelagic coupling are starting to shed light on, and find regularities in, the causes of such large-scale variation in coastal ecosystems. Here, we evaluate the effects of variation in wind-driven upwelling on community regulation along 900 km of coastline of the southeastern Pacific, between 29°S and 35°S during 72 months. Variability in the intensity of upwelling occurring over tens of km produced predictable variation in recruitment of intertidal mussels, but not barnacles, and did not affect patterns of community structure. In contrast, sharp discontinuities in upwelling regimes produced abrupt and persistent breaks in the dynamics of benthic and pelagic communities over hundreds of km (regional) scales. Rates of mussel and barnacle recruitment changed sharply at ≈32°-33°S, determining a geographic break in adult abundance of these competitively dominant species. Analysis of satellite images demonstrates that regional-scale discontinuities in oceanographic regimes can couple benthic and pelagic systems, as evidenced by coincident breaks in dynamics and concentration of offshore surface chlorophyll-a. Field experiments showed that the paradigm of top-down control of intertidal benthic communities holds only south of the discontinuity. To the north, populations seem recruitment-limited, and predators have negligible effects, despite attaining similarly high abundances and potential predation effects across the region. Thus, geographically discontinuous oceanographic regimes set bounds to the strength of species interactions and define distinct regions for the design and implementation of sustainable management and conservation policies. PMID:16332959
Navarrete, Sergio A; Wieters, Evie A; Broitman, Bernardo R; Castilla, Juan Carlos
2005-12-13
Large and usually unpredictable variation in species interaction strength has been a major roadblock to applying local experimental results to large-scale management and conservation issues. Recent studies explicitly considering benthic-pelagic coupling are starting to shed light on, and find regularities in, the causes of such large-scale variation in coastal ecosystems. Here, we evaluate the effects of variation in wind-driven upwelling on community regulation along 900 km of coastline of the southeastern Pacific, between 29 degrees S and 35 degrees S during 72 months. Variability in the intensity of upwelling occurring over tens of km produced predictable variation in recruitment of intertidal mussels, but not barnacles, and did not affect patterns of community structure. In contrast, sharp discontinuities in upwelling regimes produced abrupt and persistent breaks in the dynamics of benthic and pelagic communities over hundreds of km (regional) scales. Rates of mussel and barnacle recruitment changed sharply at approximately 32 degrees -33 degrees S, determining a geographic break in adult abundance of these competitively dominant species. Analysis of satellite images demonstrates that regional-scale discontinuities in oceanographic regimes can couple benthic and pelagic systems, as evidenced by coincident breaks in dynamics and concentration of offshore surface chlorophyll-a. Field experiments showed that the paradigm of top-down control of intertidal benthic communities holds only south of the discontinuity. To the north, populations seem recruitment-limited, and predators have negligible effects, despite attaining similarly high abundances and potential predation effects across the region. Thus, geographically discontinuous oceanographic regimes set bounds to the strength of species interactions and define distinct regions for the design and implementation of sustainable management and conservation policies.
Halaburda, Hanna; Oberholzer-Gee, Felix
2014-04-01
The value of many products and services rises or falls with the number of customers using them; the fewer fax machines in use, the less important it is to have one. These network effects influence consumer decisions and affect companies' ability to compete. Strategists have developed some well-known rules for navigating business environments with network effects. "Move first" is one, and "get big fast" is another. In a study of dozens of companies, however, the authors found that quite often the conventional wisdom was dead wrong. And when the rules failed, the reason was always the same: Companies trip up when they try to attract large volumes of customers without understanding (1) the strength of mutual attraction among various customer groups and (2) the extent of asymmetric attraction among them. Looking at examples such as TripAdvisor, Wikipedia, and the New York Times, the authors offer strategies for competing in markets with network effects. New entrants should focus on customer groups that they are uniquely positioned to serve or appeal to the most attractive customers in a market. Incumbents pursuing growth strategies in adjacent markets or new geographies should consider how similar the needs of new customers are to those of existing customers. Offering complements also allows incumbents to reach additional customer groups.
Directory of Open Access Journals (Sweden)
Fu-Jun Wang
2013-01-01
Full Text Available The transient analysis was carried out to investigate the dynamic stress and vibration of volute casing for a large double-suction centrifugal pump by using the transient fluid-structure interaction theory. The flow pulsations at flow rate ranging from 60% to 100% of the nominal flow rate (Qd were taken as the boundary conditions for FEM analysis of the pump volute casing structure. The results revealed that, for all operating conditions, the maximum stress located at the volute tongue region, whereas the maximum vibration displacement happened close to the shaft hole region. It was also found that the blade passing frequency and its harmonics were dominant in the variations of dynamic stress and vibration displacement. The amplitude of the dominant frequency for the maximum stress detected at 0.6 Qd was 1.14 times that at Qd, lower than the related difference observed for pressure fluctuations (3.23 times. This study provides an effective method to quantify the flow-induced structural dynamic characteristics for a large-scale double-suction pump. It can be used to direct the hydraulic and structural design and stable operation, as well as fatigue life prediction for large-scale pumps.
Joda, Roghayeh
2012-01-01
In this paper, delay-limited transmission of quasi-stationary sources over block fading channels are considered. Considering distortion outage probability as the performance measure, two source and channel coding schemes with power adaptive transmission are presented. The first one is optimized for fixed rate transmission, and hence enjoys simplicity of implementation. The second one is a high performance scheme, which also benefits from optimized rate adaptation with respect to source and channel states. In high SNR regime, the performance scaling laws in terms of outage distortion exponent and asymptotic outage distortion gain are derived, where two schemes with fixed transmission power and adaptive or optimized fixed rates are considered as benchmarks for comparisons. Various analytical and numerical results are provided which demonstrate a superior performance for source and channel optimized rate and power adaptive scheme. It is also observed that from a distortion outage perspective, the fixed rate adap...
Arnold, R; Baker, J; Barabash, A; Blum, D; Brudanin, V; Caffrey, A J; Campagne, J E; Caurier, E; Dassié, D; Egorov, V; Filipova, T; Gurriarán, R; Guyonnet, J L; Hubert, F; Hubert, P; Jullian, S; Kisel, I; Kochetov, O I; Kornoukhov, V N; Kovalenko, V; Lalanne, D; Laplanche, F; Leccia, F; Linck, I; Longuemare, C; Marquet, C; Mauger, F; Nicholson, H W; Pilugin, I; Piquemal, F; Reyss, J L; Sarazin, X; Scheibling, F; Suhonen, J; Sutton, C S; Szklarz, G; Timkin, V; Torres, R; Umatov, V; Vanyushin, I A; Vareille, A; Vasilyev, V; Vylov, T D
2000-01-01
The NEMO-2 tracking detector located in the Frejus Underground Laboratory was designed as a prototype for the NEMO-3 detector and to study different modes of double beta decay. Measurements with sup 1 sup 0 sup 0 Mo, sup 1 sup 1 sup 6 Cd, sup 8 sup 2 Se and sup 9 sup 6 Zr were carried out. Presented here are the experimental half-life limits on double beta decays for new Majoron emission modes and limits on effective neutrino-Majoron coupling constants.
Energy Technology Data Exchange (ETDEWEB)
Kaye, S.M.; Goldston, R.J.; Bell, M.; Bol, K.; Bitter, M.; Fonck, R.; Grek, B.; Hawryluk, R.J.; Johnson, D.; Kaita, R.
1984-06-01
Experiments were performed on the PDX tokamak to study plasma heating and ..beta.. scaling with higher power, near-perpendicular neutral beam injection. The data taken during these experiments were analyzed using a time-dependent data interpretation code (TRANSP) to study the transport and thermal confinement scaling over a wide range of plasma parameters. This study focuses on results from experiments with D/sup 0/ injection into H/sup +/ plasmas using graphite rail limiters, a = 40 to 44 cm, R = 143 cm, I/sub p/ = 200 to 480 kA, B/sub T/ = 0.7 to 2.2 T, and typically anti n/sub e/ = 2.5 to 4.2 x 10/sup 13/ cm/sup -3/. The results of this study indicate that for both ohmic and neutral beam heated discharges the energy flow out of the plasma is dominated by anomalous electron losses, attributed to electron thermal conduction. The ion conduction losses are well described to electron thermal conduction. The ion conduction losses are well described by neoclassical theory; however, the total ion loss influences the power balance significantly only at high toroidal fields and high plasma currents.
Weegman, Bradley P.; Nash, Peter; Carlson, Alexandra L.; Voltzke, Kristin J.; Geng, Zhaohui; Jahani, Marjan; Becker, Benjamin B.; Papas, Klearchos K.; Firpo, Meri T.
2013-01-01
Cellular therapies are emerging as a standard approach for the treatment of several diseases. However, realizing the promise of cellular therapies across the full range of treatable disorders will require large-scale, controlled, reproducible culture methods. Bioreactor systems offer the scale-up and monitoring needed, but standard stirred bioreactor cultures do not allow for the real-time regulation of key nutrients in the medium. In this study, β-TC6 insulinoma cells were aggregated and cultured for 3 weeks as a model of manufacturing a mammalian cell product. Cell expansion rates and medium nutrient levels were compared in static, stirred suspension bioreactors (SSB), and continuously fed (CF) SSB. While SSB cultures facilitated increased culture volumes, no increase in cell yields were observed, partly due to limitations in key nutrients, which were consumed by the cultures between feedings, such as glucose. Even when glucose levels were increased to prevent depletion between feedings, dramatic fluctuations in glucose levels were observed. Continuous feeding eliminated fluctuations and improved cell expansion when compared with both static and SSB culture methods. Further improvements in growth rates were observed after adjusting the feed rate based on calculated nutrient depletion, which maintained physiological glucose levels for the duration of the expansion. Adjusting the feed rate in a continuous medium replacement system can maintain the consistent nutrient levels required for the large-scale application of many cell products. Continuously fed bioreactor systems combined with nutrient regulation can be used to improve the yield and reproducibility of mammalian cells for biological products and cellular therapies and will facilitate the translation of cell culture from the research lab to clinical applications. PMID:24204645
Directory of Open Access Journals (Sweden)
Bradley P Weegman
Full Text Available Cellular therapies are emerging as a standard approach for the treatment of several diseases. However, realizing the promise of cellular therapies across the full range of treatable disorders will require large-scale, controlled, reproducible culture methods. Bioreactor systems offer the scale-up and monitoring needed, but standard stirred bioreactor cultures do not allow for the real-time regulation of key nutrients in the medium. In this study, β-TC6 insulinoma cells were aggregated and cultured for 3 weeks as a model of manufacturing a mammalian cell product. Cell expansion rates and medium nutrient levels were compared in static, stirred suspension bioreactors (SSB, and continuously fed (CF SSB. While SSB cultures facilitated increased culture volumes, no increase in cell yields were observed, partly due to limitations in key nutrients, which were consumed by the cultures between feedings, such as glucose. Even when glucose levels were increased to prevent depletion between feedings, dramatic fluctuations in glucose levels were observed. Continuous feeding eliminated fluctuations and improved cell expansion when compared with both static and SSB culture methods. Further improvements in growth rates were observed after adjusting the feed rate based on calculated nutrient depletion, which maintained physiological glucose levels for the duration of the expansion. Adjusting the feed rate in a continuous medium replacement system can maintain the consistent nutrient levels required for the large-scale application of many cell products. Continuously fed bioreactor systems combined with nutrient regulation can be used to improve the yield and reproducibility of mammalian cells for biological products and cellular therapies and will facilitate the translation of cell culture from the research lab to clinical applications.
Weegman, Bradley P; Nash, Peter; Carlson, Alexandra L; Voltzke, Kristin J; Geng, Zhaohui; Jahani, Marjan; Becker, Benjamin B; Papas, Klearchos K; Firpo, Meri T
2013-01-01
Cellular therapies are emerging as a standard approach for the treatment of several diseases. However, realizing the promise of cellular therapies across the full range of treatable disorders will require large-scale, controlled, reproducible culture methods. Bioreactor systems offer the scale-up and monitoring needed, but standard stirred bioreactor cultures do not allow for the real-time regulation of key nutrients in the medium. In this study, β-TC6 insulinoma cells were aggregated and cultured for 3 weeks as a model of manufacturing a mammalian cell product. Cell expansion rates and medium nutrient levels were compared in static, stirred suspension bioreactors (SSB), and continuously fed (CF) SSB. While SSB cultures facilitated increased culture volumes, no increase in cell yields were observed, partly due to limitations in key nutrients, which were consumed by the cultures between feedings, such as glucose. Even when glucose levels were increased to prevent depletion between feedings, dramatic fluctuations in glucose levels were observed. Continuous feeding eliminated fluctuations and improved cell expansion when compared with both static and SSB culture methods. Further improvements in growth rates were observed after adjusting the feed rate based on calculated nutrient depletion, which maintained physiological glucose levels for the duration of the expansion. Adjusting the feed rate in a continuous medium replacement system can maintain the consistent nutrient levels required for the large-scale application of many cell products. Continuously fed bioreactor systems combined with nutrient regulation can be used to improve the yield and reproducibility of mammalian cells for biological products and cellular therapies and will facilitate the translation of cell culture from the research lab to clinical applications.
Bravaya, Ksenia B; Zuev, Dmitry; Epifanovsky, Evgeny; Krylov, Anna I
2013-03-28
Theory and implementation of complex-scaled variant of equation-of-motion coupled-cluster method for excitation energies with single and double substitutions (EOM-EE-CCSD) is presented. The complex-scaling formalism extends the EOM-EE-CCSD model to resonance states, i.e., excited states that are metastable with respect to electron ejection. The method is applied to Feshbach resonances in atomic systems (He, H(-), and Be). The dependence of the results on one-electron basis set is quantified and analyzed. Energy decomposition and wave function analysis reveal that the origin of the dependence is in electron correlation, which is essential for the lifetime of Feshbach resonances. It is found that one-electron basis should be sufficiently flexible to describe radial and angular electron correlation in a balanced fashion and at different values of the scaling parameter, θ. Standard basis sets that are optimized for not-complex-scaled calculations (θ = 0) are not sufficiently flexible to describe the θ-dependence of the wave functions even when heavily augmented by additional sets.
DEFF Research Database (Denmark)
Kapustina, J.V.; Kuznetsov, A.P.; Kuznetsov, S.P.
2001-01-01
We study scaling regularities associated with the effects of additive noise on the bicritical behavior of a system of two unidirectionally coupled quadratic maps. A renormalization group analysis of the effects of noise is developed. We outline the qualitative and quantitative differences between....... A number of computer graphical illustrations for the scaling regularities is presented. We discuss the smearing of the fine structure of the bicritical attractor and the Fourier spectra in the presence of noise, the self-similar structure of the Lyapunov charts on the parameter plane near the bicritical...
Lorantfy, Bettina; Jazini, Mohammadhadi; Herwig, Christoph
2013-09-01
Inhomogeneities in production-scale bioreactors influence microbial growth and product quality due to insufficient mixing and mass transfer. For this reason, lots of efforts are being made to investigate the effects of gradients that impose stress in large-scale reactors in laboratory scale. We have implemented a scale-down model which allows separating a homogeneous part, a stirred tank reactor (STR), and a plug flow reactor (PFR) which mimics the inhomogeneous regimes of the large-scale fermenters. This scale-down model shows solutions to trigger oxygen limited conditions in the PFR part of the scale-down setup for physiological analysis. The goal of the study was to investigate the scale-up relevant physiological responses of Pichia pastoris strain to oxygen limited process conditions in the above mentioned two-compartment bioreactor setup. Experimental results with non-induced cultures show that the specific growth rate significantly decreased with increasing the exposure time to oxygen limitation. In parallel more by-products were produced. Examining physiological scalable key parameters, multivariate data analyses solely using on-line data revealed that different exposures to the oxygen limitation significantly affected the culture performance. This work with the small scale-downs setup reflects new approaches for a valuable process development tool for accelerating strain characterization or for verifying CFD simulations of large-scale bioreactors. As a novel methodological achievement, the combination of the two-compartment scale-down system with the proposed multivariate techniques of solely using on-line data is a valuable tool for recognition of stress effects on the culture performance for physiological bioprocess scale-up issues.
Al-Ameri, Talib; Georgiev, Vihar P.; Sadi, Toufik; Wang, Yijiao; Adamu-Lema, Fikru; Wang, Xingsheng; Amoroso, Salvatore M.; Towie, Ewan; Brown, Andrew; Asenov, Asen
2017-03-01
In this work we investigate the impact of quantum mechanical effects on the device performance of n-type silicon nanowire transistors (NWT) for possible future CMOS applications at the scaling limit. For the purpose of this paper, we created Si NWTs with two channel crystallographic orientations and and six different cross-section profiles. In the first part, we study the impact of quantum corrections on the gate capacitance and mobile charge in the channel. The mobile charge to gate capacitance ratio, which is an indicator of the intrinsic performance of the NWTs, is also investigated. The influence of the rotating of the NWTs cross-sectional geometry by 90° on charge distribution in the channel is also studied. We compare the correlation between the charge profile in the channel and cross-sectional dimension for circular transistor with four different cross-sections diameters: 5 nm, 6 nm, 7 nm and 8 nm. In the second part of this paper, we expand the computational study by including different gate lengths for some of the Si NWTs. As a result, we establish a correlation between the mobile charge distribution in the channel and the gate capacitance, drain-induced barrier lowering (DIBL) and the subthreshold slope (SS). All calculations are based on a quantum mechanical description of the mobile charge distribution in the channel. This description is based on the solution of the Schrödinger equation in NWT cross sections along the current path, which is mandatory for nanowires with such ultra-scale dimensions.
Carnicer, Jofre; Coll, Marta; Pons, Xavier; Ninyerola, Miquel; Vayreda, Jordi; Penuelas, Josep
2014-01-01
Aim Large-scale patterns of limitations in tree recruitment remain poorly described in the Mediterranean Basin, and this information is required to assess the impacts of global warming on forests. Here, we unveil the existence of opposite trends of recruitment limitation between the dominant genera
Yermolaev, Yu I; Nikolaeva, N S; Yermolaev, M Yu
2016-01-01
This work is a continuation of our previous paper [Yermolaevetal2015] which describes the average temporal profiles of interplanetary plasma and field parameters in large-scale solar-wind (SW) streams: CIR, ICME (both MC and Ejecta) and Sheath as well as the interplanetary shock (IS). Like in the previous work we use data of OMNI database, our catalog of large-scale solar-wind phenomena during 1976--2000 [Yermolaevetal2009] and the double superposed epoch analysis (DSEA) method [Yermolaevetal2010]: re-scaling the duration of interval for all types in such a manner that, respectively, beginning and end for all intervals of selected type coincide. We present new detailed results of comparison of two pair phenomena: (1) both types of compression regions (CIR.vs.Sheath) and (2) both types of ICMEs (MC.vs.Ejecta). Obtained data allows us to suggest that the formation of all types of compression regions has the same physical mechanism irrespective of piston (High-Speed Stream (HSS) or ICME) type and differences are...
Hussein, Naser S; Norazan, M R
2013-01-01
Objective. To confirm safety and feasibility of double J stent insertion under local anesthesia and to assess the effect of detailed explanation and observing double J stent insertion on pain experience of male patients. Material and Methods. Eighty consenting males, randomized and divided prospectively into group A, who were allowed to observe DJ stent insertion, and group B, were not observed. All DJ stent insertions were done by senior urologist in operating urology room with or without fluoroscopy guidance. At the end of the procedure the vital signs and duration of the procedure were documented and patients were asked to fill unmarked 100 mm visual analogue pain scale (VAS) as soon as the surgeon leaves operating room. Results. Mean age of entire study group was 38.8 years; the majority of the patients had DJ stent insertion for obstructed ureteric stone, with uneventful outcomes. Postprocedural systolic blood pressure and mean pain using VAS showed statistically significant difference between groups A and B. Conclusion. DJ stent insertion under local anesthesia is a safe and feasible procedure. We recommended self-watching and detailed explanation to patients who underwent DJ stent insertion to reduce the pain and anxiety associated with the procedure.
Wang, Haijun; Li, Yan; Feng, Weisong; Yu, Qing; Xiao, Xucheng; Liang, Xiaomin; Shao, Jianchun; Ma, Shuonan; Wang, Hongzhu
2016-07-01
Whether it is necessary to reduce nitrogen (N) and/or phosphorus (P) input to mitigate lake eutrophication is controversial. The controversy stems mainly from differences in time and space in previous studies that support the contrasting ideas. To test the response of phytoplankton to various combinations of nutrient control strategies in mesocosms and the possibility of reflecting the conditions in natural ecosystems with short-term experiments, a 9-month experiment was carried out in eight 800-L tanks with four nutrient level combinations (+N+P, -N+P, +N-P, and -N-P), with an 18-month whole-ecosystem experiment in eight ~800-m 2 ponds as the reference. Phytoplankton abundance was determined by P not N, regardless of the initial TN/TP level, which was in contrast to the nutrient limitation predicted by the N/P theory. Net natural N inputs were calculated to be 4.9, 6.8, 1.5, and 3.0 g in treatments +N+P, -N+P, +N-P, and -N-P, respectively, suggesting that N deficiency and P addition may promote natural N inputs to support phytoplankton development. However, the compensation process was slow, as suggested by an observed increase in TN after 3 weeks in -N+P and 2 months in -N-P in the tank experiment, and after 3 months in -N +P and ~3 months in -N-P in our pond experiment. Obviously, such a slow process cannot be simulated in short-term experiments. The natural N inputs cannot be explained by planktonic N-fixation because N-fixing cyanobacteria were scarce, which was probably because there was a limited pool of species in the tanks. Therefore, based on our results we argue that extrapolating short-term, small-scale experiments to large natural ecosystems does not give reliable, accurate results.
Energy Technology Data Exchange (ETDEWEB)
Al-Ghazi, M.S.A.L.; Birchall, J.; McKee, J.S.C.
1982-06-01
The theoretical description of double ionization followed by the emission of a single photon is critically examined. Some numerical calculations based on existing models are carried out and the results obtained subjected to an experimental test in a suitably designed experiment. Some doubt is cast on the accuracy with which the existing theoretical models describe the process.
Rojas, Jhonathan Prieto
2015-05-01
The ability to incorporate rigid but high-performance nano-scale non-planar complementary metal-oxide semiconductor (CMOS) electronics with curvilinear, irregular, or asymmetric shapes and surfaces is an arduous but timely challenge in enabling the production of wearable electronics with an in-situ information-processing ability in the digital world. Therefore, we are demonstrating a soft-material enabled double-transfer-based process to integrate flexible, silicon-based, nano-scale, non-planar, fin-shaped field effect transistors (FinFETs) and planar metal-oxide-semiconductor field effect transistors (MOSFETs) on various asymmetric surfaces to study their compatibility and enhanced applicability in various emerging fields. FinFET devices feature sub-20 nm dimensions and state-of-the-art, high-κ/metal gate stack, showing no performance alteration after the transfer process. A further analysis of the transferred MOSFET devices, featuring 1 μm gate length exhibits ION ~70 μA/μm (VDS = 2 V, VGS = 2 V) and a low sub-threshold swing of around 90 mV/dec, proving that a soft interfacial material can act both as a strong adhesion/interposing layer between devices and final substrate as well as a means to reduce strain, which ultimately helps maintain the device’s performance with insignificant deterioration even at a high bending state.
Beck, Eduard J; Passarelli, Carlos; Lui, Iris; Guichard, Anne-Claire; Simao, Mariangela; De Lay, Paul; Loures, Luiz
2014-01-01
The number of people living with HIV (PLHIV) continues to increase around the world because of the increasing number on antiretroviral therapy (ART) and their associated increase of life expectancy, in addition to the number of people newly infected with HIV each year. Unless a 'cure' can be found for HIV infection, PLHIV can anticipate the need to take antiretroviral drugs (ARVs) for the rest of their lives. Because ARVs are now being used for HIV prevention, as well as for therapeutic purposes, the need for effective, affordable ARVs with few adverse effects will continue to rise. It is important to note that the dramatic growth in treatment coverage of PLHIV seen during the past decade has been primarily due to the increased use of generic ARVs. Thus, there will be a need to scale-up the research and development, production, distribution and access to generic ARVs and ART regimens. However, these processes must occur within national and international regulated free-market economic systems and must deal with increasingly multifaceted patent issues affecting the price while ensuring the quality of the ARVs. National and international regulatory mechanisms will have to evolve, which will affect broader national and international economic and trade issues. Because of the complexity of these issues, the Editors of this Supplement conceived of asking experts in their fields to describe the various steps from relevant research and development, to production of generic ARVs, their delivery to countries and subsequently to PLHIV in low- and middle-income countries. A main objective was to highlight how these steps are interrelated, how the production and delivery of these drugs to PLHIV in resource-limited countries can be made more effective and efficient, and what the lessons are for the production and delivery of a broader set of drugs to people in low- and middle-income countries.
Directory of Open Access Journals (Sweden)
Ramakrishna R. Nemani
2013-01-01
Full Text Available A methodology to generate spatially continuous fields of tree heights with an optimized Allometric Scaling and Resource Limitations (ASRL model is reported in this first of a multi-part series of articles. Model optimization is performed with the Geoscience Laser Altimeter System (GLAS waveform data. This methodology is demonstrated by mapping tree heights over forested lands in the continental USA (CONUS at 1 km spatial resolution. The study area is divided into 841 eco-climatic zones based on three forest types, annual total precipitation classes (30 mm intervals and annual average temperature classes (2 °C intervals. Three model parameters (area of single leaf, α, exponent for canopy radius, η, and root absorption efficiency, γ were selected for optimization, that is, to minimize the difference between actual and potential tree heights in each of the eco-climatic zones over the CONUS. Tree heights predicted by the optimized model were evaluated against GLAS heights using a two-fold cross validation approach (R2 = 0.59; RMSE = 3.31 m. Comparison at the pixel level between GLAS heights (mean = 30.6 m; standard deviation = 10.7 and model predictions (mean = 30.8 m; std. = 8.4 were also performed. Further, the model predictions were compared to existing satellite-based forest height maps. The optimized ASRL model satisfactorily reproduced the pattern of tree heights over the CONUS. Subsequent articles in this series will document further improvements with the ultimate goal of mapping tree heights and forest biomass globally.
Unintegrated double parton distributions
Golec-Biernat, K
2016-01-01
We present the construction of unintegrated double parton distribution functions which include dependence on transverse momenta of partons. We extend the formulation which was used to obtain the single unintegrated parton distributions from the standard, integrated parton distribution functions. Starting from the homogeneous part of the evolution equations for the integrated double parton distributions, we construct the unintegrated double parton distributions as the convolutions of the integrated double distributions and the splitting functions, multiplied by the Sudakov form factors. We show that there exist three domains of external hard scales which require three distinct forms of the unintegrated double distributions. The additional transverse momentum dependence which arises through the Sudakov form factors leads to non-trivial correlations in the parton momenta. We also discuss the non-homogeneous contribution to the unintegrated double parton distributions, which arises due to the splitting of a singl...
Energy Technology Data Exchange (ETDEWEB)
Yoshimura, H.R.; Bronowski, D.R.; Uncapher, W.L.; Attaway, S.W.; Bateman, V.I.; Carne, T.G.; Gregory, D.L. (Sandia National Labs., Albuquerque, NM (USA)); Huerta, M. (Southwest Engineering Associates, El Paso, TX (USA))
1990-12-01
This report describes drop testing of a one-third scale model shipping cask system. Two casks were designed and fabricated by Transnuclear, Inc., to ship spent fuel from the former Nuclear Fuel Services West Valley reprocessing facility in New York to the Idaho National Engineering Laboratory for a long-term spent fuel dry storage demonstration project. As part of the NRC's regulatory certification process, one-third scale model tests were performed to obtain experimental data on impact limiter performance during impact testing. The objectives of the testing program were to (1) obtain deceleration and displacement information for the cask and impact limiter system, (2) obtain dynamic force-displacement data for the impact limiters, (3) verify the integrity of the impact limiter retention system, and (4) examine the crush behavior of the limiters. Two 30-ft (9-m) drop tests were conducted on a mass model of the cask body and scaled balsa and redwood-filled impact limiters. This report describes the results of both tests in terms of measured decelerations, posttest deformation measurements, and the general structural response of the system. 3 refs., 32 figs.
Directory of Open Access Journals (Sweden)
Phillips Charles D
2012-01-01
Full Text Available Abstract Background To test the validity and reliability of scales intended to measure activity limitations faced by children with chronic illnesses living in the community. The scales were based on information provided by caregivers to service program personnel almost exclusively trained as social workers. The items used to measure activity limitations were interRAI items supplemented so that they were more applicable to activity limitations in children with chronic illnesses. In addition, these analyses may shed light on the possibility of gathering functional information that can span the life course as well as spanning different care settings. Methods Analyses included testing the internal consistency, predictive, concurrent, discriminant and construct validity of two activity limitation scales. The scales were developed using assessment data gathered in the United States of America (USA from over 2,700 assessments of children aged 4 to 20 receiving Medicaid Early and Periodic Screening, Diagnostic and Treatment (EPSDT services, specifically Personal Care Services to assist children in overcoming activity limitations. The Medicaid program in the USA pays for health care services provided to children in low-income households. Data were collected in a single, large state in the southwestern USA in late 2008 and early 2009. A similar sample of children was assessed in 2010, and the analyses were replicated using this sample. Results The two scales exhibited excellent internal consistency. Evidence on the concurrent, predictive, discriminant, and construct validity of the proposed scales was strong. Quite importantly, scale scores were not correlated with (confounded with a child's developmental stage or age. The results for these scales and items were consistent across the two independent samples. Conclusions Unpaid caregivers, usually parents, can provide assessors lacking either medical or nursing training with reliable and valid information
Watkins, Nicholas
2013-04-01
Stochastic modelling is of increasing importance, both specifically in climate science and more broadly across the whole of nonlinear geophysics. Traditionally, the noise components of such models would be spectrally white (delta-correlated) and Gaussian in amplitude, and their variance (first named by Fisher in 1918) would well characterise the likely size of fluctuations. Integration, for example in autoregressive models like AR(1), would redden a noise spectrum, while multiplication in turbulent cascades could greatly increase the range of fluctuation amplitudes, but such processes would still inherit aspects of their finite variance building blocks. In the 60s and 70s, however, Mandelbrot and others [see e.g. Watkins, GRL Frontiers, 2013] began to present evidence in nature for much stronger departures from Gaussianity (via very heavy tailed, infinite variance, distributions) and from white noise (through long range dependence (LRD) in time). He also observed intermittency, defined here as correlations between absolute magnitudes in some time series, in, for example, finance and turbulence. He proposed various models, including self-similar ones for heavy tails and LRD, and multifractal cascades for intermittency. In this presentation we compare contrasting types of model by looking at the "wild" events that they produce. The notion of a "wild" event can be made more precise in many ways, including by its duration in time, peak amplitude, and spatial extent. Our chosen measure will be the "burst", defined as the area of a time series above a fixed threshold. We will compare burst scaling in a self-similar, LRD, heavy tailed model (LFSM, e.g. Watkins et al, PRE, 2009] with our newer results for multifractal random walks [with M. Rypdal and O. Lovsletten], and for the heavy tailed extended version of the FARIMA (1,d,0) process, which combines long range dependence with the high frequency structure familiar from AR(1). We will also discuss the physical meaning of
Institute of Scientific and Technical Information of China (English)
胡俊; 张磊; 任坦
2012-01-01
为探究差分格式和限制器对高超声速热流密度计算结果的影响,以N-S方程为基本控制方程,采用FDS的Roe格式、FVS的van Leer格式对双椭球模型进行了数值模拟,并采用Roe格式选取min mod、van Leer、Osher_C三种限制器对双椭球进行了进一步数值模拟.研究了不同空间差分格式、不同限制器对双椭球压力、气动热数值模拟结果的影响,并对双椭球模型的流场进行了相关分析.研究结果表明:差分格式和限制器对压力系数影响不大,而对热流密度影响较大,采用minmod限制器的Roe格式计算精度最高.%In order to study the effect of difference schemes and limiters, on the basis of Navier-Stokes equation, the flow fields around double-ellipsoid were simulated numerically using Roe scheme of FDS and van Leer scheme of FVS. The limiters of min mod, van Leer, Osher_C under Roe difference scheme were also simulated. The effects of different difference schemes and limiters on the simulation results of double-ellipsoid's aerodynamics and aerothermodynamics were researched and the flow fields of double-ellipsoid were analyzed. The results indicate that the effect of difference schemes and limiters on pressure is less than heat flux and Ree scheme with minmod limitors can obtain high accuracy results.
Chan, Bun; Radom, Leo
2016-08-09
In the present study, we have obtained geometries and frequency scale factors for a number of double-hybrid density functional theory (DH-DFT) procedures. We have evaluated their performance for obtaining thermochemical quantities [zero-point vibrational energies (ZPVE) and thermal corrections for 298 K enthalpies (ΔH298) and 298 K entropies (S298)] to be used within high-level composite protocols (using the W2X procedure as a probe). We find that, in comparison with the previously prescribed protocol for optimization and frequency calculations (B3-LYP/cc-pVTZ+d), the use of contemporary DH-DFT methods such as DuT-D3 and DSD-type procedures leads to a slight overall improved performance compared with B3-LYP. A major strength of this approach, however, lies in the better robustness of the DH-DFT methods in that the largest deviations are notably smaller than those for B3-LYP. In general, the specific choices of the DH-DFT procedure and the associated basis set do not drastically change the performance. Nonetheless, we find that the DSD-PBE-P86/aug'-cc-pVTZ+d combination has a very slight edge over the others that we have examined, and we recommend its general use for geometry optimization and vibrational frequency calculations, in particular within high-level composite methods such as the higher-level members of the WnX series of protocols. The scale factors determined for DSD-PBE-P86/aug'-cc-pVTZ+d are 0.9830 (ZPVE), 0.9876 (ΔH298), and 0.9923 (S298).
Roorda, LD; Roebroeck, ME; van Tilburg, T; Molenaar, IW; Lankhorst, GJ; Bouter, LM
2005-01-01
Objective: To develop a hierarchical scale that measures activity limitations in walking in patients with lower-extremity disorders who live at home. Design: Cross-sectional study. Setting: Orthopedic workshops and outpatient clinics of secondary and tertiary care centers. Participants: Patients (N=
Kahle, Hermann; Mateo, Cherry M. N.; Brauch, Uwe; Bek, Roman; Schwarzbäck, Thomas; Jetter, Michael; Graf, Thomas; Michler, Peter
2016-03-01
The wide range of applications in biophotonics, television or projectors, spectroscopy and lithography made the optically-pumped semiconductor (OPS) vertical external cavity surface-emitting lasers (VECSELs) an important category of power scalable lasers. The possibility of bandgap engineering, inserting frequency selective and converting elements into the open laser cavity and laser emission in the fundamental Gaussian mode leads to ongoing growth of the area of applications for tuneable laser sources. We present an AlGaInP-VECSEL system with a multi quantum well structure consisting of compressively strained GaInP quantum wells in an AlxGa1-xInP separate confinement heterostructure with an emission wavelength around 665 nm. The VECSEL chip with its n-λ cavity is pumped by a 532nm Nd:YAG laser under an angle to the normal incidence of 50°. In comparison, a gain chip design for high absorption values at pump wavelengths around 640nm with the use of quantum dot layers as active material is also presented. Frequency doubling is now realized with an antireflection coated lithium borate crystal, while a birefringent filter, placed inside the laser cavity under Brewster's angle, is used for frequency tuning. Further, power-scaling methods like in-well pumping as well as embedding the active region of a VECSEL between two transparent ic heaspreaders are under investigation.
Elagin, Andrey; Frisch, Henry J.; Naranjo, Brian; Ouellet, Jonathan; Winslow, Lindley; Wongjirad, Taritree
2017-03-01
We present a technique for separating nuclear double beta decay (ββ -decay) events from background neutrino interactions due to 8B decays in the sun. This background becomes dominant in a kiloton-scale liquid-scintillator detector deep underground and is usually considered as irreducible due to an overlap in deposited energy with the signal. However, electrons from 0 νββ -decay often exceed the Cherenkov threshold in liquid scintillator, producing photons that are prompt and correlated in direction with the initial electron direction. The use of large-area fast photodetectors allows some separation of these prompt photons from delayed isotropic scintillation light and, thus, the possibility of reconstructing the event topology. Using a simulation of a 6.5 m radius liquid scintillator detector with 100 ps resolution photodetectors, we show that a spherical harmonics analysis of early-arrival light can discriminate between 0 νββ -decay signal and 8B solar neutrino background events on a statistical basis. Good separation will require the development of a slow scintillator with a 5 ns risetime.
Xie, Jiazhuo; Zhang, Kun; Zhao, Qinghua; Wang, Qingguo; Xu, Jing
2016-11-01
Novel LDH intercalated with organic aliphatic long-chain anion was large-scale synthesized innovatively by high-energy ball milling in one pot. The linear low density polyethylene (LLDPE)/layered double hydroxides (LDH) composite films with enhanced heat retention, thermal, mechanical, optical and water vapor barrier properties were fabricated by melt blending and blowing process. FT IR, XRD, SEM results show that LDH particles were dispersed uniformly in the LLDPE composite films. Particularly, LLDPE composite film with 1% LDH exhibited the optimal performance among all the composite films with a 60.36% enhancement in the water vapor barrier property and a 45.73 °C increase in the temperature of maximum mass loss rate compared with pure LLDPE film. Furthermore, the improved infrared absorbance (1180-914 cm-1) of LLDPE/LDH films revealed the significant enhancement of heat retention. Therefore, this study prompts the application of LLDPE/LDH films as agricultural films with superior heat retention.
Weegman, Bradley P; Peter Nash; Alexandra L Carlson; Kristin J Voltzke; Zhaohui Geng; Marjan Jahani; Benjamin B Becker; Papas, Klearchos K.; Firpo, Meri T.
2013-01-01
Cellular therapies are emerging as a standard approach for the treatment of several diseases. However, realizing the promise of cellular therapies across the full range of treatable disorders will require large-scale, controlled, reproducible culture methods. Bioreactor systems offer the scale-up and monitoring needed, but standard stirred bioreactor cultures do not allow for the real-time regulation of key nutrients in the medium. In this study, β-TC6 insulinoma cells were aggregated and cul...
Lower limit on the gravitino mass in low-scale gauge mediation with mH ≃ 125 GeV
Ibe, Masahiro; Yanagida, Tsutomu T.
2017-01-01
We revisit low-scale gauge mediation models in light of recent observations of CMB Lensing and Cosmic Shear which put a severe upper limit on the gravitino mass, m3/2 ≲ 4.7eV. With such a stringent constraint, many models of low-scale gauge mediation are disfavored when the squark masses are required to be rather large to explain the observed Higgs boson mass unless the gravitino abundance is diluted by late time entropy production. In this note, we discuss a type of low-scale gauge mediation models which satisfy both the observed Higgs boson mass and the upper limit on the gravitino mass. We also show that the gravitino mass cannot be smaller than about 1 eV even in such models, which may be tested in future observations of 21 cm line fluctuations.
Lower limit on the gravitino mass in low-scale gauge mediation with $m_H\\simeq 125$GeV
Ibe, Masahiro
2016-01-01
We revisit low-scale gauge mediation models in light of recent observations of CMB Lensing and Cosmic Shear which put a severe upper limit on the gravitino mass, $m_{3/2} \\lesssim 4.7$eV. With such a stringent constraint, many models of low-scale gauge mediation are excluded when the squark masses are required to be rather large to explain the observed Higgs boson mass. In this note, we discuss a type of low-scale gauge mediation models which satisfy both the observed Higgs boson mass and the upper limit on the gravitino mass. We also show that the gravitino mass cannot be smaller than about 1eV even in such models, which may be tested in future observations of 21 cm line fluctuations.
Universal scalings of universal scaling exponents
Energy Technology Data Exchange (ETDEWEB)
Llave, Rafael de la [Department of Mathematics, University of Texas, Austin, TX 78712 (United States); Olvera, Arturo [IIMAS-UNAM, FENOMEC, Apdo. Postal 20-726, Mexico DF 01000 (Mexico); Petrov, Nikola P [Department of Mathematics, University of Oklahoma, Norman, OK 73019 (United States)
2007-06-08
In the last decades, renormalization group (RG) ideas have been applied to describe universal properties of different routes to chaos (quasi-periodic, period doubling or tripling, Siegel disc boundaries, etc). Each of the RG theories leads to universal scaling exponents which are related to the action of certain RG operators. The goal of this announcement is to show that there is a principle that organizes many of these scaling exponents. We give numerical evidence that the exponents of different routes to chaos satisfy approximately some arithmetic relations. These relations are determined by combinatorial properties of the route and become exact in an appropriate limit. (fast track communication)
Demaeyer, Jonathan
2016-01-01
A stochastic subgrid-scale parameterization based on the Ruelle's response theory and proposed in Wouters and Lucarini (2012) is tested in the context of a low-order coupled ocean-atmosphere model for which a part of the atmospheric modes are considered as unresolved. A natural separation of the phase-space into an invariant set and its complement allows for an analytical derivation of the different terms involved in the parameterization, namely the average, the fluctuation and the long memory terms. In this case, the fluctuation term is an additive stochastic noise. Its application to the low-order system reveals that a considerable correction of the low-frequency variability along the invariant subset can be obtained, provided that the coupling is sufficiently weak. This new approach of scale separation opens new avenues of subgrid-scale parameterizations in multiscale systems used for climate forecasts.
基于双重逆极限空间液压系统泄漏特征提取方法%Feature Extraction Based on Double lnverse Limit Space in Hydraulic System
Institute of Scientific and Technical Information of China (English)
朱丹丹; 连利纳; 张玉存
2015-01-01
为了检测大型锻造液压机液压系统的泄漏问题，提出了一种基于双重逆极限空间的特征分析方法。将大型锻造液压机液压系统的泄漏作为原信息空间，并在此基础上建立与之拓扑同构的双重逆极限空间。在双重逆极限空间，并通过拓扑不变性来反映大型锻造液压机液压系统的泄漏情况。最后通过仿真实验验证了此理论方法的可行性。结果表明，基于双重逆极限空间的特征提取方法更适合提取泄漏的耦合特征，所提取的特征信息对泄漏具有很好的检测和定位能力。%In order to eztract leakage information of forging hydraulic press hydraulic system,a method of feature eztraction based on double inverse limit space is proposed. The leakage information space of large forging hydraulic press hydraulic system is established,and double inverse limit space is established based on the leakage information space,and the two spaces are topological isomorphism. In a double inverse limit space,the large forging hydraulic press hydraulic system of leakage is reflected through the topological isomorphism. The feasibility of this theory is verified by simulation. The results show that ,the method of feature eztraction based on double inverse limit space is more suitable for eztracting the leakage coupling characteristics,the characteristics of information leakage eztracted by this method has very good detection and location capability.
Genet, Russell M.; Fulton, B. J.; Bianco, Federica B.; Martinez, John; Baxter, John; Brewer, Mark; Carro, Joseph; Collins, Sarah; Estrada, Chris; Johnson, Jolyon; Salam, Akash; Wallen, Vera; Warren, Naomi; Smith, Thomas C.; Armstrong, James D.; McGaughey, Steve; Pye, John; Mohanan, Kakkala; Church, Rebecca
2012-05-01
Double stars have been systematically observed since William Herschel initiated his program in 1779. In 1803 he reported that, to his surprise, many of the systems he had been observing for a quarter century were gravitationally bound binary stars. In 1830 the first binary orbital solution was obtained, leading eventually to the determination of stellar masses. Double star observations have been a prolific field, with observations and discoveries - often made by students and amateurs - routinely published in a number of specialized journals such as the Journal of Double Star Observations. All published double star observations from Herschel's to the present have been incorporated in the Washington Double Star Catalog. In addition to reviewing the history of visual double stars, we discuss four observational technologies and illustrate these with our own observational results from both California and Hawaii on telescopes ranging from small SCTs to the 2-meter Faulkes Telescope North on Haleakala. Two of these technologies are visual observations aimed primarily at published "hands-on" student science education, and CCD observations of both bright and very faint doubles. The other two are recent technologies that have launched a double star renaissance. These are lucky imaging and speckle interferometry, both of which can use electron-multiplying CCD cameras to allow short (30 ms or less) exposures that are read out at high speed with very low noise. Analysis of thousands of high speed exposures allows normal seeing limitations to be overcome so very close doubles can be accurately measured.
Brake, te B.; Hanssen, R.F.; Ploeg, van der M.J.; Rooij, de G.H.
2013-01-01
Satellite-based radar interferometry is a technique capable of measuring small surface elevation changes at large scales and with a high resolution. In vadose zone hydrology, it has been recognized for a long time that surface elevation changes due to swell and shrinkage of clayey soils can serve as
Brake, te B.; Hanssen, R.F.; Ploeg, van der M.J.; Rooij, de G.H.
2013-01-01
Satellite-based radar interferometry is a technique capable of measuring small surface elevation changes at large scales and with a high resolution. In vadose zone hydrology, it has been recognized for a long time that surface elevation changes due to swell and shrinkage of clayey soils can serve as
DEFF Research Database (Denmark)
Eiserhardt, Wolf L.; Svenning, J.-C.; Baker, William J.;
phylogenetically conserved tolerances to temperature extremes and seasonality as well as dispersal limitation on evolutionary timescales. Niche dimensions that are phylogenetically conserved are not necessarily the ones that are thought to be most important for controlling contemporary species distributions (e...... similarity decays after speciation depends on the rates of niche evolution and dispersal. If dispersal is slow compared to the tempo of lineage diversification, distributions change little during clade diversification. Phylogenetic niche conservatism precludes distributional shifts in environmental space......, and to the degree that distributions are limited by the niche, also in geographic space. Using phylogenetic turnover methods, we simultaneously analysed the distributions of all New World palms (n=547) and inferred to which degree phylogenetic niche conservatism and dispersal limitation, respectively, caused...
Energy Technology Data Exchange (ETDEWEB)
Schweinsberg, Aaron; Kuper, Jerry [The Institute of Optics, University of Rochester, Rochester, New York 14627 (United States); Boyd, Robert W. [The Institute of Optics, University of Rochester, Rochester, New York 14627 (United States); Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627 (United States); Department of Physics and School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Ontario, Canda K1N 6N5 (Canada)
2011-11-15
We describe a nonlinear optical mechanism that leads to a decrease of the degree of (transverse) spatial coherence of a laser beam as a function of propagation distance. This prediction is in direct contrast with those of the van Cittert-Zernike theorem, which applies to propagation through a linear, homogeneous material. The mechanism by which coherence is lost is the growth of small phase irregularities initially present on the laser wave front. We develop a detailed theoretical model of this effect and present experimental results that validate this model. The practical importance of this result is that by being able to controllably decrease the spatial coherence of a laser beam, one can limit the maximum intensity that is produced in its focal region. By limiting the intensity, one can prevent laser damage to bulk optical components or to sensitive photodetectors. This mechanism thus provides an alternative to current approaches of sensor protection based on optical power limiting.
Institute of Scientific and Technical Information of China (English)
ZHANG Zejiang; MEI Xiujuan; XU Chenghua; QIU Fali
2005-01-01
The coating process of a nano-scale SiO2 film on the nanocrystalline Mg-Al layered double hydroxides via a sol-gel process was investigated. The uniform and dense SiO2 film with a thickness of about 5 nm on the nano-LDHs particles was characterized by the solubility test in the dilute HNO3 or HCl acid, TEM and FT-IR, XRD, TG and DSC. The chemical shifts of binding energies of Al 2p, Mg 2p, Si 2s and O 1s on the coated particles indicate that the coating of the SiO2 nano-film on the surface of the nano-LDHs proceeds through the formation of Mg-O-Si and Al-O-Si bonds. The thermal analysis shows that both the SiO2-coated nano-LDHs and the nano-LDHs have a similar mass loss process, in which there are three obvious stages of mass loss in the temperature range of 40-700℃. Furthermore, the more the coated amount of SiO2 on the surface of the nano-LDHs is, the less the mass loss of the samples is at 700℃.The nano- LDHs have two obvious endothermic peaks at 244.67℃ and 430.13℃, whose corresponding heat absorption capacities are 412.28 J/g and 336.30 J/g, respectively. In contrast, the coated nano-LDHs have only one endothermic peak at 243.60℃ with a heat absorption capacity of 221.25 J/g.
Song, Joon Young; Cheong, Hee Jin; Woo, Heung Jeong; Wie, Seong-Heon; Lee, Jin-Soo; Chung, Moon-Hyun; Kim, Yang Ree; Jung, Sook In; Park, Kyung-Hwa; Kim, Tae Hyong; Uh, Soo-Taek; Kim, Woo Joo
2011-02-01
Influenza vaccines are the primary method for controlling influenza and its complications. This study was conducted as a phase 3, randomized, double-blind, controlled, multi-center trial at seven university hospitals to evaluate the immunogenicity and safety of an inactivated, split, trivalent influenza vaccine (GC501, Green Cross Corporation, Yongin, Korea), which was newly manufactured in Korea in 2008. Between September 21 and 26, a total of 329 healthy subjects were recruited for the immunogenicity analysis, while 976 subjects were enrolled for the safety analysis. The GC501 vaccine met both FDA and EMEA criteria with ≥ 80% of subjects achieving post-vaccination titers ≥ 40 for all three subtypes, even in the elderly. The vaccine was well tolerated with only mild systemic and local adverse events. In summary, GC501 showed excellent immunogenicity and a good safety profile in both young adults and the elderly. The licensure of GC501 might be an important basis in preparation for the future influenza pandemic.
Burger, C.; Schäfer, C. M.
2017-03-01
We investigate the outcome of collisions in very different mass regimes, but an otherwise identical parameter setup, comprising the impact velocity (v/vesc), impact angle, mass ratio, and initial composition, w.r.t. simple hydrodynamic scaling. The colliding bodies' masses range from ≈ 10^{16} to 10^{24} kg, which includes km-sized planetesimals up to planetary-sized objects. Our analysis of the results comprises the time evolution of fragment masses, the fragments' water contents and fragment dynamics, where we start with bodies consisting of basalt and water ice. The usual assumption of hydrodynamic scaling over a wider range of masses is based on material behavior similar to a fluid, or a rubble pile, respectively. All our simulations are carried out once including full solid-body physics, and once for strengthless ? but otherwise identical ? bodies, to test for the influence of material strength. We find that scale-invariance over a wider range of masses is mostly only a very crude approximation at best, but can be applied to constrained mass ranges if tested carefully. For the chosen scenarios the outcomes of solid-body objects compared to strengthless fluid bodies differ most for our intermediate masses, but are similar for the lowest and highest masses. The most energetic, planet-sized collisions produce considerably faster and more fragments, which is also reflected in high water losses ? above 50% in a single collision.
Terrana, Alexandra; Johnson, Matthew C
2016-01-01
Due to cosmic variance we cannot learn any more about large-scale inhomogeneities from the primary cosmic microwave background (CMB) alone. More information on large scales is essential for resolving large angular scale anomalies in the CMB. Here we consider cross correlating the large-scale kinetic Sunyaev Zel'dovich (kSZ) effect and probes of large-scale structure, a technique known as kSZ tomography. The statistically anisotropic component of the cross correlation encodes the CMB dipole as seen by free electrons throughout the observable Universe, providing information about long wavelength inhomogeneities. We compute the large angular scale power asymmetry, constructing the appropriate transfer functions, and estimate the cosmic variance limited signal to noise for a variety of redshift bin configurations. The signal to noise is significant over a large range of power multipoles and numbers of bins. We present a simple mode counting argument indicating that kSZ tomography can be used to estimate more mode...
Kum, Hyun; Seong, Han-Kyu; Lim, Wantae; Chun, Daemyung; Kim, Young-Il; Park, Youngsoo; Yoo, Geonwook
2017-01-01
We present a method of epitaxially growing thermodynamically stable gallium nitride (GaN) nanorods via metal-organic chemical vapor deposition (MOCVD) by invoking a two-step self-limited growth (TSSLG) mechanism. This allows for growth of nanorods with excellent geometrical uniformity with no visible extended defects over a 100 mm sapphire (Al2O3) wafer. An ex-situ study of the growth morphology as a function of growth time for the two self-limiting steps elucidate the growth dynamics, which show that formation of an Ehrlich-Schwoebel barrier and preferential growth in the c-plane direction governs the growth process. This process allows monolithic formation of dimensionally uniform nanowires on templates with varying filling matrix patterns for a variety of novel electronic and optoelectronic applications. A color tunable phosphor-free white light LED with a coaxial architecture is fabricated as a demonstration of the applicability of these nanorods grown by TSSLG.
Bolu, Omotayo O; Allread, Virginia; Creek, Tracy; Stringer, Elizabeth; Forna, Fatu; Bulterys, Marc; Shaffer, Nathan
2007-09-01
Prevention of mother-to-child human immunodeficiency virus (HIV) transmission (PMTCT) programs have nearly eliminated mother-to-child transmission of HIV in developed countries, but progress in resource-limited countries has been slow. A key factor limiting the scale-up of PMTCT programs is lack of knowledge of HIV serostatus. Increasing the availability and acceptability of HIV testing and counseling services will encourage more women to learn their status, providing a gateway to PMTCT interventions. Key factors contributing to the scale-up of testing and counseling include a policy of provider-initiated testing and counseling with right to refuse (opt-out); group pretest counseling; rapid HIV testing; innovative staffing strategies; and community and male involvement. Integration of testing and counseling within the community and all maternal and child health settings are critical for scaling-up and for linking women and their families to care and treatment services. This paper will review best practices needed for expansion of testing and counseling in PMTCT settings in resource-limited countries.
Darzins, Susan W; Imms, Christine; Di Stefano, Marilyn
2017-05-01
To explore the operationalization of activity and participation-related measurement constructs through comparison of item phrasing, item response categories and scoring (scale properties) for two separate instruments targeting activities of daily living. Personal Care Participation Assessment and Resource Tool (PC-PART) item content was linked to ICF categories using established linking rules. Previously reported ICF-linked FIM content categories and ICF-linked PC-PART content categories were compared to identify common ICF categories between the instruments. Scale properties of both instruments were compared using a patient scenario to explore the instruments' separate measurement constructs. The PC-PART and FIM shared 15 of the 53 level two ICF-linked categories identified across both instruments. Examination of the instruments' scale properties for items with overlapping ICF content, and exploration through a patient scenario, provided supportive evidence that the instruments measure different constructs. While the PC-PART and FIM share common ICF-linked content, they measure separate constructs. Measurement construct was influenced by the instruments' scale properties. The FIM was observed to measure activity limitations and the PC-PART measured participation restrictions. Scrutiny of instruments' scale properties in addition to item content is critical in the operationalization of activity and participation-related measurement constructs. Implications for Rehabilitation When selecting outcome measures for use in rehabilitation it is necessary to examine both the content of the instruments' items and item phrasing, response categories and scoring, to clarify the construct being measured. Measurement of activity limitations as well as participation restrictions in activities of daily living required for community life provides a more comprehensive measurement of rehabilitation outcomes than measurement of either construct alone. To measure the effects of
Elliott, Steven R
2011-01-01
At least one neutrino has a mass of about 50 meV or larger. However, the absolute mass scale for the neutrino remains unknown. Furthermore, the critical question: Is the neutrino its own antiparticle? is unanswered. Studies of double beta decay offer hope for determining the absolute mass scale. In particular, zero-neutrino double beta decay (\\BBz) can address the issues of lepton number conservation, the particle-antiparticle nature of the neutrino, and its mass. A summary of the recent results in \\BBz, and the related technologies will be discussed in the context of the future \\BBz\\ program.
Directory of Open Access Journals (Sweden)
Sergei Volis
2016-04-01
Full Text Available Gene flow at a fine scale is still poorly understood despite its recognized importance for plant population demographic and genetic processes. We tested the hypothesis that intensity of gene flow will be lower and strength of spatial genetic structure (SGS will be higher in more peripheral populations because of lower population density. The study was performed on the predominantly selfing Avena sterilis and included: (1 direct measurement of dispersal in a controlled environment; and (2 analyses of SGS in three natural populations, sampled in linear transects at fixed increasing inter-plant distances. We found that in A. sterilis major seed dispersal is by gravity in close (less than 2 m vicinity of the mother plant, with a minor additional effect of wind. Analysis of SGS with six nuclear SSRs revealed a significant autocorrelation for the distance class of 1 m only in the most peripheral desert population, while in the two core populations with Mediterranean conditions, no genetic structure was found. Our results support the hypothesis that intensity of SGS increases from the species core to periphery as a result of decreased within-population gene flow related to low plant density. Our findings also show that predominant self-pollination and highly localized seed dispersal lead to SGS at a very fine scale, but only if plant density is not too high.
Energy Technology Data Exchange (ETDEWEB)
Kelly, V.A.; Beach, J.A.; Statham, W.H.; Pickens, J.F. [INTERA, Inc., Austin, TX (United States)
1993-02-19
The Savannah River Site (SRS) is a Department of Energy (DOE) facility located near Aiken, South Carolina which is currently operated and managed by Westinghouse Savannah River Company (WSRC). The Sanitary Landfill (Sanitary Landfill) at the SRS is located approximately 2,000 feet Northwest of Upper Three Runs Creek (UTRC) on an approximately 70 acre site located south of Road C between the SRS B-Area and UTRC. The Sanitary Landfill has been receiving wastes since 1974 and operates as an unlined trench and fill operation. The original landfill site was 32 acres. This area reached its capacity around 1987 and a Northern Expansion of 16 acres and a Southern Expansion of 22 acres were added in 1987. The Northern Expansion has not been used for waste disposal to date and the Southern Expansion is expected to reach capacity in 1992 or 1993. The waste received at the Sanitary Landfill is predominantly paper, plastics, rubber, wood, metal, cardboard, rags saturated with degreasing solvents, pesticide bags, empty cans, and asbestos in bags. The landfill is not supposed to receive any radioactive wastes. However, tritium has been detected in the groundwater at the site. Gross alpha and gross beta are also evaluated at the landfill. The objectives of this modeling study are twofold: (1) to create a local scale Sanitary Landfill flow model to study hydraulic effects resulting from capping the Sanitary Landfill; and (2) to create a Sanitary Landfill local scale transport model to support ACL Demonstrations for a RCRA Part B Permit Renewal.
Energy Technology Data Exchange (ETDEWEB)
Diakov, V.; Short, W.; Gilchrist, B.
2012-06-01
Based on the available geographically dispersed data for the Western U.S. (excluding Alaska), we analyze to what extent the geographic diversity of these resources can offset their variability. Without energy storage and assuming unlimited energy flows between regions, wind and PV can meet up to 80% of loads in Western U.S. while less than 10% of the generated power is curtailed. Limiting hourly energy flows by the aggregated transmission line carrying capacities decreases the fraction of the load that can be met with wind and PV generation to approximately 70%.
Gianesello, Céline
2011-01-01
17 pages; Motivated by the method of self-similar variables for the study of the large time behavior of the heat equation in twisted wave-guides whose non circular cross-section and the support of twisting diminushing simutaneously to zero. Since in this limit the strength of the twisting increases to infinity and its support shrinks to the point, we show that the corresponding Schrödinger operator converges in a suitable norm-resolvent sense to a one-dimensional harmonic oscillator on the re...
Scales, scales and more scales.
Weitzenhoffer, Andre M
2002-01-01
This article examines the nature, uses, and limitations of the large variety of existing, so-called, hypnosis scales; that is, instruments that have been proposed for the assessment of hypnotic behavior. Although the major aim of most of the scales ostensively seems to be to assess several aspects of hypnotic states, they are found generally to say little about these and much more about responses to suggestions. The greatest application of these scales is to be found in research, but they also have a limited place in clinical work.
Energy Technology Data Exchange (ETDEWEB)
Mahato, Dev K., E-mail: drdevkumar@yahoo.com [Department of Physics, National Institute of Technology Patna, Patna 800005 (India); Dutta, Alo; Sinha, T.P. [Department of Physics, Bose Institute, 93/1, Acharya Prafulla Chandra Road, Kolkata 700 009 (India)
2012-12-15
Graphical abstract: The X-ray diffraction analysis suggests that the compound crystallizes in monoclinic phase at room temperature with β = 108.51 ± 0.021° (a = 8.1858 ± 0.0023 Å, b = 5.2599 ± 0.0027 Å, c = 7.9874 ± 0.0031 Å) and cell volume = 324.17 Å{sup 3}. The SEM image indicates the uniformity of the grains in the samples. The grain size of the microstructure of HCZ is found to be ∼0.48 μm on average. Display Omitted Highlights: ► The conduction mechanism in HCZ may be due to hopping of small polaron. ► The material shows semiconducting behaviour. ► Conductivity obeys Jonscher's power law with high frequency dispersion. ► Both long-range and localized relaxation are present. -- Abstract: The Ho{sub 2}CoZrO{sub 6} (HCZ) double perovskite has been prepared in polycrystalline form by solid state reaction technique. The analysis of the X-ray powder diffraction pattern indicates that the crystal structure is monoclinic at room temperature with cell parameters a = 8.1858 ± 0.0023 Å, b = 5.2599 ± 0.0027 Å, c = 7.9874 ± 0.0031 Å and β = 108.51 ± 0.021°. The compound shows significant frequency dispersion in its dielectric properties. The Cole–Cole model is used to determine the polydispersive nature of dielectric relaxation. The scaling behaviour of dielectric loss and imaginary electric modulus suggest that the relaxation describe same mechanism at various temperatures. Impedance data presented in the Nyquist plot (Z″ versus Z′) are used to identify an equivalent circuit and to know the bulk and interface contributions. The complex impedance analysis of HCZ exhibits the appearance of both the grain and the grain-boundary contribution. The frequency dependent conductivity spectra follow the universal power law. The magnitude of the activation energy indicates that the carrier transport is due to the hopping conduction.
Energy Technology Data Exchange (ETDEWEB)
Doté, A., E-mail: dote@post.kek.jp [KEK Theory Center, Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); J-PARC Branch, KEK Theory Center, IPNS, KEK, 203-1 Shirakata, Tokai, Ibaraki 319-1106 (Japan); Myo, T. [General Education, Faculty of Engineering, Osaka Institute of Technology, Osaka 535-8585 (Japan); Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki 567-0047 (Japan)
2014-10-15
The excited hyperon Λ(1405) is the important building block for kaonic nuclei which are a nuclear many-body system with anti-kaons. We have been investigating the Λ(1405) resonance with the coupled-channel Complex Scaling Method (ccCSM) in which the Λ(1405) is treated as a hadron-molecular state of a K{sup ¯}N–πΣ coupled system. We use a K{sup ¯}N(–πY) potential based on the chiral SU(3) theory. In this article, we report the double-pole nature of the Λ(1405), which is a characteristic property predicted by many studies with chiral SU(3)-based models. With the help of the complex-range Gaussian basis in ccCSM, we have found successfully another pole besides a pole near the K{sup ¯}N threshold (called higher pole) which was found in our previous work with the real-range Gaussian basis. The new pole (called lower pole) is found far below K{sup ¯}N threshold: (M,−Γ/2)=(1395,−138) MeV when f{sub π}=110 MeV. In spite of so broad width of the lower-pole state, the state is clearly identified with good separation from continuum states, since the oscillatory behavior of the continuum states is improved owing to the complex-range Gaussian basis. Analyzing the ccCSM wave function of the lower pole, we have revealed explicitly that the lower-pole state is dominated by the πΣ component rather than the K{sup ¯}N component. We have confirmed that the ccCSM wave function is correctly connected to the asymptotic form of the resonance wave function. Estimating the meson–baryon mean distance for the lower-pole state which involves a large decay width, the obtained value has a large imaginary part comparable to a real part. Therefore, the mean-distance of the lower-pole state is difficult to be interpreted intuitively. Such a nature of the lower pole is different from that of the higher pole. In addition, we have investigated the origin of the appearance of the lower pole. The lower pole is confirmed to be generated by the energy dependence attributed to the
Directory of Open Access Journals (Sweden)
Verkhlyutov V.M.
2014-12-01
Full Text Available We investigated whole-brain functional magnetic resonance imaging (fMRI activation in a group of 21 healthy adult subjects during perception, imagination and remembering of two dynamic visual scenarios. Activation of the posterior parts of the cortex prevailed when watching videos. The cognitive tasks of imagination and remembering were accompanied by a predominant activity in the anterior parts of the cortex. An independent component analysis identified seven large-scale cortical networks with relatively invariant spatial distributions across all experimental conditions. The time course of their activation over experimental sessions was task-dependent. These detected networks can be interpreted as a recombination of resting state networks. Both central and peripheral networks were identified within the primary visual cortex. The central network around the caudal pole of BA17 and centers of other visual areas was activated only by direct visual stimulation, while the peripheral network responded to the presentation of visual information as well as to the cognitive tasks of imagination and remembering. The latter result explains the particular susceptibility of peripheral and twilight vision to cognitive top-down influences that often result in false-alarm detections.
Kim, SeHyun; Kim, Hyun Mee
2017-03-01
The ensemble prediction system (EPS) is widely used in research and at operation center because it can represent the uncertainty of predicted atmospheric state and provide information of probabilities. The high-resolution (so-called "convection-permitting") limited area EPS can represent the convection and turbulence related to precipitation phenomena in more detail, but it is also much sensitive to small-scale or sub-grid scale processes. The convection and turbulence are represented using physical processes in the model and model errors occur due to sub-grid scale processes that were not resolved. This study examined the effect of considering sub-grid scale uncertainties using the high-resolution limited area EPS of the Korea Meteorological Administration (KMA). The developed EPS has horizontal resolution of 3 km and 12 ensemble members. The initial and boundary conditions were provided by the global model. The Random Parameters (RP) scheme was used to represent sub-grid scale uncertainties. The EPSs with and without the RP scheme were developed and the results were compared. During the one month period of July, 2013, a significant difference was shown in the spread of 1.5 m temperature and the Root Mean Square Error and spread of 10 m zonal wind due to application of the RP scheme. For precipitation forecast, the precipitation tended to be overestimated relative to the observation when the RP scheme was applied. Moreover, the forecast became more accurate for heavy precipitations and the longer forecast lead times. For two heavy rainfall cases occurred during the research period, the higher Equitable Threat Score was observed for heavy precipitations in the system with the RP scheme compared to the one without, demonstrating consistency with the statistical results for the research period. Therefore, the predictability for heavy precipitation phenomena that affected the Korean Peninsula increases if the RP scheme is used to consider sub-grid scale uncertainties
Double Field Theory Inspired Cosmology
Wu, Houwen
2014-01-01
Double field theory proposes a generalized spacetime action possessing manifest T-duality on the level of component fields. We calculate the cosmological solutions of double field theory with vanishing Kalb-Ramond field. It turns out that double field theory provides a more consistent way to construct cosmological solutions than the standard string cosmology. We find two sets of solutions in double field theory cosmology, respecting or violating the strong (weak) constraint. Both sets of solutions naturally contain the pre- and post-big bang evolutions in one single line element. This novel feature opens a window for possible resolution of the cosmic amnesia. We also demonstrate that the scale factor duality in the standard string cosmology is nothing but the T-duality in double field theory. The scale dual dilatons in the standard string cosmology is simply the usual diffeomorphic scalar dilaton $\\phi$ and dual diffeomorphic scalar dilaton $\\tilde\\phi$ in double field theory. Furthermore, we identify the "sh...
Emergence of scale-free behavior in networks from limited-horizon linking and cost trade-offs
Barbosa, Valmir C.; Donangelo, Raul; Souza, Sergio R.
2008-02-01
We study network growth from a fixed set of initially isolated nodes placed at random on the surface of a sphere. The growth mechanism we use adds edges to the network depending on strictly local gain and cost criteria. Only nodes that are not too far apart on the sphere may be considered for being joined by an edge. Given two such nodes, the joining occurs only if the gain of doing it surpasses the cost. Our model is based on a multiplicative parameter λ that regulates, in a function of node degrees, the maximum geodesic distance that is allowed between nodes for them to be considered for joining. For n nodes distributed uniformly on the sphere, and for λ√{n} within limits that depend on cost-related parameters, we have found that our growth mechanism gives rise to power-law distributions of node degree that are invariant for constant λ√{n}. We also study connectivity- and distance-related properties of the networks.
Sussman, R A; Sussman, Roberto A.; Hernandez, Xavier
2003-01-01
We examine isothermal dark matter halos in hydrostatic equilibrium with a cosmological constant Lambda =Omega_\\Lambda rho_{crit}c^2, where Omega_\\Lambda=0.7, and rho_{crit} is the present value of the critical density with h=0.65. The Newtonian limit of General Relativity yields equilibrium equations that are different from those arising by merely coupling an ``isothermal sphere'' to the Lambda-field within a Newtonian framework. The conditions for the existence and stability of circular geodesic orbits show the existence of (I) an ``isothermal region'' (0r_1) dominated by the Lambda-field, where the Newtonian potential oscillates and circular orbits exist in disconnected patches of the domain of r; (III) a ``transition region'' (r_20.008 M_\\odot {pc}^3, in agreement with rotation curve studies of dwarf galaxies. Since r_2 marks the largest radius of a stable circular orbit, it provides a ``cut off'' radius. For current estimates of rho_c and velocity dispersion of galactic structures, this is around five tim...
Directory of Open Access Journals (Sweden)
Brittany Hand
2014-01-01
Full Text Available Objective. To determine the National Institutes of Health Stroke Scale’s (NIHSS’s association with upper extremity (UE impairment and functional outcomes. Design. Secondary, retrospective analysis of randomized controlled trial data. Setting. Not applicable. Participants. 146 subjects with stable, chronic stroke-induced hemiparesis. Intervention. The NIHSS, the UE Fugl-Meyer (FM, and the Arm Motor Ability Test (AMAT were administered prior to their participation in a multicenter randomized controlled trial. Main Outcome Measures. The NIHSS, FM, and AMAT. Results. The association between the NIHSS and UE impairment was statistically significant (P=-0.204;p=0.014 but explained less than 4% of the variance among UE FM scores. The association between NIHSS total score and function as measured by the AMAT was not statistically significant (P=-0.141;p=0.089. Subjects scoring a “zero” on the NIHSS exhibited discernible UE motor deficits and varied scores on the UE FM and AMAT. Conclusion. While being used in stroke trials, the NIHSS may have limited ability to discriminate between treatment responses, even when only a relatively narrow array of impairment levels exists among patients. Given these findings, NIHSS use should be restricted to acute stroke studies and clinical settings with the goal of reporting stroke severity.
Elsaesser, Thomas; Kievit, Robert; Simons, Jan
1994-01-01
Double Trouble highlights the career of Dutch scriptwriter and television producer Chiem van Houweninge, well-known for his long-running TV comedy series and as author of episodes for TV detective series. Double Trouble gives Van Houweninge's own views on writing and filming in television prime impo
Elsaesser, Thomas; Kievit, Robert; Simons, Jan
1994-01-01
Double Trouble highlights the career of Dutch scriptwriter and television producer Chiem van Houweninge, well-known for his long-running TV comedy series and as author of episodes for TV detective series. Double Trouble gives Van Houweninge's own views on writing and filming in television prime
Li, Xiaofan; Shen, Xinyong; Liu, Jia
2014-05-01
Rainfall responses to doubled atmospheric carbon dioxide concentration were investigated through the analysis of two pairs of two-dimensional cloud-resolving model sensitivity experiments. One pair of experiments simulated pre-summer heavy rainfall over southern China around the summer solstice, whereas the other pair of experiments simulated tropical rainfall around the winter solstice. The analysis of the time and model domain mean heat budget revealed that the enhanced local atmospheric warming was associated with doubled carbon dioxide through the weakened infrared radiative cooling during the summer solstice. The weakened mean pre-summer rainfall corresponded to the weakened mean infrared radiative cooling. Doubled carbon dioxide increased the mean tropical atmospheric warming via the enhanced mean latent heat in correspondence with the strengthened mean infrared radiative cooling during the winter solstice. The enhanced mean tropical rainfall was associated with the increased mean latent heat.
Robey, H F; Amendt, P A; Milovich, J L; Park, H-S; Hamza, A V; Bono, M J
2009-10-02
High-convergence, hohlraum-driven implosions of double-shell capsules using mid-Z (SiO2) inner shells have been performed on the OMEGA laser facility [T. R. Boehly, Opt. Commun. 133, 495 (1997)]. These experiments provide an essential extension of the results of previous low-Z (CH) double-shell implosions [P. A. Amendt, Phys. Rev. Lett. 94, 065004 (2005)] to materials of higher density and atomic number. Analytic modeling, supported by highly resolved 2D numerical simulations, is used to account for the yield degradation due to interfacial atomic mixing. This extended experimental database from OMEGA enables a validation of the mix model, and provides a means for quantitatively assessing the prospects for high-Z double-shell implosions on the National Ignition Facility [Paisner, Laser Focus World 30, 75 (1994)].
Krishnaswami, Govind S
2007-01-01
We try to use scale-invariance and the 1/N expansion to construct a non-trivial 4d O(N) scalar field model with controlled UV behavior and naturally light scalar excitations. The principle is to fix interactions at each order in 1/N by requiring the effective action for arbitrary background fields to be scale-invariant. We find a line of non-trivial UV fixed-points in the large-N limit, parameterized by a dimensionless coupling. Nether action nor measure is scale invariant, but the effective action is. Scale invariance makes it natural to set a mass deformation to zero. The model has phases where O(N) invariance is unbroken or spontaneously broken. Masses of the lightest excitations above the unbroken vacuum are found. Slowly varying quantum fluctuations are incorporated at order 1/N. We find the 1/N correction to the potential, beta function of mass and anomalous dimensions of fields that preserve a line of fixed points for constant backgrounds.
Chandramouli, V. V. M. S.; Martens, M.; De Melo, W.; Tresser, C. P.
2009-01-01
The period doubling renormalization operator was introduced by Feigenbaum and by Coullet and Tresser in the 1970s to study the asymptotic small-scale geometry of the attractor of one-dimensional systems that are at the transition from simple to chaotic dynamics. This geometry turns out not to depend
Energy Technology Data Exchange (ETDEWEB)
Okuzumi, Satoshi; Takeuchi, Taku [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551 (Japan); Muto, Takayuki, E-mail: okuzumi@geo.titech.ac.jp [Division of Liberal Arts, Kogakuin University, 1-24-2 Nishi-Shinjuku, Shinjuku-ku, Tokyo 163-8677 (Japan)
2014-04-20
Large-scale magnetic fields are key ingredients of magnetically driven disk accretion. We study how large-scale poloidal fields evolve in accretion disks, with the primary aim of quantifying the viability of magnetic accretion mechanisms in protoplanetary disks. We employ a kinematic mean-field model for poloidal field transport and focus on steady states where inward advection of a field balances with outward diffusion due to effective resistivities. We analytically derive the steady-state radial distribution of poloidal fields in highly conducting accretion disks. The analytic solution reveals an upper limit on the strength of large-scale vertical fields attainable in steady states. Any excess poloidal field will diffuse away within a finite time, and we demonstrate this with time-dependent numerical calculations of the mean-field equations. We apply this upper limit to large-scale vertical fields threading protoplanetary disks. We find that the maximum attainable strength is about 0.1 G at 1 AU, and about 1 mG at 10 AU from the central star. When combined with recent magnetic accretion models, the maximum field strength translates into the maximum steady-state accretion rate of ∼10{sup –7} M {sub ☉} yr{sup –1}, in agreement with observations. We also find that the maximum field strength is ∼1 kG at the surface of the central star provided that the disk extends down to the stellar surface. This implies that any excess stellar poloidal field of strength ≳ kG can be transported to the surrounding disk. This might in part resolve the magnetic flux problem in star formation.
A multi agent model for the limit order book dynamics
Bartolozzi, M.
2010-01-01
In the present work we introduce a novel multi-agent model with the aim to reproduce the dynamics of a double auction market at microscopic time scale through a faithful simulation of the matching mechanics in the limit order book.aEuro (c) The agents follow a noise decision making process where the
Walensky, Rochelle P.; Wood, Robin; Ciaranello, Andrea L.; Paltiel, A. David; Lorenzana, Sarah B.; Anglaret, Xavier; Stoler, Adam W.; Freedberg, Kenneth A.
2010-01-01
Background The new 2010 World Health Organization (WHO) HIV treatment guidelines recommend earlier antiretroviral therapy (ART) initiation (CD4<350 cells/µl instead of CD4<200 cells/µl), multiple sequential ART regimens, and replacement of first-line stavudine with tenofovir. This paper considers what to do first in resource-limited settings where immediate implementation of all of the WHO recommendations is not feasible. Methods and Findings We use a mathematical model and local input data to project clinical and economic outcomes in a South African HIV-infected cohort (mean age = 32.8 y, mean CD4 = 375/µl). For the reference strategy, we assume that all patients initiate stavudine-based ART with WHO stage III/IV disease and receive one line of ART (stavudine/WHO/one-line). We rank—in survival, cost-effectiveness, and equity terms—all 12 possible combinations of the following: (1) stavudine replacement with tenofovir, (2) ART initiation (by WHO stage, CD4<200 cells/µl, or CD4<350 cells/µl), and (3) one or two regimens, or lines, of available ART. Projected life expectancy for the reference strategy is 99.0 mo. Considering each of the guideline components separately, 5-y survival is maximized with ART initiation at CD4<350 cells/µl (stavudine/<350/µl/one-line, 87% survival) compared with stavudine/WHO/two-lines (66%) and tenofovir/WHO/one-line (66%). The greatest life expectancies are achieved via the following stepwise programmatic additions: stavudine/<350/µl/one-line (124.3 mo), stavudine/<350/µl/two-lines (177.6 mo), and tenofovir/<350/µl/two-lines (193.6 mo). Three program combinations are economically efficient: stavudine/<350/µl/one-line (cost-effectiveness ratio, US$610/years of life saved [YLS]), tenofovir/<350/µl/one-line (US$1,140/YLS), and tenofovir/<350/µl/two-lines (US$2,370/YLS). Conclusions In settings where immediate implementation of all of the new WHO treatment guidelines is not feasible, ART initiation at CD4<350 cells
Directory of Open Access Journals (Sweden)
Rochelle P Walensky
Full Text Available BACKGROUND: The new 2010 World Health Organization (WHO HIV treatment guidelines recommend earlier antiretroviral therapy (ART initiation (CD4<350 cells/µl instead of CD4<200 cells/µl, multiple sequential ART regimens, and replacement of first-line stavudine with tenofovir. This paper considers what to do first in resource-limited settings where immediate implementation of all of the WHO recommendations is not feasible. METHODS AND FINDINGS: We use a mathematical model and local input data to project clinical and economic outcomes in a South African HIV-infected cohort (mean age = 32.8 y, mean CD4 = 375/µl. For the reference strategy, we assume that all patients initiate stavudine-based ART with WHO stage III/IV disease and receive one line of ART (stavudine/WHO/one-line. We rank-in survival, cost-effectiveness, and equity terms-all 12 possible combinations of the following: (1 stavudine replacement with tenofovir, (2 ART initiation (by WHO stage, CD4<200 cells/µl, or CD4<350 cells/µl, and (3 one or two regimens, or lines, of available ART. Projected life expectancy for the reference strategy is 99.0 mo. Considering each of the guideline components separately, 5-y survival is maximized with ART initiation at CD4<350 cells/µl (stavudine/<350/µl/one-line, 87% survival compared with stavudine/WHO/two-lines (66% and tenofovir/WHO/one-line (66%. The greatest life expectancies are achieved via the following stepwise programmatic additions: stavudine/<350/µl/one-line (124.3 mo, stavudine/<350/µl/two-lines (177.6 mo, and tenofovir/<350/µl/two-lines (193.6 mo. Three program combinations are economically efficient: stavudine/<350/µl/one-line (cost-effectiveness ratio, US$610/years of life saved [YLS], tenofovir/<350/µl/one-line (US$1,140/YLS, and tenofovir/<350/µl/two-lines (US$2,370/YLS. CONCLUSIONS: In settings where immediate implementation of all of the new WHO treatment guidelines is not feasible, ART initiation at CD4<350 cells
Directory of Open Access Journals (Sweden)
Stéphane Guitet
Full Text Available Precise mapping of above-ground biomass (AGB is a major challenge for the success of REDD+ processes in tropical rainforest. The usual mapping methods are based on two hypotheses: a large and long-ranged spatial autocorrelation and a strong environment influence at the regional scale. However, there are no studies of the spatial structure of AGB at the landscapes scale to support these assumptions. We studied spatial variation in AGB at various scales using two large forest inventories conducted in French Guiana. The dataset comprised 2507 plots (0.4 to 0.5 ha of undisturbed rainforest distributed over the whole region. After checking the uncertainties of estimates obtained from these data, we used half of the dataset to develop explicit predictive models including spatial and environmental effects and tested the accuracy of the resulting maps according to their resolution using the rest of the data. Forest inventories provided accurate AGB estimates at the plot scale, for a mean of 325 Mg.ha-1. They revealed high local variability combined with a weak autocorrelation up to distances of no more than10 km. Environmental variables accounted for a minor part of spatial variation. Accuracy of the best model including spatial effects was 90 Mg.ha-1 at plot scale but coarse graining up to 2-km resolution allowed mapping AGB with accuracy lower than 50 Mg.ha-1. Whatever the resolution, no agreement was found with available pan-tropical reference maps at all resolutions. We concluded that the combined weak autocorrelation and weak environmental effect limit AGB maps accuracy in rainforest, and that a trade-off has to be found between spatial resolution and effective accuracy until adequate "wall-to-wall" remote sensing signals provide reliable AGB predictions. Waiting for this, using large forest inventories with low sampling rate (<0.5% may be an efficient way to increase the global coverage of AGB maps with acceptable accuracy at kilometric resolution.
Cho, Changsoon; Lee, Jung-Yong
2013-03-11
An efficient light trapping scheme is a key to enhancing the power conversion efficiency (PCE) of thin-film photovoltaic (PV) cells by compensating for the insufficient light absorption. To handle optical components from nano-scale to micro-scale seamlessly, a multi-scale optical simulation is carefully designed in this study and is used to qualitatively analyze the light trapping performances of a micro lens array (MLA), a V-shaped configuration, and the newly proposed scheme, which is termed a double parabolic trapper (DPT) according to both daily and annual movement of the sun. DPT has the potential to enhance the PCE significantly, from 5.9% to 8.9%, for PCDTBT:PC(70)BM-based polymer solar cells by perfectly trapping the incident light between two parabolic PV cells.
Directory of Open Access Journals (Sweden)
Lorentz Matthias
2017-01-01
Full Text Available Some extensions to the Standard Model lead to the introduction of Lorentz symmetry breaking terms, expected to induce deviations from Lorentz symmetry around the Planck scale. A parameterization of effects due to Lorentz invariance violation (LIV can be introduced by adding an effective term to the photon dispersion relation. This affects the kinematics of electron-positron pair creation by TeV γ rays on the extragalactic background light (EBL and translates into modifications of the standard EBL opacity for the TeV photon spectra of extragalactic sources. Exclusion limits are presented, obtained with the spectral analysis of H.E.S.S. observations taken on the blazar Mrk 501 during the exceptional 2014 flare. The energy spectrum, extending very significantly above 10 TeV, allows to place strong limits on LIV in the photon sector at the level of the Planck energy scale for linear perturbations in the photon dispersion relation, and provides the strongest constraints presently for the case of quadratic perturbations.
Directory of Open Access Journals (Sweden)
Srimant P Tripathy
Full Text Available Correspondence noise is a major factor limiting direction discrimination performance in random-dot kinematograms. In the current study we investigated the influence of correspondence noise on Dmax, which is the upper limit for the spatial displacement of the dots for which coherent motion is still perceived. Human direction discrimination performance was measured, using 2-frame kinematograms having leftward/rightward motion, over a 200-fold range of dot-densities and a four-fold range of dot displacements. From this data Dmax was estimated for the different dot densities tested. A model was proposed to evaluate the correspondence noise in the stimulus. This model summed the outputs of a set of elementary Reichardt-type local detectors that had receptive fields tiling the stimulus and were tuned to the two directions of motion in the stimulus. A key assumption of the model was that the local detectors would have the radius of their catchment areas scaled with the displacement that they were tuned to detect; the scaling factor k linking the radius to the displacement was the only free parameter in the model and a single value of k was used to fit all of the psychophysical data collected. This minimal, correspondence-noise based model was able to account for 91% of the variability in the human performance across all of the conditions tested. The results highlight the importance of correspondence noise in constraining the largest displacement that can be detected.
Lorentz, Matthias
2016-01-01
Some extensions to the Standard Model lead to the introduction of Lorentz symmetry breaking terms, expected to induce deviations from Lorentz symmetry around the Planck scale. A parameterization of effects due to Lorentz invariance violation (LIV) can be introduced by adding an effective term to the photon dispersion relation. This affects the kinematics of electron-positron pair creation by TeV $\\gamma$ rays on the extragalactic background light (EBL) and translates into modifications of the standard EBL opacity for the TeV photon spectra of extragalactic sources. Exclusion limits are presented, obtained with the spectral analysis of H.E.S.S. observations taken on the blazar Mrk 501 during the exceptional 2014 flare. The energy spectrum, extending very significantly above 10 TeV, allows to place strong limits on LIV in the photon sector at the level of the Planck energy scale for linear perturbations in the photon dispersion relation, and provides the strongest constraints presently for the case of quadratic...
Lorentz, Matthias; Brun, Pierre
2017-03-01
Some extensions to the Standard Model lead to the introduction of Lorentz symmetry breaking terms, expected to induce deviations from Lorentz symmetry around the Planck scale. A parameterization of effects due to Lorentz invariance violation (LIV) can be introduced by adding an effective term to the photon dispersion relation. This affects the kinematics of electron-positron pair creation by TeV γ rays on the extragalactic background light (EBL) and translates into modifications of the standard EBL opacity for the TeV photon spectra of extragalactic sources. Exclusion limits are presented, obtained with the spectral analysis of H.E.S.S. observations taken on the blazar Mrk 501 during the exceptional 2014 flare. The energy spectrum, extending very significantly above 10 TeV, allows to place strong limits on LIV in the photon sector at the level of the Planck energy scale for linear perturbations in the photon dispersion relation, and provides the strongest constraints presently for the case of quadratic perturbations.
Hanel, R.; Thurner, S.; Tsallis, C.
2009-11-01
Extremization of the Boltzmann-Gibbs (BG) entropy S_{BG}=-kint dx p(x) ln p(x) under appropriate norm and width constraints yields the Gaussian distribution pG(x) ∝e-βx. Also, the basic solutions of the standard Fokker-Planck (FP) equation (related to the Langevin equation with additive noise), as well as the Central Limit Theorem attractors, are Gaussians. The simplest stochastic model with such features is N ↦∞ independent binary random variables, as first proved by de Moivre and Laplace. What happens for strongly correlated random variables? Such correlations are often present in physical situations as e.g. systems with long range interactions or memory. Frequently q-Gaussians, pq(x) ∝[1-(1-q)βx2]1/(1-q) [p1(x)=pG(x)] become observed. This is typically so if the Langevin equation includes multiplicative noise, or the FP equation to be nonlinear. Scale-invariance, e.g. exchangeable binary stochastic processes, allow a systematical analysis of the relation between correlations and non-Gaussian distributions. In particular, a generalized stochastic model yielding q-Gaussians for all (q ≠ 1) was missing. This is achieved here by using the Laplace-de Finetti representation theorem, which embodies strict scale-invariance of interchangeable random variables. We demonstrate that strict scale invariance together with q-Gaussianity mandates the associated extensive entropy to be BG.
Lynch, Gillian C.; Steckler, Rozeanne; Varandas, Antonio J. C.; Truhlar, Donald G.; Schwenke, David W.
1991-01-01
New ab initio results and a double many-body expansion formalism have been used to parameterize a new FH2 potential energy surface with improved properties near the saddle point and in the region of long-range attraction. The functional form of the new surface includes dispersion forces by a double many-body expansion. Stationary point properties for the new surface are calculated along with the product-valley barrier maxima of vibrationally adiabatic potential curves for F + H2 - HF(nu-prime = 3) + H, F + HD - HF(nu-prime = 3) + D, and F + D2 - DF(nu-prime = 4) + D. The new surface should prove useful for studying the effect on dynamics of a low, early barrier with a wide, flat bend potential.
DEFF Research Database (Denmark)
Pedersen, Kurt; Sørensen, Peter
2007-01-01
The seminal work of Alfred Chandler was based on observations relating to the so-called second industrial revolution. They concerned the development of the large modern manufacturing company and the paths of that development. This article attempts to apply the framework to a failed Danish...
Indian Academy of Sciences (India)
D Rechem; S Latreche; C Gontrand
2009-03-01
In this paper, we study the effects of short channel on double gate MOSFETs. We evaluate the variation of the threshold voltage, the subthreshold slope, the leakage current and the drain-induced barrier lowering when channel length CH decreases. Further- more, quantum effects on the performance of DG-MOSFETs are addressed and discussed. We also study the influence of metal gate work function on the performance of nanoscale MOSFETs. We use a self-consistent Poisson–Schrödinger solver in two dimensions over the entire device. A good agreement with numerical simulation results is obtained.
Directory of Open Access Journals (Sweden)
Kristoffer T Everatt
Full Text Available The African lion (Panthera Leo has suffered drastic population and range declines over the last few decades and is listed by the IUCN as vulnerable to extinction. Conservation management requires reliable population estimates, however these data are lacking for many of the continent's remaining populations. It is possible to estimate lion abundance using a trophic scaling approach. However, such inferences assume that a predator population is subject only to bottom-up regulation, and are thus likely to produce biased estimates in systems experiencing top-down anthropogenic pressures. Here we provide baseline data on the status of lions in a developing National Park in Mozambique that is impacted by humans and livestock. We compare a direct density estimate with an estimate derived from trophic scaling. We then use replicated detection/non-detection surveys to estimate the proportion of area occupied by lions, and hierarchical ranking of covariates to provide inferences on the relative contribution of prey resources and anthropogenic factors influencing lion occurrence. The direct density estimate was less than 1/3 of the estimate derived from prey resources (0.99 lions/100 km² vs. 3.05 lions/100 km². The proportion of area occupied by lions was Ψ = 0.439 (SE = 0.121, or approximately 44% of a 2,400 km2 sample of potential habitat. Although lions were strongly predicted by a greater probability of encountering prey resources, the greatest contributing factor to lion occurrence was a strong negative association with settlements. Finally, our empirical abundance estimate is approximately 1/3 of a published abundance estimate derived from opinion surveys. Altogether, our results describe a lion population held below resource-based carrying capacity by anthropogenic factors and highlight the limitations of trophic scaling and opinion surveys for estimating predator populations exposed to anthropogenic pressures. Our study provides the first
Double parton scattering. A tale of two partons
Energy Technology Data Exchange (ETDEWEB)
Kasemets, Tomas
2013-08-15
Double parton scattering in proton-proton collisions can give sizable contributions to final states in parts of phase space. We investigate the correlations between the partons participating in the two hard interactions of double parton scattering. With a detailed calculation of the differential cross section for the double Drell-Yan process we demonstrate how initial state correlations between the partons affect the rate and distribution of final state particles. We present our results with focus on correlations between the polarizations of the partons. In particular transversely polarized quarks lead to a dependence of the cross section on angles between final state particles of the two hard interactions, and thereby on the invariant mass of particle pairs. The size of the spin correlations, and therewith the degree to which the final state particles are correlated, depends on unknown double parton distributions. We derive positivity bounds on the double parton distributions that follow from their interpretation as probability densities, taking into account all possible spin correlations between two partons in an unpolarized proton. We show that the bounds are stable under homogeneous leading-order DGLAP evolution to higher scales. We make direct use of the positivity bounds in numerical investigations on the double DGLAP evolution for two linearly polarized gluons and for two transversely polarized quarks. We find that the linearly polarized gluons are likely to be negligible at high scales but that transversely polarized quarks can still play a significant role. We examine the dependence of the double parton distributions on the transverse distance between the two partons, and therewith between the two hard interactions. We further study the interplay between transverse and longitudinal variables of the distributions, as well as the impact of the differences in integration limits between the evolution equations for single and double parton distributions. (orig.)
Philipp, Andy; Kerl, Florian; Büttner, Uwe; Metzkes, Christine; Singer, Thomas; Wagner, Michael; Schütze, Niels
2016-05-01
In recent years, the Free State of Saxony (Eastern Germany) was repeatedly hit by both extensive riverine flooding, as well as flash flood events, emerging foremost from convective heavy rainfall. Especially after a couple of small-scale, yet disastrous events in 2010, preconditions, drivers, and methods for deriving flash flood related early warning products are investigated. This is to clarify the feasibility and the limits of envisaged early warning procedures for small catchments, hit by flashy heavy rain events. Early warning about potentially flash flood prone situations (i.e., with a suitable lead time with regard to required reaction-time needs of the stakeholders involved in flood risk management) needs to take into account not only hydrological, but also meteorological, as well as communication issues. Therefore, we propose a threefold methodology to identify potential benefits and limitations in a real-world warning/reaction context. First, the user demands (with respect to desired/required warning products, preparation times, etc.) are investigated. Second, focusing on small catchments of some hundred square kilometers, two quantitative precipitation forecasts are verified. Third, considering the user needs, as well as the input parameter uncertainty (i.e., foremost emerging from an uncertain QPF), a feasible, yet robust hydrological modeling approach is proposed on the basis of pilot studies, employing deterministic, data-driven, and simple scoring methods.
National Research Council Canada - National Science Library
Isa S Abubakar; Saidu B Abubakar; Abdulrazaq G Habib; Abdulsalam Nasidi; Nandul Durfa; Peter O Yusuf; Solomon Larnyang; John Garnvwa; Elijah Sokomba; Lateef Salako; R David G Theakston; Ed Juszczak; Nicola Alder; David A Warrell; Nigeria-UK EchiTab Study Group
2010-01-01
Background In West Africa, envenoming by saw-scaled or carpet vipers (Echis ocellatus) causes great morbidity and mortality, but there is a crisis in supply of effective and affordable antivenom...
National Research Council Canada - National Science Library
Abubakar, Isa S; Abubakar, Saidu B; Habib, Abdulrazaq G; Nasidi, Abdulsalam; Durfa, Nandul; Yusuf, Peter O; Larnyang, Solomon; Garnvwa, John; Sokomba, Elijah; Salako, Lateef; Theakston, R David G; Juszczak, Ed; Alder, Nicola; Warrell, David A
2010-01-01
In West Africa, envenoming by saw-scaled or carpet vipers (Echis ocellatus) causes great morbidity and mortality, but there is a crisis in supply of effective and affordable antivenom (ISRCTN01257358...
Nayak, Bidyut Prava
2015-01-01
In a class of Type-II seesaw dominated $SO(10)$ models proposed recently with heavy neutrinos, extra $Z'$ boson, and resonant leptogenesis, at first we show that the lightest first generation sterile neutrino that mediates dominant contributions to neutrinoless double beta decay also generates the displaced vertex leading to verifiable like-sign di-electron as well as di-muon production events outside the LHC detectors having suppressed standard model back-ground and missing energy. Resonant leptogenesis in this case is implemented by a pair of quasi-degenerate sterile neutrinos of the second and the third generations having masses of ${\\cal O}(500)$ GeV. Then we predict a new alternative scenario where the models allow the second generation sterile neutrino mass to be ${\\cal O}(10)$ GeV capable of mediating the dominant double beta decay as well as the displaced vertices for significantly improved number of like-sign dilepton events in different channels. Resonant leptogenesis in this alternative scenario is...
Pallud, C.; Meile, C.; Fendorf, S.
2007-12-01
Structured soils are typically heterogeneous composites of chemical and biological constituents within an intricate physical framework, which has variable geometry, composition and stability expressed over spatial scales of several orders of magnitude. In such settings, solutes move preferentially (by advection) through macropores and slowly (by diffusion) into intra-aggregate micropores, which promotes the establishment of redox gradients at the aggregate scale. Consequently, in such structured environments characterized by mass transfer limitation and redox gradients within soil aggregates, metals distribution can be strongly localized and the interrelated transport and biogeochemical processes control the fate of redox-sensitive contaminants and metals. Iron (hydr)oxides are particularly ubiquitous in soils and sediments and hence exert a pronounced effect on the fate and transport of nutrients and contaminants. As they are subject to both biotic and abiotic redox transformations, iron cycling depends on a tight interplay between hydrodynamic transport, and (bio)geochemical reactions depending on substrate distribution and microbial activity patterns. In this study, we present an experimental/modelling approach aimed at a qualitative and quantitative understanding of bioreductive processes at the microscale, and between advective and diffusive domains. Artificial soil aggregates, representing systems of intermediate complexity, were used to study the coupling of physical, chemical, and biological processes affecting iron oxides transformations, under environmentally relevant geometries. We used novel aggregate-based reaction flow cell experiments and reactive transport modeling to determine mass transfer and biogeochemical redox controls on the cycling of iron ranging from micropore- to aggregate-scales. Aggregates were made of ferrihydrite coated-sand and inoculated with Shewanella putrefaciens. Lactate was added in the input solution. Chemical gradients
NSGIC GIS Inventory (aka Ramona) — This Game Species dataset, published at 1:100000 (1in=8333ft) scale, was produced all or in part from Other information as of 2008. It is described as 'Elk Limited...
Cederwall, Martin
2016-01-01
A geometry of superspace corresponding to double field theory is developed, with type II supergravity in D=10 as the main example. The formalism is based on an orthosymplectic extension OSp(d,d|2s) of the continuous T-duality group. Covariance under generalised super-diffeomorphisms is manifest. Ordinary superspace is obtained as a solution of the orthosymplectic section condition. A systematic study of curved superspace Bianchi identities is performed, and a relation to a double pure spinor superfield cohomology is established. A Ramond-Ramond superfield is constructed as an infinite-dimensional orthosymplectic spinor. Such objects in minimal orbits under the OSp supergroup ("pure spinors") define super-sections.
Directory of Open Access Journals (Sweden)
Gustavo M Mori
Full Text Available Mangrove plants comprise a unique group of organisms that grow within the intertidal zones of tropical and subtropical regions and whose distributions are influenced by both biotic and abiotic factors. To understand how these extrinsic and intrinsic processes influence a more fundamental level of the biological hierarchy of mangroves, we studied the genetic diversity of two Neotropical mangrove trees, Avicenniagerminans and A. schaueriana, using microsatellites markers. As reported for other sea-dispersed species, there was a strong differentiation between A. germinans and A. schaueriana populations sampled north and south of the northeastern extremity of South America, likely due to the influence of marine superficial currents. Moreover, we observed fine-scale genetic structures even when no obvious physical barriers were present, indicating pollen and propagule dispersal limitation, which could be explained by isolation-by-distance coupled with mating system differences. We report the first evidence of ongoing hybridization between Avicennia species and that these hybrids are fertile, although this interspecific crossing has not contributed to an increase in the genetic diversity the populations where A. germinans and A. schaueriana hybridize. These findings highlight the complex interplay between intrinsic and extrinsic factors that shape the distribution of the genetic diversity in these sea-dispersed colonizer species.
Directory of Open Access Journals (Sweden)
Bin Liu
2014-01-01
Full Text Available By using a limited-area model (LAM in combination with the scale-selective data assimilation (SSDA approach, wind energy resources in the contiguous United States (CONUS were downscaled from IPCC CCSM3 global model projections for both current and future climate conditions. An assessment of climate change impacts on wind energy resources in the CONUS region was then conducted. Based on the downscaling results, when projecting into future climate under IPCC’s A1B scenario, the average annual wind speed experiences an overall shift across the CONUS region. From the current climate to the 2040s, the average annual wind speed is expected to increase from 0.1 to 0.2 m s−1 over the Great Plains, Northern Great Lakes Region, and Southwestern United States located southwest of the Rocky Mountains. When projecting into the 2090s from current climate, there is an overall increase in the Great Plains Region and Southwestern United States located southwest of the Rockies with a mean wind speed increase between 0 and 0.1 m s−1, while, the Northern Great Lakes Region experiences an even greater increase from current climate to 2090s than over the first few decades with an increase of mean wind speed from 0.1 to 0.4 m s−1.
Institute of Scientific and Technical Information of China (English)
楼文娟; 胡卫法; 王玮
2009-01-01
With realizable k-ε model and non-equilibrium wall functions, the rectangular buildings with L-section and straight-section DSF(Double-Skin Facades) were modeled by computational fluid dynamics(CFD) at full scale, 1 : 10 scale and 1 : 100 scale, respectively. The differences of wind pressure coefficient due to the scale of the gap between double-skin facades in rigid scale model wind tunnel test were studied. The cause of scale effect was explained through the analysis of air flow and flow resistance in the gap of DSF. For L-section DSF. the gap flow resistance has a great impact on the mean internal pressure when it lies under the wind direction where the airflow in the gap of DSF is strong. Scale effect influences the mean internal pressure by gap flow resistance, that is. the effect increases though the model scale decreases. The gap flow resistance has little effect on the mean internal pressure when the airflow in the gap of L-section DSF is not strong, and the scale effect on internal pressure is slight. The airflow in the gap of straight DSF is feeble under all wind directions, where the scale effect can be neglected.%将可实现k-ε湍流模型与非平衡壁面函数搭配使用,对带L型和一字型双层幕墙的矩形建筑的原型、1:10及1:100的缩尺模型进行计算流体动力学(CFD)建模分析,研究缩尺刚性模型风洞试验中由于双层幕墙廊道间距缩尺导致模型与原型的压力系数差异.通过对双层幕墙通风廊道内的气流流动和沿程阻力的分析,阐述了产生缩尺效应的内在原因.对L型双层幕墙,当处于幕墙廊道内气流流动较强的风向角时,廊道内沿程阻力对廊道内平均内压的影响较大,缩尺效应通过沿程阻力对内压产生影响,而且随着模型缩尺比的减小而增大;当处于廊道内气流流动较弱的风向角时,沿程阻力对内压影响不大,相应的缩尺效应也不明显.对一字型双层幕墙,在所有风向角下,其廊道内
Institute of Scientific and Technical Information of China (English)
曹晓萌; 顾正华
2015-01-01
In order to investigate the impact of spur dike group acting on river system ,three classification criteria of impact scale of non‐submerged double spur dikes w ere presented according to the comparison of non‐submerged double spur dikes’ flow field under different dike spacing ,which were respectively based on large‐scale vortexes nonoverlapping , the cross‐section velocity of double spur dikes similarly distributing and the cross‐section velocity of downstream dike recovering .Meanwhile ,their advantages , disadvantages and application scopes were analyzed .On this basis ,three criteria were applied to calculate the threshold of dike spacing under a same condition .The comparison between the calculation results and empirical value of the length of recovery segment shows that the calculation values based on the cross‐section velocity of double spur dikes similarly distributing and the cross‐section velocity of dow nstream dike recovering are similar and both in the empirical range ,while the value based on large‐scale vortexes nonoverlapping is smaller than empirical value but simple to calculate ,and it can be used to preliminarily estimate the impact scale of spur dikes through combining with the length formula of spur dike back‐flow zone .%为了研究丁坝群对河流系统的作用，通过对不同间距下非淹没双体丁坝流场的比较分析，提出基于大尺度涡不相重叠、基于双丁坝断面流速分布相似和基于下游丁坝断面流速分布恢复的3种非淹没双体丁坝作用尺度划分准则，并对3种准则的优缺点及适用范围进行分析。在此基础上，分别运用3种划分准则对同一工况下非淹没双体丁坝的间距阈值进行计算，计算结果与恢复段长度的经验值进行对比，结果表明基于双丁坝断面流速分布相似和基于下游丁坝断面流速分布恢复准则的计算结果相近且均在经验范围之内，基于大尺度涡不相重叠准则
Institute of Scientific and Technical Information of China (English)
2008-01-01
The government has been introducing a string of policies to stabilize the economy and cushion the impact of the global eco-nomic slowdown since October.These policies are generally deemed"timely"and"necessary,"but not a long-term cure for problems in China’s economy.Renowned economist Wu Jinglian says the country must address its"double imbalance"and further reform its economic growth mode.He made his comments at the First Annual Global Management Forum on December 6 in Shanghai.Excerptsf ollow:
Lecomte, A.; Castagnola, V.; Descamps, E.; Dahan, L.; Blatché, M. C.; Dinis, T. M.; Leclerc, E.; Egles, C.; Bergaud, C.
2015-12-01
The use of soft materials as substrate for neural probes aims at achieving better compliance with the surrounding neurons while maintaining minimal rejection. Many strategies have emerged to enable such probes to penetrate the cortex, among which the use of resorbable polymers. We performed several tests involving two resorbable polymers considered most promising: polyethylene glycol (PEG) and silk fibroin (SF) from Bombyx Mori silkworms. Our coating method provides a repeatable, uniform structure optimized for a stress-reduced insertion of a parylene-C neural probe. Standard compression tests as well as in vitro and in vivo insertion assessments show that both SF and PEG-coated probes are stiff enough to avoid the buckling effect during insertion in the cortex. However, with a buckling force of 300 mN and a mechanical holding in vitro of tens of minutes, we assess silk fibroin to be more reliable for practical handling. In vivo first try-outs in mouse brain showed neither buckling issues of the probe nor undesired alteration of the signal recording. Moreover, we evidenced two distinct time scales in the bioresorption of our polymer coatings: silk fibroin degrades itself in a matter of weeks and PEG dissolves itself within seconds in the presence of water. We then present a hybrid PEG and SF coating that could be used as a drug delivery system with different time scales to reduce both the acute and the chronic body reaction.
Lopez, Winifred A.; Stone, Mark H.
1998-01-01
The first article in this section, "Rating Scales and Shared Meaning," by Winifred A. Lopez, discusses the analysis of rating scale data. The second article, "Rating Scale Categories: Dichotomy, Double Dichotomy, and the Number Two," by Mark H. Stone, argues that dichotomies in rating scales are more useful than multiple ratings. (SLD)
The interactions between atmospheric, hydrological, and ecological processes at various spatial and temporal scales are not fully represented inmost ecohydrologicalmodels. This first of a two-part paper documents a fully integrated catchment-scale ecohydrological model consisting of a three-dimensio...
A large deformation viscoelastic model for double-network hydrogels
Mao, Yunwei; Lin, Shaoting; Zhao, Xuanhe; Anand, Lallit
2017-03-01
We present a large deformation viscoelasticity model for recently synthesized double network hydrogels which consist of a covalently-crosslinked polyacrylamide network with long chains, and an ionically-crosslinked alginate network with short chains. Such double-network gels are highly stretchable and at the same time tough, because when stretched the crosslinks in the ionically-crosslinked alginate network rupture which results in distributed internal microdamage which dissipates a substantial amount of energy, while the configurational entropy of the covalently-crosslinked polyacrylamide network allows the gel to return to its original configuration after deformation. In addition to the large hysteresis during loading and unloading, these double network hydrogels also exhibit a substantial rate-sensitive response during loading, but exhibit almost no rate-sensitivity during unloading. These features of large hysteresis and asymmetric rate-sensitivity are quite different from the response of conventional hydrogels. We limit our attention to modeling the complex viscoelastic response of such hydrogels under isothermal conditions. Our model is restricted in the sense that we have limited our attention to conditions under which one might neglect any diffusion of the water in the hydrogel - as might occur when the gel has a uniform initial value of the concentration of water, and the mobility of the water molecules in the gel is low relative to the time scale of the mechanical deformation. We also do not attempt to model the final fracture of such double-network hydrogels.
Simoson, Andrew J.
2009-01-01
This article presents a fun activity of generating a double-minded fractal image for a linear algebra class once the idea of rotation and scaling matrices are introduced. In particular the fractal flip-flops between two words, depending on the level at which the image is viewed. (Contains 5 figures.)
NSGIC GIS Inventory (aka Ramona) — This Cities, Towns and Villages dataset, published at 1:2400 (1in=200ft) scale, was produced all or in part from Published Reports/Deeds information as of 2010. It...
Double Conditional Expectation
Institute of Scientific and Technical Information of China (English)
HU Di-he
2004-01-01
The concept of double conditional expectation is introduced. A series of properties for the double conditional expectation are obtained several convergence theorems and Jensen inequality are proved. Finally we discuss the special cases and application for double conditional expectation.
Oblath, Noah; Project 8 Collaboration
2016-09-01
We report on the design concept for Phase III of the Project 8 experiment. In the third phase of Project 8 we aim to place a limit on the neutrino mass that is similar to the current limits set by tritium beta-decay experiments, mν work is supported by the DOE Office of Science Early Career Research Program, and the Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory.
Large-scale streaming motions and microwave background anisotropies
Energy Technology Data Exchange (ETDEWEB)
Martinez-Gonzalez, E.; Sanz, J.L. (Cantabria Universidad, Santander (Spain))
1989-12-01
The minimal microwave background radiation is calculated on each angular scale implied by the existence of large-scale streaming motions. These minimal anisotropies, due to the Sachs-Wolfe effect, are obtained for different experiments, and give quite different results from those found in previous work. They are not in conflict with present theories of galaxy formation. Upper limits are imposed on the scale at which large-scale streaming motions can occur by extrapolating results from present double-beam-switching experiments. 17 refs.
Attosecond double-slit experiment.
Lindner, F; Schätzel, M G; Walther, H; Baltuska, A; Goulielmakis, E; Krausz, F; Milosević, D B; Bauer, D; Becker, W; Paulus, G G
2005-07-22
A new scheme for a double-slit experiment in the time domain is presented. Phase-stabilized few-cycle laser pulses open one to two windows (slits) of attosecond duration for photoionization. Fringes in the angle-resolved energy spectrum of varying visibility depending on the degree of which-way information are measured. A situation in which one and the same electron encounters a single and a double slit at the same time is observed. The investigation of the fringes makes possible interferometry on the attosecond time scale. From the number of visible fringes, for example, one derives that the slits are extended over about 500 as.
Neutrinoless double beta decay experiments
Zuber, K
2006-01-01
The study of neutrinoless double beta decay is of outmost importance for neutrino physics. It is considered to be the gold plated channel to probe the fundamental character of neutrinos and to determine the neutrino mass. From the experimental point about nine different isotopes are explored for the search. After a general introduction follows a short discussion on nuclear matrix element calculations and supportive measurements. The current experimental status of double beta searches is presented followed by a short discussion of the ideas and proposals for large scale experiments.
Neutrinoless double beta decay and new physics in the neutrino sector
Klapdor-Kleingrothaus, H V
2000-01-01
Neutrinoless double beta decay belongs to the most sensitive tools for thesearch of new physics beyond the standard model. The recent half life limit ofthe Heidelberg-Moscow experiment implies restrictive bounds on the absolutemass scale in the neutrino sector. Possible improvements by the GENIUS projectprovide a unique possibility to reconstruct the neutrino mass spectrum. Furtherconstraints on new interactions in the neutrino sector are given in amodel-independent way. Consequences for neutrino anomalies and theories beyondthe standard model such as left-right symmetric models, R-parity violating SUSYand leptoquarks are discussed. The potential of double beta decay experimentsin the search for WIMP dark matter is reviewed.
1-Convergence of Complex Double Fourier Series
Indian Academy of Sciences (India)
Kulwinder Kaur; S S Bhatia; Babu Ram
2003-11-01
It is proved that the complex double Fourier series of an integrable function (, ) with coefficients {} satisfying certain conditions, will converge in 1-norm. The conditions used here are the combinations of Tauberian condition of Hardy–Karamata kind and its limiting case. This paper extends the result of Bray [1] to complex double Fourier series.
Double soft theorem for perturbative gravity
Saha, Arnab Priya
2016-09-01
Following up on the recent work of Cachazo, He and Yuan [1], we derive the double soft graviton theorem in perturbative gravity. We show that the double soft theorem derived using CHY formula precisely matches with the perturbative computation involving Feynman diagrams. In particular, we find how certain delicate limits of Feynman diagrams play an important role in obtaining this equivalence.
Directory of Open Access Journals (Sweden)
Kenji Hata
2013-07-01
Full Text Available Understanding the fundamental mechanisms and limiting processes of the growth of single-walled carbon nanotube (SWCNT would serve as a guide to achieve further control on structural parameters of SWCNT. In this paper, we have studied the growth kinetics of a series of SWCNT forests continuously spanning a wide range of diameters (1.9–3.2 nm, and have revealed an additional fundamental growth limiting process where the mass of the individual SWCNT is determined by the individual catalyst volume. Calculation of the conversion rate of carbon atoms into CNTs per Fe atom is 2 × 102 atoms per second. This rate limiting process provides an important understanding where the larger diameter SWCNT would grow faster, and thus be more suited for mass production.
A New 76Ge Double Beta Decay Experiment at LNGS
Abt, I; Bakalyarov, A; Barabanov, I; Bauer, C; Bellotti, E; Belyaev, S T; Bezrukov, L; Brudanin, V; Buettner, C; Bolotsky, V P; Caldwell, A; Cattadori, C; Clement, H; Vacri, A D; Eberth, J; Egorov, V; Grigoriev, G V; Gurentsov, V I; Gusev, K; Hampel, W; Heusser, G; Hofmann, W; Jochum, J; Junker, M; Kiko, J; Kirpichnikov, I V; Klimenko, A; Knöpfle, K T; Kornoukhov, V N; Laubenstein, M; Lebedev, V; Liu, X; Nemchenok, I B; Pandola, L; Sandukovsky, V; Schönert, S; Scholl, S; Schwingenheuer, B; Simgen, H; Smolnikov, A A; Tikhomirov, A; Vasenko, A A; Vasilev, S; Weisshaar, D; Yanovich, E A; Yurkovski, J; Zhukov, S; Zuzel, G
2004-01-01
This Letter of Intent has been submitted to the Scientific Committee of the INFN Laboratori Nazionali del Gran Sasso (LNGS) in March 2004. It describes a novel facility at the LNGS to study the double beta decay of 76Ge using an (optionally active) cryogenic fluid shield. The setup will allow to scrutinize with high significance on a short time scale the current evidence for neutrinoless double beta decay of 76Ge using the existing 76Ge diodes from the previous Heidelberg-Moscow and IGEX experiments. An increase in the lifetime limit can be achieved by adding more enriched detectors, remaining thereby background-free up to a few 100 kg-years of exposure.
Resonant microsphere gyroscope based on a double Faraday rotator system.
Xie, Chengfeng; Tang, Jun; Cui, Danfeng; Wu, Dajin; Zhang, Chengfei; Li, Chunming; Zhen, Yongqiu; Xue, Chenyang; Liu, Jun
2016-10-15
The resonant microsphere gyroscope is proposed based on a double Faraday rotator system for the resonant microsphere gyroscope (RMSG) that is characterized by low insertion losses and does not destroy the reciprocity of the gyroscope system. Use of the echo suppression structure and the orthogonal polarization method can effectively inhibit both the backscattering noise and the polarization error, and reduce them below the system sensitivity limit. The resonance asymmetry rate dropped from 34.2% to 2.9% after optimization of the backscattering noise and the polarization noise, which greatly improved the bias stability and the scale factor linearity of the proposed system. Additionally, based on the optimum parameters for the double Faraday rotator system, a bias stability of 0.04°/s has been established for an integration time of 10 s in 1000 s in a resonator microsphere gyroscope using a microsphere resonator with a diameter of 1 mm and a Q of 7.2×106.
Allsopp, Nicholas
2012-04-01
We report scaling results on the world\\'s largest supercomputer of our recently developed Billions-Body Molecular Dynamics (BBMD) package, which was especially designed for massively parallel simulations of the short-range atomic dynamics in structural glasses and amorphous materials. The code was able to scale up to 72 racks of an IBM BlueGene/P, with a measured 89% efficiency for a system with 100 billion particles. The code speed, with 0.13. s per iteration in the case of 1 billion particles, paves the way to the study of billion-body structural glasses with a resolution increase of two orders of magnitude with respect to the largest simulation ever reported. We demonstrate the effectiveness of our code by studying the liquid-glass transition of an exceptionally large system made by a binary mixture of 1 billion particles. © 2012.
Muzy, Jean-François; Baïle, Rachel; Bacry, Emmanuel
2013-04-01
In this paper we propose a new model for volatility fluctuations in financial time series. This model relies on a nonstationary Gaussian process that exhibits aging behavior. It turns out that its properties, over any finite time interval, are very close to continuous cascade models. These latter models are indeed well known to reproduce faithfully the main stylized facts of financial time series. However, it involves a large-scale parameter (the so-called “integral scale” where the cascade is initiated) that is hard to interpret in finance. Moreover, the empirical value of the integral scale is in general deeply correlated to the overall length of the sample. This feature is precisely predicted by our model, which, as illustrated by various examples from daily stock index data, quantitatively reproduces the empirical observations.
Propagator for the double delta potential
Energy Technology Data Exchange (ETDEWEB)
Cacciari, Ilaria [Istituto di Fisica Applicata ' Nello Carrara' , CNR, via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence (Italy); Moretti, Paolo [Istituto dei Sistemi Complessi, CNR, Sezione di Firenze, via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence (Italy)]. E-mail: paolo.moretti@isc.cnr.it
2006-12-04
The propagator for the double delta potential is calculated starting from the integral form of the Schroedinger equation. A compact expression of its Laplace transform is found, that can be explicitly inverted in some limiting cases.
Slingsby, Jasper A; Verboom, G Anthony
2006-07-01
Species co-occurrence at fine spatial scales is expected to be nonrandom with respect to phylogeny because of the joint effects of evolutionary (trait convergence and conservatism) and ecological (competitive exclusion and habitat filtering) processes. We use data from 11 existing vegetation surveys to test whether co-occurrence in schoenoid sedge assemblages in the Cape Floristic Region shows significant phylogenetic structuring and to examine whether this changes with the phylogenetic scale of the analysis. We provide evidence for phylogenetic overdispersion in an alliance of closely related species (the reticulate-sheathed Tetraria clade) using both quantile regression analysis and a comparison between the mean observed and expected phylogenetic distances between co-occurring species. Similar patterns are not evident when the analyses are performed at a broader phylogenetic scale. Examination of six functional traits suggests a general pattern of trait conservatism within the reticulate-sheathed Tetraria clade, suggesting a potential role for interspecific competition in structuring co-occurrence within this group. We suggest that phylogenetic overdispersion of communities may be common throughout many of the Cape lineages, since interspecific interactions are likely intensified in lineages with large numbers of species restricted to a small geographic area, and we discuss the potential implications for patterns of diversity in the Cape.
Directory of Open Access Journals (Sweden)
Caryl L. Gay
2016-01-01
Full Text Available The Center for Epidemiological Studies-Depression (CES-D scale is a widely used measure of depressive symptoms, but its psychometric properties have not been adequately evaluated among adults with HIV/AIDS. This study used an item response theory approach (Rasch analysis to evaluate the CES-D’s validity and reliability in relation to key demographic and clinical variables in adults with HIV/AIDS. A convenience sample of 347 adults with HIV/AIDS (231 males, 93 females, and 23 transgenders; age range 22–77 years completed the CES-D. A Rasch model application was used to analyze the CES-D’s rating scale functioning, internal scale validity, person-response validity, person-separation validity, internal consistency, differential item functioning (DIF, and differential test functioning. CES-D scores were generally high and associated with several demographic and clinical variables. The CES-D distinguished 3 distinct levels of depression and had acceptable internal consistency but lacked unidimensionality, five items demonstrated poor fit to the model, 15% of the respondents demonstrated poor fit, and eight items demonstrated DIF related to gender, race, or AIDS diagnosis. Removal of misfitting items resulted in minimal improvement in the CES-D’s substantive and structural validity. CES-D scores should be interpreted with caution in adults with HIV/AIDS, particularly when comparing scores across gender and racial groups.
GENERALIZED DOUBLE PARETO SHRINKAGE.
Armagan, Artin; Dunson, David B; Lee, Jaeyong
2013-01-01
We propose a generalized double Pareto prior for Bayesian shrinkage estimation and inferences in linear models. The prior can be obtained via a scale mixture of Laplace or normal distributions, forming a bridge between the Laplace and Normal-Jeffreys' priors. While it has a spike at zero like the Laplace density, it also has a Student's t-like tail behavior. Bayesian computation is straightforward via a simple Gibbs sampling algorithm. We investigate the properties of the maximum a posteriori estimator, as sparse estimation plays an important role in many problems, reveal connections with some well-established regularization procedures, and show some asymptotic results. The performance of the prior is tested through simulations and an application.
Double asymptotic expansion of three-center electronic repulsion integrals
Alvarez-Ibarra, A.; Köster, A. M.
2013-07-01
A double asymptotic expansion for the evaluation of three-center electron repulsion integrals (ERIs) in the long-range limit is presented. For the definition of this limit, a natural division of space based on the atomic coordinates and basis function exponents in utilized. The resulting analytical expression for the calculation of three-center ERIs in the long-range limit are implemented in the density functional theory program deMon2k. Validation and benchmark calculations of n-alkanes, hydrogen saturated graphene sheets and hydrogen saturated diamond blocks are discussed. It is shown that for a sufficient large number of long-range ERIs, the linear scaling regime is reached.
Reconfigurable Double-Curved Mould
DEFF Research Database (Denmark)
Raun, Christian; Kirkegaard, Poul Henning
2012-01-01
. This happens fast, automatic and without production of waste, and the manipulated surface is fair and robust, eliminating the need for additional, manual treatment. Limitations to the possibilities of the flexible form are limited curvature and limited level of detail, making it especially suited for larger......, double curved surfaces like facades or walls, where the curvature of each element is relatively small in comparison to the overall shape. In the proposed dynamic mould system, where only a set of points is defined, a stiff membrane interpolates the surface between points. To function as a surface...
Double-double radio galaxies : Further insights into the formation of the radio structures
Brocksopp, C.; Kaiser, C.R.; Schoenmakers, A. P.; de Bruyn, A. G.
2011-01-01
Double-double radio galaxies (DDRGs) offer a unique opportunity for us to study multiple episodes of jet activity in large-scale radio sources. We use radio data from the Very Large Array and the literature to model two DDRGs, B1450+333 and B1834+620, in terms of their dynamical evolution. We find t
Double-double radio galaxies: further insights into the formation of the radio structures
Brocksopp, C.; Kaiser, C. R.; Schoenmakers, A. P.; de Bruyn, A. G.
2011-01-01
Double-double radio galaxies (DDRGs) offer a unique opportunity for us to study multiple episodes of jet activity in large-scale radio sources. We use radio data from the Very Large Array and the literature to model two DDRGs, B1450+333 and B1834+620, in terms of their dynamical evolution. We find t
Halpern, F. D.; Horacek, J.; Pitts, R. A.; Ricci, P.
2016-08-01
The International Tokamak Physics Activity Topical Group on scrape-off layer and divertor physics has amassed a database comprising hundreds of reciprocating Langmuir probe measurements of the main scrape-off layer heat-flux width {λq} in inner-wall limited discharges. We have carried out an analysis, based on turbulent transport theory, of the variation of {λq} with respect to the dimensionless plasma parameters. Restricting our analysis to circular plasmas, we find that a model based on non-linearly saturated turbulence can well reproduce the {λq} values found in the database.
New limits on Quantum Gravity energy scale with PKS 2155-304 H.E.S.S. data using a likelihood fit
Bolmont, Julien; Jacholkowska, Agnieszka; Buehler, Rolf; Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A. G.; Anton, G.; Barres de Almeida, U.; Bazer-Bachi, A. R.; Becherini, Y.; Behera, B.; Bernlühr, K.; Bochow, A.; Boisson, C.; Bolmont, J.; Borrel, V.; Brucker, J.; Brun, F.; Brun, P.; Bühler, R.; Bulik, T.; Büsching, I.; Boutelier, T.; Chadwick, P. M.; Charbonnier, A.; Chaves, R. C. G.; Cheesebrough, A.; Conrad, J.; Chounet, L.-M.; Clapson, A. C.; Coignet, G.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; Dickinson, H. J.; Domainko, A. Djannati-Ataü W.; Drury, L. O'c.; Dubois, F.; Dubus, G.; Dyks, J.; Dyrda, M.; Egberts, K.; Eger, P.; Espigat, P.; Fallon, L.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fiasson, A.; Fürster, A.; Fontaine, G.; Füssling, M.; Gabici, S.; Gallant, Y. A.; Gérard, L.; Gerbig, D.; Giebels, B.; Glicenstein, J. F.; Glück, B.; Goret, P.; Güring, D.; Hampf, D.; Hauser, M.; Heinz, S.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hoffmann, A.; Hofmann, W.; Hofverberg, P.; Holleran, M.; Hoppe, S.; Horns, D.; Jacholkowska, A.; de Jager, O. C.; Jahn, C.; Jung, I.; Katarzynski, K.; Katz, U.; Kaufmann, S.; Kerschhaggl, M.; Khangulyan, D.; Khálifi, B.; Keogh, D.; Klochkov, D.; Kluzniak, W.; Kneiske, T.; Komin, Nu.; Kosack, K.; Kossakowski, R.; Lamanna, G.; Lenain, J.-P.; Lohse, T.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Masbou, J.; Maurin, D.; McComb, T. J. L.; Medina, M. C.; Méhault, J.; Moderski, R.; Moulin, E.; Naumann-Godo, M.; de Naurois, M.; Nedbal, D.; Nekrassov, D.; Nguyen, N.; Nicholas, B.; Niemiec, J.; Nolan, S. J.; Ohm, S.; Olive, J.-F.; de Ona Wilhelmi, E.; Opitz, B.; Orford, K. J.; Ostrowski, M.; Panter, M.; Paz Arribas, M.; Pedaletti, G.; Pelletier, G.; Petrucci, P.-O.; Pita, S.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raubenheimer, B. C.; Raue, M.; Rayner, S. M.; Reimer, O.; Renaud, M.; de Los Reyes, R.; Rieger, F.; Ripken, J.; Rob, L.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Ruppel, J.; Ryde, F.; Sahakian, V.; Santangelo, A.; Schlickeiser, R.; Schück, F. M.; Schünwald, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Shalchi, A.; Sushch, I.; Sikora, M.; Skilton, J. L.; Sol, H.; Stawarz, L.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Szostek, A.; Tam, P. H.; Tavernet, J.-P.; Terrier, R.; Tibolla, O.; Tluczykont, M.; Valerius, K.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Venter, L.; Vialle, J. P.; Viana, A.; Vincent, P.; Vivier, M.; Vülk, H. J.; Volpe, F.; Vorobiov, S.; Wagner, S. J.; Ward, M.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.
The high flux and variability of the blazar PKS 2155-304 as observed by H.E.S.S. during the night of 28 July 2006 allows a very high precision search for energy-dependent time lags. This effect would appear in case the Lorentz Symmetry breaking, as predicted by different Quantum Gravity approaches. Using a likelihood fit to study individual photon data, a very high precision measurement was achieved leading to new limits and robust constrains on linear and quadratic terms of the dispersion relations. After a brief description of the method and of the error calibration procedure, these new results will be given and discussed.
Institute of Scientific and Technical Information of China (English)
LUO Xin-Lian; BAI Hua; ZHAO Lei
2008-01-01
Regardless of the formation mechanism, an exotic object, the double degenerate star (DDS), is introduced and investigated, which is composed of baryonic matter and some unknown fermion dark matter. Different from the simple white dwarfs (WDs), there is additional gravitational force provided by the unknown fermion component inside DDSs, which may strongly affect the structure and the stability of such kind of objects. Many possible and strange observational phenomena connecting with them are concisely discussed. Similar to the normal WD, this object can also experience thermonuclear explosion as type Ia supernova explosion when DDS's mass exceeds the maximum mass that can be supported by electron degeneracy pressure. However, since the total mass of baryonic matter can be much lower than that of WD at Chandrasekhar mass limit, the peak luminosity should be much dimmer than what we expect before, which may throw a slight shadow on the standard candle of SN Ia in the research of cosmology.
Double-Difference Adjoint Tomography
Yuan, Yanhua O.; Simons, Frederik J.; Tromp, Jeroen
2016-04-01
We introduce a double-difference method for the inversion of seismic wavespeed structure by adjoint tomography. Differences between seismic observations and model-based predictions at individual stations may arise from factors other than structural heterogeneity, such as errors in the assumed source-time function, inaccurate timings, and systematic uncertainties. To alleviate the corresponding nonuniqueness in the inverse problem, we construct differential measurements between stations, thereby largely canceling out the source signature and systematic errors. We minimize the discrepancy between observations and simulations in terms of differential measurements made on station pairs. We show how to implement the double-difference concept in adjoint tomography, both theoretically and in practice. We compare the sensitivities of absolute and differential measurements. The former provide absolute information on structure along the ray paths between stations and sources, whereas the latter explain relative (and thus higher-resolution) structural variations in areas close to the stations. Whereas in conventional tomography, a measurement made on a single earthquake-station pair provides very limited structural information, in double-difference tomography, one earthquake can actually resolve significant details of the structure. The double-difference methodology can be incorporated into the usual adjoint tomography workflow by simply pairing up all conventional measurements; the computational cost of the necessary adjoint simulations is largely unaffected. Rather than adding to the computational burden, the inversion of double-difference measurements merely modifies the construction of the adjoint sources for data assimilation.
The double identity of linguistic doubling.
Berent, Iris; Bat-El, Outi; Brentari, Diane; Dupuis, Amanda; Vaknin-Nusbaum, Vered
2016-11-29
Does knowledge of language consist of abstract principles, or is it fully embodied in the sensorimotor system? To address this question, we investigate the double identity of doubling (e.g., slaflaf, or generally, XX; where X stands for a phonological constituent). Across languages, doubling is known to elicit conflicting preferences at different levels of linguistic analysis (phonology vs. morphology). Here, we show that these preferences are active in the brains of individual speakers, and they are demonstrably distinct from sensorimotor pressures. We first demonstrate that doubling in novel English words elicits divergent percepts: Viewed as meaningless (phonological) forms, doubling is disliked (e.g., slaflaf linguistic preferences doubly dissociate from sensorimotor demands: A single stimulus can elicit diverse percepts, yet these percepts are invariant across stimulus modality--for speech and signs. These conclusions are in line with the possibility that some linguistic principles are abstract, and they apply broadly across language modality.
Searle, M. P.
1996-02-01
Two end-member models proposed to accommodate the convergence between India and Asia north of the Himalaya are (1) homogeneous crustal thickening of the Tibetan plateau and (2) continental escape, or extrusion, of Tibet and southeast Asia, away from the indenting Indian plate. Foremost among the arguments supporting the latter would be large-scale (˜1000-km) offsets and high present-day slip rates along the major strike-slip faults bounding the postulated extruding crust, notably the Altyn Tagh Fault along the northern margin of Tibet and the Karakoram Fault along the SW margin. Satellite photographic interpretation and field mapping in the Karakoram mountains in Pakistan, the Nubra-Siachen area of north Ladakh, and the Pamirs in Xinjiang show that although the Karakoram Fault is extremely active today, geological offsets along the right-lateral fault are probably less than 120 km. The 21±0.5 Ma Baltoro monzogranite-leucogranite batholith has been rotated clockwise about a vertical axis 35°-40° into NW-SE alignment, parallel with the Karakoram Fault, east of the Siachen glacier, with a maximum offset of 90 km across the fault. The Bangong-Shyok suture zone similarly has a dextral offset of 85 km. The course of the Indus River, which was antecedent to the rise of the Ladakh, Karakoram, and Himalayan ranges, has been offset dextrally by 120 km south of Pangong Lake. If present-day slip rates (approximately 32 mm/yr) (Avouac and Tapponnier, 1993) are correct, only 4 Ma are required to obtain a 120-km offset. There is no geological evidence for any larger-scale pre-Holocene offsets, and it is suggested that the Karakoram Fault cannot have accommodated major eastward lateral motion of Tibetan crust. The fault has also exerted little or no influence on surface topographic uplift, cutting obliquely across the highest peaks of the Karakoram. Dextral motion along the central part of the Karakoram Fault has been transferred in the north to the Rangkul, Murghab, and
Energy Technology Data Exchange (ETDEWEB)
Schuessler, Jan A., E-mail: jan.schuessler@gfz-potsdam.de; Blanckenburg, Friedhelm von
2014-08-01
signature of rock weathering at the micro-scale in a corestone sampled from a highly weathered roadcut profile in the tropical Highlands of Sri Lanka. The results show that secondary weathering products accumulated in cracks and grain boundaries are isotopically lighter than their unweathered plagioclase host, consistent with isotopically heavy dissolved Si found in rivers. - Highlights: • A second-generation custom-built UV-femtosecond laser ablation system is presented. • UV-fsLA-MC-ICP-MS for micrometer-scale stable isotope analyses of metals/metalloids. • Analytical conditions for precise Si stable isotope measurements were optimised. • Non-matrix-matched calibration was validated for analysis of geological materials. • Highly variable Si isotope ratios were found on the micro-scale in weathered rock.
Results and Prospects of Neutrinoless Double Beta Decay Search with EXO
Yang, Liang
2013-04-01
The Enriched Xenon Observatory (EXO) is an experimental program, which aims to perform the most sensitive search for neutrinoless double beta decay using ^136Xe. Such a search can shed light on the Majorana nature of the neutrino (whether the neutrino is its own anti-particle), the absolute mass scale of neutrinos, and beyond standard model processes that violate lepton number conservation. The first phase of the experiment, EXO-200, uses 200 kg of xenon with 80% enrichment in ^136Xe in a single-phase liquid xenon time projection chamber (TPC). The double beta decay of xenon is detected in the ultra-low background TPC by collecting both the scintillation light and the ionization charge. The detector has been taking low background physics data with enriched xenon at the Waste Isolation Pilot Plant (WIPP) in New Mexico since early May 2011. The collaboration has produced two high impact physics results, the first observation of two-neutrino double beta decay of ^136Xe and a neutrinoless double beta decay search result that places one of the most stringent limits on the effective Majorana neutrino mass. Building on the success of EXO-200, the collaboration is performing feasibility studies and R&D work for a future multi-tonne scale experiment named nEXO. During the talk, I will discuss the latest results from EXO-200 and prospects of neutrinoless double beta decay search with both EXO-200 and nEXO.
Directory of Open Access Journals (Sweden)
Joanne Russell
Full Text Available Describing genetic diversity in wild barley (Hordeum vulgare ssp. spontaneum in geographic and environmental space in the context of current, past and potential future climates is important for conservation and for breeding the domesticated crop (Hordeum vulgare ssp. vulgare. Spatial genetic diversity in wild barley was revealed by both nuclear- (2,505 SNP, 24 nSSR and chloroplast-derived (5 cpSSR markers in 256 widely-sampled geo-referenced accessions. Results were compared with MaxEnt-modelled geographic distributions under current, past (Last Glacial Maximum, LGM and mid-term future (anthropogenic scenario A2, the 2080s climates. Comparisons suggest large-scale post-LGM range expansion in Central Asia and relatively small, but statistically significant, reductions in range-wide genetic diversity under future climate. Our analyses support the utility of ecological niche modelling for locating genetic diversity hotspots and determine priority geographic areas for wild barley conservation under anthropogenic climate change. Similar research on other cereal crop progenitors could play an important role in tailoring conservation and crop improvement strategies to support future human food security.
Directory of Open Access Journals (Sweden)
Nina I Becker
Full Text Available Species distribution and endangerment can be assessed by habitat-suitability modelling. This study addresses methodical aspects of habitat suitability modelling and includes an application example in actual species conservation and landscape planning. Models using species presence-absence data are preferable to presence-only models. In contrast to species presence data, absences are rarely recorded. Therefore, many studies generate pseudo-absence data for modelling. However, in this study model quality was higher with null samples collected in the field. Next to species data the choice of landscape data is crucial for suitability modelling. Landscape data with high resolution and ecological relevance for the study species improve model reliability and quality for small elusive mammals like Muscardinus avellanarius. For large scale assessment of species distribution, models with low-detailed data are sufficient. For regional site-specific conservation issues like a conflict-free site for new wind turbines, high-detailed regional models are needed. Even though the overlap with optimally suitable habitat for M. avellanarius was low, the installation of wind plants can pose a threat due to habitat loss and fragmentation. To conclude, modellers should clearly state the purpose of their models and choose the according level of detail for species and environmental data.
Becker, Nina I; Encarnação, Jorge A
2015-01-01
Species distribution and endangerment can be assessed by habitat-suitability modelling. This study addresses methodical aspects of habitat suitability modelling and includes an application example in actual species conservation and landscape planning. Models using species presence-absence data are preferable to presence-only models. In contrast to species presence data, absences are rarely recorded. Therefore, many studies generate pseudo-absence data for modelling. However, in this study model quality was higher with null samples collected in the field. Next to species data the choice of landscape data is crucial for suitability modelling. Landscape data with high resolution and ecological relevance for the study species improve model reliability and quality for small elusive mammals like Muscardinus avellanarius. For large scale assessment of species distribution, models with low-detailed data are sufficient. For regional site-specific conservation issues like a conflict-free site for new wind turbines, high-detailed regional models are needed. Even though the overlap with optimally suitable habitat for M. avellanarius was low, the installation of wind plants can pose a threat due to habitat loss and fragmentation. To conclude, modellers should clearly state the purpose of their models and choose the according level of detail for species and environmental data.
The Cambridge Double Star Atlas
MacEvoy, Bruce; Tirion, Wil
2015-12-01
Preface; What are double stars?; The binary orbit; Double star dynamics; Stellar mass and the binary life cycle; The double star population; Detecting double stars; Double star catalogs; Telescope optics; Preparing to observe; Helpful accessories; Viewing challenges; Next steps; Appendices: target list; Useful formulas; Double star orbits; Double star catalogs; The Greek alphabet.
... medlineplus.gov/ency/article/007328.htm Double outlet right ventricle To use the sharing features on this page, please enable JavaScript. Double outlet right ventricle (DORV) is a heart disease that is ...
Pardo-Planas, Oscar; Prade, Rolf A; Wilkins, Mark R
2017-02-01
Aryl alcohol oxidase (MtGloA) is an enzyme that belongs to the ligninolytic consortium and can play an important role in the bioenergy industry. This study investigated production of an MtGloA client enzyme by a mutant strain of Aspergillus nidulans unable to synthesize its own pyridoxine. Pyridoxine limitation can be used to control cell growth, diverting substrate to protein production. In agitated culture, enzyme production was similar when using media with 1 mg/L and without pyridoxine (26.64 ± 6.14 U/mg mycelia and 26.14 ± 8.39 U/mg mycelia using media with and without pyridoxine, respectively). However, the treatment lacking pyridoxine had to be supplemented with pyridoxine after 156 h of fermentation to sustain continued enzyme production. Use of extremely diluted pyridoxine levels allowed reduced fungal growth while maintaining steady enzyme production. Concentrations of 9 and 13.5 µg/L pyridoxine allowed MtGloA production with a growth rate of only 5% of that observed when using the standard 1 mg/L pyridoxine media.
Double-soft behavior of the dilaton of spontaneously broken conformal invariance
Di Vecchia, Paolo; Marotta, Raffaele; Mojaza, Matin
2017-09-01
The Ward identities involving the currents associated to the spontaneously broken scale and special conformal transformations are derived and used to determine, through linear order in the two soft-dilaton momenta, the double-soft behavior of scattering amplitudes involving two soft dilatons and any number of other particles. It turns out that the double-soft behavior is equivalent to performing two single-soft limits one after the other. We confirm the new double-soft theorem perturbatively at tree-level in a D-dimensional conformal field theory model, as well as nonperturbatively by using the "gravity dual" of N=4 super Yang-Mills on the Coulomb branch; i.e. the Dirac-Born-Infeld action on AdS5 × S 5.
Potvin, Jean; Goldbogen, Jeremy A; Shadwick, Robert E
2012-01-01
Bulk-filter feeding is an energetically efficient strategy for resource acquisition and assimilation, and facilitates the maintenance of extreme body size as exemplified by baleen whales (Mysticeti) and multiple lineages of bony and cartilaginous fishes. Among mysticetes, rorqual whales (Balaenopteridae) exhibit an intermittent ram filter feeding mode, lunge feeding, which requires the abandonment of body-streamlining in favor of a high-drag, mouth-open configuration aimed at engulfing a very large amount of prey-laden water. Particularly while lunge feeding on krill (the most widespread prey preference among rorquals), the effort required during engulfment involve short bouts of high-intensity muscle activity that demand high metabolic output. We used computational modeling together with morphological and kinematic data on humpback (Megaptera noveaangliae), fin (Balaenoptera physalus), blue (Balaenoptera musculus) and minke (Balaenoptera acutorostrata) whales to estimate engulfment power output in comparison with standard metrics of metabolic rate. The simulations reveal that engulfment metabolism increases across the full body size of the larger rorqual species to nearly 50 times the basal metabolic rate of terrestrial mammals of the same body mass. Moreover, they suggest that the metabolism of the largest body sizes runs with significant oxygen deficits during mouth opening, namely, 20% over maximum VO2 at the size of the largest blue whales, thus requiring significant contributions from anaerobic catabolism during a lunge and significant recovery after a lunge. Our analyses show that engulfment metabolism is also significantly lower for smaller adults, typically one-tenth to one-half VO2|max. These results not only point to a physiological limit on maximum body size in this lineage, but also have major implications for the ontogeny of extant rorquals as well as the evolutionary pathways used by ancestral toothed whales to transition from hunting individual prey
Directory of Open Access Journals (Sweden)
Jean Potvin
Full Text Available Bulk-filter feeding is an energetically efficient strategy for resource acquisition and assimilation, and facilitates the maintenance of extreme body size as exemplified by baleen whales (Mysticeti and multiple lineages of bony and cartilaginous fishes. Among mysticetes, rorqual whales (Balaenopteridae exhibit an intermittent ram filter feeding mode, lunge feeding, which requires the abandonment of body-streamlining in favor of a high-drag, mouth-open configuration aimed at engulfing a very large amount of prey-laden water. Particularly while lunge feeding on krill (the most widespread prey preference among rorquals, the effort required during engulfment involve short bouts of high-intensity muscle activity that demand high metabolic output. We used computational modeling together with morphological and kinematic data on humpback (Megaptera noveaangliae, fin (Balaenoptera physalus, blue (Balaenoptera musculus and minke (Balaenoptera acutorostrata whales to estimate engulfment power output in comparison with standard metrics of metabolic rate. The simulations reveal that engulfment metabolism increases across the full body size of the larger rorqual species to nearly 50 times the basal metabolic rate of terrestrial mammals of the same body mass. Moreover, they suggest that the metabolism of the largest body sizes runs with significant oxygen deficits during mouth opening, namely, 20% over maximum VO2 at the size of the largest blue whales, thus requiring significant contributions from anaerobic catabolism during a lunge and significant recovery after a lunge. Our analyses show that engulfment metabolism is also significantly lower for smaller adults, typically one-tenth to one-half VO2|max. These results not only point to a physiological limit on maximum body size in this lineage, but also have major implications for the ontogeny of extant rorquals as well as the evolutionary pathways used by ancestral toothed whales to transition from hunting
Directory of Open Access Journals (Sweden)
Kuete M
2016-10-01
abortions, 65% had tried to avoid the current pregnancy, and 12% of women were ART naïve. Several predictors such as education, abortion rate, unplanned pregnancies, and partners’ decision were associated with the nonuse of effective contraceptive methods. Moreover, barriers including sex inequity, lack of partner support, ART shortages, and lack of HIV viral load monitoring were prevalent among the participants (P=0.001. However FPS use, ART compliance, and safe options to PMTCT significantly increased after the educational counseling interventions (P=0.001.Conclusion: Scaling up the FPS by incorporating routine PMTCT services into reproductive health care should contribute to preventing both horizontal and vertical transmission of HIV. Keywords: contraception, HIV infected women, transmission, interventions, education
Ross, M. N.; Toohey, D.
2008-12-01
understanding of the stratospheric impact of rocket emissions is significantly improved. (4) Such an improved understanding requires a concerted effort of research including new in situ measurements in a variety of rocket plumes and a multi-scale modeling program similar in scope to the effort required to address the climate and ozone impacts of aircraft emissions.
Kuete, Martin; Yuan, HongFang; Tchoua Kemayou, Aude Laure; Songo, Emmanuel Ancel; Yang, Fan; Ma, XiuLan; Xiong, ChengLiang; Zhang, HuiPing
2016-01-01
significantly increased after the educational counseling interventions (P=0.001). Conclusion Scaling up the FPS by incorporating routine PMTCT services into reproductive health care should contribute to preventing both horizontal and vertical transmission of HIV. PMID:27757019
Directory of Open Access Journals (Sweden)
Franklyn Melanie
2011-01-01
Full Text Available Abstract Background Trauma systems should consistently monitor a given trauma population over a period of time. The Abbreviated Injury Scale (AIS and derived scores such as the Injury Severity Score (ISS are commonly used to quantify injury severities in trauma registries. To reflect contemporary trauma management and treatment, the most recent version of the AIS (AIS08 contains many codes which differ in severity from their equivalents in the earlier 1998 version (AIS98. Consequently, the adoption of AIS08 may impede comparisons between data coded using different AIS versions. It may also affect the number of patients classified as major trauma. Methods The entire AIS98-coded injury dataset of a large population based trauma registry was retrieved and mapped to AIS08 using the currently available AIS98-AIS08 dictionary map. The percentage of codes which had increased or decreased in severity, or could not be mapped, was examined in conjunction with the effect of these changes to the calculated ISS. The potential for free text information accompanying AIS coding to improve the quality of AIS mapping was explored. Results A total of 128280 AIS98-coded injuries were evaluated in 32134 patients, 15471 patients of whom were classified as major trauma. Although only 4.5% of dictionary codes decreased in severity from AIS98 to AIS08, this represented almost 13% of injuries in the registry. In 4.9% of patients, no injuries could be mapped. ISS was potentially unreliable in one-third of patients, as they had at least one AIS98 code which could not be mapped. Using AIS08, the number of patients classified as major trauma decreased by between 17.3% and 30.3%. Evaluation of free text descriptions for some injuries demonstrated the potential to improve mapping between AIS versions. Conclusions Converting AIS98-coded data to AIS08 results in a significant decrease in the number of patients classified as major trauma. Many AIS98 codes are missing from the
Relay Feedback Analysis for Double Integral Plants
Directory of Open Access Journals (Sweden)
Zhen Ye
2011-01-01
Full Text Available Double integral plants under relay feedback are studied. Complete results on the uniqueness of solutions, existence, and stability of the limit cycles are established using the point transformation method. Analytical expressions are also given for determining the amplitude and period of a limit cycle from the plant parameters.
Energy Technology Data Exchange (ETDEWEB)
Loescher, D.H. [Sandia National Labs., Albuquerque, NM (United States). Systems Surety Assessment Dept.; Noren, K. [Univ. of Idaho, Moscow, ID (United States). Dept. of Electrical Engineering
1996-09-01
The current that flows between the electrical test equipment and the nuclear explosive must be limited to safe levels during electrical tests conducted on nuclear explosives at the DOE Pantex facility. The safest way to limit the current is to use batteries that can provide only acceptably low current into a short circuit; unfortunately this is not always possible. When it is not possible, current limiters, along with other design features, are used to limit the current. Three types of current limiters, the fuse blower, the resistor limiter, and the MOSFET-pass-transistor limiters, are used extensively in Pantex test equipment. Detailed failure mode and effects analyses were conducted on these limiters. Two other types of limiters were also analyzed. It was found that there is no best type of limiter that should be used in all applications. The fuse blower has advantages when many circuits must be monitored, a low insertion voltage drop is important, and size and weight must be kept low. However, this limiter has many failure modes that can lead to the loss of over current protection. The resistor limiter is simple and inexpensive, but is normally usable only on circuits for which the nominal current is less than a few tens of milliamperes. The MOSFET limiter can be used on high current circuits, but it has a number of single point failure modes that can lead to a loss of protective action. Because bad component placement or poor wire routing can defeat any limiter, placement and routing must be designed carefully and documented thoroughly.
Kwak, Seung Ki
The existence of momentum and winding modes of closed string on a torus leads to a natural idea that the field theoretical approach of string theory should involve winding type coordinates as well as the usual space-time coordinates. Recently developed double field theory is motivated from this idea and it implements T-duality manifestly by doubling the coordinates. In this thesis we will mainly focus on the double field theory formulation of different string theories in its low energy limit: bosonic, heterotic, type II and its massive extensions, and N = 1 supergravity theory. In chapter 2 of the thesis we study the equivalence of different formulations of double field theory. There are three different formulations of double field theory: background field E formulation, generalized metric H formulation, and frame field EAM formulation. Starting from the frame field formalism and choosing an appropriate gauge, the equivalence of the three formulations of bosonic theory are explicitly verified. In chapter 3 we construct the double field theory formulation of heterotic strings. The global symmetry enlarges to O( D, D + n) for heterotic strings and the enlarged generalized metric features this symmetry. The structural form of bosonic theory can directly be applied to the heterotic theory with the enlarged generalized metric. In chapter 4 we develop a unified framework of double field theory for type II theories. The Ramond-Ramond potentials fit into spinor representations of the duality group O( D, D) and the theory displays Spin+( D, D) symmetry with its self-duality relation. For a specific form of RR 1-form the theory reduces to the massive deformation of type IIA theory due to Romans. In chapter 5 we formulate the N = 1 supersymmetric extension of double field theory including the coupling to n abelian vector multiplets. This theory features a local O(1, 9 + n) x O(1, 9) tangent space symmetry under which the fermions transform. (Copies available exclusively from
Double Soft Theorem for Perturbative Gravity
Saha, Arnab Priya
2016-01-01
Following up on the recent work of Cachazo, He and Yuan \\cite{arXiv:1503.04816 [hep-th]}, we derive the double soft graviton theorem in perturbative gravity. We show that the double soft theorem derived using CHY formula precisely matches with the perturbative computation involving Feynman diagrams. In particular, we find how certain delicate limits of Feynman diagrams play an important role in obtaining this equivalence.
Institute of Scientific and Technical Information of China (English)
丁云芝; 苏建徽; 周建
2014-01-01
针对当前已投入运行的高压直流(HVDC)输电工程中模块化多电平换流器(MMC)不具备直流侧故障电流闭锁能力的问题，分析了一种可自清除直流侧故障电流并且可重启动的 MMC 拓扑---基于钳位双子模块的 MMC。这种拓扑可在发生直流故障时通过闭锁所有绝缘栅双极型晶体管(IGBT)的触发信号和利用二极管的反向阻断能力迅速完成闭锁过程，从而达到无需交流断路器动作实现清除直流故障的目的。这种拓扑将半桥模块化 MMC 的调制方法和控制策略与可清除直流故障能力结合在一起，且具有结构简单、造价经济等特点。通过对半桥模块化 MMC 和钳位双子模块 MMC 在直流侧双极短路故障情况下的故障电流进行分析和仿真，验证了基于钳位双子模块的 MMC 在处理直流侧故障方面的能力和效果。%In view of the inability of the modular multilevel converter (MMC) in the high voltage direct current (HVDC) transmission projects in current operation to lock fault current on the DC side,an MMC topology based on clamp double sub-module(CDSM)capable of automatically eliminating and restarting the fault current on the DC side is analyzed.Because of the reverse blocking of diodes,blocking during a DC fault is achieved by blocking all the impulses of IGBTs,then the DC fault is eliminated without the action of AC breakers.Simple in structure and economical,this topology combines the modulation and the control strategy of MMC based on half bridge sub-module(HBSM-MMC)with the ability of recovering from a DC fault.A comparison with the HBSM-MMC in the case of a DC pole-to-pole fault by simulation and analysis has proved the performance of MMC based on CDSM in the control of DC fault current.
Laser double Doppler flowmeter
Poffo, L.; Goujon, J.-M.; Le Page, R.; Lemaitre, J.; Guendouz, M.; Lorrain, N.; Bosc, D.
2014-05-01
The Laser Doppler flowmetry (LDF) is a non-invasive method for estimating the tissular blood flow and speed at a microscopic scale (microcirculation). It is used for medical research as well as for the diagnosis of diseases related to circulatory system tissues and organs including the issues of microvascular flow (perfusion). It is based on the Doppler effect, created by the interaction between the laser light and tissues. LDF measures the mean blood flow in a volume formed by the single laser beam, that penetrate into the skin. The size of this measurement volume is crucial and depends on skin absorption, and is not directly reachable. Therefore, current developments of the LDF are focused on the use of always more complex and sophisticated signal processing methods. On the other hand, laser Double Doppler Flowmeter (FL2D) proposes to use two laser beams to generate the measurement volume. This volume would be perfectly stable and localized at the intersection of the two laser beams. With FL2D we will be able to determine the absolute blood flow of a specific artery. One aimed application would be to help clinical physicians in health care units.
Emboras, A.; Niegemann, J.; Ma, P.; Haffner, C; Pedersen, A.; Luisier, M.; Hafner, C.; Schimmel, T.; Leuthold, J.
2016-01-01
The atom sets an ultimate scaling limit to Moore’s law in the electronics industry. While electronics research already explores atomic scales devices, photonics research still deals with devices at the micrometer scale. Here we demonstrate that photonic scaling, similar to electronics, is only limited by the atom. More precisely, we introduce an electrically controlled plasmonic switch operating at the atomic scale. The switch allows for fast and reproducible switching by means of the relocat...
Current limiter circuit system
Energy Technology Data Exchange (ETDEWEB)
Witcher, Joseph Brandon; Bredemann, Michael V.
2017-09-05
An apparatus comprising a steady state sensing circuit, a switching circuit, and a detection circuit. The steady state sensing circuit is connected to a first, a second and a third node. The first node is connected to a first device, the second node is connected to a second device, and the steady state sensing circuit causes a scaled current to flow at the third node. The scaled current is proportional to a voltage difference between the first and second node. The switching circuit limits an amount of current that flows between the first and second device. The detection circuit is connected to the third node and the switching circuit. The detection circuit monitors the scaled current at the third node and controls the switching circuit to limit the amount of the current that flows between the first and second device when the scaled current is greater than a desired level.
Institute of Scientific and Technical Information of China (English)
张玉清; 蔡安妮; 孙景鳌
2003-01-01
By taking into account the self-similarity nature of video traffic, in this paper we propose a receiver-driven double time-scale rate control (DTSRC)algorithm for multimedia real-time applications based on direct bandwidth estimation, rather than on loss rate or delay time of packets. In this algorithm, the data rate is considered not significantly varying in a long time scale, and the actual rate is estimated in a short time scale. If the sending rate falls outside the estimated rate range, the receiver notifies the transmitter to change its rate and the adaptive QoS control is achieved. Simulation results show that by using this algorithm the network bandwidth is utilized sufficiently, and the packet loss rate is quite low.
Challenges in Double Beta Decay
Directory of Open Access Journals (Sweden)
Oliviero Cremonesi
2014-01-01
Full Text Available In the past ten years, neutrino oscillation experiments have provided the incontrovertible evidence that neutrinos mix and have finite masses. These results represent the strongest demonstration that the electroweak Standard Model is incomplete and that new Physics beyond it must exist. In this scenario, a unique role is played by the Neutrinoless Double Beta Decay searches which can probe lepton number conservation and investigate the Dirac/Majorana nature of the neutrinos and their absolute mass scale (hierarchy problem with unprecedented sensitivity. Today Neutrinoless Double Beta Decay faces a new era where large-scale experiments with a sensitivity approaching the so-called degenerate-hierarchy region are nearly ready to start and where the challenge for the next future is the construction of detectors characterized by a tonne-scale size and an incredibly low background. A number of new proposed projects took up this challenge. These are based either on large expansions of the present experiments or on new ideas to improve the technical performance and/or reduce the background contributions. In this paper, a review of the most relevant ongoing experiments is given. The most relevant parameters contributing to the experimental sensitivity are discussed and a critical comparison of the future projects is proposed.
DEFF Research Database (Denmark)
Nielsen, Morten Ebbe Juul
2006-01-01
Article Concerning the prospect of a kind of limited neutrality in place of the standard liberal egalitarian "neutrality of justification."......Article Concerning the prospect of a kind of limited neutrality in place of the standard liberal egalitarian "neutrality of justification."...
DEFF Research Database (Denmark)
Hendricks, Vincent Fella; Symons, John
2011-01-01
Skeptics argue that the acquisition of knowledge is impossible given the standing possibility of error. We present the limiting convergence strategy for responding to skepticism and discuss the relationship between conceivable error and an agent’s knowledge in the limit. We argue that the skeptic...
DEFF Research Database (Denmark)
Nielsen, Morten Ebbe Juul
2006-01-01
Article Concerning the prospect of a kind of limited neutrality in place of the standard liberal egalitarian "neutrality of justification."......Article Concerning the prospect of a kind of limited neutrality in place of the standard liberal egalitarian "neutrality of justification."...
Institute of Scientific and Technical Information of China (English)
Zhuo CHEN; Zhang Ju LIU; Yun He SHENG
2014-01-01
In this paper, we construct a category of short exact sequences of vector bundles and prove that it is equivalent to the category of double vector bundles. Moreover, operations on double vector bundles can be transferred to operations on the corresponding short exact sequences. In particular, we study the duality theory of double vector bundles in term of the corresponding short exact sequences. Examples including the jet bundle and the Atiyah algebroid are discussed.
Chen, Zhuo; Liu, Zhangju; Sheng, Yunhe
2011-01-01
In this paper, we construct a category of short exact sequences of vector bundles and prove that it is equivalent to the category of double vector bundles. Moreover, operations on double vector bundles can be transferred to operations on the corresponding short exact sequences. In particular, we study the duality theory of double vector bundles in term of the corresponding short exact sequences. Examples including the jet bundle and the Atiyah algebroid are discussed.
UNILATERAL INCOMPLETE DOUBLE URETER
Directory of Open Access Journals (Sweden)
Kaini
2013-04-01
Full Text Available ABSTRACT: Double ureter is a result of premature division of t he ureteric bud. The ureters may join in the lower third of their course and open thr ough a common orifice into the bladder. If they open independently into the bladder, the ureter draining the upper pelvis opens into the bladder below the opening of the other ureter. Patie nts with double ureter or double pelvis are more likely to develop urinary infection and calculi .
Scaling limit analysis of Borromean halos
Souza, L A; Frederico, T; Yamashita, M T; Tomio, L
2016-01-01
The analysis of the core recoil momentum distribution of neutron-rich isotopes of light exotic nuclei is performed within a model of the halo nuclei described by a core and two neutrons dominated by the $s-$wave channel. We adopt the renormalized three-body model with a zero-range force, that accounts for the universal Efimov physics. This model is applicable to nuclei with large two-neutron halos compared to the core size, and a neutron-core scattering length larger than the interaction range. The halo wave function in momentum space is obtained by using as inputs the two-neutron separation energy and the energies of the singlet neutron-neutron and neutron-core virtual states. Within our model, we obtain the momentum probability densities for the Borromean exotic nuclei Lithium-11 ($^{11}$Li), Berylium-14 ($^{14}$Be) and Carbon-22 ($^{22}$C). A fair reproduction of the experimental data was obtained in the case of the core recoil momentum distribution of $^{11}$Li and $^{14}$Be, without free parameters. By e...
Scaling Limit Analysis of Borromean Halos
Souza, L. A.; Bellotti, F. F.; Frederico, T.; Yamashita, M. T.; Tomio, Lauro
2016-05-01
The analysis of the core recoil momentum distribution of neutron-rich isotopes of light exotic nuclei is performed within a model of halo nuclei described by a core and two neutrons dominated by the s-wave channel. We adopt the renormalized three-body model with a zero-range force, which accounts for the Efimov physics. This model is applicable to nuclei with large two-neutron halos compared to the core size, and a neutron-core scattering length larger than the interaction range. The halo wave function in momentum space is obtained by using as inputs the two-neutron separation energy and the energies of the singlet neutron-neutron and neutron-core virtual states. Within our model, we obtain the momentum probability densities for the Borromean exotic nuclei Lithium-11 (^{11}Li), Berylium-14 (^{14}Be) and Carbon-22 (^{22}C). A fair reproduction of the experimental data was obtained in the case of the core recoil momentum distribution of ^{11}Li and ^{14}Be, without free parameters. By extending the model to ^{22}C, the combined analysis of the core momentum distribution and matter radius suggest (i) a ^{21}C virtual state well below 1 MeV; (ii) an overestimation of the extracted matter ^{22}C radius; and (iii) a two-neutron separation energy between 100 and 400 keV.
Geometric pre-patterning based tuning of the period doubling onset strain during thin film wrinkling
Energy Technology Data Exchange (ETDEWEB)
Saha, Sourabh K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2017-02-16
Wrinkling of supported thin films is an easy-to-implement and low-cost fabrication technique for generation of stretch-tunable periodic micro and nano-scale structures. However, the tunability of such structures is often limited by the emergence of an undesirable period doubled mode at high strains. Predictively tuning the onset strain for period doubling via existing techniques requires one to have extensive knowledge about the nonlinear pattern formation behavior. Herein, a geometric pre-patterning based technique is introduced to delay the onset of period doubling that can be implemented to predictively tune the onset strain even with limited system knowledge. The technique comprises pre-patterning the film/base bilayer with a sinusoidal pattern that has the same period as the natural wrinkle period of the system. The effectiveness of this technique has been verified via physical and computational experiments on the polydimethylsiloxane/glass bilayer system. It is observed that the period doubling onset strain can be increased from the typical value of 20% for flat films to greater than 30% with a modest pre-pattern aspect ratio (2∙amplitude/period) of 0.15. In addition, finite element simulations reveal that (i) the onset strain can be increased up to a limit by increasing the amplitude of the pre-patterns and (ii) the delaying effect can be captured entirely by the pre-pattern geometry. As a result, one can implement this technique even with limited system knowledge, such as material properties or film thickness, by simply replicating pre-existing wrinkled patterns to generate prepatterned bilayers. Thus, geometric pre-patterning is a practical scheme to suppress period doubling that can increase the operating range of stretch-tunable wrinkle-based devices by at least 50%.
Ingram, WT
2012-01-01
Inverse limits provide a powerful tool for constructing complicated spaces from simple ones. They also turn the study of a dynamical system consisting of a space and a self-map into a study of a (likely more complicated) space and a self-homeomorphism. In four chapters along with an appendix containing background material the authors develop the theory of inverse limits. The book begins with an introduction through inverse limits on [0,1] before moving to a general treatment of the subject. Special topics in continuum theory complete the book. Although it is not a book on dynamics, the influen
Double-hybrid density-functional theory made rigorous
Sharkas, Kamal; Savin, Andreas
2010-01-01
We provide a rigorous derivation of a class of double-hybrid approximations, combining Hartree-Fock exchange and second-order Moller-Plesset correlation with a semilocal exchange-correlation density functional. These double-hybrid approximations contain only one empirical parameter and use a density-scaled correlation energy functional. Neglecting density scaling leads to an one-parameter version of the standard double-hybrid approximations. We assess the performance of these double-hybrid schemes on representative test sets of atomization energies and reaction barrier heights, and we compare to other hybrid approximations, including range-separated hybrids. Our best one-parameter double-hybrid approximation, called 1DH-BLYP, roughly reproduces the two parameters of the standard B2-PLYP or B2GP-PLYP double-hybrid approximations, which shows that these methods are not only empirically close to an optimum for general chemical applications but are also theoretically supported.
Double layers and double wells in arbitrary degenerate plasmas
Akbari-Moghanjoughi, M.
2016-06-01
Using the generalized hydrodynamic model, the possibility of variety of large amplitude nonlinear excitations is examined in electron-ion plasma with arbitrary electron degeneracy considering also the ion temperature effect. A new energy-density relation is proposed for plasmas with arbitrary electron degeneracy which reduces to the classical Boltzmann and quantum Thomas-Fermi counterparts in the extreme limits. The pseudopotential method is employed to find the criteria for existence of nonlinear structures such as solitons, periodic nonlinear structures, and double-layers for different cases of adiabatic and isothermal ion fluids for a whole range of normalized electron chemical potential, η0, ranging from dilute classical to completely degenerate electron fluids. It is observed that there is a Mach-speed gap in which no large amplitude localized or periodic nonlinear excitations can propagate in the plasma under consideration. It is further revealed that the plasma under investigation supports propagation of double-wells and double-layers the chemical potential and Mach number ranges of which are studied in terms of other plasma parameters. The Mach number criteria for nonlinear waves are shown to significantly differ for cases of classical with η0 0 regimes. It is also shown that the localized structure propagation criteria possess significant dissimilarities for plasmas with adiabatic and isothermal ions. Current research may be generalized to study the nonlinear structures in plasma containing positrons, multiple ions with different charge states, and charged dust grains.
Barabash, A S
2011-01-01
The present status of double beta decay experiments is reviewed. The results of the most sensitive experiments are discussed. Proposals for future double beta decay experiments with a sensitivity to the $$ at the level of (0.01--0.1) eV are considered.
Bergshoeff, Eric A.; Riccioni, Fabio; Alvarez-Gaumé, L.
2011-01-01
We probe doubled geometry with dual fundamental branes. i.e. solitons. Restricting ourselves first to solitonic branes with more than two transverse directions we find that the doubled geometry requires an effective wrapping rule for the solitonic branes which is dual to the wrapping rule for fundam
Gates controlled parallel-coupled bilayer graphene double quantum dot
Wang, Lin-Jun; Wei, Da; Cao, Gang; Tu, Tao; Xiao, Ming; Guo, Guang-Can; Chang, A M
2011-01-01
Here we report the fabrication and quantum transport measurements of gates controlled parallel-coupled bilayer graphene double quantum dot. It is shown that the interdot coupling strength of the parallel double dots can be effectively tuned from weak to strong regime by both the in-plane plunger gates and back gate. All the relevant energy scales and parameters of the bilayer graphene parallel-coupled double dot can be extracted from the honeycomb charge stability diagrams revealed through the transport measurements.
Double layer dynamics in a collisionless magnetoplasma
DEFF Research Database (Denmark)
Iizuka, S.; Michelsen, Poul; Juul Rasmussen, Jens
1985-01-01
Investigations of double layer dynamics are performed in a Q-machine plasma by applying a positive step potential to a cold end-plate collector. The double layer created at the grounded plasma source just after the pulse is applied propagates towards the collector with the plasma flow speed. Large...... oscillations occur in the plasma current which is related to a recurring formation and propagation of the double layer. The current is limited during the propagation by a growing negative potential dip formed on the low-potential tail. Similar phenomena appear on the low-potential tail of the stationary double...... layer formed by applying a potential difference between two plasma sources...
Semiconductor double quantum dot micromaser.
Liu, Y-Y; Stehlik, J; Eichler, C; Gullans, M J; Taylor, J M; Petta, J R
2015-01-16
The coherent generation of light, from masers to lasers, relies upon the specific structure of the individual emitters that lead to gain. Devices operating as lasers in the few-emitter limit provide opportunities for understanding quantum coherent phenomena, from terahertz sources to quantum communication. Here we demonstrate a maser that is driven by single-electron tunneling events. Semiconductor double quantum dots (DQDs) serve as a gain medium and are placed inside a high-quality factor microwave cavity. We verify maser action by comparing the statistics of the emitted microwave field above and below the maser threshold. Copyright © 2015, American Association for the Advancement of Science.
Roorda, Leo D.; Houwink, Annemieke; Smits, Wendy; Molenaar, Ivo W.; Geurts, Alexander C.
2011-01-01
Objectives: To develop an easy-to-use scale that measures upper limb capacity, according to the International Classification of Functioning, Disability and Health definition, in patients after stroke, and to investigate certain psychometric properties of this scale. Design: Cohort study. Setting: In
Charge Transport in Resonant Tunneling Double - Diodes
Diff, Karim
With the advent of semiconductor devices with typical lengths of the order of a few nanometers and response times of a few picoseconds, the conventional methods used in device modeling have reached their limits of validity. Modern devices based on heterostructures fabricated by Molecular Beam Epitaxy (MBE) require more fundamental approaches based entirely on quantum mechanics. These generally necessitate numerical solutions and are computationally intensive. This dissertation focuses on Resonant Tunneling Double-Barrier (RTDB) diodes as the prototype of "quantum devices". A one-electron model and the effective mass approximation are used. By solving numerically the time-dependent Schrodinger equation for Gaussian wavepackets, the various time characteristics of resonant tunneling are probed. These characteristics are usually overlooked in other treatments based on the time-independent Schrodinger equation. The transit time, the build-up time and the exponential decay time are studied. The difference between these various time scales and their relative importance are discussed. A new method that takes into account the finite extent of the electron wavefunction, is proposed to compute the I-V characteristics of such devices. Results indicate a possible explanation for the discrepancy observed between experimental results and previous analyses. The effect of high frequency fields on resonant tunneling is also studied, and a method to determine the intrinsic cut-off frequency is suggested. The role of the effective mass in the determination of the characteristics of RTDB diodes is emphasized throughout this work.
SU(5)-inspired double beta decay
Fonseca, Renato M
2015-01-01
The short-range part of the neutrinoless double beta amplitude is generated via the exchange of exotic particles, such as charged scalars, leptoquarks and/or diquarks. In order to give a sizeable contribution to the total decay rate, the masses of these exotics should be of the order of (at most) a few TeV. Here, we argue that these exotics could be the "light" (i.e weak-scale) remnants of some $B-L$ violating variants of $SU(5)$. We show that unification of the standard model gauge couplings, consistent with proton decay limits, can be achieved in such a setup without the need to introduce supersymmetry. Since these non-minimal $SU(5)$-inspired models violate $B-L$, they generate Majorana neutrino masses and therefore make it possible to explain neutrino oscillation data. The "light" coloured particles of these models can potentially be observed at the LHC, and it might be possible to probe the origin of the neutrino masses with $\\Delta L=2$ violating signals. As particular realizations of this idea, we pres...
Progress of Double Star Program 2006-2008
Institute of Scientific and Technical Information of China (English)
LIU Zhenxing; CAO Jinbin
2008-01-01
This paper presents the status of two satellites of Double Star Program, and a part of scientific results based on the data of Double Star Program obtained during the period of 2006-2008.Other scientific results in the magnetospheric physics research can be found in "Multi scale physical process in the magnetosphere" of this issue.
Double Lambda and Xi hypernuclei
Nakazawa, Kazuma
2014-09-01
Nuclei with double strangeness (S = -2) provide the key information to understand Baryon-Baryon interaction under the SU(3)f symmetry. Therefore we have carried out the experiments at KEK for quarter a century. Recently, the interaction in S = -2 sector is noted to derive the information of the EOS of neutron star. The Lambda-Lambda interaction has been presented to be weak attractive by NAGARA event which showed the production and decay of 6He double-hypernucleus. The event also presented the lower mass limit of H dibaryon. In other five events, we obtained the knowledge about an excitation level of 10Be double-hypernucleus under the consistency with NAGARA event. Moreover, very recently, we have discovered a Xi-14N system which was deeply bound far from the atomic 3D level (0.17 MeV) for a captured Xi hyperon. Since a 8Li nucleus was associated with the decay of one of twin-hypernuclei, the event was uniquely identified as Xi- + 14N ==> 10BeL + 5HeL. The system was selected from 8 million pictures on the test running for development of ``Overall Scanning'' to be used in the coming experiment. This is the first evidence of Xi hypernucleus to be bound and it is impacting for the study of Xi-N interaction. At J-PARC facility, for the further study of hyperon-hyperon interaction, we plan to perform the E07 experiment at J-PARC. In the workshop, we will review the above knowledge obtained by the experiments at KEK-PS, and discuss developed technologies to detected 102 or more double-hypernuclei in the E07 experiment at J-PARC. Nuclei with double strangeness (S = -2) provide the key information to understand Baryon-Baryon interaction under the SU(3)f symmetry. Therefore we have carried out the experiments at KEK for quarter a century. Recently, the interaction in S = -2 sector is noted to derive the information of the EOS of neutron star. The Lambda-Lambda interaction has been presented to be weak attractive by NAGARA event which showed the production and decay of 6He
Bonneau, Philippe
Following a preceding paper showing how the introduction of a t.v.s. topology on quantum groups led to a remarkable unification and rigidification of the different definitions, we adapt here, in the same way, the definition of quantum double. This topological double is dualizable and reflexive (even for infinite dimensional algebras). In a simple case we show, considering the double as the "zero class" of an extension theory, the uniqueness of the double structure as a quasi-Hopf algebra. A la suite d'un précédent article montrant comment l'introduction d'une topologie d'e.v.t. sur les groupes quantiques permet une unification et une rigidification remarquables des différentes définitions, on adapte ici de la même manière la définition du double quantique. Ce double topologique est alors dualisable et reflexif (même pour des algèbres de dimension infinie). Dans un cas simple on montre, en considérant le double comme la "classe zéro" d'une théorie d'extensions, l'unicité de cette structure comme algèbre quasi-Hopf.
Institute of Scientific and Technical Information of China (English)
刘次沅; 李建科; 周晓陆
1999-01-01
The ancient record, "During the first year of King Yi, the day dawned twice at Zheng", has provided important clues to early Chinese chronicles. The astronomical conditions and visible area distributions related to such a "double dawn" event are discussed, and the precision and current problems in the calculations of ancient astronomical phenomena are shown. On such a basis, all the solar eclipses from 1000 BC to 840 BC are calculated and their associated "double dawn" features investigated. The conclusion that the "double dawn" was a solar eclipse occurring on April 21st, 899 BC is corfirmed to be the most reasonable.
The Mass/Eccentricity Limit in Double Star Astronomy
Indian Academy of Sciences (India)
J. Dommanget
2003-09-01
A research that we conducted in 1963 on the evolution of the binaries based on the available orbital data to obtain a philosophical degree, led to the establishment of an interesting and new diagram between the logarithm of the total mass and a particular parameter , bound to the areal constant. This appeared to have a real physical significance but the basic observational material was insufficiently extended to assure its undeniable existence. In 1981, a new research based on a more extended orbital material, has confirmed this diagram. Presently, another important increase in the orbital material and the availability of highly accurate trigonometric parallaxes produced by the Hipparcos satellite, gave us the opportunity to confirm once more the stability of this diagram. This last research is here described.
Institute of Scientific and Technical Information of China (English)
裴雷; 丁正龙; 陈成; 周永清; 马然; 朱思洪
2012-01-01
In view of poor working conditions, the front double wishbone independent suspension for KAT1804 tractor was designed, and the 3D model was established in PRO/E. The model of 1/2 double-wishbone independent suspension was build in ADAMS. Then the kinematics simulation analysis and optimization based on orthogonal analysis were carried out to find the most reasonable set of wheel alignment parameters, thus ensuring tractor ride comfort and handling stability.%由于拖拉机工作环境恶劣,将KAT1804型拖拉机前桥设计成双横臂独立悬架,利用PRO/E建立了三维实体模型,用多体动力学软件ADAMS建立了1/2双横臂独立悬架模型并进行运动学仿真分析,结合正交试验分析方法进行优化,找出了最合理的一组车轮定位参数,从而保证拖拉机具有良好的行驶平稳性和操纵稳定性.
Anharmonic effects and double giant dipole resonances
Voronov, V V
2001-01-01
A brief review of recent results of the microscopic calculations to describe characteristics of the double giant dipole resonances (DGDR) is presented. A special attention is paid to a microscopic study of the anharmonic properties of the DGDR. It is found that the deviation of the energy centroid of the DGDR from the harmonic limit follows A sup - sup 1 dependence
Neutrinoless double beta decay
Indian Academy of Sciences (India)
Kai Zuber
2012-10-01
The physics potential of neutrinoless double beta decay is discussed. Furthermore, experimental considerations as well as the current status of experiments are presented. Finally, an outlook towards the future, work on nuclear matrix elements and alternative processes is given.
Double conjoining vas deferens.
Gravesen, R G
1980-03-01
The importance of careful palpation of the scrotal contents and follow-up semen analysis when performing vasectomies is proved by this case report of a double vas deferens conjoining into a single vas.
Double electron capture searches in $^{74}$Se
Lehnert, B; Degering, D; Sommer, D; Wagner, L; Zuber, K
2016-01-01
A search for various double electron capture modes of $^{74}$Se has been performed using an ultralow background Ge-detector in the Felsenkeller laboratory, Germany. Especially for the potentially resonant transition into the 1204.2 keV excited state of $^{74}$Ge a lower half-life limit of $0.70\\cdot 10^{19}$ yr (90% credibility) has been obtained. Serious concerns are raised about the validity of obtained $^{74}$Se limits in some recent publications.
Statistical mechanics of double-helical polymers.
De Col, Alvise; Liverpool, Tanniemola B
2004-06-01
We introduce a simple geometric model for a double-stranded and double-helical polymer. We study the statistical mechanics of such polymers using both analytical techniques and simulations. Our model has a single energy scale which determines both the bending and twisting rigidity of the polymer. The helix melts at a particular temperature T(c) below which the chain has a helical structure and above which this structure is disordered. Under extension we find that for small forces, the behavior is very similar to wormlike chain behavior but becomes very different at higher forces.
Detecting Double Beta Decays Using Nuclear Emulsions
Dracos, Marcos
2008-01-01
Neutrino nature and absolute mass scale are major questions in particle physics which cannot be addressed by the present neutrino oscillation program. To answer these two questions, several neutrinoless double beta decay experiments are underway or planed for the near future. These experiments, mainly use bolometric techniques or gaseous counters coupled with scintillator detectors. The energy resolution is better in bolometric experiments but experiments coupling tracking with calorimetry have the advantage of observing the two electron tracks and remove many background sources. Here, we present a proposal of using nuclear emulsions to observe double beta decays. This technique has the advantage of precise tracking and vertexing even for low energy electrons.
Reconsideration of the galvanostatic double-pulse method
Kooijman, D.J.; Sluyters, J.H.
1967-01-01
A critical examination is made of the voltage response of a cell when a double-pulse current is applied. The limitations of the double-pulse method for studying fast electrode reactions are considered and it is shown that the maximum value of the heterogeneous rate constant measurable with this meth
Double-hook retractor for microlumbar discectomy and foraminotomy
Directory of Open Access Journals (Sweden)
Parthiban J
2004-01-01
Full Text Available Aiming to achieve better results in microlumbar discectomy and foraminotomy, a double-hook retractor has been designed to retract lumbar paraspinal muscles away from the spinous process. A double-hook retractor obviates the limitations of single-hook systems.
Perego, D L
2002-01-01
A limit on the tau neutrino mass is obtained using all the $Z^{0} \\to \\tau^{+} \\tau^{-}$ data collected at LEP by the DELPHI detector between 1992 and 1995. In this analysis events in which one of the taus decays into one charged particle, while the second $\\tau$ decays into f{}ive charged pions (1-5 topology) have been used. The neutrino mass is determined from a bidimensional \\fit ~on the invariant mass $m^{*}_{5 \\pi}$ and on the energy $E_{5 \\pi}$ of the f{}ive $\\pi^{\\pm}$ system. The result found is $m_{\
Limits on uranium and thorium bulk content in GERDA Phase I detectors
Agostini, M; Bakalyarov, A M; Balata, M; Barabanov, I; Baudis, L; Bauer, C; Becerici-Schmidt, N; Bellotti, E; Belogurov, S; Belyaev, S T; Benato, G; Bettini, A; Bezrukov, L; Bode, T; Borowicz, D; Brudanin, V; Brugnera, R; Caldwell, A; Cattadori, C; Chernogorov, A; D'Andrea, V; Demidova, E V; di Vacri, A; Domula, A; Doroshkevich, E; Egorov, V; Falkenstein, R; Fedorova, O; Freund, K; Frodyma, N; Gangapshev, A; Garfagnini, A; Grabmayr, P; Gurentsov, V; Gusev, K; Hakemüller, J; Hegai, A; Heisel, M; Hemmer, S; Hofmann, W; Hult, M; Inzhechik, L V; Csathy, J Janicsko; Jochum, J; Junker, M; Kazalov, V; Kihm, T; Kirpichnikov, I V; Kirsch, A; Kish, A; Klimenko, A; Kneißl, R; Knöpfle, K T; Kochetov, O; Kornoukhov, V N; Kuzminov, V V; Laubenstein, M; Lazzaro, A; Lebedev, V I; Lehnert, B; Liao, H Y; Lindner, M; Lippi, I; Lubashevskiy, A; Lubsandorzhiev, B; Lutter, G; Macolino, C; Majorovits, B; Maneschg, W; Medinaceli, E; Mingazheva, R; Misiaszek, M; Moseev, P; Nemchenok, I; Palioselitis, D; Panas, K; Pandola, L; Pelczar, K; Pullia, A; Riboldi, S; Rumyantseva, N; Sada, C; Salamida, F; Salathe, M; Schmitt, C; Schneider, B; Schönert, S; Schreiner, J; Schütz, A -K; Schulz, O; Schwingenheuer, B; Selivanenko, O; Shevchik, E; Shirchenko, M; Simgen, H; Smolnikov, A; Stanco, L; Stepaniuk, M; Vanhoefer, L; Vasenko, A A; Veresnikova, A; von Sturm, K; Wagner, V; Walter, M; Wegmann, A; Wester, T; Wiesinger, C; Wojcik, M; Yanovich, E; Zhitnikov, I; Zhukov, S V; Zinatulina, D; Zuber, K; Zuzel, G
2016-01-01
Internal contaminations of $^{238}$U, $^{235}$U and $^{232}$Th in the bulk of high purity germanium detectors are potential backgrounds for experiments searching for neutrinoless double beta decay of $^{76}$Ge. The data from GERDA Phase~I have been analyzed for alpha events from the decay chain of these contaminations by looking for full decay chains and for time correlations between successive decays in the same detector. No candidate events for a full chain have been found. Upper limits on the activities in the range of a few nBq/kg for $^{226}$Ra, $^{227}$Ac and $^{228}$Th, the long-lived daughter nuclides of $^{238}$U, $^{235}$U and $^{232}$Th, respectively, have been derived. With these upper limits a background index in the energy region of interest from $^{226}$Ra and $^{228}$Th contamination is estimated which satisfies the prerequisites of a future ton scale germanium double beta decay experiment.
Oluoch, Tom; Muturi, David; Kiriinya, Rose; Waruru, Anthony; Lanyo, Kevin; Nguni, Robert; Ojwang, James; Waters, Keith P; Richards, Janise
2015-01-01
Sub-Saharan Africa (SSA) bears the heaviest burden of the HIV epidemic. Health workers play a critical role in the scale-up of HIV programs. SSA also has the weakest information and communication technology (ICT) infrastructure globally. Implementing interoperable national health information systems (HIS) is a challenge, even in developed countries. Countries in resource-limited settings have yet to demonstrate that interoperable systems can be achieved, and can improve quality of healthcare through enhanced data availability and use in the deployment of the health workforce. We established interoperable HIS integrating a Master Facility List (MFL), District Health Information Software (DHIS2), and Human Resources Information Systems (HRIS) through application programmers interfaces (API). We abstracted data on HIV care, health workers deployment, and health facilities geo-coordinates. Over 95% of data elements were exchanged between the MFL-DHIS and HRIS-DHIS. The correlation between the number of HIV-positive clients and nurses and clinical officers in 2013 was R2=0.251 and R2=0.261 respectively. Wrong MFL codes, data type mis-match and hyphens in legacy data were key causes of data transmission errors. Lack of information exchange standards for aggregate data made programming time-consuming.
城镇建设用地发展极限规模预测及实证研究%Empirical Research on Limit Scale Prediction of Urban Construction Land
Institute of Scientific and Technical Information of China (English)
王秉义; 张红梅; 高宏林
2013-01-01
在分析城镇建设用地扩张耕地占用倾向趋势的基础上，构建了城镇建设用地扩张时间停滞模型和城镇建设用地发展极限规模模型，并以河南省息县县城中心城区为对象进行了实证研究。研究结果可为城镇建设用地边界划定提供理论参考和技术支撑。%In this paper,the models of stagnation time and limit scale of urban construction land expand were put forward,based on the analysis of the cultivated land occupied tendency trend. Meantime,the empirical re-search of the central area of Xixian County of He'nan Province was made also. The results could provide theoret-ical reference and technical support on urban construction land expand boundary demarcation.
Transverse Double-Spin Asymmetries for Muon Pair Production in pp-Collisions
Martin, O; Stratmann, M; Vogelsang, W
1999-01-01
We calculate the rapidity dependence of the transverse double-spin asymmetry for the Drell-Yan process to next-to-leading order in the strong coupling. Input transversity distributions are obtained by saturating the Soffer inequality at a low hadronic mass scale. Results for the polarized BNL-RHIC proton-proton collider and the proposed HERA-N fixed-target experiment are presented, and the influence of the limited muon acceptance of the detectors on measurements of the asymmetry is studied in detail.
Particle acceleration and dynamics of double-double radio galaxies: theory versus observations
Konar, C.; Hardcastle, M. J.
2013-12-01
In this paper, we show that a small sample of radio galaxies with evidence for multiple epochs of jet activity (so-called double-double radio galaxies) have the same electron injection spectral index in the two activity episodes, a result which might be considered surprising given the very different lobe dynamics expected in the first and second episode. We construct models for the dynamics of radio galaxies, with an emphasis on their episodic behaviour, and show that hotspot formation and confinement of lobes for the inner double of double-double radio galaxies are possible even without any thermal matter in the outer cocoon. We argue that (i) the observed similar injection spectral indices are due to similar jet powers in the two episodes, (ii) the `spectral index-radio power' correlation of a flux limited sample of radio galaxies is the primary one, and not the `spectral index-redshift correlation', (iii) jets are made of pair plasma and not electron-proton and (iv) the Lorentz factor of the spine of the jet should be ≳ 10 to explain the observations. Furthermore, we argue that the observations show that higher power radio galaxies do not have a higher jet bulk Lorentz factors, but instead simply have a higher number density of particles in the jet rest frame. A consequence of our models is that aligned double-double radio galaxies with very old ( ≳ 108 yr) outer doubles, or misaligned double-double radio galaxies, are statistically more likely to have dissimilar injection indices in two different episodes, as they will probably have different jet powers.
Double-parton scattering effects in double charm production within gluon fragmentation scenario
Maciula, Rafal
2016-01-01
We discuss charm $D^0 D^0$ meson-meson pair production in the forward rapidity region related to the LHCb experimental studies at $\\sqrt{s}$ = 7 TeV. We consider double-parton scattering mechanisms of double $c \\bar c$ production and subsequent standard $cc \\to D^{0}D^{0}$ scale-independent hadronization as well as new double $g$ and mixed $g c\\bar c $ production mechanisms with $gg \\to D^{0}D^{0}$ and $gc \\to D^{0}D^{0}$ scale-dependent hadronization. The new scenario with gluon fragmentation components results also in a new single-parton scattering mechanism of $gg$ production which is also taken here into account. Results of the numerical calculations are compared with the LHCb data for several correlation observables. The new mechanisms lead to a larger cross sections and to slightly different shapes of the calculated correlation observables.
Farrar, John T; Troxel, Andrea B; Stott, Colin; Duncombe, Paul; Jensen, Mark P
2008-05-01
The measurement of spasticity as a symptom of neurologic disease is an area of growing interest. Clinician-rated measures of spasticity purport to be objective but do not measure the patient's experience and may not be sensitive to changes that are meaningful to the patient. In a patient with clinical spasticity, the best judge of the perceived severity of the symptom is the patient. The aim of this study was to assess the validity and reliability, and determine the clinical importance, of change on a 0-10 numeric rating scale (NRS) as a patient-rated measure of the perceived severity of spasticity. Using data from a large,randomized, doubleblind, placebo-controlled study of an endocannabinoid system modulator in patients with multiple sclerosis-related spasticity, we evaluated the test-retest reliability and comparison-based validity of a patient-reported 0-10 NRS measure of spasticity severity with the Ashworth Scale and Spasm Frequency Scale. We estimated the level of change from baseline on the 0-10 NRS spasticity scale that constituted a clinically important difference (CID) and a minimal CID (MCID) as anchored to the patient's global impression of change (PGIC). Data from a total of 189 patients were included in this assessment (114 women, 75 men; mean age, 49.1 years). The test-retest reliability analysis found an interclass correlation coefficient of 0.83 (P change on 0-10 NRS and change in the Spasm Frequency Scale (r = 0.63; P change on 0-10 NRS and the PGIC (r = 0.47; P change of 18% the MCID. The measurement of the symptom of spasticity using a patient-rated 0-10 NRS was found to be both reliable and valid. The definitions of CID and MCID will facilitate the use of appropriate responder analyses and help clinicians interpret the significance of future results.
Bose condensation of interwell excitons in double quantum wells
Larionov, A V; Ni, P A; Dubonos, S V; Hvam, I; Soerensen, K
2002-01-01
The luminescence of the interwell excitons in the GaAs/AlGaAs double quantum wells, containing large-scale fluctuations of the random potential in the heteroboundary planes, is studied. The properties of the excitons, wherein the excited electron and hole are spatially separated between the neighboring quantum wells by the density and temperature variation within the domain limits of the scale below one micron, are investigated. The interwell excitons by low pumping (below 50 mW) are strongly localized due to the small-scale fluctuations of the random potential. The localized excitons line grows by increase in the resonance excitation capacity through the threshold method. With the temperature growth this line disappears in the spectrum (T sub c <= 3.4 K). The above phenomenon is related to the Bose-Einstein condensation in the quasi-two-dimensional system of the interwell excitons. The critical values of the exciton density and temperature in the studied temperature range (1.5-3.4 K) grow according to the...
New insight on double-double radio galaxies
Nandi, Sumana
2016-07-01
Striking examples of episodic jet activity in active galactic nuclei (AGN) are the double-double radio galaxies (DDRGs) with two pairs of lobes emerging from the same central engine. The number of DDRGs reported so far is very limited, and it is important to identify more of these to provide a significant statistical overview of the conditions to trigger the jets and the role of jets in terms of feedback mechanisms that affect the host galaxies. Although most DDRGs were believed initially to be giant radio sources with sizes more than a Mpc, a significant number of smaller sized candidate DDRGs have also been identified in our recent study. We started GMRT observation of this sample to confirm that the sources are related to distinct epochs of nuclear activity. In addition to this radio observation we have also investigated the properties of the host galaxies and their environments to understand the triggering mechanisms for recurrent jet emission. Here, I will highlight the main results from these observations and discuss on the possible scenarios responsible for the episodic activity in different types of DDRGs .
How can double-barred galaxies be long-lived?
Wozniak, Hervé
2015-03-01
Context. Double-barred galaxies account for almost one third of all barred galaxies, suggesting that secondary stellar bars, which are embedded in large-scale primary bars, are long-lived structures. However, up to now it has been hard to self-consistently simulate a disc galaxy that sustains two nested stellar bars for longer than a few rotation periods. Aims: The dynamical and physical requirements for long-lived triaxiality in the central region of galaxies still need to be clarified. Methods: N-body/hydrodynamical simulations including star formation recipes have been performed. Their properties (bar lengths, pattern speeds, age of stellar population, and gas content) have been compared with the most recent observational data in order to prove that they are representative of double-barred galaxies, even SB0. Overlaps in dynamical resonances and bar modes have been looked for using Fourier spectrograms. Results: Double-barred galaxies have been successfully simulated with lifetimes as long as 7 Gyr. The stellar and gaseous distributions in the central regions are time dependent and display many observed morphological features (circumnuclear rings, pseudo-bulges, triaxial bulges, ovals, etc.) typical of barred galaxies, even early-type. The stellar population of the secondary bar is younger on average than for the primary large-scale bar. An important feature of these simulations is the absence of any resonance overlap for several Gyr. In particular, there is no overlap between the primary bar inner Lindblad resonance and the secondary bar corotation. Therefore, mode coupling cannot sustain the secondary bar mode. Star formation is identified here as possibly being responsible for bringing energy to the nuclear mode. Star formation is also responsible for limiting the amount of gas in the central region which prevents the orbits sustaining the secondary bar from being destroyed. Therefore, the secondary bar can dissolve but reappear after ≈1 Gyr as the
Constraints on neutrinoless double $\\beta$ decay from neutrino oscillation experiments
Bilenky, S M; Monteno, M
1997-01-01
We show that, in the framework of a general model with mixing of three Majorana neutrinos and a neutrino mass hierarchy, the results of the Bugey and Krasnoyarsk reactor neutrino oscillation experiments imply strong limitations for the effective Majorana mass || that characterizes the amplitude of neutrinoless double beta decay. We obtain further limitations on || from the data of the atmospheric neutrino experiments. We discuss the possible implications of the results of the future long baseline neutrino oscillation experiments for neutrinoless double beta decay.
Institute of Scientific and Technical Information of China (English)
张晓伟; 张松林; 田秉晖; 辛丽花; 马玉涛
2012-01-01
根据生物脱氮原理设计了一套一体化反应器并将其用于工业废水处理.研究双室悬浮载体对工业废水脱氮影响的同时分析了系统中微生物群落的结构组成.结果表明:在低温状态下,双室载体内生物种类较多,且主要以杆菌为主.钟虫和线虫等也较多.COD 去除率总体较低但相对稳定,各反应器平均去除率均在65％以上.双室悬浮载体比普通悬浮载体的氨氮和总氮去除率高7％-10％.对处理前后废水进行GC-MS扫描后发现,双室悬浮载体可去除废水中的苯酚类同系物及甲苯并具有一定的脱硫能力.以Grau模型计算了进水底物浓度变化时的底物降解常数,利用双室悬浮载体,HRT为20h时的底物降解常数最大(0.358).因此,双室悬浮生物载体对工业废水低温脱氮来说是一种较好的微生物载体.%This paper introduced the double-room suspended carrier, a laboratory installation of wastewater treatment specific for denitrification of industrial effluents at relatively low temperatures around 4℃. Observation by microscopy of microbes grown and attached on the carrier showed that their main species were Coli, Vorticella and Nematodes. As demonstrated by GC-MS, phenols and toluene, as well as a certain amount of sulfur could be removed by the double-room suspended carrier. In addition, Grau model was used to calculate the substrate degradation constant, which indicated the maximum degradation constant(0.358) was obtained when HRT extended to 20h.
DEFF Research Database (Denmark)
Ehlers, Michael; Adland, Karoline Thorp; Boston, Nicolai Elborough
Project Half Double has a clear mission to succeed in finding a project methodology that can increase the success rate of our projects while increasing the speed at which we generate new ideas and develop new products and services. Chaos and complexity should be seen as a basic condition...... and as an opportunity rather than a threat and a risk. We are convinced that by doing so, we can strengthen Denmark’s competitiveness and play an important role in the battle for jobs and future welfare. The overall goal is to deliver “projects in half the time with double the impact”, where projects in half the time...... should be understood as half the time to impact (benefit realisation, effect is achieved) and not as half the time for project execution. The purpose of Project Half Double is to improve Danish industrial competitiveness by radically increasing the pace and impact of the development and innovation...