Directory of Open Access Journals (Sweden)
Daijiro Fukuda
2004-01-01
Full Text Available Using diagrammatic pictures of tensor contractions, we consider a Hopf algebra (Aop⊗ℛλA** twisted by an element ℛλ∈A*⊗Aop corresponding to a Hopf algebra morphism λ:A→A. We show that this Hopf algebra is quasitriangular with the universal R-matrix coming from ℛλ when λ2=idA, generalizing the quantum double construction which corresponds to the case λ=idA.
The time of simultaneous tunneling of identical particles through the rectangular quantum barrier
International Nuclear Information System (INIS)
Martsenyuk, L.S.; Omelchenko, S.A.
2010-01-01
Work is devoted to studying the influence of exchange processes on a time of simultaneous crossing by identical particles of a rectangular quantum barrier. It is shown, that such processes essentially influence on the parameters of tunneling. The size of addition to time of identical particles tunneling, arising up because of their exchange interaction in a field of a rectangular quantum barrier is first counted.
International Nuclear Information System (INIS)
Mitsuoka, Shigenori; Tamura, Akira
2011-01-01
Assuming that an electron confined by double δ-function barriers lies in a quasi-stationary state, we derived eigenstates and eigenenergies of the electron. Such an electron has a complex eigenenergy, and the imaginary part naturally leads to the lifetime of the electron associated with tunneling through barriers. We applied this point of view to the electron confined in a rectangular quantum corral (QC) on a noble metal surface, and obtained scanning tunneling microscopic images and a scanning tunneling spectrum consistent with experimental ones. We investigated the electron states confined in coupled QCs and obtained the coupled states constructed with bonding and anti-bonding states. Using those energy levels and wavefunctions we specified scanning tunneling microscope (STM) images and scanning tunneling spectra (STS) for the doubly and triply coupled QCs. In addition we pointed out the feature of resonant electron states associated with the same QCs at both ends of the triply coupled QCs.
Thermal vibration of a rectangular single-layered graphene sheet with quantum effects
International Nuclear Information System (INIS)
Wang, Lifeng; Hu, Haiyan
2014-01-01
The thermal vibration of a rectangular single-layered graphene sheet is investigated by using a rectangular nonlocal elastic plate model with quantum effects taken into account when the law of energy equipartition is unreliable. The relation between the temperature and the Root of Mean Squared (RMS) amplitude of vibration at any point of the rectangular single-layered graphene sheet in simply supported case is derived first from the rectangular nonlocal elastic plate model with the strain gradient of the second order taken into consideration so as to characterize the effect of microstructure of the graphene sheet. Then, the RMS amplitude of thermal vibration of a rectangular single-layered graphene sheet simply supported on an elastic foundation is derived. The study shows that the RMS amplitude of the rectangular single-layered graphene sheet predicted from the quantum theory is lower than that predicted from the law of energy equipartition. The maximal relative difference of RMS amplitude of thermal vibration appears at the sheet corners. The microstructure of the graphene sheet has a little effect on the thermal vibrations of lower modes, but exhibits an obvious effect on the thermal vibrations of higher modes. The quantum effect is more important for the thermal vibration of higher modes in the case of smaller sides and lower temperature. The relative difference of maximal RMS amplitude of thermal vibration of a rectangular single-layered graphene sheet decreases monotonically with an increase of temperature. The absolute difference of maximal RMS amplitude of thermal vibration of a rectangular single-layered graphene sheet increases slowly with the rising of Winkler foundation modulus.
International Nuclear Information System (INIS)
Martsenyuk, L.S.
2010-01-01
Research of influence of exchange interaction of identical particles for the time of their simultaneous tunneling through a rectangular quantum barrier is lead. The account of identity leads to necessity of symmetrisation of wave function owing to what in the formula describing interaction of two particles, arises an additional element. In result the parameters of tunneling, including time of tunneling change. Time of tunneling is calculated from the formula received in work from the size of exchange interaction of two particles simultaneously crossing a rectangular quantum barrier.
The quantum double in integrable quantum field theory
International Nuclear Information System (INIS)
Bernard, D.; LeClair, A.
1993-01-01
Various aspects of recent works on affine quantum group symmetry of integrable 2D quantum field theory are reviewed and further clarified. A geometrical meaning is given to the quantum double, and other properties of quantum groups. The S-matrix is identified with the universal R-matrix. Multiplicative presentations of the yangian double are analyzed. (orig.)
Transmission line model for coupled rectangular double split‐ring resonators
DEFF Research Database (Denmark)
Yan, Lei; Tang, Meng; Krozer, Viktor
2011-01-01
In this work, a model based on a coupled transmission line formulation is developed for microstrip rectangular double split‐ring resonators (DSRRs). This model allows using the physical dimensions of the DSRRs as an input avoiding commonly used extraction of equivalent parameters. The model inclu...... simulations of the DSRR structures. © 2011 Wiley Periodicals, Inc. Microwave Opt Technol Lett 53:1311–1315, 2011; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.25988...
Energy characteristics of the double slot in the narrow wall of a rectangular waveguide
Martynenko, S. A.
2005-01-01
Based on approximation of the half-wave field distribution in the slots, an expression is derived for internal mutual conductance of closely-spaced slots, which form a double inclined slot in the narrow wall of a rectangular waveguide. The narrow wall has cut-outs reaching the broad wall. With the use of the method of induced magnetomotive forces, a mathematical model is devised for calculating the energy characteristics of the double slot. The impact of angle of inclination of the slots, dim...
Energy Technology Data Exchange (ETDEWEB)
Teamah, M.A. [Faculty of Engineering, Alexandria University, Mech. Eng. Dept, Alexandria (Egypt); El-Maghlany, W.M. [Faculty of Engineering, Suez Canal University, Ismailia (Egypt)
2010-09-15
The present study is concerned with the mixed convection in a rectangular lid-driven cavity under the combined buoyancy effects of thermal and mass diffusion. Double-diffusive convective flow in a rectangular enclosure with moving upper surface is studied numerically. Both upper and lower surfaces are being insulated and impermeable. Constant different temperatures and concentration are imposed along the vertical walls of the enclosure, steady state laminar regime is considered. The transport equations for continuity, momentum, energy and spices transfer are solved. The numerical results are reported for the effect of Richardson number, Lewis number, and buoyancy ratio on the iso-contours of stream line, temperature, and concentration. In addition, the predicted results for both local and average Nusselt and Sherwood numbers are presented and discussed for various parametric conditions. This study was done for 0.1 <= Le <= 50 and Prandtl number Pr = 0.7. Through out the study the Grashof number and aspect ratio are kept constant at 10{sup 4} and 2 respectively and -10 <= N <= 10, while Richardson number has been varied from 0.01 to 10 to simulate forced convection dominated flow, mixed convection and natural convection dominated flow. (authors)
Larmor precession and dwell time of a relativistic particle scattered by a rectangular quantum well
Li, Z J; Liang, J J; Liang, J Q
2003-01-01
The Larmor precession of a relativistic neutral spin particle in a uniform constant magnetic field confined to the region of a one-dimensional rectangular potential well is investigated. The spin precession serves as a clock to measure the time spent by a quantum particle dwelling at a potential well. With the help of a general spin coherent state it is explicitly shown that the spin precession time is equal to the dwell time in the first-order approximation of the infinitesimal field limit. The comparison of the time in a potential well with that in free space shows apparent superluminality.
Double-partition Quantum Cluster Algebras
DEFF Research Database (Denmark)
Jakobsen, Hans Plesner; Zhang, Hechun
2012-01-01
A family of quantum cluster algebras is introduced and studied. In general, these algebras are new, but sub-classes have been studied previously by other authors. The algebras are indexed by double parti- tions or double flag varieties. Equivalently, they are indexed by broken lines L. By grouping...... together neighboring mutations into quantum line mutations we can mutate from the cluster algebra of one broken line to another. Compatible pairs can be written down. The algebras are equal to their upper cluster algebras. The variables of the quantum seeds are given by elements of the dual canonical basis....
Joekar-Niasar, V.
2013-01-25
Upscaling electroosmosis in porous media is a challenge due to the complexity and scale-dependent nonlinearities of this coupled phenomenon. "Pore-network modeling" for upscaling electroosmosis from pore scale to Darcy scale can be considered as a promising approach. However, this method requires analytical solutions for flow and transport at pore scale. This study concentrates on the development of analytical solutions of flow and transport in a single rectangular channel under combined effects of electrohydrodynamic forces. These relations will be used in future works for pore-network modeling. The analytical solutions are valid for all regimes of overlapping electrical double layers and have the potential to be extended to nonlinear Boltzmann distribution. The innovative aspects of this study are (a) contribution of overlapping of electrical double layers to the Stokes flow as well as Nernst-Planck transport has been carefully included in the analytical solutions. (b) All important transport mechanisms including advection, diffusion, and electromigration have been included in the analytical solutions. (c) Fully algebraic relations developed in this study can be easily employed to upscale electroosmosis to Darcy scale using pore-network modeling. © 2013 Springer Science+Business Media Dordrecht.
Joekar-Niasar, V.; Schotting, R.; Leijnse, A.
2013-01-01
Upscaling electroosmosis in porous media is a challenge due to the complexity and scale-dependent nonlinearities of this coupled phenomenon. "Pore-network modeling" for upscaling electroosmosis from pore scale to Darcy scale can be considered as a promising approach. However, this method requires analytical solutions for flow and transport at pore scale. This study concentrates on the development of analytical solutions of flow and transport in a single rectangular channel under combined effects of electrohydrodynamic forces. These relations will be used in future works for pore-network modeling. The analytical solutions are valid for all regimes of overlapping electrical double layers and have the potential to be extended to nonlinear Boltzmann distribution. The innovative aspects of this study are (a) contribution of overlapping of electrical double layers to the Stokes flow as well as Nernst-Planck transport has been carefully included in the analytical solutions. (b) All important transport mechanisms including advection, diffusion, and electromigration have been included in the analytical solutions. (c) Fully algebraic relations developed in this study can be easily employed to upscale electroosmosis to Darcy scale using pore-network modeling. © 2013 Springer Science+Business Media Dordrecht.
Conductance in double quantum well systems
International Nuclear Information System (INIS)
Hasbun, J E
2003-01-01
The object of this paper is to review the electronic conductance in double quantum well systems. These are quantum well structures in which electrons are confined in the z direction by large band gap material barrier layers, yet form a free two-dimensional Fermi gas within the sandwiched low band gap material layers in the x-y plane. Aspects related to the conductance in addition to the research progress made since the inception of such systems are included. While the review focuses on the tunnelling conductance properties of double quantum well devices, the longitudinal conductance is also discussed. Double quantum well systems are a more recent generation of structures whose precursors are the well known double-barrier resonant tunnelling systems. Thus, they have electronic signatures such as negative differential resistance, in addition to resonant tunnelling, whose behaviours depend on the wavefunction coupling between the quantum wells. As such, the barrier which separates the quantum wells can be tailored in order to provide better control of the device's electronic properties over their single well ancestors. (topical review)
Gap states and edge properties of rectangular graphene quantum dot in staggered potential
Jeong, Y. H.; Eric Yang, S.-R.
2017-09-01
We investigate edge properties of a gapful rectangular graphene quantum dot in a staggered potential. In such a system gap states with discrete and closely spaced energy levels exist that are spatially located on the left or right zigzag edge. We find that, although the bulk states outside the energy gap are nearly unaffected, spin degeneracy of each gap state is lifted by the staggered potential. We have computed the occupation numbers of spin-up and -down gap states at various values of the strength of the staggered potential. The electronic and magnetic properties of the zigzag edges depend sensitively on these numbers. We discuss the possibility of applying this system as a single electron spintronic device.
Hydrogenic impurity in double quantum dots
International Nuclear Information System (INIS)
Wang, X.F.
2007-01-01
The ground state binding energy and the average interparticle distances for a hydrogenic impurity in double quantum dots with Gaussian confinement potential are studied by the variational method. The probability density of the electron is calculated, too. The dependence of the binding energy on the impurity position is investigated for GaAs quantum dots. The result shows that the binding energy has a minimum as a function of the distance between the two quantum dots when the impurity is located at the center of one quantum dot or at the center of the edge of one quantum dot. When the impurity is located at the center of the two dots, the binding energy decreases monotonically
Double-pass quantum volume hologram
International Nuclear Information System (INIS)
Vasilyev, Denis V.; Sokolov, Ivan V.
2011-01-01
We propose a scheme for parallel, spatially multimode quantum memory for light. The scheme is based on the propagation in different directions of a quantum signal wave and strong classical reference wave, like in a classical volume hologram and the previously proposed quantum volume hologram [D. V. Vasilyev et al., Phys. Rev. A 81, 020302(R) (2010)]. The medium for the hologram consists of a spatially extended ensemble of cold spin-polarized atoms. In the absence of the collective spin rotation during the interaction, two passes of light for both storage and retrieval are required, and therefore the present scheme can be called a double-pass quantum volume hologram. The scheme is less sensitive to diffraction and therefore is capable of achieving a higher density of storage of spatial modes as compared to the previously proposed thin quantum hologram [D. V. Vasilyev et al., Phys. Rev. A 77, 020302(R) (2008)], which also requires two passes of light for both storage and retrieval. However, the present scheme allows one to achieve a good memory performance with a lower optical depth of the atomic sample as compared to the quantum volume hologram. A quantum hologram capable of storing entangled images can become an important ingredient in quantum information processing and quantum imaging.
From polymers to quantum gravity: Triple-scaling in rectangular random matrix models
International Nuclear Information System (INIS)
Myers, R.C.; Periwal, V.
1993-01-01
Rectangular NxM matrix models can be solved in several qualitatively distinct large-N limits, since two independent parameters govern the size of the matrix. Regarded as models of random surfaces, these matrix models interpolate between branched polymer behaviour and two-dimensional quantum gravity. We solve such models in a 'triple-scaling' regime in this paper, with N and M becoming large independently. A correspondence between phase transitions and singularities of mappings from R 2 to R 2 is indicated. At different critical points, the scaling behaviour is determined by (i) two decoupled ordinary differential equations; (ii) an ordinary differential equation and a finite-difference equation; or (iii) two coupled partial differential equations. The Painleve II equation arises (in conjunction with a difference equation) at a point associated with branched polymers. For critical points described by partial differential equations, there are dual weak-coupling/strong-coupling expansions. It is conjectured that the new physics is related to microscopic topology fluctuations. (orig.)
Double quantum dot as a minimal thermoelectric generator
Donsa, S.; Andergassen, S.; Held, K.
2014-01-01
Based on numerical renormalization group calculations, we demonstrate that experimentally realized double quantum dots constitute a minimal thermoelectric generator. In the Kondo regime, one quantum dot acts as an n-type and the other one as a p-type thermoelectric device. Properly connected the double quantum dot provides a miniature power supply utilizing the thermal energy of the environment.
Understanding the Double Quantum Muonium RF Resonance
Kreitzman, S. R.; Cottrell, S. P.; Fleming, D. G.; Sun-Mack, S.
A physically intuitive analytical solution to the Mu + RF Hamiltonian and lineshape is developed. The method is based on reformulating the problem in a basis set that explicitly accounts for the 1q RF transitions and identifying an isolated upper 1q quasi-eigenstate within that basis. Subsequently the double quantum resonance explicitly manifests itself via the non-zero interaction term between the pair of lower ortho-normalized 1q basis states, which in this field region are substantially the | \\uparrow \\uparrow > and | \\downarrow \\downarrow > Mu states.
Discrete quantum Fourier transform in coupled semiconductor double quantum dot molecules
International Nuclear Information System (INIS)
Dong Ping; Yang Ming; Cao Zhuoliang
2008-01-01
In this Letter, we present a physical scheme for implementing the discrete quantum Fourier transform in a coupled semiconductor double quantum dot system. The main controlled-R gate operation can be decomposed into many simple and feasible unitary transformations. The current scheme would be a useful step towards the realization of complex quantum algorithms in the quantum dot system
Deformed quantum double realization of the toric code and beyond
Padmanabhan, Pramod; Ibieta-Jimenez, Juan Pablo; Bernabe Ferreira, Miguel Jorge; Teotonio-Sobrinho, Paulo
2016-09-01
Quantum double models, such as the toric code, can be constructed from transfer matrices of lattice gauge theories with discrete gauge groups and parametrized by the center of the gauge group algebra and its dual. For general choices of these parameters the transfer matrix contains operators acting on links which can also be thought of as perturbations to the quantum double model driving it out of its topological phase and destroying the exact solvability of the quantum double model. We modify these transfer matrices with perturbations and extract exactly solvable models which remain in a quantum phase, thus nullifying the effect of the perturbation. The algebra of the modified vertex and plaquette operators now obey a deformed version of the quantum double algebra. The Abelian cases are shown to be in the quantum double phase whereas the non-Abelian phases are shown to be in a modified phase of the corresponding quantum double phase. These are illustrated with the groups Zn and S3. The quantum phases are determined by studying the excitations of these systems namely their fusion rules and the statistics. We then go further to construct a transfer matrix which contains the other Z2 phase namely the double semion phase. More generally for other discrete groups these transfer matrices contain the twisted quantum double models. These transfer matrices can be thought of as being obtained by introducing extra parameters into the transfer matrix of lattice gauge theories. These parameters are central elements belonging to the tensor products of the algebra and its dual and are associated to vertices and volumes of the three dimensional lattice. As in the case of the lattice gauge theories we construct the operators creating the excitations in this case and study their braiding and fusion properties.
Magnetophonon resonance in double quantum wells
Ploch, D.; Sheregii, E. M.; Marchewka, M.; Wozny, M.; Tomaka, G.
2009-05-01
The experimental results obtained for the magnetotransport in pulsed magnetic fields in the InGaAs/InAlAs double quantum well (DQW) structures of two different shapes of wells and different values of the electron density are reported. The magnetophonon resonance (MPR) was observed for both types of structures within the temperature range 77-125 K. Four kinds of LO phonons are taken into account to interpret the MPR oscillations in the DQW and a method of the Landau level calculation in the DQW is elaborated for this aim. The peculiarity of the MPR in the DQW is the large number of the Landau levels caused by SAS splitting of the electron states (splitting on the symmetric and anti-symmetric states) and the large number of the phonon assistance electron transitions between Landau levels. The significant role of the carrier statistics is shown too. The behavior of the electron states in the DQWs at comparably high temperatures has been studied using the MPR. It is shown that the Huang and Manasreh [Manasreh [Phys. Rev. B 54, 2044 (1996)] model involving screening of exchange interaction is confirmed.
Quantum Phase Spase Representation for Double Well Potential
Babyuk, Dmytro
2002-01-01
A behavior of quantum states (superposition of two lowest eigenstates, Gaussian wave packet) in phase space is studied for one and two dimensional double well potential. Two dimensional potential is constructed from double well potential coupled linearly and quadratically to harmonic potential. Quantum trajectories are compared with classical ones. Preferable tunneling path in phase space is found. An influence of energy of initial Gaussian wave packet and trajectory initial condition on tunn...
Double Tunneling Injection Quantum Dot Lasers for High Speed Operation
2017-10-23
Double Tunneling-Injection Quantum Dot Lasers for High -Speed Operation The views, opinions and/or findings contained in this report are those of...SECURITY CLASSIFICATION OF: 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6...State University Title: Double Tunneling-Injection Quantum Dot Lasers for High -Speed Operation Report Term: 0-Other Email: asryan@vt.edu Distribution
Self-assembly of concentric quantum double rings.
Mano, Takaaki; Kuroda, Takashi; Sanguinetti, Stefano; Ochiai, Tetsuyuki; Tateno, Takahiro; Kim, Jongsu; Noda, Takeshi; Kawabe, Mitsuo; Sakoda, Kazuaki; Kido, Giyuu; Koguchi, Nobuyuki
2005-03-01
We demonstrate the self-assembled formation of concentric quantum double rings with high uniformity and excellent rotational symmetry using the droplet epitaxy technique. Varying the growth process conditions can control each ring's size. Photoluminescence spectra emitted from an individual quantum ring complex show peculiar quantized levels that are specified by the carriers' orbital trajectories.
Vertically coupled double quantum rings at zero magnetic field
Malet, Francesc; Barranco, Manuel; Lipparini, Enrico; Pi, Ricardo Mayol Martí; Climente, Juan Ignacio; Planelles, Josep
2006-01-01
Within local-spin-density functional theory, we have investigated the `dissociation' of few-electron circular vertical semiconductor double quantum ring artificial molecules at zero magnetic field as a function of inter-ring distance. In a first step, the molecules are constituted by two identical quantum rings. When the rings are quantum mechanically strongly coupled, the electronic states are substantially delocalized, and the addition energy spectra of the artificial molecule resemble thos...
Tunnelling and relaxation in semiconductor double quantum wells
International Nuclear Information System (INIS)
Ferreira, R.; Bastard, G.
1997-01-01
Double quantum wells are among the simplest semiconductor heterostructures exhibiting tunnel coupling. The existence of a quantum confinement effect for the energy levels of a narrow single quantum well has been largely studied. In double quantum wells, in addition to these confinement effects which characterize the levels of the isolated wells, one faces the problem of describing the eigenstates of systems interacting weakly through a potential barrier. In addition, the actual structures differ from the ideal systems studied in the quantum mechanics textbooks in many aspects. The presence of defects leads, for instance, to an irreversible time evolution for a population of photocreated carriers. This irreversible transfer is now clearly established experimentally. The resonant behaviour of the transfer has also been evidenced, from the study of biased structures. If the existence of an interwell transfer is now clearly established from the experimental point of view, its theoretical description, however, is not fully satisfactory. This review focuses on the theoretical description of the energy levels and of the interwell assisted transfer in double quantum wells. We shall firstly outline the problem of tunnel coupling in semiconductor heterostructures and then discuss the single particle and exciton eigenstates in double quantum wells. In the remaining part of the review we shall present and critically review a few theoretical models used to describe the assisted interwell transfer in these structures. (author)
Magnetospectroscopy of double HgTe/CdHgTe quantum wells
Energy Technology Data Exchange (ETDEWEB)
Bovkun, L. S.; Krishtopenko, S. S.; Ikonnikov, A. V., E-mail: antikon@ipmras.ru; Aleshkin, V. Ya.; Kadykov, A. M. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Ruffenach, S.; Consejo, C.; Teppe, F.; Knap, W. [Laboratoire Charles Coulomb (L2C), UMR CNRS 5221 and UM (France); Orlita, M.; Piot, B.; Potemski, M. [Laboratoire National des Champs Magnetiques Intenses (LNCMI-G), CNRS-UJF-UPS-INSA (France); Mikhailov, N. N.; Dvoretskii, S. A. [Russian Academy of Sciences, Siberian Branch, Rzhanov Institute of Semiconductor Physics (Russian Federation); Gavrilenko, V. I. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)
2016-11-15
The magnetoabsorption spectra in double HgTe/CdHgTe quantum wells (QWs) with normal and inverted band structures are investigated. The Landau levels in symmetric QWs with a rectangular potential profile are calculated based on the Kane 8 × 8 model. The presence of a tunnel-transparent barrier is shown to lead to the splitting of states and “doubling” of the main magnetoabsorption lines. At a QW width close to the critical one the presence of band inversion and the emergence of a gapless band structure, similar to bilayer graphene, are shown for a structure with a single QW. The shift of magnetoabsorption lines as the carrier concentration changes due to the persistent photoconductivity effect associated with a change in the potential profile because of trap charge exchange is detected. This opens up the possibility for controlling topological phase transitions in such structures.
Optimal tunneling enhances the quantum photovoltaic effect in double quantum dots
International Nuclear Information System (INIS)
Wang, Chen; Cao, Jianshu; Ren, Jie
2014-01-01
We investigate the quantum photovoltaic effect in double quantum dots by applying the nonequilibrium quantum master equation. A drastic suppression of the photovoltaic current is observed near the open circuit voltage, which leads to a large filling factor. We find that there always exists an optimal inter-dot tunneling that significantly enhances the photovoltaic current. Maximal output power will also be obtained around the optimal inter-dot tunneling. Moreover, the open circuit voltage behaves approximately as the product of the eigen-level gap and the Carnot efficiency. These results suggest a great potential for double quantum dots as efficient photovoltaic devices
Local Gate Control of a Carbon Nanotube Double Quantum Dot
2016-04-04
describ- ing the levitation . Quantitative comparisons are made difficult by the complicated aniso- tropy of the nematic’s viscoelasticity (21). However...director fields. For example, as a straightforward extension of the levitation , a liquid crystal that twists through many periods (such as a cholesteric...Nanotube Double Quantum Dot N. Mason,*† M. J. Biercuk,* C. M. Marcus† We have measured carbon nanotube quantum dots with multiple electro- static gates and
Double stochastic matrices in quantum mechanics
International Nuclear Information System (INIS)
Louck, J.D.
1997-01-01
The general set of doubly stochastic matrices of order n corresponding to ordinary nonrelativistic quantum mechanical transition probability matrices is given. Lande's discussion of the nonquantal origin of such matrices is noted. Several concrete examples are presented for elementary and composite angular momentum systems with the focus on the unitary symmetry associated with such systems in the spirit of the recent work of Bohr and Ulfbeck. Birkhoff's theorem on doubly stochastic matrices of order n is reformulated in a geometrical language suitable for application to the subset of quantum mechanical doubly stochastic matrices. Specifically, it is shown that the set of points on the unit sphere in cartesian n'-space is subjective with the set of doubly stochastic matrices of order n. The question is raised, but not answered, as to what is the subset of points of this unit sphere that correspond to the quantum mechanical transition probability matrices, and what is the symmetry group of this subset of matrices
Andreev molecules in semiconductor nanowire double quantum dots.
Su, Zhaoen; Tacla, Alexandre B; Hocevar, Moïra; Car, Diana; Plissard, Sébastien R; Bakkers, Erik P A M; Daley, Andrew J; Pekker, David; Frolov, Sergey M
2017-09-19
Chains of quantum dots coupled to superconductors are promising for the realization of the Kitaev model of a topological superconductor. While individual superconducting quantum dots have been explored, control of longer chains requires understanding of interdot coupling. Here, double quantum dots are defined by gate voltages in indium antimonide nanowires. High transparency superconducting niobium titanium nitride contacts are made to each of the dots in order to induce superconductivity, as well as probe electron transport. Andreev bound states induced on each of dots hybridize to define Andreev molecular states. The evolution of these states is studied as a function of charge parity on the dots, and in magnetic field. The experiments are found in agreement with a numerical model.Quantum dots in a nanowire are one possible approach to creating a solid-state quantum simulator. Here, the authors demonstrate the coupling of electronic states in a double quantum dot to form Andreev molecule states; a potential building block for longer chains suitable for quantum simulation.
Oscillatory magnetoconductance of quantum double-well channels
International Nuclear Information System (INIS)
Rojo, A.G.; Kumar, N.; Balseiro, C.A.
1988-07-01
The recently observed flux-periodic interference effect between parallel quantum double-well channels is theoretically studied in a discrete model that takes into account tunneling between channels. We obtain oscillatory magnetoconductance with small modulations which is attributable to the tunneling. Our treatment includes the effect of evanescent modes. (author). 7 refs, 2 figs
Bose Condensation of Interwell Excitons in Double Quantum Wells
DEFF Research Database (Denmark)
Larionov, A. V.; Timofeev, V. B.; Ni, P. A.
2002-01-01
The luminescence of interwell excitons in double quantum wells GaAs/AlGaAs (n–i–n heterostructures) with large-scale fluctuations of random potential in the heteroboundary planes was studied. The properties of excitons whose photoexcited electron and hole are spatially separated in the neighboring...
Electron-longitudinal-acoustic-phonon scattering in double-quantum-dot based quantum gates
International Nuclear Information System (INIS)
Zhao Peiji; Woolard, Dwight L.
2008-01-01
We propose a nanostructure design which can significantly suppress longitudinal-acoustic-phonon-electron scattering in double-quantum-dot based quantum gates for quantum computing. The calculated relaxation rates vs. bias voltage exhibit a double-peak feature with a minimum approaching 10 5 s -1 . In this matter, the energy conservation law prohibits scattering contributions from phonons with large momenta; furthermore, increasing the barrier height between the double quantum dots reduces coupling strength between the dots. Hence, the joint action of the energy conservation law and the decoupling greatly reduces the scattering rates. The degrading effects of temperatures can be reduced simply by increasing the height of the barrier between the dots
QCAD simulation and optimization of semiconductor double quantum dots
Energy Technology Data Exchange (ETDEWEB)
Nielsen, Erik; Gao, Xujiao; Kalashnikova, Irina; Muller, Richard Partain; Salinger, Andrew Gerhard; Young, Ralph Watson
2013-12-01
We present the Quantum Computer Aided Design (QCAD) simulator that targets modeling quantum devices, particularly silicon double quantum dots (DQDs) developed for quantum qubits. The simulator has three di erentiating features: (i) its core contains nonlinear Poisson, e ective mass Schrodinger, and Con guration Interaction solvers that have massively parallel capability for high simulation throughput, and can be run individually or combined self-consistently for 1D/2D/3D quantum devices; (ii) the core solvers show superior convergence even at near-zero-Kelvin temperatures, which is critical for modeling quantum computing devices; (iii) it couples with an optimization engine Dakota that enables optimization of gate voltages in DQDs for multiple desired targets. The Poisson solver includes Maxwell- Boltzmann and Fermi-Dirac statistics, supports Dirichlet, Neumann, interface charge, and Robin boundary conditions, and includes the e ect of dopant incomplete ionization. The solver has shown robust nonlinear convergence even in the milli-Kelvin temperature range, and has been extensively used to quickly obtain the semiclassical electrostatic potential in DQD devices. The self-consistent Schrodinger-Poisson solver has achieved robust and monotonic convergence behavior for 1D/2D/3D quantum devices at very low temperatures by using a predictor-correct iteration scheme. The QCAD simulator enables the calculation of dot-to-gate capacitances, and comparison with experiment and between solvers. It is observed that computed capacitances are in the right ballpark when compared to experiment, and quantum con nement increases capacitance when the number of electrons is xed in a quantum dot. In addition, the coupling of QCAD with Dakota allows to rapidly identify which device layouts are more likely leading to few-electron quantum dots. Very efficient QCAD simulations on a large number of fabricated and proposed Si DQDs have made it possible to provide fast feedback for design
Dephasing and hyperfine interaction in carbon nanotubes double quantum dots
DEFF Research Database (Denmark)
Reynoso, Andres Alejandro; Flensberg, Karsten
2012-01-01
We study theoretically the return probability experiment, which is used to measure the dephasing time T-2*, in a double quantum dot (DQD) in semiconducting carbon nanotubes with spin-orbit coupling and disorder-induced valley mixing. Dephasing is due to hyperfine interaction with the spins of the C...... with these for DQDs in clean nanotubes, whereas the disorder effect is always relevant when the magnetic field is perpendicular to the nanotube axis....
Decoherence in a double-slit quantum eraser
International Nuclear Information System (INIS)
Torres-Ruiz, F. A.; Lima, G.; Delgado, A.; Saavedra, C.; Padua, S.
2010-01-01
We study and experimentally implement a double-slit quantum eraser in the presence of a controlled decoherence mechanism. A two-photon state, produced in a spontaneous parametric down-conversion process, is prepared in a maximally entangled polarization state. A birefringent double slit is illuminated by one of the down-converted photons, and it acts as a single-photon two-qubits controlled-not gate that couples the polarization with the transversal momentum of these photons. The other photon, which acts as a which-path marker, is sent through a Mach-Zehnder-like interferometer. When the interferometer is partially unbalanced, it behaves as a controlled source of decoherence for polarization states of down-converted photons. We show the transition from wavelike to particle-like behavior of the signal photons crossing the double slit as a function of the decoherence parameter, which depends on the length path difference at the interferometer.
Connection between noise and quantum correlations in a double quantum dot
Bodoky, F.; Belzig, W.; Bruder, C.
We investigate the current and noise characteristics of a double quantum dot system. The strong correlations induced by the Coulomb interaction and the Pauli principle create entangled two-electron states and lead to signatures in the transport properties. We show that the interaction parameter Ø,
Computer-automated tuning of semiconductor double quantum dots into the single-electron regime
Energy Technology Data Exchange (ETDEWEB)
Baart, T. A.; Vandersypen, L. M. K. [QuTech, Delft University of Technology, P.O. Box 5046, 2600 GA Delft (Netherlands); Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 5046, 2600 GA Delft (Netherlands); Eendebak, P. T. [QuTech, Delft University of Technology, P.O. Box 5046, 2600 GA Delft (Netherlands); Netherlands Organisation for Applied Scientific Research (TNO), P.O. Box 155, 2600 AD Delft (Netherlands); Reichl, C.; Wegscheider, W. [Solid State Physics Laboratory, ETH Zürich, 8093 Zürich (Switzerland)
2016-05-23
We report the computer-automated tuning of gate-defined semiconductor double quantum dots in GaAs heterostructures. We benchmark the algorithm by creating three double quantum dots inside a linear array of four quantum dots. The algorithm sets the correct gate voltages for all the gates to tune the double quantum dots into the single-electron regime. The algorithm only requires (1) prior knowledge of the gate design and (2) the pinch-off value of the single gate T that is shared by all the quantum dots. This work significantly alleviates the user effort required to tune multiple quantum dot devices.
Computer-automated tuning of semiconductor double quantum dots into the single-electron regime
Baart, T.A.; Eendebak, P.T.; Reichl, C.; Wegscheider, W.; Vandersypen, L.M.K.
2016-01-01
We report the computer-automated tuning of gate-defined semiconductor double quantum dots in GaAs heterostructures. We benchmark the algorithm by creating three double quantum dots inside a linear array of four quantum dots. The algorithm sets the correct gate voltages for all the gates to tune the
Some double resonance and multiple quantum NMR studies in solids
Energy Technology Data Exchange (ETDEWEB)
Wemmer, D.E.
1978-08-01
The first section of this work presents the theory and experimental applications to analysis of molecular motion of chemical shielding lineshapes obtained with high resolution double resonance NMR techniques. Analysis of /sup 13/C powder lineshapes in hexamethylbenzene (HMB) and decamethylferrocene (DMFe) show that these molecules reorient in a jumping manner about the symmetry axis. Analysis of proton chemical shielding lineshapes of residual protons in heavy ice (D/sub 2/O) show that protons are exchanged among the tetrahedral positions of neighboring oxygen atoms, consistent with motion expected from defect migration. The second section describes the application of Fourier Transform Double Quantum NMR to measurement of chemical shielding of deuterium in powder samples. Studies of partially deuterated benzene and ferrocene give equal shielding anisotropies, ..delta..sigma = -6.5 ppM. Theoretical predictions and experimental measurements of dipolar couplings between deuterons using FTDQ NMR are presented. Crystals of BaClO/sub 3/.D/sub 2/O, ..cap alpha..,..beta.. d-2 HMB and ..cap alpha..,..beta..,..gamma.. d-3 HMB were studied, as were powders of d-2 HMB and anisic acid. The third section discusses general multiple quantum spectroscopy in dipolar coupled spin systems. Theoretical description is made for creation and detection of coherences between states without quantum number selection rules ..delta..m = +-1. Descriptions of techniques for partial selectivity of order in preparation and detection of multiple quantum coherences are made. The effects on selectivity and resolution of echo pulses during multiple quantum experiments are discussed. Experimental observation of coherences up to order 6 have been made in a sample of benzene dissolved in a liquid crystal. Experimental verifications of order selection and echo generation have been made.
Some double resonance and multiple quantum NMR studies in solids
International Nuclear Information System (INIS)
Wemmer, D.E.
1978-08-01
The first section of this work presents the theory and experimental applications to analysis of molecular motion of chemical shielding lineshapes obtained with high resolution double resonance NMR techniques. Analysis of 13 C powder lineshapes in hexamethylbenzene (HMB) and decamethylferrocene (DMFe) show that these molecules reorient in a jumping manner about the symmetry axis. Analysis of proton chemical shielding lineshapes of residual protons in heavy ice (D 2 O) show that protons are exchanged among the tetrahedral positions of neighboring oxygen atoms, consistent with motion expected from defect migration. The second section describes the application of Fourier Transform Double Quantum NMR to measurement of chemical shielding of deuterium in powder samples. Studies of partially deuterated benzene and ferrocene give equal shielding anisotropies, Δsigma = -6.5 ppM. Theoretical predictions and experimental measurements of dipolar couplings between deuterons using FTDQ NMR are presented. Crystals of BaClO 3 .D 2 O, α,β d-2 HMB and α,β,γ d-3 HMB were studied, as were powders of d-2 HMB and anisic acid. The third section discusses general multiple quantum spectroscopy in dipolar coupled spin systems. Theoretical description is made for creation and detection of coherences between states without quantum number selection rules Δm = +-1. Descriptions of techniques for partial selectivity of order in preparation and detection of multiple quantum coherences are made. The effects on selectivity and resolution of echo pulses during multiple quantum experiments are discussed. Experimental observation of coherences up to order 6 have been made in a sample of benzene dissolved in a liquid crystal. Experimental verifications of order selection and echo generation have been made
Wei, Hai-Rui; Deng, Fu-Guo
2013-07-29
We investigate the possibility of achieving scalable photonic quantum computing by the giant optical circular birefringence induced by a quantum-dot spin in a double-sided optical microcavity as a result of cavity quantum electrodynamics. We construct a deterministic controlled-not gate on two photonic qubits by two single-photon input-output processes and the readout on an electron-medium spin confined in an optical resonant microcavity. This idea could be applied to multi-qubit gates on photonic qubits and we give the quantum circuit for a three-photon Toffoli gate. High fidelities and high efficiencies could be achieved when the side leakage to the cavity loss rate is low. It is worth pointing out that our devices work in both the strong and the weak coupling regimes.
Bound magnetic polaron in a semimagnetic double quantum well
Kalpana, P.; Jayakumar, K.
2017-09-01
The effect of different combinations of the concentration of Mn2+ ion in the Quantum well Cd1-xinMnxin Te and the barrier Cd1-xoutMnxout Te on the Bound Magnetic Polaron (BMP) in a Diluted Magnetic Semiconductors (DMS) Double Quantum Well (DQW) has been investigated. The Schrodinger equation is solved variationally in the effective mass approximation through which the Spin Polaronic Shift (SPS) due to the formation of BMP has been estimated for various locations of the donor impurity in the DQW. The results show that the effect of the increase of Mn2+ ion composition with different combinations on SPS is predominant for On Centre Well (OCW) impurity when compared to all other impurity locations when there is no application of magnetic field (γ = 0), γ being a dimensionless parameter for the magnetic field, and the same is predominant for On Centre Barrier (OCB) impurity with the application of external magnetic field (γ = 0.15).
Pumped double quantum dot with spin-orbit coupling
Directory of Open Access Journals (Sweden)
Sherman Eugene
2011-01-01
Full Text Available Abstract We study driven by an external electric field quantum orbital and spin dynamics of electron in a one-dimensional double quantum dot with spin-orbit coupling. Two types of external perturbation are considered: a periodic field at the Zeeman frequency and a single half-period pulse. Spin-orbit coupling leads to a nontrivial evolution in the spin and orbital channels and to a strongly spin- dependent probability density distribution. Both the interdot tunneling and the driven motion contribute into the spin evolution. These results can be important for the design of the spin manipulation schemes in semiconductor nanostructures. PACS numbers: 73.63.Kv,72.25.Dc,72.25.Pn
Ground state of the parallel double quantum dot system.
Zitko, Rok; Mravlje, Jernej; Haule, Kristjan
2012-02-10
We resolve the controversy regarding the ground state of the parallel double quantum dot system near half filling. The numerical renormalization group predicts an underscreened Kondo state with residual spin-1/2 magnetic moment, ln2 residual impurity entropy, and unitary conductance, while the Bethe ansatz solution predicts a fully screened impurity, regular Fermi-liquid ground state, and zero conductance. We calculate the impurity entropy of the system as a function of the temperature using the hybridization-expansion continuous-time quantum Monte Carlo technique, which is a numerically exact stochastic method, and find excellent agreement with the numerical renormalization group results. We show that the origin of the unconventional behavior in this model is the odd-symmetry "dark state" on the dots.
Directory of Open Access Journals (Sweden)
R. K. Nayak
2015-11-01
Full Text Available We show that sharp nonmonotic variation of low temperature electron mobility μ can be achieved in GaAs/AlxGa1-xAs barrier delta-doped double quantum well structure due to quantum mechanical transfer of subband electron wave functions within the wells. We vary the potential profile of the coupled structure as a function of the doping concentration in order to bring the subbands into resonance such that the subband energy levels anticross and the eigen states of the coupled structure equally share both the wells thereby giving rise to a dip in mobility. When the wells are of equal widths, the dip in mobility occurs under symmetric doping of the side barriers. In case of unequal well widths, the resonance can be obtained by suitable asymmetric variation of the doping concentrations. The dip in mobility becomes sharp and also the wavy nature of mobility takes a rectangular shape by increasing the barrier width. We show that the dip in mobility at resonance is governed by the interface roughness scattering through step like changes in the subband mobilities. It is also gratifying to show that the drop in mobility at the onset of occupation of second subband is substantially supressed through the quantum mechanical transfer of subband wave functions between the wells. Our results can be utilized for performance enhancement of coupled quantum well devices.
Diffusion thermopower of a serial double quantum dot
International Nuclear Information System (INIS)
Thierschmann, H; Henke, M; Knorr, J; Maier, L; Buhmann, H; Molenkamp, L W; Heyn, C; Hansen, W
2013-01-01
We have experimentally studied the diffusion thermopower of a serial double quantum dot, defined electrostatically in a GaAs/AlGaAs heterostructure. We present the thermopower stability diagram for a temperature difference ΔT = (20 ± 10) mK across the device and find a maximum thermovoltage signal of several μV in the vicinity of the triple points. Along a constant energy axis in this regime, the data show a characteristic pattern which is in agreement with Mott's relation and can be well understood within a model of sequential transport. (paper)
Toric codes and quantum doubles from two-body Hamiltonians
Energy Technology Data Exchange (ETDEWEB)
Brell, Courtney G; Bartlett, Stephen D; Doherty, Andrew C [Centre for Engineered Quantum Systems, School of Physics, University of Sydney, Sydney (Australia); Flammia, Steven T, E-mail: cbrell@physics.usyd.edu.au [Perimeter Institute for Theoretical Physics, Waterloo (Canada)
2011-05-15
We present here a procedure to obtain the Hamiltonians of the toric code and Kitaev quantum double models as the low-energy limits of entirely two-body Hamiltonians. Our construction makes use of a new type of perturbation gadget based on error-detecting subsystem codes. The procedure is motivated by a projected entangled pair states (PEPS) description of the target models, and reproduces the target models' behavior using only couplings that are natural in terms of the original Hamiltonians. This allows our construction to capture the symmetries of the target models.
Optical detection of symmetric and antisymmetric states in double quantum wells at room temperature
Marchewka, M.; Sheregii, E. M.; Tralle, I.; Marcelli, A.; Piccinini, M.; Cebulski, J.
2009-09-01
We studied the optical reflectivity of a specially grown double quantum well (DQW) structure characterized by a rectangular shape and a high electron density at room temperature. Assuming that the QWs depth is known, reflectivity spectra in the mid-IR range allow to carry out the precise measurements of the SAS-gap values (the energy gap between the symmetric and anti-symmetric states) and the absolute energies of both symmetric and antisymmetric electron states. The results of our experiments are in favor of the existence of the SAS splitting in the DQWs at room temperature. Here we have shown that the SAS gap increases proportionally to the subband quantum number and the optical electron transitions between symmetric and antisymmetric states belonging to different subbands are allowed. These results were used for interpretation of the beating effect in the Shubnikov-de Haas (SdH) oscillations at low temperatures (0.6 and 4.2 K). The approach to the calculation of the Landau-levels energies for DQW structures developed earlier [D. Ploch , Phys. Rev. B 79, 195434 (2009)] is used for the analysis and interpretation of the experimental data related to the beating effect. We also argue that in order to explain the beating effect in the SdH oscillations, one should introduce two different quasi-Fermi levels characterizing the two electron subsystems regarding symmetry properties of their wave functions, symmetric and antisymmetric ones. These states are not mixed neither by electron-electron interaction nor probably by electron-phonon interaction.
Quantum interference in laser-induced nonsequential double ionization
Quan, Wei; Hao, XiaoLei; Wang, YanLan; Chen, YongJu; Yu, ShaoGang; Xu, SongPo; Xiao, ZhiLei; Sun, RenPing; Lai, XuanYang; Hu, ShiLin; Liu, MingQing; Shu, Zheng; Wang, XiaoDong; Li, WeiDong; Becker, Wilhelm; Liu, XiaoJun; Chen, Jing
2017-09-01
Quantum interference plays an important role in various intense-laser-driven atomic phenomena, e.g., above-threshold ionization and high-order-harmonic generation, and provides a useful tool in ultrafast imaging of atomic and molecular structure and dynamics. However, it has eluded observation in nonsequential double ionization (NSDI), which serves as an ideal prototype to study electron-electron correlation. Thus far, NSDI usually could be well understood from a semiclassical perspective, where all quantum aspects have been ignored after the first electron has tunneled. Here we perform coincidence measurements for NSDI of xenon subject to laser pulses at 2400 nm. It is found that the intensity dependence of the asymmetry parameter between the yields in the second and fourth quadrants and those in the first and third quadrants of the electron-momentum-correlation distributions exhibits a peculiar fast oscillatory structure, which is beyond the scope of the semiclassical picture. Our theoretical analysis indicates that this oscillation can be attributed to interference between the contributions of different excited states in the recollision-excitation-with-subsequent-ionization channel. Our work demonstrates the significant role of quantum interference in NSDI and may create an additional pathway towards manipulation and imaging of the ultrafast atomic and molecular dynamics in intense laser fields.
Park, Seoung-Hwan; Ahn, Doyeol
2018-05-01
Ultraviolet light emission characteristics of lattice-matched BxAlyGa1-x-y N/AlN quantum well (QW) structures with double AlGaN delta layers were investigated theoretically. In contrast to conventional single dip-shaped QW structure where the reduction effect of the spatial separation between electron and hole wave functions is negligible, proposed double dip-shaped QW shows significant enhancement of the ultraviolet light emission intensity from a BAlGaN/AlN QW structure due to the reduced spatial separation between electron and hole wave functions. The emission peak of the double dip-shaped QW structure is expected to be about three times larger than that of the conventional rectangular AlGaN/AlN QW structure.
The Double-Well Potential in Quantum Mechanics: A Simple, Numerically Exact Formulation
Jelic, V.; Marsiglio, F.
2012-01-01
The double-well potential is arguably one of the most important potentials in quantum mechanics, because the solution contains the notion of a state as a linear superposition of "classical" states, a concept which has become very important in quantum information theory. It is therefore desirable to have solutions to simple double-well potentials…
Perturbative quantum gravity as a double copy of gauge theory.
Bern, Zvi; Carrasco, John Joseph M; Johansson, Henrik
2010-08-06
In a previous paper we observed that (classical) tree-level gauge-theory amplitudes can be rearranged to display a duality between color and kinematics. Once this is imposed, gravity amplitudes are obtained using two copies of gauge-theory diagram numerators. Here we conjecture that this duality persists to all quantum loop orders and can thus be used to obtain multiloop gravity amplitudes easily from gauge-theory ones. As a nontrivial test, we show that the three-loop four-point amplitude of N=4 super-Yang-Mills theory can be arranged into a form satisfying the duality, and by taking double copies of the diagram numerators we obtain the corresponding amplitude of N=8 supergravity. We also remark on a nonsupersymmetric two-loop test based on pure Yang-Mills theory resulting in gravity coupled to an antisymmetric tensor and dilaton.
Injection Locking of a Semiconductor Double Quantum Dot Micromaser.
Liu, Y-Y; Stehlik, J; Gullans, M J; Taylor, J M; Petta, J R
2015-11-01
Emission linewidth is an important figure of merit for masers and lasers. We recently demonstrated a semiconductor double quantum dot (DQD) micromaser where photons are generated through single electron tunneling events. Charge noise directly couples to the DQD energy levels, resulting in a maser linewidth that is more than 100 times larger than the Schawlow-Townes prediction. Here we demonstrate a linewidth narrowing of more than a factor 10 by locking the DQD emission to a coherent tone that is injected to the input port of the cavity. We measure the injection locking range as a function of cavity input power and show that it is in agreement with the Adler equation. The position and amplitude of distortion sidebands that appear outside of the injection locking range are quantitatively examined. Our results show that this unconventional maser, which is impacted by strong charge noise and electron-phonon coupling, is well described by standard laser models.
Twisted quantum double model of topological order with boundaries
Bullivant, Alex; Hu, Yuting; Wan, Yidun
2017-10-01
We generalize the twisted quantum double model of topological orders in two dimensions to the case with boundaries by systematically constructing the boundary Hamiltonians. Given the bulk Hamiltonian defined by a gauge group G and a 3-cocycle in the third cohomology group of G over U (1 ) , a boundary Hamiltonian can be defined by a subgroup K of G and a 2-cochain in the second cochain group of K over U (1 ) . The consistency between the bulk and boundary Hamiltonians is dictated by what we call the Frobenius condition that constrains the 2-cochain given the 3-cocyle. We offer a closed-form formula computing the ground-state degeneracy of the model on a cylinder in terms of the input data only, which can be naturally generalized to surfaces with more boundaries. We also explicitly write down the ground-state wave function of the model on a disk also in terms of the input data only.
Transient Dynamics of Double Quantum Dots Coupled to Two Reservoirs
Fukadai, Takahisa; Sasamoto, Tomohiro
2018-05-01
We study the time-dependent properties of double quantum dots coupled to two reservoirs using the nonequilibrium Green function method. For an arbitrary time-dependent bias, we derive an expression for the time-dependent electron density of a dot and several currents, including the current between the dots in the wide-band-limit approximation. For the special case of a constant bias, we calculate the electron density and the currents numerically. As a result, we find that these quantities oscillate and that the number of crests in a single period of the current from a dot changes with the bias voltage. We also obtain an analytical expression for the relaxation time, which expresses how fast the system converges to its steady state. From the expression, we find that the relaxation time becomes constant when the coupling strength between the dots is sufficiently large in comparison with the difference of coupling strength between the dots and the reservoirs.
Double Rashba Quantum Dots Ring as a Spin Filter
Directory of Open Access Journals (Sweden)
Chi Feng
2008-01-01
Full Text Available AbstractWe theoretically propose a double quantum dots (QDs ring to filter the electron spin that works due to the Rashba spin–orbit interaction (RSOI existing inside the QDs, the spin-dependent inter-dot tunneling coupling and the magnetic flux penetrating through the ring. By varying the RSOI-induced phase factor, the magnetic flux and the strength of the spin-dependent inter-dot tunneling coupling, which arises from a constant magnetic field applied on the tunneling junction between the QDs, a 100% spin-polarized conductance can be obtained. We show that both the spin orientations and the magnitude of it can be controlled by adjusting the above-mentioned parameters. The spin filtering effect is robust even in the presence of strong intra-dot Coulomb interactions and arbitrary dot-lead coupling configurations.
Resonant Tunneling in Photonic Double Quantum Well Heterostructures
Directory of Open Access Journals (Sweden)
Cox Joel
2010-01-01
Full Text Available Abstract Here, we study the resonant photonic states of photonic double quantum well (PDQW heterostructures composed of two different photonic crystals. The heterostructure is denoted as B/A/B/A/B, where photonic crystals A and B act as photonic wells and barriers, respectively. The resulting band structure causes photons to become confined within the wells, where they occupy discrete quantized states. We have obtained an expression for the transmission coefficient of the PDQW heterostructure using the transfer matrix method and have found that resonant states exist within the photonic wells. These resonant states occur in split pairs, due to a coupling between degenerate states shared by each of the photonic wells. It is observed that when the resonance energy lies at a bound photonic state and the two photonic quantum wells are far away from each other, resonant states appear in the transmission spectrum of the PDQW as single peaks. However, when the wells are brought closer together, coupling between bound photonic states causes an energy-splitting effect, and the transmitted states each have two peaks. Essentially, this means that the system can be switched between single and double transparent states. We have also observed that the total number of resonant states can be controlled by varying the width of the photonic wells, and the quality factor of transmitted peaks can be drastically improved by increasing the thickness of the outer photonic barriers. It is anticipated that the resonant states described here can be used to develop new types of photonic-switching devices, optical filters, and other optoelectronic devices.
Oxide double quantum dot - an answer to the qubit problem?
Yarlagadda, Sudhakar; Dey, Amit
We propose that oxide-based double quantum dots with only one electron (tunnelling between the dots) can be regarded as a qubit with little decoherence; these dots can possibly meet future challenges of miniaturization. The tunnelling of the eg electron between the dots and the attraction between the electron and the hole on adjacent dots can be modelled as an anisotropic Heisenberg interaction between two spins with the total z-component of the spins being zero. We study two anisotropically interacting spins coupled to optical phonons; we restrict our analysis to the regime of strong coupling to the environment, to the antiadiabatic region, and to the subspace with zero value for SzT (the z-component of the total spin). In the case where each spin is coupled to a different phonon bath, we assume that the system and the environment are initially uncorrelated (and form a simply separable state) in the polaronic frame of reference. By analyzing the polaron dynamics through a non-Markovian quantum master equation, we find that the system manifests a small amount of decoherence that decreases both with increasing nonadiabaticity and with enhancing strength of coupling g. Recently I got an invitation to visit Argonne National Lab from Jan./2106 to end of March/2016. I thought I would give a talk at APS March meeting. Please accept the submission.
Wei, Hai-Rui; Deng, Fu-Guo
2014-12-18
Quantum logic gates are the key elements in quantum computing. Here we investigate the possibility of achieving a scalable and compact quantum computing based on stationary electron-spin qubits, by using the giant optical circular birefringence induced by quantum-dot spins in double-sided optical microcavities as a result of cavity quantum electrodynamics. We design the compact quantum circuits for implementing universal and deterministic quantum gates for electron-spin systems, including the two-qubit CNOT gate and the three-qubit Toffoli gate. They are compact and economic, and they do not require additional electron-spin qubits. Moreover, our devices have good scalability and are attractive as they both are based on solid-state quantum systems and the qubits are stationary. They are feasible with the current experimental technology, and both high fidelity and high efficiency can be achieved when the ratio of the side leakage to the cavity decay is low.
Optimal control of universal quantum gates in a double quantum dot
Castelano, Leonardo K.; de Lima, Emanuel F.; Madureira, Justino R.; Degani, Marcos H.; Maialle, Marcelo Z.
2018-06-01
We theoretically investigate electron spin operations driven by applied electric fields in a semiconductor double quantum dot (DQD) formed in a nanowire with longitudinal potential modulated by local gating. We develop a model that describes the process of loading and unloading the DQD taking into account the overlap between the electron wave function and the leads. Such a model considers the spatial occupation and the spin Pauli blockade in a time-dependent fashion due to the highly mixed states driven by the external electric field. Moreover, we present a road map based on the quantum optimal control theory (QOCT) to find a specific electric field that performs two-qubit quantum gates on a faster timescale and with higher possible fidelity. By employing the QOCT, we demonstrate the possibility of performing within high efficiency a universal set of quantum gates {cnot, H, and T } , where cnot is the controlled-not gate, H is the Hadamard gate, and T is the π /8 gate, even in the presence of the loading/unloading process and charge noise effects. Furthermore, by varying the intensity of the applied magnetic field B , the optimized fidelity of the gates oscillates with a period inversely proportional to the gate operation time tf. This behavior can be useful to attain higher fidelity for fast gate operations (>1 GHz) by appropriately choosing B and tf to produce a maximum of the oscillation.
Sayer, Ryan; Maries, Alexandru; Singh, Chandralekha
2017-01-01
Learning quantum mechanics is challenging, even for upper-level undergraduate and graduate students. Research-validated interactive tutorials that build on students' prior knowledge can be useful tools to enhance student learning. We have been investigating student difficulties with quantum mechanics pertaining to the double-slit experiment in…
Quantum spin and charge pumping through double quantum dots with ferromagnetic leads
Energy Technology Data Exchange (ETDEWEB)
Pan, Hui, E-mail: hpan@buaa.edu.cn [Department of Physics, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); Key Laboratory of Micro-Nano Measurement-Manipulation and Physics (Ministry of Education), Beihang University, Beijing 100191 (China); Chen, Ziyu; Zhao, Sufen [Department of Physics, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); Lue, Rong [Department of Physics, Tsinghua University, Beijing 100084 (China)
2011-06-06
The pumping of electrons through double quantum dots (DQDs) attached to ferromagnetic leads have been theoretically investigated by using the nonequilibrium Green's function method. It is found that an oscillating electric field applied to the quantum dot may give rise to the pumped charge and spin currents. In the case that both leads are ferromagnet, a pure spin current can be generated in the antiparallel magnetization configuration, where no net charge current exists. The possibility of manipulating the pumped spin current is explored by tuning the dot level and the ac field. By making use of various tunings, the magnitude and direction of the pumped spin current can be well controlled. For the case that only one lead is ferromagnetic, both of the charge and spin currents can be pumped and flow in opposite directions on the average. The control of the magnitude and direction of the pumped charge and spin currents is also discussed by means of the magnetic flux threading through the DQD ring. -- Highlights: → We theoretically investigate the pumping of electrons through double quantum dots attached to ferromagnetic leads. → An oscillating electric field applied to the quantum dot may give rise to the pumped charge and spin currents. → When both leads are ferromagnet, a pure spin current can be generated in the antiparallel magnetization configuration. → By making use of various tunings, the magnitude and direction of the pumped spin current can be well controlled. → When only one lead is ferromagnetic, both of the charge and spin currents can be pumped and flow in opposite directions.
Transport studies in p-type double quantum well samples
International Nuclear Information System (INIS)
Hyndman, R.J.
2000-01-01
The motivation for the study of double quantum well samples is that the extra spatial degree of freedom can modify the ground state energies of the system, leading to new and interesting many body effects. Electron bi-layers have been widely studied but the work presented here is the first systematic study of transport properties of a p-type, double quantum well system. The samples, grown on the 311 plane, consisted of two 100A GaAs wells separated by a 30A AlAs barrier. The thin barrier in our structures, gives rise to very strong inter-layer Coulombic interactions but in contrast to electron double quantum well samples, tunnelling between the two wells is very weak. This is due to the large effective mass of holes compared with electrons. It is possible to accurately control the total density of a sample and the relative occupancy of each well using front and back gates. A systematic study of the magnetoresistance properties of the p-type bi-layers, was carried out at low temperatures and in high magnetic fields, for samples covering a range of densities. Considerable care was required to obtain reliable results as the samples were extremely susceptible to electrical shock and were prone to drift in density slowly over time. With balanced wells, the very low tunnelling in the p-type bi-layer leads to a complete absence of all odd integers in both resistance and thermopower except for the v=1 state, ( v 1/2 in each layer) where v is the total Landau level filling factor. Unlike other FQHE features the v=1 state strengthens with increased density as inter-layer interactions increase in strength over intra-layer interactions. The state is also destroyed at a critical temperature, which is much lower than the measured activation temperature. This is taken as evidence for a finite temperature phase transition predicted for the bi-layer v=1. From the experimental observations, we construct a phase diagram for the state, which agree closely with theoretical predictions
International Nuclear Information System (INIS)
Afsaneh, E.; Yavari, H.
2014-01-01
The superconducting reservoir effect on the current carrying transport of a double quantum dot in Markovian regime is investigated. For this purpose, a quantum master equation at finite temperature is derived for the many-body density matrix of an open quantum system. The dynamics and the steady-state properties of the double quantum dot system for arbitrary bias are studied. We will show that how the populations and coherencies of the system states are affected by superconducting leads. The energy parameter of system contains essentially four contributions due to dots system-electrodes coupling, intra dot coupling, two quantum dots inter coupling and superconducting gap. The coupling effect of each energy contribution is applied to currents and coherencies results. In addition, the effect of energy gap is studied by considering the amplitude and lifetime of coherencies to get more current through the system. (author)
Multiple-path Quantum Interference Effects in a Double-Aharonov-Bohm Interferometer
Directory of Open Access Journals (Sweden)
Yang XF
2010-01-01
Full Text Available Abstract We investigate quantum interference effects in a double-Aharonov-Bohm (AB interferometer consisting of five quantum dots sandwiched between two metallic electrodes in the case of symmetric dot-electrode couplings by the use of the Green’s function equation of motion method. The analytical expression for the linear conductance at zero temperature is derived to interpret numerical results. A three-peak structure in the linear conductance spectrum may evolve into a double-peak structure, and two Fano dips (zero conductance points may appear in the quantum system when the energy levels of quantum dots in arms are not aligned with one another. The AB oscillation for the magnetic flux threading the double-AB interferometer is also investigated in this paper. Our results show the period of AB oscillation can be converted from 2π to π by controlling the difference of the magnetic fluxes threading the two quantum rings.
Collective Behavior of a Spin-Aligned Gas of Interwell Excitons in Double Quantum Wells
DEFF Research Database (Denmark)
Larionov, A. V.; Bayer, M.; Hvam, Jørn Märcher
2005-01-01
The kinetics of a spin-aligned gas of interwell excitons in GaAs/AlGaAs double quantum wells (n–i–n heterostructure) is studied. The temperature dependence of the spin relaxation time for excitons, in which a photoexcited electron and hole are spatially separated between two adjacent quantum wells...
Directory of Open Access Journals (Sweden)
Pengqin Shi
2016-09-01
Full Text Available Based on the time-nonlocal particle number-resolved master equation, we investigate the sequential electron transport through the interacting double quantum dots. Our calculations show that there exists the effect of energy renormalization in the dispersion of the bath interaction spectrum and it is sensitive to the the bandwidth of the bath. This effect would strongly affect the stationary current and its zero-frequency shot noise for weak inter-dot coherent coupling strength, but for strong inter-dot coupling regime, it is negligible due to the strong intrinsic Rabi coherent dynamics. Moreover, the possible observable effects of the energy renormalization in the noise spectrum are also investigated through the Rabi coherence signal. Finally, the non-Markovian effect is manifested in the finite-frequency noise spectrum with the appearance of quasisteps, and the magnitude of these quasisteps are modified by the dispersion function.
Quantum double actions on operator algebras and orbifold quantum field theories
International Nuclear Information System (INIS)
Mueger, M.
1996-06-01
Starting from a local quantum field theory with an unbroken compact symmetry group G in 1+1 dimensional spacetime we construct disorder fields implementing gauge transformations on the fields (order variables) localized in a wedge region. Enlarging the local algebras by these disorder fields we obtain a nonlocal field theory, the fixpoint algebras of which under the appropriately extended action of the group G are shown to satisfy Haag duality in every simple sector. The specifically 1+1 dimensional phenomenon of violation of Haag duality of fixpoint nets is thereby clarified. In the case of a finite group G the extended theory is acted upon in a completely canonical way by the quantum double D(G) and satisfies R-matrix commutation relations as well as a Verlinde algebra. Furthermore, our methods are suitable for a concise and transparent approach to bosonization. The main technical ingredient is a strengthened version of the split property which should hold in all reasonable massive theories. In the appendices (part of) the results are extended to arbitary locally compact groups and our methods are adapted to chiral theories on the circle. (orig.)
Quantum Hall effect in InAs/AlSb double quantum well
International Nuclear Information System (INIS)
Yakunin, M.V.; Podgornykh, S.M.; Sadof'ev, Yu.G.
2009-01-01
Double quantum wells (DQWs) were first implemented in the InAs/AlSb heterosystem, which is characterized by a large Lande g factor |g|=15 of the InAs layers forming the well, much larger than the bulk g factor |g|=0.4 of the GaAs in conventional GaAs/AlGaAs DQWs. The quality of the samples is good enough to permit observation of a clear picture of the quantum Hall effect (QHE). Despite the small tunneling gap, which is due to the large barrier height (1.4 eV), features with odd filling factors ν=3,5,7, ... are present in the QHE, due to collectivized interlayer states of the DQW. When the field is rotated relative to the normal to the layers, the ν=3 state is suppressed, confirming the collectivized nature of that state and denying that it could owe its existence to a strong asymmetry of the DQW. Previously the destruction of the collectivized QHE states by a parallel field had been observed only for the ν=1 state. The observation of a similar effect for ν=3 in an InAs/AlSb DQW may be due to the large bulk g factor of InAs
Modeling of anisotropic properties of double quantum rings by the terahertz laser field.
Baghramyan, Henrikh M; Barseghyan, Manuk G; Kirakosyan, Albert A; Ojeda, Judith H; Bragard, Jean; Laroze, David
2018-04-18
The rendering of different shapes of just a single sample of a concentric double quantum ring is demonstrated realizable with a terahertz laser field, that in turn, allows the manipulation of electronic and optical properties of a sample. It is shown that by changing the intensity or frequency of laser field, one can come to a new set of degenerated levels in double quantum rings and switch the charge distribution between the rings. In addition, depending on the direction of an additional static electric field, the linear and quadratic quantum confined Stark effects are observed. The absorption spectrum shifts and the additive absorption coefficient variations affected by laser and electric fields are discussed. Finally, anisotropic electronic and optical properties of isotropic concentric double quantum rings are modeled with the help of terahertz laser field.
Hagar, Amit
Among the alternatives of non-relativistic quantum mechanics (NRQM) there are those that give different predictions than quantum mechanics in yet-untested circumstances, while remaining compatible with current empirical findings. In order to test these predictions, one must isolate one's system from environmental induced decoherence, which, on the standard view of NRQM, is the dynamical mechanism that is responsible for the 'apparent' collapse in open quantum systems. But while recent advances in condensed-matter physics may lead in the near future to experimental setups that will allow one to test the two hypotheses, namely genuine collapse vs. decoherence, hence make progress toward a solution to the quantum measurement problem, those philosophers and physicists who are advocating an information-theoretic approach to the foundations of quantum mechanics are still unwilling to acknowledge the empirical character of the issue at stake. Here I argue that in doing so they are displaying an unwarranted double standard.
Photon induced non-linear quantized double layer charging in quaternary semiconducting quantum dots.
Nair, Vishnu; Ananthoju, Balakrishna; Mohapatra, Jeotikanta; Aslam, M
2018-03-15
Room temperature quantized double layer charging was observed in 2 nm Cu 2 ZnSnS 4 (CZTS) quantum dots. In addition to this we observed a distinct non-linearity in the quantized double layer charging arising from UV light modulation of double layer. UV light irradiation resulted in a 26% increase in the integral capacitance at the semiconductor-dielectric (CZTS-oleylamine) interface of the quantum dot without any change in its core size suggesting that the cause be photocapacitive. The increasing charge separation at the semiconductor-dielectric interface due to highly stable and mobile photogenerated carriers cause larger electrostatic forces between the quantum dot and electrolyte leading to an enhanced double layer. This idea was supported by a decrease in the differential capacitance possible due to an enhanced double layer. Furthermore the UV illumination enhanced double layer gives us an AC excitation dependent differential double layer capacitance which confirms that the charging process is non-linear. This ultimately illustrates the utility of a colloidal quantum dot-electrolyte interface as a non-linear photocapacitor. Copyright © 2017 Elsevier Inc. All rights reserved.
States of an on-axis two-hydrogenic-impurity complex in concentric double quantum rings
International Nuclear Information System (INIS)
R-Fulla, M.; Marín, J.H.; Suaza, Y.A.; Duque, C.A.; Mora-Ramos, M.E.
2014-01-01
The energy structure of an on-axis two-donor system (D 2 0 ) confined in GaAs concentric double quantum rings under the presence of magnetic field and hydrostatic pressure was analyzed. Based on structural data for the double quantum ring morphology, a rigorous adiabatic procedure was implemented to separate the electrons' rapid in-plane motions from the slow rotational ones. A one-dimensional equation with an effective angular-dependent potential, which describes the two-electron rotations around the common symmetry axis of quantum rings was obtained. It was shown that D 2 0 complex characteristic features are strongly dependent on the quantum ring geometrical parameters. Besides, by changing the hydrostatic pressure and magnetic field strengths, it is possible to tune the D 2 0 energy structure. Our results are comparable to those previously reported for a single and negative ionized donor in a spherical quantum dot after a selective setting of the geometrical parameters of the structure. - Highlights: • We report the eigenenergies of a D 2 0 complex in concentric double quantum rings. • Our model is versatile enough to analyze the dissociation process D 2 0 →D 0 +D + +e − . • We compare the D 0 eigenenergies in horn toroidal and spherical shaped quantum dots. • We show the effects of hydrostatic pressure and magnetic field on the D 2 0 spectrum. • The use of hydrostatic pressure provides higher thermal stability to the D 2 0 complex
Fano effect and Andreev bound states in T-shape double quantum dots
International Nuclear Information System (INIS)
Calle, A.M.; Pacheco, M.; Orellana, P.A.
2013-01-01
In this Letter, we investigate the transport through a T-shaped double quantum dot coupled to two normal metal leads left and right and a superconducting lead. Analytical expressions of Andreev transmission and local density of states of the system at zero temperature have been obtained. We study the role of the superconducting lead in the quantum interferometric features of the double quantum dot. We report for first time the Fano effect produced by Andreev bound states in a side quantum dot. Our results show that as a consequence of quantum interference and proximity effect, the transmission from normal to normal lead exhibits Fano resonances due to Andreev bound states. We find that this interference effect allows us to study the Andreev bound states in the changes in the conductance between two normal leads. - Highlights: • Transport properties of a double quantum dot coupled in T-shape configuration to conducting and superconducting leads are studied. • We report Fano antiresonances in the normal transmission due to the Andreev reflections in the superconducting lead. • We report for first time the Fano effect produced by Andreev bound states in a side quantum dot. • Fano effect allows us to study the Andreev bound states in the changes in the conductance between two normal leads. • Andreev bound states survives even for strong dot-superconductor coupling
The quantum Zeno effect in double well tunnelling
Lerner, L.
2018-05-01
Measurement lies at the heart of quantum theory, and introductory textbooks in quantum mechanics cover the measurement problem in topics such as the Schrödinger’s cat thought experiment, the EPR problem, and the quantum Zeno effect (QZE). In this article we present a new treatment of the QZE suitable for undergraduate students, for the case of a particle tunnelling between two wells while being observed in one of the wells. The analysis shows that as the observation rate increases, the tunnelling rate tends towards zero, in accordance with Zeno’s maxim ‘a watched pot never boils’. The method relies on decoherence theory, which replaces aspects of quantum collapse by the Schrödinger evolution of an open system, and its recently simplified treatment for undergraduates. Our presentation uses concepts familiar to undergraduate students, so that calculations involving many-body theory and the formal properties of the density matrix are avoided.
Quantum ratchet effect in a time non-uniform double-kicked model
Chen, Lei; Wang, Zhen-Yu; Hui, Wu; Chu, Cheng-Yu; Chai, Ji-Min; Xiao, Jin; Zhao, Yu; Ma, Jin-Xiang
2017-07-01
The quantum ratchet effect means that the directed transport emerges in a quantum system without a net force. The delta-kicked model is a quantum Hamiltonian model for the quantum ratchet effect. This paper investigates the quantum ratchet effect based on a time non-uniform double-kicked model, in which two flashing potentials alternately act on a particle with a homogeneous initial state of zero momentum, while the intervals between adjacent actions are not equal. The evolution equation of the state of the particle is derived from its Schrödinger equation, and the numerical method to solve the evolution equation is pointed out. The results show that quantum resonances can induce the ratchet effect in this time non-uniform double-kicked model under certain conditions; some quantum resonances, which cannot induce the ratchet effect in previous models, can induce the ratchet effect in this model, and the strengths of the ratchet effect in this model are stronger than those in previous models under certain conditions. These results enrich people’s understanding of the delta-kicked model, and provides a new optional scheme to control the quantum transport of cold atoms in experiment.
Relaxation of electron energy in the polar semiconductor double quantum dots
Czech Academy of Sciences Publication Activity Database
Král, Karel; Khás, Zdeněk; Zdeněk, Petr; Čerňanský, Marian; Lin, C. Y.
2002-01-01
Roč. 314, - (2002), s. 490-493 ISSN 0921-4526 R&D Projects: GA AV ČR IAA1010113; GA MŠk OC P5.20 Institutional research plan: CEZ:AV0Z1010914 Keywords : quantum dots * relaxation * double quantum dots * electron-photon interaction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.609, year: 2002
International Nuclear Information System (INIS)
Javanainen, Juha
2010-01-01
We study theoretically an atomic Bose-Einstein condensate in a double-well trap, both quantum-mechanically and classically, under conditions such that in the classical model an unstable equilibrium dissolves into large-scale oscillations of the atoms between the potential wells. Quantum mechanics alone does not exhibit such nonlinear dynamics, but measurements of the atom numbers in the potential wells may nevertheless cause the condensate to behave essentially classically.
Manipulative Properties of Asymmetric Double Quantum Dots via Laser and Gate Voltage
International Nuclear Information System (INIS)
Shun-Cai, Zhao; Zheng-Dong, Liu
2009-01-01
We present a density matrix approach for the theoretical description of an asymmetric double quantum dot (QD) system. The results show that the properties of gain, absorption and dispersion of the double QD system, the population of the state with one hole in one dot and an electron in another dot transferred by tunneling can be manipulated by a laser pulse or gate voltage. Our scheme may demonstrate the possibility of electro-optical manipulation of quantum systems. (condensed matter: electronicstructure, electrical, magnetic, and opticalproperties)
Khaledi, Hamid; Olmstead, Marilyn M; Fukuda, Takamitsu; Ali, Hapipah Mohd
2014-11-03
Three isomeric 2[Pd(II)-Ni(II)] metal complexes, derived from indoleninyl meso-substituted dibenzotetraaza[14]annulene, were synthesized. The resulting dimers feature Ni···Ni or, alternatively, Ni···π interactions in staggered or slipped cofacial structures. A remarkable insertion of palladium into two different C-H bonds yielded a 4[Pd(II)-Ni(II)] rectangular complex with dimensions of 8.73 × 10.38 Å.
Full counting statistics of level renormalization in electron transport through double quantum dots
International Nuclear Information System (INIS)
Luo Junyan; Shen Yu; Cen Gang; He Xiaoling; Wang Changrong; Jiao Hujun
2011-01-01
We examine the full counting statistics of electron transport through double quantum dots coupled in series, with particular attention being paid to the unique features originating from level renormalization. It is clearly illustrated that the energy renormalization gives rise to a dynamic charge blockade mechanism, which eventually results in super-Poissonian noise. Coupling of the double dots to an external heat bath leads to dephasing and relaxation mechanisms, which are demonstrated to suppress the noise in a unique way.
Charge Dynamics and Spin Blockade in a Hybrid Double Quantum Dot in Silicon
Directory of Open Access Journals (Sweden)
Matias Urdampilleta
2015-08-01
Full Text Available Electron spin qubits in silicon, whether in quantum dots or in donor atoms, have long been considered attractive qubits for the implementation of a quantum computer because of silicon’s “semiconductor vacuum” character and its compatibility with the microelectronics industry. While donor electron spins in silicon provide extremely long coherence times and access to the nuclear spin via the hyperfine interaction, quantum dots have the complementary advantages of fast electrical operations, tunability, and scalability. Here, we present an approach to a novel hybrid double quantum dot by coupling a donor to a lithographically patterned artificial atom. Using gate-based rf reflectometry, we probe the charge stability of this double quantum-dot system and the variation of quantum capacitance at the interdot charge transition. Using microwave spectroscopy, we find a tunnel coupling of 2.7 GHz and characterize the charge dynamics, which reveals a charge T_{2}^{*} of 200 ps and a relaxation time T_{1} of 100 ns. Additionally, we demonstrate a spin blockade at the inderdot transition, opening up the possibility to operate this coupled system as a singlet-triplet qubit or to transfer a coherent spin state between the quantum dot and the donor electron and nucleus.
On the relation between the modular double of Uq(sl(2,R)) and the quantum Teichmueller theory
International Nuclear Information System (INIS)
Nidaiev, Iurii; Teschner, Joerg
2013-02-01
We exhibit direct relations between the modular double of U q (sl(2,R)) and the quantum Teichmueller theory. Explicit representations for the fusion- and braiding operations of the quantum Teichmueller theory are immediate consequences. Our results include a simplified derivation of the Clebsch-Gordan decomposition for the principal series of representation of the modular double of U q (sl(2,R)).
Double-quantum homonuclear correlations of spin I=5/2 nuclei.
Iuga, Dinu
2011-02-01
The challenges associated with acquiring double-quantum homonuclear Nuclear Magnetic Resonance correlation spectra of half-integer quadrupolar nuclei are described. In these experiments the radio-frequency irradiation amplitude is necessarily weak in order to selectively excite the central transition. In this limit only one out of the 25 double-quantum coherences possible for two coupled spin I=5/2 nuclei is excited. An investigation of all the 25 two spins double quantum transitions reveals interesting effects such as a compensation of the first-order quadrupolar interaction between the two single quantum transitions involved in the double quantum coherence. In this paper a full numerical study of a hypothetical two spin I=5/2 system is used to show what happens when the RF amplitude during recoupling is increased. In principle this is advantageous, since the required double quantum coherence should build up faster, but in practice it also induces adiabatic passage transfer of population and coherence which impedes any build up. Finally an optimized rotary resonance recoupling (oR(3)) sequence is introduced in order to decrease these transfers. This sequence consists of a spin locking irradiation whose amplitude is reduced four times during one rotor period, and allows higher RF powers to be used during recoupling. The sequence is used to measure (27)Al DQ dipolar correlation spectra of Y(3)Al(5)O(12) (YAG) and gamma alumina (γAl(2)O(3)). The results prove that aluminium vacancies in gamma alumina mainly occur in the tetrahedral sites. Copyright © 2010 Elsevier Inc. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Gonzalez, J.W.; Duque, C.A. [Instituto de Fisica, Universidad de Antioquia, AA 1226, Medellin (Colombia); Lopez, S.Y. [Facultad de Educacion, Universidad de Antioquia, AA 1226, Medellin (Colombia); Rodriguez, A.H. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico (UNAM), Apdo. Postal 20-364, San Angel 01000, Mexico DF (Mexico); Porras-Montenegro, N. [Departamento de Fisica, Universidad del Valle, AA 25360, Cali (Colombia)
2007-01-15
Using a variational procedure within the effective mass approximation, we have calculated the influence of an applied electric field and hydrostatic pressure on the shallow-impurity-related optical properties in a rectangular-transverse section GaAs-Ga{sub 1-x}Al{sub x}As quantum well wire. The electric field is applied in the plane of the transverse section of the wire and different angular directions have been considered. The results presented are for the impurity binding energy, its corresponding density of impurity states, and impurity-related transition energy and polarizability. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
International Nuclear Information System (INIS)
Kasapoglu, E.; Sari, H.; Sokmen, I.
2005-01-01
The combined electric field and hydrostatic pressure effects on the binding energy of the donor impurity in double triangle quantum well (DTQW), double graded (DGQW) and double square (DSQW) GaAs-(Ga,Al)As quantum wells are calculated by using a variational technique within the effective-mass approximation. The results have been obtained in the presence of an electric field applied along the growth direction as a function of hydrostatic pressure, the impurity position, barrier width and the geometric shape of the double quantum wells
Sayer, Ryan; Maries, Alexandru; Singh, Chandralekha
2017-06-01
Learning quantum mechanics is challenging, even for upper-level undergraduate and graduate students. Research-validated interactive tutorials that build on students' prior knowledge can be useful tools to enhance student learning. We have been investigating student difficulties with quantum mechanics pertaining to the double-slit experiment in various situations that appear to be counterintuitive and contradict classical notions of particles and waves. For example, if we send single electrons through the slits, they may behave as a "wave" in part of the experiment and as a "particle" in another part of the same experiment. Here we discuss the development and evaluation of a research-validated Quantum Interactive Learning Tutorial (QuILT) which makes use of an interactive simulation to improve student understanding of the double-slit experiment and strives to help students develop a good grasp of foundational issues in quantum mechanics. We discuss common student difficulties identified during the development and evaluation of the QuILT and analyze the data from the pretest and post test administered to the upper-level undergraduate and first-year physics graduate students before and after they worked on the QuILT to assess its effectiveness. These data suggest that on average, the QuILT was effective in helping students develop a more robust understanding of foundational concepts in quantum mechanics that defy classical intuition using the context of the double-slit experiment. Moreover, upper-level undergraduates outperformed physics graduate students on the post test. One possible reason for this difference in performance may be the level of student engagement with the QuILT due to the grade incentive. In the undergraduate course, the post test was graded for correctness while in the graduate course, it was only graded for completeness.
Directory of Open Access Journals (Sweden)
Ryan Sayer
2017-05-01
Full Text Available Learning quantum mechanics is challenging, even for upper-level undergraduate and graduate students. Research-validated interactive tutorials that build on students’ prior knowledge can be useful tools to enhance student learning. We have been investigating student difficulties with quantum mechanics pertaining to the double-slit experiment in various situations that appear to be counterintuitive and contradict classical notions of particles and waves. For example, if we send single electrons through the slits, they may behave as a “wave” in part of the experiment and as a “particle” in another part of the same experiment. Here we discuss the development and evaluation of a research-validated Quantum Interactive Learning Tutorial (QuILT which makes use of an interactive simulation to improve student understanding of the double-slit experiment and strives to help students develop a good grasp of foundational issues in quantum mechanics. We discuss common student difficulties identified during the development and evaluation of the QuILT and analyze the data from the pretest and post test administered to the upper-level undergraduate and first-year physics graduate students before and after they worked on the QuILT to assess its effectiveness. These data suggest that on average, the QuILT was effective in helping students develop a more robust understanding of foundational concepts in quantum mechanics that defy classical intuition using the context of the double-slit experiment. Moreover, upper-level undergraduates outperformed physics graduate students on the post test. One possible reason for this difference in performance may be the level of student engagement with the QuILT due to the grade incentive. In the undergraduate course, the post test was graded for correctness while in the graduate course, it was only graded for completeness.
Collective Behavior of Interwell Excitons in GaAs/AlGaAs Double Quantum Wells
DEFF Research Database (Denmark)
Larionov, A. V.; Timofeev, V. B.; Hvam, Jørn Märcher
2000-01-01
Photoluminescence spectra of interwell excitons in double GaAs/AlGaAs quantum wells (n-i-n structures) have been investigated (an interwell excition in these systems is an electron-hole pair spatially separated by a narrow AlAs barrier). Under resonance excitation by circular polarized light...
Fourier transform and the Verlinde formula for the quantum double of a finite group
Koornwinder, T.H.; Schroers, B.J.; Slingerland, J.K.; Bais, F.A.
1999-01-01
We define a Fourier transform $S$ for the quantum double $D(G)$ of a finite group $G$. Acting on characters of $D(G)$, $S$ and the central ribbon element of $D(G)$ generate a unitary matrix representation of the group $SL(2,Z)$. The characters form a ring over the integers under both the algebra
Symmetric Double Quantum Dot Energy States in a High Magnetic Field
International Nuclear Information System (INIS)
Morgenstern Horing, Norman J; Sawamura, Makoto
2011-01-01
The dynamical Green's function and energy spectrum of a 2D symmetric quantum double-dot system on a planar host in a normal magnetic field are analyzed here, representing the two dots by Dirac delta function potentials. The proliferation of energy levels due to Landau quantization is examined in detail.
Correlation Effects on the Coupled Plasmon Modes of a Double Quantum Well
DEFF Research Database (Denmark)
Hill, N. P. R.; Nicholls, J. T.; Linfield, E. H.
1997-01-01
At temperatures comparable to the Fermi temperature, we have measured a plasmon enhanced Coulomb drag in a GaAs/AlGaAs double quantum well electron system. This measurement provides a probe of the many-body corrections to the coupled plasmon modes, and we present a detailed comparison between exp...
Twisting products in Hopf algebras and the construction of the quantum double
International Nuclear Information System (INIS)
Ferrer Santos, W.R.
1992-04-01
Let H be a finite dimensional Hopf algebra and B an (H, H*)-comodule algebra. The purpose of this note is to present a construction in which the product of B is twisted by the given actions. The constructions of the smash product and of the Quantum Double appear as special cases. (author). 7 refs
A Ge/Si heterostructure nanowire-based double quantum dot with integrated charge sensor
DEFF Research Database (Denmark)
Hu, Yongjie; Churchill, Hugh; Reilly, David
2007-01-01
Coupled electron spins in semiconductor double quantum dots hold promise as the basis for solid-state qubits. To date, most experiments have used III-V materials, in which coherence is limited by hyperfine interactions. Ge/Si heterostructure nanowires seem ideally suited to overcome this limitati...
Interpretation of quantum mechanics by the double solution theory
International Nuclear Information System (INIS)
Broglie, L. de.
1987-01-01
English translation of one of Louis de Broglie's latest articles, as a kind of gift to all physicists abroad who are not well acquainted with the double solution theory, or do not read French. Our readers will appreciate the deep physical insight expressed in this tentative theory of wave-particle dualism, a major problem unsolved to everyone's satisfaction
Double Exponential Relativity Theory Coupled Theoretically with Quantum Theory?
International Nuclear Information System (INIS)
Montero Garcia, Jose de la Luz; Novoa Blanco, Jesus Francisco
2007-01-01
Here the problem of special relativity is analyzed into the context of a new theoretical formulation: the Double Exponential Theory of Special Relativity with respect to which the current Special or Restricted Theory of Relativity (STR) turns to be a particular case only
Double-slit experiment with single wave-driven particles and its relation to quantum mechanics
DEFF Research Database (Denmark)
Andersen, Anders Peter; Madsen, Jacob; Reichelt, Christian Günther
2015-01-01
even though it is possible to determine unambiguously which slit the walking droplet passes. Here we argue, however, that the single-particle statistics in such an experiment will be fundamentally different from the single-particle statistics of quantum mechanics. Quantum mechanical interference takes...... place between different classical paths with precise amplitude and phase relations. In the double-slit experiment with walking droplets, these relations are lost since one of the paths is singled out by the droplet. To support our conclusions, we have carried out our own double-slit experiment, and our...... results, in particular the long and variable slit passage times of the droplets, cast strong doubt on the feasibility of the interference claimed by Couder and Fort. To understand theoretically the limitations of wave-driven particle systems as analogs to quantum mechanics, we introduce a Schro...
Magnetic Anticrossing of 1D Subbands in Coupled Ballistic Double Quantum Wires
International Nuclear Information System (INIS)
Blount, Mark A.; Moon, Jeong-Sun; Simmons, Jerry A.; Lyo, Sungkwun K.; Wendt, Joel R.; Reno, John L.
2000-01-01
We study the low-temperature in-plane magnetoconductance of vertically coupled double quantum wires. Using a novel flip-chip technique, the wires are defined by two pairs of mutually aligned split gates on opposite sides of a s 1 micron thick AlGaAs/GaAs double quantum well heterostructure. We observe quantized conductance steps due to each quantum well and demonstrate independent control of each ID wire. A broad dip in the magnetoconductance at -6 T is observed when a magnetic field is applied perpendicular to both the current and growth directions. This conductance dip is observed only when 1D subbands are populated in both the top and bottom constrictions. This data is consistent with a counting model whereby the number of subbands crossing the Fermi level changes with field due to the formation of an anticrossing in each pair of 1D subbands
Tunneling conductance in superconductor-hybrid double quantum dots Josephson junction
Chamoli, Tanuj; Ajay
2018-05-01
The present work deals with the theoretical model study to analyse the tunneling conductance across a superconductor hybrid double quantum dots tunnel junction (S-DQD-S). Recently, there are many experimental works where the Josephson current across such nanoscopic junction is found to be dependent on nature of the superconducting electrodes, coupling of the hybrid double quantum dot's electronic states with the electronic states of the superconductors and nature of electronic structure of the coupled dots. For this, we have attempted a theoretical model containing contributions of BCS superconducting leads, magnetic coupled quantum dot states and coupling of superconducting leads with QDs. In order to include magnetic coupled QDs the contributions of competitive Kondo and Ruderman-Kittel- Kasuya-Yosida (RKKY) interaction terms are also introduced through many body effects in the model Hamiltonian at low temperatures (where Kondo temperature TK tunnel junctions. Tunneling conductance is proportional to DOS, hence we can analyse it's behaviour with the help of DOS.
International Nuclear Information System (INIS)
Zhao, Dongxing; Wu, Jiarui; Gu, Ying; Gong, Qihuang
2014-01-01
We propose tailoring of the double Fano profiles via plasmon-assisted quantum interference in a hybrid exciton-plasmon system. Tailoring is performed by the interference between two exciton channels interacting with a common localized surface plasmon. Using an applied field of low intensity, the absorption spectrum of the hybrid system reveals a double Fano lineshape with four peaks. For relatively large field intensity, a broad flat window in the absorption spectrum appears which results from the destructive interference between excitons. Because of strong constructive interference, this window vanishes as intensity is further increased. We have designed a nanometer bandpass optical filter for visible light based on tailoring of the optical spectrum. This study provides a platform for quantum interference that may have potential applications in ultracompact tunable quantum devices.
Controlled release of stored pulses in a double-quantum-well structure
International Nuclear Information System (INIS)
Carreno, F; Anton, M A
2009-01-01
We show that an asymmetric double-quantum-well structure can operate as an optical memory. The double quantum wells are modelled like an atomic ensemble of four-level atoms in the Λ-V-type configuration with vacuum-induced coherence arising from resonant tunnelling through the ultra-thin potential energy barrier between the wells. A weak quantum field connects the ground level with the two upper levels and an auxiliary classical control field connects the intermediate level with the upper levels. The quantum field can be mapped into two channels. One channel results from the adiabatic change of the control field which maps the incoming quantum field into the coherence of the two lower levels like in a Λ-type atomic ensemble. The other channel results from the mapping of the quantum field into a combination of coherences between the two upper levels and the ground level, and it is allowed by the adiabatic change of the upper level splitting via an external voltage. The possibility of releasing multiple pulses from the medium resulting from the existence of a non-evolving component of the two-channel memory is shown. A physical picture has been developed providing an explanation of the performance of the device.
Double-slit experiment with single wave-driven particles and its relation to quantum mechanics.
Andersen, Anders; Madsen, Jacob; Reichelt, Christian; Rosenlund Ahl, Sonja; Lautrup, Benny; Ellegaard, Clive; Levinsen, Mogens T; Bohr, Tomas
2015-07-01
In a thought-provoking paper, Couder and Fort [Phys. Rev. Lett. 97, 154101 (2006)] describe a version of the famous double-slit experiment performed with droplets bouncing on a vertically vibrated fluid surface. In the experiment, an interference pattern in the single-particle statistics is found even though it is possible to determine unambiguously which slit the walking droplet passes. Here we argue, however, that the single-particle statistics in such an experiment will be fundamentally different from the single-particle statistics of quantum mechanics. Quantum mechanical interference takes place between different classical paths with precise amplitude and phase relations. In the double-slit experiment with walking droplets, these relations are lost since one of the paths is singled out by the droplet. To support our conclusions, we have carried out our own double-slit experiment, and our results, in particular the long and variable slit passage times of the droplets, cast strong doubt on the feasibility of the interference claimed by Couder and Fort. To understand theoretically the limitations of wave-driven particle systems as analogs to quantum mechanics, we introduce a Schrödinger equation with a source term originating from a localized particle that generates a wave while being simultaneously guided by it. We show that the ensuing particle-wave dynamics can capture some characteristics of quantum mechanics such as orbital quantization. However, the particle-wave dynamics can not reproduce quantum mechanics in general, and we show that the single-particle statistics for our model in a double-slit experiment with an additional splitter plate differs qualitatively from that of quantum mechanics.
Double-slit experiment with single wave-driven particles and its relation to quantum mechanics
Andersen, Anders; Madsen, Jacob; Reichelt, Christian; Rosenlund Ahl, Sonja; Lautrup, Benny; Ellegaard, Clive; Levinsen, Mogens T.; Bohr, Tomas
2015-07-01
In a thought-provoking paper, Couder and Fort [Phys. Rev. Lett. 97, 154101 (2006), 10.1103/PhysRevLett.97.154101] describe a version of the famous double-slit experiment performed with droplets bouncing on a vertically vibrated fluid surface. In the experiment, an interference pattern in the single-particle statistics is found even though it is possible to determine unambiguously which slit the walking droplet passes. Here we argue, however, that the single-particle statistics in such an experiment will be fundamentally different from the single-particle statistics of quantum mechanics. Quantum mechanical interference takes place between different classical paths with precise amplitude and phase relations. In the double-slit experiment with walking droplets, these relations are lost since one of the paths is singled out by the droplet. To support our conclusions, we have carried out our own double-slit experiment, and our results, in particular the long and variable slit passage times of the droplets, cast strong doubt on the feasibility of the interference claimed by Couder and Fort. To understand theoretically the limitations of wave-driven particle systems as analogs to quantum mechanics, we introduce a Schrödinger equation with a source term originating from a localized particle that generates a wave while being simultaneously guided by it. We show that the ensuing particle-wave dynamics can capture some characteristics of quantum mechanics such as orbital quantization. However, the particle-wave dynamics can not reproduce quantum mechanics in general, and we show that the single-particle statistics for our model in a double-slit experiment with an additional splitter plate differs qualitatively from that of quantum mechanics.
States of an on-axis two-hydrogenic-impurity complex in concentric double quantum rings
Energy Technology Data Exchange (ETDEWEB)
R-Fulla, M., E-mail: marlonfulla@yahoo.com [Escuela de Física, Universidad Nacional de Colombia, A.A. 3840, Medellín (Colombia); Institución Universitaria Pascual Bravo, A.A. 6564, Medellín (Colombia); Marín, J.H.; Suaza, Y.A. [Escuela de Física, Universidad Nacional de Colombia, A.A. 3840, Medellín (Colombia); Duque, C.A. [Grupo de Materia Condensada-U de A, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, calle 70 No. 52-21, Medellín (Colombia); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico)
2014-06-13
The energy structure of an on-axis two-donor system (D{sub 2}{sup 0}) confined in GaAs concentric double quantum rings under the presence of magnetic field and hydrostatic pressure was analyzed. Based on structural data for the double quantum ring morphology, a rigorous adiabatic procedure was implemented to separate the electrons' rapid in-plane motions from the slow rotational ones. A one-dimensional equation with an effective angular-dependent potential, which describes the two-electron rotations around the common symmetry axis of quantum rings was obtained. It was shown that D{sub 2}{sup 0} complex characteristic features are strongly dependent on the quantum ring geometrical parameters. Besides, by changing the hydrostatic pressure and magnetic field strengths, it is possible to tune the D{sub 2}{sup 0} energy structure. Our results are comparable to those previously reported for a single and negative ionized donor in a spherical quantum dot after a selective setting of the geometrical parameters of the structure. - Highlights: • We report the eigenenergies of a D{sub 2}{sup 0} complex in concentric double quantum rings. • Our model is versatile enough to analyze the dissociation process D{sub 2}{sup 0}→D{sup 0}+D{sup +}+e{sup −}. • We compare the D{sup 0} eigenenergies in horn toroidal and spherical shaped quantum dots. • We show the effects of hydrostatic pressure and magnetic field on the D{sub 2}{sup 0} spectrum. • The use of hydrostatic pressure provides higher thermal stability to the D{sub 2}{sup 0} complex.
Double-beta decay processes from lattice quantum chromodynamics
Davoudi, Zohreh; Tiburzi, Brian; Wagman, Michael; Winter, Frank; Chang, Emmanuel; Detmold, William; Orginos, Kostas; Savage, Martin; Shanahan, Phiala; Nplqcd Collaboration
2017-09-01
While an observation of neutrinoless double-beta decay in upcoming experiments will establish that the neutrinos are Majorana particles, the underlying new physics responsible for this decay can only be constrained if the theoretical predictions of the rate are substantially refined. This talk demonstrates the roadmap in connecting the underlying high-scale theory to the corresponding nuclear matrix elements, focusing mainly on the nucleonic matrix elements in the simplest extension of Standard Model in which a light Majorana neutrino is mediating the process. The role of lattice QCD and effective field theory in this program, in particular, the prospect of a direct matching of the nn to pp amplitude to lattice QCD will be discussed. As a first step towards this goal, the results of the first lattice QCD calculation of the relevant matrix element for neutrinofull double-beta decay will be presented, albeit with unphysical quark masses, along with important lessons that could impact the calculations of nuclear matrix elements involved in double-beta decays of realistic nuclei.
Cavity-photon-switched coherent transient transport in a double quantum waveguide
Energy Technology Data Exchange (ETDEWEB)
Abdullah, Nzar Rauf, E-mail: nra1@hi.is; Gudmundsson, Vidar, E-mail: vidar@raunvis.hi.is [Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavik (Iceland); Tang, Chi-Shung [Department of Mechanical Engineering, National United University, 1, Lienda, 36003 Miaoli, Taiwan (China); Manolescu, Andrei [School of Science and Engineering, Reykjavik University, Menntavegur 1, IS-101 Reykjavik (Iceland)
2014-12-21
We study a cavity-photon-switched coherent electron transport in a symmetric double quantum waveguide. The waveguide system is weakly connected to two electron reservoirs, but strongly coupled to a single quantized photon cavity mode. A coupling window is placed between the waveguides to allow electron interference or inter-waveguide transport. The transient electron transport in the system is investigated using a quantum master equation. We present a cavity-photon tunable semiconductor quantum waveguide implementation of an inverter quantum gate, in which the output of the waveguide system may be selected via the selection of an appropriate photon number or “photon frequency” of the cavity. In addition, the importance of the photon polarization in the cavity, that is, either parallel or perpendicular to the direction of electron propagation in the waveguide system is demonstrated.
Observation of conductance doubling in an Andreev quantum point contact
Kjaergaard, M.; Nichele, F.; Suominen, H.; Nowak, M.; Wimmer, M.; Akhmerov, A.; Folk, J.; Flensberg, K.; Shabani, J.; Palmstrom, C.; Marcus, C.
One route to study the non-Abelian nature of excitations in topological superconductors is to realise gateable two dimensional (2D) semiconducting systems, with spin-orbit coupling in proximity to an s-wave superconductor. Previous work on coupling 2D electron gases (2DEG) with superconductors has been hindered by a non-ideal interface and unstable gateability. We report measurements on a gateable 2DEG coupled to superconductors through a pristine interface, and use aluminum grown in situ epitaxially on an InGaAs/InAs electron gas. We demonstrate quantization in units of 4e2 / h in a quantum point contact (QPC) in such hybrid systems. Operating the QPC as a tunnel probe, we observe a hard superconducting gap, overcoming the soft-gap problem in 2D superconductor/semiconductor systems. Our work paves way for a new and highly scalable system in which to pursue topological quantum information processing. Research supported by Microsoft Project Q and the Danish National Research Foundation.
Anisotropic Pauli Spin Blockade of Holes in a GaAs Double Quantum Dot
Wang, Qingwen; Klochan, Oleh; Hung, Jo-Tzu; Culcer, Dimitrie; Farrer, Ian; Ritchie, David; Hamilton, Alex
Electrically defined semiconductor quantum dots are appealing systems for spin manipulation and quantum information processing. Thanks to the weak hyperfine interaction and the strong spin-orbit interaction, heavy-holes in GaAs are promising candidates for all-electrical spin manipulation. However, making stable quantum dots in GaAs has only become possible recently, mainly because of difficulties in device fabrication and device stability. Here we present electrical transport measurements of heavy-holes in a lateral double quantum dot based on a GaAs /AlxGa1 - x As heterostructure. We observe clear Pauli spin blockade and show that the lifting of the spin blockade by an external magnetic field is extremely anisotropic. Numerical calculations of heavy-hole transport through a double quantum dot in the presence of strong spin-orbit interaction demonstrate quantitative agreement with experimental results, which indicates that the observed anisotropy can be explained by the anisotropic hole g-factor and the surface Dresselhaus spin-orbit coupling.
Rectangular cartograms: the game
Berg, de M.T.; Nijnatten, van F.S.B.; Speckmann, B.; Verbeek, K.A.B.
2009-01-01
Raisz [3] introduced rectangular cartograms in 1934 as a way of visualizing spatial information, such as population or economic strength, of a set of regions like countries or states. Rectangular cartograms represent geographic regions by rectangles; the positioning and adjacencies of the rectangles
Generic mechanisms of decoherence of quantum oscillations in magnetic double-well systems
International Nuclear Information System (INIS)
Chudnovsky, Eugene M.
2004-01-01
Fundamental conservation laws mandate parameter-free generic mechanisms of decoherence of quantum oscillations in double-well systems. We consider two examples: tunneling of the magnetic moment in nanomagnets and tunneling between macroscopic current states in SQUIDs. In both cases the decoherence occurs via emission of phonons and photons at the oscillation frequency. We also show that in a system of identical qubits the decoherence greatly increases due to the superradiance of electromagnetic and sound waves. Our findings have important implications for building elements of quantum computers based upon nanomagnets and SQUIDs
Generic mechanisms of decoherence of quantum oscillations in magnetic double-well systems
Energy Technology Data Exchange (ETDEWEB)
Chudnovsky, Eugene M. E-mail: chudnov@lehman.cuny.edu
2004-05-01
Fundamental conservation laws mandate parameter-free generic mechanisms of decoherence of quantum oscillations in double-well systems. We consider two examples: tunneling of the magnetic moment in nanomagnets and tunneling between macroscopic current states in SQUIDs. In both cases the decoherence occurs via emission of phonons and photons at the oscillation frequency. We also show that in a system of identical qubits the decoherence greatly increases due to the superradiance of electromagnetic and sound waves. Our findings have important implications for building elements of quantum computers based upon nanomagnets and SQUIDs.
Subband structure comparison between n- and p- type double delta-doped Ga As quantum wells
International Nuclear Information System (INIS)
Rodriguez V, I.; Gaggero S, L.M.
2004-01-01
We compute the electron level structure (n-type) and the hole subband structure (p-type) of double -doped GaAs (DDD) quantum wells, considering exchange effects. The Thomas-Fermi (TF), and Thomas-Fermi-Dirac (TFD) approximations have been applied in order to describe the bending of the conduction and valence band, respectively. The electron and the hole subband structure study indicates that exchange effects are more important in p-type DDD quantum wells than in n-type DDD Also our results agree with the experimental data available. (Author) 33 refs., 2 tabs., 5 figs
Majorana fermion modulated nonequilibrium transport through double quantum dots
International Nuclear Information System (INIS)
Deng, Ming-Xun; Wang, Rui-Qiang; Ai, Bao-Quan; Yang, Mou; Hu, Liang-Bin; Zhong, Qing-Hu; Wang, Guang-Hui
2014-01-01
Nonequilibrium electronic transports through a double-QD-Majorana coupling system are studied with a purpose to extract the information to identify Majorana bound states (MBSs). It is found that MBSs can help form various transport processes, including the nonlocal crossed Andreev reflection, local resonant Andreev reflection, and cotunneling, depending on the relative position of two dot levels. These processes enrich the signature of average currents and noise correlations to probe the nature of MBSs. We further demonstrate the switching between the current peaks of crossed Andreev reflection and cotunneling, which is closely related to the nonlocal nature of Majorana fermions. We also propose effective physical pictures to understand these Majorana-assisted transports. - Highlights: • Majorana fermions are characterized in the signature of currents and noises. • Three types of tunneling mechanisms are realized separately. • The switching of crossed Andreev reflection and cotunneling is realized. • Concrete physical pictures are proposed to understand Majorana-assisted transports
Majorana fermion modulated nonequilibrium transport through double quantum dots
Energy Technology Data Exchange (ETDEWEB)
Deng, Ming-Xun [Laboratory of Quantum Engineering and Quantum Materials, ICMP and SPTE, South China Normal University, Guangzhou 510006 (China); Wang, Rui-Qiang, E-mail: rqwanggz@163.com [Laboratory of Quantum Engineering and Quantum Materials, ICMP and SPTE, South China Normal University, Guangzhou 510006 (China); Ai, Bao-Quan; Yang, Mou; Hu, Liang-Bin; Zhong, Qing-Hu [Laboratory of Quantum Engineering and Quantum Materials, ICMP and SPTE, South China Normal University, Guangzhou 510006 (China); Wang, Guang-Hui [Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006 (China)
2014-06-13
Nonequilibrium electronic transports through a double-QD-Majorana coupling system are studied with a purpose to extract the information to identify Majorana bound states (MBSs). It is found that MBSs can help form various transport processes, including the nonlocal crossed Andreev reflection, local resonant Andreev reflection, and cotunneling, depending on the relative position of two dot levels. These processes enrich the signature of average currents and noise correlations to probe the nature of MBSs. We further demonstrate the switching between the current peaks of crossed Andreev reflection and cotunneling, which is closely related to the nonlocal nature of Majorana fermions. We also propose effective physical pictures to understand these Majorana-assisted transports. - Highlights: • Majorana fermions are characterized in the signature of currents and noises. • Three types of tunneling mechanisms are realized separately. • The switching of crossed Andreev reflection and cotunneling is realized. • Concrete physical pictures are proposed to understand Majorana-assisted transports.
Yakunin, M.V.; Galistu, G.; de Visser, A.
2008-01-01
Rich patterns of transformations in the structure of quantum Hall (QH) effect and magnetoresistivity under tilted magnetic fields were obtained in the InxGa1-xAs/GaAs double quantum well at mK temperatures. Local features correspond to the calculated intersections of Landau levels from different
Anisotropy and Suppression of Spin-Orbit Interaction in a GaAs Double Quantum Dot
Hofmann, A.; Maisi, V. F.; Krähenmann, T.; Reichl, C.; Wegscheider, W.; Ensslin, K.; Ihn, T.
2017-10-01
The spin-flip tunneling rates are measured in GaAs-based double quantum dots by time-resolved charge detection. Such processes occur in the Pauli spin blockade regime with two electrons occupying the double quantum dot. Ways are presented for tuning the spin-flip tunneling rate, which on the one hand gives access to measuring the Rashba and Dresselhaus spin-orbit coefficients. On the other hand, they make it possible to turn on and off the effect of spin-orbit interaction with a high on/off ratio. The tuning is accomplished by choosing the alignment of the tunneling direction with respect to the crystallographic axes, as well as by choosing the orientation of the external magnetic field with respect to the spin-orbit magnetic field. Spin lifetimes of 10 s are achieved at a tunneling rate close to 1 kHz.
Anisotropy and Suppression of Spin-Orbit Interaction in a GaAs Double Quantum Dot.
Hofmann, A; Maisi, V F; Krähenmann, T; Reichl, C; Wegscheider, W; Ensslin, K; Ihn, T
2017-10-27
The spin-flip tunneling rates are measured in GaAs-based double quantum dots by time-resolved charge detection. Such processes occur in the Pauli spin blockade regime with two electrons occupying the double quantum dot. Ways are presented for tuning the spin-flip tunneling rate, which on the one hand gives access to measuring the Rashba and Dresselhaus spin-orbit coefficients. On the other hand, they make it possible to turn on and off the effect of spin-orbit interaction with a high on/off ratio. The tuning is accomplished by choosing the alignment of the tunneling direction with respect to the crystallographic axes, as well as by choosing the orientation of the external magnetic field with respect to the spin-orbit magnetic field. Spin lifetimes of 10 s are achieved at a tunneling rate close to 1 kHz.
Charge sensing of a few-donor double quantum dot in silicon
Energy Technology Data Exchange (ETDEWEB)
Watson, T. F., E-mail: tfwatson15@gmail.com; Weber, B.; Büch, H.; Fuechsle, M.; Simmons, M. Y., E-mail: michelle.simmons@unsw.edu.au [Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology, University of New South Wales, Sydney, New South Wales 2052 (Australia)
2015-12-07
We demonstrate the charge sensing of a few-donor double quantum dot precision placed with atomic resolution scanning tunnelling microscope lithography. We show that a tunnel-coupled single electron transistor (SET) can be used to detect electron transitions on both dots as well as inter-dot transitions. We demonstrate that we can control the tunnel times of the second dot to the SET island by ∼4 orders of magnitude by detuning its energy with respect to the first dot.
Closed form solution for a double quantum well using Groebner basis
Energy Technology Data Exchange (ETDEWEB)
Acus, A [Institute of Theoretical Physics and Astronomy, Vilnius University, A Gostauto 12, LT-01108 Vilnius (Lithuania); Dargys, A, E-mail: dargys@pfi.lt [Center for Physical Sciences and Technology, Semiconductor Physics Institute, A Gostauto 11, LT-01108 Vilnius (Lithuania)
2011-07-01
Analytical expressions for the spectrum, eigenfunctions and dipole matrix elements of a square double quantum well (DQW) are presented for a general case when the potential in different regions of the DQW has different heights and the effective masses are different. This was achieved by using a Groebner basis algorithm that allowed us to disentangle the resulting coupled polynomials without explicitly solving the transcendental eigenvalue equation.
Energy Technology Data Exchange (ETDEWEB)
Rogge, Maximilian Christoph
2008-12-03
This thesis describes the fabrication of different lateral single, double and triple quantum dots as well as the investigation of these devices with electronic transport. Based on GaAs/AlGaAs heterostructures, the fabrication was carried out using optical lithography and lithography with a scanning electron microscope and an atomic force microscope. The latter ones were also used in combination. Aside from basic effects like Coulomb blockade the analysis of single quantum dots particularly yielded results by charge detection and magneto transport. With charge detection using quantum point contacts conclusions were attained concerning tunneling rates and the extension of wave functions. In a magnetic field the influence of the electronic spin is important aside from aspects concerning the Fock-Darwin spectrum. Analyses were performed on Zeeman effect, spin pairing, spin blockade and Kondo effect. The combination of spin blockade and Kondo effect allows statements concerning the spin configuration, which depends on the electron number. With double quantum dots of different geometries the two mechanisms of capacitive coupling and tunnel coupling were analyzed. They were found in spectra of ground and excited states. With gate voltage and magnetic field it was possible to freely vary character and strength of coupling. With capacitive coupling, spin blockade was investigated again. The analysis of coupling effects was performed using transport and charge measurements. Aside from results on tunneling rates the latter one allows to detect molecular states. Concerning triple quantum dots the three dimensional stability diagram was analyzed. The free variation of energies of all three dots was achieved. The evolution of resonances was observed with transport and charge detection. With a starlike device geometry it was possible to perform two-path measurements. They provide a new measurand, the distinguishability of double and triple dot physics. (orig.)
Controlled high-fidelity navigation in the charge stability diagram of a double quantum dot
International Nuclear Information System (INIS)
Coden, Diego S Acosta; Romero, Rodolfo H; Räsänen, Esa
2015-01-01
We propose an efficient control protocol for charge transfer in a double quantum dot. We consider numerically a two-dimensional model system, where the quantum dots are subjected to time-dependent electric fields corresponding to experimental gate voltages. Our protocol enables navigation in the charge stability diagram from a state to another through controllable variation of the fields. We show that the well-known adiabatic Landau–Zener transition—when supplemented with a time-dependent field tailored with optimal control theory—can remarkably improve the transition speed. The results also lead to a simple control scheme obtained from the experimental charge stability diagram that requires only a single parameter. Eventually, we can achieve the ultrafast performance of the composite pulse protocol that allows the system to be driven at the quantum speed limit. (paper)
International Nuclear Information System (INIS)
An, Xing-Tao; Mu, Hui-Ying; Li, Yu-Xian; Liu, Jian-Jun
2011-01-01
A four-terminal parallel double quantum dots (QDs) device is proposed to generate and detect the spin polarization in QDs. It is found that the spin accumulation in QDs and the spin-polarized currents in the upper and down leads can be generated when a bias voltage is applied between the left and right leads. It is more interesting that the spin polarization in the QDs can be detected using the upper and down leads. Moreover, the direction and magnitude of the spin polarization in the QDs, and in the upper and down leads can be tuned by the energy levels of QDs and the bias. -- Highlights: → The spin polarization in the quantum dots can be generated and controlled. → The spin polarization in quantum dots can be detected by the nonferromagnetic leads. → The system our studied is a discrete level spin Hall system.
Electron spin resonance and spin-valley physics in a silicon double quantum dot.
Hao, Xiaojie; Ruskov, Rusko; Xiao, Ming; Tahan, Charles; Jiang, HongWen
2014-05-14
Silicon quantum dots are a leading approach for solid-state quantum bits. However, developing this technology is complicated by the multi-valley nature of silicon. Here we observe transport of individual electrons in a silicon CMOS-based double quantum dot under electron spin resonance. An anticrossing of the driven dot energy levels is observed when the Zeeman and valley splittings coincide. A detected anticrossing splitting of 60 MHz is interpreted as a direct measure of spin and valley mixing, facilitated by spin-orbit interaction in the presence of non-ideal interfaces. A lower bound of spin dephasing time of 63 ns is extracted. We also describe a possible experimental evidence of an unconventional spin-valley blockade, despite the assumption of non-ideal interfaces. This understanding of silicon spin-valley physics should enable better control and read-out techniques for the spin qubits in an all CMOS silicon approach.
Spin-orbit effects in carbon-nanotube double quantum dots
DEFF Research Database (Denmark)
Weiss, S; Rashba, E I; Kuemmeth, Ferdinand
2010-01-01
We study the energy spectrum of symmetric double quantum dots in narrow-gap carbon nanotubes with one and two electrostatically confined electrons in the presence of spin-orbit and Coulomb interactions. Compared to GaAs quantum dots, the spectrum exhibits a much richer structure because of the spin...... between the dots. For the two-electron regime, the detailed structure of the spin-orbit split energy spectrum is investigated as a function of detuning between the quantum dots in a 22-dimensional Hilbert space within the framework of a single-longitudinal-mode model. We find a competing effect......-orbit interaction that couples the electron's isospin to its real spin through two independent coupling constants. In a single dot, both constants combine to split the spectrum into two Kramers doublets while the antisymmetric constant solely controls the difference in the tunneling rates of the Kramers doublets...
Electron-nuclear interaction in 13C nanotube double quantum dots
DEFF Research Database (Denmark)
Churchill, H O H; Bestwick, A J; Harlow, J W
2009-01-01
For coherent electron spins, hyperfine coupling to nuclei in the host material can either be a dominant source of unwanted spin decoherence or, if controlled effectively, a resource enabling storage and retrieval of quantum information. To investigate the effect of a controllable nuclear...... environment on the evolution of confined electron spins, we have fabricated and measured gate-defined double quantum dots with integrated charge sensors made from single-walled carbon nanotubes with a variable concentration of 13C (nuclear spin I=1/2) among the majority zero-nuclear-spin 12C atoms. We observe...... strong isotope effects in spin-blockaded transport, and from the magnetic field dependence estimate the hyperfine coupling in 13C nanotubes to be of the order of 100 ¿µeV, two orders of magnitude larger than anticipated. 13C-enhanced nanotubes are an interesting system for spin-based quantum information...
Hot electron and real space transfer in double-quantum-well structures
International Nuclear Information System (INIS)
Okuno, Eiichi; Sawaki, Nobuhiko; Akasaki, Isamu; Kano, Hiroyuki; Hashimoto, Masafumi.
1991-01-01
The hot electron phenomena and real space transfer (RST) effect are studied in GaAs/AlGaAs double-quantum-well (DQW) structures, in which we have two kind of quantum wells with different widths. The drift velocity and the electron temperature at liquid helium temperature are investigated as a function of the external electric field applied parallel to the heterointerface. By increasing the field, the electron temperature rises and reaches a plateau in the intermediate region, followed by further rise in the high-field region. The appearance of the plateau is attributed to the RST effect between the two quantum wells. The threshold field for the appearance of the plateau is determined by the difference energy between the quantized levels in two wells. The energy loss rate as a function of the electron temperature indicates that the RST is assisted by LO phonon scattering. (author)
Quantum properties of double kicked systems with classical translational invariance in momentum
Dana, Itzhack
2015-01-01
Double kicked rotors (DKRs) appear to be the simplest nonintegrable Hamiltonian systems featuring classical translational symmetry in phase space (i.e., in angular momentum) for an infinite set of values (the rational ones) of a parameter η . The experimental realization of quantum DKRs by atom-optics methods motivates the study of the double kicked particle (DKP). The latter reduces, at any fixed value of the conserved quasimomentum β ℏ , to a generalized DKR, the "β -DKR ." We determine general quantum properties of β -DKRs and DKPs for arbitrary rational η . The quasienergy problem of β -DKRs is shown to be equivalent to the energy eigenvalue problem of a finite strip of coupled lattice chains. Exact connections are then obtained between quasienergy spectra of β -DKRs for all β in a generically infinite set. The general conditions of quantum resonance for β -DKRs are shown to be the simultaneous rationality of η ,β , and a scaled Planck constant ℏS. For rational ℏS and generic values of β , the quasienergy spectrum is found to have a staggered-ladder structure. Other spectral structures, resembling Hofstadter butterflies, are also found. Finally, we show the existence of particular DKP wave-packets whose quantum dynamics is free, i.e., the evolution frequencies of expectation values in these wave-packets are independent of the nonintegrability. All the results for rational ℏS exhibit unique number-theoretical features involving η ,ℏS, and β .
Gu, Jun; Lin, Po-hua; Hwang, Tzonelih
2018-07-01
Recently, Zou and Qiu (Sci China Phys Mech Astron 57:1696-1702, 2014) proposed a three-step semi-quantum secure direct communication protocol allowing a classical participant who does not have a quantum register to securely send his/her secret message to a quantum participant. However, this study points out that an eavesdropper can use the double C-NOT attack to obtain the secret message. To solve this problem, a modification is proposed.
Quantum double-well chain: Ground-state phases and applications to hydrogen-bonded materials
International Nuclear Information System (INIS)
Wang, X.; Campbell, D.K.; Gubernatis, J.E.
1994-01-01
Extrapolating the results of hybrid quantum Monte Carlo simulations to the zero temperature and infinite-chain-length limits, we calculate the ground-state phase diagram of a system of quantum particles on a chain of harmonically coupled, symmetric, quartic double-well potentials. We show that the ground state of this quantum chain depends on two parameters, formed from the ratios of the three natural energy scales in the problem. As a function of these two parameters, the quantum ground state can exhibit either broken symmetry, in which the expectation values of the particle's coordinate are all nonzero (as would be the case for a classical chain), or restored symmetry, in which the expectation values of the particle's coordinate are all zero (as would be the case for a single quantum particle). In addition to the phase diagram as a function of these two parameters, we calculate the ground-state energy, an order parameter related to the average position of the particle, and the susceptibility associated with this order parameter. Further, we present an approximate analytic estimate of the phase diagram and discuss possible physical applications of our results, emphasizing the behavior of hydrogen halides under pressure
Entanglement of mixed quantum states for qubits and qudit in double photoionization of atoms
Energy Technology Data Exchange (ETDEWEB)
Chakraborty, M., E-mail: bminakshi@yahoo.com [Department of Physics, Asansol Girls’ College, Asansol 713304 (India); Sen, S. [Department of Physics, Triveni Devi Bhalotia College, Raniganj 713347 (India)
2015-08-15
Highlights: • We study tripartite entanglement between two electronic qubits and an ionic qudit. • We study bipartite entanglement between any two subsystems of a tripartite system. • We have presented a quantitative application of entangled properties in Neon atom. - Abstract: Quantum entanglement and its paradoxical properties are genuine physical resources for various quantum information tasks like quantum teleportation, quantum cryptography, and quantum computer technology. The physical characteristic of the entanglement of quantum-mechanical states, both for pure and mixed, has been recognized as a central resource in various aspects of quantum information processing. In this article, we study the bipartite entanglement of one electronic qubit along with the ionic qudit and also entanglement between two electronic qubits. The tripartite entanglement properties also have been investigated between two electronic qubits and an ionic qudit. All these studies have been done for the single-step double photoionization from an atom following the absorption of a single photon without observing spin orbit interaction. The dimension of the Hilbert space of the qudit depends upon the electronic state of the residual photoion A{sup 2+}. In absence of SOI, when Russell–Saunders coupling (L–S coupling) is applicable, dimension of the qudit is equal to the spin multiplicity of A{sup 2+}. For estimations of entanglement and mixedness, we consider the Peres–Horodecki condition, concurrence, entanglement of formation, negativity, linear and von Neumann entropies. In case of L–S coupling, all the properties of a qubit–qudit system can be predicted merely with the knowledge of the spins of the target atom and the residual photoion.
Korenev, V. V.; Savelyev, A. V.; Zhukov, A. E.; Omelchenko, A. V.; Maximov, M. V.
2014-12-01
It is shown in analytical form that the carrier capture from the matrix as well as carrier dynamics in quantum dots plays an important role in double-state lasing phenomenon. In particular, the de-synchronization of hole and electron captures allows one to describe recently observed quenching of ground-state lasing, which takes place in quantum dot lasers operating in double-state lasing regime at high injection. From the other side, the detailed analysis of charge carrier dynamics in the single quantum dot enables one to describe the observed light-current characteristics and key temperature dependences.
International Nuclear Information System (INIS)
Korenev, V V; Savelyev, A V; Zhukov, A E; Omelchenko, A V; Maximov, M V
2014-01-01
It is shown in analytical form that the carrier capture from the matrix as well as carrier dynamics in quantum dots plays an important role in double-state lasing phenomenon. In particular, the de-synchronization of hole and electron captures allows one to describe recently observed quenching of ground-state lasing, which takes place in quantum dot lasers operating in double-state lasing regime at high injection. From the other side, the detailed analysis of charge carrier dynamics in the single quantum dot enables one to describe the observed light-current characteristics and key temperature dependences
Kurian, P; Dunston, G; Lindesay, J
2016-02-21
Macroscopic quantum effects in living systems have been studied widely in pursuit of fundamental explanations for biological energy transport and sensing. While it is known that type II endonucleases, the largest class of restriction enzymes, induce DNA double-strand breaks by attacking phosphodiester bonds, the mechanism by which simultaneous cutting is coordinated between the catalytic centers remains unclear. We propose a quantum mechanical model for collective electronic behavior in the DNA helix, where dipole-dipole oscillations are quantized through boundary conditions imposed by the enzyme. Zero-point modes of coherent oscillations would provide the energy required for double-strand breakage. Such quanta may be preserved in the presence of thermal noise by the enzyme's displacement of water surrounding the DNA recognition sequence. The enzyme thus serves as a decoherence shield. Palindromic mirror symmetry of the enzyme-DNA complex should conserve parity, because symmetric bond-breaking ceases when the symmetry of the complex is violated or when physiological parameters are perturbed from optima. Persistent correlations in DNA across longer spatial separations-a possible signature of quantum entanglement-may be explained by such a mechanism. Copyright © 2015 Elsevier Ltd. All rights reserved.
Electron transport in a double quantum ring: Evidence of an AND gate
International Nuclear Information System (INIS)
Maiti, Santanu K.
2009-01-01
We explore AND gate response in a double quantum ring where each ring is threaded by a magnetic flux φ. The double quantum ring is attached symmetrically to two semi-infinite one-dimensional metallic electrodes and two gate voltages, namely, V a and V b , are applied, respectively, in the lower arms of the two rings which are treated as two inputs of the AND gate. The system is described in the tight-binding framework and the calculations are done using the Green's function formalism. Here we numerically compute the conductance-energy and current-voltage characteristics as functions of the ring-to-electrode coupling strengths, magnetic flux and gate voltages. Our study suggests that, for a typical value of the magnetic flux φ=φ 0 /2 (φ 0 =ch/e, the elementary flux-quantum) a high output current (1) (in the logical sense) appears only if both the two inputs to the gate are high (1), while if neither or only one input to the gate is high (1), a low output current (0) results. It clearly demonstrates the AND gate behavior and this aspect may be utilized in designing an electronic logic gate.
Jin, Jinshuang; Wang, Shikuan; Zhou, Jiahuan; Zhang, Wei-Min; Yan, YiJing
2018-04-01
We investigate the dynamics of charge-state coherence in a degenerate double-dot Aharonov–Bohm interferometer with finite inter-dot Coulomb interactions. The quantum coherence of the charge states is found to be sensitive to the transport setup configurations, involving both the single-electron impurity channels and the Coulomb-assisted ones. We numerically demonstrate the emergence of a complete coherence between the two charge states, with the relative phase being continuously controllable through the magnetic flux. Interestingly, a fully coherent charge qubit arises at the double-dots electron pair tunneling resonance condition, where the chemical potential of one electrode is tuned at the center between a single-electron impurity channel and the related Coulomb-assisted channel. This pure quantum state of charge qubit could be experimentally realized at the current–voltage characteristic turnover position, where differential conductance sign changes. We further elaborate the underlying mechanism for both the real-time and the stationary charge-states coherence in the double-dot systems of study.
Frequency doubling of an InGaAs multiple quantum wells semiconductor disk laser
Lidan, Jiang; Renjiang, Zhu; Maohua, Jiang; Dingke, Zhang; Yuting, Cui; Peng, Zhang; Yanrong, Song
2018-01-01
We demonstrate a good beam quality 483 nm blue coherent radiation from a frequency doubled InGaAs multiple quantum wells semiconductor disk laser. The gain chip is consisted of 6 repeats of strain uncompensated InGaAs/GaAs quantum wells and 25 pairs of GaAs/AlAs distributed Bragg reflector. A 4 × 4 × 7 mm3 type I phase-matched BBO nonlinear crystal is used in a V-shaped laser cavity for the second harmonic generation, and 210 mW blue output power is obtained when the absorbed pump power is 3.5 W. The M2 factors of the laser beam in x and y directions are about 1.04 and 1.01, respectively. The output power of the blue laser is limited by the relatively small number of the multiple quantum wells, and higher power can be expected by increasing the number of the multiple quantum wells and improving the heat management of the laser.
Intrinsic errors in transporting a single-spin qubit through a double quantum dot
Li, Xiao; Barnes, Edwin; Kestner, J. P.; Das Sarma, S.
2017-07-01
Coherent spatial transport or shuttling of a single electron spin through semiconductor nanostructures is an important ingredient in many spintronic and quantum computing applications. In this work we analyze the possible errors in solid-state quantum computation due to leakage in transporting a single-spin qubit through a semiconductor double quantum dot. In particular, we consider three possible sources of leakage errors associated with such transport: finite ramping times, spin-dependent tunneling rates between quantum dots induced by finite spin-orbit couplings, and the presence of multiple valley states. In each case we present quantitative estimates of the leakage errors, and discuss how they can be minimized. The emphasis of this work is on how to deal with the errors intrinsic to the ideal semiconductor structure, such as leakage due to spin-orbit couplings, rather than on errors due to defects or noise sources. In particular, we show that in order to minimize leakage errors induced by spin-dependent tunnelings, it is necessary to apply pulses to perform certain carefully designed spin rotations. We further develop a formalism that allows one to systematically derive constraints on the pulse shapes and present a few examples to highlight the advantage of such an approach.
Oscillations of quantum transport through double-AB rings with magnetic impurity
International Nuclear Information System (INIS)
Gao Yingfang; Liang, J-Q
2006-01-01
We have studied the effect of impurity scattering on the quantum transport through double AB rings in the presence of spin-flipper in the middle lead in terms of one-dimensional quantum waveguide theory. The electron interacts with the impurity through the exchange interaction leading to spin-flip scattering. Transmissions in the spin-flipped and non-spin-flipped channels are calculated explicitly. It is found that the overall transmission and the conductance are distorted due to the impurity scattering. The extent of distortion not only depends on the strength of the impurity potential but also on the impurity position. Moreover, the transmission probability and the conductance are modulated by the magnetic flux, the size of the ring and the impurity potential strength as well
Electronic structures of GaAs/AlxGa1-xAs quantum double rings
Directory of Open Access Journals (Sweden)
Li Shu-Shen
2006-01-01
Full Text Available AbstractIn the framework of effective mass envelope function theory, the electronic structures of GaAs/AlxGa1-xAs quantum double rings (QDRs are studied. Our model can be used to calculate the electronic structures of quantum wells, wires, dots, and the single ring. In calculations, the effects due to the different effective masses of electrons and holes in GaAs and AlxGa1-xAs and the valence band mixing are considered. The energy levels of electrons and holes are calculated for different shapes of QDRs. The calculated results are useful in designing and fabricating the interrelated photoelectric devices. The single electron states presented here are useful for the study of the electron correlations and the effects of magnetic fields in QDRs.
Cho, Seungho; Jung, Sungwook; Jeong, Sanghwa; Bang, Jiwon; Park, Joonhyuck; Park, Youngrong; Kim, Sungjee
2013-01-08
Layered double hydroxide-quantum dot (LDH-QD) composites are synthesized via a room temperature LDH formation reaction in the presence of QDs. InP/ZnS (core/shell) QD, a heavy metal free QD, is used as a model constituent. Interactions between QDs (with negative zeta potentials), decorated with dihydrolipoic acids, and inherently positively charged metal hydroxide layers of LDH during the LDH formations are induced to form the LDH-QD composites. The formation of the LDH-QD composites affords significantly enhanced photoluminescence quantum yields and thermal- and photostabilities compared to their QD counterparts. In addition, the fluorescence from the solid LDH-QD composite preserved the initial optical properties of the QD colloid solution without noticeable deteriorations such as red-shift or deep trap emission. Based on their advantageous optical properties, we also demonstrate the pseudo white light emitting diode, down-converted by the LDH-QD composites.
Quantum interference effects on the intensity of the G modes in double-walled carbon nanotubes
International Nuclear Information System (INIS)
Tran, Huy Nam; Blancon, Jean-Christophe Robert; Arenal, Raul
2017-01-01
The effects of quantum interferences on the excitation dependence of the intensity of G modes have been investigated on single-walled carbon nanotubes [Duque et al., Phys. Rev. Lett.108, 117404 (2012)]. In this work, by combining optical absorption spectroscopy and Raman scattering on individual index identified double-walled carbon nanotubes, we examine the experimental excitation dependence of the intensity of longitudinal optical and transverse optical G modes of the constituent inner and outer single-walled carbon nanotubes. The observed striking dependencies are understood in terms of quantum interference effects. Considering such effects, the excitation dependence of the different components of the G modes permit to unambiguously assign each of them as originating from the longitudinal or transverse G modes of inner and outer tubes.
International Nuclear Information System (INIS)
Luna, E.; Hopkinson, M.; Ulloa, J. M.; Guzman, A.; Munoz, E.
2003-01-01
Near-infrared detection is reported for a double-barrier quantum-well infrared photodetector based on a 30-A GaAs 1-y N y (y≅0.01) quantum well. The growth procedure using plasma-assisted molecular-beam epitaxy is described. The as-grown sample exhibits a detection wavelength of 1.64 μm at 25 K. The detection peak strengthens and redshifts to 1.67 μm following rapid thermal annealing at 850 deg. C for 30 s. The detection peak position is consistent with the calculated band structure based on the band-anticrossing model for nitrogen incorporation into GaAs
International Nuclear Information System (INIS)
Kannan, E S; Karamad, M; Kim, Gil-Ho; Farrer, I; Ritchie, D A
2010-01-01
Magnetotransport measurements were performed in two widely separated double quantum well systems with different starting disorders. In the weak magnetic field regime, a crossover from negative to positive magnetoresistance in the longitudinal resistivity was observed in the system with weak disorder when the electron densities in the neighboring wells were significantly unbalanced. The crossover was found to be the result of the exchange-energy-assisted interactions between the electrons occupying the lowest subbands in the neighboring wells. In the case of the system with strong disorder short range scattering dominated the scattering process and no such transition in longitudinal resistivity in the low magnetic field regime was observed. However, at high magnetic fields, sharp peaks were observed in the Hall resistance due to the interaction between the edge states in the quantum Hall regime.
Magnetospectroscopy of symmetric and anti-symmetric states in double quantum wells
Marchewka, M.; Sheregii, E. M.; Tralle, I.; Ploch, D.; Tomaka, G.; Furdak, M.; Kolek, A.; Stadler, A.; Mleczko, K.; Zak, D.; Strupinski, W.; Jasik, A.; Jakiela, R.
2008-02-01
The experimental results obtained for magnetotransport in the InGaAs/InAlAs double quantum well (DQW) structures of two different shapes of wells are reported. A beating effect occurring in the Shubnikov-de Haas (SdH) oscillations was observed for both types of structures at low temperatures in the parallel transport when the magnetic field was perpendicular to the layers. An approach for the calculation of the Landau level energies for DQW structures was developed and then applied to the analysis and interpretation of the experimental data related to the beating effect. We also argue that in order to account for the observed magnetotransport phenomena (SdH and integer quantum Hall effect), one should introduce two different quasi-Fermi levels characterizing two electron subsystems regarding the symmetry properties of their states, symmetric and anti-symmetric ones, which are not mixed by electron-electron interaction.
Dynamical entanglement formation and dissipation effects in two double quantum dots
Energy Technology Data Exchange (ETDEWEB)
Contreras-Pulido, L D [Centro de Investigacion CientIfica y de Educacion Superior de Ensenada, Apartado Postal 2732, Ensenada, BC 22860 (Mexico); Rojas, F [Departamento de Fisica Teorica, Centro de Ciencias de la Materia Condensada, Universidad Nacional Autonoma de Mexico, Ensenada, Baja California 22800 (Mexico)
2006-11-01
We study the static and dynamic formation of entanglement in charge states of a two double quantum dot array with two mobile electrons under the effect of an external driving field. We include dissipation via contact with a phonon bath. By using the density matrix formalism and an open quantum system approach, we describe the dynamical behaviour of the charge distribution (polarization), concurrence (measure of the degree of entanglement) and Bell state probabilities (two qubit states with maximum entanglement) of such a system, including the role of dot asymmetry and temperature effects. Our results show that it is possible to obtain entangled states as well as a most probable Bell state, which can be controlled by the driving field. We also evaluate how the entanglement formation based on charge states deteriorates as the temperature or asymmetry increases.
Harmonic mode-locking using the double interval technique in quantum dot lasers.
Li, Yan; Chiragh, Furqan L; Xin, Yong-Chun; Lin, Chang-Yi; Kim, Junghoon; Christodoulou, Christos G; Lester, Luke F
2010-07-05
Passive harmonic mode-locking in a quantum dot laser is realized using the double interval technique, which uses two separate absorbers to stimulate a specific higher-order repetition rate compared to the fundamental. Operating alone these absorbers would otherwise reinforce lower harmonic frequencies, but by operating together they produce the harmonic corresponding to their least common multiple. Mode-locking at a nominal 60 GHz repetition rate, which is the 10(th) harmonic of the fundamental frequency of the device, is achieved unambiguously despite the constraint of a uniformly-segmented, multi-section device layout. The diversity of repetition rates available with this method is also discussed.
Interplay of coupling and superradiant emission in the optical response of a double quantum dot
Sitek, Anna; Machnikowski, Paweł
2009-09-01
We study theoretically the optical response of a double quantum dot structure to an ultrafast optical excitation. We show that the interplay of a specific type of coupling between the dots and their collective interaction with the radiative environment leads to very characteristic features in the time-resolved luminescence as well as in the absorption spectrum of the system. For a sufficiently strong coupling, these effects survive even if the transition energy mismatch between the two dots exceeds by far the emission linewidth.
Energy Technology Data Exchange (ETDEWEB)
Chen, Yuan; Deng, Li [Department of Applied Physics, East China Jiaotong University, Nanchang, 330013 (China); Chen, Aixi, E-mail: aixichen@ecjtu.jx.cn [Department of Applied Physics, East China Jiaotong University, Nanchang, 330013 (China); Institute for Quantum Computing, University of Waterloo, Ontario N2L 3G1 (Canada)
2015-02-15
We investigate the nonlinear optical phenomena of the optical bistability and multistability via spontaneously generated coherence in an asymmetric double quantum well structure coupled by a weak probe field and a controlling field. It is shown that the threshold and hysteresis cycle of the optical bistability can be conveniently controlled only by adjusting the intensity of the SGC or the controlling field. Moreover, switching between optical bistability and multistability can be achieved. These studies may have practical significance for the preparation of optical bistable switching device.
International Nuclear Information System (INIS)
Chen, Yuan; Deng, Li; Chen, Aixi
2015-01-01
We investigate the nonlinear optical phenomena of the optical bistability and multistability via spontaneously generated coherence in an asymmetric double quantum well structure coupled by a weak probe field and a controlling field. It is shown that the threshold and hysteresis cycle of the optical bistability can be conveniently controlled only by adjusting the intensity of the SGC or the controlling field. Moreover, switching between optical bistability and multistability can be achieved. These studies may have practical significance for the preparation of optical bistable switching device
Luminescence spectra of CdSe/ZnSe double layers of quantum dots
Energy Technology Data Exchange (ETDEWEB)
Reznitsky, Alexander; Permogorov, Sergei; Korenev, Vladimir V.; Sedova, Irina; Sorokin, Sergey; Sitnikova, Alla; Ivanov, Sergei [A.F. Ioffe Physico-Technical Institute, Polytekhnicheskaya 26, 194021 St. Petersburg (Russian Federation); Klochikhin, Albert [B.P. Konstantinov Nuclear Physics Institute, St. Petersburg (Russian Federation)
2009-12-15
We have studied the emission spectra and structural properties of double CdSe/ZnSe quantum dot (QD) sheet structures grown by molecular beam epitaxy in order to elucidate the mechanisms of the electronic and strain field interaction between the QD planes. The thickness of the ZnSe barrier separating the CdSe sheets was in the range of 10-60 monolayers (ML) in the set of samples studied. We have found that coupling between dots in adjacent layers becomes relatively strong in CdSe/ZnSe double layers structures with 25-27 ML barrier, while it is rather weak when the barrier thickness exceeds 30 ML. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Three-dimensional gravity and Drinfel'd doubles: Spacetimes and symmetries from quantum deformations
International Nuclear Information System (INIS)
Ballesteros, Angel; Herranz, Francisco J.; Meusburger, Catherine
2010-01-01
We show how the constant curvature spacetimes of 3d gravity and the associated symmetry algebras can be derived from a single quantum deformation of the 3d Lorentz algebra sl(2,R). We investigate the classical Drinfel'd double of a 'hybrid' deformation of sl(2,R) that depends on two parameters (η,z). With an appropriate choice of basis and real structure, this Drinfel'd double agrees with the 3d anti-de Sitter algebra. The deformation parameter η is related to the cosmological constant, while z is identified with the inverse of the speed of light and defines the signature of the metric. We generalise this result to de Sitter space, the three-sphere and 3d hyperbolic space through analytic continuation in η and z; we also investigate the limits of vanishing η and z, which yield the flat spacetimes (Minkowski and Euclidean spaces) and Newtonian models, respectively.
Improving the variational path integral approach to the quantum double-well potential
International Nuclear Information System (INIS)
Bao Jingdong; Wang Hongyu
2002-01-01
An improved variational path integral approach is developed and applied to the quantum double-well potential, in which part of the quartic term of the potential is included in the trial action. The expression of the effective classical potential (ECP) under a non-Gaussian expectation is obtained. Here the frequency and fourth-order derivative of the potential are treated as two variational parameters, determined by the minimization of the ECP at each point. We calculate the ECP, the free energy and the level splitting of a symmetrical double-well potential. It is shown that the present results are better than those of the Feynman-Kleinert Gaussian variational method. (author)
Bishop, Nathaniel; Young, Ralph; Borras Pinilla, Carlos; Stalford, Harold; Nielsen, Erik; Muller, Richard; Rahman, Rajib; Tracy, Lisa; Wendt, Joel; Lilly, Michael; Carroll, Malcolm
2012-02-01
We discuss trade-offs of different double quantum dot and charge sensor lay-outs using computer assisted design (CAD). We use primarily a semi-classical model, augmented with a self-consistent configuration interaction method. Although CAD for quantum dots is difficult due to uncontrolled factors (e.g., disorder), different ideal designs can still be compared. Comparisons of simulation and measured dot characteristics, such as capacitance, show that CAD can agree well with experiment for relevant cases. CAD results comparing several different designs will be discussed including a comparison to measurement results from the same designs. Trade-offs between poly-silicon and metal gate lay-outs will also be discussed. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE, Office of Basic Energy Sciences user facility. The work was supported by the Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Best connected rectangular arrangements
Directory of Open Access Journals (Sweden)
Krishnendra Shekhawat
2016-03-01
Full Text Available It can be found quite often in the literature that many well-known architects have employed either the golden rectangle or the Fibonacci rectangle in their works. On contrary, it is rare to find any specific reason for using them so often. Recently, Shekhawat (2015 proved that the golden rectangle and the Fibonacci rectangle are one of the best connected rectangular arrangements and this may be one of the reasons for their high presence in architectural designs. In this work we present an algorithm that generates n-4 best connected rectangular arrangements so that the proposed solutions can be further used by architects for their designs.
International Nuclear Information System (INIS)
Luque, N.B.; Woelki, S.; Henderson, D.; Schmickler, W.
2011-01-01
Highlights: · We augment a double-layer model based on integral equations by calculating the interaction parameters with the electrode from quantum density functional theory · Explicit model calculations for Ag(1 1 1) in aqueous solutions give at least qualitatively good results for the particle profiles · Ours is the only method which allows the calculation of capacity-charge characteristics. · We obtain reasonable values for the Helmholtz (inner-layer) capacity. - Abstract: We have complemented the singlet reference interaction site model for the electric double layer by quantum chemical calculations for the interaction of ions and solvents with an electrode. Specific calculations have been performed for an aqueous solution of NaCl in contact with a Ag(1 1 1) electrode. The particle profiles near the electrode show the specific adsorption of Cl - ions, but not of Na + , and are at least in qualitative agreement with those obtained by molecular dynamics. Including the electronic response of the silver surface into the model results in reasonable capacity-charge characteristics.
Ultraclean single, double, and triple carbon nanotube quantum dots with recessed Re bottom gates
Jung, Minkyung; Schindele, Jens; Nau, Stefan; Weiss, Markus; Baumgartner, Andreas; Schoenenberger, Christian
2014-03-01
Ultraclean carbon nanotubes (CNTs) that are free from disorder provide a promising platform to manipulate single electron or hole spins for quantum information. Here, we demonstrate that ultraclean single, double, and triple quantum dots (QDs) can be formed reliably in a CNT by a straightforward fabrication technique. The QDs are electrostatically defined in the CNT by closely spaced metallic bottom gates deposited in trenches in Silicon dioxide by sputter deposition of Re. The carbon nanotubes are then grown by chemical vapor deposition (CVD) across the trenches and contacted using conventional electron beam lithography. The devices exhibit reproducibly the characteristics of ultraclean QDs behavior even after the subsequent electron beam lithography and chemical processing steps. We demonstrate the high quality using CNT devices with two narrow bottom gates and one global back gate. Tunable by the gate voltages, the device can be operated in four different regimes: i) fully p-type with ballistic transport between the outermost contacts (over a length of 700 nm), ii) clean n-type single QD behavior where a QD can be induced by either the left or the right bottom gate, iii) n-type double QD and iv) triple bipolar QD where the middle QD has opposite doping (p-type). Research at Basel is supported by the NCCR-Nano, NCCR-QIST, ERC project QUEST, and FP7 project SE2ND.
Simulation and optimization of deep violet InGaN double quantum well laser
Alahyarizadeh, Gh.; Ghazai, A. J.; Rahmani, R.; Mahmodi, H.; Hassan, Z.
2012-03-01
The performance characteristics of a deep violet InGaN double quantum well laser diode (LD) such as threshold current ( Ith), external differential quantum efficiency (DQE) and output power have been investigated using the Integrated System Engineering Technical Computer Aided Design (ISE-TCAD) software. As well as its operating parameters such as internal quantum efficiency ( ηi), internal loss ( αi) and transparency threshold current density ( J0) have been studied. Since, we are interested to investigate the mentioned characteristics and parameters independent of well and barrier thickness, therefore to reach a desired output wavelength, the indium mole fraction of wells and barriers has been varied consequently. The indium mole fractions of well and barrier layers have been considered 0.08 and 0.0, respectively. Some important parameters such as Al mole fraction of the electronic blocking layer (EBL) and cavity length which affect performance characteristics were also investigated. The optimum values of the Al mole fraction and cavity length in this study are 0.15 and 400 μm, respectively. The lowest threshold current, the highest DQE and output power which obtained at the emission wavelength of 391.5 nm are 43.199 mA, 44.99% and 10.334 mW, respectively.
Study of plasmonics in hybrids made from a quantum emitter and double metallic nanoshell dimer
Guo, Jiaohan; Black, Kevin; Hu, Jiawen; Singh, Mahi
2018-05-01
We developed a theory for the fluorescence (FL) for quantum emitter and double metallic nanoshell dimer hybrids using the density matrix method. The dimer is made from two identical double metallic nanoshells, which are made of a dielectric core, a gold metallic shell and a dielectric spacer layer. The quantum emitters are deposited on the surface of the spacer layers of the dimers due to the electrostatic absorptions. We consider that dimer hybrids are surrounded by biological cells. This can be achieved by injecting them into human or animal cells. The surface plasmon polaritons (SPP) are calculated for the dimer using Maxwell’s equations in the static wave approximation. The calculated SPP energy agrees with experimental data from Zhai et al (2017 Plasmonics 12 263) for the dimer made from a silica core, a gold metallic nanoshell and a silica spacer layer. We have also obtained an analytical expression of the FL using the density matrix method. We compare our theory with FL experimental data from Zhai et al (2017 Plasmonics 12 263) where the FL spectrum was measured by varying the thickness of the spacer layer from 9 nm to 40 nm. A good agreement between theory and experiment is found. We have shown that the enhancement of the FL increases as the thickness of the spacer layer decreases. We have also found that the enhancement of the FL increases as the distance between the double metallic nanoshells in the dimer decreases. These are interesting findings which are consistent with the experiments of Zhai et al (2017 Plasmonics 12 263) and can be used to control the FL enhancement in the FL-based biomedical imaging and cancer treatment. These interesting findings may also be useful in the fabrication of nanosensors and nanoswitches for applications in medicine.
International Nuclear Information System (INIS)
Li Weidong; Liu Jie
2006-01-01
In the present paper we investigate the influence of measurements on the quantum dynamics of degenerate Bose atoms gases in a symmetric double well. We show that continuous measurements enhance asymmetry on the density distribution of the atoms and broaden the parameter regime for self-trapping. We term this phenomenon as nonlinear quantum Zeno effect in analog to the celebrated Zeno effect in a linear quantum system. Under discontinuous measurements, the self-trapping due to the atomic interaction in the degenerate bosons is shown to be destroyed completely. Underlying physics is revealed and possible experimental realization is discussed
Universal set of quantum gates for double-dot exchange-only spin qubits with intradot coupling
International Nuclear Information System (INIS)
Michielis, M De; Ferraro, E; Fanciulli, M; Prati, E
2015-01-01
We present a universal set of quantum gate operations based on exchange-only spin qubits in a double quantum dot, where each qubit is obtained by three electrons in the (2,1) filling. Gate operations are addressed by modulating electrostatically the tunneling barrier and the energy offset between the two dots, singly and doubly occupied respectively. We propose explicit gate sequences of single qubit operations for arbitrary rotations, and the two-qubit controlled NOT gate, to complete the universal set. The unswitchable interaction between the two electrons of the doubly occupied quantum dot is taken into account. Short gate times are obtained by employing spin density functional theory simulations. (paper)
Energy Technology Data Exchange (ETDEWEB)
Tagliaferri, M.L.V., E-mail: marco.tagliaferri@mdm.imm.cnr.it [Laboratorio MDM, CNR-IMM, Via C. Olivetti 2, 20864 Agrate Brianza (MB) (Italy); Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, Via Cozzi 53, 20125 Milano (Italy); Crippa, A. [Laboratorio MDM, CNR-IMM, Via C. Olivetti 2, 20864 Agrate Brianza (MB) (Italy); Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, Via Cozzi 53, 20125 Milano (Italy); De Michielis, M. [Laboratorio MDM, CNR-IMM, Via C. Olivetti 2, 20864 Agrate Brianza (MB) (Italy); Mazzeo, G.; Fanciulli, M. [Laboratorio MDM, CNR-IMM, Via C. Olivetti 2, 20864 Agrate Brianza (MB) (Italy); Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, Via Cozzi 53, 20125 Milano (Italy); Prati, E. [Laboratorio MDM, CNR-IMM, Via C. Olivetti 2, 20864 Agrate Brianza (MB) (Italy); Istituto di Fotonica e Nanotecnologie, CNR, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)
2016-03-11
We report on the fabrication and the characterization of a tunable complementary-metal oxide semiconductor (CMOS) system consisting of two quantum dots and a MOS single electron transistor (MOSSET) charge sensor. By exploiting a compact T-shaped design and few gates fabricated by electron beam lithography, the MOSSET senses the charge state of either a single or double quantum dot at 4.2 K. The CMOS compatible fabrication process, the simplified control over the number of quantum dots and the scalable geometry make such architecture exploitable for large scale fabrication of multiple spin-based qubits in circuital quantum information processing. - Highlights: • Charge sensing of tunable, by position and number, quantum dots is demonstrated. • A compact T-shaped design with five gates at a single metalization level is proposed. • The electrometer is a silicon-etched nanowire acting as a disorder tolerant MOSSET.
International Nuclear Information System (INIS)
Frainer, V.J.
1979-01-01
A solution of the time-transient Heat Transfer Differential Equation in rectangular coordinates is presented, leading to a model which describes the temperature drop with time in rectangular bars. It is similar to an other model for cilindrical bars which has been previously developed in the Laboratory of Mechanical Metallurgy of UFRGS. Following these models, a generalization has been made, which permits cooling time evaluation for all profiles. These results are compared with experimental laboratory data in the 1200 to 800 0 C range. Some other existing models were also studied which have the purpose of studing the same phenomenon. Their mathematical forms and their evaluated values are analyzed and compared with experimental ones. (Author) [pt
Experiences with rectangular waveguide
International Nuclear Information System (INIS)
Beltran, J.; Sepulveda, J. J.; Navarro, E. A.
2000-01-01
A simple and didactic experimental arrangement is presented to show wave propagation along a structure with translational symmetry, particularly the rectangular waveguide. Parameters of this waveguide as cutoff frequency, guide wavelength and field distribution of fundamental mode can be measured. For this purpose a large paralelepipedical waveguide structure is designed and built, its dimensions can be varied in order to change its parameters. (Author) 9 refs
6j symbols for the modular double, quantum hyperbolic geometry, and supersymmetric gauge theories
Energy Technology Data Exchange (ETDEWEB)
Teschner, J.; Vartanov, G.S.
2012-02-15
We revisit the definition of the 6j-symbols from the modular double of U{sub q}(sl(2,R)), referred to as b-6j symbols. Our new results are (i) the identification of particularly natural normalization conditions, and (ii) new integral representations for this object. This is used to briefly discuss possible applications to quantum hyperbolic geometry, and to the study of certain supersymmetric gauge theories. We show, in particular, that the b-6j symbol has leading semiclassical asymptotics given by the volume of a non-ideal tetrahedron. We furthermore observe a close relation with the problem to quantize natural Darboux coordinates for moduli spaces of flat connections on Riemann surfaces related to the Fenchel-Nielsen coordinates. Our new integral representations finally indicate a possible interpretation of the b-6j symbols as partition functions of three-dimensional N=2 supersymmetric gauge theories. (orig.)
Courtney, Joseph M; Rienstra, Chad M
2016-08-01
We present a systematic study of dipolar double quantum (DQ) filtering in (13)C-labeled organic solids over a range of magic-angle spinning rates, using the SPC-n recoupling sequence element with a range of n symmetry values from 3 to 11. We find that efficient recoupling can be achieved for values n⩾7, provided that the (13)C nutation frequency is on the order of 100kHz or greater. The decoupling-field dependence was investigated and explicit heteronuclear decoupling interference conditions identified. The major determinant of DQ filtering efficiency is the decoupling interference between (13)C and (1)H fields. For (13)C nutation frequencies greater than 75kHz, optimal performance is observed without an applied (1)H field. At spinning rates exceeding 20kHz, symmetry conditions as low as n=3 were found to perform adequately. Copyright © 2016 Elsevier Inc. All rights reserved.
Phase locking of a semiconductor double-quantum-dot single-atom maser
Liu, Y.-Y.; Hartke, T. R.; Stehlik, J.; Petta, J. R.
2017-11-01
We experimentally study the phase stabilization of a semiconductor double-quantum-dot (DQD) single-atom maser by injection locking. A voltage-biased DQD serves as an electrically tunable microwave frequency gain medium. The statistics of the maser output field demonstrate that the maser can be phase locked to an external cavity drive, with a resulting phase noise L =-99 dBc/Hz at a frequency offset of 1.3 MHz. The injection locking range, and the phase of the maser output relative to the injection locking input tone are in good agreement with Adler's theory. Furthermore, the electrically tunable DQD energy level structure allows us to rapidly switch the gain medium on and off, resulting in an emission spectrum that resembles a frequency comb. The free running frequency comb linewidth is ≈8 kHz and can be improved to less than 1 Hz by operating the comb in the injection locked regime.
Phonon effects on the radiative recombination of excitons in double quantum dots
Karwat, Paweł; Sitek, Anna; Machnikowski, Paweł
2011-11-01
We study theoretically the radiative recombination of excitons in double quantum dots in the presence of carrier-phonon coupling. We show that the phonon-induced pure dephasing effects and transitions between the exciton states strongly modify the spontaneous emission process and make it sensitive to temperature, which may lead to nonmonotonic temperature dependence of the time-resolved luminescence. We show also that, under specific resonance conditions, the biexcitonic interband polarization can be coherently transferred to the excitonic one, leading to an extended lifetime of the total coherent polarization, which is reflected in the nonlinear optical spectrum of the system. We study the stability of this effect against phonon-induced decoherence.
6j symbols for the modular double, quantum hyperbolic geometry, and supersymmetric gauge theories
International Nuclear Information System (INIS)
Teschner, J.; Vartanov, G.S.
2012-02-01
We revisit the definition of the 6j-symbols from the modular double of U q (sl(2,R)), referred to as b-6j symbols. Our new results are (i) the identification of particularly natural normalization conditions, and (ii) new integral representations for this object. This is used to briefly discuss possible applications to quantum hyperbolic geometry, and to the study of certain supersymmetric gauge theories. We show, in particular, that the b-6j symbol has leading semiclassical asymptotics given by the volume of a non-ideal tetrahedron. We furthermore observe a close relation with the problem to quantize natural Darboux coordinates for moduli spaces of flat connections on Riemann surfaces related to the Fenchel-Nielsen coordinates. Our new integral representations finally indicate a possible interpretation of the b-6j symbols as partition functions of three-dimensional N=2 supersymmetric gauge theories. (orig.)
Transport through overlapping states in quantum dots and double dot molecules
International Nuclear Information System (INIS)
Berkovits, R.
2006-01-01
Full Text: We shall review the transport properties of interacting quantum dots with overlapping orbitals for which the orthodox Coulomb blockade picture no longer holds. We shall concentrate on he conductance through a serial double dot structure for which the inter-dot tunneling is stronger than the tunneling to the leads. When the dots are occupied by 1 or 3 electrons the usual Kondo peak is observed. For the case in which 2 electrons occupy the molecule a singlet is formed. Nevertheless, the conductance in that case has a constant non-zero value, and might even be equal to the maximum conductance of 2e 2 /h for certain values of the molecule parameters. We show that this is the result of the subtle interplay between the symmetric and anti-symmetric orbitals of the molecule caused by interactions and interference
Effects of Magnetic Field on the Valence Bond Property of the Double-Quantum-Dot Molecule
Institute of Scientific and Technical Information of China (English)
王立民; 罗莹; 马本堃
2002-01-01
The effects of the magnetic field on the valence bond property of the double-quantum-dot molecule are numerically studied by the finite element method and perturbation approach because of the absence of cylindrical symmetry in the horizontally coupled dots. The calculation results show that the energy value of the ground state changes differently from that of the first excited state with increasing magnetic field strength, and they cross under a certain magnetic field. The increasing magnetic field makes the covalent bond state change into an ionic bond state, which agrees qualitatively with experimental results and makes ionic bond states remain. The oscillator strength of transition between covalent bond states decreases distinctly with the increasing magnetic field strength, when the molecule is irradiated by polarized light. Such a phenomenon is possibly useful for actual applications.
Electron states and electron Raman scattering in semiconductor double cylindrical quantum well wire
International Nuclear Information System (INIS)
Munguía-Rodríguez, M; Riera, R; Betancourt-Riera, Ri; Betancourt-Riera, Re; Nieto Jalil, J M
2016-01-01
The differential cross section for an electron Raman scattering process in a semiconductor GaAs/AlGaAs double quantum well wire is calculated, and expressions for the electronic states are presented. The system is modeled by considering T = 0 K and also with a single parabolic conduction band, which is split into a subband system due to the confinement. The gain and differential cross-section for an electron Raman scattering process are obtained. In addition, the emission spectra for several scattering configurations are discussed, and interpretations of the singularities found in the spectra are given. The electron Raman scattering studied here can be used to provide direct information about the efficiency of the lasers. (paper)
Pauli-spin blockade in a vertical double quantum dot holding two to five electrons
International Nuclear Information System (INIS)
Kodera, T; Arakawa, Y; Tarucha, S; Ono, K; Amaha, S
2009-01-01
We use a vertical double quantum dot (QD) to study spin blockade (SB) for the two-to five-electron states. SB observed for the two- and four-electron states is both assigned to Pauli exclusion with formation of a spin triplet state, and lifted by singlet-triplet admixing due to fluctuating nuclear field. SB observed for the five-electron state is caused by combined Pauli effect and Hund's rule. We observe a hysteretic behavior of the SB leakage current for up and down sweep of magnetic field, and argue that SB and its lifting by hyperfine interaction are subtle with the spin configuration and modified depending on the inter-dot detuning and number of electrons.
Detection of single electron spin resonance in a double quantum dota)
Koppens, F. H. L.; Buizert, C.; Vink, I. T.; Nowack, K. C.; Meunier, T.; Kouwenhoven, L. P.; Vandersypen, L. M. K.
2007-04-01
Spin-dependent transport measurements through a double quantum dot are a valuable tool for detecting both the coherent evolution of the spin state of a single electron, as well as the hybridization of two-electron spin states. In this article, we discuss a model that describes the transport cycle in this regime, including the effects of an oscillating magnetic field (causing electron spin resonance) and the effective nuclear fields on the spin states in the two dots. We numerically calculate the current flow due to the induced spin flips via electron spin resonance, and we study the detector efficiency for a range of parameters. The experimental data are compared with the model and we find a reasonable agreement.
International Nuclear Information System (INIS)
Reuscher, G.; Keim, M.; Fischer, F.; Waag, A.; Landwehr, G.
1995-01-01
We report the first observation of resonant tunneling through a CdTe/Cd 1-x Mg x Te double barrier, single quantum well heterostructure. Negative differential resistance is observable at temperatures below 230 K, exhibiting a peak to valley ratio of 3:1 at 4.2 K. (author)
Energy Technology Data Exchange (ETDEWEB)
Balagula, R. M.; Vinnichenko, M. Ya.; Makhov, I. S.; Sofronov, A. N., E-mail: sofronov@rphf.spbstu.ru; Firsov, D. A.; Vorobjev, L. E. [Peter the Great St. Petersburg Polytechnic University (Russian Federation)
2017-03-15
The modulation of polarized radiation by GaAs/AlGaAs structures with tunnel-coupled double quantum wells in a strong lateral electric field is studied. The spectra of the variation in the refractive index under a lateral electric field in the vicinity of the intersubband resonance are experimentally investigated.
Levy, Tal J; Rabani, Eran
2013-04-28
We study steady state transport through a double quantum dot array using the equation-of-motion approach to the nonequilibrium Green functions formalism. This popular technique relies on uncontrolled approximations to obtain a closure for a hierarchy of equations; however, its accuracy is questioned. We focus on 4 different closures, 2 of which were previously proposed in the context of the single quantum dot system (Anderson impurity model) and were extended to the double quantum dot array, and develop 2 new closures. Results for the differential conductance are compared to those attained by a master equation approach known to be accurate for weak system-leads couplings and high temperatures. While all 4 closures provide an accurate description of the Coulomb blockade and other transport properties in the single quantum dot case, they differ in the case of the double quantum dot array, where only one of the developed closures provides satisfactory results. This is rationalized by comparing the poles of the Green functions to the exact many-particle energy differences for the isolate system. Our analysis provides means to extend the equation-of-motion technique to more elaborate models of large bridge systems with strong electronic interactions.
Quantum Instantons and Quantum Chaos
Jirari, H.; Kröger, H.; Luo, X. Q.; Moriarty, K. J. M.; Rubin, S. G.
1999-01-01
Based on a closed form expression for the path integral of quantum transition amplitudes, we suggest rigorous definitions of both, quantum instantons and quantum chaos. As an example we compute the quantum instanton of the double well potential.
Waiting time distribution revealing the internal spin dynamics in a double quantum dot
Ptaszyński, Krzysztof
2017-07-01
Waiting time distribution and the zero-frequency full counting statistics of unidirectional electron transport through a double quantum dot molecule attached to spin-polarized leads are analyzed using the quantum master equation. The waiting time distribution exhibits a nontrivial dependence on the value of the exchange coupling between the dots and the gradient of the applied magnetic field, which reveals the oscillations between the spin states of the molecule. The zero-frequency full counting statistics, on the other hand, is independent of the aforementioned quantities, thus giving no insight into the internal dynamics. The fact that the waiting time distribution and the zero-frequency full counting statistics give a nonequivalent information is associated with two factors. Firstly, it can be explained by the sensitivity to different timescales of the dynamics of the system. Secondly, it is associated with the presence of the correlation between subsequent waiting times, which makes the renewal theory, relating the full counting statistics and the waiting time distribution, no longer applicable. The study highlights the particular usefulness of the waiting time distribution for the analysis of the internal dynamics of mesoscopic systems.
Mobility modulation in inverted delta doped coupled double quantum well structure
Energy Technology Data Exchange (ETDEWEB)
Sahoo, N. [Department of Electronic Science, Berhampur University, 760007, Odisha (India); Sahu, T., E-mail: tsahu_bu@rediffmail.com [Department of Electronics and Communication Engineering, National Institute of Science and Technology, Palur Hills, Berhampur 761008, Odisha (India)
2016-10-01
We have studied the modulation of electron mobility μ as a function of the electric field perpendicular to the interface plane F{sub p} in a GaAs/AlGaAs double quantum well structure near the resonance of subband states. The functional dependence of μ on F{sub p} exhibits a minimum near the anticrossing of subband states leading to an oscillatory behavior of μ. We show that the oscillatory enhancement of μ becomes more pronounced with increase in the difference between the doping concentrations in the side barriers. The oscillation of μ also increases by varying the widths of the two wells through shifting of the position of the middle barrier. It is interesting to show that the oscillation of μ is always larger when there is doping in barrier towards the substrate side compared to that of the surface side due to the difference in the influence of the interface roughness scattering potential. Further, broadening of the central barrier width increases the peaks of the oscillation of μ mostly due to the changes in the ionized impurity scattering potential. Our results can be utilized for the performance enhancement of quantum well field effect transistor devices.
Coupled-Double-Quantum-Dot Environmental Information Engines: A Numerical Analysis
Tanabe, Katsuaki
2016-06-01
We conduct numerical simulations for an autonomous information engine comprising a set of coupled double quantum dots using a simple model. The steady-state entropy production rate in each component, heat and electron transfer rates are calculated via the probability distribution of the four electronic states from the master transition-rate equations. We define an information-engine efficiency based on the entropy change of the reservoir, implicating power generators that employ the environmental order as a new energy resource. We acquire device-design principles, toward the realization of corresponding practical energy converters, including that (1) higher energy levels of the detector-side reservoir than those of the detector dot provide significantly higher work production rates by faster states' circulation, (2) the efficiency is strongly dependent on the relative temperatures of the detector and system sides and becomes high in a particular Coulomb-interaction strength region between the quantum dots, and (3) the efficiency depends little on the system dot's energy level relative to its reservoir but largely on the antisymmetric relative amplitudes of the electronic tunneling rates.
Thermodynamic Properties of a Double Ring-Shaped Quantum Dot at Low and High Temperatures
Khordad, R.; Sedehi, H. R. Rastegar
2018-02-01
In this work, we study thermodynamic properties of a GaAs double ring-shaped quantum dot under external magnetic and electric fields. To this end, we first solve the Schrödinger equation and obtain the energy levels and wave functions, analytically. Then, we calculate the entropy, heat capacity, average energy and magnetic susceptibility of the quantum dot in the presence of a magnetic field using the canonical ensemble approach. According to the results, it is found that the entropy is an increasing function of temperature. At low temperatures, the entropy increases monotonically with raising the temperature for all values of the magnetic fields and it is independent of the magnetic field. But, the entropy depends on the magnetic field at high temperatures. The entropy also decreases with increasing the magnetic field. The heat capacity and magnetic susceptibility show a peak structure. The heat capacity reduces with increasing the magnetic field at low temperatures. The magnetic susceptibility shows a transition between diamagnetic and paramagnetic below for T<4 K. The transition temperature depends on the magnetic field.
Rameez-ul-Islam; Ikram, Manzoor; Hasan Mujtaba, Abid; Abbas, Tasawar
2018-01-01
We propose an idea for symmetric measurements through the famous double slit experiment (DSE) in a new detection scenario. The interferometric setup is complemented here with quantum detectors that switch to an arbitrary superposition after interaction with the arms of the DSE. The envisioned schematics cover the full measurement range, i.e. from the weak to the strong projective situation with selectivity being a smoothly tunable open option, and suggests an alternative methodology for weak measurements based on information overlap from DSE paths. The results, though generally in agreement with the quantum paradigm, raise many questions over the nature of probabilities, the absurdity of the common language for phenomena’s description in the theory and the boundary separating the projective/non-projective measurements, and the related misconceived interpretations. Further, the results impose certain constraints over the hidden variable theories as well as on the repercussions of the weak measurements. Although described as a thought experiment, the proposal can equally be implemented experimentally under a prevailing research scenario.
Spin-orbit coupling and electric-dipole spin resonance in a nanowire double quantum dot.
Liu, Zhi-Hai; Li, Rui; Hu, Xuedong; You, J Q
2018-02-02
We study the electric-dipole transitions for a single electron in a double quantum dot located in a semiconductor nanowire. Enabled by spin-orbit coupling (SOC), electric-dipole spin resonance (EDSR) for such an electron can be generated via two mechanisms: the SOC-induced intradot pseudospin states mixing and the interdot spin-flipped tunneling. The EDSR frequency and strength are determined by these mechanisms together. For both mechanisms the electric-dipole transition rates are strongly dependent on the external magnetic field. Their competition can be revealed by increasing the magnetic field and/or the interdot distance for the double dot. To clarify whether the strong SOC significantly impact the electron state coherence, we also calculate relaxations from excited levels via phonon emission. We show that spin-flip relaxations can be effectively suppressed by the phonon bottleneck effect even at relatively low magnetic fields because of the very large g-factor of strong SOC materials such as InSb.
Charge confinements in CdSe-ZnSe symmetric double quantum wells
International Nuclear Information System (INIS)
Tit, Nacir; Obaidat, Ihab M
2008-01-01
The bound states in the (CdSe) N w (ZnSe) N b (CdSe) N w -ZnSe(001) symmetric double quantum wells are investigated versus the well width (N w ) and the barrier thickness (N b ). A calculation based on the sp 3 s * tight-binding method which includes the spin-orbit interactions is employed to calculate the bandgap energy, quantum-confinement energy, and band structures. The studied systems possess a vanishing valence-band offset (VBO = 0) in consistency with the well known common-anion rule, and a large conduction-band offset (CBO ≅ 1 eV), which plays an essential role in the confinement of electrons within the CdSe wells. The biaxial strain, on the other hand, plays another role in confining the holes at the interfaces (within the well regions) and thus enhancing the radiative efficiency. The induced-strain energy is estimated to be ∼35 meV. More importantly, the results show that, for a fixed barrier thickness, the double wells are able to confine a pair of bound states when they are very thin. By increasing the wells' width (N w ), further, a new pair of states from the conduction-band continuum falls into the wells every time N w hits a multiple of four monolayers (more specifically, for 4n w ≤4(n+1), the number of bound states is 2(n+1), where n is an integer). On the other hand, the barrier thickness (N b ) is shown to have no effect on the number of bound states, but it solely controls their well-to-well interactions. A critical barrier thickness to switch off these latter interactions is estimated to occur at about N crit b ≅ 9 (L crit b ≅ 25∼AA. Rules governing the variation of the quantum-confinement energy versus both barrier thickness (N b ) and well width (N w ) have been derived. Our theoretical results are also shown to have excellent agreement with the available experimental photoluminescence data
International Nuclear Information System (INIS)
Chen Changyong; Liu Zongliang; Kang Shuai; Li Shaohua
2010-01-01
We introduce the double-Hamiltonian evolution technique approach to investigate the unconventional geometric quantum logical gate with dissipation under the model of many identical three-level atoms in a cavity, driven by a classical field. Our concrete calculation is made for the case of two atoms for the large-detuning interaction of the atoms with the cavity mode. The main advantage of our scheme is of eliminating the photon flutuation in the cavity mode during the gating. The corresponding analytical results will be helpful for experimental realization of speed geometric quantum logical gate in real cavities. (general)
Proton chemical shift tensors determined by 3D ultrafast MAS double-quantum NMR spectroscopy
International Nuclear Information System (INIS)
Zhang, Rongchun; Mroue, Kamal H.; Ramamoorthy, Ayyalusamy
2015-01-01
Proton NMR spectroscopy in the solid state has recently attracted much attention owing to the significant enhancement in spectral resolution afforded by the remarkable advances in ultrafast magic angle spinning (MAS) capabilities. In particular, proton chemical shift anisotropy (CSA) has become an important tool for obtaining specific insights into inter/intra-molecular hydrogen bonding. However, even at the highest currently feasible spinning frequencies (110–120 kHz), 1 H MAS NMR spectra of rigid solids still suffer from poor resolution and severe peak overlap caused by the strong 1 H– 1 H homonuclear dipolar couplings and narrow 1 H chemical shift (CS) ranges, which render it difficult to determine the CSA of specific proton sites in the standard CSA/single-quantum (SQ) chemical shift correlation experiment. Herein, we propose a three-dimensional (3D) 1 H double-quantum (DQ) chemical shift/CSA/SQ chemical shift correlation experiment to extract the CS tensors of proton sites whose signals are not well resolved along the single-quantum chemical shift dimension. As extracted from the 3D spectrum, the F1/F3 (DQ/SQ) projection provides valuable information about 1 H– 1 H proximities, which might also reveal the hydrogen-bonding connectivities. In addition, the F2/F3 (CSA/SQ) correlation spectrum, which is similar to the regular 2D CSA/SQ correlation experiment, yields chemical shift anisotropic line shapes at different isotropic chemical shifts. More importantly, since the F2/F1 (CSA/DQ) spectrum correlates the CSA with the DQ signal induced by two neighboring proton sites, the CSA spectrum sliced at a specific DQ chemical shift position contains the CSA information of two neighboring spins indicated by the DQ chemical shift. If these two spins have different CS tensors, both tensors can be extracted by numerical fitting. We believe that this robust and elegant single-channel proton-based 3D experiment provides useful atomistic-level structural and dynamical
Ahia, Chinedu Christian; Tile, Ngcali; Botha, Johannes R.; Olivier, E. J.
2018-04-01
The structural and photoluminescence (PL) characterization of InGaSb quantum well (QW) structures grown on GaSb substrate (100) using atmospheric pressure Metalorganic Vapor Phase Epitaxy (MOVPE) is presented. Both structures (single and double-InGaSb QWs) were inadvertently formed during an attempt to grow capped InSb/GaSb quantum dots (QDs). In this work, 10 K PL peak energies at 735 meV and 740 meV are suggested to be emissions from the single and double QWs, respectively. These lines exhibit red shifts, accompanied by a reduction in their full-widths at half-maximum (FWHM) as the excitation power decreases. The presence of a GaSb spacer in the double QW was found to increase the strength of the PL emission, which consequently gives rise to a reduced blue-shift and broadening of the PL emission line observed for the double QW with an increase in laser power, while the low thermal activation energy for the quenching of the PL from the double QW is attributed to the existence of threading dislocations, as seen in the bright field TEM image for this sample.
Rectangular spectral collocation
Driscoll, Tobin A.
2015-02-06
Boundary conditions in spectral collocation methods are typically imposed by removing some rows of the discretized differential operator and replacing them with others that enforce the required conditions at the boundary. A new approach based upon resampling differentiated polynomials into a lower-degree subspace makes differentiation matrices, and operators built from them, rectangular without any row deletions. Then, boundary and interface conditions can be adjoined to yield a square system. The resulting method is both flexible and robust, and avoids ambiguities that arise when applying the classical row deletion method outside of two-point scalar boundary-value problems. The new method is the basis for ordinary differential equation solutions in Chebfun software, and is demonstrated for a variety of boundary-value, eigenvalue and time-dependent problems.
Directory of Open Access Journals (Sweden)
A. Stockklauser
2017-03-01
Full Text Available The strong coupling limit of cavity quantum electrodynamics (QED implies the capability of a matterlike quantum system to coherently transform an individual excitation into a single photon within a resonant structure. This not only enables essential processes required for quantum information processing but also allows for fundamental studies of matter-light interaction. In this work, we demonstrate strong coupling between the charge degree of freedom in a gate-defined GaAs double quantum dot (DQD and a frequency-tunable high impedance resonator realized using an array of superconducting quantum interference devices. In the resonant regime, we resolve the vacuum Rabi mode splitting of size 2g/2π=238 MHz at a resonator linewidth κ/2π=12 MHz and a DQD charge qubit decoherence rate of γ_{2}/2π=40 MHz extracted independently from microwave spectroscopy in the dispersive regime. Our measurements indicate a viable path towards using circuit-based cavity QED for quantum information processing in semiconductor nanostructures.
Bao, Jianfeng; Cui, Xiaohong; Huang, Yuqing; Zhong, Jianhui; Chen, Zhong
2015-08-01
High-resolution 1H magnetic resonance spectroscopy (MRS) is generally inaccessible in red bone marrow (RBM) tissues using conventional MRS techniques. This is because signal from these tissues suffers from severe inhomogeneity in the main static B0 field originated from the intrinsic honeycomb structures in trabecular bone. One way to reduce effects of B0 field inhomogeneity is by using the intermolecular double quantum coherence (iDQC) technique, which has been shown in other systems to obtain signals insensitive to B0 field inhomogeneity. In the present study, we employed an iDQC approach to enhance the spectral resolution of RBM. The feasibility and performance of this method for achieving high resolution MRS was verified by experiments on phantoms and pig vertebral bone samples. Unsaturated fatty acid peaks which overlap in the conventional MRS were well resolved and identified in the iDQC spectrum. Quantitative comparison of fractions of three types of fatty acids was performed between iDQC spectra on the in situ RMB and conventional MRS on the extracted fat from the same RBM. Observations of unsaturated fatty acids with iDQC MRS may provide valuable information and may hold potential in diagnosis of diseases such as obesity, diabetes, and leukemia.
Dynamical nuclear spin polarization induced by electronic current through double quantum dots
International Nuclear Information System (INIS)
Lopez-Monis, Carlos; Platero, Gloria; Inarrea, Jesus
2011-01-01
We analyse electron-spin relaxation in electronic transport through coherently coupled double quantum dots (DQDs) in the spin blockade regime. In particular, we focus on hyperfine (HF) interaction as the spin-relaxation mechanism. We pay special attention to the effect of the dynamical nuclear spin polarization induced by the electronic current on the nuclear environment. We discuss the behaviour of the electronic current and the induced nuclear spin polarization versus an external magnetic field for different HF coupling intensities and interdot tunnelling strengths. We take into account, for each magnetic field, all HF-mediated spin-relaxation processes coming from different opposite spin level approaches. We find that the current as a function of the external magnetic field shows a peak or a dip and that the transition from a current dip to a current peak behaviour is obtained by decreasing the HF coupling or by increasing the interdot tunnelling strength. We give a physical picture in terms of the interplay between the electrons tunnelling out of the DQD and the spin-flip processes due to the nuclear environment.
Full counting statistics in a serially coupled double quantum dot system with spin-orbit coupling
Wang, Qiang; Xue, Hai-Bin; Xie, Hai-Qing
2018-04-01
We study the full counting statistics of electron transport through a serially coupled double quantum dot (QD) system with spin-orbit coupling (SOC) weakly coupled to two electrodes. We demonstrate that the spin polarizations of the source and drain electrodes determine whether the shot noise maintains super-Poissonian distribution, and whether the sign transitions of the skewness from positive to negative values and of the kurtosis from negative to positive values take place. In particular, the interplay between the spin polarizations of the source and drain electrodes and the magnitude of the external magnetic field, can give rise to a gate-voltage-tunable strong negative differential conductance (NDC) and the shot noise in this NDC region is significantly enhanced. Importantly, for a given SOC parameter, the obvious variation of the high-order current cumulants as a function of the energy-level detuning in a certain range, especially the dip position of the Fano factor of the skewness can be used to qualitatively extract the information about the magnitude of the SOC.
Double Super-Exchange in Silicon Quantum Dots Connected by Short-Bridged Networks
Li, Huashan; Wu, Zhigang; Lusk, Mark
2013-03-01
Silicon quantum dots (QDs) with diameters in the range of 1-2 nm are attractive for photovoltaic applications. They absorb photons more readily, transport excitons with greater efficiency, and show greater promise in multiple-exciton generation and hot carrier collection paradigms. However, their high excitonic binding energy makes it difficult to dissociate excitons into separate charge carriers. One possible remedy is to create dot assemblies in which a second material creates a Type-II heterojunction with the dot so that exciton dissociation occurs locally. This talk will focus on such a Type-II heterojunction paradigm in which QDs are connected via covalently bonded, short-bridge molecules. For such interpenetrating networks of dots and molecules, our first principles computational investigation shows that it is possible to rapidly and efficiently separate electrons to QDs and holes to bridge units. The bridge network serves as an efficient mediator of electron superexchange between QDs while the dots themselves play the complimentary role of efficient hole superexchange mediators. Dissociation, photoluminescence and carrier transport rates will be presented for bridge networks of silicon QDs that exhibit such double superexchange. This material is based upon work supported by the Renewable Energy Materials Research Science and Engineering Center (REMRSEC) under Grant No. DMR-0820518 and Golden Energy Computing Organization (GECO).
Exciton behavior in GaAs/AlGaAs coupled double quantum wells with interface disorder
Energy Technology Data Exchange (ETDEWEB)
Lopes, E.M., E-mail: eldermantovani@yahoo.com.b [Departamento de Fisica, Universidade Estadual de Londrina, CP 6001, CEP 86051-970 Londrina, Parana (Brazil); Duarte, J.L.; Pocas, L.C.; Dias, I.F.L.; Laureto, E. [Departamento de Fisica, Universidade Estadual de Londrina, CP 6001, CEP 86051-970 Londrina, Parana (Brazil); Quivy, A.A.; Lamas, T.E. [Laboratorio de Novos Materiais Semicondutores, Instituto de Fisica, Universidade de Sao Paulo, CP 66318, CEP 05315-970 Sao Paulo (Brazil)
2010-03-15
In this work, we present a detailed study on the optical properties of two GaAs/Al{sub 0.35}Ga{sub 0.65}As coupled double quantum wells (CDQWs) with inter-well barriers of different thicknesses, by using photoluminescence (PL) spectroscopy. The two CDQWs were grown in a single sample, assuring very similar experimental conditions for measurements of both. The PL spectrum of each CDQW exhibits two recombination channels which can be accurately identified as the excitonic e{sub 1}-hh{sub 1} transitions originated from CDQWs of different effective dimensions. The PL spectra characteristics and the behavior of the emissions as a function of temperature and excitation power are interpreted in the scenario of the bimodal interface roughness model, taking into account the exciton migration between the two regions considered in this model and the difference in the potential fluctuation levels between those two regions. The details of the PL spectra behavior as a function of excitation power are explained in terms of the competition between the band gap renormalization (BGR) and the potential fluctuation effects. The results obtained for the two CDQWs, which have different degrees of potential fluctuation, are also compared and discussed.
SU(4) Kondo effect in double quantum dots with ferromagnetic leads
Weymann, Ireneusz; Chirla, Razvan; Trocha, Piotr; Moca, Cǎtǎlin Paşcu
2018-02-01
We investigate the spin-resolved transport properties, such as the linear conductance and the tunnel magnetoresistance, of a double quantum dot device attached to ferromagnetic leads and look for signatures of the SU (4 ) symmetry in the Kondo regime. We show that the transport behavior greatly depends on the magnetic configuration of the device, and the spin-SU(2) as well as the orbital and spin-SU(4) Kondo effects become generally suppressed when the magnetic configuration of the leads varies from the antiparallel to the parallel one. Furthermore, a finite spin polarization of the leads lifts the spin degeneracy and drives the system from the SU(4) to an orbital-SU(2) Kondo state. We analyze in detail the crossover and show that the Kondo temperature between the two fixed points has a nonmonotonic dependence on the degree of spin polarization of the leads. In terms of methods used, we characterize transport by using a combination of analytical and numerical renormalization group approaches.
Four-wave mixing in an asymmetric double quantum dot molecule
Kosionis, Spyridon G.
2018-06-01
The four-wave mixing (FWM) effect of a weak probe field, in an asymmetric semiconductor double quantum dot (QD) structure driven by a strong pump field is theoretically studied. Similarly to the case of examining several other nonlinear optical processes, the nonlinear differential equations of the density matrix elements are used, under the rotating wave approximation. By suitably tuning the intensity and the frequency of the pump field as well as by changing the value of the applied bias voltage, a procedure used to properly adjust the electron tunneling coupling, we control the FWM in the same way as several other nonlinear optical processes of the system. While in the weak electron tunneling regime, the impact of the pump field intensity on the FWM is proven to be of crucial importance, for even higher rates of the electron tunneling it is evident that the intensity of the pump field has only a slight impact on the form of the FWM spectrum. The number of the spectral peaks, depends on the relation between specific parameters of the system.
International Nuclear Information System (INIS)
Wang Zhigang; Zheng Zhiren; Yu Junhua
2007-01-01
The transient gain property of a weak probe field in an asymmetric semiconductor coupled double quantum well structure is reported. The transient process of the system, which is induced by the external coherent coupling field, shows the property of no inverse gain. We find that the transient behavior of the probe field can be tuned by the change of tunneling barrier. Both the amplitude of the transient gain and the frequency of the oscillation can be affected by the lifetime broadening
On the relation between the modular double of U{sub q}(sl(2,R)) and the quantum Teichmueller theory
Energy Technology Data Exchange (ETDEWEB)
Nidaiev, Iurii; Teschner, Joerg
2013-02-15
We exhibit direct relations between the modular double of U{sub q}(sl(2,R)) and the quantum Teichmueller theory. Explicit representations for the fusion- and braiding operations of the quantum Teichmueller theory are immediate consequences. Our results include a simplified derivation of the Clebsch-Gordan decomposition for the principal series of representation of the modular double of U{sub q}(sl(2,R)).
Graphene-based tunable terahertz filter with rectangular ring ...
Indian Academy of Sciences (India)
A plasmonic band-pass filter based on graphene rectangular ring resonator with double narrow gaps is proposed and numerically investigated by finite-difference time-domain (FDTD) simulations. For the filter with or without gaps, the resonant frequencies can be effectively adjusted by changing the width of the graphene ...
Graphene-based tunable terahertz filter with rectangular ring ...
Indian Academy of Sciences (India)
WEI SU
2017-08-16
Aug 16, 2017 ... Abstract. A plasmonic band-pass filter based on graphene rectangular ring resonator with double narrow gaps is proposed and numerically investigated by finite-difference time-domain (FDTD) simulations. For the filter with or without gaps, the resonant frequencies can be effectively adjusted by changing ...
Photoluminescence spectra of n-doped double quantum wells in a parallel magnetic field
International Nuclear Information System (INIS)
Huang, D.; Lyo, S.K.
1999-01-01
We show that the photoluminescence (PL) line shapes from tunnel-split ground sublevels of n-doped thin double quantum wells (DQW close-quote s) are sensitively modulated by an in-plane magnetic field B parallel at low temperatures (T). The modulation is caused by the B parallel -induced distortion of the electronic structure. The latter arises from the relative shift of the energy-dispersion parabolas of the two quantum wells (QW close-quote s) in rvec k space, both in the conduction and valence bands, and formation of an anticrossing gap in the conduction band. Using a self-consistent density-functional theory, the PL spectra and the band-gap narrowing are calculated as a function of B parallel , T, and the homogeneous linewidths. The PL spectra from symmetric and asymmetric DQW close-quote s are found to show strikingly different behavior. In symmetric DQW close-quote s with a high density of electrons, two PL peaks are obtained at B parallel =0, representing the interband transitions between the pair of the upper (i.e., antisymmetric) levels and that of the lower (i.e., symmetric) levels of the ground doublets. As B parallel increases, the upper PL peak develops an N-type kink, namely a maximum followed by a minimum, and merges with the lower peak, which rises monotonically as a function of B parallel due to the diamagnetic energy. When the electron density is low, however, only a single PL peak, arising from the transitions between the lower levels, is obtained. In asymmetric DQW close-quote s, the PL spectra show mainly one dominant peak at all B parallel close-quote s. In this case, the holes are localized in one of the QW close-quote s at low T and recombine only with the electrons in the same QW. At high electron densities, the upper PL peak shows an N-type kink like in symmetric DQW close-quote s. However, the lower peak is absent at low B parallel close-quote s because it arises from the inter-QW transitions. Reasonable agreement is obtained with recent
A convergent iterative solution of the quantum double-well potential
International Nuclear Information System (INIS)
Friedberg, R.; Lee, T.D.; Zhao, W.Q.; Cimenser, A.
2001-01-01
We present a new convergent iterative solution for the two lowest quantum wave functions ψ ev and ψ od of the Hamiltonian with a quartic double-well potential V in one dimension. By starting from a trial function, which is by itself the exact lowest even or odd eigenstate of a different Hamiltonian with a modified potential V+δV, we construct the Green's function for the modified potential. The true wave functions, ψ ev or ψ od , then satisfy a linear inhomogeneous integral equation, in which the inhomogeneous term is the trial function, and the kernel is the product of the Green's function times the sum of δV, the potential difference, and the corresponding energy shift. By iterating this equation we obtain successive approximations to the true wave function; furthermore, the approximate energy shift is also adjusted at each iteration so that the approximate wave function is well behaved everywhere. We are able to prove that this iterative procedure converges for both the energy and the wave function at all x. The effectiveness of this iterative process clearly depends on how good the trial function is, or equivalently, how small the potential difference δV is. Although each iteration brings a correction smaller than the previous one by a factor proportional to the parameter that characterizes the smallness of δV, it is not a power series expansion in the parameter. The exact tunneling information of the modified potential is, of course, contained in the Green's function; by adjusting the kernel of the integral equation via the energy shift at each iteration, we bring enough of this information into the calculation so that each approximate wave function is exponentially tuned. This is the underlying reason why the present method converges, while the usual power series expansion does not
A Characterization of Rectangular Distributions
Terrell, George R.
1983-01-01
It is well known that the smaller and the larger of a random sample of size two are positively correlated. The coefficient of correlation is at most one-half, and the upper bound is attained only for rectangular distributions.
Aziz-Aghchegala, V. L.; Mughnetsyan, V. N.; Kirakosyan, A. A.
2018-02-01
The effect of interdiffusion and magnetic field on confined states of electron and heavy hole as well as on interband absorption spectrum in a Ga1-xAlxAs/GaAs Gaussian-shaped double quantum ring are investigated. It is shown that both interdiffusion and magnetic field lead to the change of the charge carriers' quantum states arrangement by their energies. The oscillating behavior of the electron ground state energy as a function of magnetic field induction gradually disappears with the increase of diffusion parameter due to the enhanced tunneling of electron to the central region of the ring. For the heavy hole the ground state energy oscillations are not observable in the region of the values of magnetic field induction B = 0 - 10 T . For considered transitions both the magnetic field and the interdiffusion lead to a blue-shift of the absorption spectrum and to decreasing of the absorption intensity. The obtained results indicate on the opportunity of purposeful manipulation of energy states and absorption spectrum of a Gaussian-shaped double quantum ring by means of the post growth annealing and the external magnetic field.
On the donor states in double InxGa1−xN/InyGa1−yN/GaN staggered quantum wells
International Nuclear Information System (INIS)
Yıldırım, Hasan; Aslan, Bulent
2013-01-01
We have calculated the binding energies of the donor states, 1s and 2p ± , with respect to the lowest sub-band energy in a double quantum well composed of wurtzite InGaN staggered quantum wells with GaN barriers. All the energies and the wavefunctions were calculated by applying the variational methods. We have found that the binding energies of donors placed in the right quantum well are larger and independent of the middle barrier width of up to 40 Å. This is because of the strong built-in electric field which brings more confinement to the donor wavefunctions in the right staggered quantum well. The binding energies are found to be strong functions of the donor position in the double quantum well system which is the consequence of the large asymmetry introduced by the built-in electric field. (paper)
Energy Technology Data Exchange (ETDEWEB)
Ullah, S.; Gusev, G. M.; Hernandez, F. G. G., E-mail: felixggh@if.usp.br [Instituto de Física, Universidade de São Paulo, Caixa Postal 66318, CEP 05315-970 São Paulo, SP (Brazil); Bakarov, A. K. [Institute of Semiconductor Physics and Novosibirsk State University, Novosibirsk 630090 (Russian Federation)
2016-06-07
We investigated the spin coherence of high-mobility two-dimensional electron gases confined in multilayer GaAs quantum wells. The dynamics of the spin polarization was optically studied using pump-probe techniques: time-resolved Kerr rotation and resonant spin amplification. For double and triple quantum wells doped beyond the metal-to-insulator transition, the spin-orbit interaction was tailored by the sample parameters of structural symmetry (Rashba constant), width, and electron density (Dresselhaus linear and cubic constants) which allow us to attain long dephasing times in the nanoseconds range. The determination of the scales, namely, transport scattering time, single-electron scattering time, electron-electron scattering time, and spin polarization decay time further supports the possibility of using n-doped multilayer systems for developing spintronic devices.
Singh, Madhav K.; Jha, Pradeep K.; Bhattacherjee, Aranya B.
2017-09-01
In this article, we study the spin and tunneling dynamics as a function of magnetic field in a one-dimensional GaAs double quantum dot with both the Dresselhaus and Rashba spin-orbit coupling. In particular, we consider different spatial widths for the spin-up and spin-down electronic states. We find that the spin dynamics is a superposition of slow as well as fast Rabi oscillations. It is found that the Rashba interaction strength as well as the external magnetic field strongly modifies the slow Rabi oscillations which is particularly useful for implementing solid state selective spin transport device.
Energy Technology Data Exchange (ETDEWEB)
Amaha, S., E-mail: s-amaha@riken.jp [Quantum Spin Information Project, Japan Science and Technology Agency, ICORP, 3-1, Morinosato Wakamiya, Atsugi-shi, Kanagawa 243-0198 (Japan); Quantum Functional System Research Group, RIKEN Center for Emergent Matter Science, RIKEN, 3-1 Wako-shi, Saitama 351-0198 (Japan); Hatano, T. [Quantum Spin Information Project, Japan Science and Technology Agency, ICORP, 3-1, Morinosato Wakamiya, Atsugi-shi, Kanagawa 243-0198 (Japan); Department of Physics, Tohoku University, Sendai-shi, Miyagi 980-8578 (Japan); Tarucha, S. [Quantum Spin Information Project, Japan Science and Technology Agency, ICORP, 3-1, Morinosato Wakamiya, Atsugi-shi, Kanagawa 243-0198 (Japan); Quantum Functional System Research Group, RIKEN Center for Emergent Matter Science, RIKEN, 3-1 Wako-shi, Saitama 351-0198 (Japan); Department of Applied Physics, School of Engineering, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Gupta, J. A.; Austing, D. G. [National Research Council of Canada, M50, Montreal Road, Ottawa, Ontario K1A 0R6 (Canada)
2015-04-27
We investigate nuclear spin pumping with five-electron quadruplet spin states in a spin-blockaded weakly coupled vertical double quantum dot device. Two types of hysteretic steps in the leakage current are observed on sweeping the magnetic field and are associated with bidirectional polarization of nuclear spin. Properties of the steps are understood in terms of bias-voltage-dependent conditions for the mixing of quadruplet and doublet spin states by the hyperfine interaction. The hysteretic steps vanish when up- and down-nuclear spin pumping processes are in close competition.
Karaaslan, Y.; Gisi, B.; Sakiroglu, S.; Kasapoglu, E.; Sari, H.; Sokmen, I.
2018-02-01
We study the influence of electric field on the electronic energy band structure, zero-temperature ballistic conductivity and optical properties of double quantum wire. System described by double-well anharmonic confinement potential is exposed to a perpendicular magnetic field and Rashba and Dresselhaus spin-orbit interactions. Numerical results show up that the combined effects of internal and external agents cause the formation of crossing, anticrossing, camel-back/anomaly structures and the lateral, downward/upward shifts in the energy dispersion. The anomalies in the energy subbands give rise to the oscillation patterns in the ballistic conductance, and the energy shifts bring about the shift in the peak positions of optical absorption coefficients and refractive index changes.
International Nuclear Information System (INIS)
Xiong, Lun; Yi, Lin
2014-01-01
Thermoelectric effects, including Seebeck coefficient (S), thermal conductance (κ), and figure of merit (ZT), in a laterally coupled double-quantum-dot (DQD) chain with two external nonmagnetic contacts are investigated theoretically by the nonequilibrium Green's function formalism. In this system, the DQD chain between two contacts forms a main channel for thermal electrons transporting, and each QD in the main chain couples laterally to a dangling one. The numerical calculations show that the Coulomb interactions not only lead to the splitting of the asymmetrical double-peak structure of the Seebeck coefficient, but also make the thermal spectrum show a strong violation of the Wiedemann–Franz law, leading to a colossal enhancement in ZT. These results indicate that the coupled DQD chain has potential applications in the thermoelectric devices with high thermal efficiency.
International Nuclear Information System (INIS)
Wang Bo; Ma Zhongshui; Zhang, C
2012-01-01
We demonstrate that the trigonal warping observed in bilayer graphene is doubled in the presence of Rashba spin-orbit (RSO) coupling, i.e. the Dirac points along the three-fold symmetry axis are doubled. There are now seven Dirac points. Furthermore, the RSO interaction breaks the electron-hole symmetry of the magnetic band structure. The most intriguing feature is that the step of the quantum Hall plateau at zero energy is four times that at finite energy. The number of Dirac points and the zero energy Hall step are only determined by the existence of RSO coupling, but are independent of the strength of the coupling. The robustness of these phenomena suggests equivalence between the RSO coupling and the topological effect in bilayer coupling.
Christopher, Heike; Kovalchuk, Evgeny V; Wenzel, Hans; Bugge, Frank; Weyers, Markus; Wicht, Andreas; Peters, Achim; Tränkle, Günther
2017-07-01
We present a compact, mode-locked diode laser system designed to emit a frequency comb in the wavelength range around 780 nm. We compare the mode-locking performance of symmetric and asymmetric double quantum well ridge-waveguide diode laser chips in an extended-cavity diode laser configuration. By reverse biasing a short section of the diode laser chip, passive mode-locking at 3.4 GHz is achieved. Employing an asymmetric double quantum well allows for generation of a mode-locked optical spectrum spanning more than 15 nm (full width at -20 dB) while the symmetric double quantum well device only provides a bandwidth of ∼2.7 nm (full width at -20 dB). Analysis of the RF noise characteristics of the pulse repetition rate shows an RF linewidth of about 7 kHz (full width at half-maximum) and of at most 530 Hz (full width at half-maximum) for the asymmetric and symmetric double quantum well devices, respectively. Investigation of the frequency noise power spectral density at the pulse repetition rate shows a white noise floor of approximately 2100 Hz 2 /Hz and of at most 170 Hz 2 /Hz for the diode laser employing the asymmetric and symmetric double quantum well structures, respectively. The pulse width is less than 10 ps for both devices.
Two-electron states in double quantum dot in direct electric field
International Nuclear Information System (INIS)
Burdov, V.A.
2001-01-01
One determined analytically the wave functions of stationary states and the spectrum of two-electron system in symmetric binary quantum point. It is shown that in the normal state at the absence of external electric field the electrons due to the Coulomb blockade can not be collectively in one quantum point. In the external electric field the situation changes. When a certain critical value of field intensity is reached the probability of detection of both electrons in one quantum point by a jump increases from zero up to 1 [ru
Chan, GuoXuan; Wang, Xin
2018-04-01
We consider two typical approximations that are used in the microscopic calculations of double-quantum dot spin qubits, namely, the Heitler-London (HL) and the Hund-Mulliken (HM) approximations, which use linear combinations of Fock-Darwin states to approximate the two-electron states under the double-well confinement potential. We compared these results to a case in which the solution to a one-dimensional Schr¨odinger equation was exactly known and found that typical microscopic calculations based on Fock-Darwin states substantially underestimate the value of the exchange interaction, which is the key parameter that controls the quantum dot spin qubits. This underestimation originates from the lack of tunneling of Fock-Darwin states, which is accurate only in the case with a single potential well. Our results suggest that the accuracies of the current two-dimensional molecular- orbit-theoretical calculations based on Fock-Darwin states should be revisited since underestimation could only deteriorate in dimensions that are higher than one.
Rectangular source integral and recurrence relations
International Nuclear Information System (INIS)
Prabha, Hem
2007-01-01
In this paper Hubbell's rectangular source integral H'(a,b), which is a double integral, is expressed as a series of many converging single integrals I n (a,b). Recurrence relations relate these integrals. Once one integral I 1 is computed, recurrence relations are used to compute other integrals. I 1 (a,b) can be computed analytically. H'(a,b) is approximated by considering the first seven terms in the series and the results are found to give good results for various values of a and b. Results are presented for the values of a and b (0.1 to 20 and to 2), respectively. The rate of convergence depends on the values of a and b
Rochette, Sophie; Ten Eyck, Gregory A.; Pluym, Tammy; Lilly, Michael P.; Carroll, Malcolm S.; Pioro-Ladrière, Michel
2015-03-01
Silicon quantum dots are promising candidates for quantum information processing as spin qubits with long coherence time. We present electrical transport measurements on a silicon metal-oxide-semiconductor (MOS) double quantum dot (DQD). First, Coulomb diamonds measurements demonstrate the one-electron regime at a relatively high temperature of 1.5 K. Then, the 8 mK stability diagram shows Pauli spin blockade with a large singlet-triplet separation of approximatively 0.40 meV, pointing towards a strong lifting of the valley degeneracy. Finally, numerical simulations indicate that by integrating a micro-magnet to those devices, we could achieve fast spin rotations of the order of 30 ns. Those results are part of the recent body of work demonstrating the potential of Si MOS DQD as reliable and long-lived spin qubits that could be ultimately integrated into modern electronic facilities. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
On Hubbell's rectangular source integral
International Nuclear Information System (INIS)
Stalker, John
2001-01-01
The integral H(a,b)=∫ 0 b ∫ 0 a dx dy/(1+x 2 +y 2 ) arises naturally in the study of radiation from a rectangular source and has been studied by many authors. This paper introduces a new series expansion which is rapidly convergent for large a and b
International Nuclear Information System (INIS)
Schönhöbel, A.M.; Girón-Sedas, J.A.; Porras-Montenegro, N.
2014-01-01
We have calculated exactly the energy of electron quasistationary states in GaAs–(Ga,Al)As single and double quantum wells under the action of applied electric field and hydrostatic pressure by using Enderlein's method to solve the Schrödinger equation. Numerical results were obtained by means of the density of states as a function of the applied electric field, hydrostatic pressure, Al concentration and the structure geometry as well. We found two regions very well differentiated in energy; for lower values there are quasistationary states and for higher, fast oscillations. The quasistationary ground and excited energy states diminish with the well width and the applied electric field, and increase with the confinement potential and the width of the central barrier in the double quantum well. In the latter structure we observed the anti-crossing between the first and second quasistationary energy levels, phenomena which certainly depend on the central barrier width. Otherwise, in the region of fast oscillations, the period of Franz–Keldysh oscillation type in single quantum well and double quantum well increases with the applied electric field and the number of nodes augments with the well width. Also, we found that the increase of the central barrier height in the double quantum well diminishes the number of nodes, while the applied hydrostatic pressure changes the length of pulsations in both structures.
Time-dependent resonant tunnelling for parallel-coupled double quantum dots
International Nuclear Information System (INIS)
Dong Bing; Djuric, Ivana; Cui, H L; Lei, X L
2004-01-01
We derive the quantum rate equations for an Aharonov-Bohm interferometer with two vertically coupled quantum dots embedded in each of two arms by means of the nonequilibrium Green function in the sequential tunnelling regime. Based on these equations, we investigate time-dependent resonant tunnelling under a small amplitude irradiation and find that the resonant photon-assisted tunnelling peaks in photocurrent demonstrate a combination behaviour of Fano and Lorentzian resonances due to the interference effect between the two pathways in this parallel configuration, which is controllable by threading the magnetic flux inside this device
Nuclear spin dynamics in double quantum dots : Fixed points, transients, and intermittency
Rudner, M.S.; Koppens, F.H.L.; Folk, J.A.; Vandersypen, L.M.K.; Levitov, L.S.
2011-01-01
Transport through spin-blockaded quantum dots provides a means for electrical control and detection of nuclear spin dynamics in the host material. Although such experiments have become increasingly popular in recent years, interpretation of their results in terms of the underlying nuclear spin
Macroscopic quantum tunneling of a Bose-Einstein condensate through double Gaussian barriers
Maeda, Kenji; Urban, Gregor; Weidemüller, Matthias; Carr, Lincoln D.
2015-05-01
Macroscopic quantum tunneling is one of the great manifestations of quantum physics, not only showing passage through a potential barrier but also emerging in a many-body wave function. We study a quasi-1D Bose-Einstein condensate of Lithium, confined by two Gaussian barriers, and show that in an experimentally realistic potential tens of thousands of atoms tunnel on time scales of 10 to 100 ms. Using a combination of variational and WKB approximations based on the Gross-Pitaevskii or nonlinear Schrödinger equation, we show that many unusual tunneling features appear due to the nonlinearity, including the number of trapped atoms exhibiting non-exponential decay, severe distortion of the barriers by the mean field, and even formation of a triple barrier in certain regimes. In the first 10ms, nonlinear many-body effects make the tunneling rates significantly larger than background loss rates, from 10 to 70 Hz. Thus we conclude that macroscopic quantum tunneling can be observed on experimental time scales. Funded by NSF, AFOSR, the Alexander von Humboldt foundation, and the Heidelberg Center for Quantum Dynamics.
Transmission spectrum of a double quantum-dot-nanocavity system in photonic crystals
International Nuclear Information System (INIS)
Qian Jun; Jin Shiqi; Gong Shangqing; Qian Yong; Feng Xunli
2008-01-01
We investigate the optical transmission properties of a combined system which consists of two quantum-dot-nanocavity subsystems indirectly coupled to a waveguide in a planar photonic crystal. A Mollow-like triplet and the growth of sidebands are found, reflecting intrinsic optical responses in the complex microstructure
Research on applications of rectangular beam in micro laser propulsion
International Nuclear Information System (INIS)
Jiao, L.; Cai, J.; Ma, H.H.; Li, G.X.; Li, L.; Shen, Z.W.; Tang, Z.P.
2014-01-01
Highlights: • Diode laser bar of 808 nm is introduced into the micro laser propulsion field. • Double base propellant (DBP) coating with BOPP substrate was obtained. • The combination of laser power and energy decides the propulsion performance. • The new rectangular beam prefers to produce higher impulse. - Abstract: Micro laser propulsion is a new technology with brilliant future. In order to reduce the thruster mass and volume further, laser bar is introduced into the micro laser propulsion field. A new kind of 220 × 20 μm rectangular beam of 808 nm was obtained by oval lens compressing the light of diode at fast axes and slow axes. The effect of laser power, energy and coating thickness of double base propellant on propulsion performance was studied. Propulsion performance of double base propellant under static and dynamic mode shows some different characters. Compared to round beam, the new beam prefers to produce higher impulse. Ablation efficiency of DBP shows better performance in short laser duration. The combination of power density and energy density decides the laser propulsion performance. The new rectangular beam is appropriate for millisecond micro-laser propulsion
International Nuclear Information System (INIS)
Nishibayashi, K.; Aoshima, I.; Souma, I.; Murayama, A.; Oka, Y.
2006-01-01
Dynamics of spin injection has been investigated in a double quantum well (DQW) composed of a diluted magnetic semiconductor by the pump-probe transient absorption spectroscopy in magnetic field. The DQW consists of a non-magnetic well (NMW) of CdTe and a magnetic well (MW) of Cd 0.92 Mn 0.08 Te. The MW shows a transient absorption saturation in the exciton band for more than 200 ps after the optical pumping, while the exciton photoluminescence does not arise from the MW. In the NMW, the circular polarization degree of the transient absorption saturation shows an increase with increasing time. The results are interpreted by the individual tunneling of spin-polarized electrons and holes from the MW to the NMW with different tunneling times. Depolarization processes of the carrier spins in the MW and the NMW are also discussed
Highly strained InAlP/InGaAs-based coupled double quantum wells on InP substrates
Gozu, Shin-ichiro; Mozume, Teruo
2018-05-01
InAlP/InGaAs based coupled double quantum wells (CDQWs) are proposed for optelectronic devices utilizing intersubband transitions. The aim of the proposed CDQW structure was to reduce the Al volume as compared with that in InGaAs/AlAsSb(AlAs/InAlAs) based CDQWs. By careful consideration of the band gap energy as well as conduction band offset and lattice constants for III–V materials, highly strained InAlP was chosen as the barrier material. With the appropriate CDQW structure and under the optimized growth conditions, proposed CDQWs exhibited clear X-ray diffraction satellite peaks, and almost identical optical absorption spectrum as compared with the InGaAs/AlAs/InAlAs CDQWs.
Phase Diagram of the Bose Condensation of Interwell Excitons in GaAs/AlGaAs Double Quantum Wells
DEFF Research Database (Denmark)
Dremin, A. A.; Timofeev, V. B.; Larionov, A. V.
2002-01-01
The luminescence of interwell excitons in GaAs/AlGaAs double quantum wells (n–i–n heterostructures) with large-scale fluctuations of random potential in the heteroboundary planes was studied at low temperatures down to 0.5 K. The properties of excitons whose photoexcited electron and hole...... was coated with a metal mask containing special openings (windows) of a micron size or smaller. Both photoexcitation and observation of luminescence were performed through these windows by the fiber optic technique. At low pumping powers, the interwell excitons were strongly localized because of the residual...... charged impurities, and the corresponding photoluminescence line was nonuniformly broadened. As the laser excitation power increased, a narrow line due to delocalized excitons arose in a threshold-like manner, after which its intensity rapidly increased with growing pumping and the line itself narrowed...
Near-infrared intersubband transitions in InGaAs-AlAs-InAlAs double quantum wells
International Nuclear Information System (INIS)
Semtsiv, M.P.; Ziegler, M.; Masselink, W.T.; Georgiev, N.; Dekorsy, T.; Helm, M.
2005-01-01
Intersubband optical transitions at short wavelengths in strain-compensated In 0.70 Ga 0.30 As--AlAs double quantum wells are investigated by means of mid-infrared absorption. Trade-offs between achieving a high transition energy and a large oscillator strength of the two highest-energy intersubband transitions using our strain-compensation approach are analyzed as a function of the widths of the two wells. Two design strategies leading to relatively strong intersubband optical transitions at 800 meV, 1.55 μm, are described and the corresponding structures grown using gas-source molecular-beam epitaxy on (001)InP are investigated. The strongest intersubband transitions obtained experimentally are generally between 300 and 600 meV, 2-4 μm. Significant oscillator strength, however, also extends out to 800 meV, 1.55 μm
Charged excitonic complexes in GaAs/Al0.35Ga0.65As p-i-n double quantum wells
DEFF Research Database (Denmark)
Timofeev, V. B.; Larionov, A. V.; Alessi, M. Grassi
1999-01-01
Photoluminescence (PL) and PL excitation measurements (PLE) have been performed in GaAs/AlxGa1-xAs double quantum well (QW) structures under different applied electric fields. An emission due to charged excitons (trions) has been identified in the PL spectra similar to 3 meV below the heavy...
Phase diagram of a two-dimensional liquid in GaAs/AlxGa1-xAs biased double quantum wells
DEFF Research Database (Denmark)
Timofeev, V. B.; Larionov, A. V.; Alessi, M. G.
2000-01-01
Photoluminescence (PL) and PL excitation (PLE) measurements have been performed in GaAs/AlxGa1-xAs biased double quantum well heterostructures. The recombination of electrons, e, with holes, h, located in the same or in two adjacent wells, has been investigated for different exciting power...
Energy Technology Data Exchange (ETDEWEB)
Reuscher, G.; Keim, M.; Fischer, F.; Waag, A.; Landwehr, G. [Physikalishes Institut der Universitaet Wuerzburg am Hubland, Wuerzburg (Germany)
1995-12-31
We report the first observation of resonant tunneling through a CdTe/Cd{sub 1-x}Mg{sub x}Te double barrier, single quantum well heterostructure. Negative differential resistance is observable at temperatures below 230 K, exhibiting a peak to valley ratio of 3:1 at 4.2 K. (author). 16 refs, 2 figs.
International Nuclear Information System (INIS)
Eslami, Leila; Esmaeilzadeh, Mahdi
2014-01-01
Spin-dependent electron transport in an open double quantum ring, when each ring is made up of four quantum dots and threaded by a magnetic flux, is studied. Two independent and tunable gate voltages are applied to induce Rashba spin-orbit effect in the quantum rings. Using non-equilibrium Green's function formalism, we study the effects of electron-electron interaction on spin-dependent electron transport and show that although the electron-electron interaction induces an energy gap, it has no considerable effect when the bias voltage is sufficiently high. We also show that the double quantum ring can operate as a spin-filter for both spin up and spin down electrons. The spin-polarization of transmitted electrons can be tuned from −1 (pure spin-down current) to +1 (pure spin-up current) by changing the magnetic flux and/or the gates voltage. Also, the double quantum ring can act as AND and NOR gates when the system parameters such as Rashba coefficient are properly adjusted
Xifang, Chen; Wenxia, Zhang; Qianjin, Wang; Jiyang, Fan
Carbon quantum dots (CQDs) have attracted great attention in the past few years due to their low cytotoxicity, exploited various synthesis methods, unexampled abundance of raw materials on earth, and robust near-infrared to near-UV luminescence. Carbon nanoparticles have applications in biological labeling, delivery of drugs and biological molecules into cells, and light emitting diodes and lasing. CQDs generally exist as nanodiamonds or graphite quantum dots according to previous research reports. In this study, we report the first synthesis of the third-allotrope CQDs through carbonization of sucrose and study their luminescence properties. These CQDs have a body-centered cubic structure and each lattice point is composed of eight atoms which form a sub-cube (so called C8 crystal structure). High-resolution transmission electron microscopy and X-ray diffraction confirm the C8 structure of the synthesized carbon nanocrystallites with an average size of 2 nm. The C8 CQDs exhibit double-band luminescence with two peaks centered at around 432 and 520 nm. The study based on the photoluminescence, UV-Vis absorption, Fourier-transform infrared, and X-ray photoelectron spectroscopies reveals that the green emission originates from the C=O related surface defect.
International Nuclear Information System (INIS)
Jiang Xiang-Wei; Li Shu-Shen
2012-01-01
By using the linear combination of bulk band (LCBB) method incorporated with the top of the barrier splitting (TBS) model, we present a comprehensive study on the quantum confinement effects and the source-to-drain tunneling in the ultra-scaled double-gate (DG) metal—oxide—semiconductor field-effect transistors (MOSFETs). A critical body thickness value of 5 nm is found, below which severe valley splittings among different X valleys for the occupied charge density and the current contributions occur in ultra-thin silicon body structures. It is also found that the tunneling current could be nearly 100% with an ultra-scaled channel length. Different from the previous simulation results, it is found that the source-to-drain tunneling could be effectively suppressed in the ultra-thin body thickness (2.0 nm and below) by the quantum confinement and the tunneling could be suppressed down to below 5% when the channel length approaches 16 nm regardless of the body thickness. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Generation of vector beams using a double-wedge depolarizer: Non-quantum entanglement
Samlan, C. T.; Viswanathan, Nirmal K.
2016-07-01
Propagation of horizontally polarized Gaussian beam through a double-wedge depolarizer generates vector beams with spatially varying state of polarization. Jones calculus is used to show that such beams are maximally nonseparable on the basis of even (Gaussian)-odd (Hermite-Gaussian) mode parity and horizontal-vertical polarization state. The maximum nonseparability in the two degrees of freedom of the vector beam at the double wedge depolarizer output is verified experimentally using a modified Sagnac interferometer and linear analyser projected interferograms to measure the concurrence 0.94±0.002 and violation of Clauser-Horne-Shimony-Holt form of Bell-like inequality 2.704±0.024. The investigation is carried out in the context of the use of vector beams for metrological applications.
In-plane magnetic field-dependent magnetoresistance of gated asymmetric double quantum wells
Czech Academy of Sciences Publication Activity Database
Krupko, Yuriy; Smrčka, Ludvík; Vašek, Petr; Svoboda, Pavel; Cukr, Miroslav; Jansen, L.
2004-01-01
Roč. 22, - (2004), s. 44-47 ISSN 1386-9477. [International Conference on Electronic Properties of Two-Dimensional Systems /15./. Nara, 14.07.2003-18.07.2003] R&D Projects: GA ČR GA202/01/0754 Institutional research plan: CEZ:AV0Z1010914 Keywords : double - layer two-dimensional electron system * magnetotransport * gate voltage Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.898, year: 2004
Interlayer Hall effect in double quantum wells subject to in-plane magnetic fields
Czech Academy of Sciences Publication Activity Database
Kolorenč, Jindřich; Smrčka, Ludvík; Středa, Pavel
2002-01-01
Roč. 66, č. 8 (2002), s. 085301-1 - 085301-7 ISSN 0163-1829 R&D Projects: GA ČR GA202/01/0754; GA ČR GA202/01/0764 Institutional research plan: CEZ:AV0Z1010914 Keywords : double - layer two-dimensional electron system * magnetotransport * Hall effect Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.327, year: 2002
Al-Khalili, Jim
2003-01-01
In this lively look at quantum science, a physicist takes you on an entertaining and enlightening journey through the basics of subatomic physics. Along the way, he examines the paradox of quantum mechanics--beautifully mathematical in theory but confoundingly unpredictable in the real world. Marvel at the Dual Slit experiment as a tiny atom passes through two separate openings at the same time. Ponder the peculiar communication of quantum particles, which can remain in touch no matter how far apart. Join the genius jewel thief as he carries out a quantum measurement on a diamond without ever touching the object in question. Baffle yourself with the bizzareness of quantum tunneling, the equivalent of traveling partway up a hill, only to disappear then reappear traveling down the opposite side. With its clean, colorful layout and conversational tone, this text will hook you into the conundrum that is quantum mechanics.
Motion of rectangular prismatic bodies
International Nuclear Information System (INIS)
Poreh, M.; Wray, R.N.
1979-01-01
Rectangular prismatic bodies can assume either a translatory or an auto-rotating mode of motion during free motion in the atmosphere. The translatory mode is stable only when the dimensionless moment of inertia of the bodies is large, however, large perturbations will always start auto-rotation. The characteristics of the auto-rotational mode are shown to depend primarily on the aspect ratio of the bodies which determines the dimensionless rotational speed and the lift coefficient. Both the average drag and lift-coefficients of auto-rotating bodies are estimated, but it is shown that secondary effects make it impossible to determine their exact trajectories in atmospheric flows
Theory of nonlinear optical response of ensembles of double quantum dots
Sitek, Anna; Machnikowski, Paweł
2009-09-01
We study theoretically the time-resolved four-wave mixing (FWM) response of an ensemble of pairs of quantum dots undergoing radiative recombination. At short (picosecond) delay times, the response signal shows beats that may be dominated by the subensemble of resonant pairs, which gives access to the information on the interdot coupling. At longer delay times, the decay of the FWM signal is governed by two rates which result from the collective interaction between the two dots and the radiation modes. The two rates correspond to the subradiant and super-radiant components in the radiative decay. Coupling between the dots enhances the collective effects and makes them observable even when the average energy mismatch between the dots is relatively large.
Tiutiunnyk, A.; Mora-Ramos, M. E.; Morales, A. L.; Duque, C. M.; Restrepo, R. L.; Ungan, F.; Martínez-Orozco, J. C.; Kasapoglu, E.; Duque, C. A.
2017-02-01
In this work we shall present a study of inelastic light scattering involving inter-subband electron transitions in coupled GaAs-(Ga,Al)As quantum wells. Calculations include the electron related Raman differential cross section and Raman gain. The effects of an external nonresonant intense laser field are used in order to tune these output properties. The confined electron states will be described by means of a diagonalization procedure within the effective mass and parabolic band approximations. It is shown that the application of the intense laser field can produce values of the intersubband electron Raman gain above 400 cm-1. The system proposed here is an alternative choice for the development of AlxGa1-xAs semiconductor laser diodes that can be tuned via an external nonresonant intense laser field.
Quantum scattering in one-dimensional systems satisfying the minimal length uncertainty relation
Energy Technology Data Exchange (ETDEWEB)
Bernardo, Reginald Christian S., E-mail: rcbernardo@nip.upd.edu.ph; Esguerra, Jose Perico H., E-mail: jesguerra@nip.upd.edu.ph
2016-12-15
In quantum gravity theories, when the scattering energy is comparable to the Planck energy the Heisenberg uncertainty principle breaks down and is replaced by the minimal length uncertainty relation. In this paper, the consequences of the minimal length uncertainty relation on one-dimensional quantum scattering are studied using an approach involving a recently proposed second-order differential equation. An exact analytical expression for the tunneling probability through a locally-periodic rectangular potential barrier system is obtained. Results show that the existence of a non-zero minimal length uncertainty tends to shift the resonant tunneling energies to the positive direction. Scattering through a locally-periodic potential composed of double-rectangular potential barriers shows that the first band of resonant tunneling energies widens for minimal length cases when the double-rectangular potential barrier is symmetric but narrows down when the double-rectangular potential barrier is asymmetric. A numerical solution which exploits the use of Wronskians is used to calculate the transmission probabilities through the Pöschl–Teller well, Gaussian barrier, and double-Gaussian barrier. Results show that the probability of passage through the Pöschl–Teller well and Gaussian barrier is smaller in the minimal length cases compared to the non-minimal length case. For the double-Gaussian barrier, the probability of passage for energies that are more positive than the resonant tunneling energy is larger in the minimal length cases compared to the non-minimal length case. The approach is exact and applicable to many types of scattering potential.
Cho, Seok Hyeon; Been Heo, Su; Kang, Seong Jun
2018-03-01
We developed a double-layer structured transparent electrode for use in flexible quantum-dot light-emitting diodes (QLEDs). Silver nanowires (AgNWs) and highly conductive poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) were coated on a transparent substrate to obtain a highly conductive and flexible transparent electrode. The highly conductive PEDOT:PSS improved the surface roughness of the AgNWs transparent electrode film as well as the surface coverage area of the film. The double-layer structured transparent electrode showed superior mechanical properties than conventional indium-tin oxide (ITO) and AgNWs transparent electrodes. QLEDs with the double-layer structured transparent electrode also showed good reliability under cyclic bending conditions. These results indicate that the double-layer structured AgNWs/PEDOT:PSS transparent electrode described here is a feasible alternative to ITO transparent electrodes for flexible QLEDs.
International Nuclear Information System (INIS)
Atanasov, Atanas Todorov
2014-01-01
The scaling of physical and biological characteristics of the living organisms is a basic method for searching of new biophysical laws. In series of previous studies the author showed that in Poikilotherms, Mammals and Aves, the volume to surface ratio V×S −1 (m) of organisms is proportional to their generation time T gt (s) via growth rate v (m s −1 ): V×S −1 = v gr ×T r . The power and the correlation coefficients are near to 1.0. Aim of this study is: i) to prove with experimental data the validity of the above equation for Unicellular organisms and ii) to show that perhaps, the cells are quantum-mechanical systems. The data for body mass M (kg), density ρ (kg/m 3 ), minimum and maximum doubling time T dt (s) for 50 unicellular organisms are assembled from scientific sources, and the computer program ‘Statistics’ is used for calculations. In result i) the analytical relationship from type: V×S −1 = 4.46⋅10 −11 ×T dt was found, where v gr = 4.46×10 −11 m/s and ii) it is shown that the products between cell mass M, cell length expressed by V/S ratio and growth rate v gr satisfied the Heisenberg uncertainty principle i.e. the inequalities V/S×M×v gr >h/2π and T dt ×M×v gr 2 >h/2π are valid, where h= 6.626×10 −34 J⋅s is the Planck constant. This rise the question: do cells appear quantum-mechanical systems?
Atanasov, Atanas Todorov
2014-10-01
The scaling of physical and biological characteristics of the living organisms is a basic method for searching of new biophysical laws. In series of previous studies the author showed that in Poikilotherms, Mammals and Aves, the volume to surface ratio V×S-1 (m) of organisms is proportional to their generation time Tgt(s) via growth rate v (m s-1): V×S-1 = vgr×Tr. The power and the correlation coefficients are near to 1.0. Aim of this study is: i) to prove with experimental data the validity of the above equation for Unicellular organisms and ii) to show that perhaps, the cells are quantum-mechanical systems. The data for body mass M (kg), density ρ (kg/m3), minimum and maximum doubling time Tdt (s) for 50 unicellular organisms are assembled from scientific sources, and the computer program `Statistics' is used for calculations. In result i) the analytical relationship from type: V×S-1 = 4.46ṡ10-11×Tdt was found, where vgr = 4.46×10-11 m/s and ii) it is shown that the products between cell mass M, cell length expressed by V/S ratio and growth rate vgr satisfied the Heisenberg uncertainty principle i.e. the inequalities V/S×M×vgr>h/2π and Tdt×M×vgr2>h/2π are valid, where h= 6.626×10-34 Jṡs is the Planck constant. This rise the question: do cells appear quantum-mechanical systems?
Energy Technology Data Exchange (ETDEWEB)
Atanasov, Atanas Todorov, E-mail: atanastod@abv.bg [Department of Physics and Biophysics, Faculty of Medicine, Trakia University, 11 Armeiska Str., 6000 Stara Zagora (Bulgaria)
2014-10-06
The scaling of physical and biological characteristics of the living organisms is a basic method for searching of new biophysical laws. In series of previous studies the author showed that in Poikilotherms, Mammals and Aves, the volume to surface ratio V×S{sup −1} (m) of organisms is proportional to their generation time T{sub gt}(s) via growth rate v (m s{sup −1}): V×S{sup −1} = v{sub gr}×T{sup r}. The power and the correlation coefficients are near to 1.0. Aim of this study is: i) to prove with experimental data the validity of the above equation for Unicellular organisms and ii) to show that perhaps, the cells are quantum-mechanical systems. The data for body mass M (kg), density ρ (kg/m{sup 3}), minimum and maximum doubling time T{sub dt} (s) for 50 unicellular organisms are assembled from scientific sources, and the computer program ‘Statistics’ is used for calculations. In result i) the analytical relationship from type: V×S{sup −1} = 4.46⋅10{sup −11}×T{sub dt} was found, where v{sub gr} = 4.46×10{sup −11} m/s and ii) it is shown that the products between cell mass M, cell length expressed by V/S ratio and growth rate v{sub gr} satisfied the Heisenberg uncertainty principle i.e. the inequalities V/S×M×v{sub gr}>h/2π and T{sub dt}×M×v{sub gr}{sup 2}>h/2π are valid, where h= 6.626×10{sup −34} J⋅s is the Planck constant. This rise the question: do cells appear quantum-mechanical systems?.
DEFF Research Database (Denmark)
Timofeev, V.B.; Larionov, A.V.; Ioselevich, A.S.
1998-01-01
narrowing with temperature increase from 4.5 to 30 K. A theoretical model is presented which explains the observed narrowing in terms of lateral thermally activated tunneling of spatially separated e-h pairs localized by random potential fluctuations in the quantum wells. (C) 1998 American Institute......The interwell radiative recombination from biased double quantum wells (DQW) in pin GaAs/AlGaAs heterostructures is investigated at different temperatures and external electrical fields. The luminescence line of interwell recombination of spatially separated electron-hole pairs exhibits systematic...
Alternating space charge and ambiguity of quantum states in double-barrier structure
International Nuclear Information System (INIS)
Pashkovskij, A.B.
2000-01-01
Solution for nonstationary self-consistent Schroedinger and Poisson equations describing resonance interaction of electrons tunneled through asymmetric double-barrier structures with a high-frequency electric field was obtained by summing perturbation theory series. In case of uniform distribution of electrons by energy the solution is obtained analytically, whereas in case of monoenergy beam, it is reduced to finding the roots of power five algebraic polynomial. It is shown that in some cases the influence of spatial charge gives rise to quite a new effect for the systems: several different electron wave functions will correspond to the same amplitude of high-frequency voltage applied to the structure and, accordingly, the values of high-frequency conductivity, transmission and reflection factors may differ by several times. As a result, instability of current transmission and hysteresis of volt-ampere characteristics may be observed in the structures [ru
Partitioning sparse rectangular matrices for parallel processing
Energy Technology Data Exchange (ETDEWEB)
Kolda, T.G.
1998-05-01
The authors are interested in partitioning sparse rectangular matrices for parallel processing. The partitioning problem has been well-studied in the square symmetric case, but the rectangular problem has received very little attention. They will formalize the rectangular matrix partitioning problem and discuss several methods for solving it. They will extend the spectral partitioning method for symmetric matrices to the rectangular case and compare this method to three new methods -- the alternating partitioning method and two hybrid methods. The hybrid methods will be shown to be best.
Energy Technology Data Exchange (ETDEWEB)
Feng Shuanglong; Yang Junyou, E-mail: jyyang@mail.hust.edu.cn; Liu Ming; Zhu Hu; Zhang Jiansheng; Li Gen; Peng Jiangying; Liu Qiongzhen
2012-01-31
A double-layer (DL) film with a TiO{sub 2} nanosheet-layer on a layer of TiO{sub 2} nanorod-array, was synthesized on a transparent conductive fluorine-doped tin oxide substrate by a two-step hydrothermal method. Starting from the precursors of NaSeSO{sub 3}, CdSO{sub 4} and the complex of N(CH{sub 2}COOK){sub 3}, CdSe quantum dots (QDs) were grown on the DL-TiO{sub 2} substrate by chemical bath deposition method. The samples were characterized by X-ray diffraction, Scanning electron microscopy, Energy dispersion spectroscopy, and their optical scattering property was measured by light reflection spectrometry. Some CdSe QDs sensitized DL-TiO{sub 2} films serve as the photoanodes, were assembled into solar cell devices and their photovoltaic performance were also characterized. The short circuit current and open-circuit voltage of the solar cells range from 0.75 to 4.05 mA/cm{sup 2} and 0.20 - 0.42 V under the illumination of one sun (AM1.5, 100 mW/cm{sup 2}), respectively. The photocurrent density of the DL-TiO{sub 2} film is five times higher than that of a bare TiO{sub 2} nanorod array photoelectrode cell. - Highlights: Black-Right-Pointing-Pointer A two-step hydrothermal deposition method was used to deposit TiO{sub 2} films. Black-Right-Pointing-Pointer Double-layer TiO{sub 2} films were synthesized on transparent FTO substrate. Black-Right-Pointing-Pointer The bi-functional character of the electrode were confirmed. Black-Right-Pointing-Pointer Photocurrent density of DL-film electrode was enhanced 5 times than a single film.
Influence of spin correlations in the transport properties of a double quantum dot system
Costa Ribeiro, Laercio; Hamad, Ignacio; Chiappe, Guillermo; Victoriano Anda, Enrique
2013-03-01
In this work we study the influence of spin correlations in the transport properties of a system consisting of two quantum dots (QDs) with high Coulomb interaction U which are interconnected through a chain of N non-interacting sites and individually coupled to two metallic leads. Using both the finite U slave boson mean field approach (FUSBMFA) and the Logarithmic-discretization-embedded-cluster approximation (LDECA) we studied the system in different regions of the parameter space for which we calculate many physical quantities, namely local density of states, conductance, total spin, spin correlations, in addition to the renormalization parameters associated with the FUSBMFA. The results reveled a very rich physical scenario which is manifested by at least two different Kondo regimes, the well-known spin s = 1/2 and some other type of Kondo effect which appears as a result of the coupling between the QDs and the non-interacting central sites. We also consider the possibility of accessing some kind of Kondo box effect due to the discrete nature of the central chain and study how this regime is affected by the magnetic interaction between the local spins of the QD's and by the interaction between these spins and the spins of the conduction electros in the leads.
Current cross-correlations in double quantum dot Cooper pair splitter
Energy Technology Data Exchange (ETDEWEB)
Wrzesniewski, Kacper; Trocha, Piotr; Weymann, Ireneusz [Faculty of Physics, Adam Mickiewicz University, 61-614 Poznan (Poland)
2016-07-01
We investigate theoretically transport properties of a quantum dot (QD) system working as a Cooper pair splitter. The device is coupled to one superconducting and two ferromagnetic leads. Presented results are calculated using real-time diagrammatic technique in the sequential tunneling approximation with respect to the coupling to ferromagnetic leads. The transport properties are evaluated within the superconductor subgap regime taking into account Andreev reflection processes solely. We focus on the analysis of current and current cross-correlations, both in linear and nonlinear responses. Current cross-correlations give additional information about dynamics of transport processes. We identify both positive and negative signs of current cross-correlations and discuss mechanisms leading to those results. Strong negative cross-correlations are found when the occupation number of QD system becomes degenerate and near the emergence of the triplet blockade, while positive ones occur in the most range where current flows due to crossed Andreev processes. Finally, we consider ferromagnetic leads polarization and temperature influences on aforementioned features.
Rectangular superpolynomials for the figure-eight knot 41
Kononov, Ya. A.; Morozov, A. Yu.
2017-11-01
We rewrite the recently proposed differential expansion formula for HOMFLY polynomials of the knot 41 in an arbitrary rectangular representation R = [rs] as a sum over all Young subdiagrams λ of R with surprisingly simple coefficients of the Z factors. Intriguingly, these coefficients are constructed from the quantum dimensions of symmetric representations of the groups SL(r) and SL(s) and restrict the summation to diagrams with no more than s rows and r columns. Moreover, the β-deformation to Macdonald dimensions yields polynomials with positive integer coefficients, which are plausible candidates for the role of superpolynomials for rectangular representations. Both the polynomiality and the positivity of the coefficients are nonobvious, nevertheless true. This generalizes the previously known formulas for symmetric representations to arbitrary rectangular representations. The differential expansion allows introducing additional gradings. For the trefoil knot 31, to which our results for the knot 41 are immediately extended, we obtain the so-called fourth grading of hyperpolynomials. The property of factorization in roots of unity is preserved even in the five-graded case.
Energy Technology Data Exchange (ETDEWEB)
Lopez, S.Y. [Grupo de Educacion en Ciencias Experimentales y Matematicas-GECEM, Facultad de Educacion, Universidad de Antioquia, AA 1226 Medellin (Colombia); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Duque, C.A., E-mail: cduque@fisica.udea.edu.c [Instituto de Fisica, Universidad de Antioquia, AA 1226 Medellin (Colombia)
2009-12-15
The photoluminescence energy transitions in GaAs-Ga{sub 1-x}Al{sub x}As coupled double quantum wells are presented by considering the simultaneous effects of applied electric and magnetic fields and hydrostatic pressure. Calculations have been made in the framework of the effective mass and parabolic band approximations and using a variational procedure. The electric field is taken to be oriented along the growth direction of the heterostructure whereas for the magnetic field both in-plane and in-growth directions have been considered. The results show that the hydrostatic pressure and the applied electric field are two useful tools to tune the direct and indirect exciton transitions in such heterostructures. Our results are in good agreement with previous experimental findings in double quantum wells under applied electric field and hydrostatic pressure.
International Nuclear Information System (INIS)
Lopez, S.Y.; Mora-Ramos, M.E.; Duque, C.A.
2009-01-01
The photoluminescence energy transitions in GaAs-Ga 1-x Al x As coupled double quantum wells are presented by considering the simultaneous effects of applied electric and magnetic fields and hydrostatic pressure. Calculations have been made in the framework of the effective mass and parabolic band approximations and using a variational procedure. The electric field is taken to be oriented along the growth direction of the heterostructure whereas for the magnetic field both in-plane and in-growth directions have been considered. The results show that the hydrostatic pressure and the applied electric field are two useful tools to tune the direct and indirect exciton transitions in such heterostructures. Our results are in good agreement with previous experimental findings in double quantum wells under applied electric field and hydrostatic pressure.
International Nuclear Information System (INIS)
Tarucha, S; Obata, T; Pioro-Ladriere, M; Brunner, R; Shin, Y-S; Kubo, T; Tokura, Y
2011-01-01
Electric dipole spin resonance of two individual electrons and the influence of hyperfine coupling on the spin resonance are studied for a double quantum dot equipped with a micro-magnet. The spin resonance occurs by oscillating the electron in each dot at microwave (MW) frequencies in the presence of a micro-magnet induced stray field. The observed continuous wave (CW) and time-resolved spin resonances are consistent with calculations in which the MW induced AC electric field and micro-magnet induced stray field are taken into account. The influence of hyperfine coupling causes an increase and broadening of the respective CW spin resonance peaks through dynamical nuclear polarization when sweeping up the magnetic field. This behaviour appears stronger for the larger of the two spin resonance peaks and in general becomes more pronounced as the MW power increases, both reflecting that the electron-nuclei interaction is more efficient for the stronger spin resonance. In addition the hyperfine coupling effect only becomes pronounced when the MW induced AC magnetic field exceeds the fluctuating nuclear field.
Bandyopadhyay, D; Bhattacharyya, D
2006-10-15
It was shown earlier, from database analysis, model building studies, and molecular dynamics simulations that formation of cross-strand bifurcated or Extra Watson-Crick hydrogen (EWC) bonds between successive base pairs may lead to extra rigidity to DNA double helices of certain sequences. The strengths of these hydrogen bonds are debatable, however, as they do not have standard linear geometry criterion. We have therefore carried out detailed ab initio quantum chemical studies using RHF/6-31G(2d,2p) and B3LYP/6-31G(2p,2d) basis sets to determine strengths of several bent hydrogen bonds with different donor and acceptors. Interaction energy calculations, corrected for the basis set superposition errors, suggest that N-H...O type bent EWC hydrogen bonds are possible along same strands or across the strands between successive base pairs, leading to significant stability (ca. 4-9 kcal/mol). The N-H...N and C-H...O type interactions, however, are not so stabilizing. Hence, consideration of EWC N-H...O H-bonds can lead to a better understanding of DNA sequence directed structural features. Copyright (c) 2006 Wiley Periodicals, Inc.
Donor states in a semimagnetic Cd1 -xinMnxin Te /Cd1 -xoutMnxout Te Double Quantum Well
Kalpana, Panneer Selvam; Nithiananthi, Perumal; Jayakumar, Kalyanasundaram
2017-02-01
The theoretical investigation has been carried out on the binding energy of donor associated with the electrons confined in a Cd1 -xinMnxin Te /Cd1 -xoutMnxout Te Double Quantum Well (DQW) as a function of central barrier width for various well dimensions and impurity locations in the barrier and the well. The magnetic field can act as a tool to continuously change the interwell coupling inside this DQW systems and its effect on donor binding has also been studied. Moreover, the polaronic corrections, which is due to the strong exchange interaction between the magnetic moment of Mn2+ ion and the spin of the confined carrier, to the binding energy of the hydrogenic donor impurity has also been estimated with and without the application of magnetic field. The binding energy of the donor impurity is determined by solving the Schrodinger equation variationally in the effective mass approximation and the effect due to Bound Magnetic Polaron (BMP) is included using mean field theory with the modified Brillouin function. The results are reported and discussed.
Koch, Matthias; Pagan, Mark; Persson, Mats; Gawinkowski, Sylwester; Waluk, Jacek; Kumagai, Takashi
2017-09-13
Quantum tunneling of hydrogen atoms (or protons) plays a crucial role in many chemical and biological reactions. Although tunneling of a single particle has been examined extensively in various one-dimensional potentials, many-particle tunneling in high-dimensional potential energy surfaces remains poorly understood. Here we present a direct observation of a double hydrogen atom transfer (tautomerization) within a single porphycene molecule on a Ag(110) surface using a cryogenic scanning tunneling microscope (STM). The tautomerization rates are temperature independent below ∼10 K, and a large kinetic isotope effect (KIE) is observed upon substituting the transferred hydrogen atoms by deuterium, indicating that the process is governed by tunneling. The observed KIE for three isotopologues and density functional theory calculations reveal that a stepwise transfer mechanism is dominant in the tautomerization. It is also found that the tautomerization rate is increased by vibrational excitation via an inelastic electron tunneling process. Moreover, the STM tip can be used to manipulate the tunneling dynamics through modification of the potential landscape.
Cheng, Qifa; Xu, Jing; Wang, Tao; Fan, Ling; Ma, Ruifang; Yu, Xinzhi; Zhu, Jian; Xu, Zhi; Lu, Bingan
2017-11-01
Photoelectrocatalysis (PEC) has been demonstrated as a promising technique for hydrogen production. However, the high over-potential and high recombination rate of photo-induced electron-hole pairs lead to poor hydrogen production efficiency. In order to overcome these problems, TiO2 and Au dual quantum dots (QDs) on three-dimensional graphene flowers (Au@TiO2@3DGFs) was synthesized by an electro-deposition strategy. The combination of Au and TiO2 modulates the band gap of TiO2, shifts the absorption to visible lights and improves the utilization efficiency of solar light. Simultaneously, the size-quantization TiO2 on 3DGFs not only achieves a larger specific surface area over conventional nanomaterials, but also promotes the separation of the photo-induced electron-hole pairs. Besides, the 3DGFs as a scaffold for QDs can provide more active sites and stable structure. Thus, the newly-developed Au@TiO2@3DGFs composite exhibited an impressive PEC activity and excellent durability. Under -240 mV potential (vs. RHE), the photoelectric current density involved visible light illumination (100 mW cm-2) reached 90 mA cm-2, which was about 3.6 times of the natural current density (without light, only 25 mA cm-2). It worth noting that the photoelectric current density did not degrade and even increased to 95 mA cm-2 over 90 h irradiation, indicating an amazing chemical stability.
International Nuclear Information System (INIS)
Baghramyan, H M; Barseghyan, M G; Kirakosyan, A A
2012-01-01
We consider the effect of hydrostatic pressure, temperature and the variations of structure's sizes on interband transition energy and absorption coefficient in InAs/GaAs vertically coupled double quantum dots. The threshold energy of interband optical transitions is examined as a function of hydrostatic pressure and temperature for the different geometries of the structure. We also investigated the dependencies of the interband light absorption coefficient on the incident photon energy.
International Nuclear Information System (INIS)
Rojas-Briseño, J.G.; Martínez-Orozco, J.C.; Rodríguez-Vargas, I.; Mora-Ramos, M.E.; Duque, C.A.
2013-01-01
In this work we are reporting the energy level spectrum for a quantum system consisting of an n-type double δ-doped quantum well with a Schottky barrier potential in a Gallium Arsenide matrix. The calculated states are taken as the basis for the evaluation of the linear and third-order nonlinear contributions to the optical absorption coefficient and to the relative refractive index change, making particular use of the asymmetry of the potential profile. These optical properties are then reported as a function of the Schottky barrier height (SBH) and the separation distance between the δ-doped quantum wells. Also, the effects of the application of hydrostatic pressure are studied. The results show that the amplitudes of the resonant peaks are of the same order of magnitude of those obtained in the case of single δ-doped field effect transistors; but tailoring the asymmetry of the confining potential profile allows the control the resonant peak positions
Energy Technology Data Exchange (ETDEWEB)
Rojas-Briseño, J.G.; Martínez-Orozco, J.C.; Rodríguez-Vargas, I. [Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calzada Solidaridad esquina con Paseo la Bufa S/N, C.P. 98060, Zacatecas, Zac. (Mexico); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Instituto de Física, Universidad de Antioquia, AA 1226, Medellín (Colombia); Duque, C.A., E-mail: cduque@fisica.udea.edu.co [Instituto de Física, Universidad de Antioquia, AA 1226, Medellín (Colombia)
2013-09-01
In this work we are reporting the energy level spectrum for a quantum system consisting of an n-type double δ-doped quantum well with a Schottky barrier potential in a Gallium Arsenide matrix. The calculated states are taken as the basis for the evaluation of the linear and third-order nonlinear contributions to the optical absorption coefficient and to the relative refractive index change, making particular use of the asymmetry of the potential profile. These optical properties are then reported as a function of the Schottky barrier height (SBH) and the separation distance between the δ-doped quantum wells. Also, the effects of the application of hydrostatic pressure are studied. The results show that the amplitudes of the resonant peaks are of the same order of magnitude of those obtained in the case of single δ-doped field effect transistors; but tailoring the asymmetry of the confining potential profile allows the control the resonant peak positions.
Mapping from rectangular to harmonic representation
International Nuclear Information System (INIS)
Schneider, W.; Bateman, G.
1986-08-01
An algorithm is developed to determine the Fourier harmonics representing the level contours of a scalar function given on a rectangular grid. This method is applied to the problem of computing the flux coordinates and flux surface average needed for 1-1/2-D transport codes and MHD stability codes from an equilibrium flux function given on a rectangular grid
Torchynska, T. V.; Casas Espinola, J. L.; Jaramillo Gómez, J. A.; Douda, J.; Gazarian, K.
2013-06-01
Double core CdSeTe/ZnS quantum dots (QDs) with emission at 800 nm (1.60 eV) have been studied by photoluminescence (PL) and Raman scattering methods in the non-conjugated state and after the conjugation to the Pseudo rabies virus (PRV) antibodies. The transformation of PL spectra, stimulated by the electric charge of antibodies, has been detected for the bioconjugated QDs. Raman scattering spectra are investigated with the aim to reveal the CdSeTe core compositions. The double core QD energy diagrams were designed that help to analyze the PL spectra and their transformation at the bioconjugation. It is revealed that the interface in double core QDs has the type II quantum well character that permits to explain the near IR optical transition (1.60 eV) in the double core QDs. It is shown that the essential transformation of PL spectra is useful for the study of QD bioconjugation with specific antibodies and can be a powerful technique in early medical diagnostics.
Energy Technology Data Exchange (ETDEWEB)
Pocas, Luiz Carlos; Sawata, Marcella Ferraz [Universidade Tecnologica Federal do Parana (UTFPR), Apucarana, PR (Brazil); Lourenco, Sidney Alves [Universidade Tecnologica Federal do Parana (UTFPR), Londrina, PR (Brazil); Laureto, Edson; Duarte, Jose Leonil; Dias, Ivan Frederico Lupiano [Universidade Estadual de Londrina (UEL), PR (Brazil). Dept. de Fisica; Quivy, A.A. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica
2012-07-01
Full text: The notable progress in the fabrication of low-dimensional semiconductor structures during the last years has made it possible to reduce the effective device dimension from three-dimensional bulk materials, to low dimensional quantum systems, as for example, to quasi-two dimensional quantum well systems and to quasi-zero dimensional quantum dots systems. Semiconductors quantum dots (QDs) have attracted considerable interest from both fundamental and technological point of view and have been extensively studied in aspects involving its structural properties and the electronic structure of the confined charge carriers. These systems have been utilized for applications on optoelectronics devices such as lasers, detectors, photodiodes, solar cells, etc. In despite of its fundamental importance, many aspects of their behavior are still not fully understood including, as for example, carrier capture and escape, optical transitions, effects of the inhomogeneous size and energy distribution, etc. Quantum dots grown by Stranski-Krastanov (SK) technique are self-assembled islands, favored by relaxation of the elastic energy that emerge due to the difference of lattice parameter between the epitaxial layer and the substratum. One of the challenges in growing of QDs by SK is to have control of both size and distribution of the islands in the samples. Recently, the growth of samples with vertically stacked multilayer separated by a layer of another semiconductor material, known as stacked QDs, have shown a vertical alignment of QDs which leads to a better QDs size distribution for the upper layers. The strength of electronic coupling, in the case of vertically stacked QDs, as well as the QDs size distribution, is controlled by thickness of the layers that separate the quantum dots (spacer layers). In this work we present a study from a set of self-assembled stacked InAs/GaAs double-quantum-dots grown on GaAs-(001) substrates by molecular beam epitaxy obtained by SK
Successive Standardization of Rectangular Arrays
Directory of Open Access Journals (Sweden)
Richard A. Olshen
2012-02-01
Full Text Available In this note we illustrate and develop further with mathematics and examples, the work on successive standardization (or normalization that is studied earlier by the same authors in [1] and [2]. Thus, we deal with successive iterations applied to rectangular arrays of numbers, where to avoid technical difficulties an array has at least three rows and at least three columns. Without loss, an iteration begins with operations on columns: first subtract the mean of each column; then divide by its standard deviation. The iteration continues with the same two operations done successively for rows. These four operations applied in sequence completes one iteration. One then iterates again, and again, and again, ... In [1] it was argued that if arrays are made up of real numbers, then the set for which convergence of these successive iterations fails has Lebesgue measure 0. The limiting array has row and column means 0, row and column standard deviations 1. A basic result on convergence given in [1] is true, though the argument in [1] is faulty. The result is stated in the form of a theorem here, and the argument for the theorem is correct. Moreover, many graphics given in [1] suggest that except for a set of entries of any array with Lebesgue measure 0, convergence is very rapid, eventually exponentially fast in the number of iterations. Because we learned this set of rules from Bradley Efron, we call it “Efron’s algorithm”. More importantly, the rapidity of convergence is illustrated by numerical examples.
DEFF Research Database (Denmark)
Dong, Yunfeng; Johansen, Tom Keinicke; Zhurbenko, Vitaliy
2016-01-01
This paper presents rectangular waveguide-to-coplanar waveguide (CPW) transitions at U-band (40–60 GHz) using E-plane probe and wire bonding. The designs of CPWs based on quartz substrate with and without aluminum cover are explained. The single and double layer rectangular waveguide-to-CPW trans......This paper presents rectangular waveguide-to-coplanar waveguide (CPW) transitions at U-band (40–60 GHz) using E-plane probe and wire bonding. The designs of CPWs based on quartz substrate with and without aluminum cover are explained. The single and double layer rectangular waveguide......-to-CPW transitions using E-plane probe and wire bonding are designed. The proposed rectangular waveguide-to-CPW transition using wire bonding can provide 10 GHz bandwidth at U-band and does not require extra CPWs or connections between CPWs and chips. A single layer rectangular waveguide-to-CPW transition using E......-plane probe with aluminum package has been fabricated and measured to validate the proposed transitions. To the authors' best knowledge, this is the first time that a wire bonding is used as a probe for rectangular waveguide-to-CPW transition at U-band....
International Nuclear Information System (INIS)
Daqiq, Reza; Ghobadi, Nader
2016-01-01
We study the quantum size effects of an MgO-based double barrier magnetic tunnel junction with a nonmagnetic-metal (DBMTJ-NM) (semiconductor (DBMTJ-SC)) spacer on the charge current and the spin-transfer torque (STT) components using non-equilibrium Green's function (NEGF) formalism. The results show oscillatory behavior due to the resonant tunneling effect depending on the structure parameters. We find that the charge current and the STT components in the DBMTJ-SC demonstrate the magnitude enhancement in comparison with the DBMTJ-NM. The bias dependence of the STT components in a DBMTJ-NM shows different behavior in comparison with spin valves and conventional MTJs. Therefore, by choosing a specific SC spacer with suitable thickness in a DBMTJ the charge current and the STT components significantly increase so that one can design a device with high STT and faster magnetization switching. - Highlights: • The quantum size effects are studied in double barrier magnetic tunnel junctions. • Spin torque (ST) components oscillate for increasing of middle spacer thicknesses. • Due to the resonant tunneling in the quantum well, oscillations have appeared. • By replacement a metal spacer with a semiconductor (ZnO) ST has increased. • The ST components vs. bias show gradually decreasing unlike spin valves or MTJs.
Energy Technology Data Exchange (ETDEWEB)
Daqiq, Reza; Ghobadi, Nader
2016-07-15
We study the quantum size effects of an MgO-based double barrier magnetic tunnel junction with a nonmagnetic-metal (DBMTJ-NM) (semiconductor (DBMTJ-SC)) spacer on the charge current and the spin-transfer torque (STT) components using non-equilibrium Green's function (NEGF) formalism. The results show oscillatory behavior due to the resonant tunneling effect depending on the structure parameters. We find that the charge current and the STT components in the DBMTJ-SC demonstrate the magnitude enhancement in comparison with the DBMTJ-NM. The bias dependence of the STT components in a DBMTJ-NM shows different behavior in comparison with spin valves and conventional MTJs. Therefore, by choosing a specific SC spacer with suitable thickness in a DBMTJ the charge current and the STT components significantly increase so that one can design a device with high STT and faster magnetization switching. - Highlights: • The quantum size effects are studied in double barrier magnetic tunnel junctions. • Spin torque (ST) components oscillate for increasing of middle spacer thicknesses. • Due to the resonant tunneling in the quantum well, oscillations have appeared. • By replacement a metal spacer with a semiconductor (ZnO) ST has increased. • The ST components vs. bias show gradually decreasing unlike spin valves or MTJs.
International Nuclear Information System (INIS)
Lindelof, P.E.; Bruus, H.; Taboryski, R.; Soerensen, C.B.
1989-01-01
An inverted and a normal GaAs/AlGaAs interface grown back to back in a socalled selectively doped double heterostructure (SD DH) has been studied in magnetic fields up to 12 tesla and at temperatures down to 0.3 K. The longitudinal resistance goes to zero at minima of the Shubnikov-de Haas oscillations. The Hall resistivity is found to exhibit the quantum Hall effect. By etching the surface of the double heterostructure wafer we create an unbalance in the density of electrons in the two parallel two-dimensional electronic sheets. Although we in this way create only a modest change in the electron densities, we observe a significant change in the Shubnikov-de Haas oscillations, which can be interpreted as a beat between the oscillations of two electron layers with different densities. At the same time we observe a significant variation of the width of the quantum Hall steps. The most astonishing feature of our results is a clear quantum Hall plateou at 1/2 filling in each of the two parallel layers observed at temperatures below 1 K at a magnetic field above 10 T. Weak localization was also studied and such experiments are consistent with two parallel and independent two-dimensional electronic layers. (orig.)
three dimensional photoelastic investigations on thick rectangular
African Journals Online (AJOL)
user
1983-09-01
Sep 1, 1983 ... Thick rectangular plates are investigated by means of three-dimensional photoelasticity ... a thin plate theory and a higher order thick plate theory. 1. ..... number of fringes lest the accuracy of the results will be considerably.
Energy Technology Data Exchange (ETDEWEB)
Yablonsky, A. N., E-mail: yablonsk@ipmras.ru; Zhukavin, R. Kh.; Bekin, N. A.; Novikov, A. V.; Yurasov, D. V.; Shaleev, M. V. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)
2016-12-15
For SiGe/Si(001) epitaxial structures with two nonequivalent SiGe quantum wells separated by a thin Si barrier, the spectral and time characteristics of interband photoluminescence corresponding to the radiative recombination of excitons in quantum wells are studied. For a series of structures with two SiGe quantum wells different in width, the characteristic time of tunneling of charge carriers (holes) from the narrow quantum well, distinguished by a higher exciton recombination energy, to the wide quantum well is determined as a function of the Si barrier thickness. It is shown that the time of tunneling of holes between the Si{sub 0.8}5Ge{sub 0.15} layers with thicknesses of 3 and 9 nm steadily decreases from ~500 to <5 ns, as the Si barrier thickness is reduced from 16 to 8 nm. At intermediate Si barrier thicknesses, an increase in the photoluminescence signal from the wide quantum well is observed, with a characteristic time of the same order of magnitude as the luminescence decay time of the narrow quantum well. This supports the observation of the effect of the tunneling of holes from the narrow to the wide quantum well. A strong dependence of the tunneling time of holes on the Ge content in the SiGe layers at the same thickness of the Si barrier between quantum wells is observed, which is attributed to an increase in the effective Si barrier height.
Rectangular-section mirror light pipes
Energy Technology Data Exchange (ETDEWEB)
Swift, P.D.; Lawlor, R. [School of Physical Sciences, Dublin City University, Dublin 9 (Ireland); Smith, G.B.; Gentle, A. [Department of Applied Physics, University of Technology, Sydney, Broadway, NSW 2007 (Australia)
2008-08-15
Using an integrated-ray approach an expression for the transmission of rectangular section mirror light pipe (MLP) has been derived for the case of collimated light input. The transmittance and the irradiance distribution at the exit aperture of rectangular-section MLPs have been measured experimentally and calculated theoretically for the case of collimated light input. The results presented extend the description of MLPs from the cylindrical case. Measured and calculated transmittances and irradiance distributions are in good agreement. (author)
Random Young diagrams in a Rectangular Box
DEFF Research Database (Denmark)
Beltoft, Dan; Boutillier, Cédric; Enriquez, Nathanaël
We exhibit the limit shape of random Young diagrams having a distribution proportional to the exponential of their area, and confined in a rectangular box. The Ornstein-Uhlenbeck bridge arises from the fluctuations around the limit shape.......We exhibit the limit shape of random Young diagrams having a distribution proportional to the exponential of their area, and confined in a rectangular box. The Ornstein-Uhlenbeck bridge arises from the fluctuations around the limit shape....
International Nuclear Information System (INIS)
Tangarife, E.; Duque, C.A.
2010-01-01
This work is concerned with the theoretical study of the combined effects of applied electric field and hydrostatic pressure on the binding energy and impurity polarizability of a donor impurity in laterally coupled double InAs/GaAs quantum-well wires. calculations have been made in the effective mass and parabolic band approximations and using a variational method. The results are reported for different configurations of wire and barriers widths, impurity position, and electric field and hydrostatic pressure strengths. Our results show that for symmetrical structures the binding energy is an even function of the impurity position along the growth direction of the structure. Also, we found that for hydrostatic pressure strength up to 38 kbar, the binding energy increases linearly with hydrostatic pressure, while for larger values of hydrostatic pressure the binding energy has a nonlinear behavior. Finally, we found that the hydrostatic pressure can increase the coupling between the two parallel quantum well wires.
Partial rectangular metric spaces and fixed point theorems.
Shukla, Satish
2014-01-01
The purpose of this paper is to introduce the concept of partial rectangular metric spaces as a generalization of rectangular metric and partial metric spaces. Some properties of partial rectangular metric spaces and some fixed point results for quasitype contraction in partial rectangular metric spaces are proved. Some examples are given to illustrate the observed results.
International Nuclear Information System (INIS)
Ulloa, J. M.; Koenraad, P. M.; Gapihan, E.; Letoublon, A.; Bertru, N.
2007-01-01
Cross-sectional scanning tunneling microscopy was used to study at the atomic scale the double capping process of self-assembled InAs/InP quantum dots (QDs) grown by molecular beam epitaxy on a (311)B substrate. The thickness of the first capping layer is found to play a mayor role in determining the final results of the process. For first capping layers up to 3.5 nm, the height of the QDs correspond to the thickness of the first capping layer. Nevertheless, for thicknesses higher than 3.5 nm, a reduction in the dot height compared to the thickness of the first capping layer is observed. These results are interpreted in terms of a transition from a double capping to a classical capping process when the first capping layer is thick enough to completely cover the dots
Martínez-Orozco, J. C.; Rojas-Briseño, J. G.; Rodríguez-Magdaleno, K. A.; Rodríguez-Vargas, I.; Mora-Ramos, M. E.; Restrepo, R. L.; Ungan, F.; Kasapoglu, E.; Duque, C. A.
2017-11-01
In this paper we are reporting the computation for the Nonlinear Optical Rectification (NOR) and the Second and Third Harmonic Generation (SHG and THG) related with electronic states of asymmetric double Si-δ-doped quantum well in a GaAs matrix when this is subjected to an in-plane (x-oriented) constant magnetic field effect. The work is performed in the effective mass and parabolic band approximations in order to compute the electronic structure for the system by a diagonalization procedure. The expressions for the nonlinear optical susceptibilities, χ0(2), χ2ω(2), and χ3ω(3), are those arising from the compact matrix density formulation and stand for the NOR, SHG, and THG, respectively. This asymmetric double δ-doped quantum well potential profile actually exhibits nonzero NOR, SHG, and THG responses which can be easily controlled by the in-plane (x-direction) externally applied magnetic field. In particular we find that for the chosen configuration the harmonic generation is in the far-infrared/THz region, thus and becoming suitable building blocks for photodetectors in this range of the electromagnetic spectra.
Spin magneto-transport in a Rashba-Dresselhaus quantum channel with single and double finger gates
Tang, Chi-Shung; Keng, Jia-An; Abdullah, Nzar Rauf; Gudmundsson, Vidar
2017-05-01
We address spin-resolved electronic transport properties in a Rashba-Dresselhaus quantum channel in the presence of an in-plane magnetic field. The strong Rashba-Dresselhaus effect induces an asymmetric spin-splitting energy spectrum with a spin-orbit-Zeeman gap. This asymmetric fact in energy spectrum may result in various quantum dynamic features in conductance due to the presence of finger gates. This asymmetric spin-splitting energy spectrum results in a bound state in continuum for electrons within ultralow energy regime with binding energies in order of 10-1 meV.
Introduction to quantum groups
International Nuclear Information System (INIS)
Sudbery, A.
1996-01-01
These pedagogical lectures contain some motivation for the study of quantum groups; a definition of ''quasi triangular Hopf algebra'' with explanations of all the concepts required to build it up; descriptions of quantised universal enveloping algebras and the quantum double; and an account of quantised function algebras and the action of quantum groups on quantum spaces. (author)
Solving the rectangular assignment problem and applications
Bijsterbosch, J.; Volgenant, A.
2010-01-01
The rectangular assignment problem is a generalization of the linear assignment problem (LAP): one wants to assign a number of persons to a smaller number of jobs, minimizing the total corresponding costs. Applications are, e.g., in the fields of object recognition and scheduling. Further, we show
Steady turbulent flow in curved rectangular channels
De Vriend, H.J.
1979-01-01
After the study of fully developed and developing steady laminar flow in curved channels of shallow rectangular wet cross-section (see earlier reports in this series), steady turbulent flow in such channels is investigated as a next step towards a mathematical model of the flow in shallow river
A solution for the narrow rectangular punch
Panek, C.F.; Kalker, J.J.
1977-01-01
This paper considers the problem of a rectangular flat ended punch acting on an elastic half-space. An approximate solution is generated through application of the elastic line integral equations. The results produced by this method are then compared with another approximate solution already
Persistent photoeffects in p-i-n GaAs/AlGaAs heterostructures with double quantum wells
DEFF Research Database (Denmark)
Dorozhkin, S.I.; Timofeev, V.B.; Hvam, Jørn Märcher
2001-01-01
Abrupt changes in the capacitance between the p and n regions were observed in a planar p-i-n GaAs/AlGaAs heterostructure with two tunneling-coupled quantum wells exposed to laser irradiation (lambda = 633 nm). These changes can be caused by variations in both temperature (in the vicinity of T...
Feyer, Vitaliy; Prince, Kevin C; Coreno, Marcello; Melandri, Sonia; Maris, Assimo; Evangelisti, Luca; Caminati, Walther; Giuliano, Barbara M; Kjaergaard, Henrik G; Carravetta, Vincenzo
2018-02-01
We have performed core level photoemission spectroscopy of gaseous acetylacetone, its fully deuterated form, and two derivatives, benzoylacetone and dibenzoylmethane. These molecules show intramolecular hydrogen bonds, with a proton located in a double-well potential, whose barrier height is different for the three compounds. This has allowed us to examine the effect of the double-well potential on photoemission spectra. Two distinct O 1s core hole peaks are observed, previously assigned to two chemical states of oxygen. We provide an alternative assignment of the double-peak structure of O 1s spectra by taking full account of the extended nature of the wave function associated with the nuclear motion of the proton, the shape of the ground and final state potentials in which the proton is located, and the nonzero temperature of the samples. The peaks are explained in terms of an unusual Franck-Condon factor distribution.
Energy Technology Data Exchange (ETDEWEB)
D' Ettorre Piazzoli, B; Mannocchi, G [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica; Melone, S [Istituto di Fisica dell' Universita, Ancona, Italy; Picchi, P; Visentin, R [Comitato Nazionale per l' Energia Nucleare, Frascati (Italy). Laboratori Nazionali di Frascati
1976-06-01
Expressions for the counting rate of rectangular telescopes in the case of single as well as multiple particles are given. The aperture for single particles is obtained in the form of a double integral and analytical solutions are given for some cases. The intensity for different multiplicities of parallel particles is related to the geometry of the detectors and to the features of the radiation. This allows an absolute comparison between the data recorded by different devices.
Energy Technology Data Exchange (ETDEWEB)
KIM,YONGMIN; PERRY,C.H.; SIMMONS,JERRY A.; KLEM,JOHN F.
2000-05-11
In-plane magnetic field photoluminescence spectra from n series of n-type modulation doped GaAs/Al{sub 0.3}Ga{sub 0.7}As coupled double quantum wells show distinctive doublet structures related to the tunnel-split ground sub-level states. The magnetic field behavior of the upper transition from the antisymmetric state strongly depends on sample mobility. In a lower mobility sample, the transition energy displays an N-type kink with field (namely a maximum followed by a minimum), whereas higher mobility samples have a linear dependence. The former is attributed to a coupling mechanism due to homogeneous broadening of the electron and hole states. The results are in good agreement with recent theoretical calculations.
Energy Technology Data Exchange (ETDEWEB)
Yablonsky, A. N., E-mail: yablonsk@ipm.sci-nnov.ru; Morozov, S. V.; Gaponova, D. M.; Aleshkin, V. Ya. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Shengurov, V. G.; Zvonkov, B. N.; Vikhrova, O. V.; Baidus’, N. V. [Lobachevsky State University of Nizhny Novgorod (Russian Federation); Krasil’nik, Z. F. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)
2016-11-15
We report the observation of stimulated emission in heterostructures with double InGaAs/GaAsSb/GaAs quantum wells, grown on Si(001) substrates with the application of a relaxed Ge buffer layer. Stimulated emission is observed at 77 K under pulsed optical pumping at a wavelength of 1.11 μm, i.e., in the transparency range of bulk silicon. In similar InGaAs/GaAsSb/GaAs structures grown on GaAs substrates, room-temperature stimulated emission is observed at 1.17 μm. The results obtained are promising for integration of the structures into silicon-based optoelectronics.
International Nuclear Information System (INIS)
Shepherd, James J.; Henderson, Thomas M.; Scuseria, Gustavo E.
2016-01-01
Over the past few years, pair coupled cluster doubles (pCCD) has shown promise for the description of strong correlation. This promise is related to its apparent ability to match results from doubly occupied configuration interaction (DOCI), even though the latter method has exponential computational cost. Here, by modifying the full configuration interaction quantum Monte Carlo algorithm to sample only the seniority zero sector of Hilbert space, we show that the DOCI and pCCD energies are in agreement for a variety of 2D Hubbard models, including for systems well out of reach for conventional configuration interaction algorithms. Our calculations are aided by the sign problem being much reduced in the seniority zero space compared with the full space. We present evidence for this and then discuss the sign problem in terms of the wave function of the system which appears to have a simplified sign structure.
Energy Technology Data Exchange (ETDEWEB)
Miranda, Guillermo L. [Fisica Teorica y Aplicada, Escuela de Ingenieria de Antioquia, A.A. 7516 Medellin (Colombia); Instituto de Fisica, Universidad de Antioquia, AA 1226 Medellin (Colombia); Mora-Ramos, Miguel E., E-mail: memora@uaem.mx [Fisica Teorica y Aplicada, Escuela de Ingenieria de Antioquia, A.A. 7516 Medellin (Colombia); Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, C.P. 62209 Cuernavaca, Morelos (Mexico); Instituto de Fisica, Universidad de Antioquia, AA 1226 Medellin (Colombia); Duque, Carlos A. [Instituto de Fisica, Universidad de Antioquia, AA 1226 Medellin (Colombia)
2013-01-15
In this work the variations of the exciton-related optical absorption and the change of the refractive index in a GaAs-(Ga,Al)As double quantum well as functions of the geometric parameters of the heterostructure are investigated. The variational method is applied within the framework of the parabolic band and effective mass approximations, in order to obtain the 1s-like exciton energy spectrum. The outcome for the related optical coefficients shows a quenched and redshifted light absorption as a result of the increment in the inner barrier and right-hand well widths, with the possibility of an enhancement of the excitonic contribution to the relative change in the refractive index.
g-Weak Contraction in Ordered Cone Rectangular Metric Spaces
Directory of Open Access Journals (Sweden)
S. K. Malhotra
2013-01-01
Full Text Available We prove some common fixed-point theorems for the ordered g-weak contractions in cone rectangular metric spaces without assuming the normality of cone. Our results generalize some recent results from cone metric and cone rectangular metric spaces into ordered cone rectangular metric spaces. Examples are provided which illustrate the results.
Energy Technology Data Exchange (ETDEWEB)
Fan, Yao; Liu, Li; Sun, Donglei; Lan, Hanyue [The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, College of Pharmacy, South-Central University for Nationalities, Wuhan 430074 (China); Fu, Haiyan, E-mail: fuhaiyan@mail.scuec.edu.cn [The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, College of Pharmacy, South-Central University for Nationalities, Wuhan 430074 (China); Yang, Tianming, E-mail: tmyang@mail.scuec.edu.cn [The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, College of Pharmacy, South-Central University for Nationalities, Wuhan 430074 (China); She, Yuanbin, E-mail: sheyb@zjut.edu.cn [State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Ni, Chuang [The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, College of Pharmacy, South-Central University for Nationalities, Wuhan 430074 (China)
2016-04-15
As a popular detection model, the fluorescence “turn-off” sensor based on quantum dots (QDs) has already been successfully employed in the detections of many materials, especially in the researches on the interactions between pesticides. However, the previous studies are mainly focused on simple single track or the comparison based on similar concentration of drugs. In this work, a new detection method based on the fluorescence “turn-off” model with water-soluble ZnCdSe and CdSe QDs simultaneously as the fluorescent probes is established to detect various pesticides. The fluorescence of the two QDs can be quenched by different pesticides with varying degrees, which leads to the differences in positions and intensities of two peaks. By combining with chemometrics methods, all the pesticides can be qualitative and quantitative respectively even in real samples with the limit of detection was 2 × 10{sup −8} mol L{sup −1} and a recognition rate of 100%. This work is, to the best of our knowledge, the first report on the detection of pesticides based on the fluorescence quenching phenomenon of double quantum dots combined with chemometrics methods. What's more, the excellent selectivity of the system has been verified in different mediums such as mixed ion disruption, waste water, tea and water extraction liquid drugs. - Highlights: • A new model based on double QDs is established for pesticide residues detection. • The fluorescent data array sensor is coupled with chmometrics methods. • The sensor can be highly sensitive and selective detection in actual samples.
Directory of Open Access Journals (Sweden)
Muhammad Sohail Haroone
2018-06-01
Full Text Available Quantum dots (QDs luminescent films are extensively applied to optoelectronics and optical devices. However, QDs aggregation results in the quenching of their fluorescence property which limits their practical applications to a greater extent. In order to resolve this issue, 3-mercaptopropionic acid (3-MPA functionalized Cadmium Tellurium (CdTe QDs were stabilized by silk fibroin (SB and co-assembled with layered doubled hydroxide (LDH to form (QDs@SF/LDHn ultrathin films (UTFs via the layer-by-layer (LBL technique. UV–Vis absorption and fluorescence spectroscopy showed a stepwise and normal growth of the films upon increasing the number of deposition cycles. XRD and AFM studies confirmed the formation of a periodic layered structure and regular surface morphology of the thin films. As compared to (CdTe QDs/LDHnUTFs, the (CdTe QDs@SF/LDHnUTFs displayed fluorescence enhancement and longer fluorescent lifetime, both in solid states and aqueous solutions. Furthermore compared with the solution state, the fluorescence enhancement of SF-RC and SF-β are, respectively, 7 times and 17 times in the (CdTe QDs@SF/LDHn UTFs, indicating that the LDH nanosheets favor the fluorescence enhancement effect on the CdTe QDs@SF. The fabricated materials displayed fluorescence response to a biological molecule such as immune globulin, lgG. Thus, the (CdTe QDs@SF/LDHn UTFs has a potential to be used as biosensor. Keywords: CdTe quantum dots, Silk fibroin, Layered doubled hydroxide, Co-assembly, Fluorescence enhancement
International Nuclear Information System (INIS)
Fan, Yao; Liu, Li; Sun, Donglei; Lan, Hanyue; Fu, Haiyan; Yang, Tianming; She, Yuanbin; Ni, Chuang
2016-01-01
As a popular detection model, the fluorescence “turn-off” sensor based on quantum dots (QDs) has already been successfully employed in the detections of many materials, especially in the researches on the interactions between pesticides. However, the previous studies are mainly focused on simple single track or the comparison based on similar concentration of drugs. In this work, a new detection method based on the fluorescence “turn-off” model with water-soluble ZnCdSe and CdSe QDs simultaneously as the fluorescent probes is established to detect various pesticides. The fluorescence of the two QDs can be quenched by different pesticides with varying degrees, which leads to the differences in positions and intensities of two peaks. By combining with chemometrics methods, all the pesticides can be qualitative and quantitative respectively even in real samples with the limit of detection was 2 × 10"−"8 mol L"−"1 and a recognition rate of 100%. This work is, to the best of our knowledge, the first report on the detection of pesticides based on the fluorescence quenching phenomenon of double quantum dots combined with chemometrics methods. What's more, the excellent selectivity of the system has been verified in different mediums such as mixed ion disruption, waste water, tea and water extraction liquid drugs. - Highlights: • A new model based on double QDs is established for pesticide residues detection. • The fluorescent data array sensor is coupled with chmometrics methods. • The sensor can be highly sensitive and selective detection in actual samples.
Fernandes, I. L.; Cabrera, G. G.
2018-05-01
Based on Keldysh non-equilibrium Green function method, we have investigated spin current production in a hybrid T-shaped device, consisting of a central quantum dot connected to the leads and a side dot which only couples to the central dot. The topology of this structure allows for quantum interference of the different paths that go across the device, yielding Fano resonances in the spin dependent transport properties. Correlation effects are taken into account at the central dot and handled within a mean field approximation. Its interplay with the Fano effect is analyzed in the strong coupling regime. Non-vanishing spin currents are only obtained when the leads are ferromagnetic, the current being strongly dependent on the relative orientation of the lead polarizations. We calculate the conductance (spin and charge) by numerically differentiating the current, and a rich structure is obtained as a manifestation of quantum coherence and correlation effects. Increase of the Coulomb interaction produces localization of states at the side dot, largely suppressing Fano resonances. The interaction is also responsible for the negative values of the spin conductance in some regions of the voltage near resonances, effect which is the spin analog of the Esaki tunnel diode. We also analyze control of the currents via gate voltages applied to the dots, possibility which is interesting for practical operations.
Fan, Yao; Liu, Li; Sun, Donglei; Lan, Hanyue; Fu, Haiyan; Yang, Tianming; She, Yuanbin; Ni, Chuang
2016-04-15
As a popular detection model, the fluorescence "turn-off" sensor based on quantum dots (QDs) has already been successfully employed in the detections of many materials, especially in the researches on the interactions between pesticides. However, the previous studies are mainly focused on simple single track or the comparison based on similar concentration of drugs. In this work, a new detection method based on the fluorescence "turn-off" model with water-soluble ZnCdSe and CdSe QDs simultaneously as the fluorescent probes is established to detect various pesticides. The fluorescence of the two QDs can be quenched by different pesticides with varying degrees, which leads to the differences in positions and intensities of two peaks. By combining with chemometrics methods, all the pesticides can be qualitative and quantitative respectively even in real samples with the limit of detection was 2 × 10(-8) mol L(-1) and a recognition rate of 100%. This work is, to the best of our knowledge, the first report on the detection of pesticides based on the fluorescence quenching phenomenon of double quantum dots combined with chemometrics methods. What's more, the excellent selectivity of the system has been verified in different mediums such as mixed ion disruption, waste water, tea and water extraction liquid drugs. Copyright © 2016 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Baghramyan, H.M.; Barseghyan, M.G.; Kirakosyan, A.A.; Restrepo, R.L.; Duque, C.A.
2013-01-01
The linear and nonlinear intra-band optical absorption coefficients in GaAs/Ga 1−x Al x As two-dimensional concentric double quantum rings are investigated. Taking into account the combined effects of hydrostatic pressure and aluminum concentration the energies of the ground (n=1,l=0) and the first excited state (n=2,l=1) have been found using the effective mass approximation and the transfer matrix formalism. The energies of these states and the corresponding threshold energy of the intra-band optical transitions are examined as a function of hydrostatic pressure and aluminum concentration for different sizes of the structure. We also investigated the dependencies of the linear, nonlinear, and total optical absorption coefficients as functions of the incident photon energy for different values of hydrostatic pressure, aluminum concentration, sizes of the structure, and incident optical intensity. Its is found that the effects of the hydrostatic pressure and the aluminum concentration lead to a shifting of the resonant peaks of the intra-band optical spectrum. - Highlights: ► Linear and nonlinear intra-band absorption in quantum rings. ► Threshold energy strongly depends on the hydrostatic pressure. ► Threshold energy strongly depends on the stoichiometry and sizes of structure. ► Optical absorption is affected by the incident optical intensity.
Energy Technology Data Exchange (ETDEWEB)
Wang, Jiyin; Huang, Shaoyun, E-mail: hqxu@pku.edu.cn, E-mail: syhuang@pku.edu.cn; Lei, Zijin [Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871 (China); Pan, Dong; Zhao, Jianhua [State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Xu, H. Q., E-mail: hqxu@pku.edu.cn, E-mail: syhuang@pku.edu.cn [Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871 (China); Division of Solid State Physics, Lund University, Box 118, S-22100 Lund (Sweden)
2016-08-01
We demonstrate direct measurements of the spin-orbit interaction and Landé g factors in a semiconductor nanowire double quantum dot. The device is made from a single-crystal pure-phase InAs nanowire on top of an array of finger gates on a Si/SiO{sub 2} substrate and the measurements are performed in the Pauli spin-blockade regime. It is found that the double quantum dot exhibits a large singlet-triplet energy splitting of Δ{sub ST} ∼ 2.3 meV, a strong spin-orbit interaction of Δ{sub SO} ∼ 140 μeV, and a large and strongly level-dependent Landé g factor of ∼12.5. These results imply that single-crystal pure-phase InAs nanowires are desired semiconductor nanostructures for applications in quantum information technologies.
Metamaterial Embedded Wearable Rectangular Microstrip Patch Antenna
Directory of Open Access Journals (Sweden)
J. G. Joshi
2012-01-01
Full Text Available This paper presents an indigenous low-cost metamaterial embedded wearable rectangular microstrip patch antenna using polyester substrate for IEEE 802.11a WLAN applications. The proposed antenna resonates at 5.10 GHz with a bandwidth and gain of 97 MHz and 4.92 dBi, respectively. The electrical size of this antenna is 0.254λ×0.5λ. The slots are cut in rectangular patch to reduce the bending effect. This leads to mismatch the impedance at WLAN frequency band; hence, a metamaterial square SRR is embedded inside the slot. A prototype antenna has been fabricated and tested, and the measured results are presented in this paper. The simulated and measured results of the proposed antenna are found to be in good agreement. The bending effect on the performance of this antenna is experimentally verified.
Energy Technology Data Exchange (ETDEWEB)
Ngaojampa, C.; Nimmanpipug, P. [Computer Simulation and Modeling Laboratory (CSML), Department of Chemistry and Center for Innovation Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, L.D., E-mail: yuld@fnrf.science.cmu.ac.t [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Anuntalabhochai, S. [Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Lee, V.S., E-mail: vannajan@gmail.co [Computer Simulation and Modeling Laboratory (CSML), Department of Chemistry and Center for Innovation Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)
2011-02-15
In order to promote understanding of the fundamentals of ultra-low-energy ion interaction with DNA, molecular dynamics simulations using combined quantum-mechanics/molecular-mechanics of poly-AT and poly-GC A-DNA double strands irradiated by <200 eV carbon ions were performed to investigate the molecular implications of mutation bias. The simulations were focused on the responses of the DNA backbones and nitrogenous bases to irradiation. Analyses of the root mean square displacements of the backbones and non-hydrogen atoms of base rings of the simulated DNA structure after irradiation revealed a potential preference of DNA double strand separation, dependent on the irradiating energy. The results show that for the backbones, the large difference in the displacement between poly-GC and poly-AT in the initial time period could be the reason for the backbone breakage; for the nitrogenous base pairs, A-T is 30% more sensitive or vulnerable to ion irradiation than G-C, demonstrating a preferential, instead of random, effect of irradiation-induced mutation.
International Nuclear Information System (INIS)
Ngaojampa, C.; Nimmanpipug, P.; Yu, L.D.; Anuntalabhochai, S.; Lee, V.S.
2011-01-01
In order to promote understanding of the fundamentals of ultra-low-energy ion interaction with DNA, molecular dynamics simulations using combined quantum-mechanics/molecular-mechanics of poly-AT and poly-GC A-DNA double strands irradiated by <200 eV carbon ions were performed to investigate the molecular implications of mutation bias. The simulations were focused on the responses of the DNA backbones and nitrogenous bases to irradiation. Analyses of the root mean square displacements of the backbones and non-hydrogen atoms of base rings of the simulated DNA structure after irradiation revealed a potential preference of DNA double strand separation, dependent on the irradiating energy. The results show that for the backbones, the large difference in the displacement between poly-GC and poly-AT in the initial time period could be the reason for the backbone breakage; for the nitrogenous base pairs, A-T is 30% more sensitive or vulnerable to ion irradiation than G-C, demonstrating a preferential, instead of random, effect of irradiation-induced mutation.
Anisotropic rectangular metric for polygonal surface remeshing
Pellenard, Bertrand
2013-06-18
We propose a new method for anisotropic polygonal surface remeshing. Our algorithm takes as input a surface triangle mesh. An anisotropic rectangular metric, defined at each triangle facet of the input mesh, is derived from both a user-specified normal-based tolerance error and the requirement to favor rectangle-shaped polygons. Our algorithm uses a greedy optimization procedure that adds, deletes and relocates generators so as to match two criteria related to partitioning and conformity.
Anisotropic rectangular metric for polygonal surface remeshing
Pellenard, Bertrand; Morvan, Jean-Marie; Alliez, Pierre
2013-01-01
We propose a new method for anisotropic polygonal surface remeshing. Our algorithm takes as input a surface triangle mesh. An anisotropic rectangular metric, defined at each triangle facet of the input mesh, is derived from both a user-specified normal-based tolerance error and the requirement to favor rectangle-shaped polygons. Our algorithm uses a greedy optimization procedure that adds, deletes and relocates generators so as to match two criteria related to partitioning and conformity.
Energy Technology Data Exchange (ETDEWEB)
Parani, Sundararajan [University of Madras, Department of Inorganic Chemistry (India); Bupesh, Giridharan [Bharath University, Central Research Laboratory, Sree Balaji Medical College and Hospital (India); Manikandan, Elayaperumal [Thiruvalluvar University, Department of Physics, TUCAS, Thennangur-604408 (India); Pandian, Kannaiyan [University of Madras, Department of Inorganic Chemistry (India); Oluwafemi, Oluwatobi Samuel, E-mail: oluwafemi.oluwatobi@gmail.com [University of Johannesburg, Department of Applied Chemistry (South Africa)
2016-11-15
Water-soluble, mercaptosuccinic acid (MSA)-capped CdTe/CdS/ZnS core/double shell quantum dots (QDs) were prepared by successive growth of CdS and ZnS shells on the as-synthesized CdTe/CdS{sub thin} core/shell quantum dots. The formation of core/double shell structured QDs was investigated by ultraviolet-visible (UV–Vis) absorption and photoluminescence (PL) spectroscopy, PL decay studies, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The core/double shell QDs exhibited good photoluminescence quantum yield (PLQY) which is 70% higher than that of the parent core/shell QDs, and they are stable for months. The average particle size of the core/double shell QDs was ∼3 nm as calculated from the transmission electron microscope (TEM) images. The cytotoxicity of the QDs was evaluated on a variety of cancer cells such as HeLa, MCF-7, A549, and normal Vero cells by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) cell viability assay. The results showed that core/double shell QDs were less toxic to the cells when compared to the parent core/shell QDs. MCF-7 cells showed proliferation on incubation with QDs, and this is attributed to the metalloestrogenic activity of cadmium ions released from QDs. The core/double shell CdTe/CdS/ZnS (CSS) QDs were conjugated with transferrin and successfully employed for the biolabeling and fluorescent imaging of HeLa cells. These core/double shell QDs are highly promising fluorescent probe for cancer cell labeling and imaging applications.
Quantum particle-number fluctuations in a two-component Bose gas in a double-well potential
International Nuclear Information System (INIS)
Zin, Pawel; Oles, Bartlomiej; Sacha, Krzysztof
2011-01-01
A two-component Bose gas in a double-well potential with repulsive interactions may undergo a phase separation transition if the interspecies interactions outweigh the intraspecies ones. We analyze the transition in the strong interaction limit within the two-mode approximation. Numbers of particles in each potential well are equal and constant. However, at the transition point, the ground state of the system reveals huge fluctuations of numbers of particles belonging to the different gas components; that is, the probability for observation of any mixture of particles in each potential well becomes uniform.
International Nuclear Information System (INIS)
Friedberg, R.; Lee, T.D.
2003-01-01
We present a new and simpler proof for the convergent iterative solution of the one-dimensional degenerate double-well potential. This new proof depends on a general theorem, called the hierarchy theorem, that shows the successive stages in the iteration to form a monotonically increasing sequence of approximations to the energy and to the wavefunction at any point x. This important property makes possible a much simpler proof of convergence than the one given before in the literature. The hierarchy theorem proven in this paper is applicable to a much wider class of potentials which includes the quartic potential
Energy Technology Data Exchange (ETDEWEB)
Rodríguez-Magdaleno, K.A.; Martínez-Orozco, J.C.; Rodríguez-Vargas, I. [Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calz. Solidaridad Esq. Paseo a La Bufa S/N. C.P. 98060 Zacatecas (Mexico); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209 Cuernavaca, Morelos (Mexico); Física Teórica y Aplicada, Escuela de Ingeniería de Antioquia, AA 7516 Medellín (Colombia); Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Duque, C.A., E-mail: cduque@fisica.udea.edu.co [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)
2014-03-15
In this work, the conduction band electron states and the associated intersubband-related linear and nonlinear optical absorption coefficient and relative refractive index change are calculated for an asymmetric double n-type δ-doped quantum well in a GaAs-matrix. The effects of an external applied static electric field are included. Values of the two-dimensional impurities density (N{sub 2d}) of each single δ-doped quantum well are taken to vary within the range of 1.0×10{sup 12} to 7.0×10{sup 12} cm{sup −2}, consistent with the experimental data growth regime. The optical responses are reported as a function of the δ-doped impurities density and the applied electric field. It is shown that single electron states and the related optical quantities are significantly affected by the structural asymmetry of the double δ-doped quantum well system. In addition, a brief comparison with the free-carrier-related optical response is presented. -- Highlights: • Nonlinear optics in asymmetric double n-type δ-doped quantum well in a GaAs-matrix. • The system is considered under external applied electric field in growth direction. • The 2D impurity density is consistent with the experimental data growth regime. • The optical quantities are significantly affected by the structural asymmetry of the system.
International Nuclear Information System (INIS)
Rodríguez-Magdaleno, K.A.; Martínez-Orozco, J.C.; Rodríguez-Vargas, I.; Mora-Ramos, M.E.; Duque, C.A.
2014-01-01
In this work, the conduction band electron states and the associated intersubband-related linear and nonlinear optical absorption coefficient and relative refractive index change are calculated for an asymmetric double n-type δ-doped quantum well in a GaAs-matrix. The effects of an external applied static electric field are included. Values of the two-dimensional impurities density (N 2d ) of each single δ-doped quantum well are taken to vary within the range of 1.0×10 12 to 7.0×10 12 cm −2 , consistent with the experimental data growth regime. The optical responses are reported as a function of the δ-doped impurities density and the applied electric field. It is shown that single electron states and the related optical quantities are significantly affected by the structural asymmetry of the double δ-doped quantum well system. In addition, a brief comparison with the free-carrier-related optical response is presented. -- Highlights: • Nonlinear optics in asymmetric double n-type δ-doped quantum well in a GaAs-matrix. • The system is considered under external applied electric field in growth direction. • The 2D impurity density is consistent with the experimental data growth regime. • The optical quantities are significantly affected by the structural asymmetry of the system
Conformal boundary state for the rectangular geometry
Energy Technology Data Exchange (ETDEWEB)
Bondesan, R., E-mail: roberto.bondesan@cea.fr [Institute de Physique Theorique, CEA Saclay, F-91191 Gif-sur-Yvette (France); LPTENS, Ecole Normale Superieure, 24 rue Lhomond, 75231 Paris (France); Institut Henri Poincare, 11 rue Pierre et Marie Curie, 75231 Paris (France); Dubail, J. [Department of Physics, Yale University, P.O. Box 208120, New Haven, CT 06520-8120 (United States); Jacobsen, J.L. [LPTENS, Ecole Normale Superieure, 24 rue Lhomond, 75231 Paris (France); Institut Henri Poincare, 11 rue Pierre et Marie Curie, 75231 Paris (France); Universite Pierre et Marie Curie, 4 place Jussieu, 75252 Paris (France); Saleur, H. [Institute de Physique Theorique, CEA Saclay, F-91191 Gif-sur-Yvette (France); Institut Henri Poincare, 11 rue Pierre et Marie Curie, 75231 Paris (France); Physics Department, USC, Los Angeles, CA 90089-0484 (United States)
2012-09-11
We discuss conformal field theories (CFTs) in rectangular geometries, and develop a formalism that involves a conformal boundary state for the 1+1d open system. We focus on the case of homogeneous boundary conditions (no insertion of a boundary condition changing operator), for which we derive an explicit expression of the associated boundary state, valid for any arbitrary CFT. We check the validity of our solution, comparing it with known results for partition functions, numerical simulations of lattice discretizations, and coherent state expressions for free theories.
Numerical study on rectangular microhollow cathode discharge
International Nuclear Information System (INIS)
He Shoujie; Ouyang Jiting; He Feng; Li Shang
2011-01-01
Rectangular microhollow cathode discharge in argon is investigated by using two-dimensional time-dependent self-consistent fluid model. The electric potential, electric field, particle density, and mean electron energy are calculated. The results show that hollow cathode effect can be onset in the present configuration, with strong electric field and high mean electron energy in the cathode fall while high density and quasineutral plasma in the negative glow. The potential well and electric filed reversal are formed in the negative glow region. It is suggested that the presence of large electron diffusion flux necessitates the field reversal and potential well.
Droplet size in a rectangular Venturi scrubber
Costa, M. A. M.; Henrique, P. R.; Gonçalves, J. A. S.; Coury, J.R.
2004-01-01
The Venturi scrubber is a device which uses liquid in the form of droplets to efficiently remove fine particulate matter from gaseous streams. Droplet size is of fundamental importance for the scrubber performance. In the present experimental study, a laser diffraction technique was used in order to measure droplet size in situ in a Venturi scrubber with a rectangular cross section. Droplet size distribution was measured as a function of gas velocity (58.3 to 74.9 m/s), liquid-to-gas ratio (0...
Design of open rectangular and trapezoidal channels
González, C. P.; Vera, P. E.; Carrillo, G.; García, S.
2018-04-01
In this work, the results of designing open channels in rectangular and trapezoidal form are presented. For the development of the same important aspects were taken as determination of flows by means of formula of the rational method, area of the surface for its implementation, optimal form of the flow to meet the needs of that environment. In the design the parameter of the hydraulic radius expressed in terms of the hydraulic area and wet perimeter was determined, considering that the surface on which the fluid flows is the product of the perimeter of the section and the length of the channel and where shear is generated by the condition of no slippage.
Shadman, Abir; Rahman, Ehsanur; Khosru, Quazi D. M.
2017-11-01
To reduce the thermal budget and the short channel effects in state of the art CMOS technology, Junctionless field effect transistor (JLFET) has been proposed in the literature. Numerous experimental, modeling, and simulation based works have been done on this new FET with bulk materials for various geometries until now. On the other hand, the two-dimensional layered material is considered as an alternative to current Si technology because of its ultra-thin body and high mobility. Very recently few simulation based works have been done on monolayer molybdenum disulfide based JLFET mainly to show the advantage of JLFET over conventional FET. However, no comprehensive simulation-based work has been done for double gate JLFET keeping in mind the prominent transition metal dichalcogenides (TMDC) to the authors' best knowledge. In this work, we have studied quantum ballistic drain current-gate voltage characteristics of such FETs within non-equilibrium Green's function (NEGF) framework. Our simulation results reveal that all these TMDC materials are viable options for implementing state of the art Junctionless MOSFET with emphasis on their performance at short gate lengths. Besides evaluating the prospect of TMDC materials in the digital logic application, the performance of Junctionless Double Gate trilayer TMDC heterostructure FET for the label-free electrical detection of biomolecules in dry environment has been investigated for the first time to the authors' best knowledge. The impact of charge neutral biomolecules on the electrical characteristics of the biosensor has been analyzed under dry environment situation. Our study shows that these materials could provide high sensitivity in the sub-threshold region as a channel material in nano-biosensor, a trend demonstrated by silicon on insulator FET sensor in the literature. Thus, going by the trend of replacing silicon with these novel materials in device level, TMDC heterostructure could be a viable alternative to
Hong, You-Lee; Asakura, Tetsuo; Nishiyama, Yusuke
2018-05-08
β-sheet structure of oligo- and poly-peptides can be formed in anti-parallel (AP)- and parallel (P)-structure, which is the important feature to understand the structures. In principle, P- and AP-β-sheet structures can be identified by the presence (AP) and absence (P) of the interstrand 1HNH/1HNH correlations on a diagonal in 2D 1H double quantum (DQ)/1H single quantum (SQ) spectrum due to the different interstrand 1HNH/1HNH distances between these two arrangements. However, the 1HNH/1HNH peaks overlap to the 1HNH3+/1HNH3+ peaks, which always give cross peaks regardless of the β-sheet arrangement. The 1HNH3+/1HNH3+ peaks disturb the observation of the presence/absence of 1HNH/1HNH correlations and the assignment of 1HNH and 1HNH3+ is not always available. Here, 3D 14N/1H DQ/1H SQ correlation solid-state NMR experiments at fast magic angle spinning (70 kHz) are introduced to distinguish AP and P β-sheet structure. The 14N dimension allows the separate observation of 1HNH/1HNH peaks from 1HNH3+/1HNH3+ peaks with clear assignment of 1HNH and 1HNH3+. In addition, the high natural abundance of 1H and 14N enables 3D 14N/1H DQ/1H SQ experiments of oligo-alanines (Ala3-6) in four hours without any isotope labelling. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dehghan, E.; Khoshnoud, D. Sanavi; Naeimi, A. S.
2018-06-01
Aim of this study is to investigate spin transportation in double quantum ring (DQR). We developed an array of DQR to measure the transmission coefficient and analyze the spin transportation through this system in the presence of Rashba spin-orbit interaction (RSOI) and magnetic flux estimated using S-matrix method. In this article, we compute the spin transport and spin-current characteristics numerically as functions of electron energy, angles between the leads, coupling constant of the leads, RSOI, and magnetic flux. Our results suggest that, for typical values of the magnetic flux (ϕ /ϕ0) and Rashba constant (αR), such system can demonstrates many spintronic properties. It is possible to design a new geometry of DQR by incoming electrons polarization in a way to optimize the system to work as a spin-filtering and spin-inverting nano-device with very high efficiency. The results prove that the spin current will strongly modulate with an increase in the magnetic flux and Rashba constant. Moreover it is shown that, when the lead coupling is weak, the perfect spin-inverter does not occur.
Liu, Peng; Zhang, Jingxue; Wang, Dunyou
2017-06-07
A double-inversion mechanism of the F - + CH 3 I reaction was discovered in aqueous solution using combined multi-level quantum mechanics theories and molecular mechanics. The stationary points along the reaction path show very different structures to the ones in the gas phase due to the interactions between the solvent and solute, especially strong hydrogen bonds. An intermediate complex, a minimum on the potential of mean force, was found to serve as a connecting-link between the abstraction-induced inversion transition state and the Walden-inversion transition state. The potentials of mean force were calculated with both the DFT/MM and CCSD(T)/MM levels of theory. Our calculated free energy barrier of the abstraction-induced inversion is 69.5 kcal mol -1 at the CCSD(T)/MM level of theory, which agrees with the one at 72.9 kcal mol -1 calculated using the Born solvation model and gas-phase data; and our calculated free energy barrier of the Walden inversion is 24.2 kcal mol -1 , which agrees very well with the experimental value at 25.2 kcal mol -1 in aqueous solution. The calculations show that the aqueous solution makes significant contributions to the potentials of mean force and exerts a big impact on the molecular-level evolution along the reaction pathway.
Diestler, D J; Jia, D; Manz, J; Yang, Y
2018-03-01
The theory of concerted electronic and nuclear flux densities associated with the vibration and dissociation of a multielectron nonrotating homonuclear diatomic molecule (or ion) in an electronic state 2S+1 Σ g,u + (JM = 00) is presented. The electronic population density, nuclear probability density, and nuclear flux density are isotropic. A theorem of Barth , presented in this issue, shows that the electronic flux density (EFD) is also isotropic. Hence, the evolving system appears as a pulsating, or exploding, "quantum bubble". Application of the theory to Na 2 vibrating in the double-minimum potential of the 2 1 Σ u + (JM = 00) excited state reveals that the EFD consists of two antagonistic components. One arises from electrons that flow essentially coherently with the nuclei. The other, which is oppositely directed (i.e., antagonistic) and more intense, is due to the transition in electronic structure from "Rydberg" to "ionic" type as the nuclei traverse the potential barrier between inner and outer potential wells. This "transition" component of the EFD rises and falls sharply as the nuclei cross the barrier.
International Nuclear Information System (INIS)
Horing, Norman J Morgenstern; Popov, Vyacheslav V
2006-01-01
Recent experimental observations by X.G. Peralta and S.J. Allen, et al. of dc photoconductivity resonances in steady source-drain current subject to terahertz radiation in a grid-gated double-quantum well FET suggested an association with plasmon resonances. This association was definitively confirmed for some parameter ranges in our detailed electrodynamic absorbance calculations. In this paper we propose that the reason that the dc photoconductance resonances match the plasmon resonances in semiconductors is based on a nonlinear dynamic screening mechanism. In this, we employ a shielded potential approximation that is nonlinear in the terahertz field to determine the nonequilibrium Green's function and associated density perturbation that govern the nonequilibrium dielectric polarization of the medium. This 'conditioning' of the system by the incident THz radiation results in resonant polarization response at the plasmon frequencies which, in turn, causes a sharp drop of the resistive shielded impurity scattering potentials and attendant increase of the dc source-drain current. This amounts to disabling the impurity scattering mechanism by plasmon resonant behavior in nonlinear screening
Hu, Min; Wang, Hailong; Gong, Qian; Wang, Shumin
2018-04-01
Within the framework of effective-mass envelope-function theory, the ground state binding energy of a hydrogenic donor impurity is calculated in the InGaAsP/InP concentric double quantum rings (CDQRs) using the plane wave method. The effects of geometry, impurity position, external electric field and alloy composition on binding energy are considered. It is shown that the peak value of the binding energy appears in two rings with large gap as the donor impurity moves along the radial direction. The binding energy reaches the peak value at the center of ring height when the donor impurity moves along the axial direction. The binding energy shows nonlinear variation with the increase of ring height. With the external electric field applied along the z-axis, the binding energy of the donor impurity located at zi ≥ 0 decreases while that located at zi < 0 increases. In addition, the binding energy decreases with increasing Ga composition, but increases with the increasing As composition.
Yamabayashi, Tsutomu; Katoh, Keiichi; Breedlove, Brian K; Yamashita, Masahiro
2017-06-15
Single-molecule magnet (SMM) properties of crystals of a terbium(III)-phthalocyaninato double-decker complex with different molecular packings ( 1 : TbPc₂, 2 : TbPc₂·CH₂Cl₂) were studied to elucidate the relationship between the molecular packing and SMM properties. From single crystal X-ray analyses, the high symmetry of the coordination environment of 2 suggested that the SMM properties were improved. Furthermore, the shorter intermolecular Tb-Tb distance and relative collinear alignment of the magnetic dipole in 2 indicated that the magnetic dipole-dipole interactions were stronger than those in 1 . This was confirmed by using direct current magnetic measurements. From alternating current magnetic measurements, the activation energy for spin reversal for 1 and 2 were similar. However, the relaxation time for 2 is three orders of magnitude slower than that for 1 in the low- T region due to effective suppression of the quantum tunneling of the magnetization. These results suggest that the SMM properties of TbPc₂ highly depend on the molecular packing.
Energy Technology Data Exchange (ETDEWEB)
Tang, Yanqun; Wang, Ruirui; Yang, Ye; Yan, Dongpeng; Xiang, Xu
2016-08-03
The water oxidation half-reaction is considered to be a bottleneck for achieving highly efficient solar-driven water splitting due to its multiproton-coupled four-electron process and sluggish kinetics. Herein, a triadic photoanode consisting of dual-sized CdTe quantum dots (QDs), Co-based layered double hydroxide (LDH) nanosheets, and BiVO4 particles, that is, QD@LDH@BiVO4, was designed. Two sets of consecutive Type-II band alignments were constructed to improve photogenerated electron-hole separation in the triadic structure. The efficient charge separation resulted in a 2-fold enhancement of the photocurrent of the QD@LDH@BiVO4 photoanode. A significantly enhanced oxidation efficiency reaching above 90% in the low bias region (i.e., E < 0.8 V vs RHE) could be critical in determining the overall performance of a complete photoelectrochemical cell. The faradaic efficiency for water oxidation was almost 90%. The conduction band energy of QDs is -1.0 V more negative than that of LDH, favorable for the electron injection to LDH and enabling a more efficient hole separation. The enhanced photon-to-current conversion efficiency and improved water oxidation efficiency of the triadic structure may result from the non-negligible contribution of hot electrons or holes generated in QDs. Such a band-matching and multidimensional triadic architecture could be a promising strategy for achieving high-efficiency photoanodes by sufficiently utilizing and maximizing the functionalities of QDs.
International Nuclear Information System (INIS)
Karabulut, I.; Mora-Ramos, M.E.; Duque, C.A.
2011-01-01
The intersubband electron-related nonlinear optical absorption and nonlinear optical rectification in GaAs-Ga 1-x Al x As asymmetric double quantum wells are studied, under the influence of combined or independent applied electric and magnetic fields as well as hydrostatic pressure. The outcome of the density matrix formalism and the effective mass, and parabolic-band approximations have been considered as main theoretical tools for the description. It is obtained that under particular geometrical conditions, with or without electric and/or magnetic field strength, the optical rectification is null and, simultaneously, in such circumstances the optical absorption has a relative maximum. It is also detected that the influence of the hydrostatic pressure leads to increasing or decreasing behaviors of the nonlinear optical absorption in dependence of the particular regime of pressure values considered, with significant distinction of the cases of opposite electric field orientations. - Highlights: → Maxima of the NOA correspond to zero in the NOR. → Electric fields can couple the double quantum wells. → Hydrostatic pressure can couple the double quantum wells. → NOA can increase/decrease with hydrostatic pressure. → Overlap between wave functions depends on the magnetic field.
Quantum group and quantum symmetry
International Nuclear Information System (INIS)
Chang Zhe.
1994-05-01
This is a self-contained review on the theory of quantum group and its applications to modern physics. A brief introduction is given to the Yang-Baxter equation in integrable quantum field theory and lattice statistical physics. The quantum group is primarily introduced as a systematic method for solving the Yang-Baxter equation. Quantum group theory is presented within the framework of quantum double through quantizing Lie bi-algebra. Both the highest weight and the cyclic representations are investigated for the quantum group and emphasis is laid on the new features of representations for q being a root of unity. Quantum symmetries are explored in selected topics of modern physics. For a Hamiltonian system the quantum symmetry is an enlarged symmetry that maintains invariance of equations of motion and allows a deformation of the Hamiltonian and symplectic form. The configuration space of the integrable lattice model is analyzed in terms of the representation theory of quantum group. By means of constructing the Young operators of quantum group, the Schroedinger equation of the model is transformed to be a set of coupled linear equations that can be solved by the standard method. Quantum symmetry of the minimal model and the WZNW model in conformal field theory is a hidden symmetry expressed in terms of screened vertex operators, and has a deep interplay with the Virasoro algebra. In quantum group approach a complete description for vibrating and rotating diatomic molecules is given. The exact selection rules and wave functions are obtained. The Taylor expansion of the analytic formulas of the approach reproduces the famous Dunham expansion. (author). 133 refs, 20 figs
Droplet size in a rectangular Venturi scrubber
Directory of Open Access Journals (Sweden)
M. A. M. Costa
2004-06-01
Full Text Available The Venturi scrubber is a device which uses liquid in the form of droplets to efficiently remove fine particulate matter from gaseous streams. Droplet size is of fundamental importance for the scrubber performance. In the present experimental study, a laser diffraction technique was used in order to measure droplet size in situ in a Venturi scrubber with a rectangular cross section. Droplet size distribution was measured as a function of gas velocity (58.3 to 74.9 m/s, liquid-to-gas ratio (0.07 to 0.27 l/m³, and distance from liquid injection point (64 to 173 mm. It was found that all these variables significantly affect droplet size. The results were compared with the predictions from correlations found in the literature.
Large - scale Rectangular Ruler Automated Verification Device
Chen, Hao; Chang, Luping; Xing, Minjian; Xie, Xie
2018-03-01
This paper introduces a large-scale rectangular ruler automated verification device, which consists of photoelectric autocollimator and self-designed mechanical drive car and data automatic acquisition system. The design of mechanical structure part of the device refer to optical axis design, drive part, fixture device and wheel design. The design of control system of the device refer to hardware design and software design, and the hardware mainly uses singlechip system, and the software design is the process of the photoelectric autocollimator and the automatic data acquisition process. This devices can automated achieve vertical measurement data. The reliability of the device is verified by experimental comparison. The conclusion meets the requirement of the right angle test procedure.
The demagnetizing factors for the rectangular samples
International Nuclear Information System (INIS)
Akishin, P.G.; Gaganov, I.A.
1990-01-01
The influence of the demagnetization effect on the distribution of internal magnetic fields for finite samples is considered. The boundary integral method is used to compute the space distribution of the magnetic field in rectangular samples. On the basis of these calculations we compute the distribution of demagnetization factors in the sample for μSR experimental set-up with the real field geometry. The corresponding mathematical expectation and dispersion of this distribution are estimated. The results of the calculation are used in the analysis of the μSR data obtained for high T c superconductors. It is shown for these compounds that the correction to the penetration depth related to the broadening of the field distribution, is not more than 5%. 8 refs.; 2 figs.; 1 tab
Method and structure for cache aware transposition via rectangular subsections
Gustavson, Fred Gehrung; Gunnels, John A
2014-02-04
A method and structure for transposing a rectangular matrix A in a computer includes subdividing the rectangular matrix A into one or more square submatrices and executing an in-place transposition for each of the square submatrices A.sub.ij.
direct method of analysis of an isotropic rectangular plate direct
African Journals Online (AJOL)
eobe
This work evaluates the static analysis of an isotropic rectangular plate with various the static analysis ... method according to Ritz is used to obtain the total potential energy of the plate by employing the used to ..... for rectangular plates analysis, as the behavior of the ... results obtained by previous research work that used.
Towards characterizing graphs with a sliceable rectangular dual
Kusters, V.; Speckmann, B.; Di Giacomo, E.; Lubiw, A.
2015-01-01
Let G be a plane triangulated graph. A rectangular dual of G is a partition of a rectangle R into a set R of interior-disjoint rectangles, one for each vertex, such that two regions are adjacent if and only if the corresponding vertices are connected by an edge. A rectangular dual is sliceable if it
Obtaining S values for rectangular--solid tumors inside rectangular--solid host organs
International Nuclear Information System (INIS)
Stinchcomb, T.G.; Durham, J.S.; Fisher, D.R.
1991-01-01
A method is described for obtaining S values between a tumor and its host organ for use with the MIRD formalism. It applies the point-source specific absorbed fractions for an infinite water medium, tabulated by Berger, to a rectangular solid of arbitrary dimensions which contains a rectangular tumor of arbitrary dimensions. Contributions from pairs of source and target volume elements are summed for the S values between the tumor and itself, between the remaining healthy host organ and itself, and between the tumor and the remaining healthy host organ, with the reciprocity theorem assumed for the last. This method labeled MTUMOR, is interfaced with the widely used MIRDOSE program which incorporates the MIRD formalism. An example is calculated
Directory of Open Access Journals (Sweden)
WANG Minhao
2017-08-01
Full Text Available Plate structures with openings are common in many engineering structures. The study of the vibration characteristics of such structures is directly related to the vibration reduction, noise reduction and stability analysis of an overall structure. This paper conducts research into the free vibration characteristics of a thin elastic plate with a rectangular opening parallel to the plate in an arbitrary position. We use the improved Fourier series to represent the displacement tolerance function of the rectangular plate with an opening. We can divide the plate into an eight zone plate to simplify the calculation. We then use linear springs, which are uniformly distributed along the boundary, to simulate the classical boundary conditions and the boundary conditions of the boundaries between the regions. According to the energy functional and variational method, we can obtain the overall energy functional. We can also obtain the generalized eigenvalue matrix equation by studying the extremum of the unknown improved Fourier series expansion coefficients. We can then obtain the natural frequencies and corresponding vibration modes of the rectangular plate with an opening by solving the equation. We then compare the calculated results with the finite element method to verify the accuracy and effectiveness of the method proposed in this paper. Finally, we research the influence of the boundary condition, opening size and opening position on the vibration characteristics of a plate with an opening. This provides a theoretical reference for practical engineering application.
Energy Technology Data Exchange (ETDEWEB)
Kurpiers, Philipp; Walter, Theodore; Magnard, Paul; Salathe, Yves; Wallraff, Andreas [ETH Zuerich, Department of Physics, Zuerich (Switzerland)
2017-12-15
Low-loss waveguides are required for quantum communication at distances beyond the chip-scale for any low-temperature solid-state implementation of quantum information processors. We measure and analyze the attenuation constant of commercially available microwave-frequency waveguides down to millikelvin temperatures and single photon levels. More specifically, we characterize the frequency-dependent loss of a range of coaxial and rectangular microwave waveguides down to 0.005 dB/m using a resonant-cavity technique. We study the loss tangent and relative permittivity of commonly used dielectric waveguide materials by measurements of the internal quality factors and their comparison with established loss models. The results of our characterization are relevant for accurately predicting the signal levels at the input of cryogenic devices, for reducing the loss in any detection chain, and for estimating the heat load induced by signal dissipation in cryogenic systems. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Ave. Universidad 1001, CP 62209, Cuernavaca, Morelos, Mexico (Mexico); Instituto de Fisica, Universidad de Antioquia, AA 1226 Medellin (Colombia); Duque, C.A., E-mail: cduque_echeverri@yahoo.es [Instituto de Fisica, Universidad de Antioquia, AA 1226 Medellin (Colombia); Kasapoglu, E.; Sari, H. [Cumhuriyet University, Physics Department, 58140 Sivas (Turkey); Soekmen, I. [Dokuz Eyluel University, Physics Department, 35160 Buca, Izmir (Turkey)
2013-03-15
The combined effects of intense laser radiation and applied electric fields on the intersubband-related linear and nonlinear optical properties in GaAs-based quantum wells are discussed. It is shown that for asymmetric double quantum well, the increasing laser field intensity causes progressive redshifts in the peak positions of the second and third harmonic coefficients. However, the resonant peaks of the nonlinear optical rectification can suffer a blueshift or a redshift, depending on the laser strengths. The same feature appears in the case of the resonant peaks corresponding to the total coefficients of optical absorption and relative change in the refractive index. - Highlights: Black-Right-Pointing-Pointer Nonlinear optical properties in double quantum wells. Black-Right-Pointing-Pointer Increasing laser field intensity causes redshifts in the peak positions. Black-Right-Pointing-Pointer Resonant peak of second order nonlinearities can be blue-shifted. Black-Right-Pointing-Pointer Relative change in refractive index depends of the applied electric field. Black-Right-Pointing-Pointer The energy position depends of the laser field parameter.
Flow Characteristics of Rectangular Underexpanded Impinging Jets
Institute of Scientific and Technical Information of China (English)
Minoru YAGA; Yoshio KINJO; Masumi TAMASHIRO; Kenyu OYAKAWA
2006-01-01
In this paper, the flow fields of underexpanded impinging jet issued from rectangular nozzles of aspect ratio 1,3 and 5 are numerically and experimentally studied. Two dimensional temperature and pressure distributions are measured by using infrared camera and the combination of a pressure scanning device and a stepping motor, respectively. The variation of the stagnation pressure on the impinging plate reveals that a hystcretic phenomenon exists during the increasing and decreasing of the pressure ratio for the aspect ratio of 3.0 and 5.0. It is also found that the nozzle of aspect ratio 1.0 caused the largest total pressure loss pc/p0 = 0.27 at the pressure ratio of p0/pb, = 6.5, where pc is the stagnation center pressure on the wall, p0 the upstream stagnation pressure, pb the ambient pressure. The other two nozzles showed that the pressure loss pc / p0=0.52 and 0.55 were achieved by the nozzles of the aspect ratio 3,0 and 5.0, respectively. The comparison between the calculations and experiments is fairly good, showing the three dimensional streamlines and structures of the shock waves in the jets. However, the hysteresis of the pressure variations observed in the experiments between the pressure ratio of 3.5 and 4.5 cannot be confirmed in the calculations.
Physics from angular projection of rectangular grids
International Nuclear Information System (INIS)
Singh, Ashmeet
2015-01-01
In this paper, we present a mathematical model for the angular projection of a rectangular arrangement of points in a grid. This simple yet interesting, problem has both scholarly value and applications for data extraction techniques to study the physics of various systems. Our work may help undergraduate students to understand subtle points in the angular projection of a grid and describes various quantities of interest in the projection with completeness and sufficient rigour. We show that for certain angular ranges, the projection has non-distinctness, and calculate the details of such angles, and correspondingly, the number of distinct points and the total projected length. We focus on interesting trends obtained for the projected length of the grid elements and present a simple application of the model to determine the geometry of an unknown grid whose spatial extensions are known, using measurement of the grid projection at two angles only. Towards the end, our model is shown to have potential applications in various branches of physical sciences, including crystallography, astrophysics, and bulk properties of materials. (paper)
Rectangular maximum-volume submatrices and their applications
Mikhalev, Aleksandr; Oseledets, I.V.
2017-01-01
We introduce a definition of the volume of a general rectangular matrix, which is equivalent to an absolute value of the determinant for square matrices. We generalize results of square maximum-volume submatrices to the rectangular case, show a connection of the rectangular volume with an optimal experimental design and provide estimates for a growth of coefficients and an approximation error in spectral and Chebyshev norms. Three promising applications of such submatrices are presented: recommender systems, finding maximal elements in low-rank matrices and preconditioning of overdetermined linear systems. The code is available online.
Rectangular maximum-volume submatrices and their applications
Mikhalev, Aleksandr
2017-10-18
We introduce a definition of the volume of a general rectangular matrix, which is equivalent to an absolute value of the determinant for square matrices. We generalize results of square maximum-volume submatrices to the rectangular case, show a connection of the rectangular volume with an optimal experimental design and provide estimates for a growth of coefficients and an approximation error in spectral and Chebyshev norms. Three promising applications of such submatrices are presented: recommender systems, finding maximal elements in low-rank matrices and preconditioning of overdetermined linear systems. The code is available online.
Rectangular-cladding silicon slot waveguide with improved nonlinear performance
Huang, Zengzhi; Huang, Qingzhong; Wang, Yi; Xia, Jinsong
2018-04-01
Silicon slot waveguides have great potential in hybrid silicon integration to realize nonlinear optical applications. We propose a rectangular-cladding hybrid silicon slot waveguide. Simulation result shows that, with a rectangular-cladding, the slot waveguide can be formed by narrower silicon strips, so the two-photon absorption (TPA) loss in silicon is decreased. When the cladding material is a nonlinear polymer, the calculated TPA figure of merit (FOMTPA) is 4.4, close to the value of bulk nonlinear polymer of 5.0. This value confirms the good nonlinear performance of rectangular-cladding silicon slot waveguides.
Energy Technology Data Exchange (ETDEWEB)
Huebel, A.
2007-11-22
In this work, a double quantum dot system is studied whose two dots are electrically insulated from one another and contacted independently with two leads. The geometry is optimized to maximize the capacitive interaction between the dots. The samples are characterized by electrical transport measurements in a dilution refrigerator. It is then studied at different tunnel couplings how the capacitive interaction influences the electrical transport in equilibrium. Under certain conditions correlated tunnel processes can be observed. A simple model is derived that serves to understand these processes. The double quantum dot system is defined in lateral arrangement by reactive ion etching of a two-dimensional electron system located only 50 nm below the surface of a GaAs-AlGaAs heterostructure. The samples are characterized in a dilution refrigerator at 25 mK near the common pinch-off point of all four tunnel barriers. A measurement of the differential equilibrium conductances of both quantum dots as a function of two gate voltages yields a honeycomb-like charge stability diagram. The most important sample characteristic is the ratio between the interaction capacitance and the total capacitance of a single quantum dot. For the optimized sample, this ratio turns out to be larger than one third near the common pinch-off point, with a single-dot charging energy of up to 800 {mu}eV. At more positive gate voltages, the capacitances between the quantum dots and their leads increase more and more, thereby diminishing the charging energy. It is shown for the optimized sample that all capacitance coefficients except the dot-lead capacitances are constant to within considerable accuracy over several Coulomb blockade oscillations. In order to measure correlated electrical transport in equilibrium, special parameter regions are examined in which the charges of both quantum dots cannot fluctuate independently of each other. An analytical formula is derived that describes the
analytical bending solution of all clamped isotropic rectangular plate
African Journals Online (AJOL)
HP
PLATE ON WINKLER'S FOUNDATION USING CHARACTERISTIC. ORTHOGONAL ... foundations, storage tanks, swimming pools, floor system of buildings, highways ..... “Energy Methods in Theory of Rectangular Plates. (use of Polynomial ...
Rectangular waveform linear transformer driver module design
International Nuclear Information System (INIS)
Zhao Yue; Xie Weiping; Zhou Liangji; Chen Lin
2014-01-01
Linear Transformer Driver is a novel pulsed power technology, its main merits include a parallel LC discharge array and Inductive Voltage Adder. The parallel LC discharge array lowers the whole circuit equivalent inductance and the Inductive Voltage Adder unites the modules in series in order to create a high electric field grads, meanwhile, restricts the high voltage in a small space. The lower inductance in favor of LTD output a fast waveform and IVA confine high voltage in secondary cavity. In recently, some LTD-based pulsed power system has been development yet. The usual LTD architecture provides damped sine shaped output pulses that may not be suitable in flash radiography, high power microwave production, z-pinch drivers, and certain other applications. A more suitable driver output pulse would have a flat or inclined top (slightly rising or falling). In this paper, we present the design of an LTD cavity that generates this type of the output pulse by including within its circular array some number of the harmonic bricks in addition to the standard bricks according to Fourier progression theory. The parallel LC discharge array circuit formula is introduced by Kirchhoff Law, and the sum of harmonic is proofed as an analytic result, meanwhile, rationality of design is proved by simulation. Varying gas spark discharge dynamic resistance with harmonic order and switches jitter are analyzed. The results are as following: The more harmonic order is an approach to the ideal rectangular waveform, but lead to more system complexity. The capacity decreases as harmonic order increase, and gas spark discharge dynamic resistance rises with the capacity. The rising time protracts and flat is decay or even vanishes and the shot to shot reproducibility is degenerate as the switches jitter is high. (authors)
Tau method approximation of the Hubbell rectangular source integral
International Nuclear Information System (INIS)
Kalla, S.L.; Khajah, H.G.
2000-01-01
The Tau method is applied to obtain expansions, in terms of Chebyshev polynomials, which approximate the Hubbell rectangular source integral:I(a,b)=∫ b 0 (1/(√(1+x 2 )) arctan(a/(√(1+x 2 )))) This integral corresponds to the response of an omni-directional radiation detector situated over a corner of a plane isotropic rectangular source. A discussion of the error in the Tau method approximation follows
Energy Technology Data Exchange (ETDEWEB)
Baghramyan, H.M. [Department of Solid State Physics, Yerevan State University, Alex Manoogian 1, 0025 Yerevan (Armenia); Barseghyan, M.G., E-mail: mbarsegh@ysu.am [Department of Solid State Physics, Yerevan State University, Alex Manoogian 1, 0025 Yerevan (Armenia); Kirakosyan, A.A. [Department of Solid State Physics, Yerevan State University, Alex Manoogian 1, 0025 Yerevan (Armenia); Laroze, D. [Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica (Chile); Duque, C.A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)
2014-09-15
The donor-impurity related photoionization cross section in GaAs/Ga{sub 1−x}Al{sub x}As three-dimensional concentric double quantum rings is investigated. The photoionization cross section dependence on the incident photon energy is studied considering the effects of hydrostatic pressure, variations of aluminum concentration, geometries of the structure, and impurity position. The interpretation of the dipole matrix element, which reflects the photoionization probability, is also given. We have found that these parameters can lead to both redshift and blueshift of the photoionization spectrum and also influence the cross section peak value.
Energy Technology Data Exchange (ETDEWEB)
Odhiambo Oyoko, H. [Department of Physics, Westville Campus, University of KwaZulu-Natal, Private Bag X 54001, Durban 4000 (South Africa); Porras-Montenegro, N. [Departamento de Fisica, Universidad del Valle, AA 25360, Cali (Colombia); Lopez, S.Y. [Facultad de Educacion, Universidad de Antioquia, AA 1226, Medellin (Colombia); Duque, C.A. [Instituto de Fisica, Universidad de Antioquia, AA 1226, Medellin (Colombia)
2007-07-01
Using a variational technique within the effective mass approximation we have carried out a comparative study of the effect of hydrostatic pressure and temperature on the shallow-impurity related optical absorption spectra in GaAs-Ga{sub 1-x}Al{sub x}As single and double quantum wells. The results show a pressure dependent read-shift and a temperature dependent blue-shift in the optical absorption spectra. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Critical heat flux correlation for thin rectangular channels
International Nuclear Information System (INIS)
Tanaka, Futoshi; Mishima, Kaichiro; Hibiki, Takashi
2007-01-01
The effect of heated length on Critical heat flux (CHF) in thin rectangular channels was studied based on CHF data obtained under atmospheric pressure. CHF in small channels has been widely studied in the past decades but most of the studies are related to CHF in round tubes. Although basic mechanisms of burnout in thin rectangular channels are similar to tubes, applicability of CHF correlations for tubes to rectangular channels are questionable since CHF in rectangular channels are affected by the existence of non-heated walls and the non-circular geometry of channel circumference. Several studies of CHF in thin rectangular channels have been reported in relation to thermal hydraulic design of research reactors and neutron source targets and CHF correlations have been proposed, but the studies mostly focus on CHFs under geometrical conditions of the application of interest. In his study, existing CHF data obtained in thin rectangular channels were collected and the effect of heated length on CHF was examined. Existing CHF correlations were verified with positive quality flow CHF data but none of the correlations successfully reproduced the CHF for a wide range of heated length. A new CHF correlation for qualify region applicable to a wide range of heated length was developed based on the collected data. (author)
A fundamental study on sodium-water reaction in the double-pool-type LMFBR
International Nuclear Information System (INIS)
Yoshida, Kazuo; Akimoto, Tokuzo
1987-01-01
In order to evaluate the pressure rise by large sodium-water reaction in the Double-Pool LMFBR, basic tests on pressure wave celerity in rectangular tube are carried out. The initial spike pressure in rectangular-shelled steam generator of the Double Pool reactor, strongly depends on pressure wave celerity. In this study, celerity was measured as a function of pressure wave rising time and pulse height, and influence of water around the test section on celerity was investigated. (author)
Energy Technology Data Exchange (ETDEWEB)
Miranda, Guillermo L. [Fisica Teorica y Aplicada, Escuela de Ingenieria de Antioquia, A.A. 7516, Medellin (Colombia); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, C.P. 62209, Cuernavaca, Morelos (Mexico); Duque, C.A., E-mail: cduque_echeverri@yahoo.es [Instituto de Fisica, Universidad de Antioquia, AA 1226, Medellin (Colombia)
2012-10-15
The dependencies of the binding energies of the lowest four 1s-like exciton states in GaAs-(Ga,Al)As coupled double quantum wells (CDQW) on the geometric parameters of the system are theoretically studied. A variational approach, together with the parabolic band and effective mass approximations, were considered in order to perform the numerical calculations. It is shown that in the case of a symmetric system there is a degeneracy between the heavy-hole even and odd states and this degeneracy can be removed by the presence of a sufficiently narrow middle barrier. In contrast to this fact, the electron even and odd states are never degenerated. It is detected that, if the system is asymmetric, there will appear binding energies anticrossings between the heavy-hole states at the point of the asymmetric {yields} symmetric QW transition. - Highlights: Black-Right-Pointing-Pointer Study of 1s-like exciton states in double quantum wells. Black-Right-Pointing-Pointer Binding energy decreases with the presence of second well. Black-Right-Pointing-Pointer Binding energy of (2,2) state can be larger than (1,1) state. Black-Right-Pointing-Pointer Central barrier can remove degeneracy of states. Black-Right-Pointing-Pointer Anticrossing between states can be induced via symmetries.
Kendon, Vivien M; Nemoto, Kae; Munro, William J
2010-08-13
We briefly review what a quantum computer is, what it promises to do for us and why it is so hard to build one. Among the first applications anticipated to bear fruit is the quantum simulation of quantum systems. While most quantum computation is an extension of classical digital computation, quantum simulation differs fundamentally in how the data are encoded in the quantum computer. To perform a quantum simulation, the Hilbert space of the system to be simulated is mapped directly onto the Hilbert space of the (logical) qubits in the quantum computer. This type of direct correspondence is how data are encoded in a classical analogue computer. There is no binary encoding, and increasing precision becomes exponentially costly: an extra bit of precision doubles the size of the computer. This has important consequences for both the precision and error-correction requirements of quantum simulation, and significant open questions remain about its practicality. It also means that the quantum version of analogue computers, continuous-variable quantum computers, becomes an equally efficient architecture for quantum simulation. Lessons from past use of classical analogue computers can help us to build better quantum simulators in future.
Energy Technology Data Exchange (ETDEWEB)
Dakhlaoui, Hassen [Department of Physics, College of Science for Girls, University of Dammam (UOD), Saudi Arabia and Department of Physics, Faculty of Sciences of Bizerte, University of Carthage (Tunisia)
2015-04-07
In the present paper, the linear and nonlinear optical absorption coefficients and refractive index changes between the ground and the first excited states in double GaN/Al{sub x}Ga{sub (1−x)}N quantum wells are studied theoretically. The electronic energy levels and their corresponding wave functions are obtained by solving Schrödinger-Poisson equations self-consistently within the effective mass approximation. The obtained results show that the optical absorption coefficients and refractive index changes can be red- and blue-shifted through varying the left quantum well width and the aluminum concentration x{sub b2} of the central barrier, respectively. These structural parameters are found to present optimum values for carrying out the transition of 0.8 eV (1.55 μm). Furthermore, we show that the desired transition can also be achieved by replacing the GaN in the left quantum well with Al{sub y}Ga{sub (1−y)}N and by varying the aluminum concentration y{sub Al}. The obtained results give a new degree of freedom in optoelectronic device applications such as optical fiber telecommunications operating at (1.55 μm)
Microfluidic PMMA interfaces for rectangular glass capillaries
International Nuclear Information System (INIS)
Evander, Mikael; Tenje, Maria
2014-01-01
We present the design and fabrication of a polymeric capillary fluidic interface fabricated by micro-milling. The design enables the use of glass capillaries with any kind of cross-section in complex microfluidic setups. We demonstrate two different designs of the interface; a double-inlet interface for hydrodynamic focusing and a capillary interface with integrated pneumatic valves. Both capillary interfaces are presented together with examples of practical applications. This communication shows the design optimization and presents details of the fabrication process. The capillary interface opens up for the use of complex microfluidic systems in single-use glass capillaries. They also enable simple fabrication of glass/polymer hybrid devices that can be beneficial in many research fields where a pure polymer chip negatively affects the device's performance, e.g. acoustofluidics. (technical note)
Quantum electrodynamics and light rays
International Nuclear Information System (INIS)
Sudarshan, E.C.G.
1978-11-01
Light is a quantum electrodynamic entity and hence bundles of rays must be describable in this framework. The duality in the description of elementary optical phenomena is demonstrated in terms of two-point correlation functions and in terms of collections of light rays. The generalizations necessary to deal with two-slit interference and diffraction by a rectangular slit are worked out and the usefulness of the notion of rays of darkness illustrated. 10 references
Coherent Quantum Control of Multidimensional Vibrational Spectroscopy
National Research Council Canada - National Science Library
Mukamel, Shaul; Sanda, Frantisek; Harbola, Upendra; Venkatramani, Ravi; Varonine, Dmitri
2006-01-01
.... Factorial moments of photon counting statistics from a single molecule coupled to a quantum bath were expressed in terms of multipoint quantum correlation functions and represented by double-sided Feynman diagrams...
Joining of Aluminium Alloy Sheets by Rectangular Mechanical Clinching
International Nuclear Information System (INIS)
Abe, Y.; Mori, K.; Kato, T.
2011-01-01
A mechanical clinching has the advantage of low running costs. However, the joint strength is not high. To improve the maximum load of the joined sheets by a mechanical clinching, square and rectangular mechanical clinching were introduced. In the mechanical clinching, the two sheets are mechanically joined by forming an interlock between the lower and upper sheets by the punch and die. The joined length with the interlock was increased by the rectangular punch and die. The deforming behaviours of the sheets in the mechanical clinching were investigated, and then the interlock in the sheets had distribution in the circumference of the projection. Although the interlocks were formed in both projection side and diagonal, the interlock in the diagonal was smaller because of the long contact length between the lower sheet and the die cavity surface. The maximum load of the joined sheets by the rectangular mechanical clinching was two times larger than the load by the round mechanical clinching.
A two-component NZRI metamaterial based rectangular cloak
Directory of Open Access Journals (Sweden)
Sikder Sunbeam Islam
2015-10-01
Full Text Available A new two-component, near zero refractive index (NZRI metamaterial is presented for electromagnetic rectangular cloaking operation in the microwave range. In the basic design a pi-shaped, metamaterial was developed and its characteristics were investigated for the two major axes (x and z-axis wave propagation through the material. For the z-axis wave propagation, it shows more than 2 GHz bandwidth and for the x-axis wave propagation; it exhibits more than 1 GHz bandwidth of NZRI property. The metamaterial was then utilized in designing a rectangular cloak where a metal cylinder was cloaked perfectly in the C-band area of microwave regime. The experimental result was provided for the metamaterial and the cloak and these results were compared with the simulated results. This is a novel and promising design for its two-component NZRI characteristics and rectangular cloaking operation in the electromagnetic paradigm.
Errors generated with the use of rectangular collimation
International Nuclear Information System (INIS)
Parks, E.T.
1991-01-01
This study was designed to determine whether various techniques for achieving rectangular collimation generate different numbers and types of errors and remakes and to determine whether operator skill level influences errors and remakes. Eighteen students exposed full-mouth series of radiographs on manikins with the use of six techniques. The students were grouped according to skill level. The radiographs were evaluated for errors and remakes resulting from errors in the following categories: cone cutting, vertical angulation, and film placement. Significant differences were found among the techniques in cone cutting errors and remakes, vertical angulation errors and remakes, and total errors and remakes. Operator skill did not appear to influence the number or types of errors or remakes generated. Rectangular collimation techniques produced more errors than did the round collimation techniques. However, only one rectangular collimation technique generated significantly more remakes than the other techniques
Sadeghi, Arman
2018-03-01
Modeling of fluid flow in polyelectrolyte layer (PEL)-grafted microchannels is challenging due to their two-layer nature. Hence, the pertinent studies are limited only to circular and slit geometries for which matching the solutions for inside and outside the PEL is simple. In this paper, a simple variational-based approach is presented for the modeling of fully developed electroosmotic flow in PEL-grafted microchannels by which the whole fluidic area is considered as a single porous medium of variable properties. The model is capable of being applied to microchannels of a complex cross-sectional area. As an application of the method, it is applied to a rectangular microchannel of uniform PEL properties. It is shown that modeling a rectangular channel as a slit may lead to considerable overestimation of the mean velocity especially when both the PEL and electric double layer (EDL) are thick. It is also demonstrated that the mean velocity is an increasing function of the fixed charge density and PEL thickness and a decreasing function of the EDL thickness and PEL friction coefficient. The influence of the PEL thickness on the mean velocity, however, vanishes when both the PEL thickness and friction coefficient are sufficiently high.
Natural Vibration Analysis of Clamped Rectangular Orthotropic Plates
dalaei, m.; kerr, a. d.
The natural vibrations of clamped rectangular orthotropic plates are analyzed using the extended Kantorovich method. The developed iterative scheme converges very rapidly to the final result. The obtained natural frequencies are evaluated for a square plate made of Kevlar 49 Epoxy and the obtained results are compared with those published by Kanazawa and Kawai, and by Leissa. The agreement was found to be very close. As there are no exact analytical solutions for clamped rectangular plates, the generated closed form expression for the natural modes, and the corresponding natural frequencies, are very suitable for use in engineering analyses.
Perron-Frobenius Theorem for Rectangular Tensors and Directed Hypergraphs
Lu, Linyuan; Yang, Arthur L. B.; Zhao, James J. Y.
2018-01-01
For any positive integers $r$, $s$, $m$, $n$, an $(r,s)$-order $(n,m)$-dimensional rectangular tensor ${\\cal A}=(a_{i_1\\cdots i_r}^{j_1\\cdots j_s}) \\in ({\\mathbb R}^n)^r\\times ({\\mathbb R}^m)^s$ is called partially symmetric if it is invariant under any permutation on the lower $r$ indexes and any permutation on the upper $s$ indexes. Such partially symmetric rectangular tensor arises naturally in studying directed hypergraphs. Ling and Qi [Front. Math. China, 2013] first studied the $(p,q)$-...
A new metamaterial-based wideband rectangular invisibility cloak
Islam, S. S.; Hasan, M. M.; Faruque, M. R. I.
2018-02-01
A new metamaterial-based wideband electromagnetic rectangular cloak is being introduced in this study. The metamaterial unit cell shows sharp transmittances in the C- and X-bands and displays wideband negative effective permittivity region there. The metamaterial unit cell was then applied in designing a rectangular-shaped electromagnetic cloak. The scattering reduction technique was adopted for the cloaking operation. The cloak operates in the certain portion of C-and X-bands that covers more than 4 GHz bandwidth region. The experimental results were provided as well for the metamaterial and the cloak.
National Research Council Canada - National Science Library
Agarwal, G. S
2013-01-01
.... Focusing on applications of quantum optics, the textbook covers recent developments such as engineering of quantum states, quantum optics on a chip, nano-mechanical mirrors, quantum entanglement...
Directory of Open Access Journals (Sweden)
Abderraouf Messai
2013-01-01
Full Text Available A rigorous full-wave analysis of high Tc superconducting rectangular microstrip patch over ground plane with rectangular aperture in the case where the patch is printed on a uniaxially anisotropic substrate material is presented. The dyadic Green’s functions of the considered structure are efficiently determined in the vector Fourier transform domain. The effect of the superconductivity of the patch is taken into account using the concept of the complex resistive boundary condition. The accuracy of the analysis is tested by comparing the computed results with measurements and previously published data for several anisotropic substrate materials. Numerical results showing variation of the resonant frequency and the quality factor of the superconducting antenna with regard to operating temperature are given. Finally, the effects of uniaxial anisotropy in the substrate on the resonant frequencies of different TM modes of the superconducting microstrip antenna with rectangular aperture in the ground plane are presented.
Analysis of Rectangular Microstrip Antennas with Air Substrates ...
African Journals Online (AJOL)
This paper presents an analysis of rectangular microstrip antennas with air substrates. The effect of the substrate thickness on the bandwidth and the efficiency are examined. An additional thin layer supporting the dielectric material is added to the air substrate in order to make the antenna mechanically rigid and easy to ...
Plasma-ﬁlled rippled wall rectangular backward wave oscillator
Indian Academy of Sciences (India)
Performance of the backward wave oscillator (BWO) is greatly enhanced with the introduction of plasma. Linear theory of the dispersion relation and the growth rate have been derived and analysed numerically for plasma-ﬁlled rippled wall rectangular waveguide driven by sheet electron beam. To see the effect of plasma ...
Internal flow characteristics of a rectangular ramjet air intake
Moerel, J.-L.; Veraar, R.G.; Halswijk, W.H.C.; Pimentel, R.; Corriveau, D.; Hamel, N.; Lesage, F.; Vos, J.B.
2009-01-01
Two research institutes TNO Defence, Security and Safety and DRDC-Valcartier have worked together on the improvement of modeling and simulation tools for the functioning of supersonic air intakes for realistic ramjet engines of tactical missiles. The emphasis laid on complex rectangular intake
The problem of isotropic rectangular plate with four clamped edges
Indian Academy of Sciences (India)
of rectangular plates has been a subject of study in solid mechanics for more than a cen- .... loading is solved first, giving the deflection function for the strip case and .... The authors gratefully acknowledge the advice and encouragement of ...
FDTD Analysis of U-Slot Rectangular Patch Antenna
Luk, K. M.; Tong, K. F.; Shum, S. M.; Lee, K. F.; Lee, R. Q.
1997-01-01
The U-slot rectangular patch antenna (Figure I) has been found experimentally to provide impedance and gain bandwidths of about 300 without the need of stacked or coplanar parasitic elements [1,2]. In this paper, simulation results of the U-slot patch using FDTD analysis are presented. Comparison with measured results are given.
Optical vortex propagation in few-mode rectangular polymer waveguides
DEFF Research Database (Denmark)
Lyubopytov, Vladimir S.; Chipouline, Arkadi; Zywietz, Urs
2017-01-01
We demonstrate that rectangular few-mode dielectric waveguides, fabricated with standard lithographic technique, can support on-chip propagation of optical vortices. We show that specific superpositions of waveguide eigenmodes form quasi-degenerate modes carrying light with high purity states...
Shielding calculations for changing from circular to a Rectangular ...
African Journals Online (AJOL)
The Radiation Technology Centre (RTC) of the Ghana Atomic Energy Commission operates a 1.85 PBq Co-60 gamma irradiator for research, food preservation and medical sterilization. It has become necessary to improve the do-se rate delivered by changing the circular arrangement of sources to a rectangular one.
Quantum cluster algebra structures on quantum nilpotent algebras
Goodearl, K R
2017-01-01
All algebras in a very large, axiomatically defined class of quantum nilpotent algebras are proved to possess quantum cluster algebra structures under mild conditions. Furthermore, it is shown that these quantum cluster algebras always equal the corresponding upper quantum cluster algebras. Previous approaches to these problems for the construction of (quantum) cluster algebra structures on (quantized) coordinate rings arising in Lie theory were done on a case by case basis relying on the combinatorics of each concrete family. The results of the paper have a broad range of applications to these problems, including the construction of quantum cluster algebra structures on quantum unipotent groups and quantum double Bruhat cells (the Berenstein-Zelevinsky conjecture), and treat these problems from a unified perspective. All such applications also establish equality between the constructed quantum cluster algebras and their upper counterparts.
Energy Technology Data Exchange (ETDEWEB)
Baghramyan, H.M.; Barseghyan, M.G.; Kirakosyan, A.A. [Department of Solid State Physics, Yerevan State University, Al. Manookian 1, 0025 Yerevan (Armenia); Restrepo, R.L. [Física Teórica y Aplicada, Escuela de Ingeniería de Antioquia, AA 7516, Medellín (Colombia); Grupo de Materia Condensada-UdeA, Instituto de Física, Facultadde Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21,Medellín (Colombia); Mora-Ramos, M.E. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultadde Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21,Medellín (Colombia); Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Duque, C.A., E-mail: cduque@fisica.udea.edu.co [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultadde Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21,Medellín (Colombia)
2014-01-15
The linear and nonlinear optical absorption associated with the transition between 1s and 2s states corresponding to the electron-donor-impurity complex in GaAs/Ga{sub 1−x}Al{sub x}As three-dimensional concentric double quantum rings are investigated. Taking into account the combined effects of hydrostatic pressure and the variation of the aluminum concentration, the energies of the ground and first excited s-like states of a donor impurity in such a system have been calculated using the effective mass approximation and a variational method. The energies of these states and the corresponding threshold energy of the optical transitions are examined as functions of hydrostatic pressure, aluminum concentration, radial impurity position, as well as the geometrical dimensions of the structure. The dependencies of the linear, nonlinear and total optical absorption coefficients as functions of the incident photon energy are investigated for different values of those mentioned parameters. It is found that the influences mentioned above lead to either redshifts or blueshifts of the resonant peaks of the optical absorption spectrum. It is particularly discussed the unusual property exhibited by the third-order nonlinear of becoming positive for photon energies below the resonant transition one. It is shown that this phenomenon is associated with the particular features of the system under study, which determine the values of the electric dipole moment matrix elements. -- Highlights: • Intra-band optical absorption associated to impurity states in double quantum rings. • Combined effects of hydrostatic pressure and aluminum concentration are studied. • The influences mentioned above lead to shifts of resonant peaks. • It is discussed an unusual property exhibited by the third-order nonlinear absorption.
International Nuclear Information System (INIS)
Baghramyan, H.M.; Barseghyan, M.G.; Kirakosyan, A.A.; Restrepo, R.L.; Mora-Ramos, M.E.; Duque, C.A.
2014-01-01
The linear and nonlinear optical absorption associated with the transition between 1s and 2s states corresponding to the electron-donor-impurity complex in GaAs/Ga 1−x Al x As three-dimensional concentric double quantum rings are investigated. Taking into account the combined effects of hydrostatic pressure and the variation of the aluminum concentration, the energies of the ground and first excited s-like states of a donor impurity in such a system have been calculated using the effective mass approximation and a variational method. The energies of these states and the corresponding threshold energy of the optical transitions are examined as functions of hydrostatic pressure, aluminum concentration, radial impurity position, as well as the geometrical dimensions of the structure. The dependencies of the linear, nonlinear and total optical absorption coefficients as functions of the incident photon energy are investigated for different values of those mentioned parameters. It is found that the influences mentioned above lead to either redshifts or blueshifts of the resonant peaks of the optical absorption spectrum. It is particularly discussed the unusual property exhibited by the third-order nonlinear of becoming positive for photon energies below the resonant transition one. It is shown that this phenomenon is associated with the particular features of the system under study, which determine the values of the electric dipole moment matrix elements. -- Highlights: • Intra-band optical absorption associated to impurity states in double quantum rings. • Combined effects of hydrostatic pressure and aluminum concentration are studied. • The influences mentioned above lead to shifts of resonant peaks. • It is discussed an unusual property exhibited by the third-order nonlinear absorption
Energy Technology Data Exchange (ETDEWEB)
Baghramyan, H.M. [Department of Solid State Physics, Yerevan State University, Al. Manookian 1, 0025 Yerevan (Armenia); Barseghyan, M.G., E-mail: mbarsegh@ysu.am [Department of Solid State Physics, Yerevan State University, Al. Manookian 1, 0025 Yerevan (Armenia); Kirakosyan, A.A. [Department of Solid State Physics, Yerevan State University, Al. Manookian 1, 0025 Yerevan (Armenia); Restrepo, R.L. [Escuela de Ingenieria de Antioquia, AA 7516 Medellin (Colombia); Duque, C.A. [Instituto de Fisica, Universidad de Antioquia, AA 1226 Medellin (Colombia)
2013-02-15
The linear and nonlinear intra-band optical absorption coefficients in GaAs/Ga{sub 1-x}Al{sub x}As two-dimensional concentric double quantum rings are investigated. Taking into account the combined effects of hydrostatic pressure and aluminum concentration the energies of the ground (n=1,l=0) and the first excited state (n=2,l=1) have been found using the effective mass approximation and the transfer matrix formalism. The energies of these states and the corresponding threshold energy of the intra-band optical transitions are examined as a function of hydrostatic pressure and aluminum concentration for different sizes of the structure. We also investigated the dependencies of the linear, nonlinear, and total optical absorption coefficients as functions of the incident photon energy for different values of hydrostatic pressure, aluminum concentration, sizes of the structure, and incident optical intensity. Its is found that the effects of the hydrostatic pressure and the aluminum concentration lead to a shifting of the resonant peaks of the intra-band optical spectrum. - Highlights: Black-Right-Pointing-Pointer Linear and nonlinear intra-band absorption in quantum rings. Black-Right-Pointing-Pointer Threshold energy strongly depends on the hydrostatic pressure. Black-Right-Pointing-Pointer Threshold energy strongly depends on the stoichiometry and sizes of structure. Black-Right-Pointing-Pointer Optical absorption is affected by the incident optical intensity.
Laser alignment measurement model with double beam
Mo, Changtao; Zhang, Lili; Hou, Xianglin; Wang, Ming; Lv, Jia; Du, Xin; He, Ping
2012-10-01
Double LD-Double PSD schedule.employ a symmetric structure and there are a laser and a PSD receiver on each axis. The Double LD-Double PSD is used, and the rectangular coordinate system is set up by use of the relationship of arbitrary two points coordinates, and then the parameter formula is deduced by the knowledge of solid geometry. Using the data acquisition system and the data processing model of laser alignment meter with double laser beam and two detector , basing on the installation parameter of the computer, we can have the state parameter between the two shafts by more complicated calculation and correction. The correcting data of the four under chassis of the adjusted apparatus moving on the level and the vertical plane can be calculated using the computer. This will instruct us to move the apparatus to align the shafts.
Lee, Jaehoon; Wilczek, Frank
2013-11-27
Motivated by the problem of identifying Majorana mode operators at junctions, we analyze a basic algebraic structure leading to a doubled spectrum. For general (nonlinear) interactions the emergent mode creation operator is highly nonlinear in the original effective mode operators, and therefore also in the underlying electron creation and destruction operators. This phenomenon could open up new possibilities for controlled dynamical manipulation of the modes. We briefly compare and contrast related issues in the Pfaffian quantum Hall state.
Tunneling time in space fractional quantum mechanics
Hasan, Mohammad; Mandal, Bhabani Prasad
2018-02-01
We calculate the time taken by a wave packet to travel through a classically forbidden region of space in space fractional quantum mechanics. We obtain the close form expression of tunneling time from a rectangular barrier by stationary phase method. We show that tunneling time depends upon the width b of the barrier for b → ∞ and therefore Hartman effect doesn't exist in space fractional quantum mechanics. Interestingly we found that the tunneling time monotonically reduces with increasing b. The tunneling time is smaller in space fractional quantum mechanics as compared to the case of standard quantum mechanics. We recover the Hartman effect of standard quantum mechanics as a special case of space fractional quantum mechanics.
Energy Technology Data Exchange (ETDEWEB)
Schroer, Bert
2006-04-15
The holographic encoding is generalized to subalgebras of QFT localized in double cones. It is shown that as a result of this radically different spacetime encoding the modular group acts geometrically on the holographic image. As a result we obtain a formula for localization entropy which is identical to the previously derived formula for the wedge-localized subalgebra. The symmetry group in the holographic encoding turns out to be the Bondi-Metzner-Sachs group. (author)
Quantum Erasure: Quantum Interference Revisited
Walborn, Stephen P.; Cunha, Marcelo O. Terra; Pádua, Sebastião; Monken, Carlos H.
2005-01-01
Recent experiments in quantum optics have shed light on the foundations of quantum physics. Quantum erasers - modified quantum interference experiments - show that quantum entanglement is responsible for the complementarity principle.
Computational Investigations in Rectangular Convergent and Divergent Ribbed Channels
Sivakumar, Karthikeyan; Kulasekharan, N.; Natarajan, E.
2018-05-01
Computational investigations on the rib turbulated flow inside a convergent and divergent rectangular channel with square ribs of different rib heights and different Reynolds numbers (Re=20,000, 40,000 and 60,000). The ribs were arranged in a staggered fashion between the upper and lower surfaces of the test section. Computational investigations are carried out using computational fluid dynamic software ANSYS Fluent 14.0. Suitable solver settings like turbulence models were identified from the literature and the boundary conditions for the simulations on a solution of independent grid. Computations were carried out for both convergent and divergent channels with 0 (smooth duct), 1.5, 3, 6, 9 and 12 mm rib heights, to identify the ribbed channel with optimal performance, assessed using a thermo hydraulic performance parameter. The convergent and divergent rectangular channels show higher Nu values than the standard correlation values.
Flow Through a Rectangular-to-Semiannular Diffusing Transition Duct
Foster, Jeff; Wendt, Bruce J.; Reichert, Bruce A.; Okiishi, Theodore H.
1997-01-01
Rectangular-to-semiannular diffusing transition ducts are critical inlet components on supersonic airplanes having bifucated engine inlets. This paper documents measured details of the flow through a rectangular-to-semiannular transition duct having an expansion area ratio of 1.53. Three-dimensional velocity vectors and total pressures at the exit plane of the diffuser are presented. Surface oil-flow visualization and surface static pressure data are shown. The tests were conducted with an inlet Mach number of 0.786 and a Reynolds number based on the inlet centerline velocity and exit diameter of 3.2 x 10(exp 6). The measured data are compared with previously published computational results. The ability of vortex generators to reduce circumferential total pressure distortion is demonstrated.
On the prestressing and deformation of rectangular particle detector frames
International Nuclear Information System (INIS)
Margulies, S.
1978-01-01
Particle detectors such as spark chambers and multiwire proportional chambers (MWPC) generally contain planar electrodes stretched across rectangular frames. For detectors of reasonable size, this can result in fairly large forces acting on the frames. To maintain the electrode planes under uniform tension and to prevent sagging, the frames must be prestressed. This paper contains a detailed examination of the deformation of rectangular frames under stress. A simple model for this phenomenon is presented. The model consists of treating each side of the frame as an elastic beam subject to the condition that the sides remain perpendicular at the corners. The predictions of the model are in good agreement with measured deflections of a MWPC frame. The model is used to determine the optimum value of a single concentrated prestressing force F to best approximate the total distributed force W of a uniformly tensed electrode plane. For most geometries it is found that F is about 62% of W. (Auth.)
Free vibration analysis of rectangular plates with central cutout
Directory of Open Access Journals (Sweden)
Kanak Kalita
2016-12-01
Full Text Available A nine-node isoparametric plate element in conjunction with first-order shear deformation theory is used for free vibration analysis of rectangular plates with central cutouts. Both thick and thin plate problems are solved for various aspect ratios and boundary conditions. In this article, primary focus is given to the effect of rotary inertia on natural frequencies of perforated rectangular plates. It is found that rotary inertia has significant effect on thick plates, while for thin plates the rotary inertia term can be ignored. It is seen that the numerical convergence is very rapid and based on comparison with experimental and analytical data from literature, it is proposed that the present formulation is capable of yielding highly accurate results. Finally, some new numerical solutions are provided here, which may serve as benchmark for future research on similar problems.
Relativistic energy-dispersion relations of 2D rectangular lattices
Ata, Engin; Demirhan, Doğan; Büyükkılıç, Fevzi
2017-04-01
An exactly solvable relativistic approach based on inseparable periodic well potentials is developed to obtain energy-dispersion relations of spin states of a single-electron in two-dimensional (2D) rectangular lattices. Commutation of axes transfer matrices is exploited to find energy dependencies of the wave vector components. From the trace of the lattice transfer matrix, energy-dispersion relations of conductance and valence states are obtained in transcendental form. Graphical solutions of relativistic and nonrelativistic transcendental energy-dispersion relations are plotted to compare how lattice parameters V0, core and interstitial size of the rectangular lattice affects to the energy-band structures in a situation core and interstitial diagonals are of equal slope.
Are Haar-like Rectangular Features for Biometric Recognition Reducible?
DEFF Research Database (Denmark)
Nasrollahi, Kamal; Moeslund, Thomas B.
2013-01-01
Biometric recognition is still a very difficult task in real-world scenarios wherein unforeseen changes in degradations factors like noise, occlusion, blurriness and illumination can drastically affect the extracted features from the biometric signals. Very recently Haar-like rectangular features...... which have usually been used for object detection were introduced for biometric recognition resulting in systems that are robust against most of the mentioned degradations [9]. The problem with these features is that one can define many different such features for a given biometric signal...... and it is not clear whether all of these features are required for the actual recognition or not. This is exactly what we are dealing with in this paper: How can an initial set of Haar-like rectangular features, that have been used for biometric recognition, be reduced to a set of most influential features...
A Novel Dual-Band Circularly Polarized Rectangular Slot Antenna
Directory of Open Access Journals (Sweden)
Biao Li
2016-01-01
Full Text Available A coplanar waveguide fed dual-band circularly polarized rectangular slot antenna is presented. The proposed antenna consists of a rectangular metal frame acting as a ground and an S-shaped monopole as a radiator. The spatial distribution of the surface current density is employed to demonstrate that the circular polarization is generated by the S-shaped monopole which controls the path of the surface currents. An antenna prototype, having overall dimension 37 × 37 × 1 mm3, has been fabricated on FR4 substrate with dielectric constant 4.4. The proposed antenna achieves 10 dB return loss bandwidths and 3 dB axial ratio (AR in the frequency bands 2.39–2.81 GHz and 5.42–5.92 GHz, respectively. Both these characteristics are suitable for WLAN and WiMAX applications.
International Nuclear Information System (INIS)
Loginova, Y.F.; Dezhurov, S.V.; Zherdeva, V.V.; Kazachkina, N.I.; Wakstein, M.S.; Savitsky, A.P.
2012-01-01
Highlights: ► New QDs coated with combination of polythiol ligands and silica shell were synthesized. ► We examine the QDs stability in digestive tract of mice after per os administration. ► The polymer/silica shell prevents QDs degradation and fluorescence quenching in vivo. -- Abstract: CdSe-core, ZnS-capped semiconductor quantum dots (QDs) are of great potential for biomedical applications. However, applications in the gastrointestinal tract for in vivo imaging and therapeutic purposes are hampered by their sensitivity to acidic environments and potential toxicity. Here we report the use of coatings with a combination of polythiol ligands and silica shell (QDs PolyT–APS) to stabilize QDs fluorescence under acidic conditions. We demonstrated the stability of water-soluble QDs PolyT–APS both in vitro, in strong acidic solutions, and in vivo. The biodistribution, stability and photoluminescence properties of QDs in the gastrointestinal tract of mice after per os administration were assessed. We demonstrated that QDs coated with current traditional materials – mercapto compounds (QDs MPA) and pendant thiol group (QDs PolyT) – are not capable of protecting QDs from chemically induced degradation and surface modification. Polythiol ligands and silica shell quantum dots (QDs PolyT–APS) are suitable for biological and biomedical applications in the gastrointestinal tract.
Postbuckling Analysis Of A Rectangular Plate Loaded In Compression
Directory of Open Access Journals (Sweden)
Havran Jozef
2015-12-01
Full Text Available The stability analysis of a thin rectangular plate loaded in compression is presented. The nonlinear FEM equations are derived from the minimum total potential energy principle. The peculiarities of the effects of the initial imperfections are investigated using the user program. Special attention is paid to the influence of imperfections on the post-critical buckling mode. The FEM computer program using a 48 DOF element has been used for analysis. Full Newton-Raphson procedure has been applied.
Study of gas-water flow in horizontal rectangular channels
Chinnov, E. A.; Ron'shin, F. V.; Kabov, O. A.
2015-09-01
The two-phase flow in the narrow short horizontal rectangular channels 1 millimeter in height was studied experimentally. The features of formation of the two-phase flow were studied in detail. It is shown that with an increase in the channel width, the region of the churn and bubble regimes increases, compressing the area of the jet flow. The areas of the annular and stratified flow patterns vary insignificantly.
Two-phase flow patterns in horizontal rectangular minichannel
Directory of Open Access Journals (Sweden)
Ron’shin Fedor
2016-01-01
Full Text Available The two-phase flow in a short horizontal channel of rectangular cross-section of 1 × 19 mm2 has been studied experimentally. Five conventional two-phase flow patterns have been detected (bubble, churn, stratified, annular and jet and transitions between them have been determined. It is shown that a change in the width of the horizontal channels has a substantial effect on the boundaries between the flow regimes.
Bandwidth Study of the Microwave Reflectors with Rectangular Corrugations
Zhang, Liang; He, Wenlong; Donaldson, Craig R.; Cross, Adrian W.
2016-09-01
The mode-selective microwave reflector with periodic rectangular corrugations in the inner surface of a circular metallic waveguide is studied in this paper. The relations between the bandwidth and reflection coefficient for different numbers of corrugation sections were studied through a global optimization method. Two types of reflectors were investigated. One does not consider the phase response and the other does. Both types of broadband reflectors operating at W-band were machined and measured to verify the numerical simulations.
Thermal stresses in rectangular plates: variational and finite element solutions
International Nuclear Information System (INIS)
Laura, P.A.A.; Gutierrez, R.H.; Sanchez Sarmiento, G.; Basombrio, F.G.
1978-01-01
This paper deals with the development of an approximate method for the analysis of thermal stresses in rectangular plates (plane stress problem) and an evaluation of the relative accuracy of the finite element method. The stress function is expanded in terms of polynomial coordinate functions which identically satisfy the boundary conditions, and a variational approach is used to determine the expansion coefficients. The results are in good agreement with a finite element approach. (Auth.)
Diffusion of heat from a finite, rectangular, plane heat source
International Nuclear Information System (INIS)
Ferreri, J.C.; Caballero, C.H.
1985-01-01
Non-dimensional results for the temperature field originating in a rectangular, finite, plane heat source with infinitesimal thickness are introduced. The source decays in time, zero decay being a particular case. Results are useful for obtaining an aproximation of the maximum temperature of a system holding an internal heat source. The range selected for the parameters is specially useful in the case of a nuclear waste repository. The application to the case of mass diffussion arises from analogy. (Author) [es
Basic study on the rectangular numeric keys for touch screen.
Harada, H; Katsuura, T; Kikuchi, Y
1997-06-01
The present study was conducted to examine the optimum inter-key spacing of numeric rectangular keys for touch screens. Six male students (22-25 years old) and three female students (21-24 years old) participated in the experiment. Each subject performed the data entry task using rectangular keys of touch devices. These keys were arranged in both horizontal and vertical layouts. The sizes of the rectangular keys in both layouts were 12 x 21 mm and 15 x 39 mm, and each of the inter-key spacing of each key was 0, 3, 6, 12 and 21 mm. The response time with inter-key spacing of 3 mm was significantly faster than with the inter-key spacing of 0, 12 and 21 mm (p < 0.05). Keys of vertical position produced faster response time than that of horizontal position. The subjective ratings showed that the inter-key spacing of 6 mm was significantly better than the inter-key spacing of 0, 3, 12 and 21 mm (p < 0.05).
Azimuthal critical heat flux in narrow rectangular channels
Energy Technology Data Exchange (ETDEWEB)
Kim, Yong Hoon; Noh, Sang Woo; Kim, Sung Joong; Suh, Kune Y. [Seoul National University, Seoul (Korea, Republic of)
2003-07-01
Tests were conducted to examine the critical heat flux (CHF) on the one-dimensional downward heating rectangular channel having a narrow gap by changing the orientation of the copper test heater assembly in a pool of saturated water under the atmospheric pressure. The test parameters include both the gap sizes of 1, 2, 5 and 10mm, and the surface orientation angles from the downward-facing position (180{sup o}) to the vertical position (90{sup o}), respectively. Also, the CHF experiments were performed for pool boiling with varying heater surface orientations in the unconfined space at the atmospheric pressure using the rectangular test section. It was observed that the CHF generally decreases as the surface inclination angle increases and as the gap size decreases. In consistency with several studies reported in the literature, it was found that there exists a transition angle above which the CHF changes with a rapid slope. An engineering correlation is developed for the CHF during natural convective boiling in the inclined, confined rectangular channels with the aid of dimensional analysis.
Augmented Beta rectangular regression models: A Bayesian perspective.
Wang, Jue; Luo, Sheng
2016-01-01
Mixed effects Beta regression models based on Beta distributions have been widely used to analyze longitudinal percentage or proportional data ranging between zero and one. However, Beta distributions are not flexible to extreme outliers or excessive events around tail areas, and they do not account for the presence of the boundary values zeros and ones because these values are not in the support of the Beta distributions. To address these issues, we propose a mixed effects model using Beta rectangular distribution and augment it with the probabilities of zero and one. We conduct extensive simulation studies to assess the performance of mixed effects models based on both the Beta and Beta rectangular distributions under various scenarios. The simulation studies suggest that the regression models based on Beta rectangular distributions improve the accuracy of parameter estimates in the presence of outliers and heavy tails. The proposed models are applied to the motivating Neuroprotection Exploratory Trials in Parkinson's Disease (PD) Long-term Study-1 (LS-1 study, n = 1741), developed by The National Institute of Neurological Disorders and Stroke Exploratory Trials in Parkinson's Disease (NINDS NET-PD) network. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Enhanced phonon-assisted photoluminescence in InAs/GaAs parallelepiped quantum dots
Fomin, V.; Gladilin, V.N.; Klimin, S.N.; Devreese, J.T.; Koenraad, P.M.; Wolter, J.H.
2000-01-01
We analyze the phonon-assisted photoluminescence due to the intraband transitions of an electron between the size-quantized states in rectangular parallelepiped InAs quantum dots ("quantum bricks") embedded into GaAs. The phonon-assisted photoluminescence is strongly enhanced by two processes.
Guo, Jinxue; Li, Xiaoyan; Sun, Yanfang; Liu, Qingyun; Quan, Zhenlan; Zhang, Xiao
2018-06-01
Development of noble-metal-free catalysts towards highly efficient electrochemical oxygen evolution reaction (OER) is critical but challenging in the renewable energy area. Herein, we firstly embed NiFe LDHs quantum dots (QDs) into expanded graphite (NiFe LDHs/EG) via in-situ confined formation process. The interlayer spacing of EG layers acts as nanoreactors for spatially confined formation of NiFe LDHs QDs. The QDs supply huge catalytic sites for OER. The in-situ decoration endows the strong affinity between QDs with EG, thus inducing fast charge transfer. Based on the aforementioned benefits, the designed catalyst exhibits outstanding OER properties, in terms of small overpotential (220 mV required to generate 10 mA cm-2), low Tafel slope, and good durable stability, making it a promising candidate for inexpensive OER catalyst.
International Nuclear Information System (INIS)
Menon, P.S.; Kandiah, K.; Burhanuddin Yeop Majlis; Shaari, S.
2011-01-01
Long-wavelength vertical-cavity surface-emitting lasers (LW-VCSELs) have profound advantages compared to traditional edge-emitting lasers offering improved properties with respect to mode selectivity, fibre coupling, threshold currents and integration into 2D arrays or with other electronic devices. Its commercialization is gaining momentum as the local and access network in optical communication system expand. Numerical modeling of LW-VCSEL utilizing wafer-fused InP-based multi-quantum wells (MQW) and GaAs-based distributed Bragg reflectors (DBRs) is presented in this paper. Emphasis is on the device and mesa/pillar diameter design parameter comparison and its effect on the device characteristics. (author)
Double universe and the arrow of time
Energy Technology Data Exchange (ETDEWEB)
Alfinito, Eleonora [Dipartimento di Ingegneria dell' Innovazione, Universitta di Lecce, 73100 Lecce and CNISM-Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia. Universita di Lecce (Italy); Vitiello, Giuseppe [Dipartimento di Fisica, Universita di Salerno, and INFN Gruppo Collegato di Salerno, 84100 Salerno (Italy)
2007-05-15
The canonical quantum field theory formalism for the expanding geometry universe leads to the 'Double Universe' scenario envisaged by quantum loop gravity. Thermal properties of inflating universe and the classicality of the time-evolution trajectories in the space of the representations of the canonical commutation relations are also discussed.
Arias-Hernández, L. A.; Morales-Serrano, A. F.
2002-11-01
In this work we follow the Bender et al paper [1] to study the quantum analogues of the Stirling and Ericsson polytropic cycles. In the context of the classical thermodynamics, the Stirling and Ericsson cycles correspond to reversible heat engines with two isothermal processes joined by two polytropic branches which occur in a device called regenerator. If this device is an ideal one, the efficiency of these cycles is the Carnot efficiency. Here, we introduce the quantum analogues of the Stirling and Ericsson cycles, the first one based on a double square potential well with a finite potential barrier, since in this system the tunnel effect could be the analogue to the regeneration classical process, therefore the isochoric quantum branches would really correspond to an internal energy storage, and the last one with an unknown system where the isobaric quantum processes don't induce changes in its quantum state. With these systems the quantum engines have cycles consisting of polytropic and isothermal quantum processes analogues to the corresponding classical processes. We show that in both cases the quantum cycles have an efficiency given by ηCQM = 1 - EC/EH, which is the same expression for the quantum analogue of the Carnot cycle studied by Bender.
National Research Council Canada - National Science Library
Agarwal, G. S
2013-01-01
..., quantum metrology, spin squeezing, control of decoherence and many other key topics. Readers are guided through the principles of quantum optics and their uses in a wide variety of areas including quantum information science and quantum mechanics...
Quantum cluster algebras and quantum nilpotent algebras
Goodearl, Kenneth R.; Yakimov, Milen T.
2014-01-01
A major direction in the theory of cluster algebras is to construct (quantum) cluster algebra structures on the (quantized) coordinate rings of various families of varieties arising in Lie theory. We prove that all algebras in a very large axiomatically defined class of noncommutative algebras possess canonical quantum cluster algebra structures. Furthermore, they coincide with the corresponding upper quantum cluster algebras. We also establish analogs of these results for a large class of Poisson nilpotent algebras. Many important families of coordinate rings are subsumed in the class we are covering, which leads to a broad range of applications of the general results to the above-mentioned types of problems. As a consequence, we prove the Berenstein–Zelevinsky conjecture [Berenstein A, Zelevinsky A (2005) Adv Math 195:405–455] for the quantized coordinate rings of double Bruhat cells and construct quantum cluster algebra structures on all quantum unipotent groups, extending the theorem of Geiß et al. [Geiß C, et al. (2013) Selecta Math 19:337–397] for the case of symmetric Kac–Moody groups. Moreover, we prove that the upper cluster algebras of Berenstein et al. [Berenstein A, et al. (2005) Duke Math J 126:1–52] associated with double Bruhat cells coincide with the corresponding cluster algebras. PMID:24982197
International Nuclear Information System (INIS)
Masiello, David J.; Reinhardt, William P.
2007-01-01
A time-dependent multiconfigurational self-consistent field theory is presented to describe the many-body dynamics of a gas of identical bosonic atoms confined to an external trapping potential at zero temperature from first principles. A set of generalized evolution equations are developed, through the time-dependent variational principle, which account for the complete and self-consistent coupling between the expansion coefficients of each configuration and the underlying one-body wave functions within a restricted two state Fock space basis that includes the full effects of the condensate's mean field as well as atomic correlation. The resulting dynamical equations are a classical Hamiltonian system and, by construction, form a well-defined initial value problem. They are implemented in an efficient numerical algorithm. An example is presented, highlighting the generality of the theory, in which the ballistic expansion of a fragmented condensate ground state is compared to that of a macroscopic quantum superposition state, taken here to be a highly entangled number state, upon releasing the external trapping potential. Strikingly different many-body matter-wave dynamics emerge in each case, accentuating the role of both atomic correlation and mean-field effects in the two condensate states
Investigation of imaging properties for submillimeter rectangular pinholes
Energy Technology Data Exchange (ETDEWEB)
Xia, Dan, E-mail: dxia@uchicago.edu [The Department of Radiology, The University of Chicago, Chicago, Illinois 60637 (United States); Moore, Stephen C., E-mail: scmoore@bwh.harvard.edu, E-mail: miaepark@bwh.harvard.edu, E-mail: mcervo@bwh.harvard.edu; Park, Mi-Ae, E-mail: scmoore@bwh.harvard.edu, E-mail: miaepark@bwh.harvard.edu, E-mail: mcervo@bwh.harvard.edu; Cervo, Morgan, E-mail: scmoore@bwh.harvard.edu, E-mail: miaepark@bwh.harvard.edu, E-mail: mcervo@bwh.harvard.edu [Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115 (United States); Metzler, Scott D., E-mail: metzler@upenn.edu [The Department of Radiology, The University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States)
2015-12-15
Purpose: Recently, a multipinhole collimator with inserts that have both rectangular apertures and rectangular fields of view (FOVs) has been proposed for SPECT imaging since it can tile the projection onto the detector efficiently and the FOVs in transverse and axial directions become separable. The purpose of this study is to investigate the image properties of rectangular-aperture pinholes with submillimeter apertures sizes. Methods: In this work, the authors have conducted sensitivity and FOV experiments for 18 replicates of a prototype insert fabricated in platinum/iridium (Pt/Ir) alloy with submillimeter square-apertures. A sin{sup q}θ fit to the experimental sensitivity has been performed for these inserts. For the FOV measurement, the authors have proposed a new formula to calculate the projection intensity of a flood image on the detector, taking into account the penumbra effect. By fitting this formula to the measured projection data, the authors obtained the acceptance angles. Results: The mean (standard deviation) of fitted sensitivity exponents q and effective edge lengths w{sub e} were, respectively, 10.8 (1.8) and 0.38 mm (0.02 mm), which were close to the values, 7.84 and 0.396 mm, obtained from Monte Carlo calculations using the parameters of the designed inserts. For the FOV measurement, the mean (standard deviation) of the transverse and axial acceptances were 35.0° (1.2°) and 30.5° (1.6°), which are in good agreement with the designed values (34.3° and 29.9°). Conclusions: These results showed that the physical properties of the fabricated inserts with submillimeter aperture size matched our design well.
Far-field potentials in cylindrical and rectangular volume conductors.
Dumitru, D; King, J C; Rogers, W E
1993-07-01
The occurrence of a transient dipole is one method of producing a far-field potential. This investigation qualitatively defines the characteristics of the near-field and far-field electrical potentials produced by a transient dipole in both cylindrical and rectangular volume conductors. Most body segments of electrophysiologic interest such as arms, legs, thorax, and neck are roughly cylindrical in shape. A centrally located dipole generator produces a nonzero equipotential region which is found to occur along the cylindrical wall at a distance from the dipole of approximately 1.4 times the cylinder's radius and 1.9 times the cylinder's radius for the center of the cylinder. This distance to the equi-potential zone along the surface wall expands but remains less than 3.0 times the cylindrical radius when the dipole is eccentrically placed. The magnitude of the equipotential region resulting from an asymmetrically placed dipole remains identical to that when the dipole is centrally located. This behavior is found to be very similar in rectangular shallow conducting volumes that model a longitudinal slice of the cylinder, thus allowing a simple experimental model of the cylinder to be utilized. Amplitudes of the equipotential region are inversely proportional to the cylindrical or rectangular volume's cross-sectional area at the location of dipolar imbalance. This study predicts that referential electrode montages, when placed at 3.0 times the radius or greater from a dipolar axially aligned far-field generator in cylindrical homogeneous volume conductors, will record only equipotential far-field effects.
Microwave corrosion detection using open ended rectangular waveguide sensors
Energy Technology Data Exchange (ETDEWEB)
Qaddoumi, N.; Handjojo, L.; Bigelow, T.; Easter, J.; Bray, A.; Zoughi, R.
2000-02-01
The use of microwave and millimeter wave nondestructive testing methods utilizing open ended rectangular waveguide sensors has shown great potential for detecting minute thickness variations in laminate structures, in particular those backed by a conducting plate. Slight variations in the dielectric properties of materials may also be detected using a set of optimal parameters which include the standoff distance and the frequency of operation. In a recent investigation, on detecting rust under paint, the dielectric properties of rust were assumed to be similar to those of Fe{sub 2}O{sub 3} powder. These values were used in an electromagnetic model that simulates the interaction of fields radiated by a rectangular waveguide aperture with layered structures to obtain optimal parameters. The dielectric properties of Fe{sub 2}O{sub 3} were measured to be very similar to the properties of paint. Nevertheless, the presence of a simulated Fe{sub 2}O{sub 3} layer under a paint layer was detected. In this paper the dielectric properties of several different rust samples from different environments are measured. The measurements indicate that the nature of real rust is quite diverse and is different from Fe{sub 2}O{sub 3} and paint, indicating that the presence of rust under paint can be easily detected. The same electromagnetic model is also used (with the newly measured dielectric properties of real rust) to obtain an optimal standoff distance at a frequency of 24 GHz. The results indicate that variations in the magnitude as well as the phase of the reflection coefficient can be used to obtain information about the presence of rust. An experimental investigation on detecting the presence of very thin rust layers (2.5--5 x 10{sup {minus}2} mm [09--2.0 x 10{sup {minus}3} in.]) using an open ended rectangular waveguide probe is also conducted. Microwave images of rusted specimens, obtained at 24 GHz, are also presented.
Hobson, Art
2011-01-01
An earlier paper introduces quantum physics by means of four experiments: Youngs double-slit interference experiment using (1) a light beam, (2) a low-intensity light beam with time-lapse photography, (3) an electron beam, and (4) a low-intensity electron beam with time-lapse photography. It's ironic that, although these experiments demonstrate…
The demagnetizing field of a non-uniform rectangular prism
DEFF Research Database (Denmark)
Smith, Anders; Nielsen, Kaspar Kirstein; Christensen, Dennis
2010-01-01
The effect of demagnetization on the magnetic properties of a rectangular ferromagnetic prism under non-uniform conditions is investigated. A numerical model for solving the spatially varying internal magnetic field is developed, validated and applied to relevant cases. The demagnetizing field...... is solved by an analytical calculation and the coupling between applied field, the demagnetization tensor field and spatially varying temperature is solved through iteration. We show that the demagnetizing field is of great importance in many cases and that it is necessary to take into account the non...
Nonlinear dynamics and control of a vibrating rectangular plate
Shebalin, J. V.
1983-01-01
The von Karman equations of nonlinear elasticity are solved for the case of a vibrating rectangular plate by meams of a Fourier spectral transform method. The amplification of a particular Fourier mode by nonlinear transfer of energy is demonstrated for this conservative system. The multi-mode system is reduced to a minimal (two mode) system, retaining the qualitative features of the multi-mode system. The effect of a modal control law on the dynamics of this minimal nonlinear elastic system is examined.
Regimes of Two-Phase Flow in Short Rectangular Channel
Chinnov, Evgeny A.; Guzanov, Vladimir V.; Cheverda, Vyacheslav; Markovich, Dmitry M.; Kabov, Oleg A.
2009-08-01
Experimental study of two-phase flow in the short rectangular horizontal channel with height 440 μm has been performed. Characteristics of liquid motion inside the channel have been registered and measured by the Laser Induced Fluorescence technique. New information has allowed determining more precisely the characteristics of churn regime and boundaries between different regimes of two-phase flow. It was shown that formation of some two-phase flow regimes and transitions between them are determined by instability of the flow in the lateral parts of the channel.
Bubble departure diameter in narrow rectangular channel under rolling condition
Energy Technology Data Exchange (ETDEWEB)
Xie, T.; Chen, B.; Yan, X.; Xu, J.; Huang, Y.; Xiao, Z. [Nuclear Power Inst. of China, Chengdu, Sichuan (China)
2014-07-01
Forced convective subcooled boiling flow experiments were conducted in a vertical upward narrow rectangular channel under rolling motion. A high-speed digital video camera was used to capture the dynamics of the bubble nucleation process. Bubble departure diameters were obtained from the images. A bubble departure model based on force balance analysis was proposed to predict the bubble departure size under rolling condition by considering the additional centrifugal, tangential and Coriolis force. The proposed model agreed well with the experimental data within the averaged relative deviation of 5%. (author)
Experimental study of subsonic microjet escaping from a rectangular nozzle
Aniskin, V. M.; Maslov, A. A.; Mukhin, K. A.
2016-10-01
The first experiments on the subsonic laminar microjets escaping from the nozzles of rectangular shape are carried out. The nozzle size is 83.3x3823 microns. Reynolds number calculated by the nozzle height and the average flow velocity at the nozzle exit ranged from 58 to 154. The working gas was air at room temperature. The velocity decay and velocity fluctuations along the center line of the jet are determined. The fundamental difference between the laminar microjets characteristics and subsonic turbulent jets of macro size is shown. Based on measurements of velocity fluctuations it is shown the presence of laminar-turbulent transition in microjets and its location is determined.
Finite-size resonance dielectric cylinder in a rectangular waveguide
International Nuclear Information System (INIS)
Chuprina, V.N.; Khizhnyak, N.A.
1988-01-01
The problem on resonance spread of an electromagnetic wave by a dielectric circular cylinder of finite size in a rectangular waveguide is solved by a numerical-analytical method. The cylinder axes are parallel. The cylinder can be used as a resonance tuning element in accelerating SHF-sections. Problems on cutting off linear algebraic equation systems, to which relations of macroscopic electrodynamics in the integral differential form written for the concrete problem considered here are reduced by analytical transformations, are investigated in the stage of numerical analysis. Theoretical dependences of the insertion of the voltage standing wave coefficient on the generator wave length calculated for different values of problem parameters are constracted
International Nuclear Information System (INIS)
Xiang Guo-Yong; Guo Guang-Can
2013-01-01
The statistical error is ineluctable in any measurement. Quantum techniques, especially with the development of quantum information, can help us squeeze the statistical error and enhance the precision of measurement. In a quantum system, there are some quantum parameters, such as the quantum state, quantum operator, and quantum dimension, which have no classical counterparts. So quantum metrology deals with not only the traditional parameters, but also the quantum parameters. Quantum metrology includes two important parts: measuring the physical parameters with a precision beating the classical physics limit and measuring the quantum parameters precisely. In this review, we will introduce how quantum characters (e.g., squeezed state and quantum entanglement) yield a higher precision, what the research areas are scientists most interesting in, and what the development status of quantum metrology and its perspectives are. (topical review - quantum information)
Hidden worlds in quantum physics
Gouesbet, Gérard
2014-01-01
The past decade has witnessed a resurgence in research and interest in the areas of quantum computation and entanglement. This new book addresses the hidden worlds or variables of quantum physics. Author Gérard Gouesbet studied and worked with a former student of Louis de Broglie, a pioneer of quantum physics. His presentation emphasizes the history and philosophical foundations of physics, areas that will interest lay readers as well as professionals and advanced undergraduate and graduate students of quantum physics. The introduction is succeeded by chapters offering background on relevant concepts in classical and quantum mechanics, a brief history of causal theories, and examinations of the double solution, pilot wave, and other hidden-variables theories. Additional topics include proofs of possibility and impossibility, contextuality, non-locality, classification of hidden-variables theories, and stochastic quantum mechanics. The final section discusses how to gain a genuine understanding of quantum mec...
Latosińska, J N; Latosińska, M; Seliger, J; Žagar, V; Maurin, J K; Kazimierczuk, Z
2012-02-09
Isothioureas, inhibitors of nitric oxide synthases, have been studied experimentally in solid state by nuclear quadrupole double resonance (NQDR) and X-ray methods and theoretically by the quantum theory of atoms in molecules/density functional theory. Resonance frequencies on (14)N have been detected and assigned to particular nitrogen sites in each molecule. The crystal packings of (S)-3,4-dichlorobenzyl-N-methylisothiouronium chloride with the disordered chlorine positions in benzene ring and (S)-butyloisothiouronium bromide have been resolved in X-ray diffraction studies. (14)N NQDR spectra have been found good indicators of isomer type and strength of intra- or intermolecular N-H···X (X = Cl, Br) interactions. From among all salts studied, only for (S)-2,3,4,5,6-pentabromobenzylisothiouronium chloride are both nitrogen sites equivalent, which has been explained by the slow exchange. This unique structural feature can be a key factor in the high biological activity of (S)-2,3,4,5,6-pentabromobenzylisothiouronium salts.
Quantum Distinction: Quantum Distinctiones!
Zeps, Dainis
2009-01-01
10 pages; How many distinctions, in Latin, quantum distinctiones. We suggest approach of anthropic principle based on anthropic reference system which should be applied equally both in theoretical physics and in mathematics. We come to principle that within reference system of life subject of mathematics (that of thinking) should be equated with subject of physics (that of nature). For this reason we enter notions of series of distinctions, quantum distinction, and argue that quantum distinct...
Quantum information processing : science & technology.
Energy Technology Data Exchange (ETDEWEB)
Horton, Rebecca; Carroll, Malcolm S.; Tarman, Thomas David
2010-09-01
Qubits demonstrated using GaAs double quantum dots (DQD). The qubit basis states are the (1) singlet and (2) triplet stationary states. Long spin decoherence times in silicon spurs translation of GaAs qubit in to silicon. In the near term the goals are: (1) Develop surface gate enhancement mode double quantum dots (MOS & strained-Si/SiGe) to demonstrate few electrons and spin read-out and to examine impurity doped quantum-dots as an alternative architecture; (2) Use mobility, C-V, ESR, quantum dot performance & modeling to feedback and improve upon processing, this includes development of atomic precision fabrication at SNL; (3) Examine integrated electronics approaches to RF-SET; (4) Use combinations of numerical packages for multi-scale simulation of quantum dot systems (NEMO3D, EMT, TCAD, SPICE); and (5) Continue micro-architecture evaluation for different device and transport architectures.
From quantum dots to quantum circuits
International Nuclear Information System (INIS)
Ensslin, K.
2008-01-01
Full text: Quantum dots, or artificial atoms, confine charge carriers in three-dimensional islands in a semiconductor environment. Detailed understanding and exquisite control of the charge and spin state of the electrically tunable charge occupancy have been demonstrated over the years. Quantum dots with best quality for transport experiments are usually realized in n-type AlGaAs/GaAs heterostructures. Novel material systems, such as graphene, nanowires and p-type heterostructures offer unexplored parameter regimes in view of spin-orbit interactions, carrier-carrier interactions and hyperfine coupling between electron and nuclear spins, which might be relevant for future spin qubits realized in quantum dots. With more sophisticated nanotechnology it has become possible to fabricate coupled quantum systems where classical and quantum mechanical coupling and back action is experimentally investigated. A narrow constriction, or quantum point contact, in vicinity to a quantum dot has been shown to serve as a minimally invasive sensor of the charge state of the dot. If charge transport through the quantum dot is slow enough (kHz), the charge sensor allows the detection of time-resolved transport through quantum-confined structures. This has allowed us to measure extremely small currents not detectable with conventional electronics. In addition the full statistics of current fluctuations becomes experimentally accessible. This way correlations between electrons which influence the current flow can be analyzed by measuring the noise and higher moments of the distribution of current fluctuations. Mesoscopic conductors driven out of equilibrium can emit photons which may be detected by another nearby quantum system with suitably tuned energy levels. This way an on-chip microwave single photon detector has been realized. In a ring geometry containing a tunable double quantum dot it has been possible to measure the self-interference of individual electrons as they traverse
Amplification of radar and lidar signatures using quantum sensors
Lanzagorta, Marco
2013-05-01
One of the major scientific thrusts from recent years has been to try to harness quantum phenomena to dramat ically increase the performance of a wide variety of classical devices. These advances in quantum information science have had a considerable impact on the development of photonic-based quantum sensors. Even though quantum radar and quantum lidar remain theoretical proposals, preliminary results suggest that these sensors have the potential of becoming disruptive technologies able to revolutionize reconnaissance systems. In this paper we will discuss how quantum entanglement can be exploited to increase the radar and lidar signature of rectangular targets. In particular, we will show how the effective visibility of the target is increased if observed with an entangled multi-photon quantum sensor.
Applicability of electrical resistance tomography to rectangular vessels
International Nuclear Information System (INIS)
Ichijo, Noriaki; Matsuno, Shinsuke; Tokura, Susumu; Tochigi, Yoshikatsu; Misumi, Ryuta; Nishi, Kazuhiko; Kaminoyama, Meguru
2012-01-01
To ensure a stable operation of Joule-heated glass melters, it is necessary to observe the distribution of platinum group metal particles (noble metals) in molten glass. Electrical resistance tomography (ERT) has a potential to visualize the inside of the melter section because it can be applied at severe conditions such as high temperature and radioactive fields. Due to designing limitations, it is difficult to install electrodes on the wall of the glass melter. In addition, ERT is hardly applied to a rectangular section. To solve these problems, numerical and experimental studies have been implemented. To apply the ERT method, 8 electrodes are inserted from the top of the melter and set near the bottom to visualize the accumulation of noble metals on the bottom area. As a result of the numerical simulation and the experiment, it was clarified that the ERT can be applied to the rectangular vessel by inserting electrodes from the top of the vessel and has a potential to observe the accumulation of noble metals. (author)
Mechanical behavior analysis on electrostatically actuated rectangular microplates
Li, Zhikang; Zhao, Libo; Jiang, Zhuangde; Ye, Zhiying; Dai, Lu; Zhao, Yulong
2015-03-01
Microplates are widely used in various MEMS devices based on electrostatic actuation such as MEMS switches, micro pumps and capacitive micromachined ultrasonic transducers (CMUTs). Accurate predictions for the mechanical behavior of the microplate under electrostatic force are important not only for the design and optimization of these electrostatic devices but also for their operation. This paper presents a novel reduced-order model for electrostatically actuated rectangular and square microplates with a new method to treat the nonlinear electrostatic force. The model was developed using Galerkin method which turned the partial-differential equation governing the microplates into an ordinary equation system. Using this model and cosine-like deflection functions, explicit expressions were established for the deflection and pull-in voltage of the rectangular and square microplates. The theoretical results were well validated with the finite element method simulations and experimental data of literature. The expressions for the deflection analysis are able to predict the deflection up to the pull-in position with an error less than 5.0%. The expressions for the pull-in voltage analysis can determine the pull-in voltages with errors less than 1.0%. Additionally, the method to calculate the capacitance variation of the electrostatically actuated microplates was proposed. These theoretical analyses are helpful for design and optimization of electrostatically actuated microdevices.
Mechanical behavior analysis on electrostatically actuated rectangular microplates
International Nuclear Information System (INIS)
Li, Zhikang; Zhao, Libo; Jiang, Zhuangde; Ye, Zhiying; Zhao, Yulong; Dai, Lu
2015-01-01
Microplates are widely used in various MEMS devices based on electrostatic actuation such as MEMS switches, micro pumps and capacitive micromachined ultrasonic transducers (CMUTs). Accurate predictions for the mechanical behavior of the microplate under electrostatic force are important not only for the design and optimization of these electrostatic devices but also for their operation. This paper presents a novel reduced-order model for electrostatically actuated rectangular and square microplates with a new method to treat the nonlinear electrostatic force. The model was developed using Galerkin method which turned the partial-differential equation governing the microplates into an ordinary equation system. Using this model and cosine-like deflection functions, explicit expressions were established for the deflection and pull-in voltage of the rectangular and square microplates. The theoretical results were well validated with the finite element method simulations and experimental data of literature. The expressions for the deflection analysis are able to predict the deflection up to the pull-in position with an error less than 5.0%. The expressions for the pull-in voltage analysis can determine the pull-in voltages with errors less than 1.0%. Additionally, the method to calculate the capacitance variation of the electrostatically actuated microplates was proposed. These theoretical analyses are helpful for design and optimization of electrostatically actuated microdevices. (paper)
The calculation of dose rates from rectangular sources
International Nuclear Information System (INIS)
Hartley, B.M.
1998-01-01
A common problem in radiation protection is the calculation of dose rates from extended sources and irregular shapes. Dose rates are proportional to the solid angle subtended by the source at the point of measurement. Simple methods of calculating solid angles would assist in estimating dose rates from large area sources and therefore improve predictive dose estimates when planning work near such sources. The estimation of dose rates is of particular interest to producers of radioactive ores but other users of bulk radioactive materials may have similar interest. The use of spherical trigonometry can assist in determination of solid angles and a simple equation is derived here for the determination of the dose at any distance from a rectangular surface. The solid angle subtended by complex shapes can be determined by modelling the area as a patchwork of rectangular areas and summing the solid angles from each rectangle. The dose rates from bags of thorium bearing ores is of particular interest in Western Australia and measured dose rates from bags and containers of monazite are compared with theoretical estimates based on calculations of solid angle. The agreement is fair but more detailed measurements would be needed to confirm the agreement with theory. (author)
Measurement strategy for rectangular electrical capacitance tomography sensor
International Nuclear Information System (INIS)
Ye, Jiamin; Ge, Ruihuan; Qiu, Guizhi; Wang, Haigang
2014-01-01
To investigate the influence of the measurement strategy for the rectangular electrical capacitance tomography (ECT) sensor, a Finite Element Method (FEM) is utilized to create the model for simulation. The simulation was carried out using COMSOL Multiphysics(trade mark, serif) and Matlab(trade mark, serif). The length-width ratio of the rectangular sensing area is 5. Twelve electrodes are evenly arranged surrounding the pipe. The covering ratio of the electrodes is 90%. The capacitances between different electrode pairs are calculated for a bar distribution. The air of the relative permittivity 1.0 and the material of the permittivity 3.0 are used for the calibration. The relative permittivity of the second phase is 3.0. The noise free and noise data are used for the image reconstruction using the Linear Back Projection (LBP). The measurement strategies with 1-, 2- and 4- electrode excitation are compared using the correlation coefficient. Preliminary results show that the measurement strategy with 2-electrode excitation outperforms other measurement strategies with 1- or 4-electrode excitation
A Rectangular Planar Spiral Antenna for GIS Partial Discharge Detection
Directory of Open Access Journals (Sweden)
Xiaoxing Zhang
2014-01-01
Full Text Available A rectangular planar spiral antenna sensor was designed for detecting the partial discharge in gas insulation substations (GIS. It can expediently receive electromagnetic waves leaked from basin-type insulators and can effectively suppress low frequency electromagnetic interference from the surrounding environment. Certain effective techniques such as rectangular spiral structure, bow-tie loading, and back cavity structure optimization during the antenna design process can miniaturize antenna size and optimize voltage standing wave ratio (VSWR characteristics. Model calculation and experimental data measured in the laboratory show that the antenna possesses a good radiating performance and a multiband property when working in the ultrahigh frequency (UHF band. A comparative study between characteristics of the designed antenna and the existing quasi-TEM horn antenna was made. Based on the GIS defect simulation equipment in the laboratory, partial discharge signals were detected by the designed antenna, the available quasi-TEM horn antenna, and the microstrip patch antenna, and the measurement results were compared.
Numerical investigation of flow past a row of rectangular rods
Directory of Open Access Journals (Sweden)
S.Ul. Islam
2016-09-01
Full Text Available A numerical study of uniform flow past a row of rectangular rods with aspect ratio defined as R = width/height = 0.5 is performed using the Lattice Boltzmann method. For this study the Reynolds number (Re is fixed at 150, while spacings between the rods (g are taken in the range from 1 to 6. Depending on g, the flow is classified into four patterns: flip-flopping, nearly unsteady-inphase, modulated inphase-antiphase non-synchronized and synchronized. Sudden jumps in physical parameters were observed, attaining either maximum or minimum values, with the change in flow patterns. The mean drag coefficient (Cdmean of middle rod is higher than the second and fourth rod for flip-flopping pattern while in case of nearly unsteady-inphase the middle rod attains minimum drag coefficient. It is also found that the Strouhal number (St of first, second and fifth rod decreases as g increases while that of other two have mixed trend. The results further show that there exist secondary interaction frequencies together with primary vortex shedding frequency due to jet in the gap between rods for 1 ⩽ g ⩽ 3. For the average values of Cdmean and St, an empirical relation is also given as a function of gap spacing. This relation shows that the average values of Cdmean and St approach to those of single rectangular rod with increment in g.
Measurement on the cavitating vortex shedding behind rectangular obstacles
International Nuclear Information System (INIS)
Hegedus, F; Hos, C; Pandula, Z; Kullmann, L
2010-01-01
Measurement results on the cavitating vortex shedding behind sharp-edged rectangular bodies are presented, intended to provide benchmark cases for the validation of unsteady cavitation models of CFD codes. Rectangular bodies of increasing aspect ratio (1, 2, 3 and 4) were used with a constant 25mm height (12.5% blockage ratio). The water velocity in the 0.2x0.05m test section of the channel was varied between 1 and 12 m/s resulting in a Reynolds number in the range of (0.4-3.5)x105. Pressure signals were measured at several locations, notably in the wake. Dominant frequencies and Strouhal numbers are reported from cavitation-free flow (classic von Karman vortex shedding) up to supercavitation as a function of the free-stream Reynolds number. The results are in good agreement with the literature in case of the square cylinder. We experienced a slight increase of the dominant Strouhal number with increasing aspect ratio. This result is somewhat inconsistent with the literature, in which a fall of the Strouhal number can be observed at side ratio 2. This may be the consequence of the different ranges of Reynolds numbers. It was also found that between the inception of cavitation and the formation of supercavitation the Strouhal number is not affected by cavitation.
Measurement on the cavitating vortex shedding behind rectangular obstacles
Energy Technology Data Exchange (ETDEWEB)
Hegedus, F; Hos, C; Pandula, Z; Kullmann, L, E-mail: hegedusf@hds.bme.h [Department of Hydrodynamic Systems, Budapest University of Technology and Economics Muegyetem rkp. 1, Budapest 1111 (Hungary)
2010-08-15
Measurement results on the cavitating vortex shedding behind sharp-edged rectangular bodies are presented, intended to provide benchmark cases for the validation of unsteady cavitation models of CFD codes. Rectangular bodies of increasing aspect ratio (1, 2, 3 and 4) were used with a constant 25mm height (12.5% blockage ratio). The water velocity in the 0.2x0.05m test section of the channel was varied between 1 and 12 m/s resulting in a Reynolds number in the range of (0.4-3.5)x105. Pressure signals were measured at several locations, notably in the wake. Dominant frequencies and Strouhal numbers are reported from cavitation-free flow (classic von Karman vortex shedding) up to supercavitation as a function of the free-stream Reynolds number. The results are in good agreement with the literature in case of the square cylinder. We experienced a slight increase of the dominant Strouhal number with increasing aspect ratio. This result is somewhat inconsistent with the literature, in which a fall of the Strouhal number can be observed at side ratio 2. This may be the consequence of the different ranges of Reynolds numbers. It was also found that between the inception of cavitation and the formation of supercavitation the Strouhal number is not affected by cavitation.
DEFF Research Database (Denmark)
Carrizosa, Emilio; Guerrero, Vanesa; Morales, Dolores Romero
2018-01-01
individuals as adjacent rectangular portions as possible and adding as few false adjacencies, i.e., adjacencies between rectangular portions corresponding to non-adjacent individuals, as possible. We formulate this visualization problem as a Mixed Integer Linear Programming (MILP) model. We propose......In this paper we address the problem of visualizing a frequency distribution and an adjacency relation attached to a set of individuals. We represent this information using a rectangular map, i.e., a subdivision of a rectangle into rectangular portions so that each portion is associated with one...
Enhanced Circular Dichroism of Gold Bilayered Slit Arrays Embedded with Rectangular Holes.
Zhang, Hao; Wang, Yongkai; Luo, Lina; Wang, Haiqing; Zhang, Zhongyue
2017-01-01
Gold bilayered slit arrays with rectangular holes embedded into the metal surface are designed to enhance the circular dichroism (CD) effect of gold bilayered slit arrays. The rectangular holes in these arrays block electric currents and generate localized surface plasmons around these holes, thereby strengthening the CD effect. The CD enhancement factor depends strongly on the rotational angle and the structural parameters of the rectangular holes; this factor can be enhanced further by drilling two additional rectangular holes into the metal surfaces of the arrays. These results help facilitate the design of chiral structures to produce a strong CD effect and large electric fields.
Elsaesser, Thomas; Kievit, Robert; Simons, Jan
1994-01-01
Double Trouble highlights the career of Dutch scriptwriter and television producer Chiem van Houweninge, well-known for his long-running TV comedy series and as author of episodes for TV detective series. Double Trouble gives Van Houweninge's own views on writing and filming in television prime
Factorization of differential expansion for antiparallel double-braid knots
Morozov, A.
2016-09-01
Continuing the quest for exclusive Racah matrices, which are needed for evaluation of colored arborescent-knot polynomials in Chern-Simons theory, we suggest to extract them from a new kind of a double-evolution — that of the antiparallel double-braids, which is a simple two-parametric family of two-bridge knots, generalizing the one-parametric family of twist knots. In the case of rectangular representations R = [ r s ] we found an evidence that the corresponding differential expansion miraculously factorizes and can be obtained from that for the twist knots. This reduces the problem of rectangular exclusive Racah to constructing the answers for just a few twist knots. We develop a recent conjecture on the structure of differential expansion for the simplest members of this family (the trefoil and the figure-eight knot) and provide the exhaustive answer for the first unknown case of R = [33]. The answer includes HOMFLY of arbitrary twist and double-braid knots and Racah matrices overline{S} and S — what allows to calculate [33]-colored polynomials for arbitrary arborescent (double-fat) knots. For generic rectangular representations fully described are only the contributions of the single-floor pyramids. One step still remains to be done.
Quantum walks, quantum gates, and quantum computers
International Nuclear Information System (INIS)
Hines, Andrew P.; Stamp, P. C. E.
2007-01-01
The physics of quantum walks on graphs is formulated in Hamiltonian language, both for simple quantum walks and for composite walks, where extra discrete degrees of freedom live at each node of the graph. It is shown how to map between quantum walk Hamiltonians and Hamiltonians for qubit systems and quantum circuits; this is done for both single-excitation and multiexcitation encodings. Specific examples of spin chains, as well as static and dynamic systems of qubits, are mapped to quantum walks, and walks on hyperlattices and hypercubes are mapped to various gate systems. We also show how to map a quantum circuit performing the quantum Fourier transform, the key element of Shor's algorithm, to a quantum walk system doing the same. The results herein are an essential preliminary to a Hamiltonian formulation of quantum walks in which coupling to a dynamic quantum environment is included
Hybridization of electron states in a step quantum well in a magnetic field
International Nuclear Information System (INIS)
Barseghyan, M.G.; Kirakosyan, A.A.
2005-01-01
The quantum states and energy levels of an electrion in a rectangular step quantum well in a magnetic field parallel to the plane of two-dimentional electron gas are investigated. It is shown that the joint effect of the magnetic field and confining potential of the quantum well results in redical change of the electron spectrum. The dependence of the electron energy levels on the quantum well parameters, magnetic field induction and projection of the wave-vector along the magnetic field induction are calculated. Numerical calculations are carried out for a AlAs/GaAlAs/GaAs/AlAs step quantum well
Le Gouët, Jean-Louis; Moiseev, Sergey
2012-06-01
Interaction of quantum radiation with multi-particle ensembles has sparked off intense research efforts during the past decade. Emblematic of this field is the quantum memory scheme, where a quantum state of light is mapped onto an ensemble of atoms and then recovered in its original shape. While opening new access to the basics of light-atom interaction, quantum memory also appears as a key element for information processing applications, such as linear optics quantum computation and long-distance quantum communication via quantum repeaters. Not surprisingly, it is far from trivial to practically recover a stored quantum state of light and, although impressive progress has already been accomplished, researchers are still struggling to reach this ambitious objective. This special issue provides an account of the state-of-the-art in a fast-moving research area that makes physicists, engineers and chemists work together at the forefront of their discipline, involving quantum fields and atoms in different media, magnetic resonance techniques and material science. Various strategies have been considered to store and retrieve quantum light. The explored designs belong to three main—while still overlapping—classes. In architectures derived from photon echo, information is mapped over the spectral components of inhomogeneously broadened absorption bands, such as those encountered in rare earth ion doped crystals and atomic gases in external gradient magnetic field. Protocols based on electromagnetic induced transparency also rely on resonant excitation and are ideally suited to the homogeneous absorption lines offered by laser cooled atomic clouds or ion Coulomb crystals. Finally off-resonance approaches are illustrated by Faraday and Raman processes. Coupling with an optical cavity may enhance the storage process, even for negligibly small atom number. Multiple scattering is also proposed as a way to enlarge the quantum interaction distance of light with matter. The
Griffiths, Robert B.
2001-11-01
Quantum mechanics is one of the most fundamental yet difficult subjects in physics. Nonrelativistic quantum theory is presented here in a clear and systematic fashion, integrating Born's probabilistic interpretation with Schrödinger dynamics. Basic quantum principles are illustrated with simple examples requiring no mathematics beyond linear algebra and elementary probability theory. The quantum measurement process is consistently analyzed using fundamental quantum principles without referring to measurement. These same principles are used to resolve several of the paradoxes that have long perplexed physicists, including the double slit and Schrödinger's cat. The consistent histories formalism used here was first introduced by the author, and extended by M. Gell-Mann, J. Hartle and R. Omnès. Essential for researchers yet accessible to advanced undergraduate students in physics, chemistry, mathematics, and computer science, this book is supplementary to standard textbooks. It will also be of interest to physicists and philosophers working on the foundations of quantum mechanics. Comprehensive account Written by one of the main figures in the field Paperback edition of successful work on philosophy of quantum mechanics
Rectangular amplitudes, conformal blocks, and applications to loop models
Energy Technology Data Exchange (ETDEWEB)
Bondesan, Roberto, E-mail: roberto.bondesan@cea.fr [LPTENS, Ecole Normale Superieure, 24 rue Lhomond, 75231 Paris (France); Institute de Physique Theorique, CEA Saclay, F-91191 Gif-sur-Yvette (France); Jacobsen, Jesper L. [LPTENS, Ecole Normale Superieure, 24 rue Lhomond, 75231 Paris (France); Universite Pierre et Marie Curie, 4 place Jussieu, 75252 Paris (France); Saleur, Hubert [Institute de Physique Theorique, CEA Saclay, F-91191 Gif-sur-Yvette (France); Physics Department, USC, Los Angeles, CA 90089-0484 (United States)
2013-02-21
In this paper we continue the investigation of partition functions of critical systems on a rectangle initiated in [R. Bondesan, et al., Nucl. Phys. B 862 (2012) 553-575]. Here we develop a general formalism of rectangle boundary states using conformal field theory, adapted to describe geometries supporting different boundary conditions. We discuss the computation of rectangular amplitudes and their modular properties, presenting explicit results for the case of free theories. In a second part of the paper we focus on applications to loop models, discussing in details lattice discretizations using both numerical and analytical calculations. These results allow to interpret geometrically conformal blocks, and as an application we derive new probability formulas for self-avoiding walks.
Calculation of control rods in rectangular reactor, and applications (1960)
International Nuclear Information System (INIS)
Goshen, S.; Pazy, A.
1960-01-01
The aim of this report is to find a method for estimating the anti-reactivity of control rods perpendicular to the axis in a cylindrical pile. The paper is divided into two parts. In the first is given a method of calculating control rods in a rectangular pile, similar to the Nordheim-Scalettar method for cylindrical piles. As an example the formulas are given for the theories of one and two neutron groups, the generalisation for several groups being evident. In the second part we find by a variation method a formula for estimating the Laplacian of a pile, which may be divided into parallelepipeds for which the Laplacian are given. Finally, this formula is used to calculate the anti-reactivity of rods perpendicular to the axis in a cylindrical pile. (author) [fr
Critical current studies of a HTS rectangular coil
Energy Technology Data Exchange (ETDEWEB)
Zhong, Z. [Department of Engineering, University of Cambridge (United Kingdom); Chudy, M., E-mail: Michal.chudy@stuba.sk [Graduate School of Technology Management, University of Pretoria (South Africa); Institute of Power and Applied Electrical Engineering, Slovak University of Technology in Bratislava (Slovakia); Ruiz, H.S. [Department of Engineering, University of Leicester, Leicester LE1 7RH (United Kingdom); Zhang, X.; Coombs, T. [Department of Engineering, University of Cambridge (United Kingdom)
2017-05-15
Highlights: • Unique square pancake coil was manufactured. • Measurements in relatively high magnetic field were performed. • Different sections of the coil were characterized. • Parts of the coil which are limiting critical current were identified. - Abstract: Nowadays, superconducting high field magnets are used in numerous applications due to their superior properties. High temperature superconductors (HTS) are usually used for production of circular pancake or racetrack coils. However different geometries of HTS coils might be required for some specific applications. In this study, the HTS coil wound on a rectangular frame was fully characterized in homogeneous DC background field. The study contains measurements of critical current angular dependencies. The critical current of the entire coil and two selected strands under different magnitudes and orientations of external magnetic fields are measured. The critical regions of the coil in different angular regimes are determined. This study brings better understanding of the in- field performance of HTS coils wound on frames with right-angles.
The nanosecond generator RG-1 with near-rectangular pulse
International Nuclear Information System (INIS)
Bulan, V.V.; Grabovskij, E.V.; Gribov, A.N.; Luzhnov, V.G.
1996-01-01
The 300 kV, 17 Ohm generator RG-1, which can deliver near-rectangular pulses with a pulse duration of 80 ns FWHM, is described. The polarity of the output pulse can be changed by a simple switch. The fast capacities of the Marx generator are used instead of the pulse forming line. Multi-spark gas switches were developed to decrease the inductance of the discharged circuit. The generator is supplied by a built-in high voltage source and its operation is controlled by a minicomputer. It is used the power supply-line 220 V. The RG-1 can be used in different modes of operation: gas discharge, particle beam formation, etc. (author). 4 figs., 3 refs
Stress analysis and evaluation of a rectangular pressure vessel
International Nuclear Information System (INIS)
Rezvani, M.A.; Ziada, H.H.; Shurrab, M.S.
1992-10-01
This study addresses structural analysis and evaluation of an abnormal rectangular pressure vessel, designed to house equipment for drilling and collecting samples from Hanford radioactive waste storage tanks. It had to be qualified according to ASME boiler and pressure vessel code, Section VIII; however, it had the cover plate bolted along the long face, a configuration not addressed by the code. Finite element method was used to calculate stresses resulting from internal pressure; these stresses were then used to evaluate and qualify the vessel. Fatigue is not a concern; thus, it can be built according to Section VIII, Division I instead of Division 2. Stress analysis was checked against the code. A stayed plate was added to stiffen the long side of the vessel
Performance analysis of SOI MOSFET with rectangular recessed channel
Singh, M.; Mishra, S.; Mohanty, S. S.; Mishra, G. P.
2016-03-01
In this paper a two dimensional (2D) rectangular recessed channel-silicon on insulator metal oxide semiconductor field effect transistor (RRC-SOI MOSFET), using the concept of groove between source and drain regions, which is one of the channel engineering technique to suppress the short channel effect (SCE). This suppression is mainly due to corner potential barrier of the groove and the simulation is carried out by using ATLAS 2D device simulator. To have further improvement of SCE in RRC-SOI MOSFET, three more devices are designed by using dual material gate (DMG) and gate dielectric technique, which results in formation of devices i.e. DMRRC-SOI,MLSMRRC-SOI, MLDMRRC-SOI MOSFET. The effect of different structures of RRC-SOI on AC and RF parameters are investigated and the importance of these devices over RRC MOSFET regarding short channel effect is analyzed.
Experimental study of natural circulation flow instability in rectangular channels
Energy Technology Data Exchange (ETDEWEB)
Zhou, Tao; Qi, Shi; Song, Mingqiang [North China Electric Power Univ., Beijing (China). School of Nuclear Science and Engineering; Passive Nuclear Safety Technology, Beijing (China). Beijing Key Lab.; Xiao, Zejun [Nuclear, Reactor Thermal Hydraulics Technology, Chengdu (China). CNNC Key Lab.
2017-05-15
Experiments of natural circulation flow instability were conducted in rectangular channels with 5 mm and 10 mm wide gaps. Results for different heating powers were obtained. The results showed that the flow will tend to be instable with the growing of heating power. The oscillation period of pressure D-value and volume flow are the same, but their phase positions are opposite. They both can be described by trigonometric functions. The existence of edge position and secondary flow will strengthen the disturbance of fluid flow in rectangle channels, which contributes to heat transfer. The disturbance of bubble and fluid will be strengthened, especially in the saturated boiling section, which make it possible for the mixing flow. The results also showed that the resistance in 5 mm channel is bigger than that in 10 mm channel, it is less likely to form stable natural circulation in the subcooled region.
The nanosecond generator RG-1 with near-rectangular pulse
Energy Technology Data Exchange (ETDEWEB)
Bulan, V V; Grabovskij, E V; Gribov, A N; Luzhnov, V G [TRINITI, Troitsk (Russian Federation)
1997-12-31
The 300 kV, 17 Ohm generator RG-1, which can deliver near-rectangular pulses with a pulse duration of 80 ns FWHM, is described. The polarity of the output pulse can be changed by a simple switch. The fast capacities of the Marx generator are used instead of the pulse forming line. Multi-spark gas switches were developed to decrease the inductance of the discharged circuit. The generator is supplied by a built-in high voltage source and its operation is controlled by a minicomputer. It is used the power supply-line 220 V. The RG-1 can be used in different modes of operation: gas discharge, particle beam formation, etc. (author). 4 figs., 3 refs.
Specific aspects of turbulent flow in rectangular ducts
Directory of Open Access Journals (Sweden)
Stanković Branislav D.
2017-01-01
Full Text Available The essential ideas of investigations of turbulent flow in a straight rectangular duct are chronologically presented. Fundamentally significant experimental and theoretical studies for mathematical modeling and numerical computations of this flow configuration are analyzed. An important physical aspect of this type of flow is presence of secondary motion in the plane perpendicular to the streamwise direction, which is of interest from both the engineering and the scientific viewpoints. The key facts for a task of turbulence modeling and optimal choice of the turbulence model are obtained through careful examination of physical mechanisms that generate secondary flows. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no.TR-33018: Increase in Energy and Ecology Efficiency of Processes in Pulverized Coal-Fired Furnace and Optimization of Utility Steam Boiler Air Pre-heater by Using In-House Developed Software Tools
Stability Analysis of Nonuniform Rectangular Beams Using Homotopy Perturbation Method
Directory of Open Access Journals (Sweden)
Seval Pinarbasi
2012-01-01
Full Text Available The design of slender beams, that is, beams with large laterally unsupported lengths, is commonly controlled by stability limit states. Beam buckling, also called “lateral torsional buckling,” is different from column buckling in that a beam not only displaces laterally but also twists about its axis during buckling. The coupling between twist and lateral displacement makes stability analysis of beams more complex than that of columns. For this reason, most of the analytical studies in the literature on beam stability are concentrated on simple cases: uniform beams with ideal boundary conditions and simple loadings. This paper shows that complex beam stability problems, such as lateral torsional buckling of rectangular beams with variable cross-sections, can successfully be solved using homotopy perturbation method (HPM.
Counter-current flow limited CHF in thin rectangular channels
International Nuclear Information System (INIS)
Cheng, L.Y.
1990-01-01
An analytical expression for counter-current-flow-limitation (CCFL) was used to predict critical heat flux (CHF) for downward flow in thin vertical rectangular channels which are prototypes of coolant channels in test and research nuclear reactors. Top flooding is the mechanism for counter-current flow limited CHF. The CCFL correlation also was used to determine the circulation and flooding-limited CHF. Good agreements were observed between the period the model predictions and data on the CHF for downflow. The minimum CHF for downflow is lower than the flooding-limited CHF and it is predicted to occur at a liquid flow rate higher than that at the flooding limit. 17 refs., 7 figs
Thermoelectric effects in a rectangular Aharonov-Bohm geometry
Pye, A. J.; Faux, D. A.; Kearney, M. J.
2016-04-01
The thermoelectric transport properties of a rectangular Aharonov-Bohm ring at low temperature are investigated using a theoretical approach based on Green's functions. The oscillations in the transmission coefficient as the field is varied can be used to tune the thermoelectric response of the ring. Large magnitude thermopowers are obtainable which, in conjunction with low conductance, can result in a high thermoelectric figure of merit. The effects of single site impurities and more general Anderson disorder are considered explicitly in the context of evaluating their effect on the Fano-type resonances in the transmission coefficient. Importantly, it is shown that even for moderate levels of disorder, the thermoelectric figure of merit can remain significant, increasing the appeal of such structures from the perspective of specialist thermoelectric applications.
Free Vibration of Rectangular Plates with Attached Discrete Sprung Masses
Directory of Open Access Journals (Sweden)
Ding Zhou
2012-01-01
Full Text Available A direct approach is used to derive the exact solution for the free vibration of thin rectangular plates with discrete sprung masses attached. The plate is simply supported along two opposite edges and elastically supported along the two other edges. The elastic support can represent a range of boundary conditions from free to clamped supports. Considering only the compatibility of the internal forces between the plate and the sprung masses, the equations of the coupled vibration of the plate-spring-mass system are derived. The exact expressions for mode and frequency equations of the coupled vibration of the plate and sprung masses are determined. The solutions converge steadily and monotonically to exact values. The correctness and accuracy of the solutions are demonstrated through comparison with published results. A parametric study is undertaken focusing on the plate with one or two sprung masses. The results can be used as a benchmark for further investigation.
Flow field induced particle accumulation inside droplets in rectangular channels.
Hein, Michael; Moskopp, Michael; Seemann, Ralf
2015-07-07
Particle concentration is a basic operation needed to perform washing steps or to improve subsequent analysis in many (bio)-chemical assays. In this article we present field free, hydrodynamic accumulation of particles and cells in droplets flowing within rectangular micro-channels. Depending on droplet velocity, particles either accumulate at the rear of the droplet or are dispersed over the entire droplet cross-section. We show that the observed particle accumulation behavior can be understood by a coupling of particle sedimentation to the internal flow field of the droplet. The changing accumulation patterns are explained by a qualitative change of the internal flow field. The topological change of the internal flow field, however, is explained by the evolution of the droplet shape with increasing droplet velocity altering the friction with the channel walls. In addition, we demonstrate that accumulated particles can be concentrated, removing excess dispersed phase by splitting the droplet at a simple channel junction.
Magnethohydrodynamic surface and body waves in rectangular and cylindrical geometries
International Nuclear Information System (INIS)
Donnelly, I.J.
1982-03-01
Low frequency magnetohydrodynamic (MHD) waves are studied in both rectangular slab and cylindrical geometry cavities containing low β plasmas. The plasma density distribution is modelled by an inner region of constant density surrounded by an outer region of lower density and a conducting boundary. The wave frequencies and fields are obtained as functions of the density distribution and the wavenumber components k(parall) and k(perp). The lowest frequency wave mode is a surface wave in which the wave fields decrease in magnitude with distance from the interface between the two plasma densities. It has the properties of a shear wave when k(perp)/k(parall) is either small or large but is compressive when k(perp) is approximately equal to k(parall). The surface wave does not exist when k(perp) = 0. Higher frequency modes have the properties of fast magnetosonic waves, at least in the inner density region
Free Vibration Analysis of Rectangular Orthotropic Membranes in Large Deflection
Directory of Open Access Journals (Sweden)
Zheng Zhou-Lian
2009-01-01
Full Text Available This paper reviewed the research on the vibration of orthotropic membrane, which commonly applied in the membrane structural engineering. We applied the large deflection theory of membrane to derive the governing vibration equations of orthotropic membrane, solved it, and obtained the power series formula of nonlinear vibration frequency of rectangular membrane with four edges fixed. The paper gave the computational example and compared the two results from the large deflection theory and the small one, respectively. Results obtained from this paper provide some theoretical foundation for the measurement of pretension by frequency method; meanwhile, the results provide some theoretical foundation for the research of nonlinear vibration of membrane structures and the response solving of membrane structures under dynamic loads.
Performance analysis of SOI MOSFET with rectangular recessed channel
International Nuclear Information System (INIS)
Singh, M; Mishra, G P; Mishra, S; Mohanty, S S
2016-01-01
In this paper a two dimensional (2D) rectangular recessed channel–silicon on insulator metal oxide semiconductor field effect transistor (RRC-SOI MOSFET), using the concept of groove between source and drain regions, which is one of the channel engineering technique to suppress the short channel effect (SCE). This suppression is mainly due to corner potential barrier of the groove and the simulation is carried out by using ATLAS 2D device simulator. To have further improvement of SCE in RRC-SOI MOSFET, three more devices are designed by using dual material gate (DMG) and gate dielectric technique, which results in formation of devices i.e. DMRRC-SOI,MLSMRRC-SOI, MLDMRRC-SOI MOSFET. The effect of different structures of RRC-SOI on AC and RF parameters are investigated and the importance of these devices over RRC MOSFET regarding short channel effect is analyzed. (paper)
Impedance of curved rectangular spiral coils around a conductive cylinder
Burke, S. K.; Ditchburn, R. J.; Theodoulidis, T. P.
2008-07-01
Eddy-current induction due to a thin conformable coil wrapped around a long conductive cylinder is examined using a second-order vector potential formalism. Compact closed-form expressions are derived for the self- and mutual impedances of curved rectangular spiral coils (i) in free space and (ii) when wrapped around the surface of the cylindrical rod. The validity of these expressions was tested against the results of a systematic series of experiments using a cylindrical Al-alloy rod and conformable coils manufactured using flexible printed-circuit-board technology. The theoretical expressions were in very good agreement with the experimental measurements. The significance of the results for eddy-current nondestructive inspection using flexible coils and flexible coil arrays is discussed.
Measurement of electron beam bunch phase length by rectangular cavities
International Nuclear Information System (INIS)
Afanas'ev, V.D.; Rudychev, V.G.; Ushakov, V.I.
1976-01-01
An analysis of a phase length of electron bunches with the help of crossed rectangular resonators with the Hsub(102) oscillation type has been made. It has been shown that the electron coordinates after the duplex resonator are described by an ellipse equation for a non-modulated beam. An influence of the initial energy spread upon the electron motion has been studied. It has been ascertained that energy modulation of the electron beam results in displacement of each electron with respect to the ellipse which is proportional to modulation energy, i.e. an error in determination of the phase length of an electron bunch is proportional to the beam energy spread. Relations have been obtained which enable to find genuine values of phases of the analyzed electrons with an accuracy up to linear multipliers
Quantitative study of rectangular waveguide behavior in the THz.
Energy Technology Data Exchange (ETDEWEB)
Rowen, Adam M.; Nordquist, Christopher Daniel; Wanke, Michael Clement
2009-10-01
This report describes our efforts to quantify the behavior of micro-fabricated THz rectangular waveguides on a configurable, robust semiconductor-based platform. These waveguides are an enabling technology for coupling THz radiation directly from or to lasers, mixers, detectors, antennas, and other devices. Traditional waveguides fabricated on semiconductor platforms such as dielectric guides in the infrared or co-planar waveguides in the microwave regions, suffer high absorption and radiative losses in the THz. The former leads to very short propagation lengths, while the latter will lead to unwanted radiation modes and/or crosstalk in integrated devices. This project exploited the initial developments of THz micro-machined rectangular waveguides developed under the THz Grand Challenge Program, but instead of focusing on THz transceiver integration, this project focused on exploring the propagation loss and far-field radiation patterns of the waveguides. During the 9 month duration of this project we were able to reproduce the waveguide loss per unit of length in the waveguides and started to explore how the loss depended on wavelength. We also explored the far-field beam patterns emitted by H-plane horn antennas attached to the waveguides. In the process we learned that the method of measuring the beam patterns has a significant impact on what is actually measured, and this may have an effect on most of the beam patterns of THz that have been reported to date. The beam pattern measurements improved significantly throughout the project, but more refinements of the measurement are required before a definitive determination of the beam-pattern can be made.
Inertial manipulation of bubbles in rectangular microfluidic channels.
Hadikhani, Pooria; Hashemi, S Mohammad H; Balestra, Gioele; Zhu, Lailai; Modestino, Miguel A; Gallaire, François; Psaltis, Demetri
2018-03-27
Inertial microfluidics is an active field of research that deals with crossflow positioning of the suspended entities in microflows. Until now, the majority of the studies have focused on the behavior of rigid particles in order to provide guidelines for microfluidic applications such as sorting and filtering. Deformable entities such as bubbles and droplets are considered in fewer studies despite their importance in multiphase microflows. In this paper, we show that the trajectory of bubbles flowing in rectangular and square microchannels can be controlled by tuning the balance of forces acting on them. A T-junction geometry is employed to introduce bubbles into a microchannel and analyze their lateral equilibrium position in a range of Reynolds (1 < Re < 40) and capillary numbers (0.1 < Ca < 1). We find that the Reynolds number (Re), the capillary number (Ca), the diameter of the bubble (D[combining macron]), and the aspect ratio of the channel are the influential parameters in this phenomenon. For instance, at high Re, the flow pushes the bubble towards the wall while large Ca or D[combining macron] moves the bubble towards the center. Moreover, in the shallow channels, having aspect ratios higher than one, the bubble moves towards the narrower sidewalls. One important outcome of this study is that the equilibrium position of bubbles in rectangular channels is different from that of solid particles. The experimental observations are in good agreement with the performed numerical simulations and provide insights into the dynamics of bubbles in laminar flows which can be utilized in the design of flow based multiphase flow reactors.
Chang, Mou-Hsiung
2015-01-01
The classical probability theory initiated by Kolmogorov and its quantum counterpart, pioneered by von Neumann, were created at about the same time in the 1930s, but development of the quantum theory has trailed far behind. Although highly appealing, the quantum theory has a steep learning curve, requiring tools from both probability and analysis and a facility for combining the two viewpoints. This book is a systematic, self-contained account of the core of quantum probability and quantum stochastic processes for graduate students and researchers. The only assumed background is knowledge of the basic theory of Hilbert spaces, bounded linear operators, and classical Markov processes. From there, the book introduces additional tools from analysis, and then builds the quantum probability framework needed to support applications to quantum control and quantum information and communication. These include quantum noise, quantum stochastic calculus, stochastic quantum differential equations, quantum Markov semigrou...
International Nuclear Information System (INIS)
Takeoka, Masahiro; Fujiwara, Mikio; Mizuno, Jun; Sasaki, Masahide
2004-01-01
Quantum-information theory predicts that when the transmission resource is doubled in quantum channels, the amount of information transmitted can be increased more than twice by quantum-channel coding technique, whereas the increase is at most twice in classical information theory. This remarkable feature, the superadditive quantum-coding gain, can be implemented by appropriate choices of code words and corresponding quantum decoding which requires a collective quantum measurement. Recently, an experimental demonstration was reported [M. Fujiwara et al., Phys. Rev. Lett. 90, 167906 (2003)]. The purpose of this paper is to describe our experiment in detail. Particularly, a design strategy of quantum-collective decoding in physical quantum circuits is emphasized. We also address the practical implication of the gain on communication performance by introducing the quantum-classical hybrid coding scheme. We show how the superadditive quantum-coding gain, even in a small code length, can boost the communication performance of conventional coding techniques
Electrical Machines: Turn-to-Turn Capacitance in Formed Windings with Rectangular Cross-Section Wire
Djukic, Nenad; Encica, L.; Paulides, Johan
2015-01-01
Calculation of turn-to-turn capacitance (Ctt) in electrical machines (EMs) with formed windings with rectangular cross-section wire is presented. Three calculation methods are used for the calculation of Ctt in case of rectangular conductors – finite element (FE) method and two previously published
75 FR 82070 - Light-Walled Rectangular Pipe and Tube From China, Korea, and Mexico
2010-12-29
...-Walled Rectangular Pipe and Tube From China, Korea, and Mexico AGENCY: United States International Trade... from China, Korea, and Mexico that were found to be sold at less than fair value. Nacional de Acero S... panel proceeding in Light-Walled Rectangular Pipe and Tube from Mexico, USA-MEX-1904-04, to file...
77 FR 3497 - Light-Walled Rectangular Pipe and Tube From Taiwan
2012-01-24
... Rectangular Pipe and Tube From Taiwan Determination On the basis of the record \\1\\ developed in the subject... order on light-walled rectangular pipe and tube from Taiwan would be likely to lead to continuation or recurrence of material injury to an industry in the United States within a reasonably foreseeable time. \\1...
Scarani, Valerio
1998-01-01
The aim of this thesis was to explain what quantum computing is. The information for the thesis was gathered from books, scientific publications, and news articles. The analysis of the information revealed that quantum computing can be broken down to three areas: theories behind quantum computing explaining the structure of a quantum computer, known quantum algorithms, and the actual physical realizations of a quantum computer. The thesis reveals that moving from classical memor...
Wu, Lian-Ao; Lidar, Daniel A.
2005-01-01
When quantum communication networks proliferate they will likely be subject to a new type of attack: by hackers, virus makers, and other malicious intruders. Here we introduce the concept of "quantum malware" to describe such human-made intrusions. We offer a simple solution for storage of quantum information in a manner which protects quantum networks from quantum malware. This solution involves swapping the quantum information at random times between the network and isolated, distributed an...
International Nuclear Information System (INIS)
Cruz, Philip Christopher S.; Bernardo, Reginald Christian S.; Esguerra, Jose Perico H.
2017-01-01
We calculate the energy levels of a quantum particle on a cylindrical surface with non-circular cross-section in uniform electric and magnetic fields. Using separation of variables method and a change of independent variable, we show that the problem can be reduced to a one-dimensional Schrödinger equation for a periodic potential. The effects of varying the shape of the cross-section while keeping the same perimeter and the strengths of the electric and magnetic fields are investigated for elliptical, corrugated, and nearly-rectangular tubes with radial dimensions of the order of a nanometer. The geometric potential has minima at the angular positions where there is a significant amount of curvature. For the elliptical and corrugated tubes, it is shown that as the tube departs from the circular shape of cross-section the double-degeneracy between the energy levels is lifted. For the nearly-rectangular tube, it is shown that energy level crossings occur as the horizontal dimension of the tube is varied while keeping the same perimeter and radius of circular corners. The interplay between the curvature and the strength of the electric and magnetic fields determines the overall behavior of the energy levels. As the strength of the electric field increases, the overall potential gets skewed creating a potential well on the side corresponding to the more negative electric potential. The energy levels of the first few excited states approach more positive values while the ground state energy level approaches a more negative value. For large electric fields, all bound state energy levels tend to more negative values. The contribution of weak magnetic fields to the overall potential behaves in the same way as the electric field contribution but with its sign depending on the direction of the component of the momentum parallel to the cylindrical axis. Large magnetic fields lead to pairing of energy levels reminiscent of 2D Landau levels for the elliptical and nearly-rectangular
Energy Technology Data Exchange (ETDEWEB)
Cruz, Philip Christopher S., E-mail: pscruz1@up.edu.ph; Bernardo, Reginald Christian S., E-mail: rcbernardo@nip.upd.edu.ph; Esguerra, Jose Perico H., E-mail: jesguerra@nip.upd.edu.ph
2017-04-15
We calculate the energy levels of a quantum particle on a cylindrical surface with non-circular cross-section in uniform electric and magnetic fields. Using separation of variables method and a change of independent variable, we show that the problem can be reduced to a one-dimensional Schrödinger equation for a periodic potential. The effects of varying the shape of the cross-section while keeping the same perimeter and the strengths of the electric and magnetic fields are investigated for elliptical, corrugated, and nearly-rectangular tubes with radial dimensions of the order of a nanometer. The geometric potential has minima at the angular positions where there is a significant amount of curvature. For the elliptical and corrugated tubes, it is shown that as the tube departs from the circular shape of cross-section the double-degeneracy between the energy levels is lifted. For the nearly-rectangular tube, it is shown that energy level crossings occur as the horizontal dimension of the tube is varied while keeping the same perimeter and radius of circular corners. The interplay between the curvature and the strength of the electric and magnetic fields determines the overall behavior of the energy levels. As the strength of the electric field increases, the overall potential gets skewed creating a potential well on the side corresponding to the more negative electric potential. The energy levels of the first few excited states approach more positive values while the ground state energy level approaches a more negative value. For large electric fields, all bound state energy levels tend to more negative values. The contribution of weak magnetic fields to the overall potential behaves in the same way as the electric field contribution but with its sign depending on the direction of the component of the momentum parallel to the cylindrical axis. Large magnetic fields lead to pairing of energy levels reminiscent of 2D Landau levels for the elliptical and nearly-rectangular
Quantumness beyond quantum mechanics
International Nuclear Information System (INIS)
Sanz, Ángel S
2012-01-01
Bohmian mechanics allows us to understand quantum systems in the light of other quantum traits than the well-known ones (coherence, diffraction, interference, tunnelling, discreteness, entanglement, etc.). Here the discussion focusses precisely on two of these interesting aspects, which arise when quantum mechanics is thought within this theoretical framework: the non-crossing property, which allows for distinguishability without erasing interference patterns, and the possibility to define quantum probability tubes, along which the probability remains constant all the way. Furthermore, taking into account this hydrodynamic-like description as a link, it is also shown how this knowledge (concepts and ideas) can be straightforwardly transferred to other fields of physics (for example, the transmission of light along waveguides).
Finite element fatigue analysis of rectangular clutch spring of automatic slack adjuster
Xu, Chen-jie; Luo, Zai; Hu, Xiao-feng; Jiang, Wen-song
2015-02-01
The failure of rectangular clutch spring of automatic slack adjuster directly affects the work of automatic slack adjuster. We establish the structural mechanics model of automatic slack adjuster rectangular clutch spring based on its working principle and mechanical structure. In addition, we upload such structural mechanics model to ANSYS Workbench FEA system to predict the fatigue life of rectangular clutch spring. FEA results show that the fatigue life of rectangular clutch spring is 2.0403×105 cycle under the effect of braking loads. In the meantime, fatigue tests of 20 automatic slack adjusters are carried out on the fatigue test bench to verify the conclusion of the structural mechanics model. The experimental results show that the mean fatigue life of rectangular clutch spring is 1.9101×105, which meets the results based on the finite element analysis using ANSYS Workbench FEA system.
Study on the output factors of asymmetrical rectangular electron beam field
International Nuclear Information System (INIS)
Chen Yinghai; Yang Yueqin; Ma Yuhong; Zheng Jin; Zou Lijuan
2009-01-01
Objective: To evaluate the variant regularity of the output factors of asymmetrical rectangular electron beam field. Methods: The output factors of three special fields with different applicators and energies were measured by ionization chamber method at different off-axis distances. Then deviations of the output factors between asymmetrical and symmetric rectangular fields were calculated. Results: The changes of output factor with different off-axis distances in asymmetrical rectangular fields were basically consistent with those in standard square fields with the same applicator. It revealed that the output factor of asymmetrical rectangular field was related with the off-axis ratio of standard square field. Applicator and field size did not show obvious influence on the output factor. Conclusions: The output factor changes of asymmetrical rectangular field are mainly correlated with the off-axis ratio of standard square field. The correction of the output factor is determined by the off-axis ratio changes in standard square field. (authors)
Analysis of junior high school students' difficulty in resolving rectangular conceptual problems
Utami, Aliksia Kristiana Dwi; Mardiyana, Pramudya, Ikrar
2017-08-01
Geometry is one part of the mathematics that must be learned in school and it has important effects on the development of creative thinking skills of learners, but in fact, there are some difficulties experienced by the students. This research focuses on analysis difficulty in resolving rectangular conceptual problems among junior high school students in every creative thinking skills level. This research used a descriptive method aimed to identify the difficulties and cause of the difficulties experienced by five students. The difficulties are associated with rectangular shapes and related problems. Data collection was done based on students' work through test, interview, and observations. The result revealed that student' difficulties in understanding the rectangular concept can be found at every creative thinking skills level. The difficulties are identifying the objects rectangular in the daily life except for a rectangle and square, analyzing the properties of rectangular shapes, and seeing the interrelationships between figures.
Nonlinear Dynamics In Quantum Physics -- Quantum Chaos and Quantum Instantons
Kröger, H.
2003-01-01
We discuss the recently proposed quantum action - its interpretation, its motivation, its mathematical properties and its use in physics: quantum mechanical tunneling, quantum instantons and quantum chaos.
Triple-server blind quantum computation using entanglement swapping
Li, Qin; Chan, Wai Hong; Wu, Chunhui; Wen, Zhonghua
2014-04-01
Blind quantum computation allows a client who does not have enough quantum resources or technologies to achieve quantum computation on a remote quantum server such that the client's input, output, and algorithm remain unknown to the server. Up to now, single- and double-server blind quantum computation have been considered. In this work, we propose a triple-server blind computation protocol where the client can delegate quantum computation to three quantum servers by the use of entanglement swapping. Furthermore, the three quantum servers can communicate with each other and the client is almost classical since one does not require any quantum computational power, quantum memory, and the ability to prepare any quantum states and only needs to be capable of getting access to quantum channels.
Holomorphic anomaly and quantum mechanics
Codesido, Santiago; Mariño, Marcos
2018-02-01
We show that the all-orders WKB periods of one-dimensional quantum mechanical oscillators are governed by the refined holomorphic anomaly equations of topological string theory. We analyze in detail the double-well potential and the cubic and quartic oscillators, and we calculate the WKB expansion of their quantum free energies by using the direct integration of the anomaly equations. We reproduce in this way all known results about the quantum periods of these models, which we express in terms of modular forms on the WKB curve. As an application of our results, we study the large order behavior of the WKB expansion in the case of the double well, which displays the double factorial growth typical of string theory.
Double gated-integrator for shaping nuclear radiation detector signals
International Nuclear Information System (INIS)
Gal, J.
2001-01-01
A new shaper, the double gated-integrator, for shaping nuclear radiation detector signals is investigated both theoretically and experimentally. The double gated-integrator consists of a pre-filter and two cascaded gated integrators. Two kinds of pre-filters were considered: a rectangular one and an exponential one. The results of the theoretical calculation show that the best figure of demerit for the double gated-integrator with exponential pre-filter is 1.016. This means that its noise to signal ratio is only 1.6% worse than that it is for infinite cusp shaping. The practical realization of the exponential pre-filter and that of the double gated integrator, both in analogue and in digital way, is very simple. Therefore, the double gated-integrator with exponential pre-filter could be a promising solution for shaping nuclear radiation detector signals
International Nuclear Information System (INIS)
M Hadi Kusuma; Mulya Juarsa; Anhar Riza Antariksawan
2013-01-01
Boiling heat transfer phenomena on rectangular narrow gap was related to the safety of nuclear reactors. Research done in order to study the safety of nuclear reactors in particular relating to boiling heat transfer and useful on the improvement of next-generation reactor designs. The research focused on calculation of the heat flux during the cooling process in rectangular narrow gap size 1.0 mm. with initial temperatures 200°C. 400°C, and 600°C, also the flow rates of cooling water 0,1 liters/second. 0,2 liters/second. and 0,3 liters/second. Experiments carried out by injecting water at a certain flow rate with the water temperature 85°C. Transient temperature measurement data recorded by the data acquisition system. Transient temperature measurement data is used to calculate the flux of heat gain is then used to obtain the heat transfer coefficient. This research aimed to obtain the correlation between critical heat flux and heat transfer coefficient to changes in temperatures and water flow rates for bilaterally-heated cases on rectangular narrow gap. The results obtained for a constant cooling water flow rate, critical heat flux will increase when hot plate temperature also increased. While on a constant hot plate temperature, coefficient heat transfer will increase when cooling water flow rate also increased. Thus it can be said that the cooling water flow rate and temperature of the hot plate has a significant effect on the critical heat flux and heat transfer coefficient resulted in quenching process of vertical rectangular narrow gap with double-heated cases. (author)
Directory of Open Access Journals (Sweden)
Bessem Samet
2011-09-01
Full Text Available Recently, Azam, Arshad and Beg [ Banach contraction principle on cone rectangular metric spaces, Appl. Anal. Discrete Math. 2009] introduced the notion of cone rectangular metric spaces by replacing the triangular inequality of a cone metric space by a rectangular inequality. In this paper, we introduce the notion of c-chainable cone rectangular metric space and we establish a fixed point theorem for uniformly locally contractive mappings in such spaces. An example is given to illustrate our obtained result.
Modelling of ultrasonic nondestructive testing in anisotropic materials - Rectangular crack
International Nuclear Information System (INIS)
Bostroem, A.
2001-12-01
Nondestructive testing with ultrasound is a standard procedure in the nuclear power industry when searching for defects, in particular cracks. To develop and qualify testing procedures extensive experimental work on test blocks is usually required. This can take a lot of time and therefore be quite costly. A good mathematical model of the testing situation is therefore of great value as it can reduce the experimental work to a great extent. A good model can be very useful for parametric studies and as a pedagogical tool. A further use of a model is as a tool in the qualification of personnel. In anisotropic materials, e.g. austenitic welds, the propagation of ultrasound becomes much more complicated as compared to isotropic materials. Therefore, modelling is even more useful for anisotropic materials, and it in particular has a greater pedagogical value. The present project has been concerned with a further development of the anisotropic capabilities of the computer program UTDefect, which has so far only contained a strip-like crack as the single defect type for anisotropic materials. To be more specific, the scattering by a rectangular crack in an anisotropic component has been studied and the result is adapted to include transmitting and receiving ultrasonic probes. The component under study is assumed to be anisotropic with arbitrary anisotropy. On the other hand, it is assumed to be homogeneous, and this in particular excludes most welds, where it is seldom an adequate approximation to assume homogeneity. The anisotropy may be arbitrarily oriented and the same is true of the rectangular crack. The crack may also be located near a backside of the component. To solve the scattering problem for the crack an integral equation method is used. The probe model has been developed in an earlier project and to compute the signal response in the receiving probe an electromechanical reciprocity argument is employed. As a rectangle is a truly 3D scatterer the sizes of the
Ellerman, David
2014-03-01
In models of QM over finite fields (e.g., Schumacher's ``modal quantum theory'' MQT), one finite field stands out, Z2, since Z2 vectors represent sets. QM (finite-dimensional) mathematics can be transported to sets resulting in quantum mechanics over sets or QM/sets. This gives a full probability calculus (unlike MQT with only zero-one modalities) that leads to a fulsome theory of QM/sets including ``logical'' models of the double-slit experiment, Bell's Theorem, QIT, and QC. In QC over Z2 (where gates are non-singular matrices as in MQT), a simple quantum algorithm (one gate plus one function evaluation) solves the Parity SAT problem (finding the parity of the sum of all values of an n-ary Boolean function). Classically, the Parity SAT problem requires 2n function evaluations in contrast to the one function evaluation required in the quantum algorithm. This is quantum speedup but with all the calculations over Z2 just like classical computing. This shows definitively that the source of quantum speedup is not in the greater power of computing over the complex numbers, and confirms the idea that the source is in superposition.
International Nuclear Information System (INIS)
Anon.
1990-01-01
The book is on quantum mechanics. The emphasis is on the basic concepts and the methodology. The chapters include: Breakdown of classical concepts; Quantum mechanical concepts; Basic postulates of quantum mechanics; solution of problems in quantum mechanics; Simple harmonic oscillator; and Angular Momentum
International Nuclear Information System (INIS)
Buechler, Hans Peter; Calcarco, Tommaso; Dressel, Martin
2008-01-01
The following topics are dealt with: Artificial atoms and molecules, tailored from solids, fractional flux quanta, molecular magnets, controlled interaction in quantum gases, the theory of quantum correlations in mott matter, cold gases, and mesoscopic systems, Bose-Einstein condensates on the chip, on the route to the quantum computer, a quantum computer in diamond. (HSI)
International Nuclear Information System (INIS)
Reynaud, S.; Giacobino, S.; Zinn-Justin, J.
1997-01-01
This course is dedicated to present in a pedagogical manner the recent developments in peculiar fields concerned by quantum fluctuations: quantum noise in optics, light propagation through dielectric media, sub-Poissonian light generated by lasers and masers, quantum non-demolition measurements, quantum electrodynamics applied to cavities and electrical circuits involving superconducting tunnel junctions. (A.C.)
2013-07-16
...-Walled Rectangular Pipe and Tube From China, Korea, Mexico, and Turkey: Notice of Commission... countervailing duty order on light-walled rectangular pipe and tube from China and the antidumping duty orders on light-walled rectangular pipe and tube from China, Korea, Mexico, and Turkey would be likely to lead to...
2013-12-10
...-Walled Rectangular Pipe and Tube From China, Korea, Mexico, and Turkey; Scheduling of Full Five-Year... the Antidumping Duty Orders on Light-Walled Rectangular Pipe and Tube From China, Korea, Mexico, and... on light- walled rectangular pipe and tube from China, Korea, Mexico, and Turkey would be likely to...
Lanzagorta, Marco
2011-01-01
This book offers a concise review of quantum radar theory. Our approach is pedagogical, making emphasis on the physics behind the operation of a hypothetical quantum radar. We concentrate our discussion on the two major models proposed to date: interferometric quantum radar and quantum illumination. In addition, this book offers some new results, including an analytical study of quantum interferometry in the X-band radar region with a variety of atmospheric conditions, a derivation of a quantum radar equation, and a discussion of quantum radar jamming.This book assumes the reader is familiar w
International Nuclear Information System (INIS)
Usui, Tohru; Kaminaga, Masanori; Sudo, Yukio.
1988-07-01
Quantitative understanding of critical heat flux (CHF) in the narrow vertical rectangular channel is required for the thermo-hydroulic design and the safety analysis of research reactors in which flat-plate-type fuel is adopted. Especially, critical heat flux under low downward velocity has a close relation with falling water limitation under counter-current flow. Accordingly, CCFL (Counter-current Flow Limitation) experiments were carried out for both vertical rectangular channels and vertical circular tubes varried in their size and configuration of their cross sections, to make clear CCFL characteristics in the vertical rectangular channels. In the experiments, l/de of the rectangular channel was changed from 3.5 to 180. As the results, it was clear that different equivalent hydraulic diameter de, namely width or water gap of channel, gave different CCFL characteristics of rectangular channel. But the influence of channel length l on CCFL characteristics was not observed. Besides, a dimensionless correlation to estimate a relation between upward air velocity and downward water velocity was proposed based on the present experimental results. The difference of CCFL characteristics between rectangular channels and circular tubes was also investigated. Especially for the rectangular channels, dry-patches appearing condition was made clear as a flow-map. (author)
Quantum dressing orbits on compact groups
Energy Technology Data Exchange (ETDEWEB)
Jurco, B. (Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). Sommerfeld Inst.); Stovicek, P. (Prague Univ. (Czechoslovakia). Dept. of Mathematics)
1993-02-01
The quantum double is shown to imply the dressing transformation on quantum compact groups and the quantum Iwasawa decomposition in the general case. Quantum dressing orbits are describing explicitly as *-algebras. The dual coalgebras consisting of differential operators are related to the quantum Weyl elements. Besides, the differential geometry on a quantum leaf allows a remarkably simple construction of irreducible *-representations of the algebras of quantum functions. Representation spaces then consist of analytic functions on classical phase spaces. These representations are also interpreted in the framework of quantization in the spirit of Berezin applied to symplectic leaves on classical compact groups. Convenient 'coherent states' are introduced and a correspondence between classical and quantum observables is given. (orig.).
Quantum dressing orbits on compact groups
International Nuclear Information System (INIS)
Jurco, B.; Stovicek, P.
1993-01-01
The quantum double is shown to imply the dressing transformation on quantum compact groups and the quantum Iwasawa decomposition in the general case. Quantum dressing orbits are describing explicitly as *-algebras. The dual coalgebras consisting of differential operators are related to the quantum Weyl elements. Besides, the differential geometry on a quantum leaf allows a remarkably simple construction of irreducible *-representations of the algebras of quantum functions. Representation spaces then consist of analytic functions on classical phase spaces. These representations are also interpreted in the framework of quantization in the spirit of Berezin applied to symplectic leaves on classical compact groups. Convenient 'coherent states' are introduced and a correspondence between classical and quantum observables is given. (orig.)
Controlled Photon Switch Assisted by Coupled Quantum Dots
Luo, Ming-Xing; Ma, Song-Ya; Chen, Xiu-Bo; Wang, Xiaojun
2015-01-01
Quantum switch is a primitive element in quantum network communication. In contrast to previous switch schemes on one degree of freedom (DOF) of quantum systems, we consider controlled switches of photon system with two DOFs. These controlled photon switches are constructed by exploring the optical selection rules derived from the quantum-dot spins in one-sided optical microcavities. Several double controlled-NOT gate on different joint systems are greatly simplified with an auxiliary DOF of the controlling photon. The photon switches show that two DOFs of photons can be independently transmitted in quantum networks. This result reduces the quantum resources for quantum network communication. PMID:26095049
International Nuclear Information System (INIS)
Kilin, Sergei Ya
1999-01-01
A new research direction known as quantum information is a multidisciplinary subject which involves quantum mechanics, optics, information theory, programming, discrete mathematics, laser physics and spectroscopy, and depends heavily on contributions from such areas as quantum computing, quantum teleportation and quantum cryptography, decoherence studies, and single-molecule and impurity spectroscopy. Some new results achieved in this rapidly growing field are discussed. (reviews of topical problems)
Energy Technology Data Exchange (ETDEWEB)
Kilin, Sergei Ya [B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk (Belarus)
1999-05-31
A new research direction known as quantum information is a multidisciplinary subject which involves quantum mechanics, optics, information theory, programming, discrete mathematics, laser physics and spectroscopy, and depends heavily on contributions from such areas as quantum computing, quantum teleportation and quantum cryptography, decoherence studies, and single-molecule and impurity spectroscopy. Some new results achieved in this rapidly growing field are discussed. (reviews of topical problems)
International Nuclear Information System (INIS)
Stapp, H.P.
1988-12-01
Quantum ontologies are conceptions of the constitution of the universe that are compatible with quantum theory. The ontological orientation is contrasted to the pragmatic orientation of science, and reasons are given for considering quantum ontologies both within science, and in broader contexts. The principal quantum ontologies are described and evaluated. Invited paper at conference: Bell's Theorem, Quantum Theory, and Conceptions of the Universe, George Mason University, October 20-21, 1988. 16 refs
Permuting sparse rectangular matrices into block-diagonal form
Energy Technology Data Exchange (ETDEWEB)
Aykanat, Cevdet; Pinar, Ali; Catalyurek, Umit V.
2002-12-09
This work investigates the problem of permuting a sparse rectangular matrix into block diagonal form. Block diagonal form of a matrix grants an inherent parallelism for the solution of the deriving problem, as recently investigated in the context of mathematical programming, LU factorization and QR factorization. We propose graph and hypergraph models to represent the nonzero structure of a matrix, which reduce the permutation problem to those of graph partitioning by vertex separator and hypergraph partitioning, respectively. Besides proposing the models to represent sparse matrices and investigating related combinatorial problems, we provide a detailed survey of relevant literature to bridge the gap between different societies, investigate existing techniques for partitioning and propose new ones, and finally present a thorough empirical study of these techniques. Our experiments on a wide range of matrices, using state-of-the-art graph and hypergraph partitioning tools MeTiS and PaT oH, revealed that the proposed methods yield very effective solutions both in terms of solution quality and run time.
Interaction of weak shock waves with rectangular meshes in plate
Directory of Open Access Journals (Sweden)
O.A. Mikulich
2016-09-01
Full Text Available In mechanical engineering, building and other industries a significant part of the process includes the presence of various dynamic loads due to technological and mechanical impacts. Consideration of such load effects allows more accurate assessment of the structural elements strength or machine parts. Aim: The aim is to develop an algorithm for calculating of dynamic stress state of plates with meshes for pulse loading in the form of a weak shock wave. Materials and Methods: An integral and discrete Fourier transform were used to solve the problem. An application of Fourier transform by time allowed reducing the dynamic problem of flat deformation to the solution of a finite number of problems for the established oscillations at fixed cyclic frequency values. In the area of Fourier-images the method of boundary integral equations and the apparatus of a complex variable function theory are used to study the dynamic stress concentration. Results: Based on the developed methodology the distribution change of the dynamic circle stress over time on the edge of a rectangular hole is studied. The time sections of stress distribution fields under the influence of pulse dynamic load is constructed.
Modal density of rectangular structures in a wide frequency range
Parrinello, A.; Ghiringhelli, G. L.
2018-04-01
A novel approach to investigate the modal density of a rectangular structure in a wide frequency range is presented. First, the modal density is derived, in the whole frequency range of interest, on the basis of sound transmission through the infinite counterpart of the structure; then, it is corrected by means of the low-frequency modal behavior of the structure, taking into account actual size and boundary conditions. A statistical analysis reveals the connection between the modal density of the structure and the transmission of sound through its thickness. A transfer matrix approach is used to compute the required acoustic parameters, making it possible to deal with structures having arbitrary stratifications of different layers. A finite element method is applied on coarse grids to derive the first few eigenfrequencies required to correct the modal density. Both the transfer matrix approach and the coarse grids involved in the finite element analysis grant high efficiency. Comparison with alternative formulations demonstrates the effectiveness of the proposed methodology.
Compressibility effects in the shear layer over a rectangular cavity
Energy Technology Data Exchange (ETDEWEB)
Beresh, Steven J.; Wagner, Justin; Casper, Katya Marie
2016-10-26
we studied the influence of compressibility on the shear layer over a rectangular cavity of variable width in a free stream Mach number range of 0.6–2.5 using particle image velocimetry data in the streamwise centre plane. As the Mach number increases, the vertical component of the turbulence intensity diminishes modestly in the widest cavity, but the two narrower cavities show a more substantial drop in all three components as well as the turbulent shear stress. Furthermore, this contrasts with canonical free shear layers, which show significant reductions in only the vertical component and the turbulent shear stress due to compressibility. The vorticity thickness of the cavity shear layer grows rapidly as it initially develops, then transitions to a slower growth rate once its instability saturates. When normalized by their estimated incompressible values, the growth rates prior to saturation display the classic compressibility effect of suppression as the convective Mach number rises, in excellent agreement with comparable free shear layer data. The specific trend of the reduction in growth rate due to compressibility is modified by the cavity width.
Attenuation in Rectangular Waveguides with Finite Conductivity Walls
Directory of Open Access Journals (Sweden)
K. C. Yeong
2011-06-01
Full Text Available We present a fundamental and accurate approach to compute the attenuation of electromagnetic waves propagating in rectangular waveguides with finite conductivity walls. The wavenumbers kx and ky in the x and y directions respectively, are obtained as roots of a set of transcendental equations derived by matching the tangential component of the electric field (E and the magnetic field (H at the surface of the waveguide walls. The electrical properties of the wall material are determined by the complex permittivity ε, permeability μ, and conductivity σ. We have examined the validity of our model by carrying out measurements on the loss arising from the fundamental TE10 mode near the cutoff frequency. We also found good agreement between our results and those obtained by others including Papadopoulos’ perturbation method across a wide range of frequencies, in particular in the vicinity of cutoff. In the presence of degenerate modes however, our method gives higher losses, which we attribute to the coupling between modes as a result of dispersion.