WorldWideScience

Sample records for double phases corium

  1. Analysis of the corium phases by X-ray diffraction; Analyses des phases du corium par diffraction des rayons X

    Energy Technology Data Exchange (ETDEWEB)

    Trillon, G

    2004-07-01

    In the framework of the severe accidents R and D studies led by CEA, the better knowledge of the corium behaviour, corium coming from the melting of a nuclear reactor, are fundamental stakes in order to master this kind of accident. Among the available physical properties of the corium, the nature of the final crystalline compounds which have been made during the, cooling gives information about its solidification and its stabilisation. X-Rays Diffraction is the reference method used in order to characterize the corium coming from the different facilities of the European platform PLINIUS of CEA-Cadarache. This work presents the scientific approach that has been followed in order to obtain information both qualitative and quantitative on corium, using X-Rays Diffraction. For instance, a specific method for identifying U{sub 1-x}Zr{sub x}O{sub 2} solid solutions has been developed, and the validity of quantitative analysis of corium crystalline phases using the Rietveld method (with an internal standard), has been tested. This last method has also permitted semi-quantitative measurements of amorphous phases within corium. For these studies, analysis of prototypical corium has been conducted on samples coming from the experiences led on the different facilities of the PLINIUS platform. These analysis allowed for the first time to obtain quantitative data of the corium crystalline phases in order to validate thermodynamic databases and has been used to estimate the thereto-physical properties of the corium. New information on crystalline phases of corium has also been found, especially for the UO{sub 2}-ZrO{sub 2} pseudo binary system. (author)

  2. Final synthesis of Sarnet (Phase 1) corium activities

    International Nuclear Information System (INIS)

    Journeau, Ch.; Steinbruck, M.; Repetto, G.; Duriez, Ch.; Koundy, V.; Ma, W.M.; Burger, M.; Spindler, B.

    2009-01-01

    Within the SARNET Severe Accident Research Network of excellence, the Corium topic covers all the behaviour of corium (mixture formed by the molten materials arising from a postulated nuclear reactor severe accident) from early phase of core degradation to in or ex-vessel corium recovery with the exception of corium interaction with water, direct containment heating and fission product release. The Corium topic regroups in three work packages the critical mass of competence to improve significantly the corium behaviour knowledge. The spirit of the SARNET networking is to share the knowledge, the facilities and the simulation tools for severe accidents, so to reach a better efficiency and to rationalize the R and D effort at European level. Extensive benchmarking has been launched in most of the areas of research. These benchmarks were mainly dedicated to the recalculation of analytical experiments, integral experiments or reactor applications. Eventually, all the knowledge will be accumulated in the ASTEC severe accident simulation code through physical model improvements and extension of validation database. This report summarizes the progress that has been achieved in the frame of the networking activities for the four and half years of the FP6 project. (authors)

  3. Thermodynamic study on the in-vessel corium - Application to the corium/concrete interaction

    International Nuclear Information System (INIS)

    Quaini, Andrea

    2015-01-01

    During a severe accident in a pressurised water reactor, the nuclear fuel can interact with the Zircaloy cladding, the neutronic absorber and the surrounding metallic structure forming a partially or completely molten mixture. The molten core can then interact with the reactor steel vessel forming a mixture called in-vessel corium. In the worst case, this mixture can pierce the vessel and pour onto the concrete underneath the reactor, leading the formation of the ex-vessel corium. Furthermore, depending on the considered scenario, the corium can be formed by a liquid phase or by two liquids, one metallic the other oxide. The objective of this thesis is the investigation of the thermodynamics of the prototypic in-vessel corium U-Pu-Zr- Fe-O. The approach used during the thesis is based on the CALPHAD method, which allows to obtain a thermodynamic model for this complex system starting from phase diagram and thermodynamic data. Heat treatments performed on the O-U-Zr system allowed to measure two tie-lines in the miscibility gap in the liquid phase at 2567 K. Furthermore, the liquidus temperatures of three Zr-enriched samples have been obtained by laser heating in collaboration with ITU. With the same laser heating technique, solidus temperatures have been obtained on the UO 2 -PuO 2 -ZrO 2 system. The influence of the reducing or oxidising on the melting behaviour of this system has been studied for the first time. The results show that the oxygen stoichiometry of these oxides strongly depends on the oxygen potential and on the metal composition of the samples. The miscibility gap in the liquid phase of the U-Zr-Fe-O system has been also observed. The whole set of experimental results with the literature data allowed to develop the thermodynamic model of the U-Pu-Zr-Fe-O system. Solidification path calculations have been performed for all the investigated samples to interpret the microstructures of the solidified samples. A good accordance has been obtained between

  4. A study on corium melt pool behavior under external vessel cooling : investigation of the first phase research results in the OECD RASPLAV project

    Energy Technology Data Exchange (ETDEWEB)

    Park, Rae Joon; Kim, Sang Baik; Kim, Hee Dong; Yoo, Kun Joong

    1998-04-01

    The scope and contents of the OECD RASPLAV program are to investigate natural convection heat transfer in the corium, chemical and mechanical interaction between the corium and the reactor vessel, crust formation of the corium, and thermal behaviour of the corium by experiments and model development during external vessel cooling to prevent reactor vessel failure in severe accidents of nuclear power plant. This study includes evaluation and analysis of the RASPLAV V phase I results for three years between July 1, 1994 and June 30, 1997. These results supply technical basis for our experimental program on severe accident research. Two large-scale experiments of RASPLAV-AW-between the corium and the reactor vessel. Several small-scale experiments were conducted to analyze thermal stratification in the corium. The salt experiments were conducted to estimate the crust and the mushy region formation, and natural convection heat transfer in the corium. In the analytical studies, pre and post analysis of the RASPLAV-AW-200 experiments and evaluation of the salt test results have been performed using CONV 2 and 3D computer codes, which were developed during RASPLAV program phase I. Low density corium was separated from the high density corium during the RASPLAV-AW-200 tests and the TULPAN test, which was a new finding in the RASPLAV project phase I. From the salts test, heat flux distribution in the side wall heating case is similar to the direct internal heat generation case, and the crust formation is a little effect on heat transfer rate. The results of CONV 2 and 3 D were very well with with the experimental results. The results of RASLAV project phase I, such as furnace design and the techniques on fuel melting, are very helpful to our severe accident experimental program. (author). 57 refs., 13 tabs., 52 figs.

  5. Two-Phase Flow Effect on the Ex-Vessel Corium Debris Bed Formation in Severe Accident

    International Nuclear Information System (INIS)

    Kim, Eunho; Park, Jin Ho; Kim, Moo Hwan; Park, Hyun Sun; Ma, Weimin; Bechta, Sevostian V.

    2014-01-01

    In Korean IVR-ERVC(In-Vessel Retention of molten corium through External Reactor Vessel Cooling) strategy, if the situation degenerates into insufficient external vessel cooling, the molten core mixture can directly erupt into the flooded cavity pool from the weakest point of the vessel. Then, FCI (molten Fuel Coolant Interaction) will fragment the corium jet into small particulates settling down to make porous debris bed on the cavity basemat. To secure the containment integrity against the MCCI (Molten Core - Concrete Interaction), cooling of the heat generating porous corium debris bed is essential and it depends on the characteristics of the bed itself. For the characteristics of corium debris bed, many previous experimental studies with simulant melts reported the heap-like shape mostly. There were also following experiments to develop the correlation for the heap-like shaped debris bed. However, recent studies started to consider the effect of the decay heat and reported some noticeable results with the two-phase flow effect on the debris bed formation. The Kyushu University and JAEA group reported the experimental studies on the 'self-leveling' effect which is the flattening effect of the particulate bed by the inside gas generation. The DECOSIM simulation study of RIT (Royal Institute of Technology, Sweden) with Russian researchers showed the 'large cavity pool convection' effect, which is driven by the up-rising gas bubble flow from the pre-settled debris bed, on the particle settling trajectories and ultimately final bed shape. The objective of this study is verification of the two-phase flow effect on the ex-vessel corium debris bed formation in the severe accident. From the analysis on the test movie and resultant particle beds, the two-phase flow effect on the debris bed formation, which has been reported in the previous studies, was verified and the additional findings were also suggested. For the first, in quiescent pool the

  6. Corium quench in deep pool mixing experiments

    International Nuclear Information System (INIS)

    Spencer, B.W.; McUmber, L.; Gregorash, D.; Aeschlimann, R.; Sienicki, J.J.

    1985-01-01

    The results of two recent corium-water thermal interaction (CWTI) tests are described in which a stream of molten corium was poured into a deep pool of water in order to determine the mixing behavior, the corium-to-water heat transfer rates, and the characteristic sizes of the quenched debris. The corium composition was 60% UO 2 , 16% ZrO 2 , and 24% stainless steel by weight; its initial temperature was 3080 K, approx.160 K above the oxide phase liquidus temperature. The corium pour stream was a single-phase 2.2 cm dia liquid column which entered the water pool in film boiling at approx.4 m/s. The water subcooling was 6 and 75C in the two tests. Test results showed that with low subcooling, rapid steam generation caused the pool to boil up into a high void fraction regime. In contrast, with large subcooling no net steam generation occurred, and the pool remained relatively quiescent. Breakup of the jet appeared to occur by surface stripping. In neither test was the breakup complete during transit through the 32 cm deep water pool, and molten corium channeled to the base where it formed a melt layer. The characteristic heat transfer rates measured 3.5 MJ/s and 2.7 MJ/s during the fall stage for small and large subcooling, respectively; during the initial stage of bed quench, the surface heat fluxes measured 2.4 MW/m 2 and 3.7 MW/m 2 , respectively. A small mass of particles was formed in each test, measuring typically 0.1 to 1 mm and 1 to 5 mm dia for the large and small subcooling conditions, respectively. 9 refs., 13 figs., 1 tab

  7. Developing of two-dimensional model of the corium cooling and behavior with non-condensible gas injection

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Chang Hyun; Cho, Jae Seon; Kim, Ju Youl; Kim, Do Hyoung [Seoul National University, Seoul (Korea, Republic of)

    1997-07-01

    The purpose of this study is to understand the effect of the non-condensible gas injection into the molten corium on the heat transfer and dynamic behavior within the melt when molten core-concrete interaction occurs during the hypothetical severe accident. Corium behavior with gas injection effect is two phase fluid pattern in which droplet has dispersed gas phase in continuous liquid phase of corium. To analyze this behavior, two dimensional governing equation using the governing equation, the computer program is accomplished using the finite difference method and SIMPLER algorithm. And benchmarking calculation is performed for the KfK experiment, which consider the gas injection effect. After this pre-calculation, an analyses is performed with typical corium under severe accidents. It is concluded that the heat transfer within corium increases as the metal components of the corium and gas injection velocity increase. 88 refs., 23 tabs., 35 figs. (author)

  8. A study on corium behaviour under external vessel cooling

    Energy Technology Data Exchange (ETDEWEB)

    Park, Rae Joon; Kim, Sang Baik; Kang, Kyung Ho; Koo, Kil Mo; Kim, Hee Dong

    2000-04-01

    This study presents the results of evaluation and analysis on the second phase of the RASPLAV project for three years between July 1, 1997 and June 30, 2000. In the RASPLAV Phase II study, two large-scale experiments of RASPLAV-AW-200-3, 4 were conducted to estimate the heat flux distribution in the corium and thermal interaction between the corium and the reactor vessel. Several small-scale experiments such as TULPAN, TF, and STF were conducted to analyze thermal stratification and additive effect of core materials on corium behavior. The Salt experiments were conducted to estimate the crust and the mushy region formation, as well as natural convection heat transfer in the corium. Material properties of the corium and the salt were measured in the RASPLAV project. During the RASPLAV-AW-200-3 test, approximately 22 kg of the corium leaked from the test furnace, because Fe from the FeO, which was additive to reduce the melting temperature of fuel pellet, interacted with Tungsten protector. It is concluded from the AW-200-3 test results that the oxidized U-Zr-O is not separated. From the RASPLAV-AW-200-4 test results, the C-32 fuel with the miscibility gap and low content of carbon was not separated thermally. The carbon is known as a dominant factor in the thermal stratification of the corium from the small and medium scale test results such as TULPAN, TF, and STF. The fuel composition, test method and condition in the RASPLAV-AW-2003,4 were selected using the small and medium scale test results. It is confirmed from the Salt test that the analytical model of the CONV code predicts heat transfer with crust formation in the molten pool very well.

  9. A study on corium behaviour under external vessel cooling

    International Nuclear Information System (INIS)

    Park, Rae Joon; Kim, Sang Baik; Kang, Kyung Ho; Koo, Kil Mo; Kim, Hee Dong

    2000-04-01

    This study presents the results of evaluation and analysis on the second phase of the RASPLAV project for three years between July 1, 1997 and June 30, 2000. In the RASPLAV Phase II study, two large-scale experiments of RASPLAV-AW-200-3, 4 were conducted to estimate the heat flux distribution in the corium and thermal interaction between the corium and the reactor vessel. Several small-scale experiments such as TULPAN, TF, and STF were conducted to analyze thermal stratification and additive effect of core materials on corium behavior. The Salt experiments were conducted to estimate the crust and the mushy region formation, as well as natural convection heat transfer in the corium. Material properties of the corium and the salt were measured in the RASPLAV project. During the RASPLAV-AW-200-3 test, approximately 22 kg of the corium leaked from the test furnace, because Fe from the FeO, which was additive to reduce the melting temperature of fuel pellet, interacted with Tungsten protector. It is concluded from the AW-200-3 test results that the oxidized U-Zr-O is not separated. From the RASPLAV-AW-200-4 test results, the C-32 fuel with the miscibility gap and low content of carbon was not separated thermally. The carbon is known as a dominant factor in the thermal stratification of the corium from the small and medium scale test results such as TULPAN, TF, and STF. The fuel composition, test method and condition in the RASPLAV-AW-2003,4 were selected using the small and medium scale test results. It is confirmed from the Salt test that the analytical model of the CONV code predicts heat transfer with crust formation in the molten pool very well

  10. Oxide-metal corium-concrete interaction test in the Vulcano facility

    International Nuclear Information System (INIS)

    Journeau, Ch.; Piluso, P.; Haquet, J.F.; Saretta, S.; Boccaccio, E.; Bonnet, J.M.

    2007-01-01

    Corium is likely to melt through the vessel and interact with the reactor pit concrete. Corium is made of a UO 2 -rich oxidic part, in which most of the decay heat is dissipated, and of a metallic part, mainly molten steel. An experiment has been set up in the Vulcano facility in which oxidic and metallic mixtures are molten in separate furnaces and poured in a concrete cavity. Induction heating is provided to the pool upper part thanks to shielding coils, so that, in case of stratification, the lighter oxidic corium-concrete mixture receives most of the power. Pre-calculations with the TOLBIAC-ICB corium-concrete interaction code based on the phase segregation model have provided valuable information for the dimensioning of this test: a thick metallic layer (>10 kg or 4 cm) has been chosen in order to obtain significant cavity ablation profiles depending on the selected heat transfer and stratification models. Stratification of the two liquid phases is predicted to occur in less than 10 minutes. In September 2006, the experiment was performed in the Vulcano facility. The corium was made of about 15 kg of steel at 1700 C and 30 kg of oxides (70% UO 2 , 16 % ZrO 2 and 14% concrete load) above 2000 C. It was poured in a limestone-rich concrete. This concrete type was selected for the first test, since the ablation is isotropic except for the initial transient, during oxidic corium-concrete interaction tests. 32 kW of induction power have been provided to the pool during the 4-hour test. The destruction of in-concrete thermocouples indicates that ablation was first mainly radial then became isotropic. This is quite similar to the ablation progression observed during previous tests with oxidic corium interacting with this type of concrete. Important 'volcanic activity' has been observed at the corium pool surface, compared to the previous oxidic corium experiments at Vulcano. (authors)

  11. Oxide-metal corium-concrete interaction test in the Vulcano facility

    Energy Technology Data Exchange (ETDEWEB)

    Journeau, Ch.; Piluso, P.; Haquet, J.F.; Saretta, S.; Boccaccio, E.; Bonnet, J.M. [CEA Cadarache, Severe Accident Mastery experimental Lab. (DEN/DTN/STRI/LMA), 13 - Saint Paul lez Durance (France)

    2007-07-01

    Corium is likely to melt through the vessel and interact with the reactor pit concrete. Corium is made of a UO{sub 2}-rich oxidic part, in which most of the decay heat is dissipated, and of a metallic part, mainly molten steel. An experiment has been set up in the Vulcano facility in which oxidic and metallic mixtures are molten in separate furnaces and poured in a concrete cavity. Induction heating is provided to the pool upper part thanks to shielding coils, so that, in case of stratification, the lighter oxidic corium-concrete mixture receives most of the power. Pre-calculations with the TOLBIAC-ICB corium-concrete interaction code based on the phase segregation model have provided valuable information for the dimensioning of this test: a thick metallic layer (>10 kg or 4 cm) has been chosen in order to obtain significant cavity ablation profiles depending on the selected heat transfer and stratification models. Stratification of the two liquid phases is predicted to occur in less than 10 minutes. In September 2006, the experiment was performed in the Vulcano facility. The corium was made of about 15 kg of steel at 1700 C and 30 kg of oxides (70% UO{sub 2}, 16 % ZrO{sub 2} and 14% concrete load) above 2000 C. It was poured in a limestone-rich concrete. This concrete type was selected for the first test, since the ablation is isotropic except for the initial transient, during oxidic corium-concrete interaction tests. 32 kW of induction power have been provided to the pool during the 4-hour test. The destruction of in-concrete thermocouples indicates that ablation was first mainly radial then became isotropic. This is quite similar to the ablation progression observed during previous tests with oxidic corium interacting with this type of concrete. Important 'volcanic activity' has been observed at the corium pool surface, compared to the previous oxidic corium experiments at Vulcano. (authors)

  12. Analysis of B4C influences on thermodynamic properties and phase separation of molten corium with ionic liquid U-Zr-Fe-O-B-C-FPs database

    International Nuclear Information System (INIS)

    Fukasawa, Masanori; Tamura, Shigeyuki; Saito, Masaki

    2009-01-01

    Boron carbide influences on thermodynamic properties and phase separation of molten corium such as liquidus temperature were estimated with our U-Zr-Fe-O-B-C-FPs thermodynamic database. The liquidus temperature of the oxide for the typical corium was estimated to increase by a hundred degrees with B 4 C addition when the corium included up to 10 wt% Fe. On the other hand, the liquidus temperature was hardly changed when the corium included 50 wt% Fe. The interaction temperature between the steel and the corium with B 4 C was estimated at 1130 K. We define the interaction temperature as the lowest temperature where the solid Fe and the liquid phase of a corium are in equilibrium, at which interactions such as microstructure change of the vessel were observed in test studies. Although it is 180 K lower than that without B 4 C, the estimated temperature is still over 200 K higher than the criterion temperature where the vessel loses its structural strength, which has been used in the feasibility evaluation of the in-vessel retention. Other thermodynamic influences of B 4 C were also estimated as not having a negative impact on the in-vessel retention. (author)

  13. Corium spreading: hydrodynamics, rheology and solidification of a high-temperature oxide melt

    International Nuclear Information System (INIS)

    Journeau, Ch.

    2006-06-01

    In the hypothesis of a nuclear reactor severe accident, the core could melt and form a high- temperature (2000-3000 K) mixture called corium. In the hypothesis of vessel rupture, this corium would spread in the reactor pit and adjacent rooms as occurred in Chernobyl or in a dedicated core-catcher s in the new European Pressurized reactor, EPR. This thesis is dedicated to the experimental study of corium spreading, especially with the prototypic corium material experiments performed in the VULCANO facility at CEA Cadarache. The first step in analyzing these tests consists in interpreting the material analyses, with the help of thermodynamic modelling of corium solidification. Knowing for each temperature the phase repartition and composition, physical properties can be estimated. Spreading termination is controlled by corium rheological properties in the solidification range, which leads to studying them in detail. The hydrodynamical, rheological and solidification aspects of corium spreading are taken into account in models and computer codes which have been validated against these tests and enable the assessment of the EPR spreading core-catcher concept. (author)

  14. Corium crust strength measurements

    Energy Technology Data Exchange (ETDEWEB)

    Lomperski, S. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439-4840 (United States)], E-mail: lomperski@anl.gov; Farmer, M.T. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439-4840 (United States)], E-mail: farmer@anl.gov

    2009-11-15

    Corium strength is of interest in the context of a severe reactor accident in which molten core material melts through the reactor vessel and collects on the containment basemat. Some accident management strategies involve pouring water over the melt to solidify it and halt corium/concrete interactions. The effectiveness of this method could be influenced by the strength of the corium crust at the interface between the melt and coolant. A strong, coherent crust anchored to the containment walls could allow the yet-molten corium to fall away from the crust as it erodes the basemat, thereby thermally decoupling the melt from the coolant and sharply reducing the cooling rate. This paper presents a diverse collection of measurements of the mechanical strength of corium. The data is based on load tests of corium samples in three different contexts: (1) small blocks cut from the debris of the large-scale MACE experiments, (2) 30 cm-diameter, 75 kg ingots produced by SSWICS quench tests, and (3) high temperature crusts loaded during large-scale corium/concrete interaction (CCI) tests. In every case the corium consisted of varying proportions of UO{sub 2}, ZrO{sub 2}, and the constituents of concrete to represent a LWR melt at different stages of a molten core/concrete interaction. The collection of data was used to assess the strength and stability of an anchored, plant-scale crust. The results indicate that such a crust is likely to be too weak to support itself above the melt. It is therefore improbable that an anchored crust configuration could persist and the melt become thermally decoupled from the water layer to restrict cooling and prolong an attack of the reactor cavity concrete.

  15. Corium spreading issue; Le corium et son etalement

    Energy Technology Data Exchange (ETDEWEB)

    Cognet, G.; Brayer, C.; Cranga, M.; Journeau, C.; Laffont, G.; Splinder, B.; Veteau, J.M. [CEA Grenoble, Dept. de Thermohydraulique et de Physique (DPT), 38 (France)

    1999-07-01

    Safety is one of the major issues for nuclear power plants; its improvement is a constant R and D axis for the CEA. In the event of a highly unlikely core melt-down accident in Light Water Reactors, the Safety Authorities of several EU countries have requested the industries and utilities to consider severe accidents with reactor pressure vessel failure for the design of the next generation of nuclear power plants. The objective is to preserve the integrity of the containment as the main barrier of fission product release to the environment. This can only be achieved if the core melt mixture (called corium, essentially composed of UO{sub 2}, ZrO{sub 2}, Zr, Fe and fission products) is stabilized before it can penetrate the basement. Consequently, various core-catcher concepts are under investigation for future reactors in order to prevent basement erosion, and to stabilize and control the corium within the containment. In particular, in the EPR (European Pressurized Reactor) core-catcher concept, the corium is mixed with a special concrete, and the molten mixture spread over a large multi-layer surface cooled from the bottom; with subsequent cooling by flooding with water. Therefore, melt spreading requires intensive investigation in order to determine and quantify the key phenomena, which govern the spreading. For some years now, the Nuclear Reactor Division of the Atomic Energy Commission (CEA/DRN) has been conducting a large program to improve knowledge on corium behaviour and coolability. This program is based on experimental (with simulant and prototypic materials) and theoretical investigations, which are finally gathered into scenario and mechanistic computer codes. Within this framework, a large part is currently devoted to the study of corium spreading. After a reminder of the general objectives and a description of the DRn approach and facilities, this paper presents the most important results. (authors)

  16. Corium spreading: hydrodynamics, rheology and solidification of a high-temperature oxide melt; L'etalement du corium: hydrodynamique, rheologie et solidification d'unbain d'oxydes a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Journeau, Ch

    2006-06-15

    In the hypothesis of a nuclear reactor severe accident, the core could melt and form a high- temperature (2000-3000 K) mixture called corium. In the hypothesis of vessel rupture, this corium would spread in the reactor pit and adjacent rooms as occurred in Chernobyl or in a dedicated core-catcher s in the new European Pressurized reactor, EPR. This thesis is dedicated to the experimental study of corium spreading, especially with the prototypic corium material experiments performed in the VULCANO facility at CEA Cadarache. The first step in analyzing these tests consists in interpreting the material analyses, with the help of thermodynamic modelling of corium solidification. Knowing for each temperature the phase repartition and composition, physical properties can be estimated. Spreading termination is controlled by corium rheological properties in the solidification range, which leads to studying them in detail. The hydrodynamical, rheological and solidification aspects of corium spreading are taken into account in models and computer codes which have been validated against these tests and enable the assessment of the EPR spreading core-catcher concept. (author)

  17. Physico-Chemistry and Corium Properties for In-Vessel Retention

    International Nuclear Information System (INIS)

    Froment, K.; Seiler, J.M.; Gueneau, C.; Dauvois, V.; Barbier, F.; Bellon, M.; Tourasse, M.; Ducros, G.; Cognet, G.; Sudreau, F.

    1999-01-01

    This paper focuses on some important aspects of consequences of material behaviour and interactions on in-vessel retention capabilities. It discusses the behaviour of corium oxide mixtures at elevated temperatures (miscibility gap and density effects, separation due to density effects in the solid-liquid mixture according to the analysis of the Rasplav experiment results), and then the interaction between metallic layer and vessel wall (physical-chemical interaction of corium with the carbon steel vessel wall, migration of low melting point metallic elements in the solid vessel wall). It proposes a mode for the calculation of melt viscosity (liquid phase viscosity and viscosity in the solidification range), addresses the issue of barium release and residual power and of distribution of the residual power in an oxidic corium

  18. Development of an ex-vessel corium debris bed with two-phase natural convection in a flooded cavity

    International Nuclear Information System (INIS)

    Kim, Eunho; Lee, Mooneon; Park, Hyun Sun; Moriyama, Kiyofumi; Park, Jin Ho

    2016-01-01

    Highlights: • For ex-vessel severe accidents in LWRs with wet-cavity strategy, development of debris bed with two-phase natural convection flow due to thermal characteristics of prototypic corium particles was investigated experimentally by using simulant particles and local air bubble control system. • Based on the experimental results of this study, an analytical model was established to describe the spreading of the debris bed in terms of two-phase flow and the debris injection parameters. • This model was then used to analyze the formation of debris beds at the reactor scale, and a sensitivity analysis was carried out based on key accident parameters. - Abstract: During severe accidents of light water reactors (LWRs), the coolability of relocated corium from the reactor vessel is a significant safety issue and a threat to the integrity of containment. With a flooded cavity, a porous debris bed is expected to develop on the bottom of the pool due to breakup and fragmentation of the melt jet. As part of the coolability assessment under accident conditions, the geometrical configuration of the debris bed is important. The Debris Bed Research Apparatus for Validation of the Bubble-Induced Natural Convection Effect Issue (DAVINCI) experimental apparatus facility was constructed to investigate the formation of debris beds under the influence of a two-phase flow induced by steam generation due to the decay heat of the debris bed. Using this system, five kilograms of stainless steel simulant debris were injected from the top of the water level, while air bubbles simulating the vapor flow were injected from the bottom of the particle catcher plate. The airflow rate was determined based on the quantity of settled debris, which will form a heat source due to the decay of corium. The radial distribution of the settled debris was examined using a ‘gap–tooth’ approach. Based on the experimental results of this study, an analytical model was established to

  19. Development of an ex-vessel corium debris bed with two-phase natural convection in a flooded cavity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eunho; Lee, Mooneon; Park, Hyun Sun, E-mail: hejsunny@postech.ac.kr; Moriyama, Kiyofumi; Park, Jin Ho

    2016-03-15

    Highlights: • For ex-vessel severe accidents in LWRs with wet-cavity strategy, development of debris bed with two-phase natural convection flow due to thermal characteristics of prototypic corium particles was investigated experimentally by using simulant particles and local air bubble control system. • Based on the experimental results of this study, an analytical model was established to describe the spreading of the debris bed in terms of two-phase flow and the debris injection parameters. • This model was then used to analyze the formation of debris beds at the reactor scale, and a sensitivity analysis was carried out based on key accident parameters. - Abstract: During severe accidents of light water reactors (LWRs), the coolability of relocated corium from the reactor vessel is a significant safety issue and a threat to the integrity of containment. With a flooded cavity, a porous debris bed is expected to develop on the bottom of the pool due to breakup and fragmentation of the melt jet. As part of the coolability assessment under accident conditions, the geometrical configuration of the debris bed is important. The Debris Bed Research Apparatus for Validation of the Bubble-Induced Natural Convection Effect Issue (DAVINCI) experimental apparatus facility was constructed to investigate the formation of debris beds under the influence of a two-phase flow induced by steam generation due to the decay heat of the debris bed. Using this system, five kilograms of stainless steel simulant debris were injected from the top of the water level, while air bubbles simulating the vapor flow were injected from the bottom of the particle catcher plate. The airflow rate was determined based on the quantity of settled debris, which will form a heat source due to the decay of corium. The radial distribution of the settled debris was examined using a ‘gap–tooth’ approach. Based on the experimental results of this study, an analytical model was established to

  20. Molten corium concrete interaction: investigation of heat transfer in two-phase flow

    International Nuclear Information System (INIS)

    Amizic, Milan

    2014-01-01

    In the context of severe accident research for the second and the third generation of nuclear power plants, there are still open issues concerning some aspects of the concrete cavity ablation during the molten corium - concrete interaction (MCCI). The determination of heat transfer along the interfacial region between the molten corium pool and the ablating basemat concrete is crucial for the assessment of concrete ablation progression and eventually the basemat melt through. For the purpose of experimental investigation of thermal hydraulics inside a liquid pool agitated by gas bubbles, the CLARA project has been launched. The CLARA experiments are performed using simulant materials and they reveal the influence of superficial gas velocity, liquid viscosity and pool geometry on the heat transfer coefficient between the internally heated liquid pool and vertical and horizontal pool walls maintained at uniform temperature. The first test campaign has been conducted with the small pool configuration (50 cm * 25 cm * 25 cm). The tests have been performed with liquids covering a wide range of dynamic viscosity from approximately 1 mPa s to 10000 mPa s and the superficial gas velocity is varied up to 8 cm/s. This thesis comprises a brief description of MCCI phenomenology, literature reviews on the existing heat transfer correlations for two phase flow and the void fraction, a description of CLARA setup, experimental results and their interpretation. The experimental results are compared with existing models and some new models for the assessment of heat transfer coefficient in two-phase flow. (author) [fr

  1. Corium Oxidation at Temperatures Above 2000 K

    International Nuclear Information System (INIS)

    Hagrman, Donald L.; Rempe, Joy L.

    2001-01-01

    A mechanistic model, based on a quasi-equilibrium analysis of oxidation reactions, is proposed for predicting high-temperature corium oxidation. The analysis suggests that oxide forming on the surface of corium containing uranium, zirconium, and iron is similar to the oxides formed on zirconium and uranium as long as there is a small percentage of unoxidized zirconium or uranium in the metallic phase. This is because of the higher affinity of zirconium and uranium for oxygen. Hence, oxidation rates and heat production rates are similar to (U,Zr) compounds until nearly all the uranium and zirconium in the corium oxidizes. Oxidation rates after this point are predicted to be similar to those implied by the oxide thickness present when the forming oxide ceases to be protective, and heat generation rates should be similar to those implied by iron oxidation, i.e., ∼4% of the zirconium oxidation heating rate.The maximum atomic ratio of unoxidized iron to unoxidized liquid zirconium plus uranium for the formation of a solid protective oxide below 2800 K is estimated for a temperature, T (in Kelvin), as follows:(unoxidized iron)/(unoxidized zirconium + turanium) = (1/28){5.7/exp[-(147 061 + 12.08T log(T) - 61.03T - 0.000555T 2 /1.986T)]} 1/2 .As long as this limit is not exceeded, either zirconium or uranium metal oxidation rates and heating describe the corium oxidation rate. If this limit is exceeded, diffusion of steam to the corium surface will limit the oxidation rate, and linear time-dependent growth of a nonprotective, mostly FeO, layer will occur below the protective (Zr,U) O 2 scale. When this happens, the oxidation should be at the constant rate given by the thickness of the protective layer. Heat generation should be similar to that of iron oxidation

  2. Corium Oxidation at Temperatures Above 2000 K

    Energy Technology Data Exchange (ETDEWEB)

    Hagrman, Donald Lee; Rempe, Joy Lynn

    2001-02-01

    A mechanistic model, based on a quasi-equilibrium analysis of oxidation reactions, is proposed for predicting high-temperature corium oxidation. The analysis suggests that oxide forming on the surface of corium containing uranium, zirconium, and iron is similar to the oxides formed on zirconium and uranium as long as there is a small percentage of unoxidized zirconium or uranium in the metallic phase. This is because of the higher affinity of zirconium and uranium for oxygen. Hence, oxidation rates and heat production rates are similar to (U,Zr) compounds until nearly all the uranium and zirconium in the corium oxidizes. Oxidation rates after this point are predicted to be similar to those implied by the oxide thickness present when the forming oxide ceases to be protective, and heat generation rates should be similar to those implied by iron oxidation, i.e., ~4% of the zirconium oxidation heating rate. The maximum atomic ratio of unoxidized iron to unoxidized liquid zirconium plus uranium for the formation of a solid protective oxide below 2800 K is estimated for a temperature, T (in Kelvin), as follows: (unoxidized iron)/(unoxidized zirconium + turanium) = (1/28){5.7/exp[-(147 061 + 12.08T log(T) - 61.03T - 0.000555T2/1.986T)]}1/2. As long as this limit is not exceeded, either zirconium or uranium metal oxidation rates and heating describe the corium oxidation rate. If this limit is exceeded, diffusion of steam to the corium surface will limit the oxidation rate, and linear time-dependent growth of a nonprotective, mostly FeO, layer will occur below the protective (Zr,U) O2 scale. When this happens, the oxidation should be at the constant rate given by the thickness of the protective layer. Heat generation should be similar to that of iron oxidation.

  3. Study of corium radial spreading between fuel rods in a PWR core

    International Nuclear Information System (INIS)

    Roche, S.; Gatt, J.M.

    1996-01-01

    In the framework of severe accident studies for PWR like Three Mile Island Unit 2 (TMI-2), the reactor core essentially constituted of fuel rods begins to heat and then to melt. During the early degradation phase, a melt (essentially UO2 and ZrO2) that constitutes the corium flows first along the rods, and after a blockage formation, may radially propagate towards the core periphery. A simplified model has been elaborated to study the corium freezing phenomena during its crossflow between the fuel rods. The corium spreads on an horizontal support made, of either a corium crust, or a grid assembly. The model solves numerically the interface energy balance equation at the solid-liquid corium interface and the monodimensional heat balance equation in transient process with convective terms and heat source (residual power). ''Zukauskas'' correlations are used to calculate heat transfer coefficients. The model can be integrated in severe accident codes like ICARE II (IPSN) describing the in-vessel degradation scenarios. (author). 5 refs, 10 figs

  4. A study on the modeling of molten corium-concrete interaction

    International Nuclear Information System (INIS)

    Park, Soo Yong

    1994-02-01

    The phenomenon known as molten corium concrete interaction (MCCI) has been recognized as important aspects of severe reactor accidents. The potential hazard of a MCCI is the threat to the integrity of the containment building due to the possibility of a basemat melt through, containment overpressurization by noncondensible gases, or oxidation of combustible gases. Over the past several years, a large experimental and analytical effort has been under taken in corium-concrete interaction phenomena by several organization. The purpose of this paper is to investigate the previous analytical results and computer programs, and finally to establish a new stand alone model which can predict the corium-concrete interaction. A model to predict the behavior of molten corium-concrete interaction in the reactor cavity during vessel ruptured accidents is established. Gas film model, gas bubble model, slag model and periodic contact model are employed as a major heat transfer model between corium and concrete. Solidified debris crust is considered at the boundary of molten corium. Upon the experimental observations, no layer stratification is assumed due to the strong dispersion of the metallic melt in the oxidic phase. With the assumption of temperature profile within the corium pool and crust, the temperature distribution of concrete is found by explicit solution of heat conduction equation. The sideward heat transfer rate can be obtained by considering multiplication factor to the downward heat transfer rate. The multiplication factor is treated as a user input because of its large uncertainty. Comparisons are made with two large scale experiments, SURC-2 and BETA V3.3. There is a reasonable agreement in the corium temperature, erosion depth and gas generation between the experimental data and the predicted results with periodic contact model given the uncertainties in the input data or the measurement. The gas bubble model has the highest heat transfer coefficient, and the

  5. Corium phase equilibria based on MASCA, METCOR and CORPHAD results

    Energy Technology Data Exchange (ETDEWEB)

    Bechta, S.V.; Granovsky, V.S.; Khabensky, V.B. [Alexandrov Research Institute of Technologies (NITI), Sosnovy Bor (Russian Federation); Gusarov, V.V.; Almiashev, V.I.; Mezentseva, L.P. [Grebenshikov Institute of Silicate Chemistry, Russian Academy of Sciences (ISCh RAS), St. Petersburg (Russian Federation); Krushinov, E.V.; Kotova, S.Yu.; Kosarevsky, R.A. [Alexandrov Research Institute of Technologies (NITI), Sosnovy Bor (Russian Federation); Barrachin, M. [Institut de Radioprotection et Surete Nucleaire IRSN/DPAM, St Paul lez Durance (France); Bottomley, D. [EUROPAISCHE KOMMISSION, Joint Research Centre Institut fuer Transurane (ITU), Karlsruhe (Germany); Fichot, F. [Institut de Radioprotection et Surete Nucleaire IRSN/DPAM, St Paul lez Durance (France); Fischer, M. [AREVA NP GmbH, Erlangen (Germany)], E-mail: Manfred.Fischer@areva.com

    2008-10-15

    Experimental data on component partitioning between suboxidized corium melt and steel in the in-vessel melt retention (IVR) conditions are compared. The data are produced within the OECD MASCA program and the ISTC CORPHAD project under close-to-isothermal conditions and in the ISTC METCOR project under thermal gradient conditions. Chemical equilibrium in the U-Zr-Fe(Cr,Ni,...)-O system is reached in all experiments. In MASCA tests the molten pool formed under inert atmosphere has two immiscible liquids, oxygen-enriched (oxidic) and oxygen-depleted (metallic), resulting of the miscibility gap of the mentioned system. Sub-system data of the U-Zr-Fe(Cr,Ni,...)-O phase diagram investigated within the ISTC CORPHAD project are interpreted in relation with the MASCA results. In METCOR tests the equilibrium is established between oxidic liquid and mushy metallic part of the system. Results of comparison are discussed and the implications for IVR noted.

  6. Comparison of different surface quantitative analysis methods. Application to corium

    International Nuclear Information System (INIS)

    Guilbaud, N.; Blin, D.; Perodeaud, Ph.; Dugne, O.; Gueneau, Ch.

    2000-01-01

    In case of a severe hypothetical accident in a pressurized water reactor, the reactor assembly melts partially or completely. The material formed, called corium, flows out and spreads at the bottom of the reactor. To limit and control the consequences of such an accident, the specifications of the O-U-Zr basic system must be known accurately. To achieve this goal, the corium mix was melted by electron bombardment at very high temperature (3000 K) followed by quenching of the ingot in the Isabel 1 evaporator. Metallographic analyses were then required to validate the thermodynamic databases set by the Thermo-Calc software. The study consists in defining an overall surface quantitative analysis method that is fast and reliable, in order to determine the overall corium composition. The analyzed ingot originated in a [U+Fe+Y+UO 2 +ZrO 2 ) mix, with a total mass of 2253.7 grams. Several successive heating with average power were performed before a very brief plateau at very high temperature, so that the ingot was formed progressively and without any evaporation liable to modify its initial composition. The central zone of the ingot was then analyzed by qualitative and quantitative global surface methods, to yield the volume composition of the analyzed zone. Corium sample analysis happens to be very complex because of the variety and number of elements present, and also because of the presence of oxygen in a heavy element like the uranium based matrix. Three different global quantitative surface analysis methods were used: global EDS analysis (Energy Dispersive Spectrometry), with SEM, global WDS analysis (Wavelength Dispersive Spectrometry) with EPMA, and coupling of image analysis with EDS or WDS point spectroscopic analyses. The difficulties encountered during the study arose from sample preparation (corium is very sensitive to oxidation), and the choice of acquisition parameters of the images and analyses. The corium sample studied consisted of two zones displaying

  7. Ex-vessel corium spreading: results from the VULCANO spreading tests

    Energy Technology Data Exchange (ETDEWEB)

    Journeau, Christophe E-mail: christophe.journeau@cea.fr; Boccaccio, Eric E-mail: eric.boccaccio@cea.fr; Brayer, Claude; Cognet, Gerard E-mail: gerard.cognet@cea.fr; Haquet, Jean-Francois E-mail: haquet@eloise.cad.cea.fr; Jegou, Claude E-mail: claude.jegou@cea.fr; Piluso, Pascal E-mail: pascal.piluso@cea.fr; Monerris, Jose E-mail: jose.monerris@cea.fr

    2003-07-01

    function of the nature of the atmosphere, of the phases (FeO{sub x}, UO{sub y}, ...) and of the substrate. These tests with prototypic material have improved our knowledge on corium and contributed to validate spreading models and codes which are used for the assessment of corium mastering concepts.

  8. Modelling of multicomponent diffusion in a two-phase oxide-metal corium pool by a diffuse interface method

    International Nuclear Information System (INIS)

    Cardon, Clement

    2016-01-01

    This Ph.D. topic is focused on the modelling of stratification kinetics for an oxide-metal corium pool (U-O-Zr-steel system) in terms of multicomponent and multiphase diffusion. This work is part of a larger research effort for the development of a detailed corium pool modelling based on a CFD approach for thermal hydraulics. The overall goal is to improve the understanding of the involved phenomena and obtain closure laws for integral macroscopic models. The phase-field method coupled with an energy functional using the CALPHAD method appears to be relevant for this purpose. In a first part, we have developed a diffuse interface model in order to describe the diffusion process in the U-O system. This model has been coupled with a CALPHAD thermodynamic database and its parameterization has been developed with, in particular, an up-scaling procedure related to the interface thickness. Then, within the framework of a modelling for the U-O-Zr ternary system, we have proposed a generalization of the diffuse interface model through an assumption of local equilibrium for redox mechanisms. A particular attention was paid to the model analysis by 1D numerical simulations with a special focus on the steady state composition profiles. Finally we have applied this model to the U-O-Zr-Fe system. For that purpose, we have considered a configuration close to small-scale experimental tests of oxide-metal corium pool stratification. (author) [fr

  9. Fuel-coolant interaction visualization test for in-vessel corium retention external reactor vessel cooling (IVR-ERVC) condition

    Energy Technology Data Exchange (ETDEWEB)

    Na, Young Su; Hong, Seong Ho; Song, Jin Ho; Hong, Seong Wan [Severe Accident and PHWR Safety Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-12-15

    A visualization test of the fuel-coolant interaction in the Test for Real cOrium Interaction with water (TROI) test facility was carried out. To experimentally simulate the In-Vessel corium Retention (IVR)- External Reactor Vessel Cooling (ERVC) conditions, prototypic corium was released directly into the coolant water without a free fall in a gas phase before making contact with the coolant. Corium (34.39 kg) consisting of uranium oxide and zirconium oxide with a weight ratio of 8:2 was superheated, and 22.54 kg of the 34.39 kg corium was passed through water contained in a transparent interaction vessel. An image of the corium jet behavior in the coolant was taken by a high-speed camera every millisecond. Thermocouple junctions installed in the vertical direction of the coolant were cut sequentially by the falling corium jet. It was clearly observed that the visualization image of the corium jet taken during the fuel-coolant interaction corresponded with the temperature variations in the direction of the falling melt. The corium penetrated through the coolant, and the jet leading edge velocity was 2.0 m/s. Debris smaller than 1 mm was 15% of the total weight of the debris collected after a fuel-coolant interaction test, and the mass median diameter was 2.9 mm.

  10. Experimental studies of oxidic molten corium-vessel steel interaction

    International Nuclear Information System (INIS)

    Bechta, S.V.; Khabensky, V.B.; Vitol, S.A.; Krushinov, E.V.; Lopukh, D.B.; Petrov, Yu.B.; Petchenkov, A.Yu.; Kulagin, I.V.; Granovsky, V.S.; Kovtunova, S.V.; Martinov, V.V.; Gusarov, V.V.

    2001-01-01

    The experimental results of molten corium-steel specimen interaction with molten corium on the 'Rasplav-2' test facility are presented. In the experiments, cooled vessel steel specimens positioned on the molten pool bottom and uncooled ones lowered into the molten pool were tested. Interaction processes were studied for different corium compositions, melt superheating and in alternative (inert and air) overlying atmosphere. Hypotheses were put forward explaining the observed phenomena and interaction mechanisms. The studies presented in the paper were aimed at the detection of different corium-steel interaction mechanisms. Therefore certain identified phenomena are more typical of the ex-vessel localization conditions than of the in-vessel corium retention. Primarily, this can be referred to the phenomena of low-temperature molten corium-vessel steel interaction in oxidizing atmosphere

  11. Experimental studies of oxidic molten corium-vessel steel interaction

    Energy Technology Data Exchange (ETDEWEB)

    Bechta, S.V. E-mail: niti-npc@sbor.net; Khabensky, V.B.; Vitol, S.A.; Krushinov, E.V.; Lopukh, D.B.; Petrov, Yu.B.; Petchenkov, A.Yu.; Kulagin, I.V.; Granovsky, V.S.; Kovtunova, S.V.; Martinov, V.V.; Gusarov, V.V

    2001-12-01

    The experimental results of molten corium-steel specimen interaction with molten corium on the 'Rasplav-2' test facility are presented. In the experiments, cooled vessel steel specimens positioned on the molten pool bottom and uncooled ones lowered into the molten pool were tested. Interaction processes were studied for different corium compositions, melt superheating and in alternative (inert and air) overlying atmosphere. Hypotheses were put forward explaining the observed phenomena and interaction mechanisms. The studies presented in the paper were aimed at the detection of different corium-steel interaction mechanisms. Therefore certain identified phenomena are more typical of the ex-vessel localization conditions than of the in-vessel corium retention. Primarily, this can be referred to the phenomena of low-temperature molten corium-vessel steel interaction in oxidizing atmosphere.

  12. Steam explosion triggering phenomena: stainless steel and corium-E simulants studied with a floodable arc melting apparatus

    International Nuclear Information System (INIS)

    Nelson, L.S.; Buxton, L.D.

    1978-05-01

    Laboratory-scale experiments on the thermal interaction of light water reactor core materials with water have been performed. Samples (10--35 g) of Type 304 stainless steel and Corium-E simulants were each flooded with approximately 1.5 litres of water to determine whether steam explosions would occur naturally. Many of the experiments also employed artificially induced pressure transients in an attempt to initiate steam explosions. Vigorous interactions were not observed when the triggering pulse was not applied, and for stainless steel the triggering pulse initiated only coarse fragmentation. Two-stage, pressure-producing interactions were triggered for an ''oxidic'' Corium-E simulant. An impulse-initiated gas release theory has been simulated to explain the initial sample fragmentation. Although the delayed second stage of the event is not fully understood, it does not appear to be readily explained with classical vapor explosion theory. Rather, some form of metastability of the melt seems to be involved

  13. Transient stratification modelling of a corium pool in a LWR vessel lower head

    International Nuclear Information System (INIS)

    Le Tellier, R.; Saas, L.; Bajard, S.

    2015-01-01

    Highlights: • A kinetic stratification model is proposed for the simulation of the in-vessel corium behaviour during a LWR severe accident. • The different associated “modes” of vessel failure by thermal focusing effect are highlighted and discussed. • A sensitivity study for a 1650 MWe GenIII PWR is presented with this model in order to illustrate the associated R&D issues. - Abstract: In the context of light water reactor severe accidents analysis, this paper is focused on one key parameter of in-vessel corium phenomenology: the immiscible phases stratification and its impact on the heat flux distribution at the corium pool lateral boundary with the so-called focusing effect related to a “thin” top metal phase and the potential vessel failure at that point. More particularly, based on the limited knowledge of the stratification transient phenomenon derived from the MASCA-RCW experiment, a basic model is proposed that can be used for corium in lower head sensitivity analyses. It has been implemented in the PROCOR platform developed at CEA Cadarache. A short parametric study on a simple hypothetical transient is presented in order to highlight the different focusing effect “modes” that can be encountered based on this in-vessel corium pool model. An early mode may occur during the formation of the top metal layer while two other modes may appear later during the thinning of this top metal layer because of thermochemically induced mass transfers. Some associated relevant parameters (model or scenario-dependent) and modelling issues are mentioned and illustrated with some results of a Monte-Carlo based sensitivity calculation on the transient behaviour of the corium in the lower head of a 1650 MWe GenIII PWR. Within the limiting modelling hypotheses, the thermal modelling of the steel layer for small (centimetre) heights and the mass diffusivity (limited in this case to the uranium diffusivity in the oxidic layer) are main sensitive parameters

  14. Study of the rheological behaviour of corium/concrete mixtures; Etude du comportement rheologique de melanges issus de l'interaction corium/beton

    Energy Technology Data Exchange (ETDEWEB)

    Ramacciotti, M

    1999-09-24

    In the hypothetical event of a severe accident in a Light Water Reactor, scenarios in which the reactor pressure vessel (RPV) fails and the core melt mixture (called corium) relocates into the reactor cavity, cannot be excluded. The viscosity (in fact, corium rheological behaviour) plays a major role in many phenomena such as core melt down, discharge from reactor pressure vessel, interaction with structural materials (concrete,...) and spreading in a core-catcher. For these reasons, it is important to be able to predict the rheological behaviour of corium melts of different compositions (essentially based on UO{sub 2}, ZrO{sub 2}, Fe{sub x}O{sub y} and Fe for in-vessel scenarios, plus SiO{sub 2} and CaO for ex-vessel scenarios) at temperatures above solidus temperature. In the case of corium-concrete mixtures, the increase of viscosity depends not only on the increase of particles in the melts but also on the increase of the residual liquid phase viscosity (due to the increase in silica contents). The Urban correlation is used to calculate the viscosity of the carrying liquid with silica. This model was tested and gave good agreements between measured and estimated viscosities of various basalts among which one contained 18 wt% of UO{sub 2}. Then, in the solidification range, the analysis of published data showed that the viscosity cannot be described by a suspension viscosity model of non-interactive spherical particles; consequently we proposed an Arrhenius type law with a multiplying factor such as {eta}{sub r} = exp(2.5 C{phi}) and the C factor value varies between 4 and 8. This factor is more important in the case of low shear rates and low cooling rates. The analysis of the samples structure after quenching shows a dependence of this factor on the particle morphology. Finally, for a value of 6.1 of the C factor, we obtained the best agreement with experimental data for a corium spreading test at 2100 K on a horizontal surface. (author)

  15. The VULCANO VE-U7 Corium spreading benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Journeau, Christophe; Haquet, Jean-Francois [CEA Cadarache, Severe Accident Mastering experimental Laboratory (DEN/DTN/STRI/LMA), 13108 St Paul lez Durance (France); Spindler, Bertrand [CEA Grenoble, Physicochemistry and Multiphasic Thermalhydraulics Laboratory (DEN/DTN/SE2T/LPTM), 17 rue des Martyrs, F-38054 Grenoble CEDEX 9 (France); Spengler, Claus [Gesellschaft fuer Reaktorsicherheit mbH, Department for Thermohydraulics/Process Engineering, Schwertnergasse 1, D-50667 Koeln (Germany); Foit, Jerzy [Forschungszentrum Karlsruhe GmbH, Institut fuer Kern nd Energietechnik (IKET), P.O. Box 3640, D-76021 Karlsruhe (Germany)

    2006-07-01

    In a hypothetical nuclear reactor severe accident, corium spreading is one possible mitigation measure that has been selected for the EPR design. A post-test benchmark exercise has been organized on the VULCANO VE-U7 corium spreading experiment. In this test, a prototypic corium mixture representative of what could be expected at the opening of EPR reactor-pit gate has been spread on siliceous concrete and on a reference channel in inert refractory ceramic. The spreading progression was not much affected by the presence of concrete and sparging gases. The procedure used to estimate the corium physical properties from its composition and temperature provided a satisfactory data set. The CORFLOW, LAVA and THEMA codes provide satisfactory calculations of the spreading front evolution and of its final length. LAVA and THEMA estimations of the substrate temperatures, which are the initial conditions for longer term Molten Core Concrete Interaction or Corium Ceramic Interaction computations, are also close to the measured data, within the experimental uncertainties. (authors)

  16. The VULCANO VE-U7 Corium spreading benchmark

    International Nuclear Information System (INIS)

    Journeau, Christophe; Haquet, Jean-Francois; Spindler, Bertrand; Spengler, Claus; Foit, Jerzy

    2006-01-01

    In a hypothetical nuclear reactor severe accident, corium spreading is one possible mitigation measure that has been selected for the EPR design. A post-test benchmark exercise has been organized on the VULCANO VE-U7 corium spreading experiment. In this test, a prototypic corium mixture representative of what could be expected at the opening of EPR reactor-pit gate has been spread on siliceous concrete and on a reference channel in inert refractory ceramic. The spreading progression was not much affected by the presence of concrete and sparging gases. The procedure used to estimate the corium physical properties from its composition and temperature provided a satisfactory data set. The CORFLOW, LAVA and THEMA codes provide satisfactory calculations of the spreading front evolution and of its final length. LAVA and THEMA estimations of the substrate temperatures, which are the initial conditions for longer term Molten Core Concrete Interaction or Corium Ceramic Interaction computations, are also close to the measured data, within the experimental uncertainties. (authors)

  17. Draft paper: On the analysis of diffusive mass transfer in ex-vessel corium pools

    International Nuclear Information System (INIS)

    Frolov, Kyrill N.

    2003-01-01

    In case of a severe accident at a nuclear power plant (NPP) involving the reactor pressure vessel (RPV) melt-through, confident solidification of ex-vessel corium is the imperative condition of its safe retention within the plant containment. The rate-determining process for solidification of ex-vessel coriums in the long-term is the chemical diffusion in the liquid phase at the solid-liquid interface. The process of chemical diffusion in the diffusive boundary layer can evolve taking on different rates, depending on the boundary conditions and the melt composition. Nonetheless, the chemical diffusion rates would entwine the self-diffusivities of corium constituents, which in turn would depend on the melt chemical composition. This work looks at some aspects of analytical and experimental determination of self-diffusivities of corium constituents. Following the corium-concrete interaction, an ex-vessel corium melt would contain several chemical components, including a fraction of silica. Accordingly, ex-vessel corium is considered in this paper as a silicate melts. In the realm of the geological and glass sciences, where silicate melts are most often discussed, the diffusive transport and viscous flow are conceived interrelated from a phenomenological point of view. Though the viscous and diffusive mass transfer mechanisms are not identical for different species even in the same melt, a combination of semi-empirical models can still provide an estimation of the diffusion thresholds in ex-vessel corium melts. Thus, the first part of this paper presents an analysis of the applicability of such empirical models for simple silicate melts based on the published data. This is followed by an estimation of diffusivities in melt compositions typical of ex-vessel coriums. Alternatively, although the general trend towards a coupled description of the viscous flow and diffusion for ex-vessel corium melts seems promising, it is limited to published data on self-diffusivities of

  18. Study of the rheological behaviour of corium/concrete mixtures

    International Nuclear Information System (INIS)

    Ramacciotti, M.

    1999-01-01

    In the hypothetical event of a severe accident in a Light Water Reactor, scenarios in which the reactor pressure vessel (RPV) fails and the core melt mixture (called corium) relocates into the reactor cavity, cannot be excluded. The viscosity (in fact, corium rheological behaviour) plays a major role in many phenomena such as core melt down, discharge from reactor pressure vessel, interaction with structural materials (concrete,...) and spreading in a core-catcher. For these reasons, it is important to be able to predict the rheological behaviour of corium melts of different compositions (essentially based on UO 2 , ZrO 2 , Fe x O y and Fe for in-vessel scenarios, plus SiO 2 and CaO for ex-vessel scenarios) at temperatures above solidus temperature. In the case of corium-concrete mixtures, the increase of viscosity depends not only on the increase of particles in the melts but also on the increase of the residual liquid phase viscosity (due to the increase in silica contents). The Urban correlation is used to calculate the viscosity of the carrying liquid with silica. This model was tested and gave good agreements between measured and estimated viscosities of various basalts among which one contained 18 wt% of UO 2 . Then, in the solidification range, the analysis of published data showed that the viscosity cannot be described by a suspension viscosity model of non-interactive spherical particles; consequently we proposed an Arrhenius type law with a multiplying factor such as η r = exp(2.5 Cφ) and the C factor value varies between 4 and 8. This factor is more important in the case of low shear rates and low cooling rates. The analysis of the samples structure after quenching shows a dependence of this factor on the particle morphology. Finally, for a value of 6.1 of the C factor, we obtained the best agreement with experimental data for a corium spreading test at 2100 K on a horizontal surface. (author)

  19. Étude thermodynamique du corium en cuve - Application à l'interaction corium/béton

    OpenAIRE

    Quaini , Andrea

    2015-01-01

    During a severe accident in a pressurised water reactor, the nuclear fuel can interact with the Zircaloy cladding, the neutronic absorber and the surrounding metallic structure forming a partially or completely molten mixture. The molten core can then interact with the reactor steel vessel forming a mixture called in-vessel corium. In the worst case, this mixture can pierce the vessel and pour onto the concrete underneath the reactor, leading the formation of the ex-vessel corium. Furthermore...

  20. Thermophysical properties of liquid UO2, ZrO2 and corium by molecular dynamics and predictive models

    International Nuclear Information System (INIS)

    Kim, Woong Kee; Shim, Ji Hoon; Kaviany Massoud

    2016-01-01

    The analysis of such accidents (fate of the melt), requires accurate corium thermophysical properties data up to 5000 K. In addition, the initial corium melt superheat melt, determined from such properties, are key in predicting the fuel-coolant interactions (FCIs) and convection and retention of corium in accident scenarios, e.g., core-melt down corium discharge from reactor pressure vessels and spreading in external core-catcher. Due to the high temperatures, data on molten corium and its constituents are limited, so there are much data scatters and mostly extrapolations (even from solid state) have been used. Here we predict the thermophysical properties of molten UO 2 and ZrO 2 using classical molecular dynamics (MD) simulations (properties of corium are predicted using the mixture theories and UO 2 and ZrO 2 properties). The thermophysical properties (density, compressibility, heat capacity, viscosity and surface tension) of liquid UO 2 and ZrO 2 are predicted using classical molecular dynamics simulations, up to 5000 K. For atomic interactions, the CRG and the Teter potential models are found most appropriate. The liquid behavior is verified with the random motion of the constituent atoms and the pair-distribution functions, starting with the solid phase and raising the temperature to realize liquid phase. The viscosity and thermal conductivity are calculated with the Green-Kubo autocorrelation decay formulae and compared with the predictive models of Andrade and Bridgman. For liquid UO 2 , the CRG model gives satisfactory MD predictions. For ZrO 2 , the density is reliably predicted with the CRG potential model, while the compressibility and viscosity are more accurately predicted by the Teter model

  1. Oxidation effects during corium melt in-vessel retention

    Energy Technology Data Exchange (ETDEWEB)

    Almyashev, V.I.; Granovsky, V.S.; Khabensky, V.B.; Krushinov, E.V.; Sulatsky, A.A.; Vitol, S.A. [Alexandrov Scientific-Research Institute of Technology (NITI), Sosnovy Bor (Russian Federation); Gusarov, V.V. [Ioffe Institute, St. Petersburg (Russian Federation); Bechta, S. [Royal Institute of Technology (KHT), Stockholm (Sweden); Barrachin, M.; Fichot, F. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), St Paul lez Durance (France); Bottomley, P.D., E-mail: paul.bottomley@ec.europa.eu [Joint Research Centre, Institut für Transurane (ITU), Karlsruhe (Germany); Fischer, M. [AREVA GmbH, Erlangen (Germany); Piluso, P. [CEA Cadarache-DEN/DTN/STRI (France)

    2016-08-15

    Highlights: • Corium–steel interaction tests were re-examined particularly for transient processes. • Oxidation of corium melt was sensitive to oxidant supply and surface characteristics. • Consequences for vessel steel corrosion rates in severe accidents were discussed. - Abstract: In the in-vessel corium retention studies conducted on the Rasplav-3 test facility within the ISTC METCOR-P project and OECD MASCA program, experiments were made to investigate transient processes taking place during the oxidation of prototypic molten corium. Qualitative and quantitative data have been produced on the sensitivity of melt oxidation rate to the type of oxidant, melt composition, molten pool surface characteristics. The oxidation rate is a governing factor for additional heat generation and hydrogen release; also for the time of secondary inversion of oxidic and metallic layers of corium molten pool.

  2. Interaction between molten corium UO2+x-ZrO2-FeOy and VVER vessel steel

    International Nuclear Information System (INIS)

    Bechta, S. V.; Granovsky, V. S.; Khabensky, V. B.; Krushinov, E. V.; Vitol, S. A.; Sulatsky, A. A.; Gusarov, V. V.; Almiashev, V. I.; Lopukh, D. B.; Bottomley, D.; Fischer, M.; Piluso, P.; Miassoedov, A.; Tromm, W.; Altstadt, E.; Fichot, F.; Kymalainen, O.

    2010-01-01

    In case of in-vessel corium retention during a severe accident in a light water reactor, weakening of the vessel wall and deterioration of the vessel steel properties can be caused both by the melting of the steel and by its physicochemical interaction with corium. The interaction behavior has been studied in medium-scale experiments with prototypic corium. The experiments yielded data for the steel corrosion rate during interaction with UO 2+x -ZrO 2 -FeO y melt in air and steam at different steel surface temperatures and heat fluxes from the corium to the steel. It has been observed that the corrosion rates in air and steam atmosphere are almost the same. Further, if the temperature at the interface increases beyond a certain level, corrosion intensifies. This is explained by the formation of liquid phases in the interaction Zone. The available experimental data have been used to develop a correlation for the corrosion rate as a function of temperature and heat flux. (authors)

  3. Investigation on influence of crust formation on VULCANO VE-U7 corium spreading with MPS method

    International Nuclear Information System (INIS)

    Yasumura, Yusan; Yamaji, Akifumi; Furuya, Masahiro; Ohishi, Yuji; Duan, Guangtao

    2017-01-01

    Highlights: • The new crust formation model was developed for the MPS spreading analysis code. • The VULCANO VE-U7 corium spreading experiment was analyzed by the developed code. • The termination of the spreading was governed by the crust formation at the leading edge. - Abstract: In a severe accident of a light water reactor, the corium spreading behavior on a containment floor is important as it may threaten the containment vessel integrity. The Moving Particle Semi-implicit (MPS) method is one of the Lagrangian particle methods for simulation of incompressible flow. In this study, the MPS method is further developed to simulate corium spreading involving not only flow, but also heat transfer, phase change and thermo-physical property change of corium. A new crust formation model was developed, in which, immobilization of crust was modeled by stopping the particle movement when its solid fraction is above the threshold and is in contact with the substrate or any other immobilized particles. The VULCANO VE-U7 corium spreading experiment was analyzed by the developed MPS spreading analysis code to investigate influences of different particle sizes, the corium viscosity changes, and the “immobilization solid fraction” of the crust formation model on the spreading and its termination. Viscosity change of the corium was influential to the overall progression of the spreading leading edge, whereas termination of the spreading was primarily determined by the immobilization of the leading edge (i.e., crust formation). The progression of the leading edge and termination of the spreading were well predicted, but the simulation overestimated the substrate temperature. Further investigations may be necessary for the future study to see if thermal resistance at the corium-substrate boundary has significant influence on the overall spreading behavior and its termination.

  4. Study of evaluation methods for in-vessel corium retention through external vessel cooling and safety of reactor cavity

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae Hong; Huh, Hoon; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)] (and others)

    1999-03-15

    Cooling methodologies for the molten corium resulted from the severe accident of the Nuclear Power Plant is suggested as one of most important items for the safety of the NPP. In this regard, considerable experimental and analytical works have been devoted. In the second phase of this project, current status of research about corium-concrete interaction and corium coolability which can occur on the reactor cavity has been surveyed, and the researches about lower head failure mechanism have also been surveyed. And, severe accident analysis for Ulchin 3 and 4 has been conducted, and collapse load of lower head has been analyzed through structural analysis considering various heat transfer conditions. The results of accident analysis can be used as a basic input for structural analysis which will be conducted in 3rd phase of this study.

  5. Internal corium catcher of a nuclear reactor

    International Nuclear Information System (INIS)

    Anatolii S Vlasov; Vladimir N Mineev; Aleksandr S Sidorov; Yuri A Zeigarnik

    2005-01-01

    Full text of publication follows: A corium catcher is one of the main devices of a nuclear reactor that provides corium melt and fission products retention within a containment during severe accidents. Several studies and design developments have shown that corium retention within a reactor vessel can be attained with a moderate capacity of the latter (up to 600 - 650 MW el.). With a higher reactor capacity external corium catchers are applied both at Russian (VVER-1000) and European (EPR) reactors. In the external catcher of a VVER-1000 reactor, most technological problems are solved due to using sacrificial material. They are as follows: (a) endo-thermal interaction of corium and sacrificial material reduces a level of the temperatures in the final melt pool; (b) solution in the melt of a great amount of the sacrificial material reduces the specific heat release density and the heat flux density at the boundaries of a melt; (c) due to changing of the oxide-component density an inverse stratification of the metallic and oxide components of the corium takes place, thus excluding heat-flux focusing in the zone of the metallic layer and making it possible to supply water on the free surface of the corium without a danger of incipience of the vapor explosion; (d) final oxidation of zirconium occurs without hydrogen generation. The above principles have been realized in the external catcher of the VVER- 1000 reactor at Tyanvan NPS that is presently under construction in China. Successfully solving of the problems concerning to the external catcher makes it possible to return on the new conceptual and technological basis to the idea of retention of the corium melt inside the vessel of a nuclear reactor of large capacity, that is, to provide the reactor vessel to play a role of an internal catcher. For this purpose, a reactor vessel is elongated by approximately two meters. In the lower part of the vessel, on elliptical bottom, pieces of sacrificial material are arranged

  6. Results of recent KROTOS FCI tests. Alumina vs. corium melts

    Energy Technology Data Exchange (ETDEWEB)

    Huhtiniemi, I.; Magallon, D.; Hohmann, H. [Commission of the European Communities, Ispra (Italy). Joint Research Center

    1998-01-01

    Recent results from KROTOS fuel-coolant interaction experiments are discussed. Five tests with alumina were performed under highly subcooled conditions, all of these tests resulted in spontaneous steam explosions. Additionally, four tests were performed at low subcooling to confirm, on one hand, the suppression of spontaneous steam explosions under such conditions and, on the other hand, that such a system is still triggerable using an external initiator. The other test parameters in these alumina tests included the melt superheat and the initial pressure. All the tests in the investigated superheat range (150 K - 750 K) produced a steam explosion and no evidence of the explosion suppression by the elevated initial pressure (in the limited range of 0.1 - 0.375 MPa) was observed in the alumina tests. The corium test series include a test with 3 kg of melt under both subcooled and near saturated conditions at ambient pressure. Two additional tests were performed with subcooled water; one test was performed at an elevated pressure of 0.2 MPa with 2.4 kg of melt and another test with 5.1 kg of melt at ambient pressure. None of these tests with corium produced a propagating energetic steam explosion. However, propagating low energy (about twice the energy of the trigger pulse) events were observed. All corium tests produced significantly higher water level swells during the mixing phase than the corresponding alumina tests. Present experimental evidence suggests that the water depletion in the mixing zone suppresses energetic steam explosions with corium melts at ambient pressure and in the present pour geometry. Processes that could produce such a difference in void generation are discussed. (author)

  7. Physics of coolability of top flooded molten corium

    International Nuclear Information System (INIS)

    Kulkarni, P.P.; Singh, R.K.; Nayak, A.K.; Vijayan, P.K.; Saha, D.; Sinha, R.K.

    2011-01-01

    During a postulated severe accident in a nuclear reactor in case of ex-vessel scenario the molten corium can be relocated in the containment cavity forming a melt pool. In order to arrest further progression of severe accident, complete quenching of the molten corium pool is necessary. Most common way to deal with ex-vessel scenario is to flood the melt pool with large quantity of water. However, the mechanism of coolability is much more complex involving multi-component, multiphase heat, mass and momentum transfer. In this paper, a mechanistic model has been presented for the corium coolability under top flooding conditions. The model has been validated with the experimental data of COMECO test facility available in literature. Simulations have been carried out using the model to explore the physics behind the corium coolability with MCCI under top flooding condition. Variations in the thermo-physical properties as a result of MCCI have been considered and its effect on coolability has been studied. (author)

  8. Numerical Analysis of Molten Corium Dispersion during Hypothetical High-Pressure Accidents in APR1400 Nuclear Power Plant

    International Nuclear Information System (INIS)

    Kim, Jong Tae; Ha, Kwang Soon; Kim, Sang Baik; Kim, Hee Dong; Jeong, Jae Sik

    2010-01-01

    During a hypothetical high-pressure accident in a nuclear power plant (NPP), molten corium can be ejected through a breach of a reactor pressure vessel (RPV) and dispersed by the following jet of a high pressure steam in the RPV. The dispersed corium is fragmented into smaller droplets in a reactor cavity of the NPP by the steam jet with very high velocity and is released into the upper compartment of the NPP by an overpressure in the cavity. The heat-carrying fragments of the corium transfer the thermal energy to the ambient air in the containment and react chemically with steam and generate hydrogen which may be burnt in the containment. The thermal loads from the ejected molten corium on the containment which is called direct containment heating (DCH) can threaten the integrity of the containment. New generation NPPs such as APR1400 and EPR have been designed in consideration of reducing the possibility of the containment failure from the DCH. In order for that, APR1400 has a convolute-type corium chamber connected to the reactor cavity. In the case of EPR, severe-accident dedicated depressurization valves are installed to preclude a high pressure melt ejection (HPME). DCH in a NPP containment is related to many physical phenomena such as multi-phase hydrodynamics, thermodynamics and chemical reaction. In the evaluation of the DCH load, the melt dispersion rates depending on the RPV pressure are the most important parameter. Mostly, DCH was evaluated by using lumped-analysis codes with some correlations obtained from experiments for the dispersion rates. The corium dispersion rates for many types of the NPP containments had been obtained by experiments in 90s. And some correlations from the experimental data were developed. As mentioned above, APR1400 has a corium chamber to reduce the corium dispersion rate. But there is no experimental data for the dispersion rate specific to the APR1400 cavity geometry. So its performance for capturing of the dispersed corium

  9. Thermophysical properties of liquid UO{sub 2}, ZrO{sub 2} and corium by molecular dynamics and predictive models

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woong Kee; Shim, Ji Hoon [Pohang University of Science and Technology, Pohang (Korea, Republic of); Kaviany Massoud [University of Michigan, Ann Arbor (United States)

    2016-10-15

    The analysis of such accidents (fate of the melt), requires accurate corium thermophysical properties data up to 5000 K. In addition, the initial corium melt superheat melt, determined from such properties, are key in predicting the fuel-coolant interactions (FCIs) and convection and retention of corium in accident scenarios, e.g., core-melt down corium discharge from reactor pressure vessels and spreading in external core-catcher. Due to the high temperatures, data on molten corium and its constituents are limited, so there are much data scatters and mostly extrapolations (even from solid state) have been used. Here we predict the thermophysical properties of molten UO{sub 2} and ZrO{sub 2} using classical molecular dynamics (MD) simulations (properties of corium are predicted using the mixture theories and UO{sub 2} and ZrO{sub 2} properties). The thermophysical properties (density, compressibility, heat capacity, viscosity and surface tension) of liquid UO{sub 2} and ZrO{sub 2} are predicted using classical molecular dynamics simulations, up to 5000 K. For atomic interactions, the CRG and the Teter potential models are found most appropriate. The liquid behavior is verified with the random motion of the constituent atoms and the pair-distribution functions, starting with the solid phase and raising the temperature to realize liquid phase. The viscosity and thermal conductivity are calculated with the Green-Kubo autocorrelation decay formulae and compared with the predictive models of Andrade and Bridgman. For liquid UO{sub 2}, the CRG model gives satisfactory MD predictions. For ZrO{sub 2}, the density is reliably predicted with the CRG potential model, while the compressibility and viscosity are more accurately predicted by the Teter model.

  10. Technical evaluation of corium cooling at the reactor cavity

    International Nuclear Information System (INIS)

    Yang, Soo Hyung; Chan, Eun Sun; Lee, Jae Hun; Lee, Jong In

    1998-01-01

    To terminate the progression of the severe accident and mitigate the accident consequences, corium cooling has been suggested as one of most important design features considered in the severe accident mitigation. Till now, some kinds of cooling methodologies have been identified and, specially, the corium cooling at the reactor cavity has been considered as one of the most promising cooling methodologies. Moreover, several design requirements related to the corium cooling at the reactor cavity have been also suggested and applied to the design of the next generation reactor. In this study, technical descriptions are briefly described for the important issues related to the corium cooling at the reactor cavity, i.e. cavity area, cavity flooding system, etc., and simple evaluations for those items have been performed considering present technical levels including the experiment and analytical works

  11. Experimental Study of Interactions Between Sub-oxidized Corium and Reactor Vessel Steel

    International Nuclear Information System (INIS)

    Bechta, S.V.; Khabensky, V.B.; Granovsky, V.S.; Krushinov, E.V.; Vitol, S.A.; Gusarov, V.V.; Almiashev, V.I.; Lopukh, D.B.; Tromm, W.; Miassoedov, A.; Bottomley, D.; Fischer, M.; Piluso, P.; Altstadt, E.; Willschutz, H.G.; Fichoti, F.

    2006-01-01

    One of the critical factors in the analysis of in-vessel melt retention is the vessel strength. It is, in particular, sensitive to the thickness of intact vessel wall, which, in its turn, depends on the thermal conditions and physicochemical interactions with corium. Physicochemical interaction of prototypic UO 2 -ZrO 2 -Zr corium melt and VVER vessel steel was examined during the 2. Phase of the ISTC METCOR Project. Rasplav-3 test facility was used for conducting four tests, in which the Zr oxidation degree and interaction front temperature were varied; in one of the tests, stainless steel was added to the melt. Direct experimental measurements and post-test analyses were used for determining corrosion kinetics and maximum corrosion depth (i.e. the physicochemical impact of corium on the cooled vessel steel specimens), as well as the steel temperature conditions during the interaction, and finally the structure and composition of crystallized ingots, including the interaction zone. The minimum temperature on the interaction front boundary, which determined its final position and maximum corrosion depth was ∼ 1090 deg. C. An empirical correlation for calculation of corrosion kinetics has been derived. (authors)

  12. Results and analysis of reactor-material experiments on ex-vessel corium quench and dispersal

    International Nuclear Information System (INIS)

    Spencer, B.W.; McUmber, L.M.; Sienicki, J.J.; Squarer, D.

    1984-01-01

    The results of reactor material experiments and related analysis are described in which molten corium is injected into a mock-up of the reactor cavity region of a PWR. The experiments address exvessel interactions such as steam generation (for those cases in which water is present), water and corium dispersal from the cavity, hydrogen generation, direct atmosphere heating by dispersed corium, and debrids characterization. Test results indicate efficiencies of steam generation by corium quench ranging up to 65%. Corium sweepout of up to 62% of the injected material was found for those conditions in which steam generation flowrate was augmented by vessel blowdown. The dispersed corium caused very little direct heating of the atmosphere for the configuration employing a trap at the exit of the cavity-to-containment pathway. Corium sweepout phenomena were modeled for high-pressure blowdown conditions, and the results applied to the full-size reactor system predict essentially complete sweepout of corium from the reactor cavity. (orig.)

  13. Results and analysis of reactor-material experiments on ex-vessel corium quench and dispersal

    International Nuclear Information System (INIS)

    Spencer, B.W.; McUmber, L.M.; Sienicki, J.J.; Squarer, D.

    1984-01-01

    Results of reactor-material experiments and related analysis are described in which molten corium is injected into a mock-up of the reactor cavity region of a PWR. The experiments address ex-vessel interactions such as steam generation (for those cases in which water is present), water and corium dispersal from the cavity, hydrogen generation, direct atmosphere heating by dispersed corium, and debris characterization. Test results indicate efficiencies of steam generation by corium quench ranging up to 65%. Corium sweepout of up to 62% of the injected material was found for those conditions in which steam generation flowrate was augmented by vessel blowdown. The dispersed corium caused very little direct heating of the atmosphere for the configuration employing a trap at the exit of the cavity-to-containment pathway. Corium sweepout phenomena were modeled for high-pressure blowdown conditions, and the results applied to the full-size reactor system predict essentially complete sweepout of corium from the reactor cavity

  14. Success for the Vulcano`s team. First real corium flow; Succes pour l`equipe de Vulcano. Premiere coulee de corium reel

    Energy Technology Data Exchange (ETDEWEB)

    Carnoy, M. [CEA Cadarache, 13 - Saint-Paul-Lez-Durance (France). Dept. d`Etude des Reacteurs

    1998-03-01

    The aim of the joint CEA-DRN/EDF-DER project `Vulcano` is the mastery of the corium spreading and cooling on a recovery device. The first real corium spreading test has been successfully performed at the CEA/Cadarache centre (France). This short paper describes the experimental setup and the first results of the experiment. (J.S.)

  15. A simplified geometrical model for transient corium propagation in core for LWR with heavy reflector

    Directory of Open Access Journals (Sweden)

    Saas Laurent

    2017-01-01

    Full Text Available In the context of the simulation of the Severe Accidents (SA in Light Water Reactors (LWR, we are interested on the in-core corium pool propagation transient in order to evaluate the corium relocation in the vessel lower head. The goal is to characterize the corium and debris flows from the core to accurately evaluate the corium pool propagation transient in the lower head and so the associated risk of vessel failure. In the case of LWR with heavy reflector, to evaluate the corium relocation into the lower head, we have to study the risk associated with focusing effect and the possibility to stabilize laterally the corium in core with a flooded down-comer. It is necessary to characterize the core degradation and the stratification of the corium pool that is formed in core. We assume that the core degradation until the corium pool formation and the corium pool propagation could be modeled separately. In this document, we present a simplified geometrical model (0D model for the in-core corium propagation transient. A degraded core with a formed corium pool is used as an initial state. This state can be obtained from a simulation computed with an integral code. This model does not use a grid for the core as integral codes do. Geometrical shapes and 0D models are associated with the corium pool and the other components of the degraded core (debris, heavy reflector, core plate…. During the transient, these shapes evolve taking into account the thermal and stratification behavior of the corium pool and the melting of the core surrounding components. Some results corresponding to the corium pool propagation in core transients obtained with this model on a LWR with a heavy reflector are given and compared to grid approach of the integral codes MAAP4.

  16. Modeling of corium dispersion in DCH accidents

    International Nuclear Information System (INIS)

    Wu, Q.

    1996-01-01

    A model that governs the dispersion process in the direct containment heating (DCH) reactor accident scenario is developed by a stepwise approach. In this model, the whole transient is subdivided into four phases with an isothermal assumption. These are the liquid and gas discharge, the liquid film flow in the cavity before gas blowdown, the liquid and gas flow in the cavity with droplet entrainment, and the liquid transport and re-entrainment in the subcompartment. In each step, the dominant driving mechanisms are identified to construct the governing equations. By combining all the steps together, the corium dispersion information is obtained in detail. The key parameters are predicted quantitatively. These include the fraction of liquid that flows out of the cavity before gas blowdown, the dispersion fraction and the mean droplet diameter in the cavity, the cavity pressure rise due to the liquid friction force, and the dispersion fractions in the containment via different paths. Compared with the data of the 1:10 scale experiments carried out at Purdue University, fairly good agreement is obtained. A stand-alone prediction of the corium dispersion under prototypic Zion reactor conditions is carried out by assuming an isothermal process without chemical reactions. (orig.)

  17. Cold crucible technique for interaction test of molten corium with structure

    International Nuclear Information System (INIS)

    Ha, Kwang Soon; An, Sang Mo; Min, Beong Tae; Kim, Hwan Yeol

    2012-01-01

    During a severe accident, the molten corium might interact with several structures in a nuclear power plant such as core peripheral structures, lower plenum, lower head vessel, and external structures of a reactor vessel. The interaction of the molten corium with the structure depends on the molten corium composition, temperature, structural materials, and environmental conditions such as pressure and humidity. For example, the interaction of a metallic molten corium containing metal uranium (U) and zirconium (Zr) with the oxidized steel structure (Fe 2O3 ) is affected by not only thermal ablation but oxidation reduction reaction because the oxidation quotients of the U and Zr are higher than that of Fe. KAERI set up an experimental facility and technique using a cold crucible melting method to verify the interaction mechanism between the metallic molten corium and structural materials. This technique includes the generation of the metallic melt, melt delivery, measurement of the interaction process, and post analyses after the test

  18. Water boiling on the corium melt surface under VVER severe accident conditions

    International Nuclear Information System (INIS)

    Bechta, S.V.; Vitol, S.A.; Krushinov, E.V.; Granovsky, V.S.; Sulatsky, A.A.; Khabensky, V.B.; Lopukh, D.B.; Petrov, Y.B.; Pechenkov, A.Y.

    2000-01-01

    Experimental results are presented on the interaction of corium melt with water supplied on its surface. The tests were conducted in the 'Rasplav-2' experimental facility. Corium melt was generated by induction melting in the cold crucible. The following data were obtained: heat transfer at boiling water-melt surface interaction, gas and aerosol release, post-interaction solidified corium structure. The corium melt charge had the following composition, mass%: 60% UO 2+x -16% ZrO 2 -15% Fe 2 O 3 -6% Cr 2 O 3 -3% Ni 2 O 3 . The melt surface temperature ranged within 1920-1970 K. (orig.)

  19. Success for the Vulcano's team. First real corium flow

    International Nuclear Information System (INIS)

    Carnoy, M.

    1998-01-01

    The aim of the joint CEA-DRN/EDF-DER project 'Vulcano' is the mastery of the corium spreading and cooling on a recovery device. The first real corium spreading test has been successfully performed at the CEA/Cadarache centre (France). This short paper describes the experimental setup and the first results of the experiment. (J.S.)

  20. Water boiling on the corium melt surface under VVER severe accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bechta, S.V.; Vitol, S.A.; Krushinov, E.V.; Granovsky, V.S.; Sulatsky, A.A.; Khabensky, V.B. [Sci. Res. Technol. Inst., Leningrad (Russian Federation); Lopukh, D.B.; Petrov, Y.B.; Pechenkov, A.Y. [St. Petersburg Electrotechnical University (SPbEU), Prof. Popov st 5/3, St. Petersburg (Russian Federation)

    2000-01-01

    Experimental results are presented on the interaction of corium melt with water supplied on its surface. The tests were conducted in the 'Rasplav-2' experimental facility. Corium melt was generated by induction melting in the cold crucible. The following data were obtained: heat transfer at boiling water-melt surface interaction, gas and aerosol release, post-interaction solidified corium structure. The corium melt charge had the following composition, mass%: 60% UO{sub 2+x}-16% ZrO{sub 2}-15% Fe{sub 2}O{sub 3}-6% Cr{sub 2}O{sub 3}-3% Ni{sub 2}O{sub 3}. The melt surface temperature ranged within 1920-1970 K. (orig.)

  1. Interaction of concretes with oxide + metal corium. The VULCANO VBS series

    International Nuclear Information System (INIS)

    Journeau, Christophe; Bonnet, Jean-Michel; Ferry, Lionel; Haquet, Jean-Francois; Piluso, Pascal

    2009-01-01

    In the hypothetical case of a severe accident, the reactor core could melt and the formed mixture, called corium, could melt through the vessel and interact with the reactor pit concrete. Corium is made from a UO 2 -rich oxidic part, in which most of the decay heat is dissipated, and a metallic part, mainly molten steel. Up to now, due to experimental constraints, most of the experiments have been performed with solely oxidic prototypic corium, or where designed so that most of the simulated decay heat was dissipated in the metallic layer. An experimental program has been set up in the VULCANO facility in which oxidic and metallic mixtures are melted in separate furnaces and poured in a concrete cavity. Induction heating is provided to the pool upper part thanks to shielding coils, so that, in case of stratification, the lighter oxidic corium-concrete mixture receives most of the power. Three experiments have been conducted: one with a limestone-rich concrete and two with a silica-rich concrete. Metal stratification has been determined from modifications of the corium electrical properties in front of the inductor and is in good accordance with calculations. Concrete ablation has been monitored. A significant vertical ablation has been observed, even in case of silica-rich concretes, for which largely radial ablation has been observed in the case of pure oxidic corium melts. Post Test Examinations have shown unexpected repartitions of metal in the pool. (author)

  2. Interaction between molten corium UO{sub 2+x}-ZrO{sub 2}-FeO{sub y} and VVER vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Bechta, S. V.; Granovsky, V. S.; Khabensky, V. B.; Krushinov, E. V.; Vitol, S. A.; Sulatsky, A. A. [Alexandrov Sci Res Technol Inst, Sosnovyi Bor (Russian Federation); Gusarov, V. V.; Almiashev, V. I. [Russian Acad Sci, Inst Silicate Chem, St Petersburg (Russian Federation); Lopukh, D. B. [SPb State Electrotech Univ LETI SPbGETU, St Petersburg (Russian Federation); Bottomley, D. [Joint Res Ctr, Inst Transurane, Karlsruhe (Germany); Fischer, M. [AREVA NP GmbH, Erlangen (Germany); Piluso, P. [CEA Saclay, DEN, DSNI, Saclay (France); Miassoedov, A.; Tromm, W. [Forschungszentrum Karlsruhe, D-76021 Karlsruhe (Germany); Altstadt, E. [Forschungszentrum Dresden Rossendorf, Dresden (Germany); Fichot, F. [CEA Cadarache, SEMCA, DPAM, IRSN, St Paul Les Durance (France); Kymalainen, O. [FORTUM Nucl Serv Ltd, Espoo (Finland)

    2010-07-01

    In case of in-vessel corium retention during a severe accident in a light water reactor, weakening of the vessel wall and deterioration of the vessel steel properties can be caused both by the melting of the steel and by its physicochemical interaction with corium. The interaction behavior has been studied in medium-scale experiments with prototypic corium. The experiments yielded data for the steel corrosion rate during interaction with UO{sub 2+x}-ZrO{sub 2}-FeO{sub y} melt in air and steam at different steel surface temperatures and heat fluxes from the corium to the steel. It has been observed that the corrosion rates in air and steam atmosphere are almost the same. Further, if the temperature at the interface increases beyond a certain level, corrosion intensifies. This is explained by the formation of liquid phases in the interaction Zone. The available experimental data have been used to develop a correlation for the corrosion rate as a function of temperature and heat flux. (authors)

  3. Validation of ASTEC V2 models for the behaviour of corium in the vessel lower head

    International Nuclear Information System (INIS)

    Carénini, L.; Fleurot, J.; Fichot, F.

    2014-01-01

    The paper is devoted to the presentation of validation cases carried out for the models describing the corium behaviour in the “lower plenum” of the reactor vessel implemented in the V2.0 version of the ASTEC integral code, jointly developed by IRSN (France) and GRS (Germany). In the ASTEC architecture, these models are grouped within the single ICARE module and they are all activated in typical accident scenarios. Therefore, it is important to check the validity of each individual model, as long as experiments are available for which a single physical process is involved. The results of ASTEC applications against the following experiments are presented: FARO (corium jet fragmentation), LIVE (heat transfer between a molten pool and the vessel), MASCA (separation and stratification of corium non miscible phases) and OLHF (mechanical failure of the vessel). Compared to the previous ASTEC V1.3 version, the validation matrix is extended. This work allows determining recommended values for some model parameters (e.g. debris particle size in the fragmentation model and criterion for debris bed liquefaction). Almost all the processes governing the corium behaviour, its thermal interaction with the vessel wall and the vessel failure are modelled in ASTEC and these models have been assessed individually with satisfactory results. The main uncertainties appear to be related to the calculation of transient evolutions

  4. Thermal behavior of molten corium during TMI-2 core relocation event

    International Nuclear Information System (INIS)

    Anderson, J.L.; Sienicki, J.J.

    1988-01-01

    During the TMI-2 accident, a pool of molten corium formed in the central region of the core and was contained by solidified crusts. Failure of the crust surrounding the molten material, at approximately 224 min, resulted in a relocation of an estimated 20-25 tons of molten corium through peripheral fuel assemblies in the east side of the vessel, as well as through the core barrel assembly (CBA) at the periphery of the core. This paper presents the results of an analyses carried out to investigate the thermal interactions of molten corium with the CBA structures during the relocation event. The principal objectives of the analyses are: (a) to assess the potential for relocation to take place through the CBA versus the flow of molten core material directly downward through the core via the fuel assemblies; and (b) to understand the distribution of prior molten corium observed during vessel defueling examinations. 5 refs., 1 fig

  5. Oxidation effect on steel corrosion and thermal loads during corium melt in-vessel retention

    Energy Technology Data Exchange (ETDEWEB)

    Granovsky, V.S.; Khabensky, V.B.; Krushinov, E.V.; Vitol, S.A.; Sulatsky, A.A.; Almjashev, V.I. [Alexandrov Scientific-Research Technology Institute (NITI), Sosnovy Bor (Russian Federation); Bechta, S.V. [KTH, Stockholm (Sweden); Gusarov, V.V. [SPb State Technology University (SPbGTU), St. Petersburg (Russian Federation); Barrachin, M. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), St Paul lez Durance (France); Bottomley, P.D., E-mail: paul.bottomley@ec.europa.eu [EC-Joint Research Centre, Institute for Transuranium Elements (ITU), Karlsruhe (Germany); Fischer, M. [AREVA GmbH, Erlangen (Germany); Piluso, P. [Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Cadarache, St Paul lez Durance (France)

    2014-10-15

    Highlights: • The METCOR facility simulates vessel steel corrosion in contact with corium. • Steel corrosion rates in UO{sub 2+x}–ZrO{sub 2}–FeO{sub y} coria accelerate above 1050 K. • However corrosion rates can also be limited by melt O{sub 2} supply. • The impact of this on in-vessel retention (IVR) strategy is discussed. - Abstract: During a severe accident with core meltdown, the in-vessel molten core retention is challenged by the vessel steel ablation due to thermal and physicochemical interaction of melt with steel. In accidents with oxidizing atmosphere above the melt surface, a low melting point UO{sub 2+x}–ZrO{sub 2}–FeO{sub y} corium pool can form. In this case ablation of the RPV steel interacting with the molten corium is a corrosion process. Experiments carried out within the International Scientific and Technology Center's (ISTC) METCOR Project have shown that the corrosion rate can vary and depends on both surface temperature of the RPV steel and oxygen potential of the melt. If the oxygen potential is low, the corrosion rate is controlled by the solid phase diffusion of Fe ions in the corrosion layer. At high oxygen potential and steel surface layer temperature of 1050 °C and higher, the corrosion rate intensifies because of corrosion layer liquefaction and liquid phase diffusion of Fe ions. The paper analyzes conditions under which corrosion intensification occurs and can impact on in-vessel melt retention (IVR)

  6. Two-dimensional interaction of oxidic corium with concretes: The VULCANO VB test series

    Energy Technology Data Exchange (ETDEWEB)

    Journeau, Christophe [CEA, DEN, STRI/LMA, Cadarache, F-13108 St Paul lez Durance (France)], E-mail: christophe.journeau@cea.fr; Piluso, Pascal; Haquet, Jean-Francois; Boccaccio, Eric; Saldo, Valerie; Bonnet, Jean-Michel; Malaval, Sophie; Carenini, Laure [CEA, DEN, STRI/LMA, Cadarache, F-13108 St Paul lez Durance (France); Brissonneau, Laurent [CEA, DEN, STPA/LPC, Cadarache, F-13108 St Paul lez Durance (France)

    2009-10-15

    Three two-dimensional Molten Core-Concrete Interaction tests have been conducted in the VULCANO facility with prototypic oxidic corium. The major finding is that for the two tests with silica-rich concrete, the ablation was anisotropic while it was isotropic for limestone-rich concrete. The cause of this behaviour is not yet well understood. Post Test Examinations have indicated that for the silica-rich concrete, the corium melt mixed specifically with mortar, while, for limestone-rich concretes, the analysed samples were in accordance with a corium-concrete mixing. The experimental results are described and compared to numerical codes. Separate Effect Tests with Artificial Concretes and prototypic corium are proposed to understand the phenomena governing the ablation geometry.

  7. Two-dimensional interaction of oxidic corium with concretes: The VULCANO VB test series

    International Nuclear Information System (INIS)

    Journeau, Christophe; Piluso, Pascal; Haquet, Jean-Francois; Boccaccio, Eric; Saldo, Valerie; Bonnet, Jean-Michel; Malaval, Sophie; Carenini, Laure; Brissonneau, Laurent

    2009-01-01

    Three two-dimensional Molten Core-Concrete Interaction tests have been conducted in the VULCANO facility with prototypic oxidic corium. The major finding is that for the two tests with silica-rich concrete, the ablation was anisotropic while it was isotropic for limestone-rich concrete. The cause of this behaviour is not yet well understood. Post Test Examinations have indicated that for the silica-rich concrete, the corium melt mixed specifically with mortar, while, for limestone-rich concretes, the analysed samples were in accordance with a corium-concrete mixing. The experimental results are described and compared to numerical codes. Separate Effect Tests with Artificial Concretes and prototypic corium are proposed to understand the phenomena governing the ablation geometry.

  8. Considerations concerning the strategy of corium retention in the reactor vessel

    International Nuclear Information System (INIS)

    2015-01-01

    Third-generation nuclear reactors are characterised by consideration during design of core meltdown accidents. More specifically, dedicated measures or devices must be implemented to avoid basemat melt-through in the reactor building. These devices must have a high level of confidence. The strategy of corium retention in the reactor vessel, if supported by appropriate research and development, makes it possible to achieve this objective. IRSN works alone or in partnerships to address all the issues associated with in-vessel corium retention. This document describes the in-vessel corium retention strategy and its limitations, along with the research programs conducted by IRSN in this area

  9. Water boiling on the corium melt surface under VVER severe accident conditions

    International Nuclear Information System (INIS)

    Bechta, S.V.; Vitol, S.A.; Krushinov, E.V.

    1999-01-01

    Experimental results are presented on the interaction between corium melt and water supplied onto its surface. The tests were conducted on the Rasplav-2' experimental facility. Induction melting in a cold crucible was used to produce the melt. The following data have been obtained: heat transfer at water boiling on the melt surface, aerosol release, structure of the post-interaction solidified corium. The corium melt had the following composition, mass %: 60%UO 2 - 16%ZrO 2 - 15%Fe 2 O 3 - 6%Cr 2 O 3 -3%Ni 2 O 3 . The melt surface temperature was 1650-1700degC. (author)

  10. FARO tests corium-melt cooling in water pool: Roles of melt superheat and sintering in sediment

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Gisuk [Department of Mechanical Engineering, Wichita State University, Wichita, KS 67260 (United States); Kaviany, Massoud [Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Division of Advance Nuclear Engineering, POSTECH, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Moriyama, Kiyofumi [Division of Advance Nuclear Engineering, POSTECH, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Park, Hyun Sun, E-mail: hejsunny@postech.ac.kr [Division of Advance Nuclear Engineering, POSTECH, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Hwang, Byoungcheol; Lee, Mooneon; Kim, Eunho; Park, Jin Ho [Division of Advance Nuclear Engineering, POSTECH, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Nasersharifi, Yahya [Department of Mechanical Engineering, Wichita State University, Wichita, KS 67260 (United States)

    2016-08-15

    Highlights: • The numerical approach for FARO experimental data is suggested. • The cooling mechanism of ex-vessel corium is suggested. • The predicted minimum pool depth for no cake formation is suggested. - Abstract: The FARO tests have aimed at understanding an important severe accident mitigation action in a light water reactor when the accident progresses from the reactor pressure vessel boundary. These tests have aimed to measure the coolability of a molten core material (corium) gravity dispersed as jet into a water pool, quantifying the loose particle diameter distribution and fraction converted to cake under range of initial melt superheat and pool temperature and depth. Under complete hydrodynamic breakup of corium and consequent sedimentation in the pool, the initially superheated corium can result in debris bed consisting of discrete solid particles (loose debris) and/or a solid cake at the bottom of the pool. The success of the debris bed coolability requires cooling of the cake, and this is controlled by the large internal resistance. We postulate that the corium cake forms when there is a remelting part in the sediment. We show that even though a solid shell forms around the melt particles transiting in the water pool due to film-boiling heat transfer, the superheated melt allows remelting of the large particles in the sediment (depending on the water temperature and the transit time) using the COOLAP (Coolability Analysis with Parametric fuel-cooant interaction models) code. With this remelting and its liquid-phase sintering of the non-remelted particles, we predict the fraction of the melt particles converting to a cake through liquid sintering. Our predictions are in good agreement with the existing results of the FARO experiments. We address only those experiments with pool depths sufficient/exceeding the length required for complete breakup of the molten jet. Our analysis of the fate of molten corium aimed at devising the effective

  11. A simplified geometrical model for transient corium propagation in core for LWR with heavy reflector - 15271

    International Nuclear Information System (INIS)

    Saas, L.; Le Tellier, R.; Bajard, S.

    2015-01-01

    In this document, we present a simplified geometrical model (0D model) for both the in-core corium propagation transient and the characterization of the mode of corium transfer from the core to the vessel. A degraded core with a formed corium pool is used as an initial state. This initial state can be obtained from a simulation computed with an integral code. This model does not use a grid for the core as integral codes do. Geometrical shapes and 0D models are associated with the corium pool and the other components of the degraded core (debris, heavy reflector, core plate...). During the transient, these shapes evolve taking into account the thermal and stratification behavior of the corium pool and the melting of the core surrounding components. Some results corresponding to the corium pool propagation in core transients obtained with this model on a LWR with a heavy reflector are given and compared to grid approach of the integral codes MAAP4

  12. Oxidation kinetics of corium pool

    International Nuclear Information System (INIS)

    Sulatsky, A.A.; Smirnov, S.A.; Granovsky, V.S.; Khabensky, V.B.; Krushinov, E.V.; Vitol, S.A.; Kotova, S.Yu.; Fischer, M.; Hellmann, S.; Tromm, W.; Miassoedov, A.; Bottomley, D.; Piluso, P.; Barrachin, M.

    2013-01-01

    Highlights: • The analysis of experimental data on molten corium oxidation was been carried out. • The analysis has revealed the main factors influencing the oxidation kinetics. • The analysis was used for developing a qualitative analytical model. • The numerical modeling has confirmed the results of experimental data analysis. -- Abstract: Experimental, theoretical and numerical studies of oxidation kinetics of an open surface corium pool have been reported. The experiments have been carried out within OECD MASCA program and ISTC METCOR, METCOR-P and EVAN projects. It has been shown that the melt oxidation is controlled by an oxidant supply to the melt free surface from the atmosphere, not by the reducer supply from the melt. The project experiments have not detected any input of the zirconium oxidation kinetics into the process chemistry. The completed analysis puts forward a simple analytical model, which gives an explanation of the main features of melt oxidation process. The numerical modeling results are in good agreement with experimental data and theoretical considerations

  13. Oxidation kinetics of corium pool

    Energy Technology Data Exchange (ETDEWEB)

    Sulatsky, A.A., E-mail: andrei314@mail.ru [Alexandrov Research Institute of Technologies (NITI), Sosnovy Bor (Russian Federation); Smirnov, S.A. [D.V. Efremov Scientific Research Institute of Electrophysical Apparatus (NIIEFA), St. Petersburg (Russian Federation); Granovsky, V.S.; Khabensky, V.B.; Krushinov, E.V.; Vitol, S.A.; Kotova, S.Yu. [Alexandrov Research Institute of Technologies (NITI), Sosnovy Bor (Russian Federation); Fischer, M.; Hellmann, S. [AREVA NP GmbH, Erlangen (Germany); Tromm, W.; Miassoedov, A. [Forschungzentrum Karlsruhe (FZK), Karlsruhe (Germany); Bottomley, D. [EUROPÄISCHE KOMMISSION, Joint Research Centre Institut für Transurane (ITU), Karlsruhe (Germany); Piluso, P. [CEA Cadarache-DEN/DTN/STRI, St.Paul-lez-Durance (France); Barrachin, M. [Institut de Radioprotection et Sûreté Nucléaire, St.Paul-lez-Durance (France)

    2013-09-15

    Highlights: • The analysis of experimental data on molten corium oxidation was been carried out. • The analysis has revealed the main factors influencing the oxidation kinetics. • The analysis was used for developing a qualitative analytical model. • The numerical modeling has confirmed the results of experimental data analysis. -- Abstract: Experimental, theoretical and numerical studies of oxidation kinetics of an open surface corium pool have been reported. The experiments have been carried out within OECD MASCA program and ISTC METCOR, METCOR-P and EVAN projects. It has been shown that the melt oxidation is controlled by an oxidant supply to the melt free surface from the atmosphere, not by the reducer supply from the melt. The project experiments have not detected any input of the zirconium oxidation kinetics into the process chemistry. The completed analysis puts forward a simple analytical model, which gives an explanation of the main features of melt oxidation process. The numerical modeling results are in good agreement with experimental data and theoretical considerations.

  14. Water boiling on the corium melt surface under VVER severe accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bechta, S.V.; Vitol, S.A.; Krushinov, E.V. [Research Institute of Technology, Sosnovy Bor (NITI) (RU)] [and others

    1999-07-01

    Experimental results are presented on the interaction between corium melt and water supplied onto its surface. The tests were conducted on the Rasplav-2' experimental facility. Induction melting in a cold crucible was used to produce the melt. The following data have been obtained: heat transfer at water boiling on the melt surface, aerosol release, structure of the post-interaction solidified corium. The corium melt had the following composition, mass %: 60%UO{sub 2}- 16%ZrO{sub 2}- 15%Fe{sub 2}O{sub 3} - 6%Cr{sub 2}O{sub 3}-3%Ni{sub 2}O{sub 3}. The melt surface temperature was 1650-1700degC. (author)

  15. An effect of corium composition variations on occurrence of a steam explosion in the TROI experiments

    International Nuclear Information System (INIS)

    Kim, J. W.; Park, I. K.; Hong, S. W.; Min, B. T.; Shin, Y. S.; Song, J. H.; Kim, H. D.

    2003-01-01

    Recently series of steam explosion experiments have been performed in the TROI facility using corium melts of various compositions. The compositions (UO 2 : ZrO 2 ) of the corium were 0 : 100, 50 : 50, 70 : 30, 80 : 20 and 87 : 13 in weight percent and the mass of the corium was about 10kg. An experiment using 0 : 100 corium (pure zirconia) caused a steam explosion. An experiment using 50 : 50 corium did not cause a steam explosion while a steam spike occurred in an experiment using 70 : 30 corium which was the eutectic point of corium. A steam spike is considered to be the fact that a triggering of a steam explosion occurred but a propagation process does not occur so as to cause a weak interaction. However, the possibility of a steam explosion with this composition can not be ruled out since many steam explosions occurred in the previous experiments. In the two experiments using 80 : 20 corium, a steam spike occurred in one experiment but no steam explosion occurred in the other experiment. However, the triggerability of a steam explosion with this composition is not clear since few steam explosions occurred in the previous experiments. And no steam explosion occurred in an experiment using 87 : 13 corium of which urania content was the greatest among the experiments performed in the TROI facility. From this, the possibility of a steam explosion or a steam spike is appeared to be high in the non-mush zone. It is considered that an explosive interaction could easily occur with the eutectic composition. Since the solidification temperature around the eutectic point is low, the melt is likely to maintain its liquid state at the time of triggering so as to cause an explosive phenomenon

  16. Corrosion of vessel steel during its interaction with molten corium

    International Nuclear Information System (INIS)

    Bechta, S.V.; Khabensky, V.B.; Vitol, S.A.; Krushinov, E.V.; Granovsky, V.S.; Lopukh, D.B.; Gusarov, V.V.; Martinov, A.P.; Martinov, V.V.; Fieg, G.; Tromm, W.; Bottomley, D.; Tuomisto, H.

    2006-01-01

    This paper is concerned with corrosion of a cooled vessel steel structure interacting with molten corium in air and neutral (nitrogen) atmospheres during an in-vessel retention scenario. The data on corrosion kinetics at different temperatures on the heated steel surface, heat flux densities and oxygen potential in the system are presented. The post-test physico-chemical and metallographic analyses of melt samples and the corium-specimen ingot have clarified certain mechanisms of steel corrosion taking place during the in-vessel melt interaction

  17. Zirconium carbide coating for corium experiments related to water-cooled and sodium-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Plevacova, K. [CEA, DEN, STRI, LMA, Cadarache, 3108 St. Paul lez Durance (France); Journeau, C., E-mail: christophe.journeau@cea.fr [CEA, DEN, STRI, LMA, Cadarache, 3108 St. Paul lez Durance (France); Piluso, P. [CEA, DEN, STRI, LMA, Cadarache, 3108 St. Paul lez Durance (France); Zhdanov, V.; Baklanov, V. [IAE, National Nuclear Centre, Material Structure Investigation Dept., Krasnoarmeiskaya, 10, Kurchatov City (Kazakhstan); Poirier, J. [CEMHTI, 1D, av. de la Recherche Scientifique, 45071 Orleans Cedex 2 (France)

    2011-07-01

    Since the TMI and Chernobyl accidents the risk of nuclear severe accident is intensively studied for existing and future reactors. In case of a core melt-down accident in a nuclear reactor, a complex melt, called corium, forms. To be able to perform experiments with prototypic corium materials at high temperature, a coating which resists to different corium melts related to Generation I and II Water Reactors and Generation IV sodium fast reactor was researched in our experimental platforms both in IAE NNC in Kazakhstan and in CEA in France. Zirconium carbide was selected as protective coating for graphite crucibles used in our induction furnaces: VCG-135 and VITI. The method of coating application, called reactive wetting, was developed. Zirconium carbide revealed to resist well to the (U{sub x}, Zr{sub y})O{sub 2-z} water reactor corium. It has also the advantage not to bring new elements to this chemical system. The coating was then tested with sodium fast reactor corium melts containing steel or absorbers. Undesirable interactions were observed between the coating and these materials, leading to the carburization of the corium ingots. Concerning the resistance of the coating to oxide melts without ZrO{sub 2}, the zirconium carbide coating keeps its role of protective barrier with UO{sub 2}-Al{sub 2}O{sub 3} below 2000 deg. C but does not resist to a UO{sub 2}-Eu{sub 2}O{sub 3} mixture.

  18. Proposal of In-vessel corium retention concept for Paks NPP

    International Nuclear Information System (INIS)

    Elter, J.; Toth, E.; Matejovic, P.

    2011-01-01

    The in-vessel corium retention (IVR) via external reactor vessel cooling (ERVC) seems to be a promising severe accident management strategy not only for new generation of advanced PWRs, but also for VVER-440/V213 reactors, which were designed several years ago. The basic idea of in-vessel retention of corium is to prevent RPV failure by flooding the reactor cavity so that the reactor pressure vessel is submerged in water up to its support structures, and thus the decay heat can be transferred from the corium pool through the vessel wall and into the water surrounding the vessel. An IVR concept with simple ECVR loop based only on minor modifications of existing plant technology was proposed for the Paks Nuclear Power Plant. 2 severe accident (LB and SB LOCA) without availability of HP and LP safety injection in power upgrade (108%) conditions were simulated using the ASTEC code. The analyses show that the proposed solution is effective in preserving RPV integrity in the case of severe accident. Possible uncertainties in code predictions are covered by the applied conservative assumptions

  19. Simulation of In-Vessel Corium Retention through External Reactor Vessel Cooling for SMART using SIMPLE

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jin-Sung; Son, Donggun; Park, Rae-Joon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Thermal load analysis from the corium pool to the outer reactor vessel in the lower plenum of the reactor vessel is necessary to evaluate the effect of the IVR-ERVC during a severe accident for SMART. A computational code called SIMPLE (Sever Invessel Melt Progression in Lower plenum Environment) has been developed for analyze transient behavior of molten corium in the lower plenum, interaction between corium and coolant, and heat-up and ablation of reactor vessel wall. In this study, heat load analysis of the reactor vessel for SMART has been conducted using the SIMPLE. Transient behavior of the molten corium in the lower plenum and IVR-ERVC for SMART has been simulated using SIMPLE. Heat flux from the corium pool to the outer reactor vessel is concentrated in metallic layer by the focusing effect. As a result, metallic layer shows higher temperature than the oxidic layer. Also, vessel wall of metallic layer has been ablated by the high in-vessel temperature. Ex-vessel temperature of the metallic layer was maintained 390 K and vessel thickness was maintained 14 cm. It means that the reactor vessel integrity is maintained by the IVR-ERVC.

  20. Corrosion of vessel steel during its interaction with molten corium

    International Nuclear Information System (INIS)

    Bechta, S.V.; Khabensky, V.B.; Vitol, S.A.; Krushinov, E.V.; Granovsky, V.S.; Lopukh, D.B.; Gusarov, V.V.; Martinov, A.P.; Martinov, V.V.; Fieg, G.; Tromm, W.; Bottomley, D.; Tuomisto, H.

    2006-01-01

    An experimental examination of the cooled vessel steel corrosion during the interaction with molten corium is presented. The experiments have been conducted on 'Rasplav-2' test facility and followed up with physico-chemical and metallographic analyses of melt samples and corium-specimen ingots. The results discussed in the first part of the paper have revealed specific corrosion mechanisms for air and inert atmosphere above the melt. Models have been proposed based on this information and approximate curves constructed for the estimation of the corrosion rate or corrosion depth of vessel steel in conditions simulated by the experiments

  1. Corrosion of vessel steel during its interaction with molten corium

    Energy Technology Data Exchange (ETDEWEB)

    Bechta, S.V. [Scientific Research Technological Institute (NITI), Sosnovy Bor of Leningrad Oblast 188540 (Russian Federation)]. E-mail: bechta@sbor.spb.su; Khabensky, V.B. [Scientific Research Technological Institute (NITI), Sosnovy Bor of Leningrad Oblast 188540 (Russian Federation); Vitol, S.A. [Scientific Research Technological Institute (NITI), Sosnovy Bor of Leningrad Oblast 188540 (Russian Federation); Krushinov, E.V. [Scientific Research Technological Institute (NITI), Sosnovy Bor of Leningrad Oblast 188540 (Russian Federation); Granovsky, V.S. [Scientific Research Technological Institute (NITI), Sosnovy Bor of Leningrad Oblast 188540 (Russian Federation); Lopukh, D.B. [SPb Electrotechnical University (SpbGETU), Professor Popov str., b.5/3, 197376 St. Petersburg (Russian Federation); Gusarov, V.V. [Institute of Silicate Chemistry of Russian Academy of Science (ISC of RAS), Odoevsky str., b. 24/2, 199155 St. Petersburg (Russian Federation); Martinov, A.P. [SPb Electrotechnical University (SpbGETU), Professor Popov str., b.5/3, 197376 St. Petersburg (Russian Federation); Martinov, V.V. [Scientific Research Technological Institute (NITI), Sosnovy Bor of Leningrad Oblast 188540 (Russian Federation); Fieg, G. [Forshungszentrum Karlsruhe (FZK), Institut fur Neutronenphysik and Reaktortechnik, Postfach 3640, D-78021 Karlsruhe (Germany); Tromm, W. [Forshungszentrum Karlsruhe (FZK), Institut fur Neutronenphysik and Reaktortechnik, Postfach 3640, D-78021 Karlsruhe (Germany); Bottomley, D. [Europaeische Kommission, General Direktion GFS, Institut fuer Transurane (ITU), Postfach 2340, 76125 Karlsruhe (Germany); Tuomisto, H. [Fortum Engineering Ltd. 00048 FORTUM, Rajatorpantie 8, Vantaa (Finland)

    2006-07-15

    An experimental examination of the cooled vessel steel corrosion during the interaction with molten corium is presented. The experiments have been conducted on 'Rasplav-2' test facility and followed up with physico-chemical and metallographic analyses of melt samples and corium-specimen ingots. The results discussed in the first part of the paper have revealed specific corrosion mechanisms for air and inert atmosphere above the melt. Models have been proposed based on this information and approximate curves constructed for the estimation of the corrosion rate or corrosion depth of vessel steel in conditions simulated by the experiments.

  2. Status of the corquench model for calculation of ex-vessel corium coolability by an overlying water layer

    International Nuclear Information System (INIS)

    Farmer, M.T.; Spencer, B.W.

    2000-01-01

    The results of melt attack and coolability experiment (MACE) tests have identified several heat transfer mechanisms which could potentially lead to long term corium coolability. Based on physical observations from these tests, an integrated model of corium quenching (CORQUENCH) behavior is being developed. Aside from modeling of the primary physical processes observed in the tests, considerable effort has also been devoted to modeling of test occurrences which deviate from the behavior expected at reactor scale. In this manner, extrapolation of the models validated against the test data to the reactor case can be done with increased confidence. The integrated model currently addresses early bulk cooling and incipient crust formation heat transfer phases, as well as a follow-on water ingression phase which leads to development of a sustained quench front progressing downwards through the debris. In terms of experiment distortions, the model is also able to mechanistically calculate crust anchoring to the test section sidewalls, as well as the subsequent melt/crust separation phase which arises due to concrete densification upon melting. In this paper, the status of the model development and validation activities are described. In addition, representative calculations for PWR plant conditions are provided in order to illustrate the potential benefits of overlying water on mitigation of the accident sequence. (orig.)

  3. Presentation of the Vulcano installation which uses a plasma transferred arc rotary furnace for corium melting

    International Nuclear Information System (INIS)

    Cognet, G.; Laffont, G.; Jegou, C.; Pierre, J.; Journeau, C.; Sudreau, F.; Roubaud, A.

    1998-01-01

    In the case of loss coolant accident, the reactor core could melt and turn into a mixture of uranium oxides, zirconium, iron and steel called corium. A large experimental program has been launched to study corium behaviour, to qualify solutions to stabilize it and to confine it in the reactor containment. The Vulcano installation has been designed to that purpose. It is made up of: i) a plasma transferred arc rotary furnace, ii) a testing surface covered with refractory materials, iii) an induction heating system in order to simulate the residual power of corium, iv) instrumentation devices such as video cameras, thermocouples, infra-red pyrometers and flowmeters, and v) a laboratory to perform chemical analysis of corium samples. The first experimental results show that a mixture of corium and concrete spreads better than expected. It seems that a low initial height of matter can produce a great distance flowing while having a chaotic behaviour. This characteristic suggests that the mixture acts as a Bingham type threshold fluid. (A.C.)

  4. Ex-Vessel corium coolability and steam explosion energetics in nordic light water reactors

    International Nuclear Information System (INIS)

    Dinh, T.N.; Ma, W.M.; Karbojian, A.; Kudinov, P.; Tran, C.T.; Hansson, C.R.

    2008-03-01

    This report presents advances and insights from the KTH's study on corium pool heat transfer in the BWR lower head; debris bed formation; steam explosion energetics; thermal hydraulics and coolability in bottom-fed and heterogeneous debris beds. Specifically, for analysis of heat transfer in a BWR lower plenum an advanced threedimensional simulation tool was developed and validated, using a so-called effective convectivity approach and Fluent code platform. An assessment of corium retention and coolability in the reactor pressure vessel (RPV) lower plenum by means of water supplied through the Control Rod Guide Tube (CRGT) cooling system was performed. Simulant material melt experiments were performed in an intermediate temperature range (1300-1600K) on DEFOR test facility to study formation of debris beds in high and low subcooled water pools characteristic of in-vessel and ex-vessel conditions. Results of the DEFOR-E scoping experiments and related analyses strongly suggest that porous beds formed in ex-vessel from a fragmented high-temperature debris is far from homogeneous. Calculation results of bed thermal hydraulics and dryout heat flux with a two-dimensional thermal-hydraulic code give the first basis to evaluate the extent by which macro and micro inhomogeneity can enhance the bed coolability. The development and validation of a model for two-phase natural circulation through a heated porous medium and its application to the coolability analysis of bottom-fed beds enables quantification of the significant effect of dryout heat flux enhancement (by a factor of 80-160%) due to bottom coolant injection. For a qualitative and quantitative understanding of steam explosion, the SHARP system and its image processing methodology were used to characterize the dynamics of a hot liquid (melt) drop fragmentation and the volatile liquid (coolant) vaporization. The experimental results provide a basis to suggest that the melt drop preconditioning is instrumental to the

  5. Ex-Vessel corium coolability and steam explosion energetics in nordic light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, T.N.; Ma, W.M.; Karbojian, A.; Kudinov, P.; Tran, C.T.; Hansson, C.R. [Royal Institute of Technology (KTH), (Sweden)

    2008-03-15

    This report presents advances and insights from the KTH's study on corium pool heat transfer in the BWR lower head; debris bed formation; steam explosion energetics; thermal hydraulics and coolability in bottom-fed and heterogeneous debris beds. Specifically, for analysis of heat transfer in a BWR lower plenum an advanced threedimensional simulation tool was developed and validated, using a so-called effective convectivity approach and Fluent code platform. An assessment of corium retention and coolability in the reactor pressure vessel (RPV) lower plenum by means of water supplied through the Control Rod Guide Tube (CRGT) cooling system was performed. Simulant material melt experiments were performed in an intermediate temperature range (1300-1600K) on DEFOR test facility to study formation of debris beds in high and low subcooled water pools characteristic of in-vessel and ex-vessel conditions. Results of the DEFOR-E scoping experiments and related analyses strongly suggest that porous beds formed in ex-vessel from a fragmented high-temperature debris is far from homogeneous. Calculation results of bed thermal hydraulics and dryout heat flux with a two-dimensional thermal-hydraulic code give the first basis to evaluate the extent by which macro and micro inhomogeneity can enhance the bed coolability. The development and validation of a model for two-phase natural circulation through a heated porous medium and its application to the coolability analysis of bottom-fed beds enables quantification of the significant effect of dryout heat flux enhancement (by a factor of 80-160%) due to bottom coolant injection. For a qualitative and quantitative understanding of steam explosion, the SHARP system and its image processing methodology were used to characterize the dynamics of a hot liquid (melt) drop fragmentation and the volatile liquid (coolant) vaporization. The experimental results provide a basis to suggest that the melt drop preconditioning is instrumental to

  6. Experimental simulation of corium dispersion phenomena in direct containment heating

    International Nuclear Information System (INIS)

    Wu, Q.

    1996-01-01

    In a direct containment heating (DCH) accident scenario, the degree of corium dispersion is one of the most significant factors responsible for the reactor containment heating and pressurization. To study the mechanisms of the corium dispersion phenomenon, a DCH separate effect test facility of 1:10 linear scale for Zion PWR geometry is constructed. Experiments are carried out with air-water and air-woods metal simulating steam and molten core materials. The physical process of corium dispersion is studied in detail through various instruments, as well as with flow visualization at several locations. The accident transient begins with the liquid jet discharge at the bottom of the reactor pressure vessel. Once the jet impinges on the cavity bottom floor, it immediately spreads out and moves rapidly to the cavity exit as a film flow. Part of the discharged liquid flows out of the cavity before gas blowdown, and the rest is subjected to the entrainment process due to the high speed gas stream. The liquid film and droplet flows from the reactor cavity will then experience subcompartment trapping and re-entrainment. Consequently, the dispersed liquid droplets that follow the gas stream are transported into the containment atmosphere, resulting in containment heating and pressurization in the prototypic condition. Comprehensive measurements are obtained in this study, including the liquid jet velocity, liquid film thickness and velocity transients in the test cavity, gas velocity and velocity profile in the cavity, droplet size distribution and entrainment rate, and the fraction of dispersed liquid in the containment building. These data are of great importance for better understanding of the corium dispersion mechanisms. (orig.)

  7. ASTEC application to in-vessel corium retention

    International Nuclear Information System (INIS)

    Tarabelli, D.; Ratel, G.; Pelisson, R.; Guillard, G.; Barnak, M.; Matejovic, P.

    2009-01-01

    This paper summarizes the work done in the SARNET European Network of Excellence on Severe Accidents (6th Framework Programme of the European Commission) on the capability of the ASTEC code to simulate in-vessel corium retention (IVR). This code, jointly developed by the French Institut de Radioprotection et de Surete Nucleaire (IRSN) and the German Gesellschaft fuer Anlagen und Reaktorsicherheit mbH (GRS) for simulation of severe accidents, is now considered as the European reference simulation tool. First, the DIVA module of ASTEC code is briefly introduced. This module treats the core degradation and corium thermal behaviour, when relocated in the reactor lower head. Former ASTEC V1.2 version assumed a predefined stratified molten pool configuration with a metallic layer on the top of the volumetrically heated oxide pool. In order to reflect the results of the MASCA project, improved models that enable modelling of more general corium pool configurations were implemented by the CEA (France) into the DIVA module of the ASTEC V1.3 code. In parallel, the CEA was working on ASTEC modelling of the external reactor vessel cooling (ERVC). The capability of the ASTEC CESAR circuit thermal-hydraulics to simulate the ERVC was tested. The conclusions were that the CESAR module is capable of simulating this system although some numerical and physical instabilities can occur. Developments were then made on the coupling between both DIVA and CESAR modules in close collaboration with IRSN. In specific conditions, code oscillations remain and an analysis was made to reduce the numerical part of these oscillations. A comparison of CESAR results of the SULTAN experiments (CEA) showed an agreement on the pressure differences. The ASTEC V1.2 code version was applied to IVR simulation for VVER-440/V213 reactors assuming defined corium mass, composition and decay heat. The external cooling of reactor wall was simulated by applying imposed coolant temperature and heat transfer

  8. An interpretation of the observations performed on rasplav AW200-1 corium

    International Nuclear Information System (INIS)

    Froment, K.; Seiler, J.M.; CEA Centre d'Etudes de Grenoble, 38

    1997-01-01

    The RASPLAV test AW-200-1, performed in the Kurchatov Institute in 1996, showed unexpected results: elevated measured temperatures and stratification of the C-22 corium. Thermalhydraulic and thermodynamic calculations allowed us to give some explanation of the phenomenon which took place in the device: due to the large range between the solidus and the liquidus temperature of the initial mixture, and due to the density difference between the liquid and the solid phase in this temperature domain separation of these two phases had happened during the melting of the mixture (we have no explanation why this separation occurred). GEMINI2 calculations of the solidification paths are consistent with metallographic analyses which were carried out in these two separated layers after solidification. (author)

  9. Internal structure of an ex-vessel corium debris bed during severe accidents of LWRs

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eunho; Park, Jin Ho; Moriyama, Kiyofumi; Park, Hyun Sun [POSTECH, Daejeon (Korea, Republic of)

    2015-10-15

    In the aspect of the coolability assessment the configuration of the debris bed, including internal and external characteristics, has significant importance as boundary conditions for simulations, however, relatively little investigation of the sedimentation process. For the development of a debris bed, recently there have been several studies that focused on thermal characteristics of corium particles. Yakush et al. performed simulation studies and showed that two phase natural convection affects the particle settling trajectory and changes the final arrival location of particles to result more flattened bed. Those simulation results have been supported by the experimental studies of Kim et al. using simulant particles and air bubble injection. For the internal structure of a debris bed, there have been several simulation and experimental studies, which investigated the effect of internal structure on debris bed coolability. Magallon has reported the particle size distribution at three elevations of the debris bed of FARO L-31 case, where the mean particle size was bigger for the lower elevation. However, there is a lack of detailed information on the characteristics of the debris bed, including the local structure and porosity. In this study, we investigated the internal structure of the debris bed using a mixture of stainless steel particles and air bubble injection. Local particle sedimentation quantity, particle size distribution change in radial direction and axial direction, and bed porosity was measured to investigate a relationship between the internal structure and the accident condition. An experimental investigation was carried out for the internal structure of ex-vessel corium debris bed in the flooded cavity during sever accident. Moderate corium discharge in high flooding level was assumed for full fragmentation of melt jet. The test particle mixture was prepared by following an empirical correlation, which reflects the particle size distribution of

  10. Internal structure of an ex-vessel corium debris bed during severe accidents of LWRs

    International Nuclear Information System (INIS)

    Kim, Eunho; Park, Jin Ho; Moriyama, Kiyofumi; Park, Hyun Sun

    2015-01-01

    In the aspect of the coolability assessment the configuration of the debris bed, including internal and external characteristics, has significant importance as boundary conditions for simulations, however, relatively little investigation of the sedimentation process. For the development of a debris bed, recently there have been several studies that focused on thermal characteristics of corium particles. Yakush et al. performed simulation studies and showed that two phase natural convection affects the particle settling trajectory and changes the final arrival location of particles to result more flattened bed. Those simulation results have been supported by the experimental studies of Kim et al. using simulant particles and air bubble injection. For the internal structure of a debris bed, there have been several simulation and experimental studies, which investigated the effect of internal structure on debris bed coolability. Magallon has reported the particle size distribution at three elevations of the debris bed of FARO L-31 case, where the mean particle size was bigger for the lower elevation. However, there is a lack of detailed information on the characteristics of the debris bed, including the local structure and porosity. In this study, we investigated the internal structure of the debris bed using a mixture of stainless steel particles and air bubble injection. Local particle sedimentation quantity, particle size distribution change in radial direction and axial direction, and bed porosity was measured to investigate a relationship between the internal structure and the accident condition. An experimental investigation was carried out for the internal structure of ex-vessel corium debris bed in the flooded cavity during sever accident. Moderate corium discharge in high flooding level was assumed for full fragmentation of melt jet. The test particle mixture was prepared by following an empirical correlation, which reflects the particle size distribution of

  11. Thermalhydraulic Phenomena in Corium Pools: Numerical Simulation with TOLBIAC and Experimental Validation with BALI

    International Nuclear Information System (INIS)

    Bernaz, L.; Bonnet, J.M.; Spindler, B.; Villermaux, C.

    1999-01-01

    In the frame of severe accidents studies, the behavior of corium pools is simulated by the TOLBIAC code. After a short description of the model and peculiarities of the code, its capacities are illustrated with results of the simulation of the behavior of a corium pool in a core catcher made of concrete. The BALI experiments and first results are then presented, and finally BALI tests simulation with TOLBIAC. (authors)

  12. Vulcano: a dedicated R and D program to master corium recuperation for future reactors

    International Nuclear Information System (INIS)

    Bouchter, J.C.; Cognet, G.

    1994-01-01

    In the field of Severe Accident studies for future Nuclear Power Plants, the CEA (Commissariat a l'Energie Atomique) has launched an important program operating with UO 2 materials. General objectives cover the qualification of industrial core-catcher concepts as well as the improvement of the understanding of corium behaviour inside the pressure vessel. After a presentation of the general scope of the project, the paper focuses on the first experimental phase (VULCANO E-30) which deals with major questions of core-catcher concepts based on spreading and flooding principles. (authors). 3 refs., 6 figs

  13. Evaluation of In-Vessel Corium Retention under a Severe Accident

    Energy Technology Data Exchange (ETDEWEB)

    Park, Rae-Joon; Kang, Kyung-Ho; Ha, Kwang-Soon; Kim, Jong-Tae; Koo, Kil-Mo; Cho, Young-Ro; Hong, Seong-Wan; Kim, Sang-Baik; Kim, Hee-Dong

    2008-02-15

    The current study on In-Vessel corium Retention and its application activities to the actual nuclear power plant have been reviewed and discussed in this study. Severe accident sequence which determines an initial condition of the IVR has been evaluated and late phase melt progression, heat transfer on the outer reactor vessel, and in-vessel corium cooling mechanism have been estimated in detail. During the high pressure sequence of the reactor coolant system, a natural circulation flow of the hot steam leads to a failure of the pressurizer surge line before the reactor vessel failure, which leads to a rapid decrease of the reactor coolant system pressure. The results of RASPLAV/MASCA study by OECD/NEA have shown that a melt stratification has occurred in the lower plenum of the reactor vessel. In particular, laver inversion has occurred, which is that a high density of the metal melt moves to the lower part of the oxidic melt layer. A method of heat transfer enhancement on the outer reactor vessel is an optimal design of the reactor vessel insulation for an increase of the natural circulation flow between the outer reactor vessel and the its insulation, and an increase of the critical Heat flux on the outer reactor vessel by using various method, such as Nono fluid, coated reactor vessel, and so on. An increase method of the in-vessel melt cooling is a development of the In-vessel core catcher and a decrease of focusing effect in the metal layer.

  14. VVER vessel steel corrosion at interaction with molten corium in oxidizing atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Bechta, S.V. [Alexandrov Research Institute of Technologies (NITI), Sosnovy Bor (Russian Federation)], E-mail: bechta@sbor.spb.su; Granovsky, V.S.; Khabensky, V.B.; Krushinov, E.V.; Vitol, S.A.; Sulatsky, A.A. [Alexandrov Research Institute of Technologies (NITI), Sosnovy Bor (Russian Federation); Gusarov, V.V.; Almiashev, V.I. [Institute of Silicate Chemistry, Russian Academy of Sciences (ISCh RAS), St. Petersburg (Russian Federation); Lopukh, D.B. [SPb State Electrotechnical University (SPbGETU), St. Petersburg (Russian Federation); Bottomley, D. [EUROPAISCHE KOMMISSION, Joint Research Centre Institut fuer Transurane (ITU), Karlsruhe (Germany); Fischer, M. [AREVA NP GmbH, Erlangen (Germany); Piluso, P. [CEA/DEN/DSNI, Saclay (France); Miassoedov, A.; Tromm, W. [Forschungszentrum Karlsruhe, Karlsruhe (Germany); Altstadt, E. [Forschungszentrum Rossendorf (FZR), Dresden (Germany); Fichot, F. [IRSN/DPAM/SEMCA, St. Paul lez Durance (France); Kymalainen, O. [FORTUM Nuclear Services Ltd., Espoo (Finland)

    2009-06-15

    The long-term in-vessel corium retention (IVR) in the lower head bears a risk of the vessel wall deterioration caused by steel corrosion. The ISTC METCOR Project has studied physicochemical impact of prototypic coria having different compositions in air and steam and has generated valuable experimental data on vessel steel corrosion. It is found that the corrosion rate is sensitive to corium composition, but the composition of oxidizing above-melt atmosphere (air, steam) has practically no influence on it. A model of the corrosion process that integrates the experimental data, is proposed and used for development of correlations.

  15. VVER vessel steel corrosion at interaction with molten corium in oxidizing atmosphere

    International Nuclear Information System (INIS)

    Bechta, S.V.; Granovsky, V.S.; Khabensky, V.B.; Krushinov, E.V.; Vitol, S.A.; Sulatsky, A.A.; Gusarov, V.V.; Almiashev, V.I.; Lopukh, D.B.; Bottomley, D.; Fischer, M.; Piluso, P.; Miassoedov, A.; Tromm, W.; Altstadt, E.; Fichot, F.; Kymalainen, O.

    2009-01-01

    The long-term in-vessel corium retention (IVR) in the lower head bears a risk of the vessel wall deterioration caused by steel corrosion. The ISTC METCOR Project has studied physicochemical impact of prototypic coria having different compositions in air and steam and has generated valuable experimental data on vessel steel corrosion. It is found that the corrosion rate is sensitive to corium composition, but the composition of oxidizing above-melt atmosphere (air, steam) has practically no influence on it. A model of the corrosion process that integrates the experimental data, is proposed and used for development of correlations.

  16. Assessment of in-vessel corium retention in CPR1000

    International Nuclear Information System (INIS)

    Chen Xing; Zhang Shishun; Lin Jiming

    2011-01-01

    The In-Vessel corium Retention (IVR) strategy of Chinese 1000 MW class commercial pressurized water reactor (CPR1000) is assessed by Risk-Oriented Accident Analysis Methodology (ROAAM). Four representative severe accident scenarios are selected for the IVR assessment in this paper. According to four representative severe accident scenarios consequence calculated by the deterministic code combined with engineering judgment, the input probability distribution of the assessment is determined. Success probability of IVR from the viewpoint of thermal failure is then predicted using MOPOL code. MOPOL is a code developed basing on the well known ROAAM frame and heat transfer model of corium. It is demonstrated that the success probability of IVR by Reactor Cavity Flooding in CPR1000 is potentially higher than 99%. Application of IVR strategy in CPR1000 is envisioned probable if a further more comprehensive risk-benefit evaluation conclusion is positive. (authors)

  17. FCI experiments in the corium/water system

    Energy Technology Data Exchange (ETDEWEB)

    Huhtiniemi, I.; Hohmann, H.; Magallon, D.

    1995-09-01

    The KROTOS fuel coolant interaction (FCI) tests aim at providing benchmark data to examine the effect of fuel/coolant initial conditions and mixing on explosion energetics. Experiments, fundamental in nature, are performed in well-controlled geometries and are complementary to the FARO large scale tests. Recently, a new test series was started using 3 kg of prototypical core material (80 w/o UO{sub 2}, 20 w/o ZrO{sub 2}) which was poured into a water column of {le} 1.25 m in height (95 mm and 200 mm in diameter) under 0.1 MPa ambient pressure. Four tests have been performed in the test section of 95 mm in diameter (ID) with different subcooling levels (10-80K) and with and without an external trigger. Additionally, one test has been performed with a test section of 200 mm in diameter (ID) and with an external trigger. No spontaneous or triggered energetic FCIs (steam explosions) have been observed in these corium tests. This is in sharp contrast with the steam explosions observed in the previously reported Al{sub 2}O{sub 3} test series which had the same initial conditions of ambient pressure and subcooling. The post-test analysis of the corium experiments indicated that strong vaporisation at the melt/water contact led to a partial expulsion of the melt from the test section into the pressure vessel. In order to avoid this and to obtain a good penetration and premixing os the corium melt, an additional test has been performed with a larger diameter test section. In all the UO{sub 2}-ZrO{sub 2} tests an efficient quenching process (0.7-1.2 MW/kg-melt) with total fuel fragmentation (mass mean diameter 1.4-2.5 mm) was observed. Results from Al{sub 2}O{sub 3} tests under the same initial conditions are also presented for further confirmation of the observed differences in behaviour between Al{sub 2}O{sub 3} and UO{sub 2}-ZrO{sub 2} melts.

  18. Assessment of models for steam release from concrete and implications for modeling corium behavior in reactor cavities

    International Nuclear Information System (INIS)

    Washington, K.E.; Carroll, D.E.

    1988-01-01

    Models for concrete outgassing have been developed and incorporated into a developmental version of the CONTAIN code for the assessment of corium behavior in reactor cavities. The resultant code, referred to as CONTAIN/OR in order to distinguish it from the released version of CONTAIN, has the capability to model transient heat conduction and concrete outgassing in core-concrete interaction problems. This study focused on validation and assessment of the outgassing model through comparisons with other concrete response codes. In general, the model is not mechanistic; however, there are certain important processes and feedback effects that are treated rigorously. The CONTAIN outgassing model was compared against two mechanistic concrete response codes (USINT and SLAM). Gas release and temperature profile predictions for several concrete thicknesses and heating rates were performed with acceptable agreement seen in each case. The model was also applied to predict corium behavior in a reactor cavity for a hypothetical severe accident scenario. In this calculation, gases evolving from the concrete during nonablating periods fueled exothermic Zr chemical reactions in the corium. Higher corium temperatures and more concrete ablation were observed when compared with that seen when concrete outgassing was neglected. Even though this result depends somewhat upon the makeup of the corium sources and the concrete type in the cavity, it does show that concrete outgassing can be important in the modeling of corium behavior in reactor cavities. In particular, the need to expand the traditional role of CORCON from steady-state ablation to the consideration of more transient events is clearly evident as a result of this work. 5 refs., 11 figs., 1 tab

  19. Experimental Study on the Molten Corium Interaction with Structure by Induction Heating Technique

    Energy Technology Data Exchange (ETDEWEB)

    An, Sang Mo; Ha, Kwang Soon; Min, Beong Tae; Hong, Seong Ho; Kim, Hwan Yeol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The corium compositions strongly depend on the accident scenarios, and thus the melt generation technique for various melt compositions is essential to investigate the corium-structural material interaction characteristics according to the accident scenarios. Since 1997, KAERI has several years of experiences with melt generation to investigate the material ablation characteristics and steam explosion phenomena. Based on the experiences of the TROI (Test for Real cOrium Interaction with water) facility for the steam explosion experiments, the VESTA (Verification of Ex-vessel corium STAbilization) test facility was designed and constructed in 2010 for the development of a core catcher under the APR+ project. At the same time, the VESTA-S (VESTA-Small) was established for small scale material ablation experiments. Some experimental results were reported for the interactions of metallic or oxidic melt with the structural materials such as special concrete or penetration weld. The objective of this paper is to provide the specific features of the VESTA and VESTA-S facilities including information on the melt generation technique adopted for the facilities. Some issues are also addressed in this paper for further facility improvement. In the present paper, the principles of induction heating adopted for the VESTA and VESTA-S facilities were summarized briefly and the system features for the melt-structural material interaction experiments were explained. As a major characteristic of the VESTA facility, up to 400 kg of corium melt is expected to be generated using the currently installed system. The jet impingement effect on the material ablation characteristics was demonstrated successfully in the VESTA facility. In the VESTA-S facility, the small scale material ablation experiments by long term melt interaction were performed properly by adopting the melt delivery method. However, for a more realistic severe accident simulation, we need to improve the melt temperature

  20. Vulcano: a dedicated R and D program to master corium recuperation for future reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bouchter, J.C.; Cognet, G.

    1994-12-31

    In the field of Severe Accident studies for future Nuclear Power Plants, the CEA (Commissariat a l`Energie Atomique) has launched an important program operating with UO{sub 2} materials. General objectives cover the qualification of industrial core-catcher concepts as well as the improvement of the understanding of corium behaviour inside the pressure vessel. After a presentation of the general scope of the project, the paper focuses on the first experimental phase (VULCANO E-30) which deals with major questions of core-catcher concepts based on spreading and flooding principles. (authors). 3 refs., 6 figs.

  1. Development and validation of corium oxidation model for the VAPEX code

    International Nuclear Information System (INIS)

    Blinkov, V.N.; Melikhov, V.I.; Davydov, M.V.; Melikhov, O.I.; Borovkova, E.M.

    2011-01-01

    In light water reactor core melt accidents, the molten fuel (corium) can be brought into contact with coolant water in the course of the melt relocation in-vessel and ex-vessel as well as in an accident mitigation action of water addition. Mechanical energy release from such an interaction is of interest in evaluating the structural integrity of the reactor vessel as well as of the containment. Usually, the source for the energy release is considered to be the rapid transfer of heat from the molten fuel to the water ('vapor explosion'). When the fuel contains a chemically reactive metal component, there could be an additional source for the energy release, which is the heat release and hydrogen production due to the metal-water chemical reaction. In Electrogorsk Research and Engineering Center the computer code VAPEX (VAPor EXplosion) has been developed for analysis of the molten fuel coolant interaction. Multifield approach is used for modeling of dynamics of following phases: water, steam, melt jet, melt droplets, debris. The VAPEX code was successfully validated on FARO experimental data. Hydrogen generation was observed in FARO tests even though corium didn't contain metal component. The reason for hydrogen generation was not clear, so, simplified empirical model of hydrogen generation was implemented in the VAPEX code to take into account input of hydrogen into pressure increase. This paper describes new more detailed model of hydrogen generation due to the metal-water chemical reaction and results of its validation on ZREX experiments. (orig.)

  2. Behavior of concrete in contact with molten corium in the case of a hypothetical core melt accident

    International Nuclear Information System (INIS)

    Peehs, M.; Skokan, A.; Reimann, M.

    1979-01-01

    The temperature-dependent properties of basaltic and limestone concrete as needed for predicting Corium melt propagation in concrete (elongation behavior, specific heat and degradation enthalpy, thermal diffusivity, and conductivity) are determined experimentally together with the chemical and physical reactions occurring in heated concrete. The determined oxidation potential of -335 kJ/mole for molten Corium interacting with the concrete is in accordance with the observed H 2 generation due to the melt internal oxidation of zirconium, chromium, and iron. The liquefaction temperatures of the different concretes investigated are approx. 1300 to 1400 0 C. The relatively high degradation enthalpy of basaltic and limestone concrete is the reason for the barrier effect of concrete against propagating molten Corium

  3. Modeling of the corium cooling and loading factor analysis for containment during severe accidents

    International Nuclear Information System (INIS)

    Konoval, A.V.; Kalvand, Ali.; Kazachkov, I.V.

    2013-01-01

    The paper is devoted to the development and study of the mathematical model for corium melt interaction with low-temperature melting blocks in the passive protection systems (PPS) against severe accidents at the NPP, and learning the peculiarities of construction and operation of the PPS. The configurations of cooling blocks' distributions considered and the results of their work in the corium cooling pool are compared to the data of other PPS's conceptions. The conclusion is made that the models developed and the results obtained may be useful for constructing the PPS against severe accidents

  4. Corium melt researches at VESTA test facility

    Directory of Open Access Journals (Sweden)

    Hwan Yeol Kim

    2017-10-01

    Full Text Available VESTA (Verification of Ex-vessel corium STAbilization and VESTA-S (-small test facilities were constructed at the Korea Atomic Energy Research Institute in 2010 to perform various corium melt experiments. Since then, several tests have been performed for the verification of an ex-vessel core catcher design for the EU-APR1400. Ablation tests of an impinging ZrO2 melt jet on a sacrificial material were performed to investigate the ablation characteristics. ZrO2 melt in an amount of 65–70 kg was discharged onto a sacrificial material through a well-designed nozzle, after which the ablation depths were measured. Interaction tests between the metallic melt and sacrificial material were performed to investigate the interaction kinetics of the sacrificial material. Two types of melt were used: one is a metallic corium melt with Fe 46%, U 31%, Zr 16%, and Cr 7% (maximum possible content of U and Zr for C-40, and the other is a stainless steel (SUS304 melt. Metallic melt in an amount of 1.5–2.0 kg was delivered onto the sacrificial material, and the ablation depths were measured. Penetration tube failure tests were performed for an APR1400 equipped with 61 in-core instrumentation penetration nozzles and extended tubes at the reactor lower vessel. ZrO2 melt was generated in a melting crucible and delivered down into an interaction crucible where the test specimen is installed. To evaluate the tube ejection mechanism, temperature distributions of the reactor bottom head and in-core instrumentation penetration were measured by a series of thermocouples embedded along the specimen. In addition, lower vessel failure tests for the Fukushima Daiichi nuclear power plant are being performed. As a first step, the configuration of the molten core in the plant was investigated by a melting and solidification experiment. Approximately 5 kg of a mixture, whose composition in terms of weight is UO2 60%, Zr 10%, ZrO2 15%, SUS304 14%, and B4C 1%, was melted in a

  5. Experimental simulation of the water cooling of corium spread over the floor of a BWR containment

    Energy Technology Data Exchange (ETDEWEB)

    Morage, F.; Lahey, R.T. Jr.; Podowski, M.Z. [Rensselaer Polytechnic Institute, Troy, NY (United States)

    1995-09-01

    This paper is concerned with an experimental investigation of the cooling effect of water collected on the surface of corium released onto the floor of a BWR drywell. In the present experiments, the actual reactor materials were replaced by simulant materials. Specifically, the results are shown for Freon-11 film boiling over liquid Wood`s metal spread above a solid porous surface through which argon gas was injected. An analysis of the obtained experimental data revealed that the actual film boiling heat transfer between a molten pool of corium and the water above the pool should be more efficient than predicted by using standard correlations for boiling over solid surfaces. This effect will be further augmented by the gas released due to the ablation of concrete floor beneath the corium and percolating towards its upper surface and into through the water layer above.

  6. Thermal hydraulic study of a corium molten pool

    International Nuclear Information System (INIS)

    Pigny, S.; Grand, D.; Seiler, J.M.; Durin, M.

    1993-01-01

    The thermohydraulic behaviour of a mass of molten core is investigated, in the frame of PWR severe accidents studies. The corium may be located in the vessel lower head or in an external core-catcher. It is assumed to be present in the container instantaneously. Its motion is described by one velocity field. It may be homogeneous or made of two stratified fluids. The residual power is assumed to be constant and uniform in the UO 2 phase. The radiative losses and the external water-cooling are taken into account. The thermal resistance of a peripheral crust is considered. The influence of the crust on the pool geometry may be studied. The wall behaviour is analysed by a conduction calculation. The interest of a sacrificial layer is underlined, so as the necessity of a multicomponent multiphase model to study the behaviour of a core catcher. It is also concluded that some experiments are needed for code validation about volume heated natural convection and multiphase flows. (author). 14 figs., 3 refs

  7. Premixing of corium into water during a Fuel-Coolant Interaction. The models used in the 3 field version of the MC3D code and two examples of validation on Billeau and FARO experiments

    Energy Technology Data Exchange (ETDEWEB)

    Berthoud, G.; Crecy, F. de; Duplat, F.; Meignen, R.; Valette, M. [CEA/Grenoble, DRN/DTP, 17 Avenue des Martyrs, 38054 Grenoble Cedex 9 (France)

    1998-01-01

    This paper presents the <> application of the multiphasic 3D computer code MC3D. This application is devoted to the premixing phase of a Fuel Coolant Interaction (FCI) when large amounts of molten corium flow into water and interact with it. A description of the new features of the model is given (a more complete description of the full model is given in annex). Calculations of Billeau experiments (cold or hot spheres dropped into water) and of a FARO test (<> corium dropped into 5 MPa saturated water) are presented. (author)

  8. Modeling of the corium cooling and loading factor analysis for containment during severe accidents

    Directory of Open Access Journals (Sweden)

    O. V. Konoval

    2013-09-01

    Full Text Available The paper is devoted to the development and study of the mathematical model for corium melt interaction with low-temperature melting blocks in the passive protection systems (PPS against severe accidents at the NPP, and learning the peculiarities of construction and operation of the PPS. The configurations of cooling blocks’ distributions considered and the results of their work in the corium cooling pool are compared to the data of oth-er PPS’s conceptions. The conclusion is made that the models developed and the results obtained may be useful for constructing the PPS against severe accidents.

  9. Prototypic corium oxidation and hydrogen release during the Fuel-Coolant Interaction

    Czech Academy of Sciences Publication Activity Database

    Tyrpekl, J.; Piluso, P.; Bakardjieva, Snejana; Nižňanský, D.; Rehspringer, J.L.; Bezdička, Petr; Dugne, O.

    2015-01-01

    Roč. 75, JAN (2015), s. 210-218 ISSN 0306-4549 Institutional support: RVO:61388980 Keywords : Corium * Fuel -Coolant Interaction * Hydrogen release * Material effect * Nuclear reactor severe accident Subject RIV: CA - Inorganic Chemistry Impact factor: 1.174, year: 2015

  10. Behavior of a corium jet in high pressure melt ejection from a reactor pressure vessel

    International Nuclear Information System (INIS)

    Frid, W.E.

    1986-01-01

    A model has been developed to calculate the expansion and fragmentation of a corium jet, due to the evolution of dissolved gas, during a postulated core meltdown accident. Parametric calculations have been performed for a PWR high pressure accident scenario. Jet breakup occurs within a few jet diameters from the RPV. The diameter of the fragmented jet at the level of the reactor cavity floor is predicted to be 40-130 times the discharge diameter. Particles generated by fragmentation of corium melt are predicted to be in the 30-150 μm size range

  11. Corium Configuration and Penetration Tube Failure for Fukushima Daiichi Nuclear Power Plant

    International Nuclear Information System (INIS)

    An, Sang Mo; Lee, Jae Bong; Kim, Hwan Yeol; Song, Jin Ho

    2016-01-01

    For the LWRs (light water reactors), the penetration tubes at the reactor vessel lower head are regarded as the most vulnerable structures along with a global vessel failure during a severe accident because they can be seriously damaged by a corium melt or debris relocated into the lower plenum of the vessel. The research on the penetration tube failure is of higher importance in the BWRs, as it could lead to melt discharge into the containment and subsequent release of radioactive materials to the environment due to the containment failure. There are more than one hundred of penetration tubes in the Fukushima Daiichi NPPs (nuclear power plants), such as ICM-GTs (in-core monitoring guide tubes), CRGTs (control rod guide tubes) and drain tubes. The ICM-GTs include SRMs (source range monitors), IRMs (intermediate range monitors), LPRMs (local power range monitors) and TIPs (traversing in-core probes), which are much thinner than other tubes. The experimental researches to investigate the corium configuration and the penetration tube failure for the Fukushima Daiichi NPPs were introduced and some meaningful results were summarized. It was shown that the corium ingot was separated into two layers, of which the upper layer was metal-rich while the lower one was oxide-rich. It seemed that B 4 C would contribute to reducing the density of the metallic melt. The two-layered configuration will provide useful information to understand the core melt progression and post-recovery actions for the Fukushima Daiichi NPPs. In addition, we performed a large scale penetration tube failure experiment for the SRM/IRM guide tube, and showed high possibilities of large amount of corium discharge out of the reactor vessel lower head, which followed by the tube melting in a very short time. We are planning to perform the penetration tube failure experiments for another dry tube of ICM-GT (LPRM guide tube), and later for the wet tube (CRGT)

  12. Corium Configuration and Penetration Tube Failure for Fukushima Daiichi Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    An, Sang Mo; Lee, Jae Bong; Kim, Hwan Yeol; Song, Jin Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    For the LWRs (light water reactors), the penetration tubes at the reactor vessel lower head are regarded as the most vulnerable structures along with a global vessel failure during a severe accident because they can be seriously damaged by a corium melt or debris relocated into the lower plenum of the vessel. The research on the penetration tube failure is of higher importance in the BWRs, as it could lead to melt discharge into the containment and subsequent release of radioactive materials to the environment due to the containment failure. There are more than one hundred of penetration tubes in the Fukushima Daiichi NPPs (nuclear power plants), such as ICM-GTs (in-core monitoring guide tubes), CRGTs (control rod guide tubes) and drain tubes. The ICM-GTs include SRMs (source range monitors), IRMs (intermediate range monitors), LPRMs (local power range monitors) and TIPs (traversing in-core probes), which are much thinner than other tubes. The experimental researches to investigate the corium configuration and the penetration tube failure for the Fukushima Daiichi NPPs were introduced and some meaningful results were summarized. It was shown that the corium ingot was separated into two layers, of which the upper layer was metal-rich while the lower one was oxide-rich. It seemed that B{sub 4}C would contribute to reducing the density of the metallic melt. The two-layered configuration will provide useful information to understand the core melt progression and post-recovery actions for the Fukushima Daiichi NPPs. In addition, we performed a large scale penetration tube failure experiment for the SRM/IRM guide tube, and showed high possibilities of large amount of corium discharge out of the reactor vessel lower head, which followed by the tube melting in a very short time. We are planning to perform the penetration tube failure experiments for another dry tube of ICM-GT (LPRM guide tube), and later for the wet tube (CRGT)

  13. Analysis of top flooding during molten corium concrete interaction (MCCI) with the code MEDICIS using a simplified approach for the combined effect of crust formation and boiling

    International Nuclear Information System (INIS)

    Spengler, C.

    2012-01-01

    The objective of this work is to provide adequate models in the code MEDICIS for the molten corium concrete interaction (MCCI) phase in a severe accident. Here, the multidimensional distribution of heat fluxes from the molten pool of corium to the sidewall and bottom wall concrete structures in the reactor pit and to the top surface is a persistent subject of international research activities on MCCI. In recent experi-ments with internally heated oxide melts it was observed that the erosion progress may be anisotropic - with an apparent preference of the sidewall compared to the bottom wall - or isotropic, in dependence of the type of concrete with which the cori-um interacts. The lumped parameter code MEDICIS, which is part of the severe accident codes ASTEC and COCOSYS - developed and used at IRSN/GRS respectively GRS for the latter one -, is dedicated to simulate the phenomenology during MCCI. In this work a simplified modelling in MEDICIS is tested to account for the observed ablation behaviour during MCCI, with focus on the heat transfer to the top surface under flooded conditions. This approach is assessed by calculations for selected MCCI experiments involving the top flooding of the melt. (orig.)

  14. Behavior of a corium jet in high pressure melt ejection from a reactor pressure vessel

    International Nuclear Information System (INIS)

    Frid, W.

    1987-01-01

    This report provides results from analytical and experimental investigations on the behavior of a gas supersaturated molten jet expelled from a pressurized vessel. Aero-hydrodynamic stability of liquid jets in gas, stream degassing of molten metals and gas bubble nucleation in molten metals are relevant problems which are addressed in this work. Models are developed for jet expansion, primary breakup of the jet and secondary fragmentation of melt droplets resulting from violent effervescence of dissolved gas. The jet expansion model is based on a general relation for bubble growth which includes both inertia-controlled and diffusion-controlled growth phases. The jet expansion model is able to predict the jet void fraction, jet radius as a function of axial distance from the pressure vessel, bubble size and bubble pressure. The number density of gas bubbles in the melt, which is a basic parameter in the model, was determined experimentally and is about 10 8 per m 3 of liquid. The primary breakup of the jet produces a spray of droplets, about 2-3 mm in diameter. Parametric calculations for a TMLB' reactor accident sequence show that the corium jet is disrupted within a few initial jet diameters from the reactor vessel and that the radius of corium spray at the level of the reactor cavity floor is in the range of 0.8 to 2.6 m. (orig./HP)

  15. An experimental study of steam explosions involving CORIUM melts

    International Nuclear Information System (INIS)

    Millington, R.A.

    1984-05-01

    An experimental programme to investigate molten fuel coolant interactions involving 0.5 kg thermite-generated CORIUM melts and water has been carried out. System pressures and initial coolant subcoolings were chosen to enhance the probability of steam explosions. Yields and efficiencies of the interactions were found to be very close to those obtained from similar experiments using molten UO 2 generated from a Uranium/Molybdenum Trioxide thermite. (author)

  16. Problem of corium melt coolability in passive protection systems against severe accidents in the containment

    Directory of Open Access Journals (Sweden)

    Ali Kalvand

    2018-05-01

    Full Text Available Paper is devoted to the development of the mathematical model and analysis of the problem of corium melt interaction with low-temperature melting blocks in the passive protection systems against severe accidents at the NPP, which is of high importance for substantiation of the nuclear power safety, for building and successful op-erating of passive protection systems. In the third-generation reactors passive protection systems against severe accidents at the NPP are mandatory, therefore this paper is of importance for the nuclear power safety. A few configurations for the cooling blocks’ distribution have been considered and an analysis of the blocks’ melting and corium’s cooling in the pool under reactor vessel have been done, which can serve more effective for further improvement of the safety current systems and for the development of new ones. The ways for solution of the problems and the methods for their successful elaboration were discussed. The developed mathematical models and the analysis performed in the paper might be helpful for the design of passive protection systems of the cori-um melt retention inside the containment after corium melt eruption from the broken reactor vessel.

  17. A comparative analysis of molten corium-concrete interaction models employed in MELCOR and MAAP codes

    International Nuclear Information System (INIS)

    Park, Soo Yong; Song, Y. M.; Kim, D. H.; Kim, H. D.

    1999-03-01

    The purpose of this report are to identify the modelling differences by review phenomenological models related to MCCI, and to investigate modelling uncertainty by performing sensitivity analysis, and finally to identify models to be improved in MELCOR. As the results, the most important uncertain parameter in the MCCI area is the debris stratification/mixing, and heat transfer between molten corium and overlying water pool. MAAP has a very simple and flexible corium-water heat transfer model, which seems to be needed in MELCOR for evaluation of real plants as long as large phenomenological uncertainty still exists. During the corium-concrete interaction, there is a temperature distribution inside basemat concrete. This would affect the amount or timing of gas generation. While MAAP calculates the temperature distribution through nodalization methodology, MELCOR calculates concrete response based on one-dimensional steady-state ablation, with no consideration given to conduction into the concrete or to decomposition in advanced of the ablation front. The code may be inaccurate for analysis of combustible gas generation during MCCI. Thus there is a necessity to improve the concrete decomposition model in MELCOR. (Author). 12 refs., 5 tabs., 42 figs

  18. KATS experiments to simulate corium spreading in the EPR core catcher concept

    International Nuclear Information System (INIS)

    Eppinger, B.; Fieg, G.; Schuetz, W.; Stegmaier, U.

    2001-01-01

    In future Light Water Reactors special devices (core catchers) might be required to prevent containment failure by basement erosion after reactor pressure vessel melt-through during a core meltdown accident. Quick freezing of the molten core masses is desirable to reduce release of radioactivity. Several concepts of core catcher de-vices have been proposed based on the spreading of corium melt onto flat surfaces with subsequent cooling by flooding with water. Therefore a series of experiments to investigate high temperature melt spreading on flat surfaces has been carried out using alumina-iron thermite melts as a simulant. The oxidic thermite melt is conditioned by adding other oxides to simulate a realistic corium melt as close as possible. Spreading of oxidic and metallic melts have been performed in one- and two-dimensional geometry. Substrates were chemically inert ceramic layers, dry concrete and concrete with a shallow water layer on top. (authors)

  19. Numerical analysis of vapor explosion in the system 'corium-water'

    International Nuclear Information System (INIS)

    Melikhov, O.I.; Melikhov, V.I.; Sokolin, A.V.

    2000-01-01

    The thermal detonation taking into account the microinteraction processes model has been applied to study thermal detonation wave escalation and propagation in the corium-water mixture. Transient escalation stage and subsequent steady-state propagation stage of the thermal detonation have been calculated. The essential decrease of the escalation length in comparison with the previous results calculated without microinteraction concept has been obtained. (author)

  20. Double acting stirling engine phase control

    Science.gov (United States)

    Berchowitz, David M.

    1983-01-01

    A mechanical device for effecting a phase change between the expansion and compression volumes of a double-acting Stirling engine uses helical elements which produce opposite rotation of a pair of crankpins when a control rod is moved, so the phase between two pairs of pistons is changed by +.psi. and the phase between the other two pairs of pistons is changed by -.psi.. The phase can change beyond .psi.=90.degree. at which regenerative braking and then reversal of engine rotation occurs.

  1. Viscosities of corium-concrete mixtures

    International Nuclear Information System (INIS)

    Seiler, J.M.; Ganzhorn, J.

    1997-01-01

    Severe accidents on nuclear reactors involve many situations such as pools of molten core material, melt spreading, melt/concrete interactions, etc. The word 'corium' designates mixtures of materials issued from the molten core at high temperature; these mixtures involve mainly: UO2, ZrO2, Zr and, in small amounts, Ni, Cr, Ag, In, Cd. These materials, when flowing out of the reactor vessel, may interact with the concrete of the reactor building thus introducing decomposition products of concrete into the original mixture. These decomposition products are mainly: SiO 2 , FeO, MgO, CaO and Al 2 O 3 in different amounts depending on the nature of the concrete being considered. Siliceous concrete is rich in SiO 2 , limestone concrete contains both SiO 2 and CaO. Liquidus temperatures of such mixtures are generally obove 2300 K whereas solidus temperatures are ∝1400 K. (orig.)

  2. VULCANO: a large scale U O2 program to study corium behaviour and cooling for future reactors

    International Nuclear Information System (INIS)

    Cognet, G.; Bouchter, J.C.

    1994-01-01

    The CEA has launched the VULCANO project, a large experimental facility whose objectives are the understanding of corium behaviour from core melting up to vessel melt-through, and the qualification of core-catcher concepts. This paper deals with the strategy adopted to overcome the difficulties of such experiments (use of real materials such as U O 2 , controlled temperature and flowrate...); in particular, it describes the feasibility studies undertaken on corium production, and on sustained heating within the melt (micro-waves). Some indications are also given on scaling studies for experiments devoted to vessel integrity. 7 figs., 3 refs

  3. Performance requirements for the double-shell tank system: Phase 1

    International Nuclear Information System (INIS)

    Claghorn, R.D.

    1998-01-01

    This document establishes performance requirements for the double-shell tank system. These requirements, in turn, will be incorporated in the System Specification for the Double-Shell Tank System (Grenard and Claghorn 1998). This version of the document establishes requirements that are applicable to the first phase (Phase 1) of the Tank Waste Remediation System (TWRS) mission described in the TWRS Mission Analysis Report (Acree 1998). It does not specify requirements for either the Phase 2 mission or the double-shell tank system closure period

  4. Quantum Phase Spase Representation for Double Well Potential

    OpenAIRE

    Babyuk, Dmytro

    2002-01-01

    A behavior of quantum states (superposition of two lowest eigenstates, Gaussian wave packet) in phase space is studied for one and two dimensional double well potential. Two dimensional potential is constructed from double well potential coupled linearly and quadratically to harmonic potential. Quantum trajectories are compared with classical ones. Preferable tunneling path in phase space is found. An influence of energy of initial Gaussian wave packet and trajectory initial condition on tunn...

  5. Investigation of molten corium-concrete interaction phenomena and aerosol release

    International Nuclear Information System (INIS)

    Spencer, B.W.; Thompson, D.H.; Armstrong, D.R.; Fink, J.K.; Gunther, W.H.; Kilsdonk, D.J.; Sehgal, B.R.

    1987-01-01

    The Electric Power Research Institute is sponsoring a program of laboratory investigations at Argonne National Laboratory to study the interaction between molten core materials and reactor concrete basemats during postulated severe reactor accidents, with particular emphasis on measurements of the magnitude and chemical species present in the aerosol releases. The approach in this program is to sustain internal heat generation in reactor-material corium using direct electrical heating and to develop test operating and diagnostics capabilities with a series of small- and intermediate-scale scoping tests followed by fully instrumented large-scale testing. Real reactor materials (UO 2 , ZrO 2 , oxides of stainless steel, plus metallics) are used, with small amounts of La 2 O 3 , BaO, and SrO added to simulate nonvolatile fission products. In intermediate-scale scoping tests completed to date, corium inventories of up to 29 kg have been heated with power inputs in excess of 1 kW/kg melt. The measured concrete ablation rates have ranged from 0.9 to 3.9 mm/minute. Aerosol samples have been examined using a scanning electron microscope and show submicron particles, 2-6 micrometer spheres, and agglomerates that range from a few micrometers to string 13 micrometers in length

  6. Corium Spreading Over Concrete: The Vulcano VE-U7 and VE-U8 Tests

    International Nuclear Information System (INIS)

    Journeau, Christophe; Boccaccio, Eric; Fouquart, Pascal; Jegou, Claude; Piluso, Pascal

    2002-01-01

    Two experiments have been performed in the VULCANO facility in which prototypic corium has been spread over concrete. In the VE-U7 test, a mixture representative of what can be expected at the opening of EPR reactor-pit gate has been spread on siliceous concrete and on a reference channel in inert refractory ceramic. The spreading progression was not much affected by the presence of concrete and sparging gases. In the VE-U8 test, a UO 2 -ZrO 2 mixture, prototypic of in-vessel corium, has been spread over a lime-siliceous concrete. Although residual power was not simulated in this experiment, up to 2 cm of concrete have been eroded during the test. Results in terms of spreading behaviour, effects of gases, concrete erosion and thermal attack are presented and discussed. (authors)

  7. New set of convective heat transfer coefficients established for pools and validated against CLARA experiments for application to corium pools

    Energy Technology Data Exchange (ETDEWEB)

    Michel, B., E-mail: benedicte.michel@irsn.fr

    2015-05-15

    Highlights: • A new set of 2D convective heat transfer correlations is proposed. • It takes into account different horizontal and lateral superficial velocities. • It is based on previously established correlations. • It is validated against recent CLARA experiments. • It has to be implemented in a 0D MCCI (molten core concrete interaction) code. - Abstract: During an hypothetical Pressurized Water Reactor (PWR) or Boiling Water Reactor (BWR) severe accident with core meltdown and vessel failure, corium would fall directly on the concrete reactor pit basemat if no water is present. The high temperature of the corium pool maintained by the residual power would lead to the erosion of the concrete walls and basemat of this reactor pit. The thermal decomposition of concrete will lead to the release of a significant amount of gases that will modify the corium pool thermal hydraulics. In particular, it will affect heat transfers between the corium pool and the concrete which determine the reactor pit ablation kinetics. A new set of convective heat transfer coefficients in a pool with different lateral and horizontal superficial gas velocities is modeled and validated against the recent CLARA experimental program. 155 tests of this program, in two size configurations and a high range of investigated viscosity, have been used to validate the model. Then, a method to define different lateral and horizontal superficial gas velocities in a 0D code is proposed together with a discussion about the possible viscosity in the reactor case when the pool is semi-solid. This model is going to be implemented in the 0D ASTEC/MEDICIS code in order to determine the impact of the convective heat transfer in the concrete ablation by corium.

  8. Escalation and propagation of thermal detonation in the corium-water systems

    International Nuclear Information System (INIS)

    Melikhov, O.I.; Melikhov, V.I.; Sokolin, A.V.

    2001-01-01

    The thermal detonation taking into account micro-interaction processes model has been applied to study thermal detonation wave escalation and propagation in the corium-water mixture. Transient escalation stage and subsequent steady-state propagation stage of the thermal detonation have been calculated. The essential decrease of the escalation length in comparison with the previous results calculated without micro-interaction concept has been obtained. (authors)

  9. Thermal hydraulic phenomena in corium pools: the BALI experiment

    International Nuclear Information System (INIS)

    Bonnet, J.M.

    1999-01-01

    In the framework of severe accident studies, the BALI experiment has been designed to create a data base about heat transfer distribution at corium pool boundaries for in-vessel or ex-vessel configurations. The mechanism investigated is natural convection at high internal Rayleigh number (10 15 to 10 17 ) in cavities with volumetric heating. After a description of the facility and a synthesis of results obtained for in-vessel configurations, the purpose of this paper is to present or extend local or average heat transfer correlations in the prototypic range of dimensionless parameters. (author)

  10. Quality improvements of thermodynamic data applied to corium interactions for severe accident modelling in SARNET2

    Czech Academy of Sciences Publication Activity Database

    Bakardjieva, Snejana; Barrachin, M.; Bechta, S.; Bezdička, Petr; Bottomley, D.; Brissoneau, L.; Cheynet, B.; Dugne, O.; Fischer, E.; Fischer, M.; Gusarov, V.; Journeau, C.; Khabensky, V.; Kiselová, M.; Manara, D.; Piluso, P.; Sheindlin, M.; Tyrpekl, V.; Wiss, T.

    2014-01-01

    Roč. 74, SI (2014), s. 110-124 ISSN 0306-4549 Institutional support: RVO:61388980 Keywords : Corium * Severe accidents * Thermodynamic database Subject RIV: CA - Inorganic Chemistry Impact factor: 0.960, year: 2014

  11. Project Half Double: Current Results of Phase 1 and Phase 2, December 2017

    DEFF Research Database (Denmark)

    Svejvig, Per; Thorp Adland, Karoline; Zippora Klein, Judith Birte

    ’s competitiveness and play an important role in the battle for jobs and future welfare. The overall goal is to deliver “Projects in half the time with double the impact” where projects in half the time should be understood as half the time to impact (benefit realization, effect is achieved) and not as half the time...... of Project Half Double was initiated in June 2015. It is a two-phase project: phase 1 took place from June 2015 to June 2016 with seven pilot projects, and phase 2 is in progress from July 2016 to July 2018 with 10 pilot projects. The Half Double consortium: Implement Consulting Group is the project leader....... 2016, Svejvig et al. 2017). This report’s target group inludes practitioners in Danish industry and society in general. The editorial team from Aarhus University prepared the report from October 2017 to December 2017, which means that data about pilot projects from December 2017 is not included....

  12. Analysis of Two Phase Natural Circulation Flow in the Cooling Channel of the PECS

    Energy Technology Data Exchange (ETDEWEB)

    Park, R. J; Ha, K. S; Rhee, B. W; Kim, H. Y [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    Decay heat and sensible heat of the relocated and spread corium are removed by the natural circulation flow at the bottom and side wall of the core catcher and the top water cooling of the corium. The coolant in the inclined channel absorbs the decay heat and sensible heat transferred from the corium through the structure of the core catcher body and flows up to the pool as a two phase mixture. On the other hand, some of the pool water will flow into the inlet of the downcomer piping, and will flow into the inclined cooling channel of the core catcher by gravity. As shown in Fig. 1, the engineered cooling channel is designed to provide effective long-term cooling and stabilization of the corium mixture in the core catcher body while facilitating steam venting in the PECS. To maintain the integrity of the ex-vessel core catcher, however, it is necessary that the coolant be sufficiently circulated along the inclined cooling channel to avoid CHF (Critical Heat Flux) on the heating surface of the cooling channel. For this reason, a verification experiment on the cooling capability of the EU-APR1400 core catcher has been performed in the CE (Cooling Experiment)-PECS facility at KAERI. Preliminary simulations of two-phase natural circulation in the CE-PECS were performed to predict two-phase flow characteristics and to determine the natural circulation mass flow rate in the flow channel. In this study, simulations of two-phase natural circulation in a real core catcher of the PECS have been performed to determine the natural circulation mass flow rate in the flow channel using the RELAP5/MOD3 computer code.

  13. Cooling and spreading of corium during its fall into water in a pressurised water nuclear plant severe accident: description of mechanical and thermal interactions in a three phase flow during spreading of cold or heated spheres in a liquid pool; Refroidissement et dispersion du corium lors de sa chute dans l'eau pendant un accident severe de reacteur nucleaire a eau pressurisee: description des interactions mecaniques et thermiques en ecoulement triphasique lors de la dispersion de spheres solides froides ou chaudes dans un bain liquide

    Energy Technology Data Exchange (ETDEWEB)

    Duplat, F

    1998-10-26

    In the frame of nuclear safety studies about corium and water interactions, we address spreading and cooling stage of corium fragments in a liquid pool. Considering the complexity of encountered flow regimes and mechanical and thermal interactions coupling, modelling validation is based on a thermal-hydraulic computer code (MC3D). A bibliographical study shows that classical modelling of three phase flow is based on constitutive laws already established in the case of two phase flow. The present study states a complete analysis of BILLEAU experiments and defines a characterisation method for a sphere cloud. Some complementary QUEOS experiments are also described. Mechanical interaction terms such as added mass, lift and turbulent dispersion have been presented in the frame of a three phase flow and their influence has been tested in numerical simulations of BILLEAU tests. The effect of film vapour overheat, as well as particle diameter evolution have been studied. Moreover a radiative heat transfer modelling developed in Karlsruhe research centre (FZK) has been analysed and completed. Numerical simulations achieved for this study show that mechanical and thermal behaviour of the system are actually coupled. Taking into account lift and turbulent dispersion terms as well as heat transfer modifications all wed better results. This study also presents some considerations about flow regimes identification as a preliminary for studies about numerical diffusion that was already estimated in the present state of the computer code MC3D. (author)

  14. The Plinius/Colima CA-U3 test on fission-product aerosol release over a VVER-type corium pool

    International Nuclear Information System (INIS)

    Journeau, Ch.; Piluso, P.; Correggio, P.; Godin-Jacqmin, L.

    2007-01-01

    In a hypothetical case of severe accident in a PWR type VVER-440, a complex corium pool could be formed and fission products could be released. In order to study aerosols release in terms of mechanisms, kinetics, nature or quantity, and to better precise the source term of VVER-440, a series of experiments have been performed in the Colima facility and the test Colima CA-U3 has been successfully performed thanks to technological modifications to melt a prototypical corium at 2760 C degrees. Specific instrumentation has allowed us to follow the evolution of the corium melt and the release, transport and deposition of the fission products. The main conclusions are: -) there is a large release of Cr, Te, Sr, Pr and Rh (>95%w), -) there is a significant release of Fe (50%w), -) there is a small release of Ba, Ce, La, Nb, Nd and Y (<90%w), -) there is a very small release of U in proportion (<5%w) but it is one of the major released species in mass, and -) there is no release of Zr. The Colima experimental results are consistent with previous experiments on irradiated fuels except for Ba, Fe and U releases. (A.C.)

  15. Double-phase Tc-99m tetrofosmin parathyroid scan in hyperparathyroidism: comparison with ultrasonography

    International Nuclear Information System (INIS)

    Kim, In Soo; Kim, Sang Yoon; Zeon, Seok Kil; Won, Kyoung Sook

    2004-01-01

    This study was performed to evaluate the utility of double-phase Tc-99m Tetrofosmin(TF) parathyroid scan in the detection of pathologic lesions of primary hyperparathyroidism, and comparison with the ultrasonography(US). The double phase TF parathyroid scan of the anterior neck including upper mediastinum with 800 MBq TF were acquired at ten minutes (early phase) and at two hours (delayed phase) after radiopharmaceutical injection, in 24 consecutive patients under the clinical impression of primary hyperparathyroidism and hypercalcaemia. The images were evaluated for abnormal focal areas of increased tracer localization in the anterior neck and superior mediastinum in early phase, and visualization of parathyroid gland radioactivity after wash-out of the thyroid gland radioactivity in delayed phase. US of the anterior neck including upper mediastinum was performed by a diagnostic radiologist in 24 consecutive patients, within one week before or after the scan. The findings of double phase TF parathyroid scan and US were compared with the pathologic results. Ten of 24 patients were surgically explored and pathologic results showed eight adenomas and two hyperplasia. The double phase TF parathyroid scan showed positive findings in seven patients of eight adenomas and one patient of two hyperplasia patients. US image showed positive findings in six patients of eight adenomas and no positive findings of two hyperplasia. The sensitivity of the double phase TF scan for detection of the causes of the primary hyperparathyroidism was 80% and US was 60%. The double phase Tc-99m Tetrofosmin parathyroid scan showed higher sensitivity in detection of the pathologic lesions of primary hyperparathyroidism than ultrasonography

  16. Differences between silica and limestone concretes that may affect their interaction with corium

    International Nuclear Information System (INIS)

    Journeau, C.; Haquet, J. F.; Piluso, P.; Bonnet, J. M.

    2008-01-01

    Recent Molten Core Concrete Interaction tests performed at Argonne National Laboratory and at CEA Cadarache have shown that, whereas the ablation of limestone-rich concretes is almost isotropic, the ablation of silica-rich concretes is much faster towards the sides than towards the bottom of the cavity. The following differences exists between limestone-rich and silica-rich concretes: limestone concretes liberate about twice as much gas, at a given ablation rate than siliceous concretes (more than 50% more at constant heat flux) and this can affect pool hydraulics and crust stability: limestone concrete has a higher liquidus temperature than siliceous concrete and molten limestone concrete has a larger diffusion coefficient and can more easily dissolve a corium crust than siliceous melt; limestone aggregates are destroyed by de-carbonation at around 1000 K while silica aggregates melt only above 2000 K, so that floating silica aggregates can form cold spots increasing corium solidification near the interface; de-carbonation of limestone leads to a significant shrinkage of concrete melt volume compared to the cold solid that hampers the mechanical stability of overlying crusts; the chemical composition of molten mortar (sand + cement) and concrete (sand + gravel + cement) is close for limestone-rich concretes while it is different for siliceous concretes, so that the melt composition may vary significantly in case of non-simultaneous melting of the siliceous concrete constituents; molten silicates have a large viscosity, so that transport properties are different for the two types of concretes. The small range of plant concrete compositions that have been considered for MCCI experiments has not yet been found sufficient to determine which of the above-mentioned differences is paramount to explain the observed difference in ablation patterns. Separate Effect Tests using specially-designed 'artificial concretes' and prototypic corium would provide the necessary

  17. Control Carbon to Prevent corium Stratification In-Vessel Retention

    Energy Technology Data Exchange (ETDEWEB)

    Go, A Ra; Hong, Seung Hyun; Kim, Sang Nyung [Kyung Hee Univ., Yongin (Korea, Republic of)

    2013-10-15

    As a result, the thermal margin decreases, and the nuclear reactor vessel may be destroyed. To control Carbons, which is the major cause of stratification, Ruthenium and Hafnium are inserted inside the lower reactor head which initiates a chemical reaction with Carbon. SPARTAN program is used to confirm a reaction probability which is measured in bond energy and strength etc. To analyze the possibility of bonding with Carbon, the initial property of Ruthenium and Carbon are measured during the calculated absorbing process. After following that theory, the Spartan program is able to determine if it can insert the metal. After verifying the combination of Ruthenium and Carbon, the Spartan program analyzes the impact of the Carbon to prevent the corium stratification. It determines the possibility of the success with the introduction of the IVR concept. Ruthenium is suitable to Carbon bonding process to decrease affect to corium behavior which do not form stratification. The metal which can combine with Carbon should be satisfied with temperature as high as 2800 .deg. C. Therefore, the further research works are determined by using the Spartan program to calculate the Carbon and Ruthenium bonding energy, and to check other bonding results as follows. After check the results, review this theory to insert the Ruthenium in reactor vessel. APR1400 and OPR1000, Korea Hydro and Nuclear power plant core meltdown accident has been evaluated a high level in severe accident. When the reactor core is melted down, it is stratified into the metal layer and the ceramic layer. As the heat conductivity of metal layer is higher than that of the ceramic layer, heat concentration occurs in the upper part of the bottom hemisphere which comes into contact with the metal layer.

  18. Analysis of corium recovery concepts by the EUROCORE group

    International Nuclear Information System (INIS)

    Seiler, J.-M.; Latrobe, A.; Sehgal, B.R.; Alsmeyer, H.; Kymaelaeinen, O.; Turland, B.; Grange, J.-L.; Fischer, M.; Azarian, G.; Buerger, M.; Cirauqui, C.J.; Zurita, A.

    2003-01-01

    The objective of the EUROCORE (European Group for Analysis of Corium Recovery Concepts) Concerted Action is to obtain a clear view of the state-of-the-art for melt stabilisation as considered in accident management schemes and to better identify Research and Development (R and D) needs. Five different melt stabilisation concepts have been discussed: in-vessel retention with external cooling, core-concrete interaction with top cooling, ex-vessel spreading with top flooding, water injection by bottom flooding, and crucible concept with sacrificial material. For each concept, main unresolved problems are discussed in this paper and recommended R and D actions are outlined. The project started on 1 March 2000 and ended on 28 February 2002

  19. Analysis on the Multiplication Factor with the Change of Corium Mass and Void Fraction

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hae Sun; Park, Chang Je; Song, Jin Ho; Ha, Kwang Soon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    The neutron absorbing materials and fuel rods would be separately arranged and relocated, since the control materials in metallic structures have lower melting points than that of the oxide fuel (UO{sub 2}) rod materials. In addition, core reflood for a BWR is normally accomplished by supplying unborated water unlikely for a PWR. Therefore, a potential for a recriticality event to occur may exist, if unborated coolant injection is initiated with this configuration in the reactor core. The re-criticality in this system, however, brings into question what the uranium mass is required to achieve a critical level. Furthermore, the additional decay heat from molten fuel (corium) will produce an increase of void and eventually results in under-moderation of neutrons. The prior verification of these consequential physical variations in criticality eigenvalue (effective multiplication factor, k{sub eff}) should be greatly contributed to control and termination of re-criticality. Therefore, this study addresses what uranium mass of corium could achieve re-criticality of an accident core, and how effect the coolant void fraction has on eigenvalue (k{sub eff}) and its reactivity. To analyze the critical mass and the effect on criticality upon changing coolant density, k{sub eff} values were calculated using the MCNPX 2.5.0 code, and the reactivity change was also investigated. As a result, a large change in corium mass leads to a little change in k{sub eff} value, nevertheless, only about 60 kg of uranium is necessary to achieve a critical level. Thus, the amounts to reach a re-criticality are not fairly large, considering the actual uranium quantities loaded in the reactor core. Based on the condition with k{sub eff} greater than unity, the absolute values of k{sub eff} decrease rate and the coolant density coefficient were gradually increased due to the steady increments of coolant void (i.e., decrease in coolant density). In addition, the k{sub eff} value approaches the

  20. The Plinius/Colima CA-U3 test on fission-product aerosol release over a VVER-type corium pool; L'essai Plinius/Colima CA-U3 sur le relachement des aerosols de produits de fission au-dessus d'un bain de corium de type VVER

    Energy Technology Data Exchange (ETDEWEB)

    Journeau, Ch.; Piluso, P.; Correggio, P.; Godin-Jacqmin, L

    2007-07-01

    In a hypothetical case of severe accident in a PWR type VVER-440, a complex corium pool could be formed and fission products could be released. In order to study aerosols release in terms of mechanisms, kinetics, nature or quantity, and to better precise the source term of VVER-440, a series of experiments have been performed in the Colima facility and the test Colima CA-U3 has been successfully performed thanks to technological modifications to melt a prototypical corium at 2760 C degrees. Specific instrumentation has allowed us to follow the evolution of the corium melt and the release, transport and deposition of the fission products. The main conclusions are: -) there is a large release of Cr, Te, Sr, Pr and Rh (>95%w), -) there is a significant release of Fe (50%w), -) there is a small release of Ba, Ce, La, Nb, Nd and Y (<90%w), -) there is a very small release of U in proportion (<5%w) but it is one of the major released species in mass, and -) there is no release of Zr. The Colima experimental results are consistent with previous experiments on irradiated fuels except for Ba, Fe and U releases. (A.C.)

  1. The jet impingement phase of molten core-concrete interactions

    International Nuclear Information System (INIS)

    Sienicki, J.J.; Spencer, B.W.

    1986-01-01

    Scoping calculations have been carried out demonstrating that a significant and abrupt reduction in the corium temperature may be realized when molten corium drains as a jet from a localized breach in the RPV lower head to impinge upon the concrete basemat. The temperature decrease may range from a value of ∼170 K (∼140 K) for limestone (basaltic) aggregate concrete to a value approaching the initial corium superheat depending upon whether the forced convection impingement heat flux is assumed to be controlled by either thermal conduction across a slag film layer or the temperature boundary condition represented by a corium crust. The magnitude of the temperature reduction remains significant as the initial corium temperature, impinging corium mass, and initial localized breach size are varied over their range of potential values

  2. State-of-the-Art Report on Molten Corium Concrete Interaction and Ex-Vessel Molten Core Coolability

    International Nuclear Information System (INIS)

    Bonnet, Jean-Michel; Cranga, Michel; Vola, Didier; Marchetto, Cathy; Kissane, Martin; ); Robledo, Fernando; Farmer, Mitchel T.; Spengler, Claus; Basu, Sudhamay; Atkhen, Kresna; Fargette, Andre; Fisher, Manfred; Foit, Jerzi; Hotta, Akitoshi; Morita, Akinobu; Journeau, Christophe; Moiseenko, Evgeny; Polidoro, Franco; Zhou, Quan

    2017-01-01

    Activities carried out over the last three decades in relation to core-concrete interactions and melt coolability, as well as related containment failure modes, have significantly increased the level of understanding in this area. In a severe accident with little or no cooling of the reactor core, the residual decay heat in the fuel can cause the core materials to melt. One of the challenges in such cases is to determine the consequences of molten core materials causing a failure of the reactor pressure vessel. Molten corium will interact, for example, with structural concrete below the vessel. The reaction between corium and concrete, commonly referred to as MCCI (molten core concrete interaction), can be extensive and can release combustible gases. The cooling behaviour of ex-vessel melts through sprays or flooding is also complex. This report summarises the current state of the art on MCCI and melt coolability, and thus should be useful to specialists seeking to predict the consequences of severe accidents, to model developers for severe-accident computer codes and to designers of mitigation measures

  3. Security enhancement of double random phase encoding using rear-mounted phase masking

    Science.gov (United States)

    Chen, Junxin; Zhang, Yu; Li, Jinchang; Zhang, Li-bo

    2018-02-01

    In this paper, a security enhancement for double random phase encoding (DRPE) by introducing a rear-mounted phase masking procedure is presented. Based on exhaustively studying the cryptanalysis achievements of DRPE and its variants, invalidation of the second lens, which plays a critical role in cryptanalyzing processes, is concluded. The improved system can exploit the security potential of the second lens and consequently strengthen the security of DRPE. Experimental results and security analyses are presented in detail to demonstrate the security potential of the proposed cryptosystem.

  4. Assessment of In-vessel corium retention for VVER-440/V213

    International Nuclear Information System (INIS)

    Matejovic, P.; Barnak, M.; Bachraty, M.; Berky, R.

    2011-01-01

    In-vessel corium retention (IVR) via external reactor vessel cooling (ERVC) has been recognised as a feasible and promising severe accident management strategy for VVER-440/V213 reactors. In general, the avoiding of boiling crisis on outer (cooled) RPV (reactor pressure vessel) surface is sufficient condition for preserving the RPV integrity. The crucial point of the proposed IVR concept for VVER-440/V213 is the narrow gap between elliptical lower head and thermal and biological shield. In the cold conditions the width of this gap is only about 2 cm and would be even lower in hot IVR conditions, when the reactor wall is subjected to large thermal gradients due to temperature difference between the hot inner surface (loaded by corium) and cold outer surface (which is cooled by water in flooded cavity). Sufficient gap should remain free for coolant flow for the success of the proposed IVR concept. Thus, realistic estimation of thermal load and corresponding deformations of reactor wall and their impact on gap width are of primarily importance. Two different approaches were used for the estimation of the thermal load: a conservative approach and a transient approach, both were computed with the ASTEC code. The structural analysis of RPV subjected to IVR load was performed using the finite element method (FEM) code ANSYS release 10.0. From the results obtained it follows, that even when the RPV is subjected to limiting loading conditions during severe accident, there should be sufficient gap width (∼ 1 cm) between RPV wall and thermal/biological shield for the coolant flow in natural circulation regime alongside the outer surface of the RPV wall

  5. In-phased second harmonic wave array generation with intra-Talbot-cavity frequency-doubling.

    Science.gov (United States)

    Hirosawa, Kenichi; Shohda, Fumio; Yanagisawa, Takayuki; Kannari, Fumihiko

    2015-03-23

    The Talbot cavity is one promising method to synchronize the phase of a laser array. However, it does not achieve the lowest array mode with the same phase but the highest array mode with the anti-phase between every two adjacent lasers, which is called out-phase locking. Consequently, their far-field images exhibit 2-peak profiles. We propose intra-Talbot-cavity frequency-doubling. By placing a nonlinear crystal in a Talbot cavity, the Talbot cavity generates an out-phased fundamental wave array, which is converted into an in-phase-locked second harmonic wave array at the nonlinear crystal. We demonstrate numerical calculations and experiments on intra-Talbot-cavity frequency-doubling and obtain an in-phase-locked second harmonic wave array for a Nd:YVO₄ array laser.

  6. Thermal Load Analysis of Multilayered Corium in the Lower Head of Reactor Pressure Vessel during Severe Accident

    Energy Technology Data Exchange (ETDEWEB)

    Whang, Seok Won; Park, Hyun Sun [POSTECH, Pohang (Korea, Republic of); Hwang, Tae Suk [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2014-05-15

    In-Vessel Retention (IVR) is one of the severe accident management strategies to terminate or mitigate the severe accident which is also called 'core-melt accident'. The reactor vessel would be cooled by flooding the cavity with water. The molten core mixture is divided into two or three layers due to the density difference. Light metal layer which contains Fe and Zr is on the oxide layer which is consist of UO{sub 2} and ZrO{sub 2}. Heavy metal layer which contains U, Fe and Zr is located under the oxide layer. In oxide layer, the crust which is solidified material is formed along the boundary. The assessment of IVR for nuclear power plant has been conducted with lumped parameter method by Theofanous, Rempe and Esmaili. In this paper, the numerical analysis was performed and verified with the Esmaili's work to analyze thermal load of multilayered corium in pressurized reactor vessel and also to examine the condition of in-vessel corium characteristic before the vessel failure that lead to ex-vessel severe accident progression for example, ex-vessel debris bed cooling. The in-vessel coolability analysis for several scenarios is conducted for the plant which has higher power than AP1000. Two sensitivity analyses are conducted, the first is emissivity of light metal layer and the second is the heat transfer coefficient correlations of oxide layer. The effect of three layered system also investigated. In this paper, the numerical analysis was performed and verified with Esmaili's model to analyze thermal load of multilayered corium in pressurized reactor vessel. For two layered system, thermal load was analyzed according to the severe accident scenarios, emissivity of the light metal layer and heat transfer correlations of the.

  7. The modeling of core melting and in-vessel corium relocation in the APRIL code

    Energy Technology Data Exchange (ETDEWEB)

    Kim. S.W.; Podowski, M.Z.; Lahey, R.T. [Rensselaer Polytechnic Institute, Troy, NY (United States)] [and others

    1995-09-01

    This paper is concerned with the modeling of severe accident phenomena in boiling water reactors (BWR). New models of core melting and in-vessel corium debris relocation are presented, developed for implementation in the APRIL computer code. The results of model testing and validations are given, including comparisons against available experimental data and parametric/sensitivity studies. Also, the application of these models, as parts of the APRIL code, is presented to simulate accident progression in a typical BWR reactor.

  8. Elements of thought on corium containment strategy in reactor vessel

    International Nuclear Information System (INIS)

    2015-01-01

    As accidents with core fusion are taken into account for the design of third-generation nuclear reactors, this brief document presents the corium containment strategy for a reactor vessel, its limitations, as well as research programs undertaken by the IRSN in this field. The report describes the controlled management of a severe accident, the major objective being to minimise releases in the environment, that which requires to maintain the reactor containment enclosure tightness. Practical actions are briefly indicated. Key points indicating the feasibility of a strategy of containment in vessel are discussed. The impact of reactor power on the robustness of an approach with containment in vessel is also discussed. An overview of technological evolutions and contributions of researches made by the IRSN is finally proposed

  9. Presentation of the Vulcano installation which uses a plasma transferred arc rotary furnace for corium melting; Utilisation d`un four tournant a arc plasma transfere pour fondre et couler des melanges d`oxydes autour de 2000 C. Presentation du film Vulcano

    Energy Technology Data Exchange (ETDEWEB)

    Cognet, G.; Laffont, G.; Jegou, C.; Pierre, J.; Journeau, C.; Sudreau, F.; Roubaud, A. [CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. d`Etudes des Reacteurs

    1998-06-01

    In the case of loss coolant accident, the reactor core could melt and turn into a mixture of uranium oxides, zirconium, iron and steel called corium. A large experimental program has been launched to study corium behaviour, to qualify solutions to stabilize it and to confine it in the reactor containment. The Vulcano installation has been designed to that purpose. It is made up of: i) a plasma transferred arc rotary furnace, ii) a testing surface covered with refractory materials, iii) an induction heating system in order to simulate the residual power of corium, iv) instrumentation devices such as video cameras, thermocouples, infra-red pyrometers and flowmeters, and v) a laboratory to perform chemical analysis of corium samples. The first experimental results show that a mixture of corium and concrete spreads better than expected. It seems that a low initial height of matter can produce a great distance flowing while having a chaotic behaviour. This characteristic suggests that the mixture acts as a Bingham type threshold fluid. (A.C.) 5 refs.

  10. Direct phase retrieval in double blind Fourier holography.

    Science.gov (United States)

    Raz, Oren; Leshem, Ben; Miao, Jianwei; Nadler, Boaz; Oron, Dan; Dudovich, Nirit

    2014-10-20

    Phase measurement is a long-standing challenge in a wide range of applications, from X-ray imaging to astrophysics and spectroscopy. While in some scenarios the phase is resolved by an interferometric measurement, in others it is reconstructed via numerical optimization, based on some a-priori knowledge about the signal. The latter commonly use iterative algorithms, and thus have to deal with their convergence, stagnation, and robustness to noise. Here we combine these two approaches and present a new scheme, termed double blind Fourier holography, providing an efficient solution to the phase problem in two dimensions, by solving a system of linear equations. We present and experimentally demonstrate our approach for the case of lens-less imaging.

  11. Slit and phase grating diffraction with a double crystal diffractometer

    International Nuclear Information System (INIS)

    Treimer, Wolfgang; Hilger, Andre; Strobl, Markus

    2006-01-01

    The lateral coherence properties of a neutron beam (λ=0.5248nm) in a double crystal diffractometer (DCD) were studied by means of single slit diffraction and by diffraction by different perfect Silicon phase gratings. Perfect agreements were found for the lateral coherence length measured with the slit and for the one determined by Silicon phase gratings, however, some peculiarities are still present

  12. The modeling and analysis of in-vessel corium/structure interaction in boiling water reactors

    International Nuclear Information System (INIS)

    Podowski, M.Z.; Kurul, N.; Kim, S.-W.; Baltyn, W.; Frid, W.

    1997-01-01

    A complete stand-alone state-of-the-art model has been developed of the interaction between corium debris in the lower plenum and the RPV walls and internal structures, including the vessel failure mechanisms. This new model has been formulated as a set of consistent computer modules which could be linked with other existing models and/or computer codes. The combined lower head and lower plenum modules were parametrically tested and applied to predict the consequences of a hypothetical station blackout in a Swedish BWR. (author)

  13. Simultaneous transmission for an encrypted image and a double random-phase encryption key

    Science.gov (United States)

    Yuan, Sheng; Zhou, Xin; Li, Da-Hai; Zhou, Ding-Fu

    2007-06-01

    We propose a method to simultaneously transmit double random-phase encryption key and an encrypted image by making use of the fact that an acceptable decryption result can be obtained when only partial data of the encrypted image have been taken in the decryption process. First, the original image data are encoded as an encrypted image by a double random-phase encryption technique. Second, a double random-phase encryption key is encoded as an encoded key by the Rivest-Shamir-Adelman (RSA) public-key encryption algorithm. Then the amplitude of the encrypted image is modulated by the encoded key to form what we call an encoded image. Finally, the encoded image that carries both the encrypted image and the encoded key is delivered to the receiver. Based on such a method, the receiver can have an acceptable result and secure transmission can be guaranteed by the RSA cipher system.

  14. Influence of corium oxidation on fission product release from molten pool

    International Nuclear Information System (INIS)

    Bechta, S.V.; Krushinov, E.V.; Vitol, S.A.

    2009-01-01

    Release of low-volatile fission products and core materials from molten oxidic corium was investigated in the EVAN project under the auspices of ISTC. The experiments carried out in cold crucible with induction heating and RASPLAV test facility are described. The results are discussed in terms of reactor application; in particular, pool configuration, melt oxidation kinetics, critical influence of melt surface temperature and oxidation index on the fission product release rate and aerosol particle composition. The relevance of measured high release of Sr from the molten pool for the reactor application is highlighted. Comparisons of the experimental data with those from the COLIMA CA-U3 test and the VERCORS tests, as well as with predictions from IVTANTHERMO and GEMINI/NUCLEA are set. (author)

  15. Double-antibody solid-phase radioimmunoassay: a simplified phase-separation procedure applied to various ligands

    International Nuclear Information System (INIS)

    Tevaarwerk, G.J.M.; Boyle, D.A.; Hurst, C.J.; Anguish, I.; Uksik, P.

    1980-01-01

    The purpose was to develop a simplified and reliable method of separating free from antibody-bound ligand using a precipitating antibody linked to a cellulose derivative. Dose-response curves and control sera were set up in parallel for various pituitary and placental polypeptides, steroid hormones, insulin, glucagon, triiodothyronine, thyroxine, angiotensin I, calcitonin, gastrin, cyclic AMP, and digoxin. After first-antibody reactions had reached equilibrium, free and bound ligand were separated using a double-antibody solid-phase system in parallel with conventional methods, including dextran-coated charcoal, double-antibody precipitation, single-antibody solid phase, organic solvents, salt precipitation, and anion-exchange resins. The effect of variations in temperature, incubation time, protein content, pH, and amount of separating material added were studied. The results showed that separation was complete within 1 hr for small ligand molecules and within 2 hr for larger ones. Dose-response curves and control-sera results closely paralleled those obtained with conventional methods. The method was not affected by moderate variations in incubation variables. Nonspecific binding was less than 3% in all assays, while intra-assay and interassay coefficients of variation were similar to those obtained with conventional phase-separation methods. It is concluded that the method is a simple and rapid alternative phase-separation system. It has the advantage of being free from common nonspecific intersample variations, and can be applied to any assay system based on rabbit or guinea pig antibodies without preliminay time- or reagent-consuming titration or adjustments to establish optimum phase-separating conditions

  16. Double-Carrier Phase-Disposition Pulse Width Modulation Method for Modular Multilevel Converters

    DEFF Research Database (Denmark)

    Zhou, Fayun; Luo, An; Li, Yan

    2017-01-01

    Modular multilevel converters (MMCs) have become one of the most attractive topologies for high-voltage and high-power applications. A double-carrier phase disposition pulse width modulation (DCPDPWM) method for MMCs is proposed in this paper. Only double triangular carriers with displacement ang......, the proposed method and theoretical analysis are verified by simulation and experimental results. View Full-Text...

  17. WARP: a double phase argon programme for dark matter detection

    International Nuclear Information System (INIS)

    Ferrari, N

    2006-01-01

    WARP (Wimp ARgon Programme) is a double phase Argon detector for Dark Matter search under construction at Laboratori Nazionali del Gran Sasso. We present recent results obtained operating a prototype with a sensitive mass of 2.3 litres deep underground

  18. A comparative study of microstructure and mechanical properties between friction stir welded single and double phase brass alloys

    International Nuclear Information System (INIS)

    Heidarzadeh, A.; Saeid, T.

    2016-01-01

    This study was done in order to compare the microstructure and mechanical properties of friction stir welded single and double phase brass alloys. The microstructure of the joints were examined using optical microscope, scanning electron microscope (SEM), scanning transmission electron microscope (STEM), and X-ray diffraction. Furthermore, tensile test and fractography were applied to evaluate the mechanical properties of the joints. The results showed that the grain size of the stir zone in the double phase joint was smaller than that of the single phase alloy. In comparison with base metals, both of the joints contained high density of dislocations with a qualitatively similar texture. However, the dislocation density of the double phase joint was somewhat lower than that of the single phase one. Moreover, the joints had higher tensile strength, lower elongation and less ductile fracture compared to their base metals due to their finer grain size and higher dislocation density. The double phase joint had higher strength and lower elongation than single phase joint due to the effect of the second phase.

  19. Molten Corium-Concrete Interaction Behavior Analyses for Severe Accident Management in CANDU Reactor

    International Nuclear Information System (INIS)

    Choi, Y.; Kim, D. H.; Song, Y. M.

    2014-01-01

    After the last few severe accidents, the importance of accident management in nuclear power plants has increased. Many countries, including the United States (US) and Canada, have focused on understanding severe accidents in order to identify ways to further improve the safety of nuclear plants. It has been recognized that severe accident analyses of nuclear power plants will be beneficial in understanding plant-specific vulnerabilities during severe accidents. The objectives of this paper are to describe the molten corium behavior to identify a plant response with various concrete specific components. Accident analyses techniques using ISSAC can be useful tools for MCCI behavior in severe accident mitigation

  20. In-calandria retention of corium in Indian PHWR - experimental simulations with decay heat

    International Nuclear Information System (INIS)

    Nayak, A.K.

    2015-01-01

    The severe accident at Fukushima has compelled the nuclear community to relook at the safety of existing nuclear power plants (NPP) against natural origin events of beyond design basis and prolonged station black out (SBO). A major lesson learned is to assess the capability of the safety systems to cool the reactor core and spent fuel storage facilities in the event of a prolonged station black out (SBO). Similar safety review is planned for the Indian Pressurized Heavy Water Reactors (PHWRs) considering a prolonged SBO. The Indian PHWR is a heavy water-moderated and cooled, natural uranium-fuelled reactor in which the horizontal fuel channels are submerged in a pool of heavy water moderator located inside the calandria vessel. The calandria vessel is surrounded by a calandria vault having large volume of light water. Concerns are raised that in the event of an unmitigated SBO, it may result into a low probable severe accident leading to core melt down. The core melt may further fail the calandria vessel in case the melt is not quenched. If the calandria vessel fails, the corium shall interact with the cold calandria vault water and concrete resulting in generation of large amount of non-condensable gases and steam which will lead to over pressurization of containment and may cause its failure. Therefore, in-calandria corium retention via external cooling using vault water can be considered as an important accident management program in PHWR. In this strategy, the core melt retains inside the calandria vessel by continually removing the stored heat and decay heat through outer surface of the vessel by cooling water and maintaining the integrity of the vessel. The present study focuses on experimental investigation in a scaled facility of an Indian PHWR to investigate the coolability of molten corium with simulated decay heat by using the calandria vault water. Molten borosilicate glass was used as the simulant due to its comparable heat transfer characteristics

  1. Solid phase stability of a double-minimum interaction potential system

    International Nuclear Information System (INIS)

    Suematsu, Ayumi; Yoshimori, Akira; Saiki, Masafumi; Matsui, Jun; Odagaki, Takashi

    2014-01-01

    We study phase stability of a system with double-minimum interaction potential in a wide range of parameters by a thermodynamic perturbation theory. The present double-minimum potential is the Lennard-Jones-Gauss potential, which has a Gaussian pocket as well as a standard Lennard-Jones minimum. As a function of the depth and position of the Gaussian pocket in the potential, we determine the coexistence pressure of crystals (fcc and bcc). We show that the fcc crystallizes even at zero pressure when the position of the Gaussian pocket is coincident with the first or third nearest neighbor site of the fcc crystal. The bcc crystal is more stable than the fcc crystal when the position of the Gaussian pocket is coincident with the second nearest neighbor sites of the bcc crystal. The stable crystal structure is determined by the position of the Gaussian pocket. These results show that we can control the stability of the solid phase by tuning the potential function

  2. Application of the Double-Tangent Construction of Coexisting Phases to Any Type of Phase Equilibrium for Binary Systems Modeled with the Gamma-Phi Approach

    Science.gov (United States)

    Jaubert, Jean-Noël; Privat, Romain

    2014-01-01

    The double-tangent construction of coexisting phases is an elegant approach to visualize all the multiphase binary systems that satisfy the equality of chemical potentials and to select the stable state. In this paper, we show how to perform the double-tangent construction of coexisting phases for binary systems modeled with the gamma-phi…

  3. Neutrinoless double beta decay in GERDA Phase II

    International Nuclear Information System (INIS)

    Macolino, C.

    2014-01-01

    The GERmanium Detector Array, GERDA, is designed to search for neutrinoless double beta (0νββ) decay of 76 Ge and it is installed in the Laboratori Nazionali del Gran Sasso (LNGS) of INFN, Italy. The GERDA experiment has completed the Phase I with a total collected exposure of 21.6 kg yr and a background index (BI) of the order of BI ≃ 10 −2 cts/(keVkg yr). No excess of events from 0νββ decay has been observed and a lower limit on the half-life on the 0νββ decay for 76 Ge has been estimated: T 0ν 1 /2 > 2.1·10 25 yr at 90% CL. The goal of GERDA Phase II is to reach the target sensitivity of T 0ν 1 /2 ≃ 1.4 · 10 26 yr, with an increased total mass of the enriched material and a reduced background level. In this paper the results from GERDA Phase I and the major improvements planned for Phase II are discussed.

  4. Results on neutrinoless double beta decay from GERDA phase I

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    After motivating searches of double beta decay and lepton number violation details about the construction, operation and analysis of GERDA will be given. Results of the recently completed phase I of data taking will then be presented and interpreted. Finally an outlook on future plans will be given.

  5. Experimental investigation of 150-KG-scale corium melt jet quenching in water

    Energy Technology Data Exchange (ETDEWEB)

    Magallon, D.; Hohmann, H.

    1995-09-01

    This paper compares and discusses the results of two large scale FARO quenching tests known as L-11 and L-14, which involved, respectively, 151 kg of W% 76.7 UO{sub 2} + 19.2 ZrO{sub 2} + 4.1 Zr and 125 kg of W% 80 UO{sub 2} + 20 ZrO{sub 2} melts poured into 600-kg, 2-m-depth water at saturation at 5.0 MPa. The results are further compared with those of two previous tests performed using a pure oxidic melt, respectively 18 and 44 kg of W% 80 UO{sub 2} + 20 ZrO{sub 2} melt quenched in 1-m-depth water at saturation at 5.0 MPa. In all the tests, significant breakup and quenching took place during the melt fall through the water. No steam explosion occurred. In the tests performed with a pure oxide UO{sub 2}-ZrO{sub 2} melt, part of the corium (from 1/6 to 1/3) did not breakup and reached the bottom plate still molten whatever the water depth was. Test L-11 data suggest that full oxidation and complete breakup of the melt occurred during the melt fall through the water. A proportion of 64% of the total energy content of the melt was released to the water during this phase ({approximately}1.5 s), against 44% for L-14. The maximum temperature increase of the bottom plate was 330 K (L-14). The mean particle size of the debris ranged between 2.5 and 4.8mm.

  6. Active phase double crystal monochromator for JET (diagnostic system KS1)

    International Nuclear Information System (INIS)

    Andelfinger, C.; Fink, J.; Fussmann, G.; Krause, H.; Roehr, H.; Schilling, H.B.; Schumacher, U.; Becker, P.; Siegert, H.; Abel, P.; Keul, J.

    1984-03-01

    The determination of the impurity concentrations in JET plasmas by absolute radiation measurements in a wide spectral range can be done with a double crystal monochromator device in parallel mode, which is able to operate during all experimental phases of JET. The report describes the engineering design and tests for a double crystal monochromator that fulfills the conditions of parallel orientation of the two crystals during fast wavelength scan, of shielding against neutrons and gamma rays by its folded optical pathway and of sufficient spectral resolution for line profile measurements. (orig.)

  7. Analytical evaluation of two-phase natural circulation flow characteristics under external reactor vessel cooling

    International Nuclear Information System (INIS)

    Park, Jong Woon

    2009-01-01

    This work proposes an analytical method of evaluating the effects of design and operating parameters on the low-pressure two-phase natural circulation flow through the annular shaped gap at the reactor vessel exterior surface heated by corium (molten core) relocated to the reactor vessel lower plenum after loss of coolant accidents. A natural circulation flow velocity equation derived from steady-state mass, momentum, and energy conservation equations for homogeneous two-phase flow is numerically solved for the core melting conditions of the APR1400 reactor. The solution is compared with existing experiments which measured natural circulation flow through the annular gap slice model. Two kinds of parameters are considered for this analytical method. One is the thermal-hydraulic conditions such as thermal power of corium, pressure and inlet subcooling. The others are those for the thermal insulation system design for the purpose of providing natural circulation flow path outside the reactor vessel: inlet flow area, annular gap clearance and system resistance. A computer program NCIRC is developed for the numerical solution of the implicit flow velocity equation.

  8. Influence of corium oxidation on fission product release from molten pool

    Energy Technology Data Exchange (ETDEWEB)

    Bechta, S.V., E-mail: bechta@sbor.spb.s [Alexandrov Scientific-Research Institute of Technology (NITI), Sosnovy Bor (Russian Federation); Krushinov, E.V.; Vitol, S.A.; Khabensky, V.B.; Kotova, S.Yu.; Sulatsky, A.A. [Alexandrov Scientific-Research Institute of Technology (NITI), Sosnovy Bor (Russian Federation); Gusarov, V.V.; Almyashev, V.I. [Grebenschikov Institute of Silicate Chemistry of the Russian Academy of Sciences (ISC RAS), St. Petersburg (Russian Federation); Ducros, G.; Journeau, C. [CEA, DEN, Cadarache, F-13108 St. Paul lez Durance (France); Bottomley, D. [Joint Research Centre Institut fuer Transurane (ITU), Karlsruhe (Germany); Clement, B. [Institut de Radioprotection et Surete Nucleaire (IRSN), St. Paul lez Durance (France); Herranz, L. [CIEMAT, Madrid (Spain); Guentay, S. [PSI, Wuerenlingen (Switzerland); Trambauer, K. [GRS, Muenchen (Germany); Auvinen, A. [VTT, Espoo (Finland); Bezlepkin, V.V. [SPbAEP, St. Petersburg (Russian Federation)

    2010-05-15

    Qualitative and quantitative determination of the release of low-volatile fission products and core materials from molten oxidic corium was investigated in the EVAN project under the auspices of ISTC. The experiments carried out in a cold crucible with induction heating and RASPLAV test facility are described. The results are discussed in terms of reactor application; in particular, pool configuration, melt oxidation kinetics, critical influence of melt surface temperature and oxidation index on the fission product release rate, aerosol particle composition and size distribution. The relevance of measured high release of Sr from the molten pool for the reactor application is highlighted. Comparisons of the experimental data with those from the COLIMA CA-U3 test and the VERCORS tests, as well as with predictions from IVTANTHERMO and GEMINI/NUCLEA codes are made. Recommendations for further investigations are proposed following the major observations and discussions.

  9. Post Analysis of Two Phase Natural Circulation Mass Flow Rate for CE-PECS

    Energy Technology Data Exchange (ETDEWEB)

    Park, R. J.; Ha, K. S.; Rhee, B. W.; Kim, H. Y. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The coolant in the inclined channel absorbs the decay heat and sensible heat transferred from the corium through the structure of the core catcher body and flows up to the pool as a two phase mixture. On the other hand, some of the pool water will flow into the inlet of the downcomer piping, and will flow into the inclined cooling channel of the core catcher by gravity. The engineered cooling channel is designed to provide effective long-term cooling and stabilization of the corium mixture in the core catcher body while facilitating steam venting. To maintain the integrity of the ex-vessel core catcher, however, it is required that the coolant be circulated at a rate along the inclined cooling channel sufficient to avoid CHF (Critical Heat Flux) on the heating surface of the cooling channel. In this study, post simulations of two phase natural circulation in the CEPECS have been performed to evaluate two phase flow characteristics and the natural circulation mass flow rate in the flow channel using the RELAP5/MOD3 computer code. Post simulations of two phase natural circulation in the CE-PECS have been conducted to evaluate two phase flow characteristics and the natural circulation mass flow rate in the flow channel using the RELAP5/MOD3 computer code. The RELAP5/MOD3 results have shown that the water circulation mass flow rate is approximately 8.7 kg/s in the base case.

  10. Post Analysis of Two Phase Natural Circulation Mass Flow Rate for CE-PECS

    International Nuclear Information System (INIS)

    Park, R. J.; Ha, K. S.; Rhee, B. W.; Kim, H. Y.

    2015-01-01

    The coolant in the inclined channel absorbs the decay heat and sensible heat transferred from the corium through the structure of the core catcher body and flows up to the pool as a two phase mixture. On the other hand, some of the pool water will flow into the inlet of the downcomer piping, and will flow into the inclined cooling channel of the core catcher by gravity. The engineered cooling channel is designed to provide effective long-term cooling and stabilization of the corium mixture in the core catcher body while facilitating steam venting. To maintain the integrity of the ex-vessel core catcher, however, it is required that the coolant be circulated at a rate along the inclined cooling channel sufficient to avoid CHF (Critical Heat Flux) on the heating surface of the cooling channel. In this study, post simulations of two phase natural circulation in the CEPECS have been performed to evaluate two phase flow characteristics and the natural circulation mass flow rate in the flow channel using the RELAP5/MOD3 computer code. Post simulations of two phase natural circulation in the CE-PECS have been conducted to evaluate two phase flow characteristics and the natural circulation mass flow rate in the flow channel using the RELAP5/MOD3 computer code. The RELAP5/MOD3 results have shown that the water circulation mass flow rate is approximately 8.7 kg/s in the base case

  11. Simulation of Two-Phase Natural Circulation Loop for Core Cather Cooling Using Air Water

    International Nuclear Information System (INIS)

    Revankar, S. T.; Huang, S. F.; Song, K. W.; Rhee, B. W.; Park, R. J.; Song, J. H.

    2012-01-01

    A closed loop natural circulation system employs thermally induced density gradients in single phase or two-phase liquid form to induce circulation of the working fluid thereby obviating the need for any mechanical moving parts such as pumps and pump controls. This increases the reliability and safety of the cooling system and reduces installation, operation and maintenance costs. That is the reason natural circulation cooling has been considered in advanced reactor core cooling and in engineered safety systems. Natural circulation cooling has been proposed to remove reactor decay heat by external vessel cooling for in-vessel core retention during sever accident scenario. Recently in APR1400 reactor core catcher design natural circulation cooling is proposed to stabilize and cool the corium ejected from the reactor vessel following core melt and breach of reactor vessel. The natural circulation flow is similar to external vessel cooling where water flows through an inclined narrow gap below hot surface and is heated to produce boiling. The two-phase natural circulation enables cooling of the corium pool collected on core catcher. Due to importance of this problem this paper focuses simulation of the two-phase natural circulation through inclined gap using air-water system. Scaling criteria for air-water loop are derived that enable simulation of the flow regimes and natural circulation flow rates in such systems using air-water system

  12. Analysis of materials in connection with corium melt retention in WWER reactor vessels. Final report for the period 15 October 1995 - 14 October 1996

    International Nuclear Information System (INIS)

    Efanov, A.D.

    1997-02-01

    Analysis of the state of severe accident codes being developed in Russia describing processes of corium - reactor pressure vessel interaction during severe accidents showed that at present there is no reliable validated and verified code. This study considered some of the most advanced severe accident codes which include models of heat generating liquid convections and RPV tolerance capacity however the possibility of physico-chemical interactions is not being considered. The final report demonstrates one of the examples for the settlement modelling of processes of reactor core debris cooling and corium pool mirror cooling with the use of the KOSTER 2 Code developed at IPPE. It was shown that cooling by water spray within some definite region of drop dimensions (0.5 / 4 mm in diameter) could provide the opportunity of the WWER type RPV integrity preservation under the accepted conditions. Due to some uncertainties in calculation modules obtained results are recommended to be treated as preliminary. (author). 26 refs, figs, tabs

  13. Introduction to the modified TROI test facility for fuel coolant interaction under a submerged reactor vessel

    International Nuclear Information System (INIS)

    Na, Young Su; Hong, Seong-Wan; Song, Jin Ho; Hong, Seong-Ho

    2014-01-01

    The molten Fuel-Coolant Interaction (FCI) can threaten the integrity of the reactor cavity under a severe accident. A steam explosion can be occurred by the rapid energy transfer in the high-temperature corium melt jet penetrating into water, which makes the dynamic load applying to the surrounding structure. Before a steam explosion, the corium melt jet breaks into small-sized particles, and the steam is generated continuously by the film boiling on the hot surface of the melt contacting with water. The premixing phase consisting of the corium melt, water, and steam can determine the intensity of the steam explosion. Unfortunately, the previous experimental studies on the FCI phenomena have carried out under a free fall of the corium melt jet in a gas phase before interacting with water. The previous TROI (Test for Real cOrium Interaction with water) test facility, that is a well-known test facility for the FCI phenomena in the world, has observed a steam explosion under a free fall of a corium melt jet in a gas phase before contacting a coolant since 2000, which is changing to simulate the FCI phenomena under a submerged reactor vessel. This study introduces the modified TROI test facility as shown in Fig. 1 and the considerations for the experiment with success. The previous TROI test facility, that has observed the molten Fuel-Coolant Interaction (FCI) with a free fall of the prototypic corium melt in a gas phase before contacting a coolant, was modified to simulate the FCI phenomena under a submerged reactor vessel for the assessment of the In-Vessel Retention (IVR) concept, i.e., without a free-fall distance of the corium melt before contacting water. The superheated prototypic corium melt created by the cold crucible melting method moves on a releasing valve newly installed just above the water level in the interaction vessel. The corium melt will stay on a releasing valve in less than 0.2 seconds to reduce heat loss for preventing the solidification, and

  14. Measurement of local two-phase flow parameters of nanofluids using conductivity double-sensor probe.

    Science.gov (United States)

    Park, Yu Sun; Chang, Soon Heung

    2011-04-04

    A two-phase flow experiment using air and water-based γ-Al2O3 nanofluid was conducted to observe the basic hydraulic phenomenon of nanofluids. The local two-phase flow parameters were measured with a conductivity double-sensor two-phase void meter. The void fraction, interfacial velocity, interfacial area concentration, and mean bubble diameter were evaluated, and all of those results using the nanofluid were compared with the corresponding results for pure water. The void fraction distribution was flattened in the nanofluid case more than it was in the pure water case. The higher interfacial area concentration resulted in a smaller mean bubble diameter in the case of the nanofluid. This was the first attempt to measure the local two-phase flow parameters of nanofluids using a conductivity double-sensor two-phase void meter. Throughout this experimental study, the differences in the internal two-phase flow structure of the nanofluid were identified. In addition, the heat transfer enhancement of the nanofluid can be resulted from the increase of the interfacial area concentration which means the available area of the heat and mass transfer.

  15. Improvements in modelling (by ESCADRE mod1.0) radiative heat losses through gas and aerosols generated by molten corium-concrete interactions

    International Nuclear Information System (INIS)

    Passalacqua, R.

    1996-01-01

    Aerosols generated during the molten core-concrete interaction (MCCI) influence the reactor cavity thermal hydraulics: the cloud of aerosols, located inside the reactor cavity, restrains the upward-directed heat exchange consequently the cool-down of the high-temperature molten corium for a considerable period of time. IPSN is developing a computer code system for source predictions in severe accident scenarios. This code system is named ESCADRE. WECHSL/CALTHER is internal module dealing with MCCI (it is also a stand-alone code): it models the heat transfers involving the superior volume of the cavity. When modelling the upward-directed power distribution by WECHSL/CALTHER, a faster concrete basemat penetration takes place due to the low heat losses of the closed MCCI cavity enclosure. The model, here presented, is going to be validated with data from the AEROSTAT experiment. This experiment, planned at CEA Cadarache, will evaluate the influence of aerosols on the global power distribution in the reactor cavity. Radiative heat losses are important especially for cavity configurations such as those of new plant designs (equipped with a core-catcher) where the upward power losses are promoted by the corium spreading in a flat cavity

  16. Assessment of the MARS Code Using the Two-Phase Natural Circulation Experiments at a Core Catcher Test Facility

    Directory of Open Access Journals (Sweden)

    Dong Hun Lee

    2017-01-01

    Full Text Available A core catcher has been developed to maintain the integrity of nuclear reactor containment from molten corium during a severe accident. It uses a two-phase natural circulation for cooling molten corium. Flow in a typical core catcher is unique because (i it has an inclined cooling channel with downwards-facing heating surface, of which flow processes are not fully exploited, (ii it is usually exposed to a low-pressure condition, where phase change causes dramatic changes in the flow, and (iii the effects of a multidimensional flow are very large in the upper part of the core catcher. These features make computational analysis more difficult. In this study, the MARS code is assessed using the two-phase natural circulation experiments that had been conducted at the CE-PECS facility to verify the cooling performance of a core catcher. The code is a system-scale thermal-hydraulic (TH code and has a multidimensional TH component. The facility was modeled by using both one- and three-dimensional components. Six experiments at the facility were selected to investigate the parametric effects of heat flux, pressure, and form loss. The results show that MARS can predict the two-phase flow at the facility reasonably well. However, some limitations are obviously revealed.

  17. Fractional Fourier domain optical image hiding using phase retrieval algorithm based on iterative nonlinear double random phase encoding.

    Science.gov (United States)

    Wang, Xiaogang; Chen, Wen; Chen, Xudong

    2014-09-22

    We present a novel image hiding method based on phase retrieval algorithm under the framework of nonlinear double random phase encoding in fractional Fourier domain. Two phase-only masks (POMs) are efficiently determined by using the phase retrieval algorithm, in which two cascaded phase-truncated fractional Fourier transforms (FrFTs) are involved. No undesired information disclosure, post-processing of the POMs or digital inverse computation appears in our proposed method. In order to achieve the reduction in key transmission, a modified image hiding method based on the modified phase retrieval algorithm and logistic map is further proposed in this paper, in which the fractional orders and the parameters with respect to the logistic map are regarded as encryption keys. Numerical results have demonstrated the feasibility and effectiveness of the proposed algorithms.

  18. A Heat Transfer Model for a Stratified Corium-Metal Pool in the Lower Plenum of a Nuclear Reactor

    International Nuclear Information System (INIS)

    Sohal, M.S.; Siefken, L.J.

    1999-01-01

    This preliminary design report describes a model for heat transfer in a corium-metal stratified pool. It was decided to make use of the existing COUPLE model. Currently available correlations for natural convection heat transfer in a pool with and without internal heat generation were obtained. The appropriate correlations will be incorporated in the existing COUPLE model. Heat conduction and solidification modeling will be done with existing algorithms in the COUPLE. Assessment of the new model will be done by simple energy conservation problems

  19. Simple analytical expressions for the analysis of the phase-dependent electromagnetically induced transparency in a double-Λ atomic scheme

    International Nuclear Information System (INIS)

    Dimitrijević, J; Arsenović, D

    2012-01-01

    We study a double-Λ atomic scheme that interacts with four laser light beams so that a closed loop of radiation-induced transitions is formed. When specific relations for field phases, frequencies and amplitudes are satisfied, coherent superpositions (the so-called ‘dark states’) can be formed in a double-Λ, which leads to the well-known effect of electromagnetically induced transparency (EIT). If the interaction scheme in a double-Λ system is such that a closed loop is formed, the relative phase of the laser light fields becomes very important. We analyze here the effect of the lasers' relative phase on the EIT in double-Λ configuration of levels. The theoretical study of interactions of lasers with a double-Λ atomic scheme is commonly conducted by solving the optical Bloch equations (OBEs). We use here a perturbative method for solving OBEs, where the interaction of lasers with double-Λ is considered a perturbation. An advantage of the perturbative method is that it generally produces simpler solutions, and analytical expressions can be obtained. We present analytical expressions for the lower-order corrections of the EIT signal. Our results show that the EIT by the perturbative method can be approximated by the sum of products of complex Lorentzians. Through these expressions, we see in what way the relative phase affects the overall EIT profile. (paper)

  20. Thermo-physical properties of corium: development of an assessed data base for severe accident applications

    Energy Technology Data Exchange (ETDEWEB)

    Strizhov, V.F.; Galimov, R.G.; Ozrin, V.D. [Nuclear Safety Institute of the Russian Academy of Sciences, Moscow (Russian Federation); Yu Zitserman, V.; Kobzev, G.I.; Fokin, L.R. [Institute of high temperatures, Russian Academy of Sciences, Moscow (Russian Federation); Piluso, P. [CEA Cadarache (DEN/DTN/STRI), Lab. d' essais pour la Maitrise des Accidents graves, 13 - Saint Paul lez Durance (France); Chalaye, H. [CEA Saclay, Dir. de l' Energie Nucleaire, 91 - Gif sur Yvette (France)

    2007-07-01

    In a hypothetical case of a core melt-down scenarios a very high temperature would be reached (up to 3000 K). In this case, the materials of the core and structural materials (fuel, cladding, metallic alloys, concrete, etc.) could melt to form complex and aggressive mixtures called corium. Modelling of severe accident phenomena, code development and assessments of nuclear safety require a reliable knowledge of the thermophysical properties of corium at wide temperature range (below solidus temperature, between solidus and liquidus temperature and above the liquidus temperature). Common Russian-French project ISTC 3078, has been devoted to the development, assessment and recommendation for the establishment of a reliable thermophysical data base for severe accident applications. The project consists of two tasks related to properties of pure metallic (U, Zr, Fe, Cr, Ni) and oxide (UO{sub 2}, U{sub 3}O{sub 8}, U{sub 4}O{sub 9}, NiO, ZrO{sub 2}, Cr{sub 2}O{sub 3}, FeO, Fe{sub 2}O{sub 3}, Fe{sub 3}O{sub 4}, Al{sub 2}O{sub 3}, CaO, MgO, SiO{sub 2}, HfO{sub 2}, CeO{sub 2}) components, and mixtures relevant to severe accident conditions. Three categories of data (on UPAK classification) were considered: experimental data, critically evaluated data, and predicted data. The data of the first category is a result of specific experiment, data of the second category is a result of the analysis of data consistency and co-processing (expert and statistical) obtained in several experiments, data of the third category are based on model estimates, using correlations between different physical properties. The process of assessing, review and development of recommendation is described in the paper and illustrated by examples on thermophysical properties. (authors)

  1. Automated solid-phase extraction of phenolic acids using layered double hydroxide-alumina-polymer disks.

    Science.gov (United States)

    Ghani, Milad; Palomino Cabello, Carlos; Saraji, Mohammad; Manuel Estela, Jose; Cerdà, Víctor; Turnes Palomino, Gemma; Maya, Fernando

    2018-01-26

    The application of layered double hydroxide-Al 2 O 3 -polymer mixed-matrix disks for solid-phase extraction is reported for the first time. Al 2 O 3 is embedded in a polymer matrix followed by an in situ metal-exchange process to obtain a layered double hydroxide-Al 2 O 3 -polymer mixed-matrix disk with excellent flow-through properties. The extraction performance of the prepared disks is evaluated as a proof of concept for the automated extraction using sequential injection analysis of organic acids (p-hydroxybenzoic acid, 3,4-dihydroxybenzoic acid, gallic acid) following an anion-exchange mechanism. After the solid-phase extraction, phenolic acids were quantified by reversed-phase high-performance liquid chromatography with diode-array detection using a core-shell silica-C18 stationary phase and isocratic elution (acetonitrile/0.5% acetic acid in pure water, 5:95, v/v). High sensitivity and reproducibility were obtained with limits of detection in the range of 0.12-0.25 μg/L (sample volume, 4 mL), and relative standard deviations between 2.9 and 3.4% (10 μg/L, n = 6). Enrichment factors of 34-39 were obtained. Layered double hydroxide-Al 2 O 3 -polymer mixed-matrix disks had an average lifetime of 50 extractions. Analyte recoveries ranged from 93 to 96% for grape juice and nonalcoholic beer samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Efficient Text Encryption and Hiding with Double-Random Phase-Encoding

    Directory of Open Access Journals (Sweden)

    Mohammad S. Alam

    2012-10-01

    Full Text Available In this paper, a double-random phase-encoding technique-based text encryption and hiding method is proposed. First, the secret text is transformed into a 2-dimensional array and the higher bits of the elements in the transformed array are used to store the bit stream of the secret text, while the lower bits are filled with specific values. Then, the transformed array is encoded with double-random phase-encoding technique. Finally, the encoded array is superimposed on an expanded host image to obtain the image embedded with hidden data. The performance of the proposed technique, including the hiding capacity, the recovery accuracy of the secret text, and the quality of the image embedded with hidden data, is tested via analytical modeling and test data stream. Experimental results show that the secret text can be recovered either accurately or almost accurately, while maintaining the quality of the host image embedded with hidden data by properly selecting the method of transforming the secret text into an array and the superimposition coefficient. By using optical information processing techniques, the proposed method has been found to significantly improve the security of text information transmission, while ensuring hiding capacity at a prescribed level.

  3. Nine-phase hex-tuple inverter for five-level output based on double carrier PWM technique

    DEFF Research Database (Denmark)

    Padmanaban, S.; Bhaskar, M.S.; Blaabjerg, F.

    2016-01-01

    This work articulates double carrier based five-level pulsewidth modulation for a nine-phase hex-tuple inverter AC drive. A set of standard three-phase voltage source inverter (VSI) with slight modification is used for framing the ninephase AC drive. In particular VSI packed with one bidirectiona...

  4. Thermal analysis of a double layer phase change material floor

    International Nuclear Information System (INIS)

    Jin Xing; Zhang Xiaosong

    2011-01-01

    Phase change materials (PCMs) can be used to shift the cooling or heating load from the peak period to the off-peak period. In this paper, a new double layer phase change material (PCM) floor is put forward. The two layers of PCM have different melting temperature. The system is used to store heat or cold energy in the off-peak period and release them in the peak period during heating or cooling. According to the numerical model built in this paper, the thermal performances of the floor are analyzed. The results show that the optimal melting temperatures of PCMs exist. The fluctuations of the floor surface temperatures and the heat fluxes will be reduced and the system still can provide a certain amount of heat or cold energy after the heat pump or chiller has been turned off for a long time. Compared to the floor without PCM, the energy released by the floor with PCM in peak period will be increased by 41.1% and 37.9% during heating and cooling when the heat of fusion of PCM is 150 kJ/kg. - Highlights: → A new double layer phase change material floor is put forward. → The system is used to store heat or cold energy in the off-peak period and release them in the peak period during heating or cooling. → The optimal melting temperatures of PCMs in the system exist. → The heat and cold energy released by the floor with PCM in peak period can be increased by 41.1% and 37.9%.

  5. Key management of the double random-phase-encoding method using public-key encryption

    Science.gov (United States)

    Saini, Nirmala; Sinha, Aloka

    2010-03-01

    Public-key encryption has been used to encode the key of the encryption process. In the proposed technique, an input image has been encrypted by using the double random-phase-encoding method using extended fractional Fourier transform. The key of the encryption process have been encoded by using the Rivest-Shamir-Adelman (RSA) public-key encryption algorithm. The encoded key has then been transmitted to the receiver side along with the encrypted image. In the decryption process, first the encoded key has been decrypted using the secret key and then the encrypted image has been decrypted by using the retrieved key parameters. The proposed technique has advantage over double random-phase-encoding method because the problem associated with the transmission of the key has been eliminated by using public-key encryption. Computer simulation has been carried out to validate the proposed technique.

  6. Mott-insulating phases and magnetism of fermions in a double-well optical lattice

    International Nuclear Information System (INIS)

    Wang, Xin; Zhou, Qi; Das Sarma, S.

    2011-01-01

    We theoretically investigate, using nonperturbative strong correlation techniques, Mott-insulating phases and magnetic ordering of two-component fermions in a two-dimensional double-well optical lattice. At filling of two fermions per site, there are two types of Mott insulators, one of which is characterized by spin-1 antiferromagnetism below the Neel temperature. The superexchange interaction in this system is induced by the interplay between the interband interaction and the spin degree of freedom. A great advantage of the double-well optical lattice is that the magnetic quantum phase diagram and the Neel temperature can be easily controlled by tuning the orbital energy splitting of the two-level system. Particularly, the Neel temperature can be one order of magnitude larger than that in standard optical lattices, facilitating the experimental search for magnetic ordering in optical lattice systems.

  7. Efficacy of double arterial phase dynamic magnetic resonance imaging with the sensitivity encoding technique versus dynamic multidetector-row helical computed tomography for detecting hypervascular hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Kumano, Seishi; Okada, Masahiro; Murakami, Takamichi; Uemura, Masahiko; Haraikawa, Toyoaki; Hirata, Masaaki; Kikuchi, Keiichi; Mochizuki, Teruhito; Kim, Tonsok

    2009-01-01

    The aim of this study was to evaluate the efficacy of double arterial phase dynamic magnetic resonance imaging (MRI) with the sensitivity encoding technique (SENSE dynamic MRI) for detection of hypervascular hepatocellular carcinoma (HCC) in comparison with double arterial phase dynamic multidetector-row helical computed tomography (dynamic MDCT). A total of 28 patients with 66 hypervascular HCCs underwent both double arterial SENSE dynamic MRI and dynamic MDCT. The diagnosis of HCC was based on surgical resection (n=7), biopsy (n=10), or a combination of CT during arterial portography (CTAP), CT during hepatic arteriography (CTA), and/or the 6-month follow-up CT (n=49). Based on alternative-free response receiving operating characteristic (ROC) analysis, the diagnostic performance for detecting HCC was compared between double arterial phase SENSE dynamic MRI and double arterial phase dynamic MDCT. The mean sensitivity, positive predictive value, and mean A Z values for hypervascular HCCs were 72%, 80%, and 0.79, respectively, for SENSE dynamic MRI and 66%, 92%, and 0.78, respectively, for dynamic MDCT. The mean sensitivity for double arterial phase SENSE dynamic MRI was higher than that for double arterial phase dynamic MDCT, but the difference was not statistically significant. Double arterial phase SENSE dynamic MRI is as valuable as double arterial phase dynamic MDCT for detecting hypervascular HCCs. (author)

  8. Fragmentation and quench behavior of corium melt streams in water

    International Nuclear Information System (INIS)

    Spencer, B.W.; Wang, K.; Blomquist, C.A.; McUmber, L.M.; Schneider, J.P.

    1994-02-01

    The interaction of molten core materials with water has been investigated for the pour stream mixing mode. This interaction plays a crucial role during the later stages of in-vessel core melt progression inside a light water reactor such as during the TMI-2 accident. The key issues which arise during the molten core relocation include: (i) the thermal attack and possible damage to the RPV lower head from the impinging molten fuel stream and/or the debris bed, (ii) the molten fuel relocation pathways including the effects of redistribution due to core support structure and the reactor lower internals, (iii) the quench rate of the molten fuel through the water in the lower plenum, (iv) the steam generation and hydrogen generation during the interaction, (v) the transient pressurization of the primary system, and (vi) the possibility of a steam explosion. In order to understand these issues, a series of six experiments (designated CCM-1 through -6) was performed in which molten corium passed through a deep pool of water in a long, slender pour stream mode. Results discussed include the transient temperatures and pressures, the rate and magnitude of steam/hydrogen generation, and the posttest debris characteristics

  9. Analysis of a thermite experiment to study low pressure corium dispersion

    International Nuclear Information System (INIS)

    Wilhelm, D.

    2001-08-01

    The report describes the recalculation of a thermite experiment in a reduced scale which simulates the discharge of molten core materials out of the pressure vessel of a light water reactor into the open compartments and the dome of the containment. The experiment was performed in the framework of a multinational effort at the Sandia National Laboratory, U.S.A. It is being followed by the DISCO program at the Forschungszentrum Karlsruhe. A computational fluid dynamics code was supplemented with specific models to recalculate the Sandia experiment in order to identify problem areas which need to be addressed in the future. Therefore, a first attempt was undertaken to extrapolate to reactor conditions. This was done in two steps to separate geometric from material scaling relationships. The study shows that important experimental results can be extrapolated according to general scaling laws but that there are sensitivities, especially when replacing thermite by corium. The results show a considerable scatter and a dependence on geometric resolution and dynamics of energy transfer between participating components. (orig.) [de

  10. Bubble splitting under gas–liquid–liquid three-phase flow in a double T-junction microchannel

    NARCIS (Netherlands)

    Liu, Yanyan; Yue, Jun; Zhao, Shuainan; Yao, Chaoqun; Chen, Guangwen

    Gas–aqueous liquid–oil three-phase flow was generated in a microchannel with a double T-junction. Under the squeezing of the dispersed aqueous phase at the second T-junction (T2), the splitting of bubbles generated from the first T-junction (T1) was investigated. During the bubble splitting process,

  11. Analysis of heat transfer mechanism on in-vessel corium coolability in severe accidents

    International Nuclear Information System (INIS)

    Park, Rae Joon; Jeong, Ji Whan; Kim, Sang Baik; Kang, Kyung Ho; Kim, Jong Whan

    1998-04-01

    When the molten core material relocates to the lower plenum of the reactor vessel, the cooling process of corium and the related heat transfer mechanism have been analyzed. The critical heat flux in gap (CHFG) test is being performed as a part of simulation of naturally arrested thermal attack in (SONATA-IV) project and the state of art on CHF has been reviewed. A series of complex heat transfer mechanism of molten pool formation, natural convection in the molten pool, solidification and remelting of the corium, conduction in the solidified crust, and boiling heat transfer to surroundings can be occurred in the lower plenum. Many studies are needed to investigate the complex heat transfer mechanism in the lower plenum, because these phenomena have not been clearly understand until now. The SONATA-IV/CHFG experiments are being carried out to develop CHF correlation in a hemispherical gap, which is the upper limit of heat transfer. There is no experimental or analytical CHF correlation applicable to a hemispherical gap. So lots of analytical and experimental correlations developed using the similar experimental condition were gathered and compared with each other. According to the experimental work that was carried out with pool boiling condition, CHF in a parallel gap was reduced by 1/30 compared with the value measured without gap. A basic form of a CHF correlation has been developed to correlate measurements that will be made in the SONATA-IV/CHFG experiments. That correlation is based on the fact that the CHF in a hemispherical gap is enhanced by CCFL and a Kutateladze type CCFL correlation develops CCFL date will in geometry like this. The experimental facility consists of a heater, a pressure vessel, a heat exchanger and lots of sensors. The heater capacity is 40 kw and the maximum heat flux at the surface is 100 kw/m 2 . The experiments will be carried out in the range of 1 to 10 atm and the gap size of 0.5, 1, 2 mm. The CHF will be detected using 66 type

  12. Phase transitions, double-scaling limit, and topological strings

    International Nuclear Information System (INIS)

    Caporaso, Nicola; Griguolo, Luca; Pasquetti, Sara; Marino, Marcos; Seminara, Domenico

    2007-01-01

    Topological strings on Calabi-Yau manifolds are known to undergo phase transitions at small distances. We study this issue in the case of perturbative topological strings on local Calabi-Yau threefolds given by a bundle over a two-sphere. This theory can be regarded as a q-deformation of Hurwitz theory, and it has a conjectural nonperturbative description in terms of q-deformed 2D Yang-Mills theory. We solve the planar model and find a phase transition at small radius in the universality class of 2D gravity. We give strong evidence that there is a double-scaled theory at the critical point whose all-genus free energy is governed by the Painleve I equation. We compare the critical behavior of the perturbative theory to the critical behavior of its nonperturbative description, which belongs to the universality class of 2D supergravity, and we comment on possible implications for nonperturbative 2D gravity. We also give evidence for a new open/closed duality relating these Calabi-Yau backgrounds to open strings with framing

  13. Limit on the radiative neutrinoless double electron capture of ^{36}Ar from GERDA Phase I

    Science.gov (United States)

    Agostini, M.; Allardt, M.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Barros, N.; Baudis, L.; Bauer, C.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; di Vacri, A.; Domula, A.; Doroshkevich, E.; Egorov, V.; Falkenstein, R.; Fedorova, O.; Freund, K.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Gooch, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hakenmüller, J.; Hegai, A.; Heisel, M.; Hemmer, S.; Heusser, G.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Csáthy, J. Janicskó; Jochum, J.; Junker, M.; Kazalov, V.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Kish, A.; Klimenko, A.; Kneißl, R.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Medinaceli, E.; Miloradovic, M.; Mingazheva, R.; Misiaszek, M.; Moseev, P.; Nemchenok, I.; Palioselitis, D.; Panas, K.; Pandola, L.; Pelczar, K.; Pullia, A.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salamida, F.; Salathe, M.; Schmitt, C.; Schneider, B.; Schönert, S.; Schreiner, J.; Schütz, A.-K.; Schulz, O.; Schwingenheuer, B.; Selivanenko, O.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Stepaniuk, M.; Vanhoefer, L.; Vasenko, A. A.; Veresnikova, A.; von Sturm, K.; Wagner, V.; Walter, M.; Wegmann, A.; Wester, T.; Wiesinger, C.; Wilsenach, H.; Wojcik, M.; Yanovich, E.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.

    2016-12-01

    Neutrinoless double electron capture is a process that, if detected, would give evidence of lepton number violation and the Majorana nature of neutrinos. A search for neutrinoless double electron capture of ^{36}Ar has been performed with germanium detectors installed in liquid argon using data from Phase I of the GERmanium Detector Array ( Gerda) experiment at the Gran Sasso Laboratory of INFN, Italy. No signal was observed and an experimental lower limit on the half-life of the radiative neutrinoless double electron capture of ^{36}Ar was established: T_{1/2} > 3.6 × 10^{21} years at 90% CI.

  14. Design Research on Three-Phase PWM Rectifier Based on Double Closed Loop Control Technology

    Directory of Open Access Journals (Sweden)

    Guang Ya LIU

    2014-02-01

    Full Text Available Based on the high frequency of three-phase voltage source PWM rectifier, this paper established a mathematical model of three phase current inner ring and outer ring voltage, and put forward the setting method of three phase double closed loop control. Finally, it was verified through simulation. The experimental results show that Three-phase output of DC voltage is stable with the operation of regulating systems, the current flowing into the grid tends to be sinusoidal and power factor is close to 1, which greatly reduce the interference of harmonics on the grid, thus improve grid operation.

  15. Phase locking of a semiconductor double-quantum-dot single-atom maser

    Science.gov (United States)

    Liu, Y.-Y.; Hartke, T. R.; Stehlik, J.; Petta, J. R.

    2017-11-01

    We experimentally study the phase stabilization of a semiconductor double-quantum-dot (DQD) single-atom maser by injection locking. A voltage-biased DQD serves as an electrically tunable microwave frequency gain medium. The statistics of the maser output field demonstrate that the maser can be phase locked to an external cavity drive, with a resulting phase noise L =-99 dBc/Hz at a frequency offset of 1.3 MHz. The injection locking range, and the phase of the maser output relative to the injection locking input tone are in good agreement with Adler's theory. Furthermore, the electrically tunable DQD energy level structure allows us to rapidly switch the gain medium on and off, resulting in an emission spectrum that resembles a frequency comb. The free running frequency comb linewidth is ≈8 kHz and can be improved to less than 1 Hz by operating the comb in the injection locked regime.

  16. Phase retrieval from reflective fringe patterns of double-sided transparent objects

    International Nuclear Information System (INIS)

    Huang, Lei; Asundi, Anand Krishna

    2012-01-01

    ‘Ghosted’ fringe patterns simultaneously reflected from both the upper and lower sides of a transparent target in the fringe reflection technique are captured for transparent surface 3D shape measurement, but the phase retrieval from the captured ‘ghosted’ fringe patterns is still not solved. A novel method is proposed to solve this issue by using two sets of phase-shifted fringe patterns with slightly different frequencies. The nonlinear least-squares method is used to estimate the fringe phase and modulation from both front and rear interfaces. Several simulations are done to show the feasibility of the proposed method. The influence of fringe noise on the algorithm is studied as well, which indicates that the proposed method is able to retrieve the phase from double-sided reflective fringe patterns with fringe noise equivalent to that in practical measurements. The merits and limitations of the method are discussed and recommendations for future studies are made. (paper)

  17. Lessons learnt from FARO/TERMOS corium melt quenching experiments

    Energy Technology Data Exchange (ETDEWEB)

    Magallon, D.; Huhtiniemi, I.; Hohmann, H. [Commission of the European Communities, Ispra (Italy). Joint Research Center

    1998-01-01

    The influence of melt quantity, melt composition, water depth and initial pressure on quenching is assessed on the basis of seven tests performed in various conditions in the TERMOS vessel of the FARO facility at JRC-Ispra. Tests involved UO{sub 2}-based melt quantities in the range 18-176 kg at a temperature of approximately 3000 K poured into saturated water. The results suggest that erosion of the melt jet column is an efficient contributor to the amount of break-up, and thus quenching, for large pours of corium melt. The presence of Zr metal in the melt induced a much more efficient quenching than in a similar test with no Zr metal, attributed to the oxidation of the Zr. Significant amounts of H{sub 2} were produced also in tests with pure oxidic melts (e.g. about 300 g for 157 kg melt). In the tests at 5.0 and 2.0 MPa good mixing with significant melt break-up and quenching was obtained during the penetration in the water. At 0.5 MPa, good penetration of the melt into the water could still be achieved, but a jump in the vessel pressurisation occurred when the melt contacted the bottom and part (5 kg) of the debris was re-ejected from the water. (author)

  18. Study of evaluation methods for in-vessel corium retention through external vessel cooling and safety of reactor cavity

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Hoon; Chang, Soon Heung; Kim, Soo Hyung; Kim, Kee Poong; Lee, Hyoung Wook; Jang, Kwang Keol; Jeong, Yong Hoon; Kim, Sang Jin; Lee, Seong Jin [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Park, Jae Hong [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)

    2001-03-15

    In this work, assessment system for methodology for reactor pressure vessel integrity is developed. Assessment system is make up of severe accident assessment code which can calculate the conditions of plant and structural analysis code which can assess the integrity of reactor vessel using given plant conditions. An assessment of cavity flooding using containment spray system has been done. As a result, by the containment spray, cavity can be flooded successfully and CCI can be reduced. The technical backgrounds for external vessel cooling and corium cooling on the cavity are summarized and provided in this report.

  19. Study of evaluation methods for in-vessel corium retention through external vessel cooling and safety of reactor cavity

    International Nuclear Information System (INIS)

    Huh, Hoon; Chang, Soon Heung; Kim, Soo Hyung; Kim, Kee Poong; Lee, Hyoung Wook; Jang, Kwang Keol; Jeong, Yong Hoon; Kim, Sang Jin; Lee, Seong Jin; Park, Jae Hong

    2001-03-01

    In this work, assessment system for methodology for reactor pressure vessel integrity is developed. Assessment system is make up of severe accident assessment code which can calculate the conditions of plant and structural analysis code which can assess the integrity of reactor vessel using given plant conditions. An assessment of cavity flooding using containment spray system has been done. As a result, by the containment spray, cavity can be flooded successfully and CCI can be reduced. The technical backgrounds for external vessel cooling and corium cooling on the cavity are summarized and provided in this report

  20. A novel attack method about double-random-phase-encoding-based image hiding method

    Science.gov (United States)

    Xu, Hongsheng; Xiao, Zhijun; Zhu, Xianchen

    2018-03-01

    By using optical image processing techniques, a novel text encryption and hiding method applied by double-random phase-encoding technique is proposed in the paper. The first step is that the secret message is transformed into a 2-dimension array. The higher bits of the elements in the array are used to fill with the bit stream of the secret text, while the lower bits are stored specific values. Then, the transformed array is encoded by double random phase encoding technique. Last, the encoded array is embedded on a public host image to obtain the image embedded with hidden text. The performance of the proposed technique is tested via analytical modeling and test data stream. Experimental results show that the secret text can be recovered either accurately or almost accurately, while maintaining the quality of the host image embedded with hidden data by properly selecting the method of transforming the secret text into an array and the superimposition coefficient.

  1. The optimum operating conditions of the phased double-rotor facility at the ET-RR-1 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Naguib, K.; Habib, N.; Wahba, M.; Kilany, M.; Adib, M. [National Research Centre, Cairo (Egypt). Reactor and Neutron Physics Dept.

    1997-02-07

    A pulsed neutron polyenergetic thermal beam at ET-RR-1 is produced by a phased double-rotor facility. One of the rotors has two diametrically opposite curved slots, while the second is designed to operate as a rotating collimator. The dimensions of the phased rotating collimator are selected to match the curved slot rotor. The calculated collimator transmissions at different operating conditions are found to be in good agreement with the experimental ones. The optimum operating conditions of the double-rotor facility are deduced. The calculations were carried out using a computer program RCOL. The RCOL was designed in FORTRAN-77 to operate on PCs. (author).

  2. The optimum operating conditions of the phased double-rotor facility at the ET-RR-1 reactor

    International Nuclear Information System (INIS)

    Naguib, K.; Habib, N.; Wahba, M.; Kilany, M.; Adib, M.

    1997-01-01

    A pulsed neutron polyenergetic thermal beam at ET-RR-1 is produced by a phased double-rotor facility. One of the rotors has two diametrically opposite curved slots, while the second is designed to operate as a rotating collimator. The dimensions of the phased rotating collimator are selected to match the curved slot rotor. The calculated collimator transmissions at different operating conditions are found to be in good agreement with the experimental ones. The optimum operating conditions of the double-rotor facility are deduced. The calculations were carried out using a computer program RCOL. The RCOL was designed in FORTRAN-77 to operate on PCs. (author)

  3. A novel double quad-inverter configuration for multilevel twelve-phase open-winding converter

    DEFF Research Database (Denmark)

    Padmanaban, Sanjeevi Kumar; Blaabjerg, Frede; Wheeler, Patrick William

    2016-01-01

    This paper describes a novel proposal of double quad-inverter configuration for multilevel twelve-phase open-winding ac converter. Modular power units are developed from reconfigured eight classical three-phase voltage source inverters (VSIs). Each VSI has one additional bi-directional switching...... numerical simulation software's (Matlab/PLECS) developments. Further, the results confirm the good agreement to the developed theoretical background. Proposed converter suits the need of low-voltage/high-current applications such as ac tractions and `More-Electric Aircraft' propulsion systems....

  4. Optical image transformation and encryption by phase-retrieval-based double random-phase encoding and compressive ghost imaging

    Science.gov (United States)

    Yuan, Sheng; Yang, Yangrui; Liu, Xuemei; Zhou, Xin; Wei, Zhenzhuo

    2018-01-01

    An optical image transformation and encryption scheme is proposed based on double random-phase encoding (DRPE) and compressive ghost imaging (CGI) techniques. In this scheme, a secret image is first transformed into a binary image with the phase-retrieval-based DRPE technique, and then encoded by a series of random amplitude patterns according to the ghost imaging (GI) principle. Compressive sensing, corrosion and expansion operations are implemented to retrieve the secret image in the decryption process. This encryption scheme takes the advantage of complementary capabilities offered by the phase-retrieval-based DRPE and GI-based encryption techniques. That is the phase-retrieval-based DRPE is used to overcome the blurring defect of the decrypted image in the GI-based encryption, and the CGI not only reduces the data amount of the ciphertext, but also enhances the security of DRPE. Computer simulation results are presented to verify the performance of the proposed encryption scheme.

  5. A Convergent Solid-Phase Synthesis of Actinomycin Analogues - Towards Implementation of Double-Combinatorial Chemistry

    DEFF Research Database (Denmark)

    Tong, Glenn; Nielsen, John

    1996-01-01

    The actinomycin antibiotics bind to nucleic acids via both intercalation and hydrogen bonding. We found this 'double-action attack' mechanism very attractive in our search for a novel class of nucleic acid binders. A highly convergent, solid-phase synthetic strategy has been developed for a class...... with the requirements for combinatorial synthesis and furthermore, the final segment condensation allows, for the first time, double-combinatorial chemistry to be performed where two combinatorial libraries can be reacted with each other. Copyright (C) 1996 Elsevier Science Ltd....

  6. Thin Double-gap RPCs for the Phase-2 Upgrade of the CMS Muon System

    CERN Document Server

    Lee, Kyong Sei

    2017-01-01

    High-sensitive double-gap phenolic Resistive Plate Chambers are studied for the Phase-2 upgrade of the CMS muon system at high pseudorapidity $\\eta$. Whereas the present CMS RPCs have a gas gap thickness of 2 mm, we propose to use thinner gas gaps, which will improve the performance of these RPCs. To validate this proposal, we constructed double-gap RPCs with two different gap thicknesses of 1.2 and 1.4 mm using high-pressure laminated plates having a mean resistivity of about 5 $\\times$ 10$^{10}$ $\\Omega$-cm. This paper presents test results using cosmic muons and $^{137}$Cs gamma rays. The rate capabilities of these thin-gap RPCs measured with the gamma source exceed the maximum rate expected in the new high-$\\eta$ endcap RPCs planned for future Phase-2 runs of LHC.

  7. Double point source W-phase inversion: Real-time implementation and automated model selection

    Science.gov (United States)

    Nealy, Jennifer; Hayes, Gavin

    2015-01-01

    Rapid and accurate characterization of an earthquake source is an extremely important and ever evolving field of research. Within this field, source inversion of the W-phase has recently been shown to be an effective technique, which can be efficiently implemented in real-time. An extension to the W-phase source inversion is presented in which two point sources are derived to better characterize complex earthquakes. A single source inversion followed by a double point source inversion with centroid locations fixed at the single source solution location can be efficiently run as part of earthquake monitoring network operational procedures. In order to determine the most appropriate solution, i.e., whether an earthquake is most appropriately described by a single source or a double source, an Akaike information criterion (AIC) test is performed. Analyses of all earthquakes of magnitude 7.5 and greater occurring since January 2000 were performed with extended analyses of the September 29, 2009 magnitude 8.1 Samoa earthquake and the April 19, 2014 magnitude 7.5 Papua New Guinea earthquake. The AIC test is shown to be able to accurately select the most appropriate model and the selected W-phase inversion is shown to yield reliable solutions that match published analyses of the same events.

  8. Energy production from distillery wastewater using single and double-phase upflow anaerobic sludge blanket (UASB) reactor

    Energy Technology Data Exchange (ETDEWEB)

    Muyodi, F J; Rubindamayugi, M S.T. [Univ. of Dar es Salaam, Applied Microbiology Unit (Tanzania, United Republic of)

    1998-12-31

    A Single-phase (SP) and Double-phase (DP) Upflow Anaerobic Sludge Blanket (UASB) reactors treating distillery wastewater were operated in parallel. The DP UASB reactor showed better performance than the SP UASB reactor in terms of maximum methane production rate, methane content and Chemical Oxygen Demand (COD) removal efficiency. (au) 20 refs.

  9. Energy production from distillery wastewater using single and double-phase upflow anaerobic sludge blanket (UASB) reactor

    Energy Technology Data Exchange (ETDEWEB)

    Muyodi, F.J.; Rubindamayugi, M.S.T. [Univ. of Dar es Salaam, Applied Microbiology Unit (Tanzania, United Republic of)

    1997-12-31

    A Single-phase (SP) and Double-phase (DP) Upflow Anaerobic Sludge Blanket (UASB) reactors treating distillery wastewater were operated in parallel. The DP UASB reactor showed better performance than the SP UASB reactor in terms of maximum methane production rate, methane content and Chemical Oxygen Demand (COD) removal efficiency. (au) 20 refs.

  10. Coupled thermo-mechanical analysis of corium-loaded lower head of pressure vessel

    International Nuclear Information System (INIS)

    Mishra, J.; Balasubramaniyan, V.

    2016-01-01

    A severe accident in the pressurised water reactor may lead to the relocation of core materials to the lower head of Reactor Pressure Vessel (RPV). The core debris at the bottom of RPV forms a melt pool of corium due to decay heat. The understanding of behaviour of pressure vessel, characterised by failure mode and time to failure, in this scenario is one of the important steps in predicting the accident progression. The most predominant failure mode is multi-axial creep deformation of the vessel with a non-uniform temperature field. Towards this, a numerical analysis methodology is developed for the prediction of pressure vessel deformation during the severe accidents. The methodology involves 2-D finite element modelling under multi-physics environment, which account the creep phenomena using Norton-Bailey creep law with a typical damage model of RPV material. The validation of the methodology is carried out using the results from OLHF experiment carried out in Sandia National Laboratory (SNL), USA, within the framework of an OECD. (author)

  11. Search for neutrinoless double beta decay with GERDA phase II

    Science.gov (United States)

    Agostini, M.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Baudis, L.; Bauer, C.; Bellotti, E.; Belogurov, S.; Bettini, A.; Bezrukov, L.; Bode, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; Di Marco, N.; Domula, A.; Doroshkevich, E.; Egorov, V.; Falkenstein, R.; Gangapshev, A.; Garfagnini, A.; Gooch, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hakenmüller, J.; Hegai, A.; Heisel, M.; Hemmer, S.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Csáthy, J. Janicskó; Jochum, J.; Junker, M.; Kazalov, V.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Kish, A.; Klimenko, A.; Kneißl, R.; Knies, J.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Liao, H. Y.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Majorovits, B.; Maneschg, W.; Marissens, G.; Miloradovic, M.; Mingazheva, R.; Misiaszek, M.; Moseev, P.; Nemchenok, I.; Panas, K.; Pandola, L.; Pelczar, K.; Pullia, A.; Ransom, C.; Reissfelder, M.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salamida, F.; Schmitt, C.; Schneider, B.; Schönert, S.; Schreiner, J.; Schulz, O.; Schütz, A.-K.; Schwingenheuer, B.; Seitz, H.; Selivanenko, O.; Shevchik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Vanhoefer, L.; Vasenko, A. A.; Veresnikova, A.; von Sturm, K.; Wagner, V.; Wegmann, A.; Wester, T.; Wiesinger, C.; Wojcik, M.; Yanovich, E.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.

    2017-10-01

    The GERmanium Detector Array (gerda) experiment, located at the Gran Sasso underground laboratory in Italy, is one of the leading experiments for the search of 0νββ decay. In Phase II of the experiment 35.6 kg of enriched germanium detectors are operated. The application of active background rejection methods, such as a liquid argon scintillation light read-out and pulse shape discrimination of germanium detector signals, allowed to reduce the background index to the intended level of 10-3 cts/(keV.kg.yr). In the first five month of data taking 10.8 kg yr of exposure were accumulated. No signal has been found and together with data from Phase I a new limit for the neutrinoless double beta decay half-life of 76Ge of 5.3 . 1025 yr at 90% C.L. was established in June 2016. Phase II data taking is ongoing and will allow the exploration of half-lifes in the 1026 yr regime. The current status of data taking and an update on the background index are presented.

  12. Liquid-Liquid Phase Separation in Model Nuclear Waste Glasses: A Solid-State Double-Resonance NMR Study

    Energy Technology Data Exchange (ETDEWEB)

    Martineau, Ch.; Michaelis, V.K.; Kroeker, S. [Univ Manitoba, Dept Chem, Winnipeg, MB R3T 2N2 (Canada); Schuller, S. [CEA Valrho Marcoule, LDMC, SECM, DTCD, DEN, F-30207 Bagnols Sur Ceze (France)

    2010-07-01

    Double-resonance nuclear magnetic resonance (NMR) techniques are used in addition to single-resonance NMR experiments to probe the degree of mixing between network-forming cations Si and B, along with the modifier cations Cs{sup +} and Na{sup +} in two molybdenum-bearing model nuclear waste glasses. The double-resonance experiments involving {sup 29}Si in natural abundance are made possible by the implementation of a CPMG pulse-train during the acquisition period of the usual REDOR experiments. For the glass with lower Mo content, the NMR results show a high degree of Si-B mixing, as well as an homogeneous distribution of the cations within the borosilicate network, characteristic of a non-phase-separated glass. For the higher-Mo glass, a decrease of B-Si(Q{sup 4}) mixing is observed, indicating phase separation. {sup 23}Na and {sup 133}Cs NMR results show that although the Cs{sup +} cations, which do not seem to be influenced by the molybdenum content, are spread within the borate network, there is a clustering of the Na{sup +} cations, very likely around the molybdate units. The segregation of a Mo-rich region with Na{sup +} cations appears to shift the bulk borosilicate glass composition toward the metastable liquid liquid immiscibility region and induce additional phase separation. Although no crystallization is observed in the present case, this liquid liquid phase separation is likely to be the first stage of crystallization that can occur at higher Mo loadings or be driven by heat treatment. From this study emerges a consistent picture of the nature and extent of such phase separation phenomena in Mo-bearing glasses, and demonstrates the potential of double-resonance NMR methods for the investigation of phase separation in amorphous materials. (authors)

  13. Gas-liquid two-phase flows in double inlet cyclones for natural gas separation

    DEFF Research Database (Denmark)

    Yang, Yan; Wang, Shuli; Wen, Chuang

    2017-01-01

    The gas-liquid two-phase flow within a double inlet cyclone for natural gasseparation was numerically simulated using the discrete phase model. The numericalapproach was validated with the experimental data, and the comparison resultsagreed well with each other. The simulation results showed...... that the strong swirlingflow produced a high centrifugal force to remove the particles from the gas mixture.The larger particles moved downward on the internal surface and were removeddue to the outer vortex near the wall. Most of the tiny particles went into the innervortex zones and escaped from the up...

  14. Structural phase transitions in the ordered double perovskite Sr2MnTeO6

    International Nuclear Information System (INIS)

    Ortega-San Martin, L; Chapman, J P; Hernandez-Bocanegra, E; Insausti, M; Arriortua, M I; Rojo, T

    2004-01-01

    The crystal structure of the ordered double perovskite Sr 2 MnTeO 6 has been refined at ambient temperature from high resolution neutron and x-ray powder diffraction data in the monoclinic space group P 12 1 /n 1 with a 5.7009(1) A, b = 5.6770(1) A, c = 8.0334(1) A and β = 90.085(1) deg. This represents a combination of in-phase (+) and out-of-phase (-) rotations of virtually undistorted MnO 6 and TeO 6 octahedra in the (-+) sense about the axes of the ideal cubic perovskite. High temperature x-ray powder diffraction shows three structural phase transitions at approximately 250, 550 and 675 deg. C, each corresponding to the disappearance of rotations about one of these axes. The first transition was analysed by differential scanning calorimetry and showed a thermal hysteresis with an enthalpy of 0.55 J g -1 . We propose the (P12 1 /n1 → I12/m1 → I4/m → Fm3barm) sequence of structural transitions which has not been previously reported for a double perovskite oxide

  15. Searching Neutrinoless Double Beta Decay with GERDA Phase II

    Science.gov (United States)

    Agostini, M.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Baudis, L.; Bauer, C.; Bellotti, E.; Belogurov, S.; Bettini, A.; Bezrukov, L.; Bode, T.; Brudanin, V.; Brugnera, R.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; Comellato, T.; D’Andrea, V.; Demidova, E. V.; di Marco, N.; Domula, A.; Doroshkevich, E.; Egorov, V.; Falkenstein, R.; Gangapshev, A.; Garfagnini, A.; Giordano, M.; Gooch, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hahne, C.; Hakenmüller, J.; Hegai, A.; Heisel, M.; Hemmer, S.; Hiller, R.; Hofmann, W.; Holl, P.; Hult, M.; Inzhechik, L. V.; Ioannucci, L.; Csáthy, J. Janicskó; Jochum, J.; Junker, M.; Kazalov, V.; Kermaidic, Y.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Kish, A.; Klimenko, A.; Kneißl, R.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Marissens, G.; Miloradovic, M.; Mingazheva, R.; Misiaszek, M.; Moseev, P.; Nemchenok, I.; Nisi, S.; Panas, K.; Pandola, L.; Pelczar, K.; Pullia, A.; Ransom, C.; Reissfelder, M.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Sala, E.; Salamida, F.; Schmitt, C.; Schneider, B.; Schreiner, J.; Schulz, O.; Schweisshelm, B.; Schwingenheuer, B.; Schönert, S.; Schütz, A.-K.; Seitz, H.; Selivanenko, O.; Shevchik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Vanhoefer, L.; Vasenko, A. A.; Veresnikova, A.; von Sturm, K.; Wagner, V.; Wegmann, A.; Wester, T.; Wiesinger, C.; Wojcik, M.; Yanovich, E.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zschocke, A.; Zsigmond, A. J.; Zuber, K.; Zuzel, G.

    An observation of neutrinoless double beta (0νββ) decay would allow to shed light onto the nature of neutrinos. GERDA (GERmanium Detector Array) aims to discover this process in a background-free search using 76Ge. The experiment is located at the Laboratori Nazionali del Gran Sasso (LNGS) of the Istituto Nazionale di Fisica Nucleare (INFN) in Italy. Bare, isotopically enriched, high purity germanium detectors are operated in liquid argon. GERDA follows a staged approach. In Phase II 35.6 kg of enriched germanium detectors are operated since December 2015. The application of active background rejection methods, such as a liquid argon scintillation light read-out and pulse shape discrimination of germanium detector signals, allows to reduce the background index to the intended level of 10‑3 cts/(keVṡkgṡyr). No evidence for the 0νββ decay has been found in 23.2 kgṡyr of Phase II data, and together with data from Phase I the up-to-date most stringent half-life limit for this process in 76Ge has been established, at a median sensitivity of 5.8ṡ1025yr the 90% C.L. lower limit is 8.0ṡ1025yr.

  16. Information hiding based on double random-phase encoding and public-key cryptography.

    Science.gov (United States)

    Sheng, Yuan; Xin, Zhou; Alam, Mohammed S; Xi, Lu; Xiao-Feng, Li

    2009-03-02

    A novel information hiding method based on double random-phase encoding (DRPE) and Rivest-Shamir-Adleman (RSA) public-key cryptosystem is proposed. In the proposed technique, the inherent diffusion property of DRPE is cleverly utilized to make up the diffusion insufficiency of RSA public-key cryptography, while the RSA cryptosystem is utilized for simultaneous transmission of the cipher text and the two phase-masks, which is not possible under the DRPE technique. This technique combines the complementary advantages of the DPRE and RSA encryption techniques and brings security and convenience for efficient information transmission. Extensive numerical simulation results are presented to verify the performance of the proposed technique.

  17. 1-D Two-phase Flow Investigation for External Reactor Vessel Cooling

    International Nuclear Information System (INIS)

    Kim, Jae Cheol

    2007-02-01

    During a severe accident, when a molten corium is relocated in a reactor vessel lower head, the RCF(Reactor Cavity Flooding) system for ERVC (External Reactor Vessel Cooling) is actuated and coolants are supplied into a reactor cavity to remove a decay heat from the molten corium. This severe accident mitigation strategy for maintaining a integrity of reactor vessel was adopted in the nuclear power plants of APR1400, AP600, and AP1000. Under the ERVC condition, the upward two-phase flow is driven by the amount of the decay heat from the molten corium. To achieve the ERVC strategy, the two-phase natural circulation in the annular gap between the external reactor vessel and the insulation should be formed sufficiently by designing the coolant inlet/outlet area and gap size adequately on the insulation device. Also the natural circulation flow restriction has to be minimized. In this reason, it is needed to review the fundamental structure of insulation. In the existing power plants, the insulation design is aimed at minimizing heat losses under a normal operation. Under the ERVC condition, however, the ability to form the two-phase natural circulation is uncertain. Namely, some important factors, such as the coolant inlet/outlet areas, flow restriction, and steam vent etc. in the flow channel, should be considered for ERVC design. T-HEMES 1D study is launched to estimate the natural circulation flow under the ERVC condition of APR1400. The experimental facility is one-dimensional and scaled down as the half height and 1/238 channel area of the APR1400 reactor vessel. The air injection method was used to simulate the boiling at the external reactor vessel and generate the natural circulation two-phase flow. From the experimental results, the natural circulation flow rate highly depended on inlet/outlet areas and the circulation flow rate increased as the outlet height as well as the supplied water head increased. On the other hand, the simple analysis using the drift

  18. A double parameters measurement of steam-water two-phase flow with single orifice

    International Nuclear Information System (INIS)

    Zhong Shuoping; Tong Yunxian; Yu Meiying

    1992-08-01

    A double parameters measurement of steam-water two-phase flow with single orifice is described. An on-line measurement device based on micro-computer has been developed. The measured r.m.s error of steam quality is less than 6.5% and the measured relative r.m.s. error of mass flow rate is less than 9%

  19. Double antibody solid-phase radioimmunoassay for staphylococcal enterotoxin A

    International Nuclear Information System (INIS)

    Lindroth, S.; Niskanen, A.

    1977-01-01

    A double antibody solid-phase (DASP) radioimmunoassay for staphylococcal enterotoxin A is described. In the assay the antigen-antibody complex is precipitated by anti-rabbit serum which is adsorbed onto a solid carrier (cellulose). The method is sensitive to 200 pg of enterotoxin. It was possible to detect a little as 2-5 ng of enterotoxin A/ml food extract from minced meat and sausage. Enterotoxins B and C were not found to inhibit the uptake of labled enterotoxin A at a level which might distort the results of the enterotoxin A assay. The DASP technique is sensitive, rapid, and easy to perform and thus compares favorably with other radioimmunoassays for enterotoxin. (orig.) [de

  20. Limit on the radiative neutrinoless double electron capture of "3"6Ar from GERDA Phase I

    International Nuclear Information System (INIS)

    Agostini, M.; Balata, M.; D'Andrea, V.; Di Vacri, A.; Junker, M.; Laubenstein, M.; Allardt, M.; Domula, A.; Lehnert, B.; Schneider, B.; Wester, T.; Wilsenach, H.; Zuber, K.; Bakalyarov, A.M.; Belyaev, S.T.; Lebedev, V.I.; Zhukov, S.V.; Barabanov, I.; Bezrukov, L.; Doroshkevich, E.; Fedorova, O.; Gurentsov, V.; Kazalov, V.; Kuzminov, V.V.; Lubsandorzhiev, B.; Moseev, P.; Selivanenko, O.; Veresnikova, A.; Yanovich, E.; Barros, N.; Baudis, L.; Benato, G.; Kish, A.; Miloradovic, M.; Mingazheva, R.; Walter, M.; Bauer, C.; Hakenmueller, J.; Heisel, M.; Heusser, G.; Hofmann, W.; Kihm, T.; Kirsch, A.; Knoepfle, K.T.; Lindner, M.; Maneschg, W.; Salathe, M.; Schreiner, J.; Schwingenheuer, B.; Simgen, H.; Smolnikov, A.; Stepaniuk, M.; Wagner, V.; Wegmann, A.; Bellotti, E.; Belogurov, S.; Kornoukhov, V.N.; Bettini, A.; Brugnera, R.; Garfagnini, A.; Medinaceli, E.; Sada, C.; Sturm, K. von; Bode, T.; Csathy, J.J.; Lazzaro, A.; Schoenert, S.; Wiesinger, C.; Borowicz, D.; Brudanin, V.; Egorov, V.; Kochetov, O.; Nemchenok, I.; Rumyantseva, N.; Zhitnikov, I.; Zinatulina, D.; Caldwell, A.; Gooch, C.; Kneissl, R.; Liao, H.Y.; Majorovits, B.; Palioselitis, D.; Schulz, O.; Vanhoefer, L.; Cattadori, C.; Salamida, F.; Chernogorov, A.; Demidova, E.V.; Kirpichnikov, I.V.; Vasenko, A.A.; Falkenstein, R.; Freund, K.; Grabmayr, P.; Hegai, A.; Jochum, J.; Schmitt, C.; Schuetz, A.K.; Frodyma, N.; Misiaszek, M.; Panas, K.; Pelczar, K.; Wojcik, M.; Zuzel, G.; Gangapshev, A.; Gusev, K.; Hemmer, S.; Lippi, I.; Stanco, L.; Hult, M.; Lutter, G.; Inzhechik, L.V.; Klimenko, A.; Lubashevskiy, A.; Macolino, C.; Pandola, L.; Pullia, A.; Riboldi, S.; Shirchenko, M.

    2016-01-01

    Neutrinoless double electron capture is a process that, if detected, would give evidence of lepton number violation and the Majorana nature of neutrinos. A search for neutrinoless double electron capture of "3"6Ar has been performed with germanium detectors installed in liquid argon using data from Phase I of the GERmanium Detector Array (Gerda) experiment at the Gran Sasso Laboratory of INFN, Italy. No signal was observed and an experimental lower limit on the half-life of the radiative neutrinoless double electron capture of "3"6Ar was established: T_1_/_2 > 3.6 x 10"2"1 years at 90% CI. (orig.)

  1. Limit on the radiative neutrinoless double electron capture of {sup 36}Ar from GERDA Phase I

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, M.; Balata, M.; D' Andrea, V.; Di Vacri, A.; Junker, M.; Laubenstein, M. [INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, Assergi (Italy); Allardt, M.; Domula, A.; Lehnert, B.; Schneider, B.; Wester, T.; Wilsenach, H.; Zuber, K. [Technische Universitaet Dresden, Institut fuer Kern- und Teilchenphysik, Dresden (Germany); Bakalyarov, A.M.; Belyaev, S.T.; Lebedev, V.I.; Zhukov, S.V. [National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Barabanov, I.; Bezrukov, L.; Doroshkevich, E.; Fedorova, O.; Gurentsov, V.; Kazalov, V.; Kuzminov, V.V.; Lubsandorzhiev, B.; Moseev, P.; Selivanenko, O.; Veresnikova, A.; Yanovich, E. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Barros, N. [Technische Universitaet Dresden, Institut fuer Kern- und Teilchenphysik, Dresden (Germany); University of Pennsylvania, Philadelphia, PA (United States); Baudis, L.; Benato, G.; Kish, A.; Miloradovic, M.; Mingazheva, R.; Walter, M. [Physik Institut der Universitaet Zuerich, Zurich (Switzerland); Bauer, C.; Hakenmueller, J.; Heisel, M.; Heusser, G.; Hofmann, W.; Kihm, T.; Kirsch, A.; Knoepfle, K.T.; Lindner, M.; Maneschg, W.; Salathe, M.; Schreiner, J.; Schwingenheuer, B.; Simgen, H.; Smolnikov, A.; Stepaniuk, M.; Wagner, V.; Wegmann, A. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Bellotti, E. [Universita Milano Bicocca, Dipartimento di Fisica, Milan (Italy); INFN Milano Bicocca, Milan (Italy); Belogurov, S.; Kornoukhov, V.N. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Institute for Theoretical and Experimental Physics NRC ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Bettini, A.; Brugnera, R.; Garfagnini, A.; Medinaceli, E.; Sada, C.; Sturm, K. von [Dipartimento di Fisica e Astronomia dell' Universita di Padova, Padua (Italy); INFN Padova, Padua (Italy); Bode, T.; Csathy, J.J.; Lazzaro, A.; Schoenert, S.; Wiesinger, C. [Technische Universitaet Muenchen, Physik Department and Excellence Cluster Universe, Munich (Germany); Borowicz, D. [Jagiellonian University, Institute of Physics, Krakow (Poland); Joint Institute for Nuclear Research, Dubna (Russian Federation); Brudanin, V.; Egorov, V.; Kochetov, O.; Nemchenok, I.; Rumyantseva, N.; Zhitnikov, I.; Zinatulina, D. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Caldwell, A.; Gooch, C.; Kneissl, R.; Liao, H.Y.; Majorovits, B.; Palioselitis, D.; Schulz, O.; Vanhoefer, L. [Max-Planck-Institut fuer Physik, Munich (Germany); Cattadori, C.; Salamida, F. [INFN Milano Bicocca, Milan (Italy); Chernogorov, A.; Demidova, E.V.; Kirpichnikov, I.V.; Vasenko, A.A. [Institute for Theoretical and Experimental Physics NRC ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Falkenstein, R.; Freund, K.; Grabmayr, P.; Hegai, A.; Jochum, J.; Schmitt, C.; Schuetz, A.K. [Eberhard Karls Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); Frodyma, N.; Misiaszek, M.; Panas, K.; Pelczar, K.; Wojcik, M.; Zuzel, G. [Jagiellonian University, Institute of Physics, Krakow (Poland); Gangapshev, A. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Gusev, K. [Joint Institute for Nuclear Research, Dubna (Russian Federation); National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Technische Universitaet Muenchen, Physik Department and Excellence Cluster Universe, Munich (Germany); Hemmer, S.; Lippi, I.; Stanco, L. [INFN Padova, Padua (Italy); Hult, M.; Lutter, G. [European Commission, JRC-Geel, Geel (Belgium); Inzhechik, L.V. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Moscow Institute of Physics and Technology, Moscow (Russian Federation); Klimenko, A. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); International University for Nature, Society and Man ' ' Dubna' ' , Dubna (Russian Federation); Lubashevskiy, A. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Macolino, C. [INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, Assergi (Italy); LAL, CNRS/IN2P3, Universite Paris-Saclay, Orsay (France); Pandola, L. [INFN Laboratori Nazionali del Sud, Catania (Italy); Pullia, A.; Riboldi, S. [Universita degli Studi di Milano, Dipartimento di Fisica, Milan (Italy); INFN Milano (Italy); Shirchenko, M. [Joint Institute for Nuclear Research, Dubna (Russian Federation); National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Collaboration: GERDA collaboration

    2016-12-15

    Neutrinoless double electron capture is a process that, if detected, would give evidence of lepton number violation and the Majorana nature of neutrinos. A search for neutrinoless double electron capture of {sup 36}Ar has been performed with germanium detectors installed in liquid argon using data from Phase I of the GERmanium Detector Array (Gerda) experiment at the Gran Sasso Laboratory of INFN, Italy. No signal was observed and an experimental lower limit on the half-life of the radiative neutrinoless double electron capture of {sup 36}Ar was established: T{sub 1/2} > 3.6 x 10{sup 21} years at 90% CI. (orig.)

  2. Optical double-image cryptography based on diffractive imaging with a laterally-translated phase grating.

    Science.gov (United States)

    Chen, Wen; Chen, Xudong; Sheppard, Colin J R

    2011-10-10

    In this paper, we propose a method using structured-illumination-based diffractive imaging with a laterally-translated phase grating for optical double-image cryptography. An optical cryptosystem is designed, and multiple random phase-only masks are placed in the optical path. When a phase grating is laterally translated just before the plaintexts, several diffraction intensity patterns (i.e., ciphertexts) can be correspondingly obtained. During image decryption, an iterative retrieval algorithm is developed to extract plaintexts from the ciphertexts. In addition, security and advantages of the proposed method are analyzed. Feasibility and effectiveness of the proposed method are demonstrated by numerical simulation results. © 2011 Optical Society of America

  3. Known-plaintext attack on the double phase encoding and its implementation with parallel hardware

    Science.gov (United States)

    Wei, Hengzheng; Peng, Xiang; Liu, Haitao; Feng, Songlin; Gao, Bruce Z.

    2008-03-01

    A known-plaintext attack on the double phase encryption scheme implemented with parallel hardware is presented. The double random phase encoding (DRPE) is one of the most representative optical cryptosystems developed in mid of 90's and derives quite a few variants since then. Although the DRPE encryption system has a strong power resisting to a brute-force attack, the inherent architecture of DRPE leaves a hidden trouble due to its linearity nature. Recently the real security strength of this opto-cryptosystem has been doubted and analyzed from the cryptanalysis point of view. In this presentation, we demonstrate that the optical cryptosystems based on DRPE architecture are vulnerable to known-plain text attack. With this attack the two encryption keys in the DRPE can be accessed with the help of the phase retrieval technique. In our approach, we adopt hybrid input-output algorithm (HIO) to recover the random phase key in the object domain and then infer the key in frequency domain. Only a plaintext-ciphertext pair is sufficient to create vulnerability. Moreover this attack does not need to select particular plaintext. The phase retrieval technique based on HIO is an iterative process performing Fourier transforms, so it fits very much into the hardware implementation of the digital signal processor (DSP). We make use of the high performance DSP to accomplish the known-plaintext attack. Compared with the software implementation, the speed of the hardware implementation is much fast. The performance of this DSP-based cryptanalysis system is also evaluated.

  4. Results on Neutrinoless Double-Beta Decay from Gerda Phase I

    Science.gov (United States)

    Macolino, Carla

    2014-12-01

    The GERmanium Detector Array, GERDA, is designed to search for neutrinoless double-beta (0νββ) decay of 76Ge and it is installed in the Laboratori Nazionali del Gran Sasso (LNGS) of INFN, Italy. In this review, the detection principle and detector setup of GERDA are described. Also, the main physics results by GERDA Phase I, are discussed. They include the measurement of the half-life of 2νββ decay, the background decomposition of the energy spectrum and the techniques for the discrimination of the background, based on the pulse shape of the signal. In the last part of this review, the estimation of a limit on the half-life of 0νββ (T0ν 1/2>2.1ḑot 1025 yr at 90% C.L.) and the comparison with previous results are discussed. GERDA data from Phase I strongly disfavor the recent claim of 0νββ discovery, based on data from the Heidelberg-Moscow experiment.

  5. High temperature chemical reactivity in the system (U, Zr,Fe, O). A contribution to the study of zirconia as a ``core catcher``; Reactivite chimique a haute temperature dans le systeme (U, Zr, Fe, O) contribution a l`etude de la zircone comme recuperateur de ``corium``

    Energy Technology Data Exchange (ETDEWEB)

    Maurizi, A [CEA Centre d` Etudes Nucleaires de Saclay, 91 -Gif-sur-Yvette (France); [CEA Centre d` Etudes de Saclay, 91 - Gif-sur-Yvette (France). Direction des Technologies Avancees

    1996-12-11

    Within the framework of the improvement of nuclear reactor safety, a device to recover corium is proposed to be installed under the reactor vessel to limit the consequences of a core melting. According to our bibliographic study, stabilised zirconia seems to be the best refractory material to play this role and to support the physicochemical, mechanical and thermal requirements imposed to the corium catcher. The nature of the chemical interactions between zirconia and iron of high temperature were established and experimental data on the (U, Fe, Zr, O) quaternary system which stands for the corium were determined. First of all, the Knudsen effusion mass-spectrometric method was used to establish the liquidus position for a (U, Zr, O) alloy representative of the corium (U/Zr = 1,5) at 2000 deg C. The oxygen solubility limit in a (U, Zr, O) liquid alloy is about 7 atomic %. In oxidising conditions, the reaction between zirconia and iron leads to the formation of a stabilised zirconia-iron oxide solid solution. Up to 10 atomic % of iron can be incorporated in the structure, leading to the stabilisation of cubic zirconia and a modification of lattice constants. The valence and localisation of those iron measured as a function of time and temperature from 1500 to 2400 deg C, after high frequency inductive heating, both on laboratory materials are commercial bricks. The reaction rate is governed by an activation energy of about 80 kJ/mol. Our results demonstrate that stabilised zirconia is able to efficiently absorb oxidised iron. (author). 169 refs.

  6. A status of the art report for OECD RASPLAV program

    International Nuclear Information System (INIS)

    Nho, Ki Man; Kim, Sang Baik; Bang, Kwang Hyun; Park, Jong Hwa; Kim, Hee Dong; Suh, Kun Yeol

    1996-06-01

    The objective of current study is to summarize the work of OECD RASPLAV technical reports, which include investigation of natural convection in the corium, chemical interaction between corium and reactor vessel, solidification of corium crust during severe accident such as TMI-2 accident in the United States and Chernobyl accident in the USSR. The experimental data and technique will be used when designing a large scale experimental facility for the second phase of the project. 7 tabs., 11 figs., 14 refs. (Author)

  7. Reaction- and melting behaviour of LWR-core components UO2, Zircaloy and steel during the meltdown period

    International Nuclear Information System (INIS)

    Hofmann, P.

    1976-07-01

    The reaction behaviour of the UO 2 , Zircaloy-4 and austenitic steel core components was investigated as a function of temperature (till melting temperatures) under inert and oxidizing conditions. Component concentrations varied between that of Corium-A (65 wt.% UO 2 , 18% Zry, 17% steel) and that of Corium-E (35 wt.% UO 2 , 10% Zry, 55% steel). In addition, Zircaloy and stainless steel were used with different degrees of oxidation. The paper describes systematically the phases that arise during heating and melting. The integral composition of the melts and the qualitative as well as quantitative analysis of the phases present in solidified corium are given. In some cases melting points have been determined. The reaction and melting behaviour of the corium specimens strongly depends on the concentration and on the degree of oxidation of the core components. First liquid phases are formed at the Zry-steel interface at about 1,350 0 C. The maximum temperatures of about 2,500 0 C for the complete melting of the corium-specimens are well below the UO 2 melting point. Depending on the steel content and/or degree of oxidation of Zry and steel, a homogeneous metallic or oxide melt or two immiscible melts - one oxide and the other metallic - are obtained. During the melting experiments performed under inert gas conditions the chemical composition of the molten specimens generally change by evaporation losses of single elements, especially of uranium, zirconium and oxygen. The total weight losses go up to 30%; under oxidizing conditions they are substantially smaller due to the occurrence of different phases. In air or water vapor, the occurrence of the phases and the melting behaviour of the core components are strongly influenced by the oxidation rate and the oxygen supply to the surface of the melt. In the case of the hypothetical core melting accident, a heterogeneous melt (oxide and metallic) is probable after the meltdown period. (orig./RW) [de

  8. High accuracy amplitude and phase measurements based on a double heterodyne architecture

    International Nuclear Information System (INIS)

    Zhao Danyang; Wang Guangwei; Pan Weimin

    2015-01-01

    In the digital low level RF (LLRF) system of a circular (particle) accelerator, the RF field signal is usually down converted to a fixed intermediate frequency (IF). The ratio of IF and sampling frequency determines the processing required, and differs in various LLRF systems. It is generally desirable to design a universally compatible architecture for different IFs with no change to the sampling frequency and algorithm. A new RF detection method based on a double heterodyne architecture for wide IF range has been developed, which achieves the high accuracy requirement of modern LLRF. In this paper, the relation of IF and phase error is systematically analyzed for the first time and verified by experiments. The effects of temperature drift for 16 h IF detection are inhibited by the amplitude and phase calibrations. (authors)

  9. The optimum operating conditions of the phased double-rotor facility at the et-R R-1 reactor. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Naguib, K; Habib, N; Kilany, M; Adib, M [Reactor and Neutron Physics Department, Nuclear Research Center, AEA., Cairo (Egypt); Wahba, M [Dept. of Engineering Physics and Mathematics, Faculty of Engineering, Ain Shams University, Cairo (Egypt)

    1996-03-01

    The pulsed neutron polyenergetic thermal beam at ET-R R-1 is produced by a phased double-rotor facility. One of the rotors has two diametrically opposite curved slots, while the second is designed to operate as a rotating collimator, the dimensions of the phased rotating collimator are selected to match the curved slot rotor. The calculated collimator transmissions at different operating conditions are found to be in good agreement with the experimental ones. The optimum operating conditions of double-rotor facility are deduced. The calculations were carried out using a computer programme RCOL. The RCOL was designed in Fortran-77 to operate on PCs. 6 figs.

  10. The optimum operating conditions of the phased double-rotor facility at the et-R R-1 reactor. Vol. 2

    International Nuclear Information System (INIS)

    Naguib, K.; Habib, N.; Kilany, M.; Adib, M.; Wahba, M.

    1996-01-01

    The pulsed neutron polyenergetic thermal beam at ET-R R-1 is produced by a phased double-rotor facility. One of the rotors has two diametrically opposite curved slots, while the second is designed to operate as a rotating collimator, the dimensions of the phased rotating collimator are selected to match the curved slot rotor. The calculated collimator transmissions at different operating conditions are found to be in good agreement with the experimental ones. The optimum operating conditions of double-rotor facility are deduced. The calculations were carried out using a computer programme RCOL. The RCOL was designed in Fortran-77 to operate on PCs. 6 figs

  11. Medium effects and parity doubling of hyperons across the deconfinement phase transition*

    Directory of Open Access Journals (Sweden)

    Aarts Gert

    2018-01-01

    Full Text Available We analyse the behaviour of hyperons with strangeness S = –1,–2,–3 in the hadronic and quark gluon plasma phases, with particular interest in parity doubling and its emergence as the temperature grows. This study uses our FASTSUM anisotropic Nf = 2+1 ensembles, with four temperatures below and four above the deconfinement transition temperature, Tc. The positive-parity groundstate masses are found to be largely temperature independent below Tc, whereas the negative-parity ones decrease considerably as the temperature increases. Close to the transition, the masses are almost degenerate, in line with the expectation from chiral symmetry restoration. This may be of interest for heavy-ion phenomenology. In particular we show an application of this effect to the Hadron Resonance Gas model. A clear signal of parity doubling is found above Tc in all hyperon channels, with the strength of the effect depending on the number of s-quarks in the baryons.

  12. Fuel and fission product behaviour in early phases of a severe accident. Part II: Interpretation of the experimental results of the PHEBUS FPT2 test

    Energy Technology Data Exchange (ETDEWEB)

    Dubourg, R. [Institut de Radioprotection et de Sûreté Nucléaire, B.P. 3, 13115 Saint Paul-lez-Durance Cedex (France); Barrachin, M., E-mail: marc.barrachin@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire, B.P. 3, 13115 Saint Paul-lez-Durance Cedex (France); Ducher, R. [Institut de Radioprotection et de Sûreté Nucléaire, B.P. 3, 13115 Saint Paul-lez-Durance Cedex (France); Gavillet, D. [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); De Bremaecker, A. [Institute for Nuclear Materials Sciences, SCK-CEN, Boeretang 200, B-2400 Mol (Belgium)

    2014-10-15

    One objective of the FPT2 test of the PHEBUS FP Program was to study the degradation of an irradiated UO{sub 2} fuel bundle and the fission product behaviour under conditions of low steam flow. The results of the post-irradiation examinations (PIE) at the upper levels (823 mm and 900 mm) of the test section previously reported are interpreted in the present paper. Solid state interactions between fuel and cladding have been compared with the characteristics of interaction identified in the previous separate-effect tests. Corium resulting from the interaction between fuel and cladding was formed. The uranium concentration in the corium is compared to analytical tests and a scenario for the corium formation is proposed. The analysis showed that, despite the rather low fuel burn up, the conditions of temperature and oxygen potential reached during the starvation phase are able to give an early very significant release fraction of caesium. A significant part (but not all) of the molybdenum was segregated at grain boundaries and trapped in metallic inclusions from which they were totally removed in the final part of the experiment. During the steam starvation phase, the conditions of oxygen potential were favourable for the formation of simple Ba and BaO chemical forms but the temperature was too low to provoke their volatility. This is one important difference with out-of-pile experiments such as VERCORS for which only a combination of high temperature and low oxygen potential induced a significant barium release. Finally another significant difference with analytical out-of-pile experiments comes from the formation of foamy zones due to the fission gas presence in FPT2-type experiments which give an additional possibility for the formation of stable fission product compounds.

  13. Contribution of 99mTc-sestamibi scintigraphy by double phase in the exploration of hyperparathyroidism. Report of 20 cases

    International Nuclear Information System (INIS)

    Ghfir, I.; Ben Rais, N.

    2008-01-01

    Introduction 99m Tc-sestamibi parathyroid scintigraphy is a means of functional imaging allowing the exploration of hyperparathyroidism. The aim of our study is to demonstrate the utility of double-phase 99m Tc-sestamibi scintigraphy in the exploration of the secreting abnormal parathyroid gland. Materials and methods We report, through this work, the observation of 20 patients followed for a biologically ascertained hyperparathyroidism and explored, for the majority of them, by ultrasonography and/or computed tomography. All our patients benefited from a double-phase 99m Tc-sestamibi scintigraphy. Results On the 20 studied cases, the sex-ratio was equal to 1, two patients exhibited three high uptake foci at the 99m Tc-sestamibi scintigraphy, six exhibited two foci, twelve exhibited one parathyroid focus. In our series, 80% of patients exhibited secondary hyperparathyroidism and 20% exhibited a primary hyperparathyroidism. The pathologic exam revealed four cases of parathyroid adenoma and 16 parathyroid cases of hyperplasia. Discussion The double-phase 99m Tc-sestamibi scintigraphy contributes to the orientation and the improvement of the surgical attitude of the hyperparathyroidism, insofar as it could affirm the multiplicity of some adenomas, the diffuse form of some hyperplasia, and especially ectopic localization of the abnormal parathyroid gland

  14. Status report on severe accident material property measurements

    International Nuclear Information System (INIS)

    Farmer, M.T.; McUmber, L.; Spencer, B.W.; Aeschlimann, R.W.

    1997-06-01

    Measurements of selected material properties of molten reactor core material (corium) were made. The corium used was a mixture of UO 2 , ZrO 2 and Zr, with oxygen content being a parameter to reflect different stages of zirconium oxidation. The mixtures used were representative of typical in-vessel melt sequences. For most measurements, the UO 2 /ZrO 2 mass ratio was 1.51, representative of VVER/440 melt compositions and melt compositions of most US BWRs. Measurements were made of the solidus/liquidus temperatures of corium compositions using a Differential Thermal Analysis technique. Observation of the solubility of unoxidized Zr in the oxide phase was made by metallographic analysis of solidus/liquidus melt samples. The results of laminar flow corium spreading tests in one dimension were used to estimate the viscosity of corium compositions. Measured solidus and liquidus temperatures for compositions representative of Zr oxidation of 30, 50 and 70% were compared with those obtained form a phase diagram provided by Kurchatov Institute. It was found that experimental measurements agreed well with the phase diagram values at 70% oxidation, but the measured solidus temperatures were higher than those on the phase diagram and the measured liquidus temperatures were lower than those on the phase diagram at 30 and 50% oxidation. From a microstructure examination it was determined that there was no global segregation into distinct metal and oxide phases during the cooldown of a sample in which there was initially 70% Zr oxidation. Therefore it is concluded that Zr metal is soluble in the oxide phase under molten conditions. Viscosity estimates were made for compositions representative of Zr oxidation of 30, 50 and 70% by fitting the results of spreading tests to Huppert's equation. It was found that, at a temperature of 2500 C, the viscosity varied by three orders of magnitude over this range of compositions. 10 refs., 39 figs., 16 tabs

  15. Key-space analysis of double random phase encryption technique

    Science.gov (United States)

    Monaghan, David S.; Gopinathan, Unnikrishnan; Naughton, Thomas J.; Sheridan, John T.

    2007-09-01

    We perform a numerical analysis on the double random phase encryption/decryption technique. The key-space of an encryption technique is the set of possible keys that can be used to encode data using that technique. In the case of a strong encryption scheme, many keys must be tried in any brute-force attack on that technique. Traditionally, designers of optical image encryption systems demonstrate only how a small number of arbitrary keys cannot decrypt a chosen encrypted image in their system. However, this type of demonstration does not discuss the properties of the key-space nor refute the feasibility of an efficient brute-force attack. To clarify these issues we present a key-space analysis of the technique. For a range of problem instances we plot the distribution of decryption errors in the key-space indicating the lack of feasibility of a simple brute-force attack.

  16. Precision improving of double beam shadow moiré interferometer by phase shifting interferometry for the stress of flexible substrate

    Science.gov (United States)

    Huang, Kuo-Ting; Chen, Hsi-Chao; Lin, Ssu-Fan; Lin, Ke-Ming; Syue, Hong-Ye

    2012-09-01

    While tin-doped indium oxide (ITO) has been extensively applied in flexible electronics, the problem of the residual stress has many obstacles to overcome. This study investigated the residual stress of flexible electronics by the double beam shadow moiré interferometer, and focused on the precision improvement with phase shifting interferometry (PSI). According to the out-of-plane displacement equation, the theoretical error depends on the grating pitch and the angle between incident light and CCD. The angle error could be reduced to 0.03% by the angle shift of 10° as a result of the double beam interferometer was a symmetrical system. But the experimental error of the double beam moiré interferometer still reached to 2.2% by the noise of the vibration and interferograms. In order to improve the measurement precision, PSI was introduced to the double shadow moiré interferometer. Wavefront phase was reconstructed by the five interferograms with the Hariharan algorithm. The measurement results of standard cylinder indicating the error could be reduced from 2.2% to less than 1% with PSI. The deformation of flexible electronic could be reconstructed fast and calculated the residual stress with the Stoney correction formula. This shadow moiré interferometer with PSI could improve the precision of residual stress for flexible electronics.

  17. Medium effects and parity doubling of hyperons across the deconfinement phase transition

    Science.gov (United States)

    Aarts, Gert; Allton, Chris; Boni, Davide De; Hands, Simon; Jäger, Benjamin; Praki, Chrisanthi; Skullerud, Jon-Ivar

    2018-03-01

    We analyse the behaviour of hyperons with strangeness S = -1,-2,-3 in the hadronic and quark gluon plasma phases, with particular interest in parity doubling and its emergence as the temperature grows. This study uses our FASTSUM anisotropic Nf = 2+1 ensembles, with four temperatures below and four above the deconfinement transition temperature, Tc. The positive-parity groundstate masses are found to be largely temperature independent below Tc, whereas the negative-parity ones decrease considerably as the temperature increases. Close to the transition, the masses are almost degenerate, in line with the expectation from chiral symmetry restoration. This may be of interest for heavy-ion phenomenology. In particular we show an application of this effect to the Hadron Resonance Gas model. A clear signal of parity doubling is found above Tc in all hyperon channels, with the strength of the effect depending on the number of s-quarks in the baryons. Presented at 35th International Symposium on Lattice Field Theory, 18-24 June 2017, Granada, Spain

  18. Performance of Liquid Phase Exfoliated Graphene As Electrochemical Double Layer Capacitors Electrodes

    Science.gov (United States)

    Huffstutler, Jacob; Wasala, Milinda; Richie, Julianna; Winchester, Andrew; Ghosh, Sujoy; Kar, Swastik; Talapatra, Saikat

    2014-03-01

    We will present the results of our investigations of electrochemical double layer capacitors (EDLCs) or supercapacitors (SC) fabricated using liquid-phase exfoliated graphene. Several electrolytes, such as aqueous potassium hydroxide KOH (6M), ionic 1-Butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF6], and ionic 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate[BMP][FAP] were used. These EDLC's show good performance compared to other carbon nanomaterials based EDLC's devices. We found that the liquid phase exfoliated graphene based devices possess specific capacitance values as high as 262 F/g, when used with ionic liquid electrolyte[BMP][FAP], with power densities (~ 454 W/kg) and energy densities (~ 0.38Wh/kg). Further, these devices indicated rapid charge transfer response even without the use of any binders or specially prepared current collectors. A detailed electrochemical impedance spectroscopy analysis in order to understand the phenomenon of charge storage in these materials will be presented.

  19. Research on out-phase oscillation in a nuclear-coupled parallel double-channel boiling system

    International Nuclear Information System (INIS)

    Zhou Linglan; Zhang Hong; Liu Yu; Zang Xi'nian

    2011-01-01

    In this paper, the RELAP5 thermal-hydraulic system code is coupled with the TDOT-T 3D neutron kinetic code by PVM (Parallel Virtual Machine). A parallel double-channel boiling system is built by the coupled code and the instability boundary of out-of-phase oscillation in the system is obtained. The effects of axis power distribution and neutron feedback on the out-of-phase oscillation are analyzed in details. It is found that there are type-Ⅰ and type-Ⅱ density wave oscillation regions when the axial power peak is located at upstream of the heating section. At relatively lower values of fuel time constant, the neutron feedback always delays both types of density wave oscillations. (authors)

  20. An analysis of molten-corium-induced failure of drain pipes in BWR Mark 2 containments

    International Nuclear Information System (INIS)

    Taleyarkhan, R.P.; Podowski, M.Z.

    1991-01-01

    This study has focused on mechanistic simulation and analysis of potential failure modes for inpedestal drywell drain pipes in the Limerick boiling water reactor (BWR) Mark 2 containment. Physical phenomena related to surface tension breakdown, heatup, melting, ablation, crust formation and failure, and core material relocation into drain pipes with simultaneous melting of pipe walls were modeled and analyzed. The results of analysis have been used to assess the possibility of drain pipe failure and the resultant loss of pressure-suppression capability. Estimates have been made for the timing and amount of molten corium released to the wetwell. The study has revealed that significantly different melt progression sequences can result depending upon the failure characteristics of the frozen metallic crust which forms over the drain cover during the initial stages of debris pour. Another important result is that it can take several days for the molten fuel to ablate the frozen metallic debris layer -- if the frozen layer has cooled below 1100 K before fuel attack. 10 refs., 3 figs., 4 tabs

  1. Double random phase spread spectrum spread space technique for secure parallel optical multiplexing with individual encryption key

    Science.gov (United States)

    Hennelly, B. M.; Javidi, B.; Sheridan, J. T.

    2005-09-01

    A number of methods have been recently proposed in the literature for the encryption of 2-D information using linear optical systems. In particular the double random phase encoding system has received widespread attention. This system uses two Random Phase Keys (RPK) positioned in the input spatial domain and the spatial frequency domain and if these random phases are described by statistically independent white noises then the encrypted image can be shown to be a white noise. Decryption only requires knowledge of the RPK in the frequency domain. The RPK may be implemented using a Spatial Light Modulators (SLM). In this paper we propose and investigate the use of SLMs for secure optical multiplexing. We show that in this case it is possible to encrypt multiple images in parallel and multiplex them for transmission or storage. The signal energy is effectively spread in the spatial frequency domain. As expected the number of images that can be multiplexed together and recovered without loss is proportional to the ratio of the input image and the SLM resolution. Many more images may be multiplexed with some loss in recovery. Furthermore each individual encryption is more robust than traditional double random phase encoding since decryption requires knowledge of both RPK and a lowpass filter in order to despread the spectrum and decrypt the image. Numerical simulations are presented and discussed.

  2. Experimental study of the fragmentation and quench behavior of corium melts in water

    International Nuclear Information System (INIS)

    Wang, S.K.; Blomquist, C.A.; Spencer, B.W.; McUmber, L.M.; Schneider, J.P.; Illinois Univ., Urbana, IL

    1989-01-01

    The interaction of molten core materials with water has been investigated for the pour stream mixing mode. This interaction plays a crucial role during the later stages of in-vessel core melt progression inside a light water reactor such as during the TMI-2 accident. The key issues which arise during the molten core relocation include: (1) the thermal attack and possible damage to the RPV lower head from the impinging molten fuel stream and/or the debris bed, (2) the molten fuel relocation pathways including the effects of redistribution due to core support structure and the reactor lower internals, (3) the quench rate of the molten fuel through the water in the lower plasma, (4) the steam generation and hydrogen generation during the interaction, (5) the transient pressurization of the primary system, and (6) the possibility of a steam explosion. In order to understand these issues, a series of six experiments (designated CCM-1 through -6) was performed in which molten corium passed through a deep pool of water in a long, slender pour stream mode. Results discussed include the transient temperatures and pressures, the rate and magnitude of steam/hydrogen generation, and the posttest debris characteristics. 9 refs., 29 figs

  3. Modeling of spreading of the melted corium jet inside the pool of emergency heat removal during severe accidents at NPP

    Directory of Open Access Journals (Sweden)

    I. V. Kazachkov

    2012-03-01

    Full Text Available Important nuclear power safety problem in touch with modeling of melted corium jet spreading inside the coolant pool is considered in the paper. It appears by development of the passive protection systems against se-vere accidents. The non-linear mathematical developed model is presented for the jet under reactor vessel pool for one of the perspective passive protection systems and the results of its analysis and studies are given. The performed analysis and the results of the numerical simulation done on the base of the model have allowed estab-lishing the interesting behaviors of the system, which may be useful for the scientists, as well as the engineers-constructors of the passive protection systems against severe accidents.

  4. A Multispectral Photon-Counting Double Random Phase Encoding Scheme for Image Authentication

    Directory of Open Access Journals (Sweden)

    Faliu Yi

    2014-05-01

    Full Text Available In this paper, we propose a new method for color image-based authentication that combines multispectral photon-counting imaging (MPCI and double random phase encoding (DRPE schemes. The sparsely distributed information from MPCI and the stationary white noise signal from DRPE make intruder attacks difficult. In this authentication method, the original multispectral RGB color image is down-sampled into a Bayer image. The three types of color samples (red, green and blue color in the Bayer image are encrypted with DRPE and the amplitude part of the resulting image is photon counted. The corresponding phase information that has nonzero amplitude after photon counting is then kept for decryption. Experimental results show that the retrieved images from the proposed method do not visually resemble their original counterparts. Nevertheless, the original color image can be efficiently verified with statistical nonlinear correlations. Our experimental results also show that different interpolation algorithms applied to Bayer images result in different verification effects for multispectral RGB color images.

  5. A multispectral photon-counting double random phase encoding scheme for image authentication.

    Science.gov (United States)

    Yi, Faliu; Moon, Inkyu; Lee, Yeon H

    2014-05-20

    In this paper, we propose a new method for color image-based authentication that combines multispectral photon-counting imaging (MPCI) and double random phase encoding (DRPE) schemes. The sparsely distributed information from MPCI and the stationary white noise signal from DRPE make intruder attacks difficult. In this authentication method, the original multispectral RGB color image is down-sampled into a Bayer image. The three types of color samples (red, green and blue color) in the Bayer image are encrypted with DRPE and the amplitude part of the resulting image is photon counted. The corresponding phase information that has nonzero amplitude after photon counting is then kept for decryption. Experimental results show that the retrieved images from the proposed method do not visually resemble their original counterparts. Nevertheless, the original color image can be efficiently verified with statistical nonlinear correlations. Our experimental results also show that different interpolation algorithms applied to Bayer images result in different verification effects for multispectral RGB color images.

  6. Results on Neutrinoless Double-β Decay of Ge76 from Phase I of the GERDA Experiment

    Science.gov (United States)

    Agostini, M.; Allardt, M.; Andreotti, E.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Barnabé Heider, M.; Barros, N.; Baudis, L.; Bauer, C.; Becerici-Schmidt, N.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Brudanin, V.; Brugnera, R.; Budjáš, D.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; Cossavella, F.; Demidova, E. V.; Domula, A.; Egorov, V.; Falkenstein, R.; Ferella, A.; Freund, K.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Gotti, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Guthikonda, K. K.; Hampel, W.; Hegai, A.; Heisel, M.; Hemmer, S.; Heusser, G.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Ioannucci, L.; Janicskó Csáthy, J.; Jochum, J.; Junker, M.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Klimenko, A.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Liu, X.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Machado, A. A.; Majorovits, B.; Maneschg, W.; Misiaszek, M.; Nemchenok, I.; Nisi, S.; O'Shaughnessy, C.; Pandola, L.; Pelczar, K.; Pessina, G.; Pullia, A.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salathe, M.; Schmitt, C.; Schreiner, J.; Schulz, O.; Schwingenheuer, B.; Schönert, S.; Shevchik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Strecker, H.; Tarka, M.; Ur, C. A.; Vasenko, A. A.; Volynets, O.; von Sturm, K.; Wagner, V.; Walter, M.; Wegmann, A.; Wester, T.; Wojcik, M.; Yanovich, E.; Zavarise, P.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.

    2013-09-01

    Neutrinoless double beta decay is a process that violates lepton number conservation. It is predicted to occur in extensions of the standard model of particle physics. This Letter reports the results from phase I of the Germanium Detector Array (GERDA) experiment at the Gran Sasso Laboratory (Italy) searching for neutrinoless double beta decay of the isotope Ge76. Data considered in the present analysis have been collected between November 2011 and May 2013 with a total exposure of 21.6 kg yr. A blind analysis is performed. The background index is about 1×10-2counts/(keVkgyr) after pulse shape discrimination. No signal is observed and a lower limit is derived for the half-life of neutrinoless double beta decay of Ge76, T1/20ν>2.1×1025yr (90% C.L.). The combination with the results from the previous experiments with Ge76 yields T1/20ν>3.0×1025yr (90% C.L.).

  7. Observation of negative potential depression on double layer during a phase of current disruption

    International Nuclear Information System (INIS)

    Fujita, H.; Matsuo, K.; Yagura, S.

    1984-01-01

    The negative potential depression with a depth of approximately electron temperature is observed on the low potential tail of the double layer just at the moment when the electron current passing through the layer is disrupted. The depression is confirmed to serve as an electron thermal barrier and form an ion hole from phase-space measurements of electrons and ions, respectively. The depth of the depression becomes maximum when the density around the depression becomes most inhomogeneous. (author)

  8. The corrosion mechanism of the sintered (Ce, Nd)-Fe-B magnets prepared by double main phase and single main phase approaches

    Science.gov (United States)

    Shi, Xiaoning; Zhu, Minggang; Zhou, Dong; Song, Liwei; Guo, Zhaohui; Li, Jia; Li, Wei

    2018-05-01

    The sintered (Ce, Nd)-Fe-B magnets were produced widely by Double Main Phase (DMP) method in China as the magnetic properties of the DMP magnets are superior to those of single main phase (SMP) magnets with the same nominal composition. In this work, the microstructure and corrosion mechanism of the sintered (Ce0.2Nd0.8)30FebalB (wt.%) magnets prepared by DMP and SMP method were studied in detail. Compared to SMP magnets, the DMP magnets have more positive corrosion potential, lower corrosion current density, larger electron transfer resistance, and lower mass loss of the free corrosion experiment in 0.5mol/l Na2SO4 aqueous solution. All of the results show that the DMP magnets have better corrosion resistance than SMP magnets. The back scattered electron images show that the crystalline grains of the DMP magnets are sphericity with a smooth surface while the SMP ones have plenty of edges and corners. Besides, the distribution of Ce/Nd is much more uneven in both magnetic phase and rare earth (Re)-rich phase of the DMP magnets than those of SMP magnets. After corrosion, DMP magnets show eroded magnetic phase and intact Re-rich phase, which indicate that galvanic corrosion of the Re-rich phase acting as the cathode appears.

  9. Search for the neutrinoless double beta decay (0νββ) of {sup 76}Ge: GERDA Phase II commissioning

    Energy Technology Data Exchange (ETDEWEB)

    Bode, Tobias [Physik-Department E15, Technische Universitaet Muenchen (Germany); Collaboration: GERDA-Collaboration

    2015-07-01

    After successful completion of Phase I the Gerda (Germanium Detector Array) experiment underwent a major upgrade of the experimental apparatus. These upgrades include additional 20 kg of custom-made detectors with improved background rejection capabilities, accompanied by improved front-end electronics and an active liquid argon scintillation light veto. A sensitivity on the neutrinoless double beta decay half-life (T{sub 1/2}{sup 0ν}) of 10{sup 26} yr should be reached after a few years of data taking (Phase II). First results of Phase II commissioning and latest results from Phase I analyses are presented in this talk.

  10. Experimental study on two-phase flow natural circulation in a core catcher cooling channel for EU-APR1400 using air-water system

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ki Won [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Korea Atomic Energy Research Institute, Daejeon 34057 (Korea, Republic of); Nguyen, Thanh Hung [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47906 (United States); Ha, Kwang Soon; Kim, Hwan Yeol; Song, Jinho [Korea Atomic Energy Research Institute, Daejeon 34057 (Korea, Republic of); Park, Hyun Sun [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Revankar, Shripad T., E-mail: shripad@postech.ac.kr [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); School of Nuclear Engineering, Purdue University, West Lafayette, IN 47906 (United States); Kim, Moo Hwan [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Korea Institute of Nuclear Safety, Daejeon 305-338 (Korea, Republic of)

    2017-05-15

    Highlights: • Two-phase flow regimes and transition behavior were observed in the coolant channel. • Test were conducted for natural circulation with air-water. • Data were obtained on flow regime, void fraction, flow rates and re-wetting time. • The data were related to a cooling capability of core catcher system. - Abstract: Ex-vessel core catcher cooling system driven by natural circulation is designed using a full scaled air-water system. A transparent half symmetric section of a core catcher coolant channel of a pressurized water reactor was designed with instrumentations for local void fraction measurement and flow visualization. Two designs of air-water top separator water tanks are studied including one with modified ‘super-step’ design which prevents gas entrainment into down-comer. In the experiment air flow rates are set corresponding to steam generation rate for given corium decay power. Measurements of natural circulation flow rate, spatial local void fraction distribution and re-wetting time near the top wall are carried out for various air flow rates which simulate boiling-induced vapor generation. Since heat transfer and critical heat flux are strongly dependent on the water mass flow rate and development of two-phase flow on the heated wall, knowledge of two-phase flow characteristics in the coolant channel is essential. Results on flow visualization showing two phase flow structure specifically near the high void accumulation regions, local void profiles, rewetting time, and natural circulation flow rate are presented for various air flow rates that simulate corium power levels. The data are useful in assessing the cooling capability of and safety of the core catcher system.

  11. Phase control of squeezed state in double electromagnetically induced transparency system with a loop-transition structure

    Science.gov (United States)

    Li, Yuan; Zhou, Yusheng; Wang, Yong; Ling, Qiang; Chen, Bing; Dou, Yan; Zhang, Wei; Gao, Weiqing; Guo, Zhiqiang; Zhang, Junxiang

    2018-03-01

    We theoretically study the squeezed probe light passing through a double electromagnetically induced transparency (DEIT) system, in which a microwave field and two coupling lights drive a loop transition. It is shown that the output squeezing can be maintained in both two transparency windows of DEIT, and it can also be manipulated by the relative phase of the three driving fields. The influence of the intensity of applied fields and the optical depth of atoms on the squeezing is also investigated. This study offers possibilities to manipulate the squeezing propagation in atomic media by the phase of electromagnetic fields.

  12. Importance of the in and ex-vessel corium coolability in case of severe accident for the French PWRs. Some views from L2 PSA and perspectives

    International Nuclear Information System (INIS)

    Raimond, E.; Caroli, C.; Meignen, R.; Rahni, N.; Laurent, B.

    2011-01-01

    In the case of a severe accident on a NPP leading to core degradation after a default in the core cooling as during the accident of Three Mile Island (TMI2), the most efficient way to stop the accident progression would be the in-vessel water injection if a specific mean is available. The TMI2 accident has shown that the accident can be stopped and that the corium, even if highly degraded, can be cooled, but no one can generalize the TMI2 accident termination to all situations. The present paper aims at presenting the situation for the French operated PWRs and is mainly based on the IRSN experience in level 2 probabilistic safety assessment (L2 PSA) development for this type of reactor. It tries to highlight the benefit that could be obtained from a better understanding of the corium cooling phenomenology, including both possible positive and negative effects. Three main negative effects of in-vessel flooding have to be taken into account in a L2 PSA for a PWR: an increase of the hydrogen production rate, a risk of in-vessel pressure increase and the development of conditions for steam explosion. L2 PSAs in France have now reached a certain maturity allowing raising some more precise issues, but for the issues presented in this paper, some progress from the research-development and the simulation tools (mainly the ASTEC integral code) are still necessary to support decision-making

  13. Prediction of corium debris characteristics in lower plenum of a nordic BWR in different accident scenarios using MELCOR code - 15367

    International Nuclear Information System (INIS)

    Phung, V.A.; Galushin, S.; Raub, S.; Goronovski, A.; Villanueva, W.; Koeoep, K; Grishchenko, D.; Kudinov, P.

    2015-01-01

    Severe accident management strategy in Nordic boiling water reactors (BWRs) relies on ex-vessel core debris coolability. The mode of corium melt release from the vessel determines conditions for ex-vessel accident progression and threats to containment integrity, e.g., formation of a non-coolable debris bed and possibility of energetic steam explosion. In-vessel core degradation and relocation is an important stage which determines characteristics of corium debris in the vessel lower plenum, such as mass, composition, thermal properties, timing of relocation, and decay heat. These properties affect debris reheating and remelting, melt interactions with the vessel structures, and possibly vessel failure and melt ejection mode. Core degradation and relocation is contingent upon the accident scenario parameters such as recovery time and capacity of safety systems. The goal of this work is to obtain a better understanding of the impact of the accident scenarios and timing of the events on core relocation phenomena and resulting properties of the debris bed in the vessel lower plenum of Nordic BWRs. In this study, severe accidents in a Nordic BWR reference plant are initiated by a station black out event, which is the main contributor to core damage frequency of the reactor. The work focuses on identifying ranges of debris bed characteristics in the lower plenum as functions of the accident scenario with different recovery timing and capacity of safety systems. The severe accident analysis code MELCOR coupled with GA-IDPSA is used in this work. GA-IDPSA is a Genetic Algorithm-based Integrated Deterministic Probabilistic Safety Analysis tool, which has been developed to search uncertain input parameter space. The search is guided by different target functions. Scenario grouping and clustering approach is applied in order to estimate the ranges of debris characteristics and identify scenario regions of core relocation that can lead to significantly different debris bed

  14. Element nodes of sports equipment double back flip factions and double back flip hunched performed gymnast in floor exercise

    Directory of Open Access Journals (Sweden)

    V.A. Potop

    2014-07-01

    Full Text Available Purpose: to identify the node elements of sports equipment double back somersault tuck and double back flip bent. To compare the two types of nodes for double somersault. Material : the study involved eight gymnasts (age 12 - 14 years. All finalists in the competition floor exercise - reserve team Romania. The method of video - computer research and method of postural orientation movements. Results : identified nodal elements of sports equipment double back somersault tuck and double back flip bent. In the preparatory phase of motor actions - launcher body posture for reaching is repulsive to flip. In the phase of basic motor action - animation body postures (double back somersault tuck and bent (bent double back flip. Exercises are performed on the ascending and descending parts of the flight path of the demonstration of individual maximum lift height common center of mass. In the final phase of motor actions - final body posture - steady landing. Conclusions : indicators of key elements of sports equipment acrobatic exercises contain new scientific facts kinematic and dynamic structures of motor actions. They are necessary for the development of modern training programs acrobatic exercises in step specialized base preparation.

  15. Results on neutrinoless double beta decay of 76Ge from GERDA Phase I

    Science.gov (United States)

    Palioselitis, Dimitrios; GERDA Collaboration

    2015-05-01

    The Germanium Detector Array (GERDA) experiment is searching for the neutrinoless double beta (0νββ) decay of 76Ge by operating bare germanium diodes in liquid argon. GERDA is located at the Gran Sasso National Laboratory (LNGS) in Italy. During Phase I, a total exposure of 21.6 kg yrand a background index of 0.01 cts/(keVkg yr) were reached. No signal was observed and a lower limit of T0ν1/2 > 2.1 · 1025 yr(90% C.L.) is derived for the half life of the 0νββ decay of 76Ge.

  16. Phase II Upgrade of the GERDA Experiment for the Search of Neutrinoless Double Beta Decay

    Science.gov (United States)

    Majorovits, B.

    Observation of neutrinoless double beta decay could answer the question regarding the Majorana or Dirac nature of neutrinos. The GERDA experiment utilizes HPGe detectors enriched with the isotope 76Ge to search for this process. Recently the GERDA collaboration has unblinded data of Phase I of the experiment. In order to further improve the sensitivity of the experiment, additionally to the coaxial detectors used, 30 BEGe detectors made from germanium enriched in 76Ge will be deployed in GERDA Phase II. BEGe detectors have superior PSD capability, thus the background can be further reduced. The liquid argon surrounding the detector array will be instrumented in order to reject background by detecting scintillation light induced in the liquid argon by radiation. After a short introduction the hardware preparations for GERDA Phase II as well as the processing and characterization of the 30 BEGe detectors are discussed.

  17. Choice of optical system is critical for the security of double random phase encryption systems

    Science.gov (United States)

    Muniraj, Inbarasan; Guo, Changliang; Malallah, Ra'ed; Cassidy, Derek; Zhao, Liang; Ryle, James P.; Healy, John J.; Sheridan, John T.

    2017-06-01

    The linear canonical transform (LCT) is used in modeling a coherent light-field propagation through first-order optical systems. Recently, a generic optical system, known as the quadratic phase encoding system (QPES), for encrypting a two-dimensional image has been reported. In such systems, two random phase keys and the individual LCT parameters (α,β,γ) serve as secret keys of the cryptosystem. It is important that such encryption systems also satisfy some dynamic security properties. We, therefore, examine such systems using two cryptographic evaluation methods, the avalanche effect and bit independence criterion, which indicate the degree of security of the cryptographic algorithms using QPES. We compared our simulation results with the conventional Fourier and the Fresnel transform-based double random phase encryption (DRPE) systems. The results show that the LCT-based DRPE has an excellent avalanche and bit independence characteristics compared to the conventional Fourier and Fresnel-based encryption systems.

  18. Deformed quantum double realization of the toric code and beyond

    Science.gov (United States)

    Padmanabhan, Pramod; Ibieta-Jimenez, Juan Pablo; Bernabe Ferreira, Miguel Jorge; Teotonio-Sobrinho, Paulo

    2016-09-01

    Quantum double models, such as the toric code, can be constructed from transfer matrices of lattice gauge theories with discrete gauge groups and parametrized by the center of the gauge group algebra and its dual. For general choices of these parameters the transfer matrix contains operators acting on links which can also be thought of as perturbations to the quantum double model driving it out of its topological phase and destroying the exact solvability of the quantum double model. We modify these transfer matrices with perturbations and extract exactly solvable models which remain in a quantum phase, thus nullifying the effect of the perturbation. The algebra of the modified vertex and plaquette operators now obey a deformed version of the quantum double algebra. The Abelian cases are shown to be in the quantum double phase whereas the non-Abelian phases are shown to be in a modified phase of the corresponding quantum double phase. These are illustrated with the groups Zn and S3. The quantum phases are determined by studying the excitations of these systems namely their fusion rules and the statistics. We then go further to construct a transfer matrix which contains the other Z2 phase namely the double semion phase. More generally for other discrete groups these transfer matrices contain the twisted quantum double models. These transfer matrices can be thought of as being obtained by introducing extra parameters into the transfer matrix of lattice gauge theories. These parameters are central elements belonging to the tensor products of the algebra and its dual and are associated to vertices and volumes of the three dimensional lattice. As in the case of the lattice gauge theories we construct the operators creating the excitations in this case and study their braiding and fusion properties.

  19. Results on neutrinoless double-β decay of 76Ge from phase I of the GERDA experiment.

    Science.gov (United States)

    Agostini, M; Allardt, M; Andreotti, E; Bakalyarov, A M; Balata, M; Barabanov, I; Barnabé Heider, M; Barros, N; Baudis, L; Bauer, C; Becerici-Schmidt, N; Bellotti, E; Belogurov, S; Belyaev, S T; Benato, G; Bettini, A; Bezrukov, L; Bode, T; Brudanin, V; Brugnera, R; Budjáš, D; Caldwell, A; Cattadori, C; Chernogorov, A; Cossavella, F; Demidova, E V; Domula, A; Egorov, V; Falkenstein, R; Ferella, A; Freund, K; Frodyma, N; Gangapshev, A; Garfagnini, A; Gotti, C; Grabmayr, P; Gurentsov, V; Gusev, K; Guthikonda, K K; Hampel, W; Hegai, A; Heisel, M; Hemmer, S; Heusser, G; Hofmann, W; Hult, M; Inzhechik, L V; Ioannucci, L; Janicskó Csáthy, J; Jochum, J; Junker, M; Kihm, T; Kirpichnikov, I V; Kirsch, A; Klimenko, A; Knöpfle, K T; Kochetov, O; Kornoukhov, V N; Kuzminov, V V; Laubenstein, M; Lazzaro, A; Lebedev, V I; Lehnert, B; Liao, H Y; Lindner, M; Lippi, I; Liu, X; Lubashevskiy, A; Lubsandorzhiev, B; Lutter, G; Macolino, C; Machado, A A; Majorovits, B; Maneschg, W; Misiaszek, M; Nemchenok, I; Nisi, S; O'Shaughnessy, C; Pandola, L; Pelczar, K; Pessina, G; Pullia, A; Riboldi, S; Rumyantseva, N; Sada, C; Salathe, M; Schmitt, C; Schreiner, J; Schulz, O; Schwingenheuer, B; Schönert, S; Shevchik, E; Shirchenko, M; Simgen, H; Smolnikov, A; Stanco, L; Strecker, H; Tarka, M; Ur, C A; Vasenko, A A; Volynets, O; von Sturm, K; Wagner, V; Walter, M; Wegmann, A; Wester, T; Wojcik, M; Yanovich, E; Zavarise, P; Zhitnikov, I; Zhukov, S V; Zinatulina, D; Zuber, K; Zuzel, G

    2013-09-20

    Neutrinoless double beta decay is a process that violates lepton number conservation. It is predicted to occur in extensions of the standard model of particle physics. This Letter reports the results from phase I of the Germanium Detector Array (GERDA) experiment at the Gran Sasso Laboratory (Italy) searching for neutrinoless double beta decay of the isotope (76)Ge. Data considered in the present analysis have been collected between November 2011 and May 2013 with a total exposure of 21.6 kg yr. A blind analysis is performed. The background index is about 1 × 10(-2) counts/(keV kg yr) after pulse shape discrimination. No signal is observed and a lower limit is derived for the half-life of neutrinoless double beta decay of (76)Ge, T(1/2)(0ν) >2.1 × 10(25) yr (90% C.L.). The combination with the results from the previous experiments with (76)Ge yields T(1/2)(0ν)>3.0 × 10(25) yr (90% C.L.).

  20. Quantum double-well chain: Ground-state phases and applications to hydrogen-bonded materials

    International Nuclear Information System (INIS)

    Wang, X.; Campbell, D.K.; Gubernatis, J.E.

    1994-01-01

    Extrapolating the results of hybrid quantum Monte Carlo simulations to the zero temperature and infinite-chain-length limits, we calculate the ground-state phase diagram of a system of quantum particles on a chain of harmonically coupled, symmetric, quartic double-well potentials. We show that the ground state of this quantum chain depends on two parameters, formed from the ratios of the three natural energy scales in the problem. As a function of these two parameters, the quantum ground state can exhibit either broken symmetry, in which the expectation values of the particle's coordinate are all nonzero (as would be the case for a classical chain), or restored symmetry, in which the expectation values of the particle's coordinate are all zero (as would be the case for a single quantum particle). In addition to the phase diagram as a function of these two parameters, we calculate the ground-state energy, an order parameter related to the average position of the particle, and the susceptibility associated with this order parameter. Further, we present an approximate analytic estimate of the phase diagram and discuss possible physical applications of our results, emphasizing the behavior of hydrogen halides under pressure

  1. Phase transitions and magnetization of the mixed-spin Ising–Heisenberg double sawtooth frustrated ladder

    Science.gov (United States)

    Arian Zad, Hamid; Ananikian, Nerses

    2018-04-01

    The mixed spin-(1,1/2) Ising–Heisenberg double sawtooth ladder containing a mixture of both spin-1 and spin-1/2 nodal atoms, and the spin-1/2 interstitial dimers are approximately solved by the transfer-matrix method. Here, we study in detail the ground-state phase diagrams, also influences of the bilinear exchange coupling on the rungs and cyclic four-spin exchange interaction in square plaquette of each block on the magnetization and magnetic susceptibility of the suggested ladder at low temperature. Such a double sawtooth ladder may be found in a Shastry-Sutherland lattice-type. In spite of the spin ordering of odd and even blocks being different from each other, due to the commutation relation between all different block Hamiltonians, phase diagrams, magnetization behavior and thermodynamic properties of the model are the same for odd and even blocks. We show that at low temperature, both exchange couplings can change the quality and quantity of the magnetization plateaus versus the magnetic field changes. Specially, we find a new magnetization plateau M/Ms= 5/6 for this model. Besides, we examine the magnetic susceptibility and specific heat of the model in detail. It is proven that behaviors of the magnetization and the magnetic susceptibility coincide at low temperature. The specific heat displays diverse temperature dependencies, which include a Schottky-type peak at a special temperature interval. We observe that with increase of the bilinear exchange coupling on the rungs, second peak temperature dependence grows.

  2. Double exchange model on triangular lattice: Non-coplanar spin configuration and phase transition near quarter filling

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, G.P., E-mail: bugubird_zhang@hotmail.com [Department of Physics, Renmin University of China, Beijing 100872 (China); Zhang, Jian [3M Company, 3M Corporate Headquarters, 3M Center, St. Paul, MN 55144-1000 (United States); Zhang, Qi-Li [Data Center for High Energy Density Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China); Zhou, Jiang-Tao [College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Shangguan, M.H. [Department of Physics, Renmin University of China, Beijing 100872 (China)

    2013-05-15

    Unconventional anomalous Hall effect in frustrated pyrochlore oxides is originated from spin chirality of non-coplanar localized spins, which can also be induced by the competition between ferromagnetic (FM) double exchange interaction J{sub H} and antiferromagnetic superexchange interaction J{sub AF}. Here truncated polynomial expansion method and Monte Carlo simulation are adopted to investigate the above model on two-dimensional triangular lattice. We discuss the influence of the range of FM-type spin–spin correlation and strong electron–spin correlation on the truncation error of spin–spin correlation near quarter filling. Two peaks of the probability distribution of spin–spin correlation in non-coplanar spin configuration clearly show that non-coplanar spin configuration is an intermediate phase between FM and 120° spin phase. Near quarter filling, there is a phase transition from FM into non-coplanar and further into 120° spin phase when J{sub AF} continually increases. Finally the effect of temperature on the magnetic structure is discussed.

  3. Modelling of BLDCM with a double 3-phase stator winding and back EMF harmonics

    Directory of Open Access Journals (Sweden)

    Drozdowski Piotr

    2015-03-01

    Full Text Available In this paper the mathematical model of the brushless DC motor (BLDCM with a double 3-phase stator winding is analysed. Both the 3-phase windings are mutually displaced by 30 electrical degree. Special care has been sacrificed to influence of higher harmonics of induced electromotive forces (EMF on electromagnetic torque and zero sequence voltages that may be used for sensorless control. The mathematical model has been presented in natural variables and, after transformation to symmetrical components, in a vector form. This allows, from one side, for formulating the equivalent circuit suitable for circuit oriented simulators (e.g.: Spice, SimPowerSystems of Simulink and, from the other point of view, for analysis of higher harmonics influence on control possibilities. These considerations have been illustrated with some results of four quadrant operation obtainded due to simulation at automatic control.

  4. The LEONAR code: a new tool for PSA Level 2 analyses

    International Nuclear Information System (INIS)

    Tourniaire, B; Spindler, B.; Ratel, G.; Seiler, J.M.; Iooss, B.; Marques, M.; Gaudier, F.; Greffier, G.

    2011-01-01

    The LEONAR code, complementary to integral codes such as MAAP or ASTEC, is a new severe accident simulation tool which can calculate easily 1000 late phase reactor situations within a few hours and provide a statistical evaluation of the situations. LEONAR can be used for the analysis of the impact on the failure probabilities of specific Severe Accident Management measures (for instance: water injection) or design modifications (for instance: pressure vessel flooding or dedicated reactor pit flooding), or to focus the research effort on key phenomena. The starting conditions for LEONAR are a set of core melting situations that are separately calculated from a core degradation code (such as MAAP, which is used by EDF). LEONAR describes the core melt evolution after flooding in the core, the corium relocation in the lower head (under dry and wet conditions), the evolution of corium in the lower head including the effect of flooding, the vessel failure, corium relocation in the reactor cavity, interaction between corium and basemat concrete, possible corium spreading in the neighbour rooms, on the containment floor. Scenario events as well as specific physical model parameters are characterised by a probability density distribution. The probabilistic evaluation is performed by URANIE that is coupled to the physical calculations. The calculation results are treated in a statistical way in order to provide easily usable information. This tool can be used to identify the main parameters that influence corium coolability for severe accident late phases. It is aimed to replace efficiently PIRT exercises. An important impact of such a tool is that it can be used to make a demonstration that the probability of basemat failure can be significantly reduced by coupling a number of separate severe accident management measures or design modifications despite each separate measure is not sufficient by itself to avoid the failure. (authors)

  5. Double-beta decay with majoron emission in GERDA Phase I

    Science.gov (United States)

    Hemmer, Sabine

    2015-07-01

    Neutrinoless double-beta decay with emission of one or two majorons (0 νββχ( χ)) is predicted by several beyond-Standard-Model theories. This article reviews the results of a search for 0 νββχ( χ) of 76Ge using data from the Germanium Detector Array (GERDA) experiment, located underground at the INFN Laboratori Nazionali del Gran Sasso (LNGS) in Italy. The analysis comprised data with an exposure of 20.3 kg·yr from the first phase of the experiment. No indication of contributions to the observed energy spectra was detected for any of the majoron models. The lower limit on the half-life for the ordinary majoron model (spectral index n = 1 was determined to be T {1/2/0 νβ } > 4.2 · 1023 yr (90% quantile). This limit and the limits derived for the other majoron modes constitute the most stringent limits on 0 νββχ( χ) decay of 76Ge measured to date.

  6. Double-phase parathyroid 99Tcm-MIBI scintigraphy in secondary hyperparathyroidism

    International Nuclear Information System (INIS)

    Liu Wei; Xu Zhaoqiang; Hu Jianmin; Chang Guojun; Yao Weixuan; Li Yongjun; Chen Jianwei

    1999-01-01

    Objective: To evaluate the diagnostic value of double-phase parathyroid 99 Tc m -MIBI scintigraphy in secondary hyperparathyroidism (SHP) following chronic renal failure. Methods: 99 Tc m -MIBI parathyroid scintigraphy was performed on 20 SHP patients. All images were analyzed with parathyroid/thyroid ratio (PT/T) and parathyroid index (PTI). 3 patients underwent parathyroidectomy and ectopic autografting. Results: 8 patients were 99 Tc m -MIBI-positive. 9 parathyroid glands removed from 3 patients were histopathologically diagnosed as parathyroid hyperplasia. 8 of the 9 were scintigraphy positive with the sensitivity of 88.9%, the localization of the parathyroids with scanning before operation was accurate. It was found that there were 3 types of MIBI washout in hyperplastic parathyroids. Conclusions: 99 Tc m -MIBI scintigraphy is valuable in localization of parathyroids in SHP, especially of hyperfunctioning glands. Special attention should be paid to the fact that there are different types of MIBI washout in hyperplastic glands, otherwise some abnormal glands might be missed

  7. Development of TPNCIRC code for Evaluation of Two-Phase Natural Circulation Flow Performance under External Reactor Vessel Cooling Conditions

    International Nuclear Information System (INIS)

    Choi, A-Reum; Song, Hyuk-Jin; Park, Jong-Woon

    2015-01-01

    During a severe accident, corium is relocated to the lower head of the nuclear reactor pressure vessel (RPV). Design concept of retaining the corium inside a nuclear reactor pressure vessel (RPV) through external cooling under hypothetical core melting accidents is called external reactor vessel cooling (ERVC). In this respect, validated two-phase natural circulation flow (TPNC) model is necessary to determine the adequacy of the ERVC design and operating conditions such as inlet area, form losses, gap distance, riser length and coolant conditions. The most important model generally characterizing the TPNC are void fraction and two-phase friction factors. Typical experimental and analytical studies to be referred to on two-phase circulation flow characteristics are those by Reyes, Gartia et al. based on Vijayan et al., Nayak et al. and Dubey et al. In the present paper, two-phase natural circulation (TPNC) flow characteristics under external reactor vessel cooling (ERVC) conditions are studied using two existing TPNC flow models of Reyes and Gartia et al. incorporating more improved void fraction and two-phase friction models. These models and correlations are integrated into a computer program, TPNCIRC, which can handle candidate ERVC design parameters, such as inlet, riser and downcomer flow lengths and areas, gap size between reactor vessel and surrounding insulations, minor loss factors and operating parameters of decay power, pressure and subcooling. Accuracy of the TPNCIRC program is investigated with respect to the flow rate and void fractions for existing measured data from a general experiment and ULPU specifically designed for the AP1000 in-vessel retention. Also, the effect of some important design parameters are examined for the experimental and plant conditions. Using the flow models and correlations are integrated into a computer program, TPNCIRC, a number of correlations have been examined. This seems coming from the differences of void fractions

  8. Results on neutrinoless double beta decay of 76Ge from GERDA Phase I

    International Nuclear Information System (INIS)

    Palioselitis, Dimitrios

    2015-01-01

    The Germanium Detector Array (GERDA) experiment is searching for the neutrinoless double beta (0νββ) decay of 76 Ge by operating bare germanium diodes in liquid argon. GERDA is located at the Gran Sasso National Laboratory (LNGS) in Italy. During Phase I, a total exposure of 21.6 kg yrand a background index of 0.01 cts/(keVkg yr) were reached. No signal was observed and a lower limit of T 0ν 1/2 > 2.1 · 10 25 yr(90% C.L.) is derived for the half life of the 0νββ decay of 76 Ge. (paper)

  9. Accelerated safety analyses - structural analyses Phase I - structural sensitivity evaluation of single- and double-shell waste storage tanks

    International Nuclear Information System (INIS)

    Becker, D.L.

    1994-11-01

    Accelerated Safety Analyses - Phase I (ASA-Phase I) have been conducted to assess the appropriateness of existing tank farm operational controls and/or limits as now stipulated in the Operational Safety Requirements (OSRs) and Operating Specification Documents, and to establish a technical basis for the waste tank operating safety envelope. Structural sensitivity analyses were performed to assess the response of the different waste tank configurations to variations in loading conditions, uncertainties in loading parameters, and uncertainties in material characteristics. Extensive documentation of the sensitivity analyses conducted and results obtained are provided in the detailed ASA-Phase I report, Structural Sensitivity Evaluation of Single- and Double-Shell Waste Tanks for Accelerated Safety Analysis - Phase I. This document provides a summary of the accelerated safety analyses sensitivity evaluations and the resulting findings

  10. Analysis of double random phase encryption from a key-space perspective

    Science.gov (United States)

    Monaghan, David S.; Situ, Guohai; Ryle, James; Gopinathan, Unnikrishnan; Naughton, Thomas J.; Sheridan, John T.

    2007-09-01

    The main advantage of the double random phase encryption technique is its physical implementation however to allow us to analyse its behaviour we perform the encryption/decryption numerically. A typically strong encryption scheme will have an extremely large key-space, which will make the probable success of any brute force attack on that algorithm miniscule. Traditionally, designers of optical image encryption systems only demonstrate how a small number of arbitrary keys cannot decrypt a chosen encrypted image in their system. We analyse this algorithm from a key-space perspective. The key-space of an encryption algorithm can be defined as the set of possible keys that can be used to encode data using that algorithm. For a range of problem instances we plot the distribution of decryption errors in the key-space indicating the lack of feasibility of a simple brute force attack.

  11. Conributions of the VULCANO experimental programme to ther understaing of MCCI phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Journeau, Christophe; Piluso, Pascal; Correggio, Patricia; Ferry, Lionel; Fritz, Gerald; Haquet, Jean Francois; Monerris, Jose; Ruggieri, Jean Michel; Sanchez- Brusset, Mathieu; Parga, Clemente [CEA, DEN, Cadarache, STRI/LMA, lez Durance (France)

    2012-04-15

    Molten Core Concrete Interaction (MCCI) is a complex process characterized by concrete ablation and volatile generation; Thermal and solutal convection in a bubble-agitated melt; Physico-chemical evolution of the corium pool with a wide solidification range (of the order of 1000 K). Twelve experiments have been carried out in the VULCANO facility with prototypic corium and sustained heating. The dry oxidic corium tests have contributed to show that silica-rich concrete experience an anisotropic ablation. This unexpected ablation pattern is quite reproducible and can be recalculated, provided an empirical anisotropy factor is assumed. Dry tests with oxide and metal liquid phases have also yielded unexpected results: a larger than expected steel oxidation and unexpected topology of the metallic phase (at the bottom of the cavity and also on the vertical concrete walls). Finally, VULCANO has proved its interest for the study of mitigation solutions such as the COMET bottom flooding core catcher.

  12. Conributions of the VULCANO experimental programme to ther understaing of MCCI phenomena

    International Nuclear Information System (INIS)

    Journeau, Christophe; Piluso, Pascal; Correggio, Patricia; Ferry, Lionel; Fritz, Gerald; Haquet, Jean Francois; Monerris, Jose; Ruggieri, Jean Michel; Sanchez- Brusset, Mathieu; Parga, Clemente

    2012-01-01

    Molten Core Concrete Interaction (MCCI) is a complex process characterized by concrete ablation and volatile generation; Thermal and solutal convection in a bubble-agitated melt; Physico-chemical evolution of the corium pool with a wide solidification range (of the order of 1000 K). Twelve experiments have been carried out in the VULCANO facility with prototypic corium and sustained heating. The dry oxidic corium tests have contributed to show that silica-rich concrete experience an anisotropic ablation. This unexpected ablation pattern is quite reproducible and can be recalculated, provided an empirical anisotropy factor is assumed. Dry tests with oxide and metal liquid phases have also yielded unexpected results: a larger than expected steel oxidation and unexpected topology of the metallic phase (at the bottom of the cavity and also on the vertical concrete walls). Finally, VULCANO has proved its interest for the study of mitigation solutions such as the COMET bottom flooding core catcher.

  13. Dynamics of a photorefractive response and competition of nonlinear processes in self-pumping double phase-conjugate mirrors

    International Nuclear Information System (INIS)

    Mogaddam, Mehran Wahdani; Shuvalov, Vladimir V

    2005-01-01

    The dynamics of formation of a nonlinear response of a double phase-conjugate (PC) BaTiO 3 mirror is calculated. It is shown that because of competition between processes of different types (related to the presence of several PC channels, the local and nonlocal components of the photorefractive nonlinearity), the transient and dynamic lasing regimes for this mirror can be substantially different. It is found that the development of lasing begins with the successive formation and phasing of dynamic holograms of two different types (two PC channels). It is shown that even under optimal conditions, the lasing regime is not stationary due to competition between processes of different types, and the parameters of output fields fluctuate in time in a nontrivial way (due to the presence of the in-phase and out-of-phase components). Several scenarios of transition to the dynamic chaos are described. (nonlinear optical phenomena)

  14. Development of MPS Method for Analyzing Melt Spreading Behavior and MCCI in Severe Accidents

    Science.gov (United States)

    Yamaji, Akifumi; Li, Xin

    2016-08-01

    Spreading of molten core (corium) on reactor containment vessel floor and molten corium-concrete interaction (MCCI) are important phenomena in the late phase of a severe accident for assessment of the containment integrity and managing the severe accident. The severe accident research at Waseda University has been advancing to show that simulations with moving particle semi-implicit (MPS) method (one of the particle methods) can greatly improve the analytical capability and mechanical understanding of the melt behavior in severe accidents. MPS models have been developed and verified regarding calculations of radiation and thermal field, solid-liquid phase transition, buoyancy, and temperature dependency of viscosity to simulate phenomena, such as spreading of corium, ablation of concrete by the corium, crust formation and cooling of the corium by top flooding. Validations have been conducted against experiments such as FARO L26S, ECOKATS-V1, Theofanous, and SPREAD for spreading, SURC-2, SURC-4, SWISS-1, and SWISS-2 for MCCI. These validations cover melt spreading behaviors and MCCI by mixture of molten oxides (including prototypic UO2-ZrO2), metals, and water. Generally, the analytical results show good agreement with the experiment with respect to the leading edge of spreading melt and ablation front history of concrete. The MPS results indicate that crust formation may play important roles in melt spreading and MCCI. There is a need to develop a code for two dimensional MCCI experiment simulation with MPS method as future study, which will be able to simulate anisotropic ablation of concrete.

  15. Reconstruction of Double-Exposed Terahertz Hologram of Non-isolated Object

    Science.gov (United States)

    Hu, Jiaqi; Li, Qi; Chen, Guanghao

    2016-04-01

    When the non-isolated imaging objects are complex or critical imaging precision is required, single-exposure digital hologram technique may be insufficient. So in this paper, double-exposure method is adopted in 2.52-THz inline digital holography simulations and experiments. Experimental results indicate that, compared with the results reconstructed by single-exposure amplitude-constrained phase retrieval algorithm (S-APRA), double-exposure phase-constrained phase retrieval algorithm (D-PPRA) increases the contrast of the reconstruction image by 0.146 and double-exposure amplitude-constrained phase retrieval algorithm (D-APRA) increases the contrast by 0.225. In addition, when applied to non-isolated object reconstruction, phase retrieval algorithms with only amplitude constraint on the object plane work better than those with both amplitude and phase constraints.

  16. Frequency Doubling Broadband Light in Multiple Crystals

    International Nuclear Information System (INIS)

    Alford, William J.; Smith, Arlee V.

    2000-01-01

    The authors compare frequency doubling of broadband light in a single nonlinear crystal with doubling in five crystals with intercrystal temporal walk off compensation, and with doubling in five crystals adjusted for offset phase matching frequencies. Using a plane-wave, dispersive numerical model of frequency doubling they study the bandwidth of the second harmonic and the conversion efficiency as functions of crystal length and fundamental irradiance. For low irradiance the offset phase matching arrangement has lower efficiency than a single crystal of the same total length but gives a broader second harmonic bandwidth. The walk off compensated arrangement gives both higher conversion efficiency and broader bandwidth than a single crystal. At high irradiance, both multicrystal arrangements improve on the single crystal efficiency while maintaining broad bandwidth

  17. Solid-Phase Synthesis of Small Molecule Libraries using Double Combinatorial Chemistry

    DEFF Research Database (Denmark)

    Nielsen, John; Jensen, Flemming R.

    1997-01-01

    The first synthesis of a combinatorial library using double combinatorial chemistry is presented. Coupling of unprotected Fmoc-tyrosine to the solid support was followed by Mitsunobu O-alkylation. Introduction of a diacid linker yields a system in which the double combinatorial step can be demons......The first synthesis of a combinatorial library using double combinatorial chemistry is presented. Coupling of unprotected Fmoc-tyrosine to the solid support was followed by Mitsunobu O-alkylation. Introduction of a diacid linker yields a system in which the double combinatorial step can...

  18. Improvement of the European thermodynamic database NUCLEA

    Energy Technology Data Exchange (ETDEWEB)

    Brissoneau, L.; Journeau, C.; Piluso, P. [CEA Cadarache, DEN, F-13108 St Paul Les Durance (France); Bakardjieva, S. [Acad Sci Czech Republic, Inst Inorgan Chem, CZ-25068 Rez (Czech Republic); Barrachin, M. [Inst Radioprotect and Surete Nucl, St Paul Les Durance (France); Bechta, S. [NITI, Aleksandrov Res Inst Technol, Sosnovyi Bor (Russian Federation); Bottomley, D. [Commiss European Communities, Joint Res Ctr, Inst Transuranium Elements, D-76125 Karlsruhe (Germany); Cheynet, B.; Fischer, E. [Thermodata, F-38400 St Martin Dheres (France); Kiselova, M. [Nucl Res Inst UJV, Rez 25068 (Czech Republic); Mezentseva, L. [Russian Acad Sci, Inst Silicate Chem, St Petersburg (Russian Federation)

    2010-07-01

    Modelling of corium behaviour during a severe accident requires knowledge of the phases present at equilibrium for a given corium composition, temperature and pressure. The thermodynamic database NUCLEA in combination with a Gibbs Energy minimizer is the European reference tool to achieve this goal. This database has been improved thanks to the analysis of bibliographical data and to EU-funded experiments performed within the SARNET network, PLINIUS as well as the ISTC CORPHAD and EVAN projects. To assess the uncertainty range associated with Energy Dispersive X-ray analyses, a round-robin exercise has been launched in which a UO{sub 2}-containing corium-concrete interaction sample from VULCANO has been analyzed by three European laboratories with satisfactorily small differences. (authors)

  19. Analysis of double stub tuner control stability in a phased array antenna with strong cross-coupling

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, G.M., E-mail: wallaceg@mit.edu [MIT Plasma Science and Fusion Center, Cambridge, MA 02139 (United States); Hillairet, J. [CEA-IRFM, Saint-Paul-lez-Durance (France); Koert, P.; Lin, Y.; Shiraiwa, S.; Wukitch, S.J. [MIT Plasma Science and Fusion Center, Cambridge, MA 02139 (United States)

    2014-11-15

    Highlights: • A novel method for reducing reflection coefficients for LHCD launchers is proposed and evaluated. • Numerical models of antenna behavior with stub tuning are analyzed. • The system is found to be stable under most realistic operating conditions. - Abstract: Active stub tuning with a fast ferrite tuner (FFT) has greatly increased the effectiveness of fusion ion cyclotron range of frequency (ICRF) systems (50–100 MHz) by allowing for the antenna system to respond dynamically to changes in the plasma load impedance such as during the L–H transition or edge localized modes (ELMs). A high power waveguide double-stub tuner is under development for use with the Alcator C-Mod lower hybrid current drive (LHCD) system at 4.6 GHz. The amplitude and relative phase shift between adjacent columns of an LHCD antenna are critical for control of the launched n{sub ||} spectrum. Adding a double-stub tuning network will perturb the phase and amplitude of the forward wave particularly if the unmatched reflection coefficient is high. This effect can be compensated by adjusting the phase of the low power microwave drive for each klystron amplifier. Cross-coupling of the reflected power between columns of the launcher must also be considered. The problem is simulated by cascading a scattering matrix for the plasma provided by a linear coupling model with the measured launcher scattering matrix and that of the FFTs. The solution is advanced in an iterative manner similar to the time-dependent behavior of the real system. System performance is presented under a range of edge density conditions from under-dense to over-dense and a range of launched n{sub ||}. Simulations predict power reflection coefficients (Γ{sup 2}) of less than 1% with no contamination of the n{sub ||} spectrum. Instability of the FFT tuning network can be problematic for certain plasma conditions and relative phasings, but reducing the control gain of the FFT network stabilizes the system.

  20. Contribution of the study of a nuclear reactor accident: residual power aspects and thermodynamic of U-UO_2 and UO_2-ZrO_2 systems

    International Nuclear Information System (INIS)

    Baichi, Mehdi

    2001-01-01

    This work is a contribution to the study of early delocalization and fission product releases during the formation of corium coming from a nuclear reactor accident. The first part deals with an analysis of corium cooling. The contribution to the power of each corium element has been calculated with time. The main elements are represented but the addition of Pu, Mo and Nb has been proposed. The last release experimental data taken into account result in a loss of residual power of 25% exclusive of corium between the emergency stop and ten days. The second part deals with the early delocalization observed during Vercors experiments. A critical selection on the U-UO_2 and UO_2-ZrO_2 systems has been carried out. In order to complete the small and inconsistent data, thermodynamic activity measurements have been performed by mass spectrometry. The UO_2 activity on UO_2-ZrO_2 presents a positive deviation from ideality at 2200 K and approximates ideality at 2400 K. All the data have been used for optimizing the systems with Thermo-Calc. This work has allowed to calculate the ternary systems and to define the required approach to analyze the metallic phase and corium oxides densities. (author) [fr

  1. Phase, current, absorbance, and photoluminescence of double and triple metal ion-doped synthetic and salmon DNA thin films

    Science.gov (United States)

    Chopade, Prathamesh; Reddy Dugasani, Sreekantha; Reddy Kesama, Mallikarjuna; Yoo, Sanghyun; Gnapareddy, Bramaramba; Lee, Yun Woo; Jeon, Sohee; Jeong, Jun-Ho; Park, Sung Ha

    2017-10-01

    We fabricated synthetic double-crossover (DX) DNA lattices and natural salmon DNA (SDNA) thin films, doped with 3 combinations of double divalent metal ions (M2+)-doped groups (Co2+-Ni2+, Cu2+-Co2+, and Cu2+-Ni2+) and single combination of a triple M2+-doped group (Cu2+-Ni2+-Co2+) at various concentrations of M2+ ([M2+]). We evaluated the optimum concentration of M2+ ([M2+]O) (the phase of M2+-doped DX DNA lattices changed from crystalline (up to ([M2+]O) to amorphous (above [M2+]O)) and measured the current, absorbance, and photoluminescent characteristics of multiple M2+-doped SDNA thin films. Phase transitions (visualized in phase diagrams theoretically as well as experimentally) from crystalline to amorphous for double (Co2+-Ni2+, Cu2+-Co2+, and Cu2+-Ni2+) and triple (Cu2+-Ni2+-Co2+) dopings occurred between 0.8 mM and 1.0 mM of Ni2+ at a fixed 0.5 mM of Co2+, between 0.6 mM and 0.8 mM of Co2+ at a fixed 3.0 mM of Cu2+, between 0.6 mM and 0.8 mM of Ni2+ at a fixed 3.0 mM of Cu2+, and between 0.6 mM and 0.8 mM of Co2+ at fixed 2.0 mM of Cu2+ and 0.8 mM of Ni2+, respectively. The overall behavior of the current and photoluminescence showed increments as increasing [M2+] up to [M2+]O, then decrements with further increasing [M2+]. On the other hand, absorbance at 260 nm showed the opposite behavior. Multiple M2+-doped DNA thin films can be used in specific devices and sensors with enhanced optoelectric characteristics and tunable multi-functionalities.

  2. Validation of ASTEC v2.0 corium jet fragmentation model using FARO experiments

    International Nuclear Information System (INIS)

    Hermsmeyer, S.; Pla, P.; Sangiorgi, M.

    2015-01-01

    Highlights: • Model validation base extended to six FARO experiments. • Focus on the calculation of the fragmented particle diameter. • Capability and limits of the ASTEC fragmentation model. • Sensitivity analysis of model outputs. - Abstract: ASTEC is an integral code for the prediction of Severe Accidents in Nuclear Power Plants. As such, it needs to cover all physical processes that could occur during accident progression, yet keeping its models simple enough for the ensemble to stay manageable and produce results within an acceptable time. The present paper is concerned with the validation of the Corium jet fragmentation model of ASTEC v2.0 rev3 by means of a selection of six experiments carried out within the FARO facility. The different conditions applied within these six experiments help to analyse the model behaviour in different situations and to expose model limits. In addition to comparing model outputs with experimental measurements, sensitivity analyses are applied to investigate the model. Results of the paper are (i) validation runs, accompanied by an identification of situations where the implemented fragmentation model does not match the experiments well, and discussion of results; (ii) its special attention to the models calculating the diameter of fragmented particles, the identification of a fault in one model implemented, and the discussion of simplification and ad hoc modification to improve the model fit; and, (iii) an investigation of the sensitivity of predictions towards inputs and parameters. In this way, the paper offers a thorough investigation of the merit and limitation of the fragmentation model used in ASTEC

  3. A Dewetting Model for Double-Emulsion Droplets

    Directory of Open Access Journals (Sweden)

    Zhanxiao Kang

    2016-11-01

    Full Text Available The evolution of double-emulsion droplets is of great importance for the application of microdroplets and microparticles. We study the driving force of the dewetting process, the equilibrium configuration and the dewetting time of double-emulsion droplets. Through energy analysis, we find that the equilibrium configuration of a partial engulfed droplet depends on a dimensionless interfacial tension determined by the three relevant interfacial tensions, and the engulfing part of the inner phase becomes larger as the volume of the outer phase increases. By introducing a dewetting boundary, the dewetting time can be calculated by balancing the driving force, caused by interfacial tensions, and the viscous force. Without considering the momentum change of the continuous phase, the dewetting time is an increasing function against the viscosity of the outer phase and the volume ratio between the outer phase and inner phase.

  4. DNA double-strand break and apoptosis induction in human lymphocytes in different cycle cell phases by 60Co gamma rays and Bragg peak protons of a medical beam

    International Nuclear Information System (INIS)

    Khachenkova, A.A.; Boreyko, A.V.; Mozhaeva, A.V.; Chausov, V.N.; Ravnachka, I.I.; Amov, I.; Tiunchik, S.I.

    2009-01-01

    A comparative analysis is made of the regularities in the formation of DNA double-strand break and apoptosis induction in peripheral human blood lymphocytes in different cell cycle phases after 60 Co gamma and extended Bragg peak proton irradiation. It is shown that the formation of apoptotic cells in a lymphocyte population increases linearly in all the cell cycle stages after proton irradiation. The maximal DNA double-strand break and apoptosis yield in lymphocytes is observed in the S phase of the cell cycle

  5. A Phase 3 Placebo-Controlled, Double Blind, Multi-Site Trial of the alpha-2-adrenergic Agonist, Lofexidine, for Opioid Withdrawal

    Science.gov (United States)

    Yu, Elmer; Miotto, Karen; Akerele, Evaristo; Montgomery, Ann; Elkashef, Ahmed; Walsh, Robert; Montoya, Ivan; Fischman, Marian W.; Collins, Joseph; McSherry, Frances; Boardman, Kathy; Davies, David K.; O’Brien, Charles P.; Ling, Walter; Kleber, Herbert; Herman, Barbara H.

    2008-01-01

    Context Lofexidine is an alpha-2-A noradrenergic receptor agonist that is approved in the United Kingdom for the treatment of opioid withdrawal symptoms. Lofexidine has been reported to have more significant effects on decreasing opioid withdrawal symptoms with less hypotension than clonidine. Objective To demonstrate that lofexidine is well tolerated and effective in the alleviation of observationally-defined opioid withdrawal symptoms in opioid dependent individuals undergoing medically supervised opioid detoxification as compared to placebo. Design An inpatient, Phase 3, placebo-controlled, double blind, randomized multi-site trial with three phases: (1) Opioid Agonist Stabilization Phase (days 1–3), (2) Detoxification/Medication or Placebo Phase (days 4–8), and (3) Post Detoxification/Medication Phase (days 9–11). Subjects Sixty-eight opioid dependent subjects were enrolled at three sites with 35 randomized to lofexidine and 33 to placebo. Main Outcome Measure Modified Himmelsbach Opiate Withdrawal Scale (MHOWS) on study day 5 (2nd opioid detoxification treatment day). Results Due to significant findings, the study was terminated early. On the study day 5 MHOWS, subjects treated with lofexidine had significantly lower scores (equating to fewer/less severe withdrawal symptoms) than placebo subjects (Least squares means 19.5 ± 2.1 versus 30.9 ± 2.7; p=0.0019). Lofexidine subjects had significantly better retention in treatment than placebo subjects (38.2% versus 15.2%; Log rank test p=0.01). Conclusions Lofexidine is well tolerated and more efficacious than placebo for reducing opioid withdrawal symptoms in inpatients undergoing medically supervised opioid detoxification. Trial Registration trial registry name A Phase 3 Placebo-Controlled, Double-Blind Multi-Site Trial of Lofexidine for Opiate Withdrawal, registration number NCT00032942, URL for the registry http://clinicaltrials.gov/ct/show/NCT00032942?order=4. PMID:18508207

  6. Design feasibility study on corium stabilization in bottom end-fitting for AHWR under accident condition

    International Nuclear Information System (INIS)

    Gokhale, Onkar; Mukhopadhyay, D.; Chatterjee, B.; Singh, R.K.

    2015-01-01

    Advanced Heavy Water Reactor (AHWR) is being designed in a robust way to cater both Design and Beyond Design Basis Accidents to meet all the safety functions. All the functions are met by passive means with special emphasis on 'residual heat removal' which is catered by passive natural circulation mode. In context to Design Basis Accidents, several features are designed to handle worst kind of scenario like Station Black Out. For Design Extension Conditions (DEC), the means of passive natural circulation is adopted as a design means to meet the DEC-A conditions like cooling of moderator by natural circulation means with GDWP inventory. Under the DEC-B condition where large scale of fuel melting is envisaged, a core catcher is designed with active/passive cooling modes to take care of the residual heat of the core. All the mentioned features utilizes the natural mode of heat transfer to meet one of the safety function i.e. 'residual heat removal'. The analysis shows that the tube sheet as well as lattice tube temperatures remain low and are able to take out the heat from corium through sub-cooled nucleate boiling. The ES cooling is sufficient to maintain the cooling water in subcooled condition. The integrity of tube sheet and lattice tube is maintained

  7. Raman and infrared spectroscopic investigations of a ferroelastic phase transition in B a2ZnTe O6 double perovskite

    Science.gov (United States)

    Moreira, Roberto L.; Lobo, Ricardo P. S. M.; Ramos, Sérgio L. L. M.; Sebastian, Mailadil T.; Matinaga, Franklin M.; Righi, Ariete; Dias, Anderson

    2018-05-01

    The low-temperature vibrational properties of B a2ZnTe O6 double-perovskite ceramics obtained by the solid-state route were investigated by Raman scattering and Fourier-transform infrared reflectivity. We found that this material undergoes a reversible ferroelastic phase transition at around 140 K, well compatible with a recently proposed rhombohedral-to-monoclinic structural change that would occur below 165 K. Complementary calorimetric measurements showed that the phase transition has a first-order character, with an entropy jump compatible with a displacive mechanism. The vibrational spectra show clearly the splitting of the doubly degenerate E modes into nondegenerate representations of the low-symmetry phase. In particular, the lowest-frequency Raman mode presents soft-mode behavior and splits below the critical temperature, confirming the in-plane ferroelastic deformation in the low-temperature phase.

  8. An overview of the severe accident research activities within the LACOMERA platform at the Forschungszentrum Karlsruhe

    International Nuclear Information System (INIS)

    Miassoedov, A.; Alsmeyer, H.; Meyer, L.; Steinbrueck, M.; Tromm, W.

    2006-01-01

    The LACOMERA project at the Forschungszentrum Karlsruhe, Germany, is a 4 year action within the 5th Framework Programme of the EU which started in September 2002. Overall objective of the project is to offer research institutions from the EU member countries and associated states access to four large-scale experimental facilities QUENCH, LIVE, DISCO, and COMET. These facilities can be used to investigate core melt scenarios from the beginning of core degradation to melt formation and relocation in the vessel, possible melt dispersion to the reactor cavity, and finally corium concrete interaction and corium coolability in the reactor cavity. The paper summarises the main results obtained in the following experiments performed up to now. QUENCH-L1: Impact of air ingression on core degradation. The test provides unique data for the investigation of air ingress phenomenology in conditions as representative of a spent fuel pool accident as possible; QUENCH-L2: Boil-off of a flooded bundle. The test is of a generic interest for all reactor types, provided a link between the severe accident and design basis areas, and would deliver oxidation and thermal hydraulic data at high temperatures. DISCO-L1: Thermal hydraulic behaviour of the corium melt dispersion neglecting the chemical effects such as hydrogen generation and combustion. COMET-L1: Long-term 2D concrete ablation in a siliceous concrete cavity at intermediate decay heat power level with a top flooding phase after a phase of dry concrete erosion. COMET-L2: Investigation of long-term melt-concrete interaction of metallic corium in a cylindrical siliceous concrete cavity under dry conditions with decay heat simulation of intermediate power during the first test phase, and subsequently at reduced power during the second test phase. (author)

  9. Determination of haloacetic acids in water using layered double hydroxides as a sorbent in dispersive solid-phase extraction followed by liquid chromatography with tandem mass spectrometry.

    Science.gov (United States)

    Alsharaa, Abdulnaser; Sajid, Muhammad; Basheer, Chanbasha; Alhooshani, Khalid; Lee, Hian Kee

    2016-09-01

    In the present study, highly efficient and simple dispersive solid-phase extraction procedure for the determination of haloacetic acids in water samples has been established. Three different types of layered double hydroxides were synthesized and used as a sorbent in dispersive solid-phase extraction. Due to the interesting behavior of layered double hydroxides in an acidic medium (pH˂4), the analyte elution step was not needed; the layered double hydroxides are simply dissolved in acid immediately after extraction to release the analytes which are then directly introduced into a liquid chromatography with tandem mass spectrometry system for analysis. Several dispersive solid-phase extraction parameters were optimized to increase the extraction efficiency of haloacetic acids such as temperature, extraction time and pH. Under optimum conditions, good linearity was achieved over the concentration range of 0.05-100 μg/L with detection limits in the range of 0.006-0.05 μg/L. The relative standard deviations were 0.33-3.64% (n = 6). The proposed method was applied to different water samples collected from a drinking water plant to determine the concentrations of haloacetic acids. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The Effects of One and Double Heat Treatment Cycles on the Microstructure and Mechanical Properties of a Ferritic-Bainitic Dual Phase Steel

    Science.gov (United States)

    Piri, Reza; Ghasemi, Behrooz; Yousefpour, Mardali

    2018-03-01

    In this study, samples with ferritic-bainitic dual phase structures consisting of 62 pct bainite were obtained from the AISI 4140 steel by applying one and double heat treatment cycles. Microstructural investigations by electron and optical microscopy indicated that the sample heat treated through double cycle benefited from finer ferrite and bainite grains. Additionally, results obtained from mechanical tests implied that the double-cycle heat-treated sample not only has a higher tensile strength as well as ultimate strength but also benefits from a higher ductility along with a higher impact energy than the one-cycle heat-treated sample. Moreover, fractography results showed that the type of fracture in both samples is a combination of the brittle and the ductile fracture. Besides, the ratio of the ductile fracture is higher for the double-cycle heat-treated sample than for the one-cycle sample, due to the lower aggregation of sulfur at grain boundaries.

  11. Severe accident experiments on PLINIUS platform. Results of first experiments on COLIMA facility related to VVER-440. Presentation of planned VULCANO and KROTOS tests

    International Nuclear Information System (INIS)

    Piluso, P.; Boccaccio, E.; Bonnet, J.-M.; Journeau, C.; Fouquart, P.; Magallon, D.; Ivanov, I.; Mladenov, I.; Kalchev, S.; Grudev, P.; Alsmeyer, H.; Fluhrer, B.; Leskovar, M.

    2005-01-01

    In the hypothetical case of a nuclear reactor severe accident, the reactor core could melt and form a mixture of nuclear fuel (UO 2 + Fission Products), metallic or oxidized cladding + steel, called c orium , of highly refractory oxides (UO 2 , ZrO 2 ) and metallic or oxidized steel, that could eventually flow out of the vessel and mix with the substrate decomposition products (generally oxides such as SiO 2 , Al 2 O 3 , CaO, Fe 2 O 3 ). The French Atomic Energy Commission (CEA) has launched a R and D programme aimed at providing the tools for improving the mastering of severe accidents. It encompasses the development of models and codes, performance of experiments in simulant and prototypic materials and the analysis of international experiments. The experiments with prototypic corium (i.e. material containing depleted UO 2 ) are performed in the PLINIUS experimental platform at CEA Cadarache. It comprises the VULCANO facility for 50-100 kg tests (corium-material interactions, corium solidification etc.), the COLIMA facility for smaller scale (∼1 kg) experiments, the VITI facility for corium properties measurement and the KROTOS facility for corium-water interaction (a few kg). In the framework of the 5 th European Framework Programme, free trans-national access to these facilities has been offered to EU and Associated States researchers. For the first PLINIUS access, COLIMA experiments have been conducted with a Bulgarian Team (TU/SOFIA, BAS/INRNE and NPP/KOZLODUY). This series of tests was devoted to experimental studies on fission products release and corium behaviour in the late phase in a hypothetic case of severe accident in a PWR type VVER-440. The COLIMA experimental results are consistent with previous experiments on irradiated fuels (VERCORS, PHEBUS) with small differences for some fission products and show new results for the remaining corium. For the second visit, scientific users from FZK in Germany were selected to validate the COMET core

  12. Project Half Double

    DEFF Research Database (Denmark)

    Svejvig, Per; Ehlers, Michael; Adland, Karoline Thorp

    activities carried out within the framework of the projects. The formal part of Project Half Double was initiated in June 2015. We started out by developing, refining and testing the Half Double methodology on seven pilot projects in the first phase of the project, which will end June 2016. The current......Project Half Double has a clear mission to succeed in finding a project methodology that can increase the success rate of our projects while increasing the speed at which we generate new ideas and develop new products and services. Chaos and complexity should be seen as a basic condition...... and as an opportunity rather than a threat and a risk. We are convinced that by doing so, we can strengthen Denmark’s competitiveness and play an important role in the battle for jobs and future welfare. The overall goal is to deliver “projects in half the time with double the impact”, where projects in half the time...

  13. Anti-double strand (ds) DNA antibody formation by NZB/W (F1) spleen cells in a microculture system detected by solid phase radioimmunoassay.

    Science.gov (United States)

    Okudaira, H; Terada, E; Ogita, T; Aotsuka, S; Yokohari, R

    1981-01-01

    A solid-phase radioimmunoassay method was devised to detect mouse anti-double strand (ds) DNA antibody. This method could easily detect the anti-dsDNA antibody in 1 : 10,000 dilutions (1 unit) of pooled 9-10-month-old female NZB/W F1 sera. The sensitivity was about 10(3)- and 10(2)-fold higher than that of the modified Farr method and of the double antibody technique respectively. NZB/W mice developed high titer anti-dsDNA antibody as they grew older. Spleen cells brought to a microculture system using flat-bottomed polystyrene plates produced anti-dsDNA antibody clearly detectable by solid-phase radioimmunoassay. Anti-dsDNA antibody produced in vitro (y units) was in close correlation with the anti-dsDNA antibody titer of the spleen donor (x units) (y = 4.8 X 10(-2) x -65, gamma = 0.94, P less than 0.001). A combination of the microculture system and solid-phase radioimmunoassay was recommended for the characterization of anti-dsDNA antibody-forming cells.

  14. Anti-double strand (ds) DNA antibody formation by NZB/W (F1) spleen cells in a microculture system detected by solid-phase radioimmunoassay

    International Nuclear Information System (INIS)

    Okudaira, H.; Terada, E.; Ogita, T.; Aotsuka, S.; Yokohari, R.

    1981-01-01

    A solid-phase radioimmunoassay method was devised to detect mouse anti-double strand (ds) DNA antibody. This method could easily detect the anti-ds DNA antibody in 1 : 10,000 dilutions (1 unit) of pooled 9-10 month-old female NZB/W F1 sera. The sensitivity was about 10 3 and 10 2 -fold higher than that of the modified Farr method and of the double antibody technique respectively. NZB/W mice developed high titer anti-dsDNA antibody as they grew older. Spleen cells brought to a microculture system using flat-bottomed polystyrene plates produced anti-dsDNA antibody clearly detectable by solid-phase radioimmunoassay. Anti-dsDNA antibody produced in vitro (y units) was in close correlation with the anti-dsDNA antibody titer of the spleen donor (x units) (y = 4.8 X 10 -2 x-65, γ = 0.94, P < 0.001). A combination of the microculture system and solid-phase radioimmunoassay was recommended for the characterization of anti-dsDNA antibody-forming cells. (Auth.)

  15. Detailed evaluation of two phase natural circulation flow in the cooling channel of the ex-vessel core catcher for EU-APR1400

    Energy Technology Data Exchange (ETDEWEB)

    Park, Rae-Joon, E-mail: rjpark@kaeri.re.kr; Ha, Kwang-Soon; Rhee, Bo-Wook; Kim, Hwan Yeol

    2016-03-15

    Highlights: • Ex-vessel core catcher of PECS is installed in EU-APR1400. • CE-PECS has been conducted to test a cooling capability of the PECS. • Two phase flow in CE-PECS and PECS was analyzed using RELAP5/MOD3. • RELAP5 results are very similar to the CE-PECS data. • The super-step design is suitable for steam injection into the downcomer in PECS. - Abstract: The ex-vessel core catcher of the PECS (Passive Ex-vessel corium retaining and Cooling System) is installed to retain and cool down the corium in the reactor cavity of the EU (European Union)-APR (Advanced Power Reactor) 1400. A verification experiment on the cooling capability of the PECS has been conducted in the CE (Cooling Experiment)-PECS. Simulations of a two-phase natural circulation flow using the RELAP5/MOD3 computer code in the CE-PECS and PECS have been conducted to predict the two-phase flow characteristics, to determine the natural circulation mass flow rate in the cooling channel, and to evaluate the scaling in the experimental design of the CE-PECS. Particularly from a comparative study of the prototype PECS and the scaled test facility of the CE-PECS, the orifice loss coefficient in the CE-PECS was found to be 6 to maintain the coolant circulation mass flux, which is approximately 273.1 kg/m{sup 2} s. The RELAP5 results on the coolant circulation mass flow rate are very similar to the CE-PECS experimental results. An increase in the coolant injection temperature and the heat flux lead to an increase in the coolant circulation mass flow rate. In the base case simulation, a lot of vapor was injected into the downcomer, which leads to an instability of the two-phase natural circulation flow. A super-step design at a downcomer inlet is suitable to prevent vapor injection into the downcomer piping.

  16. Detailed evaluation of two phase natural circulation flow in the cooling channel of the ex-vessel core catcher for EU-APR1400

    International Nuclear Information System (INIS)

    Park, Rae-Joon; Ha, Kwang-Soon; Rhee, Bo-Wook; Kim, Hwan Yeol

    2016-01-01

    Highlights: • Ex-vessel core catcher of PECS is installed in EU-APR1400. • CE-PECS has been conducted to test a cooling capability of the PECS. • Two phase flow in CE-PECS and PECS was analyzed using RELAP5/MOD3. • RELAP5 results are very similar to the CE-PECS data. • The super-step design is suitable for steam injection into the downcomer in PECS. - Abstract: The ex-vessel core catcher of the PECS (Passive Ex-vessel corium retaining and Cooling System) is installed to retain and cool down the corium in the reactor cavity of the EU (European Union)-APR (Advanced Power Reactor) 1400. A verification experiment on the cooling capability of the PECS has been conducted in the CE (Cooling Experiment)-PECS. Simulations of a two-phase natural circulation flow using the RELAP5/MOD3 computer code in the CE-PECS and PECS have been conducted to predict the two-phase flow characteristics, to determine the natural circulation mass flow rate in the cooling channel, and to evaluate the scaling in the experimental design of the CE-PECS. Particularly from a comparative study of the prototype PECS and the scaled test facility of the CE-PECS, the orifice loss coefficient in the CE-PECS was found to be 6 to maintain the coolant circulation mass flux, which is approximately 273.1 kg/m"2 s. The RELAP5 results on the coolant circulation mass flow rate are very similar to the CE-PECS experimental results. An increase in the coolant injection temperature and the heat flux lead to an increase in the coolant circulation mass flow rate. In the base case simulation, a lot of vapor was injected into the downcomer, which leads to an instability of the two-phase natural circulation flow. A super-step design at a downcomer inlet is suitable to prevent vapor injection into the downcomer piping.

  17. Double-read of skeletal surveys in suspected non-accidental trauma: what we learned

    Energy Technology Data Exchange (ETDEWEB)

    Karmazyn, Boaz; Wanner, Matthew R.; Marine, Megan B. [Indiana University School of Medicine, Department of Radiology and Imaging Sciences, Riley Hospital for Children, Indianapolis, IN (United States); Miller, Elise M.; Jennings, S.G. [Indiana University School of Medicine, Department of Radiology and Imaging Sciences, Indianapolis, IN (United States); Lay, Sara E. [Indiana University School of Medicine, Methodist Hospital, Department of Radiology and Imaging Sciences, Indianapolis, IN (United States); Massey, James M. [The Children' s Hospital at TriStar Centennial, Department of Imaging, Nashville, TN (United States); Ouyang, Fangqian [Indiana University School of Medicine, Department of Biostatistics, Indianapolis, IN (United States); Hibbard, Roberta A. [Indiana University School of Medicine, Department of Pediatrics, Section of Child Protection Programs, Riley Hospital for Children, Indianapolis, IN (United States)

    2017-05-15

    Missing a fracture in a child on skeletal surveys for suspected non-accidental trauma can have devastating results. Double-read has the potential to improve fracture detection. However the yield of double-read is unknown. To determine the advantage of double-read versus single-read of radiographic skeletal surveys for suspected non-accidental trauma. The study was performed in two phases. In the first phase (April 2013 to September 2013), double-read was performed for all skeletal surveys obtained during weekday working hours. Because we had no new double-read findings in studies initially read as negative, we conducted a second phase (January 2014 to March 2014). In the second phase we limited double-reads to skeletal surveys found positive on the first read. At the end of this period, we retrospectively performed double-read for all initially negative skeletal surveys. We excluded follow-up skeletal surveys. The difference in discrepancy (new fracture or false diagnosis of a fracture) ratio between negative and positive skeletal surveys was evaluated using the Fisher exact test, and change in discrepancy ratio between the first and second study phases was evaluated using the stratified Cochran-Mantel-Haenszel test. Overall in the two phases, 178 skeletal surveys were performed in 178 children (67 girls) with mean age of 9 months (range 3 days to 3.7 years). Double-read found 16 discrepancies in 8/178 (4.5%) skeletal surveys. Seven of these studies showed additional fractures (n=15). In one study, an initial read of a skull fracture was read as a variant on the second read. There was a significant (P=0.01) difference between rate of disagreement in negative skeletal surveys (1/104, 1.0%) and positive skeletal surveys (7/74, 9.5%). No significant change in disagreement rate was demonstrated between the two phases of the study (P=0.59). Double-read of skeletal survey for suspected non-accidental trauma found false-negative fractures in a few cases and rarely found

  18. Double-read of skeletal surveys in suspected non-accidental trauma: what we learned

    International Nuclear Information System (INIS)

    Karmazyn, Boaz; Wanner, Matthew R.; Marine, Megan B.; Miller, Elise M.; Jennings, S.G.; Lay, Sara E.; Massey, James M.; Ouyang, Fangqian; Hibbard, Roberta A.

    2017-01-01

    Missing a fracture in a child on skeletal surveys for suspected non-accidental trauma can have devastating results. Double-read has the potential to improve fracture detection. However the yield of double-read is unknown. To determine the advantage of double-read versus single-read of radiographic skeletal surveys for suspected non-accidental trauma. The study was performed in two phases. In the first phase (April 2013 to September 2013), double-read was performed for all skeletal surveys obtained during weekday working hours. Because we had no new double-read findings in studies initially read as negative, we conducted a second phase (January 2014 to March 2014). In the second phase we limited double-reads to skeletal surveys found positive on the first read. At the end of this period, we retrospectively performed double-read for all initially negative skeletal surveys. We excluded follow-up skeletal surveys. The difference in discrepancy (new fracture or false diagnosis of a fracture) ratio between negative and positive skeletal surveys was evaluated using the Fisher exact test, and change in discrepancy ratio between the first and second study phases was evaluated using the stratified Cochran-Mantel-Haenszel test. Overall in the two phases, 178 skeletal surveys were performed in 178 children (67 girls) with mean age of 9 months (range 3 days to 3.7 years). Double-read found 16 discrepancies in 8/178 (4.5%) skeletal surveys. Seven of these studies showed additional fractures (n=15). In one study, an initial read of a skull fracture was read as a variant on the second read. There was a significant (P=0.01) difference between rate of disagreement in negative skeletal surveys (1/104, 1.0%) and positive skeletal surveys (7/74, 9.5%). No significant change in disagreement rate was demonstrated between the two phases of the study (P=0.59). Double-read of skeletal survey for suspected non-accidental trauma found false-negative fractures in a few cases and rarely found

  19. Experimental investigation of interface conditions between oxidic melt and ablating concrete during MCCI by means of simulating material experiments: the Artemis program

    International Nuclear Information System (INIS)

    Veteau, J.M.

    2005-01-01

    Full text of publication follows: In the frame work of R and D on Severe Accidents in PWR plants, an estimation by codes of time of basemat melt-through by Corium is required. For this, the heat flux distribution along the cavity wall must be properly modelled. Hence the knowledge of the heat transfer coefficient as well as the temperature at the interface between the melt and the solid become key issues. Phase diagram of the melt and composition governs the interface temperature which controls, at least partly, the thickness of the Corium crust formed on the molten concrete. Crust behaviour (time evolution of thickness, mechanical interaction with gas) implies a release mode of molten concrete in Corium which in turn alters the melt composition. Clearly, the molten corium-concrete interaction (MCCI) phenomenon is the result of a strong coupling between physico-chemistry and thermohydraulics. The main goal of the first test series of the Artemis program is to make a link between the interface temperature and the physico-chemistry of the melt (phase diagram) through tests conducted with simulating materials and to provide an insight on the existence, the behaviour and the composition of the crust. This test series considers 1D MCCI using a non eutectic LiCl-BaCl 2 mixture poured at 1000 deg. C in a cylindrical test section (internal diameter 0.3 m) to interact with the 0.35 m deep basemat made of the same salt mixture at the eutectic composition. This 'concrete' was especially manufactured with sintered granulates to allow gas flow from the bottom (argon), then simulating gas released by concrete in the reactor case. Constant power is applied in the pool with an helical coil and 1D MCCI is ensured by counterbalancing heat losses by controlled heating at the lateral walls and at the top of the test section. Concrete ablation is followed from the output of 45 0.5 mm diameter thermocouples. An instrumented rod periodically investigates the temperature and the position

  20. First principles study of the structural and electronic properties of double perovskite Ba2YTaO6 in cubic and tetragonal phases

    International Nuclear Information System (INIS)

    Deluque Toro, C.E.; Rodríguez M, Jairo Arbey; Landínez Téllez, D.A.; Moreno Salazar, N.O.; Roa-Rojas, J.

    2014-01-01

    The Ba 2 YTaO 6 double perovskite presents a transition from cubic (Fm−3m) to tetragonal structure (I4/m) at high temperature. In this work, we present a detailed study of the structural and electronic properties of the double perovskite Ba 2 YTaO 6 in space group Fm−3m and I4/m. Calculations were made with the Full-Potential Linear Augmented Plane Wave method (FP-LAPW) within the framework of the Density Functional Theory (DFT) with exchange and correlation effects in the Generalized Gradient (GGA) and Local Density (LDA) approximations. From the minimization of energy as a function of volume and the fitting of the Murnaghan equation some structural characteristics were determined as, for example, total energy, lattice parameter (a=8.50 Å in cubic phase and a=5.985 Å and c=8.576 Å in tetragonal), bulk modulus (135.6 GPa in cubic phase and 134.1 GPa in tetragonal phase) and its derivative. The study of the electronic characteristics was performed from the analysis of the electronic density of states (DOS). We find a non-metallic behavior for this with a direct band gap of approximately 3.5 eV and we found that the Ba 2 YTaO 6 (I4/m) phase is the most stable one. © 2013 Elsevier Science. All rights reserved

  1. Double ambidexterity

    DEFF Research Database (Denmark)

    Kaulio, Matti; Thorén, Kent; Rohrbeck, René

    2017-01-01

    We leverage the business model innovation and ambidexterity literature to investigate a contradictory case, the Swedish-Finnish Telecom operator TeliaSonera. Despite being challenged by three major disruptions, the company not only still exists but also enjoys remarkably good financial performance....... Building on extant archival data and interviews, we carefully identify and map 26 organizational responses during 1992–2016. We find that the firm has overcome three critical phases by experimenting and pioneering with portfolios of business models and/or technological innovations. We describe...... this behaviour as double ambidexterity. We use an in-depth case study to conceptualize double ambidexterity and discuss its impact on the business's survival and enduring success....

  2. DCE: A Distributed Energy-Efficient Clustering Protocol for Wireless Sensor Network Based on Double-Phase Cluster-Head Election.

    Science.gov (United States)

    Han, Ruisong; Yang, Wei; Wang, Yipeng; You, Kaiming

    2017-05-01

    Clustering is an effective technique used to reduce energy consumption and extend the lifetime of wireless sensor network (WSN). The characteristic of energy heterogeneity of WSNs should be considered when designing clustering protocols. We propose and evaluate a novel distributed energy-efficient clustering protocol called DCE for heterogeneous wireless sensor networks, based on a Double-phase Cluster-head Election scheme. In DCE, the procedure of cluster head election is divided into two phases. In the first phase, tentative cluster heads are elected with the probabilities which are decided by the relative levels of initial and residual energy. Then, in the second phase, the tentative cluster heads are replaced by their cluster members to form the final set of cluster heads if any member in their cluster has more residual energy. Employing two phases for cluster-head election ensures that the nodes with more energy have a higher chance to be cluster heads. Energy consumption is well-distributed in the proposed protocol, and the simulation results show that DCE achieves longer stability periods than other typical clustering protocols in heterogeneous scenarios.

  3. Solid-Phase Synthesis of Small Molecule Libraries using Double Combinatorial Chemistry

    DEFF Research Database (Denmark)

    Nielsen, John; Jensen, Flemming R.

    1997-01-01

    The first synthesis of a combinatorial library using double combinatorial chemistry is presented. Coupling of unprotected Fmoc-tyrosine to the solid support was followed by Mitsunobu O-alkylation. Introduction of a diacid linker yields a system in which the double combinatorial step can be demons...

  4. Enhancing Security of Double Random Phase Encoding Based on Random S-Box

    Science.gov (United States)

    Girija, R.; Singh, Hukum

    2018-06-01

    In this paper, we propose a novel asymmetric cryptosystem for double random phase encoding (DRPE) using random S-Box. While utilising S-Box separately is not reliable and DRPE does not support non-linearity, so, our system unites the effectiveness of S-Box with an asymmetric system of DRPE (through Fourier transform). The uniqueness of proposed cryptosystem lies on employing high sensitivity dynamic S-Box for our DRPE system. The randomness and scalability achieved due to applied technique is an additional feature of the proposed solution. The firmness of random S-Box is investigated in terms of performance parameters such as non-linearity, strict avalanche criterion, bit independence criterion, linear and differential approximation probabilities etc. S-Boxes convey nonlinearity to cryptosystems which is a significant parameter and very essential for DRPE. The strength of proposed cryptosystem has been analysed using various parameters such as MSE, PSNR, correlation coefficient analysis, noise analysis, SVD analysis, etc. Experimental results are conferred in detail to exhibit proposed cryptosystem is highly secure.

  5. Experimental investigation on molten pool representing corium composition at Fukushima Daiichi nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    An, Sang Mo, E-mail: sangmoan@kaeri.re.kr [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yueong-gu, Daejeon, 305-353 (Korea, Republic of); Song, Jin Ho [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yueong-gu, Daejeon, 305-353 (Korea, Republic of); Kim, Jong-Yun [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yueong-gu, Daejeon, 305-353 (Korea, Republic of); Radiochemistry & Nuclear Nonproliferation, University of Science & Technology, Gajeong-ro 217, Yuseong-gu, Daejeon, 34113 (Korea, Republic of); Kim, HwanYeol [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yueong-gu, Daejeon, 305-353 (Korea, Republic of); Naitoh, Masanori [The Institute of Applied Energy, 1-14-2 Nishi-shimbashi, 1-Chome, Minato-ku, Tokyo, 105-0003 (Japan)

    2016-09-15

    A configuration of molten core in the Fukushima Daiichi NPP (nuclear power plant) was investigated by a melting and solidification experiment. About 5 kg of a mixture, whose composition in terms of weight is UO{sub 2} (60%), Zr + ZrO{sub 2} (25%), stainless steel (14%), B{sub 4}C (1%), was melted in a cold crucible using an induction heating technique. It was shown that the solidified melt consists of upper crust and lower solidified ingot. The solidified ingot was separated into two layers. A physical and chemical analysis was performed for the samples taken from the solidified melt to investigate the morphology and chemical characteristics. It was found that the solidified ingot consists of a metal-rich layer on the top and an oxide-rich layer at the bottom. In addition, the oxide layer at the bottom has composition close to the initial charge composition and surrounded by a thin crust layer. It turned out that B{sub 4}C was more concentrated in the upper metal-rich layer. These findings provide important insights for understanding the core melt progression and taking proper post-accident recovery actions for the Fukushima Daiichi NPP. - Highlights: • A configuration of molten core in the Fukushima Daiich NPP unit 1 is investigated. • Corium ingot consists of metallic layer on the top and oxidic layer at the bottom. • Boron carbide was more concentrated in the upper metallic layer. • Two layered configuration would contribute to the post-accident recovery actions.

  6. Description of premixing with the MC3D code including molten jet behavior modeling. Comparison with FARO experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Berthoud, G.; Crecy, F. de; Meignen, R.; Valette, M. [CEA-G, DRN/DTP/SMTH, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France)

    1998-01-01

    The premixing phase of a molten fuel-coolant interaction is studied by the way of mechanistic multidimensional calculation. Beside water and steam, corium droplet flow and continuous corium jet flow are calculated independent. The 4-field MC3D code and a detailed hot jet fragmentation model are presented. MC3D calculations are compared to the FARO L14 experiment results and are found to give satisfactory results; heat transfer and jet fragmentation models are still to be improved to predict better final debris size values. (author)

  7. Nanostructured Double Hydrophobic Poly(Styrene-b-Methyl Methacrylate) Block Copolymer Membrane Manufactured Via Phase Inversion Technique

    KAUST Repository

    Karunakaran, Madhavan; Shevate, Rahul; Peinemann, Klaus-Viktor

    2016-01-01

    In this paper, we demonstrate the formation of nanostructured double hydrophobic poly(styrene-b-methyl methacrylate) (PS-b-PMMA) block copolymer membranes via state-of-the-art phase inversion technique. The nanostructured membrane morphologies are tuned by different solvent and block copolymer compositions. The membrane morphology has been investigated using FESEM, AFM and TEM. Morphological investigation shows the formation of both cylindrical and lamellar structures on the top surface of the block copolymer membranes. The PS-b-PMMA having an equal block length (PS160K-b-PMMA160K) exhibits both cylindrical and lamellar structures on the top layer of the asymmetric membrane. All membranes fabricated from PS160K-b-PMMA160K shows an incomplete pore formation in both cylindrical and lamellar morphologies during the phase inversion process. However, PS-b-PMMA (PS135K-b-PMMA19.5K) block copolymer having a short PMMA block allowed us to produce open pore structures with ordered hexagonal cylindrical pores during the phase inversion process. The resulting PS-b-PMMA nanostructured block copolymer membranes have pure water flux from 105-820 l/m2.h.bar and 95% retention of PEG50K

  8. Nanostructured Double Hydrophobic Poly(Styrene-b-Methyl Methacrylate) Block Copolymer Membrane Manufactured Via Phase Inversion Technique

    KAUST Repository

    Karunakaran, Madhavan

    2016-03-11

    In this paper, we demonstrate the formation of nanostructured double hydrophobic poly(styrene-b-methyl methacrylate) (PS-b-PMMA) block copolymer membranes via state-of-the-art phase inversion technique. The nanostructured membrane morphologies are tuned by different solvent and block copolymer compositions. The membrane morphology has been investigated using FESEM, AFM and TEM. Morphological investigation shows the formation of both cylindrical and lamellar structures on the top surface of the block copolymer membranes. The PS-b-PMMA having an equal block length (PS160K-b-PMMA160K) exhibits both cylindrical and lamellar structures on the top layer of the asymmetric membrane. All membranes fabricated from PS160K-b-PMMA160K shows an incomplete pore formation in both cylindrical and lamellar morphologies during the phase inversion process. However, PS-b-PMMA (PS135K-b-PMMA19.5K) block copolymer having a short PMMA block allowed us to produce open pore structures with ordered hexagonal cylindrical pores during the phase inversion process. The resulting PS-b-PMMA nanostructured block copolymer membranes have pure water flux from 105-820 l/m2.h.bar and 95% retention of PEG50K

  9. Young's double-slit interference with two-color biphotons.

    Science.gov (United States)

    Zhang, De-Jian; Wu, Shuang; Li, Hong-Guo; Wang, Hai-Bo; Xiong, Jun; Wang, Kaige

    2017-12-12

    In classical optics, Young's double-slit experiment with colored coherent light gives rise to individual interference fringes for each light frequency, referring to single-photon interference. However, two-photon double-slit interference has been widely studied only for wavelength-degenerate biphoton, known as subwavelength quantum lithography. In this work, we report double-slit interference experiments with two-color biphoton. Different from the degenerate case, the experimental results depend on the measurement methods. From a two-axis coincidence measurement pattern we can extract complete interference information about two colors. The conceptual model provides an intuitional picture of the in-phase and out-of-phase photon correlations and a complete quantum understanding about the which-path information of two colored photons.

  10. Lesion localization in patients with hyperparathyroidism using double-phase Tc-99m MIBI parathyroid scintigraphy

    International Nuclear Information System (INIS)

    Shin, Jung Woo; Ryu, Jin Sook; Kim, Jae Seung; Moon, Dae Hyuk; Hong, Seung Mo; Gong, Gyung Yub; Hong, Suk Joon; Lee, Hee Kyung

    1999-01-01

    This study was performed to evaluate the diagnostic usefulness of double-phase Tc-99m MIBI parathyroid scintigraphy with single photon emission computed tomography (SPECT) in patients with hyperparathyroidism. We also evaluated the relationship between Tc-99m MIBI uptake and oxyphil cell contents in parathyroid glands. The subjects were 28 parathyroid glands of 10 patients who underwent Tc-99m MIBI parathyroid scintigraphy and parathyroidectomy for clinically suspected hyperparathyroidism. Early and delayed pinhole images were obtained at 15 minutes and 2 hours after injection of Tc-99m MIBI, and SPECT images were followed. The weight and oxyphil cell contents of parathyroid tissue were obtained from pathologic specimen, and the scintigraphic findings were compared with histopathology. In surgical histopathology, 6 parathyroid adenomas and 9 parathyroid hyperplasias were confirmed. The sensitivity, specificity, and positive predictive value of early and delayed images were 46.7% (7/15), 76.9% (10/13), 70% (7/10) and 66.7% (10/15), 92.3% (12/13), 90.9% (10/11), respectively. SPECT image detected an additional small hyperplasia. The sensitivity, specificity, and positive predictive value of combined interpretation of early and delayed images with SPECT were 73.3% (11/15), 100% (13/13), 100% (11/11). The sensitivity was 100% (6/6) for adenoma, whereas that was 55.5% (5/9) for hyperplasia. Both adenomas and hyperplasias showed significantly increased oxyphil cell contents compared with normal parathyroid glands (p<0.0001), but the oxyphil cell content and weight were not significantly different between adenomas and hyperplasias. Double-phase Tc-99m MIBI parathyroid scintigraphy with SPECT is useful for lesion localization in patients with hyperparathyroidism. Although both adenoma and hyperplasia have increased oxyphil cell content, the sensitivity is high in adenoma, but low in hyperplasia

  11. First evaluations of ex-vessel fuel-coolant interaction with MC3D

    International Nuclear Information System (INIS)

    Meignen, R.; Dupas, J.; Chaumont, B.

    2003-01-01

    In the frame of severe accident nuclear safety studies, we evaluate for French PWR's the potential of Steam Explosion in the reactor pit, consecutively to a vessel failure and to the mixing of the corium with the water that might be present. The evaluations are made with MC3D. This thermalhydraulic multiphasic code has firstly been qualified and its main parameters chosen so that a sufficient validation is obtained with regards to reactor situations. The safety study for ex-vessel situations is a step-by-step procedure that leads to a progressive process of hypotheses relaxations. We find that it is important to adequately model the corium ejection from the RPV. The rapid transition of the flow at the breach towards 2-phase dispersed flow leads to an important mixing of corium and water. The vessel pressurization is a very important parameter and strong pressure cases lead to a fine fragmentation and thus a high voiding. The small pressure cases are more dangerous for two reasons: the corium is dispersed in larger drops, and some important interactions (in the premixing sense) are reported

  12. Dietary Soy Supplement on Fibromyalgia Symptoms: A Randomized, Double-Blind, Placebo-Controlled, Early Phase Trial

    Science.gov (United States)

    Wahner-Roedler, Dietlind L.; Thompson, Jeffrey M.; Luedtke, Connie A.; King, Susan M.; Cha, Stephen S.; Elkin, Peter L.; Bruce, Barbara K.; Townsend, Cynthia O.; Bergeson, Jody R.; Eickhoff, Andrea L.; Loehrer, Laura L.; Sood, Amit; Bauer, Brent A.

    2011-01-01

    Most patients with fibromyalgia use complementary and alternative medicine (CAM). Properly designed controlled trials are necessary to assess the effectiveness of these practices. This study was a randomized, double-blind, placebo-controlled, early phase trial. Fifty patients seen at a fibromyalgia outpatient treatment program were randomly assigned to a daily soy or placebo (casein) shake. Outcome measures were scores of the Fibromyalgia Impact Questionnaire (FIQ) and the Center for Epidemiologic Studies Depression Scale (CES-D) at baseline and after 6 weeks of intervention. Analysis was with standard statistics based on the null hypothesis, and separation test for early phase CAM comparative trials. Twenty-eight patients completed the study. Use of standard statistics with intent-to-treat analysis showed that total FIQ scores decreased by 14% in the soy group (P = .02) and by 18% in the placebo group (P fibromyalgia treatment program, provide a decrease in fibromyalgia symptoms. Separation between the effects of soy and casein (control) shakes did not favor the intervention. Therefore, large-sample studies using soy for patients with fibromyalgia are probably not indicated. PMID:18990724

  13. Some recent trends in computer simulations of aqueous double layers

    International Nuclear Information System (INIS)

    Spohr, E.

    2003-01-01

    Recent molecular simulations of the electric double layer between an aqueous and a metallic phase are reviewed. Several trends in the field can be identified: (i) the increasing use of ab initio simulation methods, most notably the Car-Parrinello method, allows to combine a statistical mechanical description of the double layer with a description of elementary chemical processes on the electronic structure level; (ii) the application of free-energy methods in one and (recently) two dimensions to describe chemical reactivity within and beyond the framework of the Marcus theory of electron transfer; and (iii) at high concentrations, direct simulations of two-phase systems with an aqueous solution and a charged or uncharged solid phase or surface can model the entire double layer region

  14. Double Dirac cones in phononic crystals

    KAUST Repository

    Li, Yan

    2014-07-07

    A double Dirac cone is realized at the center of the Brillouin zone of a two-dimensional phononic crystal (PC) consisting of a triangular array of core-shell-structure cylinders in water. The double Dirac cone is induced by the accidental degeneracy of two double-degenerate Bloch states. Using a perturbation method, we demonstrate that the double Dirac cone is composed of two identical and overlapping Dirac cones whose linear slopes can also be accurately predicted from the method. Because the double Dirac cone occurs at a relatively low frequency, a slab of the PC can be mapped onto a slab of zero refractive index material by using a standard retrieval method. Total transmission without phase change and energy tunneling at the double Dirac point frequency are unambiguously demonstrated by two examples. Potential applications can be expected in diverse fields such as acoustic wave manipulations and energy flow control.

  15. Double Dirac cones in phononic crystals

    KAUST Repository

    Li, Yan; Wu, Ying; Mei, Jun

    2014-01-01

    A double Dirac cone is realized at the center of the Brillouin zone of a two-dimensional phononic crystal (PC) consisting of a triangular array of core-shell-structure cylinders in water. The double Dirac cone is induced by the accidental degeneracy of two double-degenerate Bloch states. Using a perturbation method, we demonstrate that the double Dirac cone is composed of two identical and overlapping Dirac cones whose linear slopes can also be accurately predicted from the method. Because the double Dirac cone occurs at a relatively low frequency, a slab of the PC can be mapped onto a slab of zero refractive index material by using a standard retrieval method. Total transmission without phase change and energy tunneling at the double Dirac point frequency are unambiguously demonstrated by two examples. Potential applications can be expected in diverse fields such as acoustic wave manipulations and energy flow control.

  16. Solid phase double-antibody radioimmunoassay procedure

    International Nuclear Information System (INIS)

    Niswender, G.D.

    1977-01-01

    The present invention is concerned with the radioimmunoassay (RIA) procedure for assaying body fluid content of an antigenic substance which may either be an antigen itself or a hapten capable of being converted, such as by means of reaction with a protein, to an antigenic material. The present invention is concerned with a novel and improved modification of a double-antibody RIA technique in which there is a first antibody that is specific to the antigenic substance suspected to be present in a body fluid from which the assay is intended. The second antibody, however, is not specific to the antigenic substance or analyte, but is an antibody against the first antibody

  17. Encoding plaintext by Fourier transform hologram in double random phase encoding using fingerprint keys

    Science.gov (United States)

    Takeda, Masafumi; Nakano, Kazuya; Suzuki, Hiroyuki; Yamaguchi, Masahiro

    2012-09-01

    It has been shown that biometric information can be used as a cipher key for binary data encryption by applying double random phase encoding. In such methods, binary data are encoded in a bit pattern image, and the decrypted image becomes a plain image when the key is genuine; otherwise, decrypted images become random images. In some cases, images decrypted by imposters may not be fully random, such that the blurred bit pattern can be partially observed. In this paper, we propose a novel bit coding method based on a Fourier transform hologram, which makes images decrypted by imposters more random. Computer experiments confirm that the method increases the randomness of images decrypted by imposters while keeping the false rejection rate as low as in the conventional method.

  18. Encoding plaintext by Fourier transform hologram in double random phase encoding using fingerprint keys

    International Nuclear Information System (INIS)

    Takeda, Masafumi; Nakano, Kazuya; Suzuki, Hiroyuki; Yamaguchi, Masahiro

    2012-01-01

    It has been shown that biometric information can be used as a cipher key for binary data encryption by applying double random phase encoding. In such methods, binary data are encoded in a bit pattern image, and the decrypted image becomes a plain image when the key is genuine; otherwise, decrypted images become random images. In some cases, images decrypted by imposters may not be fully random, such that the blurred bit pattern can be partially observed. In this paper, we propose a novel bit coding method based on a Fourier transform hologram, which makes images decrypted by imposters more random. Computer experiments confirm that the method increases the randomness of images decrypted by imposters while keeping the false rejection rate as low as in the conventional method. (paper)

  19. Three-phase double-arc plasma for spectrochemical analysis of environmental samples.

    Science.gov (United States)

    Mohamed, M M; Ghatass, Z F; Shalaby, E A; Kotb, M M; El-Raey, M

    2000-12-01

    A new instrument, which uses a three-phase current to support a double-arc argon plasma torch for evaporation, atomization and excitation of solid or powder samples, is described. The sampling arc is ignited between the first and second electrode while the excitation arc is ignited between the second and third electrode. Aerosol generated from the sample (first electrode) is swept by argon gas, through a hole in the second electrode (carbon tubing electrode), into the excitation plasma. A tangential stream of argon gas is introduced through an inlet orifice as a coolant gas for the second electrode. This gas stream forces the excitation arc discharge to rotate reproducibly around the electrode surface. Discharge rotation increases the stability of the excitation plasma. Spectroscopic measurements are made directly in the current-carrying region of the excitation arc. An evaluation of each parameter influencing the device performance was performed. Analytical calibration curves were obtained for Fe, Al, K, and Pb. Finally, the present technique was applied for the analysis of environmental samples. The present method appears to have significant, low cost analytical utility for environmental measurements.

  20. A method for generating double-ring-shaped vector beams

    Science.gov (United States)

    Huan, Chen; Xiao-Hui, Ling; Zhi-Hong, Chen; Qian-Guang, Li; Hao, Lv; Hua-Qing, Yu; Xu-Nong, Yi

    2016-07-01

    We propose a method for generating double-ring-shaped vector beams. A step phase introduced by a spatial light modulator (SLM) first makes the incident laser beam have a nodal cycle. This phase is dynamic in nature because it depends on the optical length. Then a Pancharatnam-Berry phase (PBP) optical element is used to manipulate the local polarization of the optical field by modulating the geometric phase. The experimental results show that this scheme can effectively create double-ring-shaped vector beams. It provides much greater flexibility to manipulate the phase and polarization by simultaneously modulating the dynamic and the geometric phases. Project supported by the National Natural Science Foundation of China (Grant No. 11547017), the Hubei Engineering University Research Foundation, China (Grant No. z2014001), and the Natural Science Foundation of Hubei Province, China (Grant No. 2014CFB578).

  1. Simulation of severe accidents in COTELS experiments

    International Nuclear Information System (INIS)

    Vasilev, Yu.S.; Zhdanov, V.S.; Kolodeshnikov, A.A.; Kadyrov, Kh. G.; Turkebaev, T.E.; Tsaj, K.V.; Suslov, E.E.

    1999-01-01

    At present, the issue of atomic reactor operation safety is of a great attention. It is evident that the accident accompanied with a core materials melting is an improbable event. To fully assess a hazard of a reactor use and enhance its safety, it is necessary to predict a possible accident progress and specify possible consequences of severe accidents and eliminating measures. In COTELS experiments, aimed at investigation of interaction of corium with concrete and water, the corium s imulator m elt is discharged on the concrete. The concrete erosion parameters, composition and rate of aerosol and gas escaping are recorded. The solidified melt and concrete fragments structure is studied after the testing, using the X-ray diffractometer DRON-3. This paper gives consideration to possible mechanisms of formation of uranium-containing and other phases of products of interaction of the corium melt with concrete and water

  2. Transmission electron microscopy of single and double aged 718Plus superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Whitmore, Lawrence, E-mail: lawrence.whitmore@unileoben.ac.at [Christian Doppler Laboratory for Early Stages of Precipitation, Department of Physical Metallurgy and Materials Testing, Montanuniversitaet Leoben, Franz-Josef Strasse 18, 8700 Leoben (Austria); Leitner, Harald [Christian Doppler Laboratory for Early Stages of Precipitation, Department of Physical Metallurgy and Materials Testing, Montanuniversitaet Leoben, Franz-Josef Strasse 18, 8700 Leoben (Austria); Povoden-Karadeniz, Erwin [Christian Doppler Laboratory for Early Stages of Precipitation, Vienna University of Technology, Favoritenstrasse 9-11, A-1040 Vienna (Austria); Radis, Rene [Christian Doppler Laboratory for Early Stages of Precipitation, Vienna University of Technology, Favoritenstrasse 9-11, A-1040 Vienna (Austria); Institute for Materials Science and Welding, Graz University of Technology, Kopernikusgasse 24, A-8010 Graz (Austria); Stockinger, Martin [Boehler Schmiedetechnik GmbH Co KG, Mariazellerstrasse 25, 8600 Kapfenberg (Austria)

    2012-02-01

    Highlights: Black-Right-Pointing-Pointer Volume fraction and size of {gamma} Prime precipitates increases with double aging. Black-Right-Pointing-Pointer Increase in hardness is explained by the size and phase fraction of {gamma} Prime precipitates. Black-Right-Pointing-Pointer Anti-phase boundary energy in the {gamma} Prime is estimated to be 0.2 Jm{sup -2}. Black-Right-Pointing-Pointer Ni, Ti, Al and Nb increase in the {gamma} Prime phase, Fe, Co, Cr, Mo and W decrease. Black-Right-Pointing-Pointer Evidence of a dense population of {gamma} Prime clusters 1-2 nm found. - Abstract: The effects of single and double aging upon the ATI 718Plus Nickel superalloy are investigated. Double aging is found to produce an increase in hardness as compared to single aging, thus an extensive micro-structural study is performed to identify and understand the physical reasons for this. Precipitation of the {gamma} Prime phase is of particular interest in this case. Using transmission electron microscopy and energy dispersive X-ray spectroscopy, the {gamma} Prime shape, size, number density and elemental constitution are investigated and correlated to the aging conditions. The {gamma}/{gamma} Prime lattice misfit is also measured. Only one main population of {gamma} Prime precipitates is observed after double aging: simply the population produced during the first aging continues to evolve. Using a theoretical model for precipitation hardening, based on the shearing of precipitates, the hardness is related to the size and phase fraction of the {gamma} Prime and a value for the anti-phase boundary energy of the {gamma} Prime is calculated. Measurements are compared with thermo-kinetic simulation using the software package MatCalc. A dense dispersion of 1-2 nm size {gamma} Prime phase clusters is additionally observed after both single and double aging, and this is correlated through simulation with the final cooling stage of the heat treatment.

  3. Phase shift PWM with double two-switch bridge for high power capacitor charging

    International Nuclear Information System (INIS)

    Karandikar, U.S.; Singh, Yashpal; Thakurta, A.C.

    2013-01-01

    Pulse power supply systems working at higher voltage and high repetition rate demands for higher power from capacitor chargers. Capacitor charging requirement become more challenging in such cases. In pulse power circuits, energy storage capacitor should be charged to its desired voltage before the next switching occurs. It is discharged within a small time, delivering large pulse power. A capacitor charger has to work with wide load variation repeatedly. Many schemes are used for this purpose. The proposed scheme aims at reducing stresses on switches by reducing peak current and their evils. A high voltage power supply is designed for capacitor charging. The proposed scheme is based on a Phase-Shifted PWM without using any extra component to achieve soft switching. Indirect constant average current capacitor charging is achieved with a simple control scheme. A double two-switch bridge is proposed to enhance reliability. Power supply has been developed to charge a capacitor of 50 μF to 2.5 kV at 25 Hz. (author)

  4. Experimental investigation of interface conditions between oxidic melt and ablating concrete during MCCI by means of simulating material experiments: the Artemis program

    Energy Technology Data Exchange (ETDEWEB)

    Veteau, J.M. [Commissariat a l' Energie Atomique, DEN/DTN/SE2T/LPTM, 17 rue des Martyrs 38 - Grenoble cedex 9 (France)

    2005-07-01

    Full text of publication follows: In the frame work of R and D on Severe Accidents in PWR plants, an estimation by codes of time of basemat melt-through by Corium is required. For this, the heat flux distribution along the cavity wall must be properly modelled. Hence the knowledge of the heat transfer coefficient as well as the temperature at the interface between the melt and the solid become key issues. Phase diagram of the melt and composition governs the interface temperature which controls, at least partly, the thickness of the Corium crust formed on the molten concrete. Crust behaviour (time evolution of thickness, mechanical interaction with gas) implies a release mode of molten concrete in Corium which in turn alters the melt composition. Clearly, the molten corium-concrete interaction (MCCI) phenomenon is the result of a strong coupling between physico-chemistry and thermohydraulics. The main goal of the first test series of the Artemis program is to make a link between the interface temperature and the physico-chemistry of the melt (phase diagram) through tests conducted with simulating materials and to provide an insight on the existence, the behaviour and the composition of the crust. This test series considers 1D MCCI using a non eutectic LiCl-BaCl{sub 2} mixture poured at 1000 deg. C in a cylindrical test section (internal diameter 0.3 m) to interact with the 0.35 m deep basemat made of the same salt mixture at the eutectic composition. This 'concrete' was especially manufactured with sintered granulates to allow gas flow from the bottom (argon), then simulating gas released by concrete in the reactor case. Constant power is applied in the pool with an helical coil and 1D MCCI is ensured by counterbalancing heat losses by controlled heating at the lateral walls and at the top of the test section. Concrete ablation is followed from the output of 45 0.5 mm diameter thermocouples. An instrumented rod periodically investigates the temperature

  5. Communication: An effective linear-scaling atomic-orbital reformulation of the random-phase approximation using a contracted double-Laplace transformation

    International Nuclear Information System (INIS)

    Schurkus, Henry F.; Ochsenfeld, Christian

    2016-01-01

    An atomic-orbital (AO) reformulation of the random-phase approximation (RPA) correlation energy is presented allowing to reduce the steep computational scaling to linear, so that large systems can be studied on simple desktop computers with fully numerically controlled accuracy. Our AO-RPA formulation introduces a contracted double-Laplace transform and employs the overlap-metric resolution-of-the-identity. First timings of our pilot code illustrate the reduced scaling with systems comprising up to 1262 atoms and 10 090 basis functions. 

  6. Double labeling autoradiography. Cell kinetic studies with 3H- and 14C-thymidine

    International Nuclear Information System (INIS)

    Schultze, B.

    1981-01-01

    Examples of the multiple applicability of the double labeling method with 3 H- and 14 C-TdR are demonstrated. Double labeling with 3 H- and 14 C-TdR makes it possible to determine the cycle and its phases with high precision by modifying the usual percent labeled mitoses method with a single injection of 3 H-TdR. In addition, data is provided on the variances of the transit times through the cycle phases. For example, in the case of the jejunal crypt cells of the mouse, the transit times through successive cycle phases are uncorrelated. In the case of glial cells the double labeling method provides cell kinetic parameters despite the paucity of proliferating glial cells. In the adult untreated animal, glial cell mitoses are so rare that the percent labeled mitoses method can not be utilized. However, the S-phase duration can be measured by double labeling and the cycle time can be determined by the so-called method of labeled S phases. With the latter method the passage through the S phase of the 3 H-TdR-labeled S phase cells can be registered by injecting 14 C-TdR at different time intervals following 3 H-TdR application. In this way an S-phase duration of about 10 hr and a cycle time of about 20 hr was found for glial cells in the adult untreated mouse. An exchange of glial cells between the growth fraction and the nongrowth fraction has also been shown by double labeling. A quite different application of the double labeling method with 3H- and 14 C-TdR is the in vivo study of the cell cycle phase-specific effect of drugs used in chemotherapy of tumors. The effect of vincristine on these cells has been studied. Vincristine affects cells in S and G2 in such a manner that they are arrested during the next metaphase and subsequently become necrotic. It has no effect on G1 cells

  7. Asymmetric double-image encryption method by using iterative phase retrieval algorithm in fractional Fourier transform domain

    Science.gov (United States)

    Sui, Liansheng; Lu, Haiwei; Ning, Xiaojuan; Wang, Yinghui

    2014-02-01

    A double-image encryption scheme is proposed based on an asymmetric technique, in which the encryption and decryption processes are different and the encryption keys are not identical to the decryption ones. First, a phase-only function (POF) of each plain image is retrieved by using an iterative process and then encoded into an interim matrix. Two interim matrices are directly modulated into a complex image by using the convolution operation in the fractional Fourier transform (FrFT) domain. Second, the complex image is encrypted into the gray scale ciphertext with stationary white-noise distribution by using the FrFT. In the encryption process, three random phase functions are used as encryption keys to retrieve the POFs of plain images. Simultaneously, two decryption keys are generated in the encryption process, which make the optical implementation of the decryption process convenient and efficient. The proposed encryption scheme has high robustness to various attacks, such as brute-force attack, known plaintext attack, cipher-only attack, and specific attack. Numerical simulations demonstrate the validity and security of the proposed method.

  8. A study on the correlations development for film boiling heat transfer on spheres

    International Nuclear Information System (INIS)

    Jeong, Yong Hoon; Baek, Won Pil; Chang, Soon Heung

    1998-01-01

    Film boiling is the heat transfer mechanism that can occurs when large temperature differences exist between a cold liquid and hot material. In the nuclear reactor safety analysis, film boiling has become an important issue in recent years. During severe accident, hot molten corium fall into relatively cool water, and fragment into spheres or sphere-like particles. If the steam explosion is triggered, the thermal energy of corium is converted into the mechanical energy that can threaten the integrity of reactor vessel or reactor cavity. One of the important concerns in the heat transfer analysis during pre-mixing stage is the film boiling heat transfer between the corium and water/steam two-phase flow. Until now, considerable works on film boiling have been performed. However, there is no available correlation adequate for severe accident analysis. In this study, film boiling heat transfer correlations have been developed, and their applicable ranges have been enlarged and their prediction accuracy has been enhanced

  9. Improving the efficiency of microwave devices with a double output cavity

    International Nuclear Information System (INIS)

    Eppley, K.R.; Herrmannsfeldt, W.B.; Lee, T.G.

    1986-05-01

    Double output cavities have been used experimentally to increase the efficiency of high-power klystrons. We have used particle-in-cell simulations with the 2 + 1/2 dimensional code MASK to optimize the design of double output cavities for the lasertron and the 50 MW klystron under development at SLAC. We discuss design considerations for double output cavities (e.g., optimum choice of voltages and phases, efficiency, wall interception, breakdown). We describe how one calculates the cavity impedance matrix from the gap voltages and phases. Simulation results are compared to experience with the 150 MW klystron

  10. State of the Art Report for the In-Vessel Late Core Melt Progression

    International Nuclear Information System (INIS)

    Kim, Hee Dong; Kang, Kyoung Ho; Park, Rae Joon

    2009-04-01

    The formation of corium pool in the reactor vessel lower head and its behavior is still an important issue. This issue is closely related to understanding of the core melting, its course, critical phases and timing during severe accidents and the influence of these processes on the accident progression, especially the evaluation of in-vessel retention by external reactor vessel cooling (IVR-ERVC) as a severe accident management strategy. The previous researches focused on the quisi-steady state behavior of molten corium pool in the lower head and related in-vessel retention problem. However, questions of the feasibility of the in-vessel retention concept for high power density reactor and uncertainties due to layering effect require further studies. These researches are rather essential to consider the whole evolution of the accident including formation and growth of the molten pool and the characteristic of corium arrival in the lower head and molten pool behavior after the core debris remelting. The general objective of the LIVE program performed at FzK is to study the corium pool formation and behavior with emphasis on the transient behavior through the large scale 3-D experiments. In this report, description of LIVE experimental facility and results of performance test are briefly summarized and the process to select the simulant is depicted. Also, the results of LIVE L1 and L2 tests and analytical models are included. These experimental results are very useful to development and verification of the model of molten corium pool behavior

  11. Polysulfide intercalated layered double hydroxides for metal capture applications

    Energy Technology Data Exchange (ETDEWEB)

    Kanatzidis, Mercouri G.; Ma, Shulan

    2017-04-04

    Polysulfide intercalated layered double hydroxides and methods for their use in vapor and liquid-phase metal capture applications are provided. The layered double hydroxides comprise a plurality of positively charged host layers of mixed metal hydroxides separated by interlayer spaces. Polysulfide anions are intercalated in the interlayer spaces.

  12. Enhanced Cross-Phase Modulation Based on a Double Electromagnetically Induced Transparency in a Four-Level Tripod Atomic System

    International Nuclear Information System (INIS)

    Li Shujing; Yang Xudong; Cao Xuemin; Zhang Chunhong; Xie Changde; Wang Hai

    2008-01-01

    We report experimental observations on the simultaneous electromagnetically induced transparency (EIT) effects for probe and trigger fields (double EIT) as well as the enhanced cross-phase modulation (XPM) between the two fields in a four-level tripod EIT system of the D1 line of 87 Rb atoms. The XPM coefficients (larger than 2x10 -5 cm 2 /W) and the accompanying transmissions (higher than 60%) are measured at a slight detuning of the probe field from the exact EIT-resonance condition. The system and enhanced cross-Kerr nonlinearities presented here can be applied to quantum information processes

  13. First principles study of the structural and electronic properties of double perovskite Ba{sub 2}YTaO{sub 6} in cubic and tetragonal phases

    Energy Technology Data Exchange (ETDEWEB)

    Deluque Toro, C.E., E-mail: deluquetoro@gmail.com [Grupo de Nuevos Materiales, Universidad Popular del Cesar, Valledupar (Colombia); Rodríguez M, Jairo Arbey [Grupo de Estudios de Materiales—GEMA, Departamento de Física, Universidad Nacional de Colombia, AA 5997 Bogotá DC (Colombia); Landínez Téllez, D.A. [Grupo de Física de Nuevos Materiales, Departamento de Física, Universidad Nacional de Colombia, AA 5997 Bogotá DC (Colombia); Moreno Salazar, N.O. [Departamento de Física, Universidade Federal de Sergipe (Brazil); Roa-Rojas, J. [Grupo de Física de Nuevos Materiales, Departamento de Física, Universidad Nacional de Colombia, AA 5997 Bogotá DC (Colombia)

    2014-12-15

    The Ba{sub 2}YTaO{sub 6} double perovskite presents a transition from cubic (Fm−3m) to tetragonal structure (I4/m) at high temperature. In this work, we present a detailed study of the structural and electronic properties of the double perovskite Ba{sub 2}YTaO{sub 6} in space group Fm−3m and I4/m. Calculations were made with the Full-Potential Linear Augmented Plane Wave method (FP-LAPW) within the framework of the Density Functional Theory (DFT) with exchange and correlation effects in the Generalized Gradient (GGA) and Local Density (LDA) approximations. From the minimization of energy as a function of volume and the fitting of the Murnaghan equation some structural characteristics were determined as, for example, total energy, lattice parameter (a=8.50 Å in cubic phase and a=5.985 Å and c=8.576 Å in tetragonal), bulk modulus (135.6 GPa in cubic phase and 134.1 GPa in tetragonal phase) and its derivative. The study of the electronic characteristics was performed from the analysis of the electronic density of states (DOS). We find a non-metallic behavior for this with a direct band gap of approximately 3.5 eV and we found that the Ba{sub 2}YTaO{sub 6} (I4/m) phase is the most stable one. {sup ©} 2013 Elsevier Science. All rights reserved.

  14. Double-slit experiment in momentum space

    Science.gov (United States)

    Ivanov, I. P.; Seipt, D.; Surzhykov, A.; Fritzsche, S.

    2016-08-01

    Young's classic double-slit experiment demonstrates the reality of interference when waves and particles travel simultaneously along two different spatial paths. Here, we propose a double-slit experiment in momentum space, realized in the free-space elastic scattering of vortex electrons. We show that this process proceeds along two paths in momentum space, which are well localized and well separated from each other. For such vortex beams, the (plane-wave) amplitudes along the two paths acquire adjustable phase shifts and produce interference fringes in the final angular distribution. We argue that this experiment can be realized with the present-day technology. We show that it gives experimental access to the Coulomb phase, a quantity which plays an important role in all charged particle scattering but which usual scattering experiments are insensitive to.

  15. Stepwise integral scaling method for severe accident analysis and its application to corium dispersion in direct containment heating

    International Nuclear Information System (INIS)

    Ishii, M.; Zhang, G.; No, H. C.; Eltwila, F.

    1994-01-01

    Accident sequences which lead to severe core damage and to possible radioactive fission products into the environment have a very low probability. However, the interest in this area increased significantly due to the occurrence of the small break loss-of-coolant accident at TMI-2 which led to partial core damage, and of the Chernobyl accident in the former USSR which led to extensive core disassembly and significant release of fission products over several countries. In particular, the latter accident raised the international concern over the potential consequences of severe accidents in nuclear reactor systems. One of the significant shortcomings in the analyses of severe accidents is the lack of well-established and reliable scaling criteria for various multiphase flow phenomena. However, the scaling criteria are essential to the severe accident, because the full scale tests are basically impossible to perform. They are required for (1) designing scaled down or simulation experiments, (2) evaluating data and extrapolating the data to prototypic conditions, and (3) developing correctly scaled physical models and correlations. In view of this, a new scaling method is developed for the analysis of severe accidents. Its approach is quite different from the conventional methods. In order to demonstrate its applicability, this new stepwise integral scaling method has been applied to the analysis of the corium dispersion problem in the direct containment heating. ((orig.))

  16. Measurements of the spin-orbit interaction and Landé g factor in a pure-phase InAs nanowire double quantum dot in the Pauli spin-blockade regime

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiyin; Huang, Shaoyun, E-mail: hqxu@pku.edu.cn, E-mail: syhuang@pku.edu.cn; Lei, Zijin [Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871 (China); Pan, Dong; Zhao, Jianhua [State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Xu, H. Q., E-mail: hqxu@pku.edu.cn, E-mail: syhuang@pku.edu.cn [Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871 (China); Division of Solid State Physics, Lund University, Box 118, S-22100 Lund (Sweden)

    2016-08-01

    We demonstrate direct measurements of the spin-orbit interaction and Landé g factors in a semiconductor nanowire double quantum dot. The device is made from a single-crystal pure-phase InAs nanowire on top of an array of finger gates on a Si/SiO{sub 2} substrate and the measurements are performed in the Pauli spin-blockade regime. It is found that the double quantum dot exhibits a large singlet-triplet energy splitting of Δ{sub ST} ∼ 2.3 meV, a strong spin-orbit interaction of Δ{sub SO} ∼ 140 μeV, and a large and strongly level-dependent Landé g factor of ∼12.5. These results imply that single-crystal pure-phase InAs nanowires are desired semiconductor nanostructures for applications in quantum information technologies.

  17. Structural phase transition and magnetic properties of double perovskites Ba2CaMO6 (M=W, Re, Os)

    International Nuclear Information System (INIS)

    Yamamura, Kazuhiro; Wakeshima, Makoto; Hinatsu, Yukio

    2006-01-01

    Structures and magnetic properties for double perovskites Ba 2 CaMO 6 (M=W, Re, Os) were investigated. Both Ba 2 CaReO 6 and Ba 2 CaWO 6 show structural phase transitions at low temperatures. For Ba 2 CaReO 6 , the second order transition from cubic Fm3-bar m to tetragonal I4/m has been observed near 120K. For Ba 2 CaWO 6 , the space group of the crystal structure is I4/m at 295K and the transition to monoclinic I2/m has been observed between 220K. Magnetic susceptibility measurements show that Ba 2 CaReO 6 (S=1/2) and Ba 2 CaOsO 6 (S=1) transform to an antiferromagnetic state below 15.4 and 51K, respectively. Anomalies corresponding to their structural phase transition and magnetic transition have been also observed through specific heat measurements

  18. LBNO-DEMO (WA105): a large demonstrator of the Liquid Argon double phase TPC

    CERN Document Server

    Trzaska, Wladyslaw Henryk

    2015-01-01

    LBNO-DEMO (WA105) is a large demonstrator of the double phase liquid argon TPC intended to develop and test the main elements of the GLACIER-based design for the purpose of scaling it up to the 10–50 kton size needed for Long Baseline Neutrino Oscillation studies. The crucial components of the design are: ultra-high argon purity in non-evacuable tank, long drifts, very high drift voltages, large area Micro Pattern Gas Detectors, and cold preamplifiers. The active volume of the demonstrator is 666 m3 (approximately 300t). WA105 is under construction at CERN and will be exposed to charged particle beams (0.5-20 GeV/c) in the North Area in 2018. The data will provide the necessary calibration of the detector performance and benchmark reconstruction algorithms. This project is a crucial milestone for the long baseline neutrino program, including projects like LBNO and DUNE.

  19. Double-well chimeras in 2D lattice of chaotic bistable elements

    Science.gov (United States)

    Shepelev, I. A.; Bukh, A. V.; Vadivasova, T. E.; Anishchenko, V. S.; Zakharova, A.

    2018-01-01

    We investigate spatio-temporal dynamics of a 2D ensemble of nonlocally coupled chaotic cubic maps in a bistability regime. In particular, we perform a detailed study on the transition ;coherence - incoherence; for varying coupling strength for a fixed interaction radius. For the 2D ensemble we show the appearance of amplitude and phase chimera states previously reported for 1D ensembles of nonlocally coupled chaotic systems. Moreover, we uncover a novel type of chimera state, double-well chimera, which occurs due to the interplay of the bistability of the local dynamics and the 2D ensemble structure. Additionally, we find double-well chimera behavior for steady states which we call double-well chimera death. A distinguishing feature of chimera patterns observed in the lattice is that they mainly combine clusters of different chimera types: phase, amplitude and double-well chimeras.

  20. New sacrificial material for ex-vessel core catcher

    Energy Technology Data Exchange (ETDEWEB)

    Komlev, Andrei A., E-mail: komlev@kth.se [Kungliga Tekniska Högskolan (KTH), AlbaNova University Centre, Nuclear Power Safety Division, Roslagstullsbacken 21, SE-106 91, Stockholm (Sweden); Almjashev, Vyacheslav I., E-mail: vac@mail.ru [A.P. Aleksandrov Research Institute of Technology, NITI, DSAR, Sosnovy Bor, 188540 (Russian Federation); Bechta, Sevostian V., E-mail: bechta@safety.sci.kth.se [Kungliga Tekniska Högskolan (KTH), AlbaNova University Centre, Roslagstullsbacken 21, SE-106 91, Stockholm (Sweden); Khabensky, Vladimir B., E-mail: vladimirkhabensky@gmail.com [A.P. Aleksandrov Research Institute of Technology, NITI, DSAR, Sosnovy Bor, 188540 (Russian Federation); Granovsky, Vladimir S., E-mail: gran@niti.ru [A.P. Aleksandrov Research Institute of Technology, NITI, DSAR, Sosnovy Bor, 188540 (Russian Federation); Gusarov, Victor V., E-mail: victor.v.gusarov@gmail.com [Ioffe Institute, 26 Polytekhnicheskaya Str., St. Petersburg, 194021 (Russian Federation)

    2015-12-15

    A new functional (sacrificial) material has been developed in the Fe{sub 2}O{sub 3}–SrO–Al{sub 2}O{sub 3}–CaO system based on strontium hexaferrite ceramic in concrete matrix. The method of producing SM has been advanced technologically; this technological effectiveness allows the SM to be used in ex-vessel core catchers with corium spreading as well as in crucible-type core catchers. Critical properties regarding the efficiency of SM in ex-vessel core catchers, such as porosity, pycnometric density, apparent density, solidus and liquidus temperatures, and water content have been measured. Suitable fractions of SrFe{sub 12}O{sub 19} and high alumina cement (HAC) were found in the SM based on thermodynamic analysis of the SM/corium interaction. The use of sacrificial steel as an additional heat adsorption component in the core catcher allowed us to increase the mass fraction range of SrFe{sub 12}O{sub 19} in the SM from 0.3−0.5 to 0.3–0.85. The activation temperature of the SM/corium interaction has been shown to correspond to the liquidus temperature of the local composition at the SM/corium interface. The calculated value of this temperature was 1716 °C. Analysis of phase transformations in the SrO–Fe{sub 2}O{sub 3} system revealed advantages of the SrFe{sub 12}O{sub 19}–based sacrificial material compared with the Fe{sub 2}O{sub 3}-contained material owing to the time proximity of SrFe{sub 12}O{sub 19} decomposition and corium interaction activation. - Highlights: • A sacrificial material (SM) was developed for ex-vessel core catcher. • Suitable proportions in the SrFe{sub 12}O{sub 19}–Al{sub 2}O{sub 3}·CaO–Fe system were determined. • Hydrogen release limitation was shown for ex-vessel corium retention with the SM. • Calculated temperature of the active initiation of corium/SM interaction is 1716 °C. • Functional properties of the SM were measured.

  1. Framework for evolution in double parton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Buffing, Maarten G.A.

    2017-07-15

    Double parton scattering (DPS) describes two colliding hadrons having interactions in the form of two hard processes, each initiated by a separate pair of partons. Just as for single parton scattering, the resummation of soft gluon exchange gives rise to a soft function, which is a necessary ingredient for obtaining rapidity evolution equations. For various regions of phase space, we derive the rapidity evolution and the scale evolution of double transverse momentum dependent parton distribution functions (DTMDs) as well as of the p{sub T}-resummed cross section for double Drell-Yan like processes. This contributes to a framework that can be used for phenomenological DPS studies including resummation.

  2. Phase sensitive distributed vibration sensing based on ultraweak fiber Bragg grating array using double-pulse

    Science.gov (United States)

    Liu, Tao; Wang, Feng; Zhang, Xuping; Zhang, Lin; Yuan, Quan; Liu, Yu; Yan, Zhijun

    2017-08-01

    A distributed vibration sensing technique using double-optical-pulse based on phase-sensitive optical time-domain reflectometry (ϕ-OTDR) and an ultraweak fiber Bragg grating (UWFBG) array is proposed for the first time. The single-mode sensing fiber is integrated with the UWFBG array that has uniform spatial interval and ultraweak reflectivity. The relatively high reflectivity of the UWFBG, compared with the Rayleigh scattering, gains a high signal-to-noise ratio for the signal, which can make the system achieve the maximum detectable frequency limited by the round-trip time of the probe pulse in fiber. A corresponding experimental ϕ-OTDR system with a 4.5 km sensing fiber integrated with the UWFBG array was setup for the evaluation of the system performance. Distributed vibration sensing is successfully realized with spatial resolution of 50 m. The sensing range of the vibration frequency can cover from 3 Hz to 9 kHz.

  3. First results from GERDA Phase II

    Science.gov (United States)

    Agostini, M.; Allardt, M.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Baudis, L.; Bauer, C.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; Di Marco, N.; Domula, A.; Doroshkevich, E.; Egorov, V.; Falkenstein, R.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Gooch, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hakenmüller, J.; Hegai, A.; Heisel, M.; Hemmer, S.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Janicskó Csáthy, J.; Jochum, J.; Junker, M.; Kazalov, V.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Kish, A.; Klimenko, A.; Kneißl, R.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Medinaceli, E.; Miloradovic, M.; Mingazheva, R.; Misiaszek, M.; Moseev, P.; Nemchenok, I.; Palioselitis, D.; Panas, K.; Pandola, L.; Pelczar, K.; Pullia, A.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salamida, F.; Salathe, M.; Schmitt, C.; Schneider, B.; Schönert, S.; Schreiner, J.; Schulz, O.; Schütz, A.-K.; Schwingenheuer, B.; Selivanenko, O.; Shevchik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Vanhoefer, L.; Vasenko, A. A.; Veresnikova, A.; von Sturm, K.; Wagner, V.; Wegmann, A.; Wester, T.; Wiesinger, C.; Wojcik, M.; Yanovich, E.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.

    2017-09-01

    Gerda is designed for a background-free search of 76Ge neutrinoless double-β decay, using bare Ge detectors in liquid Ar. The experiment was upgraded after the successful completion of Phase I to double the target mass and further reduce the background. Newly-designed Ge detectors were installed along with LAr scintillation sensors. Phase II of data-taking started in Dec 2015 with approximately 36 kg of Ge detectors and is currently ongoing. The first results based on 10.8 kg· yr of exposure are presented. The background goal of 10-3 cts/(keV· kg· yr) is achieved and a search for neutrinoless double-β decay is performed by combining Phase I and II data. No signal is found and a new limit is set at T1/20ν > 5.3 \\cdot {1025} yr (90% C.L.).

  4. Synthesis of Zn–Fe layered double hydroxides via an oxidation process and structural analysis of products

    Energy Technology Data Exchange (ETDEWEB)

    Morimoto, Kazuya, E-mail: kazuya.morimoto@aist.go.jp [Institute for Geo-Resources and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567 (Japan); Tamura, Kenji [Environmental Remediation Materials Unit, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Anraku, Sohtaro [Graduate School of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628 (Japan); Sato, Tsutomu [Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628 (Japan); Suzuki, Masaya [Institute for Geo-Resources and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567 (Japan); Yamada, Hirohisa [Environmental Remediation Materials Unit, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2015-08-15

    The synthesis of Zn–Fe(III) layered double hydroxides was attempted, employing different pathways using either Fe(II) or Fe(III) species together with Zn as the initial reagents. The product derived from the synthesis employing Fe(II) was found to transition to a Zn–Fe(III) layered double hydroxides phase following oxidation process. In contrast, the product obtained with Fe(III) did not contain a layered double hydroxides phase, but rather consisted of simonkolleite and hydrous ferric oxide. It was determined that the valency of the Fe reagent used in the initial synthesis affected the generation of the layered double hydroxides phase. Fe(II) species have ionic radii and electronegativities similar to those of Zn, and therefore are more likely to form trioctahedral hydroxide layers with Zn species. - Graphical abstract: The synthesis of Zn–Fe(III) layered double hydroxides was attempted, employing different pathways using either Fe(II) or Fe(III) species together with Zn as the initial reagents. - Highlights: • Iron valency affected the generation of Zn–Fe layered double hydroxides. • Zn–Fe layered double hydroxides were successfully synthesized using Fe(II). • Fe(II) species were likely to form trioctahedral hydroxide layers with Zn species.

  5. Lamb wave band gaps in one-dimensional radial phononic crystal plates with periodic double-sided corrugations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yinggang [School of Mechanical Engineering and State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, 710049 (China); School of Transportation, Wuhan University of Technology, Wuhan 430070 (China); Chen, Tianning [School of Mechanical Engineering and State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, 710049 (China); Wang, Xiaopeng, E-mail: xpwang@mail.xjtu.edu.cn [School of Mechanical Engineering and State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, 710049 (China); Li, Suobin [School of Mechanical Engineering and State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, 710049 (China)

    2015-11-01

    In this paper, we present the theoretical investigation of Lamb wave propagation in one-dimensional radial phononic crystal (RPC) plates with periodic double-sided corrugations. The dispersion relations, the power transmission spectra, and the displacement fields of the eigenmodes are studied by using the finite element method based on two-dimensional axial symmetry models in cylindrical coordinates. Numerical results show that the proposed RPC plates with periodic double-sided corrugations can yield several band gaps with a variable bandwidth for Lamb waves. The formation mechanism of band gaps in the double-sided RPC plates is attributed to the coupling between the Lamb modes and the in-phase and out-phases resonant eigenmodes of the double-sided corrugations. We investigate the evolution of band gaps in the double-sided RPC plates with the corrugation heights on both sides arranged from an asymmetrical distribution to a symmetrical distribution gradually. Significantly, with the introduction of symmetric double-sided corrugations, the antisymmetric Lamb mode is suppressed by the in-phase resonant eigenmodes of the double-sided corrugations, resulting in the disappearance of the lowest band gap. Furthermore, the effects of the geometrical parameters on the band gaps are further explored numerically.

  6. Thermal science under extreme conditions. Proceedings of the annual congress of the French Society of Thermal science - SFT 2012, 29 May-1 June, Bordeaux-Talence

    International Nuclear Information System (INIS)

    Gendrhi, Philippe; Perrin, Bernard; Journeau, Christophe; MOST, Jean-Michel; Nicolai, Philippe

    2012-06-01

    This publication proposes the contributions made during plenary sessions, and those made on various themes (Multi-physical couplings combustion; Contacts and interfaces; Natural, hybrid and forced convection, Energy and the environment; High temperatures and high flows; Metrology and identification; Micro- and nano-thermal science; Radiation; Control of systems and thermal process; System thermal science; Life thermal science; Transfer in multi-phase media; Transfer in porous media). Among the plenary session conferences some authors more particularly addressed the following issues: Thermal science at the heart of thermonuclear fusion (presentation of thermonuclear fusion by magnetic confinement); Thermal science of severe accidents of nuclear reactors (study of the thermal science of corium-water interaction which could result in a thermal detonation, study of corium baths at the vessel bottom or in interaction with the vessel well concrete, proposition of technological solutions for corium recovery); Fusion by inertial confinement and associated energy exchanges (case of inertial confinement by power lasers, presentation of needed conditions to obtain an energetic gain, of different energy and heat transfers under extreme conditions)

  7. Heat removal capability of core-catcher with inclined cooling channels

    International Nuclear Information System (INIS)

    Suzuki, Y.; Tahara, M.; Kurita, T.; Hamazaki, R.; Morooka, S.

    2009-01-01

    A core-catcher is one of the mitigation systems that provide functions of molten corium cooling and stabilization during a severe accident. Toshiba has been developing a compact core-catcher to be placed at the lower drywell floor in the containment vessel for the next generation BWR as well as near term ABWR. This paper presents the evaluation of heat removal capability of the core-catcher with inclined cooling channels, our verification status and plan. The heat removal capability of the core-catcher is analyzed by using the newly developed two-phase flow analysis code which incorporates drift flux parameters for inclined channels and the CHF correlation obtained from SULTAN tests. Effects of geometrical parameters such as the inclination and the gap size of the cooling channel on the heat removal capability are also evaluated. These results show that the core-catcher has sufficient capability to cool the molten corium during a severe accident. Based on the analysis, it has been shown that the core-catcher has an efficient capability of heat removal to cool the molten corium. (author)

  8. Limiting effects in double EEX beamline

    Science.gov (United States)

    Ha, G.; Power, J. G.; Conde, M.; Doran, D. S.; Gai, W.

    2017-07-01

    The double emittance exchange (EEX) beamline is suggested to overcome the large horizontal emittance and transverse jitter issues associated with the single EEX beamline while preserving its powerful phase-space manipulation capability. However, the double EEX beamline also has potential limitations due to coherent synchrotron radiation (CSR) and transverse jitter. The former limitation arises because double EEX uses twice as many bending magnets as single EEX which means stronger CSR effects degrading the beam quality. The latter limitation arises because a longitudinal jitter in front of the first EEX beamline is converted into a transverse jitter in the middle section (between the EEX beamlines) which can cause beam loss or beam degradation. In this paper, we numerically explore the effects of these two limitations on the emittance and beam transport.

  9. Limiting effects in double EEX beamline

    International Nuclear Information System (INIS)

    Ha, G; Power, J G; Conde, M; Doran, D S; Gai, W

    2017-01-01

    The double emittance exchange (EEX) beamline is suggested to overcome the large horizontal emittance and transverse jitter issues associated with the single EEX beamline while preserving its powerful phase-space manipulation capability. However, the double EEX beamline also has potential limitations due to coherent synchrotron radiation (CSR) and transverse jitter. The former limitation arises because double EEX uses twice as many bending magnets as single EEX which means stronger CSR effects degrading the beam quality. The latter limitation arises because a longitudinal jitter in front of the first EEX beamline is converted into a transverse jitter in the middle section (between the EEX beamlines) which can cause beam loss or beam degradation. In this paper, we numerically explore the effects of these two limitations on the emittance and beam transport. (paper)

  10. Contribution of prototypic material tests on the Plinius platform to the study of nuclear reactor severe accident; Contribution des essais en materiaux prototypiques sur la plate-forme Plinius a l'etude des accidents graves de reacteurs nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Journeau, Ch

    2008-01-15

    The PLINIUS experimental platform at CEA Cadarache is dedicated to the experimental study of nuclear reactor severe accidents thanks to experiments between 2000 and 3500 K with prototypic corium. Corium is the mixture that would be formed by an hypothetical core melting and its mixing with structural materials. Prototypical corium has the same chemical composition as the corium corresponding to a given accident scenario but has a different isotopic composition (use of depleted uranium,...). Research programs and test series have been performed to study corium thermophysical properties, fission product behaviour, corium spreading, solidification and interaction with concrete as well as its coolability. It was the frame of research training of many students and was realized within national, European and international collaborations. (author)

  11. Contribution of prototypic material tests on the Plinius platform to the study of nuclear reactor severe accident

    International Nuclear Information System (INIS)

    Journeau, Ch.

    2008-01-01

    The PLINIUS experimental platform at CEA Cadarache is dedicated to the experimental study of nuclear reactor severe accidents thanks to experiments between 2000 and 3500 K with prototypic corium. Corium is the mixture that would be formed by an hypothetical core melting and its mixing with structural materials. Prototypical corium has the same chemical composition as the corium corresponding to a given accident scenario but has a different isotopic composition (use of depleted uranium,...). Research programs and test series have been performed to study corium thermophysical properties, fission product behaviour, corium spreading, solidification and interaction with concrete as well as its coolability. It was the frame of research training of many students and was realized within national, European and international collaborations. (author)

  12. WDM Phase-Modulated Millimeter-Wave Fiber Systems

    DEFF Research Database (Denmark)

    Yu, Xianbin; Prince, Kamau; Gibbon, Timothy Braidwood

    2012-01-01

    This chapter presents a computer simulation case study of two typical WDM phase-modulated millimeter-wave systems. The phase-modulated 60 GHz fiber multi-channel transmission systems employ single sideband (SSB) and double sideband subcarrier modulation (DSB-SC) schemes and present one of the lat......This chapter presents a computer simulation case study of two typical WDM phase-modulated millimeter-wave systems. The phase-modulated 60 GHz fiber multi-channel transmission systems employ single sideband (SSB) and double sideband subcarrier modulation (DSB-SC) schemes and present one...... of the latest research efforts in the rapidly emerging Radio-over-Fiber (RoF) application space for in-house access networks....

  13. Predictions for the Majorana CP violation phases in the neutrino mixing matrix and neutrinoless double beta decay

    Science.gov (United States)

    Girardi, I.; Petcov, S. T.; Titov, A. V.

    2016-10-01

    We obtain predictions for the Majorana phases α21 / 2 and α31 / 2 of the 3 × 3 unitary neutrino mixing matrix U = Ue† Uν, Ue and Uν being the 3 × 3 unitary matrices resulting from the diagonalisation of the charged lepton and neutrino Majorana mass matrices, respectively. We focus on forms of Ue and Uν permitting to express α21 / 2 and α31 / 2 in terms of the Dirac phase δ and the three neutrino mixing angles of the standard parametrisation of U, and the angles and the two Majorana-like phases ξ21 / 2 and ξ31 / 2 present, in general, in Uν. The concrete forms of Uν considered are fixed by, or associated with, symmetries (tri-bimaximal, bimaximal, etc.), so that the angles in Uν are fixed. For each of these forms and forms of Ue that allow to reproduce the measured values of the three neutrino mixing angles θ12, θ23 and θ13, we derive predictions for phase differences (α21 / 2 -ξ21 / 2), (α31 / 2 -ξ31 / 2), etc., which are completely determined by the values of the mixing angles. We show that the requirement of generalised CP invariance of the neutrino Majorana mass term implies ξ21 = 0 or π and ξ31 = 0 or π. For these values of ξ21 and ξ31 and the best fit values of θ12, θ23 and θ13, we present predictions for the effective Majorana mass in neutrinoless double beta decay for both neutrino mass spectra with normal and inverted ordering.

  14. Manufacturing aspects of the ATLAS barrel toroid double pancakes

    CERN Document Server

    Drago, G; Gagliardi, P; Laurenti, A; Marabotto, R; Penco, R

    2002-01-01

    In 1999 INFN (Istituto Nazionale di Fisica Nucleare) ordered to ANSALDO the manufacturing of 16 double pancakes for the ATLAS BARREL TOROID. In July 2001 four Double Pancakes have already been completed and shipped to the integration site. In this paper the main aspects of the manufacturing of the largest superconducting coils ever built (5*25 m) are described. The main phases of the manufacturing procedure are reviewed starting from the conductor preparation to the VPI impregnation, including references to the materials used as well as to the relevant customer's requirements. In particular the special winding form and the winding technique are treated. For each phase the most critical aspects and the relevant solutions are pointed out. Particular details about the technical solutions adopted for the impregnation and curing of the Double Pancake, which could not be performed inside an autoclave due to the huge dimension of the coil itself, are reported. Finally the methods used for the dimensional and electri...

  15. CFD approach to modeling of core-concrete interaction

    International Nuclear Information System (INIS)

    Vladimir V Chudanov; Anna E Aksenova; Valerii A Pervichko

    2005-01-01

    Full text of publication follows: A large attention is given to research behavior of concrete structures at high mechanical and thermal loadings, which those suffer at the severe accidents on Nuclear Power Plants with core melting and falling of the molten corium mass into reactor shaft. There are enough programs for analysis of heat and mass transfer processes at interaction of the molten corium with concrete. Most known among them CORCON and WECHSL, which were developed more than twenty years ago, allow considering a quasi-stationary phase decomposition of concrete and the some transition regimes. In opposing to the mentioned codes a new more generalized mathematical model and software are developed for modeling of a wide range of the heat and mass transfer processes under study of the molten core-concrete interaction. The developed mathematical model is based on the Navier-Stokes equations with variable properties with taking into account of a density jump under melting of concrete together with a heat transfer equation. The offered numerical technique is based on modern algorithms with small scheme diffusion, whose discrete approximations are constructed with use of finite-volume methods and the fully staggered grids. The developed software corresponds to modern level of development of computers and takes into account all phenomenology, used by mentioned codes, and allows to simulate the such phenomena and processes as: multidimensional heat transfer in concrete for modeling of transients for an intermediate thermal flux to concrete; direct erosion of concrete at a quasi-stationary regime of interaction with molten fuel masses; heat and mass transfer in corium and convective intermixing in a melt of corium with taking into account of its stratification on two layers of the metal and oxide components and heat transfer by radiation in a cavity of the reactor shaft; change physical properties of corium at concrete decomposition and release in corium of its

  16. Once daily controlled-release pregabalin in the treatment of patients with fibromyalgia: a phase III, double-blind, randomized withdrawal, placebo-controlled study.

    Science.gov (United States)

    Arnold, Lesley M; Arsenault, Pierre; Huffman, Cynthia; Patrick, Jeffrey L; Messig, Michael; Chew, Marci L; Sanin, Luis; Scavone, Joseph M; Pauer, Lynne; Clair, Andrew G

    2014-10-01

    Safety and efficacy of a once daily controlled-released (CR) formulation of pregabalin was evaluated in patients with fibromyalgia using a placebo-controlled, randomized withdrawal design. This multicenter study included 6 week single-blind pregabalin CR treatment followed by 13 week double-blind treatment with placebo or pregabalin CR. The starting dose of 165 mg/day was escalated during the first 3 weeks, up to 495 mg/day based on efficacy and tolerability. Patients with ≥50% reduction in average daily pain score at the end of the single-blind phase were randomized to continue pregabalin CR at the optimized dose (330-495 mg/day) or to placebo. The primary endpoint was time to loss of therapeutic response (LTR), defined as treatment' (Benefit, Satisfaction, and Willingness to Continue Scale) in the pregabalin CR group; no other secondary endpoints were statistically significant. Most AEs were mild to moderate in severity (most frequent: dizziness, somnolence). The percentage of pregabalin CR patients discontinuing because of AEs was 12.2% and 4.8% in the single-blind and double-blind phases, respectively (placebo, 0%). Time to LTR was significantly longer with pregabalin CR versus placebo in fibromyalgia patients who initially showed improvement with pregabalin CR, indicating maintenance of response. Pregabalin CR was well tolerated in most patients. Generalizability may be limited by study duration and selective population.

  17. Glassy dielectric response in Tb2NiMnO6 double perovskite with similarities to a Griffiths phase

    Science.gov (United States)

    Nhalil, Hariharan; Nair, Harikrishnan S.; Bhat, H. L.; Elizabeth, Suja

    2013-12-01

    Results of frequency-dependent and temperature-dependent dielectric measurements performed on the double-perovskite Tb2NiMnO6 are presented. The real (\\epsilon_1 (f,T)) and imaginary (\\epsilon_2 (f,T)) parts of dielectric permittivity show three plateaus suggesting dielectric relaxation originating from the bulk, grain boundaries and the sample-electrode interfaces, respectively. The \\epsilon_1 (f,T) and \\epsilon_2 (f,T) are successfully simulated by a RC circuit model. The complex plane of impedance, Z'\\text{-}Z'' , is simulated using a series network with a resistor R and a constant phase element. Through the analysis of \\epsilon (f,T) using the modified Debye model, two different relaxation time regimes separated by a characteristic temperature, T^* , are identified. The temperature variation of R and C corresponding to the bulk and the parameter α from modified Debye fit lend support to this hypothesis. Interestingly, the T^* compares with the Griffiths temperature for this compound observed in magnetic measurements. Though these results cannot be interpreted as magnetoelectric coupling, the relationship between lattice and magnetism is markedly clear. We assume that the observed features have their origin in the polar nanoregions which originate from the inherent cationic defect structure of double perovskites.

  18. Robust Deterministic Controlled Phase-Flip Gate and Controlled-Not Gate Based on Atomic Ensembles Embedded in Double-Sided Optical Cavities

    Science.gov (United States)

    Liu, A.-Peng; Cheng, Liu-Yong; Guo, Qi; Zhang, Shou

    2018-02-01

    We first propose a scheme for controlled phase-flip gate between a flying photon qubit and the collective spin wave (magnon) of an atomic ensemble assisted by double-sided cavity quantum systems. Then we propose a deterministic controlled-not gate on magnon qubits with parity-check building blocks. Both the gates can be accomplished with 100% success probability in principle. Atomic ensemble is employed so that light-matter coupling is remarkably improved by collective enhancement. We assess the performance of the gates and the results show that they can be faithfully constituted with current experimental techniques.

  19. Functional Analysis for Double Shell Tank (DST) Subsystems

    International Nuclear Information System (INIS)

    SMITH, D.F.

    2000-01-01

    This functional analysis identifies the hierarchy and describes the subsystem functions that support the Double-Shell Tank (DST) System described in HNF-SD-WM-TRD-007, System Specification for the Double-Shell Tank System. Because of the uncertainty associated with the need for upgrades of the existing catch tanks supporting the Waste Feed Delivery (WFD) mission, catch tank functions are not addressed in this document. The functions identified herein are applicable to the Phase 1 WFD mission only

  20. Double tracks test site characterization report

    International Nuclear Information System (INIS)

    1996-05-01

    This report presents the results of site characterization activities performed at the Double Tracks Test Site, located on Range 71 North, of the Nellis Air Force Range (NAFR) in southern Nevada. Site characterization activities included reviewing historical data from the Double Tracks experiment, previous site investigation efforts, and recent site characterization data. The most recent site characterization activities were conducted in support of an interim corrective action to remediate the Double Tracks Test Site to an acceptable risk to human health and the environment. Site characterization was performed using a phased approach. First, previously collected data and historical records sere compiled and reviewed. Generalized scopes of work were then prepared to fill known data gaps. Field activities were conducted and the collected data were then reviewed to determine whether data gaps were filled and whether other areas needed to be investigated. Additional field efforts were then conducted, as required, to adequately characterize the site. Characterization of the Double Tracks Test Site was conducted in accordance with the US Department of Energy's (DOE) Streamlined Approach for Environmental Restoration (SAFER)

  1. Experimental study on in-vessel debris coolability during severe accident

    International Nuclear Information System (INIS)

    Kim, S. B.; Park, R. J.; Kim, H. D.

    2002-05-01

    A research program, called SONATA-IV(Simulation of Naturally Arrested Thermal Attack In-Vessel), has been performed to verify the gap cooling mechanism of corium in the lower plenum, and to develop management and mitigation strategies under severe accident conditions. For the proof-of-principles experiment, the LAVA(Lower-plenum Arrested Vessel Attack) experiments have been performed to gather proof of gap formation and to evaluate the gap effect on in-vessel cooling, using Al 2 O 3 /Fe (or Al 2 O 3 only) thermite melt as corium simulant. And also the CHFG(Critical Heat Flux in Gap) experiments have been performed to measure the critical power and to investigate the inherent cooling mechanism in the hemispherical narrow gap. In addition to the experiments, LILAC code was developed to analyze and predict the thermo-hydraulic phenomena of the corium relocated in the reactor lower plenum. It could be found from the LAVA and CHFG experimental results that continuous gap ranged from 1 to 5 mm was formed and that maximum heat removal capacity through a gap is a key factor in determining the potentials of the integrity of the vessel. After all the possibility of IVR(In-Vessel corium Retention) through gap cooling highly depends on the melt relocated into the lower plenum and the gap size. So, feasibility experiments have been performed for the assessment of improved IVR concepts using an internal engineered gap device and a dual strategy of In/Ex-vessel cooling using the LAVA facility. It is preliminarily concluded that these cooling measures lead to an enhanced cooling of the corium in the lower plenum of the reactor vessel. The additional studies will be performed to verify the quantitative heat removal capacity for these cooling measures in the 2nd phase of mid- and long term project period

  2. Force interaction and 3D pole movement in double poling.

    Science.gov (United States)

    Stöggl, T; Holmberg, H-C

    2011-12-01

    The aim of this study was to analyze double poling using combined kinetic and 3D kinematic analysis at high skiing speeds as regards pole force components, pole angles and pole behavior during the poling and swing phase. The hypothesis was that a horizontal pole force is more predictive for maximal skiing speed (V(max)) than the resultant pole force. Sixteen elite skiers performed a double-poling V(max) test while treadmill roller skiing. Pole forces and 3D kinematics of pole movement at a speed of 30 km/h were analyzed and related to V(max). The duration of the "preparation phase" showed the strongest relationship with V(max) (r=0.87, Pmax) compared with the resultant pole force. Impact force was not related to V(max). At high skiing speeds, skiers should aim to combine high pole forces with appropriate timing of pole forces and appropriate pole and body positions during the swing and poling phase. The emphasis in training should be on the development of specific strength capacities for pole force production and the utilization of these capacities in double-poling training sessions. © 2011 John Wiley & Sons A/S.

  3. Food-grade double emulsions as effective fat replacers in meat systems

    NARCIS (Netherlands)

    Eisinaite, Viktorija; Juraite, Dovile; Schroën, Karin; Leskauskaite, Daiva

    2017-01-01

    Double emulsions were used to not only replace 7 and 11% of animal fat in meat products, but also as a way to enhance the product colour. The coarse emulsion containing native beetroot juice as inner water phase, sunflower oil as oil phase and 0.5% whey protein isolate as outer water phase was

  4. Three-dimensional numerical study on the mechanism of anisotropic MCCI by improved MPS method

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xin, E-mail: lixin@fuji.waseda.jp; Yamaji, Akifumi

    2017-04-01

    Highlights: • 3-D simulation of a MCCI test was presented with improved moving particle method. • The influence of thermally stable silica aggregates on MCCI has been investigated. • The mechanisms for isotropic/anisotropic ablation have been clarified mechanistically. - Abstract: In two-dimensional (2-D) molten corium-concrete interaction (MCCI) experiments with prototypic corium and siliceous concrete, the more pronounced lateral concrete erosion behavior than that in the axial direction, namely anisotropic ablation, has been a research interest. However, the knowledge of the mechanism on this anisotropic ablation behavior, which is important for severe accident analysis and management, is still limited. In this paper, 3-D simulation of 2-D MCCI experiment VULCANO VB-U7 has been carried out with improved Moving Particle Semi-implicit (MPS) method. Heat conduction, phase change, and corium viscosity models have been developed and incorporated into MPS code MPS-SW-MAIN-Ver.2.0 for current study. The influence of thermally stable silica aggregates has been investigated by setting up different simulation cases for analysis. The simulation results suggested reasonable models and assumptions to be considered in order to achieve best estimation of MCCI with prototypic oxidic corium and siliceous concrete. The simulation results also indicated that silica aggregates can contribute to anisotropic ablation. The mechanisms for anisotropic ablation pattern in siliceous concrete as well as isotropic ablation pattern in limestone-rich concrete have been clarified from a mechanistic perspective.

  5. A comparative analysis of reactor lower head debris cooling models employed in the existing severe accident analysis codes

    International Nuclear Information System (INIS)

    Ahn, K.I.; Kim, D.H.; Kim, S.B.; Kim, H.D.

    1998-08-01

    MELCOR and MAAP4 are the representative severe accident analysis codes which have been developed for the integral analysis of the phenomenological reactor lower head corium cooling behavior. Main objectives of the present study is to identify merits and disadvantages of each relevant model through the comparative analysis of the lower plenum corium cooling models employed in these two codes. The final results will be utilized for the development of LILAC phenomenological models and for the continuous improvement of the existing MELCOR reactor lower head models, which are currently being performed at the KAERI. For these purposes, first, nine reference models are selected featuring the lower head corium behavior based on the existing experimental evidences and related models. Then main features of the selected models have been critically analyzed, and finally merits and disadvantages of each corresponding model have been summarized in the view point of realistic corium behavior and reasonable modeling. Being on these evidences, summarized and presented the potential improvements for developing more advanced models. The present study has been focused on the qualitative comparison of each model and so more detailed quantitative analysis is strongly required to obtain the final conclusions for their merits and disadvantages. In addition, in order to compensate the limitations of the current model, required further studies relating closely the detailed mechanistic models with the molten material movement and heat transfer based on phase-change in the porous medium, to the existing simple models. (author). 36 refs

  6. Study of diluting and absorber materials to control the reactivity during a postulated core meltdown accident in generation IV reactors

    International Nuclear Information System (INIS)

    Plevacova, Kamila

    2010-01-01

    In order to limit the consequences of a hypothetical core meltdown accident in Generation IV Sodium Fast Reactors, absorber materials in or near the core, such as boron carbide B 4 C, and diluting materials in the core catcher will be used to prevent recriticality within the mixture of molten oxide fuel and molten structures called corium. The aim of the PhD thesis was to select materials of both types and to understand their behaviour during their interaction with corium, from chemical and thermodynamic points of view. Concerning B 4 C, thermodynamic calculations and experiments agree with the formation of two immiscible phases at high temperature in the B 4 C - UO 2 system: one oxide and one boride. This separation of phases can reduce the efficiency of the neutrons absorption inside the molten fuel contained in the oxide phase. Moreover, volatilization of a part of the boron element can occur. According to these results, the necessary quantity of B 4 C to be introduced should be reconsidered for postulated severe accident sequence. Other solution could be the use of Eu 2 O 3 or HfO 2 as absorber material. These oxides form a solid solution with the oxide fuel. Concerning the diluting materials, mixed oxides Al 2 O 3 - HfO 2 and Al 2 O 3 - Eu 2 O 3 were preselected. These systems being completely unknown to date at high temperature in association with UO 2 , first points on the corresponding ternary phase diagrams were researched. Contrary to Al 2 O 3 - Eu 2 O 3 - UO 2 system, the Al 2 O 3 - HfO 2 - UO 2 mixture presents only one eutectic and thus only one solidification path which makes easier forecasting the behaviour of corium in the core catcher. (author)

  7. Study of diluting and absorber materials to control reactivity during a postulated core melt down accident in Generation IV reactors

    International Nuclear Information System (INIS)

    Plevacova, K.

    2010-01-01

    In order to limit the consequences of a hypothetical core meltdown accident in Generation IV Sodium Fast Reactors, absorber materials in or near the core, such as boron carbide B 4 C, and diluting materials in the core catcher will be used to prevent recriticality within the mixture of molten oxide fuel and molten structures called corium. The aim of the PhD thesis was to select materials of both types and to understand their behaviour during their interaction with corium, from chemical and thermodynamic point of view. Concerning B 4 C, thermodynamic calculations and experiments agree with the formation of two immiscible phases at high temperature in the B 4 C - UO 2 system: one oxide and one boride. This separation of phases can reduce the efficiency of the neutrons absorption inside the molten fuel contained in the oxide phase. Moreover, a volatilization of a part of the boron element can occur. According to these results, the necessary quantity of B 4 C to be introduced should be reconsidered for postulated severe accident sequence. Other solution could be the use of Eu 2 O 3 or HfO 2 as absorber material. These oxides form a solid solution with the oxide fuel. Concerning the diluting materials, mixed oxides Al 2 O 3 - HfO 2 and Al 2 O 3 - Eu 2 O 3 were preselected. These systems being completely unknown to date at high temperature in association with UO 2 , first points on the corresponding ternary phase diagrams were researched. Contrary to Al 2 O 3 - Eu 2 O 3 - UO 2 system, the Al 2 O 3 - HfO 2 - UO 2 mixture presents only one eutectic and thus only one solidification path which makes easier forecasting the behaviour of corium in the core catcher. (author) [fr

  8. Study on dynamic deformation synchronized measurement technology of double-layer liquid surfaces

    Science.gov (United States)

    Tang, Huiying; Dong, Huimin; Liu, Zhanwei

    2017-11-01

    Accurate measurement of the dynamic deformation of double-layer liquid surfaces plays an important role in many fields, such as fluid mechanics, biomechanics, petrochemical industry and aerospace engineering. It is difficult to measure dynamic deformation of double-layer liquid surfaces synchronously for traditional methods. In this paper, a novel and effective method for full-field static and dynamic deformation measurement of double-layer liquid surfaces has been developed, that is wavefront distortion of double-wavelength transmission light with geometric phase analysis (GPA) method. Double wavelength lattice patterns used here are produced by two techniques, one is by double wavelength laser, and the other is by liquid crystal display (LCD). The techniques combine the characteristics such as high transparency, low reflectivity and fluidity of liquid. Two color lattice patterns produced by laser and LCD were adjusted at a certain angle through the tested double-layer liquid surfaces simultaneously. On the basis of the refractive indexes difference of two transmitted lights, the double-layer liquid surfaces were decoupled with GPA method. Combined with the derived relationship between phase variation of transmission-lattice patterns and out-of plane heights of two surfaces, as well as considering the height curves of the liquid level, the double-layer liquid surfaces can be reconstructed successfully. Compared with the traditional measurement method, the developed method not only has the common advantages of the optical measurement methods, such as high-precision, full-field and non-contact, but also simple, low cost and easy to set up.

  9. CSNI/NEA Rasplav seminar 2000. Summary and conclusions

    International Nuclear Information System (INIS)

    2001-01-01

    The objective of the RASPLAV Project was to provide data on the behaviour of molten core materials on the RPV lower head under severe accident conditions, and to assess the possible physicochemical interactions between molten corium and the vessel wall. Data were also obtained to confirm heat transfer modelling for a large convective corium pool within the lower head. The project consisted of the following components: - To provide data from large-scale integral experiments on the behaviour and interactions of prototypic core-melt materials within the lower head; - To perform small-scale corium experiments to measure the thermophysical properties (density, electrical and thermal conductivity, viscosity, etc.) required for performing and interpreting the integral (large-scale) tests; - To determine the uncertainties introduced by using non-prototypic conditions and materials by means of the small-scale corium experiments; - To carry out the molten-salt experiments with the following objectives: - To study heat transfer processes in the melt; - To justify the choice of procedures for large-scale experiments, such as the heating method; To develop an understanding of relevant phenomena, such as crust formation, and non-eutectic materials behaviour; - To develop computer tools and models for analysis of results from the large-scale integral tests and the supporting small-scale experiments. During the first phase of the RASPLAV Project (1994-97) the large-scale experiments demonstrated clearly that behaviour of corium melts differed from that of simulant materials. Under certain conditions, the corium would separate into two layers that were enriched in zirconium or in uranium. The second phase of the RASPLAV Project started in July 1997 and concentrated on exploring the physical and chemical phenomena occurring in a convective molten pool. The effect of different corium compositions, the potential for and the effects of material stratification and the influence of

  10. CSNI/NEA RASPLAV Seminar 2000, 14-15 November 2000, Munich, Germany - Executive Summary

    International Nuclear Information System (INIS)

    Asmolov, V.; Behbahani, A.; Hache, G.; Nakamura, H.; Raj Sehgal, B.; Strizhov, V.; Trambauer, K.; Tuomisto, H.; Vitanza, C.

    2000-11-01

    The objective of the RASPLAV Project was to provide data on the behaviour of molten core materials on the RPV lower head under severe accident conditions, and to assess the possible physicochemical interactions between molten corium and the vessel wall. Data were also obtained to confirm heat transfer modelling for a large convective corium pool within the lower head. The project consisted of the following components: - To provide data from large-scale integral experiments on the behaviour and interactions of prototypic core-melt materials within the lower head; - To perform small-scale corium experiments to measure the thermo-physical properties (density, electrical and thermal conductivity, viscosity, etc.) required for performing and interpreting the integral (large-scale) tests; - To determine the uncertainties introduced by using non-prototypic conditions and materials by means of the small-scale corium experiments; - To carry out the molten-salt experiments with the following objectives: - To study heat transfer processes in the melt; - To justify the choice of procedures for large-scale experiments, such as the heating method; To develop an understanding of relevant phenomena, such as crust formation, and non-eutectic materials behaviour; - To develop computer tools and models for analysis of results from the large-scale integral tests and the supporting small-scale experiments. During the first phase of the RASPLAV Project (1994-97) the large-scale experiments demonstrated clearly that behaviour of corium melts differed from that of simulant materials. Under certain conditions, the corium would separate into two layers that were enriched in zirconium or in uranium. The second phase of the RASPLAV Project started in July 1997 and concentrated on exploring the physical and chemical phenomena occurring in a convective molten pool. The effect of different corium compositions, the potential for and the effects of material stratification and the influence of

  11. CSNI/NEA Rasplav seminar 2000. Summary and conclusions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-01-15

    The objective of the RASPLAV Project was to provide data on the behaviour of molten core materials on the RPV lower head under severe accident conditions, and to assess the possible physicochemical interactions between molten corium and the vessel wall. Data were also obtained to confirm heat transfer modelling for a large convective corium pool within the lower head. The project consisted of the following components: - To provide data from large-scale integral experiments on the behaviour and interactions of prototypic core-melt materials within the lower head; - To perform small-scale corium experiments to measure the thermophysical properties (density, electrical and thermal conductivity, viscosity, etc.) required for performing and interpreting the integral (large-scale) tests; - To determine the uncertainties introduced by using non-prototypic conditions and materials by means of the small-scale corium experiments; - To carry out the molten-salt experiments with the following objectives: - To study heat transfer processes in the melt; - To justify the choice of procedures for large-scale experiments, such as the heating method; To develop an understanding of relevant phenomena, such as crust formation, and non-eutectic materials behaviour; - To develop computer tools and models for analysis of results from the large-scale integral tests and the supporting small-scale experiments. During the first phase of the RASPLAV Project (1994-97) the large-scale experiments demonstrated clearly that behaviour of corium melts differed from that of simulant materials. Under certain conditions, the corium would separate into two layers that were enriched in zirconium or in uranium. The second phase of the RASPLAV Project started in July 1997 and concentrated on exploring the physical and chemical phenomena occurring in a convective molten pool. The effect of different corium compositions, the potential for and the effects of material stratification and the influence of

  12. Local Preparation and Evaluation of Double - antibody Liquid Phase Radioimmunoassay System for Detection of Human Testosterone

    International Nuclear Information System (INIS)

    Shafik, H.M.; Sallam, Kh.M.; Ebeid, N.H.; Elshaer, M.R.; Elshae, M.R.

    2016-01-01

    Preparation, evaluation and optimization of testosterone radioimmunoassay (RIA) system using liquid phase double antibody is considered to be the main objective. Three primary components were prepared and characterized to obtain valid and accurate system. These components were polyclonal testosterone antibody, the "1"2"5I-testosterone tracer and set of testosterone standards. The production of polyclonal testosterone antibody was undertaken by immunizing two groups of females white New-Zealand rabbits with testosterone-3-(O-carboxy methyloxime): BSA as immunogen through primary immunization and five boosters. Both R 1 and R 4 gave anti-serum has a high immuno reactivity. The preparation of "1"2"5I-testosterone tracer was carried out using three different conjugates (testosterone-3-TME, testosterone-3-histamine and testosterone-3-BSA) by electrophilic substitution mechanism using chloramine-T as oxidizing agent. Tracers were characterized in terms of radiochemical yield %, radiochemical purity %, specific activity and immuno reactivity. A set of testosterone standards were prepared using highly purified testosterone antigen. Optimization and validation tests of the local liquid phase RIA system were carried out. In conclusion, the results showed that, the local testosterone RIA system is sensitive, specific and accurate with significant cost reduction in comparison with commertial kit and extended use of the method for routine investigation of variety of diseases especially hypogonadism and associated male infertility

  13. Double layer mixed matrix membrane adsorbers improving capacity and safety hemodialysis

    Science.gov (United States)

    Saiful; Borneman, Z.; Wessling, M.

    2018-05-01

    Double layer mixed matrix membranes adsorbers have been developed for blood toxin removal by embedding activated carbon into cellulose acetate macroporous membranes. The membranes are prepared by phase inversion method via water vapor induced phase separation followed by an immersion precipitation step. Double layer MMM consisting of an active support and a separating layer. The active support layer consists of activated carbon particles embedded in macroporous cellulose acetate; the separating layer consists of particle free cellulose acetate. The double layer membrane possess an open and interconnected macroporous structure with a high loading of activated carbon available for blood toxins removal. The MMM AC has a swelling degree of 6.5 %, porosity of 53 % and clean water flux of 800 Lm-2h-1bar-1. The prepared membranes show a high dynamic Creatinine (Crt) removal during hemodilysis process. The Crt removal by adsorption contributes to amore than 83 % of the total removal. The double layer adsorptive membrane proves hemodialysis membrane can integrated with adsorption, in which blood toxins are removed in one step.

  14. The electric double layer put to work : thermal physics at electrochemical interfaces

    NARCIS (Netherlands)

    Janssen, M.A.

    2017-01-01

    Where charged electrode surfaces meet fluids that contain mobile ions, so-called electric double layers (EDLs) form to screen the electric surface charge by a diffuse cloud of counterionic charge in the fluid phase. This double layer has been studied for over a century and is of paramount importance

  15. Information verification cryptosystem using one-time keys based on double random phase encoding and public-key cryptography

    Science.gov (United States)

    Zhao, Tieyu; Ran, Qiwen; Yuan, Lin; Chi, Yingying; Ma, Jing

    2016-08-01

    A novel image encryption system based on double random phase encoding (DRPE) and RSA public-key algorithm is proposed. The main characteristic of the system is that each encryption process produces a new decryption key (even for the same plaintext), thus the encryption system conforms to the feature of the one-time pad (OTP) cryptography. The other characteristic of the system is the use of fingerprint key. Only with the rightful authorization will the true decryption be obtained, otherwise the decryption will result in noisy images. So the proposed system can be used to determine whether the ciphertext is falsified by attackers. In addition, the system conforms to the basic agreement of asymmetric cryptosystem (ACS) due to the combination with the RSA public-key algorithm. The simulation results show that the encryption scheme has high robustness against the existing attacks.

  16. Biometrics based key management of double random phase encoding scheme using error control codes

    Science.gov (United States)

    Saini, Nirmala; Sinha, Aloka

    2013-08-01

    In this paper, an optical security system has been proposed in which key of the double random phase encoding technique is linked to the biometrics of the user to make it user specific. The error in recognition due to the biometric variation is corrected by encoding the key using the BCH code. A user specific shuffling key is used to increase the separation between genuine and impostor Hamming distance distribution. This shuffling key is then further secured using the RSA public key encryption to enhance the security of the system. XOR operation is performed between the encoded key and the feature vector obtained from the biometrics. The RSA encoded shuffling key and the data obtained from the XOR operation are stored into a token. The main advantage of the present technique is that the key retrieval is possible only in the simultaneous presence of the token and the biometrics of the user which not only authenticates the presence of the original input but also secures the key of the system. Computational experiments showed the effectiveness of the proposed technique for key retrieval in the decryption process by using the live biometrics of the user.

  17. The SNO+ experiment for neutrinoless double-beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Lozza, Valentina; Krosigk, Belina von; Soerensen, Arnd; Zuber, Kai [Institut fuer Kern- und Teilchenphysik, Dresden (Germany)

    2015-07-01

    SNO+ is a large liquid scintillator based experiment that re-uses the Sudbury Neutrino Observatory detector. The detector, located 2 km underground in a mine near Sudbury, Canada, consists of a 12 m diameter acrylic vessel which will be filled with 780 tonnes of liquid scintillator. The main physics goal of SNO+ is to search for the neutrinoless double-beta (0n2b) decay of {sup 130}Te. During the double-beta phase, the liquid scintillator will be initially loaded with 0.3% natural tellurium (nearly 800 kg of {sup 130}Te). During this demonstration phase we anticipate that we will achieve a sensitivity in the region just above the inverted neutrino mass hierarchy. Recently the possibility to deploy up to 10 times more natural tellurium is being developed, by which SNO+ could explore, in the near future, deep into the parameter space for the inverted hierarchy. Designed as a general purpose neutrino experiment, SNO+ can additionally measure the reactor neutrino oscillations, geo-neutrinos in a geologically-interesting location, watch supernova neutrinos and measure low energy solar neutrinos. A first commissioning phase with the detector filled with water has started in autumn 2014, while full running with water will take place in 2015. Transition to the scintillator phase will start towards the end of 2015. The 0n2b decay phase is foreseen for the 2016.

  18. Frequency doubling in poled polymers using anomalous dispersion phase-matching

    Energy Technology Data Exchange (ETDEWEB)

    Kowalczyk, T.C.; Singer, K.D. [Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Physics; Cahill, P.A. [Sandia National Labs., Albuquerque, NM (United States)

    1995-10-01

    The authors report on a second harmonic generation in a poled polymer waveguide using anomalous dispersion phase-matching. Blue light ({lambda} = 407 nm) was produced by phase-matching the lowest order fundamental and harmonic modes over a distance of 32 {micro}m. The experimental conversion efficiency was {eta} = 1.2 {times} 10{sup {minus}4}, in agreement with theory. Additionally, they discuss a method of enhancing the conversion efficiency for second harmonic generation using anomalous dispersion phase-matching to optimize Cerenkov second harmonic generation. The modeling shows that a combination of phase-matching techniques creates larger conversion efficiencies and reduces critical fabrication requirements of the individual phase-matching techniques.

  19. Double beta decay: A theoretical overview

    International Nuclear Information System (INIS)

    Rosen, S.P.

    1988-01-01

    This paper reviews the theoretical possibility of double beta decay. The titles of the main sections of this paper are: Nuclear physics setting; Particle physics requirements; Kinematical features of the decay modes; Nuclear matrix elements; the Shell model and two-neutrino decay; Quasi-particle random phase approximation; and Future considerations. 18 refs., 7 tabs

  20. Double Shell Tank (DST) Transfer Piping Subsystem Specification

    International Nuclear Information System (INIS)

    GRAVES, C.E.

    2000-01-01

    This specification establishes the performance requirements and provides references to the requisite codes and standards to be applied during design of the Double-Shell Tank (DST) Transfer Piping Subsystem that supports the first phase of Waste Feed Delivery. This specification establishes the performance requirements and provides references to the requisite codes and standards to be applied during design of the Double-Shell Tank (DST) Transfer Piping Subsystem that supports the first phase of waste feed delivery. This subsystem transfers waste between transfer-associated structures (pits) and to the River Protection Project (RPP) Privatization Contractor Facility where it will be processed into an immobilized waste form. This specification is intended to be the basis for new projects/installations (W-521, etc.). This specification is not intended to retroactively affect previously established project design criteria without specific direction by the program

  1. In-vessel core melt retention by RPV external cooling for high power PWR. MAAP 4 analysis on a LBLOCA scenario without SI

    International Nuclear Information System (INIS)

    Cognet, C.; Gandrille, P.

    1999-01-01

    In-, ex-vessel reflooding or both simultaneously can be envisaged as Accident Management Measures to stop a Severe Accident (SA) in vessel. This paper addresses the possibility of in-vessel core melt retention by RPV external flooding for a high power PWR (4250 MWth). The reactor vessel is assumed to have no lower head penetration and thermal insulation is neglected. The effects of external cooling of high power density debris, where the margin for such a strategy is low, are investigated with the MAAP4 code. MAAP4 code is used to verify the system capability to flood the reactor pit and to predict simultaneously the corium relocation into the lower head with the thermal and mechanical response of the RPV in transient conditions. The corium pool cooling and holding in the RPV lower head is analysed. Attention is paid to the internal heat exchanges between corium components. This paper focuses particularly the heat transfer between oxidic and metallic phases as well as between the molten metallic phase and the RPV wall of utmost importance for challenging the RPV integrity in vicinity of the metallic phase. The metal segregation has a decisive influence upon the attack of the vessel wall due to a very strong peaking of the lateral flux ('focusing effect'). Thus, the dynamics of the formation of the metallic layer characterized by a growing inventory of steel, both from a partial vessel ablation and the degradation of internals steel structures by the radiative heat flux from the debris, is displayed. The analysed sequence is a surge line rupture near the hot leg (LBLOCA) leading to the fastest accident progression

  2. First results of neutrinoless double beta decay search with the GERmanium Detector Array "GERDA"

    Science.gov (United States)

    Janicskó Csáthy, József

    2014-06-01

    The study of neutrinoless double beta decay is the most powerful approach to the fundamental question if the neutrino is a Majorana particle, i.e. its own anti-particle. The observation of the lepton number violating neutrinoless double beta decay would establish the Majorana nature of the neutrino. Until now neutrinoless double beta decay was not observed. The GERmanium Detector Array, GERDA is a double beta decay experiment located at the INFN Gran Sasso National Laboratory, Italy. GERDA operates bare Ge diodes enriched in 76Ge in liquid argon supplemented by a water shield. The exposure accumulated adds up to 21.6 kg· yr with a background level of 1.8 · 10-2 cts/(keV·kg·yr). The results of the Phase I of the experiment are presented and the preparation of the Phase II is briefly discussed.

  3. Designing double-gap linear accelerators for a wide mass range

    International Nuclear Information System (INIS)

    Lysenko, W.P.; Wadlinger, E.A.; Rusnak, B.; Krawczyk, F.; Saadatmand, K.; Wan, Z.

    1998-01-01

    For applications like ion implantation, rf linacs using double-gap structures with external resonators can be used because they are practical at low frequencies. However, since the two gaps associated with a given resonator cannot be individually phased, it is not obvious how to build a linac that can efficiently accelerate particles having different mass/charge ratios. This paper describes the beam dynamics of double-gap rf linacs and shows how to maximize the range of mass/charge ratios. The theory also tells one how to rescale a linac tune (i.e., reset the voltages and phases) so that a new particle, having a different mass or charge, will behave similarly to the original particle

  4. Method of phase space beam dilution utilizing bounded chaos generated by rf phase modulation

    Directory of Open Access Journals (Sweden)

    Alfonse N. Pham

    2015-12-01

    Full Text Available This paper explores the physics of chaos in a localized phase-space region produced by rf phase modulation applied to a double rf system. The study can be exploited to produce rapid particle bunch broadening exhibiting longitudinal particle distribution uniformity. Hamiltonian models and particle-tracking simulations are introduced to understand the mechanism and applicability of controlled particle diffusion. When phase modulation is applied to the double rf system, regions of localized chaos are produced through the disruption and overlapping of parametric resonant islands and configured to be bounded by well-behaved invariant tori to prevent particle loss. The condition of chaoticity and the degree of particle dilution can be controlled by the rf parameters. The method has applications in alleviating adverse space-charge effects in high-intensity beams, particle bunch distribution uniformization, and industrial radiation-effects experiments.

  5. A Randomized, Double-Blind, Placebo-Controlled, Phase 2b Study to Evaluate the Safety and Efficacy of Recombinant Human Soluble Thrombomodulin, ART-123, in Patients With Sepsis and Suspected Disseminated Intravascular Coagulation

    NARCIS (Netherlands)

    Vincent, Jean-Louis; Ramesh, Mayakonda K.; Ernest, David; Larosa, Steven P.; Pachl, Jan; Aikawa, Naoki; Hoste, Eric; Levy, Howard; Hirman, Joe; Levi, Marcel; Daga, Mradul; Kutsogiannis, Demetrios J.; Crowther, Mark; Bernard, Gordon R.; Devriendt, Jacques; Puigserver, Joan Vidal; Blanzaco, Daniel U.; Esmon, Charles T.; Parrillo, Joseph E.; Guzzi, Louis; Henderson, Seton J.; Pothirat, Chaicharn; Mehta, Parthiv; Fareed, Jawed; Talwar, Deepak; Tsuruta, Kazuhisa; Gorelick, Kenneth J.; Osawa, Yutaka; Kaul, Inder

    2013-01-01

    Objectives: To determine the safety and efficacy of recombinant thrombomodulin (ART-123) in patients with suspected sepsis-associated disseminated intravascular coagulation. Design: Phase 2b, international, multicenter, double-blind, randomized, placebo-controlled, parallel group, screening trial.

  6. Beyond the double banana

    DEFF Research Database (Denmark)

    Rosenzweig, Ivana; Fogarasi, András; Johnsen, Birger

    2014-01-01

    PURPOSE: To investigate whether extending the 10-20 array with 6 electrodes in the inferior temporal chain and constructing computed montages increases the diagnostic value of ictal EEG activity originating in the temporal lobe. In addition, the accuracy of computer-assisted spectral source......). Spectral source analysis used source montage to calculate density spectral array, defining the earliest oscillatory onset. From this, phase maps were calculated for localization. The reference standard was the decision of the multidisciplinary epilepsy surgery team on the seizure onset zone. Clinical...... performance was compared with the double banana (longitudinal bipolar montage, 10-20 array). RESULTS: Adding the inferior temporal electrode chain, computed montages (reference free, common average, and source derivation), and voltage maps significantly increased the sensitivity. Phase maps had the highest...

  7. High-pressure fluid phase equilibria phenomenology and computation

    CERN Document Server

    Deiters, Ulrich K

    2012-01-01

    The book begins with an overview of the phase diagrams of fluid mixtures (fluid = liquid, gas, or supercritical state), which can show an astonishing variety when elevated pressures are taken into account; phenomena like retrograde condensation (single and double) and azeotropy (normal and double) are discussed. It then gives an introduction into the relevant thermodynamic equations for fluid mixtures, including some that are rarely found in modern textbooks, and shows how they can they be used to compute phase diagrams and related properties. This chapter gives a consistent and axiomatic approach to fluid thermodynamics; it avoids using activity coefficients. Further chapters are dedicated to solid-fluid phase equilibria and global phase diagrams (systematic search for phase diagram classes). The appendix contains numerical algorithms needed for the computations. The book thus enables the reader to create or improve computer programs for the calculation of fluid phase diagrams. introduces phase diagram class...

  8. Nuclear aspects of double-beta decay

    International Nuclear Information System (INIS)

    Stoica, S.; Paun, V.

    2002-01-01

    Calculations of the neutrinoless double-beta decay (0νββ) matrix elements are performed with the second quasi random phase approximation (SQRPA) method for several nuclei. The results display a weak dependence on the single particle basis used and the Ikeda sum rule is fulfilled with good accuracy. Comparing our calculations with similar ones performed with other QRPA-based methods we estimate the accuracy of these methods in the prediction of the (0νββ) decay matrix elements and neutrino mass parameter, which is settled to about 50% from their calculated values. Taking the most recent experimental limits for the neutrinoless double beta decay half-lives, we also deduced new limits for the neutrino mass parameter. (authors)

  9. Double hard scattering without double counting

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, Markus [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Gaunt, Jonathan R. [VU Univ. Amsterdam (Netherlands). NIKHEF Theory Group; Schoenwald, Kay [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2017-02-15

    Double parton scattering in proton-proton collisions includes kinematic regions in which two partons inside a proton originate from the perturbative splitting of a single parton. This leads to a double counting problem between single and double hard scattering. We present a solution to this problem, which allows for the definition of double parton distributions as operator matrix elements in a proton, and which can be used at higher orders in perturbation theory. We show how the evaluation of double hard scattering in this framework can provide a rough estimate for the size of the higher-order contributions to single hard scattering that are affected by double counting. In a numeric study, we identify situations in which these higher-order contributions must be explicitly calculated and included if one wants to attain an accuracy at which double hard scattering becomes relevant, and other situations where such contributions may be neglected.

  10. Double hard scattering without double counting

    International Nuclear Information System (INIS)

    Diehl, Markus; Gaunt, Jonathan R.

    2017-02-01

    Double parton scattering in proton-proton collisions includes kinematic regions in which two partons inside a proton originate from the perturbative splitting of a single parton. This leads to a double counting problem between single and double hard scattering. We present a solution to this problem, which allows for the definition of double parton distributions as operator matrix elements in a proton, and which can be used at higher orders in perturbation theory. We show how the evaluation of double hard scattering in this framework can provide a rough estimate for the size of the higher-order contributions to single hard scattering that are affected by double counting. In a numeric study, we identify situations in which these higher-order contributions must be explicitly calculated and included if one wants to attain an accuracy at which double hard scattering becomes relevant, and other situations where such contributions may be neglected.

  11. Visual performance on detection tasks with double-targets of the same and different difficulty.

    Science.gov (United States)

    Chan, Alan H S; Courtney, Alan J; Ma, C W

    2002-10-20

    This paper reports a study of measurement of horizontal visual sensitivity limits for 16 subjects in single-target and double-targets detection tasks. Two phases of tests were conducted in the double-targets task; targets of the same difficulty were tested in phase one while targets of different difficulty were tested in phase two. The range of sensitivity for the double-targets test was found to be smaller than that for single-target in both the same and different target difficulty cases. The presence of another target was found to affect performance to a marked degree. Interference effect of the difficult target on detection of the easy one was greater than that of the easy one on the detection of the difficult one. Performance decrement was noted when correct percentage detection was plotted against eccentricity of target in both the single-target and double-targets tests. Nevertheless, the non-significant correlation found between the performance for the two tasks demonstrated that it was impossible to predict quantitatively ability for detection of double targets from the data for single targets. This indicated probable problems in generalizing data for single target visual lobes to those for multiple targets. Also lobe area values obtained from measurements using a single-target task cannot be applied in a mathematical model for situations with multiple occurrences of targets.

  12. Flammable gas project expert elicitation results for Hanford Site double-shell tanks

    International Nuclear Information System (INIS)

    Bratzel, D.R.

    1998-01-01

    This report documents the results of the second phase of parameter quantification by the flammable gas expert panel. This second phase is focused on the analysis of flammable gas accidents in the Hanford Site double-shell tanks. The first phase of parameter quantification, performed in 1997 was focused on the analysis of Hanford single-shell tanks

  13. Phase III double-blind evaluation of an aloe vera gel as a prophylactic agent for radiation-induced skin toxicity

    International Nuclear Information System (INIS)

    Williams, Maureen S.; Burk, Mary; Loprinzi, Charles L.; Hill, Mary; Schomberg, Paula J.; Nearhood, Kim; O'Fallon, Judith R.; Laurie, John A.; Shanahan, Thomas G.; Moore, Randy L.; Urias, Rodolfo E.; Kuske, Robert R.; Engel, Roland E.; Eggleston, William D.

    1996-01-01

    Purpose: Considerable pilot data and clinical experience suggested that an aloe vera gel might help to prevent radiation therapy-induced dermatitis. Methods and Materials: Two Phase III randomized trials were conducted. The first one was double blinded, utilized a placebo gel, and involved 194 women receiving breast or chest wall irradiation. The second trial randomized 108 such patients to aloe vera gel vs. no treatment. Skin dermatitis was scored weekly during both trials both by patients and by health care providers. Results: Skin dermatitis scores were virtually identical on both treatment arms during both of the trials. The only toxicity from the gel was rare contact dermatitis. Conclusions: This dose and schedule of an aloe vera gel does not protect against radiation therapy-induced dermatitis

  14. Symmetry breaking in the double-well hermitian matrix models

    CERN Document Server

    Brower, R C; Jain, S; Tan, C I; Brower, Richard C.; Deo, Nevidita; Jain, Sanjay; Tan, Chung-I

    1993-01-01

    We study symmetry breaking in $Z_2$ symmetric large $N$ matrix models. In the planar approximation for both the symmetric double-well $\\phi^4$ model and the symmetric Penner model, we find there is an infinite family of broken symmetry solutions characterized by different sets of recursion coefficients $R_n$ and $S_n$ that all lead to identical free energies and eigenvalue densities. These solutions can be parameterized by an arbitrary angle $\\theta(x)$, for each value of $x = n/N < 1$. In the double scaling limit, this class reduces to a smaller family of solutions with distinct free energies already at the torus level. For the double-well $\\phi^4$ theory the double scaling string equations are parameterized by a conserved angular momentum parameter in the range $0 \\le l < \\infty$ and a single arbitrary $U(1)$ phase angle.

  15. Background-free search for neutrinoless double-β decay of 76Ge with GERDA

    Science.gov (United States)

    Agostini, M.; Allardt, M.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Baudis, L.; Bauer, C.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; di Marco, N.; di Vacri, A.; Domula, A.; Doroshkevich, E.; Egorov, V.; Falkenstein, R.; Fedorova, O.; Freund, K.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Gooch, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hakenmüller, J.; Hegai, A.; Heisel, M.; Hemmer, S.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Janicskó Csáthy, J.; Jochum, J.; Junker, M.; Kazalov, V.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Kish, A.; Klimenko, A.; Kneißl, R.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Medinaceli, E.; Miloradovic, M.; Mingazheva, R.; Misiaszek, M.; Moseev, P.; Nemchenok, I.; Palioselitis, D.; Panas, K.; Pandola, L.; Pelczar, K.; Pullia, A.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salamida, F.; Salathe, M.; Schmitt, C.; Schneider, B.; Schönert, S.; Schreiner, J.; Schulz, O.; Schütz, A.-K.; Schwingenheuer, B.; Selivanenko, O.; Shevchik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Vanhoefer, L.; Vasenko, A. A.; Veresnikova, A.; von Sturm, K.; Wagner, V.; Walter, M.; Wegmann, A.; Wester, T.; Wiesinger, C.; Wojcik, M.; Yanovich, E.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.; GERDA Collaboration

    2017-04-01

    Many extensions of the Standard Model of particle physics explain the dominance of matter over antimatter in our Universe by neutrinos being their own antiparticles. This would imply the existence of neutrinoless double-β decay, which is an extremely rare lepton-number-violating radioactive decay process whose detection requires the utmost background suppression. Among the programmes that aim to detect this decay, the GERDA Collaboration is searching for neutrinoless double-β decay of 76Ge by operating bare detectors, made of germanium with an enriched 76Ge fraction, in liquid argon. After having completed Phase I of data taking, we have recently launched Phase II. Here we report that in GERDA Phase II we have achieved a background level of approximately 10-3 counts keV-1 kg-1 yr-1. This implies that the experiment is background-free, even when increasing the exposure up to design level. This is achieved by use of an active veto system, superior germanium detector energy resolution and improved background recognition of our new detectors. No signal of neutrinoless double-β decay was found when Phase I and Phase II data were combined, and we deduce a lower-limit half-life of 5.3 × 1025 years at the 90 per cent confidence level. Our half-life sensitivity of 4.0 × 1025 years is competitive with the best experiments that use a substantially larger isotope mass. The potential of an essentially background-free search for neutrinoless double-β decay will facilitate a larger germanium experiment with sensitivity levels that will bring us closer to clarifying whether neutrinos are their own antiparticles.

  16. Flexible DNA Path in the MCM Double Hexamer Loaded on DNA.

    Science.gov (United States)

    Hizume, Kohji; Kominami, Hiroaki; Kobayashi, Kei; Yamada, Hirofumi; Araki, Hiroyuki

    2017-05-16

    The formation of the pre-replicative complex (pre-RC) during the G1 phase, which is also called the licensing of DNA replication, is the initial and essential step of faithful DNA replication during the subsequent S phase. It is widely accepted that in the pre-RC, double-stranded DNA passes through the holes of two ring-shaped minichromosome maintenance (MCM) 2-7 hexamers; however, the spatial organization of the DNA and proteins involved in pre-RC formation is unclear. Here we reconstituted the pre-RC from purified DNA and proteins and visualized the complex using atomic force microscopy (AFM). AFM revealed that the MCM double hexamers formed elliptical particles on DNA. Analysis of the angle of binding of DNA to the MCM double hexamer suggests that the DNA does not completely pass through both holes of the MCM hexamers, possibly because the DNA exited from the gap between Mcm2 and Mcm5. A DNA loop fastened by the MCM double hexamer was detected in pre-RC samples reconstituted from purified proteins as well as those purified from yeast cells, suggesting a higher-order architecture of the loaded MCM hexamers and DNA strands.

  17. Phase behavior of fluorocarbon and hydrocarbon double-chain hydroxylated and galactosylated amphiphiles and bolaamphiphiles. Long-term shelf-stability of their liposomes.

    Science.gov (United States)

    Clary, L; Gadras, C; Greiner, J; Rolland, J P; Santaella, C; Vierling, P; Gulik, A

    1999-06-01

    This paper describes the morphological characterization, by freeze-fracture electron microscopy, and the thermotropic phase behavior, by differential scanning calorimetry and/or X-ray scattering, of aqueous dispersions of various hydroxylated and galactosylated double-chain amphiphiles and bolaamphiphiles, several of them containing one or two hydrophobic fluorocarbon chains. Colloidal systems are observed in water with the hydroxylated hydrocarbon or fluorocarbon bolaamphiphiles only when they are dispersed with a co-amphiphile such as rac-1,2-dimyristoylphosphatidylcholine (DMPC) or rac-1,2-distearoylphosphatidylcholine (DSPC). Liposomes are formed providing the relative content of bolaamphiphiles does not exceed 20% mol. Most of these liposomes can be thermally sterilized and stored at room temperature for several months without any significant modification of their size and size distribution. The hydrocarbon galactosylated bolaamphiphile HO[C24][C12]Gal forms in water a lamellar phase (the gel to liquid-crystal phase transition is complete at 45 degrees C) and a Im3m cubic phase above 47 degrees C. The fluorocarbon HO[C24][F6C5]Gal analog displays a more complex and metastable phase behavior. The fluorinated non-bolaform galactosylated [F8C7][C16]AEGal and SerGal amphiphiles form lamellar phases in water. Low amounts (10% molar ratio) of the HO[C24][F6C5]Gal or HO[C24][C12]Gal bolaamphiphiles or of the single-headed [F8C7][C16]AEGal improve substantially the shelf-stability of reference phospholipon/cholesterol 2/1 liposomes. These liposomes when co-formulated with a single-headed amphiphile from the SerGal series are by far less stable.

  18. Synthesis and characterization of laurate-intercalated Mg–Al layered double hydroxide prepared by coprecipitation

    DEFF Research Database (Denmark)

    Gerds, Nathalie Christiane; Katiyar, Vimal; Koch, Christian Bender

    2012-01-01

    Effective utilization of layered double hydroxides (LDH) for industrial applications requires the synthesis of pure and well-defined LDH phases. In the present study, dodecanoate (laurate) anions were intercalated into Mg–Al-layered double hydroxide (LDH-C12) by coprecipitation in the presence of...

  19. Preparation Of Liquid Phase-Double Antibodies Radioimmunoassay For The In Vitro Determination Of Prolactin Hormone In Human Serum

    International Nuclear Information System (INIS)

    MEHANY, N.L.; EL-KOLALY, M.T.; EBEID, N.H.; MEKY, N.H.

    2009-01-01

    In the present study, the preparation of the basic reagents of prolactin (PRL) radioimmunoassay (RIA) technique using liquid phase double antibody with low cost is considered to be the main objective. Three primary components were prepared and characterized to obtain valid and accurate system. These components were polyclonal antibody (anti-PRL), 125 I-prolactin ( 125 I-PRL) radio-iodinated tracer and PRL standards. The production of polyclonal anti-PRL was undertaken by immunizing eight males of white New-Zealand rabbits (two groups) with highly purified PRL antigen through primary injection and five booster doses subcutaneously and intramuscular. The preparation of radio-iodinated ( 1 '2 5 I-PRL) tracer was carried out using chloramine-T method. The preparation of PRL standards were carried out using highly purified PRL antigen in assay buffer. The obtained PRL-antisera were characterized in terms of titer, immuno response and displacement profile. Formulation, optimization and validation of the local liquid phase RIA system were carried out. The results obtained provide a highly sensitive, specific and accurate RIA system of PRL. In conclusion, this technique could be used in diagnosis of pituitary dysfunction such as hyperprolactinaemia and hyperprolactinaemia, prolactinoma, galactorrhoea, amenorrhea and diagnosis of infertility in males and females.

  20. Double tungstates of metals of scandium and ammonium subgroups

    Energy Technology Data Exchange (ETDEWEB)

    Maksin, V I [AN Ukrainskoj SSR, Kiev. Inst. Kolloidnoj Khimii i Khimii Vody

    1980-06-01

    The methods of pH-potentiometry, conductometry, determination of residual concentrations of liquid phases and precipitations, selected by chemical analysis have been used for investigation R(NO/sub 3/)/sub 3/-(NH/sub 4/)/sub 2/WO/sub 2/-H/sub 2/O systems, (where R=Sc, Y, La). The formation of double tungstates NH/sub 4/R(WO/sub 4/)/sub 2/xnH/sub 2/O is established. The NH/sub 4/Sc(WO/sub 4/)/sub 2/x4.5H/sub 2/O, NH/sub 4/Yx(WO/sub 4/)/sub 2/x3H/sub 2/O, NH/sub 4/La(WO/sub 4/)/sub 2/x1.5H/sub 2/O compounds are synthesized in individual form. Precipitation conditions (pH, concentration ratio) and composition of the solid phase are determined. The behaviour of synthesized slats at thermolysis up to 880 deg C is studied. Physicochemical properties (color, solubility of the simple and double tungstates of scandium, yttrium and lanthanum with ammonium) is studied. IR spectra and X-ray diffraction analysis give idea about double salts structural transformations.

  1. Synthesis of Cu-CNTs nanocomposites via double pressing double sintering method

    Directory of Open Access Journals (Sweden)

    Marjan Darabi

    2018-01-01

    Full Text Available In this research, copper (Cu-carbon nanotubes (CNTs nanocomposites were synthesized with different weight percentages of CNTs by double pressing double sintering (DPDS method as well as conventional sintering method. A planetary ball mill was used to disperse CNTs in Cu matrix. The milled powders were first cold pressed to 450 MPa in a uniaxial stainless-steel die with cylindrical compacts (diameter: 12 mm and height: 5 mm. The effect of CNTs content and the DPDS method on the properties of the nanocomposites were investigated. The microstructure and phase analysis of Cu-CNTs nanocomposite samples were studied by FESEM and X-Ray Diffraction. The electrical conductivity of nanocomposites was measured and compared to both sintering methods. Mechanical properties of Cu-CNTs nanocomposites were characterized using bending strength and micro-hardness measurements. Enhancements of about 32% in bending strength, 31.6% in hardness and 19.5% in electrical conductivity of Cu-1 wt.% CNTs nanocomposite synthesized by DPDS method were observed as compared to Cu-1 wt.% CNTs nanocomposites fabricated under the similar condition by a conventional sintering process.

  2. Dietary Soy Supplement on Fibromyalgia Symptoms: A Randomized, Double-Blind, Placebo-Controlled, Early Phase Trial

    Directory of Open Access Journals (Sweden)

    Dietlind L. Wahner-Roedler

    2011-01-01

    Full Text Available Most patients with fibromyalgia use complementary and alternative medicine (CAM. Properly designed controlled trials are necessary to assess the effectiveness of these practices. This study was a randomized, double-blind, placebo-controlled, early phase trial. Fifty patients seen at a fibromyalgia outpatient treatment program were randomly assigned to a daily soy or placebo (casein shake. Outcome measures were scores of the Fibromyalgia Impact Questionnaire (FIQ and the Center for Epidemiologic Studies Depression Scale (CES-D at baseline and after 6 weeks of intervention. Analysis was with standard statistics based on the null hypothesis, and separation test for early phase CAM comparative trials. Twenty-eight patients completed the study. Use of standard statistics with intent-to-treat analysis showed that total FIQ scores decreased by 14% in the soy group (P = .02 and by 18% in the placebo group (P < .001. The difference in change in scores between the groups was not significant (P = .16. With the same analysis, CES-D scores decreased in the soy group by 16% (P = .004 and in the placebo group by 15% (P = .05. The change in scores was similar in the groups (P = .83. Results of statistical analysis using the separation test and intent-to-treat analysis revealed no benefit of soy compared with placebo. Shakes that contain soy and shakes that contain casein, when combined with a multidisciplinary fibromyalgia treatment program, provide a decrease in fibromyalgia symptoms. Separation between the effects of soy and casein (control shakes did not favor the intervention. Therefore, large-sample studies using soy for patients with fibromyalgia are probably not indicated.

  3. Analytical Model of Planar Double Split Ring Resonator

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Jensen, Thomas; Krozer, Viktor

    2007-01-01

    This paper focuses on accurate modelling of microstrip double split ring resonators. The impedance matrix representation for coupled lines is applied for the first time to model the SRR, resulting in excellent model accuracy over a wide frequency range. Phase compensation is implemented to take i...

  4. Luminescent materials based on Tb, Eu-containing layered double hydroxides

    International Nuclear Information System (INIS)

    Zhuravleva, N.G.; Eliseev, A.A.; Lukashin, A.V.; Kinast, U.; Tret'yakov, Yu.D.

    2004-01-01

    Luminescent materials on the basis of magnesium-aluminium layered double hydroxides with intercalated anionic complexes of terbium and europium picolinates were synthesized. Relying on data of spectroscopy, elementary and X-ray phase analyses, the change in the rare earth complex structure and metal/ligand ratio, depending on the hydroxide layer charge, determined by Mg/Al ratio in the double hydroxide, were ascertained. The values of quantum yields of luminescence for terbium-containing samples amounted to 30-50% [ru

  5. Steganographic optical image encryption system based on reversible data hiding and double random phase encoding

    Science.gov (United States)

    Chuang, Cheng-Hung; Chen, Yen-Lin

    2013-02-01

    This study presents a steganographic optical image encryption system based on reversible data hiding and double random phase encoding (DRPE) techniques. Conventional optical image encryption systems can securely transmit valuable images using an encryption method for possible application in optical transmission systems. The steganographic optical image encryption system based on the DRPE technique has been investigated to hide secret data in encrypted images. However, the DRPE techniques vulnerable to attacks and many of the data hiding methods in the DRPE system can distort the decrypted images. The proposed system, based on reversible data hiding, uses a JBIG2 compression scheme to achieve lossless decrypted image quality and perform a prior encryption process. Thus, the DRPE technique enables a more secured optical encryption process. The proposed method extracts and compresses the bit planes of the original image using the lossless JBIG2 technique. The secret data are embedded in the remaining storage space. The RSA algorithm can cipher the compressed binary bits and secret data for advanced security. Experimental results show that the proposed system achieves a high data embedding capacity and lossless reconstruction of the original images.

  6. PandaX-III neutrinoless double beta decay experiment

    Science.gov (United States)

    Wang, Shaobo; PandaX-III Collaboration

    2017-09-01

    The PandaX-III experiment uses high pressure Time Projection Chambers (TPCs) to search for neutrinoless double-beta decay of Xe-136 with high energy resolution and sensitivity at the China Jin-Ping underground Laboratory II (CJPL-II). Fine-pitch Microbulk Micromegas will be used for charge amplification and readout in order to reconstruct both the energy and track of the neutrinoless double-beta decay event. In the first phase of the experiment, the detector, which contains 200 kg of 90% Xe-136 enriched gas operated at 10 bar, will be immersed in a large water tank to ensure 5 m of water shielding. For the second phase, a ton-scale experiment with multiple TPCs will be constructed to improve the detection probability and sensitivity. A 20-kg scale prototype TPC with 7 Micromegas modules has been built to optimize the design of Micromegas readout module, study the energy calibration of TPC and develop algorithm of 3D track reconstruction.

  7. Electrostatic double layers and a plasma evacuation process

    International Nuclear Information System (INIS)

    Raadu, M.A.; Carlqvist, P.

    1979-12-01

    An evacuation process due to the growth of current driven instabilities in a plasma is discussed. The process, which leads to localized extreme density reductions, is related to the formation of electrostatic double layers. The initial linear phase is treated using the superposition of unstable plasma waves. In the long wave length, non-dispersive limit a density dip, which is initially present as a small disturbance, grows rapidly and remains localized in the plasma. The process works for a variety of plasma conditions provided a certain current density is exceeded. For a particular choice of plasma parameters the non-linear development is followed, by solving the coupled Vlasov-Poisson equations by finite difference methods. The evacuation process is found to work even more effectively in the non-linear phase and leads to an extreme density reduction within the dip. It is suggested that the growth of such structures produces weak points within the plasma that can lead to the formation of double layers. (Auth.)

  8. Neutrinoless double beta decay search with SNO+

    Directory of Open Access Journals (Sweden)

    Lozza V.

    2014-01-01

    Full Text Available The SNO+ experiment is the follow up of SNO. The detector is located 2 km underground in the Vale Canada Ltd.’s Creighton Mine near Sudbury, Ontario, Canada. The active volume of the detector consists of 780 tonnes of Linear Alkyl Benzene (LAB in an acrylic vessel of 12 m diameter, surrounded by about 9500 PMTs. The main goal of the SNO+ experiment is the search for neutrinoless double beta decay of 130Te. With an initial loading of 0.3% of natural tellurium (nearly 800 kg of 130Te, it is expected to reach a sensitivity on the effective Majorana neutrino mass of about 100 meV after several years of data taking. Designed as a general purpose neutrino experiment, other exciting physical goals can be explored, like the measurement of reactor neutrino oscillations and geo-neutrinos in a geologically-interesting location, watch of supernova neutrinos and studies of solar neutrinos. A first commissioning phase with water filled detector will start at the end of 2013, while the double beta decay phase will start in 2015.

  9. Cryptanalysis and improvement of an optical image encryption scheme using a chaotic Baker map and double random phase encoding

    International Nuclear Information System (INIS)

    Chen, Jun-Xin; Fu, Chong; Zhu, Zhi-Liang; Zhang, Li-Bo; Zhang, Yushu

    2014-01-01

    In this paper, we evaluate the security of an enhanced double random phase encoding (DRPE) image encryption scheme (2013 J. Lightwave Technol. 31 2533). The original system employs a chaotic Baker map prior to DRPE to provide more protection to the plain image and hence promote the security level of DRPE, as claimed. However, cryptanalysis shows that this scheme is vulnerable to a chosen-plaintext attack, and the ciphertext can be precisely recovered. The corresponding improvement is subsequently reported upon the basic premise that no extra equipment or computational complexity is required. The simulation results and security analyses prove its effectiveness and security. The proposed achievements are suitable for all cryptosystems under permutation and, following that, the DRPE architecture, and we hope that our work can motivate the further research on optical image encryption. (paper)

  10. Cryptanalysis and improvement of an optical image encryption scheme using a chaotic Baker map and double random phase encoding

    Science.gov (United States)

    Chen, Jun-Xin; Zhu, Zhi-Liang; Fu, Chong; Zhang, Li-Bo; Zhang, Yushu

    2014-12-01

    In this paper, we evaluate the security of an enhanced double random phase encoding (DRPE) image encryption scheme (2013 J. Lightwave Technol. 31 2533). The original system employs a chaotic Baker map prior to DRPE to provide more protection to the plain image and hence promote the security level of DRPE, as claimed. However, cryptanalysis shows that this scheme is vulnerable to a chosen-plaintext attack, and the ciphertext can be precisely recovered. The corresponding improvement is subsequently reported upon the basic premise that no extra equipment or computational complexity is required. The simulation results and security analyses prove its effectiveness and security. The proposed achievements are suitable for all cryptosystems under permutation and, following that, the DRPE architecture, and we hope that our work can motivate the further research on optical image encryption.

  11. Identification of Hürthle cell tumor by single-injection, double-phase scintigraphy with technetium-99m-sestamibi.

    Science.gov (United States)

    Vattimo, A; Bertelli, P; Cintorino, M; Burroni, L; Volterrani, D; Vella, A

    1995-05-01

    Early and late (double-phase) scintigraphy with 99mTc-MIBI was used in a comparative study of the scintigraphic aspects of Hürthle cell tumors and other thyroid tumors. Single-injection, dual-phase (15-30 min and 3-4 hr) thyroid scintigraphy with 99mTc-sestamibi (MIBI) was performed on 41 patients who displayed a cold nodule on previous 99mTc scintigraphy. Visual scoring of nodular uptake was done to compare thyroidal and background tracer uptake. In addition, the nodular-to-thyroid (N/T) uptake ratio in the early and late images and the washout rate from the nodule (WON) and thyroidal tissue (WOT) were measured. Cytologic results were obtained for all patients; histopathologic results were obtained for the 20 patients who had surgery. In eight patients (Group A), the nodule displayed intense and persistent uptake of MIBI (N/T = 1.77 +/- 0.46 and 3.20 +/- 1.37; WON = 17.2% +/- 6.3%; WOT = 24.6% +/- 7.5%); histopathology revealed Hürthle cell tumors (two carcinomas and three adenomas) in five surgical patients. In 15 patients (Group B), the nodule displayed intense uptake in the early image with fading activity in the late image (N/T = 1.45 +/- 0.54 and 0.84 +/- 0.30; WON = 30.0% +/- 7.3%; WOT = 24.5% +/- 6.8%); histopathology revealed a colloid nodule (n = 1), papillary carcinoma (n = 4) and follicular carcinoma (n = 5) in 10 surgical patients. In the remaining 18 patients (Group C), the nodule was cold and late images were not acquired. Histopathology revealed colloid nodules (n = 2) and follicular adenoma (n = 3) in five surgical patients. Single-injection, dual-phase MIBI scintigraphy of the thyroid can identify Hürthle cell tumors because these tumors have intense, persistent tracer uptake in contrast to other thyroid tumors.

  12. diffusive phase separation

    Directory of Open Access Journals (Sweden)

    Nobuyuki Kenmochi

    1996-01-01

    w is constrained to have double obstacles σ*≤w≤σ* (i.e., σ* and σ* are the threshold values of w. The objective of this paper is to discuss the semigroup {S(t} associated with the phase separation model, and construct its global attractor.

  13. Ac-induced disruption of the doubleDs structure in tomato

    NARCIS (Netherlands)

    Rommens, Caius M.T.; Biezen, Erik A. van der; Ouwerkerk, Pieter B.F.; Nijkamp, H. John J.; Hille, Jacques

    1991-01-01

    The maize doubleDs element is stably maintained in the tomato genome. Upon the subsequent introduction of Ac into a plant containing doubleDs, disruption of the doubleDs structure and DNA rearrangements at the site of the doubleDs element were observed. No indications were obtained for excision of

  14. Film thickness measurement based on nonlinear phase analysis using a Linnik microscopic white-light spectral interferometer.

    Science.gov (United States)

    Guo, Tong; Chen, Zhuo; Li, Minghui; Wu, Juhong; Fu, Xing; Hu, Xiaotang

    2018-04-20

    Based on white-light spectral interferometry and the Linnik microscopic interference configuration, the nonlinear phase components of the spectral interferometric signal were analyzed for film thickness measurement. The spectral interferometric signal was obtained using a Linnik microscopic white-light spectral interferometer, which includes the nonlinear phase components associated with the effective thickness, the nonlinear phase error caused by the double-objective lens, and the nonlinear phase of the thin film itself. To determine the influence of the effective thickness, a wavelength-correction method was proposed that converts the effective thickness into a constant value; the nonlinear phase caused by the effective thickness can then be determined and subtracted from the total nonlinear phase. A method for the extraction of the nonlinear phase error caused by the double-objective lens was also proposed. Accurate thickness measurement of a thin film can be achieved by fitting the nonlinear phase of the thin film after removal of the nonlinear phase caused by the effective thickness and by the nonlinear phase error caused by the double-objective lens. The experimental results demonstrated that both the wavelength-correction method and the extraction method for the nonlinear phase error caused by the double-objective lens improve the accuracy of film thickness measurements.

  15. New developments in the calculation of double beta decay

    International Nuclear Information System (INIS)

    Engel, J.

    1990-01-01

    I review recent work on computing double beta decay rates. After a discussion of shell model and Quasiparticle Random Phase calculations, I argue for a model based on the notion of generalized seniority that combines the advantages of both earlier approaches. (orig.)

  16. Characterization of polarization-independent phase modulation method for practical plug and play quantum cryptography

    International Nuclear Information System (INIS)

    Kwon, Osung; Lee, Min-Soo; Woo, Min Ki; Park, Byung Kwon; Kim, Il Young; Kim, Yong-Su; Han, Sang-Wook; Moon, Sung

    2015-01-01

    We characterized a polarization-independent phase modulation method, called double phase modulation, for a practical plug and play quantum key distribution (QKD) system. Following investigation of theoretical backgrounds, we applied the method to the practical QKD system and characterized the performance through comparing single phase modulation (SPM) and double phase modulation. Consequently, we obtained repeatable and accurate phase modulation confirmed by high visibility single photon interference even for input signals with arbitrary polarization. Further, the results show that only 80% of the bias voltage required in the case of single phase modulation is needed to obtain the target amount of phase modulation. (paper)

  17. Structures and Phase Transitions in Ordered Double Perovskites

    International Nuclear Information System (INIS)

    Kennedy, Brendan; Zhou, Qingdi; Cheah, Melina

    2005-01-01

    Full text: The basic perovskite structure is ubiquitous in the study of metal oxides, yet very few oxides actually adopt the archetypal cubic structure. The perovskite structure is based on corner sharing octahedra and in most cases cooperative rotations of successive octahedra lower the symmetry of the perovskite structure. Solid State Chemists have been fascinated by these distortions for many years, not only for their intrinsic interest but also to understand how these distortions control the electronic and magnetic properties of perovskite oxides. In this presentation we will describe the use of high-resolution powder diffraction methods to unravel the temperature and composition dependence of the structures in two series of double perovskites, Sr 1-x A x NiWO 6 (A = Ba, Ca) where there is essentially complete ordering of Ni and W cations and in Sr 1-x Ca x CrNbO 6 where there is extensive disorder of the Cr and Nb cations. (authors)

  18. Films of double oxides of zirconium and iron

    International Nuclear Information System (INIS)

    Kozik, V.V.; Borilo, L.P.; Shul'pekov, A.M.

    2000-01-01

    Films of double oxides of zirconium and iron were prepared by the method of precipitation from film-forming alcohol solutions of zirconium oxychloride and iron chloride with subsequent thermal treatment. Using the methods of X-ray phase and differential thermal analyses, conductometry and optical spectroscopy, basic chemical processes occurring in the film-forming solutions and during thermal treatment are studied alongside with phase composition and optical characteristics of the films prepared. The composition-property diagrams of the given system in a thin-film state are plotted [ru

  19. A double well interferometer on an atom chip

    DEFF Research Database (Denmark)

    Schumm, Thorsten; Krüger, Peter; Hofferberth, S.

    2006-01-01

    Radio-Frequency coupling between magnetically trapped atomic states allows to create versatile adiabatic dressed state potentials for neutral atom manipulation. Most notably, a single magnetic trap can be split into a double well by controlling amplitude and frequency of an oscillating magnetic...... split BECs in time of flight expansion, we realize a matter wave interferometer. The observed interference pattern exhibits a stable relative phase of the two condensates, clearly indicating a coherent splitting process. Furthermore, we measure and control the deterministic phase evolution throughout...

  20. Detection of various phases in liquids from the hypersound velocity and damping near closed phase-separation regions of solutions

    International Nuclear Information System (INIS)

    Kovalenko, K. V.; Krivokhizha, S. V.; Chaban, I. A.; Chaikov, L. L.

    2008-01-01

    Theoretical analysis revealed that experimental results obtained in our studies on hypersound propagation in a guaiacol-glycerol solution in the vicinity of the closed phase-separation region, double critical point, and special point, as well as the origin of these regions, can be explained by the presence of two different phases (I and II) of the solution with phase-transition temperature T 0 . Temperature T 0 coincides with the temperature at the center of closed phase-separation regions, as well as with the double critical point and with the special point. In (Frenkel) phase I, molecules are in potential wells whose depth exceeds the thermal energy of a molecule, while thermal energy in (gaslike) phase II is higher than the potential well depth. At the lower critical point, the thermodynamic potential of phase I is equal to the thermodynamic potential of the phase-separated solution. At the upper critical point, the thermodynamic potential of phase II is equal to the thermodynamic potential of the phase-separated solution. The observed broad dome of the hypersound absorption coefficient near T 0 can be explained by the contribution associated with fluctuations of the order parameter corresponding to the transition from phase I to phase II. The difference in the temperature coefficients of hypersound velocity on different sides of T 0 and some other effects are also explained

  1. [Vitex agnus castus extract in the treatment of luteal phase defects due to latent hyperprolactinemia. Results of a randomized placebo-controlled double-blind study].

    Science.gov (United States)

    Milewicz, A; Gejdel, E; Sworen, H; Sienkiewicz, K; Jedrzejak, J; Teucher, T; Schmitz, H

    1993-07-01

    The efficacy of a Vitex agnus castus preparation (Strotan capsules) was investigated in a randomized double blind study vs. placebo. This clinical study involved 52 women with luteal phase defects due to latent hyperprolactinaemia. The daily dose was one capsule (20 mg) Vitex agnus castus preparation and placebo, respectively. Aim of the study was to prove whether the elevated pituitary prolactin reserve can be reduced and deficits in luteal phase length and luteal phase progesterone synthesis be normalized. Blood for hormonal analysis was taken at days 5-8 and day 20 of the menstrual cycle before and after three month of therapy. Latent hyperprolactinaemia was analysed by monitoring the prolactin release 15 and 30 min after i.v. injection of 200 micrograms TRH. 37 complete case reports (placebo: n = 20, verum: n = 17) after 3 month of therapy were statistically evaluated. The prolactin release was reduced after 3 months, shortened luteal phases were normalised and deficits in the luteal progesterone synthesis were eliminated. These changes were significant and occurred only in the verum group. All other hormonal parameters did not change with the exception of 17 beta-estradiol which rouse up in the luteal phase in patients receiving verum. Side effects were not seen, two women treated with the Vitex agnus castus preparation got pregnant. The tested preparation is thought to be an efficient medication in the treatment of luteal phase defects due to latent hyperprolactinaemia.

  2. XPS and TEM study of W-DLC/DLC double-layered film

    International Nuclear Information System (INIS)

    Takeno, Takanori; Komiyama, Takao; Miki, Hiroyuki; Takagi, Toshiyuki; Aoyama, Takashi

    2009-01-01

    A double-layered film of tungsten-containing diamond-like carbon (W-DLC) and DLC, (W-DLC)/DLC, was investigated. A film of 1.6 μm in thickness was deposited onto silicon substrate. The investigate double-layered coating was deposited by using the combination of PECVD and co-sputtering of tungsten metal target. Structure, interface and chemical bonding state of the investigated film were analyzed by Transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). From the results of the analyses, the structure of double-layered film is that amorphous phase of carbon is continued from DLC to W-DLC and tungsten metal clusters are dispersed in W-DLC layer.

  3. “Move vs. Agree”: the case of Clitic Doubling

    Directory of Open Access Journals (Sweden)

    Mihaela Adriana Marchis

    2012-01-01

    Full Text Available This paper continues the long-standing discussion whether clitics in clitic doubling constructionsshould be regarded as being similar to affixes expressing subject-verb agreement or rather as reflexes ofmovement. A crosslinguistic comparison of clitics will show that although clitics come in different flavorseither as phi-features or as determiners, they are all the result of an overt feature movement to repairviolations of the Minimal Link Constraint (Anagnostopoulou 2005. Long Distance Agree constructions inGreek, Romanian and Spanish use clitic doubling as a strategy to avoid minimality effects. On the basis of aparallel between clitic doubling and Long Distance Agree, I conclude that they are the outcome of twodifferent operations Move vs. Agree but both are sensitive to Minimal Link Constraint and are regulated by aphase-based locality condition (the Phase Impenetrability Condition.

  4. Monte Carlo study of the double and super-exchange model with lattice distortion

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, J R; Vallejo, E; Navarro, O [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-360, 04510 Mexico D. F. (Mexico); Avignon, M, E-mail: jrsuarez@iim.unam.m [Institut Neel, Centre National de la Recherche Scientifique (CNRS) and Universite Joseph Fourier, BP 166, 38042 Grenoble Cedex 9 (France)

    2009-05-01

    In this work a magneto-elastic phase transition was obtained in a linear chain due to the interplay between magnetism and lattice distortion in a double and super-exchange model. It is considered a linear chain consisting of localized classical spins interacting with itinerant electrons. Due to the double exchange interaction, localized spins tend to align ferromagnetically. This ferromagnetic tendency is expected to be frustrated by anti-ferromagnetic super-exchange interactions between neighbor localized spins. Additionally, lattice parameter is allowed to have small changes, which contributes harmonically to the energy of the system. Phase diagram is obtained as a function of the electron density and the super-exchange interaction using a Monte Carlo minimization. At low super-exchange interaction energy phase transition between electron-full ferromagnetic distorted and electron-empty anti-ferromagnetic undistorted phases occurs. In this case all electrons and lattice distortions were found within the ferromagnetic domain. For high super-exchange interaction energy, phase transition between two site distorted periodic arrangement of independent magnetic polarons ordered anti-ferromagnetically and the electron-empty anti-ferromagnetic undistorted phase was found. For this high interaction energy, Wigner crystallization, lattice distortion and charge distribution inside two-site polarons were obtained.

  5. Double and super-exchange model in one-dimensional systems

    International Nuclear Information System (INIS)

    Vallejo, E.; Navarro, O.; Avignon, M.

    2010-01-01

    We present an analytical and numerical study of the competition between double and super-exchange interactions in a one-dimensional model. For low super-exchange interaction energy we find phase separation between ferromagnetic and anti-ferromagnetic phases. When the super-exchange interaction energy gets larger, the conduction electrons are self-trapped within separate small magnetic polarons. These magnetic polarons contain a single electron inside two or three sites depending on the conduction electron density and form a Wigner crystallization. A new phase separation is found between these small polarons and the anti-ferromagnetic phase. Spin-glass behavior is obtained consistent with experimental results of the nickelate one-dimensional compound Y 2-x Ca x BaNiO 5 .

  6. Critical properties of the double-frequency sine-Gordon model with applications

    International Nuclear Information System (INIS)

    Fabrizio, M.; Gogolin, A.O.; Nersesyan, A.A.

    2000-01-01

    We study the properties of the double-frequency sine-Gordon model in the vicinity of the Ising quantum phase transition displayed by this model. Using a mapping onto a generalized lattice quantum Ashkin-Teller model, we obtain critical and nearly-off-critical correlation functions of various operators. We discuss applications of the double-sine-Gordon model to one-dimensional physical systems, like spin chains in a staggered external field and interacting electrons in a staggered potential

  7. Status of Gerda Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Victoria [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Collaboration: GERDA-Collaboration

    2016-07-01

    The GERDA experiment is designed to search for neutrinoless double beta (0νββ) decay of {sup 76}Ge. In Phase I of the experiment a background index (BI) of 10{sup -2} cts/(keV.kg.yr) was reached. No signal has been found and a lower limit on the half-life of 2.1.10{sup 25} yr (at 90% C.L.) is extracted. The aim of Phase II is to double the Ge mass and further reduce the BI by an order of magnitude to explore half-lives of about 10{sup 26} yr. Thirty new Broad Energy Germanium (BEGe) detectors have been produced. These detectors are distinct for their improved energy resolution and enhanced pulse shape discrimination of signal from background events. Further background reduction will be reached by an active veto to read out argon scintillation light. The Phase II commissioning showed that two of the major background components, external γ-rays from {sup 214}Bi and {sup 208}Tl decays, can be suppressed up to two orders of magnitude. This talk presents the current status of the GERDA Phase II upgrade.

  8. Gefitinib plus cisplatin and radiotherapy in previously untreated head and neck squamous cell carcinoma: A phase II, randomized, double-blind, placebo-controlled study

    International Nuclear Information System (INIS)

    Gregoire, Vincent; Hamoir, Marc; Chen Changhu; Kane, Madeleine; Kawecki, Andrzej; Julka, Pramod K.; Wang, Hung-Ming; Prasad, Srihari; D'Cruz, Anil K.; Radosevic-Jelic, Ljiljana; Kumar, Rejnish R.; Korzeniowski, Stanislaw; Fijuth, Jacek; Machiels, Jean-Pascal; Sellers, Mark V.; Tchakov, Ilian; Raben, David

    2011-01-01

    Background and purpose: To assess the efficacy and safety of gefitinib given concomitantly and/or as maintenance therapy to standard cisplatin/radiotherapy for previously untreated, unresected, stage III/IV non-metastatic SCCHN. Materials and methods: In this phase II, double-blind, study, 226 patients were randomized to gefitinib 250 mg/day, 500 mg/day or placebo in two phases: a concomitant phase (gefitinib or placebo with chemoradiotherapy), followed by a maintenance phase (gefitinib or placebo alone). Primary endpoint was local disease control rate (LDCR) at 2 years; secondary endpoints were LDCR at 1 year, objective response rate, progression-free survival, overall survival, and safety and tolerability. Results: Gefitinib (250 and 500 mg/day) did not improve 2-year LDCR compared with placebo either when given concomitantly with chemoradiotherapy (32.7% vs. 33.6%, respectively; OR 0.921, 95% CI 0.508, 1.670 [1-sided p = 0.607]) or as maintenance therapy (28.8% vs. 37.4%, respectively; OR 0.684, 95% CI 0.377, 1.241 [1-sided p = 0.894]). Secondary efficacy outcomes were broadly consistent with the 2-year LDCR results. In both doses, gefitinib was well-tolerated and did not adversely affect the safety and tolerability of concomitant chemoradiotherapy. Conclusion: Gefitinib was well-tolerated, but did not improve efficacy compared with placebo when given concomitantly with chemoradiotherapy, or as maintenance therapy alone.

  9. Recent progress in the LACOMERA Project (Large-Scale Experiments on Core Degradation, Melt Retention and Coolability) at the Forschungszentrum Karslruhe

    International Nuclear Information System (INIS)

    Miassoedov, A.; Alsmeyer, H.; Eppinger, B.; Meyer, L.; Steinbrueck, M.

    2004-01-01

    a top flooding phase after a phase of dry concrete erosion. COMET-L2: Generic study of a long-term metal/concrete interaction in cylindrical cavity for intermediate and low decay heat levels through metal phase only. DISCO-L1: Thermal hydraulic behaviour of the corium melt dispersion neglecting the chemical effects such as hydrogen generation and combustion. (author)

  10. Double-effect absorption heat pump, phase 3

    Science.gov (United States)

    Cook, F. B.; Cremean, S. P.; Jatana, S. C.; Johnson, R. A.; Malcosky, N. D.

    1987-06-01

    The RD&D program has resulted in design, development and testing of a packaged prototype double-effect generator cycle absorption gas heat pump for the residential and small commercial markets. The 3RT heat pump prototype has demonstrated a COPc of 0.82 and a COPh of 1.65 at ARI rating conditions. The heat pump prototype includes a solid state control system with built-in diagnostics. The absorbent/refrigerant solution thermophysical properties were completely characterized. Commercially available materials of construction were identified for all heat pump components. A corrosion inhibitor was identified and tested in both static and dynamic environments. The safety of the heat pump was analyzed by using two analytical approaches. Pioneer Engineering estimated the factory standard cost to produce the 3RT heat pump at $1,700 at a quantity of 50,000 units/year. One United States patent was allowed covering the heat pump technology, and two divisional applications and three Continuation-in-Park Applications were filed with the U.S.P.T.O. Corresponding patent coverage was applied for in Canada, the EEC, Australia, and Japan. Testing of the prototype heat pump is continuing, as are life tests of multiple pump concepts amd long-term dynamic corrosion tests. Continued development and commercialization of gas absorption heat pumps based on the technology are recommended.

  11. ABWR3. Passive double confinement and SA population dose evaluation for the innovative ABWR

    International Nuclear Information System (INIS)

    Matsumoto, Keiji; Hosomi, Kenji; Sato, Takashi

    2015-01-01

    iB1350 stands for an innovative, intelligent and inexpensive BWR 1350. It is the first Generation III.7 reactor after the Fukushima Daiichi accident. The iB1350 uses the Mark W containment and the in-containment filtered venting system (IFVS). The Mark W containment is made of reinforced concrete and has double cylinder FP barriers. There are also IC/PCCS pools, a fuel pool and a dryer separator (DS) pool on the top slab of the containment. These pools work as water seal for FP leakage through the top slab. Most FP such as CsI are scrubbed in the pools. The containment head is also submerged in the reactor well pool. The pool water works as shielding for radiation from the reactor core during normal operation and water seal for FP scrubbing dining a severe accident. The base mat concrete is covered with the S/P and the core catcher that is also submerged with corium flooding water during an accident. Therefore, the Mark W containment has passive double confinement barriers for FP. Moreover, the IFVS works as in-containment filtered venting system that scrubs FP from the wet well (WW) and the dry well (DW). The filtered venting tank is arranged in the outer well (OW) of the Mark W containment. Even noble gases and organic iodine going through the filtered venting system are still confined inside the containment and never released directly to the environment. The IFVS uses the innovative passive containment cooling system (iPCCS) as the pre-stage heat removal system. The iPCCS has a normal open suction line from the WW. Therefore, FP are scrubbed in the S/P at first and then vented into the filtered venting tank. After the DW suction line of the iPCCS is opened all the steam is cooled and condensed in the heat exchanger. Most FP are trapped in the condensate and returned into the WW through the condensate return line of the iPCCS. Therefore, the Mark W containment has excellent FP double confinement barriers and the in-containment filtered venting system that enable

  12. Bioaccessibility of hydroxytyrosol and n-3 fatty acids as affected by the delivery system: simple, double and gelled double emulsions.

    Science.gov (United States)

    Cofrades, Susana; Bou, Ricard; Flaiz, Linda; Garcimartín, Alba; Benedí, Juana; Mateos, Raquel; Sánchez-Muniz, Francisco J; Olivero-David, Raúl; Jiménez-Colmenero, Francisco

    2017-06-01

    This study examines the influence of different food-grade n-3 PUFA-enriched simple emulsion (SE), double emulsion (DE) and gelled double emulsion (GDE) delivery systems on the extent of lipolysis, antioxidant capacity and the bioaccessibility of hydroxytyrosol (HTy). GDE emulsion offered better protection for HTy (89%) than the other systems (79% in SE and DE). The reducing capacity of the emulsions containing HTy were not altered during oral digestion. However, "in vitro" gastric and intestinal phases significantly reduced the antioxidant activity of all systems. The structural and physical state of GDE entailed a slowing-down of triacylglyceride hydrolysis (36.4%) in comparison with that of SE and DE (22.7 and 24.8% for SE and DE, respectively).

  13. Search for the neutrinoless double β-decay in GERDA phase I using a pulse shape discrimination technique

    Energy Technology Data Exchange (ETDEWEB)

    Kirsch, Andrea

    2014-07-09

    The Germanium Detector Array (Gerda) experiment, located underground at the INFN Laboratori Nazionali del Gran Sasso (LNGS) in Italy, deploys high-purity germanium detectors to search for the neutrinoless double β-decay (0νββ) of {sup 76}Ge. An observation of this lepton number violating process, which is expected by many extensions of the Standard Model, would not only generate a fundamental shift in our understanding of particle physics, but also unambiguously prove the neutrino to have a non-vanishing Majorana mass component. A first phase of data recording lasted from November 2011 to May 2013 - resulting in a total exposure (defined as the product of detector mass and measurement time) of 21.6 kg.yr. Within this thesis a thorough study of this data with special emphasis on the development and scrutiny of an active background suppression technique by means of a signal shape analysis has been performed. Among several investigated multivariate approaches, particularly a selection algorithm based on an artificial neural network is found to yield the best performance; i.a. the background index close to the Q-value of the 0νββ-decay could be suppressed by 45% to 1.10{sup -2} cts/(keV.kg.yr), while still retaining a considerably high signal survival fraction of (83±3)% leading to a significant improvement of the experimental sensitivity. The efficiency is derived by a simulation and further validated by substantiated consistency checks availing themselves of measurements taken with different calibration sources and physics data. No signal is observed and a new lower limit of T{sup 0ν}{sub 1/2} (90%C.L.)> 2.2. 10{sup 25} yr for the half-life of neutrinoless double β-decay of {sup 76}Ge is established.

  14. Search for the neutrinoless double β-decay in GERDA phase I using a pulse shape discrimination technique

    International Nuclear Information System (INIS)

    Kirsch, Andrea

    2014-01-01

    The Germanium Detector Array (Gerda) experiment, located underground at the INFN Laboratori Nazionali del Gran Sasso (LNGS) in Italy, deploys high-purity germanium detectors to search for the neutrinoless double β-decay (0νββ) of 76 Ge. An observation of this lepton number violating process, which is expected by many extensions of the Standard Model, would not only generate a fundamental shift in our understanding of particle physics, but also unambiguously prove the neutrino to have a non-vanishing Majorana mass component. A first phase of data recording lasted from November 2011 to May 2013 - resulting in a total exposure (defined as the product of detector mass and measurement time) of 21.6 kg.yr. Within this thesis a thorough study of this data with special emphasis on the development and scrutiny of an active background suppression technique by means of a signal shape analysis has been performed. Among several investigated multivariate approaches, particularly a selection algorithm based on an artificial neural network is found to yield the best performance; i.a. the background index close to the Q-value of the 0νββ-decay could be suppressed by 45% to 1.10 -2 cts/(keV.kg.yr), while still retaining a considerably high signal survival fraction of (83±3)% leading to a significant improvement of the experimental sensitivity. The efficiency is derived by a simulation and further validated by substantiated consistency checks availing themselves of measurements taken with different calibration sources and physics data. No signal is observed and a new lower limit of T 0ν 1/2 (90%C.L.)> 2.2. 10 25 yr for the half-life of neutrinoless double β-decay of 76 Ge is established.

  15. Double parton scattering. A tale of two partons

    Energy Technology Data Exchange (ETDEWEB)

    Kasemets, Tomas

    2013-08-15

    Double parton scattering in proton-proton collisions can give sizable contributions to final states in parts of phase space. We investigate the correlations between the partons participating in the two hard interactions of double parton scattering. With a detailed calculation of the differential cross section for the double Drell-Yan process we demonstrate how initial state correlations between the partons affect the rate and distribution of final state particles. We present our results with focus on correlations between the polarizations of the partons. In particular transversely polarized quarks lead to a dependence of the cross section on angles between final state particles of the two hard interactions, and thereby on the invariant mass of particle pairs. The size of the spin correlations, and therewith the degree to which the final state particles are correlated, depends on unknown double parton distributions. We derive positivity bounds on the double parton distributions that follow from their interpretation as probability densities, taking into account all possible spin correlations between two partons in an unpolarized proton. We show that the bounds are stable under homogeneous leading-order DGLAP evolution to higher scales. We make direct use of the positivity bounds in numerical investigations on the double DGLAP evolution for two linearly polarized gluons and for two transversely polarized quarks. We find that the linearly polarized gluons are likely to be negligible at high scales but that transversely polarized quarks can still play a significant role. We examine the dependence of the double parton distributions on the transverse distance between the two partons, and therewith between the two hard interactions. We further study the interplay between transverse and longitudinal variables of the distributions, as well as the impact of the differences in integration limits between the evolution equations for single and double parton distributions. (orig.)

  16. Assessment of the integral code ASTEC with respect to the late in-vessel phase of core degradation

    International Nuclear Information System (INIS)

    D'Alessandro, Christophe; Starflinger, Joerg

    2014-01-01

    The integral code ASTEC is being developed jointly by GRS and IRSN as the European reference code for severe accidents. In the EU project CESAM it is foreseen to assess the capabilities of ASTEC to deal with a broad range of reactor designs (PWR, BWR, VVER, CANDU, Gen III+, etc.) and especially to model and capture the effect of severe accident mitigation measures. This requires a physically sound and sufficiently accurate modelling of the processes and phenomena that govern the course of the accident, and the modelling has to be validated to a sufficient extent. Concentrating on the in-vessel aspects of severe accidents, the present paper addresses these requirements by presenting results of ASTEC calculations for relevant experiments that cover the major physical phenomena during core degradation (melting and relocation of the fuel, oxidation, molten corium pool formation and its coolability in the lower plenum once it slumped from the core region). The assessment of models for bundle degradation is based on CORA (13 and W2). CORA represented a bundle of non-irradiated, electrically heated UO 2 -rods. Melt progression in strongly degraded geometry is addressed in the PHEBUS-FTP4 experiment carried out with irradiated fuel in debris bed configuration. The validation of molten pool modelling is based on BALI and RASPLAV-Salt experiments. The BALI-facility consists of a full-scale slice of lower plenum (allowing experiments at prototypical Rayleigh numbers) and utilizes uniformly heated water as simulant for corium. The RASPLAV experiments use a scaled-down slice of the lower head. Use of non-eutectic molten salt as simulant should address the effect of a significant solidification range typical for real corium. Calculation results of ASTEC are discussed in comparison with experimental measurements. Further, questions concerning the extrapolation of findings from validation to reactor application are critically discussed, concerning e.g. choice of model parameters

  17. Effect of UV-B and high visual radiation on photosynthesis in freshwater (nostoc spongiaeforme) and marine (Phormidium corium) cyanobacteria.

    Science.gov (United States)

    Bhandari, Rupali; Sharma, Prabhat Kumar

    2007-08-01

    Human activity is causing depletion of ozone in stratosphere, resulting in increased UV-B radiation and global warming. However, impact of these climatic changes on the aquatic organism (especially marine) is not fully understood. Here, we have studied the effect of excess UV-B and visible radiation on photosynthetic pigments, fatty acids content, lipid peroxidation, nitrogen content, nitrogen reductase activity and membrane proteins, induction of mycosporine-like amino acids (MAAs) and antioxidant enzymes superoxide dismutase (SOD) and ascorbate peroxidase (APX) in freshwater (Nostoc spongiaeform) and marine (Phormidium corium) cyanobacteria. UV-B treatment resulted in an increase in photosynthetic pigments in Nostoc and decrease in Phormidium, but high light treatment caused photobleaching of most of the pigments in both the species. Unsaturation level of fatty acids of both total and glycolipids remained unchanged in both the cyanobacteria, as a result of UV-B and high light treatments. Saturated fatty acids of total and glycolipids declined slightly in Nostoc by both the treatments. but remained unchanged in Phormidium. No changes in the unsaturated lipid content in our study probably suggested adaptation of the organism to the treatments. However, both treatments resulted in peroxidation of membrane lipids, indicating oxidative damage to lipids without any change in the level of unsaturation of fatty acid in the cell membrane. Qualitative and quantitative changes were observed in membrane protein profile due to the treatments. Cyanobacteria were able to synthesize MAAs in response to the UV-B treatment. Both treatments also increased the activities of SOD and APX. In conclusion, the study demonstrated induction of antioxidants such as SOD and APX under visible light treatment and screening pigment (MAAs) under UV-B treatment, which might protect the cyanobacteria from oxidative damage caused by high light and UV-B radiation.

  18. Ion acoustic waves and double-layers in electronegative expanding plasmas

    International Nuclear Information System (INIS)

    Plihon, Nicolas; Chabert, Pascal

    2011-01-01

    Ion acoustic waves and double-layers are observed in expanding plasmas in electronegative gases, i.e., plasmas containing an appreciable fraction of negative ions. The reported experiments are performed in argon gas with a variable amount of SF 6 . When varying the amount of SF 6 , the negative ion fraction increases and three main regimes were identified previously: (i) the plasma smoothly expands at low negative ion fraction, (ii) a static double-layer (associated with an abrupt potential drop and ion acceleration) forms at intermediate negative ion fraction, (iii) double-layers periodically form and propagate (in the plasma expansion direction) at high negative ion fraction. In this paper, we show that transition phases exist in between these regimes, where fluctuations are observed. These fluctuations are unstable slow ion acoustic waves, propagating in the direction opposite to the plasma expansion. These fluctuations are excited by the most unstable eigenmodes and display turbulent features. It is suggested that the static double layer forms when the ion acoustic fluctuations become non-linearly unstable: the double layer regime being a bifurcated state of the smoothly expanding regime. For the highest negative ion fraction, a coexistence of (upstream propagating) slow ion acoustic fluctuations and (downstream) propagating double layers was observed.

  19. Double-phase liquid membrane extraction for the analysis of pesticides

    International Nuclear Information System (INIS)

    Mohd Marsin Sanagi; Nurul Auni Zainal Abidin; Heng, See Hong; Wan Aini Wan Ibrahim

    2008-01-01

    A simple and solvent minimized sample preparation technique based on two-phase hollow fiber-protected liquid-phase micro extraction was investigated for HPLC analysis of selected pesticides in water samples. Four pesticides (procymidon, methidathion, quinalphos, and vinclozolin) were considered as target analysts. Parameters such as extraction solvent, salt concentration, stirring speed, extraction time, and pH value were optimized using spiked deionised water samples. The analysts were extracted from 12 mL water samples through organic solvent (n-hexane and isooctane) immobilized in the pores of a porous polypropylene hollow fiber into 50 μL acceptor phase present inside the hollow fiber. Excellent separations of analytes were obtained on C18 column using acetonitrile-water ratio of 55:45 v/v at elevated flow rate of 0.8 mL/ min. (author)

  20. Twist limits for late twisting double somersaults on trampoline.

    Science.gov (United States)

    Yeadon, M R; Hiley, M J

    2017-06-14

    An angle-driven computer simulation model of aerial movement was used to determine the maximum amount of twist that could be produced in the second somersault of a double somersault on trampoline using asymmetrical movements of the arms and hips. Lower bounds were placed on the durations of arm and hip angle changes based on performances of a world trampoline champion whose inertia parameters were used in the simulations. The limiting movements were identified as the largest possible odd number of half twists for forward somersaulting takeoffs and even number of half twists for backward takeoffs. Simulations of these two limiting movements were found using simulated annealing optimisation to produce the required amounts of somersault, tilt and twist at landing after a flight time of 2.0s. Additional optimisations were then run to seek solutions with the arms less adducted during the twisting phase. It was found that 3½ twists could be produced in the second somersault of a forward piked double somersault with arms abducted 8° from full adduction during the twisting phase and that three twists could be produced in the second somersault of a backward straight double somersault with arms fully adducted to the body. These two movements are at the limits of performance for elite trampolinists. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. The Structural Phase Transition in Octaflournaphtalene

    DEFF Research Database (Denmark)

    Mackenzie, Gordon A.; Arthur, J. W.; Pawley, G. S.

    1977-01-01

    The phase transition in octafluoronaphthalene has been investigated by Raman scattering and neutron powder diffraction. The weight of the experimental evidence points to a unit cell doubling in the a direction, but with no change in space group symmetry. Lattice dynamics calculations support...... this evidence and indicate that the mechanism of the phase transition may well be the instability of a zone boundary acoustic mode of librational character. The structure of the low-temperature phase has been refined and the Raman spectra of the upper and lower phases are reported....

  2. Heatup of the TMI-2 lower head during core relocation

    International Nuclear Information System (INIS)

    Wang, S.K.; Sienicki, J.J.; Spencer, B.W.

    1989-01-01

    An analysis has been carried out to assess the potential of a melting attack upon the reactor vessel lower head and incore instrument nozzle penetration weldments during the TMI core relocation event at 224 minutes. Calculations were performed to determine the potential for molten corium to undergo breakup into droplets which freeze and form a debris bed versus impinging upon the lower head as one or more coherent streams. The effects of thermal-hydraulic interactions between corium streams and water inside the lower plenum, the effects of the core support assembly structure upon the corium, and the consequences of corium relocation by way of the core former region were examined. 19 refs., 24 figs

  3. On the generalized Hartman effect for symmetric double-barrier point potentials

    International Nuclear Information System (INIS)

    Lee, Molly A; Manzoni, Luiz A; Nyquist, Erik A; Lunardi, José T

    2015-01-01

    We consider the scattering of a non-relativistic particle by a symmetrical arrangement of two identical barriers in one-dimension, with the barriers given by the well-known four-parameter family of point interactions. We calculate the phase time and the stationary Salecker-Wigner-Peres clock time for the particular cases of a double δ and a double δ' barrier and investigate the off-resonance behavior of these time scales in the limit of opaque barriers, addressing the question of emergence of the generalized Hartman effect

  4. Double-double effect and coordination number

    International Nuclear Information System (INIS)

    Mioduski, T.

    1992-01-01

    The original method of interpretation together with its theoretical foundations is developed, making it possible to use location and direction of the double-double (tetrad) effect within the Ln and An series to determine the coordination number (CN) complexes of the f-block elements. The method is applied for potentiometric and radiometric equilibrium studies. It has been pointed and that the decisive factor for the direction of the double-double effect in the case of the Gibbs energy variations is a difference in the CN of the f-element ion between the reaction product complex and that for the reaction substrate the ''regular'' effect for a given tetrad is accompanied by decrease in the CN while the ''reverse'' effect by increase in the CN. (author). 122 refs, 5 tabs, 8 figs

  5. Relativistic pn-QRPA to the double beta decay

    International Nuclear Information System (INIS)

    Conti, Claudio de; Krmpotic, F.; Carlson, Brett Vern

    2010-01-01

    Full text: In nature there are about 50 nuclear systems where the single beta-decay is energetically forbidden, and double- beta decay turns out to be only possible mode of disintegration. It is the nuclear pairing force which causes such an 'anomaly', by making the mass of the odd-odd isobar, (N - 1;Z + 1), to be greater than the masses of its even-even neighbors, (N;Z) and (N - 2;Z +2). The modes by which the double-beta decay can take place are connected with the neutrino and antineutrino distinction. In case the lepton number is strictly conserved the neutrino is a Dirac fermion and the two-neutrino mode is the only possible mode of disintegration. On the other hand, if this conservation is violated, the neutrino is a Majorana particle and neutrinoless double-beta decay also can occur. Both two-neutrino and neutrinoless double-beta decay processes have attracted much attention, because a comparison between experiment and theory for the first, provides a measure of confidence one may have in the nuclear wave function employed for extracting the unknown parameters from neutrinoless lifetime measurements. The proton-neutron (pn) quasiparticle random phase approximation (QRPA) has turned out be the most simple model for calculating the nuclear wave function involved in the double-beta decay transitions. In this work the transition matrix elements for 0 + -> 0 + double-beta decay are calculated for 48 Ca, 76 Ge, 82 Se, 100 Mo, 128 Te and 130 Te nuclei, using a relativistic pn-QRPA based on Hartree-Bogoliubov approximation to the single-particle motion. (author)

  6. CFD to modeling molten core behavior simultaneously with chemical phenomena

    International Nuclear Information System (INIS)

    Vladimir V Chudanov; Anna E Aksenova; Valerii A Pervichko

    2005-01-01

    Full text of publication follows: This paper deals with the basic features of a computing procedure, which can be used for modeling of destruction and melting of a core with subsequent corium retaining into the reactor vessel. The destruction and melting of core mean the account of the following phenomena: a melting, draining (moving of the melt through a porous layer of core debris), freezing with release of an energy, change of geometry, formation of the molten pool, whose convective intermixing and distribution influence on a mechanism of borders destruction. It is necessary to take into account that during of heating molten pool and development in it of convective fluxes a stratification of a multi-component melt on two layers of metal light and of oxide heavy components is observed. These layers are in interaction, they can exchange by the separate components as result of diffusion or oxidizing reactions. It can have an effect considerably on compositions, on a specific weight, and on properties of molten interacting phases, and on a structure of the molten stratified pool. In turn, the retaining of the formed molten masses in reactor vessel requires the solution of a matched heat exchange problem, namely, of a natural convection in a heat generating fluid in partially or completely molten corium and of heat exchange problem with taking into account of a melting of the reactor vessel. In addition, it is necessary to take into account phase segregation, caused by influence of local and of global natural convective flows and thermal lag of heated up boundaries. The mathematical model for simulation of the specified phenomena is based on the Navier-Stokes equations with variable properties together with the heat transfer equation. For modeling of a corium moving through a porous layer of core debris, the special computing algorithm to take into account density jump on interface between a melt and a porous layer of core debris is designed. The model was

  7. Les mécanismes d'action des détergents et les doubles couche électriques aux interfaces Action Mechanisms of Detergents and Double Electric Layer At Interfaces

    Directory of Open Access Journals (Sweden)

    Briant J.

    2006-11-01

    Full Text Available Les doubles couches électriques aux interfaces jouent un rôle important dans l'action des additifs détergents ioniques, surtout dans la stabilisation des suspensions. Les phénomènes électrocinétiques aux interfaces : électroosmose, potentiel d'écoulement, électrophorèse, potentiel de sédimentation permettent de mettre en évidence la double couche électrique et d'en déterminer certaines caractéristiques signe de la charge de la couche mobile, potentiel électrocinétique, etc. Les relations entre la stabilité des suspensions et l'interaction des doubles couches électriques ont fait l'objet d'études approfondies de Deriaguin, Verwey et Overbeek. Ces auteurs ont analysé le mécanisme d'action des doubles couches électriques et la façon dont elles pouvaient créer des forces de répulsion capables de surmonter les forces d'attraction de Van der Waals entre particules. Leur analyse permet d'expliquer les observations faites sur les effets de la charge des particules, la nature des ions fixés, la concentration de la phase dispersante en produits actifs. Le mécanisme d'action des doubles couches électriques permet peut-être d'appréhender mieux le mécanisme d'action des additifs non ioniques. Double electric loyers at interfaces play an important part in the action of ionic detergent additives, especially in the stability of suspensions. Electrokinetic phenomena at interfaces (electroosmosis,flow potential, electrophoresis, sedimentation potential can be used to reveal the double electric layer and to determine various properties such as the sign of the charge of the mobile loyer, the electrokinetic potential, etc. The relations between the stabillity of suspensions and the interaction of double electric loyers have been the subject of in-depth research by Deriaguin, Verwey and Overbeek. The authors have analyzed the action mechanism of double electric loyers and the way they can create repulsion forces capable of overcoming

  8. Double seismic zone for deep earthquakes in the izu-bonin subduction zone.

    Science.gov (United States)

    Iidaka, T; Furukawa, Y

    1994-02-25

    A double seismic zone for deep earthquakes was found in the Izu-Bonin region. An analysis of SP-converted phases confirms that the deep seismic zone consists of two layers separated by approximately 20 kilometers. Numerical modeling of the thermal structure implies that the hypocenters are located along isotherms of 500 degrees to 550 degrees C, which is consistent with the hypothesis that deep earthquakes result from the phase transition of metastable olivine to a high-pressure phase in the subducting slab.

  9. Double-Difference Global Adjoint Tomography

    Science.gov (United States)

    Orsvuran, R.; Bozdag, E.; Lei, W.; Tromp, J.

    2017-12-01

    The adjoint method allows us to incorporate full waveform simulations in inverse problems. Misfit functions play an important role in extracting the relevant information from seismic waveforms. In this study, our goal is to apply the Double-Difference (DD) methodology proposed by Yuan et al. (2016) to global adjoint tomography. Dense seismic networks, such as USArray, lead to higher-resolution seismic images underneath continents. However, the imbalanced distribution of stations and sources poses challenges in global ray coverage. We adapt double-difference multitaper measurements to global adjoint tomography. We normalize each DD measurement by its number of pairs, and if a measurement has no pair, as may frequently happen for data recorded at oceanic stations, classical multitaper measurements are used. As a result, the differential measurements and pair-wise weighting strategy help balance uneven global kernel coverage. Our initial experiments with minor- and major-arc surface waves show promising results, revealing more pronounced structure near dense networks while reducing the prominence of paths towards cluster of stations. We have started using this new measurement in global adjoint inversions, addressing azimuthal anisotropy in upper mantle. Meanwhile, we are working on combining the double-difference approach with instantaneous phase measurements to emphasize contributions of scattered waves in global inversions and extending it to body waves. We will present our results and discuss challenges and future directions in the context of global tomographic inversions.

  10. On double-degenerate type Ia supernova progenitors as supersoft X-ray sources - A population synthesis analysis using SeBa

    DEFF Research Database (Denmark)

    Nielsen, Mikkel T. B.; Nelemans, Gijs; Voss, Rasmus

    2013-01-01

    a SSS phase. Aims: We aim to examine the possibility of double-degenerate progenitor systems being SSSs, and place stringent upper limits on the maximally possible durations of any SSS phases and expected number of these systems in a galactic population. Method: We employ the binary population synthesis...... code SeBa to examine the mass-transfer characteristics of a possible SSS phase of double-degenerate type Ia SN progenitor systems for 1) the standard SeBa assumptions, and 2) an optimistic best-case scenario. The latter case establishes firm upper limits on the possible population of supersoft source...

  11. Nuclear Structure Calculations for Two-Neutrino Double-β Decay

    Directory of Open Access Journals (Sweden)

    P. Sarriguren

    2016-01-01

    Full Text Available We study the two-neutrino double-β decay in 76Ge, 116Cd, 128Te, 130Te, and 150Nd, as well as the two Gamow-Teller branches that connect the double-β decay partners with the states in the intermediate nuclei. We use a theoretical microscopic approach based on a deformed self-consistent mean field with Skyrme interactions including pairing and spin-isospin residual forces, which are treated in a proton-neutron quasiparticle random-phase approximation. We compare our results for Gamow-Teller strength distributions with experimental information obtained from charge-exchange reactions. We also compare our results for the two-neutrino double-β decay nuclear matrix elements with those extracted from the measured half-lives. Both single-state and low-lying-state dominance hypotheses are analyzed theoretically and experimentally making use of recent data from charge-exchange reactions and β decay of the intermediate nuclei.

  12. The re-entrant cholesteric phase of DNA

    Science.gov (United States)

    Yevdokimov, Yu. M.; Skuridin, S. G.; Salyanov, V. I.; Semenov, S. V.; Shtykova, E. V.; Dadinova, L. A.; Kompanets, O. N.; Kats, E. I.

    2017-07-01

    The character of packing of double-stranded DNA molecules in particles of liquid-crystal dispersions formed as a result of the phase exclusion of DNA molecules from aqueous salt polyethylene glycol solutions has been estimated by comparing the circular dichroism (CD) spectra of these dispersions recorded at different osmotic pressures and temperatures. It is shown that the first cycle of heating of dispersion particles with hexagonally packed double-stranded DNA molecules leads to the occurrence of abnormal optical activity of these particles, which manifests itself in the form of a strong negative CD band, characteristic of DNA cholesterics. Moreover, subsequent cooling is accompanied by a further increase in the abnormal optical activity, which indicates the existence of the "hexagonal → cholesteric packing" phase transition, controlled by both the osmotic pressure of the solution and its temperature. The result obtained can be described in terms of "quasi-nematic" layers composed of orientationally ordered DNA molecules in the structure of dispersion particles. There are two possible ways of packing for these layers, which determine their hexagonal or cholesteric spatial structure. The second heating → cooling cycle confirms these results and is indicative of possible differences in the packing of double-stranded DNA molecules in the hexagonal phase, which depend on the osmotic pressure of the solution.

  13. Debris bed coolability using a 3-D two phase model in a porous medium

    Energy Technology Data Exchange (ETDEWEB)

    Bechaud, C.; Duval, F.; Fichot, F. [CEA Cadarache, Inst. de Protection et de Surete Nucleaire13 - Saint-Paul-lez-Durance (France); Quintard, M. [Institut de Mecanique des Fluides de Toulouse, 31 (France); Parent, M. [CEA Grenoble, Dept. de Thermohydraulique et de Physique, 38 (France)

    2001-07-01

    During a severe nuclear accident, a part of the molten corium resulting from the core degradation may relocate in the lower plenum of the reactor vessel. In order to predict the safety margin of the reactor under such conditions, the coolability of this porous heat-generating medium is evaluated in this study and compared with other investigations. In this work, conservation equations derived for debris beds are implemented in the three dimensional thermal-hydraulic module of the CATHARE code. The coolant flow is a two phase flow with phase change. The momentum balance equation for each fluid phase is an extension of Darcy's law. This extension takes into account the capillary effects between the two phases, the relative permeabilities and passabilities of each phase, the interfacial drag force between liquid and gas, and the porous bed configuration (porosity, particle diameter,... ). The model developed is three-dimensional which is important to better predict the flow in configuration such as counter-current flow or to emphasize preferential ways induced by porous geometry. The energy balance equations of the three phases (liquid, gas and solid phase) are obtained by a volume averaging process of the local conservation equations. In this method, the local thermal non-equilibrium between the three phases is considered and the heat exchanges, the phase change rate as well as the thermal dispersion coefficients are calculated as a function of the local geometry of the porous medium. Such a method allows the numerical estimation of these thermal properties which are very difficult to determine experimentally. This feature is a great advantage of this approach. After a brief description of the thermal-hydraulic model, one-dimensional predictions of critical dryout fluxes are presented and compared with results from the literature. Reasonable agreement is obtained. Then a two-dimensional calculation is presented and shows the influence of the porous medium

  14. Double Charge Exchange Reactions and Double Beta Decay

    Science.gov (United States)

    Auerbach, N.

    2018-05-01

    The subject of this presentation is at the forefront of nuclear physics, namely double beta decay. In particular one is most interested in the neutrinoless process of double beta decay, when the decay proceeds without the emission of two neutrinos. The observation of such decay would mean that the lepton conservation symmetry is violated and that the neutrinos are of Majorana type, meaning that they are their own anti-particles. The life time of this process has two unknowns, the mass of the neutrino and the nuclear matrix element. Determining the nuclear matrix element and knowing the cross-section well will set limits on the neutrino mass. There is a concentrated effort among the nuclear physics community to calculate this matrix element. Usually these matrix elements are a very small part of the total strength of the transition operators involved in the process. There is no simple way to “calibrate” the nuclear double beta decay matrix element. The double beta decay is a double charge exchange process, therefore it is proposed that double charge exchange reactions using ion projectiles on nuclei that are candidates for double beta decay, will provide additional necessary information about the nuclear matrix elements.

  15. Double ferromagnetism in single-crystal Gd-Y-Lu alloys

    International Nuclear Information System (INIS)

    Ito, T.; Oka, M.; Legvold, S.; Beaudry, B.J.

    1984-01-01

    Magnetization, electrical resistivity, specific-heat and thermal-expansion measurements have been made on Gd-Y-Lu single crystals. Low isofield magnetization data for the a-axis sample of Gd 75 Y/sub 17.5/ Lu/sub 7.5/ exhibit two different Curie-Weiss regimes, which suggests double ferromagnetism. Electrical resistivity, specific-heat, and thermal-expansion data show two anomalies at the transition temperatures. The anomaly at 231.5 K shows a lambda-type second-order phase transition and the anomaly at 223 K shows a sharp spike first-order phase transition

  16. Synthetic analyses of the LAVA experimental results on in-vessel corium retention through gap cooling

    International Nuclear Information System (INIS)

    Kang, Kyoung Ho; Cho, Young Ro; Koo, Kil Mo; Park, Rae Joon; Kim, Jong Hwan; Kim, Jong Tae; Ha, Kwang Sun; Kim, Sang Baik; Kim, Hee Dong

    2001-03-01

    LAVA(Lower-plenum Arrested Vessel Attack) has been performed to gather proof of gap formation between the debris and lower head vessel and to evaluate the effect of the gap formation on in-vessel cooling. Through the total of 12 tests, the analyses on the melt relocation process, gap formation and the thermal and mechanical behaviors of the vessel were performed. The thermal behaviors of the lower head vessel were affected by the formation of the fragmented particles and melt pool during the melt relocation process depending on mass and composition of melt and subcooling and depth of water. During the melt relocation process 10.0 to 20.0 % of the melt mass was fragmented and also 15.5 to 47.5 % of the thermal energy of the melt was transferred to water. The experimental results address the non-adherence of the debris to the lower head vessel and the consequent gap formation between the debris and the lower head vessel in case there was an internal pressure load across the vessel abreast with the thermal load induced by the thermite melt. The thermal behaviors of the lower head vessel during the cooldown period were mainly affected by the heat removal characteristics through this gap, which were determined by the possibilities of the water ingression into the gap depending on the melt composition of the corium simulant. The enhanced cooling capacity through the gap was distinguished in the Al 2 O 3 melt tests. It could be inferred from the analyses on the heat removal capacity through the gap that the lower head vessel could effectively cooldown via heat removal in the gap governed by counter current flow limits(CCFL) even if 2mm thick gap should form in the 30 kg Al 2 O 3 melt tests, which was also confirmed through the variations of the conduction heat flux in the vessel and rapid cool down of the vessel outer surface in the Al 2 O 3 melt tests. In the case of large melt mass of 70 kg Al 2 O 3 melt, however, the infinite possibility of heat removal through the

  17. Assessment of capability for modeling the core degradation in 2D geometry with ASTEC V2 integral code for VVER type of reactor

    International Nuclear Information System (INIS)

    Dimov, D.

    2011-01-01

    The ASTEC code is progressively becoming the reference European severe accident integral code through in particular the intensification of research activities carried out since 2004. The purpose of this analysis is to assess ASTEC code modelling of main phenomena arising during hypothetical severe accidents and particularly in-vessel degradation in 2D geometry. The investigation covers both early and late phase of degradation of reactor core as well as determination of corium which will enter the reactor cavity. The initial event is station back-out. In order to receive severe accident condition, failure of all active component of emergency core cooling system is apply. The analysis is focus on ICARE module of ASTEC code and particularly on so call MAGMA model. The aim of study is to determine the capability of the integral code to simulate core degradation and to determine the corium composition entering the reactor cavity. (author)

  18. Stepwise integral scaling method and its application to severe accident phenomena

    International Nuclear Information System (INIS)

    Ishii, M.; Zhang, G.

    1993-10-01

    Severe accidents in light water reactors are characterized by an occurrence of multiphase flow with complicated phase changes, chemical reaction and various bifurcation phenomena. Because of the inherent difficulties associated with full-scale testing, scaled down and simulation experiments are essential part of the severe accident analyses. However, one of the most significant shortcomings in the area is the lack of well-established and reliable scaling method and scaling criteria. In view of this, the stepwise integral scaling method is developed for severe accident analyses. This new scaling method is quite different from the conventional approach. However, its focus on dominant transport mechanisms and use of the integral response of the system make this method relatively simple to apply to very complicated multi-phase flow problems. In order to demonstrate its applicability and usefulness, three case studies have been made. The phenomena considered are (1) corium dispersion in DCH, (2) corium spreading in BWR MARK-I containment, and (3) incore boil-off and heating process. The results of these studies clearly indicate the effectiveness of their stepwise integral scaling method. Such a simple and systematic scaling method has not been previously available to severe accident analyses

  19. Q values of the 76Ge and 100Mo double-beta decays

    International Nuclear Information System (INIS)

    Rahaman, S.; Elomaa, V.-V.; Eronen, T.; Hakala, J.; Jokinen, A.; Julin, J.; Kankainen, A.; Saastamoinen, A.; Suhonen, J.; Weber, C.; Aystoe, J.

    2008-01-01

    Penning trap measurements using mixed beams of 76 Ge- 76 Se and 100 Mo- 100 Ru have been utilized to determine the double-beta decay Q-values of 76 Ge and 100 Mo with uncertainties less than 200 eV. The value for 76 Ge, 2039.04(16) keV is in agreement with the published SMILETRAP value, 2039.006(50) keV. The new value for 100 Mo, 3034.40(17) keV is 30 times more precise than the previous literature value, sufficient for the ongoing neutrinoless double-beta decay searches in 100 Mo. Moreover, the precise Q-value is used to calculate the phase-space integrals and the experimental nuclear matrix element of double-beta decay

  20. Melt jet fragmentation and oxidation in the lower plenum

    International Nuclear Information System (INIS)

    Berthoud, G.

    2001-01-01

    During the late phases of a PWR Severe Accident, the core materials discharge into the lower plenum in which water is still present. In that case, we are then concerned by the possible occurrence of a Steam Explosion which may endanger the vessel structure and by the following cooling of the melt debris. So, we have two possible ways of vessel rupture: a mechanical one following an energetic Steam Explosion and a thermal one due to insufficient debris cooling. Both types of problems are linked with the degree of fragmentation of the core material during its penetration into the water of the lower plenum. One of the most likely mode of discharge consists in corium streams or jets. The fragmentation will build a corium-water mixture (the pre-mixing sequence) which, under certain circumstances, may undergo a fine fragmentation sequence leading to an energetic Steam Explosion (the explosion sequence). Whatever the occurrence of a Steam Explosion, the resulting debris will accumulate at the bottom of the Reactor Vessel and the cooling of such a ''debris bed'' is known to be highly dependant of the granulometry and build up of the debris bed which are linked with the previous sequence of corium fragmentation and dispersion. In CEA, the MC3D Code has been developed to deal with all these phenomena. (author)

  1. High temperature measurements in severe accident experiments on the PLINIUS Platform

    International Nuclear Information System (INIS)

    Bouyer, V.; Cassiaut-Louis, N.; Fouquart, P.; Journeau, C.; Piluso, P.; Parga, C.

    2013-06-01

    Severe accident experiments are conducted on the PLINIUS platform in Cadarache, using prototypic corium. During these experiments, it is essential to measure the temperature to know the thermo-physical state of the corium in static and dynamic conditions or to monitor the concrete ablation phenomenology. Temperature in the corium can reach about 2000 to 3000 K. Such aggressive conditions restrict the type of diagnostics that can be employed to do high temperature measurements during the experiments. We employ both non-intrusive (pyrometers) and intrusive (K-type and C-type thermocouples) diagnostics. In this paper, we present the different high temperature measurements techniques and the results that can be obtained in severe accident experiments as corium heating tests and molten core concrete interaction experiments. (authors)

  2. Comparison study of lesion localization in patients with primary and secondary hyperparathyroidism using double-phase Tc-99m sestamibi scintigraphy

    International Nuclear Information System (INIS)

    Jeon, Tae Joo; Lee, Jong Doo; Rhyu, Young Hoon; Park, Jung Soo; Jang, Hang Seok

    1999-01-01

    The purpose of this study was to evaluate and compare the scintigraphic findings and diagnostic accuracy of double-phase Tc-99m sestamibi scan in primary and secondary hyperparathyroidism (HPT). We retrospectively reviewed 16 cases of primary (18 lesions) and 11 cases of secondary HPT (44 lesions) who underwent Tc-99m-sestamibi scan before the surgical intervention. Scan was performed using LEM camera (Siemens, Germany ) after the injection of 740MBq of Tc-99m sestamibi. Routine image consisted of baseline and 3-hour delayed images and each image was obtained using both parallel and pine hole collimator. The study population was 27 patients (male/ females=5/22, age: 49.1±10.8). Eighteen lesions of primary HPT consisted of 13 adenomas and 5 hyperplasias, while while all lesions of secondary but only 2 lesions of 5 hyperplasias, while all lesions of secondary HPT were hyperplasias. Among the case of primary HPT, we could detect all the lesions of 13 adenomas but only 2 lesions of 5 hyperplasias (40%) could be detected by double phase scintigraphy. Three cases of primary lesion showed decreased uptake in delayed images compared with baseline. The sensitivity, specificity, positive predictive value and accuracy of primary and secondary HPT were 58.5% (10/17), 83.3% (10/12), 83.3%(10/12), 75.9%(22/29), and 37.5%(15/40), 50% (2/4), 88.2% (15/17), 38.6% (17/44), respectively. Overall sensitivity, specificity, positive predictive value and accuracy were 43.9% (25/57), 75%(12/16), 86.2% (25/29), and 53.4% (39/73). There were no statistical difference between the weight of primary and secondary HPT lesion (p>0.05). Tc-99m sestamibi scan is fairly good modality to detect parathyroid lesion in patient with primary HPT before the surgical intervention. However, since some of cases may reveal decreased uptake in delayed image, a careful attention to the findings of baseline images may be helpful. Still the low accuracy of sestamibi scan in diagnosis of secondary HPT prohibits

  3. Effective field study of ising model on a double perovskite structure

    Energy Technology Data Exchange (ETDEWEB)

    Ngantso, G. Dimitri; El Amraoui, Y. [LMPHE, (URAC 12), Faculté des Sciences, Université Mohammed V, Rabat (Morocco); Benyoussef, A. [LMPHE, (URAC 12), Faculté des Sciences, Université Mohammed V, Rabat (Morocco); Center of Materials and Nanomaterials, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); El Kenz, A., E-mail: elkenz@fsr.ac.ma [LMPHE, (URAC 12), Faculté des Sciences, Université Mohammed V, Rabat (Morocco)

    2017-02-01

    By using the effective field theory (EFT), the mixed spin-1/2 and spin-3/2 Ising ferrimagnetic model adapted to a double perovskite structure has been studied. The EFT calculations have been carried out from Ising Hamiltonian by taking into account first and second nearest-neighbors interactions and the crystal and external magnetic fields. Both first- and second-order phase transitions have been found in phase diagrams of interest. Depending on crystal-field values, the thermodynamic behavior of total magnetization indicated the compensation phenomenon existence. The hysteresis behaviors are studied by investigating the reduced magnetic field dependence of total magnetization and a series of hysteresis loops are shown for different reduced temperatures around the critical one. - Highlights: • Magnetic properties of double perovskite Structure have been studied. • Compensation temperature has been observed below the critical temperature. • Hysteresis behaviors have been studied.

  4. Effective field study of ising model on a double perovskite structure

    International Nuclear Information System (INIS)

    Ngantso, G. Dimitri; El Amraoui, Y.; Benyoussef, A.; El Kenz, A.

    2017-01-01

    By using the effective field theory (EFT), the mixed spin-1/2 and spin-3/2 Ising ferrimagnetic model adapted to a double perovskite structure has been studied. The EFT calculations have been carried out from Ising Hamiltonian by taking into account first and second nearest-neighbors interactions and the crystal and external magnetic fields. Both first- and second-order phase transitions have been found in phase diagrams of interest. Depending on crystal-field values, the thermodynamic behavior of total magnetization indicated the compensation phenomenon existence. The hysteresis behaviors are studied by investigating the reduced magnetic field dependence of total magnetization and a series of hysteresis loops are shown for different reduced temperatures around the critical one. - Highlights: • Magnetic properties of double perovskite Structure have been studied. • Compensation temperature has been observed below the critical temperature. • Hysteresis behaviors have been studied.

  5. Controlled-release and preserved bioactivity of proteins from (self-assembled core-shell double-walled microspheres

    Directory of Open Access Journals (Sweden)

    Yuan W

    2012-01-01

    Full Text Available Weien Yuan1,2, Zhenguo Liu11Department of Neurology, Xinhua Hospital, affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 2School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People’s Republic of ChinaAbstract: In order to address preserved protein bioactivities and protein sustained-release problems, a method for preparing double-walled microspheres with a core (protein-loaded nanoparticles with a polymer-suspended granule system-formed core and a second shell (a polymer-formed shell for controlled drug release and preserved protein bioactivities has been developed using (solid-in-oil phase-in-hydrophilic oil-in-water (S/O/Oh/W phases. The method, based on our previous microsphere preparation method (solid-in-oil phase-in-hydrophilic oil-in-water (S/O/Oh/W, employs different concentric poly(D,L-lactide-co-glycolide, poly(D,L-lactide, and protein-loaded nanoparticles to produce a suspended liquid which then self-assembles to form shell-core microspheres in the hydrophilic oil phase, which are then solidified in the water phase. Variations in the preparation parameters allowed complete encapsulation by the shell phase, including the efficient formation of a poly(D,L-lactide shell encapsulating a protein-loaded nanoparticle-based poly(D,L-lactide-co-glycolide core. This method produces core-shell double-walled microspheres that show controlled protein release and preserved protein bioactivities for 60 days. Based upon these results, we concluded that the core-shell double-walled microspheres might be applied for tissue engineering and therapy for chronic diseases, etc.Keywords: protein delivery, protein stability, core-shell microspheres, dextran nanoparticles

  6. Neutrinoless double beta decay in Gerda

    Science.gov (United States)

    Grabmayr, Peter; Gerda Collaboration

    2015-10-01

    The Germanium Detector Array (Gerda) experiment searches for the neutrinoless double beta decay in 76Ge. This lepton number violating process is predicted by extensions of the standard model. Gerda follows a staged approach by increasing mass and lowering the background level from phase to phase. Gerda is setup at the Gran Sasso underground laboratory of INFN, Italy. An array of high-purity germanium detectors is lowered directly in liquid argon for shielding and cooling. Further background reduction is achieved by an instrumented water buffer. In Phase I an exposure of 21.6 kg yr was collected at a background level of 10-2 cts/(keV kg yr). The lower limit on the half-life of 76Ge > 2 . 1 .1025 yr (90% C.L.) has been published. Further analyses search for decay into excited states or the accompanied Majoron decay. Presently, Phase II is in preparation which intends to reach a background level of 10-3 cts/(keV kg yr) and to increase the exposure to 100 kg yr. About 20 kg of novel thick-window BEGe (Broad Energy Germanium) detectors will be added and the liquid argon will be instrumented. The status of Phase II preparation and results from the commissioning runs will be presented as well as some further results from Phase I.

  7. Phase Difference Measurement Method Based on Progressive Phase Shift

    Directory of Open Access Journals (Sweden)

    Min Zhang

    2018-06-01

    Full Text Available This paper proposes a method for phase difference measurement based on the principle of progressive phase shift (PPS. A phase difference measurement system based on PPS and implemented in the FPGA chip is proposed and tested. In the realized system, a fully programmable delay line (PDL is constructed, which provides accurate and stable delay, benefitting from the feed-back structure of the control module. The control module calibrates the delay according to process, voltage and temperature (PVT variations. Furthermore, a modified method based on double PPS is incorporated to improve the resolution. The obtained resolution is 25 ps. Moreover, to improve the resolution, the proposed method is implemented on the 20 nm Xilinx Kintex Ultrascale platform, and test results indicate that the obtained measurement error and clock synchronization error is within the range of ±5 ps.

  8. FARO base case post-test analysis by COMETA code

    Energy Technology Data Exchange (ETDEWEB)

    Annunziato, A.; Addabbo, C. [Joint Research Centre, Ispra (Italy)

    1995-09-01

    The paper analyzes the COMETA (Core Melt Thermal-Hydraulic Analysis) post test calculations of FARO Test L-11, the so-called Base Case Test. The FARO Facility, located at JRC Ispra, is used to simulate the consequences of Severe Accidents in Nuclear Power Plants under a variety of conditions. The COMETA Code has a 6 equations two phase flow field and a 3 phases corium field: the jet, the droplets and the fused-debris bed. The analysis shown that the code is able to pick-up all the major phenomena occurring during the fuel-coolant interaction pre-mixing phase.

  9. The VULCANO ex-vessel programme

    Energy Technology Data Exchange (ETDEWEB)

    Cognet, G.; Laffont, G.; Jegou, C.; Pierre, J.; Journeau, C.; Cranga, M.; Sudreau, F.; Ramacciotti, M. [CEA Cadarache, St. Paul lez Durance (France). Direction des Reacteurs Nucleaires

    2000-05-01

    Among the currently studied core-catcher projects, several concepts suppose corium spreading before cooling. In particular, the EPR (European pressurized reactor) core-catcher concept is based on mixing the corium with a special concrete, spreading the molten mixture on a large multi-layer surface cooled from the bottom and subsequently cooling by flooding with water. Therefore, melt spreading deserves intensive investigation in order to determine and quantify key phenomena which govern the spreading. In France, for some years now, the nuclear reactor division of the atomic energy commission (CEA/DRN) has undertaken a large program to improve knowledge on corium behaviour and coolability. This program is based on experimental and theoretical investigations which are finally gathered in scenario and mechanistic computer codes. Within this framework, the real material experimental programme, VULCANO, conducted in collaboration with European partners, is currently devoted to the study of corium spreading. Since 1997, several tests have been performed on dry corium spreading with various melt compositions. After a brief description of the general objectives and the facility, this paper will present the most important spreading results. (orig.)

  10. The VULCANO ex-vessel programme

    International Nuclear Information System (INIS)

    Cognet, G.; Laffont, G.; Jegou, C.; Pierre, J.; Journeau, C.; Cranga, M.; Sudreau, F.; Ramacciotti, M.

    2000-01-01

    Among the currently studied core-catcher projects, several concepts suppose corium spreading before cooling. In particular, the EPR (European pressurized reactor) core-catcher concept is based on mixing the corium with a special concrete, spreading the molten mixture on a large multi-layer surface cooled from the bottom and subsequently cooling by flooding with water. Therefore, melt spreading deserves intensive investigation in order to determine and quantify key phenomena which govern the spreading. In France, for some years now, the nuclear reactor division of the atomic energy commission (CEA/DRN) has undertaken a large program to improve knowledge on corium behaviour and coolability. This program is based on experimental and theoretical investigations which are finally gathered in scenario and mechanistic computer codes. Within this framework, the real material experimental programme, VULCANO, conducted in collaboration with European partners, is currently devoted to the study of corium spreading. Since 1997, several tests have been performed on dry corium spreading with various melt compositions. After a brief description of the general objectives and the facility, this paper will present the most important spreading results. (orig.)

  11. Relativistic pn-QRPA to the double beta decay

    International Nuclear Information System (INIS)

    Conti, Claudio de; Krmpotic, Francisco; Carlson, Brett Vern

    2011-01-01

    Full text: In nature there are about 50 nuclear systems where the single beta-decay is energetically forbidden, and double-beta decay turns out to be only possible mode of disintegration. It is the nuclear pairing force which causes such an 'anomaly', by making the mass of the odd-odd isobar, (N - 1;Z + 1), to be greater than the masses of its even-even neighbors, (N;Z) and (N - 2;Z +2). The modes by which the double-beta decay can take place are connected with the neutrino and antineutrino distinction. In case the lepton number is strictly conserved the neutrino is a Dirac fermion and the two-neutrino mode is the only possible mode of disintegration. On the other hand, if this conservation is violated, the neutrino is a Majorana particle and neutrinoless double-beta decay also can occur. Both two-neutrino and neutrinoless double-beta decay processes have attracted much attention, because a comparison between experiment and theory for the first, provides a measure of confidence one may have in the nuclear wave function employed for extracting the unknown parameters from neutrinoless lifetime measurements. The proton-neutron (pn) quasiparticle random phase approximation (QRPA) has turned out be the most simple model for calculating the nuclear wave function involved in the double-beta decay transitions. In this work the transition matrix elements for 0 + → 0 + double-beta decay are calculated for 48 Ca, 76 Ge, 82 Se, 100 Mo, 128 Te and 130 Te nuclei, using a relativistic pn-QRPA based on Hartree-Bogoliubov approximation to the single-particle motion. (author)

  12. Preparation and evaluation of nattokinase-loaded self-double-emulsifying drug delivery system

    OpenAIRE

    Wang, Xiaona; Jiang, Sifan; Wang, Xinyue; Liao, Jie; Yin, Zongning

    2015-01-01

    In the present study, we prepared nattokinase-loaded self-double-emulsifying drug delivery system (SDEDDS) and investigated its preliminary pharmacodynamics. The type and concentration of oil phase, inner aqueous phase and emulsifier were screened to prepare optimum nattokinase-loaded SDEDDS. Next, the optimum formulations were characterized based on microstructure, volume-weighted mean droplet size, self-emulsifying rate, yield, storage stability, in vitro release and in vivo pharmacodynamic...

  13. Solution Method and Precision Analysis of Double-difference Dynamic Precise Orbit Determination of BeiDou Navigation Satellite System

    Directory of Open Access Journals (Sweden)

    LIU Weiping

    2016-02-01

    Full Text Available To resolve the high relativity between the transverse element of GEO orbit and double-difference ambiguity, the classical double-difference dynamic method is improved and the method, which is to determine precise BeiDou satellite orbit using carrier phase and pseudo-range smoothed by phase, is proposed. The feasibility of the method is discussed and the influence of the method about ambiguity fixing is analyzed. Considering the characteristic of BeiDou, the method, which is to fix double-difference ambiguity of BeiDou satellites by QIF, is derived. The real data analysis shows that the new method, which can reduce the relativity and assure the precision, is better than the classical double-difference dynamic method. The result of ambiguity fixing is well by QIF, but the ambiguity fixing success rate is not high on the whole. So the precision of BeiDou orbit can't be improved clearly after ambiguity fixing.

  14. Symmetry breaking in the double-well hermitian matrix models

    International Nuclear Information System (INIS)

    Brower, R.C.; Deo, N.; Jain, S.; Tan, C.I.

    1993-01-01

    We study symmetry breaking in Z 2 symmetric large N matrix models. In the planar approximation for both the symmetric double-well φ 4 model and the symmetric Penner model, we find there is an infinite family of broken symmetry solutions characterized by different sets of recursion coefficients R n and S n that all lead to identical free energies and eigenvalue densities. These solutions can be parameterized by an arbitrary angle θ(x), for each value of x=n/N 4 theory the double scaling string equations are parameterized by a conserved angular momentum parameter in the range 0≤l<∞ and a single arbitrary U(1) phase angle. (orig.)

  15. Project management plan double-shell tank system specification development

    International Nuclear Information System (INIS)

    Conrads, T.J.

    1998-01-01

    The Project Hanford Management Contract (PHMC) members have been tasked by the US Department of Energy (DOE) to support removal of wastes from the Hanford Site 200 Area tanks in two phases. The schedule for these phases allows focusing on requirements for the first phase of providing feed to the privatized vitrification plants. The Tank Waste Retrieval Division near-term goal is to focus on the activities to support Phase 1. These include developing an integrated (technical, schedule, and cost) baseline and, with regard to private contractors, establishing interface agreements, constructing infrastructure systems, retrieving and delivering waste feed, and accepting immobilized waste products for interim onsite storage. This document describes the process for developing an approach to designing a system for retrieving waste from double-shell tanks. It includes a schedule and cost account for the work breakdown structure task

  16. Phase-Image Encryption Based on 3D-Lorenz Chaotic System and Double Random Phase Encoding

    Science.gov (United States)

    Sharma, Neha; Saini, Indu; Yadav, AK; Singh, Phool

    2017-12-01

    In this paper, an encryption scheme for phase-images based on 3D-Lorenz chaotic system in Fourier domain under the 4f optical system is presented. The encryption scheme uses a random amplitude mask in the spatial domain and a random phase mask in the frequency domain. Its inputs are phase-images, which are relatively more secure as compared to the intensity images because of non-linearity. The proposed scheme further derives its strength from the use of 3D-Lorenz transform in the frequency domain. Although the experimental setup for optical realization of the proposed scheme has been provided, the results presented here are based on simulations on MATLAB. It has been validated for grayscale images, and is found to be sensitive to the encryption parameters of the Lorenz system. The attacks analysis shows that the key-space is large enough to resist brute-force attack, and the scheme is also resistant to the noise and occlusion attacks. Statistical analysis and the analysis based on correlation distribution of adjacent pixels have been performed to test the efficacy of the encryption scheme. The results have indicated that the proposed encryption scheme possesses a high level of security.

  17. Experimental study for transient response of a double-tube thermosyphon (DTTH)

    International Nuclear Information System (INIS)

    Salem, M.A.M.

    2010-01-01

    Energy conservation is becoming increasingly important as the cost of fuel continuously rises. The heat pipe and the closed two-phase thermosyphon are particularly effective tools in the heat transfer process.A theoretical and experimental investigation was conducted to study the double-tube two-phase closed-thermosyphon (DTTH) behavior in transient regimes. Experiments were performed to investigate the effects of changing the heating and cooling rate as well as the evaporator length on the double tube thermosyphon in actual integrated operation (start-up, steady-state and shut-down). he necessity for a dynamic model of DTTH for some applications of discontinuous operation imposed the need to the current applied investigation. Therefore, the main objective of the current study is to develop a theoretical model that can predict the dynamic behavior of the double-tube evaporator by tracing various transient parameters during operation from start up to steady state until shut down condition. A model describing both thermal and phase flows of the closed two-phase double tube thermosyphon (DTTH) has been simulated. The theoretical model provides a general description of the behavior of our practical setup based on experimental observations which show a simple exponential behavior. It is based on a two thermal body description (evaporator wall and working fluid) there is good agreement between experiments data and numerical prediction.A computer simulation program based on the method was developed to estimate temperature and the other performance of double tube thermosyphon as well as the time needed to reach steady state condition. The governing equations of the simple 1-D model were solved by Engineering Equation Solver program (EES) using finite difference Euler method. A computer program is designed to solve these differential equations by an explicit finite difference method. The results from this model were found to be in general agreement with the experimental

  18. Wetting phase transition of two segregated Bose–Einstein condensates restricted by a hard wall

    Energy Technology Data Exchange (ETDEWEB)

    Thu, Nguyen Van [Department of Physics, Hanoi Pedagogical University No. 2, Hanoi (Viet Nam); Phat, Tran Huu [Vietnam Atomic Energy Commission, 59 Ly Thuong Kiet, Hanoi (Viet Nam); Song, Pham The, E-mail: thesong80@icloud.com [Tay Bac University, Son La (Viet Nam)

    2016-04-01

    Highlights: • System of two segregated Bose–Einstein condensates limited by a wall is studied. • Double-parabola approximation is applied to Gross–Pitaevskii theory. • Interface tension and wetting phase diagram are established. - Abstract: The wetting phase transition in the system of two segregated Bose–Einstein condensates (BECs) restricted by a hard wall is studied by means of the double-parabola approximation (DPA) applied to the Gross–Pitaevskii (GP) theory. We found the interfacial tension and the wetting phase diagram which depend weakly on the spatial restriction.

  19. Double-phase 18F-FDG PET-CT for determination of pulmonary tuberculoma activity

    International Nuclear Information System (INIS)

    Kim, In-Ju; Kim, Seong-Jang; Kim, Yong-Ki; Lee, Jung Sub; Jeong, Yeon Joo; Jun, Sungmin; Nam, Hyun Yul; Kim, Ju Sung

    2008-01-01

    The aim of this study is to evaluate the potential role of double phase acquisition of 18 F fluorodeoxyglucose (FDG) positron emission tomography (PET) for the differentiation of active pulmonary tuberculoma. A total of 25 consecutive patients with pulmonary tuberculoma were enrolled. PET/CT imaging was performed 60 (range 53-71) and 120 min (range 109-131) after injection of 18 F-FDG. The intensity of 18 F-FDG uptake by pulmonary lesions was assessed visually, and the intensity was scored with a four-point scale (grade 1: absent, grade 2: faint, grade 3: moderate, grade 4: intense). Active tuberculoma shows statistically significant higher values in maximal standardized uptake values SUV maxE (active = 2.3 ± 0.75, inactive 0.79 ± 0.15), SUV maxD (active = 2.48 ± 0.79, inactive = 0.75 ± 0.13), and %ΔSUV max (active = 8.07 ± 7.77%, inactive = -3.83 ± 6.59) than those of inactive tuberculoma. When greater than or equal to visual grade 2 was used as the cutoff value, the sensitivity and specificity were 100 and 81.8%. When SUV maxE 1.05 was used as the cutoff point, the sensitivity and specificity were 100 and 100%. When SUV maxD 0.97 was used as the cutoff value, the sensitivity and specificity were 92.8 and 100%. When %ΔSUV max 6.59 was used as the cutoff value, the sensitivity and specificity were 71.4 and 100%. The %ΔSUV max was the potent predictor by logistic regression analysis. The ΔSUV max is a potential predictor for activity of pulmonary tuberculoma. However, the diagnostic performances were similar between visual and quantitative analyses. The visual assessment may be sufficient for determination of pulmonary tuberculoma activity. Further studies are needed to confirm these results and improve statistical accuracy. (orig.)

  20. Double evolutsional artificial bee colony algorithm for multiple traveling salesman problem

    Directory of Open Access Journals (Sweden)

    Xue Ming Hao

    2016-01-01

    Full Text Available The double evolutional artificial bee colony algorithm (DEABC is proposed for solving the single depot multiple traveling salesman problem (MTSP. The proposed DEABC algorithm, which takes advantage of the strength of the upgraded operators, is characterized by its guidance in exploitation search and diversity in exploration search. The double evolutional process for exploitation search is composed of two phases of half stochastic optimal search, and the diversity generating operator for exploration search is used for solutions which cannot be improved after limited times. The computational results demonstrated the superiority of our algorithm over previous state-of-the-art methods.

  1. Effect of turbulent flow on the double electric layer

    International Nuclear Information System (INIS)

    Rutten, F. van.

    1978-01-01

    The existence of the double electric layer could explain the local deposition of corrosion products in water cooled reactors. It is shown that turbulent flow tends to drive the ions away from the wall, disturbs the diffuse layer and enables the electric field to extend further into the liquid phase. This electric field attracts the particles to the walls by electrophoresis [fr

  2. Safety and efficacy of AMG 334 for prevention of episodic migraine: a randomised, double-blind, placebo-controlled, phase 2 trial.

    Science.gov (United States)

    Sun, Hong; Dodick, David W; Silberstein, Stephen; Goadsby, Peter J; Reuter, Uwe; Ashina, Messoud; Saper, Joel; Cady, Roger; Chon, Yun; Dietrich, Julie; Lenz, Robert

    2016-04-01

    The calcitonin gene-related peptide (CGRP) pathway is a promising target for preventive therapies in patients with migraine. We assessed the safety and efficacy of AMG 334, a fully human monoclonal antibody against the CGRP receptor, for migraine prevention. In this multicentre, randomised, double-blind, placebo-controlled, phase 2 trial, patients aged 18-60 years with 4 to 14 migraine days per month were enrolled at 59 headache and clinical research centres in North America and Europe, and randomly assigned in a 3:2:2:2 ratio to monthly subcutaneous placebo, AMG 334 7 mg, AMG 334 21 mg, or AMG 334 70 mg using a sponsor-generated randomisation sequence centrally executed by an interactive voice response or interactive web response system. Study site personnel, patients, and the sponsor study personnel were masked to the treatment assignment. The primary endpoint was the change in monthly migraine days from baseline to the last 4 weeks of the 12-week double-blind treatment phase. The primary endpoint was calculated using the least squares mean at each timepoint from a generalised linear mixed-effect model for repeated measures. Safety endpoints were adverse events, clinical laboratory values, vital signs, and anti-AMG 334 antibodies. The study is registered with ClinicalTrials.gov, number NCT01952574. An open-label extension phase of up to 256 weeks is ongoing and will assess the long-term safety of AMG 334. From Aug 6, 2013, to June 30, 2014, 483 patients were randomly assigned to placebo (n=160), AMG 334 7 mg (n=108), AMG 334 21 mg (n=108), or AMG 334 70 mg (n=107). The mean change in monthly migraine days at week 12 was -3·4 (SE 0·4) days with AMG 334 70 mg versus -2·3 (0·3) days with placebo (difference -1·1 days [95% CI -2·1 to -0·2], p=0·021). The mean reductions in monthly migraine days with the 7 mg (-2·2 [SE 0·4]) and the 21 mg (-2·4 [0·4]) doses were not significantly different from that with placebo. Adverse events were recorded in 82 (54

  3. On the treatment of plane fusion front in lumped parameter thermal models with convection

    International Nuclear Information System (INIS)

    Le Tellier, R.; Skrzypek, E.; Saas, L.

    2017-01-01

    Highlights: • Solid phase approximations for a two-phase Stefan fusion problem with convection are analyzed. • A reference solution combines integral conservation eqs and a FE solution of the 1D heat equation. • Numerical results are presented for a transient in light water reactor severe accident analysis. • The models performances are highlighted on fusion transients in terms of Biot and Stefan numbers. - Abstract: Within the framework of lumped parameter models for integral codes, this paper focuses on the modeling of a two-phase Stefan fusion problem with natural convection in the liquid phase. In particular, this specific Stefan problem is of interest when studying corium pool behavior in the framework of light water reactor severe accident analysis. The objective of this research is to analyze the applicability of different approximations related to the modeling of the solid phase in terms of boundary heat flux closure relations. Three different approximations are considered: a quadratic profile based model, a model where a parameter controls the power partitioning at the interface and the steady state conduction assumption. These models are compared with an accurate front-tracking solution of this plane fusion front problem. This “reference” is obtained by combining the same integral conservation equations as the approximate models with a mesh-based solution of the 1D heat equation. Numerical results are discussed for a typical configuration of interest for corium pool analysis. Different fusion transients (constructed from nondimensionalization considerations in terms of Biot and Stefan numbers) are used in order to highlight the potential and limitations of the different approximations.

  4. A study on the correlations development for film boiling heat transfer on spheres

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yong Hoon; Baek, Won Pil; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1999-12-31

    Film boiling is the heat transfer mechanism that can occurs when large temperature differences exist between a cold liquid and hot material. In the nuclear reactor safety