WorldWideScience

Sample records for double hydroxide precursors

  1. Synthesis and optical properties of Mg-Al layered double hydroxides precursor powders

    Directory of Open Access Journals (Sweden)

    Chia-Hsuan Lin

    2017-12-01

    Full Text Available The synthesis and optical properties of Mg-Al layered double hydroxide (LDH precursor powders were investigated using X-ray diffraction (XRD, Fourier transform-infrared (FT-IR spectroscopy, transmission electron microscopy (TEM, selected area electron diffraction (SAED, high-resolution TEM (HRTEM, UV-transmission spectrometer, and fluorescence spectrophotometer. The FT-IR results show that the intense absorption at around 1363–1377 cm-1 can be assigned to the antisymmetric ν3 mode of interlayer carbonate anions because the LDH phase contains some CO32-. The XRD results show that all of the Mg-Al LDH precursor powders contain only a single phase of [Mg0.833Al0.167(OH2](CO30.083·(H2O0.75 but have broad and weak intensities of peaks. All of Mg-Al LDHs precursor powders before calcination have the same photoluminescence (PL spectra. Moreover, these spectra were excited at λex = 235 nm, and the broad emission band was in the range 325-650 nm. In the range, there were relatively strong intensity at around 360, 407 and 510 nm, respectively.

  2. Layer-by-layer self-assembly of polyimide precursor/layered double hydroxide ultrathin films

    International Nuclear Information System (INIS)

    Chen Dan; Huang Shu; Zhang Chao; Wang Weizhi; Liu Tianxi

    2010-01-01

    The layer-by-layer (LBL) self-assembly has been extensively used as a simple and effective method for the preparation of polyelectrolyte multilayer films. In this work, we utilized this unique method to prepare polyimide precursor/layered double hydroxide (LDH) ultrathin films. Well-crystallized Co-Al-CO 3 LDH and subsequent anion exchanged Co-Al-NO 3 LDH were prepared and characterized by scanning electron microscopy and X-ray diffraction (XRD). By vigorous shaking of the as-prepared Co-Al-NO 3 LDH, positively charged and exfoliated LDH nanosheets were obtained. Atomic force microscopy and XRD investigations indicated the delamination of LDH nanosheets. The precursor of polyimide, poly(amic acid) tertiary amine salt (PAS) was prepared by the polycondensation of dianhydride and diamine, and subsequent amine salt formation. By using the LBL method, heterogeneous ultrathin films of PAS and LDH were prepared. The formation of the ordered nanostructured assemblies was confirmed by the progressive enhancement of UV absorbance and the XRD results.

  3. Precursor preparation for Ca-Al layered double hydroxide to remove hexavalent chromium coexisting with calcium and magnesium chlorides

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Lihua; He, Xiaoman; Qu, Jun; Li, Xuewei; Lei, Zhiwu; Zhang, Qiwu [School of Resources and Environment Engineering, Wuhan University of Technology, Wuhan 430070 (China); Liu, Xinzhong [College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118 (China)

    2017-01-15

    Al(OH){sub 3} and Ca(OH){sub 2} powders are co-ground to prepare a precursor which hydrates into a layered double hydroxide (LDH) phase by agitation in aqueous solution with target hexavalent chromium (Cr(VI)) at room temperature, to achieve an obvious improvement in removal efficiency of Cr(VI) through an easy incorporation into the structure. Although the prepared precursor transforms into LDH phases also when agitated in the solutions of calcium and magnesium chlorides, it incorporates Cr(VI) preferentially to the chloride salts when they coexist. The adsorption isotherm and kinetic studies show that the phenomena occurring on the Al-Ca precursor fit a pseudo-second-order kinetics with a Langmuir adsorption capacity of 59.45 mg/g. Besides, characterizations of the prepared precursor and the samples after adsorption are also performed by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Transmission electron microscope (TEM) to understand the reason of the preferential incorporation of Cr(VI) to the coexisting chloride salts during the LDH phase formation. - Graphical abstract: Activated Ca-Al hydroxides (C{sub 3}A) transformed into Ca-Al-OH compound when agitated in water. Ca-Al precursor (C{sub 3}A) was agitated in a hexavalent chromium (Cr(VI)) solution to form Al-Ca-CrO{sub 4} LDH product. Ca-Al-CrO{sub 4} LDH phase occurred preferentially to Ca-Al-MCl{sub 2} LDH phases in the solutions of calcium and magnesium chlorides, it incorporates Cr(VI) preferentially to the chloride salts when they coexist. - Highlights: • Activated Ca-Al hydroxides transformed into LDH when agitated in water with some inorganic substances. • Hexavalent Cr was incorporated in the LDH structure at high adsorption capacity. • Ca-Al-Cr LDH phase occurred preferentially to Ca-Al-MCl{sub 2} LDH phases with coexistence. • The prepared Ca-Al hydroxides had high performance as adsorbent even with high salinity of the solution.

  4. Precursor preparation for Ca-Al layered double hydroxide to remove hexavalent chromium coexisting with calcium and magnesium chlorides

    International Nuclear Information System (INIS)

    Zhong, Lihua; He, Xiaoman; Qu, Jun; Li, Xuewei; Lei, Zhiwu; Zhang, Qiwu; Liu, Xinzhong

    2017-01-01

    Al(OH) 3 and Ca(OH) 2 powders are co-ground to prepare a precursor which hydrates into a layered double hydroxide (LDH) phase by agitation in aqueous solution with target hexavalent chromium (Cr(VI)) at room temperature, to achieve an obvious improvement in removal efficiency of Cr(VI) through an easy incorporation into the structure. Although the prepared precursor transforms into LDH phases also when agitated in the solutions of calcium and magnesium chlorides, it incorporates Cr(VI) preferentially to the chloride salts when they coexist. The adsorption isotherm and kinetic studies show that the phenomena occurring on the Al-Ca precursor fit a pseudo-second-order kinetics with a Langmuir adsorption capacity of 59.45 mg/g. Besides, characterizations of the prepared precursor and the samples after adsorption are also performed by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Transmission electron microscope (TEM) to understand the reason of the preferential incorporation of Cr(VI) to the coexisting chloride salts during the LDH phase formation. - Graphical abstract: Activated Ca-Al hydroxides (C 3 A) transformed into Ca-Al-OH compound when agitated in water. Ca-Al precursor (C 3 A) was agitated in a hexavalent chromium (Cr(VI)) solution to form Al-Ca-CrO 4 LDH product. Ca-Al-CrO 4 LDH phase occurred preferentially to Ca-Al-MCl 2 LDH phases in the solutions of calcium and magnesium chlorides, it incorporates Cr(VI) preferentially to the chloride salts when they coexist. - Highlights: • Activated Ca-Al hydroxides transformed into LDH when agitated in water with some inorganic substances. • Hexavalent Cr was incorporated in the LDH structure at high adsorption capacity. • Ca-Al-Cr LDH phase occurred preferentially to Ca-Al-MCl 2 LDH phases with coexistence. • The prepared Ca-Al hydroxides had high performance as adsorbent even with high salinity of the solution.

  5. Precursor preparation for Ca-Al layered double hydroxide to remove hexavalent chromium coexisting with calcium and magnesium chlorides

    Science.gov (United States)

    Zhong, Lihua; He, Xiaoman; Qu, Jun; Li, Xuewei; Lei, Zhiwu; Zhang, Qiwu; Liu, Xinzhong

    2017-01-01

    Al(OH)3 and Ca(OH)2 powders are co-ground to prepare a precursor which hydrates into a layered double hydroxide (LDH) phase by agitation in aqueous solution with target hexavalent chromium (Cr(VI)) at room temperature, to achieve an obvious improvement in removal efficiency of Cr(VI) through an easy incorporation into the structure. Although the prepared precursor transforms into LDH phases also when agitated in the solutions of calcium and magnesium chlorides, it incorporates Cr(VI) preferentially to the chloride salts when they coexist. The adsorption isotherm and kinetic studies show that the phenomena occurring on the Al-Ca precursor fit a pseudo-second-order kinetics with a Langmuir adsorption capacity of 59.45 mg/g. Besides, characterizations of the prepared precursor and the samples after adsorption are also performed by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Transmission electron microscope (TEM) to understand the reason of the preferential incorporation of Cr(VI) to the coexisting chloride salts during the LDH phase formation. Ca-Al precursor (C3A) was agitated in a hexavalent chromium (Cr(VI)) solution to form Al-Ca-CrO4 LDH product. Ca-Al-CrO4 LDH phase occurred preferentially to Ca-Al-MCl2 LDH phases in the solutions of calcium and magnesium chlorides, it incorporates Cr(VI) preferentially to the chloride salts when they coexist.

  6. Mechanochemical approach for synthesis of layered double hydroxides

    Science.gov (United States)

    Zhang, Xiaoqing; Li, Shuping

    2013-06-01

    In this paper, a mechanochemical approach is used to prepare layered double hydroxides (LDHs). This approach involves manually grinding the precursor, nitrates and then the hydrothermal treatment. The study indicates that grinding leads to the incomplete formation of LDHs phase, LDHs-M. The reaction degree of precursor salts to LDHs after grinding depends on the melting points of the precursors. As expected, hydrothermal treatment is beneficial for the good crystallization and regularity of LDHs. Especially, the effect of hydrothermal treatment has been emphatically explored. The hydration of LDHs-M, increment of zeta potentials and the complete exchange of NO3- by CO32- anions occur successively or in parallel during the hydrothermal treatment. It can be found that combination of grinding and hydrothermal treatment gives rise to the formation of uniform and monodispersed particles of LDHs.

  7. Layered double hydroxides

    DEFF Research Database (Denmark)

    López Rayo, Sandra; Imran, Ahmad; Hansen, Hans Chr. Bruun

    2017-01-01

    A novel zinc (Zn) fertilizer concept based on Zn doped layered double hydroxides (Zn-doped Mg-Fe-LDHs) has been investigated. Zn-doped Mg-Fe-LDHs were synthetized, their chemical composition was analyzed and their nutrient release was studied in buffered solutions with different pH values. Uptake...

  8. Polysulfide intercalated layered double hydroxides for metal capture applications

    Energy Technology Data Exchange (ETDEWEB)

    Kanatzidis, Mercouri G.; Ma, Shulan

    2017-04-04

    Polysulfide intercalated layered double hydroxides and methods for their use in vapor and liquid-phase metal capture applications are provided. The layered double hydroxides comprise a plurality of positively charged host layers of mixed metal hydroxides separated by interlayer spaces. Polysulfide anions are intercalated in the interlayer spaces.

  9. Adsorption of procion red using layer double hydroxide Mg/Al

    Directory of Open Access Journals (Sweden)

    Muhammad Imron

    2017-07-01

    Full Text Available Layer double hydroxide Mg/Al was synthesized by inorganic synthetic method. Material was characterized using FTIR and XRD analyses and used as adsorbent of procion red dye in aqueous medium.  Factors that affect the adsorption process are adsorption time as the kinetic parameter; and the temperature and concentration of procion red as the thermodynamic parameter. FTIR spectra of layer double hydroxides showed unique vibration at wavenumber 1300 cm-1 and 1600 cm-1. Characterization using XRD shows diffraction angles at 29o, 27o, and 28o, which are typical of Mg/Al double layer hydroxides. Adsorption of procion red using layer double hydroxide Mg/Al resulted adsorption rate 7.1 minutes-1, maximum adsorption capacity 111.1 mg/g at 60 oC with increasing energy by increasing adsorption temperature.   Keywords: Layered double hydroxides, adsorption, procion red.

  10. Topotactic Synthesis of Porous Cobalt Ferrite Platelets from a Layered Double Hydroxide Precursor and Their Application in Oxidation Catalysis.

    Science.gov (United States)

    Ortega, Klaus Friedel; Anke, Sven; Salamon, Soma; Özcan, Fatih; Heese, Justus; Andronescu, Corina; Landers, Joachim; Wende, Heiko; Schuhmann, Wolfgang; Muhler, Martin; Lunkenbein, Thomas; Behrens, Malte

    2017-09-12

    Monocrystalline, yet porous mosaic platelets of cobalt ferrite, CoFe 2 O 4 , can be synthesized from a layered double hydroxide (LDH) precursor by thermal decomposition. Using an equimolar mixture of Fe 2+ , Co 2+ , and Fe 3+ during co-precipitation, a mixture of LDH, (Fe II Co II ) 2/3 Fe III 1/3 (OH) 2 (CO 3 ) 1/6 ⋅m H 2 O, and the target spinel CoFe 2 O 4 can be obtained in the precursor. During calcination, the remaining Fe II fraction of the LDH is oxidized to Fe III leading to an overall Co 2+ :Fe 3+ ratio of 1:2 as required for spinel crystallization. This pre-adjustment of the spinel composition in the LDH precursor suggests a topotactic crystallization of cobalt ferrite and yields phase pure spinel in unusual anisotropic platelet morphology. The preferred topotactic relationship in most particles is [111] Spinel ∥[001] LDH . Due to the anion decomposition, holes are formed throughout the quasi monocrystalline platelets. This synthesis approach can be used for different ferrites and the unique microstructure leads to unusual chemical properties as shown by the application of the ex-LDH cobalt ferrite as catalyst in the selective oxidation of 2-propanol. Compared to commercial cobalt ferrite, which mainly catalyzes the oxidative dehydrogenation to acetone, the main reaction over the novel ex-LDH cobalt is dehydration to propene. Moreover, the oxygen evolution reaction (OER) activity of the ex-LDH catalyst was markedly higher compared to the commercial material. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Synthesis and selective IR absorption properties of iminodiacetic-acid intercalated MgAl-layered double hydroxide

    International Nuclear Information System (INIS)

    Wang Lijing; Xu Xiangyu; Evans, David G.; Duan Xue; Li Dianqing

    2010-01-01

    An MgAl-NO 3 -layered double hydroxide (LDH) precursor has been prepared by a method involving separate nucleation and aging steps (SNAS). Reaction with iminodiacetic acid (IDA) under weakly acidic conditions led to the replacement of the interlayer nitrate anions by iminodiacetic acid anions. The product was characterized by XRD, FT-IR, TG-DTA, ICP, elemental analysis and SEM. The results show that the original interlayer nitrate anions of LDHs precursor were replaced by iminodiacetic acid anions and that the resulting intercalation product MgAl-IDA-LDH has an ordered crystalline structure. MgAl-IDA-LDH was mixed with low density polyethylene (LDPE) using a masterbatch method. LDPE films filled with MgAl-IDA-LDH showed a higher mid to far infrared absorption than films filled with MgAl-CO 3 -LDH in the 7-25 μm range, particularly in the key 9-11 μm range required for application in agricultural plastic films. - Graphical abstract: Intercalation of iminodiacetic acid (IDA) anions in a MgAl-NO 3 -layered double hydroxide host leads to an enhancement of its infrared absorbing ability for application in agricultural plastic films.

  12. Synthesis of beta alumina from aluminum hydroxide and oxyhydroxide precursors

    CSIR Research Space (South Africa)

    Van Zyl, A

    1993-02-01

    Full Text Available Two aluminium oxyhydroxides, boehmite and pseudoboehmite, and two aluminium hydroxides, bayerite and gibbsite, have been investigated as precursors for the synthesis of the solid electrolyte, beta alumina. Reaction pathways and products have been...

  13. Synthesis and carbon dioxide sorption of layered double hydroxide/silica foam nanocomposites with hierarchical mesostructure

    KAUST Repository

    Fu, Liling; Qi, Genggeng; Shekhah, Osama; Belmabkhout, Youssef; Esté vez, Luis Antonio; Eddaoudi, Mohamed; Giannelis, Emmanuel P.

    2014-01-01

    Layered double hydroxides (LDHs) with a hierarchical mesostructure are successfully synthesized on mesoporous silica foams by simple impregnation and hydrothermal treatment. The as-synthesized LDH/silica foam nanocomposites show well-defined mesostructures with high surface areas, large pore volumes, and mesopores of 6-7 nm. The nanocomposites act as carbon dioxide (CO2) sorbents under simulated flue gas conditions. They also exhibit significantly enhanced CO2 capacities under high-pressure conditions and high CO2/N2 and CO2/CH4 selectivities. Respect the hierarchy: Hierarchical mesoporous layered double hydroxide (LDH) nanocomposites with high surface areas and large pore volumes are synthesized by controlled hydrothermal growth of LDH precursors on a mesoporous silica foam. The as-synthesized nanocomposites exhibit a significantly enhanced capacity and selectivity towards carbon dioxide, making them very promising candidates for carbon dioxide (CO2) separation applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Synthesis and carbon dioxide sorption of layered double hydroxide/silica foam nanocomposites with hierarchical mesostructure

    KAUST Repository

    Fu, Liling

    2014-03-05

    Layered double hydroxides (LDHs) with a hierarchical mesostructure are successfully synthesized on mesoporous silica foams by simple impregnation and hydrothermal treatment. The as-synthesized LDH/silica foam nanocomposites show well-defined mesostructures with high surface areas, large pore volumes, and mesopores of 6-7 nm. The nanocomposites act as carbon dioxide (CO2) sorbents under simulated flue gas conditions. They also exhibit significantly enhanced CO2 capacities under high-pressure conditions and high CO2/N2 and CO2/CH4 selectivities. Respect the hierarchy: Hierarchical mesoporous layered double hydroxide (LDH) nanocomposites with high surface areas and large pore volumes are synthesized by controlled hydrothermal growth of LDH precursors on a mesoporous silica foam. The as-synthesized nanocomposites exhibit a significantly enhanced capacity and selectivity towards carbon dioxide, making them very promising candidates for carbon dioxide (CO2) separation applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Luminescent materials based on Tb, Eu-containing layered double hydroxides

    International Nuclear Information System (INIS)

    Zhuravleva, N.G.; Eliseev, A.A.; Lukashin, A.V.; Kinast, U.; Tret'yakov, Yu.D.

    2004-01-01

    Luminescent materials on the basis of magnesium-aluminium layered double hydroxides with intercalated anionic complexes of terbium and europium picolinates were synthesized. Relying on data of spectroscopy, elementary and X-ray phase analyses, the change in the rare earth complex structure and metal/ligand ratio, depending on the hydroxide layer charge, determined by Mg/Al ratio in the double hydroxide, were ascertained. The values of quantum yields of luminescence for terbium-containing samples amounted to 30-50% [ru

  16. Mixing Acid Salts and Layered Double Hydroxides in Nanoscale under Solid Condition.

    Science.gov (United States)

    Nakayama, Hirokazu; Hayashi, Aki

    2014-07-30

    The immobilization of potassium sorbate, potassium aspartate and sorbic acid in layered double hydroxide under solid condition was examined. By simply mixing two solids, immobilization of sorbate and aspartate in the interlayer space of nitrate-type layered double hydroxide, so called intercalation reaction, was achieved, and the uptakes, that is, the amount of immobilized salts and the interlayer distances of intercalation compounds were almost the same as those obtained in aqueous solution. However, no intercalation was achieved for sorbic acid. Although intercalation of sorbate and aspartate into chloride-type layered double hydroxide was possible, the uptakes for these intercalation compounds were lower than those obtained using nitrate-type layered double hydroxide. The intercalation under solid condition could be achieved to the same extent as for ion-exchange reaction in aqueous solution, and the reactivity was similar to that observed in aqueous solution. This method will enable the encapsulation of acidic drug in layered double hydroxide as nano level simply by mixing both solids.

  17. Mixing Acid Salts and Layered Double Hydroxides in Nanoscale under Solid Condition

    Directory of Open Access Journals (Sweden)

    Hirokazu Nakayama

    2014-07-01

    Full Text Available The immobilization of potassium sorbate, potassium aspartate and sorbic acid in layered double hydroxide under solid condition was examined. By simply mixing two solids, immobilization of sorbate and aspartate in the interlayer space of nitrate-type layered double hydroxide, so called intercalation reaction, was achieved, and the uptakes, that is, the amount of immobilized salts and the interlayer distances of intercalation compounds were almost the same as those obtained in aqueous solution. However, no intercalation was achieved for sorbic acid. Although intercalation of sorbate and aspartate into chloride-type layered double hydroxide was possible, the uptakes for these intercalation compounds were lower than those obtained using nitrate-type layered double hydroxide. The intercalation under solid condition could be achieved to the same extent as for ion-exchange reaction in aqueous solution, and the reactivity was similar to that observed in aqueous solution. This method will enable the encapsulation of acidic drug in layered double hydroxide as nano level simply by mixing both solids.

  18. Layered double hydroxide nanosheet as a two-dimensional support of dense platinum nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hyo Gyoung; Cho, Se Hee; Ji, Hong Geun [H and A PharmaChem, R and D center, Bucheon (Korea, Republic of); Lee, Jong Hyeon [Dept. of Chemistry, The Catholic University of Korea, Bucheon (Korea, Republic of)

    2017-02-15

    Transition metal nanoparticles (NPs) with a narrow size distribution have been intensively synthesized on various solid supports for anti-agglomeration, and high catalytic activity and selectivity. Layered double hydroxides (LDH) are currently attracting intense interest in the field of heterogeneous catalysis as catalyst supports. In order to obtain a well-crystallized LDH nanosheet, the as-synthesize d carbonate form of LDH was hydrothermally treated according to a reported procedure, and further reacted by anion-exchange with an aqueous solution of NaNO{sub 3} and acetate buffer to give the nitrate form of LDH. Dense and uniform Pt NPs were synthesized on the exfoliated LDH nanosheets through precursor exchange and thermal reduction of the precursor ions. In this nanocomposite, the Pt Nps were uniformly grown on the surface of the LDH nano sheet and the average size of Pt Nps was 2nm.

  19. Layered double hydroxides

    DEFF Research Database (Denmark)

    López Rayo, Sandra; Imran, Ahmad; Hansen, Hans Chr. Bruun

    2017-01-01

    A novel zinc (Zn) fertilizer concept based on Zn doped layered double hydroxides (Zn-doped Mg-Fe-LDHs) has been investigated. Zn-doped Mg-Fe-LDHs were synthetized, their chemical composition was analyzed and their nutrient release was studied in buffered solutions with different pH values. Uptake...... equation showing maximum release at pH 5.2, reaching approximately 45% of the total Zn content. The Zn concentrations in the plants receiving the LDHs were between 2- and 9.5-fold higher than those in plants without Zn addition. A positive effect of the LDHs was also found in soil. This work documents...

  20. Synthesis of Zn–Fe layered double hydroxides via an oxidation process and structural analysis of products

    Energy Technology Data Exchange (ETDEWEB)

    Morimoto, Kazuya, E-mail: kazuya.morimoto@aist.go.jp [Institute for Geo-Resources and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567 (Japan); Tamura, Kenji [Environmental Remediation Materials Unit, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Anraku, Sohtaro [Graduate School of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628 (Japan); Sato, Tsutomu [Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628 (Japan); Suzuki, Masaya [Institute for Geo-Resources and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567 (Japan); Yamada, Hirohisa [Environmental Remediation Materials Unit, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2015-08-15

    The synthesis of Zn–Fe(III) layered double hydroxides was attempted, employing different pathways using either Fe(II) or Fe(III) species together with Zn as the initial reagents. The product derived from the synthesis employing Fe(II) was found to transition to a Zn–Fe(III) layered double hydroxides phase following oxidation process. In contrast, the product obtained with Fe(III) did not contain a layered double hydroxides phase, but rather consisted of simonkolleite and hydrous ferric oxide. It was determined that the valency of the Fe reagent used in the initial synthesis affected the generation of the layered double hydroxides phase. Fe(II) species have ionic radii and electronegativities similar to those of Zn, and therefore are more likely to form trioctahedral hydroxide layers with Zn species. - Graphical abstract: The synthesis of Zn–Fe(III) layered double hydroxides was attempted, employing different pathways using either Fe(II) or Fe(III) species together with Zn as the initial reagents. - Highlights: • Iron valency affected the generation of Zn–Fe layered double hydroxides. • Zn–Fe layered double hydroxides were successfully synthesized using Fe(II). • Fe(II) species were likely to form trioctahedral hydroxide layers with Zn species.

  1. Mechanochemical synthesis of dodecyl sulfate anion (DS-) intercalated Cu-Al layered double hydroxide

    Science.gov (United States)

    Qu, Jun; He, Xiaoman; Lei, Zhiwu; Zhang, Qiwu; Liu, Xinzhong

    2017-12-01

    Dodecyl sulfate anion (DS-) was successfully intercalated into the gallery space of Cu-Al layered double hydroxides (LDH) by a non-heating mechanochemical route, in which basic cupric carbonate (Cu2(OH)2CO3) and aluminum hydroxide (Al(OH)3) were first dry ground and then agitated in SDS solution under ambient environment. The organics modified Cu-Al LDH showed good adsorption ability toward 2,4-dichlorophenoxyacetic acid (2, 4-D). The prepared samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), CHS elemental analysis and Scanning electron microscopy (SEM). The LDH precursor prepared by ball-milling could directly react with SDS molecules forming a pure phase of DS- pillared Cu-Al LDH, which was not observed with the LDH product through the ion-exchange of DS- at room temperature. The process introduced here may be applied to manufacture other types of organic modified composites for pollutants removal and other applications.

  2. Layered double hydroxide supported gold nanoclusters by glutathione-capped Au nanoclusters precursor method for highly efficient aerobic oxidation of alcohols

    Science.gov (United States)

    Li, Lun; Dou, Liguang; Zhang, Hui

    2014-03-01

    M3Al-layered double hydroxide (LDH, M = Mg, Ni, Co) supported Au nanoclusters (AuNCs) catalysts have been prepared for the first time by using water-soluble glutathione-capped Au nanoclusters as precursor. Detailed characterizations show that the ultrafine Au nanoclusters (ca. 1.5 +/- 0.6 nm) were well dispersed on the surface of LDH with a loading of Au below ~0.23 wt% upon synergetic interaction between AuNCs and M3Al-LDH. AuNCs/Mg3Al-LDH-0.23 exhibits much higher catalytic performance for the oxidation of 1-phenylethanol in toluene than Au/Mg3Al-LDH(DP) by the conventional deposition precipitation method and can be applied for a wide range of alcohols without basic additives. This catalyst can also be reused without loss of activity or selectivity. The AuNCs/M(= Ni, Co)3Al-LDH catalysts present even higher alcohol oxidation activity than AuNCs/Mg3Al-LDH. Particularly, AuNCs/Ni3Al-LDH-0.22 exhibits the highest activity (46 500 h-1) for the aerobic oxidation of 1-phenylethanol under solvent-free conditions attributed to its strongest Au-support synergy. The excellent activity and stability of AuNCs/M3Al-LDH catalysts render these materials promising candidates for green base-free selective oxidation of alcohols by molecular oxygen.M3Al-layered double hydroxide (LDH, M = Mg, Ni, Co) supported Au nanoclusters (AuNCs) catalysts have been prepared for the first time by using water-soluble glutathione-capped Au nanoclusters as precursor. Detailed characterizations show that the ultrafine Au nanoclusters (ca. 1.5 +/- 0.6 nm) were well dispersed on the surface of LDH with a loading of Au below ~0.23 wt% upon synergetic interaction between AuNCs and M3Al-LDH. AuNCs/Mg3Al-LDH-0.23 exhibits much higher catalytic performance for the oxidation of 1-phenylethanol in toluene than Au/Mg3Al-LDH(DP) by the conventional deposition precipitation method and can be applied for a wide range of alcohols without basic additives. This catalyst can also be reused without loss of activity

  3. Layered double hydroxides for preparing CoMn_2O_4 nanoparticles as anodes of lithium ion batteries

    International Nuclear Information System (INIS)

    Pan, Xu; Ma, Jingjing; Yuan, Ruo; Yang, Xia

    2017-01-01

    In the field of lithium-ion batteries, CoMn_2O_4 as an anode material has attracted a wide attention because it inherited the splendid electrochemical performances of Mn and Co-based metal oxides. Compared to graphite, Co-based oxides have a higher capacity which is about twice of the graphite. Moreover, Mn-based oxides have lower operating voltages and manganese exists abundantly in nature. Layered double hydroxides (LDHs), similar with brucite structure, were used as precursor for CoMn_2O_4 nanoparticles in this work. Under high temperature process, the LDHs decomposed to CoMn_2O_4 nanoparticles. When evaluated as anode materials for lithium ion batteries, the CoMn_2O_4 nanoparticles behaved good electrochemical performance with the discharge and charge capacity of 733 mAh g"-"1 and 721 mAh g"-"1 at current density of 200 mA g"-"1 after 100 cycles. This method for preparing CoMn_2O_4 nanoparticles is easy, which may provide a way for synthesis of other bimetallic oxides and anodes of lithium ion batteries. - Highlights: • Layered double hydroxides were employed as precursors to synthesize CoMn_2O_4. • The CoMn_2O_4 nanoparticles behaved good electrochemical performance. • This study provides a guideline for preparing bimetallic oxides.

  4. Preparation of 5-benzotriazolyl-4-hydroxy-3-sec-butylbenzenesulfonate anion-intercalated layered double hydroxide and its photostabilizing effect on polypropylene

    International Nuclear Information System (INIS)

    Li Dianqing; Tuo Zhenjun; Evans, David G.; Duan Xue

    2006-01-01

    An organic UV absorber has been intercalated into a layered double hydroxide (LDH) host by ion-exchange method using ZnAl-NO 3 -LDH as a precursor with an aqueous solution of the sodium salt of 5-benzotriazolyl-4-hydroxy-3-sec-butylbenzenesulfonic acid (BZO). After intercalation of the UV absorber, the interlayer distance in the LDHs increases from 0.89 to 2.32 nm. Infrared spectra and thermogravimetry and differential thermal analysis (TG-DTA) curves reveal the presence of a complex system of supramolecular host-guest interactions. The thermostability of BZO is markedly enhanced by intercalation in the LDH host. ZnAl-BZO-LDHs/polypropylene composite materials exhibit excellent UV photostability. - Graphical abstract: Intercalation of an organic UV absorber in a layered double hydroxide host leads to an enhancement of its photo- and thermal stability

  5. Aluminum doped nickel oxide thin film with improved electrochromic performance from layered double hydroxides precursor in situ pyrolytic route

    International Nuclear Information System (INIS)

    Shi, Jingjing; Lai, Lincong; Zhang, Ping; Li, Hailong; Qin, Yumei; Gao, Yuanchunxue; Luo, Lei; Lu, Jun

    2016-01-01

    Electrochromic materials with unique performance arouse great interest on account of potential application values in smart window, low-power display, automobile anti-glare rearview mirror, and e-papers. In this paper, high-performing Al-doped NiO porous electrochromic film grown on ITO substrate has been prepared via a layered double hydroxides(LDHs) precursor in situ pyrolytic route. The Al 3+ ions distributed homogenously within the NiO matrix can significantly influence the crystallinity of Ni-Al LDH and NiO:Al 3+ films. The electrochromic performance of the films were evaluated by means of UV–vis absorption spectroscopy, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and chronoamperometry(CA) measurements. In addition, the ratio of Ni 3+ /Ni 2+ also varies with Al content which can lead to different electrochemical performances. Among the as-prepared films, NiO film prepared from Ni-Al (19:1) LDH show the best electrochromic performance with a high transparency of 96%, large optical modulation range (58.4%), fast switching speed (bleaching/coloration times are 1.8/4.2 s, respectively) and excellent durability (30% decrease after 2000 cycles). The improved performance was owed to the synergy of large NiO film specific surface area and porous morphology, as well as Al doping stifled the formation of Ni 3+ making bleached state more pure. This LDHs precursor pyrolytic method is simple, low-cost and environmental benign and is feasible for the preparation of NiO:Al and other Al-doped oxide thin film. - Graphical abstract: The ratio of Ni 3+ /Ni 2+ varies with Al content which can lead to different electrochemical performances. Among the as-prepared films, NiO film prepared from Ni-Al (19:1) LDH show the best electrochromic performance with a high transparency of 96%, large optical modulation range, fast switching speed and excellent durability. Display Omitted

  6. Direct growth of cobalt aluminum double hydroxides on graphene nanosheets and the capacitive properties of the resulting composites

    International Nuclear Information System (INIS)

    Kim, Yuna; Kim, Seok

    2015-01-01

    We synthesized graphene nanosheets (GNs)/cobalt aluminum (CoAl) double hydroxide composites through a layer-by-layer deposition process while varying the concentration of the graphene precursor used. The CoAl layered double hydroxide particles were uniformly distributed on the surfaces of the graphene layers and effectively prevented the agglomeration of the GNs, resulting in a higher reactive surface area and easier ion transport. We employed X-ray diffraction analysis, energy-dispersive X-ray spectroscopy, field-emission scanning electron microscopy, and field-emission transmission electron microscopy to investigate the microstructures and morphologies of the composites. In addition, cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge/discharge measurements were performed to analyze the electrochemical behaviors of the composites. The as-prepared composites showed desirable electrochemical characteristics, including high specific capacitances, low resistances, and high cycling stabilities. In particular, the composite formed by optimizing the GNs/CoAl ratio (the electrolyte used was a 6 M aqueous KOH solution) exhibited the maximum specific capacitance, which was 974 F g −1

  7. Synthesis and characterization of laurate-intercalated Mg–Al layered double hydroxide prepared by coprecipitation

    DEFF Research Database (Denmark)

    Gerds, Nathalie Christiane; Katiyar, Vimal; Koch, Christian Bender

    2012-01-01

    Effective utilization of layered double hydroxides (LDH) for industrial applications requires the synthesis of pure and well-defined LDH phases. In the present study, dodecanoate (laurate) anions were intercalated into Mg–Al-layered double hydroxide (LDH-C12) by coprecipitation in the presence of...

  8. Aluminum doped nickel oxide thin film with improved electrochromic performance from layered double hydroxides precursor in situ pyrolytic route

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Jingjing; Lai, Lincong; Zhang, Ping; Li, Hailong; Qin, Yumei; Gao, Yuanchunxue; Luo, Lei; Lu, Jun, E-mail: lujun@mail.buct.edu.cn

    2016-09-15

    Electrochromic materials with unique performance arouse great interest on account of potential application values in smart window, low-power display, automobile anti-glare rearview mirror, and e-papers. In this paper, high-performing Al-doped NiO porous electrochromic film grown on ITO substrate has been prepared via a layered double hydroxides(LDHs) precursor in situ pyrolytic route. The Al{sup 3+} ions distributed homogenously within the NiO matrix can significantly influence the crystallinity of Ni-Al LDH and NiO:Al{sup 3+} films. The electrochromic performance of the films were evaluated by means of UV–vis absorption spectroscopy, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and chronoamperometry(CA) measurements. In addition, the ratio of Ni{sup 3+}/Ni{sup 2+} also varies with Al content which can lead to different electrochemical performances. Among the as-prepared films, NiO film prepared from Ni-Al (19:1) LDH show the best electrochromic performance with a high transparency of 96%, large optical modulation range (58.4%), fast switching speed (bleaching/coloration times are 1.8/4.2 s, respectively) and excellent durability (30% decrease after 2000 cycles). The improved performance was owed to the synergy of large NiO film specific surface area and porous morphology, as well as Al doping stifled the formation of Ni{sup 3+} making bleached state more pure. This LDHs precursor pyrolytic method is simple, low-cost and environmental benign and is feasible for the preparation of NiO:Al and other Al-doped oxide thin film. - Graphical abstract: The ratio of Ni{sup 3+}/Ni{sup 2+} varies with Al content which can lead to different electrochemical performances. Among the as-prepared films, NiO film prepared from Ni-Al (19:1) LDH show the best electrochromic performance with a high transparency of 96%, large optical modulation range, fast switching speed and excellent durability. Display Omitted.

  9. Mixing Acid Salts and Layered Double Hydroxides in Nanoscale under Solid Condition

    OpenAIRE

    Nakayama, Hirokazu; Hayashi, Aki

    2014-01-01

    The immobilization of potassium sorbate, potassium aspartate and sorbic acid in layered double hydroxide under solid condition was examined. By simply mixing two solids, immobilization of sorbate and aspartate in the interlayer space of nitrate-type layered double hydroxide, so called intercalation reaction, was achieved, and the uptakes, that is, the amount of immobilized salts and the interlayer distances of intercalation compounds were almost the same as those obtained in aqueous solution...

  10. NO and SCN -intercalated layered double hydroxides: structure and ...

    Indian Academy of Sciences (India)

    2018-02-05

    Feb 5, 2018 ... Keywords. Nitrite ion; thiocyanate ion; layered double hydroxide; structure refinement. 1. Introduction .... applications of LDHs is sorption/uptake of toxic anions ... by ion chromatography using a Metrohm Model 861 Advanced.

  11. Hydroxide precursors to produce nanometric YCrO3: Characterization and conductivity analysis

    International Nuclear Information System (INIS)

    Durán, A.; Meza F, C.; Arizaga, Gregorio Guadalupe Carbajal

    2012-01-01

    Highlights: ► Y/Cr mixed hydroxide was precipitated with gaseous ammonia. ► The hydroxide treated at 1373 K formed YCrO 3 crystals with 20 nm diameter. ► Electrical properties were different than those found in other methods of synthesis. ► E act suggests small-polarons as conduction mechanisms. -- Abstract: A precursor to produce perovskite-type YCrO 3 was precipitated by bubbling gaseous ammonia into an yttrium/chromium salts solution. X-ray diffraction showed that the as-prepared powders were amorphous. Thermal treatment between 1273 and 1373 K, leads to formation of polycrystalline YCrO 3 with crystal sizes around 20 nm. High resolution X-ray photoelectron spectra showed uniform chemical environment for yttrium and chromium in the amorphous hydroxide and crystalline YCrO 3 . Shifts between Y 3d 5/2 and Cr 2p 3/2 binding energy suggest redistribution or charge transfer between yttrium and chromium ions in the YCrO 3 structure. The electrical properties of YCrO 3 , whose precursors were precipitated with gaseous ammonia are different than those prepared by combustion synthesis. Electrical conductivity presents a sudden increase at ∼473 K, which is associated to the grain size and morphology of the crystallites. The redistribution of charge between Y(III) and Cr(III) is thermally activated by the hopping of small-polarons, which are characterized by the Arrhenius law as the conductive mechanism.

  12. Interaction of pristine hydrotalcite-like layered double hydroxides ...

    Indian Academy of Sciences (India)

    Metal oxides in general have surface acidic sites, but for exceptional circumstances, are not expected to mineralize CO2. Given their intrinsic basicity and an expandable interlayer gallery, the hydrotalcite-like layered double hydroxides (LDHs) are expected to be superior candidate materials for CO2 mineralization.

  13. Facile preparation of layered double hydroxide/MoS{sub 2}/poly(vinyl alcohol) composites

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Keqing, E-mail: zhoukq@cug.edu.cn [Faculty of Engineering, China University of Geosciences (Wuhan), 388 Lumo Road, Wuhan, Hubei, 430074 (China); Hu, Yixin [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Liu, Jiajia [State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026 (China); Gui, Zhou, E-mail: zgui@ustc.edu.cn [State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026 (China); Jiang, Saihua [School of Mechanical and Automotive Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510641 (China); Tang, Gang [School of Architecture and Civil Engineering, Anhui University of Technology, 59 Hudong Road, Ma' anshan, Anhui, 243002 (China)

    2016-08-01

    In present study, the layered double hydroxide/MoS{sub 2} hybrids are facilely synthesized by self-assembly of exfoliated MoS{sub 2} nanosheets and layered double hydroxide nanoplates via electrostatic interaction, with the aim of combining their physical and chemical functionalities to form a promising nanofiller for flame retardancy in polymer composites. The structure and morphology of the layered double hydroxide/MoS{sub 2} hybrids are probed by X-ray diffraction and transmission electron microscopy. Subsequently, the hybrids are incorporated into poly (vinyl alcohol) to serve as reinforcements. The flame retardant efficiency of MoS{sub 2} nanosheets in poly (vinyl alcohol) is significantly enhanced after the incorporation of layered double hydroxide nanoplates, which can be explained by the forming of a compact and uniform char during combustion. - Highlights: • The LDH/MoS{sub 2} hybrids were facilely synthesized by self-assembly method. • The flame retardant efficiency of LDH/MoS{sub 2} hybrids in PVA was significantly enhanced. • It is a promising strategy for improving the flame retardant efficiency of MoS{sub 2}.

  14. Layered double hydroxides for preparing CoMn{sub 2}O{sub 4} nanoparticles as anodes of lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Xu; Ma, Jingjing; Yuan, Ruo, E-mail: yuanruo@swu.edu.cn; Yang, Xia, E-mail: xiayang2@swu.edu.cn

    2017-06-15

    In the field of lithium-ion batteries, CoMn{sub 2}O{sub 4} as an anode material has attracted a wide attention because it inherited the splendid electrochemical performances of Mn and Co-based metal oxides. Compared to graphite, Co-based oxides have a higher capacity which is about twice of the graphite. Moreover, Mn-based oxides have lower operating voltages and manganese exists abundantly in nature. Layered double hydroxides (LDHs), similar with brucite structure, were used as precursor for CoMn{sub 2}O{sub 4} nanoparticles in this work. Under high temperature process, the LDHs decomposed to CoMn{sub 2}O{sub 4} nanoparticles. When evaluated as anode materials for lithium ion batteries, the CoMn{sub 2}O{sub 4} nanoparticles behaved good electrochemical performance with the discharge and charge capacity of 733 mAh g{sup -1} and 721 mAh g{sup -1} at current density of 200 mA g{sup -1} after 100 cycles. This method for preparing CoMn{sub 2}O{sub 4} nanoparticles is easy, which may provide a way for synthesis of other bimetallic oxides and anodes of lithium ion batteries. - Highlights: • Layered double hydroxides were employed as precursors to synthesize CoMn{sub 2}O{sub 4}. • The CoMn{sub 2}O{sub 4} nanoparticles behaved good electrochemical performance. • This study provides a guideline for preparing bimetallic oxides.

  15. Mg/Al Ordering in Layered Double Hydroxides Revealed by Multinuclear NMR Spectroscopy

    DEFF Research Database (Denmark)

    Nielsen, Ulla Gro; Grey, Clare P.; Sideris, Paul J.

    2008-01-01

    The anion- exchange ability of layered double hydroxides ( LDHs) has been exploited to create materials for use in catalysis, drug delivery, and environmental remediation. The specific cation arrangements in the hydroxide layers of hydrotalcite- like LDHs, of general formula Mg1-x2+Alx3+OH2(Anion...

  16. Evaluation of layered zinc hydroxide nitrate and zinc/nickel double hydroxide salts in the removal of chromate ions from solutions

    International Nuclear Information System (INIS)

    Bortolaz de Oliveira, Henrique; Wypych, Fernando

    2016-01-01

    Layered zinc hydroxide nitrate (ZnHN) and Zn/Ni layered double hydroxide salts were synthesized and used to remove chromate ions from solutions at pH 8.0. The materials were characterized by many instrumental techniques before and after chromate ion removal. ZnHN decomposed after contact with the chromate solution, whereas the layered structure of Zn/Ni hydroxide nitrate (Zn/NiHN) and Zn/Ni hydroxide acetate (Zn/NiHA) remained their layers intact after the topotactic anionic exchange reaction, only changing the basal distances. ZnHN, Zn/NiHN, and Zn/NiHA removed 210.1, 144.8, and 170.1 mg of CrO 4 2− /g of material, respectively. Although the removal values obtained for Zn/NiHN and Zn/NiHA were smaller than the values predicted for the ideal formulas of the solids (194.3 and 192.4 mg of CrO 4 2− /g of material, respectively), the measured capacities were higher than the values achieved with many materials reported in the literature. Kinetic experiments showed the removal reaction was fast. To facilitate the solid/liquid separation process after chromium removal, Zn/Ni layered double hydroxide salts with magnetic supports were also synthesized, and their ability to remove chromate was evaluated. - Highlights: • Zinc hydroxide nitrate and Zn/Ni hydroxide nitrate or acetate were synthesized. • The interlayer anions were replaced by chromate anions at pH=8.0. • Only Zn/Ni hydroxide nitrate or acetate have the structure preserved after exchange. • Fast exchange reaction and high capacity of chromate removal were observed. • Magnetic materials were obtained to facilitate the solids removal the from solutions.

  17. Evaluation of layered zinc hydroxide nitrate and zinc/nickel double hydroxide salts in the removal of chromate ions from solutions

    Science.gov (United States)

    de Oliveira, Henrique Bortolaz; Wypych, Fernando

    2016-11-01

    Layered zinc hydroxide nitrate (ZnHN) and Zn/Ni layered double hydroxide salts were synthesized and used to remove chromate ions from solutions at pH 8.0. The materials were characterized by many instrumental techniques before and after chromate ion removal. ZnHN decomposed after contact with the chromate solution, whereas the layered structure of Zn/Ni hydroxide nitrate (Zn/NiHN) and Zn/Ni hydroxide acetate (Zn/NiHA) remained their layers intact after the topotactic anionic exchange reaction, only changing the basal distances. ZnHN, Zn/NiHN, and Zn/NiHA removed 210.1, 144.8, and 170.1 mg of CrO42-/g of material, respectively. Although the removal values obtained for Zn/NiHN and Zn/NiHA were smaller than the values predicted for the ideal formulas of the solids (194.3 and 192.4 mg of CrO42-/g of material, respectively), the measured capacities were higher than the values achieved with many materials reported in the literature. Kinetic experiments showed the removal reaction was fast. To facilitate the solid/liquid separation process after chromium removal, Zn/Ni layered double hydroxide salts with magnetic supports were also synthesized, and their ability to remove chromate was evaluated.

  18. Hydroxide precursors to produce nanometric YCrO{sub 3}: Characterization and conductivity analysis

    Energy Technology Data Exchange (ETDEWEB)

    Durán, A., E-mail: dural@cnyn.unam.mx [Universidad Nacional Autónoma de México, Centro de Nanociencias y Nanotecnología, Km. 107 Carretera Tijuana-Ensenada, Apartado Postal 14, C.P. 22800, Ensenada, B.C. (Mexico); Meza F, C. [Universidad Nacional Autónoma de México, Centro de Nanociencias y Nanotecnología, Km. 107 Carretera Tijuana-Ensenada, Apartado Postal 14, C.P. 22800, Ensenada, B.C. (Mexico); Arizaga, Gregorio Guadalupe Carbajal, E-mail: gregoriocarbajal@yahoo.com.mx [Departamento de Química, Universidad de Guadalajara, Marcelino García Barragán 1421, C.P. 44430, Guadalajara, Jalisco (Mexico)

    2012-06-15

    Highlights: ► Y/Cr mixed hydroxide was precipitated with gaseous ammonia. ► The hydroxide treated at 1373 K formed YCrO{sub 3} crystals with 20 nm diameter. ► Electrical properties were different than those found in other methods of synthesis. ► E{sub act} suggests small-polarons as conduction mechanisms. -- Abstract: A precursor to produce perovskite-type YCrO{sub 3} was precipitated by bubbling gaseous ammonia into an yttrium/chromium salts solution. X-ray diffraction showed that the as-prepared powders were amorphous. Thermal treatment between 1273 and 1373 K, leads to formation of polycrystalline YCrO{sub 3} with crystal sizes around 20 nm. High resolution X-ray photoelectron spectra showed uniform chemical environment for yttrium and chromium in the amorphous hydroxide and crystalline YCrO{sub 3}. Shifts between Y 3d{sub 5/2} and Cr 2p{sub 3/2} binding energy suggest redistribution or charge transfer between yttrium and chromium ions in the YCrO{sub 3} structure. The electrical properties of YCrO{sub 3}, whose precursors were precipitated with gaseous ammonia are different than those prepared by combustion synthesis. Electrical conductivity presents a sudden increase at ∼473 K, which is associated to the grain size and morphology of the crystallites. The redistribution of charge between Y(III) and Cr(III) is thermally activated by the hopping of small-polarons, which are characterized by the Arrhenius law as the conductive mechanism.

  19. Structure of bayerite-based lithium-aluminum layered double hydroxides (LDHs): observation of monoclinic symmetry.

    Science.gov (United States)

    Britto, Sylvia; Kamath, P Vishnu

    2009-12-21

    The double hydroxides of Li with Al, obtained by the imbibition of Li salts into bayerite and gibbsite-Al(OH)(3), are not different polytypes of the same symmetry but actually crystallize in two different symmetries. The bayerite-derived double hydroxides crystallize with monoclinic symmetry, while the gibbsite-derived hydroxides crystallize with hexagonal symmetry. Successive metal hydroxide layers in the bayerite-derived LDHs are translated by the vector ( approximately -1/3, 0, 1) with respect to each other. The exigency of hydrogen bonding drives the intercalated Cl(-) ion to a site with 2-fold coordination, whereas the intercalated water occupies a site with 6-fold coordination having a pseudotrigonal prismatic symmetry. The nonideal nature of the interlayer sites has implications for the observed selectivity of Li-Al LDHs toward anions of different symmetries.

  20. Synthesis and characterization of a layered double hydroxide containing an intercalated nickel(II) citrate complex

    International Nuclear Information System (INIS)

    Wang Lianying; Wu Guoqing; Evans, David G.

    2007-01-01

    The nickel(II) citrate complex anion ([Ni(C 6 H 4 O 7 )] 2- ) may be intercalated into the interlayer galleries of a layered double hydroxide (LDH) host by a process involving ion-exchange with an Mg 2 Al-NO 3 LDH precursor. The powder X-ray diffraction (XRD) pattern confirms that the layered structure is maintained. The thermal decomposition process of the complex anion-intercalated material has been characterized by in situ high temperature powder XRD, thermogravimetry-differential thermal analysis (TG-DTA) and coupled with mass spectrometry (MS). The thermal stability of the nickel(II) citrate complex anion intercalated in LDHs in air is lower than that in the sodium salt. Calcination generates a high degree of nickel(II) oxide dispersion in a matrix of magnesium and aluminium oxide phases which should be an advantage if the materials are used as catalyst precursors. Based on the observed data, a structural model for the [Ni(C 6 H 4 O 7 )] 2- anion intercalated in the galleries of the LDH is proposed

  1. Evaluation of layered zinc hydroxide nitrate and zinc/nickel double hydroxide salts in the removal of chromate ions from solutions

    Energy Technology Data Exchange (ETDEWEB)

    Bortolaz de Oliveira, Henrique; Wypych, Fernando, E-mail: wypych@ufpr.br

    2016-11-15

    Layered zinc hydroxide nitrate (ZnHN) and Zn/Ni layered double hydroxide salts were synthesized and used to remove chromate ions from solutions at pH 8.0. The materials were characterized by many instrumental techniques before and after chromate ion removal. ZnHN decomposed after contact with the chromate solution, whereas the layered structure of Zn/Ni hydroxide nitrate (Zn/NiHN) and Zn/Ni hydroxide acetate (Zn/NiHA) remained their layers intact after the topotactic anionic exchange reaction, only changing the basal distances. ZnHN, Zn/NiHN, and Zn/NiHA removed 210.1, 144.8, and 170.1 mg of CrO{sub 4}{sup 2−}/g of material, respectively. Although the removal values obtained for Zn/NiHN and Zn/NiHA were smaller than the values predicted for the ideal formulas of the solids (194.3 and 192.4 mg of CrO{sub 4}{sup 2−}/g of material, respectively), the measured capacities were higher than the values achieved with many materials reported in the literature. Kinetic experiments showed the removal reaction was fast. To facilitate the solid/liquid separation process after chromium removal, Zn/Ni layered double hydroxide salts with magnetic supports were also synthesized, and their ability to remove chromate was evaluated. - Highlights: • Zinc hydroxide nitrate and Zn/Ni hydroxide nitrate or acetate were synthesized. • The interlayer anions were replaced by chromate anions at pH=8.0. • Only Zn/Ni hydroxide nitrate or acetate have the structure preserved after exchange. • Fast exchange reaction and high capacity of chromate removal were observed. • Magnetic materials were obtained to facilitate the solids removal the from solutions.

  2. Reduction of biselenites into polyselenides in interlayer space of layered double hydroxides

    Science.gov (United States)

    Kim, Myeong Shin; Lee, Yongju; Park, Yong-Min; Cha, Ji-Hyun; Jung, Duk-Young

    2018-06-01

    A selenous acid (H2SeO3) precursor was intercalated as biselenite (HSeO3-) ions into the interlayer gallery of carbonated magnesium aluminum layered double hydroxide (MgAl-LDH) in aqueous solution. Reduction reaction of selenous ions by aqueous hydrazine solution produced polyselenide intercalated LDHs which were consecutively exchanged with iodide through redox reaction under iodine vapor. The polyselenide containing LDHs adsorbed iodine vapor spontaneously and triiodide was incorporated in the interlayer space followed by formation of selenium polycrystalline phase. Two dimensional framework of MgAl-LDH is strong enough to resist against the reducing power of hydrazine as well as oxidation condition of iodine. The SEM data demonstrated that the shapes of LDH polycrystalline have little changed after the above redox reactions. The polyselenide and iodide LDH products were analyzed by XRD, Infrared and Raman spectra which strongly suggested the horizontal arrangement of polyselenide and triiodide in gallery space of LDHs.

  3. Preparation and properties of Mg/Al layered double hydroxide-oleate and -stearate intercalation compounds

    International Nuclear Information System (INIS)

    Inomata, Kazuya; Ogawa, Makoto

    2006-01-01

    Mg/Al layered double hydroxide-oleate and -stearate intercalation compounds were successfully synthesized by the reconstruction method under hydrothermal conditions from calcined hydrotalcite. The intercalation compounds were characterized by the high structural regularity as evidenced by the sharp and intense X-ray diffraction peaks. The oleate intercalated layered double hydroxide exhibits unique physicochemical properties such as a reversible thermoresponsive change in the basal spacing and swelling in organic solvents such as n-alkanes. (author)

  4. Automated solid-phase extraction of phenolic acids using layered double hydroxide-alumina-polymer disks.

    Science.gov (United States)

    Ghani, Milad; Palomino Cabello, Carlos; Saraji, Mohammad; Manuel Estela, Jose; Cerdà, Víctor; Turnes Palomino, Gemma; Maya, Fernando

    2018-01-26

    The application of layered double hydroxide-Al 2 O 3 -polymer mixed-matrix disks for solid-phase extraction is reported for the first time. Al 2 O 3 is embedded in a polymer matrix followed by an in situ metal-exchange process to obtain a layered double hydroxide-Al 2 O 3 -polymer mixed-matrix disk with excellent flow-through properties. The extraction performance of the prepared disks is evaluated as a proof of concept for the automated extraction using sequential injection analysis of organic acids (p-hydroxybenzoic acid, 3,4-dihydroxybenzoic acid, gallic acid) following an anion-exchange mechanism. After the solid-phase extraction, phenolic acids were quantified by reversed-phase high-performance liquid chromatography with diode-array detection using a core-shell silica-C18 stationary phase and isocratic elution (acetonitrile/0.5% acetic acid in pure water, 5:95, v/v). High sensitivity and reproducibility were obtained with limits of detection in the range of 0.12-0.25 μg/L (sample volume, 4 mL), and relative standard deviations between 2.9 and 3.4% (10 μg/L, n = 6). Enrichment factors of 34-39 were obtained. Layered double hydroxide-Al 2 O 3 -polymer mixed-matrix disks had an average lifetime of 50 extractions. Analyte recoveries ranged from 93 to 96% for grape juice and nonalcoholic beer samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Synthesis of Cd/(Al+Fe) layered double hydroxides and characterization of the calcination products

    International Nuclear Information System (INIS)

    Perez, M.R.; Barriga, C.; Fernandez, J.M.; Rives, V.; Ulibarri, M.A.

    2007-01-01

    Layered double hydroxides (LDHs) containing Cd(II), Al(III), and Fe(III) in the brucite-like layers with different starting Fe/Al atomic ratios and with nitrate as counteranion have been prepared following the coprecipitation method at a constant pH value of 8. An additional Cd(II),Al(III)-LDH sample interlayered with hexacyanoferrate(III) ions has been prepared by ionic exchange at pH 9. The samples have been characterized by elemental chemical analysis, powder X-ray diffraction (PXRD), and FT-IR spectroscopy. Their thermal stability has been assessed by thermogravimetric and differential thermal analyses (TG-DTA) and mass spectrometric analysis of the evolved gases. The PXRD patterns of the solids calcined at 800 deg. C show diffraction lines corresponding to Cd(Al)O and spinel-type materials, which precise nature (CdAl 2 O 4 , Cd 1-x Fe 2+x O 4 , or Cd x Fe 2.66 O 4 ) depends on location and concentration of iron in the parent material or precursor. - Graphical abstract: Layered double hydroxides (LDHs) containing Cd(II), Al(III), and Fe(III) in the brucite-like layers with different starting Fe/Al atomic ratios and with nitrate as counteranion have been prepared following the coprecipitation method. An additional Cd(II),Al(III)-LDH sample interlayered with hexacyanoferrate(III) ions has been prepared by ionic exchange. Calcination at 800 deg. C shows diffraction lines corresponding to CdO and to spinel-type materials. SEM micrograph of sample CdAlFe-N-0

  6. Thermal behaviour of layered double hydroxides studied by emanation thermal analysis

    Czech Academy of Sciences Publication Activity Database

    Dorničák, V.; Balek, V.; Kovanda, F.; Večerníková, Eva

    90-91, - (2003), s. 475-480 ISSN 1012-0394 Institutional research plan: CEZ:AV0Z4032918 Keywords : hydrotalcite * layered double hydroxides * thermal decomposition Subject RIV: CA - Inorganic Chemistry Impact factor: 0.687, year: 2003

  7. Catalytic Combustion of Low Concentration Methane over Catalysts Prepared from Co/Mg-Mn Layered Double Hydroxides

    Directory of Open Access Journals (Sweden)

    Hongfeng Liu

    2014-01-01

    Full Text Available A series of Co/Mg-Mn mixed oxides were synthesized through thermal decomposition of layered double hydroxides (LDHs precursors. The resulted catalysts were then subjected for catalytic combustion of methane. Experimental results revealed that the Co4.5Mg1.5Mn2LDO catalyst possessed the best performance with the T90=485°C. After being analyzed via XRD, BET-BJH, SEM, H2-TPR, and XPS techniques, it was observed that the addition of cobalt had significantly improved the redox ability of the catalysts whilst certain amount of magnesium was essential to guarantee the catalytic activity. The presence of Mg was helpful to enhance the oxygen mobility and, meanwhile, improved the dispersion of Co and Mn oxides, preventing the surface area loss after calcination.

  8. Competitive reactions during synthesis of zinc aluminum layered double hydroxides by thermal hydrolysis of urea

    DEFF Research Database (Denmark)

    Staal, Line Boisen; Pushparaj, Suraj Shiv Charan; Forano, Claude

    2017-01-01

    Homogeneous precipitation by thermal hydrolysis of urea (“The urea method”) is preferred for the preparation of pure and highly crystalline layered double hydroxides (LDHs). However, our recent study revealed large concentrations of amorphous aluminum hydroxide (AOH) in several zinc(II) aluminum(...

  9. Gold Nanoparticles on Layered Double Hydroxide Nanosheets and Its Electrocatalysis for Glucose Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Hye Ran; Lee, Jong Hyeon [The Catholic University of Korea, Bucheon (Korea, Republic of); Cho, Se Hee; Ji, Hong Geun [H and A PharmaChem, Bucheon (Korea, Republic of)

    2016-03-15

    We developed a new way to form the well-defined nanocomposite of Au NPs and exfoliated LDH nanosheet by in situ chemical reduction with NaBH{sub 4}. The optical and structural studies indicate that the Au NPs are highly dispersed and immobilized on the surface of LDH nanosheets. The Au/LDH nanosheet exhibited an excellent electrocatalysis toward glucose oxidation reaction. The results strongly demonstrate that the nanoscopic natures and dense positive charges of LDH nanosheet effectively stabilized the Au NPs to maintain their inherent properties during the synthesis and the electrocatalysis. The use of the double hydroxide nanosheets as nanoscopic support materials for the transition-metal NPs will dramatically improve their functionalities in heterogeneous catalysis. Recently, two-dimensional nanosheet of exfoliated layered double hydroxide (LDH) has emerged as a new type of solid support to immobilize the diverse metal NPs because of the large metal hydroxide area, good biochemical stability, and highly charged positive potential of 1- to 2-nm thick LDH layers. LDHs consist of a continuous stack of positively charged metal hydroxide layers with counter anions and water molecules placed in interlayer spaces.

  10. Layered double hydroxide nanoparticles in gene and drug delivery.

    Science.gov (United States)

    Ladewig, Katharina; Xu, Zhi Ping; Lu, Gao Qing Max

    2009-09-01

    Layered double hydroxides (LDHs) have been known for many decades as catalyst and ceramic precursors, traps for anionic pollutants, catalysts and additives for polymers, but their successful synthesis on the nanometer scale a few years ago opened up a whole new field for their application in nanomedicine. The delivery of drugs and other therapeutic/bioactive molecules (e.g., peptides, proteins, nucleic acids) to mammalian cells is an area of research that is of tremendous importance to medicine and provides manifold applications for any new developments in the area of nanotechnology. Among the many different nanoparticles that have been shown to facilitate gene and/or drug delivery, LDH nanoparticles have attracted particular attention owing to their many desirable properties. This review aims to report recent progress in gene and drug delivery using LDH nanoparticles. It summarizes the advantages and disadvantages of using LDH nanoparticles as carriers for nucleic acids and drugs against the general background of bottlenecks that are encountered by cellular delivery systems. It describes further the models that have been proposed for the internalization of LDH nanoparticles into cells so far and discusses the intracellular fate of the particles and their cargo. The authors offer some remarks on how this field of research will progress in the near future and which challenges need to be overcome before LDH nanoparticles can be used in a clinical setting.

  11. New layered double hydroxides by prepared by the intercalation of gibbsite

    International Nuclear Information System (INIS)

    Rees, Jennifer R.; Burden, Chloe S.; Fogg, Andrew M.

    2015-01-01

    New layered double hydroxides (LDHs) with the composition [MAl 4 (OH) 12 ]Cl 2 ·1.5H 2 O (M=Co, Ni) have been prepared by reacting gibbsite, γ-Al(OH) 3 , with the appropriate chloride salt in a synthesis in which the water of crystallization is the only solvent present and fully characterized. These LDHs have been shown to undergo facile anion exchange reactions with both organic and inorganic anions at room temperature making them comparable to other LDHs in this respect. Reactions under the same conditions with CuCl 2 ·2H 2 O and ZnCl 2 failed to form the desired LDHs but those with nitrate salts did lead to the formation of the previously reported [MAl 4 (OH) 12 ](NO 3 ) 2 ·1.5H 2 O (M=Co, Ni) compounds. - Graphical abstract: New layered double hydroxides (LDHs) with the composition [MAl 4 (OH) 12 ]Cl 2 ·1.5H 2 O (M=Co, Ni) have been prepared by reacting gibbsite, γ-Al(OH) 3 , with the appropriate chloride salt in a synthesis in which no additional solvent is used and fully characterized. These LDHs have been shown to undergo facile anion exchange reactions with both organic and inorganic anions at room temperature. - Highlights: • Synthesis of new layered double hydroxides, [MAl 4 (OH) 12 ]Cl 2 ·1.5H 2 O (M=Co, Ni). • Demonstration of the anion exchange capacity with both organic and inorganic anions. • Demonstration of the generality of the synthesis for LDHs

  12. Synthesis of Zn/Co/Fe-layered double hydroxide nanowires with controllable morphology in a water-in-oil microemulsion

    Energy Technology Data Exchange (ETDEWEB)

    Wu Hongyu; Jiao Qingze [School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing, 100081 (China); Zhao Yun, E-mail: zhaoyun@bit.edu.cn [School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing, 100081 (China); Huang Silu; Li Xuefei; Liu Hongbo; Zhou Mingji [School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing, 100081 (China)

    2010-02-15

    The Zn/Co/Fe-layered double hydroxide nanowires were synthesized via a reverse microemulsion method by using cetyltrimethyl ammonium bromide (CTAB) /n-hexane/n-hexanol/water as Soft-Template. ZnSO{sub 4}, CoSO{sub 4}, Fe{sub 2}(SO{sub 4}){sub 3} and urea were used as raw materials. The influence of reaction temperature, time, urea concentration and Cn (molar ratio of cetyltrimethyl ammonium bromide to water) on the structure and morphology of Zn/Co/Fe-layered double hydroxides was investigated. The samples were characterized using Transmission Electron Microscopy (TEM), Inductively Coupled Plasma (ICP), X-ray Diffraction (XRD) and Infrared Absorption Spectrum (IR). The results indicate that higher temperature is beneficial to the formation of layered double hydroxides, but particles apart from nanowires could be produced if temperature is up to 120 deg. C. By varying the temperature, reaction time, urea concentration and Cn, we got the optimum conditions of synthesizing uniform Zn/Co/Fe-layered double hydroxide nanowires: 100 deg. C, more than 12 h, Cn: 30-33, urea concentration: 0.3 M.

  13. Polymethyl methacrylate and polystyrene with layered double hydroxide nano composites: In situ synthesis, morphology and thermal properties

    International Nuclear Information System (INIS)

    Botan, Rodrigo; Nogueira, Telma R.; Lona, Liliane M.F.; Wypych, Fernando

    2011-01-01

    Over the past decade, polymer nanocomposites have attracted interest, both in industry and in academia, because they often exhibit remarkable improvement in their properties when compared with pure polymer or conventional micro and macro-composites using low levels of reinforcements. In this work polymethyl methacrylate and polystyrene reinforced with layered double hydroxide, which was intercalated with sodium dodecyl sulfate were synthesized by in situ bulk polymerization. The nanocomposites were characterized and compared by X-ray diffraction, thermogravimetric analysis and flammability test. The X-ray diffraction demonstrated that synthesized nanocomposites showed a high global dispersion of layered double hydroxide, suggesting exfoliated morphology. The result of thermogravimetric analysis and flammability test for synthesized polystyrene/ layered double hydroxide nanocomposite presented a significant improvement in thermal stability and flammability property when compared with pure polymer. (author)

  14. The photoluminescence of Co-Al-layered double hydroxide

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We report a new optical behaviour of pure Co-Al-layered double hydroxide (LDH). It was found that the Co-Al-LDH sample could emit fluorescence without any fluorescent substances intercalated. Its excitation spectrum shows a maximum peak near the wavelength 370 nm, the maximum emission peak appears at 430 nm and the photoluminescence colour of the Co-Al-LDH sample is blue. This new optical property will be expected to extend the potential applications of LDHs in optical materials field.

  15. Intercalation and controlled release properties of vitamin C intercalated layered double hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Xiaorui, E-mail: gxr_1320@sina.com [College of Science, Hebei University of Engineering, Handan 056038 (China); School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA (United Kingdom); Lei, Lixu [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); O' Hare, Dermot [Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA (United Kingdom); Xie, Juan [College of Science, Hebei University of Engineering, Handan 056038 (China); Gao, Pengran [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Chang, Tao [College of Science, Hebei University of Engineering, Handan 056038 (China)

    2013-07-15

    Two drug-inorganic composites involving vitamin C (VC) intercalated in Mg–Al and Mg–Fe layered double hydroxides (LDHs) have been synthesized by the calcination–rehydration (reconstruction) method. Powder X-ray diffraction (XRD), Fourier transform infrared (FTIR), and UV–vis absorption spectroscopy indicate a successful intercalation of VC into the interlayer galleries of the LDH host. Studies of VC release from the LDHs in deionised water and in aqueous CO{sub 3}{sup 2−} solutions imply that Mg{sub 3}Al–VC LDH is a better controlled release system than Mg{sub 3}Fe–VC LDH. Analysis of the release profiles using a number of kinetic models suggests a solution-dependent release mechanism, and a diffusion-controlled deintercalation mechanism in deionised water, but an ion exchange process in CO{sub 3}{sup 2−} solution. - Graphical abstract: Vitamin C anions have been intercalated in the interlayer space of layered double hydroxide and released in CO{sub 3}{sup 2−} solution and deionised water. - Highlights: • Vitamin C intercalated Mg–Al and Mg–Fe layered double hydroxides were prepared. • Release property of vitamin C in aqueous CO{sub 3}{sup 2−} solution is better. • Avrami-Erofe’ev and first-order models provide better fit for release results. • Diffusion-controlled and ion exchange processes occur in deionised water. • An ion exchange process occurs in CO{sub 3}{sup 2−} solution.

  16. Preparation of 5-benzotriazolyl-4-hydroxy-3- sec-butylbenzenesulfonate anion-intercalated layered double hydroxide and its photostabilizing effect on polypropylene

    Science.gov (United States)

    Li, Dianqing; Tuo, Zhenjun; Evans, David G.; Duan, Xue

    2006-10-01

    An organic UV absorber has been intercalated into a layered double hydroxide (LDH) host by ion-exchange method using ZnAl-NO 3-LDH as a precursor with an aqueous solution of the sodium salt of 5-benzotriazolyl-4-hydroxy-3- sec-butylbenzenesulfonic acid (BZO). After intercalation of the UV absorber, the interlayer distance in the LDHs increases from 0.89 to 2.32 nm. Infrared spectra and thermogravimetry and differential thermal analysis (TG-DTA) curves reveal the presence of a complex system of supramolecular host-guest interactions. The thermostability of BZO is markedly enhanced by intercalation in the LDH host. ZnAl-BZO-LDHs/polypropylene composite materials exhibit excellent UV photostability.

  17. Facile synthesis of deoxycholate intercalated layered double hydroxide nanohybrids via a coassembly process

    International Nuclear Information System (INIS)

    Wu, Xiaowen; Wang, Shuang; Du, Na; Zhang, Renjie; Hou, Wanguo

    2013-01-01

    In this paper, we describe a synthesis strategy of deoxycholate (DC) intercalated layered double hydroxide (LDH) nanohybrids via a coassembly method at room temperature. For this strategy, LDH particles were delaminated to well-dispersed 2D nanosheets in formamide, and the resulting LDH nanosheets were then coassembled with DC anions into the DC intercalated LDH (DC-LDH) nanohybrids. The so-synthesized nanohybrids were characterized by XRD, TEM, FT-IR, elemental analyses and TG-DSC. It was found that the loading amount of DC in the nanohybrids could be easily controlled by changing the ratio of DC to LDH. In addition, the nanohybrids have similar characteristics with the DC-LDH nanohybrids synthesized by the hydrothermal method, including their DC loading, crystal structure, morphology and thermal gravimetric behavior. However, this strategy exhibited the advantages of short reaction time and mild experimental conditions compared with the hydrothermal method. - Graphical abstract: Deoxycholate intercalated layered double hydroxide nanohybrids were successfully synthesized via a coassembly strategy. In this strategy, the interlayer spaces of LDHs can be efficiently used for the intercalation of guest species. - Highlights: • Deoxycholate intercalated layered double hydroxide nanohybrids were synthesized via a coassembly strategy. • This strategy exhibited the advantages of short time and mild conditions. • This strategy can enable organic species to be readily intercalated into the LDH galleries

  18. Poly I-lactide-layered double hydroxide nanocomposites via in situ polymerization of I-lactide

    DEFF Research Database (Denmark)

    Katiyar, Vimal; Gerds, N.; Koch, C.B.

    2010-01-01

    The use of clay nanofillers offers a potential route to improved barrier properties in polylactide films. Magnesium–aluminium layered double hydroxides (LDHs) are interesting in this respect and we therefore explored synthesis of PLA-LDH nanocomposites by ring-opening polymerization. This method ...... weight was significantly reduced when in-situ polymerization was conducted in the presence of the LDHs and we suggest that chain termination via LDH surface hydroxyl groups and/or metal-catalyzed degradation could be responsible.......The use of clay nanofillers offers a potential route to improved barrier properties in polylactide films. Magnesium–aluminium layered double hydroxides (LDHs) are interesting in this respect and we therefore explored synthesis of PLA-LDH nanocomposites by ring-opening polymerization. This method...

  19. High efficient photocatalytic activity of Zn-Al-Ti layered double hydroxides nanocomposite

    Directory of Open Access Journals (Sweden)

    Amor F.

    2018-01-01

    Full Text Available This work establishes a simple method for synthesising layered double hydroxides (LDHs powders with coprecipitation. The characteristics of the samples were investigated y X-ray diffraction (XRD, scanning electron microscopy (SEM and spectrophotometer UV–Vis (DRS. Non-uniform distribution was shown for LDHs samples by SEM. Photocatalytic efficiencies were tested using methylene blue (MB dye as a model contaminant under UV irradiation. In particular, Zn–Al-Ti LDH exhibited an excellent performance towards MB degradation compared with commercial TiO2 nanoparticles. Methylene blue removal percentage was reached at almost 100%, whereas commercial TiO2 reached a removal rate of only 66% under the same conditions within 20 min. The aim of the current work is to prepare Zn-Al-Ti layered double hydroxides nanocomposite and to evaluate their photocatalytic activity in the removal of methylene blue under UV irradiation.

  20. Synthesis and properties of Mg2Al layered double hydroxides containing 5-fluorouracil

    International Nuclear Information System (INIS)

    Wang Zhongliang; Wang Enbo; Gao Lei; Xu Lin

    2005-01-01

    A pharmaceutically active compound, 5-fluorouracil (5-FU) has been firstly intercalated into layered double hydroxide with the restructure method. Powder X-ray diffraction and spectroscopic analysis indicate that 5-FU molecule is stabilized in the host interlayer by electrostatic interaction and intermolecular interaction, and that the orientation of 5-FU is different when changing the pattern of aging treatment or the swelling agent. The release studies show that a rapid release of the drug during the first 40min is followed by a more sustained one, and that the total amount of drug released from hybrid material into the aqueous solution is almost 87% and 74% at pH 4 and 7, respectively. The studies mentioned above suggest that layered double hydroxide might be used as the basis of a tunable drug delivery carrier

  1. New layered double hydroxides by prepared by the intercalation of gibbsite

    Energy Technology Data Exchange (ETDEWEB)

    Rees, Jennifer R.; Burden, Chloe S.; Fogg, Andrew M., E-mail: andrewmfogg@hotmail.com

    2015-04-15

    New layered double hydroxides (LDHs) with the composition [MAl{sub 4}(OH){sub 12}]Cl{sub 2}·1.5H{sub 2}O (M=Co, Ni) have been prepared by reacting gibbsite, γ-Al(OH){sub 3}, with the appropriate chloride salt in a synthesis in which the water of crystallization is the only solvent present and fully characterized. These LDHs have been shown to undergo facile anion exchange reactions with both organic and inorganic anions at room temperature making them comparable to other LDHs in this respect. Reactions under the same conditions with CuCl{sub 2}·2H{sub 2}O and ZnCl{sub 2} failed to form the desired LDHs but those with nitrate salts did lead to the formation of the previously reported [MAl{sub 4}(OH){sub 12}](NO{sub 3}){sub 2}·1.5H{sub 2}O (M=Co, Ni) compounds. - Graphical abstract: New layered double hydroxides (LDHs) with the composition [MAl{sub 4}(OH){sub 12}]Cl{sub 2}·1.5H{sub 2}O (M=Co, Ni) have been prepared by reacting gibbsite, γ-Al(OH){sub 3}, with the appropriate chloride salt in a synthesis in which no additional solvent is used and fully characterized. These LDHs have been shown to undergo facile anion exchange reactions with both organic and inorganic anions at room temperature. - Highlights: • Synthesis of new layered double hydroxides, [MAl{sub 4}(OH){sub 12}]Cl{sub 2}·1.5H{sub 2}O (M=Co, Ni). • Demonstration of the anion exchange capacity with both organic and inorganic anions. • Demonstration of the generality of the synthesis for LDHs.

  2. Chloride adsorption by calcined layered double hydroxides in hardened Portland cement paste

    KAUST Repository

    Yoon, Seyoon; Moon, Juhyuk; Bae, Sungchul; Duan, Xiaonan; Giannelis, Emmanuel P.; Monteiro, Paulo M.

    2014-01-01

    This study investigated the feasibility of using calcined layered double hydroxides (CLDHs) to prevent chloride-induced deterioration in reinforced concrete. CLDHs not only adsorbed chloride ions in aqueous solution with a memory effect but also had

  3. Effect of monobutylether ethylene glycol on Mg/Al layered double hydroxide: a physicochemical and conductivity study

    International Nuclear Information System (INIS)

    Paulo, Maria Joao; Matos, Bruno Ribeiro de; Ntais, Spyridon; Coral Fonseca, Fabio; Tavares, Ana C.

    2013-01-01

    Mg–Al hydrotalcite-like compounds with OH − ions intercalated in the gallery and modified with monobutylether ethylene glycol (mbeeg) were prepared from Mg 6 Al 2 (CO 3 )(OH) 16 ·4H 2 O by the reconstruction method. The effect of the ethylene glycol, a moderate surfactant, on the textural properties and on the vapor water sorption of the layered double hydroxides was investigated by transmission electron microscopy and nitrogen and water sorption techniques. The ion conductivity of the samples was measured at 98 % RH up to 180 °C. The compounds are formed by nanoplatelets with a lateral size inferior to 20 nm. The addition of the ethylene glycol was found to increase the specific surface area, total pore volume, and water sorption capacity of the Mg–Al layered double hydroxide. However, it also decreased the average pore diameter, and the ion conductivity of the ethylene glycol modified layered double hydroxide was lower than expected based on the samples’ specific surface area and water content.

  4. Preparation of hydroxide ion conductive KOH–layered double hydroxide electrolytes for an all-solid-state iron–air secondary battery

    Directory of Open Access Journals (Sweden)

    Taku Tsuneishi

    2014-06-01

    Full Text Available Anion conductive solid electrolytes based on Mg–Al layered double hydroxide (LDH were prepared for application in an all-solid-state Fe–air battery. The ionic conductivity and the conducting ion species were evaluated from impedance and electromotive force measurements. The ion conductivity of LDH was markedly enhanced upon addition of KOH. The electromotive force in a water vapor concentration cell was similar to that of an anion-conducting polymer membrane. The KOH–LDH obtained was used as a hydroxide ion conductive electrolyte for all-solid-state Fe–air batteries. The cell performance of the Fe–air batteries was examined using a mixture of KOH–LDH and iron-oxide-supported carbon as the negative electrode.

  5. A facile mechanochemical approach to synthesize Zn-Al layered double hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Jun, E-mail: forsjun@whut.edu.cn [School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070 (China); He, Xiaoman; Chen, Min; Huang, Pengwu [School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070 (China); Zhang, Qiwu, E-mail: zhangqw@whut.edu.cn [School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070 (China); Liu, Xinzhong [College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118 (China)

    2017-06-15

    In this study, a mechanochemical route to synthesize Zn-Al layered double hydroxide (LDH) was introduced, in which Zn basic carbonate and Al hydroxide were first dry milled into an activated state and then agitated in water to obtain the final products. The as-prepared samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Thermogravimetry (TG) and Scanning electron microscopy (SEM). The products possessed a high crystallinity of Zn–Al LDH phase without any other impurities, proving a facile and effective preparation of Zn–Al LDH by using non-heating mechanochemical approach. - Highlights: • A non-heating mechanochemical route to synthesize Zn-Al LDH. • The products possessed high crystalline Zn-Al LDH phase. • No emission of other impurities or wastewater.

  6. The importance of proper crystal-chemical and geometrical reasoning demonstrated using layered single and double hydroxides

    International Nuclear Information System (INIS)

    Richardson, Ian G.

    2013-01-01

    The importance and utility of proper crystal-chemical and geometrical reasoning in structural studies is demonstrated through the consideration of layered single and double hydroxides. New yet fundamental information is provided and it is evident that the crystal chemistry of the double hydroxide phases is much more straightforward than is apparent from the literature. Atomistic modelling techniques and Rietveld refinement of X-ray powder diffraction data are widely used but often result in crystal structures that are not realistic, presumably because the authors neglect to check the crystal-chemical plausibility of their structure. The purpose of this paper is to reinforce the importance and utility of proper crystal-chemical and geometrical reasoning in structural studies. It is achieved by using such reasoning to generate new yet fundamental information about layered double hydroxides (LDH), a large, much-studied family of compounds. LDH phases are derived from layered single hydroxides by the substitution of a fraction (x) of the divalent cations by trivalent. Equations are derived that enable calculation of x from the a parameter of the unit cell and vice versa, which can be expected to be of widespread utility as a sanity test for extant and future structure determinations and computer simulation studies. The phase at x = 0 is shown to be an α form of divalent metal hydroxide rather than the β polymorph. Crystal-chemically sensible model structures are provided for β-Zn(OH) 2 and Ni- and Mg-based carbonate LDH phases that have any trivalent cation and any value of x, including x = 0 [i.e. for α-M(OH) 2 ·mH 2 O phases

  7. LAYERED DOUBLE HYDROXIDES: NANOMATERIALS FOR APPLICATIONS IN AGRICULTURE

    Directory of Open Access Journals (Sweden)

    Luíz Paulo Figueredo Benício

    2015-02-01

    Full Text Available The current research aims to introduce Layered Double Hydroxides (LDH as nanomaterials to be used in agriculture, with particular reference to its use as storage and slow release matrix of nutrients and agrochemicals for plant growing. Structural characteristics, main properties, synthesis methods and characterization of LDH were covered in this study. Moreover, some literature data have been reported to demonstrate their potential for storage and slow release of nitrate, phosphate, agrochemicals, besides as being used as adsorbent for the wastewater treatment. This research aims to expand, in near future, the investigation field on these materials, with application in agriculture, increasing the interface between chemistry and agronomy.

  8. The effect of magnesium hydroxide, hydromagnesite and layered double hydroxide on the heat stability and fire performance of plasticized poly(vinyl chloride)

    CSIR Research Space (South Africa)

    Molefe, DM

    2015-09-01

    Full Text Available . The other samples contained, in addition, minor amounts of iron, manganese nickel and calcium as impurities. Table 2. XRF composition analysis data of samples roasted at 1000 C Concentration, wt.% SiO2 Al2O3 Fe2O3 MnO MgO CaO NiO MgAl-LDH 1.59 36.85 0... additives aluminium trihydrate, magnesium hydroxide (MH), hydromagnesite (HM) and layered double hydroxide (LDH) have utility as endothermic flame retardants and smoke suppressants for PVC as well as other polymers (10-14). Their flame retardant action...

  9. Anion-exchange membranes derived from quaternized polysulfone and exfoliated layered double hydroxide for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wan; Liang, Na; Peng, Pai; Qu, Rong; Chen, Dongzhi; Zhang, Hongwei, E-mail: hanqiujiang@163.com

    2017-02-15

    Layered double hydroxides (LDH) are prepared by controlling urea assisted homogeneous precipitation conditions. Morphology and crystallinity of LDHs are confirmed by X-ray diffraction and scanning electron microscope. After LDHs are incorporated into quaternized polysulfone membranes, transmission electron microscope is used to observe the exfoliated morphology of LDH sheets in the membranes. The properties of the nanocomposite membranes, including water uptake, swelling ratio, mechanical property and ionic conductivity are investigated. The nanocomposite membrane containing 5% LDH sheets shows more balanced performances, exhibiting an ionic conductivity of 2.36×10{sup −2} S cm{sup −1} at 60 °C. - Graphical abstract: Anion-exchange membrane based on quaternized polysulfone and exfoliated layered double hydroxide is optically transparent and has good ionic properties.

  10. Porous layered double hydroxides synthesized using oxygen generated by decomposition of hydrogen peroxide

    NARCIS (Netherlands)

    Gonzalez Rodriguez, P.; de Ruiter, M.P.; Wijnands, Tom; ten Elshof, Johan E.

    2017-01-01

    Porous magnesium-aluminium layered double hydroxides (LDH) were prepared through intercalation and decomposition of hydrogen peroxide (H2O2). This process generates oxygen gas nano-bubbles that pierce holes in the layered structure of the material by local pressure build-up. The decomposition of the

  11. Cadmium-Aluminum Layered Double Hydroxide Microspheres for Photocatalytic CO2Reduction

    KAUST Repository

    Saliba, Daniel

    2016-03-30

    We report the synthesis of cadmium-aluminum layered double hydroxide (CdAl LDH) using the reaction-diffusion framework. As the hydroxide anions diffuse into an agar gel matrix containing the mixture of aluminum and cadmium salts at a given ratio, they react to give the LDH. The LDH self-assembles inside the pores of the gel matrix into a unique spherical-porous shaped microstructure. The internal and external morphologies of the particles are studied by electron microscopy and tomography revealing interconnected channels and a high surface area. This material is shown to exhibit a promising performance in the photoreduction of carbon dioxide using solar light. Moreover, the palladium-decorated version shows a significant improvement in its reduction potential at room temperature. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Cadmium-Aluminum Layered Double Hydroxide Microspheres for Photocatalytic CO2Reduction

    KAUST Repository

    Saliba, Daniel; Ezzeddine, Alaa; Sougrat, Rachid; Khashab, Niveen M.; Hmadeh, Mohamad; Al-Ghoul, Mazen

    2016-01-01

    We report the synthesis of cadmium-aluminum layered double hydroxide (CdAl LDH) using the reaction-diffusion framework. As the hydroxide anions diffuse into an agar gel matrix containing the mixture of aluminum and cadmium salts at a given ratio, they react to give the LDH. The LDH self-assembles inside the pores of the gel matrix into a unique spherical-porous shaped microstructure. The internal and external morphologies of the particles are studied by electron microscopy and tomography revealing interconnected channels and a high surface area. This material is shown to exhibit a promising performance in the photoreduction of carbon dioxide using solar light. Moreover, the palladium-decorated version shows a significant improvement in its reduction potential at room temperature. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Cadmium-Aluminum Layered Double Hydroxide Microspheres for Photocatalytic CO2 Reduction.

    Science.gov (United States)

    Saliba, Daniel; Ezzeddine, Alaa; Sougrat, Rachid; Khashab, Niveen M; Hmadeh, Mohamad; Al-Ghoul, Mazen

    2016-04-21

    We report the synthesis of cadmium-aluminum layered double hydroxide (CdAl LDH) using the reaction-diffusion framework. As the hydroxide anions diffuse into an agar gel matrix containing the mixture of aluminum and cadmium salts at a given ratio, they react to give the LDH. The LDH self-assembles inside the pores of the gel matrix into a unique spherical-porous shaped microstructure. The internal and external morphologies of the particles are studied by electron microscopy and tomography revealing interconnected channels and a high surface area. This material is shown to exhibit a promising performance in the photoreduction of carbon dioxide using solar light. Moreover, the palladium-decorated version shows a significant improvement in its reduction potential at room temperature. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Uptake Fluoride from Water by Starch Stabilized Layered Double Hydroxides

    Directory of Open Access Journals (Sweden)

    Jiming Liu

    2018-06-01

    Full Text Available A novel starch stabilized Mg/Al layered Double hydroxides (S-LDHs was prepared in a facile approach and its fluoride ion removal performance was developed. Characterization of S-LDHs was employed by using X-ray diffraction (XRD, Fourier-transform infrared spectroscopy (FTIR, and particle size distribution. The adsorption property was studied through the assessment of the adsorption isotherms, kinetic models, thermal dynamics, and pH influence. The result shows that a low loading of starch of 10 mg onto layered double hydroxides (LDHs could obviously improve the fluoride removal rate. The S-LDHs had three times higher the adsorption capacity to fluoride than that of Mg/Al LDHs to fluoride. The particle size was smaller and the particle size distribution was narrower for S-LDHs than that for Mg/Al LDHs. The Langmuir adsorption isotherm model and pseudo-second-order kinetic model fitted well with the experimental data. In thermodynamic parameters, the enthalpy (ΔH0 value was 35.63 kJ·mol−1 and the entropy (ΔS0 value was 0.0806 kJ·mol−1K−1. The values of ΔG0 were negative, implying the adsorption process is spontaneous. S-LDHs reveals stable adsorption property in a wide pH range from 3 to 9. The mechanism for fluoride adsorption on S-LDHs included surface adsorption and interaction ion exchange.

  15. New type ternary NiAlCe layered double hydroxide photocatalyst for efficient visible-light photoreduction of CO2 into CH4

    Science.gov (United States)

    Li, Ji; (Bill Yang, Y. J.

    2018-02-01

    New type of ternary NiAlCe layered double hydroxide photocatalyst was synthesized by a simple hydrothermal reaction. The obtained photocatalyst shows efficient visible-light activity for CO2 reduction to CH4. We have investigated the optimal Ce content in the catalyst and analyzed the mechanism by materials characterization. Additionally, a novel alkali etching method was used to construct the porous structure. The effect of the porosity and morphologies on the activity is investigated. It is found that the ternary NiAlCe layered double hydroxide photocatalyst with porosity showing the best photocatalytic activity among all the samples. Based on the characterization and first principle calculation, the detailed photocatalytic mechanism of the ternary NiAlCe layered double hydroxide photocatalyst is deduced.

  16. Acetyl salicylic acid–ZnAl layered double hydroxide functional nanohybrid for skin care application

    CSIR Research Space (South Africa)

    Mosangi, Damodar

    2016-10-01

    Full Text Available In this study, a pharmaceutically active ingredient, acetyl salicylic acid (ASA), was intercalated into ZnAl layered double hydroxide (LDH). The LDH–ASA nanohybrid material was characterized by XRD, FTIR, SEM, ICP-MS, TEM and TGA. Successful...

  17. Inorganic layered double hydroxides as a 4-hexyl resorcinol delivery system for topical applications

    CSIR Research Space (South Africa)

    Mosangi, Damodar

    2016-08-01

    Full Text Available In this study, the hydrophobic even skin tone active, 4-hexylresorcinol (HR), was intercalated into a zinc aluminium layered double hydroxide (ZnAl-LDH) by a co-precipitation method and used as a controlled release ingredient in skin care...

  18. Hydrothermal Synthesis and Characterization of 3R Polytypes of Mg-Al Layered Double Hydroxides

    NARCIS (Netherlands)

    Budhysutanto, W.N.

    2010-01-01

    Layered Double Hydroxides (LDH) is a unique group of clays that have an anionic exchange capability. This research explored the hydrothermal method as an alternative method to synthesize Mg-Al LDH. It is a simple and more environmentally friendly compared to the conventional method of

  19. Mg-Al layered double hydroxide intercalated with porphyrin anions: molecular simulations and experiments

    Czech Academy of Sciences Publication Activity Database

    Kovář, P.; Pospíšil, M.; Káfuňková, Eva; Lang, Kamil; Kovanda, F.

    2010-01-01

    Roč. 16, č. 2 (2010), s. 223-233 ISSN 1610-2940 R&D Projects: GA ČR(CZ) GA203/06/1244; GA AV ČR KAN100500651 Institutional research plan: CEZ:AV0Z40320502 Keywords : layered double hydroxide * porphyrin * molecular simulations Subject RIV: CA - Inorganic Chemistry Impact factor: 1.871, year: 2010

  20. Preparation and inhibition properties of molybdate intercalated ZnAlCe layered double hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Huajie; Wang, Jihui, E-mail: jhwang@tju.edu.cn; Zhang, Yu; Hu, Wenbin

    2016-09-05

    ZnAlCe layered double hydroxide intercalated by molybdate (ZnAlCe−MoO{sub 4} LDH) was successfully synthesized by using co-precipitation method, and the morphology, structure of ZnAlCe−MoO{sub 4} LDH were observed and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) techniques. The inhibition behavior of ZnAlCe−MoO{sub 4} LDH for Q235 steel in 3.5%NaCl solution was determined by polarization curves, electrochemical impedance spectroscopy (EIS), inductively coupled plasma mass spectrometer (ICP-MS) and X-ray photoelectron spectrometer (XPS) methods. The results shows that the synthesized ZnAlCe−MoO{sub 4} LDH has a lamellar structure with a particle size of 0.1–2.0 μm, an average thickness of 30 nm, and a basal plane spacing of 0.898 nm. Compared with the addition of ZnAl layered double hydroxide intercalated by nitrate (ZnAl−NO{sub 3} LDH) and ZnAl layered double hydroxide intercalated by molybdate (ZnAl−MoO{sub 4} LDH) in 3.5% NaCl solution, Q235 steel in 3.5%NaCl + ZnAlCe−MoO{sub 4} LDH solution has a lower corrosion current density, larger polarization resistance and a higher inhibition efficiency. The addition of ZnAlCe−MoO{sub 4} LDH will reduce the chloride concentration in 3.5% NaCl solution by the anion exchanged with molybdate, and improve the corrosion resistance of Q235 steel owing to the formation of passive film with the composition of ferrous or iron molybdate and deposition film with zinc and cerium hydroxides. - Highlights: • ZnAlCe−MoO{sub 4} LDH compound was successfully synthesized by co-precipitation method. • ZnAlCe−MoO{sub 4} LDH has a better inhibition effect to Q235 steel in 3.5%NaCl solution. • The Cl{sup −} ions in solution was partially exchanged with MoO{sub 4}{sup 2−} ions in host layers. • The passive film and deposition film were formed by the release of LDH compound.

  1. Mineralogy of C-S-H belite hydrates incorporating Zn-Al-Ti layered double hydroxides

    Directory of Open Access Journals (Sweden)

    Amor F.

    2018-01-01

    Full Text Available Recently, the belitic cements with low alite content were the subject of several research works which aimed to replace the Ordinary Portland Clinker (OPC for ecological reasons (reduction of CO2 emissions, so to understand the reactivity of this cement, the hydration study of the C2S “dicalcium silicate” phase is primordial research step. As well for a clean environment, the TiO2 photocatalyst has been extensively applied in the science of building materials because of its ability to degrade the cement surface pollutants. New photocatalyst based layered double hydroxides (LDH associated with zinc, aluminium and TiO2 was introduced to increase the compatibility with mortars. The present work is subjected to investigate the effect of the layered double hydroxides on the hydration of C2S in following the evolution of hydration by X-ray diffraction at 2, 7, 28 and 90 days and analyzing the calcium/silicon ratio of different formed hydrates.

  2. Degradation of l-polylactide during melt processing with layered double hydroxides

    DEFF Research Database (Denmark)

    Gerds, Nathalie; Katiyar, Vimal; Koch, Christian Bender

    2012-01-01

    PLA was melt compounded in small-scale batches with two forms of laurate-modified magnesium–aluminum layered double hydroxide (Mg-Al-LDH-C12), the corresponding carbonate form (Mg-Al-LDH-CO3) and a series of other additives. Various methods were then adopted to characterize the resulting compounds...... in an effort to gain greater insights into PLA degradation during melt processing. PLA molecular weight reduction was found to vary according to the type of LDH additive. It is considered that the degree of particle dispersion and LDH exfoliation, and hence the accessibility of the hydroxide layer surfaces...... and catalytically active Mg site centers are causative factors for PLA degradation. Interestingly, the release of water under the processing conditions was found to have a rather small effect on the PLA degradation. Low loadings of sodium laurate also caused PLA degradation indicating that carboxylate chain ends...

  3. One-Pot Microwave-Assisted Synthesis of Graphene/Layered Double Hydroxide (LDH) Nanohybrids

    Institute of Scientific and Technical Information of China (English)

    Sunil P Lonkar; Jean-Marie Raquez; Philippe Dubois

    2015-01-01

    A facile and rapid method to synthesize graphene/layered double hydroxide (LDH) nanohybrids by a micro-wave technique is demonstrated. The synthesis procedure involves hydrothermal crystallization of Zn–Al LDH at the same time in situ reduction of graphene oxide (GO) to graphene. The microstructure, composition, and morphology of the resulting graphene/LDH nanohybrids were characterized. The results confirmed the formation of nanohybrids and the reduction of graphene oxide. The growth mechanism of LDH and in situ reduction of GO were discussed. The LDH sheet growth was found to prevent the scrolling of graphene layers in resulting hybrids. The electrochemical properties exhibit superior performance for graphene/Zn–Al LDH hybrids over pristine graphene. The present approach may open a strategy in hybridizing graphene with multimetallic nano-oxides and hydroxides using microwave method.

  4. One-Pot Microwave-Assisted Synthesis of Graphene/Layered Double Hydroxide(LDH) Nanohybrids

    Institute of Scientific and Technical Information of China (English)

    Sunil P.Lonkar; Jean-Marie Raquez; Philippe Dubois

    2015-01-01

    A facile and rapid method to synthesize graphene/layered double hydroxide(LDH)nanohybrids by a microwave technique is demonstrated.The synthesis procedure involves hydrothermal crystallization of Zn–Al LDH at the same time in situ reduction of graphene oxide(GO)to graphene.The microstructure,composition,and morphology of the resulting graphene/LDH nanohybrids were characterized.The results confirmed the formation of nanohybrids and the reduction of graphene oxide.The growth mechanism of LDH and in situ reduction of GO were discussed.The LDH sheet growth was found to prevent the scrolling of graphene layers in resulting hybrids.The electrochemical properties exhibit superior performance for graphene/Zn–Al LDH hybrids over pristine graphene.The present approach may open a strategy in hybridizing graphene with multimetallic nano-oxides and hydroxides using microwave method.

  5. Structural Differentiation between Layered Single (Ni) and Double Metal Hydroxides (Ni–Al LDHs) Using Wavelet Transformation

    Energy Technology Data Exchange (ETDEWEB)

    Siebecker, Matthew G. [University of Delaware, Delaware Environmental Institute; Sparks, Donald L. [University of Delaware, Delaware Environmental Institute

    2017-09-07

    Layered double hydroxides (LDHs) are anionic clays important in disciplines such as environmental chemistry, geochemistry, and materials science. Developments in signal processing of extended X-ray absorption fine structure (EXAFS) data, such as wavelet transformation (WT), have been used to identify transition metals and Al present in the hydroxide sheets of LDHs. The WT plots of LDHs should be distinct from those of isostructural single metal hydroxides. However, no direct comparison of these minerals appears in the literature using WT. This work systematically analyzes a suite of Ni-rich mineral standards, including Ni–Al LDHs, single metal Ni hydroxides, and Ni-rich silicates using WT. The results illustrate that the WT plots for α-Ni(OH)2 and Ni–Al LDHs are often indistinguishable from each other, with similar two-component plots for the different mineral types. This demonstrates that the WT of the first metal shell often cannot be used to differentiate an LDH from a single metal hydroxide. Interlayer anions adsorbed to the hydroxide sheet of α-Ni(OH)2 affect the EXAFS spectra and are not visible in the FT but are clearly resolved and discrete in the WT.

  6. Preparation and characterization of lactate-intercalated Co–Fe layered double hydroxides and exfoliated nanosheet film with low infrared emissivity

    International Nuclear Information System (INIS)

    Zhu Yunxia; Zhou Yuming; Zhang Tao; He Man; Wang Yongjuan; Yang Xiaoming; Yang Yong

    2012-01-01

    Highlights: ► We use ferrous, cobalt powders and lactic acid to synthesis lactate-intercalated Co–Fe layered double hydroxides successfully. ► A possible orientation of the intercalated lactate between the layers is carried out. ► The thin nanosheet film is fabricated and the surface is very smooth and flat. ► The infrared emissivity value of Co–Fe LDHs is lower than that of Zn–Al or Mg–Al LDHs, and the value is further reduced after forming a thin film. - Abstract: Lactate-intercalated Co–Fe layered double hydroxides (LDHs) were successfully prepared by coprecipitation and hydrothermal method. In this process, divalent metal ions as precursors can be obtained from the reduction reaction of lactic acid and metal powder (cobalt and ferrous). In order to obtain Fe 3+ , H 2 O 2 (30%) was used to oxidize Fe 2+ . Meanwhile, the produced lactate was intercalated into the LDHs interlayers to compensate the positively charged layers. The as-synthesized LDHs were studied by element chemical analysis, powder X-ray diffraction (XRD), FT-IR spectroscopy, thermogravitry (TG) and differential scanning calorimetry (DSC), TEM. The results indicated that the basal spacing value of the LDHs was larger than that of lactate-intercalated Mg–Al or Zn–Al LDHs. It proved that the lactate anions were inserted into the gallery in the form of dimers which made it easy to be delaminated in water. The obtained nanosheets were deposited on the substrates to form the film which was characterized by TEM and AFM, and infrared emissivity value (8–14 μm) was also investigated. The infrared emissivity values of Co–Fe LDHs were lower than that of Zn–Al which took advantage of the special electronic structure in Co and Fe. Besides, the orderly structure and the reduction of the interfacial deficiency of the film made the values further reduced.

  7. Organo-layered double hydroxides composite thin films deposited by laser techniques

    Energy Technology Data Exchange (ETDEWEB)

    Birjega, R. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 77125 Bucharest-Magurele (Romania); Vlad, A., E-mail: angela.vlad@gmail.com [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 77125 Bucharest-Magurele (Romania); Matei, A.; Dumitru, M.; Stokker-Cheregi, F.; Dinescu, M. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 77125 Bucharest-Magurele (Romania); Zavoianu, R. [University of Bucharest, Faculty of Chemistry, Department of Chemical Technology and Catalysis, 4-12 Regina Elisabeta Bd., Bucharest 030018 (Romania); Raditoiu, V.; Corobea, M.C. [National R.& D. Institute for Chemistry and Petrochemistry, ICECHIM, 202 Splaiul Independentei Str., CP-35-274, 060021 Bucharest (Romania)

    2016-06-30

    Highlights: • PLD and MAPLE was successfully used to produce organo-layered double hydroxides. • The organic anions (dodecyl sulfate-DS) were intercalated in co-precipitation step. • Zn2.5Al-LDH (Zn/Al = 2.5) and Zn2.5Al-DS thin films obtained in this work could be suitable for further applications as hydrophobic surfaces. - Abstract: We used laser techniques to create hydrophobic thin films of layered double hydroxides (LDHs) and organo-modified LDHs. A LDH based on Zn-Al with Zn{sup 2+}/Al{sup 3+} ratio of 2.5 was used as host material, while dodecyl sulfate (DS), which is an organic surfactant, acted as guest material. Pulsed laser deposition (PLD) and matrix assisted pulsed laser evaporation (MAPLE) were employed for the growth of the films. The organic anions were intercalated in co-precipitation step. The powders were subsequently used either as materials for MAPLE, or they were pressed and used as targets for PLD. The surface topography of the thin films was investigated by atomic force microscopy (AFM), the crystallographic structure of the powders and films was checked by X-ray diffraction. FTIR spectroscopy was used to evidence DS interlayer intercalation, both for powders and the derived films. Contact angle measurements were performed in order to establish the wettability properties of the as-prepared thin films, in view of functionalization applications as hydrophobic surfaces, owing to the effect of DS intercalation.

  8. Preparation of C.I. Pigment 52:1 anion-pillared layered double hydroxide and the thermo- and photostability of the resulting intercalated material

    Science.gov (United States)

    Guo, Shengchang; Evans, David G.; Li, Dianqing

    2006-05-01

    Intercalation of 2-naphthalenecarboxylic acid, 4-((4-chloro-5-methyl-2-sulfophenyl) azo)-3-hydroxy-, calcium salt (1:1) (C.I. Pigment Red 52:1, also known as New Rubine S6B) into a layered double hydroxide (LDHs) host was carried out using MgAl NO3 LDHs as a precursor in an effort to improve the thermal and photo stability of the pigment. After intercalation, the powder X-ray diffraction (XRD) pattern shows that the basal spacing of the LDHs increased from 0.86 to 1.92 nm. Infrared spectra and TG DTA curves demonstrate that there are supramolecular host guest interactions. It was found that the intercalated material is more stable than the pristine pigment at high temperatures. The pigment anion-pillared LDHs also exhibit much higher photostablity to UV-light than the pristine pigment.

  9. Incorporation of rare-earth ions in Mg-Al layered double hydroxides: intercalation with an [Eu(EDTA)] - chelate

    Science.gov (United States)

    Li, Cang; Wang, Ge; Evans, David G.; Duan, Xue

    2004-12-01

    Reaction of an aqueous slurry of an Mg 2Al-NO 3 layered double hydroxide with a four-fold excess of Na[Eu(EDTA)] gives a material which analyses for Mg 0.68Al 0.32(OH) 2[Eu(EDTA)] 0.10(CO 3) 0.11·0.66H 2O. The interlayer spacing of the material is 13.8 Å, corresponding to a gallery height of 9.0 Å, which accords with the maximal dimensions (9-10 Å) of the anion in metal-EDTA complex salts as determined by single crystal X-ray diffraction. Geometrical considerations show that the charge density on the layered double hydroxide layers is too high to be balanced by intercalation of [Eu(EDTA)] - alone, necessitating the co-intercalation of carbonate ions which have a much higher charge density.

  10. Growth and characterization of ternary Ni, Mg–Al and Ni–Al layered double hydroxides thin films deposited by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Birjega, R. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., Magurele, 76900 Bucharest (Romania); Vlad, A., E-mail: angela.vlad@gmail.com [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., Magurele, 76900 Bucharest (Romania); Matei, A.; Ion, V.; Luculescu, C.; Dinescu, M. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., Magurele, 76900 Bucharest (Romania); Zavoianu, R. [University of Bucharest, Faculty of Chemistry, Department of Chemical Technology and Catalysis, 4-12 Regina Elisabeta Bd., Bucharest (Romania)

    2016-09-01

    Layered double hydroxides (LDHs) are a class of layered materials consisting of positively charged brucite-like layers and exchangeable interlayer anions. Layered double hydroxides containing a transition metal which undergoes a reversible redox reaction in the useful potential range have been proposed as electrode coating materials due to their properties of charge transport and redox catalysts in basic solutions. Ni–Al,(Ni,Mg)–Al and, as reference, non-electronically conductive Mg–Al double hydroxides thin films were obtained via pulsed laser deposition technique. The thin films were deposited on different substrates (Si, glass) by using a Nd:YAG laser (1064 nm) working at a repetition rate of 10 Hz. X-ray diffraction, Atomic Force Microscopy, Energy Dispersive X-ray spectroscopy, Fourier Transform Infra-Red Spectroscopy, Secondary Ions Mass Spectrometry, Impedance Analyzer and ellipsometry were the techniques used for the as deposited thin films investigation. The optical properties of Ni based LDH thin films and the effect of the Ni amount on the structural, morphological and optical response are evidenced. The optical band gap values, covering a domain between 3.84 eV and 4.38 eV, respond to the Ni overall concentration: the higher Ni amount the lower the band gap value. - Highlights: • Ternary Ni, Mg–Al and Ni–Al layered double hydroxides thin films were deposited. • The effect of the nickel is evidenced. • The possibility to tailor the materials accompanied by an optical response is shown.

  11. Two-Dimensional Layered Double Hydroxides for Reactions of Methanation and Methane Reforming in C1 Chemistry.

    Science.gov (United States)

    Li, Panpan; Yu, Feng; Altaf, Naveed; Zhu, Mingyuan; Li, Jiangbing; Dai, Bin; Wang, Qiang

    2018-01-31

    CH₄ as the paramount ingredient of natural gas plays an eminent role in C1 chemistry. CH₄ catalytically converted to syngas is a significant route to transmute methane into high value-added chemicals. Moreover, the CO/CO₂ methanation reaction is one of the potent technologies for CO₂ valorization and the coal-derived natural gas production process. Due to the high thermal stability and high extent of dispersion of metallic particles, two-dimensional mixed metal oxides through calcined layered double hydroxides (LDHs) precursors are considered as the suitable supports or catalysts for both the reaction of methanation and methane reforming. The LDHs displayed compositional flexibility, small crystal sizes, high surface area and excellent basic properties. In this paper, we review previous works of LDHs applied in the reaction of both methanation and methane reforming, focus on the LDH-derived catalysts, which exhibit better catalytic performance and thermal stability than conventional catalysts prepared by impregnation method and also discuss the anti-coke ability and anti-sintering ability of LDH-derived catalysts. We believe that LDH-derived catalysts are promising materials in the heterogeneous catalytic field and provide new insight for the design of advance LDH-derived catalysts worthy of future research.

  12. Formation of Layered Double Hydroxides on Alumina Surface in Aqueous Solutions Containing Divalent Metal Cations

    Czech Academy of Sciences Publication Activity Database

    Kovanda, F.; Mašátová, P.; Novotná, P.; Jirátová, Květa

    2009-01-01

    Roč. 57, č. 4 (2009), s. 425-432 ISSN 0009-8604 R&D Projects: GA ČR GA104/07/1400 Institutional research plan: CEZ:AV0Z40720504 Keywords : deposition * layered double hydroxides * supported mixed oxides Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.431, year: 2009

  13. Sandwich-like graphene/polypyrrole/layered double hydroxide nanowires for high-performance supercapacitors

    Science.gov (United States)

    Li, Xuejin; Zhang, Yu; Xing, Wei; Li, Li; Xue, Qingzhong; Yan, Zifeng

    2016-11-01

    Electrode design in nanoscale is considered to be ultra-important to construct a superb capacitor. Herein, a sandwich-like composite was made by combining graphene/polypyrrole (GPPY) with nickel-aluminum layered double hydroxide nanowires (NiAl-NWs) via a facile hydrothermal method. This sandwich-like architecture is promising in energy storage applications due to three unique features: (1) the conductive GPPY substrate not only effectively prevents the layered double hydroxides species from aggregating, but also considerably facilitates the electron transmission; (2) the ultrathin NiAl-NWs ensure a maximum exposure of active Ni2+, which can improve the efficiency of rapid redox reactions even at high current densities; (3) the sufficient space between anisotropic NiAl-NWs can accommodate a large volume change of the nanowires to avoid their collapse or distortion during the reduplicative redox reactions. Keeping all these unique features in mind, when the as-prepared composite was applied to supercapacitors, it presented an enhanced capacitive performance in terms of high specific capacitance (845 F g-1), excellent rate performance (67% retained at 30 A g-1), remarkable cyclic stability (92% maintained after 5000 cycles) and large energy density (40.1 Wh·Kg-1). This accomplishment in the present work inspires an innovative strategy of nanoscale electrode design for high-rate performance supercapacitor electrodes containing pseuducapacitive metal oxide.

  14. Solvothermal synthesis of Li–Al layered double hydroxides and their electrochemical performance

    International Nuclear Information System (INIS)

    Wei, Jinbo; Gao, Zan; Song, Yanchao; Yang, Wanlu; Wang, Jun; Li, Zhanshuang; Mann, Tom; Zhang, Milin; Liu, Lianhe

    2013-01-01

    In this paper, for the first time, Li/Al layered double hydroxides (LDHs) were synthesized by a facile and environment-friendly solvothermal approach. X-ray diffraction patterns show that the as-prepared products belong to the hexagonal phase. Well-defined LDHs particles with spiral-shape (1–2 μm), hexagonal (2–3 μm) and petal-like structures (10–15 μm) have been successfully fabricated by adjusting the content of water/ethanol in the synthesis process. A possible growth mechanism was proposed for the formation of these structures. Their electrochemical performances were investigated by cyclic voltammetry, galvanostatic charge/discharge test and electrochemical impedance spectroscopy. The hexagonal Li/Al LDHs calcined at 450 °C exhibit the specific capacitance of 848 F g −1 at a current density of 1.25 A g −1 . The high specific capacitance and remarkable rate capacity of Li/Al LDHs are promising for applications in capacitors and low-cost aqueous lithium ion batteries. - Graphical abstract: Hexagonal Li/Al layered double hydroxides (LDHs) with high specific surface area and remarkable rate capacity via a facile and environmentally friendly solvothermal approach. Highlights: ► Li/Al LDHs with different morphologies were fabricated by a solvothermal method. ► Hexagonal Li/Al LDHs display better electrochemical performance. ► A possible growth mechanism to explain the different morphology is proposed

  15. Chloride adsorption by calcined layered double hydroxides in hardened Portland cement paste

    KAUST Repository

    Yoon, Seyoon

    2014-06-01

    This study investigated the feasibility of using calcined layered double hydroxides (CLDHs) to prevent chloride-induced deterioration in reinforced concrete. CLDHs not only adsorbed chloride ions in aqueous solution with a memory effect but also had a much higher binding capacity than the original layered double hydroxides (LDHs) in the cement matrix. We investigated this adsorption in hardened cement paste in batch cultures to determine adsorption isotherms. The measured and theoretical binding capacities (153 mg g -1 and 257 mg g-1, respectively) of the CLDHs were comparable to the theoretical capacity of Friedel\\'s salt (2 mol mol-1 or 121 mg g-1), which belongs to the LDH family among cementitious phases. We simulated chloride adsorption by CLDHs through the cement matrix using the Fickian model and compared the simulation result to the X-ray fluorescence (XRF) chlorine map. Based on our results, it is proposed that the adsorption process is governed by the chloride transport through the cement matrix; this process differs from that in an aqueous solution. X-ray diffraction (XRD) analysis showed that the CLDH rebuilds the layered structure in a cementitious environment, thereby demonstrating the feasibility of applying CLDHs to the cement and concrete industries. © 2014 Published by Elsevier B.V. All rights reserved.

  16. A study of thermally activated Mg–Fe layered double hydroxides as potential environmental catalysts

    Directory of Open Access Journals (Sweden)

    MILICA S. HADNAĐEV-KOSTIĆ

    2010-09-01

    Full Text Available Layered double hydroxides (LDHs and mixed oxides derived after thermal decomposition of LDHs with different Mg–Fe contents were investigated. These materials were chosen because of the possibility to tailor their various properties, such as ion-exchange capability, redox and acid–base and surface area. Layered double hydroxides, [Mg1-xFex(OH2](CO3x/2×mH2O (where x presents the content of trivalent ions, x = M(III/(M(II + M(III were synthesized using the low supersaturation precipitation method. The influence of different Mg/Fe ratios on the structure and surface properties of the LDH and derived mixed oxides was investigated in correlation to their catalytic properties in the chosen test reaction (Fischer–Tropsch synthesis. It was determined that the presence of active sites in the mixed oxides is influenced by the structural properties of the initial LDH and by the presence of additional Fe phases. Furthermore, a synthesis outside the optimal range for the synthesis of single phase LDHs leads to the formation of metastable, multiphase systems with specific characteristics and active sites.

  17. Preparation and properties of blends composed of lignosulfonated layered double hydroxide/plasticized starch and thermoplastics.

    Science.gov (United States)

    Privas, Edwige; Leroux, Fabrice; Navard, Patrick

    2013-07-01

    Layered double hydroxide prepared with lignosulfonate (LDH/LS) can be easily dispersed down to the nanometric scale in thermoplastic starch, at concentration of 1 up to 4 wt% of LDH/LS. They can thus be used as a bio-based reinforcing agent of thermoplastic starch. Incorporation of LDH/LS in starch must be done using LDH/LS slurry instead of powder on order to avoid secondary particles aggregation, the water of the paste being used as the starch plasticizer. This reinforced starch was used for preparing a starch-polyolefine composite. LDH/LS-starch nanocomposites were mixed in a random terpolymer of ethylene, butyl acrylate (6%) and maleic anhydride (3%) at concentrations of 20 wt% and 40 wt%. With a 20% loading of (1 wt% LDH/LS in thermoplastic starch), the ternary copolymer is partially bio-based while keeping nearly its original processability and mechanical properties and improving oxygen barrier properties. The use of layered double hydroxides is also removing most odours linked to the lignin phase. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Reconstruction Effects on Surface Properties of Co/Mg/Al Layered Double Hydroxide

    Directory of Open Access Journals (Sweden)

    Denis SOKOL

    2017-08-01

    Full Text Available Layered double hydroxides having different cationic (Mg2+, Co2+, Al3+ composition were successfully synthesized by the low supersaturation method. The samples were thermally decomposed and reconstructed using water and nitrate media at different temperatures. X-ray powder diffraction analysis, X-ray fluorescence analysis, thermogravimetry and BET/BJH methods were used to investigate the differences between the directly obtained layered materials and those after the reconstruction process.DOI: http://dx.doi.org/10.5755/j01.ms.23.2.15184

  19. Intercalation of Molybdate Ions into Ni/Zn Layered Double Hydroxide Salts: Synthesis, Characterization, and Preliminary Catalytic Activity in Methyl Transesterification of Soybean Oil

    OpenAIRE

    Colombo, Kamila; Maruyama, Swami A.; Yamamoto, Carlos I.; Wypych, Fernando

    2017-01-01

    This study reports the synthesis and characterization of a Ni/Zn layered double hydroxide salt intercalated with acetate ions and the subsequent replacement of the acetate ions with molybdate ions via an ion exchange reaction, conducted at two different pH values. Regardless of the pH employed during the synthesis, the basal spacing in the Ni/Zn layered double hydroxide salt decreased from 13.08 Å to approximately 9.5 Å, which agreed with intercalation of hydrated molybdate anions. The non-ca...

  20. Synthesis, characterization, and efficacy of antituberculosis isoniazid zinc aluminum-layered double hydroxide based nanocomposites

    Directory of Open Access Journals (Sweden)

    Saifullah B

    2016-07-01

    Full Text Available Bullo Saifullah,1 Mohamed Ezzat El Zowalaty,2,3 Palanisamy Arulselvan,3 Sharida Fakurazi,3,4 Thomas J Webster,5–7 Benjamin Mahler Geilich,5,6 Mohd Zobir Hussein1 1Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology, (ITMA, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; 2School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa; 3Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, 4Department of Human Anatomy, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; 5Department of Chemical Engineering, 6Department of Bioengineering, Northeastern University, Boston, MA, USA; 7Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia Abstract: The chemotherapy for tuberculosis (TB is complicated by its long-term treatment, its frequent drug dosing, and the adverse effects of anti-TB drugs. In this study, we have developed two nanocomposites (A and B by intercalating the anti-TB drug isoniazid (INH into Zn/Al-layered double hydroxides. The average size of the nanocomposites was found to be ~164 nm. The efficacy of the Zn/Al-layered double hydroxides intercalated INH against Mycobacterium tuberculosis was increased by approximately three times more than free INH. The nanocomposites were also found to be active against Gram-positive and -negative bacteria. Compared to the free INH, the nanodelivery formulation was determined to be three times more biocompatible with human normal lung fibroblast MRC-5 cells and 3T3 fibroblast cells at a very high concentration of 50 µg/mL for up to 72 hours. The in vitro release of INH from the Zn/Al-layered double hydroxides was found to be sustained in human body-simulated buffer solutions of pH 4.8 and 7.4. This research is a step forward in making the TB chemotherapy patient friendly. Keywords: tuberculosis, Zn/Al-LDHs, drug

  1. The influence of filler surface modification on mechanical and material properties of layered double hydroxide -containing polypropylene composites

    CSIR Research Space (South Africa)

    Moyo, Lumbidzani

    2017-03-01

    Full Text Available The processing and properties of layered double hydroxides (LDHs)-containing polypropylene (PP) composites have been studied extensively. However, no detailed studies have reported on how stearic acid (SA)-intercalated and SA-coated LDHs influence...

  2. Preparation of poly(ethylene terephthalate/layered double hydroxide nanocomposites by in-situ polymerization and their thermal property

    Directory of Open Access Journals (Sweden)

    Q. Jiao

    2012-06-01

    Full Text Available Terephthalate (TA intercalated layered double hydroxides (LDHs were synthesized using hydroxides as raw materials, and poly(ethylene terephthalate (PET/LDH nanocomposites with different contents of TA intercalated LDHs were prepared by in-situ polymerization. The structure, morphology and thermal property of PET/LDH nanocomposites were investigated. The TA intercalated LDHs were partially exfoliated and well dispersed in PET matrix. The PET/LDH nanocomposites exhibit enhanced thermal stability relative to pure PET, confirmed by the thermogravimetric analysis results. The results of differential scanning calorimetry suggest that LDH nanoparticles could effectively promote the nucleation and crystallization of PET.

  3. Layered double hydroxides/polymer thin films grown by matrix assisted pulsed laser evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Birjega, R.; Matei, A.; Mitu, B.; Ionita, M.D.; Filipescu, M.; Stokker-Cheregi, F.; Luculescu, C.; Dinescu, M. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 77125 Bucharest–Magurele (Romania); Zavoianu, R.; Pavel, O.D. [University of Bucharest, Faculty of Chemistry, Department of Chemical Technology and Catalysis, 4-12 Regina Elisabeta Bd., Bucharest (Romania); Corobea, M.C. [National R. and S. Institute for Chemistry and Petrochemistry, ICECHIM, 202 Splaiul Independentei Str., CP-35-274, 060021, Bucharest (Romania)

    2013-09-30

    Due to their highly tunable properties, layered double hydroxides (LDHs) are an emerging class of the favorably layered crystals used for the preparation of multifunctional polymer/layered crystal nanocomposites. In contrast to cationic clay materials with negatively charge layers, LDHs are the only host lattices with positively charged layers (brucite-like), with interlayer exchangeable anions and intercalated water. In this work, the deposition of thin films of Mg and Al based LDH/polymers nanocomposites by laser techniques is reported. Matrix assisted pulsed laser evaporation was the method used for thin films deposition. The Mg–Al LDHs capability to act as a host for polymers and to produce hybrid LDH/polymer films has been investigated. Polyethylene glycol with different molecular mass compositions and ethylene glycol were used as polymers. The structure and surface morphology of the deposited LDH/polymers films were examined by X-ray diffraction, Fourier transform infra-red spectroscopy, atomic force microscopy and scanning electron microscopy. - Highlights: • Hybrid composites deposited by matrix assisted pulsed laser evaporation (MAPLE). • Mg–Al layered double hydroxides (LDH) and polyethylene glycol (PEG) are used. • Mixtures of PEG1450 and LDH were deposited by MAPLE. • Deposited thin films preserve the properties of the starting material. • The film wettability can be controlled by the amount of PEG.

  4. DFT-Based Simulation and Experimental Validation of the Topotactic Transformation of MgAl Layered Double Hydroxides.

    Science.gov (United States)

    Zhang, Shi-Tong; Dou, Yibo; Zhou, Junyao; Pu, Min; Yan, Hong; Wei, Min; Evans, David G; Duan, Xue

    2016-09-05

    The thermal topotactic transformation mechanism of MgAl layered double hydroxides (LDHs) is investigated by a combined theoretical and experimental study. Thermogravimetric differential thermal analysis (TG-DTA) results reveal that the LDH phase undergoes four key endothermic events at 230, 330, 450, and 800 °C. DFT calculations show that the LDH decomposes into CO2 and residual O atoms via a monodentate intermediate at 330 °C. At 450 °C, the metal cations almost maintain their original distribution within the LDH(001) facet during the thermal dehydration process, but migrate substantially along the c-axis direction perpendicular to the (001) facet; this indicates that the metal arrangement/dispersion in the LDH matrix is maintained two-dimensionally. A complete collapse of the layered structure occurs at 800 °C, which results in a totally disordered cation distribution and many holes in the final product. The structures of the simulated intermediates are highly consistent with the observed in situ powder XRD data for the MgAl LDH sample calcined at the corresponding temperatures. Understanding the structural topotactic transformation process of LDHs would provide helpful information for the design and preparation of metal/metal oxides functional materials derived from LDH precursors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Review of the synthesis of layered double hydroxides: a thermodynamic approach

    Directory of Open Access Journals (Sweden)

    Bravo-Suárez Juan J.

    2004-01-01

    Full Text Available The synthesis of layered double hydroxides (LDHs by hydrothermal-LDH reconstruction and coprecipitation methods is reviewed using a thermodynamic approach. A mixture model was used for the estimation of the thermodynamics of formation of LDHs. The synthesis and solubility of LDHs are discussed in terms of standard molar Gibbs free energy change of reaction. Data for numerous divalent and trivalent metals as well as for some monovalent and tetravalent metals that may be part of the LDH structure have been compiled. Good agreement is found between theoretical and experimental data. Diagrams and tables for the prediction of possible new LDH materials are provided.

  6. Studies on Me/Al-layered double hydroxides (Me = Ni and Co) as electrode materials for electrochemical capacitors

    International Nuclear Information System (INIS)

    Liu Xianming; Zhang Yihe; Zhang Xiaogang; Fu Shaoyun

    2004-01-01

    Me/Al-layered double hydroxides (Me=Ni and Co) prepared by the chemical co-precipitation method have been shown to be outstanding novel materials for electrochemical capacitors. The crystalline structure and the electrochemical properties of the electrodes have been studied by considering the effect of the mole ratio of nickel/cobalt. X-ray diffraction analysis shows that the materials belong to hexagonal system with layered structure. Cyclic voltammetric measurements indicate that Me/Al-layered double hydroxides with the Ni/Co mole ratio of 4:6 exhibit excellent capacitive properties within the potential range of 0.0-0.6 V versus Hg/HgO in 6 mol/L KOH electrolyte. Charge/discharge behaviors have been observed with the highest specific capacitance values of 960 F/g at the current density of 400 mA/g. Impedance studies show that the enhanced electrical properties and high frequency response are attributed to the presence of Co oxides

  7. Organic biocides hosted in layered double hydroxides: enhancing antimicrobial activity

    Directory of Open Access Journals (Sweden)

    Cruz Alejandra Santana

    2018-03-01

    Full Text Available Samples of layered double hydroxides containing carbonates as compensating anions were prepared by the urea method. These LDHs were used as hosts of anions coming from pipemidic and nalidixic acid. XRD results confirm that these anions were hosted in the interlayer space of LDHs. Further, from 27Al NMR MAS characterization of an interaction between the brucite-like layers and anions was suggested. Then the hybrids LDHs were used as biocide of Salmonella typhi and Escherichia coli. The release profile of pipemidic and nalidixic anions from hybrid LDHs occurs for periods as long as 3.5 hours. The free-organic acid LDHs were not able to kill S. Typhi, neither E. coli. In contrast, the hybrids LDHs eliminate almost completely bacteria within short times.

  8. Preparation and evaluation of PEGylated phospholipid membrane coated layered double hydroxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Mina Yan

    2016-06-01

    Full Text Available The aim of the present study was to develop layered double hydroxide (LDH nanoparticles coated with PEGylated phospholipid membrane. By comparing the size distribution and zeta potential, the weight ratio of LDH to lipid materials which constitute the outside membrane was identified as 2:1. Transmission electron microscopy photographs confirmed the core-shell structure of PEGylated phospholipid membrane coated LDH (PEG-PLDH nanoparticles, and cell cytotoxicity assay showed their good cell viability on Hela and BALB/C-3T3 cells over the concentration range from 0.5 to 50 μg/mL.

  9. Layered assembly of graphene oxide and Co-Al layered double hydroxide nanosheets as electrode materials for supercapacitors.

    Science.gov (United States)

    Wang, Lei; Wang, Dong; Dong, Xin Yi; Zhang, Zhi Jun; Pei, Xian Feng; Chen, Xin Jiang; Chen, Biao; Jin, Jian

    2011-03-28

    An innovative strategy of fabricating electrode material by layered assembling two kinds of one-atom-thick sheets, carboxylated graphene oxide (GO) and Co-Al layered double hydroxide nanosheet (Co-Al LDH-NS) for the application as a pseudocapacitor is reported. The Co-Al LDH-NS/GO composite exhibits good energy storage properties.

  10. Nickel–cobalt layered double hydroxide ultrathin nanoflakes decorated on graphene sheets with a 3D nanonetwork structure as supercapacitive materials

    International Nuclear Information System (INIS)

    Yan, Tao; Li, Ruiyi; Li, Zaijun

    2014-01-01

    Graphical abstract: The microwave heating reflux approach was developed for the fabrication of nickel–cobalt layered double hydroxide ultrathin nanoflakes decorated on graphene sheets, in which ammonia and ethanol were used as the precipitator and medium for the synthesis. The obtained composite shows a 3D flowerclusters morphology with nanonetwork structure and largely enhanced supercapacitive performance. - Highlights: • The paper reported the microwave synthesis of nickel–cobalt layered double hydroxide/graphene composite. • The novel synthesis method is rapid, green, efficient and can be well used to the mass production. • The as-synthesized composite offers a 3D flowerclusters morphology with nanonetwork structure. • The composite offers excellent supercapacitive performance. • This study provides a promising route to design and synthesis of advanced graphene-based materials with the superiorities of time-saving and cost-effective characteristics. - Abstract: The study reported a novel microwave heating reflux method for the fabrication of nickel–cobalt layered double hydroxide ultrathin nanoflakes decorated on graphene sheets (GS/NiCo-LDH). Ammonia and ethanol were employed as precipitant and reaction medium for the synthesis, respectively. The resulting GS/NiCo-LDH offers a 3D flowerclusters morphology with nanonetwork structure. Due to the greatly enhanced rate of electron transfer and mass transport, the GS/NiCo-LDH electrode exhibits excellent supercapacitive performances. The maximum specific capacitance was found to be 1980.7 F g −1 at the current density of 1 A g −1 . The specific capacitance can remain 1274.7 F g −1 at the current density of 15 A g −1 and it has an increase of about 2.9% after 1500 cycles. Moreover, the study also provides a promising approach for the design and synthesis of metallic double hydroxides/graphene hybrid materials with time-saving and cost-effective characteristics, which can be potentially applied

  11. Effect of hydrothermal treatment on properties of Ni-Al layered double hydroxides and related mixed oxides

    Czech Academy of Sciences Publication Activity Database

    Kovanda, F.; Rojka, T.; Bezdička, Petr; Jirátová, Květa; Obalová, L.; Pacultová, K.; Bastl, Zdeněk; Grygar, Tomáš

    2009-01-01

    Roč. 182, č. 1 (2009), s. 27-36 ISSN 0022-4596 R&D Projects: GA ČR GA104/07/1400 Institutional research plan: CEZ:AV0Z40320502; CEZ:AV0Z40720504; CEZ:AV0Z40400503 Keywords : layered double hydroxides * hydrotalcite-like compounds * thermal decomposition Subject RIV: CA - Inorganic Chemistry Impact factor: 2.340, year: 2009

  12. Direct observation of grafting interlayer phosphate in Mg/Al layered double hydroxides

    International Nuclear Information System (INIS)

    Shimamura, Akihiro; Kanezaki, Eiji; Jones, Mark I.; Metson, James B.

    2012-01-01

    The grafting of interlayer phosphate in synthetic Mg/Al layered double hydroxides with interlayer hydrogen phosphate (LDH-HPO 4 ) has been studied by XRD, TG/DTA, FT-IR, XPS and XANES. The basal spacing of crystalline LDH-HPO 4 decreases in two stages with increasing temperature, from 1.06 nm to 0.82 nm at 333 K in the first transition, and to 0.722 nm at 453 K in the second. The first stage occurs due to the loss of interlayer water and rearrangement of the interlayer HPO 4 2− . In the second transition, the interlayer phosphate is grafted to the layer by the formation of direct bonding to metal cations in the layer, accompanied by a change in polytype of the crystalline structure. The grafted phosphate becomes immobilized and cannot be removed by anion-exchange with 1-octanesulfonate. The LDH is amorphous at 743 K but decomposes to Mg 3 (PO 4 ) 2 , AlPO 4 , MgO and MgAl 2 O 4 after heated to 1273 K. - Graphical abstract: The cross section of the synthetic Mg, Al layered double hydroxides in Phase 1, with interlayer hydrogen phosphate Phase 2, and with grafted phosphate, Phase 3. Highlights: ► The grafting of hydrogen phosphate intercalated Mg/Al-LDH has been studied. ► The basal spacing of crystalline LDH-HPO 4 decreases in two stages with increasing temperature. ► The first decrease is due to loss of interlayer water, the second is attributed to phosphate grafting. ► The grafted interlayer phosphate becomes immobilized and cannot be removed by anion-exchange.

  13. Enhancement of the coercivity in Co-Ni layered double hydroxides by increasing basal spacing.

    Science.gov (United States)

    Zhang, Cuijuan; Tsuboi, Tomoya; Namba, Hiroaki; Einaga, Yasuaki; Yamamoto, Takashi

    2016-09-14

    The magnetic properties of layered double hydroxides (LDH) containing transition metal ions can still develop, compared with layered metal hydroxide salts which exhibit structure-dependent magnetism. In this article, we report the preparation of a hybrid magnet composed of Co-Ni LDH and n-alkylsulfonate anions (Co-Ni-CnSO3 LDH). As Co-Ni LDH is anion-exchangeable, we can systematically control the interlayer spacing by intercalating n-alkylsulfonates with different carbon numbers. The magnetic properties were examined with temperature- and field-dependent magnetization measurements. As a result, we have revealed that the coercive field depends on the basal spacing. It is suggested that increasing the basal spacing varies the competition between the in-plane superexchange interactions and long-range out-of-plane dipolar interactions. Moreover, a jump in the coercive field at around 20 Å of the basal spacing is assumed to be the modification of the magnetic ordering in Co-Ni-CnSO3 LDH.

  14. Nanohybrid-layered double hydroxides/urease materials: Synthesis and application to urea biosensors

    International Nuclear Information System (INIS)

    Vial, S.; Forano, C.; Shan, D.; Mousty, C.; Barhoumi, H.; Martelet, C.; Jaffrezic, N.

    2006-01-01

    Nanohybrid [ZnAl]-layered double hydroxides/urease were prepared for the first time using the coprecipitation of enzyme and inorganic matrix. By varying the respective amount of urease and LDH, we obtained hybrid materials with various amount and dispersion rate of active biomolecules. X-ray diffraction and infrared spectroscopy confirm the preservation of the structure of each partner while the morphology properties are in good agreement with the permeability study. These new nanohybrids were applied for the development of urea biosensors. Biosensor responses to urea additions were obtained using capacitance (C vs. V) measurements at urease-LDH biofilm deposited on an insulated semiconductor (IS) structure

  15. Removal of lead from aqueous solution on glutamate intercalated layered double hydroxide

    Directory of Open Access Journals (Sweden)

    Shen Yanming

    2017-05-01

    Full Text Available Glutamate intercalated Mg–Al layered double hydroxide (LDH was prepared by co-precipitation and the removal of Pb2+ in the aqueous solution was investigated. The prepared samples were characterized by XRD, FT-IR and SEM. It was shown that glutamate can intercalate into the interlayer space of Mg–Al LDH. The glutamate intercalated Mg–Al LDH can effectively adsorb Pb2+ in the aqueous solution with an adsorption capacity of 68.49 mg g−1. The adsorption of Pb2+ on glutamate intercalated Mg–Al LDH fitted the pseudo-second-order kinetics model and the isotherm can be well defined by Langmuir model.

  16. Total Oxidation of Ethanol over Layered Double Hydroxide-Related Mixed Oxide Catalysts: Effect of Cation Composition.

    Czech Academy of Sciences Publication Activity Database

    Jirátová, Květa; Kovanda, F.; Ludvíková, Jana; Balabánová, Jana; Klempa, Jan

    2016-01-01

    Roč. 277, NOV 15 (2016), s. 61-67 ISSN 0920-5861. [Czech-Italian-Spanish Conference on Molecular Sieves and Catalysis /16./. Amantea, 14.06.2015-17.06.2015] R&D Projects: GA ČR GA14-13750S Institutional support: RVO:67985858 Keywords : layered double hydroxides * transition metal oxides * vox oxidation Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 4.636, year: 2016

  17. Mixed oxides obtained from Co and Mn containing layered double hydroxides: Preparation, characterization, and catalytic properties

    Czech Academy of Sciences Publication Activity Database

    Kovanda, F.; Rojka, T.; Dobešová, J.; Machovič, V.; Bezdička, Petr; Obalová, L.; Jirátová, Květa; Grygar, Tomáš

    2006-01-01

    Roč. 179, č. 3 (2006), s. 812-823 ISSN 0022-4596 R&D Projects: GA ČR(CZ) GA104/04/2116; GA ČR(CZ) GA106/05/0366 Institutional research plan: CEZ:AV0Z40320502; CEZ:AV0Z40720504 Keywords : layered double hydroxides * hydrotalcite-like compounds * thermal decomposition Subject RIV: CA - Inorganic Chemistry Impact factor: 2.107, year: 2006

  18. A unique growth mechanism of donut-shaped Mg–Al layered double hydroxides crystals revealed by AFM and STEM–EDX

    NARCIS (Netherlands)

    Budhysutanto, W.N.; Van Den Bruele, F.J.; Rossenaar, B.D.; Van Agterveld, D.; Van Enckevort, W.J.P.; Kramer, H.J.M.

    2010-01-01

    Donut-like crystals of Mg–Al layered double hydroxides (LDH) are synthesized using a hydrothermal method with microwave heating. This morphology provides enlargement of the specific surface area of the {h k 0} faces, needed for adsorption application. The growth mechanism for donut-shaped crystals

  19. Immobilization of HRP Enzyme on Layered Double Hydroxides for Biosensor Application

    Directory of Open Access Journals (Sweden)

    Zouhair M. Baccar

    2011-01-01

    Full Text Available We present a new biosensor for hydrogen peroxide (H2O2 detection. The biosensor was based on the immobilization of horseradish peroxidase (HRP enzyme on layered double hydroxides- (LDH- modified gold surface. The hydrotalcite LDH (Mg2Al was prepared by coprecipitation in constant pH and in ambient temperature. The immobilization of the peroxidase on layered hybrid materials was realized via electrostatic adsorption autoassembly process. The detection of hydrogen peroxide was successfully observed in PBS buffer with cyclic voltammetry and the chronoamperometry techniques. A limit detection of 9 μM of H2O2 was obtained with a good reproducibility. We investigate the sensitivity of our developed biosensor for H2O2 detection in raw milk.

  20. A Simple Approach for the Synthesis of Gold Nanoparticles Mediated by Layered Double Hydroxide

    OpenAIRE

    Silva, Aires da Conceição; de Souza, Andréa Luzia Ferreira; Simão, Renata Antoun; Brum Malta, Luiz Fernando

    2013-01-01

    The present work introduces a new procedure to obtain gold nanoparticles (AuNPs). AuNPs (77–213 nm) were obtained in the absence of any classical reducing agents in a medium containing Mg2+/Al3+ layered double hydroxide (LDH) and N,N-dimethylformamide. XRD analysis showed the presence of crystalline phases of gold in the Au/LDH composite. The 2θ values of peaks corresponding to the LDH interlayer distance indicated that metallic NPs were deposited on the surface of the material. Furthermore, ...

  1. Strategy for synthesizing quantum dot-layered double hydroxide nanocomposites and their enhanced photoluminescence and photostability.

    Science.gov (United States)

    Cho, Seungho; Jung, Sungwook; Jeong, Sanghwa; Bang, Jiwon; Park, Joonhyuck; Park, Youngrong; Kim, Sungjee

    2013-01-08

    Layered double hydroxide-quantum dot (LDH-QD) composites are synthesized via a room temperature LDH formation reaction in the presence of QDs. InP/ZnS (core/shell) QD, a heavy metal free QD, is used as a model constituent. Interactions between QDs (with negative zeta potentials), decorated with dihydrolipoic acids, and inherently positively charged metal hydroxide layers of LDH during the LDH formations are induced to form the LDH-QD composites. The formation of the LDH-QD composites affords significantly enhanced photoluminescence quantum yields and thermal- and photostabilities compared to their QD counterparts. In addition, the fluorescence from the solid LDH-QD composite preserved the initial optical properties of the QD colloid solution without noticeable deteriorations such as red-shift or deep trap emission. Based on their advantageous optical properties, we also demonstrate the pseudo white light emitting diode, down-converted by the LDH-QD composites.

  2. A comparison of corrosion inhibition of magnesium aluminum and zinc aluminum vanadate intercalated layered double hydroxides on magnesium alloys

    Science.gov (United States)

    Guo, Lian; Zhang, Fen; Lu, Jun-Cai; Zeng, Rong-Chang; Li, Shuo-Qi; Song, Liang; Zeng, Jian-Min

    2018-04-01

    The magnesium aluminum and zinc aluminum layered double hydroxides intercalated with NO3 -(MgAl-NO3-LDH and ZnAl-NO3-LDH) were prepared by the coprecipitation method, and the magnesium aluminum and the zinc aluminum layered double hydroxides intercalated with VO x -(MgAl-VO x -LDH and ZnAl-VO x -LDH) were prepared by the anion-exchange method. Morphologies, microstructures and chemical compositions of LDHs were investigated by SEM, EDS, XRD, FTIR, Raman and TG analyses. The immersion tests were carried to determine the corrosion inhibition properties of MgAl-VO x -LDH and ZnAl-VO x -LDH on AZ31 Mg alloys. The results showed that ZnAl-VO x -LDH possesses the best anion-exchange and inhibition abilities. The influence of treatment parameters on microstructures of LDHs were discussed. Additionally, an inhibition mechanism for ZnAl-VO x -LDH on the AZ31 magnesium alloy was proposed and discussed.

  3. Hidróxidos duplos lamelares: síntese, estrutura, propriedades e aplicações Layered double hydroxides: structure, synthesis, properties and applications

    Directory of Open Access Journals (Sweden)

    Eduardo Luis Crepaldi

    1998-06-01

    Full Text Available The layered double hydroxides, known as anionic clays and represented by the general formula [M2+1-x M3+x (OH 2]x+ Am-x/m·nH 2O, are a group of materials which are of much interest currently. They present a variety of potential applications as adsorbents, catalysts and catalyst support, ion-exchangers, antacids and as a polymer stabilizer. It is possible to obtain a broad variety of layered double hydroxides (LDHs, depending on the identity and ratio of the cations M2+ and M3+, as well as the interlamelar anion. The aim of this review is to give out some information about this class of materials, concerning to the synthesis, characterization, properties and applications.

  4. Preparation of an anionic azo pigment-pillared layered double hydroxide and the thermo- and photostability of the resulting intercalated material

    Science.gov (United States)

    Guo, Shengchang; Li, Dianqing; Zhang, Weifeng; Pu, Min; Evans, David G.; Duan, Xue

    2004-12-01

    A large anionic pigment has been intercalated into a layered double hydroxide (LDH) host by ion-exchange of an Mg/Al LDH-nitrate precursor with a solution of C.I. Pigment Red 48:2 (the calcium salt of 4-((5-chloro-4-methyl-2-sulfophenyl)azo)-3-hydroxy-2-naphthalene-carboxylic acid), in ethane-1,2-diol. After intercalation of the pigment, the interlayer distance in the LDH increases from 0.86 to 1.72 nm. Infrared spectra and TG-DTA curves reveal the presence of a complex system of supramolecular host-guest interactions. The UV-visible diffuse reflectance spectra of C.I. Pigment Red 48:2 show marked changes after heating at 200 °C and above, whereas there are no significant changes in the spectra of the intercalated pigment after heating at temperatures up to 300 °C, showing that the thermostability is markedly enhanced by intercalation in the LDH host. The pigment-intercalated LDHs exhibits much higher photostability to UV light than the pristine pigment, in the case of both the pure solids and their composites with polypropylene, as shown by measurement of CIE 1976 L*a*b* color difference ( ΔE) values.

  5. Structure and thermal decomposition of sulfated β-cyclodextrin intercalated in a layered double hydroxide

    International Nuclear Information System (INIS)

    Wang Ji; Wei Min; Rao Guoying; Evans, D.G.; Duan Xue

    2004-01-01

    The sodium salt of hexasulfated β-cyclodextrin has been synthesized and intercalated into a magnesium-aluminum layered double hydroxide by ion exchange. The structure, composition and thermal decomposition behavior of the intercalated material have been studied by variable temperature X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), inductively coupled plasma emission spectroscopy (ICP), and thermal analysis (TG-DTA) and a model for the structure has been proposed. The thermal stability of the intercalated sulfated β-cyclodextrin is significantly enhanced compared with the pure form before intercalation

  6. Structure and thermal decomposition of sulfated β-cyclodextrin intercalated in a layered double hydroxide

    Science.gov (United States)

    Wang, Ji; Wei, Min; Rao, Guoying; Evans, David G.; Duan, Xue

    2004-01-01

    The sodium salt of hexasulfated β-cyclodextrin has been synthesized and intercalated into a magnesium-aluminum layered double hydroxide by ion exchange. The structure, composition and thermal decomposition behavior of the intercalated material have been studied by variable temperature X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), inductively coupled plasma emission spectroscopy (ICP), and thermal analysis (TG-DTA) and a model for the structure has been proposed. The thermal stability of the intercalated sulfated β-cyclodextrin is significantly enhanced compared with the pure form before intercalation.

  7. Study on synthesizing Mg/Al layered double hydroxides at different pHs

    Directory of Open Access Journals (Sweden)

    E Otgonjargal

    2014-12-01

    Full Text Available Mg/Al layered double hydroxide (LDH was successfully synthesized at different pHs values. The Mg/AL LDH was well characterized by X-Ray diffraction and Fourier transform infrared analysis. The morphology of the LDH was observed using Scanning electron microscopy with energy dispersive X-ray spectroscopy. The influence of pH values on the morphology of the Mg/Al LDHs were studied. The result showed that the well-synthesized Mg/Al LDHs could be obtained when the pH value was about 10.0 at room temperature.DOI: http://doi.dx.org/10.5564/mjc.v15i0.319 Mongolian Journal of Chemistry 15 (41, 2014, p36-39

  8. Electro-oxidation nitrite based on copper calcined layered double hydroxide and gold nanoparticles modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Cui Lin; Meng Xiaomeng; Xu Minrong; Shang Kun [College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong (China); Ai Shiyun, E-mail: ashy@sdau.edu.cn [College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong (China); Liu Yinping [College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong (China)

    2011-11-30

    Highlights: > A nitrite sensor fabricated based on copper calcined layered double hydroxides and gold nanoparticles modified electrode. > This sensor exhibited excellent electrocatalytic oxidation to nitrite. > This nitrite sensor exhibited very good analytical performance with low cost, convenient preparation and rapid detection. - Abstract: In this paper, a novel nitrite sensor was constructed based on electrodeposition of gold nanoparticles (AuNPs) on a copper calcined layered double hydroxide (Cu-CLDH) modified glassy carbon electrode. Electrochemical experiments showed that AuNPs/CLDH composite film exhibited excellent electrocatalytic oxidation activity with nitrite due to the synergistic effect of the Cu-CLDH with AuNPs. The fabricated sensor exhibited excellent performance for nitrite detection within a wide concentration interval of 1-191 {mu}M and with a detection limit of 0.5 {mu}M. The superior electrocatalytic response to nitrite was mainly attributed to the large surface area, minimized diffusion resistance, and enhanced electron transfer of the Cu-CLDH and AuNPs composition film. This platform offers a novel route for nitrite sensing with wide analytical applications and will supply the practical applications for a variety of simple, robust, and easy-to-manufacture analytical approaches in the future.

  9. Electro-oxidation nitrite based on copper calcined layered double hydroxide and gold nanoparticles modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Cui Lin; Meng Xiaomeng; Xu Minrong; Shang Kun; Ai Shiyun; Liu Yinping

    2011-01-01

    Highlights: → A nitrite sensor fabricated based on copper calcined layered double hydroxides and gold nanoparticles modified electrode. → This sensor exhibited excellent electrocatalytic oxidation to nitrite. → This nitrite sensor exhibited very good analytical performance with low cost, convenient preparation and rapid detection. - Abstract: In this paper, a novel nitrite sensor was constructed based on electrodeposition of gold nanoparticles (AuNPs) on a copper calcined layered double hydroxide (Cu-CLDH) modified glassy carbon electrode. Electrochemical experiments showed that AuNPs/CLDH composite film exhibited excellent electrocatalytic oxidation activity with nitrite due to the synergistic effect of the Cu-CLDH with AuNPs. The fabricated sensor exhibited excellent performance for nitrite detection within a wide concentration interval of 1-191 μM and with a detection limit of 0.5 μM. The superior electrocatalytic response to nitrite was mainly attributed to the large surface area, minimized diffusion resistance, and enhanced electron transfer of the Cu-CLDH and AuNPs composition film. This platform offers a novel route for nitrite sensing with wide analytical applications and will supply the practical applications for a variety of simple, robust, and easy-to-manufacture analytical approaches in the future.

  10. Zn-Al LAYERED DOUBLE HYDROXIDE PILLARED BY DIFFERENT DICARBOXYLATE ANIONS

    Directory of Open Access Journals (Sweden)

    S. Gago

    2004-12-01

    Full Text Available Zn-Al layered double hydroxides (LDHs intercalated by terephthalate (TPH and biphenyl-4,4'-dicarboxylate (BPH anions have been synthesized by direct co-precipitation from aqueous solution. The Zn/Al ratio in the final materials was 1.8. The products were characterized by powder X-ray diffraction, thermogravimetric analysis, FTIR and FT Raman spectroscopy, and MAS NMR spectroscopy. The basal spacing for the TPH-LDH intercalate was 14.62 Å, indicating that the guest anions stack to form a monolayer with the aromatic rings perpendicular to the host layers. For the LDH intercalate containing BPH anions, a basal spacing of at least 19.2 Å would be expected if the anions adopted an arrangement similar to that for the TPH anions. The observed spacing was 18.24 Å, suggesting that the anions are tilted slightly with respect to the host layers.

  11. Preparation of Layered Double Hydroxide-Immobilized Lipase for High Yield and Optically Active (-)-Menthyl butyrate

    Institute of Scientific and Technical Information of China (English)

    Siti; Salhah; Othman; Mahiran; Basri; Mohd.Zobir; Hussein; Mohd; Basyaruddin; Abdul; Rahman; Raja; Noor; Zaliha; Raja; Abdul; Rahman; Abu; Bakar; Salleh; Salina; Mat; Radzi; Azwani; Sofia; Ahmad; Khiar

    2007-01-01

    1 Results Layered Double Hydroxide (LDH) finds extensive usage in the areas of pharmaceutical sciences and catalysis. In this study, a member of the LDH family, Mg/Al-hydrotalcite (HT), or the so-called anionic clay, was prepared at ratio 4 (HT) by co-precipitating through continuous agitation. X-ray diffraction pattern and thermogravimetric analysis of the material indicated that a pure HT had been successfully synthesized. This matrix was then used as support in the immobilization of lipase from Cand...

  12. Supported Layered Double Hydroxide-Related Mixed Oxides and Their Application in the Total Oxidation of Volatile Organic Compounds

    Czech Academy of Sciences Publication Activity Database

    Kovanda, F.; Jirátová, Květa

    2011-01-01

    Roč. 53, č. 2 (2011), s. 305-316 ISSN 0169-1317 R&D Projects: GA ČR GAP106/10/1762; GA ČR GA106/09/1664 Institutional research plan: CEZ:AV0Z40720504 Keywords : layered double hydroxides * hydrothermal reaction * mixed oxides Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.474, year: 2011

  13. Zinc-stearate-layered hydroxide nanohybrid material as a precursor to produce carbon nanoparticles

    International Nuclear Information System (INIS)

    Ghotbi, Mohammad Yeganeh; Bagheri, Narjes; Sadrnezhaad, S.K.

    2011-01-01

    Research highlights: → In this work, a new organic-clay nanohybrid material, in which the organic moiety is intercalated between the inorganic layers, was synthesized using stearate anion as a guest and zinc hydroxide nitrate as an inorganic layered host by ion-exchange technique. Carbon nanoparticles were obtained by heat treating of the nanohybrid material, zinc-stearate-layered hydroxide. The proposed method is very simple, the chemicals used in the synthesis are cheap and the manner is economic and suitable for a large scale production of nano-sized carbon nanoparticles. - Abstract: Zinc-stearate-layered hydroxide nanohybrid was prepared using stearate anion as an organic guest, and zinc layered hydroxide nitrate, as a layered inorganic host by the ion-exchange method. Powder X-ray diffraction patterns and Fourier transform infrared results indicated that the stearate anion was actually intercalated into the interlayer of zinc layered hydroxide nitrate and confirmed the formation of the host-guest nanohybrid material. Also, surface properties data showed that the intercalation process has changed the porosity for the as-prepared nanohybrid material in comparison with that of the parent material, zinc hydroxide nitrate. The nanohybrid material was heat-treated at 600 deg. C under argon atmosphere. Stearate anion was chosen as a carbonaceous reservoir in the nanohybrid to produce carbon nanoparticles after heat-treating of the nanohybrid and subsequently acid washing process.

  14. Double-blind, randomized, placebo-controlled trial of the use of topical 10% potassium hydroxide solution in the treatment of molluscum contagiosum.

    Science.gov (United States)

    Short, Katherine A; Fuller, L Claire; Higgins, Elisabeth M

    2006-01-01

    Molluscum contagiosum is a common viral infection of the skin that frequently affects children. Lesions take between 6 and 18 months to resolve spontaneously and are a source of great embarrassment to both caretakers and children, often affecting attendance at school and limiting social activity. Treatment options to date have been poorly tolerated by children but recent studies have suggested that potassium hydroxide may be beneficial. This double-blind, randomized, placebo-controlled study compared 10% potassium hydroxide with placebo (normal saline). Twenty patients, aged 2 to 12 years, were recruited. Parents applied a solution twice daily to lesional skin until signs of inflammation appeared. Children were examined by the same observer on days 0, 15, 30, 60, and 90. Seventy percent of children receiving topical potassium hydroxide cleared, compared with 20% in the placebo group. Further dosing studies are required to identify whether weaker concentrations of potassium hydroxide are as efficacious, with less irritancy.

  15. Chloride adsorption by calcined layered double hydroxides in hardened Portland cement paste

    International Nuclear Information System (INIS)

    Yoon, Seyoon; Moon, Juhyuk; Bae, Sungchul; Duan, Xiaonan; Giannelis, Emmanuel P.; Monteiro, Paulo M.

    2014-01-01

    This study investigated the feasibility of using calcined layered double hydroxides (CLDHs) to prevent chloride-induced deterioration in reinforced concrete. CLDHs not only adsorbed chloride ions in aqueous solution with a memory effect but also had a much higher binding capacity than the original layered double hydroxides (LDHs) in the cement matrix. We investigated this adsorption in hardened cement paste in batch cultures to determine adsorption isotherms. The measured and theoretical binding capacities (153 mg g −1 and 257 mg g −1 , respectively) of the CLDHs were comparable to the theoretical capacity of Friedel's salt (2 mol mol −1 or 121 mg g −1 ), which belongs to the LDH family among cementitious phases. We simulated chloride adsorption by CLDHs through the cement matrix using the Fickian model and compared the simulation result to the X-ray fluorescence (XRF) chlorine map. Based on our results, it is proposed that the adsorption process is governed by the chloride transport through the cement matrix; this process differs from that in an aqueous solution. X-ray diffraction (XRD) analysis showed that the CLDH rebuilds the layered structure in a cementitious environment, thereby demonstrating the feasibility of applying CLDHs to the cement and concrete industries. - Highlights: • We examine the adsorption equilibrium and kinetics of CLDH in the hydrated cement. • CLDH capacity to bind chloride ions in the hydrated cement paste is determined. • We model chloride adsorption by CLDH through the cement matrix. • CLDH reforms the layered structure with ion adsorption in the cement matrix

  16. Pillarization of layer double hydroxides (Mg/Al with keggin type K4[α-SiW12O40]•nH2O and its application as adsorbent of procion red dye

    Directory of Open Access Journals (Sweden)

    Intan Permata Sari

    2017-07-01

    Full Text Available Pillarization of layered double hydroxides with polyoxometalate K4[α-SiW12O40]•nH2O at various times i.e. 3, 6, 9, 12, 24, 36 and 48 hours has been done. The pillared product was characterized by FT-IR spectrophotometer and XRD. The optimum pillared layered double hydroxides of polyoxometalate K4[α-SiW12O40]•nH2O was used as an adsorbent of procion red dye. The results of characterization using FT-IR spectrophotometer is not yet show the optimum pillarization process. The characterisation using XRD the successfully of pillared layered double hydroxides of polyoxometalate K4[α-SiW12O40]•nH2O showing the existence of diffraction angle 8.5o with intensity 355. Furthermore, the pillared layered double hydroxides of polyoxometalate K4[α-SiW12O40]•nH2O with time variation of 12 hours was applied as an adsorbent of procion red dye. The results show the adsorption rate was 0.523 min-1, the highest of absorption capacity at 70oC was 10.8 mol/g, the highest energy of absorption 70 oC was 125 kJ/mol. The enthalpy (∆H and entropy (∆S, decrease as the increasing concentration of procion red dye. Keywords: layered double hydroxides, polyoxometalate, pillaration, procion red, adsorption

  17. Thermal Analysis On The Kinetics Of Magnesium-Aluminum Layered Double Hydroxides In Different Heating Rates

    Directory of Open Access Journals (Sweden)

    Hongbo Y.

    2015-06-01

    Full Text Available The thermal decomposition of magnesium-aluminum layered double hydroxides (LDHs was investigated by thermogravimetry analysis and differential scanning calorimetry (DSC methods in argon environment. The influence of heating rates (including 2.5, 5, 10, 15 and 20K/min on the thermal behavior of LDHs was revealed. By the methods of Kissinger and Flynn-Wall-Ozawa, the thermal kinetic parameters of activation energy and pre-exponential factor for the exothermic processes under non-isothermal conditions were calculated using the analysis of corresponding DSC curves.

  18. Hydrogen storage in hybrid of layered double hydroxides/reduced graphene oxide using spillover mechanism

    International Nuclear Information System (INIS)

    Ensafi, Ali A.; Jafari-Asl, Mehdi; Nabiyan, Afshin; Rezaei, Behzad; Dinari, Mohammad

    2016-01-01

    New efficient hydrogen storage hybrids were fabricated based on hydrogen spillover mechanism, including chemisorptions and dissociation of H_2 on the surface of LDH (layered double hydroxides) and diffusion of H to rGO (reduced graphene oxide). The structures and compositions of all of the hybrids (LDHs/rGO) have been verified using different methods including transmission electron microscopy, X ray diffraction spectroscopy, infrared spectroscopy and Brunauer–Emmett–Teller analysis. Then, the abilities of the LDHs/rGOs, as hydrogen spillover, were investigated by electrochemical methods. In addition, the LDHs/rGOs were decorated with palladium, using redox replacement process, and their hydrogen spillover properties were studied. The results showed that the hydrogen adsorption/desorption kinetics, hydrogen storage capacities and stabilities of Pd"#LDH/rGOs are better than Pd/rGO. Finally presence of different polymers (synthesis with monomers, 4–aminophenol, 4–aminothiophenol, o-phenylenediamine and p-phenylenediamine) at the surface of the Pd#LDH/rGOs on hydrogen storage were studied. The results showed that presence of o-phenylenediamine and p-phenylenediamine improves the kinetics of the hydrogen adsorption/desorption and increase the capacity of the hydrogen storage. - Highlights: • Efficient hydrogen storage sorbents are introduced. • The sorbents are synthesized based on hybrids of layered double hydroxide. • The compositions of all of the hybrids are verified using different methods. • Pd nanoparticles modified nanohybrids are investigated for hydrogen storage. • Presence of different polymers beside the hydrogen sorbents are investigated.

  19. Preparation of layered double hydroxides intercalated with organic anions and their application in LDH/poly(butyl methacrylate) nanocomposites

    Czech Academy of Sciences Publication Activity Database

    Kovanda, F.; Jindrová, E.; Lang, Kamil; Kubát, Pavel; Sedláková, Zdeňka

    2010-01-01

    Roč. 48, 1-2 (2010), s. 260-270 ISSN 0169-1317 R&D Projects: GA AV ČR KAN100500651 Institutional research plan: CEZ:AV0Z40320502; CEZ:AV0Z40400503; CEZ:AV0Z40500505 Keywords : Layered double hydroxides * intercalation * poly(butyl methacrylate) nanocomposite * photoactive materials Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.303, year: 2010

  20. DOUBLE-SHELL TANK (DST) HYDROXIDE DEPLETION MODEL FOR CARBON DIOXIDE ABSORPTION

    International Nuclear Information System (INIS)

    OGDEN DM; KIRCH NW

    2007-01-01

    This document generates a supernatant hydroxide ion depletion model based on mechanistic principles. The carbon dioxide absorption mechanistic model is developed in this report. The report also benchmarks the model against historical tank supernatant hydroxide data and vapor space carbon dioxide data. A comparison of the newly generated mechanistic model with previously applied empirical hydroxide depletion equations is also performed

  1. New layered double hydroxides by prepared by the intercalation of gibbsite

    Science.gov (United States)

    Rees, Jennifer R.; Burden, Chloe S.; Fogg, Andrew M.

    2015-04-01

    New layered double hydroxides (LDHs) with the composition [MAl4(OH)12]Cl2·1.5H2O (M=Co, Ni) have been prepared by reacting gibbsite, γ-Al(OH)3, with the appropriate chloride salt in a synthesis in which the water of crystallization is the only solvent present and fully characterized. These LDHs have been shown to undergo facile anion exchange reactions with both organic and inorganic anions at room temperature making them comparable to other LDHs in this respect. Reactions under the same conditions with CuCl2·2H2O and ZnCl2 failed to form the desired LDHs but those with nitrate salts did lead to the formation of the previously reported [MAl4(OH)12](NO3)2·1.5H2O (M=Co, Ni) compounds.

  2. Determination of haloacetic acids in water using layered double hydroxides as a sorbent in dispersive solid-phase extraction followed by liquid chromatography with tandem mass spectrometry.

    Science.gov (United States)

    Alsharaa, Abdulnaser; Sajid, Muhammad; Basheer, Chanbasha; Alhooshani, Khalid; Lee, Hian Kee

    2016-09-01

    In the present study, highly efficient and simple dispersive solid-phase extraction procedure for the determination of haloacetic acids in water samples has been established. Three different types of layered double hydroxides were synthesized and used as a sorbent in dispersive solid-phase extraction. Due to the interesting behavior of layered double hydroxides in an acidic medium (pH˂4), the analyte elution step was not needed; the layered double hydroxides are simply dissolved in acid immediately after extraction to release the analytes which are then directly introduced into a liquid chromatography with tandem mass spectrometry system for analysis. Several dispersive solid-phase extraction parameters were optimized to increase the extraction efficiency of haloacetic acids such as temperature, extraction time and pH. Under optimum conditions, good linearity was achieved over the concentration range of 0.05-100 μg/L with detection limits in the range of 0.006-0.05 μg/L. The relative standard deviations were 0.33-3.64% (n = 6). The proposed method was applied to different water samples collected from a drinking water plant to determine the concentrations of haloacetic acids. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Preparation and regulating cell adhesion of anion-exchangeable layered double hydroxide micropatterned arrays.

    Science.gov (United States)

    Yao, Feng; Hu, Hao; Xu, Sailong; Huo, Ruijie; Zhao, Zhiping; Zhang, Fazhi; Xu, Fujian

    2015-02-25

    We describe a reliable preparation of MgAl-layered double hydroxide (MgAl-LDH) micropatterned arrays on gold substrate by combining SO3(-)-terminated self-assembly monolayer and photolithography. The synthesis route is readily extended to prepare LDH arrays on the SO3(-)-terminated polymer-bonded glass substrate amenable for cell imaging. The anion-exchangeable MgAl-LDH micropattern can act both as bioadhesive region for selective cell adhesion and as nanocarrier for drug molecules to regulate cell behaviors. Quantitative analysis of cell adhesion shows that selective HepG2 cell adhesion and spreading are promoted by the micropatterned MgAl-LDH, and also suppressed by methotrexate drug released from the LDH interlayer galleries.

  4. Photocatalytic property and structural stability of CuAl-based layered double hydroxides

    International Nuclear Information System (INIS)

    Lv, Ming; Liu, Haiqiang

    2015-01-01

    Three types of CuMAl layered double hydroxides (LDHs, M=Mg, Zn, Ni) were successfully synthesized by coprecipitation. Powder X-ray diffraction (XRD), inductively coupled plasma atomic emission spectrometry (ICP-AES) and UV–Vis diffuse reflectance spectrum (UV–vis) were used to confirm the formation of as-synthesized solids with good crystal structure. The photocatalytic activity of those LDH materials for CO 2 reduction under visible light was investigated. The experimental results show that CuNiAl-LDHs with narrowest band gap and largest surface areas behave highest efficiency for methanol generation under visible light compared with CuMgAl-LDHs and CuZnAl-LDHs. The CuNiAL-LDH showed high yield for methanol production i.e. 0.210 mmol/g h, which was high efficient. In addition, the influence of the different M 2+ on the structures and stability of the CuMAl-LDHs was also investigated by analyzing the geometric parameters, electronic arrangement, charge populations, hydrogen-bonding, and binding energies by density functional theory (DFT) analysis. The theoretical calculation results show that the chemical stability of LDH materials followed the order of CuMgAl-LDHs>CuZnAl-LDHs>CuNiAl-LDHs, which is just opposite with the photocatalytic activity and band gaps of three materials. - Graphical abstract: The host–guest calculation models and XRD patterns of CuMAl-LDHs: CuMgAl-LDHs (a), CuZnAl-LDHs (b) and CuNiAl-LDHs (c). - Highlights: • Three types of CuMAl layered double hydroxides (LDHs, M=Mg, Zn, Ni) has been synthesized. • CuMgNi shows narrower band gap and more excellent textural properties than other LDHs. • The band gap: CuMgAl

  5. Synthesising methods of layered double hydroxides and its use in the fabrication of dye Sensitised solar cell (DSSC): A short review

    Science.gov (United States)

    George, Giphin; Saravanakumar, M. P.

    2017-11-01

    The layered double hydroxides (LDH) which are anionic clay substances comprising of stacked cationic layers and interlayer anions. The cationic sheets contain octahedral structure consisting the divalent and trivalent ions in the center and hydroxyl bunches in the corners, gathered by three bonding with the neighbouring octahedra on every side of the layer. The ratio between the quantity of cations and OH- ions is 2:1, so a positive charge shows up on the layer because of the presence of trivalent cations. The interlayer space gives the compensation anions and water molecules, assuring a balanced out layered structure. The LDH materials were successfully synthesised from magnesium, aluminium, zinc and chromium chloride salts utilizing the co-precipitation technique. A Zn-Al LDH was researched as a potential sorbent material. This article reviews the recent advances in the preparation and intercalation of layered double hydroxides and its application in the fabrication of Dye Sensitized Solar Cell (DSSC).

  6. Kinetic analysis of anionic surfactant adsorption from aqueous solution onto activated carbon and layered double hydroxide with the zero length column method

    NARCIS (Netherlands)

    Schouten, N.; van der Ham, Aloysius G.J.; Euverink, G.J.W.; de Haan, A.B.

    2009-01-01

    Low cost adsorption technology offers high potential to clean-up laundry rinsing water. From an earlier selection of adsorbents, layered double hydroxide (LDH) and granular activated carbon (GAC) proved to be interesting materials for the removal of anionic surfactant, linear alkyl benzene sulfonate

  7. A Simple Approach for the Synthesis of Gold Nanoparticles Mediated by Layered Double Hydroxide

    Directory of Open Access Journals (Sweden)

    Aires da Conceição Silva

    2013-01-01

    Full Text Available The present work introduces a new procedure to obtain gold nanoparticles (AuNPs. AuNPs (77–213 nm were obtained in the absence of any classical reducing agents in a medium containing Mg2+/Al3+ layered double hydroxide (LDH and N,N-dimethylformamide. XRD analysis showed the presence of crystalline phases of gold in the Au/LDH composite. The 2θ values of peaks corresponding to the LDH interlayer distance indicated that metallic NPs were deposited on the surface of the material. Furthermore, atomic force microscopy (AFM analysis showed that AuNPs tend to agglomerate in a nonclassical halter-like shape.

  8. Removal of Pb2+ from the aqueous solution by tartrate intercalated layered double hydroxides

    International Nuclear Information System (INIS)

    Shen, Yanming; Zhao, Xiaolei; Zhang, Xi; Li, Shifeng; Liu, Dongbin; Fan, Lihui

    2016-01-01

    Adsorption of Pb 2+ ion by a tartrate intercalated MgAl layered double hydroxides (MgAl-TA LDHs) was studied. The adsorption isotherms and kinetics were investigated as a function of various experimental parameters using batch adsorption experiments. The results indicated that the adsorption isotherm was well described by Sips model. The kinetic adsorption data were fitted well to the pseudo-second-order kinetic equation. The adsorption of Pb 2+ was controlled mainly by the chemical process combined with intraparticle diffusion. Parameters of adsorption thermodynamic suggested that the interaction of Pb 2+ adsorbed by MgAl-TA LDHs adsorbents was thermodynamically spontaneous and endothermic.

  9. Interlayer Structure of Bioactive Molecule, 2-Aminoethanesulfonate, Intercalated into Calcium-Containing Layered Double Hydroxides

    Directory of Open Access Journals (Sweden)

    Tae-Hyun Kim

    2012-01-01

    Full Text Available We have successfully intercalated 2-aminoethanesulfonate, a well-known biomolecule taurine, into calcium-containing layered double hydroxides via optimized solid phase intercalation. According to X-ray diffraction patterns and infrared spectroscopy, it was revealed that the intercalated taurine molecules were each directly coordinated to other calcium cation and arranged in a zig-zag pattern. Scanning electron microscopy showed that the particle size and morphology of the LDHs were not affected by the solid phase intercalation, and the surface of intercalates was covered by organic moieties. From ninhydrin amine detection tests, we confirmed that most of the taurine molecules were well stabilized between the calcium-containing LDH layers.

  10. Mechanical and Morphological Properties of Poly-3-hydroxybutyrate/Poly(butyleneadipate-co-terephthalate)/Layered Double Hydroxide Nanocomposites

    OpenAIRE

    Pak, Yen Leng; Bin Ahmad, Mansor; Shameli, Kamyar; Yunus, Wan Md Zin Wan; Ibrahim, Nor Azowa; Zainuddin, Norhazlin

    2013-01-01

    Nanocomposites of poly-3-hydroxybutyrate/poly(butyleneadipate-co-terephthalate)/layered double hydroxide (PHB/PBAT/LDH) were prepared from a binary blend of PHB/PBAT and stearate-Zn3Al LDH via a solution casting method using chloroform as solvent in this study. The pristine Zn3Al LDH was synthesized from nitrate salts solution at pH 7 by using coprecipitation technique and then was modified by stearate anions surfactant via ion exchange reaction. As a result, the basal spacing of the LDH was ...

  11. Lubrication performance and mechanisms of Mg/Al-, Zn/Al-, and Zn/Mg/Al-layered double hydroxide nanoparticles as lubricant additives

    International Nuclear Information System (INIS)

    Li, Shuo; Bhushan, Bharat

    2016-01-01

    Highlights: • Mg/Al-, Zn/Al- and Zn/Mg/Al-layered double hydroxide were synthesized. • Mg/Al-LDH had superior tribological performance compared to other LDHs. • The best thermal stability of Mg/Al-LDH was responsible for its friction property. - Abstract: Solid lubricant particles are commonly used as oil additives for low friction and wear. Mg/Al-, Zn/Al-, and Zn/Mg/Al-layered double hydroxides (LDH) were synthesized by coprecipitation method. The benefits of LDH nanoparticles are that they can be synthesized using chemical methods where size and shape can be controlled, and can be modified organically to allow dispersal in fluids. The LDH nanoparticles were characterized by X-ray diffraction, scanning electron microscope, thermogravimetry, and differential scanning calorimetry. A pin-on-disk friction and wear tester was used for evaluating the friction and wear properties of LDH nanoparticles as lubricant additives. LDH nanoparticles have friction-reducing and anti-wear properties compared to oil without LDHs. Mg/Al-LDH has the best lubrication, possibly due to better thermal stability in severe conditions.

  12. Lubrication performance and mechanisms of Mg/Al-, Zn/Al-, and Zn/Mg/Al-layered double hydroxide nanoparticles as lubricant additives

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shuo [School of Materials Science and Technology, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian Distract, Beijing 100083 (China); Nanoprobe Laboratory for Bio- & Nanotechnology and Biomimetics (NLBB), The Ohio State University, 201 W. 19th Avenue Columbus, OH 43210-1142 (United States); Bhushan, Bharat, E-mail: bhushan.2@osu.edu [Nanoprobe Laboratory for Bio- & Nanotechnology and Biomimetics (NLBB), The Ohio State University, 201 W. 19th Avenue Columbus, OH 43210-1142 (United States)

    2016-08-15

    Highlights: • Mg/Al-, Zn/Al- and Zn/Mg/Al-layered double hydroxide were synthesized. • Mg/Al-LDH had superior tribological performance compared to other LDHs. • The best thermal stability of Mg/Al-LDH was responsible for its friction property. - Abstract: Solid lubricant particles are commonly used as oil additives for low friction and wear. Mg/Al-, Zn/Al-, and Zn/Mg/Al-layered double hydroxides (LDH) were synthesized by coprecipitation method. The benefits of LDH nanoparticles are that they can be synthesized using chemical methods where size and shape can be controlled, and can be modified organically to allow dispersal in fluids. The LDH nanoparticles were characterized by X-ray diffraction, scanning electron microscope, thermogravimetry, and differential scanning calorimetry. A pin-on-disk friction and wear tester was used for evaluating the friction and wear properties of LDH nanoparticles as lubricant additives. LDH nanoparticles have friction-reducing and anti-wear properties compared to oil without LDHs. Mg/Al-LDH has the best lubrication, possibly due to better thermal stability in severe conditions.

  13. The Precursors of Double Dissociation between Reading and Spelling in a Transparent Orthography

    Science.gov (United States)

    Torppa, Minna; Georgiou, George K.; Niemi, Pekka; Lerkkanen, Marja-Kristiina; Poikkeus, Anna-Maija

    2017-01-01

    Research and clinical practitioners have mixed views whether reading and spelling difficulties should be combined or seen as separate. This study examined the following: (a) if double dissociation between reading and spelling can be identified in a transparent orthography (Finnish) and (b) the cognitive and noncognitive precursors of this…

  14. Synthesis, characterization, and controlled release anticorrosion behavior of benzoate intercalated Zn-Al layered double hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi [Shandong Provincial Key Lab of Corrosion Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071 (China); Zhang, Dun, E-mail: zhangdun@qdio.ac.cn [Shandong Provincial Key Lab of Corrosion Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071 (China)

    2011-11-15

    Graphical abstract: The benzoate anion released from Zn-Al LDHs provides a more effective long-term protection against corrosion of Q235 carbon steel in 3.5% NaCl solution. Highlights: {yields} A benzoate anion corrosion inhibitor intercalated Zn-Al layered double hydroxides (LDHs) has been assembled by coprecipitation method. {yields} The kinetic simulation indicates that the ion-exchange one is responsible for the release process and the diffusion through particle is the rate limiting step. {yields} A significant reduction of the corrosion rate is observed when the LDH nanohybrid is present in the corrosive media. -- Abstract: Corrosion inhibitor-inorganic clay composite including benzoate anion intercalated Zn-Al layered double hydroxides (LDHs) are assembled by coprecipitation. Powder X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectrum analyses indicate that the benzoate anion is successfully intercalated into the LDH interlayer and the benzene planes are vertically bilayer-positioned as a quasi-guest ion-pair form in the gallery space. Kinetic simulation for the release data, XRD and FT-IR analyses of samples recovered from the release medium indicate that ion-exchange is responsible for the release process and diffusion through the particle is also indicated to be the rate-limiting step. The anticorrosion capabilities of LDHs loaded with corrosion inhibitor toward Q235 carbon steel are analyzed by polarization curve and electrochemical impedance spectroscopy methods. Significant reduction of corrosion rate is observed when the LDH nanohybrid is present in the corrosive medium. This hybrid material may potentially be applied as a nanocontainer in self-healing coatings.

  15. The importance of proper crystal-chemical and geometrical reasoning demonstrated using layered single and double hydroxides

    Science.gov (United States)

    Richardson, Ian G.

    2013-01-01

    Atomistic modelling techniques and Rietveld refinement of X-ray powder diffraction data are widely used but often result in crystal structures that are not realistic, presumably because the authors neglect to check the crystal-chemical plausibility of their structure. The purpose of this paper is to reinforce the importance and utility of proper crystal-chemical and geometrical reasoning in structural studies. It is achieved by using such reasoning to generate new yet fundamental information about layered double hydroxides (LDH), a large, much-studied family of compounds. LDH phases are derived from layered single hydroxides by the substitution of a fraction (x) of the divalent cations by trivalent. Equations are derived that enable calculation of x from the a parameter of the unit cell and vice versa, which can be expected to be of widespread utility as a sanity test for extant and future structure determinations and computer simulation studies. The phase at x = 0 is shown to be an α form of divalent metal hydroxide rather than the β polymorph. Crystal-chemically sensible model structures are provided for β-Zn(OH)2 and Ni- and Mg-based carbonate LDH phases that have any trivalent cation and any value of x, including x = 0 [i.e. for α-M(OH)2·mH2O phases]. PMID:23719702

  16. Dynamics of Intercalation/De-Intercalation of Rhodamine B during the Polymorphic Transformation of CdAl Layered Double Hydroxide to the Brucite-Like Cadmium Hydroxide

    KAUST Repository

    Saliba, Daniel

    2016-06-23

    Cadmium-Aluminum layered double hydroxide (CdAl LDH) is thermodynamically unstable and transforms to Cd(OH)2 and Al(OH)3 in a short period of time. We present a reaction-diffusion framework that enables us to use in situ steady-state fluorescence spectroscopy to study the kinetics of intercalation of a fluorescent probe (Rhodamine B (RhB)) during the formation of the CdAl LDH and its de-intercalation upon the conversion of the LDH phase to the β phase (Cd(OH)2). The method involves the diffusion of sodium hydroxide into a hydrogel gel matrix containing the aluminum and cadmium ions as well as the species we wish to incorporate in the interlayers of the LDH. The existence of RhB between the LDH layers and its expel during the transition into the β phase are proved via fluorescence microscopy, XRD and ssNMR. The activation energies of intercalation and de-intercalation of RhB are computed and show dependence on the cationic ratio of the corresponding LDH. We find that the energies of de- intercalation are systematically higher than those of intercalation proving that the dyes are stabilized due to the probe-brucite sheets interactions.

  17. Dynamics of Intercalation/De-Intercalation of Rhodamine B during the Polymorphic Transformation of CdAl Layered Double Hydroxide to the Brucite-Like Cadmium Hydroxide

    KAUST Repository

    Saliba, Daniel; Ezzeddine, Alaa; Emwas, Abdul-Hamid M.; Khashab, Niveen M.; Al-Ghoul, Mazen

    2016-01-01

    Cadmium-Aluminum layered double hydroxide (CdAl LDH) is thermodynamically unstable and transforms to Cd(OH)2 and Al(OH)3 in a short period of time. We present a reaction-diffusion framework that enables us to use in situ steady-state fluorescence spectroscopy to study the kinetics of intercalation of a fluorescent probe (Rhodamine B (RhB)) during the formation of the CdAl LDH and its de-intercalation upon the conversion of the LDH phase to the β phase (Cd(OH)2). The method involves the diffusion of sodium hydroxide into a hydrogel gel matrix containing the aluminum and cadmium ions as well as the species we wish to incorporate in the interlayers of the LDH. The existence of RhB between the LDH layers and its expel during the transition into the β phase are proved via fluorescence microscopy, XRD and ssNMR. The activation energies of intercalation and de-intercalation of RhB are computed and show dependence on the cationic ratio of the corresponding LDH. We find that the energies of de- intercalation are systematically higher than those of intercalation proving that the dyes are stabilized due to the probe-brucite sheets interactions.

  18. Intercalation behavior of amino acids into Zn-Al-layered double hydroxide by calcination-rehydration reaction

    International Nuclear Information System (INIS)

    Aisawa, Sumio; Kudo, Hiroko; Hoshi, Tomomi; Takahashi, Satoshi; Hirahara, Hidetoshi; Umetsu, Yoshio; Narita, Eiichi

    2004-01-01

    The intercalation of amino acids for the Zn-Al-layered double hydroxide (LDH) has been investigated by the calcination-rehydration reaction at 298K using mainly phenylalanine (Phe) as a guest amino acid. The Zn-Al oxide precursor prepared by the calcination of Zn-Al-carbonated LDH at 773K for 2h was used as the host material. The amount of Phe intercalated by the rehydration was remarkably influenced by the initial solution pH and reached ca. 2.7 times for anion exchange capacity (AEC) of the LDH at neutral and weak alkaline solutions, suggesting that Phe was intercalated as amphoteric ion form into the LDH interlayer. As Phe is intercalated for the LDH as monovalent anion in alkaline solution, the amount of Phe intercalated at pH 10.5 corresponded with AEC of the LDH. The solid products were found to have the expanded LDH structure, which confirmed that Phe was intercalated into the LDH interlayer as amphoteric ion or anion form. The basal spacing, d 003 , of the Phe/LDH was 1.58nm at pH 7.0 and 0.80nm at pH 10.5; two kinds of expansion suggested for Phe in the interlayer space as vertical (pH 7.0) and horizontal (pH 10.5) orientations. The intercalation behavior of various amino acids for the LDH was also found to be greatly influenced by the feature of the amino acid side-chain, namely, its carbon-chain length, structure and physicochemical property. In particular, α-amino acids possessing a hydrophobic or negative-charged side-chain were preferentially intercalated for the LDH

  19. Zn- and Co-based layered double hydroxides: prediction of the a parameter from the fraction of trivalent cations and vice versa

    OpenAIRE

    Richardson, Ian G.

    2013-01-01

    A recently proposed method to calculate the a parameter of the unit cell of layered double hydroxides from the fraction of trivalent cations is extended to Zn- and Co-based phases. It is shown to be useful as a sanity test for extant and future structure determinations and computer-simulation studies.

  20. Ionic liquids as surfactants for layered double hydroxide fillers: effect on the final properties of poly(butylene adipate-co-terephthalate)

    Czech Academy of Sciences Publication Activity Database

    Livi, S.; Lins, L. C.; Peter, Jakub; Beneš, Hynek; Kredatusová, Jana; Donato, R. K.; Pruvost, S.

    2017-01-01

    Roč. 7, č. 10 (2017), s. 1-16, č. článku 297. ISSN 2079-4991 R&D Projects: GA ČR(CZ) GA17-08273S Institutional support: RVO:61389013 Keywords : ionic liquids * poly(butylene adipate-co-terephthalate) * layered double hydroxide Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 3.553, year: 2016

  1. Acid Green 1 removal from wastewater by layered double hydroxides

    Science.gov (United States)

    Elkhattabi, El Hassan; Lakraimi, Mohamed; Berraho, Moha; Legrouri, Ahmed; Hammal, Radouan; El Gaini, Layla

    2018-03-01

    The paper presents the removal of Acid Green 1 (AG1) from aqueous solutions by [Zn-Al-Cl]-layered double hydroxides (LDHs). The LDH was prepared by coprecipitation at constant pH. The affinity of this material for AG1 was studied as a function of contact time, pH of the solution, LDH dose and AG1/LDH mass ratio. It was found that 32 h are enough to reach the equilibrium with a maximum retention at pH 8 for an LDH dose of 100 mg and with an AG1/LDH mass ratio higher than 2. The adsorption isotherm is of L-type, as described by the Langmuir model. The results demonstrate that AG1 retention on LDHs occurs by adsorption on external surface when AG1/LDH mass ratio is equal or lower than 2 and by both adsorption and interlayer ion exchange for ratios higher than 2. A mechanism for the AG1 removal has been confirmed by X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric-differential thermal analyses and scanning electron microscopy.

  2. Layered double hydroxide-like materials: nanocomposites for use in concrete

    International Nuclear Information System (INIS)

    Raki, L.; Beaudoin, J.J.; Mitchell, L.

    2004-01-01

    Nitrobenzoic acid (NBA), naphthalene-2, 6-disulfonic acid (26NS), and naphthalene-2 sulfonic acid (2NS) salts were intercalated into a layered double hydroxide-like host material (LDH). The intercalation process was achieved by anion exchange of nitrates in the host material, Ca 2 Al(OH) 6 NO 3 , nH 2 O (CaAl LDH), which was prepared by a coprecipitation technique. The resulting organo derivatives CaAlNBA LDH, CaAl26NS LDH, and CaAl2NS LDH produced a tilted orientation of NBA and 26NS anions in the interlayer space, while 2NS anions induced a perpendicular bilayer arrangement. Materials characterization was carried out using X-ray diffraction (XRD), IR-spectroscopy, thermal analysis, and scanning electron microscopy (SEM). These preliminary results open up a new direction towards the synthesis of nanocomposites using polymeric entities and layered materials for future applications in cement and concrete science, e.g., control of the effect of admixtures on the kinetics of cement hydration by programming their temporal release

  3. Hydroxide catalysts for lignin depolymerization

    Science.gov (United States)

    Beckham, Gregg T; Biddy, Mary J.; Kruger, Jacob S.; Chmely, Stephen C.; Sturgeon, Matthew

    2017-10-17

    Solid base catalysts and their use for the base-catalyzed depolymerization (BCD) of lignin to compounds such as aromatics are presented herein. Exemplary catalysts include layered double hydroxides (LDHs) as recyclable, heterogeneous catalysts for BCD of lignin.

  4. Hydroxide catalysts for lignin depolymerization

    Energy Technology Data Exchange (ETDEWEB)

    Beckham, Gregg T.; Biddy, Mary J.; Chmely, Stephen C.; Sturgeon, Matthew

    2017-04-25

    Solid base catalysts and their use for the base-catalyzed depolymerization (BCD) of lignin to compounds such as aromatics are presented herein. Exemplary catalysts include layered double hydroxides (LDHs) as recyclable, heterogeneous catalysts for BCD of lignin.

  5. Co–Fe Prussian Blue Analogue Intercalated into Diamagnetic Mg–Al Layered Double Hydroxides

    Directory of Open Access Journals (Sweden)

    Cuijuan Zhang

    2016-04-01

    Full Text Available A heterostructure of diamagnetic magnesium‒aluminium layered double hydroxides (Mg‒Al LDHs and photomag‐ netic cobalt‒iron Prussian Blue analogue (Co‒Fe PBA was designed, synthesized and then designated as LDH‒PB. The cyanide-bridged Co‒Fe PBA was two-dimensionally intercalated into the Mg‒Al LDH template by the stepwise anion exchange method. LDH‒PB showed ferrimagnetic properties with in-plane antiferromagnetic exchange interactions, as well as small photo-induced magnetization by visible light illumination due to the low dimensional structures and the characteristic photo-induced electronic states of the mixed valence of FeIII(low spin, S = 1/2‒CN‒ CoII(high spin, S = 3/2‒NC‒FeII (low spin, S = 0.

  6. Interstratified nanohybrid assembled by alternating cationic layered double hydroxide nanosheets and anionic layered titanate nanosheets with superior photocatalytic activity

    International Nuclear Information System (INIS)

    Lin, Bizhou; Sun, Ping; Zhou, Yi; Jiang, Shaofeng; Gao, Bifen; Chen, Yilin

    2014-01-01

    Graphical abstract: - Highlights: • Two kinds of nanosheets are well arranged in a layer-by-layer alternating fashion. • Effective interfacial heterojunction and high specific surface were observed. • Interstratified nanohybrid exhibits a superior photocatalytic activity. - Abstract: Oppositely charged 2D inorganic nanosheets of ZnAl-layered double hydroxide and layered titanate were successfully assembled into an interstratified nanohybrid through simply mixing the corresponding nanosheet suspensions. Powder X-ray diffraction and high-resolution transmission electron microscope clearly revealed that the component nanosheets in the as-obtained nanohybrid ZnAl–Ti 3 O 7 retain the 2D sheet skeletons of the pristine materials and that the two kinds of nanosheets are well arranged in a layer-by-layer alternating fashion with a basal spacing of about 1.3 nm, coincident with the thickness summation of the two component nanosheets. The effective interfacial heterojunction between them and the high specific surface area resulted in that the nanohybrid exhibits a superior photocatalytic activity in the degradation of methylene blue with a reaction constant k of 2.81 × 10 −2 min −1 , which is about 9 and 4 times higher than its precursors H 2 Ti 3 O 7 and ZnAl-LDH, respectively. Based on UV–vis, XPS and photoelectrochemical measurements, a proposed photoexcitation model was provided to understand its photocatalytic behavior

  7. Urea biosensor based on Zn3Al-Urease layered double hydroxides nanohybrid coated on insulated silicon structures

    International Nuclear Information System (INIS)

    Barhoumi, H.; Maaref, A.; Rammah, M.; Martelet, C.; Jaffrezic, N.; Mousty, C.; Vial, S.; Forano, C.

    2006-01-01

    Urea biosensors for medical diagnostic monitoring were developed based on the immobilization of urease within layered double hydroxides (LDH). The urease-LDH material was obtained by a stepwise exchange reaction by urease of a Zn 3 Al-dodecyl sulphate (ZnAl-DS) colloidal suspension. XR diffraction and FTIR analysis show that this method gives rise to a Zn 3 Al-Urease LDH nanohybrid material with urease dispersion and textural properties. An aqueous suspension of this urease-LDH nanohybrid material was deposited on an insulated semiconductor (IS) structure. Biosensor responses to urea additions were obtained using capacitance (C vs. V) and impedance (Z vs. ω) measurements. An enhanced maximum limit of the dynamic range was observed in the case of the impedance measurements (110 mM) compared to (5.6 mM) the capacitive urea biosensor. The Michaelis-Menten constant was also calculated according to the Lineweaver-Burk plot. It was found that the K m value with immobilized enzymes was lower (K m = 0.67 mM) in comparison with free enzymes. This K m value obtained from the capacitance measurements indicates that the urea degradation is performed within any inhibition action on the IS/Zn 3 Al-Urease LDH electrode. A comparative study was carried out between these results and those obtained previously, using urease/ZnAl-Cl layered double hydroxides mixture coated on the pH-ISFET transducer

  8. Oxidation of Dodecanoate Intercalated Iron(II)–Iron(III) Layered Double Hydroxide to Form 2D Iron(III) (Hydr)oxide Layers

    DEFF Research Database (Denmark)

    Huang, Li‐Zhi; Ayala‐Luis, Karina B.; Fang, Liping

    2013-01-01

    hydroxide planar layer were preserved during the oxidation, as shown by FTIR spectroscopy. The high positive charge in the hydroxide layer produced by the oxidation of iron(II) to iron(III) is partially compensated by the deprotonation of hydroxy groups, as shown by X‐ray photoelectron spectroscopy...... between the alkyl chains of the intercalated dodecanoate anions play a crucial role in stabilizing the structure and hindering the collapse of the iron(II)–iron(III) (hydr)oxide structure during oxidation. This is the first report describing the formation of a stable planar layered octahedral iron......(III) (hydr)oxide. oxGRC12 shows promise as a sorbent and host for hydrophobic reagents, and as a possible source of single planar layers of iron(III) (hydr)oxide....

  9. Synthesis Of Magnesium-Aluminum Layered Double Hydroxides By Mechanochemical Method And Its Solid State Reaction Kinetics

    Directory of Open Access Journals (Sweden)

    Hongbo Y.

    2015-06-01

    Full Text Available A mechanochemical method is developed in preparing magnesium-aluminum-layered double hydroxides (MgAl-LDHs. This approach includes activation process and diffusion process. In order to verify the LDHs structure and study the reaction kinetics, X-ray diffraction (XRD patterns, inductively coupled plasma(ICP and physical adsorption instrument were characterized. The results show that activation time can change the surface of particles and affect the reaction grade. During the diffusion process, reaction time is the most important factor. The reaction energy (ΔQ was calculated that is 6kJ/mol.

  10. Fatigue Properties of Layered Double Hydroxides Modified Asphalt and Its Mixture

    Directory of Open Access Journals (Sweden)

    Xing Liu

    2014-01-01

    Full Text Available This study investigated the influence of layered double hydroxides (LDHs on the fatigue properties of asphalt mixture. In this paper, different aging levels (thin film oven test (TFOT and ultraviolet radiation aging (UV aging for short of bitumen modified with various mass ratios of the LDHs were investigated. The TFOT and UV aging process were used to simulate short-term field thermal-oxidative aging and long-term field light UV aging of bitumen, respectively. The influences of LDHs on the fatigue properties of LDHs were evaluated by dynamic shear rheometer (DSR and indirect tensile fatigue test. Results indicated that the introduction of LDHs could change the fatigue properties of bitumen under a stress control mode. The mixture with modified bitumen showed better fatigue resistance than the mixture with base bitumen. The results illustrated that the LDHs would be alternative modifiers used in the bitumen to improve the lifetime of asphalt pavements.

  11. Zn- and Co-based layered double hydroxides: prediction of the a parameter from the fraction of trivalent cations and vice versa

    Science.gov (United States)

    Richardson, Ian G.

    2013-01-01

    A recently proposed method to calculate the a parameter of the unit cell of layered double hydroxides from the fraction of trivalent cations is extended to Zn- and Co-based phases. It is shown to be useful as a sanity test for extant and future structure determinations and computer-simulation studies. PMID:23873067

  12. Drug delivery system for an anticancer agent, chlorogenate-Zn/Al-layered double hydroxide nanohybrid synthesised using direct co-precipitation and ion exchange methods

    Energy Technology Data Exchange (ETDEWEB)

    Barahuie, Farahnaz [Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Hussein, Mohd Zobir, E-mail: mzobir@putra.upm.edu.my [Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Arulselvan, Palanisamy [Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Fakurazi, Sharida [Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Zainal, Zulkarnain [Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia)

    2014-09-15

    A nano-structured drug-inorganic clay hybrid involving an active anticancer compound, which is chlorogenic acid (CA) intercalated into Zn/Al-layered double hydroxide, has been assembled via ion-exchange and co-precipitation methods to form a nanohybrid CZAE (a chlorogenic acid-Zn/Al nanohybrid synthesised using an ion-exchange method) and CZAC (a chlorogenic acid-Zn/Al nanohybrid synthesised using a direct method), respectively. The X-ray diffraction (XRD) results confirmed that the CA-LDH had a hybrid structure in which the anionic chlorogenate is arranged between the interlayers as a horizontal monolayer at 90 and 20° angles from the x axis for CZAE and CZAC, respectively. Both nanohybrids have the properties of mesoporous materials. The high loading percentage of chlorogenic acid (approximately 43.2% for CZAE and 45.3% for CZAC) with basal spacings of 11.7 and 12.6 Å for CZAE and CZAC, respectively, corroborates the successful intercalation of chlorogenic acid into the interlayer gallery of layered double hydroxides. Free chlorogenic acid and the synthesised nanocomposites (CZAE, CZAC) were assessed for their cytotoxicity against various cancer cells. The Fourier transform infrared data supported the formation of both nanohybrids, and a thermal analysis showed that the nanohybrids are more thermally stable than their counterparts. The chlorogenate shows a sustained release, and the release rate of chlorogenate from CZAE and CZAC nanohybrids at pH 7.4 is remarkably lower than that at pH 4.8 due to their different release mechanisms. The release rate of chlorogenate from both nanohybrids can be described as pseudo-second order. The present investigation revealed the potential of the nanohybrids to enhance the in vitro anti-tumour effect of chlorogenic acid in liver and lung cancer cells in vitro. - Highlights: • We intercalated chlorogenic into Zn/Al-layered double hydroxide by ion-exchange and coprecipitation methods. • The two methods gave nanocomposites

  13. Wearable Fabrics with Self-Branched Bimetallic Layered Double Hydroxide Coaxial Nanostructures for Hybrid Supercapacitors.

    Science.gov (United States)

    Nagaraju, Goli; Chandra Sekhar, S; Krishna Bharat, L; Yu, Jae Su

    2017-11-28

    We report a flexible battery-type electrode based on binder-free nickel cobalt layered double hydroxide nanosheets adhered to nickel cobalt layered double hydroxide nanoflake arrays on nickel fabric (NC LDH NFAs@NSs/Ni fabric) using facile and eco-friendly synthesis methods. Herein, we utilized discarded polyester fabric as a cost-effective substrate for in situ electroless deposition of Ni, which exhibited good flexibility, light weight, and high conductivity. Subsequently, the vertically aligned NC LDH NFAs were grown on Ni fabric by means of a hot-air oven-based method, and fluffy-like NC LDH NS branches are further decorated on NC LDH NFAs by a simple electrochemical deposition method. The as-prepared core-shell-like nanoarchitectures improve the specific surface area and electrochemical activity, which provides the ideal pathways for electrolyte diffusion and charge transportation. When the electrochemical performance was tested in 1 M KOH aqueous solution, the core-shell-like NC LDH NFAs@NSs/Ni fabric electrode liberated a maximum areal capacity of 536.96 μAh/cm 2 at a current density of 2 mA/cm 2 and excellent rate capability of 78.3% at 30 mA/cm 2 (420.5 μAh/cm 2 ) with a good cycling stability. Moreover, a fabric-based hybrid supercapacitor (SC) was assembled, which achieves a stable operational potential window of 1.6 V, a large areal capacitance of 1147.23 mF/cm 2 at 3 mA/cm 2 , and a high energy density of 0.392 mWh/cm 2 at a power density of 2.353 mW/cm 2 . Utilizing such high energy storage abilities and flexible properties, the fabricated hybrid SC operated the wearable digital watch and electric motor fan for real-time applications.

  14. Photocatalytic organic transformation by layered double hydroxides: highly efficient and selective oxidation of primary aromatic amines to their imines under ambient aerobic conditions.

    Science.gov (United States)

    Yang, Xiu-Jie; Chen, Bin; Li, Xu-Bing; Zheng, Li-Qiang; Wu, Li-Zhu; Tung, Chen-Ho

    2014-06-25

    We report the first application of layered double hydroxide as a photocatalyst in the transformation of primary aromatic amines to their corresponding imines with high efficiency and selectivity by using oxygen in an air atmosphere as a terminal oxidant under light irradiation.

  15. Engineering one-dimensional and two-dimensional birnessite manganese dioxides on nickel foam-supported cobalt–aluminum layered double hydroxides for advanced binder-free supercapacitors

    KAUST Repository

    Hao, Xiaodong; Zhang, Yuxin; Diao, Zengpeng; Chen, Houwen; Zhang, Aiping; Wang, Zhongchang

    2014-01-01

    © The Royal Society of Chemistry. We report a facile decoration of the hierarchical nickel foam-supported CoAl layered double hydroxides (CoAl LDHs) with MnO2 nanowires and nanosheets by a chemical bath method and a hydrothermal approach for high

  16. Effect of surface states of layered double hydroxides on conductive and transport properties of nanocomposite polymer electrolytes

    International Nuclear Information System (INIS)

    Liao, C.-S.; Ye, W.-B.

    2004-01-01

    All solid-state poly(ethylene oxide) (PEO) nanocomposite electrolytes were made containing nanoscale fillers of layered double hydroxides (LDHs). Two kinds of LDHs with different surface states were prepared by aqueous co-precipitation method. The LDHs were added into PEO matrix to study the structures, conductivities and ionic transport properties of nanocomposite electrolytes. The structures of LDHs were characterized by infrared spectra, thermogravimetric analysis and wide-angle X-ray diffraction. With enhanced compatibility of LDH sheets by oligo(ethylene oxide) surface modification, the PEO/OMLDH nanocomposite electrolyte exhibits an amorphous morphology and an enhancement of conductivity by three orders of magnitude as compared to pure PEO electrolyte. The lithium ion transference number T Li + of PEO/LDH nanocomposite electrolyte measured with a value of 0.42 is two times higher than the one of pure PEO electrolyte, which can be attributed to the Lewis acid-base interaction between surface states of metal hydroxides and counter anions of lithium salts

  17. Mechanochemical synthesis of Cu-Al and methyl orange intercalated Cu-Al layered double hydroxides

    International Nuclear Information System (INIS)

    Qu, Jun; He, Xiaoman; Chen, Min; Hu, Huimin; Zhang, Qiwu; Liu, Xinzhong

    2017-01-01

    In this study, a mechanochemical route to synthesize a Cu-Al layered double hydroxide (LDH) and a methyl orange (MO) intercalated one (MO-LDH) was introduced, in which basic cupric carbonate (Cu_2(OH)_2CO_3) and aluminum hydroxide (Al(OH)_3) with Cu/Al molar ratio at 2/1 was first dry ground for 2 h and then agitated in water or methyl orange solution for another 4 h to obtain the LDH and MO-LDH products without any heating operation. The prepared samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Thermogravimetry (TG), Differential scanning calorimetry (DSC) and Scanning electron microscopy (SEM). The products showed high crystallinity phase of Cu-Al and MO intercalated Cu-Al LDH with no evident impurities, proving that the craft introduced here was facile and effective. The new idea can be applied in other fields to produce organic-inorganic composites. - Highlights: • A facile mechanochemical route to synthesize Cu-Al and MO intercalated Cu-Al LDH. • The products possesses high crystalline of LDH phase with no impure phases. • The dry milling process induces the element substitution between the raw materials. • The agitation operation helps the grain growth of LDH.

  18. Mechanochemical synthesis of Cu-Al and methyl orange intercalated Cu-Al layered double hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Jun, E-mail: forsjun@whut.edu.cn [School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070 (China); He, Xiaoman; Chen, Min; Hu, Huimin [School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070 (China); Zhang, Qiwu, E-mail: zhangqw@whut.edu.cn [School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070 (China); Liu, Xinzhong [College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118 China (China)

    2017-04-15

    In this study, a mechanochemical route to synthesize a Cu-Al layered double hydroxide (LDH) and a methyl orange (MO) intercalated one (MO-LDH) was introduced, in which basic cupric carbonate (Cu{sub 2}(OH){sub 2}CO{sub 3}) and aluminum hydroxide (Al(OH){sub 3}) with Cu/Al molar ratio at 2/1 was first dry ground for 2 h and then agitated in water or methyl orange solution for another 4 h to obtain the LDH and MO-LDH products without any heating operation. The prepared samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Thermogravimetry (TG), Differential scanning calorimetry (DSC) and Scanning electron microscopy (SEM). The products showed high crystallinity phase of Cu-Al and MO intercalated Cu-Al LDH with no evident impurities, proving that the craft introduced here was facile and effective. The new idea can be applied in other fields to produce organic-inorganic composites. - Highlights: • A facile mechanochemical route to synthesize Cu-Al and MO intercalated Cu-Al LDH. • The products possesses high crystalline of LDH phase with no impure phases. • The dry milling process induces the element substitution between the raw materials. • The agitation operation helps the grain growth of LDH.

  19. A solid state NMR study of layered double hydroxides intercalated with para-amino salicylate, a tuberculosis drug

    DEFF Research Database (Denmark)

    Jensen, Nicholai Daugaard; Bjerring, Morten; Nielsen, Ulla Gro

    2016-01-01

    Para-amino salicylate (PAS), a tubercolosis drug, was intercalated in three different layered double hydroxides (MgAl, ZnAl, and CaAl-LDH) and the samples were studied by multi-nuclear (1H, 13C, and 27Al) solid state NMR (SSNMR) spectroscopy in combination with powder X-ray diffraction (PXRD....... Moreover, 13C MAS NMR and infra-red spectroscopy show that PAS did not decompose during synthesis. Large amounts (20-41%) of amorphous aluminum impurities were detected in the structure using 27Al single pulse and 3QMAS NMR spectra, which in combination with 1H single and double quantum experiments also...... showed that the M(II):Al ratio was higher than predicted from the bulk metal composition of MgAl-PAS and ZnAl-PAS. Moreover, the first high-resolution 1H SSNMR spectra of a CaAl LDH is reported and assigned using 1H single and double quantum experiments in combination with 27Al{1H} HETCOR....

  20. Tunable Properties of Exfoliated Polyvinylalcohol Nanocomposites by In Situ Coprecipitation of Layered Double Hydroxides

    Science.gov (United States)

    Liu, Jiajia; Yuen, Richard K. K.; Hu, Yuan

    2017-10-01

    Poly(vinyl alcohol) (PVA) nanocomposites were prepared by a “one step” method based on the coprecipitation of layered double hydroxide (LDH) nanosheets in the polymer aqueous solution. The morphology, fire resistance properties, mechanical and optical properties of the PVA/LDH nanocomposites were studied. The LDH nanosheets were homogeneously dispersed in the PVA matrix as indicated by X-ray diffraction (XRD) pattern and transmission electron microscopy (TEM) characterization. Meanwhile, the peak of heat release rate (pHRR) and total heat release (THR) were decreased by 58% and 28%, respectively. Storage modulus at 30 °C was increased, and the transmittance of more than 90% at the visible region was obtained upon addition of 5 wt% LDH.

  1. Controlled release and angiotensin-converting enzyme inhibition properties of an antihypertensive drug based on a perindopril erbumine-layered double hydroxide nanocomposite

    Directory of Open Access Journals (Sweden)

    Hussein Al Ali SH

    2012-04-01

    Full Text Available Samer Hasan Hussein Al Ali1, Mothanna Al-Qubaisi2, Mohd Zobir Hussein1,3, Maznah Ismail2,4, Zulkarnain Zainal1, Muhammad Nazrul Hakim51Department of Chemistry, Faculty of Science, 2Laboratory of Molecular Biomedicine, Institute of Bioscience, 3Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology, 4Department of Nutrition and Dietetics, Faculty of Medicine and Health Science, 5Department of Biomedical Science, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Serdang, Selangor, MalaysiaBackground: The intercalation of perindopril erbumine into Zn/Al-NO3-layered double hydroxide resulted in the formation of a host-guest type of material. By virtue of the ion-exchange properties of layered double hydroxide, perindopril erbumine was released in a sustained manner. Therefore, this intercalated material can be used as a controlled-release formulation.Results: Perindopril was intercalated into the interlayers and formed a well ordered, layered organic-inorganic nanocomposite. The basal spacing of the products was expanded to 21.7 Å and 19.9 Å by the ion-exchange and coprecipitation methods, respectively, in a bilayer and a monolayer arrangement, respectively. The release of perindopril from the nanocomposite synthesized by the coprecipitation method was slower than that of its counterpart synthesized by the ion-exchange method. The rate of release was governed by pseudo-second order kinetics. An in vitro antihypertensive assay showed that the intercalation process results in effectiveness similar to that of the antihypertensive properties of perindopril.Conclusion: Intercalated perindopril showed better thermal stability than its free counterpart. The resulting material showed sustained-release properties and can therefore be used as a controlled-release formulation.Keywords: perindopril erbumine, layered double hydroxides, ion-exchange, coprecipitation, sustained release, angiotensin-converting enzyme

  2. Polymethyl methacrylate and polystyrene with layered double hydroxide nano composites: In situ synthesis, morphology and thermal properties; Nanocompositos de polimetacrilato de metila e poliestireno com hidroxido duplo lamelar: sintese in situ, morfologia e propriedades termicas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Over the past decade, polymer nanocomposites have attracted interest, both in industry and in academia, because they often exhibit remarkable improvement in their properties when compared with pure polymer or conventional micro and macro-composites using low levels of reinforcements. In this work polymethyl methacrylate and polystyrene reinforced with layered double hydroxide, which was intercalated with sodium dodecyl sulfate were synthesized by in situ bulk polymerization. The nanocomposites were characterized and compared by X-ray diffraction, thermogravimetric analysis and flammability test. The X-ray diffraction demonstrated that synthesized nanocomposites showed a high global dispersion of layered double hydroxide, suggesting exfoliated morphology. The result of thermogravimetric analysis and flammability test for synthesized polystyrene/ layered double hydroxide nanocomposite presented a significant improvement in thermal stability and flammability property when compared with pure polymer. (author)

  3. Enhanced electrochemical performance of CoAl-layered double hydroxide nanosheet arrays coated by platinum films

    International Nuclear Information System (INIS)

    Cheng, J.P.; Fang, J.H.; Li, M.; Zhang, W.F.; Liu, F.; Zhang, X.B.

    2013-01-01

    Graphical abstract: Schematic illustration for the electron transport between the current collector and the active CoAl LDH arrays, where the yellow arrows indicate the high resistance of CoAl LDH, while the green arrows present the high conductivity of Pt films on LDH. -- Highlights: •CoAl layered double hydroxide nanosheet arrays are synthesized by hydrothermal method. •Pt films coated on surface of CoAl nanosheets facilitate fast electron transport. •CoAl LDH nanosheets coated with Pt film for 5 min have an excellent performance. -- Abstract: Three-dimensional network of cobalt and aluminum layered double hydroxide (LDH) nanosheets was synthesized on nickel foam by a simple hydrothermal method. The CoAl-LDH nonosheets were subsequently coated by ion sputtering with thin layers of Pt films to facilitate fast electron transport between current collector and the CoAl-LDH active materials. The optimal thickness of the Pt film acquiring the best performance was identified by applying various sputtering time in controlled experiments. The supercapacitor built by the CoAl-LDH nanosheets coated with Pt film sputtered for 5 min has a high specific capacitance (734.4 F g −1 at 3 A g −1 ), excellent rate capability as well as cycling stability. Moreover, it showed a long life of 77% retention after 6000 cycles and its general morphology was preserved after the test. The synergetic affect of conductive layer of Pt films and CoAl-LDH on the improvement of electrochemical properties was discussed and this would provide a useful clue in designing novel and effective electrode materials for supercapacitors

  4. Local environment and composition of magnesium gallium layered double hydroxides determined from solid-state 1H and 71Ga NMR spectroscopy

    DEFF Research Database (Denmark)

    Boisen Staal, Line; Lipton, Andrew S.; Zorin, Vadim

    2014-01-01

    Ordering of gallium(III) in a series of magnesium gallium (MgGa) layered double hydroxides (LDHs), [Mg1−xGax(OH)2(NO3)x·yH2O] was investigated using solid-state 1H and 71Ga NMR spectroscopy as well as powder X-ray diffraction. Three different proton environments from Mg3single bondOH, Mg2Gasingle...... analysis show that the synthesized MgGa LDH׳s had a lower Mg:Ga ratio than that of the starting reactant solution. The origin of this is the formation of soluble [Ga(OH)4]− complexes formed during synthesis, and not due to formation of insoluble gallium (oxy)hydroxides. No sign of Gasingle bondOsingle bond...

  5. Controlled supramolecular structure of guanosine monophosphate in the interlayer space of layered double hydroxide

    Directory of Open Access Journals (Sweden)

    Gyeong-Hyeon Gwak

    2016-12-01

    Full Text Available Guanosine monophosphates (GMPs were intercalated into the interlayer space of layered double hydroxides (LDHs and the molecular arrangement of GMP was controlled in LDHs. The intercalation conditions such as GMP/LDH molar ratio and reaction temperature were systematically adjusted. When the GMP/LDH molar ratio was 1:2, which corresponds to the charge balance between positive LDH sheets and GMP anions, GMP molecules were well-intercalated to LDH. At high temperature (100 and 80 °C, a single GMP molecule existed separately in the LDH interlayer. On the other hand, at lower temperature (20, 40 and 60 °C, GMPs tended to form ribbon-type supramolecular assemblies. Differential scanning calorimetry showed that the ribbon-type GMP assembly had an intermolecular interaction energy of ≈101 kJ/mol, which corresponds to a double hydrogen bond between guanosine molecules. Once stabilized, the interlayer GMP orientations, single molecular and ribbon phase, were successfully converted to the other phase by adjusting the external environment by stoichiometry or temperature control.

  6. Single sheet metal oxides and hydroxides

    DEFF Research Database (Denmark)

    Huang, Lizhi

    The synthesis of layered double hydroxides (LDHs) provides a relatively easy and traditional way to build versatile chemical compounds with a rough control of the bulk structure. The delamination of LDHs to form their single host layers (2D nanosheets) and the capability to reassemble them offer......) Delamination of the LDHs structure (oxGRC12) with the formation of single sheet iron (hydr)oxide (SSI). (3) Assembly of the new 2D nanosheets layer by layer to achieve desired functionalities....

  7. Intercalation studies of zinc hydroxide chloride: Ammonia and amino acids

    International Nuclear Information System (INIS)

    Arízaga, Gregorio Guadalupe Carbajal

    2012-01-01

    Zinc hydroxide chloride (ZHC) is a layered hydroxide salt with formula Zn 5 (OH) 8 Cl 2 ·2H 2 O. It was tested as intercalation matrix for the first time and results were compared with intercalation products of the well-known zinc hydroxide nitrate and a Zn/Al layered double hydroxide. Ammonia was intercalated into ZHC, while no significant intercalation occurred in ZHN. Aspartic acid intercalation was only achieved by co-precipitation at pH=10 with ZHC and pH=8 with zinc hydroxide nitrate. Higher pH resistance in ZHC favored total deprotonation of both carboxylic groups of the Asp molecule. ZHC conferred more thermal protection against Asp combustion presenting exothermic peaks even at 452 °C while the exothermic event in ZHN was 366 °C and in the LDH at 276 °C. - Graphical abstract: The zinc hydroxide chloride (ZHC) with formula Zn 5 (OH) 8 Cl 2 ·2H 2 O was tested as intercalation matrix. In comparison with the well-known zinc hydroxide nitrate (ZHN) and layered double hydroxides (LDH), ZHC was the best matrix for thermal protection of Asp combustion, presenting exothermic peaks even at 452 °C, while the highest exothermic event in ZHN was at 366 °C, and in the LDH it was at 276 °C. Highlights: ► Zinc hydroxide chloride (ZHC) was tested as intercalation matrix for the first time. ► ZHC has higher chemical and thermal stability than zinc hydroxide nitrate and LDH. ► NH 3 molecules can be intercalated into ZHC. ► The amino group of amino acids limits the intercalation by ion-exchange.

  8. Controllable preparation of multi-dimensional hybrid materials of nickel-cobalt layered double hydroxide nanorods/nanosheets on electrospun carbon nanofibers for high-performance supercapacitors

    International Nuclear Information System (INIS)

    Lai, Feili; Huang, Yunpeng; Miao, Yue-E; Liu, Tianxi

    2015-01-01

    Graphical Abstract: Multi-dimensional hybrid materials of nickel-cobalt layered double hydroxide nanorods/nanosheets grown on electrospun carbon nanofiber membranes were prepared via electrospinning combined with solution co-deposition for high-performance supercapacitor electrodes. - Highlights: • Ni-Co LDH@CNFhybridswerepreparedbyelectrospinningandsolutionco-deposition. • Ni-Co LDH@CNF hybrids show high electrochemical performance for supercapacitors. • This method can be extended to other bimetallic@CNF hybrids for electrode materials. - Abstract: Hybrid nanomaterials with hierarchical structures have been considered as one kind of the most promising electrode materials for high-performance supercapacitors with high capacity and long cycle lifetime. In this work, multi-dimensional hybrid materials of nickel-cobalt layered double hydroxide (Ni-Co LDH) nanorods/nanosheets on carbon nanofibers (CNFs) were prepared by electrospinning technique combined with one-step solution co-deposition method. Carbon nanofiber membranes were obtained by electrospinning of polyacrylonitrile (PAN) followed by pre-oxidation and carbonization. The successful growth of Ni-Co LDH with different morphologies on CNF membrane by using two kinds of auxiliary agents reveals the simplicity and universality of this method. The uniform and immense growth of Ni-Co LDH on CNFs significantly improves its dispersion and distribution. Meanwhile the hierarchical structure of carbon nanofiber@nickel-cobalt layered double hydroxide nanorods/nanosheets (CNF@Ni-Co LDH NR/NS) hybrid membranes provide not only more active sites for electrochemical reaction but also more efficient pathways for electron transport. Galvanostatic charge-discharge measurements reveal high specific capacitances of 1378.2 F g −1 and 1195.4 F g −1 (based on Ni-Co LDH mass) at 1 A g −1 for CNF@Ni-Co LDH NR and CNF@Ni-Co LDH NS hybrid membranes, respectively. Moreover, cycling stabilities for both hybrid membranes are

  9. Delaminating and restacking MgAl-layered double hydroxide monitored and characterized by a range of instrumental methods

    Science.gov (United States)

    Muráth, Szabolcs; Somosi, Zoltán; Tóth, Ildikó Y.; Tombácz, Etelka; Sipos, Pál; Pálinkó, István

    2017-07-01

    The delamination-restacking properties of MgAl-layered double hydroxide (MgAl-LDH) were studied in various solvents. The LDH samples were successfully delaminated in polar amides (formamide, N-methylformamide, N-methylacetamide). Usually, delamination was finalized by ultrasonic treatment. As rehydrating solutions, numerous Na-salts with single-, double- and triple-charged anions were used. Reconstruction was accomplished with anions of one or two negative charges, but triple-charged ones generally disrupted the rebuilding process, likely, because their salts with the metals of the LDH are very stable, and the thin layers can more readily transform to salts than the ordered materials. Samples and delamination-restacking processes were characterized by X-ray diffractometry (XRD), infrared spectroscopy (IR), dynamic light scattering (DLS), scanning electron microscopy (SEM) and energy-dispersive X-ray analysis (EDX).

  10. Design and fabrication of enhanced corrosion resistance Zn-Al layered double hydroxides films based anion-exchange mechanism on magnesium alloys

    Science.gov (United States)

    Zhou, Meng; Yan, Luchun; Ling, Hao; Diao, Yupeng; Pang, Xiaolu; Wang, Yanlin; Gao, Kewei

    2017-05-01

    Layered double hydroxides (LDHs) with brucite-like layer structure and the facile exchangeability of intercalated anions had attracted tremendous interest in many fields because of their great importance for both fundamental studies and practical applications. Herein zinc-aluminum layered double hydroxides (Zn-Al LDHs) films intercalated with nitrate anions on the magnesium alloy substrate were designed and fabricated via a facile hydrothermal crystallization method. In order to obtain better corrosion resistance, chloride and vanadate anions were intercalated into the LDHs interlayers via the anion-exchange reaction. X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electronic microscopy (SEM) were used to examine structure, composition and morphology of the Zn-Al-NO3 LDHs, Zn-Al-Cl LDHs and Zn-Al-VOx LDHs films. The corrosion resistance of the Zn-Al LDHs with different anion films was estimated by the electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurement. EIS and polarization curves measurements revealed that the magnesium alloy could be effectively protected by the Zn-Al-Cl LDHs and Zn-Al-VOx LDHs films due to the blocking effect of chloride anions and the control-release ability of vanadate anions.

  11. Recent advances in polymer supporting layered double hydroxides nanocomposite for electrochemical biosensors

    Science.gov (United States)

    Dhanasekaran, T.; Padmanaban, A.; Gnanamoorthy, G.; Manigandan, R.; Praveen Kumar, S.; Stephen, A.; Narayanan, V.

    2018-01-01

    In recent years, layered double hydroxides (LDHs) materials having emerging due to their ability of intercalate a variety of anions, either organic or inorganic molecules. The most significance of the LDHs has been found potential applications in catalysis, wastewater treatment, and electrochemical sensors. The Mg-Al LDHs (MAL) and Poly-o-phenylenediamine @ Mg-Al LDHs (P-MAL) was prepared via simple one step hydrothermal method. As prepared material was characterized using many techniques such as, the structural and crystal phase was determined from XRD and Raman analyses. The functional groups were depicted using FT-IR spectroscopy. The optical propertied studied using diffuse reflectance spectroscopy UV-vis spectroscopy and the emission property were analyzed from Photoluminescence spectroscopy. The surface morphology and average particle size was analyzed using FESEM microscopy. The prepared polymer composite material P-MAL was further used for highly sensitive electrochemical detection towards dopamine (DA).

  12. Nickel/cobalt layered double hydroxide hollow microspheres with hydrangea-like morphology for high-performance supercapacitors

    International Nuclear Information System (INIS)

    Tao, Yan; Ruiyi, Li; Tingting, Yang; Zaijun, Li

    2015-01-01

    Graphical abstract: We report a new template synthesis of nickel/cobalt layered double hydroxides (Ni/Co-LDH) without any adscititious alkali source, oxidant and step for removal of the template. The perfect match between generation rate of Ni/Co-LDH nanoflakes and removal rate of template creates elaborate three-dimensional architecture with well-defined hollow interior and hydrangea-like exterior. The unique structure improves faradaic redox reaction and mass transfer during the redox process, thus the Ni/Co-LDH electrode provides excellent electrochemical performance for supercapacitors. - Highlights: • The study demonstrated a new strategy for template synthesis of Ni/Co-LDH without any adscititious alkali source, oxidant and step for removal of the template. • The perfect match between generation rate of Ni/Co-LDH nanoflakes and removal rate of SiO 2 template create hollow microspheres with hydrangea-like morphology. • The unique structure of Ni/Co-LDH will greatly improve faradaic redox reaction and mass transfer during the redox process. • The Ni/Co-LDH electrode displays high specific capacitance, good charge/discharge capability, large energy density and superior cycle stability. • The study provides a prominent approach to fabricate various hollow nanomaterials for supercapacitors, Li-ion batteries, catalyst and sensors. - Abstract: Electroactive materials with hollow nanostructures received great attractiveness due to large surface area, low density and superior structure permeablity. The paper reported a new template synthesis of nickel/cobalt layered double hydroxides (Ni/Co-LDH) without any adscititious alkali source, oxidant and step for removal of the template. Nickel nitrate, cobalt nitrate and SiO 2 nanosphere were dispersed in an ethanol solution. Then, the mixed soution was heated at 160 °C for 6 h to obtain Ni/Co-LDH product. During the process, ethanol and nitrate underwent a redox reaction releasing hydroxide ions, which will react

  13. Sol-gel synthesis and characterization of hybrid inorganic-organic Tb(III)-terephthalate containing layered double hydroxides

    Science.gov (United States)

    Smalenskaite, A.; Salak, A. N.; Ferreira, M. G. S.; Skaudzius, R.; Kareiva, A.

    2018-06-01

    Mg3/Al1 and Mg3Al1-xTbx layered double hydroxides (LDHs) intercalated with terephthalate anion were synthesized using sol-gel method. The obtained materials were characterized by X-ray diffraction (XRD) analysis, infrared (FTIR) spectroscopy, fluorescence spectroscopy (FLS) and scanning electron microscopy (SEM). The Tb3+ substitution effects in the Mg3Al1-xTbx LDHs were investigated by changing the Tb3+ concentration in the cation layers. The study indicates that the organic guest-terephthalate in the interlayer spacing of the LDH host influences the luminescence of the hybrid inorganic-organic materials.

  14. Layered double hydroxide-enhanced luminescence in a Fenton-like system for selective sensing of cobalt in Hela cells

    Science.gov (United States)

    Yu, Mei; Yuan, Zhiqin; Lu, Chao

    2017-09-01

    This work presented a facile and eco-friendly method for the determination of cobalt ions (Co(II)) in living cells based on layered double hydroxides (Mg-Al CO3-LDHs) enhanced chemiluminescence (CL) emission of a Co(II)-hydrogen peroxide-sodium hydroxide system. The enhanced CL emission was attributed to the large specific surface area of Mg-Al CO3-LDHs, which facilitates the generation of an excited-stated intermediate. The proposed method displayed high selectivity toward Co(II) over other metal ions. Under the optimal conditions, the increased CL intensity showed a linear response versus Co(II) concentration in the range of 5.0-1000 nM with a detection limit of 3.7 nM (S/N = 3). The relative standard deviation for nine repeated measurements of 100 nM Co(II) was 3.2%. Furthermore, the proposed method was successfully applied to detect Co(II) in living cell samples, and the results were agreed with those obtained by the standard ICP-MS method.

  15. High-temperature X-ray powder diffraction as a tool for characterization of smectites, layered double hydroxides, and their intercalates with porphyrins

    Czech Academy of Sciences Publication Activity Database

    Píšková, A.; Bezdička, Petr; Hradil, David; Káfuňková, E.; Lang, Kamil; Večerníková, Eva; Kovanda, F.; Grygar, Tomáš

    2010-01-01

    Roč. 49, č. 4 (2010), s. 363-371 ISSN 0169-1317 R&D Projects: GA ČR(CZ) GA203/06/1244; GA AV ČR KAN100500651; GA AV ČR IAA3032401 Institutional research plan: CEZ:AV0Z40320502 Keywords : smectite * Layered double hydroxides * thermal decomposition Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.303, year: 2010

  16. Applications vs properties of Mg-Al Layered Double Hydroxides provided by their syntheses methods: alkoxide and alkoxide-free sol-gel syntheses and hydrothermal precipitation

    NARCIS (Netherlands)

    Chubar, N.; Gerda, V.; Megantari, O.; Mičušík, M.; Omastova, M.; Heister, K.; Man, P.; Fraissard, J.

    2013-01-01

    A tremendous number of studies have examined layered double hydroxides (LDH) for their technological applications in the ion exchange removal of toxic ions, recovery of valuable substances, catalysis, CO2 capture, as a layered host for storage/delivery of biologically active molecules, additives to

  17. Aluminum Hydroxide and Magnesium Hydroxide

    Science.gov (United States)

    Aluminum Hydroxide, Magnesium Hydroxide are antacids used together to relieve heartburn, acid indigestion, and upset stomach. They ... They combine with stomach acid and neutralize it. Aluminum Hydroxide, Magnesium Hydroxide are available without a prescription. ...

  18. RECONSTRUCTION OF CALCINED Zn -Al LAYERED DOUBLE HYDROXIDES DURING TETRACYCLINE ADSORPSION

    Directory of Open Access Journals (Sweden)

    G. M. Starukh

    2015-12-01

    Full Text Available Zn-Al mixed oxides containing ZnO different degree crystallinity were obtained by calcinations of Zn-Al layered double hydroxides (LDHs. The reconstruction of calcined Zn-Al LDHs has been performed under stirring in aqueous suspensions. The assynthesized LDHs, its decomposition products, as well as the reconstructed solids upon hydration were characterized by XRD, N2adsorption, differential and thermal gravimetric analysis. It was found that the ability of Zn-Al LDHs to recover a layered structure under the hydration of mixed oxides depends on the degree of ZnO crystallinity. The partial reconstruction of Zn-Al layered structure occurs in tetracycline solutions irrespective to the degree of ZnO crystallinity in calcined LDHs. Calcined Zn-Al LDHs demonstrate the higher adsorption capacity to tetracycline in comparison with as-prepared Zn-Al LDHs. The adsorption of TC on calcined and uncalcined ZnAl LDHs occurs on the centers of one particular type. It is suggested that surface complexation of the A-ring ligand of TC with Al-OH centers takes place.

  19. A novel injectable thermoresponsive and cytocompatible gel of poly(N-isopropylacrylamide) with layered double hydroxides facilitates siRNA delivery into chondrocytes in 3D culture

    NARCIS (Netherlands)

    Yang, H.Y.; Ee, R.J. van; Timmer, K.; Craenmehr, E.G.M.; Huang, J.H.; Öner, C.; Dhert, W.J.A.; Kragten, A.H.M.; Willems, N.; Grinwis, G.C.M.; Tryfonidou, M.A.; Papen-Botterhuis, N.E.; Creemers, L.B.

    2015-01-01

    Hybrid hydrogels composed of poly(N-isopropylacrylamide) (pNIPAAM) and layered double hydroxides (LDHs) are presented in this study as novel injectable and thermoresponsive materials for siRNA delivery, which could specifically target several negative regulators of tissue homeostasis in

  20. A novel injectable thermoresponsive and cytocompatible gel of poly(N-isopropylacrylamide) with layered double hydroxides facilitates siRNA delivery into chondrocytes in 3D culture

    NARCIS (Netherlands)

    Yang, Hsiao-yin; van Ee, Renz J; Timmer, Klaas; Craenmehr, Eric G M; Huang, Julie H; Oner, F. Cumhur; Dhert, Wouter J A; Kragten, Angela H M; Willems, Nicole; Grinwis, Guy C M; Tryfonidou, Marianna A; Papen-Botterhuis, Nicole E; Creemers, Laura B

    Hybrid hydrogels composed of poly(N-isopropylacrylamide) (pNIPAAM) and layered double hydroxides (LDHs) are presented in this study as novel injectable and thermoresponsive materials for siRNA delivery, which could specifically target several negative regulators of tissue homeostasis in

  1. The in vitro sustained release profile and antitumor effect of etoposide-layered double hydroxide nanohybrids

    Directory of Open Access Journals (Sweden)

    Qin LL

    2013-05-01

    Full Text Available Lili Qin,1 Mei Wang,2 Rongrong Zhu,3 Songhui You,1 Ping Zhou,1 Shilong Wang31Department of Physical Education, Tongji University, Shanghai, People's Republic of China; 2Department of Chemistry, Tongji University, Shanghai, People's Republic of China; 3School of Life Science and Technology, Tongji University, Shanghai, People's Republic of ChinaAbstract: Magnesium-aluminum layered double hydroxides intercalated with antitumor drug etoposide (VP16 were prepared for the first time using a two-step procedure. The X-ray powder diffraction data suggested the intercalation of VP16 into layers with the increased basal spacing from 0.84–1.18 nm was successful. Then, it was characterized by X-ray powder diffraction, Fourier transform infrared spectroscopy, thermogravimetry and differential thermal analysis, and transmission electron microscopy. The prepared nanoparticles, VP16-LDH, showed an average diameter of 62.5 nm with a zeta potential of 20.5 mV. Evaluation of the buffering effect of VP16-LDH indicated that the nanohybrids were ideal for administration of the drugs that treat human stomach irritation. The loading amount of intercalated VP16 was 21.94% and possessed a profile of sustained release. The mechanism of VP16-LDH release in the phosphate buffered saline solution at pH 7.4 is likely controlled by the diffusion of VP16 anions from inside to the surface of LDH particles. The in vitro cytotoxicity and antitumor assays indicated that VP16-LDH hybrids were less toxic to GES-1 cells while exhibiting better antitumor efficacy on MKN45 and SGC-7901 cells. These results imply that VP16-LDH is a potential antitumor drug for a broad range of gastric cancer therapeutic applications.Keywords: layered double hydroxides, etoposide, drug delivery, antitumor effect, sustained release

  2. Three-dimensional porous MXene/layered double hydroxide composite for high performance supercapacitors

    Science.gov (United States)

    Wang, Ya; Dou, Hui; Wang, Jie; Ding, Bing; Xu, Yunling; Chang, Zhi; Hao, Xiaodong

    2016-09-01

    In this work, an exfoliated MXene (e-MXene) nanosheets/nickel-aluminum layered double hydroxide (MXene/LDH) composite as supercapacitor electrode material is fabricated by in situ growth of LDH on e-MXene substrate. The LDH platelets homogeneously grown on the surface of the e-MXene sheets construct a three-dimensional (3D) porous structure, which not only leads to high active sites exposure of LDH and facile liquid electrolyte penetration, but also alleviates the volume change of LDH during the charge/discharge process. Meanwhile, the e -MXene substrate forms a conductive network to facilitate the electron transport of active material. The optimized MXene/LDH composite exhibits a high specific capacitance of 1061 F g-1 at a current density of 1 A g-1, excellent capacitance retention of 70% after 4000 cycle tests at a current density of 4 A g-1 and a good rate capability with 556 F g-1 retention at 10 A g-1.

  3. Chromium and yttrium-doped magnesium aluminum oxides prepared from layered double hydroxides

    Science.gov (United States)

    García-García, J. M.; Pérez-Bernal, M. E.; Ruano-Casero, R. J.; Rives, V.

    2007-12-01

    Layered double hydroxides with the hydrotalcite-like structures, containing Mg 2+ and Al 3+, doped with Cr 3+ and Y 3+, have been prepared by precipitation at constant pH. The weight percentages of Cr 3+ and Y 3+ were 1, 2, or 3%, and 0.5 or 1%, respectively. Single phases were obtained in all cases, whose crystallinity decreased as the content in Cr and Y was increased. The solids have been characterised by element chemical analysis, powder X-ray diffraction, thermal analyses (differential, thermogravimetric and programmed reduction), FT-IR and UV-vis spectroscopies; the specific surface areas have been determined from nitrogen adsorption isotherms at -196 °C. Upon calcination at 1200 °C for 5 h in air all solids display a mixed structure (spinel and rock salt for MgO); these solids have also been characterised by these techniques and their chromatic coordinates (CIE - L∗a∗b∗) have been determined. Their pink colour makes these solids suitable for being used as ceramic pigments.

  4. Hybrid Co2Al-ABTS/reduced graphene oxide Layered Double Hydroxide: Towards O2 biocathode development

    International Nuclear Information System (INIS)

    Vialat, Pierre; Leroux, Fabrice; Mousty, Christine

    2015-01-01

    Highlights: • Synthesis of new redox mediator intercalated Layered Double Hydroxide using the coprecipitation synthesis. • Presence of electroactive Co into the LDH layers to enhance electroactivity of the system. • Improvement of the electronic conductivity by association with reduced graphene oxide (GOr) into composite system. • Application potentiality as biocathode material for O 2 reduction with immobilization of Bilirubin Oxidase enzyme. • Enhancement of the electrocatalytic response in the presence of a biopolymer like carrageenan into the electrode formulation - Abstract: Co 2 Al-ABTS layered double hydroxides and associated Co 2 Al-ABTS@graphene composite were prepared in one pot technique by in situ coprecipitation. The as-obtained materials were then fully characterized by means of Powder X-Ray Diffraction, Fourier Transformed InfraRed and Scanning Electron Microscopy confirming the intercalation of azino-bis(3-ethylbenzothiazoline-6-sulphonate) (ABTS) between the LDH layers. Their electrochemical properties, according to Cyclic Voltammetry and Electrochemical Impedance Spectroscopy data, were improved compared to Zn 2 Al-ABTS reference material. Co 2 Al-ABTS hybrid LDH was found to combine both electronic transfers: interlayer provided by the presence of ABTS and intralayer due to the Co redox species. Moreover, an improvement of electronic transfer between the LDH particles was further achieved by addition of graphene. The resulting composite assemblies were tested for the first time as oxygen bioelectrode based on bilirubin oxidase. This original approach gives rise to enhanced electroenzymatic currents (×2.5) for oxygen reduction at 0 V and pH 7.0 as regard to that obtained for the reference laccase/LDH-ABTS based bioelectrode at pH 5.5

  5. Adsorption of arsenate on Cu/Mg/Fe/La layered double hydroxide from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yanwei [State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China); Zhu, Zhiliang, E-mail: zzl@tongji.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China); Qiu, Yanling [Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092 (China); Zhao, Jianfu [State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer A novel layered double hydroxide containing lanthanum (Cu/Mg/Fe/La-LDH) has been synthesized. Black-Right-Pointing-Pointer The average pore size of the materials with about 16 nm indicated that the mesoporous structures existed in the Cu/Mg/Fe/La-LDHs. Black-Right-Pointing-Pointer The adsorption capacity of As(V) increased with the increment of La{sup 3+} content in the LDH. Black-Right-Pointing-Pointer The maximum adsorption capacity of the synthesized Cu/Mg/Fe/La-LDH for arsenate was 43.5 mg/g. - Abstract: A novel layered double hydroxide containing lanthanum (Cu/Mg/Fe/La-LDH) has been synthesized and used for the removal of arsenate from aqueous solutions. The purpose of incorporation of La{sup 3+} into LDHs was tried to enhance the uptake efficiency of arsenate and broaden the application field of LDHs functional materials. Effects of various physico-chemical factors such as solution pH, adsorbent dosage, contact time and initial arsenate concentrations on the adsorption of arsenate onto Cu/Mg/Fe/La-LDH were investigated. Results showed that the removal efficiency of arsenate increased with the increment of the lanthanum content in Cu/Mg/Fe/La-LDH adsorbents, and the optimized lanthanum content was 20% of the total trivalent metals composition (Fe{sup 3+} and La{sup 3+}). The adsorption isotherms can be well described by Langmuir equation, and the adsorption kinetics of arsenate followed the pseudo-second-order kinetic model. Coexistent ions such as HPO{sub 4}{sup 2-}, CO{sub 3}{sup 2-}, SO{sub 4}{sup 2-}, Cl{sup -} and NO{sub 3}{sup -} exhibited obvious competition with arsenate for the adsorption on Cu/Mg/Fe/La-LDH. The solution pH significantly affected the removal efficiency, which was closely related to the change of arsenate species distribution under different pH conditions. The predominant adsorption mechanism can be mainly attributed to the processes including ion exchange and layer ligand exchange.

  6. Adsorption of arsenate on Cu/Mg/Fe/La layered double hydroxide from aqueous solutions

    International Nuclear Information System (INIS)

    Guo, Yanwei; Zhu, Zhiliang; Qiu, Yanling; Zhao, Jianfu

    2012-01-01

    Highlights: ► A novel layered double hydroxide containing lanthanum (Cu/Mg/Fe/La-LDH) has been synthesized. ► The average pore size of the materials with about 16 nm indicated that the mesoporous structures existed in the Cu/Mg/Fe/La-LDHs. ► The adsorption capacity of As(V) increased with the increment of La 3+ content in the LDH. ► The maximum adsorption capacity of the synthesized Cu/Mg/Fe/La-LDH for arsenate was 43.5 mg/g. - Abstract: A novel layered double hydroxide containing lanthanum (Cu/Mg/Fe/La-LDH) has been synthesized and used for the removal of arsenate from aqueous solutions. The purpose of incorporation of La 3+ into LDHs was tried to enhance the uptake efficiency of arsenate and broaden the application field of LDHs functional materials. Effects of various physico-chemical factors such as solution pH, adsorbent dosage, contact time and initial arsenate concentrations on the adsorption of arsenate onto Cu/Mg/Fe/La-LDH were investigated. Results showed that the removal efficiency of arsenate increased with the increment of the lanthanum content in Cu/Mg/Fe/La-LDH adsorbents, and the optimized lanthanum content was 20% of the total trivalent metals composition (Fe 3+ and La 3+ ). The adsorption isotherms can be well described by Langmuir equation, and the adsorption kinetics of arsenate followed the pseudo-second-order kinetic model. Coexistent ions such as HPO 4 2− , CO 3 2− , SO 4 2− , Cl − and NO 3 − exhibited obvious competition with arsenate for the adsorption on Cu/Mg/Fe/La-LDH. The solution pH significantly affected the removal efficiency, which was closely related to the change of arsenate species distribution under different pH conditions. The predominant adsorption mechanism can be mainly attributed to the processes including ion exchange and layer ligand exchange.

  7. Structural, vibrational and morphological properties of layered double hydroxides containing Ni2+, Zn2+, Al3+ and Zr4+ cations

    International Nuclear Information System (INIS)

    Bezerra, Débora M.; Rodrigues, João E.F.S.; Assaf, Elisabete M.

    2017-01-01

    Layered double hydroxides are anionic clays with formula [M II 1−x M III x (OH) 2 ] q+ [A n− ] q/n ·mH 2 O, finding possible uses as catalyst support, adsorbents and so on. In this paper, we address the phase formation of layered double hydroxides containing Ni 2+ , Zn 2+ , Al 3+ and Zr 4+ cations, namely, NiZn-Al, NiZn-AlZr and NiZn-Zr compositions obtained by the coprecipitation method. Such systems were characterized by X-ray diffraction, confirming the phase formation for NiZn-Al and NiZn-AlZr samples. Infrared and Raman spectroscopies elucidated the anion and water molecules occurrence in the interlayer. Nitrogen physisorption (BET method) determined the presence of pores and specific surface area. The isotherm shapes were Type IV, according to the IUPAC, and represent a mesoporous structure. A morphological study was performed by means of scanning and transmission electron microscopies, and particle size values of 120, 131 and 235 nm for NiZn-Al, NiZn-AlZr and NiZn-Zr, respectively, were determined. Thermogravimetric analysis of the decomposition of the systems revealed that their complete disintegration occurred at ~ 450 °C and resulted in mixed oxides.

  8. The influence of the UV irradiation intensity on photocatalytic activity of ZnAl layered double hydroxides and derived mixed oxides

    Directory of Open Access Journals (Sweden)

    Hadnađev-Kostić Milica S.

    2012-01-01

    Full Text Available Layered double hydroxides (LDHs have been studied to a great extent as environmental-friendly complex materials that can be used as photocatalysts or photocatalyst supports. ZnAl layered double hydroxides and their derived mixed oxides were chosen for the investigation of photocatalytic performances in correlation with the UV intensities measured in the South Pannonia region. Low supersaturation coprecipitation method was used for the ZnAl LDH synthesis. For the characterization of LDH and thermal treated samples powder X-ray diffraction (XRD, scanning electron microscopy (SEM, electron dispersive spectroscopy (EDS, nitrogen adsorption-desorption were used. The decomposition of azodye, methylene blue was chosen as photocatalytic test reaction. The study showed that the ZnAl mixed oxide obtained by thermal decomposition of ZnAl LDH has stable activity in the broader UV light irradiation range characterizing the selected region. Photocatalytic activity could be mainly attributed to the ZnO phase, detected both in LDH and thermally treated samples. The study showed that the ZnAl mixed oxide obtained by the calcination of ZnAl LDH has a stable activity within the measured UV light irradiation range; whereas the parent ZnAl LDH catalyst did not perform satisfactory when low UV irradiation intensity is implied.

  9. Structural and microstructural changes during anion exchange of CoAl layered double hydroxides: an in situ X-ray powder diffraction study

    DEFF Research Database (Denmark)

    Johnsen, Rune; Krumeich, Frank; Norby, Poul

    2010-01-01

    Anion-exchange processes in cobalt-aluminium layered double hydroxides (LDHs) were studied by in situ synchrotron X-ray powder diffraction (XRPD). The processes investigated were CoAl-CO3 CoAl-Cl CoAl-CO3, CoAl-Cl CoAl-NO3 and CoAl-CO3 CoAl-SO4. The XRPD data show that the CoAl-CO3 CoAl-Cl process...

  10. Hierarchical Ni-Co layered double hydroxide nanosheets on functionalized 3D-RGO films for high energy density asymmetric supercapacitor

    Science.gov (United States)

    Jiang, Liyang; Sui, Yanwei; Qi, Jiqiu; Chang, Yuan; He, Yezeng; Meng, Qingkun; Wei, Fuxiang; Sun, Zhi; Jin, Yunxue

    2017-12-01

    In this paper, ultrathin reduced graphene oxide films on nickel foam were fabricated via a facile dip-coating method combined with thermal reduction. Hierarchical Ni-Co layered double hydroxide nanosheets with network structure were electrodeposited on the ultrathin reduced graphene oxide films in a simple three-electrode system. The thickness of Ni-Co layered double hydroxide nanosheets can be controlled through adjusting the deposition temperature. The as-prepared electrode exhibited excellent electrochemical performance with specific capacitance of 1454.2 F g-1 at a current density of 1 A g-1. An asymmetric supercapacitor device was designed with the as-prepared composites as positive electrode material and Nitrogen-doped reduced graphene oxide as negative electrode material. This device could be operated in a working voltage range of 0-1.8 V in 1 M KOH aqueous electrolyte, delivering a high energy density of 56.4 W h kg-1 at a power density of 882.5 W kg-1. One supercapacitor can power two LEDs with rated voltage of 1.8-2.0 V. After 10,000 consecutive charge-discharge tests at 10 A g-1, this asymmetric supercapacitor revealed an excellent cycle life with 98.3% specific capacitance retention. These excellent electrochemical performances make it become one of most promising candidates for high energy supercapacitor device.

  11. Self-healing Li-Al layered double hydroxide conversion coating modified with aspartic acid for 6N01 Al alloy

    International Nuclear Information System (INIS)

    Zhang, Caixia; Luo, Xiaohu; Pan, Xinyu; Liao, Liying; Wu, Xiaosong; Liu, Yali

    2017-01-01

    Highlights: • A self-healing chrome-free Li-Al layered double hydroxide conversion coating modified with Aspartic acid was prepared. • One-step conversion coating formed by simple immersion in a conversion solution for a short time and a low temperature. • The conversion coating had excellent corrosion resistance. • The possible mechanism via exchange/self-assembly of the conversion coating was proposed in this paper. - Abstract: A self-healing Li-Al layered double hydroxide conversion coating (LCC) modified with aspartic acid (ALCC) was prepared on 6N01 Al alloy for corrosion protection. Scanning electron microscopy (SEM) showed that a compact thin film has been successfully formed on the alloy. X-ray diffraction (XRD) and FT-IR spectra proved that species of aspartic acid anions were successfully intercalated into LCC. Potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and neutral salt spray (NSS) testing showed that the resultant ALCC could provide effective corrosion protection for the Al alloy. During immersion of the ALCC-coated alloy in 3.5% NaCl solution, new film was formed in the area of artificially introduced scratch, indicating its self-healing capability. XPS results demonstrated that Cl- anions exchange partial Asp anions according to the change content of element on conversion coating. From the above results, the possible mechanism via exchange/self-assembly was proposed to illustrate the phenomenon of self-healing.

  12. Self-healing Li-Al layered double hydroxide conversion coating modified with aspartic acid for 6N01 Al alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Caixia; Luo, Xiaohu; Pan, Xinyu; Liao, Liying; Wu, Xiaosong; Liu, Yali, E-mail: yaliliu@hnu.edu.cn

    2017-02-01

    Highlights: • A self-healing chrome-free Li-Al layered double hydroxide conversion coating modified with Aspartic acid was prepared. • One-step conversion coating formed by simple immersion in a conversion solution for a short time and a low temperature. • The conversion coating had excellent corrosion resistance. • The possible mechanism via exchange/self-assembly of the conversion coating was proposed in this paper. - Abstract: A self-healing Li-Al layered double hydroxide conversion coating (LCC) modified with aspartic acid (ALCC) was prepared on 6N01 Al alloy for corrosion protection. Scanning electron microscopy (SEM) showed that a compact thin film has been successfully formed on the alloy. X-ray diffraction (XRD) and FT-IR spectra proved that species of aspartic acid anions were successfully intercalated into LCC. Potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and neutral salt spray (NSS) testing showed that the resultant ALCC could provide effective corrosion protection for the Al alloy. During immersion of the ALCC-coated alloy in 3.5% NaCl solution, new film was formed in the area of artificially introduced scratch, indicating its self-healing capability. XPS results demonstrated that Cl- anions exchange partial Asp anions according to the change content of element on conversion coating. From the above results, the possible mechanism via exchange/self-assembly was proposed to illustrate the phenomenon of self-healing.

  13. PREPARATION OF POLY(METHYL METHACRYLATE)/LAYERED DOUBLE HYDROXIDES NANOCOMPOSITES via in situ SOLUTION POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    An exfoliated layered double hydroxides/poly(methyl methacrylate) (LDHs/PMMA) nanocomposite was prepared by in situ solution polymerization of methyl methacrylate (MMA) in the presence of 4-vinylbenzenesulfonate intercalated LDHs(MgAl-VBS LDHs). MgAl-VBS LDHs was prepared by the ion exchange method, and the structure and composition of the MgAl-VBS LDHs were determined by X-ray diffraction (XRD), infrared spectroscopy and elemental analysis. XRD and transmission electron microscopy (TEM) were employed to examine the structure of LDHs/PMMA nanocomposite. It was indicated that the LDHs layers were well exfoliated and dispersed in the PMMA matrix. The grafting of PMMA onto LDHs was confirmed by the extraction result and the weight fraction of grafted PMMA increased as the weight fraction of LDHs in the nanocomposites increased.

  14. Superb adsorption capacity of hierarchical calcined Ni/Mg/Al layered double hydroxides for Congo red and Cr(VI) ions

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Chunsheng [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); College of Environmental & Safety Engineering, Changzhou University, Changzhou 213164 (China); Zhu, Xiaofeng [College of Environmental & Safety Engineering, Changzhou University, Changzhou 213164 (China); Zhu, Bicheng; Jiang, Chuanjia; Le, Yao [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Yu, Jiaguo, E-mail: jiaguoyu@yahoo.com [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2017-01-05

    Highlights: • Ni/Mg/Al layered double hydroxides (NMA-LDHs) synthesized. • NMA-LDHs with hierarchically hollow microsphere structure. • Calcined NMA-LDHs have large adsorption capacities for CR and Cr(VI) ions. - Abstract: The preparation of hierarchical porous materials as catalysts and sorbents has attracted much attention in the field of environmental pollution control. Herein, Ni/Mg/Al layered double hydroxides (NMA-LDHs) hierarchical flower-like hollow microspheres were synthesized by a hydrothermal method. After the NMA-LDHs was calcined at 600 °C, NMA-LDHs transformed into Ni/Mg/Al layered double oxides (NMA-LDOs), which maintained the hierarchical flower-like hollow structure. The crystal phase, morphology, and microstructure of the as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy elemental mapping, Fourier transform infrared spectroscopy, and nitrogen adsorption−desorption methods. Both the calcined and non-calcined NMA-LDHs were examined for their performance to remove Congo red (CR) and hexavalent chromium (Cr(VI)) ions in aqueous solution. The maximum monolayer adsorption capacities of CR and Cr(VI) ions over the NMA-LDOs sample were 1250 and 103.4 mg/g at 30 °C, respectively. Thermodynamic studies indicated that the adsorption process was endothermic in nature. In addition, the addition of coexisting anions negatively influenced the adsorption capacity of Cr(VI) ions, in the following order: CO{sub 3}{sup 2−} > SO{sub 4}{sup 2−} > H{sub 2}PO{sub 4}{sup −} > Cl{sup −}. This work will provide new insight into the design and fabrication of advanced adsorption materials for water pollutant removal.

  15. Layered-Double-Hydroxide Nanosheets as Efficient Visible-Light-Driven Photocatalysts for Dinitrogen Fixation.

    Science.gov (United States)

    Zhao, Yufei; Zhao, Yunxuan; Waterhouse, Geoffrey I N; Zheng, Lirong; Cao, Xingzong; Teng, Fei; Wu, Li-Zhu; Tung, Chen-Ho; O'Hare, Dermot; Zhang, Tierui

    2017-11-01

    Semiconductor photocatalysis attracts widespread interest in water splitting, CO 2 reduction, and N 2 fixation. N 2 reduction to NH 3 is essential to the chemical industry and to the Earth's nitrogen cycle. Industrially, NH 3 is synthesized by the Haber-Bosch process under extreme conditions (400-500 °C, 200-250 bar), stimulating research into the development of sustainable technologies for NH 3 production. Herein, this study demonstrates that ultrathin layered-double-hydroxide (LDH) photocatalysts, in particular CuCr-LDH nanosheets, possess remarkable photocatalytic activity for the photoreduction of N 2 to NH 3 in water at 25 °C under visible-light irradiation. The excellent activity can be attributed to the severely distorted structure and compressive strain in the LDH nanosheets, which significantly enhances N 2 chemisorption and thereby promotes NH 3 formation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Mechano-hydrothermal preparation of Li-Al-OH layered double hydroxides

    Science.gov (United States)

    Zhang, Fengrong; Hou, Wanguo

    2018-05-01

    A mechano-hydrothermal (MHT) method was used to synthesize Li-Al-OH layered double hydroxides (LDHs) from LiOH·H2O, Al(OH)3 and H2O as starting materials. A two-step synthesis was conducted, that is, Al(OH)3 was milled for 1 h, followed by hydrothermal treatment with LiOH·H2O solution. Effects of the LiOH/Al(OH)3 molar ratio (RLi/Al) and hydrothermal temperature (Tht) on the crystallinity, morphology, and composition of the product were examined. The resulting LDHs were characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, Fourier transform infrared, and elemental analyses. The results showed that pre-milling plays a key role in the LDH formation during subsequent hydrothermal treatment. The Li/Al molar ratio of the obtained LDHs keeps constant at 0.5, independent from theRLi/Al (0.5-5.0) in the starting materials. An increase in the Tht (20-80 °C) can enhance the crystallinity and morphology regularity of the products. The so-obtained Li-Al-OH LDHs exhibit high crystallinity and well-dispersity, which may have wider applications than the aggregate ones obtained using conventional mechanochemical and Li+-imbibition methods.

  17. Interaction of pristine hydrotalcite-like layered double hydroxides ...

    Indian Academy of Sciences (India)

    1783–1790. c Indian Academy of Sciences. ... adversely impacts the ability of the metal hydroxide layer to interact with CO2 in the gas ... CO2 is a greenhouse gas and the bulk of anthropogenic CO2 ... decomposes by the release of gaseous CO2 and water in ... systems such as [Co–Al] LDH the decomposition tempera-.

  18. Preparation and properties of UV curable organic/inorganic hybrid nanocomposites based on layered double hydroxides

    International Nuclear Information System (INIS)

    Shichang Lv; Wenfang Shi

    2007-01-01

    The organo-modified layered double hydroxides (LDHs), M-LDH and N-LDH, were obtained by the ionic exchange reaction of a magnesium-aluminium nitrate LDH with modifiers. The LDHs/acrylate organic/inorganic hybrid nanocomposites were prepared from organo-modified LDHs, and aliphatic polyurethane acrylate oligomer and an acrylate monomer, through a bulk photopolymerization process at the presence of a photoinitiator. The effects of LDHs content in the resin on the dispersion, and the properties of UV cured nanocomposites film were investigated by using X-ray diffraction, FTIR, thermal analysis, pendulum/pencil hardness measurement. With the good solubility in acrylate resins, the organo-modified LDHs are hopefully to be used in adhesives, coating, inks as toughness modifiers, fire-retardant additives. (Author)

  19. Influence of carbonate intercalation in the surface-charging behavior of Zn-Cr layered double hydroxides

    International Nuclear Information System (INIS)

    Rojas, R.; Barriga, C.; De Pauli, C.P.; Avena, M.J.

    2010-01-01

    The influence of interlayer composition in the surface charge and reactivity of layered double hydroxides (LDHs) has been explored. With this purpose, a chloride-intercalated Zn-Cr-LDH has been synthesized by the constant pH coprecipitation method and afterwards exchanged with carbonate to obtain solids with different Cl - /CO 3 2- ratios. The solids structure has been characterized by elemental chemical analysis, powder X-ray diffraction and infrared spectroscopy, while its surface-charging behavior and reactivity have been studied by acid-base potentiometric titrations and electrophoretic mobility determinations. The chloride-intercalated sample shows an increasing hydroxyl adsorption with increasing pH and decreasing support electrolyte concentration and the particles present positive electrophoretic mobility in the measured pH range. As carbonate content increases in the samples, the total OH - uptake diminishes and the samples show an isoelectric point at pH around 10. When the gallery is totally occupied by carbonate anions, the OH uptake vs. pH curves registered at different electrolyte concentrations merge at around pH 10. A LDH-water interface model has been used to give an interpretation to the experimental data. The model indicates that as carbonate content increases, the sample behavior becomes similar to that of a metal (hydr)oxide and that surface (bi)carbonate anions undergo acid-base reactions.

  20. Influence of carbonate intercalation in the surface-charging behavior of Zn-Cr layered double hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    Rojas, R., E-mail: rrojas@mail.fcq.unc.edu.ar [INFIQC, Departamento de Fisicoquimica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Ciudad Universitaria, 5000 Cordoba (Argentina); Barriga, C. [Departamento de Quimica Inorganica e Ingenieria Quimica, Edificio Marie Curie, Campus de Rabanales, Universidad de Cordoba, 14071 Cordoba (Spain); De Pauli, C.P. [INFIQC, Departamento de Fisicoquimica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Ciudad Universitaria, 5000 Cordoba (Argentina); Avena, M.J. [Departamento de Quimica, Universidad Nacional del Sur, Avenida Alem 1253, 8000 Bahia Blanca (Argentina)

    2010-01-15

    The influence of interlayer composition in the surface charge and reactivity of layered double hydroxides (LDHs) has been explored. With this purpose, a chloride-intercalated Zn-Cr-LDH has been synthesized by the constant pH coprecipitation method and afterwards exchanged with carbonate to obtain solids with different Cl{sup -}/CO{sub 3}{sup 2-} ratios. The solids structure has been characterized by elemental chemical analysis, powder X-ray diffraction and infrared spectroscopy, while its surface-charging behavior and reactivity have been studied by acid-base potentiometric titrations and electrophoretic mobility determinations. The chloride-intercalated sample shows an increasing hydroxyl adsorption with increasing pH and decreasing support electrolyte concentration and the particles present positive electrophoretic mobility in the measured pH range. As carbonate content increases in the samples, the total OH{sup -} uptake diminishes and the samples show an isoelectric point at pH around 10. When the gallery is totally occupied by carbonate anions, the OH uptake vs. pH curves registered at different electrolyte concentrations merge at around pH 10. A LDH-water interface model has been used to give an interpretation to the experimental data. The model indicates that as carbonate content increases, the sample behavior becomes similar to that of a metal (hydr)oxide and that surface (bi)carbonate anions undergo acid-base reactions.

  1. Electronic spectra of anions intercalated in layered double hydroxides

    Indian Academy of Sciences (India)

    groups of the layers and interlayer water through the termi- nal atom symmetry ... results in a reaction with the metal hydroxide layers lead- ing to the ..... List of band positions observed for potassium salts of anion and LDH samples. Salts.

  2. Evidences for decarbonation and exfoliation of layered double hydroxide in N,N-dimethylformamide-ethanol solvent mixture

    International Nuclear Information System (INIS)

    Gordijo, Claudia R.; Leopoldo Constantino, Vera R.; Oliveira Silva, Denise de

    2007-01-01

    The behavior of a Hydrotalcite-like material (carbonate-containing Mg,Al-layered double hydroxide) in N,N-dimethylformamide (DMF)-ethanol mixture, at ambient temperature, has been investigated. The releasing of CO 2 and production of a formate-containing material occurred mainly for 1:1 (v/v) solvent mixture. Decarbonation of Hydrotalcite is promoted by DMF hydrolysis followed by neutralization of brucite-like layers through HCOO - intercalation. Translucent colloidal dispersion of LDH nanoparticles from the formate-containing phase was characterized by transmission electron (TEM) and atomic force (AFM) microscopies. The absence of (00l) reflection at X-ray diffraction (XRD) pattern for dried colloidal dispersion indicated delamination of Hydrotalcite. The restacked sample exhibited broad reflections and typical hydroxide ordered layers non-basal (110) diffraction peaks. A LDH-HCOO - material was also prepared and characterized by FTIR and FT-Raman spectroscopies. Decarbonation and exfoliation of Hydrotalcite in N,N-dimethylformamide-ethanol mixed solvent provide an interesting method for preparation of new intercalated LDH materials. - Graphical abstract: Hydrotalcite suspended in 1:1 (v/v) N,N-dimethylformamide-ethanol solvent mixture, at ambient temperature, undergoes decarbonation and exfoliation. The process is promoted by DMF hydrolysis. Restacking of LDH layers is achieved by evaporating the solvent

  3. Preparation and Lithium-Storage Performance of a Novel Hierarchical Porous Carbon from Sucrose Using Mg-Al Layered Double Hydroxides as Template

    International Nuclear Information System (INIS)

    Shi, Liluo; Chen, Yaxin; Song, Huaihe; Li, Ang; Chen, Xiaohong; Zhou, Jisheng; Ma, Zhaokun

    2017-01-01

    Highlights: • A new hierarchical porous carbon containing slit-shaped mesopores and 3D carbon nanosheets were prepared using Mg-Al layered double hydroxides as template. • The hierarchical porous carbon electrode showed a high capacity and excellent cycle stability when used in lithium-ion battery. • The excellent performance is ascribed to its hierarchical porous structure, especially the mesoporous struture. - Abstract: Novel hierarchical porous carbons (NHPCs) containing 3D carbon nanosheets and slit-mesopores are prepared in this work, using MgAl-layered double hydroxides as template and sucrose as carbon source, and their electrochemical performances as anodes of lithium-ion batteries are also investigated. Owing to the existence of abundant carbon nanosheets and slit-mesopores, the NHPCs electrode exhibits the specific reversible capacity of 1151.9 mA h/g at the current density of 50 mA/g, which is significantly higher than other hierarchical porous carbons reported in previous literatures. The contributions of carbon nanosheets and mesopores to the electrochemical performance are further clarified by nitrogen adsorption-desorption test, electrochemical impedance spectroscopy, cyclic voltammograms and galvanostatic charge/discharge test. This work not only provides an easy and effective method to prepare hierarchical porous carbon materials, but also is beneficial for the design of high-performance anode materials for lithium ion batteries.

  4. Preparation and characterization of trans-RhCl(CO)(TPPTS)2-intercalated layered double hydroxides

    International Nuclear Information System (INIS)

    Zhang Xian; Wei Min; Pu Min; Li Xianjun; Chen Hua; Evans, David G.; Duan Xue

    2005-01-01

    trans-RhCl(CO)(TPPTS) 2 (TPPTS=tris(m-sulfonatophenyl)phosphine) has been intercalated into Zn-Al layered double hydroxides (LDHs) by the method of ion exchange. The structure, composition and thermal stability of the composite material have been characterized by powder X-ray diffraction, Fourier transform infrared and 31 P solid-state magic-angle spinning nuclear magnetic resonance spectroscopy, elemental analysis, thermogravimetry, and differential thermal analysis. The geometry of trans-RhCl(CO)(TPPTS) 2 was fully optimized using the PM3 semiempirical molecular orbital method, and a schematic model for the intercalated species has been proposed. The thermal stability of trans-RhCl(CO)(TPPTS) 2 is significantly enhanced by intercalation, which suggests that such materials may have prospective application as the basis of a supported catalyst system for the hydroformylation of higher olefins

  5. Physical and Chemical Interactions between Mg:Al Layered Double Hydroxide and Hexacyanoferrate

    Science.gov (United States)

    Boclair, Joseph W.; Braterman, Paul S.; Brister, Brian D.; Wang, Zhiming; Yarberry, Faith

    2001-11-01

    The physical and chemical interactions of ferrocyanide (potassium and ammonium salts) and ferricyanide (potassium salt) with Mg:Al layered double hydroxides (LDH) (having Mg:Al ratios of 2 and 3) are investigated using powder XRD and FTIR spectroscopy. Physically, the potassium ferricyanide is shown to intercalate with a small local field deformation similar to that seen for hexacyanocobaltate (III) in similar materials. Chemically, the reduction of ferricyanide to ferrocyanide upon intercalation is confirmed. Physical interactions of ferrocyanide with 3:1 LDH are shown spectroscopically to include the possible generation of anions in differing environments. Chemically, ferrocyanide is shown to generate cubic ferrocyanides (of the type M2MgFe(CN)6, where M=K+ or NH+4) under conditions where free Mg2+ is likely present in solution, namely, solutions with a pH lower than ∼7.5. It is shown that the reported 2112-cm-1 band found in some chemically altered LDH ferrocyanide is indeed due to interlayer ferricyanide, but that the 2080 cm-1 band is due to the cubic material.

  6. Novel route for layered double hydroxides preparation by enzymatic decomposition of urea

    Science.gov (United States)

    Vial, S.; Prevot, V.; Forano, C.

    2006-05-01

    This study presents a new route for the preparation of a series of layered double hydroxide materials with controlled textural properties. It concerns the biogenesis of hydrotalcite like phases by Jack bean urease through the enzymatic decomposition process of urea. Different conditions of LDH biogenesis are investigated (urease activity, urea concentration). A comparative study with the precipitation method based on the thermal decomposition of urea (90 °C) is conducted in order to asses the effect of the various urea hydrolysis conditions (kinetic, temperature) and the presence of enzyme in the reaction medium on the structural and textural properties of the as prepared LDH materials. Mechanisms of formation of the LDH phases for both synthesis processes are discussed on basis of their pH control. The PXRD and SEM analysis of samples prepared by the thermal process evidence higher crystallinity and greater particle sizes than LDH obtained in mild biogenic conditions. In the latter case, presence of urease or effect of some M(II) metals may inhibit the crystallization.

  7. New Insights into CO2 Adsorption on Layered Double Hydroxide (LDH)-Based Nanomaterials

    Science.gov (United States)

    Tang, Nian; He, Tingyu; Liu, Jie; Li, Li; Shi, Han; Cen, Wanglai; Ye, Zhixiang

    2018-02-01

    The interlamellar spacing of layered double hydroxides (LDHs) was enlarged by dodecyl sulfonate ions firstly, and then, (3-aminopropyl)triethoxysilane (APS) was chemically grafted (APS/LDHs). The structural characteristics and thermal stability of these prepared samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), reflectance Fourier transform infrared spectrometer (FTIR), thermogravimetric analysis (TG), and elemental analysis (EA) respectively. The CO2 adsorption performance was investigated adopting TG and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The results presented that the CO2 adsorption capacity on APS/LDHs was as high as 90 mg/g and showed no obvious reduction during a five cyclic adsorption-desorption test, indicating its superior performance stability. The DRIFTS results showed that both carbamates and weakly bounded CO2 species were generated on APS/LDHs. The weakly adsorbed species was due to the different local chemical environment for CO2 capture provided by the surface moieties of LDHs like free silanol and hydrogen bonds.

  8. Cu sbnd Al sbnd Fe layered double hydroxides with CO32- and anionic surfactants with different alkyl chains in the interlayer

    Science.gov (United States)

    Trujillano, Raquel; Holgado, María Jesús; González, José Luis; Rives, Vicente

    2005-08-01

    Layered double hydroxides (LDHs), with the hydrotalcite-like structure containing Cu(II), Al(III) and Fe(III) in the layers, and different alkyl sulfonates in the interlayer, have been prepared and characterized by powder X-ray diffraction, FT-IR spectroscopy, differential thermal analysis and thermogravimetric analysis. Pure crystalline phases have been obtained in all cases. Upon heating, combustion of the organic chain takes place at lower temperature than the corresponding sodium salts.

  9. Layered double hydroxide/polyethylene terephthalate nanocomposites. Influence of the intercalated LDH anion and the type of polymerization heating method

    International Nuclear Information System (INIS)

    Herrero, M.; Martinez-Gallegos, S.; Labajos, F.M.; Rives, V.

    2011-01-01

    Conventional and microwave heating routes have been used to prepare PET-LDH (polyethylene terephthalate-layered double hydroxide) composites with 1-10 wt% LDH by in situ polymerization. To enhance the compatibility between PET and the LDH, terephthalate or dodecyl sulphate had been previously intercalated in the LDH. PXRD and TEM were used to detect the degree of dispersion of the filler and the type of the polymeric composites obtained, and FTIR spectroscopy confirmed that the polymerization process had taken place. The thermal stability of these composites, as studied by thermogravimetric analysis, was enhanced when the microwave heating method was applied. Dodecyl sulphate was more effective than terephthalate to exfoliate the samples, which only occurred for the terephthalate ones under microwave irradiation. - Graphical abstract: Conventional and microwave heating routes were used to prepare PET-LDH (polyethylene terephthalate-layered double hydroxide) composites with 1-10 wt% LDH by in situ polymerization. To enhance the compatibility between PET and the LDH, terephthalate or dodecyl sulphate was previously intercalated into the LDH. The microwave process improves the dispersion and the thermal stability of nanocomposites due to the interaction of the microwave radiation and the dipolar properties of EG and the homogeneous heating. Highlights: → LDH-PET compatibility is enhanced by preintercalation of organic anions. → Dodecylsulphate performance is much better than that of terephthalate. → Microwave heating improves the thermal stability of the composites. → Microwave heating improves as well the dispersion of the inorganic phase.

  10. Dysprosium-containing layered double hydroxides nanoparticles intercalated with biologically active species as an approach for theranostic systems

    KAUST Repository

    Arratia-Quijada, Jenny

    2015-10-23

    A layered double hydroxide structure including dysprosium cations was prepared by co-precipitation. The nanoparticles showed a linear relationship with the reciprocal relaxation spin-lattice (T1) time of water protons which is reflected as contrast in aqueous suspensions analyzed by magnetic resonance imaging. The interlayer space of dysprosium containing LDH was successfully intercalated with folate, ibuprofen and gallate ions, which are key molecules for recognition of some cancer cells and treatment of diseases. The paramagnetic property of the dysprosium-containing LDH detected in this work beside the ability to transport drugs open up the opportunity to design theranostic materials in a single crystal phase with nanometric dimensions.

  11. Dysprosium-containing layered double hydroxides nanoparticles intercalated with biologically active species as an approach for theranostic systems

    KAUST Repository

    Arratia-Quijada, Jenny; Sá nchez Jimé nez, Cecilia; Gurinov, Andrei; Pé rez Centeno, Armando; Ceja Andrade, Israel; Carbajal Arí zaga, Gregorio Guadalupe

    2015-01-01

    A layered double hydroxide structure including dysprosium cations was prepared by co-precipitation. The nanoparticles showed a linear relationship with the reciprocal relaxation spin-lattice (T1) time of water protons which is reflected as contrast in aqueous suspensions analyzed by magnetic resonance imaging. The interlayer space of dysprosium containing LDH was successfully intercalated with folate, ibuprofen and gallate ions, which are key molecules for recognition of some cancer cells and treatment of diseases. The paramagnetic property of the dysprosium-containing LDH detected in this work beside the ability to transport drugs open up the opportunity to design theranostic materials in a single crystal phase with nanometric dimensions.

  12. EXAFS and FTIR studies of selenite and selenate sorption by alkoxide-free sol-gel generated Mg-Al-CO3 layered double hydroxide with very labile interlayer anions

    NARCIS (Netherlands)

    Chubar, N.

    Current research on Layered Double Hydroxides (LDHs, also known as hydrotalcites, HTs) is predominantly focused on their intercalations, but the industrial application of LDHs for anion exchange adsorption has not yet been achieved. It was recently recognized that, to develop LDH applications, these

  13. Intercalation studies of zinc hydroxide chloride: Ammonia and amino acids

    Science.gov (United States)

    Arízaga, Gregorio Guadalupe Carbajal

    2012-01-01

    Zinc hydroxide chloride (ZHC) is a layered hydroxide salt with formula Zn5(OH)8Cl2·2H2O. It was tested as intercalation matrix for the first time and results were compared with intercalation products of the well-known zinc hydroxide nitrate and a Zn/Al layered double hydroxide. Ammonia was intercalated into ZHC, while no significant intercalation occurred in ZHN. Aspartic acid intercalation was only achieved by co-precipitation at pH=10 with ZHC and pH=8 with zinc hydroxide nitrate. Higher pH resistance in ZHC favored total deprotonation of both carboxylic groups of the Asp molecule. ZHC conferred more thermal protection against Asp combustion presenting exothermic peaks even at 452 °C while the exothermic event in ZHN was 366 °C and in the LDH at 276 °C.

  14. Electrochemical immunosensor with NiAl-layered double hydroxide/graphene nanocomposites and hollow gold nanospheres double-assisted signal amplification.

    Science.gov (United States)

    Qiao, Lu; Guo, Yemin; Sun, Xia; Jiao, Yancui; Wang, Xiangyou

    2015-08-01

    A sensitive electrochemical immunosensor based on NiAl-layered double hydroxide/graphene nanocomposites (NiAl-LDH/G) and hollow gold nanospheres (HGNs) was proposed for chlorpyrifos detection. The NiAl-LDH/G was prepared using a conventional coprecipitation process and reduction of the supporting graphene oxide. Subsequently, the nanocomposites were dispersed with chitosan (CS). The NiAl-LDH/G possessed good electrochemical behavior and high binding affinity to the electrode. The high surface areas of HGNs and the vast aminos and hydroxyls of CS provided a platform for the covalently crosslinking of antibody. Under optimal conditions, the immunosensor exhibited a wide linear range from 5 to 150 μg/mL and from 150 to 2 μg/mL, with a detection limit of 0.052 ng/mL. The detection results showed good agreement with standard gas chromatography method. The constructed immunosensor exhibited good reproducibility, high specificity, acceptable stability and regeneration performance, which provided a new promising tool for chlorpyrifos detection in real samples.

  15. Precipitation of the rare earth double sodium and rare earths from the sulfuric liquor and the conversion into rare earth hydroxides through meta ethic reaction

    International Nuclear Information System (INIS)

    Abreu, Renata D.; Oliveira, Ester F.; Brito, Walter de; Morais, Carlos A.

    2007-01-01

    This work presents the purification study of the rare earths through precipitation of rare earth and sodium (Na TR (SO 4 ) 2 . x H 2 O)) double sulfate and his conversion to rare earths hydroxide TR(OH) 3 by meta ethic reaction through the addition of sodium hydroxide solution to the solid double sulfate. The study used the sulfuric liquor as rare earth sample, generated in the chemical processing of the monazite with sulfuric acid by the Industrias Nucleares do Brasil - INB, Brazil, after the thorium and uranium extraction. The work investigated the influence of the main variables involved in the precipitation of Na TR(SO 4 ) 2 .xH 2 O and in the conversion for the TR(OH) 3 , as follows: type and excess of the precipitation agent, temperature and time reaction. The obtained solid composites were characterized by X-ray diffraction, infrared and chemical analysis. The double sulfate diffractogram indicated the Na TR(SO 4 ) 2 mono-hydrated. The characterization of the metatese products has shown that, for obtaining the complete conversion of NaTR(SO 4 ) 2 .H 2 O into TR(OH) 3 , the reaction must be hot processed (∼70 deg C) and with small excess of Na OH (≤ 5 percent). (author)

  16. Layered double hydroxide materials coated carbon electrode: New challenge to future electrochemical power devices

    International Nuclear Information System (INIS)

    Djebbi, Mohamed Amine; Braiek, Mohamed; Namour, Philippe; Ben Haj Amara, Abdesslem; Jaffrezic-Renault, Nicole

    2016-01-01

    Highlights: • MgAl and ZnAl LDH nanosheets were chemically synthesized and deposited over carbon electrode materials. • Catalytic performance of both LDHs was investigated for Fe(II) reduction reaction. • Satisfactory results have been achieved with the MgAl LDH material. • MgAl and ZnAl LDH modified carbon felt were applied in MFC as an efficient anode catalyst. • The LDH-modified anode significantly increased power performance of MFC. - Abstract: Layered double hydroxides (LDHs) have been widely used in the past years due to their unique physicochemical properties and promising applications in electroanalytical chemistry. The present paper is going to focus exclusively on magnesium-aluminum and zinc-aluminum layered double hydroxides (MgAl & ZnAl LDHs) in order to investigate the property and structure of active cation sites located within the layer structure. The MgAl and ZnAl LDH nanosheets were prepared by the constant pH co-precipitation method and uniformly supported on carbon-based electrode materials to fabricate an LDH electrode. Characterization by powder x-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy revealed the LDH form and well-crystallized materials. Wetting surface properties (hydrophilicity and hydrophobicity) of both prepared LDHs were recorded by contact angle measurement show hydrophilic character and basic property. The electrochemical performance of these hybrid materials was investigated by mainly cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry techniques to identify the oxidation/reduction processes at the electrode/electrolyte interface and the effect of the divalent metal cations in total reactivity. The hierarchy of the modified electrode proves that the electronic conductivity of the bulk material is considerably dependent on the divalent cation and affects the limiting parameter of the overall redox process. However

  17. Layered double hydroxide materials coated carbon electrode: New challenge to future electrochemical power devices

    Energy Technology Data Exchange (ETDEWEB)

    Djebbi, Mohamed Amine, E-mail: mohamed.djebbi@etu.univ-lyon1.fr [Institut des Sciences Analytiques UMR CNRS 5280, Université Claude Bernard-Lyon 1, 5 rue de la Doua, 69100 Villeurbanne (France); Laboratoire de Physique des Matériaux Lamellaires et Nano-Matériaux Hybrides, Faculté des Sciences de Bizerte, Université de Carthage, 7021 Bizerte (Tunisia); Braiek, Mohamed [Institut des Sciences Analytiques UMR CNRS 5280, Université Claude Bernard-Lyon 1, 5 rue de la Doua, 69100 Villeurbanne (France); Namour, Philippe [Institut des Sciences Analytiques UMR CNRS 5280, Université Claude Bernard-Lyon 1, 5 rue de la Doua, 69100 Villeurbanne (France); Irstea, 5 rue de la Doua, 69100 Villeurbanne (France); Ben Haj Amara, Abdesslem [Laboratoire de Physique des Matériaux Lamellaires et Nano-Matériaux Hybrides, Faculté des Sciences de Bizerte, Université de Carthage, 7021 Bizerte (Tunisia); Jaffrezic-Renault, Nicole [Institut des Sciences Analytiques UMR CNRS 5280, Université Claude Bernard-Lyon 1, 5 rue de la Doua, 69100 Villeurbanne (France)

    2016-11-15

    Highlights: • MgAl and ZnAl LDH nanosheets were chemically synthesized and deposited over carbon electrode materials. • Catalytic performance of both LDHs was investigated for Fe(II) reduction reaction. • Satisfactory results have been achieved with the MgAl LDH material. • MgAl and ZnAl LDH modified carbon felt were applied in MFC as an efficient anode catalyst. • The LDH-modified anode significantly increased power performance of MFC. - Abstract: Layered double hydroxides (LDHs) have been widely used in the past years due to their unique physicochemical properties and promising applications in electroanalytical chemistry. The present paper is going to focus exclusively on magnesium-aluminum and zinc-aluminum layered double hydroxides (MgAl & ZnAl LDHs) in order to investigate the property and structure of active cation sites located within the layer structure. The MgAl and ZnAl LDH nanosheets were prepared by the constant pH co-precipitation method and uniformly supported on carbon-based electrode materials to fabricate an LDH electrode. Characterization by powder x-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy revealed the LDH form and well-crystallized materials. Wetting surface properties (hydrophilicity and hydrophobicity) of both prepared LDHs were recorded by contact angle measurement show hydrophilic character and basic property. The electrochemical performance of these hybrid materials was investigated by mainly cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry techniques to identify the oxidation/reduction processes at the electrode/electrolyte interface and the effect of the divalent metal cations in total reactivity. The hierarchy of the modified electrode proves that the electronic conductivity of the bulk material is considerably dependent on the divalent cation and affects the limiting parameter of the overall redox process. However

  18. Electrospun fibers of layered double hydroxide/biopolymer nanocomposites as effective drug delivery systems

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yue-E.; Zhu Hong; Chen Dan; Wang Ruiyu [State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433 (China); Tjiu, Weng Weei [Institute of Materials Research and Engineering, A-STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602 (Singapore); Liu Tianxi, E-mail: txliu@fudan.edu.cn [State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433 (China)

    2012-06-15

    Ibuprofen intercalated layered double hydroxide (LDH-IBU)/polycaprolactone (PCL) and LDH-IBU/polylactide (PLA) nanocomposite fibers are electrospun based on a combination of LDH-IBU with two kinds of biopolymers (i.e. PCL and PLA), to act as effective drug delivery systems. Ibuprofen (IBU) is chosen as a model drug, which is intercalated in MgAl-LDH by coprecipitation. Poly(oxyethylene-b-oxypropylene-b-oxyethylene) (Pluronic) is also added into PLA-based fibers as hydrophilicity enhancer and release modulator. LDH-IBU nanoparticles are uniformly dispersed throughout the nanocomposite fibers, as evidenced by transmission electron microscopy (TEM) observations. In vitro drug release studies show that initial IBU liberation from LDH-IBU/PCL composite fibers is remarkably slower than that from IBU/PCL fibers due to the sustained release property of LDH-IBU and heterogeneous nucleation effect of LDH-IBU on PCL chain segments. Surprisingly, the initial IBU release from LDH-IBU/PLA and LDH-IBU/PLA/Pluronic composite fibers is faster than that from the corresponding IBU/PLA and IBU/PLA/Pluronic fibers. This effect can be attributed to the strong interaction between alkyl groups in IBU molecules and methyl substituent groups of PLA as well as the hydrophilicity of LDH-IBU, which lead to an easier diffusion of water with a faster release of IBU from LDH-IBU/PLA and LDH-IBU/PLA/Pluronic composite fibers. - Graphical abstract: Ibuprofen intercalated layered double hydroxide (LDH-IBU)/polycaprolactone (PCL) and LDH-IBU/polylactide (PLA) nanocomposite fibers are electrospun based on the combination of LDHs with two kinds of biopolymers (i.e. PCL and PLA). LDH-IBU nanoparticles are uniformly dispersed throughout all the electrospun nanocomposite fibers even at a high loading level of 5 wt%. By combining the tunable drug release property of LDHs and electrospinning technique, the new drug delivery system is anticipated for effective loading and sustained release of drugs

  19. Electrospun fibers of layered double hydroxide/biopolymer nanocomposites as effective drug delivery systems

    International Nuclear Information System (INIS)

    Miao, Yue-E.; Zhu Hong; Chen Dan; Wang Ruiyu; Tjiu, Weng Weei; Liu Tianxi

    2012-01-01

    Ibuprofen intercalated layered double hydroxide (LDH-IBU)/polycaprolactone (PCL) and LDH-IBU/polylactide (PLA) nanocomposite fibers are electrospun based on a combination of LDH-IBU with two kinds of biopolymers (i.e. PCL and PLA), to act as effective drug delivery systems. Ibuprofen (IBU) is chosen as a model drug, which is intercalated in MgAl-LDH by coprecipitation. Poly(oxyethylene-b-oxypropylene-b-oxyethylene) (Pluronic) is also added into PLA-based fibers as hydrophilicity enhancer and release modulator. LDH-IBU nanoparticles are uniformly dispersed throughout the nanocomposite fibers, as evidenced by transmission electron microscopy (TEM) observations. In vitro drug release studies show that initial IBU liberation from LDH-IBU/PCL composite fibers is remarkably slower than that from IBU/PCL fibers due to the sustained release property of LDH-IBU and heterogeneous nucleation effect of LDH-IBU on PCL chain segments. Surprisingly, the initial IBU release from LDH-IBU/PLA and LDH-IBU/PLA/Pluronic composite fibers is faster than that from the corresponding IBU/PLA and IBU/PLA/Pluronic fibers. This effect can be attributed to the strong interaction between alkyl groups in IBU molecules and methyl substituent groups of PLA as well as the hydrophilicity of LDH-IBU, which lead to an easier diffusion of water with a faster release of IBU from LDH-IBU/PLA and LDH-IBU/PLA/Pluronic composite fibers. - Graphical abstract: Ibuprofen intercalated layered double hydroxide (LDH-IBU)/polycaprolactone (PCL) and LDH-IBU/polylactide (PLA) nanocomposite fibers are electrospun based on the combination of LDHs with two kinds of biopolymers (i.e. PCL and PLA). LDH-IBU nanoparticles are uniformly dispersed throughout all the electrospun nanocomposite fibers even at a high loading level of 5 wt%. By combining the tunable drug release property of LDHs and electrospinning technique, the new drug delivery system is anticipated for effective loading and sustained release of drugs

  20. Synthesis of nanocomposite coating based on TiO2/ZnAl layer double hydroxides

    International Nuclear Information System (INIS)

    Jovanov, V.; Rudic, O.; Ranogajec, J.; Fidanchevska, E.

    2017-01-01

    The aim of this investigation was the synthesis of nanocomposite coatings based on Zn-Al layered double hydroxides (Zn-Al LDH) and TiO2. The Zn-Al LDH material, which acted as the catalyst support of the active TiO2 component (in the content of 3 and 10 wt. %), was synthesized by a low super saturation co-precipitation method. The interaction between the Zn-Al LDH and the active TiO2 component was accomplished by using vacuum evaporation prior to the mechanical activation and only by mechanical activation. The final suspension based on Zn-Al LDH and 10wt. % TiO2, impregnated only by mechanical activation, showed the optimal characteristics from the aspect of particle size distribution and XRD analysis. These properties had a positive effect on the functional properties of the coatings (photocatalytic activity and self-cleaning efficiency) after the water rinsing procedure. [es

  1. Silver Orthophosphate Immobilized on Flaky Layered Double Hydroxides as the Visible-Light-Driven Photocatalysts

    Directory of Open Access Journals (Sweden)

    Xianlu Cui

    2012-01-01

    Full Text Available Flaky layered double hydroxide (FLDH was prepared by the reconstruction of its oxide in alkali solution. The composites with FLDH/Ag3PO4 mass ratios at 1.6 : 1 and 3 : 1 were fabricated by the coprecipitation method. The powders were characterized by X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscope, and UV-vis diffuse reflectance spectroscopy. The results indicated that the well-distributed Ag3PO4 in a fine crystallite size was formed on the surface of FLDH. The photocatalytic activities of the Ag3PO4 immobilized on FLDH were significantly enhanced for the degradation of acid red G under visible light irradiation compared to bare Ag3PO4. The composite with the FLDH/Ag3PO4 mass ratio of 3 : 1 showed a higher photocatalytic efficiency.

  2. Isothermal crystallization and melting behavior of polypropylene/layered double hydroxide nanocomposites

    International Nuclear Information System (INIS)

    Lonkar, Sunil P.; Singh, R.P.

    2009-01-01

    The effect of layered double hydroxide (LDH) nanolayers on the crystallization behavior of polypropylene (PP) was studied based on the preparation of nanocomposites by a melt intercalation method. The isothermal crystallization kinetics and subsequent melting behavior of PP/LDH hybrids were studied with differential scanning calorimetry (DSC), polarized optical microscopy (POM), and wide-angle X-ray diffraction (WAXD). Studies revealed that the LDH promoted heterogeneous nucleation, accelerating the crystallization of PP. The Avrami equation successfully describes the isothermal crystallization kinetics of PP/LDH hybrids and signifies heterogeneous nucleation in crystal growth of PP. The varying values of Avrami exponent (n) and half crystallization time (t 1/2 ) of PP and PP/LDH hybrids describes overall crystallization behavior. The crystallite size (D hkl ) and distribution of different crystallites in PP varied in presence of LDH. A significant increase in melting temperature is observed for PP/LDH hybrids. The POM showed that smaller and less perfect crystals were formed in nanocomposites because of molecular interaction between PP chains and LDH. The value of fold surface free energy (σ e ) of PP chains decreased with increasing LDH content. Finally, the overall results signify that LDH at nanometer level acted as nucleating agent and accelerate the overall crystallization process of PP.

  3. In Vitro Inhibition of Histamine Release Behavior of Cetirizine Intercalated into Zn/Al- and Mg/Al-Layered Double Hydroxides

    Directory of Open Access Journals (Sweden)

    Muhammad Nazrul Hakim

    2012-05-01

    Full Text Available The intercalation of cetirizine into two types of layered double hydroxides, Zn/Al and Mg/Al, has been investigated by the ion exchange method to form CTZAN and CTMAN nanocomposites, respectively. The basal spacing of the nanocomposites were expanded to 31.9 Å for CTZAN and 31.2 Å for CTMAN, suggesting that cetirizine anion was intercalated into Layered double hydroxides (LDHs and arranged in a tilted bilayer fashion. A Fourier transform infrared spectroscopy (FTIR study supported the formation of both the nanocomposites, and the intercalated cetirizine is thermally more stable than its counterpart in free state. The loading of cetirizine in the nanocomposite was estimated to be about 57.2% for CTZAN and 60.7% CTMAN. The cetirizine release from the nanocomposites show sustained release manner and the release rate of cetirizine from CTZAN and CTMAN nanocomposites at pH 7.4 is remarkably lower than that at pH 4.8, presumably due to the different release mechanism. The inhibition of histamine release from RBL2H3 cells by the free cetirizine is higher than the intercalated cetirizine both in CTZAN and CTMAN nanocomposites. The viability in human Chang liver cells at 1000 μg/mL for CTZAN and CTMAN nanocomposites are 74.5 and 91.9%, respectively.

  4. Self-assembled 3D flower-like Ni2+-Fe3+ layered double hydroxides and their calcined products

    International Nuclear Information System (INIS)

    Xiao Ting; Tang Yiwen; Jia Zhiyong; Li Dawei; Hu Xiaoyan; Li Bihui; Luo Lijuan

    2009-01-01

    This paper describes a facile solvothermal method to synthesize self-assembled three-dimensional (3D) Ni 2+ -Fe 3+ layered double hydroxides (LDHs). Flower-like Ni 2+ -Fe 3+ LDHs constructed of thin nanopetals were obtained using ethylene glycol (EG) as a chelating reagent and urea as a hydrolysis agent. The reaction mechanism and self-assembly process are discussed. After calcinating the as-prepared LDHs at 450 0 C in nitrogen gas, porous NiO/NiFe 2 O 4 nanosheets were obtained. This work resulted in the development of a simple, cheap, and effective route for the fabrication of large area Ni 2+ -Fe 3+ LDHs as well as porous NiO/NiFe 2 O 4 nanosheets.

  5. Mg-Al layered double hydroxide intercalated with sodium lauryl sulfate as a sorbent for 152+154Eu from aqueous solutions

    International Nuclear Information System (INIS)

    Mahmoud, M.R.; Someda, H.H.

    2012-01-01

    In the present study, Mg-Al layered double hydroxide intercalated with nitrate anions (LDH-NO 3 ) was synthesized, modified with the anionic surfactant, sodium lauryl sulfate, and applied for the removal of 152+154 Eu from aqueous solutions. Modification of the as-synthesized Mg-Al layered double hydroxide was carried out at surfactant concentration of 0.01 M (the organo-LDH produced denoted LDH-NaLS). The as-synthesized and surfactant-intercalated LDHs were characterized by FT-IR and energy-dispersive X-ray spectroscopy techniques. The effect of some variables such as solution pH, contact time and sorbate concentration on removal of 152+154 Eu was investigated. The kinetic data obtained were well fitted by the pseudo-second-order kinetic model rather than the pseudo-first-order model. Intraparticle diffusion model showed that sorption of 152+154 Eu proceed by intraparticle diffusion together with boundary layer diffusion. Experimental isotherm data were well described by Langmuir model. Organo-LDH was found to have higher capacity (156.45 mg g -1 ) for europium than the as-synthesized LDH-NO 3 (119.56 mg g -1 ). Comparing LDHs capacities obtained for Eu(III) in the present work with other sorbents reported in literature indicated that LDHs have the highest capacities. Application of the developed process for removal of 152+154 Eu(III) from radioactive process wastewaters was also studied and the obtained results revealed that these LDHs are promising materials for treatment of radioactive wastewaters. (author)

  6. Layered double hydroxide using hydrothermal treatment: morphology evolution, intercalation and release kinetics of diclofenac sodium

    Science.gov (United States)

    Joy, Mathew; Iyengar, Srividhya J.; Chakraborty, Jui; Ghosh, Swapankumar

    2017-12-01

    The present work demonstrates the possibilities of hydrothermal transformation of Zn-Al layered double hydroxide (LDH) nanostructure by varying the synthetic conditions. The manipulation in washing step before hydrothermal treatment allows control over crystal morphologies, size and stability of their aqueous solutions. We examined the crystal growth process in the presence and the absence of extra ions during hydrothermal treatment and its dependence on the drug (diclofenac sodium (Dic-Na)) loading and release processes. Hexagonal plate-like crystals show sustained release with ˜90% of the drug from the matrix in a week, suggesting the applicability of LDH nanohybrids in sustained drug delivery systems. The fits to the release kinetics data indicated the drug release as a diffusion-controlled release process. LDH with rod-like morphology shows excellent colloidal stability in aqueous suspension, as studied by photon correlation spectroscopy.

  7. Layered double hydroxide using hydrothermal treatment: morphology evolution, intercalation and release kinetics of diclofenac sodium

    Institute of Scientific and Technical Information of China (English)

    Mathew JOY; Srividhya J.IYENGAR; Jui CHAKRABORTY; Swapankumar GHOSH

    2017-01-01

    The present work demonstrates the possibilities of hydrothermal transformation of Zn-AI layered double hydroxide (LDH) nanostructure by varying the synthetic conditions.The manipulation in washing step before hydrothermal treatment allows control over crystal morphologies,size and stability of their aqueous solutions.We examined the crystal growth process in the presence and the absence of extra ions during hydrothermal treatment and its dependence on the drug (diclofenac sodium (DicNa)) loading and release processes.Hexagonal plate-like crystals show sustained release with ~90% of the drug from the matrix in a week,suggesting the applicability of LDH nanohybrids in sustained drug delivery systems.The fits to the release kinetics data indicated the drug release as a diffusion-controlled release process.LDH with rod-like morphology shows excellent colloidal stability in aqueous suspension,as studied by photon correlation spectroscopy.

  8. Adsorption of phosphate in hydrocalumite-like layered double hydroxides: a comparison between memory effect and ion exchange processes

    International Nuclear Information System (INIS)

    Bernardo, M.P.; Moreira, F.K.V.; Ribeiro, C.

    2016-01-01

    Phosphorus is an essential element for agriculture, but the excessive use of this element has caused severe damages to the environment. Layered double hydroxide (LDHs) are excellent candidates to remove PO 4 3- anions through adsorption process. In this work, the phosphate adsorption on hydrocalumite-like (Ca-Al) LDHs was evaluated over the ion exchange and memory effect processes. X-ray diffraction measurements revealed formation of analogous crystalline phases from both process as the phosphate concentration was increased. However, the phosphate quantity adsorbed varied according to the process used. The ion exchange route is the most efficient process to remove phosphate from aqueous medium. (author)

  9. Polytypic transformations during the thermal decomposition of cobalt hydroxide and cobalt hydroxynitrate

    International Nuclear Information System (INIS)

    Ramesh, Thimmasandra Narayan

    2010-01-01

    The isothermal decomposition of cobalt hydroxide and cobalt hydroxynitrate at different intervals of temperature leads to the formation of Co 3 O 4 . The phase evolution during the decomposition process was monitored using powder X-ray diffraction. The transformation of cobalt hydroxide to cobalt oxide occurs via three phase mixture while cobalt hydroxynitrate to cobalt oxide occurs through a two phase mixture. The nature of the sample and its preparation method controls the decomposition mechanism. The comparison of topotactical relationship between the precursors to the decomposed product has been reported in relation to polytypism. - Graphical abstract: Isothermal thermal decomposition studies of cobalt hydroxide and cobalt hydroxynitrate at different intervals of temperature show the metastable phase formed prior to Co 3 O 4 phase.

  10. Thermokinetic study of the rehydration process of a calcined MgAl-layered double hydroxide.

    Science.gov (United States)

    Pfeiffer, Heriberto; Lima, Enrique; Lara, Víctor; Valente, Jaime S

    2010-03-16

    The rehydration process of a calcined MgAl-layered double hydroxide (LDH) with a Mg/Al molar ratio of 3 was systematically analyzed at different temperatures and relative humidity. Qualitative and quantitative experiments were done. In the first set of samples, the temperature or the relative humidity was varied, fixing the second variable. Both adsorption and absorption phenomena were present; absorption process was associated to the LDH regeneration. Of course, in all cases the LDH regeneration was confirmed by other techniques such as TGA, solid state NMR, and SAXS. In the second set of experiments, a kinetic analysis was performed, the results allowed to obtain different activation enthalpies for the LDH regeneration as a function of the relative humidity. The activation enthalpies varied from 137.6 to 83.3 kJ/mol as a function of the relative humidity (50 and 80%, respectively). All these experiments showed that LDH regeneration is highly dependent on the temperature and relative humidity.

  11. Synthesis of Co–Al layered double hydroxide nanoclusters as reduction nanocatalyst in aqueous media

    Directory of Open Access Journals (Sweden)

    Daisuke Kino

    2017-12-01

    Full Text Available Layered double hydroxides (LDHs have attracted attention as green materials due to their catalytic ability in benign aqueous solvents. We here demonstrate the synthesis of colloidal Co–Al LDH nanoclusters with an average size of <10 nm via a facile liquid-phase reaction for the enhancement of the catalytic activity. To the best of our knowledge, the present LDH is the smallest Co–Al LDH with an extremely large surface area and stability in an aqueous solvent, forming a stable and concentrated colloidal solution as high as 40 g/L. We investigated the formation mechanism, and the catalytic activity of Co–Al LDH nanoclusters. The Co–Al LDH nanoclusters showed 47 times higher rate of the reduction of dye molecules in the aqueous media than standard Co–Al LDH particles with a micrometer size. LDH nanoclusters demonstrated here are promising green nanocatalysts for the aqueous reaction processes.

  12. The Adsorption of Dextranase onto Mg/Fe-Layered Double Hydroxide: Insight into the Immobilization

    Directory of Open Access Journals (Sweden)

    Yi Ding

    2018-03-01

    Full Text Available We report the adsorption of dextranase on a Mg/Fe-layered double hydroxide (Mg/Fe-LDH. We focused the effects of different buffers, pH, and amino acids. The Mg/Fe-LDH was synthesized, and adsorption experiments were performed to investigate the effects. The maximum adsorption occurred in pH 7.0 4-(2-hydroxyethyl-1-piperazineethanesulfonic acid (HEPES buffer, and the maximum dextranase adsorption uptake was 1.38 mg/g (416.67 U/mg; histidine and phenylalanine could affect the adsorption. A histidine tag could be added to the protein to increase the adsorption significantly. The performance features and mechanism were investigated with X-ray diffraction patterns (XRD and Fourier transform infrared spectra (FTIR. The protein could affect the crystal structure of LDH, and the enzyme was adsorbed on the LDH surface. The main interactions between the protein and LDH were electrostatic and hydrophobic. Histidine and phenylalanine could significantly affect the adsorption. The hexagonal morphology of LDH was not affected after adsorption.

  13. Preparation and characterization of poly(lactic acid)/ zinc-aluminium layered double hydroxide nano composites

    International Nuclear Information System (INIS)

    Eili Mahboobeh; Wan Mohd Zin Wan Yunus; Zobir Hossein; Mansor Ahmad; Norazowa Ibrahim

    2009-01-01

    Full text: Poly (lactic acid)/ stearate - zinc aluminum layered double hydroxide/ (PLA/ SZnAl LDH) nano composites were prepared via solution intercalation process using a modified ZnAl LDH. The anionic clay Zn 3 Al-NO 3 -LDH was prepared by a co-precipitation method and then modified with stearate ions by ion exchange process. Stearate-ZnAl LDH particles were then homogeneously dispersed in PLA matrix by a solution casting method. The pristine and modified ZnAl LDH was characterized by X-ray diffraction (XRD) and Fourier transforms infrared (FTIR) spectroscopy which suggested that the modification was successful. The XRD analysis showed that during modification of LDH, the basal spacing increased from 8.83 Angstrom to 40.1 Angstrom. The PLA/ ZnAl LDH nano composites were characterized by tensile testing and XRD. The obtained nano composites showed dramatic enhancements in elongation at break as compared to those of the pure PLA. XRD results indicated that the materials formed are nano composites. (author)

  14. Comparative study of the coprecipitation methods for the preparation of Layered Double Hydroxides

    Directory of Open Access Journals (Sweden)

    Crepaldi Eduardo L.

    2000-01-01

    Full Text Available Coprecipitation is the method most frequently applied to prepare Layered Double Hydroxides (LDHs. Two variations of this method can be used, depending on the pH control conditions during the precipitation step. In one case the pH values are allowed to vary while in the other they are kept constant throughout coprecipitation. Although research groups have their preferences, no systematic comparison of the two variations of the coprecipitation method is available in the literature. On this basis, the objective of the present study was to compare the properties of LDHs prepared using the two forms of pH control in the coprecipitation method. The results showed that even though coprecipitation is easier to perform under conditions of variable pH values, materials with more interesting properties, from the point of view of technological applications, are obtained at constant pH. Higher crystallinity, smaller particle size, higher specific surface area and higher average pore diameter were found for materials obtained by coprecipitation at constant pH, when compared to the materials obtained at variable pH.

  15. Carboxylate-intercalated layered double hydroxides aged under microwave-hydrothermal treatment

    International Nuclear Information System (INIS)

    Benito, P.; Labajos, F.M.; Mafra, L.; Rocha, J.; Rives, V.

    2009-01-01

    Carboxylate-intercalated (terephthalate, TA and oxalate, ox) layered double hydroxides (LDHs) are aged under a microwave-hydrothermal treatment. The influence of the nature of the interlayer anion during the ageing process is studied. Characterization results show that the microwave-hydrothermal method can be extended to synthesize LDHs with anions different than carbonate, like TA. LDH-TA compounds are stable under microwave irradiation for increasing periods of time and the solids show an improved order both in the layers and in the interlayer region as evidenced by powder X-ray diffraction (PXRD), 27 Al MAS NMR and FT-IR spectroscopy. Furthermore, cleaning of the surface through removal of some organic species adsorbed on the surface of the particles also occurs during the microwave-hydrothermal treatment. Conversely, although the expected increase in crystallinity is observed in LDH-ox samples, the side-reaction between Al 3+ and ox is also enhanced under microwave irradiation, and a partial destruction of the structure takes place with an increase in the M 2+ /M 3+ ratio and consequent modification of the cell parameters. - Graphical Abstract: The influence of the nature of the interlayer anion during the ageing process of carboxylate-intercalated (TA and ox) hydrotalcite-like compounds (HTlcs) is studied. Well crystallized for TA-containing compounds were obtained. However, the non-desired side-reaction of ox with the aluminum of the layers is enhanced by the microwaves and a partial destruction of the structure takes place

  16. Layered double hydroxide films on nanoporous anodic aluminum oxide/aluminum wire: a new fiber for rapid analysis of Origanum vulgare essential oils.

    Science.gov (United States)

    Piryaei, Marzieh

    2018-01-01

    Zn/Al layered double hydroxide (LDH) films were fabricated in situ with anodic aluminium oxide aluminium as both the substrate and the sole aluminium source by means of urea hydrolysis. Headspace solid phase microextraction using LDH fibre in combination with capillary GC-MS was utilised as a monitoring technique for the collection and detection of the volatile compounds of Origanum vulgare. Experimental parameters, including the sample weight, microwave power, extraction time and humidity effect, were examined and optimised.

  17. Insitu grown superhydrophobic Zn-Al layered double hydroxides films on magnesium alloy to improve corrosion properties

    Science.gov (United States)

    Zhou, Meng; Pang, Xiaolu; Wei, Liang; Gao, Kewei

    2015-05-01

    A hierarchical superhydrophobic zinc-aluminum layered double hydroxides (Zn-Al LDHs) film has been fabricated on a magnesium alloy substrate via a facile hydrothermal crystallization method following chemical modification. The characteristics of the films were investigated by X-ray diffraction (XRD), scanning electronic microscope (SEM), and energy dispersive spectroscopy (EDS). XRD patterns and SEM images showed that the micro/nanoscale hierarchical LDHs film surfaces composed of ZnO nanorods and Zn-Al LDHs nanowalls structures. The static contact angle (CA) for the prepared surfaces was observed at around 165.6°. The corrosion resistance of the superhydrophobic films was estimated by electrochemical impedance spectroscopy (EIS) and potentiondynamic polarization measurement. EIS and polarization measurements revealed that the superhydrophobic Zn-Al LDHs coated magnesium alloy had better corrosion resistance in neutral 3.5 wt.% NaCl solution.

  18. Hierarchical Co-based Porous Layered Double Hydroxide Arrays Derived via Alkali Etching for High-performance Supercapacitors

    Science.gov (United States)

    Abushrenta, Nasser; Wu, Xiaochao; Wang, Junnan; Liu, Junfeng; Sun, Xiaoming

    2015-08-01

    Hierarchical nanoarchitecture and porous structure can both provide advantages for improving the electrochemical performance in energy storage electrodes. Here we report a novel strategy to synthesize new electrode materials, hierarchical Co-based porous layered double hydroxide (PLDH) arrays derived via alkali etching from Co(OH)2@CoAl LDH nanoarrays. This structure not only has the benefits of hierarchical nanoarrays including short ion diffusion path and good charge transport, but also possesses a large contact surface area owing to its porous structure which lead to a high specific capacitance (23.75 F cm-2 or 1734 F g-1 at 5 mA cm-2) and excellent cycling performance (over 85% after 5000 cycles). The enhanced electrode material is a promising candidate for supercapacitors in future application.

  19. Host-Guest Engineering of Layered Double Hydroxides towards Efficient Oxygen Evolution Reaction: Recent Advances and Perspectives

    Directory of Open Access Journals (Sweden)

    Jianming Li

    2018-05-01

    Full Text Available Electrochemical water splitting has great potential in the storage of intermittent energy from the sun, wind, or other renewable sources for sustainable clean energy applications. However, the anodic oxygen evolution reaction (OER usually determines the efficiency of practical water electrolysis due to its sluggish four-electron process. Layered double hydroxides (LDHs have attracted increasing attention as one of the ideal and promising electrocatalysts for water oxidation due to their excellent activity, high stability in basic conditions, as well as their earth-abundant compositions. In this review, we discuss the recent progress on LDH-based OER electrocatalysts in terms of active sites, host-guest engineering, and catalytic performances. Moreover, further developments and challenges in developing promising electrocatalysts based on LDHs are discussed from the viewpoint of molecular design and engineering.

  20. Electrosynthesized Ni-Al Layered Double Hydroxide-Pt Nanoparticles as an Inorganic Nanocomposite and Potentate Anodic Material for Methanol Electrooxidation in Alkaline Media

    Directory of Open Access Journals (Sweden)

    Biuck Habibi

    2017-04-01

    Full Text Available In this study, Ni-Al layered double hydroxide (LDH-Pt nanoparticles (PtNPs as an inorganic nano-composite was electrosynthesized on the glassy carbon electrode (GCE by a facile and fast two-step electrochemical process. Structure and physicochemical properties of PtNPs/Ni-Al LDH/GCE were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectrometry and electrochemical methods. Then, electrocatalytic and stability characterizations of the PtNPs/Ni-Al LDH/GCE for methanol oxidation in alkaline media were investigated in detail by cyclic voltammetry, chronoamperometry, and chronopotentiometry measurements. PtNPs/Ni-Al LDH/GCE exhibited higher electrocatalytic activity than PtNPs/GCE and Ni-Al LDH/GCE. Also, the resulted chronoam-perograms indicated that the PtNPs/Ni-Al LDH/GCE has a better stability. Copyright © 2017 BCREC GROUP. All rights reserved Received: 30th March 2016; Revised: 29th July 2016; Accepted: 9th September 2016 How to Cite: Habibi, B., Ghaderi, S. (2017. Electro Synthesized Ni-Al Layered Double Hydroxide-Pt Nanoparticles as an Inorganic Nanocomposite and Potentate Anodic Material for Methanol Electro-Oxidation in Alkaline Media. Bulletin of Chemical Reaction Engineering & Catalysis, 12(1: 1-13 (doi:10.9767/bcrec.12.1.460.1-13 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.1.460.1-13

  1. Real-time tracking of hydrogen peroxide secreted by live cells using MnO{sub 2} nanoparticles intercalated layered doubled hydroxide nanohybrids

    Energy Technology Data Exchange (ETDEWEB)

    Asif, Muhammad; Aziz, Ayesha [Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 (China); Dao, Anh Quang [Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 (China); Hue Industrial College, 70 Nguyen Hue, Hue, Thua Thien Hue, 531081 (Viet Nam); Hakeem, Abdul; Wang, Haitao; Dong, Shuang; Zhang, Guoan [Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 (China); Xiao, Fei [Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 (China); Shenzhen Institute of Huazhong University of Science & Technology, Shenzhen, 518000 (China); Liu, Hongfang, E-mail: liuhf@hust.edu.cn [Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 (China); Shenzhen Institute of Huazhong University of Science & Technology, Shenzhen, 518000 (China)

    2015-10-22

    We report a facile and green method for the fabrication of new type of electrocatalysts based on MnO{sub 2} nanoparticles incorporated on MgAl LDH P-type semiconductive channel and explore its practical applications as high-performance electrode materials for electrochemical biosensor. A series of MgAl layered doubled hydroxide (LDH) nanohybrids with fixed Mg/Al (M{sup 2+}/M{sup 3+} atomic ratio of 3) and varied amount of MnCl{sub 2}.4H{sub 2}O are fabricated by a facile co-precipitation method. This approach demonstrates the combination of distinct properties including excellent intercalation features of LDH for entrapping nanoparticles and high loading of MnO{sub 2} nanoparticles in the host layers of LDH. Among all samples, Mn5–MgAl with 0.04% loaded manganese has a good crystalline morphology. A well-dispersed MnO{sub 2} nanoparticles encapsulated into the host matrix of hydrotalcite exhibit enhanced electrocatalytic activity towards the reduction of H{sub 2}O{sub 2} as well as excellent stability, selectivity and reproducibility due to synergistic effect of good catalytic ability of MnO{sub 2} and conductive MgAl LDH. Glass carbon electrode (GCE) modified with Mn5–MgAl possesses a wide linear range of 0.05–78 mM, lowest detection limit 5 μM (S/N = 3) and detection sensitivity of 0.9352 μAmM{sup −1}. This outstanding performance enables it to be used for real-time tracking of H{sub 2}O{sub 2} secreted by live HeLa cells. This work may provide new insight in clinical diagnosis, on-site environmental analysis and point of care testing devices. - Highlights: • MnO{sub 2}MgAl nanohybrids have been fabricated by a facile and robust co-precipitation approach. • MgAl layered doubled hydroxide can be used for the intercalation of MnO{sub 2} nanoparticles. • MgAl layered doubled hydroxide nanohybrid serves as p-type semiconductive channel for efficient electrocatalysis. • The nanohybrid electrode demonstrates excellent electrochemical performance

  2. Design and fabrication of enhanced corrosion resistance Zn-Al layered double hydroxides films based anion-exchange mechanism on magnesium alloys

    International Nuclear Information System (INIS)

    Zhou, Meng; Yan, Luchun; Ling, Hao; Diao, Yupeng; Pang, Xiaolu; Wang, Yanlin; Gao, Kewei

    2017-01-01

    Highlights: • Zn-Al LDHs film loaded nitrate anions has been fabricated on a magnesium alloy substrate via a facile hydrothermal crystallization method. • The Zn-Al-Cl LDHs and Zn-Al-VO_x LDHs film were obtained based on anion-exchange mechanism. • The Zn-Al-Cl LDHs and Zn-Al-VO_x LDHs film could effectively protect magnesium alloy. - Abstract: Layered double hydroxides (LDHs) with brucite-like layer structure and the facile exchangeability of intercalated anions had attracted tremendous interest in many fields because of their great importance for both fundamental studies and practical applications. Herein zinc-aluminum layered double hydroxides (Zn-Al LDHs) films intercalated with nitrate anions on the magnesium alloy substrate were designed and fabricated via a facile hydrothermal crystallization method. In order to obtain better corrosion resistance, chloride and vanadate anions were intercalated into the LDHs interlayers via the anion-exchange reaction. X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electronic microscopy (SEM) were used to examine structure, composition and morphology of the Zn-Al-NO_3 LDHs, Zn-Al-Cl LDHs and Zn-Al-VO_x LDHs films. The corrosion resistance of the Zn-Al LDHs with different anion films was estimated by the electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurement. EIS and polarization curves measurements revealed that the magnesium alloy could be effectively protected by the Zn-Al-Cl LDHs and Zn-Al-VO_x LDHs films due to the blocking effect of chloride anions and the control-release ability of vanadate anions.

  3. Design and fabrication of enhanced corrosion resistance Zn-Al layered double hydroxides films based anion-exchange mechanism on magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Meng; Yan, Luchun; Ling, Hao; Diao, Yupeng; Pang, Xiaolu; Wang, Yanlin; Gao, Kewei, E-mail: kwgao@yahoo.com

    2017-05-15

    Highlights: • Zn-Al LDHs film loaded nitrate anions has been fabricated on a magnesium alloy substrate via a facile hydrothermal crystallization method. • The Zn-Al-Cl LDHs and Zn-Al-VO{sub x} LDHs film were obtained based on anion-exchange mechanism. • The Zn-Al-Cl LDHs and Zn-Al-VO{sub x} LDHs film could effectively protect magnesium alloy. - Abstract: Layered double hydroxides (LDHs) with brucite-like layer structure and the facile exchangeability of intercalated anions had attracted tremendous interest in many fields because of their great importance for both fundamental studies and practical applications. Herein zinc-aluminum layered double hydroxides (Zn-Al LDHs) films intercalated with nitrate anions on the magnesium alloy substrate were designed and fabricated via a facile hydrothermal crystallization method. In order to obtain better corrosion resistance, chloride and vanadate anions were intercalated into the LDHs interlayers via the anion-exchange reaction. X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electronic microscopy (SEM) were used to examine structure, composition and morphology of the Zn-Al-NO{sub 3} LDHs, Zn-Al-Cl LDHs and Zn-Al-VO{sub x} LDHs films. The corrosion resistance of the Zn-Al LDHs with different anion films was estimated by the electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurement. EIS and polarization curves measurements revealed that the magnesium alloy could be effectively protected by the Zn-Al-Cl LDHs and Zn-Al-VO{sub x} LDHs films due to the blocking effect of chloride anions and the control-release ability of vanadate anions.

  4. Synthesis of neodymium hydroxide nanotubes and nanorods by soft chemical process.

    Science.gov (United States)

    Shi, Weidong; Yu, Jiangbo; Wang, Haishui; Yang, Jianhui; Zhang, Hongjie

    2006-08-01

    A facile soft chemical approach using cetyltrimethylammonium bromide (CTAB) as template is successfully designed for synthesis of neodymium hydroxide nanotubes. These nanotubes have an average outer diameter around 20 nm, inner diameter around 2 nm, and length ranging from 100 to 120 nm, high BET surface area of 495.71 m(2) g(-1). We also find that neodymium hydroxide nanorods would be obtained when CTAB absented in reaction system. The Nd(OH)3 nanorods might act as precursors that are converted into Nd2O3 nanorods through dehydration at 550 degrees C. The nanorods could exhibit upconversion emission characteristic under excitation of 591 nm at room temperature.

  5. Holey nickel-cobalt layered double hydroxide thin sheets with ultrahigh areal capacitance

    Science.gov (United States)

    Zhi, Lei; Zhang, Wenliang; Dang, Liqin; Sun, Jie; Shi, Feng; Xu, Hua; Liu, Zonghuai; Lei, Zhibin

    2018-05-01

    Strong coupling of electroactive components on conductive carbonaceous matrix to fabricate flexible hybrid electrodes represents a promising approach towards high performance supercapacitors. This work reports the fabrication of holey nickel cobalt layered double hydroxide (NiCo-LDH) nanosheets that are vertically grown on the cotton cloth-derived activated textile carbon (aTC). The abundant nanoholes on the thin-sheet NiCo-LDH not only enhance the electrode efficiency for efficient Faradaic redox reactions but also facilitate access of electrolyte to the electrode surface, thus giving rise to 70% capacitance arising from their outer surface. As a result, the aTC-NiCo hybrid electrode is capable of simultaneously achieving extremely high areal capacitance (6.37 F cm-2), mass capacitance (525 F g-1) and volumetric capacitance (249 F cm-3) at a practical level of mass loading (6.72 mg cm-2). Moreover, a solid-state asymmetric capacitor built with aTC-NiCo as positive electrode and active carbon-coated on aTC as negative electrode can deliver a volumetric energy density of 7.4 mWh cm-3 at a power density of 103 mW cm-3, while preserving a superior power performance, satisfying cycling stability and good mechanical flexibility.

  6. Effect of added zinc on the properties of cobalt-containing ceramic pigments prepared from layered double hydroxides

    International Nuclear Information System (INIS)

    Perez-Bernal, M.E.; Ruano-Casero, R.J.; Rives, V.

    2009-01-01

    Layered double hydroxides (LDHs) with the hydrotalcite-type structure containing Co and Al, or Zn, Co and Al in the brucite-like layers and carbonate in the interlayer have been prepared by coprecipitation. The Zn/Co molar ratio was kept to 1 in all samples, while the divalent/trivalent molar ratio was varied from 2/1 to 1/2. The samples have been characterised by element chemical analysis, powder X-ray diffraction, differential thermal and thermogravimetric analysis, temperature-programmed reduction and FT-IR spectroscopy. A single hydrotalcite-like phase is formed for samples with molar ratio 2/1, which crystallinity decreases as the Al content is increased, developing small amounts of diaspore and dawsonite and probably an additional amorphous phase. Calcination at 1200 deg. C in air led to formation of spinels; a small amount of NaAlO 2 was observed in the Al-rich samples, which was removed by washing. The nature of the spinels formed (containing Co II , Co III , Al III and Zn II ) strongly depends on the cations molar ratio in the starting materials and the calcination treatment, leading to a partial oxidation of Co II species to Co III ones. Colour properties (L*a*b*) of the original and calcined solids have been measured. While the original samples show a pink colour (lighter for the series containing Zn), the calcined Co,Al samples show a dark blue colour and the Zn,Co,Al ones a green colour. Changes due to the different molar ratios within a given calcined series are less evident than between samples with the same composition in different series. These calcined materials could be usable as ceramic pigments. - Abstract: Mixed oxides from layered double hydroxides (LDHs) with the hydrotalcite-type structure containing Co and Al or Zn, Co and Al in the brucite-like layers are potential candidates for ceramic pigments with tunable colour properties. Display Omitted

  7. Structure and thermal evolution of Mg-Al layered double hydroxide containing interlayer organic glyphosate anions

    Energy Technology Data Exchange (ETDEWEB)

    Li Feng; Zhang Lihong; Evans, David G.; Forano, Claude; Duan Xue

    2004-12-15

    Layered double hydroxide (LDH) with the Mg{sup 2+}/Al{sup 3+} molar ratio of 2.0 containing interlayer organic pesticide glyphosate anions (MgAl-Gly-LDH) has been synthesized by the use of anion exchange and coprecipitation routes. Intercalation experiments with glyphosate (Gly) reveal a correlation between the temperatures for thermal treatments and the types of reaction it undergoes with Gly. The grafting of the Gly anion onto hydroxylated sheets of LDH by moderate thermal treatments (hydrothermal treatments and calcinations) was confirmed by a combination of several techniques, including powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetry analysis (TGA-DTG), and {sup 31}P nuclear magnetic resonance (NMR). The thermal decomposition of MgAl-Gly-LDH results in the removal of loosely held interlayer water, grafting reaction between the interlayer anions and hydroxyl groups on the lattice of LDH, dehydroxylation of the lattice and decomposition of the interlayer species in succession, thus leading to a variety of crystallographic transitions.

  8. Synthesis, structure and photocatalytic activity of calcined Mg-Al-Ti-layered double hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    Hosni, Khaled; Abdelkarim, Omar; Srasra, Ezzeddine [Centre National des Recherches en Sciences des Matériaux (CNRSM), Soliman (Turkey); Frini-Srasra, Najoua [Faculté des Sciences de Tunis (FST), Tunis (Turkey)

    2015-01-15

    Mg-Al-Ti layered double hydroxides (LDH), consisting of di-, tri- and tetra-valent cations with different Al{sup 3+}/Ti{sup 4+} ratio, have been synthesized by co-precipitation which was demonstrated as efficient visible-light photocatalysts. The structure and chemical composition of the compound were characterized by PXRD, FT-IR, SAA, N{sub 2} adsorption-desorption isotherms, and DSC techniques. It is found that no hydrotalcites structure were formed for Ti{sup 4+}/(Ti{sup 4+}+ Al{sup 3+})>0.5 and the substitution of Ti(IV) for Al(III) in the layer increases the thermal stability of the resulting LDH materials. The calcined sample containing titanium showed relatively high adsorption capacity for MB as compared to that without titanium. Results show that the pseudo-second-order kinetic model and the Langmuir were found to correlate the experimental data well. The photocatalytic activity was evaluated for the degradation of the methylene blue. The photocatalytic activity increased with the increase of the Al/Ti cationic ratio. 71% of the dye could be removed by the Mg/Al/Ti-LDH with the cationic ratio Al/Ti=0 : 1 and calcined at 500 .deg. C.

  9. Topotactic Consolidation of Monocrystalline CoZn Hydroxides for Advanced Oxygen Evolution Electrodes.

    Science.gov (United States)

    Wang, Jing; Tan, Chuan Fu; Zhu, Ting; Ho, Ghim Wei

    2016-08-22

    We present a room temperature topotactic consolidation of cobalt and zinc constituents into monocrystalline CoZn hydroxide nanosheets, by a localized corrosion of zinc foils with cobalt precursors. By virtue of similar lattice orientation and structure coordination, the hybrid hydroxides amalgamate atomically without phase separation. Importantly, this in situ growth strategy, in combination with configurable percolated nanosheets, renders a high areal density of catalytic sites, immobilized structures, and conductive pathways between the nanosheets and underlying foils-all of which allow monocrystalline CoZn hydroxide nanosheet materials to function as effective electrodes for electrochemical oxygen evolution reactions. This convenient and eco-friendly topotactical transformation approach facilitates high-quality single crystal growth with improved multiphase purity and homogeneity, which can be extended to other transition metals for the fabrication of advanced functional nanocomposites. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Self-assembling organomodified Co/Al based layered double hydroxides (LDH) via one-step route

    Institute of Scientific and Technical Information of China (English)

    WANG De-yi; A.LEUTERITZ; U.WAGENKNECHT; G.HEINRICH

    2009-01-01

    The preparation of self-assembling organomodified Co/Al-layered double hydroxide (LDH) via one-step route was studied.A common surfactant,sodium dodecylbenzenesulfonate (DBS),was employed as an organic modifier.The behavior and structure of self-assembled intercalated organic Co/Al-LDH were investigated by FTIR,SEM,WAXS,element analysis and TGA.Based upon the WAXS results and calculation by Bragg equation,the interlayer distance (d value) for organic Co/Al-LDH is enlarged from 0.75 nm to 3.10 nm,showing that the self-assembling behavior has been carried out successfully.Considering the observation from SEM,the product shows the morphology of organic Co/Al-LDH of a layered structure.In addition,FTIR,element analysis and TGA analysis show that the modifier is intercalated into the gallery of the Co/Al-LDH.Since organic modification for nanofiller is deemed to be necessary before applying it into polymer,the successful preparation of organomodified Co/Al-LDH will be significantly beneficial to the preparation and investigation of novel polymer/LDH nanocomposite.

  11. Structure and conductive properties of poly(ethylene oxide)/layered double hydroxide nanocomposite polymer electrolytes

    International Nuclear Information System (INIS)

    Liao, C.-S.; Ye, W.-B.

    2004-01-01

    The oligo(ethylene oxide) modified layered double hydroxide (LDH) prepared by template method was added as a nanoscale nucleating agent into poly(ethylene oxide) (PEO) to form PEO/OLDH nanocomposite electrolytes. The effects of OLDH addition on morphology and conductivities of nanocomposite electrolytes were studied using wide-angle X-ray diffractometer, polarized optical microscopy, differential scanning calorimetry and ionic conductivity measurement. The results show that the exfoliated morphology of nanocomposites is formed due to the surface modification of LDH layers with PEO matrix compatible oligo(ethylene oxide)s. The nanoscale dispersed OLDH layers inhibit the crystal growth of PEO crystallites and result in a plenty amount of intercrystalline grain boundary within PEO/OLDH nanocomposites. The ionic conductivities of nanocomposite electrolytes are enhanced by three orders of magnitude compared to the pure PEO polymer electrolytes at ambient temperature. It can be attributed to the ease transport of Li + along intercrystalline amorphous phase. This novel nanocomposite electrolytes system with high conductivities will be benefited to fabricate the thin-film type of Li-polymer secondary battery

  12. MgAl-Layered Double Hydroxide Solid Base Catalysts for Henry Reaction: A Green Protocol

    Directory of Open Access Journals (Sweden)

    Magda H. Abdellattif

    2018-03-01

    Full Text Available A series of MgAl-layered double hydroxide (MgAl-HT, the calcined form at 500 °C (MgAlOx, and the rehydrated one at 25 °C (MgAl-HT-RH were synthesized. Physicochemical properties of the catalysts were characterized by X-ray diffraction (XRD and scanning electron microscopy (SEM. Surface area of the as-synthesized, calcined, and rehydrated catalysts was determined by N2 physisorption at −196 °C. CO2 temperature-programmed desorption (CO2-TPD was applied to determine the basic sites of catalysts. The catalytic test reaction was carried out using benzaldehyde and their derivatives with nitromethane and their derivatives. The Henry products (1–15 were obtained in a very good yield using MgAl-HT-RH catalyst either by conventional method at 90 °C in liquid phase or under microwave irradiation method. The mesoporous structure and basic nature of the rehydrated solid catalyst were responsible for its superior catalytic efficiency. The robust nature was determined by using the same catalyst five times, where the product % yield was almost unchanged significantly.

  13. Sodium Hydroxide and Calcium Hydroxide Hybrid Oxygen Bleaching with System

    Science.gov (United States)

    Doelle, K.; Bajrami, B.

    2018-01-01

    This study investigates the replacement of sodium hydroxide in the oxygen bleaching stage using a hybrid system consisting of sodium hydroxide calcium hydroxide. Commercial Kraft pulping was studied using yellow pine Kraft pulp obtained from a company in the US. The impact of sodium hydroxide, calcium hydroxide hybrid system in regard to concentration, reaction time and temperature for Kraft pulp was evaluated. The sodium hydroxide and calcium hydroxide dosage was varied between 0% and 15% based on oven dry fiber content. The bleaching reaction time was varied between 0 and 180 minutes whereas the bleaching temperature ranged between 70 °C and 110 °C. The ability to bleach pulp was measured by determining the Kappa number. Optimum bleaching results for the hybrid system were achieved with 4% sodium hydroxide and 2% calcium hydroxide content. Beyond this, the ability to bleach pulp decreased.

  14. Luminous composite ultrathin films of CdTe quantum dots/silk fibroin co-assembled with layered doubled hydroxide: Enhanced photoluminescence and biosensor application

    Directory of Open Access Journals (Sweden)

    Muhammad Sohail Haroone

    2018-06-01

    Full Text Available Quantum dots (QDs luminescent films are extensively applied to optoelectronics and optical devices. However, QDs aggregation results in the quenching of their fluorescence property which limits their practical applications to a greater extent. In order to resolve this issue, 3-mercaptopropionic acid (3-MPA functionalized Cadmium Tellurium (CdTe QDs were stabilized by silk fibroin (SB and co-assembled with layered doubled hydroxide (LDH to form (QDs@SF/LDHn ultrathin films (UTFs via the layer-by-layer (LBL technique. UV–Vis absorption and fluorescence spectroscopy showed a stepwise and normal growth of the films upon increasing the number of deposition cycles. XRD and AFM studies confirmed the formation of a periodic layered structure and regular surface morphology of the thin films. As compared to (CdTe QDs/LDHnUTFs, the (CdTe QDs@SF/LDHnUTFs displayed fluorescence enhancement and longer fluorescent lifetime, both in solid states and aqueous solutions. Furthermore compared with the solution state, the fluorescence enhancement of SF-RC and SF-β are, respectively, 7 times and 17 times in the (CdTe QDs@SF/LDHn UTFs, indicating that the LDH nanosheets favor the fluorescence enhancement effect on the CdTe QDs@SF. The fabricated materials displayed fluorescence response to a biological molecule such as immune globulin, lgG. Thus, the (CdTe QDs@SF/LDHn UTFs has a potential to be used as biosensor. Keywords: CdTe quantum dots, Silk fibroin, Layered doubled hydroxide, Co-assembly, Fluorescence enhancement

  15. Adsorption behavior of calcined layered double hydroxides towards removal of iodide contaminants

    International Nuclear Information System (INIS)

    Lu Liang; He Jing; Wei Min; Evans, D.G.; Duan Xue

    2005-01-01

    Layered double hydroxides (LDHs), are a class of synthetic anionic clays whose structure can be described as containing brucite-like layers in which some of the divalent cations have been replaced by trivalent ions giving positively-charged sheets. This charge is balanced by intercalation of anions in the hydrated interlayer regions. The general formula is EM 2+ 1-x M 3+ x (OH) 2 ] x+ (A n- ) x/n · mH 2 O, where M 2+ and M 3+ are metal cations for example Mg 2+ and Al 3+ , that occupy octahedral sites in the hydroxide layers, A n- is an exchangeable anion, and x is the ratio M 3+ /(M 2+ + M 3+ ) and the layer charge will depend on the M 2+ /M 3+ ratio. LDHs act as sorbents of anionic species through two types of reactions, namely, anion exchange and reconstruction, which further adds the possibility of recycling and reuse. The sorption of anions from aqueous solutions by structural reconstruction of a calcined LDH is based on a very interesting property of these materials, the so-called memory effect: Calcination of LDHs produces intermediate non-stoichiometric oxides (CLDH) which undergo rehydration in aqueous medium and give back the hydroxide structure with different anions in the interlayers. Radioactive iodide is widely used in biological experiments, medical treatments and in diagnosis. During fission of uranium several iodine species are produced. All the short lived isotopes of iodine, including 1311 (half life 8.04 days), decay and only 127 I (stable) and 129 I (half life 1.59 x 10 7 years) remain as a problem. 129 I is especially considered as one of the key radionuclides that dominate the long-term radiation in underground radioactive waste stores. Iodine is one of the nuclides causing most concern among radioactive anions. Different adsorbents such as zeolites, silica gel, anion exchange paper membrane, activated carbon and activated carbon fibers, have been investigated as potential materials for elimination of iodide from liquid wastes. In this work

  16. The preparation of layered double hydroxide wrapped carbon nanotubes and their application as a flame retardant for polypropylene

    International Nuclear Information System (INIS)

    Du Baoxian; Fang Zhengping

    2010-01-01

    Carbon nanotubes (CNTs) wrapped with layered double hydroxide (LDH-w-CNTs) were facilely obtained through in situ introduction of CNTs into the hydrothermal reaction system of LDH, with the goal of combining their unique physical and chemical characteristics to meet new advanced applications. Morphological observations indicated that LDH lamellae enwrapped the surface of CNTs and the wrapping degree was dependent on the functionalization of CNTs. ζ-potential measurements showed that the interaction between the positive charge of LDH and the negative charge of CNTs was the main driving force of the wrapping process. Both hybrids led to a reduction in the peak heat release rate (PHRR) of polypropylene, indicating that they could confer better flame retardancy on polypropylene with respect to LDH and CNTs.

  17. Gold Nanoparticles Supported on a Layered Double Hydroxide as Efficient Catalysts for the One-Pot Synthesis of Flavones.

    Science.gov (United States)

    Yatabe, Takafumi; Jin, Xiongjie; Yamaguchi, Kazuya; Mizuno, Noritaka

    2015-11-02

    Flavones are a class of natural products with diverse biological activities and have frequently been synthesized by step-by-step procedures using stoichiometric amounts of reagents. Herein, a catalytic one-pot procedure for the synthesis of flavone and its derivatives is developed. In the presence of gold nanoparticles supported on a Mg-Al layered double hydroxide (Au/LDH), various kinds of flavones can be synthesized starting from 2'-hydroxyacetophenones and benzaldehydes (or benzyl alcohols). The present one-pot procedure consists of a sequence of several reactions, and Au/LDH can catalyze all these different types of reactions. The catalysis is shown to be truly heterogeneous, and Au/LDH can be readily recovered and reused. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Application of magnesium hydroxide and barium hydroxide for the ...

    African Journals Online (AJOL)

    Application of magnesium hydroxide and barium hydroxide for the removal of metals and sulphate from mine water. ... equivalent to the Ba(OH)2 dosage. During CO2-dosing, CaCO3 is precipitated to the saturation level of CaCO3. Keywords: Magnesium hydroxide; barium hydroxide; sulphate removal; water treatment ...

  19. Layered Double Hydroxides as Effective Adsorbents for U(VI and Toxic Heavy Metals Removal from Aqueous Media

    Directory of Open Access Journals (Sweden)

    G. N. Pshinko

    2013-01-01

    Full Text Available Capacities of different synthesized Zn,Al-hydrotalcite-like adsorbents, including the initial carbonate [Zn4Al2(OH12]·CO3·8H2O and its forms intercalated with chelating agents (ethylenediaminetetraacetic acid (EDTA, diethylenetriaminepentaacetic acid (DTPA, and hexamethylenediaminetetraacetic acid (HMDTA and heat-treated form Zn4Al2O7, to adsorb uranium(VI and ions of toxic heavy metals have been compared. Metal sorption capacities of hydrotalcite-like adsorbents have been shown to correlate with the stability of their complexes with the mentioned chelating agents in a solution. The synthesized layered double hydroxides (LDHs containing chelating agents in the interlayer space are rather efficient for sorption purification of aqueous media free from U(VI irrespective of its forms of natural abundance (including water-soluble bi- and tricarbonate forms and from heavy metal ions. [Zn4Al2(OH12]·EDTA·nH2O is recommended for practical application as one of the most efficient and inexpensive synthetic adsorbents designed for recovery of both cationic and particularly important anionic forms of U(VI and other heavy metals from aqueous media. Carbonate forms of LDHs turned out to be most efficient for recovery of Cu(II from aqueous media with pH0≥7 owing to precipitation of Cu(II basic carbonates and Cu(II hydroxides. Chromate ions are efficiently adsorbed from water only by calcinated forms of LDHs.

  20. Synthesis and characterization of Zn-doped MgAl-layered double hydroxide nanoparticles as PVC heat stabilizer

    International Nuclear Information System (INIS)

    Wang, Gongling; Yang, Mei; Li, Zhiwen; Lin, Kaifeng; Jin, Quan; Xing, Chaojian; Hu, Zhudong; Wang, Dan

    2013-01-01

    Zn-doped MgAl-layered double hydroxides (LDHs) with M 2+ /M 3+ = 2 and different molar ratios of Mg/Zn have been synthesized by modified homogeneous co-precipitation method and characterized by powder X-ray diffraction, Transmission electron microscopy, Fourier transform infrared spectrum and thermogravimetry, and differential thermal analysis techniques. The thermal stabilizing effects of different LDHs on PVC were studied by Congo red test and thermal aging test. All of the nanoparticles show plate-like morphology and the average diameter of particles is around 90 nm. Results show that the introduction of Zn increased the average bond length and area of the layers of LDHs, therefore enhanced the adsorption ability on HCl gas which was generated during degradation of PVC to improve the thermal stability of PVC. LDHs with molar ratio of Mg/Zn = 1.0 shows the best thermal stabilizing effect on PVC

  1. Synthesis and characterization of Zn-doped MgAl-layered double hydroxide nanoparticles as PVC heat stabilizer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gongling; Yang, Mei [Chinese Academy of Sciences, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering (China); Li, Zhiwen; Lin, Kaifeng [Harbin Institute of Technology, Academy of Fundamental Interdisciplinary Sciences (China); Jin, Quan; Xing, Chaojian; Hu, Zhudong [Chinese Academy of Sciences, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering (China); Wang, Dan, E-mail: danwang@mail.ipe.ac.cn [Harbin Institute of Technology, Academy of Fundamental Interdisciplinary Sciences (China)

    2013-09-15

    Zn-doped MgAl-layered double hydroxides (LDHs) with M{sup 2+}/M{sup 3+} = 2 and different molar ratios of Mg/Zn have been synthesized by modified homogeneous co-precipitation method and characterized by powder X-ray diffraction, Transmission electron microscopy, Fourier transform infrared spectrum and thermogravimetry, and differential thermal analysis techniques. The thermal stabilizing effects of different LDHs on PVC were studied by Congo red test and thermal aging test. All of the nanoparticles show plate-like morphology and the average diameter of particles is around 90 nm. Results show that the introduction of Zn increased the average bond length and area of the layers of LDHs, therefore enhanced the adsorption ability on HCl gas which was generated during degradation of PVC to improve the thermal stability of PVC. LDHs with molar ratio of Mg/Zn = 1.0 shows the best thermal stabilizing effect on PVC.

  2. Effect of catalpol on senile plaques and spatial learning and memory ability in amyloid-β protein precursor/presenilin 1 double transgenic mice

    Institute of Scientific and Technical Information of China (English)

    宋冲

    2013-01-01

    Objective To investigate whether catalpol affects senile plaque formation and spatial learning and memory ability in the amyloid-βprotein precursor/presenilin 1(APP/PS1)double transgenic mice.Methods

  3. Superhydrophobic ZnAl double hydroxide nanostructures and ZnO films on Al and glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    De, Debasis, E-mail: debasis.de@bcrec.ac.in [Electronics and Instrumentation Engineering Department, Dr. B C Roy Engineering College, Durgapur, West Bengal 713206 (India); Sarkar, D.K. [Centre Universitaire de Recherche sur l' Aluminium (CURAL), L' Université du Québec à Chicoutimi, 555 Blvd. Université, Chicoutimi, Saguenay, Québec G7H 2B1 (Canada)

    2017-01-01

    Superhydrophobic nanostructured ZnAl: layered double hydroxides (LDHs) and ZnO films have been fabricated on Al and glass substrates, respectively, by a simple and cost effective chemical bath deposition technique. Randomly oriented hexagonal patterned of ZnAl: LDHs thin nanoplates are clearly observed on Al-substrate in the scanning electron microscopic images. The average size of these hexagonal plates is ∼4 μm side and ∼30 nm of thickness. While on the glass substrate, a oriented hexagonal patterned ZnO nanorods (height ∼5 μm and 1 μm diameter) are observed and each rod is further decorated throughout the top few nanometers with several nanosteps. At the top of the nanorod, a perfectly hexagonal patterned ZnO surface with ∼250 nm sides is observed. The tendency to form hexagonal morphological features is due to the hexagonal crystal structure of ZnO confirmed from X-ray diffraction patterns and transmission electron microscopy image. The ZnAl: LDHs and/or ZnO coated substrates have been passivated by using stearic acid (SA) molecules. Infrared spectra of passivated ZnAl: LDHs coated substrates confirm the presence of SA. X-ray diffraction pattern also corroborates the results of infrared spectrum. The contact angle of the as prepared samples is zero. The superhydrophobicity is achieved by observing contact angle of ∼161° with a hysteresis of ∼4° for Al-substrate. On the glass substrate, a higher contact angle of ∼168° with a lower hysteresis of ∼3° is observed. A lower surface roughness of ∼4.93 μm is measured on ZnAl: LDHs surface layer on the Al substrate as compare to a higher surface roughness of 6.87 μm measured on ZnO layer on glass substrate. The superhydrophobicity of passivated nanostructured films on two different substrates is observed due to high surface roughness and low surface energy. - Highlights: • ZnAl: layered double hydroxides (LDHs) nanoplates are fabricated on Al substrate. • ZnO nanorods are fabricated on

  4. Microwave-assisted hydrothermal synthesis of coralloid nanostructured nickel hydroxide hydrate and thermal conversion to nickel oxide

    International Nuclear Information System (INIS)

    Lai, Teh-Long; Lai, Yuan-Lung; Yu, Jen-Wei; Shu, Youn-Yuen; Wang, Chen-Bin

    2009-01-01

    Coralloid nanostructured nickel hydroxide hydrate has been successfully synthesized by a simple microwave-assisted hydrothermal process using nickel sulfate hexahydrate as precursor and urea as hydrolysis-controlling agent. A pure coralloid nanostructured nickel oxide can be obtained from the nickel hydroxide hydrate after calcination at 400 deg. C. The thermal property, structure and morphology of samples were characterized by thermogravimetry (TG), temperature-programmed reduction (TPR), X-ray (XRD), infrared spectroscopy (IR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM).

  5. Microwave-assisted hydrothermal synthesis of coralloid nanostructured nickel hydroxide hydrate and thermal conversion to nickel oxide

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Teh-Long [Environmental Analysis Laboratory, Department of Chemistry, National Kaohsiung Normal University, Kaohsiung 802, Taiwan (China); Lai, Yuan-Lung [Department of Mechanical and Automation Engineering, Da-Yeh University, Changhua 515, Taiwan (China); Yu, Jen-Wei [Environmental Analysis Laboratory, Department of Chemistry, National Kaohsiung Normal University, Kaohsiung 802, Taiwan (China); Shu, Youn-Yuen, E-mail: shuyy@nknucc.nknu.edu.tw [Environmental Analysis Laboratory, Department of Chemistry, National Kaohsiung Normal University, Kaohsiung 802, Taiwan (China); Wang, Chen-Bin, E-mail: chenbin@ccit.edu.tw [Department of Applied Chemistry and Materials Science, Chung Cheng Institute of Technology, National Defense University, Tahsi, Taoyuan 335, Taiwan (China)

    2009-10-15

    Coralloid nanostructured nickel hydroxide hydrate has been successfully synthesized by a simple microwave-assisted hydrothermal process using nickel sulfate hexahydrate as precursor and urea as hydrolysis-controlling agent. A pure coralloid nanostructured nickel oxide can be obtained from the nickel hydroxide hydrate after calcination at 400 deg. C. The thermal property, structure and morphology of samples were characterized by thermogravimetry (TG), temperature-programmed reduction (TPR), X-ray (XRD), infrared spectroscopy (IR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM).

  6. Precursor type affecting surface properties and catalytic activity of sulfated zirconia

    Directory of Open Access Journals (Sweden)

    Zarubica Aleksandra R.

    2007-01-01

    Full Text Available Zirconium-hydroxide precursor samples are synthesized from Zr-hydroxide, Zr-nitrate, and Zr-alkoxide, by precipitation/impregnation, as well as by a modified sol-gel method. Precursor samples are further sulphated for the intended SO4 2- content of 4 wt.%, and calcined at 500-700oC. Differences in precursors’ origin and calcination temperature induce the incorporation of SO4 2- groups into ZrO2 matrices by various mechanisms. As a result, different amounts of residual sulphates are coupled with other structural, as well as surface properties, resulting in various catalytic activities of sulphated zirconia samples. Catalyst activity and selectivity are a complex synergistic function of tetragonal phase fraction, sulphates contents, textural and surface characteristics. Superior activity of SZ of alkoxide origin can be explained by a beneficial effect of meso-pores owing to a better accommodation of coke deposits.

  7. Structural, vibrational and morphological properties of layered double hydroxides containing Ni{sup 2+}, Zn{sup 2+}, Al{sup 3+} and Zr{sup 4+} cations

    Energy Technology Data Exchange (ETDEWEB)

    Bezerra, Débora M. [Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13566-590 São Carlos, SP (Brazil); Rodrigues, João E.F.S. [Instituto de Física de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970 São Carlos, SP (Brazil); Assaf, Elisabete M., E-mail: eassaf@iqsc.usp.br [Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13566-590 São Carlos, SP (Brazil)

    2017-03-15

    Layered double hydroxides are anionic clays with formula [M{sup II}{sub 1−x} M{sup III}{sub x}(OH){sub 2}]{sup q+}[A{sup n−}]{sub q/n}·mH{sub 2}O, finding possible uses as catalyst support, adsorbents and so on. In this paper, we address the phase formation of layered double hydroxides containing Ni{sup 2+}, Zn{sup 2+}, Al{sup 3+} and Zr{sup 4+} cations, namely, NiZn-Al, NiZn-AlZr and NiZn-Zr compositions obtained by the coprecipitation method. Such systems were characterized by X-ray diffraction, confirming the phase formation for NiZn-Al and NiZn-AlZr samples. Infrared and Raman spectroscopies elucidated the anion and water molecules occurrence in the interlayer. Nitrogen physisorption (BET method) determined the presence of pores and specific surface area. The isotherm shapes were Type IV, according to the IUPAC, and represent a mesoporous structure. A morphological study was performed by means of scanning and transmission electron microscopies, and particle size values of 120, 131 and 235 nm for NiZn-Al, NiZn-AlZr and NiZn-Zr, respectively, were determined. Thermogravimetric analysis of the decomposition of the systems revealed that their complete disintegration occurred at ~ 450 °C and resulted in mixed oxides.

  8. Recent Advances in Stimuli-Responsive Photofunctional Materials Based on Accommodation of Chromophore into Layered Double Hydroxide Nanogallery

    Directory of Open Access Journals (Sweden)

    Wu Li

    2013-01-01

    Full Text Available The assembly of photofunctional molecules into host matrices has become an important strategy to achieve tunable fluorescence and to develop intelligent materials. The stimuli-responsive photofunctional materials based on chromophores-assembled layered double hydroxides (LDHs have received much attention from both academic and industry fields as a result of their advantages, such as high photo/thermal stability, easy processing, and well reversibility, which can construct new types of smart luminescent nanomaterials (e.g., ultrathin film and nanocomposite for sensor and switch applications. In this paper, external environmental stimuli have mainly involved physical (such as temperature, pressure, light, and electricity and chemical factors (such as pH and metal ion; recent progress on the LDH-based organic-inorganic stimuli-responsive materials has been summarized. Moreover, perspectives on further development of these materials are also discussed.

  9. Corrosion Resistance of the Superhydrophobic Mg(OH2/Mg-Al Layered Double Hydroxide Coatings on Magnesium Alloys

    Directory of Open Access Journals (Sweden)

    Fen Zhang

    2016-04-01

    Full Text Available Coatings of the Mg(OH2/Mg-Al layered double hydroxide (LDH composite were formed by a combined co-precipitation method and hydrothermal process on the AZ31 alloy substrate in alkaline condition. Subsequently, a superhydrophobic surface was successfully constructed to modify the composite coatings on the AZ31 alloy substrate using stearic acid. The characteristics of the composite coatings were investigated by means of X-ray diffractometer (XRD, Fourier transform infrared spectroscopy (FTIR, X-ray photoelectron spectroscopy (XPS, scanning electronic microscope (SEM and contact angle (CA. The corrosion resistance of the coatings was assessed by potentiodynamic polarization, the electrochemical impedance spectrum (EIS, the test of hydrogen evolution and the immersion test. The results showed that the superhydrophobic coatings considerably improved the corrosion resistant performance of the LDH coatings on the AZ31 alloy substrate.

  10. Microstructural modification of NiAl layered double hydroxide electrodes by adding graphene nanosheets and their capacitative property

    International Nuclear Information System (INIS)

    Kim, Yuna; Kim, Seok

    2015-01-01

    NiAl layered double hydroxide (LDH) composite electrodes containing various contents of graphene nanosheets (GNS) were prepared by a hydrothermal method. The microstructure and morphological properties were examined by FE-SEM, FE-TEM, XRD, and FTIR. Electrochemical analysis was also carried out by cyclic voltammetry, impedance, and cycle life measurement. The as-prepared composite that contained 500 mg of graphene (denoted as NiAl/G-50) achieved the highest specific capacitance of 1147 F/g among the various NiAl LDH/GNS composites. Besides, the NiAl LDH/GNS composite exhibited the lower diffusion resistance, improved rate capability, and good cyclic stability (83% of initial capacitance after 2000 cycles). Considering the morphological data and the improved capacitative properties together, we concluded the synthesized NiAl LDH/GNS composites would be a promising electrode material for supercapacitors

  11. Microstructural modification of NiAl layered double hydroxide electrodes by adding graphene nanosheets and their capacitative property

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yuna; Kim, Seok [School of Chemical and Biomolecular Engineering, Pusan National University, Busan (Korea, Republic of)

    2015-02-15

    NiAl layered double hydroxide (LDH) composite electrodes containing various contents of graphene nanosheets (GNS) were prepared by a hydrothermal method. The microstructure and morphological properties were examined by FE-SEM, FE-TEM, XRD, and FTIR. Electrochemical analysis was also carried out by cyclic voltammetry, impedance, and cycle life measurement. The as-prepared composite that contained 500 mg of graphene (denoted as NiAl/G-50) achieved the highest specific capacitance of 1147 F/g among the various NiAl LDH/GNS composites. Besides, the NiAl LDH/GNS composite exhibited the lower diffusion resistance, improved rate capability, and good cyclic stability (83% of initial capacitance after 2000 cycles). Considering the morphological data and the improved capacitative properties together, we concluded the synthesized NiAl LDH/GNS composites would be a promising electrode material for supercapacitors.

  12. Phosphor Dysprosium-Doped Layered Double Hydroxides Exchanged with Different Organic Functional Groups

    Directory of Open Access Journals (Sweden)

    David Ricardo Martínez Vargas

    2013-01-01

    Full Text Available The layers of a Zn/Al layered double hydroxide (LDH were doped with Dy3+ cations. Among some compositions, the Zn2+ : Al3+ : Dy3+ molar ratio equal to 30 : 9 : 1 presented a single crystalline phase. Organic anions with carboxylic, amino, sulfate, or phosphate functional groups were intercalated as single layers between LDH layers as confirmed by X-ray diffraction and infrared spectroscopy. Photoluminescence spectra of the nitrate intercalated LDH showed a wide emission band with strong intensity in the yellow region (around 574 nm, originated due to symmetry distortion of the octahedral coordination in dysprosium centers. Moreover, a broad red band emission was also detected apparently due to the presence of zinc oxide. The distorted symmetry of the dysprosium coordination environment, also confirmed by X-ray photoelectron spectroscopy analysis, was modified after the intercalation with phenyl phosphonate (PP, aspartate (Asp, adipate (Adip, and serinate (Ser anions; the emission as measured from PL spectra of these LDH was more intense in the blue region (ca. 486 nm, thus indicating an increase in symmetry of dysprosium octahedrons. The red emission band from zinc oxide kept the same intensity after intercalation of dodecyl sulfate (DDS. An additional emission of unknown origin at λ = 767 nm was present in all LDHs.

  13. In Situ Hybridization of Pulp Fibers Using Mg-Al Layered Double Hydroxides

    Directory of Open Access Journals (Sweden)

    Carl-Erik Lange

    2015-04-01

    Full Text Available Inorganic Mg2+ and Al3+ containing layered double hydroxide (LDH particles were synthesised in situ from aqueous solution onto chemical pulp fibers of pine (Pinus sylvestris. High super saturated (hss solution with sodium carbonate produced LDH particles with an average diameter of 100–200 nm. Nano-size (70 nm LDH particles were found from fibers external surface and, to a lesser degree, from the S2 cell wall after synthesis via low super saturated (lss route. The synthesis via slow urea hydrolysis (Uhyd yielded micron and clay sized LDH (2–5 μm and enabled efficient fiber densification via mineralization of S2 fiber wall layer as indicated by TEM and compliance analysis. The Uhyd method decreased fiber compliance up to 50%. Reduction in the polymerisation degree of cellulose was observed with capillary viscometry. Thermogravimetric analysis showed that the hybridization with LDH reduced the exothermic heat, indicating, that this material can be incorporated in flame retardant applications. Fiber charge was assessed by Fibers 2015, 3 104 adsorption expermients with methylene blue (MB and metanil yellow (MY. Synthesis via lss route retained most of the fibres original charge and provided the highest capacity (10 μmol/g for anionic MY, indicating cationic character of hybrid fibers. Our results suggested that mineralized fibers can be potentially used in advanced applications such as biocomposites and adsorbent materials.

  14. Mechanochemical synthesis and intercalation of Ca(II)Fe(III)-layered double hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    Ferencz, Zs.; Szabados, M.; Varga, G.; Csendes, Z. [Department of Organic Chemistry, University of Szeged, Dóm tér 8, Szeged H-6720 (Hungary); Materials and Solution Structure Research Group, Institute of Chemistry, University of Szeged, Aradi Vértanúk tere 1, Szeged H-6720 (Hungary); Kukovecz, Á. [Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720 (Hungary); MTA-SZTE “Lendület” Porous Nanocomposites Research Group, Rerrich Béla tér 1, Szeged H-6720 (Hungary); Kónya, Z. [Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720 (Hungary); MTA-SZTE Reaction Kinetics and Surface Chemistry Research Group, Rerrich Béla tér 1, Szeged H-6720 (Hungary); Carlson, S. [MAX IV Laboratory, Ole Römers väg 1, Lund SE-223 63 (Sweden); Sipos, P. [Materials and Solution Structure Research Group, Institute of Chemistry, University of Szeged, Aradi Vértanúk tere 1, Szeged H-6720 (Hungary); Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, Szeged H-6720 (Hungary); and others

    2016-01-15

    A mechanochemical method (grinding the components without added water – dry grinding, followed by further grinding in the presence of minute amount of water or NaOH solution – wet grinding) was used in this work for the preparation and intercalation of CaFe-layered double hydroxides (LDHs). Both the pristine LDHs and the amino acid anion (cystinate and tyrosinate) intercalated varieties were prepared by the two-step grinding procedure in a mixer mill. By systematically changing the conditions of the preparation method, a set of parameters could be determined, which led to the formation of close to phase-pure LDH. The optimisation procedure was also applied for the intercalation processes of the amino acid anions. The resulting materials were structurally characterised by a range of methods (X-ray diffractometry, scanning electron microscopy, energy dispersive analysis, thermogravimetry, X-ray absorption and infra-red spectroscopies). It was proven that this simple mechanochemical procedure was able to produce complex organic–inorganic nanocomposites: LDHs intercalated with amino acid anions. - Graphical abstract: Amino acid anion-Ca(II)Fe(III)-LDHs were successfully prepared by a two-step milling procedure. - Highlights: • Synthesis of pristine and amino acid intercalated CaFe-LDHs by two-step milling. • Identifying the optimum synthesis and intercalation parameters. • Characterisation of the samples with a range of instrumental methods.

  15. The Effect of Single, Binary and Ternary Anions of Chloride, Carbonate and Phosphate on the Release of 2,4-Dichlorophenoxyacetate Intercalated into the Zn–Al-layered Double Hydroxide Nanohybrid

    Directory of Open Access Journals (Sweden)

    Zainal Zulkarnain

    2009-01-01

    Full Text Available Abstract Intercalation of beneficial anion into inorganic host has lead to an opportunity to synthesize various combinations of new organic–inorganic nanohybrids with various potential applications; especially, for the controlled release formulation and storage purposes. Investigation on the release behavior of 2,4-dichlorophenoxyacetate (2,4-D intercalated into the interlayer of Zn–Al-layered double hydroxide (ZAN have been carried out using single, binary and ternary aqueous systems of chloride, carbonate and phosphate. The release behavior of the active agent 2,4-D from its double-layered hydroxide nanohybrid ZANDI was found to be of controlled manner governed by pseudo-second order kinetics. It was found that carbonate medium yielded the highest accumulated release of 2,4-D, while phosphate in combination with carbonate and/or nitrate speeds up the release rate of 2,4-D. These results indicate that it is possible to design and develop new delivery system of latex stimulant compound with controlled release property based on 2,4-D that is known as a substance to increase latex production of rubber tree,Hevea brasiliensis.

  16. In situ oligomerization of 2-(thiophen-3-yl)acetate intercalated into Zn{sub 2}Al layered double hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Tronto, Jairo, E-mail: jairotronto@ufv.br [Universidade Federal de Viçosa, Instituto de Ciências Exatas e Tecnológicas, Campus de Rio Parsanaíba, Rodovia BR 354 km 310, Cx. Postal 22, CEP, 38.810-000 Rio Paranaíba, MG (Brazil); Pinto, Frederico G.; Costa, Liovando M. da [Universidade Federal de Viçosa, Instituto de Ciências Exatas e Tecnológicas, Campus de Rio Parsanaíba, Rodovia BR 354 km 310, Cx. Postal 22, CEP, 38.810-000 Rio Paranaíba, MG (Brazil); Leroux, Fabrice; Dubois, Marc [Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand (France); CNRS, UMR 6296, ICCF, BP 80026, F-6317 Clermont-Ferrand (France); Valim, João B. [Universidade de São Paulo, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Departamento de Química, Av. dos Bandeirantes 3900, CEP 14.040-901, Ribeirão Preto, SP (Brazil)

    2015-01-15

    A layered double hydroxide (LDH) with cation composition Zn{sub 2}Al was intercalated with 2-(thiophen-3-yl)acetate (3-TA) monomers. To achieve in situ polymerization and/or oligomerization of the intercalated monomers, soft thermal treatments were carried out, and subsequent hybrid LDH materials were analyzed by means of several characterization techniques using powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), {sup 13}C CP–MAS nuclear magnetic resonance (NMR), electron spin resonance (EPR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), inductively coupled plasma optical emission spectroscopy (ICP–OES), and elemental analysis. PXRD analysis suggested that the intercalated monomers formed a bilayer. Thermal treatment of the hybrid LDH assembly above 120 °C provokes partially the breakdown of the layered structure, generating the phase zincite. EPR results indicated that vicinal monomers (oligomerization) were bound to each other after hydrothermal or thermal treatment, leading to a polaron response characteristic of electron conductivity localized on a restricted number of thiophene-based monomer segments. Localized unpaired electrons exist in the material and interact with the {sup 27}Al nuclei of the LDH layers by superhyperfine coupling. These unpaired electrons also interact with the surface of ZnO (O{sup 2−} vacancies), formed during the thermal treatments. - Graphical abstract: We synthesized a layered double hydroxide (LDH) with cation composition Zn{sub 2}Al, intercalated with 2-(thiophen-3-yl)acetate (3-TA) monomers, by coprecipitation at constant pH. We thermally treated the material, to achieve in situ polymerization and/or oligomerization of the intercalated monomers. - Highlights: • A Zn{sub 2}Al–LDH was intercalated with 2-(thiophen-3-yl)acetate monomers. • To achieve in situ oligomerization of the monomers, thermal treatments were made.

  17. Interlayer Structures and Dynamics of Arsenate and Arsenite Intercalated Layered Double Hydroxides: A First Principles Study

    Directory of Open Access Journals (Sweden)

    Yingchun Zhang

    2017-03-01

    Full Text Available In this study, by using first principles simulation techniques, we explored the basal spacings, interlayer structures, and dynamics of arsenite and arsenate intercalated Layered double hydroxides (LDHs. Our results confirm that the basal spacings of NO3−-LDHs increase with layer charge densities. It is found that Arsenic (As species can enter the gallery spaces of LDHs with a Mg/Al ratio of 2:1 but they cannot enter those with lower charge densities. Interlayer species show layering distributions. All anions form a single layer distribution while water molecules form a single layer distribution at low layer charge density and a double layer distribution at high layer charge densities. H2AsO4− has two orientations in the interlayer regions (i.e., one with its three folds axis normal to the layer sheets and another with its two folds axis normal to the layer sheets, and only the latter is observed for HAsO42−. H2AsO3− orientates in a tilt-lying way. The mobility of water and NO3− increases with the layer charge densities while As species have very low mobility. Our simulations provide microscopic information of As intercalated LDHs, which can be used for further understanding of the structures of oxy-anion intercalated LDHs.

  18. Powder of a copper oxide superconductor precursor, fabrication process and use for the preparation of superconducting oxide

    International Nuclear Information System (INIS)

    Dehaudt, P.

    1990-01-01

    The precursor powder comprises at least a copper compound (hydroxide, oxide and hydroxynitrates), at least a rare earth and/or yttrium compound (nitrates, hydroxides and hydroxynitrates) or bismuth oxide and at least an alkaline earth nitrate. It can be prepared by atomization drying of a suspension a copper precipitate or coprecipitate and other elements of the superconducting oxide in solution [fr

  19. Efficient carbon dots/NiFe-layered double hydroxide/BiVO4 photoanodes for photoelectrochemical water splitting

    Science.gov (United States)

    Lv, Xiaowei; Xiao, Xin; Cao, Minglei; Bu, Yi; Wang, Chuanqing; Wang, Mingkui; Shen, Yan

    2018-05-01

    Modification of semiconductor photoanodes with oxygen evolution catalyst (OEC) is an effective approach for improving photoelectrochemical (PEC) water splitting efficiency. In the configuration, how to increase the activity of OEC is crucial to further improve PEC performance. Herein, a ternary photoanode system was designed to enhance PEC efficiency of photoelectrodes through introducing carbon dots (CDs), NiFe-layered double hydroxide (NiFe-LDH) nanosheets on BiVO4 particles. Systematic research shows that NiFe-LDH serves as an OEC which accelerates oxygen evolution kinetics, while the introduction of CDs can further reduce charge transfer resistance and overpotential for oxygen evolution. Under the synergistic effect of NiFe-LDH and CDs, the photocurrent and incident photon to current conversion efficiency (IPCE) of the resulting CDs/NiFe-LDH/BiVO4 photoanode is improved significantly than those of the NiFe-LDH/BiVO4 electrode. Consequently, such a ternary heterostructure could be an alternative way to further enhance PEC water splitting performance.

  20. Mg-Cu-Al layered double hydroxides based catalysts for the reduction of nitrates in aqueous solutions

    Directory of Open Access Journals (Sweden)

    Vulić Tatjana J.

    2010-01-01

    Full Text Available The secondary waste and bacterial contamination in physico-chemical and biological separation processes used today for nitrate removal from ground water make novel catalytic technologies that convert nitrates to unharmful gaseous nitrogen, very attractive for scientific research. The Mg-Cu-Al layered double hydroxide (LDH based catalysts with different Mg/Al ratio were investigated in water denitrification reaction in the presence of hydrogen and with solely copper as an active phase. Since LDHs have ion exchange properties and their derived mixed oxides possess memory effect (restoration of layered structure after thermal decomposition, their adsorption capacity for nitrates was also measured in the same model system. All studied samples showed nitrate removal from 23% to 62% following the decrease in Al content, as well as the substantial adsorption capacity ranging from 18% to 38%. These results underlie the necessity to take into account the effects of the adsorption in all future investigations.

  1. Mechanical and Morphological Properties of Poly-3-hydroxybutyrate/Poly(butyleneadipate-co-terephthalate/Layered Double Hydroxide Nanocomposites

    Directory of Open Access Journals (Sweden)

    Yen Leng Pak

    2013-01-01

    Full Text Available Nanocomposites of poly-3-hydroxybutyrate/poly(butyleneadipate-co-terephthalate/layered double hydroxide (PHB/PBAT/LDH were prepared from a binary blend of PHB/PBAT and stearate-Zn3Al LDH via a solution casting method using chloroform as solvent in this study. The pristine Zn3Al LDH was synthesized from nitrate salts solution at pH 7 by using coprecipitation technique and then was modified by stearate anions surfactant via ion exchange reaction. As a result, the basal spacing of the LDH was increased from 8.77 to 24.94 Å after the modification. Intercalated nanocomposites were formed due to the presence of diffraction peak in XRD diffractograms. The infrared spectrum of stearate-Zn3Al LDH exhibited the existence of stearate anions in the synthesized Zn3Al LDH. Mechanical properties with 2 wt% stearate-Zn3Al LDH loading nanocomposites showed 56 wt% improvements in elongation at break compared to those of the blend.

  2. An acetylcholinesterase biosensor based on graphene-gold nanocomposite and calcined layered double hydroxide.

    Science.gov (United States)

    Zhai, Chen; Guo, Yemin; Sun, Xia; Zheng, Yuhe; Wang, Xiangyou

    2014-05-10

    In this study, a novel acetylcholinesterase-based biosensor was fabricated. Acetylcholinesterase (AChE) was immobilized onto a glassy carbon electrode (GCE) with the aid of Cu-Mg-Al calcined layered double hydroxide (CLDH). CLDH can provide a bigger effective surface area for AChE loading, which could improve the precision and stability of AChE biosensor. However, the poor electroconductibility of CLDHs could lead to the low sensitivity of AChE biosensor. In order to effectively compensate the disadvantages of CLDHs, graphene-gold nanocomposites were used for improving the electron transfer rate. Thus, the graphene-gold nanocomposite (GN-AuNPs) was firstly modified onto the GCE, and then the prepared CLDH-AChE composite was immobilized onto the modified GCE to construct a sensitive AChE biosensor for pesticides detection. Relevant parameters were studied in detail and optimized, including the pH of the acetylthiocholine chloride (ATCl) solution, the amount of AChE immobilized on the biosensor and the inhibition time governing the analytical performance of the biosensor. The biosensor detected chlorpyrifos at concentrations ranging from 0.05 to 150μg/L. The detection limit for chlorpyrifos was 0.05μg/L. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Bacteria encapsulated in layered double hydroxides: towards an efficient bionanohybrid for pollutant degradation.

    Science.gov (United States)

    Halma, Matilte; Mousty, Christine; Forano, Claude; Sancelme, Martine; Besse-Hoggan, Pascale; Prevot, Vanessa

    2015-02-01

    A soft chemical process was successfully used to immobilize Pseudomonas sp. strain ADP (ADP), a well-known atrazine (herbicide) degrading bacterium, within a Mg2Al-layered double hydroxide host matrix. This approach is based on a simple, quick and ecofriendly direct coprecipitation of metal salts in the presence of a colloidal suspension of bacteria in water. It must be stressed that by this process the mass ratio between inorganic and biological components was easily tuned ranging from 2 to 40. This ratio strongly influenced the biological activity of the bacteria towards atrazine degradation. The better results were obtained for ratios of 10 or lower, leading to an enhanced atrazine degradation rate and percentage compared to free cells. Moreover the biohybrid material maintained this biodegradative activity after four cycles of reutilization and 3 weeks storage at 4°C. The ADP@MgAl-LDH bionanohybrid materials were completely characterized by X-ray diffraction (XRD), FTIR spectroscopy, thermogravimetric analysis and scanning and transmission electronic microscopy (SEM and TEM) evidencing the successful immobilization of ADP within the inorganic matrix. This synthetic approach could be readily extended to other microbial whole-cell immobilization of interest for new developments in biotechnological systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Enhanced photocatalytic properties of the 3D flower-like Mg-Al layered double hydroxides decorated with Ag{sub 2}CO{sub 3} under visible light illumination

    Energy Technology Data Exchange (ETDEWEB)

    Ao, Yanhui, E-mail: andyao@hhu.edu.cn; Wang, Dandan; Wang, Peifang; Wang, Chao; Hou, Jun; Qian, Jin

    2016-08-15

    Highlights: • 3D flower-like Ag{sub 2}CO{sub 3}/Mg-Al layered double hydroxide composite was prepared. • The nanocomposites exhibited high photocatalytic activities on different organic pollutants. • The mechanism of the enhanced activity were investigated. - Abstract: A facile anion-exchange precipitation method was employed to synthesize 3D flower-like Ag{sub 2}CO{sub 3}/Mg-Al layered double hydroxide composite photocatalyst. Results showed that Ag{sub 2}CO{sub 3} nanoparticles dispersed uniformly on the petals of the flower-like Mg-Al LDH. The obtained nanocomposites exhibited high photocatalytic activities on different organic pollutants (cationic and anionic dyes, phenol) under visible light illumination. The high photocatalytic activity can be ascribed to the special structure which accomplishes the wide-distribution of Ag{sub 2}CO{sub 3} nanoparticles on the surfaces of the 3D flower-like nanocomposites. Therefore, it can provide much more active sites for the degradation of organic pollutant. Then the photocatalytic mechanism was also verified by reactive species trapping experiments in detail. The work would pave a facile way to prepare LDHs based hierarchical photocatalysts with high activity for the degradation of wide range organic pollutants under visible light irradiation.

  5. Ag-loaded MgSrFe-layered double hydroxide/chitosan composite scaffold with enhanced osteogenic and antibacterial property for bone engineering tissue.

    Science.gov (United States)

    Cao, Dandan; Xu, Zhengliang; Chen, Yixuan; Ke, Qinfei; Zhang, Changqing; Guo, Yaping

    2018-02-01

    Bone tissue engineering scaffolds for the reconstruction of large bone defects should simultaneously promote osteogenic differentiation and avoid postoperative infection. Herein, we develop, for the first time, Ag-loaded MgSrFe-layered double hydroxide/chitosan (Ag-MgSrFe/CS) composite scaffold. This scaffold exhibits three-dimensional interconnected macroporous structure with a pore size of 100-300 μm. The layered double hydroxide nanoplates in the Ag-MgSrFe/CS show lateral sizes of 200-400 nm and thicknesses of ∼50 nm, and the Ag nanoparticles with particle sizes of ∼20 nm are uniformly dispersed on the scaffold surfaces. Human bone marrow-derived mesenchymal stem cells (hBMSCs) present good adhesion, spreading, and proliferation on the Ag-MgSrFe/CS composite scaffold, suggesting that the Ag and Sr elements in the composite scaffold have no toxicity to hBMSCs. When compared with MgFe/CS composite scaffold, the Ag-MgSrFe/CS composite scaffold has better osteogenic property. The released Sr 2+ ions from the composite scaffold enhance the alkaline phosphatase activity of hBMSCs, promote the extracellular matrix mineralization, and increase the expression levels of osteogenic-related RUNX2 and BMP-2. Moreover, the Ag-MgSrFe/CS composite scaffold possesses good antibacterial property because the Ag nanoparticles in the composite scaffold effectively prevent biofilm formation against S. aureus. Hence, the Ag-MgSrFe/CS composite scaffold with excellent osteoinductivity and antibacterial property has a great potential for bone tissue engineering. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 863-873, 2018. © 2017 Wiley Periodicals, Inc.

  6. Efficient uranium capture by polysulfide/layered double hydroxide composites.

    Science.gov (United States)

    Ma, Shulan; Huang, Lu; Ma, Lijiao; Shim, Yurina; Islam, Saiful M; Wang, Pengli; Zhao, Li-Dong; Wang, Shichao; Sun, Genban; Yang, Xiaojing; Kanatzidis, Mercouri G

    2015-03-18

    There is a need to develop highly selective and efficient materials for capturing uranium (normally as UO2(2+)) from nuclear waste and from seawater. We demonstrate the promising adsorption performance of S(x)-LDH composites (LDH is Mg/Al layered double hydroxide, [S(x)](2-) is polysulfide with x = 2, 4) for uranyl ions from a variety of aqueous solutions including seawater. We report high removal capacities (q(m) = 330 mg/g), large K(d)(U) values (10(4)-10(6) mL/g at 1-300 ppm U concentration), and high % removals (>95% at 1-100 ppm, or ∼80% for ppb level seawater) for UO2(2+) species. The S(x)-LDHs are exceptionally efficient for selectively and rapidly capturing UO2(2+) both at high (ppm) and trace (ppb) quantities from the U-containing water including seawater. The maximum adsorption coeffcient value K(d)(U) of 3.4 × 10(6) mL/g (using a V/m ratio of 1000 mL/g) observed is among the highest reported for U adsorbents. In the presence of very high concentrations of competitive ions such as Ca(2+)/Na(+), S(x)-LDH exhibits superior selectivity for UO2(2+), over previously reported sorbents. Under low U concentrations, (S4)(2-) coordinates to UO2(2+) forming anionic complexes retaining in the LDH gallery. At high U concentrations, (S4)(2-) binds to UO2(2+) to generate neutral UO2S4 salts outside the gallery, with NO3(-) entering the interlayer to form NO3-LDH. In the presence of high Cl(-) concentration, Cl(-) preferentially replaces [S4](2-) and intercalates into LDH. Detailed comparison of U removal efficiency of S(x)-LDH with various known sorbents is reported. The excellent uranium adsorption ability along with the environmentally safe, low-cost constituents points to the high potential of S(x)-LDH materials for selective uranium capture.

  7. Synthesis of Fluorinated Graphene/CoAl-Layered Double Hydroxide Composites as Electrode Materials for Supercapacitors.

    Science.gov (United States)

    Peng, Weijun; Li, Hongqiang; Song, Shaoxian

    2017-02-15

    CoAl-layered double hydroxide/fluorinated graphene (CoAl-LDH/FGN) composites were fabricated via a two-step hydrothermal method. The synthesized CoAl-LDH/FGN composites have been characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS), and electrochemical measurements. The results indicated that the fluorinated carbon with various configuration forms were grafted onto the framework of graphene, and the C-F bond configuration and fluorine content could be tuned by the fluorination time. Most of semi-ionic C-F bonds were formed at an appropriate fluorination time and, then, converted into fluorine rich surface groups (such as CF 2 , CF 3 , etc.) which were electrochemically inactive as the fluorination time prolonged. Moreover, the CoAl-LDH/FGN composites prepared at the optimal fluorination time exhibited the highest specific capacitance (1222 F/g at 1 A/g), the best rate capability, and the most stable capacitance retention, which offered great promise as electrode materials for supercapacitors.

  8. Mesoporous mixed metal oxides derived from P123-templated Mg-Al layered double hydroxides

    International Nuclear Information System (INIS)

    Wang Jun; Zhou Jideng; Li Zhanshuang; He Yang; Lin Shuangshuang; Liu Qi; Zhang Milin; Jiang Zhaohua

    2010-01-01

    We report the preparation of mesoporous mixed metal oxides (MMOs) through a soft template method. Different amounts of P123 were used as structure directing agent to synthesize P123-templated Mg-Al layered double hydroxides (LDHs). After calcination of as-synthesized LDHs at 500 o C, the ordered mesopores were obtained by removal of P123. The mesoporous Mg-Al MMOs fabricated by using 2 wt% P123 exhibited a high specific surface area of 108.1 m 2 /g, and wide distribution of pore size (2-18 nm). An investigation of the 'memory effect' of the mesoporous MMOs revealed that they were successfully reconstructed to ibuprofen intercalated LDHs having different gallery heights, which indicated different intercalation capacities. Due to their mesoporosity these unique MMOs have particular potential as drug or catalyst carriers. - Graphical abstract: Ordered mesoporous Mg-Al MMOs can be obtained through the calcination of P123-templated Mg-Al-CO 3 LDHs. The pore diameter is 2.2 nm. At the presence of ibuprofen, the Mg-Al MMOs can recover to Mg-Al-IBU LDHs, based on its 'remember effect'. Display Omitted

  9. Migration of nanosized layered double hydroxide platelets from polylactide nanocomposite films.

    Science.gov (United States)

    Schmidt, B; Katiyar, V; Plackett, D; Larsen, E H; Gerds, N; Koch, C Bender; Petersen, J H

    2011-01-01

    Melt-extruded L-polylactide (PLA) nanocomposite films were prepared from commercially available PLA and laurate-modified Mg-Al layered double hydroxide (LDH-C12). Three films were tested for total migration as well as specific migration of LDH, tin, laurate and low molecular weight PLA oligomers (OLLA). This is the first reported investigation on the migration properties of PLA-LDH nanocomposite films. The tests were carried out as part of an overall assessment of the suitability of such films for use as food contact materials (FCM). Total migration was determined according to a European standard method. All three films showed migration of nanosized LDH, which was quantified using acid digestion followed by inductively coupled plasma mass spectrometric (ICP-MS) detection of (26)Mg. Migration of LDH from the films was also confirmed by examining migrates using transmission electron microscopy (TEM) and was attributed indirectly to the significant PLA molecular weight reduction observed in extruded PLA-LDH-C12 films. Migration of tin was detected in two of the film samples prepared by dispersion of LDH-C12 using a masterbatch technique and migration of the laurate organomodifier took place from all three film types. The results indicate that the material properties are in compliance with the migration limits for total migration and specific lauric acid migration as set down by the EU legislation for FCM, at least if a reduction factor for fresh meat is taken into consideration. The tin detected arises from the use of organotin catalysts in the manufacture of PLA.

  10. Transformation of zinc hydroxide chloride monohydrate to crystalline zinc oxide.

    Science.gov (United States)

    Moezzi, Amir; Cortie, Michael; McDonagh, Andrew

    2016-04-25

    Thermal decomposition of layered zinc hydroxide double salts provides an interesting alternative synthesis for particles of zinc oxide. Here, we examine the sequence of changes occurring as zinc hydroxide chloride monohydrate (Zn5(OH)8Cl2·H2O) is converted to crystalline ZnO by thermal decomposition. The specific surface area of the resultant ZnO measured by BET was 1.3 m(2) g(-1). A complicating and important factor in this process is that the thermal decomposition of zinc hydroxide chloride is also accompanied by the formation of volatile zinc-containing species under certain conditions. We show that this volatile compound is anhydrous ZnCl2 and its formation is moisture dependent. Therefore, control of atmospheric moisture is an important consideration that affects the overall efficiency of ZnO production by this process.

  11. Nickel hydroxide electrode. 3: Thermogravimetric investigations of nickel (II) hydroxides

    Science.gov (United States)

    Dennstedt, W.; Loeser, W.

    1982-01-01

    Water contained in Ni hydroxide influences its electrochemical reactivity. The water content of alpha and beta Ni hydroxides is different with respect to the amount and bond strength. Thermogravimetric experiments show that the water of the beta Ni hydroxides exceeding the stoichiometric composition is completely removed at 160 deg. The water contained in the interlayers of the beta hydroxide, however, is removed only at higher temperatures, together with the water originating from the decomposition of the hydroxide. These differences are attributed to the formation of II bonds within the interlayers and between interlayers and adjacent main layers. An attempt is made to explain the relations between water content and the oxidizability of the Ni hydroxides.

  12. Potential sustainable slow release fertilizers obtained by mechanochemical activation of layered double hydroxides and K{sub 2}HPO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Roger; Wypych, Fernando, E-mail: 1roger.borges@gmail.com [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil); Prevot, Vanessa; Forano, Claude [Universite Blaise Pascal, Clermont-Ferrand (France)

    2016-07-01

    Full text: This study describes the preliminary results on the development of potential sustainable slow-release fertilizer (SSRF), obtained by mechanochemical activation of mixtures of calcined layered double hydroxides (LDH) Mg{sub 2}Al-CO{sub 3} and Mg{sub 2}Fe-CO{sub 3} and K{sub 2}HPO{sub 4}. The effect of LDH temperature of calcination, milling time (using a high-energy balls mill) and LDH:K{sub 2}HPO{sub 4} molar were investigated. The samples were characterized by XRD and FTIR. Phosphate release essays shown that its solubility is reduced, while the solubility of amorphous structures from LDH can be increased, which characterize the expected slow release behavior of a SSRF. (author)

  13. Formation of crystalline Zn-Al layered double hydroxide precipitates on γ-alumina: the role of mineral dissolution.

    Science.gov (United States)

    Li, Wei; Livi, Kenneth J T; Xu, Wenqian; Siebecker, Matthew G; Wang, Yujun; Phillips, Brian L; Sparks, Donald L

    2012-11-06

    To better understand the sequestration of toxic metals such as nickel (Ni), zinc (Zn), and cobalt (Co) as layered double hydroxide (LDH) phases in soils, we systematically examined the presence of Al and the role of mineral dissolution during Zn sorption/precipitation on γ-Al(2)O(3) (γ-alumina) at pH 7.5 using extended X-ray absorption fine structure spectroscopy (EXAFS), high-resolution transmission electron microscopy (HR-TEM), synchrotron-radiation powder X-ray diffraction (SR-XRD), and (27)Al solid-state NMR. The EXAFS analysis indicates the formation of Zn-Al LDH precipitates at Zn concentration ≥0.4 mM, and both HR-TEM and SR-XRD reveal that these precipitates are crystalline. These precipitates yield a small shoulder at δ(Al-27) = +12.5 ppm in the (27)Al solid-state NMR spectra, consistent with the mixed octahedral Al/Zn chemical environment in typical Zn-Al LDHs. The NMR analysis provides direct evidence for the existence of Al in the precipitates and the migration from the dissolution of γ-alumina substrate. To further address this issue, we compared the Zn sorption mechanism on a series of Al (hydr)oxides with similar chemical composition but differing dissolubility using EXAFS and TEM. These results suggest that, under the same experimental conditions, Zn-Al LDH precipitates formed on γ-alumina and corundum but not on less soluble minerals such as bayerite, boehmite, and gibbsite, which point outs that substrate mineral surface dissolution plays an important role in the formation of Zn-Al LDH precipitates.

  14. Kinetics of intercalation of fluorescent probes in magnesium–aluminium layered double hydroxide within a multiscale reaction–diffusion framework

    Science.gov (United States)

    Saliba, Daniel

    2016-01-01

    We report the synthesis of magnesium–aluminium layered double hydroxide (LDH) using a reaction–diffusion framework (RDF) that exploits the multiscale coupling of molecular diffusion with chemical reactions, nucleation and growth of crystals. In an RDF, the hydroxide anions are allowed to diffuse into an organic gel matrix containing the salt mixture needed for the precipitation of the LDH. The chemical structure and composition of the synthesized magnesium–aluminium LDHs are determined using powder X-ray diffraction (PXRD), thermo-gravimetric analysis, differential scanning calorimetry, solid-state nuclear magnetic resonance (SSNMR), Fourier transform infrared and energy dispersive X-ray spectroscopy. This novel technique also allows the investigation of the mechanism of intercalation of some fluorescent probes, such as the neutral three-dimensional rhodamine B (RhB) and the negatively charged two-dimensional 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS), using in situ steady-state fluorescence spectroscopy. The incorporation of these organic dyes inside the interlayer region of the LDH is confirmed via fluorescence microscopy, solid-state lifetime, SSNMR and PXRD. The activation energies of intercalation of the corresponding molecules (RhB and HPTS) are computed and exhibit dependence on the geometry of the involved probe (two or three dimensions), the charge of the fluorescent molecule (anionic, cationic or neutral) and the cationic ratio of the corresponding LDH. This article is part of the themed issue ‘Multiscale modelling at the physics–chemistry–biology interface’. PMID:27698034

  15. Kinetics of intercalation of fluorescent probes in magnesium-aluminium layered double hydroxide within a multiscale reaction-diffusion framework

    Science.gov (United States)

    Saliba, Daniel; Al-Ghoul, Mazen

    2016-11-01

    We report the synthesis of magnesium-aluminium layered double hydroxide (LDH) using a reaction-diffusion framework (RDF) that exploits the multiscale coupling of molecular diffusion with chemical reactions, nucleation and growth of crystals. In an RDF, the hydroxide anions are allowed to diffuse into an organic gel matrix containing the salt mixture needed for the precipitation of the LDH. The chemical structure and composition of the synthesized magnesium-aluminium LDHs are determined using powder X-ray diffraction (PXRD), thermo-gravimetric analysis, differential scanning calorimetry, solid-state nuclear magnetic resonance (SSNMR), Fourier transform infrared and energy dispersive X-ray spectroscopy. This novel technique also allows the investigation of the mechanism of intercalation of some fluorescent probes, such as the neutral three-dimensional rhodamine B (RhB) and the negatively charged two-dimensional 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS), using in situ steady-state fluorescence spectroscopy. The incorporation of these organic dyes inside the interlayer region of the LDH is confirmed via fluorescence microscopy, solid-state lifetime, SSNMR and PXRD. The activation energies of intercalation of the corresponding molecules (RhB and HPTS) are computed and exhibit dependence on the geometry of the involved probe (two or three dimensions), the charge of the fluorescent molecule (anionic, cationic or neutral) and the cationic ratio of the corresponding LDH. This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.

  16. Biocatalytic hydroxylation of linoleic acid in a double-fed batch system with lipoxygenase and cysteine

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Elshof, M.B.W.; Veldink, G.A.

    1998-01-01

    The enzymatic large-scale preparation of unsaturated fatty acid hydroperoxides is the first step in the preparation of the corresponding fatty acid hydroxides. Since hydroxides are more suitable than hydroperoxides as precursors of fine chemicals like certain flavour compounds, a convenient and

  17. Monodisperse embedded nanoparticles derived from an atomic metal-dispersed precursor of layered double hydroxide for architectured carbon nanotube formation

    DEFF Research Database (Denmark)

    Tian, Gui-Li; Zhao, Meng-Qiang; Zhang, Bingsen

    2014-01-01

    . When the areal density was increased from 0.039 to 0.55, and to 2.1 x 10(15) m(-2), the Fe NPs embedded on the LDO flakes exhibited good catalytic performance for the growth of entangled carbon nanotubes (CNTs), aligned CNTs, and double helical CNTs, respectively. This work provides not only new...

  18. Prolate spheroidal hematite particles equatorially belt with drug-carrying layered double hydroxide disks: Ring Nebula-like nanocomposites.

    Science.gov (United States)

    Nedim Ay, Ahmet; Konuk, Deniz; Zümreoglu-Karan, Birgul

    2011-02-03

    A new nanocomposite architecture is reported which combines prolate spheroidal hematite nanoparticles with drug-carrying layered double hydroxide [LDH] disks in a single structure. Spindle-shaped hematite nanoparticles with average length of 225 nm and width of 75 nm were obtained by thermal decomposition of hydrothermally synthesized hematite. The particles were first coated with Mg-Al-NO3-LDH shell and then subjected to anion exchange with salicylate ions. The resulting bio-nanohybrid displayed a close structural resemblance to that of the Ring Nebula. Scanning electron microscope and transmission electron microscopy images showed that the LDH disks are stacked around the equatorial part of the ellipsoid extending along the main axis. This geometry possesses great structural tunability as the composition of the LDH and the nature of the interlayer region can be tailored and lead to novel applications in areas ranging from functional materials to medicine by encapsulating various guest molecules.

  19. Dysprosium-containing layered double hydroxides nanoparticles intercalated with biologically active species as an approach for theranostic systems

    Energy Technology Data Exchange (ETDEWEB)

    Arratia-Quijada, Jenny [Departamento de Ciencias de la Salud, Centro Universitario Tonalá, Universidad de Guadalajara, Av. Nuevo Periférico No. 555, C.P. 48525, Tonalá, Jalisco (Mexico); Sánchez Jiménez, Cecilia [Departamento de Química, Universidad de Guadalajara, Boulevard Marcelino García Barragán 1421, C.P. 44430, Guadalajara, Jalisco (Mexico); Gurinov, Andrey [Research Resources Center for Magnetic Resonance, St. Petersburg State University, Universitetskiy pr. 26, 198504 St. Petersburg (Russian Federation); NMR Core Lab, King Abdullah University of Science and Technology, Thuwal 23955-6900 (Saudi Arabia); Pérez Centeno, Armando; Ceja Andrade, Israel [Departamento de Física, Universidad de Guadalajara, Boulevard Marcelino García Barragán 1421, C.P. 44430, Guadalajara, Jalisco (Mexico); Carbajal Arízaga, Gregorio Guadalupe, E-mail: gregoriocarbajal@yahoo.com.mx [Departamento de Química, Universidad de Guadalajara, Boulevard Marcelino García Barragán 1421, C.P. 44430, Guadalajara, Jalisco (Mexico)

    2016-01-15

    Graphical abstract: - Highlights: • LDH structure including dysprosium was prepared by co-precipitation. • LDH was capable to produce contrast in the T1 mode of MRI. • LDH were intercalated with folate, ibuprofen and gallate ions. - Abstract: A layered double hydroxide structure including dysprosium cations was prepared by co-precipitation. The nanoparticles showed a linear relationship with the reciprocal relaxation spin-lattice (T1) time of water protons which is reflected as contrast in aqueous suspensions analyzed by magnetic resonance imaging. The interlayer space of dysprosium containing LDH was successfully intercalated with folate, ibuprofen and gallate ions, which are key molecules for recognition of some cancer cells and treatment of diseases. The paramagnetic property of the dysprosium-containing LDH detected in this work beside the ability to transport drugs open up the opportunity to design theranostic materials in a single crystal phase with nanometric dimensions.

  20. Dysprosium-containing layered double hydroxides nanoparticles intercalated with biologically active species as an approach for theranostic systems

    International Nuclear Information System (INIS)

    Arratia-Quijada, Jenny; Sánchez Jiménez, Cecilia; Gurinov, Andrey; Pérez Centeno, Armando; Ceja Andrade, Israel; Carbajal Arízaga, Gregorio Guadalupe

    2016-01-01

    Graphical abstract: - Highlights: • LDH structure including dysprosium was prepared by co-precipitation. • LDH was capable to produce contrast in the T1 mode of MRI. • LDH were intercalated with folate, ibuprofen and gallate ions. - Abstract: A layered double hydroxide structure including dysprosium cations was prepared by co-precipitation. The nanoparticles showed a linear relationship with the reciprocal relaxation spin-lattice (T1) time of water protons which is reflected as contrast in aqueous suspensions analyzed by magnetic resonance imaging. The interlayer space of dysprosium containing LDH was successfully intercalated with folate, ibuprofen and gallate ions, which are key molecules for recognition of some cancer cells and treatment of diseases. The paramagnetic property of the dysprosium-containing LDH detected in this work beside the ability to transport drugs open up the opportunity to design theranostic materials in a single crystal phase with nanometric dimensions.

  1. Fabrication of Elemental Copper by Intense Pulsed Light Processing of a Copper Nitrate Hydroxide Ink.

    Science.gov (United States)

    Draper, Gabriel L; Dharmadasa, Ruvini; Staats, Meghan E; Lavery, Brandon W; Druffel, Thad

    2015-08-05

    Printed electronics and renewable energy technologies have shown a growing demand for scalable copper and copper precursor inks. An alternative copper precursor ink of copper nitrate hydroxide, Cu2(OH)3NO3, was aqueously synthesized under ambient conditions with copper nitrate and potassium hydroxide reagents. Films were deposited by screen-printing and subsequently processed with intense pulsed light. The Cu2(OH)3NO3 quickly transformed in less than 100 s using 40 (2 ms, 12.8 J cm(-2)) pulses into CuO. At higher energy densities, the sintering improved the bulk film quality. The direct formation of Cu from the Cu2(OH)3NO3 requires a reducing agent; therefore, fructose and glucose were added to the inks. Rather than oxidizing, the thermal decomposition of the sugars led to a reducing environment and direct conversion of the films into elemental copper. The chemical and physical transformations were studied with XRD, SEM, FTIR and UV-vis.

  2. Synthesis of layered double hydroxides containing Mg2+, Zn2+, Ca2+ and Al3+ layer cations by co-precipitation methods-A review

    Science.gov (United States)

    Theiss, Frederick L.; Ayoko, Godwin A.; Frost, Ray L.

    2016-10-01

    Co-precipitation is a common method for the preparation of layered double hydroxides (LDHs) and related materials. This review article is aimed at providing newcomers to the field with some examples of the types of co-precipitation reactions that have been reported previously and to briefly investigate some of the properties of the products of these reactions. Due to the sheer volume of literature on the subject, the authors have had to limit this article to the synthesis of Mg/Al, Zn/Al and Ca/Al LDHs by co-precipitation and directly related methods. LDHs have been synthesised from various reagents including metal salts, oxides and hydroxides. Co-precipitation is also useful for the direct synthesis of LDHs with a wide range of interlayer anions and various bases have been successfully employed to prepare LDHs. Examples of other synthesis techniques including the urea method, hydrothermal synthesis and various mechanochemical methods that are undoubtedly related to co-precipitation have also been included in this review. The effect of post synthesis hydrothermal has also been summarised.

  3. Synthesis and physical properties of new layered double hydroxides based on ionic liquids: Application to a polylactide matrix

    KAUST Repository

    Livi, Sébastien

    2012-12-01

    Ionic liquids based on tetraalkylphosphonium salts combined with different anions (decanoate and dodecylsulfonate) have been used as intercalating agents of layered double hydroxides (LDHs) by ion exchange. The synthesized phosphonium-treated LDHs display a dramatically improved thermal degradation and a significant increase in the interlayer distance as confirmed by thermogravimetric analysis (TGA) and X-ray Diffraction (XRD), respectively. To highlight the effect of thermostable ionic liquids, a very low amount of LDHs has been introduced within a polylactide (PLA) matrix and PLA/LDHs nanocomposites have been processed in melt by twin-screw extrusion. Then, transmission electron microscopy (TEM) analysis has been used to investigate the influence of ILs on the different morphologies of these nanocomposites. Even though the thermal stability of PLA matrix decreased, an excellent stiffness-toughness compromise has been obtained. © 2012 Elsevier Inc.

  4. Development of polymer nanocomposites based on layered double hydroxides

    Directory of Open Access Journals (Sweden)

    Sipusic, J.

    2009-05-01

    Full Text Available Polymeric nanocomposites are commonly considered as systems composed of a polymeric matrix and - usually inorganic - filler. The types of nanofillers are indicated in Fig. 1. Beside wellknown layered silicate fillers, recent attention is attracted to layered double hydroxide fillers (LDH, mainly of synthetic origin. The structure of LDH is based on brucite, or magnesium hydroxide, Mg(OH2 and is illustrated in Fig. 2. The modification of LDHs is commonly done by organic anions, to increase the original interlayer distance and to improve the organophilicity of the filler, keeping in mind their final application as fillers for, usually hydrophobic, polymer matrices. We have used the modified rehydration procedure for preparing organically modified LDH. The stoichiometric quantities of Ca33Al2O6, CaO and benzoic (B (or undecenoic (U acid were mixed with water and some acetone. After long and vigorous shaking, the precipitated fillers were washed, dried and characterized. X-ray diffraction method (XRD has shown the increase of the original interlayer distance for unmodified LDH (OH–-saturated of 0.76 nm to the 1.6 nm in LDH-B or LDH-U fillers (Fig. 3. Infrared spectroscopy method (FTIR has confirmed the incorporation of benzoic anion within the filler layers (Fig. 4. For the preparation of LDH-B and LDH-U composites with polystyrene (PS, poly(methyl methacrylate (PMMA and copolymer (SMMA matrices, a two-step in situ bulk radical polymerization was selected (Table 1 for recipes, azobisisobutyronitrile as initiator, using conventional stirred tank reactor in the first step, and heated mold with the movable wall (Fig. 6 in the second step of polymerization. All the prepared composites with LDH-U fillers were macroscopically phase-separated, as was the PMMA/LDH-B composite.PS/LDH-B and SMMA/LDH-B samples were found to be transparent and were further examined for deduction of their structure (Fig. 5 and thermal properties. FTIR measurements showed that

  5. Removal of bacteria and viruses from waters using layered double hydroxide nanocomposites

    Directory of Open Access Journals (Sweden)

    Song Jin et al

    2007-01-01

    Full Text Available We have identified synthetic layered double hydroxides (LDH nanocomposites as an effective group of material for removing bacteria and viruses from water. In this study, LDH nanocomposites were synthesized and tested for removing biological contaminants. LDH was used to remove MS2 and X174 (indicator viruses, and Escherichia coli (an indicator bacterium from synthetic groundwater and to remove mixed communities of heterotrophic bacteria from raw river water. Our results indicate that LDH composed of magnesium–aluminium or zinc–aluminium has a viral and bacterial adsorption efficiency ≥99% at viral concentrations between 5.9×106 and 9.1×106 plaque forming units (pfu/L and bacterial concentrations between 1.6×1010 and 2.6×1010 colony forming units (cfu/L when exposed to LDH in a slurry suspension system. Adsorption densities of viruses and bacteria to LDH in suspension ranged from 1.4×1010 to 2.1×1010 pfu/kg LDH and 3.2×1013–5.2×1013 cfu/kg LDH, respectively. We also tested the efficiency of LDH in removing heterotrophic bacteria from raw river water. While removal efficiencies were still high (87–99%, the adsorption capacities of the two kinds of LDH were 4–5 orders of magnitude lower than when exposed to synthetic groundwater, depending on if the LDH was in suspension or a packed column, respectively.

  6. Porphyrin-layered double hydroxide/polymer composites as novel ecological photoactive surfaces

    Czech Academy of Sciences Publication Activity Database

    Káfuňková, Eva; Lang, Kamil; Kubát, Pavel; Klementová, Mariana; Mosinger, Jiří; Šlouf, Miroslav; Troutier-Thuilliez, A. L.; Leroux, F.; Verney, V.; Taviot-Guého, Ch.

    2010-01-01

    Roč. 20, č. 42 (2010), s. 9423-9432 ISSN 0959-9428 R&D Projects: GA ČR GAP207/10/1447 Institutional research plan: CEZ:AV0Z40320502; CEZ:AV0Z40400503; CEZ:AV0Z40500505 Keywords : porphyrins * nanoparticles * hydroxide/polymer composites Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.101, year: 2010

  7. Optical properties of cerium oxide (CeO2) nanoparticles synthesized by hydroxide mediated method

    Science.gov (United States)

    Ali, Mawlood Maajal; Mahdi, Hadeel Salih; Parveen, Azra; Azam, Ameer

    2018-05-01

    The nanoparticles of cerium oxide have been successfully synthesized by hydroxide mediated method, using cerium nitrate and sodium hydroxide as precursors. The microstructural properties were analyzed by X-ray diffraction technique (XRD). The X-ray diffraction results show that the cerium oxide nanoparticles were in cubic structure. The optical absorption spectra of cerium oxide were recorded by UV-VIS spectrophotometer in the range of 320 to 600 nm and photoluminescence spectra in the range of 400-540 nm and have been presented. The energy band gap was determined by Tauc relationship. The crystallite size was determined from Debye-Scherer equation and came out to be 6.4 nm.

  8. Synthesis of (Hexaconazole-Zinc/Aluminum-Layered Double Hydroxide Nanocomposite) Fungicide Nanodelivery System for Controlling Ganoderma Disease in Oil Palm.

    Science.gov (United States)

    Mustafa, Isshadiba F; Hussein, Mohd Zobir; Saifullah, Bullo; Idris, Abu Seman; Hilmi, Nur Hailini Z; Fakurazi, Sharida

    2018-01-31

    A fungicide, hexaconazole was successfully intercalated into the intergalleries of zinc/aluminum-layered double hydroxide (ZALDH) using the ion-exchange method. Due to the intercalation of hexaconazole, the basal spacing of the ZALDH was increased from 8.7 Å in ZALDH to 29.4 Å in hexaconazole-intercalated ZALDH (HZALDH). The intercalation of hexaconazole into the interlayer of the nanocomposite was confirmed using the Fourier-transform infrared (FTIR) study. This supramolecular chemistry intercalation process enhanced the thermal stability of the hexaconazole moiety. The fungicide loading was estimated to be 51.8%. The nanodelivery system also shows better inhibition toward the Ganoderma boninense growth than the counterpart, free hexaconazole. The results from this work have a great potential to be further explored for combating basal stem rot (BSR) disease in oil palm plantation.

  9. Universal biomimetic preparation and immobilization of layered double hydroxide films and adsorption behavior

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wei; Zhang, Wenpeng; Chen, Zilin

    2017-01-15

    Highlights: • An in situ method is developed for immobilization of nanoscale LDHs. • The universal method can be applied on multiple substrates. • The homogeneous LDHs film can be synthesis and immobilized in one step. • The LDHs film showed good adsorption performance towards anionic compounds. - Abstract: Preparation and immobilization of layered double hydroxides (LDHs) film onto multiple substrates is important and challenging in functional materials fields by date. In this work, a simple and universal polydopamine (PD)-based layer-by-layer assembly strategy was developed for the immobilization of LDHs film onto surfaces such as polypropylene chip, glass slides and metal coins. The surface of substrates was firstly modified by polydopamine functionalization, and then LDHs film was synthesized via urea method and directly immobilized on the PD layer by in situ growing strategy in one step. The PD layer as well as the final LDHs film was characterized by energy dispersive X-ray spectroscopy, scanning electron microscope, infrared spectroscopy, X-ray diffraction pattern and X-ray photoelectron spectra. It has been demonstrated the formation of the dense and homogeneous nanoscaled LDHs film with 400 nm thickness. Adsorption behavior of the fabricated NiAl-LDHs film toward anionic dyes and pharmaceuticals was further assessed. To demonstrate their extensive application, fast and high efficient adsorption of anionic dyes and pharmaceuticals was achieved by NiAl-LDHs-modified polypropylene centrifugal tube.

  10. Prolate spheroidal hematite particles equatorially belt with drug-carrying layered double hydroxide disks: Ring Nebula-like nanocomposites

    Directory of Open Access Journals (Sweden)

    Nedim Ay Ahmet

    2011-01-01

    Full Text Available Abstract A new nanocomposite architecture is reported which combines prolate spheroidal hematite nanoparticles with drug-carrying layered double hydroxide [LDH] disks in a single structure. Spindle-shaped hematite nanoparticles with average length of 225 nm and width of 75 nm were obtained by thermal decomposition of hydrothermally synthesized hematite. The particles were first coated with Mg-Al-NO3-LDH shell and then subjected to anion exchange with salicylate ions. The resulting bio-nanohybrid displayed a close structural resemblance to that of the Ring Nebula. Scanning electron microscope and transmission electron microscopy images showed that the LDH disks are stacked around the equatorial part of the ellipsoid extending along the main axis. This geometry possesses great structural tunability as the composition of the LDH and the nature of the interlayer region can be tailored and lead to novel applications in areas ranging from functional materials to medicine by encapsulating various guest molecules.

  11. Recovery of Lithium from Geothermal Brine with Lithium-Aluminum Layered Double Hydroxide Chloride Sorbents.

    Science.gov (United States)

    Paranthaman, Mariappan Parans; Li, Ling; Luo, Jiaqi; Hoke, Thomas; Ucar, Huseyin; Moyer, Bruce A; Harrison, Stephen

    2017-11-21

    We report a three-stage bench-scale column extraction process to selectively extract lithium chloride from geothermal brine. The goal of this research is to develop materials and processing technologies to improve the economics of lithium extraction and production from naturally occurring geothermal and other brines for energy storage applications. A novel sorbent, lithium aluminum layered double hydroxide chloride (LDH), is synthesized and characterized with X-ray powder diffraction, scanning electron microscopy, inductively coupled plasma optical emission spectrometry (ICP-OES), and thermogravimetric analysis. Each cycle of the column extraction process consists of three steps: (1) loading the sorbent with lithium chloride from brine; (2) intermediate washing to remove unwanted ions; (3) final washing for unloading the lithium chloride ions. Our experimental analysis of eluate vs feed concentrations of Li and competing ions demonstrates that our optimized sorbents can achieve a recovery efficiency of ∼91% and possess excellent Li apparent selectivity of 47.8 compared to Na ions and 212 compared to K ions, respectively in the brine. The present work demonstrates that LDH is an effective sorbent for selective extraction of lithium from brines, thus offering the possibility of effective application of lithium salts in lithium-ion batteries leading to a fundamental shift in the lithium supply chain.

  12. A mechanochemical approach to get stunningly uniform particles of magnesium-aluminum-layered double hydroxides

    Science.gov (United States)

    Zhang, Xiaoqing; Qi, Fenglin; Li, Shuping; Wei, Shaohua; Zhou, Jiahong

    2012-10-01

    A mechanochemical approach is developed in preparing a series of magnesium-aluminum-layered double hydroxides (Mg-Al-LDHs). This approach includes a mechanochemical process which involved manual grinding of solid salts in an agate mortar and afterwards peptization process. In order to verify the LDHs structure synthesized in the grinding process, X-ray diffraction (XRD) patterns, transmission electron microscopy (TEM) photos and thermogravimetry/differential scanning calorimetry (TG-DSC) property of the product without peptization were characterized and the results show that amorphous particles with low crystallinity and poor thermal stability are obtained, and the effect of peptization is to improve the properties, more accurately, regular particles with high crystallinity and good thermal stability can be gained after peptization. Furthermore, the fundamental experimental parameters including grinding time, the molar ratio of Mg to Al element (defined as R value) and the water content were systematically examined in order to control the size and morphologies of LDHs particles, regular hexagonal particles or the spherical nanostructures can be efficiently obtained and the particle sizes were controlled in the range of 52-130 nm by carefully adjusting these parameters. At last, stunningly uniform Mg-Al-LDHs particles can be synthesized under proper R values, suitable grinding time and high degree of supersaturation.

  13. Solid-state chelation of metal ions by ethylenediaminetetraacetate intercalated in a layered double hydroxide.

    Science.gov (United States)

    Tarasov, Konstantin A; O'Hare, Dermot; Isupov, Vitaly P

    2003-03-24

    The solid-state chelation of transition metal ions (Co(2+), Ni(2+), and Cu(2+)) from aqueous solutions into the lithium aluminum layered double hydroxide ([LiAl(2)(OH)(6)]Cl x 0.5H(2)O or LDH) which has been pre-intercalated with EDTA (ethylenediaminetetraacetate) ligand has been investigated. The intercalated metal cations form [M(edta)](2)(-) complexes between the LDH layers as indicated by elemental analysis, powder X-ray diffraction, and IR and UV-vis spectroscopies. If metal chloride or nitrate salts are used in the reaction with the LDH then co-intercalation of either the Cl(-) or NO(3)(-) anions is observed. In the case of metal acetate salts the cations intercalate without the accompanying anion. This can be explained by the different intercalation selectivity of the anions in relation to the LDH. In the latter case the introduction of the positive charge into LDH structure was compensated for by the release from the solid of the equivalent quantity of lithium and hydrogen cations. Time-resolved in-situ X-ray diffraction measurements have revealed that the chelation/intercalation reactions proceed very quickly. The rate of the reaction found for nickel acetate depends on concentration as approximately k[Ni(Ac)(2)](3).

  14. Insitu grown superhydrophobic Zn–Al layered double hydroxides films on magnesium alloy to improve corrosion properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Meng; Pang, Xiaolu; Wei, Liang; Gao, Kewei, E-mail: kwgao@yahoo.com

    2015-05-15

    Highlights: • Hierarchical superhydrophobic Zn–Al LDHs film has been fabricated on a magnesium alloy substrate. • The superhydrophobic surface has good long-term stability under atmospheric environment. • The superhydrophobic surface can provide a stable corrosion protection for the Mg alloys. - Abstract: A hierarchical superhydrophobic zinc–aluminum layered double hydroxides (Zn–Al LDHs) film has been fabricated on a magnesium alloy substrate via a facile hydrothermal crystallization method following chemical modification. The characteristics of the films were investigated by X-ray diffraction (XRD), scanning electronic microscope (SEM), and energy dispersive spectroscopy (EDS). XRD patterns and SEM images showed that the micro/nanoscale hierarchical LDHs film surfaces composed of ZnO nanorods and Zn–Al LDHs nanowalls structures. The static contact angle (CA) for the prepared surfaces was observed at around 165.6°. The corrosion resistance of the superhydrophobic films was estimated by electrochemical impedance spectroscopy (EIS) and potentiondynamic polarization measurement. EIS and polarization measurements revealed that the superhydrophobic Zn–Al LDHs coated magnesium alloy had better corrosion resistance in neutral 3.5 wt.% NaCl solution.

  15. Insitu grown superhydrophobic Zn–Al layered double hydroxides films on magnesium alloy to improve corrosion properties

    International Nuclear Information System (INIS)

    Zhou, Meng; Pang, Xiaolu; Wei, Liang; Gao, Kewei

    2015-01-01

    Highlights: • Hierarchical superhydrophobic Zn–Al LDHs film has been fabricated on a magnesium alloy substrate. • The superhydrophobic surface has good long-term stability under atmospheric environment. • The superhydrophobic surface can provide a stable corrosion protection for the Mg alloys. - Abstract: A hierarchical superhydrophobic zinc–aluminum layered double hydroxides (Zn–Al LDHs) film has been fabricated on a magnesium alloy substrate via a facile hydrothermal crystallization method following chemical modification. The characteristics of the films were investigated by X-ray diffraction (XRD), scanning electronic microscope (SEM), and energy dispersive spectroscopy (EDS). XRD patterns and SEM images showed that the micro/nanoscale hierarchical LDHs film surfaces composed of ZnO nanorods and Zn–Al LDHs nanowalls structures. The static contact angle (CA) for the prepared surfaces was observed at around 165.6°. The corrosion resistance of the superhydrophobic films was estimated by electrochemical impedance spectroscopy (EIS) and potentiondynamic polarization measurement. EIS and polarization measurements revealed that the superhydrophobic Zn–Al LDHs coated magnesium alloy had better corrosion resistance in neutral 3.5 wt.% NaCl solution

  16. Layered double hydroxides as fillers in poly(l-lactide nanocomposites, obtained by in situ bulk polymerization

    Directory of Open Access Journals (Sweden)

    Telma Nogueira

    Full Text Available Abstract In this study in situ bulk polymerization of L-lactide filled with layered double hydroxides (LDH was investigated. Four different LDHs intercalated with two different organic anions (salicylate and sebacate were synthesized and characterized. After characterization, these synthetic layered compounds were used as fillers in poly(L-lactide (PLLA nanocomposites with two different fillers’s loadings (1 wt% and 2 wt%. PLLA and PLLA nanocomposites were evaluated by X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, ultraviolet and visible spectroscopy, thermogravimetric analysis (TGA, dynamical mechanical analysis (DMA, flexural testing and differential scanning calorimetry (DSC. The results demonstrated that, compared to PLLA, the nanocomposite containing 1 wt% of Zn/Al salicylate transmitted less UVA and UVB light, while keeping a similar transparency in the visible region. Thermogravimetric analysis revealed that the nanocomposite with 1 wt% of Zn/Al salicylate exhibited the highest thermal stability. In general the flexural and dynamical mechanical properties were reduced in compassion to neat PLLA. DSC results, demonstrated that, compared to PLLA, all the nanocomposites exhibited lower glass transition temperature and melting temperature values.

  17. Synthesis and characterization of Zn-Ti layered double hydroxide intercalated with cinnamic acid for cosmetic application

    Science.gov (United States)

    Li, Yong; Tang, Liping; Ma, Xinxu; Wang, Xinrui; Zhou, Wei; Bai, Dongsheng

    2017-08-01

    The use of sunscreen is recently growing and their efficacy and safety must be taken into account since they are applied on the skin frequently. In this work, an organic ultraviolet (UV) ray absorbent, cinnamic acid (CA) was intercalated into Zn-Ti layered double hydroxide (LDH) by anion-exchange reaction. ZnTi-CA-LDH, a new type of host-guest UV-blocking material has been synthesized. Detailed structural and surface morphology of ZnTi-CA-LDH were characterized by XRD, FT-IR, SEM and TEM. ZnTi-CA-LDH exhibits a superior UV blocking ability compared to pure CA and ZnTi-CO3-LDH. The thermal stability of the intercalated ZnTi-CA-LDH was investigated by TG-DTA, which showed that the thermostability of CA was markedly enhanced after intercalation into ZnTi-CO3-LDH. The EPR data showed greatly decreased photocatalytic activity compared to common inorganic UV blocking agents TiO2 and ZnO. Furthermore, the sample was formulated in a sunscreen cream to study the matrix protective effect towards UV rays.

  18. Electrodeposition to construct free-standing chitosan/layered double hydroxides hydro-membrane for electrically triggered protein release.

    Science.gov (United States)

    Zhao, Pengkun; Zhao, Yanan; Xiao, Ling; Deng, Hongbing; Du, Yumin; Chen, Yun; Shi, Xiaowen

    2017-10-01

    In this study, we report the electrodeposition of a chitosan/layered double hydroxides (LDHs) hydro-membrane for protein release triggered by an electrical signal. The electrodeposition was performed in a chitosan and insulin loaded LDHs suspension in the absence of salt. A free-standing chitosan/LDHs hydro-membrane was generated on the electrode with improved mechanical properties, which is dramatically different from the weak hydrogel deposited in the presence of salt. The amount of LDHs in the hydro-membrane affects the optical transmittance and multilayered structure of the hybrid membrane. Compared to the weak chitosan/LDHs hydrogel, the hydro-membrane has a higher insulin loading capacity and the release of insulin is relatively slow. By biasing electrical potentials to the hydro-membrane, the release behavior of insulin can be adjusted accordingly. In addition, the chitosan/LDHs hydro-membrane showed no toxicity to cells. Our results provide a facile method to construct a chitosan/LDHs hybrid multilayered hydro-membrane and suggest the great potential of the hydro-membrane in controlled protein release. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Electrochemical deposition and characterization of Zn-Al layered double hydroxides (LDHs) films on magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Fengxia; Liang, Jun, E-mail: jliang@licp.cas.cn; Peng, Zhenjun; Liu, Baixing

    2014-09-15

    Highlights: • Zn-Al LDHs film was prepared on AZ91D Mg alloy by electrochemical deposition. • The Zn-Al LDHs film was uniform and dense with some small flaws and cracks. • The Zn-Al LDHs film had high adhesion and good corrosion protection to Mg alloy. - Abstract: A zinc-aluminum layered double hydroxides (Zn-Al LDHs) film was prepared on AZ91D magnesium (Mg) alloy substrate by electrochemical deposition method. The characteristics of the film were investigated by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and scanning electronic microscope (SEM). It was found that the electrodeposited film was composed of crystalline Zn-Al LDHs with nitrate intercalation. The Zn-Al LDHs film was uniform and dense though there also presented some small flaws and cracks. The cross cut tape test showed that the film adhered well to the substrate. Polarization and EIS measurements revealed that the LDHs coated Mg alloy had better corrosion resistance compared to that of the uncoated one in 3.5 wt.% NaCl solution, indicating that the Zn-Al LDHs film could effectively protect Mg alloy from corrosion.

  20. Electrochemical deposition and characterization of Zn-Al layered double hydroxides (LDHs) films on magnesium alloy

    International Nuclear Information System (INIS)

    Wu, Fengxia; Liang, Jun; Peng, Zhenjun; Liu, Baixing

    2014-01-01

    Highlights: • Zn-Al LDHs film was prepared on AZ91D Mg alloy by electrochemical deposition. • The Zn-Al LDHs film was uniform and dense with some small flaws and cracks. • The Zn-Al LDHs film had high adhesion and good corrosion protection to Mg alloy. - Abstract: A zinc-aluminum layered double hydroxides (Zn-Al LDHs) film was prepared on AZ91D magnesium (Mg) alloy substrate by electrochemical deposition method. The characteristics of the film were investigated by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and scanning electronic microscope (SEM). It was found that the electrodeposited film was composed of crystalline Zn-Al LDHs with nitrate intercalation. The Zn-Al LDHs film was uniform and dense though there also presented some small flaws and cracks. The cross cut tape test showed that the film adhered well to the substrate. Polarization and EIS measurements revealed that the LDHs coated Mg alloy had better corrosion resistance compared to that of the uncoated one in 3.5 wt.% NaCl solution, indicating that the Zn-Al LDHs film could effectively protect Mg alloy from corrosion

  1. Ionic elastomers based on carboxylated nitrile rubber (XNBR and magnesium aluminum layered double hydroxide (hydrotalcite

    Directory of Open Access Journals (Sweden)

    A. Laskowska

    2014-06-01

    Full Text Available The presence of carboxyl groups in carboxylated nitrile butadiene rubber (XNBR allows it to be cured with different agents. This study considers the effect of crosslinking of XNBR by magnesium aluminum layered double hydroxide (MgAl-LDH, known also as hydrotalcite (HT, on rheometric, mechano-dynamical and barrier properties. Results of XNBR/HT composites containing various HT loadings without conventional curatives are compared with XNBR compound crosslinked with commonly used zinc oxide. Hydrotalcite acts as an effective crosslinking agent for XNBR, as is particularly evident from rheometric and Fourier transform infrared spectroscopy (FTIR studies. The existence of ionic crosslinks was also detected by dynamic mechanical analysis (DMA of the resulting composites. DMA studies revealed that the XNBR/HT composites exhibited two transitions – one occurring at low temperature is associated to the Tg of elastomer and the second at high temperature corresponds to the ionic transition temperature Ti. Simultaneous application of HT as a curing agent and a filler may deliver not only environmentally friendly, zinc oxide-free rubber product but also ionic elastomer composite with excellent mechanical, barrier and transparent properties.

  2. Methotrexate intercalated layered double hydroxides with the mediation of surfactants: Mechanism exploration and bioassay study

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Chao-Fan; Tian, De-Ying; Li, Shu-Ping, E-mail: lishuping@njnu.edu.cn; Li, Xiao-Dong

    2015-12-01

    Methotrexatum intercalated layered double hydroxides (MTX/LDHs) hybrids were synthesized by the co-precipitation method and three kinds of nonionic surfactants with different hydrocarbon chain lengths were used. The resulting hybrids were then characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM). XRD and FTIR investigations manifest the successful intercalation of MTX anions into the interlayer of LDHs. TEM graphs indicate that the morphology of the hybrids changes with the variation of the chain length of the surfactants, i.e., the particles synthesized using polyethylene glycol (PEG-7) present regular disc morphology with good monodispersity, while samples with the mediation of alkyl polyglycoside (APG-14) are heavily aggregated and samples with the addition of polyvinylpyrrolidone (PVP-10) exhibit irregular branches. Furthermore, the release and bioassay experiments show that monodisperse MTX/LDHs present good controlled-release and are more efficient in the suppression of the tumor cells. - Highlights: • Surfactants could be used to modify the dispersing state of MTX/LDHs hybrids. • Surfactants have great effect on the morphology of MTX/LDHs hybrids. • MTX/LDHs with good monodisperse degree are more efficient in the suppression of the tumor cells.

  3. Electrochemical oxidation of 4-chloro phenol over a carbon paste electrode modified with Zn Al layered double hydroxides

    International Nuclear Information System (INIS)

    Hernandez F, D.; Palomar P, M.; Licona S, T. de J.; Romero R, M.; Valente, Jaime S.

    2014-01-01

    A study is presented on the electrochemical oxidation of 4-chloro phenol (4cp) in aqueous solution using a bare carbon paste electrode, Cpe, and another one that was modified with Zn Al layered double hydroxides (Cpe/Zn Al-LDH). The electro-oxidation was effected at ph values ranging from 3 up to 11. It was found through cyclic voltammetry that this process was irreversible, namely, there were no reduction peaks, and that depending on the nature of the electrode, the anodic current was limited either by adsorption (Cpe) or diffusion (Cpe/Zn Al-LDH). The energy required and the oxidation reaction rate depended on the ph and on the nature of the electrode, such that the greater rates were obtained when the Cpe/Zn Al-LDH electrode and acid ph were used. The Zn Al-LDH was characterized by means of X-ray diffraction. (Author)

  4. Electrochemical oxidation of 4-chloro phenol over a carbon paste electrode modified with Zn Al layered double hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez F, D.; Palomar P, M.; Licona S, T. de J.; Romero R, M. [Universidad Autonoma Metropolitana, Unidad Azcapotzalco, Departamento de Materiales, Av. San Pablo 180, Col. Reynosa-Tamaulipas, 02200 Mexico D. F. (Mexico); Valente, Jaime S., E-mail: mepp@correo.azc.uam.mx [Instituto Mexicano del Petroleo, Eje Central No. 152, 07730 Mexico D. F. (Mexico)

    2014-07-01

    A study is presented on the electrochemical oxidation of 4-chloro phenol (4cp) in aqueous solution using a bare carbon paste electrode, Cpe, and another one that was modified with Zn Al layered double hydroxides (Cpe/Zn Al-LDH). The electro-oxidation was effected at ph values ranging from 3 up to 11. It was found through cyclic voltammetry that this process was irreversible, namely, there were no reduction peaks, and that depending on the nature of the electrode, the anodic current was limited either by adsorption (Cpe) or diffusion (Cpe/Zn Al-LDH). The energy required and the oxidation reaction rate depended on the ph and on the nature of the electrode, such that the greater rates were obtained when the Cpe/Zn Al-LDH electrode and acid ph were used. The Zn Al-LDH was characterized by means of X-ray diffraction. (Author)

  5. Study of Structural, Morphological and Optical Properties of Magnesium Hydroxide Nanoplates Synthesized by Precipitation Route

    Directory of Open Access Journals (Sweden)

    S. yousefi

    2018-03-01

    Full Text Available In this paper, high purity magnesium hydroxide nanoplates were successfully synthesized by using brine rich in magnesium ions as precursor and NaOH as precipitating agent without using dispersant agent in the room temoerature. The study and characterization of various properties of obtained nanopowder was carried out by X-Ray Diffraction (XRD, Field Emission Scanning Electron Microscopy (FESEM, Energy Dispersive X-ray Fluorescence Spectrometer (EDX, Fourier Transform Infrared Spectrophotometer (FTIR and Ultraviolet–visible spectroscopy (UV-Vis. The FESEM and XRD analysis results showed that magnesium hydroxide powder had nanoplates with the average crystallite size 17.1nm and no impurity; that was in agreement with the result of EDX and FTIR perfectly. Furthermore, optical characteristics of magnesium hydroxide nanoplates by UV-Vis spectroscopy showed an optical band gap of 5.5 eV. This wide band gap can be a useful innovation in optoelectronic sub-micron devices.

  6. Enhanced activity of CaFeMg layered double hydroxides-supported gold nanodendrites for the electrochemical evolution of oxygen and hydrogen in alkaline media

    Science.gov (United States)

    Havakeshian, Elaheh; Salavati, Hossein; Taei, Masoumeh; Hasheminasab, Fatemeh; Seddighi, Mohadeseh

    2018-02-01

    In this study, Au was electrodeposited on a support of CaFeMg layered double hydroxide and then, its catalytic activity was investigated for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Field emission scanning electron microscopy images showed that a uniform porous film of aggregated nano-particles of the LDH has been decorated with Au nanodendrite-like structures (AuNDs@LDH). The results obtained from polarization curves, Tafel plots and electrochemical impedance spectroscopy showed that the AuNDs@LDH exhibits lower overpotential, higher current density, faster kinetics and enhanced stability for both of the OER and HER, in comparison with the single AuNPs and LDH catalysts.

  7. Electrochemical sensor based on EDTA intercalated into layered double hydroxides of magnesium and aluminum for ultra trace level detection of lead (II)

    International Nuclear Information System (INIS)

    Dong, Junping; Fang, Qinghua; He, Haibo; Xu, Jiaqiang; Zhang, Yuan; Sun, Youbao

    2015-01-01

    The chelator ethylene diaminetetraacetate (EDTA) has been intercalated into layered double hydroxides by the anion exchange method. The resulting composites were characterized by powder X-ray diffraction, FTIR spectroscopy, thermogravimetry and X-ray photoelectron spectrometry. They were applied to modify a carbon paste electrode for the stripping voltammetric determination of lead (II) ions at ng L −1 levels. Stripping currents are linearly related to the logarithm of Pb (II) concentrations from 2 ng L −1 to 33 μg L −1 . The detection limit (3σ) is as low as 0.95 ng L −1 . The method was successfully applied to the determination of Pb (II) in spiked tap water without any pretreatment.(author)

  8. Synthesis of [Zn-Al-CO 3] layered double hydroxides by a coprecipitation method under steady-state conditions

    Science.gov (United States)

    Chang, Z.; Evans, D. G.; Duan, X.; Vial, C.; Ghanbaja, J.; Prevot, V.; de Roy, M.; Forano, C.

    2005-09-01

    A continuous co-precipitation method under steady-state conditions has been investigated for the preparation of nanometer-size layered double hydroxide (LDH) particles using Zn 2Al(OH) 6(CO 3) 0.5·2H 2O as a prototype. The objective was to shorten the preparation time by working without an aging step, using a short and controlled residence time in order to maintain a constant supersaturation level in the reactor and constant particle properties in the exit stream over time. The effects of varying the operating conditions on the structural and textural properties of the LDHs have been studied, including total cation concentration, solvent, residence time, pH and intercalation anion. The products have been characterized using ICP, XRD, FTIR, BET, SEM and TEM. The LDHs prepared by the continuous coprecipitation method have a poorer crystallinity and lower crystallite sizes than those synthesized by the conventional batch method. The results have shown that increasing either cation concentration or the fraction of monoethylene glycol (MEG) in MEG/H 2O mixtures up to 80% (v/v) affect salt solubility and supersaturation, which gives rise to smaller crystallites, larger surface areas and more amorphous compounds. This increase is however limited by the precipitation of zinc and aluminum hydroxides occurring around a total cation concentration of 3.0×10 -1 M in pure water and 3.0×10 -2 M in H 2O/EtOH mixtures. Crystallite size increases with residence time, suggesting a precipitation process controlled by growth. Finally, the continuous coprecipitation method under steady-state conditions has been shown to be a promising alternative to the traditional coprecipitation technique in either pure water or mixed H 2O/MEG solvents.

  9. Magnesium Hydroxide

    Science.gov (United States)

    Magnesium hydroxide is used on a short-term basis to treat constipation.This medication is sometimes prescribed ... Magnesium hydroxide come as a tablet and liquid to take by mouth. It usually is taken as ...

  10. Aluminum Hydroxide

    Science.gov (United States)

    Aluminum hydroxide is used for the relief of heartburn, sour stomach, and peptic ulcer pain and to ... Aluminum hydroxide comes as a capsule, a tablet, and an oral liquid and suspension. The dose and ...

  11. Oriented monolayer film of Gd2O3:0.05 Eu crystallites: quasi-topotactic transformation of the hydroxide film and drastic enhancement of photoluminescence properties.

    Science.gov (United States)

    Hu, Linfeng; Ma, Renzhi; Ozawa, Tadashi C; Sasaki, Takayoshi

    2009-01-01

    Caught on film: A semitransparent and intensely luminescent monolayer film of oriented Gd(2)O(3):0.05 Eu platelet crystallites is fabricated by annealing the precursor hydroxide film (see scheme). The photoluminescence properties of the as-transformed film are greatly improved over those of the hydroxide film, and are much more pronounced than those of the corresponding Gd(2)O(3):0.05 Eu powder.

  12. Corrosion resistance of Zn-Al layered double hydroxide/poly(lactic acid) composite coating on magnesium alloy AZ31

    Science.gov (United States)

    Zeng, Rong-Chang; Li, Xiao-Ting; Liu, Zhen-Guo; Zhang, Fen; Li, Shuo-Qi; Cui, Hong-Zhi

    2015-12-01

    A Zn-Al layered double hydroxide (ZnAl-LDH) coating consisted of uniform hexagonal nano-plates was firstly synthesized by co-precipitation and hydrothermal treatment on the AZ31 alloy, and then a poly(lactic acid) (PLA) coating was sealed on the top layer of the ZnAl-LDH coating using vacuum freeze-drying. The characteristics of the ZnAl-LDH/PLA composite coatings were investigated by means of XRD, SEM, FTIR and EDS. The corrosion resistance of the coatings was assessed by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results showed that the ZnAl-LDH coating contained a compact inner layer and a porous outer layer, and the PLA coating with a strong adhesion to the porous outer layer can prolong the service life of the ZnAl-LDH coating. The excellent corrosion resistance of this composite coating can be attributable to its barrier function, ion-exchange and self-healing ability.

  13. Preparation and Characterization of Polycaprolactone / Layered Double Hydroxide Nanocomposite for Hard Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    M. Baradaran

    2016-12-01

    Full Text Available In recent years the use of nanomaterials in bone tissue engineering scaffold has been considered due to its imitating the structure of natural bone tissue which contains a nanocomposite structure mixed with a three-dimensional matrix. In the meantime, Polycaprol actone has been used as a bio-polymer in bone tissue engineering applications as a scaffold. The aim of this study is to develop porous scaffolds made of polycaprol actone/layered double hydroxide biocomposite, with appropriate mechanical, bioactive and biological properties, for bone tissue engineering application. The nanocomposite scaffolds were fabricated by the particulate leaching method and freeze-drying method. In this study, MG63 cells (osteosarcoma was investigated for cellular study. Energy dispersive X-ray analysis confirmed uniform distribution of ceramic phase in polycaprol actone matrix. The results of mechanical tests showed the increase in young’s modulus after addition of ceramic phase. The microscopic investigations demonstrated that the pores generated after addition of ceramic phase and the average size of pores was as large as 100-600μm. Also by the addition of LDH, the hydrophilicity of PCL increased but the rate of hydroxyapatite formation was delayed due to presence of magnesium ions. The cell culture experiments confirmed the attachment and proliferation of cells on the scaffolds. The results showed that the fabricated scaffolds have the potential to be used in cancellous bone tissue engineering.

  14. Intercalation and structural aspects of macroRAFT agents into MgAl layered double hydroxides

    Directory of Open Access Journals (Sweden)

    Dessislava Kostadinova

    2016-12-01

    Full Text Available Increasing attention has been devoted to the design of layered double hydroxide (LDH-based hybrid materials. In this work, we demonstrate the intercalation by anion exchange process of poly(acrylic acid (PAA and three different hydrophilic random copolymers of acrylic acid (AA and n-butyl acrylate (BA with molar masses ranging from 2000 to 4200 g mol−1 synthesized by reversible addition-fragmentation chain transfer (RAFT polymerization, into LDH containing magnesium(II and aluminium(III intralayer cations and nitrates as counterions (MgAl-NO3 LDH. At basic pH, the copolymer chains (macroRAFT agents carry negative charges which allowed the establishment of electrostatic interactions with the LDH interlayer and their intercalation. The resulting hybrid macroRAFT/LDH materials displayed an expanded interlamellar domain compared to pristine MgAl-NO3 LDH from 1.36 nm to 2.33 nm. Depending on the nature of the units involved into the macroRAFT copolymer (only AA or AA and BA, the intercalation led to monolayer or bilayer arrangements within the interlayer space. The macroRAFT intercalation and the molecular structure of the hybrid phases were further characterized by Fourier transform infrared (FTIR and solid-state 13C, 1H and 27Al nuclear magnetic resonance (NMR spectroscopies to get a better description of the local structure.

  15. Simultaneous Intercalation of 1-Naphthylacetic Acid and Indole-3-butyric Acid into Layered Double Hydroxides and Controlled Release Properties

    Directory of Open Access Journals (Sweden)

    Shifeng Li

    2014-01-01

    Full Text Available Controlled release formulations have been shown to have potential in overcoming the drawbacks of conventional plant growth regulators formulations. A controlled-release formulation of 1-naphthylacetic acid (NAA and indole-3-butyric acid (IBA simultaneous intercalated MgAl-layered double hydroxides (LDHs was prepared. The synthetic nanohybrid material was characterized by various techniques, and release kinetics was studied. NAA and IBA anions located in the gallery of MgAl-LDHs with bilayer arrangement, and the nanohybrids particles were of typical plate-like shape with the lateral size of 50–100 nm. The results revealed that NAA and IBA have been intercalated into the interlayer spaces of MgAl-LDHs. The release of NAA and IBA fits pseudo-second-order model and is dependent on temperature, pH value, and release medium. The nanohybrids of NAA and IBA simultaneously intercalated in LDHs possessed good controlled release properties.

  16. Confinement of carbon dots localizing to the ultrathin layered double hydroxides toward simultaneous triple-mode bioimaging and photothermal therapy.

    Science.gov (United States)

    Weng, Yangziwan; Guan, Shanyue; Lu, Heng; Meng, Xiangmin; Kaassis, Abdessamad Y; Ren, Xiaoxue; Qu, Xiaozhong; Sun, Chenghua; Xie, Zheng; Zhou, Shuyun

    2018-07-01

    It is a great challenge to develop multifunctional nanocarriers for cancer diagnosis and therapy. Herein, versatile CDs/ICG-uLDHs nanovehicles for triple-modal fluorescence/photoacoustic/two-photon bioimaging and effective photothermal therapy were prepared via a facile self-assembly of red emission carbon dots (CDs), indocyanine green (ICG) with the ultrathin layered double hydroxides (uLDHs). Due to the J-aggregates of ICG constructed in the self-assembly process, CDs/ICG-uLDHs was able to stabilize the photothermal agent ICG and enhanced its photothermal efficiency. Furthermore, the unique confinement effect of uLDHs has extended the fluorescence lifetime of CDs in favor of bioimaging. Considering the excellent in vitro and in vivo phototherapeutics and multimodal imaging effects, this work provides a promising platform for the construction of multifunctional theranostic nanocarrier system for the cancer treatment. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. NiMn layered double hydroxide nanosheets/NiCo2O4 nanowires with surface rich high valence state metal oxide as an efficient electrocatalyst for oxygen evolution reaction

    Science.gov (United States)

    Yang, Liting; Chen, Lin; Yang, Dawen; Yu, Xu; Xue, Huaiguo; Feng, Ligang

    2018-07-01

    High valence transition metal oxide is significant for anode catalyst of proton membrane water electrolysis technique. Herein, we demonstrate NiMn layered double hydroxide nanosheets/NiCo2O4 nanowires hierarchical nanocomposite catalyst with surface rich high valence metal oxide as an efficient catalyst for oxygen evolution reaction. A low overpotential of 310 mV is needed to drive a 10 mA cm-2 with a Tafel slope of 99 mV dec-1, and a remarkable stability during 8 h is demonstrated in a chronoamperometry test. Theoretical calculation displays the change in the rate-determining step on the nanocomposite electrode in comparison to NiCo2O4 nanowires alone. It is found high valence Ni and Mn oxide in the catalyst system can efficiently facilitate the charge transport across the electrode/electrolyte interface. The enhanced electrical conductivity, more accessible active sites and synergistic effects between NiMn layered double hydroxide nanosheets and NiCo2O4 nanowires can account for the excellent oxygen evolution reaction. The catalytic performance is comparable to most of the best non-noble catalysts and IrO2 noble catalyst, indicating the promising applications in water-splitting technology. It is an important step in the development of hierarchical nanocomposites by surface valence state tuning as an alternative to noble metals for oxygen evolution reaction.

  18. Anionic clay as the drug delivery vehicle: tumor targeting function of layered double hydroxide-methotrexate nanohybrid in C33A orthotopic cervical cancer model

    Directory of Open Access Journals (Sweden)

    Choi G

    2016-01-01

    Full Text Available Goeun Choi,1 Huiyan Piao,1 Zeid A Alothman,2 Ajayan Vinu,3 Chae-Ok Yun,4 Jin-Ho Choy1 1Center for Intelligent Nano-Bio Materials, Department of Chemistry and Nano Science, Ewha Womans University, Seoul, Korea; 2Advanced Materials Research Chair, Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia; 3Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia; 4Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Korea Abstract: Methotrexate (MTX, an anticancer agent, was successfully intercalated into the anionic clay, layered double hydroxides to form a new nanohybrid drug. The coprecipitation and subsequent hydrothermal method were used to prepare chemically, structurally, and morphologically well-defined two-dimensional drug-clay nanohybrid. The resulting two-dimensional drug-clay nanohybrid showed excellent colloidal stability not only in deionized water but also in an electrolyte solution of Dulbecco’s Modified Eagle’s Medium with 10% fetal bovine serum, in which the average particle size in colloid and the polydispersity index were determined to be around 100 and 0.250 nm, respectively. The targeting property of the nanohybrid drug was confirmed by evaluating the tumor-to-blood and tumor-to-liver ratios of the MTX with anionic clay carrier, and these ratios were compared to those of free MTX in the C33A orthotopic cervical cancer model. The biodistribution studies indicated that the mice treated with the former showed 3.5-fold higher tumor-to-liver ratio and fivefold higher tumor-to-blood ratio of MTX than those treated with the latter at 30 minutes postinjection. Keywords: anionic clay, biodistribution, cervical cancer, colloidal stability, layered double hydroxide, methotrexate 

  19. Efficacy and safety of topical application of 15% and 10% potassium hydroxide for the treatment of Molluscum contagiosum.

    Science.gov (United States)

    Teixidó, Concepció; Díez, Olga; Marsal, Josep R; Giner-Soriano, Maria; Pera, Helena; Martinez, Mireia; Galindo-Ortego, Gisela; Schoenenberger, Joan A; Real, Jordi; Cruz, Ines; Morros, Rosa

    2018-02-26

    Molluscum contagiosum is the most common skin infection in children. One topical treatment used for Molluscum contagiosum is potassium hydroxide. The objective of this study was to compare the efficacy of potassium hydroxide topical treatment at different concentrations with that of placebo in terms of complete clearing of Molluscum contagiosum lesions and to assess the safety and tolerance of potassium hydroxide topical treatment. This was a double-blind randomized clinical trial of three treatments (potassium hydroxide 10%, potassium hydroxide 15%, placebo) applied once daily up to complete clearing of lesions (maximum duration 60 days) in 53 children aged 2-6 years in primary health care pediatric offices in Catalonia, Spain. In the intention-to-treat analysis, potassium hydroxide 10% (58.8%, P = .03) and potassium hydroxide 15% (64.3%, P = .02) had efficacy superior to that of placebo (18.8%). The number of Molluscum contagiosum lesions was significantly reduced with potassium hydroxide 10% and 15%. The main efficacy outcome was achieved in 58.8% of children in the potassium hydroxide 10% group (P = .03 vs placebo) and in 64.3% of children in the potassium hydroxide 15% group (P = .02 vs placebo). Potassium hydroxide 10% and 15% were not significantly different in efficacy from each other. Potassium hydroxide 10% and placebo were better tolerated than potassium hydroxide 15%. No adverse events were reported during the study period. Potassium hydroxide 10% and 15% demonstrated high rates of efficacy in clearing Molluscum contagiosum lesions, with potassium hydroxide 10% being better tolerated. © 2018 Wiley Periodicals, Inc.

  20. Effect of growth parameters on spatial pattern formation of cadmium hydroxide in agar gel

    International Nuclear Information System (INIS)

    Palaniandavar, N.; Gnanam, F.D.; Ramasamy, P.

    1986-01-01

    The interrelated effects of growth parameters on spatial pattern formation of cadmium hydroxide in agar gel medium have been investigated. The main parameters are concentration of electrolytes, pH of the medium, density of the gel, the concentration of parasitic electrolyte and the concentration of additives. The pattern formation is explained on the basis of electrical double layer theory coupled with diffusion. Using Shinohara's revised coagulation concept, the flocculation value is calculated. With suitable combinations of parameter values, dendritic growth and spherulitic growth of cadmium hydroxide crystals have been observed. (author)

  1. Phosphate recovery from wastewater using engineered superparamagnetic particles modified with layered double hydroxide ion exchangers.

    Science.gov (United States)

    Drenkova-Tuhtan, Asya; Mandel, Karl; Paulus, Anja; Meyer, Carsten; Hutter, Frank; Gellermann, Carsten; Sextl, Gerhard; Franzreb, Matthias; Steinmetz, Heidrun

    2013-10-01

    An innovative nanocomposite material is proposed for phosphate recovery from wastewater using magnetic assistance. Superparamagnetic microparticles modified with layered double hydroxide (LDH) ion exchangers of various compositions act as phosphate adsorbers. Magnetic separation and chemical regeneration of the particles allows their reuse, leading to the successful recovery of phosphate. Based upon the preliminary screening of different LDH ion exchanger modifications for phosphate selectivity and uptake capacity, MgFe-Zr LDH coated magnetic particles were chosen for further characterization and application. The adsorption kinetics of phosphate from municipal wastewater was studied in dependence with particle concentration, contact time and pH. Adsorption isotherms were then determined for the selected particle system. Recovery of phosphate and regeneration of the particles was examined via testing a variety of desorption solutions. Reusability of the particles was demonstrated for 15 adsorption/desorption cycles. Adsorption in the range of 75-97% was achieved in each cycle after 1 h contact time. Phosphate recovery and enrichment was possible through repetitive application of the desorption solution. Finally, a pilot scale experiment was carried out by treating 125 L of wastewater with the particles in five subsequent 25 L batches. Solid-liquid separation on this scale was carried out with a high-gradient magnetic filter (HGMF). Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Mg-Fe-mixed oxides derived from layered double hydroxides: A study of the surface properties

    Directory of Open Access Journals (Sweden)

    Marinković-Nedučin Radmila P.

    2011-01-01

    Full Text Available The influence of surface properties on the selectivity of the synthesized catalysts was studied, considering that their selectivity towards particular hydrocarbons is crucial for their overall activity in the chosen Fischer- -Tropsch reaction. Magnesium- and iron-containing layered double hydroxides (LDH, with the general formula: [Mg1-xFex(OH2](CO3x/2?mH2O, x = = n(Fe/(n(Mg+n(Fe, synthesized with different Mg/Fe ratio and their thermally derived mixed oxides were investigated. Magnesium was chosen because of its basic properties, whereas iron was selected due to its well-known high Fischer-Tropsch activity, redox properties and the ability to form specific active sites in the layered LDH structure required for catalytic application. The thermally less stable multiphase system (synthesized outside the optimal single LDH phase range with additional Fe-phase, having a lower content of surface acid and base active sites, a lower surface area and smaller fraction of smaller mesopores, showed higher selectivity in the Fischer-Tropsch reaction. The results of this study imply that the metastability of derived multiphase oxides structure has a greater influence on the formation of specific catalyst surface sites than other investigated surface properties.

  3. Computational NMR, IR/RAMAN calculations in sodium pravastatin: Investigation of the Self-Assembled Nanostructure of Pravastatin-LDH (Layered Double Hydroxides) Systems

    Science.gov (United States)

    Petersen, Philippe; Cunha, Vanessa; Gonçalves, Marcos; Petrilli, Helena; Constantino, Vera; Instituto de Física, Departamento de Física de Materiais e Mecânica Team; Instituto de Química, Departamento de Química Fundamental Team

    2013-03-01

    Layered double hydroxides (LDH) can be used as nanocontainers for immobilization of Pravastatin, in order to obtain suitable drug carriers. The material's structure and spectroscopic properties were analyzed by NMR, IR/RAMAN and supported by theoretical calculations. Density Functional Theory (DFT) calculations were performed using the Gaussian03 package. The geometry optimizations were performed considering the single crystal X-ray diffraction data of tert-octylamonium salt of Pravastatin. Tetramethylsilane (TMS), obtained with the same basis set, was used as reference for calculating the chemical shift of 13C. A scaling factor was used to compare theoretical and experimental harmonic vibrational frequencies. Through the NMR and IR/RAMAN spectra, we were able to make precise assignments of the NMR and IR/RAMAN of Sodium Pravastatin. We acknowledge support from CAPES, INEO and CNPQ.

  4. Self-Assembly of 1D/2D Hybrid Nanostructures Consisting of a Cd(II Coordination Polymer and NiAl-Layered Double Hydroxides

    Directory of Open Access Journals (Sweden)

    Gonzalo Abellán

    2015-12-01

    Full Text Available The preparation and characterization of a novel hybrid material based on the combination of a 2D-layered double hydroxide (LDH nanosheets and a 1D-coordination polymer (1D-CP has been achieved through a simple mixture of suspensions of both building blocks via an exfoliation/restacking approach. The hybrid material has been thoroughly characterized demonstrating that the 1D-CP moieties are intercalated as well as adsorbed on the surface of the LDH, giving rise to a layered assembly with the coexistence of the functionalities of their initial constituents. This hybrid represents the first example of the assembly of 1D/2D nanomaterials combining LDH with CP and opens the door for a plethora of different functional hybrid systems.

  5. Two-Dimensional Layered Double Hydroxide Derived from Vermiculite Waste Water Supported Highly Dispersed Ni Nanoparticles for CO Methanation

    Directory of Open Access Journals (Sweden)

    Panpan Li

    2017-03-01

    Full Text Available Expanded multilayered vermiculite (VMT was successfully used as catalyst support and Ni/VMT synthesized by microwave irradiation assisted synthesis (MIAS exhibited excellent performance in our previous work. We also developed a two-dimensional porous SiO2 nanomesh (2D VMT-SiO2 by mixed-acid etching of VMT. Compared with three-dimensional (3D MCM-41, 2D VMT-SiO2 as a catalyst support provided a superior position for implantation of NiO species and the as-obtained catalyst exhibited excellent performance. In this paper, we successfully synthesized a layered double hydroxide (LDH using the spent liquor after mixed-acid etching of VMT, which mainly contained Mg2+ and Al3+. The as-calcined layered double oxide (LDO was used as a catalyst support for CO methanation. Compared with Ni/MgAl-LDO, Ni/VMT-LDO had smaller active component particles; therefore, in this study, it exhibited excellent catalytic performance over the whole temperature range of 250–500 °C. Ni/VMT-LDO achieved the best activity with 87.88% CO conversion, 89.97% CH4 selectivity, and 12.47 × 10−2·s−1 turn over frequency (TOF at 400 °C under a gas hourly space velocity of 20,000 mL/g/h. This study demonstrated that VMT-LDO as a catalyst support provided an efficient way to develop high-performance catalysts for synthetic natural gas (SNG from syngas.

  6. Development of efficient electrocatalysts via molecular hybridization of NiMn layered double hydroxide nanosheets and graphene

    Science.gov (United States)

    Ma, Wei; Ma, Renzhi; Wu, Jinghua; Sun, Pengzhan; Liu, Xiaohe; Zhou, Kechao; Sasaki, Takayoshi

    2016-05-01

    Ni2+Mn3+ layered double hydroxide (LDH) nanoplatelets have been hydrothermally synthesized in a homogeneous precipitation of mixed Ni2+/Mn2+ salts at a molar ratio of 2 : 1 via the hydrolysis of hexamethylenetetramine (HMT) and in situ oxidation with H2O2. After anion-exchange, NiMn LDH was exfoliated into unilamellar nanosheets. Subsequent flocculation of NiMn LDH nanosheets with (reduced) graphene oxide (GO/rGO) into superlattice composites was achieved and further tested as electrocatalysts for oxygen evolution reaction (OER). The face-to-face heteroassembly of NiMn LDH nanosheets with conductive rGO at an alternating sequence resulted in a small overpotential of 0.26 V and a Tafel slope of 46 mV per decade, which is much superior to as-exfoliated nanosheets. The analyses of electrochemical activity surface area (ECSA) and impedance spectra clearly indicated that the superlattice structure was ideal in facilitating the migration/transfer of the charge and reactants, revealing the electrochemical energetics and mechanism behind the synergistic effect arising from molecular hybridization. The proof of concept toward total water splitting using the newly developed hybrid electrocatalyst was demonstrated by an electrolysis cell powered by a single AA battery.Ni2+Mn3+ layered double hydroxide (LDH) nanoplatelets have been hydrothermally synthesized in a homogeneous precipitation of mixed Ni2+/Mn2+ salts at a molar ratio of 2 : 1 via the hydrolysis of hexamethylenetetramine (HMT) and in situ oxidation with H2O2. After anion-exchange, NiMn LDH was exfoliated into unilamellar nanosheets. Subsequent flocculation of NiMn LDH nanosheets with (reduced) graphene oxide (GO/rGO) into superlattice composites was achieved and further tested as electrocatalysts for oxygen evolution reaction (OER). The face-to-face heteroassembly of NiMn LDH nanosheets with conductive rGO at an alternating sequence resulted in a small overpotential of 0.26 V and a Tafel slope of 46 mV per decade

  7. OXIDATION OF CYCLOHEXANOL ON PHOSPHOTUNGSTIC ACID ANION INTERCALATED LAYERED DOUBLE HYDROXIDES WITH AQUEOUS H2O2 AS OXIDANT

    Directory of Open Access Journals (Sweden)

    Xueli Bai

    Full Text Available The layered double hydroxides (LDH of Mg2AlNi and Mg3Al pillared by Keggin-type phosphotungstic acid anion (POM, i.e. Mg2AlNi-POM LDH and Mg3Al-POM LDH were synthesized by an ion-exchange method. The synthesized POM intercalated LDH compounds were characterized using various techniques such as FTIR, XRD, TGA and BET. The observed results show that the obtained catalysts retain the layer structure of LDH. Compared with the binary Mg3Al-POM LDH, the ternary Mg2AlNi-POM LDH catalyst indicated a higher thermal and chemical stability. The catalytic activity of the resulting LDH-POM was also assessed in the green oxidation of cyclohexanol with aqueous H2O2 as an oxidant. The Mg2AlNi-POM LDH showed a much higher conversion and selectivity for cyclohexanone than the corresponding Mg3Al-POM LDH catalyst.

  8. Self-healing Li-Al layered double hydroxide conversion coating modified with aspartic acid for 6N01 Al alloy

    Science.gov (United States)

    Zhang, Caixia; Luo, Xiaohu; Pan, Xinyu; Liao, Liying; Wu, Xiaosong; Liu, Yali

    2017-02-01

    A self-healing Li-Al layered double hydroxide conversion coating (LCC) modified with aspartic acid (ALCC) was prepared on 6N01 Al alloy for corrosion protection. Scanning electron microscopy (SEM) showed that a compact thin film has been successfully formed on the alloy. X-ray diffraction (XRD) and FT-IR spectra proved that species of aspartic acid anions were successfully intercalated into LCC. Potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and neutral salt spray (NSS) testing showed that the resultant ALCC could provide effective corrosion protection for the Al alloy. During immersion of the ALCC-coated alloy in 3.5% NaCl solution, new film was formed in the area of artificially introduced scratch, indicating its self-healing capability. XPS results demonstrated that Cl- anions exchange partial Asp anions according to the change content of element on conversion coating. From the above results, the possible mechanism via exchange/self-assembly was proposed to illustrate the phenomenon of self-healing.

  9. The electromagnetic Brillouin precursor in one-dimensional photonic crystals

    NARCIS (Netherlands)

    Uitham, R.; Hoenders, B. J.

    2008-01-01

    We have calculated the electromagnetic Brillouin precursor that arises in a one-dimensional photonic crystal that consists of two homogeneous slabs which each have a single electron resonance. This forerunner is compared with the Brillouin precursor that arises in a homogeneous double-electron

  10. Structural Investigation of Zn(II) Insertion in Bayerite, an Aluminum Hydroxide

    DEFF Research Database (Denmark)

    Pushparaj, Suraj Shiv Charan; Jensen, Nicholai Daugaard; Forano, Claude

    2016-01-01

    Bayerite was treated under hydrothermal conditions (120, 130, 140, and 150 °C) in order to prepare a series of layered double hydroxides (LDHs) with an ideal composition of ZnAl4(OH)12(SO4)0.5nH2O (ZnAl4-LDHs). These products were investigated by both bulk techniques (PXRD, TEM, and elemental an...

  11. Dual nutraceutical nanohybrids of folic acid and calcium containing layered double hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae-Hyun; Oh, Jae-Min, E-mail: jaemin.oh@yonsei.ac.kr

    2016-01-15

    Dual nutraceutical nanohybrids consisting of organic nutrient, folic acid (FA), and mineral nutrient, calcium, were prepared based on layered double hydroxide (LDH) structure. Among various hybridization methods such as coprecipitation, ion exchange, solid phase reaction and exfoliation-reassembly, it was found that exfoliation-reassembly was the most effective in terms of intercalation of FA moiety between Ca-containing LDH layers. X-ray diffraction patterns and infrared spectra indicated that FA molecules were well stabilized in the interlayer space of LDHs through electrostatic interaction. From the atomic force and scanning electron microscopic studies, particle thickness of LDH was determined to be varied with tens, a few and again tens of nanometers in pristine, exfoliated and reassembled state, respectively, while preserving particle diameter. The result confirmed layer-by-layer hybrid structure of FA and LDHs was obtained by exfoliation-reassembly. Solid UV–vis spectra showed 2-dimensional molecular arrangement of FA moiety in hybrid, exhibiting slight red shift in n→π* and π→π* transition. The chemical formulae of FA intercalated Ca-containing LDH were determined to Ca{sub 1.30}Al(OH){sub 4.6}FA{sub 0.74}·3.33H{sub 2}O and Ca{sub 1.53}Fe(OH){sub 5.06}FA{sub 2.24}·9.94H{sub 2}O by inductively coupled plasma-atomic emission spectroscopy, high performance liquid chromatography and thermogravimetry, showing high nutraceutical content of FA and Ca. - Highlights: • We successfully intercalated FA molecules into Ca-containing LDHs. • Exfoliation-reassembly was proven to be the most effective. • The interaction between LDH and FA were studied by FT-IR and UV–vis spectra. • Thermal stability of FA were enhanced by electrostatic interaction with LDH layers.

  12. Calcium hydroxide poisoning

    Science.gov (United States)

    Hydrate - calcium; Lime milk; Slaked lime ... Calcium hydroxide ... These products contain calcium hydroxide: Cement Limewater Many industrial solvents and cleaners (hundreds to thousands of construction products, flooring strippers, brick cleaners, cement ...

  13. Synthesis, characterization, and controlled release antibacterial behavior of antibiotic intercalated Mg–Al layered double hydroxides

    International Nuclear Information System (INIS)

    Wang, Yi; Zhang, Dun

    2012-01-01

    Graphical abstract: The antibiotic anion released from Mg–Al LDHs provides a controlled release antibacterial activity against the growth of Micrococcus lysodeikticus in 3.5% NaCl solution. Highlights: ► Antibiotic anion intercalated LDHs were synthesized and characterized. ► The ion-exchange one is responsible for the release process. ► The diffusion through particle is the release rate limiting step. ► LDHs loaded with antibiotic anion have high antibacterial capabilities. -- Abstract: Antibiotic–inorganic clay composites including four antibiotic anions, namely, benzoate (BZ), succinate (SU), benzylpenicillin (BP), and ticarcillin (TC) anions, intercalated Mg–Al layered double hydroxides (LDHs) were synthesized via ion-exchange. Powder X-ray diffraction and Fourier transform infrared spectrum analyses showed the successful intercalation of antibiotic anion into the LDH interlayer. BZ and BP anions were accommodated in the interlayer region as a bilayer, whereas SU and TC anions were intercalated in a monolayer arrangement. Kinetic simulation of the release data indicated that ion-exchange was responsible for the release process, and the diffusion through the particles was the rate-limiting step. The antibacterial capabilities of LDHs loaded with antibiotic anion toward Micrococcus lysodeikticus growth were analyzed using a turbidimetric method. Significant high inhibition rate was observed when LDH nanohybrid was introduced in 3.5% NaCl solution. Therefore, this hybrid material may be applied as nanocontainer in active antifouling coating for marine equipment.

  14. Recent progress in layered double hydroxide based materials for electrochemical capacitors: design, synthesis and performance.

    Science.gov (United States)

    Zhao, Mingming; Zhao, Qunxing; Li, Bing; Xue, Huaiguo; Pang, Huan; Chen, Changyun

    2017-10-19

    As representative two-dimensional (2D) materials, layered double hydroxides (LDHs) have received increasing attention in electrochemical energy storage and conversion because of the facile tunability between their composition and morphology. The high dispersion of active species in layered arrays, the simple exfoliation into monolayer nanosheets and chemical modification offer the LDHs an opportunity as active electrode materials in electrochemical capacitors (ECs). LDHs are favourable in providing large specific surface areas, good transport features as well as attractive physicochemical properties. In this review, our purpose is to provide a detailed summary of recent developments in the synthesis and electrochemical performance of the LDHs. Their composites with carbon (carbon quantum dots, carbon black, carbon nanotubes/nanofibers, graphene/graphene oxides), metals (nickel, platinum, silver), metal oxides (TiO 2 , Co 3 O 4 , CuO, MnO 2 , Fe 3 O 4 ), metal sulfides/phosphides (CoS, NiCo 2 S 4 , NiP), MOFs (MOF derivatives) and polymers (PEDOT:PSS, PPy (polypyrrole), P(NIPAM-co-SPMA) and PET) are also discussed in this review. The relationship between structures and electrochemical properties as well as the associated charge-storage mechanisms is discussed. Moreover, challenges and prospects of the LDHs for high-performance ECs are presented. This review sheds light on the sustainable development of ECs with LDH based electrode materials.

  15. Equilibrium and Thermodynamic Studies of Anionic Dyes Removal by an Anionic Clay-Layered Double Hydroxide

    International Nuclear Information System (INIS)

    Kantasamy, N.; Siti Mariam Sumari

    2016-01-01

    Adsorption isotherm describes the interaction of adsorbates with adsorbent in equilibrium. Equilibrium data was examined using Langmuir and Freundlich isotherm models. Thermodynamic studies were used to evaluate the thermodynamic parameters; heat of enthalpy change (ΔH degree), Gibbs free energy change (ΔG degree) and heat of entropy change (ΔSdegree) in order to gain information regarding the nature of adsorption (exothermic or endothermic). Four reactive dyes of anionic type, Acid Blue 29 (AB29), Reactive Black 5 (RB5), Reactive Orange 16 (RO16) and Reactive Red 120 (RR120) were used to obtain equilibrium isotherms at 25, 35, 45 and 55 degree Celsius. Based on Giles' classification, the isotherm produced were of L2-type, indicating strong dye affinity towards the adsorbent, and with weak competition with the solvent molecules for active adsorption sites. Equilibrium data fitted both Langmuir and Freundlich isotherm models with high correlation coefficient (R"2 > 0.91) indicating the possibility of both homogeneity and heterogeneous nature of adsorption. The negative values of ΔGdegree indicate the adsorption processes were spontaneous and feasible. The negative values of ΔHdegree lie between -20 to -75 kJ/ mol, suggesting these processes were exothermic and physical in nature. The negative values of ΔSdegree are indication of decreased disorder and randomness of spontaneous adsorption of reactive dyes on layered double hydroxide as adsorbent. (author)

  16. Water types and their relaxation behavior in partially rehydrated CaFe-mixed binary oxide obtained from CaFe-layered double hydroxide in the 155-298 K temperature range.

    Science.gov (United States)

    Bugris, Valéria; Haspel, Henrik; Kukovecz, Ákos; Kónya, Zoltán; Sipiczki, Mónika; Sipos, Pál; Pálinkó, István

    2013-10-29

    Heat-treated CaFe-layered double hydroxide samples were equilibrated under conditions of various relative humidities (11%, 43% and 75%). Measurements by FT-IR and dielectric relaxation spectroscopies revealed that partial to full reconstruction of the layered structure took place. Water types taking part in the reconstruction process were identified via dielectric relaxation measurements either at 298 K or on the flash-cooled (to 155 K) samples. The dynamics of water molecules at the various positions was also studied by this method, allowing the flash-cooled samples to warm up to 298 K.

  17. Sodium hydroxide poisoning

    Science.gov (United States)

    Sodium hydroxide is a very strong chemical. It is also known as lye and caustic soda. This ... poisoning from touching, breathing in (inhaling), or swallowing sodium hydroxide. This article is for information only. Do ...

  18. A comparative study of Ni-Mn layered double hydroxide/carbon composites with different morphologies for supercapacitors.

    Science.gov (United States)

    Li, M; Liu, F; Zhang, X B; Cheng, J P

    2016-11-02

    A variety of carbon materials varying from 0D to 2D, i.e. 0D nanoparticles, 1D carbon nanotubes (CNTs) and 2D reduced graphene oxide (rGO) are selected to in situ combine with Ni-Mn layered double hydroxide (LDH) to prepare electrode materials for supercapacitors. Through a simple solution method, hierarchical Ni-Mn LDH/carbon composites can be easily fabricated. A comparative study is carried out on the sandwich-like LDH/rGO, flower-like LDH/carbon black, turbostratic-structured LDH/CNTs and ternary LDH/CNTs/rGO for their structure, morphology, porous properties and electrochemical performances. The results show that the ternary Ni-Mn LDH/CNTs/rGO composite yields the highest specific capacitance of 1268 F g -1 in 2 M KOH electrolyte and a long lifespan, exhibiting great potential for supercapacitor applications. Meanwhile, investigation on the influence of the cation species of MOH (M = Li + , Na + or K + ) and the alkali concentration of the KOH electrolyte illustrates that increasing the concentration of the KOH electrolyte can benefit the capacitive performance of the electrode and that NaOH shows great advantages as an electrolyte for the Ni-Mn LDH/CNTs/rGO electrode due to its high capacitance and small resistance.

  19. Polyhedral-Like NiMn-Layered Double Hydroxide/Porous Carbon as Electrode for Enhanced Electrochemical Performance Supercapacitors.

    Science.gov (United States)

    Yu, Mei; Liu, Ruili; Liu, Jianhua; Li, Songmei; Ma, Yuxiao

    2017-11-01

    Polyhedral-like NiMn-layered double hydroxide/porous carbon (NiMn-LDH/PC-x) composites are successfully synthesized by hydrothermal method (x = 1, 2 means different mass percent of porous carbon (PC) in composites). The NiMn-LDH/PC-1 composites possess specific capacitance 1634 F g -1 at a current density of 1 A g -1 , and it is much better than that of pure LDH (1095 F g -1 at 1 A g -1 ). Besides, the sample can retain 84.58% of original capacitance after 3000 cycles at 15 A g -1 . An asymmetric supercapacitor with NiMn-LDH/PC-1 as anode and activated carbon as cathode is fabricated, and the supercapacitor can achieve an energy density of 18.60 Wh kg -1 at a power density of 225.03 W kg -1 . The enhanced electrochemical performance attributes to the high faradaic pseudocapacitance of NiMn-LDH, the introduction of PC, and the 3D porous structure of LDH/PC-1 composites. The introduction of PC hinders serious agglomeration of LDH and further accelerates ions transport. The encouraging results indicate that these materials are one of the most potential candidates for energy storage devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Characterization of self-assembled films of NiGa layered double hydroxide nanosheets and their electrochemical properties

    International Nuclear Information System (INIS)

    Altuntasoglu, Ozge; Unal, Ugur; Ida, Shintaro; Goto, Motonobu; Matsumoto, Yasumichi

    2008-01-01

    In this study, we have demonstrated the synthesis and delamination of a rarely studied NiGa layered double hydroxide (LDH) system. Hydrothermal treatment under agitation conditions at 200 deg. C for 4 h resulted in the formation of highly crystalline NiGa LDHs in a shorter time than those synthesized without agitation. The LDH was delaminated into the individual nanosheets in formamide. The most significant finding in this study is the electrochemical behavior of interlayer ferricyanide anions intercalated with the layer-by-layer (LBL) assembly method. The morphology of LBL film with one layer is also monitored with atomic force microscopy. The cyclic voltammogram is similar to potassium metal hexacyanoferrate systems with its unique two-peak wave. Raman spectrum of the film revealed that the metal center of the interlayer cyano complex is in interaction with the Ni 2+ of the host layer. It was concluded that the two-peak cyclic voltammogram of the film is a result of two different forms of the hexacyanoferrate in the interlayer. - Graphical abstract: The thin film deposited from the nanosheets of ion-exchangeable NiGa LDH and ferricyanide molecule with LBL method gives the typical redox reaction of metal hexacyanoferrates in the interlayer. Current density depends on the number of layers

  1. Production of the Lax Ca1-x Cry Al1-y O3 compound through hydroxide precipitation

    International Nuclear Information System (INIS)

    Martins, L.C.; Machado, A.J.S.

    1996-01-01

    Purposing to reduce the cost of preparation of the lanthanum chromite doped with calcium and aluminum, it was made a study of the condition of hydroxide precipitation, using calcium, chromium and aluminum nitrates and lanthanum oxide, as precursors and as precipitate agent was used potassium hydroxide. In this study are showed results about the reaction kinetic, x-ray diffraction and yield as function of the pH. These results suggest a high yield for also elements studied. The phase of stoichiometry, La 0.8 Ca 0.2 Cr 0.75 Al 0.25 O 3 was obtained in low temperature. In fact, this process is viable to produce of lanthanum chromite doped with calcium and aluminum. (author)

  2. Processing and characterization of polystyrene nanocomposites based on CoAl layered double hydroxide

    Directory of Open Access Journals (Sweden)

    Kelothu Suresh

    2016-09-01

    Full Text Available The present work deals with the development of polystyrene (PS nanocomposites through solvent blending technique with diverse contents of modified CoAl layered double hydroxide (LDH. The prepared PS as well as PS/CoAl LDH (1–7 wt.% nanocomposites were characterized by X-ray diffraction (XRD, transmission electron microscopy (TEM, Fourier transform infrared spectroscopy (FTIR, rheological analysis, thermogravimetric analysis (TGA and differential scanning calorimetry (DSC. The XRD results suggested the formation of exfoliated structure, while TEM images clearly indicated the intercalated morphology of PS nanocomposites at higher loading. The presence of various functional groups in the CoAl LDH and PS/CoAl LDH nanocomposites was verified by FTIR analysis. TGA data confirmed that the thermal stability of PS composites was enhanced significantly as compared to pristine PS. While considering 15% weight loss as a reference point, it was found that the thermal degradation (Td temperature increased up to 28.5 °C for PS nanocomposites prepared with 7 wt.% CoAl LDH loading over pristine PS. All the nanocomposite samples displayed superior glass transition temperature (Tg, in which PS nanocomposites containing 7 wt.% LDH showed about 5.5 °C higher Tg over pristine PS. In addition, the kinetics for thermal degradation of the composites was studied using Coats-Redfern method. The Criado method was ultimately used to evaluate the decomposition reaction mechanism of the nanocomposites. The complex viscosity and rheological muduli of nanocomposites were found to be higher than that of pristine PS when the frequency increased from 0.01 to 100 s−1.

  3. Layered double hydroxides as supports for intercalation and sustained release of antihypertensive drugs

    International Nuclear Information System (INIS)

    Xia Shengjie; Ni Zheming; Xu Qian; Hu Baoxiang; Hu Jun

    2008-01-01

    Zn/Al layered double hydroxides (LDHs) were intercalated with the anionic antihypertensive drugs Enalpril, Lisinopril, Captopril and Ramipril by using coprecipitation or ion-exchange technique. TG-MS analyses suggested that the thermal stability of Ena - , Lis - (arranged with monolayer, resulted from X-ray diffraction (XRD) and Fourier transform infrared spectra (FT-IR) analysis was enhanced much more than Cap - and Ram - (arranged with bilayer). The release studies show that the release rate of all samples markedly decreased in both pH 4.25 and 7.45. However, the release time of Ena - , Lis - were much longer compared with Cap - , Ram - in both pH 4.25 and 7.45, it is possible that the intercalated guests, arranged with monolayer in the interlayer, show lesser repulsive force and strong affinity with the LDH layers. And the release data followed both the Higuchi-square-root law and the first-order equation well. Based on the analysis of batch release, intercalated structural models as well as the TG-DTA results, we conclude that for drug-LDH, stronger the affinity between intercalated anions and the layers is, better the thermal property and the stability to the acid attack of drug-LDH, and the intercalated anions are easier apt to monolayer arrangement within the interlayer, were presented. - Graphical abstract: A series of antihypertensive drugs including Enalpril, Lisinopril, Captopril and Ramipril were intercalated into Zn/Al-NO 3 -LDHs successfully by coprecipitation or ion-exchange technique. We focus on the structure, thermal property and low/controlled release property of as-synthesized drug-LDH composite intended for the possibility of applying these LDH-antihypertensive nanohybrids in drug delivery and controlled release systems

  4. Synthesis and In Vitro Characterization of Fe3+-Doped Layered Double Hydroxide Nanorings as a Potential Imageable Drug Delivery System

    Directory of Open Access Journals (Sweden)

    Lijun Wang

    2017-09-01

    Full Text Available Highly dispersed Fe3+-doped layered double hydroxide (LDH-Fe nanorings were obtained by a simple coprecipitation-acid etching approach. The morphology, structure, magnetic resonance imaging (MRI performance in vitro, drug loading and releasing, Fe3+ leakage, and cytotoxicity of the as-prepared LDH-Fe nanorings were characterized. The LDH-Fe nanorings showed good water dispersity and a well-crystallized structure. The DLS average size of nanoparticles was measured to be 94.5 nm. Moreover, the MRI tests showed a favourable T1-weighted MRI performance of the LDH-Fe nanoring with r1 values of 0.54 and 1.68, and low r2/r1 ratios of 10.1 and 6.3, pre- and after calcination, respectively. The nanoparticles also showed high model drug (ibuprofen loading capacities, low Fe3+ leakage, and negligible cytotoxicity. All these results demonstrate the potential of LDH-Fe nanorings as an imageable drug delivery system.

  5. In situ fabrication of nickel aluminum-layered double hydroxide nanosheets/hollow carbon nanofibers composite as a novel electrode material for supercapacitors

    Science.gov (United States)

    He, Fang; Hu, Zhibiao; Liu, Kaiyu; Zhang, Shuirong; Liu, Hongtao; Sang, Shangbin

    2014-12-01

    This paper introduces a new design route to fabricate nickel aluminum-layered double hydroxide (NiAl-LDH) nanosheets/hollow carbon nanofibers (CNFs) composite through an in situ growth method. The NiAl-LDH thin layers which grow on hollow carbon nanofibers have an average thickness of 13.6 nm. The galvanostatic charge-discharge test of the NiAl-LDH/CNFs composite yields an impressive specific capacitance of 1613 F g-1 at 1 A g-1 in 6 M KOH solution, the composite shows a remarkable specific capacitance of 1110 F g-1 even at a high current density of 10 A g-1. Furthermore, the composite remains a specific capacitance of 1406 F g-1 after 1000 cycles at 2 A g-1, indicating the composite has excellent high-current capacitive behavior and good cycle stability in compared to pristine NiAl-LDH.

  6. Effective self-purification of polynary metal electroplating wastewaters through formation of layered double hydroxides.

    Science.gov (United States)

    Zhou, Ji Zhi; Wu, Yue Ying; Liu, Chong; Orpe, Ajay; Liu, Qiang; Xu, Zhi Ping; Qian, Guang Ren; Qiao, Shi Zhang

    2010-12-01

    Heavy metal ions (Ni(2+), Zn(2+), and Cr(3+)) can be effectively removed from real polynary metal ions-bearing electroplating wastewaters by a carbonation process, with ∼99% of metal ions removed in most cases. The synchronous formation of layered double hydroxide (LDH) precipitates containing these metal ions was responsible for the self-purification of wastewaters. The constituents of formed polynary metals-LDHs mainly depended on the Ni(2+):Zn(2+):Cr(3+) molar ratio in wastewaters. LDH was formed at pH of 6.0-8.0 when the Ni(2+)/Zn(2+) molar ratio ≥ 1 where molar fraction of trivalent metal in the wastewaters was 0.2-0.4, otherwise ZnO, hydrozincite, or amorphous precipitate was observed. In the case of LDH formation, the residual concentration of Ni(2+), Zn(2+), and Cr(3+) in the treated wastewaters was very low, about 2-3, ∼2, and ∼1 mg/L, respectively, at 20-80 °C and pH of 6.0-8.0, indicating the effective incorporation of heavy metal ions into the LDH matrix. Furthermore, the obtained LDH materials were used to adsorb azoic dye GR, with the maximum adsorption amount of 129-134 mg/g. We also found that the obtained LDHs catalyzed more than 65% toluene to decompose at 350 °C under ambient pressure. Thus the current research has not only shown effective recovery of heavy metal ions from the electroplating wastewaters in an environmentally friendly process but also demonstrated the potential utilization of recovered materials.

  7. Layered hydroxides intercalated with organic anions and their application in preparation of LDH/polymer nanocomposites

    Czech Academy of Sciences Publication Activity Database

    Kovanda, F.; Jindová, E.; Doušová, B.; Koloušek, D.; Pleštil, Josef; Sedláková, Zdeňka

    2009-01-01

    Roč. 6, č. 1 (2009), s. 111-119 ISSN 1214-9705 R&D Projects: GA AV ČR KAN100500651 Institutional research plan: CEZ:AV0Z40500505 Keywords : hydrotalcite * layered double hydroxides * intercalation Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.275, year: 2009

  8. The application of layered double hydroxide clay (LDH)-poly(lactide-co-glycolic acid) (PLGA) film composites for the controlled release of antibiotics

    DEFF Research Database (Denmark)

    Chakraborti, Michelle; Jackson, John K.; Plackett, David

    2012-01-01

    and quantitation of the unbound fraction by UV/Vis absorbance or HPLC analysis. Drug release from layered double hydroxide clay/drug complexes dispersed in polymeric films was measured by incubation in phosphate-buffered saline (pH 7.4) at 37 °C using absorbance or HPLC analysis. Antimicrobial activity of drug......Many sites of bacterial infection such as in-dwelling catheters and orthopedic surgical sites require local rather than systemic antibiotic administration. However, currently used controlled release vehicles, such as polymeric films, release water-soluble antibiotics too quickly, whereas nonporous...... released from film composites was determined using zonal inhibition studies against S. epidermidis. All drugs bound to the clay particles to various degrees. Generally, drugs released with a large burst phase of release (except DOX) with little further drug release after 4 days. Dispersion of drug...

  9. Potentiostatically deposited nanostructured Co{sub x}Ni{sub 1-x} layered double hydroxides as electrode materials for redox-supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Vinay [Art, Science and Technology Center for Cooperative Research, Kyushu University, Kasuga-shi, Fukuoka 816-8580 (Japan); Japan Science and Technology Agency, Kawaguchi-shi, Saitama 332-0012 (Japan); Gupta, Shubhra; Miura, Norio [Art, Science and Technology Center for Cooperative Research, Kyushu University, Kasuga-shi, Fukuoka 816-8580 (Japan)

    2008-01-03

    Cobalt-nickel layered double hydroxides (Co{sub x}Ni{sub 1-x} LDHs) were deposited onto stainless steel electrodes by the potentiostatic deposition method at -1.0 V vs. Ag/AgCl using various molar ratios of Co(NO{sub 3}){sub 2} and Ni(NO{sub 3}){sub 2} in distilled water. Their structure and surface morphology were studied by using X-ray diffraction analysis, energy dispersive X-ray spectroscopy and scanning electron microscopy. A network of Co{sub x}Ni{sub 1-x} LDH nanosheets was obtained. The nature of the cyclic voltammetry and charge-discharge curves suggested that the Co{sub x}Ni{sub 1-x} LDHs exist in the form of solid solutions. The capacitive characteristics of the Co{sub x}Ni{sub 1-x} LDHs in 1 M KOH electrolyte showed that Co{sub 0.72}Ni{sub 0.28} LDHs had the highest specific capacitance value, 2104 F g{sup -1}, which is also the highest yet reported value for oxide materials in general. (author)

  10. Mössbauer, XRD and TEM Study on the Intercalation and the Release of Drugs in/from Layered Double Hydroxides

    Directory of Open Access Journals (Sweden)

    E. Kuzmann

    2015-12-01

    Full Text Available Layered double hydroxides (LDHs are one of the very important nano-carriers for drug delivery, due to their many advantageous features, such as the ease and low-cost of preparation, low cytotoxicity, good biocompatibility, protection for the intercalated drugs, and the capacity to facilitate the uptake of the loaded drug in the cells. In our previous studies, Mössbauer spectroscopy was applied to monitor structural changes occurring during the incorporation of Fe(III in MgFe- and CaFe-LDHs, and the intercalation of various organic compounds in anionic form. Recently, we have successfully elaborated a protocol for the intercalation and release of indol-2-carboxylate and L-cysteinate in CaFe-LDH. The corresponding structural changes in the LDH samples were studied by XRD, HR-TEM and 57Fe Mössbauer spectroscopy. The Mössbauer spectra reflected small but significant changes upon both the intercalation and the release of drugs. The changes in the basal distances could be followed by XRD measurements, and HR-TEM images made these changes visible.

  11. Microwave-assisted synthesis of metal oxide/hydroxide composite electrodes for high power supercapacitors - A review

    Science.gov (United States)

    Faraji, Soheila; Ani, Farid Nasir

    2014-10-01

    Electrochemical capacitors (ECs), also known as pseudocapacitors or supercapacitors (SCs), is receiving great attention for its potential applications in electric and hybrid electric vehicles because of their ability to store energy, alongside with the advantage of delivering the stored energy much more rapidly than batteries, namely power density. To become primary devices for power supply, supercapacitors must be developed further to improve their ability to deliver high energy and power simultaneously. In this concern, a lot of effort is devoted to the investigation of pseudocapacitive transition-metal-based oxides/hydroxides such as ruthenium oxide, manganese oxide, cobalt oxide, nickel oxide, cobalt hydroxide, nickel hydroxide, and mixed metal oxides/hydroxides such as nickel cobaltite and nickel-cobalt oxy-hydroxides. This is mainly due to the fact that they can produce much higher specific capacitances than typical carbon-based electric double-layer capacitors and electronically conducting polymers. This review presents supercapacitor performance data of metal oxide thin film electrodes by microwave-assisted as an inexpensive, quick and versatile technique. Supercapacitors have established the specific capacitance (Cs) principles, therefore, it is likely that metal oxide films will continue to play a major role in supercapacitor technology and are expected to considerably increase the capabilities of these devices in near future.

  12. First-principles study of oxygen evolution reaction on Co doped NiFe-layered double hydroxides

    Science.gov (United States)

    Yu, Jie; Perdew, John; Yan, Qimin

    The conversion of solar energy to renewable fuels is a grand challenge. One of the crucial steps for this energy conversion process is the discovery of efficient catalysts with lower overpotential for the oxygen evolution reaction (OER). Layered double hydroxides (LDH) with earth abundant elements such as Ni and Fe have been found as promising OER catalysts and shown to be active for water oxidation. Doping is one of the feasible ways to even lower the overpotential of host materials and breaks the linear scaling law. In this talk we'll present our study on the reaction mechanism of OER on pure and Co-doped NiFe-LDH systems in alkaline solution. We study the absorption energetics of reaction intermediate states and calculate the thermodynamic reaction energy using density functional theory with the PBE +U and the newly developed SCAN functionals. It is shown that the NiFe-LDH system with Co dopants has lower overpotential and higher activity compared with the undoped system. The improvement in activity is related to the presence of Co states in the electronic structure. The work provides a clear clue for the further improvement of the OER activity of LDH systems by chemical doping. The work was supported as part of the Center for the Computational Design of Functional Layered Materials, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science.

  13. Treatment of textile effluents by chloride-intercalated Zn-, Mg- and Ni-Al layered double hydroxides

    Directory of Open Access Journals (Sweden)

    F. Z. Mahjoubi

    2017-09-01

    Full Text Available This work involved the preparation, characterization and dyes removal ability of Zn-Al, Mg-Al and Ni-Al layered double hydroxide (LDH minerals intercalated by chloride ions. The materials were synthetized by the co-precipitation method. X-ray diffraction, Fourier transform infrared, thermogravimetric-differential thermal analysis and transmission electron microscopy characterization exhibited a typical hydrotalcite structure for all the samples. Adsorption experiments for methyl orange were performed in terms of solution pH, contact time and initial dye concentration. Experimental results indicate that the capacity of dye uptake augmented rapidly within the first 60 min and then stayed practically the same regardless of the concentration. Maximum adsorption occurred with acidic pH medium. Kinetic data were studied using pseudo-first-order and pseudo-second-order kinetic models. Suitable correlation was acquired with the pseudo-second-order kinetic model. Equilibrium data were fitted to Langmuir and Freundlich isotherm models. The maximum Langmuir monolayer adsorption capacities were 2,758, 1,622 and 800 mg/g, respectively, for Zn-Al-Cl, Mg-Al-Cl and Ni-Al-Cl. The materials were later examined for the elimination of color and chemical oxygen demand (COD from a real textile effluent wastewater. The results indicated that the suitable conditions for color and COD removal were acquired at pH of 5. The maximum COD removal efficiency from the effluent was noted as 92.84% for Zn-Al-Cl LDH.

  14. 21 CFR 184.1631 - Potassium hydroxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium hydroxide. 184.1631 Section 184.1631 Food... Specific Substances Affirmed as GRAS § 184.1631 Potassium hydroxide. (a) Potassium hydroxide (KOH, CAS Reg... pellets, flakes, sticks, lumps, and powders. Potassium hydroxide is obtained commercially from the...

  15. Synthesis, Characterization, and In Vitro Drug Delivery Capabilities of (Zn, Al-Based Layered Double Hydroxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Vinay J. Nagaraj

    2015-01-01

    Full Text Available There is an urgent need for the development of alternative strategies for effective drug delivery to improve the outcome of patients suffering from deadly diseases such as cancer. Nanoparticles, in particular layered double hydroxide (LDH nanoparticles, have great potential as nanocarriers of chemotherapeutic molecules. In this study, we synthesized (Zn, Al-LDH nanoparticles and report their enhanced pH-dependent stability in comparison to the commonly used (Mg, Al-LDH nanoparticles. Fluorescein isothiocyanate (FITC and valproate (VP were intercalated into (Zn, Al-LDH nanoparticles to study cellular uptake, biocompatibility, and drug delivery capabilities using cultured pancreatic adenocarcinoma BxPC3 cells. Fluorescence measurements indicated that FITC-intercalated LDH nanoparticles showed a greater degree of energy-dependent uptake rather than passive uptake by BxPC3 cells, especially at high concentrations of nanoparticles. Tetrazolium-based colorimetric assays indicated that BxPC3 cells treated with VP-intercalated LDH nanoparticles showed a significant reduction in cell viability along with about 30-fold reduction in IC50 compared to the drug alone. In contrast, the non-drug-intercalated LDH nanoparticles did not affect the cell viability indicating very low innate cytotoxicity. Our research indicates that the superior properties of (Zn, Al-LDH nanoparticles make them ideal candidates for further development as in vivo chemotherapy drug delivery agents.

  16. Synthesis and characterization of Mg-Al-layered double hydroxides intercalated with cubane-1,4-dicarboxylate anions.

    Science.gov (United States)

    Rezvani, Zolfaghar; Arjomandi Rad, Farzad; Khodam, Fatemeh

    2015-01-21

    In the present work, Mg2Al-layered double hydroxide (LDH) intercalated with cubane-1,4-dicarboxylate anions was prepared from the reaction of solutions of Mg(ii) and Al(iii) nitrate salts with an alkaline solution of cubane-1,4-dicarboxylic acid by using the coprecipitation method. The successful preparation of a nanohybrid of cubane-1,4-dicarboxylate(cubane-dc) anions with LDH was confirmed by powder X-ray diffraction, FTIR spectroscopy and thermal gravimetric analysis (TGA). The increase in the basal spacing of LDHs from 8.67 Å to 13.40 Å shows that cubane-dc anions were successfully incorporated into the interlayer space. Thermogravimetric analyses confirm that the thermal stability of the intercalated cubane-dc anions is greater than that of the pure form before intercalation because of host-guest interactions involving hydrogen bonds. The interlayer structure, hydrogen bonding, and subsequent distension of LDH compounds containing cubane-dc anions were shown by molecular simulation. The RDF (radial distribution function), mean square displacement (MSD), and self-diffusion coefficient were calculated using the trajectory files on the basis of molecular dynamics (MD) simulations, and the results indicated that the cubane-dc anions were more stable when intercalated into the LDH layers. A good agreement was obtained between calculated and measured X-ray diffraction patterns and between experimental and calculated basal spacings.

  17. Kinetic Evaluation of Lipid Oils Conversion to Biofuel Using Layered Double Hydroxide Doped with Triazabicyclodece Catalyst

    Science.gov (United States)

    Nato Lopez, Frank D.

    Worldwide, there is an ever increasing need for sustainable, renewable fuels that will accommodate the rapidly increasing energy demand and provide independence from fossil fuels. The search for a sustainable alternative to petroleum based fuels has been a great challenge to the scientific community; therefore, great efforts are being made to overcome the fossil fuels dependence by exploring the prominent field of biofuels (bioethanol and biodiesel). Traditional biodiesel is produced from feedstocks such as vegetable oils and animal fats by converting the triglycerides with methanol in the presence of a homogeneous catalyst to produce fatty acid methyl esters (FAMEs). However, drawbacks of this process are the undesired glycerol byproduct and post reaction processing, including separation from reaction mixture, that results in high costs factors. In the present work, the reaction kinetics of a glycerol-free biodiesel method is studied. This method consists of the transesterification of a vegetable oil (i.e. canola oil) using dimethyl carbonate (DMC) as an alternative methylating agent in presence of layered double hydroxides doped with triazabicyclodecene catalyst (a basic organocatalyst). Furthermore, is theorized that this heterogeneous catalyst (TBD/LDH) simultaneously converts both FFAs and triglycerides due to acid sites formed by Al3+ active sites of the LDH structure. Additionally, the versatility of the Raman in situ technique was used as quantitative analysis tool to monitor the reaction kinetics and collect real time data.

  18. Anticancer Drug-Incorporated Layered Double Hydroxide Nanohybrids and Their Enhanced Anticancer Therapeutic Efficacy in Combination Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Tae-Hyun Kim

    2014-01-01

    Full Text Available Objective. Layered double hydroxide (LDH nanoparticles have been studied as cellular delivery carriers for anionic anticancer agents. As MTX and 5-FU are clinically utilized anticancer drugs in combination therapy, we aimed to enhance the therapeutic performance with the help of LDH nanoparticles. Method. Anticancer drugs, MTX and 5-FU, and their combination, were incorporated into LDH by reconstruction method. Simply, LDHs were thermally pretreated at 400°C, and then reacted with drug solution to simultaneously form drug-incorporated LDH. Thus prepared MTX/LDH (ML, 5-FU/LDH (FL, and (MTX + 5-FU/LDH (MFL nanohybrids were characterized by X-ray diffractometer, scanning electron microscopy, infrared spectroscopy, thermal analysis, zeta potential measurement, dynamic light scattering, and so forth. The nanohybrids were administrated to the human cervical adenocarcinoma, HeLa cells, in concentration-dependent manner, comparing with drug itself to verify the enhanced therapeutic efficacy. Conclusion. All the nanohybrids successfully accommodated intended drug molecules in their house-of-card-like structures during reconstruction reaction. It was found that the anticancer efficacy of MFL nanohybrid was higher than other nanohybrids, free drugs, or their mixtures, which means the multidrug-incorporated LDH nanohybrids could be potential drug delivery carriers for efficient cancer treatment via combination therapy.

  19. Soft-chemical synthesis and catalytic activity of Ni-Al and Co-Al layered double hydroxides (LDHs intercalated with anions with different charge density

    Directory of Open Access Journals (Sweden)

    Takahiro Takei

    2014-09-01

    Full Text Available Co-Al and Ni-Al layered double hydroxides (LDHs intercalated with three types of anionic molecules, dodecylsulfate (C12H25SO4−, DS, di-2-ethylsulfosuccinate ([COOC2H3EtBu]2C2H3SO3−, D2ES, and polytungstate (H2W12O4210−, HWO were prepared by means of ion-exchange and co-precipitation processes. With the use of DS and D2ES as intercalation agents, high crystallinity was maintained after intercalation into the LDHs. In the case of HWO, the intercalated LDHs could be obtained by ion-exchange as well as co-precipitation with a decline in the crystallinity; however, unreacted LDH was detected in the ion-exchange samples, and some unwanted phases such as hydroxide and pyrochlore were generated by the co-precipitation process. The maximum specific surface area and pore volume of the Ni-Al sample with intercalated HWO, prepared by the ion-exchange process were 74 m2/g and 0.174 mL/g, respectively. The occupancies of DS, D2ES, and HWO within the interlayer space were approximately 0.3–0.4, 0.5–0.6, and 0.1–0.2, respectively, in the Co-Al and Ni-Al LDHs. Analysis of the catalytic activity demonstrated that the DS-intercalated Ni-Al LDH sample exhibited relatively good catalytic activity for conversion of cyclohexanol to cyclohexanone.

  20. Oxidation of cyclohexanol on phosphotungstic acid anion intercalated layered double hydroxides with aqueous H{sub 2}O{sub 2} as oxidant

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Xueli; Xue, Dandan; Sun, Huiyan; Huang, Xin; Zhao, Yongxiang; Zhang, Yue, E-mail: zyue@sxu.edu.cn [School of Chemical Engineering, Shanxi University, Shanxi (China); Bai, Zhaoyang [Shanxi Agricultural University, Shanxi (China)

    2018-01-15

    The layered double hydroxides (LDH) of Mg{sub 2}AlNi and Mg{sub 3}Al pillared by Keggin-type phosphotungstic acid anion (POM), i.e. Mg{sub 2}AlNi-POM LDH and Mg{sub 3}Al-POM LDH were synthesized by an ion-exchange method. The synthesized POM intercalated LDH compounds were characterized using various techniques such as FTIR, XRD, TGA and BET. The observed results show that the obtained catalysts retain the layer structure of LDH. Compared with the binary Mg{sub 3}Al-POM LDH, the ternary Mg{sub 2}AlNi-POM LDH catalyst indicated a higher thermal and chemical stability. The catalytic activity of the resulting LDH-POM was also assessed in the green oxidation of cyclohexanol with aqueous H{sub 2}O{sub 2} as an oxidant. The Mg{sub 2}AlNi-POM LDH showed a much higher conversion and selectivity for cyclohexanone than the corresponding Mg{sub 3}Al-POM LDH catalyst. (author)

  1. Transesterification of edible, non-edible and used cooking oils for biodiesel production using calcined layered double hydroxides as reusable base catalysts.

    Science.gov (United States)

    Sankaranarayanan, Sivashunmugam; Antonyraj, Churchil A; Kannan, S

    2012-04-01

    Fatty acid methyl esters (FAME) were produced from edible, non-edible and used cooking oils with different fatty acid contents by transesterification with methanol using calcined layered double hydroxides (LDHs) as solid base catalysts. Among the catalysts, calcined CaAl2-LDH (hydrocalumite) showed the highest activity with >90% yield of FAME using low methanol:oil molar ratio (<6:1) at 65 °C in 5 h. The activity of the catalyst was attributed to its high basicity as supported by Hammett studies and CO(2)-TPD measurements. The catalyst was successfully reused in up to four cycles. Some of the properties such as density, viscosity, neutralization number and glycerol content of the obtained biodiesel matched well with the standard DIN values. It is concluded that a scalable heterogeneously catalyzed process for production of biodiesel in high yields from a wide variety of triglyceride oils including used oils is possible using optimized conditions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Nanostructural drug-inorganic clay composites: Structure, thermal property and in vitro release of captopril-intercalated Mg-Al-layered double hydroxides

    International Nuclear Information System (INIS)

    Zhang Hui; Zou Kang; Guo Shaohuan; Duan Xue

    2006-01-01

    A nanostructural drug-inorganic clay composite involving a pharmaceutically active compound captopril (Cpl) intercalated Mg-Al-layered double hydroxides (Cpl-LDHs) with Mg/Al molar ratio of 2.06 has been assembled by coprecipitation method. Powder X-ray diffraction (XRD), Fourier transform infrared spectra (FT-IR) and Raman spectra analysis indicate a successful intercalation of Cpl between the layers with a vertical orientation of Cpl disulphide-containing S-S linkage. SEM photo indicates that as-synthesized Cpl-LDHs possess compact and non-porous structure with approximately and linked elliptical shape particles of ca. 50 nm. TG-DTA analyses suggest that the thermal stability of intercalated organic species is largely enhanced due to host-guest interaction involving the hydrogen bond compared to pure form before intercalation. The in vitro release studies show that both the release rate and release percentages markedly decrease with increasing pH from 4.60 to 7.45 due to possible change of release mechanism during the release process. The kinetic simulation for the release data, and XRD and FT-IR analyses for samples recovered from release media indicate that the dissolution mechanism is mainly responsible for the release behaviour of Cpl-LDHs at pH 4.60, while the ion-exchange one is responsible for that at pH 7.45. - Graphical abstract: Based on XRD, FT-IR and Raman spectra analyses, it is suggested that captopril (Cpl) exists as its disulphide metabolites in the interlayer of Mg-Al-LDHs via hydrogen bonding between guest carboxylate function and hydroxyl group of the host layers. A schematic supramolecular structure of Cpl intercalates involving a vertical orientation of Cpl disulphide-containing S-S bond between the layers with carboxylate anions pointing to both hydroxide layers is presented

  3. Efficient removal of dyes by a novel magnetic Fe{sub 3}O{sub 4}/ZnCr-layered double hydroxide adsorbent from heavy metal wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dan; Li, Yang; Zhang, Jia [School of Environmental and Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200444 (China); Li, Wenhui [Department of Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China); Zhou, Jizhi; Shao, Li [School of Environmental and Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200444 (China); Qian, Guangren, E-mail: grqian@shu.edu.cn [School of Environmental and Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200444 (China)

    2012-12-15

    Graphical abstract: To purify heavy metal wastewater (pickling waste liquor (PWL{sub A} and PWL{sub B}) and electroplating wastewater (EPW{sub C} and EPW{sub D})), a novel magnetic Fe{sub 3}O{sub 4}/ZnCr-LDH material was formed via two-step microwave hydrothermal method (Step 1 and Step 2) and applicable for organic dyes wastewater treatment. Highlights: Black-Right-Pointing-Pointer Fe{sub 3}O{sub 4}/ZnCr-layered double hydroxide adsorbent was produced from wastewater. Black-Right-Pointing-Pointer RSM was successfully applied to the optimization of the preparation conditions. Black-Right-Pointing-Pointer The maximum adsorption capacity of MO was found to be 240.16 mg/g. Black-Right-Pointing-Pointer The MO adsorption mechanism on MFLA was certified. Black-Right-Pointing-Pointer MFLA could be recycled after catalytic regeneration by the oxidation technology. - Abstract: A novel magnetic Fe{sub 3}O{sub 4}/ZnCr-layered double hydroxide adsorbent was produced from electroplating wastewater and pickling waste liquor via a two-step microwave hydrothermal method. Adsorption of methyl orange (MO) from water was studied using this material. The effects of three variables have been investigated by a single-factor method. The response surface methodology (RSM) based on Box-Behnken design was successfully applied to the optimization of the preparation conditions. The maximum adsorption capacity of MO was found to be 240.16 mg/g, indicating that this material may be an effective adsorbent. It was shown that 99% of heavy metal ions (Fe{sup 2+}, Fe{sup 3+}, Cr{sup 3+}, and Zn{sup 2+}) can be effectively removed into precipitates and released far less in the adsorption process. In addition, this material with adsorbed dye can be easily separated by a magnetic field and recycled after catalytic regeneration with advanced oxidation technology. Meanwhile, kinetic models, FTIR spectra and X-ray diffraction pattern were applied to the experimental data to examine uptake mechanism. The

  4. Formation of mixed hydroxides in the thorium chloride-iron chloride-sodium hydroxide system

    International Nuclear Information System (INIS)

    Krivokhatskij, A.S.; Prokudina, A.F.; Sapozhnikova, T.V.

    1976-01-01

    The process of formation of mixed hydroxides in the system thorium chloride-iron chloride-NaOH was studied at commensurate concentrations of Th and Fe in solution (1:1 and 1:10 mole fractions, respectively) with ionic strength 0.3, 2.1, and 4.1, created with the electrolyte NaCl, at room temperature 22+-1degC. By the methods of chemical, potentiometric, thermographic, and IR-spectrometric analyses, it was shown that all the synthesized precipitates are mechanical mixtures of two phases - thorium hydroxide and iron hydroxide - and not a new hydrated compound. The formal solubility of the precipitates of mixed hydroxides was determined. It was shown that the numerical value of the formal solubility depends on the conditions of formation and age of the precipitates

  5. The stream of precursors that colonizes the thymus proceeds selectively through the early T lineage precursor stage of T cell development

    Science.gov (United States)

    Benz, Claudia; Martins, Vera C.; Radtke, Freddy; Bleul, Conrad C.

    2008-01-01

    T cell development in the thymus depends on continuous colonization by hematopoietic precursors. Several distinct T cell precursors have been identified, but whether one or several independent precursor cell types maintain thymopoiesis is unclear. We have used thymus transplantation and an inducible lineage-tracing system to identify the intrathymic precursor cells among previously described thymus-homing progenitors that give rise to the T cell lineage in the thymus. Extrathymic precursors were not investigated in these studies. Both approaches show that the stream of T cell lineage precursor cells, when entering the thymus, selectively passes through the early T lineage precursor (ETP) stage. Immigrating precursor cells do not exhibit characteristics of double-negative (DN) 1c, DN1d, or DN1e stages, or of populations containing the common lymphoid precursor 2 (CLP-2) or the thymic equivalent of circulating T cell progenitors (CTPs). It remains possible that an unknown hematopoietic precursor cell or previously described extrathymic precursors with a CLP, CLP-2, or CTP phenotype feed into T cell development by circumventing known intrathymic T cell lineage progenitor cells. However, it is clear that of the known intrathymic precursors, only the ETP population contributes significant numbers of T lineage precursors to T cell development. PMID:18458114

  6. Advanced oxidation of rhodamine B with hydrogen peroxide over ZnCr layered double hydroxide catalysts

    Directory of Open Access Journals (Sweden)

    Nguyen Tien Thao

    2017-09-01

    Full Text Available Zn/Cr layered zinc hydroxide materials with different molar ratios of Cr/Zn have been synthesized through the coprecipitation method at pH of 9.0–9.5. At high Cr/Zn molar ratios of 0.5/1–1/3, the materials possess some layered structure with carbonate anions between the interlayer galleries. The catalysts present uniform particle sizes and quite high surface area. An isomorphous substitution of Zn2+ by Cr3+ in the brucite-like sheets makes the layered Cr-doped zinc hydroxides potential catalysts for efficient oxidation of rhodamine B with H2O2 solution. The experimental results indicated that the intra-lattice Cr3+ ions are more active than Cr2O3 components in the oxidative removal of rhodamine B. The degradation efficiency is dependent on the intra lattice Cr3+ contents and reaction variables. The Cr/Zn LDH gave a high decolorization (99% of rhodamine B at near neutral pH and room temperature.

  7. Formation and transformation of a short range ordered iron carbonate precursor

    DEFF Research Database (Denmark)

    Dideriksen, Knud; Frandsen, Cathrine; Bovet, Nicolas

    2015-01-01

    (II) with varying pH produced broad peaks in X-ray diffraction and contained dominantly Fe and CO3 when probed with X-ray photoelectron spectroscopy. Reduced pair distribution function (PDF) analysis shows only peaks corresponding to interatomic distances below 15Å, reflecting a material with no long range...... structural order. Moreover, PDF peak positions differ from those for known iron carbonates and hydroxides. Mössbauer spectra also deviate from those expected for known iron carbonates and suggest a less crystalline structure. These data show that a previously unidentified iron carbonate precursor phase...... formed. Its coherent scattering domains determined from PDF analysis are slightly larger than for amorphous calcium carbonate, suggesting that the precursor could be nanocrystalline. Replica exchange molecular dynamics simulations of Fe-carbonate polynuclear complexes yield PDF peak positions that agree...

  8. From nicotinate-containing layered double hydroxides (LDHs) to NAD coenzyme-LDH nanocomposites - Syntheses and structural characterization by various spectroscopic methods

    Science.gov (United States)

    Muráth, Szabolcs; Dudás, Csilla; Kukovecz, Ákos; Kónya, Zoltán; Sipos, Pál; Pálinkó, István

    2017-07-01

    The syntheses of nicotinate anion- and NAD coenzyme-layered double hydroxide (LDH) composites were performed with the aim of having the organic component among the layers. In-house prepared CaAl-LDHs were the host materials. Intercalation was attempted by direct ion exchange or by the dehydration-rehydration method applying aqueous solvent mixtures (containing ethanol, propanol, acetone, N,N-dimethylformamide). For structural characterization, beside X-ray diffractometry, X-ray photoelectron and IR spectroscopies, transmission and scanning electron microscopies as well as energy-dispersive X-ray analysis were used. Molecular modelling served for the visualization of the arrangements of the intercalated ions among the layers of the LDH samples. Although not all the intercalation methods and solvent mixtures led to intercalated composite materials, successful ones could be identified. The combination of spectroscopic methods helped in proposing sensible spatial arrangements for the intercalated anions. The NAD-CaAl-LDH composite proved to be an active catalyst in the oxidation of hydroquinone to 1,4-bezoquinoe in the presence of H2O2.

  9. Facile synthesis of three dimensional hierarchical Co-Al layered double hydroxides on graphene as high-performance materials for supercapacitor electrode.

    Science.gov (United States)

    Hao, Jinhui; Yang, Wenshu; Zhang, Zhe; Lu, Baoping; Ke, Xi; Zhang, Bailin; Tang, Jilin

    2014-07-15

    A facile simple hydrothermal method combined with a post-solution reaction is developed to grow interconnected three dimensional (3D) hierarchical Co-Al layered double hydroxides (LDHs) on reduced graphene oxide (rGO). The obtained 3D hierarchical rGO-LDHs are characterized by field emission scanning electron microscopy, X-ray diffraction, and X-ray photo-electron spectroscopy. As LDHs nanosheets directly grow on the surface of rGO via chemical covalent bonding, the rGO could provide facile electron transport paths in the electrode for the fast Faradaic reaction. Moreover, benefiting from the rational 3D hierarchical structural, the rGO-LDHs demonstrate excellent electrochemical properties with a combination of high charge storage capacitance, fast rate capability and stable cycling performance. Remarkably, the 3D hierarchical rGO-LDHs exhibit specific capacitance values of 599 F g(-1) at a constant current density of 4 A g(-1). The rGO-LDHs also show high charge-discharge reversibility with an efficiency of 92.4% after 5000 cycles. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Adsorption properties of Mg-Al layered double hydroxides thin films grown by laser based techniques

    Energy Technology Data Exchange (ETDEWEB)

    Matei, A., E-mail: andreeapurice@nipne.ro [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 77125 Bucharest, Magurele (Romania); Birjega, R.; Vlad, A.; Filipescu, M.; Nedelcea, A.; Luculescu, C. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 77125 Bucharest, Magurele (Romania); Zavoianu, R.; Pavel, O.D. [University of Bucharest, Faculty of Chemistry, Department of Chemical Technology and Catalysis, 4-12 Regina Elisabeta Bd., Bucharest (Romania); Dinescu, M. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 77125 Bucharest, Magurele (Romania)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Laser techniques MAPLE and PLD can successfully be used to produce LDHs thin films. Black-Right-Pointing-Pointer Hydration treatments of the PLD and MAPLE deposited films lead to the LDH reconstruction effect. Black-Right-Pointing-Pointer The Ni retention from aqueous solution occurs in the films via a dissolution-reconstruction mechanism. Black-Right-Pointing-Pointer The films are suitable for applications in remediation of contaminated drinking water or waste waters. - Abstract: Powdered layered double hydroxides (LDHs) have been widely studied due to their applications as catalysts, anionic exchangers or host materials for inorganic and/or organic molecules. Assembling nano-sized LDHs onto flat solid substrates forming thin films is an expanding area of research due to the prospects of novel applications as sensors, corrosion-resistant coatings, components in optical and magnetic devices. Continuous and adherent thin films were grown by laser techniques (pulsed laser deposition - PLD and matrix assisted pulsed laser evaporation - MAPLE) starting from targets of Mg-Al LDHs. The capacity of the grown thin films to retain a metal (Ni) from contaminated water has been also explored. The thin films were immersed in an Ni(NO{sub 3}){sub 2} aqueous solutions with Ni concentrations of 10{sup -3}% (w/w) (1 g/L) and 10{sup -4}% (w/w) (0.1 g/L), respectively. X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) combined with energy dispersive X-ray analysis (EDX) were the techniques used to characterize the prepared materials.

  11. Controlled Release Kinetics in Hydroxy Double Salts: Effect of Host Anion Structure

    Directory of Open Access Journals (Sweden)

    Stephen Majoni

    2014-01-01

    Full Text Available Nanodimensional layered metal hydroxides such as layered double hydroxides (LDHs and hydroxy double salts (HDSs can undergo anion exchange reactions releasing intercalated anions. Because of this, these metal hydroxides have found applications in controlled release delivery of bioactive species such as drugs and pesticides. In this work, isomers of hydroxycinnamate were used as model compounds to systematically explore the effects of anion structure on the rate and extent of anion release in HDSs. Following intercalation and subsequent release of the isomers, it has been demonstrated that the nature and position of substituent groups on intercalated anions have profound effects on the rate and extent of release. The extent of release was correlated with the magnitude of dipole moments while the rate of reaction showed strong dependence on the extent of hydrogen bonding within the layers. The orthoisomer showed a more sustained and complete release as compared to the other isomers.

  12. Synthesis and characterization of novel Co/Bi-layered double hydroxides and their adsorption performance for lead in aqueous solution

    Directory of Open Access Journals (Sweden)

    Amita Jaiswal

    2017-05-01

    Full Text Available The Co/Bi-layered double hydroxides (Co/Bi-LDH were synthesized by co-precipitation method and used for the removal of lead from aqueous solutions. The Co/Bi-LDH was characterized using X-ray diffraction (XRD, Fourier Transform Infrared spectroscopy (FTIR, Transmission Electron Microscopy (TEM, Selected Area Electron Diffraction (SAED and BET for textural properties. Adsorption of lead solution by Co/Bi-LDH was carried out using batch experiment by mixing the lead solution and the adsorbent. The effects of various parameters such as contact time, pH, adsorbent dosage and initial concentration were investigated. The optimum pH for lead removal was found to be 4 and the optimum time of lead removal was found to be 120 min. The isotherm data were analyzed using Freundlich and Langmuir. The adsorption isotherms can be well described by the Langmuir model with R2 > 0.99. Its adsorption kinetics followed the pseudo-second-order kinetic model. Thermodynamic parameters were also studied. It was found that the synthesized Co/Bi-LDH can reduce the lead concentration and makes it a potential material for the decontamination of lead polluted water.

  13. Adsorption of Anionic Dyes from Aqueous Solutions by Calcined and Uncalcined Mg/ Al Layered Double Hydroxide

    International Nuclear Information System (INIS)

    Siti Mariam Sumari; Zaini Hamzah; Kantasamy, N.

    2016-01-01

    The uptake of Acid Blue 29 (AB29), Reactive Orange 16 (RO16) and Reactive Red 120 (RR120) from aqueous solutions by calcined (CLDH) and uncalcined Mg/Al layered double hydroxide (LDH) has been investigated. The adsorption process was conducted in a batch mode at 25 degree Celcius. Anionic dye removal was more efficient using the CLDH rather than LDH. The adsorption process by CLDH involved reconstruction and hydration of the calcined LDH and intercalation of AB29, RO16 and RR120. Physical characterization using X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) were used to ascertain the memory effect phenomenon that is structural reconstruction to regain its original LDH after rehydration. To gain insight into the mechanism of adsorption by CLDH, the pseudo-first order (PFO) and pseudo-second order (PSO) and intraparticle diffusion (IPD) kinetic models were used to analyse experimental data. Based on the correlation coefficient (R 2 ), the PSO has better fitting (R 2 =0.987-1.00) compared to PFO (R 2 =0.867-0.990). Furthermore the values of maximum adsorption capacity, (q e ) calculated from PSO model are consistent with the experimental q e indicating that the experimental kinetic data for AB29, RO16 and RR120 adsorption by CLDH are suitable for this model. Recycling of the adsorbent, in cycles of calcination-reconstruction process promised a possibility of regeneration of CLDH. (author)

  14. Nickel-cobalt layered double hydroxide anchored zinc oxide nanowires grown on carbon fiber cloth for high-performance flexible pseudocapacitive energy storage devices

    KAUST Repository

    Shakir, Imran; Shahid, Muhammad; Rana, Usman Ali; Nashef, Inas M Al; Hussain, Rafaqat

    2014-01-01

    Nickel-cobalt layered double hydroxide (Ni-Co LDH) nanoflakes-ZnO nanowires hybrid array has been directly synthesized on a carbon cloth substrate by a facile cost-effective two-step hydrothermal route. As electrode materials for flexible pseudocapacitors, Ni-Co LDH nanoflakes-ZnO nanowires hybrid array exhibits a significantly enhanced specific capacitance of 1927 Fg-1, which is a ∼1.8 time greater than pristine Ni-Co LDH nanoflakes. The synthesized Ni-Co LDH nanoflakes-ZnO nanowires hybrid array shows a maximum energy density of 45.55 Whkg-1 at a power density of 46.15 kWkg -1, which is 35% higher than the pristine Ni-Co LDH nanoflakes electrode. Moreover, Ni-Co LDH nanoflakes-ZnO nanowires hybrid array exhibit excellent excellent rate capability (80.3% capacity retention at 30 Ag -1) and cycling stability (only 3.98% loss after 3000 cycles), due to the significantly improved faradaic redox reaction. © 2014 Elsevier Ltd.

  15. Encaging palladium(0 in layered double hydroxide: A sustainable catalyst for solvent-free and ligand-free Heck reaction in a ball mill

    Directory of Open Access Journals (Sweden)

    Wei Shi

    2017-08-01

    Full Text Available In this paper, the synthesis of a cheap, reusable and ligand-free Pd catalyst supported on MgAl layered double hydroxides (Pd/MgAl-LDHs by co-precipitation and reduction methods is described. The catalyst was used in Heck reactions under high-speed ball milling (HSBM conditions at room temperature. The effects of milling-ball size, milling-ball filling degree, reaction time, rotation speed and grinding auxiliary category, which would influence the yields of mechanochemical Heck reactions, were investigated in detail. The characterization results of XRD, ICP–MS and XPS suggest that Pd/MgAl-LDHs have excellent textural properties with zero-valence Pd on its layers. The reaction results indicate that the catalyst could be utilized in HSBM systems to afford a wide range of Heck coupling products in satisfactory yields. Furthermore, this catalyst could be easily recovered and reused for at least five times without significant loss of catalytic activity.

  16. Nickel-cobalt layered double hydroxide anchored zinc oxide nanowires grown on carbon fiber cloth for high-performance flexible pseudocapacitive energy storage devices

    KAUST Repository

    Shakir, Imran

    2014-05-01

    Nickel-cobalt layered double hydroxide (Ni-Co LDH) nanoflakes-ZnO nanowires hybrid array has been directly synthesized on a carbon cloth substrate by a facile cost-effective two-step hydrothermal route. As electrode materials for flexible pseudocapacitors, Ni-Co LDH nanoflakes-ZnO nanowires hybrid array exhibits a significantly enhanced specific capacitance of 1927 Fg-1, which is a ∼1.8 time greater than pristine Ni-Co LDH nanoflakes. The synthesized Ni-Co LDH nanoflakes-ZnO nanowires hybrid array shows a maximum energy density of 45.55 Whkg-1 at a power density of 46.15 kWkg -1, which is 35% higher than the pristine Ni-Co LDH nanoflakes electrode. Moreover, Ni-Co LDH nanoflakes-ZnO nanowires hybrid array exhibit excellent excellent rate capability (80.3% capacity retention at 30 Ag -1) and cycling stability (only 3.98% loss after 3000 cycles), due to the significantly improved faradaic redox reaction. © 2014 Elsevier Ltd.

  17. Electron Beam Mediated Simple Synthetic Route to Preparing Layered Zinc Hydroxide

    International Nuclear Information System (INIS)

    Bae, Hyo Sun; Jung, Hyun

    2012-01-01

    We have developed a novel and eco-friendly synthetic route for the preparation of a two-dimensional layered zinc hydroxide with intercalated nitrate anions. The layered zinc hydroxide nitrate, called 'zinc basic salt', was, in general, successfully synthesized, using an electron beam irradiation technique. The 2-propanol solutions containing hydrated zinc nitrate were directly irradiated with an electron-beam at room temperature, under atmospheric conditions, without stabilizers or base molecules. Under electron beam irradiation, the reactive OH· radicals were generated by radiolysis of water molecules in precursor metal salts. After further radiolytic processes, the hydroxyl anions might be formed by the reaction of solvated electrons and the OH· radical. Finally, the Zn 5 (OH) 8 (NO 3 ) 2 ·2H 2 O was precipitated by the reaction of zinc cation and hydroxyl anions. Structure and morphology of obtained compounds were characterized by powder X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and high resolution transmission electron microscopy (HR-TEM). The chemical components of the products were determined by Fourier transform infrared spectroscopy (FT-IR) and elemental analysis (EA). The thermal behavior of products was studied by thermogravimetric (TG) and differential thermal analysis (DTA)

  18. Voltammetric sensing of paracetamole, dopamine and 4-aminophenol at a glassy carbon electrode coated with gold nanoparticles and an organophillic layered double hydroxide

    International Nuclear Information System (INIS)

    Yin, H.; Shang, K.; Meng, X.; Ai, S.

    2011-01-01

    A differential pulse voltammetric method was developed for the simultaneous determination of paracetamole, 4-aminophenol and dopamine at pH 7.0 using a glassy carbon electrode (GCE) coated with gold nanoparticles (AuNPs) and a layered double hydroxide sodium modified with dodecyl sulfate (SDS-LDH). The modified electrode displays excellent redox activity towards paracetamole, and the redox current is increased (and the corresponding over-potential decreased) compared to those of the bare GCE, the AuNPs-modified GCE, and the SDS-LDH-modified GCE. The modified electrode enables the determination of paracetamole in the concentration range from 0.5 to 400 μM, with a detection limit of 0.13 μM (at an S/N of 3). The sensor was successfully applied to the simultaneous determination of paracetamole and dopamine, and of paracetamole and 4-aminophenol, respectively, in pharmaceutical tablets and in spiked human serum samples. (author)

  19. The effect of interlayer anion on the reactivity of Mg-Al layered double hydroxides: improving and extending the customization capacity of anionic clays.

    Science.gov (United States)

    Rojas, Ricardo; Bruna, Felipe; de Pauli, Carlos P; Ulibarri, M Ángeles; Giacomelli, Carla E

    2011-07-01

    Layered double hydroxides (LDHs) reactivity and interfacial behavior are closely interconnected and control particle properties relevant to the wide range of these solids' applications. Despite their importance, their relationship has been hardly described. In this work, chloride and dodecylsulfate (DDS(-)) intercalated LDHs are studied combining experimental data (electrophoretic mobility and contact angle measurements, hydroxyl and organic compounds uptake) and a simple mathematical model that includes anion-binding and acid-base reactions. This approach evidences the anion effect on LDHs interfacial behavior, reflected in the opposite particle charge and the different surface hydrophobic/hydrophilic character. LDHs reactivity are also determined by the interlayer composition, as demonstrated by the cation uptake capability of the DDS(-) intercalated sample. Consequently, the interlayer anion modifies the LDHs interfacial properties and reactivity, which in turn extends the customization capacity of these solids. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Mechanical and thermal properties of polypropylene and layered double hydroxides nanocomposites; Propriedades mecanicas e termicas de nanocompositos de polipropileno e hidroxidos duplos lamelares

    Energy Technology Data Exchange (ETDEWEB)

    Duarte de Farias, A.M.; Fraga, M.A.; Oliveira, R.B.; Oliveira, M.G., E-mail: marcia.oliveira@int.gov.b [Instituto Nacional de Tecnologia (INT), Rio de Janeiro, RJ (Brazil)

    2010-07-01

    The recent interest in polymer nanocomposites involving layered double hydroxides (LDH) is due to improved thermal stability, flame resistance, mechanical and barrier properties. The LDHs are structurally described as the stacking of layers with positively charged hydrated anions intercalated between these lamellae. In this paper, polypropylene nanocomposites with Mg / Al-HDL unmodified and modified with sodium dodecyl sulfate (DS) were prepared in the internal mixing chamber equipped with roller rotors and heated to 190 deg C. The nanocomposites were injected molded and then morphology, mechanical and thermal properties were evaluated by X-ray diffraction, tensile tests and DSC, respectively. The results revealed that both LDH and LDH-DS reached a good degree of dispersion in the PP matrix, resulting in increased stiffness, but reduced capacity for deformation and toughness of nanocomposites. The crystallinity of the nanocomposites was higher compared to the PP matrix. (author)

  1. Carbon monoxide oxidation using Zn-Cu-Ti hydrotalcite-derived ...

    Indian Academy of Sciences (India)

    Multioxide catalysts of zinc, copper and titanium with different ratios obtained from layered double hydroxide (LDH) precursors were used in the oxidation of carbon monoxide. The catalysts were characterized by energy-dispersive X-ray spectrometry, X-ray diffraction, thermal analyses (TG, DTG and DTA) and scanning ...

  2. Transformation using peroxide of a crude thorium hydroxide in nitrate for mantle grade

    International Nuclear Information System (INIS)

    Freitas, Antonio Alves de; Carvalho, Fatima Maria Sequeira de; Ferreira, Joao Coutinho; Abrao, Alcidio

    2002-01-01

    An alternative process for the recovery and purification of thorium starting from a crude thorium hydroxide as the precursor is outlined in this paper. Its composition is 60.1% thorium oxide (ThO 2 ), 18.6% rare earth oxides (TR 2 O 3 ), and common impurities like silicium, iron, titanium, lead and sodium. This material was produced industrially from the monazite processing in Brazil and has been stocked since several years. The crude thorium hydroxide is treated with hot nitric acid and after the digestion and addition of floculant it is filtered for the separation of the insoluble fraction. Using this nitrate solution, the thorium peroxide is precipitated after adjustment of pH and controlled addition of hydrogen peroxide. The final thorium peroxide is dissolved with nitric acid and the resulting thorium nitrate is mantle grade quality. Rare earth elements are recovered from the thorium peroxide filtrate. The main process parameters for the peroxide precipitation, like pH and temperature and main the results are presented and discussed. (author)

  3. 21 CFR 582.1631 - Potassium hydroxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium hydroxide. 582.1631 Section 582.1631 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1631 Potassium hydroxide. (a) Product. Potassium hydroxide. (b) Conditions of use. This...

  4. Stabilization of antioxidant gallate in layered double hydroxide by exfoliation and reassembling reaction

    Science.gov (United States)

    Ansy, Kanakappan Mickel; Lee, Ji-Hee; Piao, Huiyan; Choi, Goeun; Choy, Jin-Ho

    2018-06-01

    As for the stabilization of chemically sensitive bioactive molecule in this study, gallic acid (GA) with antioxidant property was intercalated into interlayer space of layered double hydroxide (LDH), which was realized by exfoliation and reassembling reaction. At first, the pristine nitrate-type Zn2Al-LDH in solid state was synthesized via co-precipitation followed by the hydrothermal treatment at 80 °C for 6 h, and then exfoliated in formamide to form a colloidal solution of exfoliated LDH nanosheets, and finally reassembled in the presence of GA to prepare GA intercalated LDH (GA-LDH) desired, where the pH was adjusted to 8.0 in order to deprotonate GA to form gallate anion. According to the XRD analysis, GA-LDH showed well-developed (00l) diffraction peaks with a basal spacing of 1.15 nm, which was estimated to be larger than that of the pristine LDH (0.88 nm), indicating that gallate molecules were incorporated into LDH layers with perpendicular orientation. From the FT-IR spectra it was found that gallic acid was completely deprotonated into gallate, and stabilized in between LDH lattices via electrostatic interaction. The content of GA in GA-LDH was determined to be around 23 wt% by UV-vis spectroscopic study, which was also confirmed by HPLC analysis. According to the in-vitro release of GA out of GA-LDH in PBS solution (pH 7.4) at 4 °C, GA was sustainably released from GA-LDH nanohybrid up to 86% within 72 h. The antioxidant property of GA-LDH was almost the same with that of intact GA which was examined by DPPH. The photostability of GA-LDH under UV light irradiation was immensely enhanced compared to intact GA. It is, therefore, concluded that the present GA-LDH nanohybrid can be considered as an excellent antioxidant material with high chemical- and photo-stabilities, and controlled release property.

  5. Graphene-oxide-supported CuAl and CoAl layered double hydroxides as enhanced catalysts for carbon-carbon coupling via Ullmann reaction

    Science.gov (United States)

    Ahmed, Nesreen S.; Menzel, Robert; Wang, Yifan; Garcia-Gallastegui, Ainara; Bawaked, Salem M.; Obaid, Abdullah Y.; Basahel, Sulaiman N.; Mokhtar, Mohamed

    2017-02-01

    Two efficient catalyst based on CuAl and CoAl layered double hydroxides (LDHs) supported on graphene oxide (GO) for the carbon-carbon coupling (Classic Ullmann Homocoupling Reaction) are reported. The pure and hybrid materials were synthesised by direct precipitation of the LDH nanoparticles onto GO, followed by a chemical, structural and physical characterisation by electron microscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), surface area measurements and X-ray photoelectron spectroscopy (XPS). The GO-supported and unsupported CuAl-LDH and CoAl-LDH hybrids were tested over the Classic Ullman Homocoupling Reaction of iodobenzene. In the current study CuAl- and CoAl-LDHs have shown excellent yields (91% and 98%, respectively) at very short reaction times (25 min). GO provides a light-weight, charge complementary and two-dimensional material that interacts effectively with the 2D LDHs, in turn enhancing the stability of LDH. After 5 re-use cycles, the catalytic activity of the LDH/GO hybrid is up to 2 times higher than for the unsupported LDH.

  6. Enhancement of photocatalytic degradation of dimethyl phthalate with nano-TiO2 immobilized onto hydrophobic layered double hydroxides: a mechanism study.

    Science.gov (United States)

    Huang, Zhujian; Wu, Pingxiao; Lu, Yonghong; Wang, Xiaorong; Zhu, Nengwu; Dang, Zhi

    2013-02-15

    The organic layered double hydroxides (LHDs)/TiO(2) composites with various mass ratios were prepared by the reconstruction of mixed metal oxides to photodegrade dimethyl phthalate (DMP). The physicochemical properties of the obtained products were analyzed by X-ray diffraction (XRD) spectra, X-ray photoelectron spectra (XPS), UV-vis diffuse reflectance spectroscope and scanning electron microscope (SEM). The results showed that the TiO(2) particles and the organic LDHs were combined together through chemical bonds, and TiO(2) particles were well distributed on the surface of the interconnecting organic LDHs nano-flakes. According to the experimental results of adsorptive and photodegradation of DMP, the organic LDHs with flaky structure could effectively adsorb the DMP molecules and the adsorption isotherm by the composites modeled well with the Langmuir equation. The enrichment of DMP onto the composites and the external hydroxyl groups of the composites produce a synergistic effect leading to greatly enhance the rate of DMP photocatalytic degradation by the obtained composites. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Composition driven monolayer to bilayer transformation in a surfactant intercalated Mg-Al layered double hydroxide.

    Science.gov (United States)

    Naik, Vikrant V; Chalasani, Rajesh; Vasudevan, S

    2011-03-15

    The structure and organization of dodecyl sulfate (DDS) surfactant chains intercalated in an Mg-Al layered double hydroxide (LDH), Mg(1-x)Alx(OH)2, with differing Al/Mg ratios has been investigated. The Mg-Al LDHs can be prepared over a range of compositions with x varying from 0.167 to 0.37 and therefore provides a simple system to study how the organization of the alkyl chains of the intercalated DDS anions change with packing density; the Al/Mg ratio or x providing a convenient handle to do so. Powder X-ray diffraction measurements showed that at high packing densities (x ≥ 0.3) the alkyl chains of the intercalated dodecyl sulfate ions are anchored on opposing LDH sheets and arranged as bilayers with an interlayer spacing of ∼27 Å. At lower packing densities (x flat in the galleries with an interlayer spacing of ∼8 Å. For the in between compositions, 0.2 ≤ x organization of the chains and the interlayer spacing. The simulations are able to reproduce the composition driven monolayer to bilayer transformation in the arrangement of the intercalated surfactant chains and in addition provide insights into the factors that decide the arrangement of the surfactant chains in the two situations. In the bilayer arrangement, it is the dispersive van der Waals interactions between chains in opposing layers of the anchored bilayer that is responsible for the cohesive energy of the solid whereas at lower packing densities, where a monolayer arrangement is favored, Coulomb interactions between the positively charged Mg-Al LDH sheets and the negatively charged headgroup of the DDS anion dominate.

  8. Layered double hydroxide catalyst for the conversion of crude vegetable oils to a sustainable biofuel

    Science.gov (United States)

    Mollaeian, Keyvan

    Over the last two decades, the U.S. has developed the production of biodiesel, a mixture of fatty acid methyl esters, using chiefly vegetable oils as feedstocks. However, there is much concern about the availability of high-quality vegetable oils for longterm biodiesel production. Problems have also risen due to the production of glycerol, an unwanted byproduct, as well as the need for process wash water. Therefore, this study was initiated to produce not only fatty acid methyl esters (FAMEs) but also fatty acid glycerol carbonates (FAGCs) by replacing methanol with dimethyl carbonate (DMC). The process would have no unnecessary byproducts and would be a simplified process compared to traditional biodiesel. In addition, this altering of the methylating agent could convert triglycerides, free fatty acids, and phospholipids to a sustainable biofuel. In this project, Mg-Al Layered Double Hydroxide (LDH) was optimized by calcination in different temperature varied from 250°C to 450°C. The gallery between layers was increased by intercalating sodium dodecylsulfate (SDS). During catalyst preparation, the pH was controlled ~10. In our experiment, triazabicyclodecene (TBD) was attached with trimethoxysilane (3GPS) as a coupling agent, and N-cetyl-N,N,N-trimethylammonium bromide (CTAB) was added to remove SDS from the catalyst. The catalyst was characterized by XRD, FTIR, and Raman spectroscopy. The effect of the heterogeneous catalyst on the conversion of canola oil, corn oil, and free fatty acids was investigated. To analyze the conversion of lipid oils to biofuel an in situ Raman spectroscopic method was developed. Catalyst synthesis methods and a proposed mechanism for converting triglycerides and free fatty acids to biofuel will be presented.

  9. Synthesis of organometallic hydroxides of titanium, vanadium, cobalt and chromium as precursors of thin films type MaOb

    International Nuclear Information System (INIS)

    Montero Villalobos, Mavis

    2001-01-01

    This study shows the results obtained from a general objective that was the synthesis and characterization of precursors of thin films of metallic oxides, two different routes of synthesis have been practiced: route molecular precursors and route Sol-Gel technic. In the first route one of the objectives of the investigation is to obtain a molecular precursor of material type M a O b a route of synthesis have been tried proved that involves anhydrous chlorides of the transition metals and linked R that are alcoxides of metal such as silicon, titanium and zirconium. In the second route the general objective to create thin films of metallic oxide has been maintained but the way to resolve the problem has changed, not giving so much emphasis to the molecular precursors as it was originally presented (this due mainly to its instability and difficulty of synthesis), but being supported in the sun-gel chemistry. It was started a new synthesis line through the sun-gel chemistry that is more versatile and simplifies the process in the film formation [es

  10. Influence of Hydrothermal Treatment on Physicochemical Properties and Drug Release of Anti-Inflammatory Drugs of Intercalated Layered Double Hydroxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Zi Gu

    2014-05-01

    Full Text Available The synthesis method of layered double hydroxides (LDHs determines nanoparticles’ performance in biomedical applications. In this study, hydrothermal treatment as an important synthesis technique has been examined for its influence on the physicochemical properties and the drug release rate from drug-containing LDHs. We synthesised MgAl–LDHs intercalated with non-steroidal anti-inflammatory drugs (i.e., naproxen, diclofenac and ibuprofen using a co-precipitation method with or without hydrothermal treatment (150 °C, 4 h. After being hydrothermally treated, LDH–drug crystallites increased in particle size and crystallinity, but did not change in the interlayer anion orientation, gallery height and chemical composition. The drug release patterns of all studied LDH–drug hybrids were biphasic and sustained. LDHs loaded with diclofenac had a quicker drug release rate compared with those with naproxen and ibuprofen, and the drug release from the hydrothermally-treated LDH–drug was slower than the freshly precipitated LDH–drug. These results suggest that the drug release of LDH–drugs is influenced by the crystallite size of LDHs, which can be controlled by hydrothermal treatment, as well as by the drug molecular physicochemical properties.

  11. Conformal Coating of Cobalt-Nickel Layered Double Hydroxides Nanoflakes on Carbon Fibers for High-performance Electrochemical Energy Storage Supercapacitor Devices

    KAUST Repository

    Warsi, Muhammad Farooq

    2014-07-01

    High specific capacitance coupled with the ease of large scale production is two desirable characteristics of a potential pseudo-supercapacitor material. In the current study, the uniform and conformal coating of nickel-cobalt layered double hydroxides (CoNi0.5LDH,) nanoflakes on fibrous carbon (FC) cloth has been achieved through cost-effective and scalable chemical precipitation method, followed by a simple heat treatment step. The conformally coated CoNi0.5LDH/FC electrode showed 1.5 times greater specific capacitance compared to the electrodes prepared by conventional non-conformal (drop casting) method of depositing CoNi0.5LDH powder on the carbon microfibers (1938 Fg-1 vs 1292 Fg-1). Further comparison of conformally and non-conformally coated CoNi0.5LDH electrodes showed the rate capability of 79%: 43% capacity retention at 50 Ag-1 and cycling stability 4.6%: 27.9% loss after 3000 cycles respectively. The superior performance of the conformally coated CoNi0.5LDH is mainly due to the reduced internal resistance and fast ionic mobility between electrodes as compared to non-conformally coated electrodes which is evidenced by EIS and CV studies. © 2014 Elsevier Ltd.

  12. Solvothermal synthesis of NiAl double hydroxide microspheres on a nickel foam-graphene as an electrode material for pseudo-capacitors

    International Nuclear Information System (INIS)

    Momodu, Damilola; Bello, Abdulhakeem; Dangbegnon, Julien; Barzeger, Farshad; Taghizadeh, Fatimeh; Fabiane, Mopeli; Manyala, Ncholu; Johnson, A. T. Charlie

    2014-01-01

    In this paper, we demonstrate excellent pseudo-capacitance behavior of nickel-aluminum double hydroxide microspheres (NiAl DHM) synthesized by a facile solvothermal technique using tertbutanol as a structure-directing agent on nickel foam-graphene (NF-G) current collector as compared to use of nickel foam current collector alone. The structure and surface morphology were studied by X-ray diffraction analysis, Raman spectroscopy and scanning and transmission electron microscopies respectively. NF-G current collector was fabricated by chemical vapor deposition followed by an ex situ coating method of NiAl DHM active material which forms a composite electrode. The pseudocapacitive performance of the composite electrode was investigated by cyclic voltammetry, constant charge–discharge and electrochemical impedance spectroscopy measurements. The composite electrode with the NF-G current collector exhibits an enhanced electrochemical performance due to the presence of the conductive graphene layer on the nickel foam and gives a specific capacitance of 1252 F g −1 at a current density of 1 A g −1 and a capacitive retention of about 97% after 1000 charge–discharge cycles. This shows that these composites are promising electrode materials for energy storage devices

  13. 8-Anilino-1-naphthalenesulfonate/Layered Double Hydroxide Ultrathin Films: Small Anion Assembly and Its Potential Application as a Fluorescent Biosensor.

    Science.gov (United States)

    Zhang, Ping; Li, Ling; Zhao, Yun; Tian, Zeyun; Qin, Yumei; Lu, Jun

    2016-09-06

    The fluorescent dye 8-anilino-1-naphthalenesulfonate (ANS) is a widely used fluorescent probe molecule for biochemistry analysis. This paper reported the fabrication of ANS/layered double hydroxide nanosheets (ANS/LDH)n ultrathin films (UTFs) via the layer-by-layer small anion assembly technique based on electrostatic interaction and two possible weak interactions: hydrogen-bond and induced electrostatic interactions between ANS and positive-charged LDH nanosheets. The obtained UTFs show a long-range-ordered periodic layered stacking structure and weak fluorescence in dry air or water, but it split into three narrow strong peaks in a weak polarity environment induced by the two-dimensional (2D) confinement effect of the LDH laminate; the fluorescence intensity increases with decreasing the solvent polarity, concomitant with the blue shift of the emission peaks, which show good sensoring reversibility. Meanwhile, the UTFs exhibit selective fluorescence enhancement to the bovine serum albumin (BSA)-like protein biomolecules, and the rate of fluorescence enhancement with the protein concentration is significantly different with the different protein aggregate states. The (ANS/LDH)n UTF has the potential to be a novel type of biological flourescence sensor material.

  14. Ni/Fe and Mg/Fe layered double hydroxides and their calcined derivatives: preparation, characterization and application on textile dyes removal

    Directory of Open Access Journals (Sweden)

    Rachid Elmoubarki

    2017-07-01

    Full Text Available In this study, Mg/Fe and Ni/Fe layered double hydroxides (LDHs with molar ratio (M2+/Fe3+ of 3 and intercalated with carbonate ions were synthesized by co-precipitation method. The as-synthesized materials and their calcined products (CLDHs were characterized by X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FT-IR, thermo-gravimetric and differential thermal analyses (TGA–DTA, transmission electron microscopy coupled with energy dispersive X-ray spectroscopy (TEM-EDX, inductively coupled plasma (ICP and elemental chemical analysis CHNSO. The materials were used as adsorbents for the removal availability of textile dyes from aqueous solution. Methylene blue (MB and malachite green (MG, representative of cationic dyes, and methyl orange (MO representative of anionic dyes were used as model molecules. Adsorption experiments were carried out under different parameters such as contact time, temperature, initial dyes concentration and solution pH. Experimental results indicate that CLDHs had much higher adsorption capacities compared to LDHs. Adsorption kinetic data fitted well the pseudo-second order kinetic model. The process was spontaneous, endothermic for cationic dyes and exothermic for the anionic dye. Equilibrium sorption data fitted the Langmuir model instead of Freundlich model.

  15. Conformal Coating of Cobalt-Nickel Layered Double Hydroxides Nanoflakes on Carbon Fibers for High-performance Electrochemical Energy Storage Supercapacitor Devices

    KAUST Repository

    Warsi, Muhammad Farooq; Shakir, Imran; Shahid, Muhammad; Sarfraz, Mansoor M.; Nadeem, Muhammad Tahir; Gilani, Zaheer Abbas

    2014-01-01

    High specific capacitance coupled with the ease of large scale production is two desirable characteristics of a potential pseudo-supercapacitor material. In the current study, the uniform and conformal coating of nickel-cobalt layered double hydroxides (CoNi0.5LDH,) nanoflakes on fibrous carbon (FC) cloth has been achieved through cost-effective and scalable chemical precipitation method, followed by a simple heat treatment step. The conformally coated CoNi0.5LDH/FC electrode showed 1.5 times greater specific capacitance compared to the electrodes prepared by conventional non-conformal (drop casting) method of depositing CoNi0.5LDH powder on the carbon microfibers (1938 Fg-1 vs 1292 Fg-1). Further comparison of conformally and non-conformally coated CoNi0.5LDH electrodes showed the rate capability of 79%: 43% capacity retention at 50 Ag-1 and cycling stability 4.6%: 27.9% loss after 3000 cycles respectively. The superior performance of the conformally coated CoNi0.5LDH is mainly due to the reduced internal resistance and fast ionic mobility between electrodes as compared to non-conformally coated electrodes which is evidenced by EIS and CV studies. © 2014 Elsevier Ltd.

  16. Development of a Highly Biocompatible Antituberculosis Nanodelivery Formulation Based on Para-Aminosalicylic Acid—Zinc Layered Hydroxide Nanocomposites

    Science.gov (United States)

    Arulselvan, Palanisamy; El Zowalaty, Mohamed Ezzat; Fakurazi, Sharida; Webster, Thomas J.; Geilich, Benjamin; Hussein, Mohd Zobir

    2014-01-01

    Tuberculosis is a lethal epidemic, difficult to control disease, claiming thousands of lives every year. We have developed a nanodelivery formulation based on para-aminosalicylic acid (PAS) and zinc layered hydroxide using zinc nitrate salt as a precursor. The developed formulation has a fourfold higher efficacy of PAS against mycobacterium tuberculosis with a minimum inhibitory concentration (MIC) found to be at 1.40 μg/mL compared to the free drug PAS with a MIC of 5.0 μg/mL. The newly developed formulation was also found active against Gram-positive bacteria, Gram-negative bacteria, and Candida albicans. The formulation was also found to be biocompatible with human normal lung cells MRC-5 and mouse fibroblast cells-3T3. The in vitro release of PAS from the formulation was found to be sustained in a human body simulated phosphate buffer saline (PBS) solution at pH values of 7.4 and 4.8. Most importantly the nanocomposite prepared using zinc nitrate salt was advantageous in terms of yield and free from toxic zinc oxide contamination and had higher biocompatibility compared to one prepared using a zinc oxide precursor. In summary, these promising in vitro results are highly encouraging for the continued investigation of para-aminosalicylic acid and zinc layered hydroxide nanocomposites in vivo and eventual preclinical studies. PMID:25050392

  17. Preparation, physicochemical characterisation and magnetic properties of Cu-Al layered double hydroxides with CO 32- and anionic surfactants with different alkyl chains in the interlayer

    Science.gov (United States)

    Trujillano, Raquel; Holgado, María Jesús; Pigazo, Fernando; Rives, Vicente

    2006-03-01

    Layered double hydroxides with the hydrotalcite-like structure, containing Cu(II) and Al(III) in the layers, and different alkyl sulphonates in the interlayer, have been prepared and characterised by powder X-ray diffraction, FT-IR spectroscopy, differential thermal analysis and thermogravimetric analysis. Their magnetic properties have been also studied. Except for the sample containing octadecanesulphonate in the interlayer, for which an excess of sulphonate exists, pure crystalline phases have been obtained in the other cases. Upon heating, combustion of the organic chain takes place at lower temperature than for the corresponding sodium salts. A two-dimensional antiferromagnetic behaviour is observed at 200 K in all samples containing intercalated sulphonate. The χT value is lower for the samples containing interlayer sulphonates (with layer-layer distances in the 21-31 Å range), than for a carbonate-containing analogue (basal spacing 7.51 Å).

  18. In Situ Formation of Decavanadate-Intercalated Layered Double Hydroxide Films on AA2024 and their Anti-Corrosive Properties when Combined with Hybrid Sol Gel Films

    Directory of Open Access Journals (Sweden)

    Junsheng Wu

    2017-04-01

    Full Text Available A layered double hydroxide (LDH film was formed in situ on aluminum alloy 2024 through a urea hydrolysis method, and a decavanadate-intercalated LDH (LDH-V film fabricated through the dip coating method. The microstructural and morphological characteristics were investigated by scanning electron microscopy (SEM. The corrosion-resistant performance was analyzed by electrochemical impedance spectroscopy (EIS, scanning electrochemical microscopy (SECM, and a salt-spray test (SST.The SEM results showed that a complete and defect-free surface was formed on the LDH-VS film. The anticorrosion results revealed that the LDH-VS film had better corrosion-resistant properties than the LDH-S film, especially long-term corrosion resistance. The mechanism of corrosion protection was proposed to consist of the self-healing effect of the decavanadate intercalation and the shielding effect of the sol-gel film.

  19. Structural transformation of nickel hydroxide films during anodic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Crocker, Robert W. [Univ. of California, Berkeley, CA (United States); Muller, Rolf H. [Univ. of California, Berkeley, CA (United States)

    1992-05-01

    The transformation of anodically formed nickel hydroxide/oxy-hydroxide electrodes has been investigated. A mechanism is proposed for the anodic oxidation reaction, in which the reaction interface between the reduced and oxidized phases of the electrode evolves in a nodular topography that leads to inefficient utilization of the active electrode material. In the proposed nodular transformation model for the anodic oxidation reaction, nickel hydroxide is oxidized to nickel oxy-hydroxide in the region near the metal substrate. Since the nickel oxy-hydroxide is considerably more conductive than the surrounding nickel hydroxide, as further oxidation occurs, nodular features grow rapidly to the film/electrolyte interface. Upon emerging at the electrolyte interface, the reaction boundary between the nickel hydroxide and oxy-hydroxide phases spreads laterally across the film/electrolyte interface, creating an overlayer of nickel oxy-hydroxide and trapping uncharged regions of nickel hydroxide within the film. The nickel oxy-hydroxide overlayer surface facilitates the oxygen evolution side reaction. Scanning tunneling microscopy of the electrode in its charged state revealed evidence of 80 - 100 Angstrom nickel oxy-hydroxide nodules in the nickel hydroxide film. In situ spectroscopic ellipsometer measurements of films held at various constant potentials agree quantitatively with optical models appropriate to the nodular growth and subsequent overgrowth of the nickel oxy-hydroxide phase. A two-dimensional, numerical finite difference model was developed to simulate the current distribution along the phase boundary between the charged and uncharged material. The model was used to explore the effects of the physical parameters that govern the electrode behavior. The ratio of the conductivities of the nickel hydroxide and oxy-hydroxide phases was found to be the dominant parameter in the system.

  20. Structural transformation of nickel hydroxide films during anodic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Crocker, R.W.; Muller, R.H.

    1992-05-01

    The transformation of anodically formed nickel hydroxide/oxy-hydroxide electrodes has been investigated. A mechanism is proposed for the anodic oxidation reaction, in which the reaction interface between the reduced and oxidized phases of the electrode evolves in a nodular topography that leads to inefficient utilization of the active electrode material. In the proposed nodular transformation model for the anodic oxidation reaction, nickel hydroxide is oxidized to nickel oxy-hydroxide in the region near the metal substrate. Since the nickel oxy-hydroxide is considerably more conductive than the surrounding nickel hydroxide, as further oxidation occurs, nodular features grow rapidly to the film/electrolyte interface. Upon emerging at the electrolyte interface, the reaction boundary between the nickel hydroxide and oxy-hydroxide phases spreads laterally across the film/electrolyte interface, creating an overlayer of nickel oxy-hydroxide and trapping uncharged regions of nickel hydroxide within the film. The nickel oxy-hydroxide overlayer surface facilitates the oxygen evolution side reaction. Scanning tunneling microscopy of the electrode in its charged state revealed evidence of 80 {endash} 100 Angstrom nickel oxy-hydroxide nodules in the nickel hydroxide film. In situ spectroscopic ellipsometer measurements of films held at various constant potentials agree quantitatively with optical models appropriate to the nodular growth and subsequent overgrowth of the nickel oxy-hydroxide phase. A two-dimensional, numerical finite difference model was developed to simulate the current distribution along the phase boundary between the charged and uncharged material. The model was used to explore the effects of the physical parameters that govern the electrode behavior. The ratio of the conductivities of the nickel hydroxide and oxy-hydroxide phases was found to be the dominant parameter in the system.

  1. Preferential growth of short aligned, metallic-rich single-walled carbon nanotubes from perpendicular layered double hydroxide film.

    Science.gov (United States)

    Zhao, Meng-Qiang; Tian, Gui-Li; Zhang, Qiang; Huang, Jia-Qi; Nie, Jing-Qi; Wei, Fei

    2012-04-07

    Direct bulk growth of single-walled carbon nanotubes (SWCNTs) with required properties, such as diameter, length, and chirality, is the first step to realize their advanced applications in electrical and optical devices, transparent conductive films, and high-performance field-effect transistors. Preferential growth of short aligned, metallic-rich SWCNTs is a great challenge to the carbon nanotube community. We report the bulk preferential growth of short aligned SWCNTs from perpendicular Mo-containing FeMgAl layered double hydroxide (LDH) film by a facile thermal chemical vapor deposition with CH(4) as carbon source. The growth of the short aligned SWCNTs showed a decreased growth velocity with an initial value of 1.9 nm s(-1). Such a low growth velocity made it possible to get aligned SWCNTs shorter than 1 μm with a growth duration less than 15 min. Raman spectra with different excitation wavelengths indicated that the as-grown short aligned SWCNTs showed high selectivity of metallic SWCNTs. Various kinds of materials, such as mica, quartz, Cu foil, and carbon fiber, can serve as the substrates for the growth of perpendicular FeMoMgAl LDH films and also the growth of the short aligned SWCNTs subsequently. These findings highlight the easy route for bulk preferential growth of aligned metallic-rich SWCNTs with well defined length for further bulk characterization and applications. This journal is © The Royal Society of Chemistry 2012

  2. Synthesis and characterization of protocatechuic acid-loaded gadolinium-layered double hydroxide and gold nanocomposite for theranostic application

    Science.gov (United States)

    Usman, Muhammad Sani; Hussein, Mohd Zobir; Kura, Aminu Umar; Fakurazi, Sharida; Masarudin, Mas Jaffri; Saad, Fathinul Fikri Ahmad

    2018-03-01

    A theranostic nanocomposite was developed using anticancer agent, protocatechuic acid (PA) and magnetic resonance imaging (MRI) contrast agent gadolinium nitrate (Gd) for simultaneous delivery using layered double hydroxide (LDH) as the delivery agent. Gold nanoparticles (AuNPs) were adsorbed on the surface of the LDH, which served as a complementary contrast agent. Based on the concept of supramolecular chemistry (SPC) and multimodal delivery system (MDS), the PA and Gd guests were first intercalated into the LDH host and subsequently AuNPs were surface adsorbed as the third guest. The nanohybrid developed was named MAPGAu. The MAPGAu was exposed to various characterizations at different stages of synthesis, starting with XRD analysis, which was used to confirm the intercalation episode and surface adsorption of the guest molecules. Consequently, FESEM, Hi-TEM, XRD, ICP-OES, CHNS, FTIR and UV-Vis analyses were done on the nanohybrids. The result of XRD analysis indicated successful intercalation of the Gd and PA as well the adsorption of AuNPs. The UV-Vis release study showed 90% of the intercalated drug was released at pH 4.8, which is the pH of the cancer cells. The FESEM and TEM micrographs obtained equally confirmed the formation of MAGPAu nanocomposite, with AuNPs conspicuously deposited on the LDH surface. The cytotoxicity study of the nanohybrid also showed insignificant toxicity to normal cell lines and significant toxicity to cancer cell lines. The developed MAGPAu nanocomposite has shown prospects for future theranostic cancer treatment.

  3. Study of Activated Carbons by Pyrolysis of Mangifera Indica Seed (Mango in Presence of Sodium and Potassium Hydroxide

    Directory of Open Access Journals (Sweden)

    J. C. Moreno-Piraján

    2012-01-01

    Full Text Available Activated carbons (ACs were prepared by pyrolysis of seeds mango in presence of sodium and potassium hydroxide (chemical activities. Seeds mango from Colombian Mango cultives were impregnated with aqueous solutions of NaOH and KOH following a variant of the incipient wetness method. Different concentrations were used to produce impregnation ratios of 3:1 (weight terms. Activation was carried out under argon flow by heating to 823 K with 1 h soaking time. The porous texture of the obtained ACs was characterized by physical adsorptions of N2 at 77 K and CO2 at 273 K. The impregnation ration and hydroxide type had a strong influence on the pore structure of these ACs, which could be easily controlled by simply varying the proportion of the hydroxides used in the activation. Thus, the development of porosity for precursors with low structural order (high reactivity is better with NaOH than KOH, whereas the opposite is observed for the highly ordered ones. Variable adsorption capacities and porosity distributions can be achieved depending on the activating agent selected. In general, KOH produces activated carbons with narrower micropore distributions than those prepared by NaOH.

  4. A Novel Type of Aqueous Dispersible Ultrathin-Layered Double Hydroxide Nanosheets for in Vivo Bioimaging and Drug Delivery.

    Science.gov (United States)

    Yan, Li; Zhou, Mengjiao; Zhang, Xiujuan; Huang, Longbiao; Chen, Wei; Roy, Vellaisamy A L; Zhang, Wenjun; Chen, Xianfeng

    2017-10-04

    Layered double hydroxide (LDH) nanoparticles have been widely used for various biomedical applications. However, because of the difficulty of surface functionalization of LDH nanoparticles, the systemic administration of these nanomaterials for in vivo therapy remains a bottleneck. In this work, we develop a novel type of aqueous dispersible two-dimensional ultrathin LDH nanosheets with a size of about 50 nm and a thickness of about 1.4 to 4 nm. We are able to covalently attach positively charged rhodamine B fluorescent molecules to the nanosheets, and the nanohybrid retains strong fluorescence in liquid and even dry powder form. Therefore, it is available for bioimaging. Beyond this, it is convenient to modify the nanosheets with neutral poly(ethylene glycol) (PEG), so the nanohybrid is suitable for drug delivery through systemic administration. Indeed, in the test of using these nanostructures for delivery of a negatively charged anticancer drug, methotrexate (MTX), in a mouse model, dramatically improved therapeutic efficacy is achieved, indicated by the effective inhibition of tumor growth. Furthermore, our systematic in vivo safety investigation including measuring body weight, determining biodistribution in major organs, hematology analysis, blood biochemical assay, and hematoxylin and eosin stain demonstrates that the new material is biocompatible. Overall, this work represents a major development in the path of modifying functional LDH nanomaterials for clinical applications.

  5. Synthesis and characterization of sulfate and dodecylbenzenesulfonate intercalated zinc iron layered double hydroxides by one-step coprecipitation route

    Science.gov (United States)

    Zhang, Hui; Wen, Xing; Wang, Yingxia

    2007-05-01

    Inorganic sulfate- and organic dodecylbenzenesulfonate (DBS)-intercalated zinc-iron layered double hydroxides (LDHs) materials were prepared by one-step coprecipitation method from a mixed salt solutions containing Zn(II), Fe(II) and Fe(III) salts. The as-prepared samples have been characterized by X-ray powder diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), low-temperature nitrogen adsorption, scanning electron microscopy (SEM), inductively coupled plasma emission spectroscopy (ICP), and Mössbauer spectroscopy (MS). The XRD analyses demonstrate the typical LDH-like layered structural characteristics of both products. The room temperature MS results reveal the characteristics of both the Fe(II) and Fe(III) species for SO 42--containing product, while only the Fe(III) characteristic for DBS-containing one. The combination characterization results and Rietveld analysis illustrate that the SO 42--containing product possesses the Green Rust two (GR2)-like crystal structure with an approximate chemical composition of [Zn 0.435·Fe II0.094·Fe III0.470·(OH) 2]·(SO 42-) 0.235·1.0H 2O, while the DBS-containing one exhibits the common LDH compound-like structure. The contact angle measurement indicates the evident hydrophobic properties of DBS-containing nanocomposite, compared with SO 42--containing product, due to the modification of the internal and external surface of LDHs by the organic hydrophobic chain of DBS.

  6. Dissolution mechanism of aluminum hydroxides in acid media

    Science.gov (United States)

    Lainer, Yu. A.; Gorichev, I. G.; Tuzhilin, A. S.; Gololobova, E. G.

    2008-08-01

    The effects of the concentration, temperature, and potential at the hydroxide/electrolyte interface on the aluminum hydroxide dissolution in sulfuric, hydrochloric, and perchloric acids are studied. The limiting stage of the aluminum hydroxide dissolution in the acids is found to be the transition of the complexes that form on the aluminum hydroxide surface from the solid phase into the solution. The results of the calculation of the acid-base equilibrium constants at the oxide (hydroxide)/solution interface using the experimental data on the potentiometric titration of Al2O3 and AlOOH suspensions are analyzed. A mechanism is proposed for the dissolution of aluminum hydroxides in acid media.

  7. Utilization of Mineral Wools as Alkali-Activated Material Precursor

    Directory of Open Access Journals (Sweden)

    Juho Yliniemi

    2016-04-01

    Full Text Available Mineral wools are the most common insulation materials in buildings worldwide. However, mineral wool waste is often considered unrecyclable because of its fibrous nature and low density. In this paper, rock wool (RW and glass wool (GW were studied as alkali-activated material precursors without any additional co-binders. Both mineral wools were pulverized by a vibratory disc mill in order to remove the fibrous nature of the material. The pulverized mineral wools were then alkali-activated with a sodium aluminate solution. Compressive strengths of up to 30.0 MPa and 48.7 MPa were measured for RW and GW, respectively, with high flexural strengths measured for both (20.1 MPa for RW and 13.2 MPa for GW. The resulting alkali-activated matrix was a composite-type in which partly-dissolved fibers were dispersed. In addition to the amorphous material, sodium aluminate silicate hydroxide hydrate and magnesium aluminum hydroxide carbonate phases were identified in the alkali-activated RW samples. The only crystalline phase in the GW samples was sodium aluminum silicate. The results of this study show that mineral wool is a very promising raw material for alkali activation.

  8. Gadolinium-Doped Gallic Acid-Zinc/Aluminium-Layered Double Hydroxide/Gold Theranostic Nanoparticles for a Bimodal Magnetic Resonance Imaging and Drug Delivery System

    Science.gov (United States)

    Sani Usman, Muhammad; Hussein, Mohd Zobir; Fakurazi, Sharida; Ahmad Saad, Fathinul Fikri

    2017-01-01

    We have developed gadolinium-based theranostic nanoparticles for co-delivery of drug and magnetic resonance imaging (MRI) contrast agent using Zn/Al-layered double hydroxide as the nanocarrier platform, a naturally occurring phenolic compound, gallic acid (GA) as therapeutic agent, and Gd(NO3)3 as diagnostic agent. Gold nanoparticles (AuNPs) were grown on the system to support the contrast for MRI imaging. The nanoparticles were characterized using techniques such as Hi-TEM, XRD, ICP-ES. Kinetic release study of the GA from the nanoparticles showed about 70% of GA was released over a period of 72 h. The in vitro cell viability test for the nanoparticles showed relatively low toxicity to human cell lines (3T3) and improved toxicity on cancerous cell lines (HepG2). A preliminary contrast property test of the nanoparticles, tested on a 3 Tesla MRI machine at various concentrations of GAGZAu and water (as a reference) indicates that the nanoparticles have a promising dual diagnostic and therapeutic features to further develop a better future for clinical remedy for cancer treatment. PMID:28858229

  9. Gadolinium-Doped Gallic Acid-Zinc/Aluminium-Layered Double Hydroxide/Gold Theranostic Nanoparticles for a Bimodal Magnetic Resonance Imaging and Drug Delivery System.

    Science.gov (United States)

    Sani Usman, Muhammad; Hussein, Mohd Zobir; Fakurazi, Sharida; Masarudin, Mas Jaffri; Ahmad Saad, Fathinul Fikri

    2017-08-31

    We have developed gadolinium-based theranostic nanoparticles for co-delivery of drug and magnetic resonance imaging (MRI) contrast agent using Zn/Al-layered double hydroxide as the nanocarrier platform, a naturally occurring phenolic compound, gallic acid (GA) as therapeutic agent, and Gd(NO₃)₃ as diagnostic agent. Gold nanoparticles (AuNPs) were grown on the system to support the contrast for MRI imaging. The nanoparticles were characterized using techniques such as Hi-TEM, XRD, ICP-ES. Kinetic release study of the GA from the nanoparticles showed about 70% of GA was released over a period of 72 h. The in vitro cell viability test for the nanoparticles showed relatively low toxicity to human cell lines (3T3) and improved toxicity on cancerous cell lines (HepG2). A preliminary contrast property test of the nanoparticles, tested on a 3 Tesla MRI machine at various concentrations of GAGZAu and water (as a reference) indicates that the nanoparticles have a promising dual diagnostic and therapeutic features to further develop a better future for clinical remedy for cancer treatment.

  10. Arsenate removal by layered double hydroxides embedded into spherical polymer beads: Batch and column studies.

    Science.gov (United States)

    Nhat Ha, Ho Nguyen; Kim Phuong, Nguyen Thi; Boi An, Tran; Mai Tho, Nguyen Thi; Ngoc Thang, Tran; Quang Minh, Bui; Van Du, Cao

    2016-01-01

    In this study, the performance of poly(layered double hydroxides) [poly(LDHs)] beads as an adsorbent for arsenate removal from aqueous solution was investigated. The poly(LDHs) beads were prepared by immobilizing LDHs into spherical alginate/polyvinyl alcohol (PVA)-glutaraldehyde beads (spherical polymer beads). Batch adsorption studies were conducted to assess the effect of contact time, solution pH, initial arsenate concentrations and co-existing anions on arsenate removal performance. The potential reuse of these poly(LDHs) beads was also investigated. Approximately 79.1 to 91.2% of arsenic was removed from an arsenate solution (50 mg As L(-1)) by poly(LDHs). The adsorption data were well described by the pseudo-second-order kinetics model and the Langmuir isotherm model, and the adsorption capacities of these poly(LDHs) beads at pH 8 were from 1.64 to 1.73 mg As g(-1), as calculated from the Langmuir adsorption isotherm. The adsorption ability of the poly(LDHs) beads decreased by approximately 5-6% after 5 adsorption-desorption cycles. Phosphates markedly decreased arsenate removal. The effect of co-existing anions on the adsorption capacity declined in the following order: HPO4 (2-) > HCO3 (-) > SO4 (2-) > Cl(-). A fixed-bed column study was conducted with real-life arsenic-containing water. The breakthrough time was found to be from 7 to 10 h. Under optimized conditions, the poly(LDHs) removed more than 82% of total arsenic. The results obtained in this study will be useful for further extending the adsorbents to the field scale or for designing pilot plants in future studies. From the viewpoint of environmental friendliness, the poly(LDHs) beads are a potential cost-effective adsorbent for arsenate removal in water treatment.

  11. Synthesis of protocatechuic acid–zinc/aluminium–layered double hydroxide nanocomposite as an anticancer nanodelivery system

    Energy Technology Data Exchange (ETDEWEB)

    Barahuie, Farahnaz [Materials Synthesis and Characterisation Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor (Malaysia); Hussein, Mohd Zobir, E-mail: mzobir@upm.edu.my [Materials Synthesis and Characterisation Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor (Malaysia); Gani, Shafinaz Abd [Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor (Malaysia); Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor (Malaysia); Fakurazi, Sharida [Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor (Malaysia); Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor (Malaysia); Zainal, Zulkarnain [Materials Synthesis and Characterisation Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor (Malaysia)

    2015-01-15

    Protocatechuic acid, an active anticancer agent, has been intercalated into Zn/Al–layered double hydroxide at Zn/Al=2) using two different preparation methods, co-precipitation and ion-exchange, which are labelled as PZAE and PZAC, respectively. The release of protocatechuate from the nanocomposites occurred in a controlled manner and was fitted satisfactorily to pseudo-second order kinetics. The basal spacing of the resulting nanocomposites PZAE and PZAC was 10.2 and 11.0 Å, respectively, indicating successful intercalation of protocatechuate anions into the interlayer galleries of Zn/Al–NO{sub 3}–LDH in a monolayer arrangement with angles of 24 and 33° from the z-axis in PZAE and PZAC, respectively. The formation of nanocomposites was further confirmed by a Fourier transform infrared study. Thermogravimetric and differential thermogravimetric analyses indicated that the thermal stability of the intercalated protocatechuic acid was significantly enhanced compared to its free protocatechuic acid, and the drug content in the nanocomposites was estimated to be approximately 32.6% in PZAE and 29.2% in PZAC. Both PZAE and PZAC nanocomposites inhibit the growth of human cervical, liver and colorectal cancer cell lines and exhibit no toxic effects towards normal fibroblast 3T3 cell after 72 h of treatment. - Graphical abstract: Protocatechuate anions were arranged in monolayer mode with the angle of 24° for PZAE and 33° for PZAC from Z axis to maximize interaction between carboxylate groups and brucite-like layers. - Highlights: • Two methods gave nanocomposites with slightly different physico-chemical properties. • PZAE and PZAC have the potential to be used as a controlled release formulation. • The thermal stability of PA is markedly enhanced upon the intercalation process. • Higher cancer cell growth inhibition for PZAE and PZAC nanocomposites than for PA.

  12. Nickel-cobalt hydroxide nanosheets: Synthesis, morphology and electrochemical properties.

    Science.gov (United States)

    Schneiderová, Barbora; Demel, Jan; Zhigunov, Alexander; Bohuslav, Jan; Tarábková, Hana; Janda, Pavel; Lang, Kamil

    2017-08-01

    This paper reports the synthesis, characterization, and electrochemical performance of nickel-cobalt hydroxide nanosheets. The hydroxide nanosheets of approximately 0.7nm thickness were prepared by delamination of layered nickel-cobalt hydroxide lactate in water and formed transparent colloids that were stable for months. The nanosheets were deposited on highly oriented pyrolytic graphite by spin coating, and their electrochemical behavior was investigated by cyclic voltammetry in potassium hydroxide electrolyte. Our method of electrode preparation allows for studying the electrochemistry of nanosheets where the majority of the active centers can participate in the charge transfer reaction. The observed electrochemical response was ascribed to mutual compensation of the cobalt and nickel response via electron sharing between these metals in the hydroxide nanosheets, a process that differentiates the behavior of nickel-cobalt hydroxide nanosheets from single nickel hydroxide or cobalt hydroxide nanosheets or their physical mixture. The presence of cobalt in the nickel-cobalt hydroxide nanosheets apparently decreases the time of electrochemical activation of the nanosheet layer, which for the nickel hydroxide nanosheets alone requires more potential sweeps. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Laccase electrodes based on the combination of single-walled carbon nanotubes and redox layered double hydroxides: Towards the development of biocathode for biofuel cells

    Science.gov (United States)

    Ding, Shou-Nian; Holzinger, Michael; Mousty, Christine; Cosnier, Serge

    Single-walled carbon nanotubes (SWCNT) were combined with layered double hydroxides (LDH) intercalated with 2,2‧-azino-bis(3-ethylbenzothiazoline-6-sulfonate) diammonium salt [ZnCr-ABTS] to entrap and electrically connect laccase enzyme. The resulting laccase electrodes exhibited an electro-enzymatic activity for O 2 reduction. To improve this electrocatalytic activity, varying SWCNT quantities and loading methods were tested to optimize the configuration of the laccase electrodes. Furthermore, the resulting bioelectrode was successfully used as a biocathode for the elaboration of a membrane-less glucose/air biofuel cell. In 0.1 M phosphate buffer (PBS) of pH 6.0, containing glucose (5 mM) under ambient conditions, the assembled biofuel cell yielded a maximum power density of 18 μW cm -2 at a cell voltage of 0.3 V whereas this power decreased to 8.3 μW cm -2 for a biofuel cell based on the identical biocathode setup without SWCNT.

  14. Laccase electrodes based on the combination of single-walled carbon nanotubes and redox layered double hydroxides: Towards the development of biocathode for biofuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Shou-Nian; Holzinger, Michael; Cosnier, Serge [Departement de Chimie Moleculaire UMR-5250, ICMG FR-2607, CNRS Universite Joseph Fourier, BP-53, 38041 Grenoble Cedex 9 (France); Mousty, Christine [Laboratoire des Materiaux Inorganiques, Universite Blaise Pascal, CNRS UMR-6002, 63177 Aubiere Cedex (France)

    2010-08-01

    Single-walled carbon nanotubes (SWCNT) were combined with layered double hydroxides (LDH) intercalated with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) diammonium salt [ZnCr-ABTS] to entrap and electrically connect laccase enzyme. The resulting laccase electrodes exhibited an electro-enzymatic activity for O{sub 2} reduction. To improve this electrocatalytic activity, varying SWCNT quantities and loading methods were tested to optimize the configuration of the laccase electrodes. Furthermore, the resulting bioelectrode was successfully used as a biocathode for the elaboration of a membrane-less glucose/air biofuel cell. In 0.1 M phosphate buffer (PBS) of pH 6.0, containing glucose (5 mM) under ambient conditions, the assembled biofuel cell yielded a maximum power density of 18 {mu}W cm{sup -2} at a cell voltage of 0.3 V whereas this power decreased to 8.3 {mu}W cm{sup -2} for a biofuel cell based on the identical biocathode setup without SWCNT. (author)

  15. CO2 capture at low temperatures (30-80 °C) and in the presence of water vapor over a thermally activated Mg-Al layered double hydroxide.

    Science.gov (United States)

    Torres-Rodríguez, Daniela A; Lima, Enrique; Valente, Jaime S; Pfeiffer, Heriberto

    2011-11-10

    The carbonation process of a calcined Mg-Al layered double hydroxide (LDH) was systematically analyzed at low temperatures, varying the relative humidity. Qualitative and quantitative experiments were performed. In a first set of experiments, the relative humidity was varied while maintaining a constant temperature. Characterization of the rehydrated products by thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR) and solid-state NMR revealed that the samples did not recover the LDH structure; instead hydrated MgCO(3) was produced. The results were compared with similar experiments performed on magnesium oxide for comparison purposes. Then, in the second set of experiments, a kinetic analysis was performed. The results showed that the highest CO(2) capture was obtained at 50 °C and 70% of relative humidity, with a CO(2) absorption capacity of 2.13 mmol/g.

  16. Fluid Mechanics of Lean Blowout Precursors in Gas Turbine Combustors

    Directory of Open Access Journals (Sweden)

    T. M. Muruganandam

    2012-03-01

    Full Text Available Understanding of lean blowout (LBO phenomenon, along with the sensing and control strategies could enable the gas turbine combustor designers to design combustors with wider operability regimes. Sensing of precursor events (temporary extinction-reignition events based on chemiluminescence emissions from the combustor, assessing the proximity to LBO and using that data for control of LBO has already been achieved. This work describes the fluid mechanic details of the precursor dynamics and the blowout process based on detailed analysis of near blowout flame behavior, using simultaneous chemiluminescence and droplet scatter observations. The droplet scatter method represents the regions of cold reactants and thus help track unburnt mixtures. During a precursor event, it was observed that the flow pattern changes significantly with a large region of unburnt mixture in the combustor, which subsequently vanishes when a double/single helical vortex structure brings back the hot products back to the inlet of the combustor. This helical pattern is shown to be the characteristic of the next stable mode of flame in the longer combustor, stabilized by double helical vortex breakdown (VBD mode. It is proposed that random heat release fluctuations near blowout causes VBD based stabilization to shift VBD modes, causing the observed precursor dynamics in the combustor. A complete description of the evolution of flame near the blowout limit is presented. The description is consistent with all the earlier observations by the authors about precursor and blowout events.

  17. 21 CFR 73.2326 - Chromium hydroxide green.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Chromium hydroxide green. 73.2326 Section 73.2326... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2326 Chromium hydroxide green. (a) Identity and specifications.The color additive chromium hydroxide green shall conform in identity and specifications to the...

  18. One-step enrichment and chemiluminescence detection of sodium dodecyl benzene sulfonate in river water using Mg-Al-carbonate layered double hydroxides.

    Science.gov (United States)

    Guan, Weijiang; Zhou, Wenjuan; Han, Dongmei; Zhang, Mengchun; Lu, Chao; Lin, Jin-Ming

    2014-03-01

    In this work, Mg-Al CO3-layered double hydroxides (LDHs) were used as adsorbent materials for sodium dodecyl benzene sulfonate (SDBS) in aqueous solutions, the enriched SDBS can be directly detected by IO4(-)-H2O2 chemiluminescence (CL) system. The commonly existing cations cannot be enriched by Mg-Al CO3-LDHs due to the structurally positively charged layers of LDHs, while other adsorbed anionic interferents had no effect on the IO4(-)-H2O2 CL reaction. The corresponding linear regression equation was established in the range of 0.1-10 μM for SDBS. The detection limit at a signal-to-noise (S/N) ratio of 3 for SDBS was 0.08 μM. The relative standard deviation (RSD) for nine repeated measurements of 0.5 μM SDBS was 2.6%. This proposed method has been successfully applied to the determination of SDBS in river water samples. To the best of our knowledge, we have first time coupled the high enrichment capacity of LDHs towards anions with CL detection for analytes. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Layered-metal-hydroxide nanosheet arrays with controlled nanostructures to assist direct electronic communication at biointerfaces.

    Science.gov (United States)

    An, Zhe; Lu, Shan; Zhao, Liwei; He, Jing

    2011-10-18

    In this work, ordered vertical arrays of layered double hydroxide (LDH) nanosheets have been developed to achieve electron transfer (eT) at biointerfaces in electrochemical devices. It is found that tailoring the gap size of LDH nanosheet arrays could significantly promote the eT rate. This research has successfully extended nanomaterials for efficient modifications of electrode surfaces from nanoparticles, nanowires, nanorods, and nanotubes to nanosheets. © 2011 American Chemical Society

  20. In-syringe extraction using dissolvable layered double hydroxide-polymer sponges templated from hierarchically porous coordination polymers.

    Science.gov (United States)

    Ghani, Milad; Frizzarin, Rejane M; Maya, Fernando; Cerdà, Víctor

    2016-07-01

    Herein we report the use of cobalt porous coordination polymers (PCP) as intermediates to prepare advanced extraction media based on layered double hydroxides (LDH) supported on melamine polymer foam. The obtained dissolvable Ni-Co LDH composite sponges can be molded and used as sorbent for the in-syringe solid-phase extraction (SPE) of phenolic acids from fruit juices. The proposed sorbent is obtained due to the surfactant-assisted self-assembly of Co(II)/imidazolate PCPs on commercially available melamine foam, followed by the in situ conversion of the PCP into the final dissolvable LDH coating. Advantageous features for SPE are obtained by using PCPs with hierarchical porosity (HPCPs). The LDH-sponge prepared using intermediate HPCPs (HLDH-sponge) is placed in the headspace of a glass syringe, enabling flow-through extraction followed by analyte elution by the dissolution of the LDH coating in acidic conditions. Three phenolic acids (gallic acid, p-hydroxybenzoic acid and caffeic acid) were extracted and quantified using high performance liquid chromatography. Using a 5mL sample volume, the obtained detection limits were 0.15-0.35μgL(-1). The proposed method for the preparation of HLDH-sponges showed a good reproducibility as observed from the intra- and inter-day RSD's, which were <10% for all analytes. The batch-to-batch reproducibility for three different batches of HLDH-sponges was 10.6-11.2%. Enrichment factors of 15-21 were obtained. The HLDH-sponges were applied satisfactorily to the determination of phenolic acids in natural and commercial fruit juices, obtaining relative recoveries among 89.7-95.3%. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Oxidative stress by layered double hydroxide nanoparticles via an SFK-JNK and p38-NF-κB signaling pathway mediates induction of interleukin-6 and interleukin-8 in human lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Choi SJ

    2015-04-01

    Full Text Available Soo-Jin Choi, Hee-Jeong Paek, Jin YuDepartment of Food Science and Technology, Seoul Women’s University, Seoul, Republic of KoreaAbstract: Anionic nanoclays are layered double hydroxide nanoparticles (LDH-NPs that have been shown to exhibit toxicity by inducing reactive oxidative species and a proinflammatory mediator in human lung epithelial A549 cells. However, the molecular mechanism responsible for this LDH-NP-induced toxicity and the relationship between oxidative stress and inflammatory events remains unclear. In this study, we focused on intracellular signaling pathways and transcription factors induced in response to oxidative stress caused by exposure to LDH-NPs in A549 cells. Mitogen-activated protein kinase (MAPK cascades, such as extracellular signal-regulated kinase, c-Jun-N-terminal kinase (JNK, and p38, were investigated as potential signaling mechanisms responsible for regulation of oxidative stress and cytokine release. Src family kinases (SFKs, which are known to mediate activation of MAPK, together with redox-sensitive transcription factors, including nuclear factor kappa B and nuclear factor-erythroid 2-related factor-2, were also investigated as downstream events of MAPK signaling. The results obtained suggest that LDH-NP exposure causes oxidative stress, leading to expression of antioxidant enzymes, such as catalase, glucose reductase, superoxide dismutase, and heme oxygenase-1, via a SFK-JNK and p38-nuclear factor kappa B signaling pathway. Further, activation of this signaling was also found to regulate release of inflammatory cytokines, including interleukin-6 and interleukin-8, demonstrating the inflammatory potential of LDH-NP.Keywords: layered double hydroxide, mitogen-activated protein kinases, Src family kinases, nuclear factor kappa B, oxidative stress, inflammatory cytokine

  2. 21 CFR 73.1326 - Chromium hydroxide green.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Chromium hydroxide green. 73.1326 Section 73.1326... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1326 Chromium hydroxide green. (a) Identity. (1) The color additive chromium hydroxide green is principally hydrated chromic sesquioxide (Cr2O3·XH2O...

  3. Limited Dissolved Phosphorus Runoff Losses from Layered Double Hydroxide and Struvite Fertilizers in a Rainfall Simulation Study.

    Science.gov (United States)

    Everaert, Maarten; da Silva, Rodrigo C; Degryse, Fien; McLaughlin, Mike J; Smolders, Erik

    2018-03-01

    The enrichment of P in surface waters has been linked to P runoff from agricultural fields amended with fertilizers. Novel slow-release mineral fertilizers, such as struvite and P-exchanged layered double hydroxides (LDHs), have received increasing attention for P recycling from waste streams, and these fertilizers may potentially reduce the risk of runoff losses. Here, a rainfall simulation experiment was performed to evaluate P runoff associated with the application of recycled slow-release fertilizers relative to that of a soluble fertilizer. Monoammonium phosphate (MAP), struvite, and LDH granular fertilizers were broadcasted at equal total P doses on soil packed in trays (5% slope) and covered with perennial ryegrass ( L.). Four rainfall simulation events of 30 min were performed at 1, 5, 15, and 30 d after the fertilizer application. Runoff water from the trays was collected, filtered, and analyzed for dissolved P. For the MAP treatment, P runoff losses were high in the first two rain events and leveled off in later rain events. In total, 42% of the applied P in the MAP treatment was lost due to runoff. In the slow-release fertilizer treatments, P runoff losses were limited to 1.9 (struvite) and 2.4% (LDH) of the applied doses and were more similar over the different rain events. The use of these novel P fertilizer forms could be beneficial in areas with a high risk of surface water eutrophication and a history of intensive fertilization. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  4. Environmental Benign Synthesis of Lithium Silicates and Mg-Al Layered Double Hydroxide from Vermiculite Mineral for CO2 Capture

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2017-04-01

    Full Text Available This research introduces a completely new environmental benign synthesis route for obtaining two kinds of inter-mediate and high temperature CO2 sorbents, Mg-Al layered double hydroxide (LDH and Li4SiO4, from vermiculite. The mineral vermiculite was leached with acid, from which the obtained SiO2 was used for the synthesis of Li4SiO4 and the leaching waste water was used for the synthesis of Mg-Al LDH. Therefore, no waste was produced during the whole process. Both Li4SiO4 and Mg-Al LDH sorbents were carefully characterized using XRD, SEM, and BET analyses. The CO2 capturing performance of these two sorbents was comprehensively evaluated. The influence of the Li/Si ratio, calcination temperature, calcination time, and sorption temperature on the CO2 sorption capacity of Li4SiO4, and the sorption temperature on the CO2 sorption capacity of LDH, were investigated. The optimal leaching acid concentration for vermiculite and the CO2 sorption/desorption cycling performance of both the Li4SiO4 and Mg-Al LDH sorbents were determined. In sum, this demonstrated a unique and environment-friendly scheme for obtaining two CO2 sorbents from cheap raw materials, and this idea is applicable to the efficient utilization of other minerals.

  5. Plasmonic photocatalysts based on silver nanoparticles - layered double hydroxides for efficient removal of toxic compounds using solar light

    Science.gov (United States)

    Gilea, Diana; Radu, Teodora; Muresanu, Mihaela; Carja, Gabriela

    2018-06-01

    Plasmon-enhanced photocatalysis holds important promise for chemical processes and outcomes. We present here the self-assemblies of silver nanoparticles (AgNP)/layered double hydroxides (LDHs: MeAlLDHs with Me2+ = Zn2+;Mg2+) and their derived AgNP/MMOs (type AgNP/MgAl2O4; AgNP/ZnO/ZnAl2O4) as novel plasmonic photocatalysts exhibiting activity for phenol photodegradation from aqueous solution by solar-light. The fabrication procedure of AgNP/LDHs assemblies is simple and cost effective and is based on the in-situ synthesis of AgNP on the LDHs matrices during the reconstruction of MgAlLDH and ZnAlLDH in the aqueous solution of Ag2SO4. The tested catalysts were thoroughly investigated - techniques to obtain information on their crystalline structure (XRD), surface properties (XPS), morphological features (TEM) and optical properties (UV-vis). The results show that the solar photocatalytic response of the catalysts is ascribed to the plasmonic response of AgNP though the catalytic efficiency is strongly influenced by the composition of the MeAlLDHs. The best photocatalytic performance was obtained on AgNP/ZnAlLDH750 catalyst that degraded 100% of phenol after 80 min of irradiation with solar light. The results reveal the high potential to tailor AgNP/LDHs and AgNP/MMOs as efficient photo-functional plasmonic hybrids for waste-water cleaning.

  6. Layer-by-layer self-assembled two-dimensional MXene/layered double hydroxide composites as cathode for alkaline hybrid batteries

    Science.gov (United States)

    Dong, Xiaowan; Zhang, Yadi; Ding, Bing; Hao, Xiaodong; Dou, Hui; Zhang, Xiaogang

    2018-06-01

    Multifarious layered materials have received extensive concern in the field of energy storage due to their distinctive two-dimensional (2D) structure. However, the natural tendency to be re-superimposed and the inherent disadvantages of a single 2D material significantly limit their performance. In this work, the delaminated Ti3C2Tx (d-Ti3C2Tx)/cobalt-aluminum layered double hydroxide (Ti3C2Tx/CoAl-LDH) composites are prepared by layer-by-layer self-assembly driven by electrostatic interaction. The alternate Ti3C2Tx and CoAl-LDH layers prevent each other from restacking and the obtained Ti3C2Tx/CoAl-LDH heterostructure combine the advantages of high electron conductivity of Ti3C2Tx and high electrochemical activity of CoAl-LDH, thus effectively improving the electrochemical reactivity of electrode materials and accelerating the kinetics of Faraday reaction. As a consequence, as a cathode for alkaline hybrid battery, the Ti3C2Tx/CoAl-LDH electrode exhibits a high specific capacity of 106 mAh g-1 at a current density of 0.5 A g-1 and excellent rate capability (78% at 10 A g-1), with an excellent cycling stability of 90% retention after 5000 cycles at 4 A g-1. This work provides an alternative route to design advanced 2D electrode materials, thus exploiting their full potentials for alkaline hybrid batteries.

  7. Functionalization of layered double hydroxides by intumescent flame retardant: Preparation, characterization, and application in ethylene vinyl acetate copolymer

    International Nuclear Information System (INIS)

    Huang Guobo; Fei Zhengdong; Chen Xiaoying; Qiu Fangli; Wang Xu; Gao Jianrong

    2012-01-01

    Highlights: ► LDHs were modified with compound PAHPA. ► EVA/PAHPA-LDHs nanocomposites were prepared by melt blending. ► PAHPA-LDHs improved the flame retardancy of the nanocomposites. - Abstract: A phosphorus-nitrogen containing compound, N-(2-(5,5-dimethyl-1,3,2-dioxaphosphinyl-2-ylamino)-hexylacetamide-2-propyl acid (PAHPA), is synthesized and characterized. A novel flame retardant, namely layered double hydroxides (LDHs) modified with PAHPA (PAHPA-LDHs), is prepared by ion-exchange of LDHs with PAHPA. The results from Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and energy dispersive X-ray analysis with a high-angle annular dark-field scanning transmission electron microscope show that PAHPA intercalated LDHs. The X-ray diffraction and transmission electron microscopy (TEM) results show that PAHPA-LDHs achieve well dispersion in ethylene vinyl acetate copolymer (EVA) matrix and the EVA/PAHPA-LDHs nanocomposites (i.e. EVA filled with 5 wt% PAHPA-LDHs) are formed by polymer melt intercalation. Thermal stability and flammability properties are investigated by thermogravimetric analysis and cone calorimeter tests. The results show that the addition of PAHPA-LDHs improves thermal stability and reduces obviously the flammability of EVA resin. Compared with pure EVA resin, the peak heat release rate of the EVA/PAHPA-LDHs nanocomposites is reduced by about 43%. The results of scanning electron microscopy and TEM indicate that a compact and dense intumescent char is formed for the EVA/PAHPA-LDHs nanocomposites after combustion.

  8. Radiation induced topotactic [2 + 2] dimerisation of acrylate derivatives among the layers of a CaFe layered double hydroxide followed by IR spectroscopy

    Science.gov (United States)

    Srankó, D. F.; Canton, S.; Enghdahl, A.; Muráth, Sz.; Kukovecz, Á.; Kónya, Z.; Sipiczki, M.; Sipos, P.; Pálinkó, I.

    2013-07-01

    Various acrylates [E-phenylpropenoate, E-3(4‧-nitrophenyl)propenoate, E-3(2‧,5‧-difluorphenyl)propenoate, E-3(2‧-thienyl)propenoate, E-3(4‧-imidazolyl)propenoate or E-2,3-dimethylpropenoate] were successfully intercalated into Ca(II)Fe(III) layered double hydroxide (CaFe-LDH) verified by a range of instrumental methods. The possible arrangements for the organic anions were suggested on the basis of basal spacing data, layer thickness and the dimensions of the quantum chemically optimised structures of the acrylate ions. Using the acrylate-CaFe-LDHs as reactant-filled nanoreactors, photoinitiated topotactic [2 + 2] cyclisation reactions followed by IR spectroscopy could be performed with many representatives [E-phenylpropenoate-, E-3(4‧-nitrophenyl)propenoate-, E-3(2‧,5‧-difluorphenyl)propenoate- or E-3(2‧-thienyl)propenoate-CaFe-LDHs] resulting in cyclobutane derivatives within the layers of the host material indicating that there were domains where the intercalated anions were in close proximity to each other and in proper arrangement for the reaction to occur.

  9. Solvothermal one-step synthesis of Ni-Al layered double hydroxide/carbon nanotube/reduced graphene oxide sheet ternary nanocomposite with ultrahigh capacitance for supercapacitors.

    Science.gov (United States)

    Yang, Wanlu; Gao, Zan; Wang, Jun; Ma, Jing; Zhang, Milin; Liu, Lianhe

    2013-06-26

    A Ni-Al layered double hydroxide (LDH), mutil-wall carbon nanotube (CNT), and reduced graphene oxide sheet (GNS) ternary nanocomposite electrode material has been developed by a facile one-step ethanol solvothermal method. The obtained LDH/CNT/GNS composite displayed a three-dimensional (3D) architecture with flowerlike Ni-Al LDH/CNT nanocrystallites gradually self-assembled on GNS nanosheets. GNS was used as building blocks to construct 3D nanostructure, and the LDH/CNT nanoflowers in turn separated the two-dimensional (2D) GNS sheets, which preserved the high surface area of GNSs. Furthermore, the generated porous networks with a narrow pore size distribution in the LDH/CNT/GNS composite were also demonstrated by the N2 adsorption/desorption experiment. Such morphology would be favorable to improve the mass transfer and electrochemical action of the electrode. As supercapacitor electrode material, the LDH/CNT/GNS hybrid exhibited excellent electrochemical performance, including ultrahigh specific capacitance (1562 F/g at 5 mA/cm(2)), excellent rate capability, and long-term cycling performance, which could be a promising energy storage/conversion material for supercapacitor application.

  10. Analysis of barium hydroxide and calcium hydroxide slurry carbonation reactors

    International Nuclear Information System (INIS)

    Patch, K.D.; Hart, R.P.; Schumacher, W.A.

    1980-05-01

    The removal of CO 2 from air was investigated by using a continuous-agitated-slurry carbonation reactor containing either barium hydroxide [Ba(OH) 2 ] or calcium hydroxide [Ca(OH) 2 ]. Such a process would be applied to scrub 14 CO 2 from stack gases at nuclear-fuel reprocessing plants. Decontamination factors were characterized for reactor conditions which could alter hydrodynamic behavior. An attempt was made to characterize reactor performance with models assuming both plug flow and various degrees of backmixing in the gas phase. The Ba(OH) 2 slurry enabled increased conversion, but apparently the process was controlled under some conditions by phenomena differing from those observed for carbonation by Ca(OH) 2 . Overall reaction mechanisms are postulated

  11. Hybrid Materials Based on Magnetic Layered Double Hydroxides: A Molecular Perspective.

    Science.gov (United States)

    Abellán, Gonzalo; Martí-Gastaldo, Carlos; Ribera, Antonio; Coronado, Eugenio

    2015-06-16

    Design of functional hybrids lies at the very core of synthetic chemistry as it has enabled the development of an unlimited number of solids displaying unprecedented or even improved properties built upon the association at the molecular level of quite disparate components by chemical design. Multifunctional hybrids are a particularly appealing case among hybrid organic/inorganic materials. Here, chemical knowledge is used to deploy molecular components bearing different functionalities within a single solid so that these properties can coexist or event interact leading to unprecedented phenomena. From a molecular perspective, this can be done either by controlled assembly of organic/inorganic molecular tectons into an extended architecture of hybrid nature or by intercalation of organic moieties within the empty channels or interlamellar space offered by inorganic solids with three-dimensional (MOFs, zeolites, and mesoporous hosts) or layered structures (phosphates, silicates, metal dichalcogenides, or anionic clays). This Account specifically illustrates the use of layered double hydroxides (LDHs) in the preparation of magnetic hybrids, in line with the development of soft inorganic chemistry processes (also called "Chimie Douce"), which has significantly contributed to boost the preparation hybrid materials based on solid-state hosts and subsequent development of applications. Several features sustain the importance of LDHs in this context. Their magnetism can be manipulated at a molecular level by adequate choice of constituting metals and interlayer separation for tuning the nature and extent of magnetic interactions across and between planes. They display unparalleled versatility in accommodating a broad range of anionic species in their interlamellar space that encompasses not only simple anions but chemical systems of increasing dimensionality and functionalities. Their swelling characteristics allow for their exfoliation in organic solvents with high

  12. Functional intercalated nanocomposites with chitosan-glutathione-glycylsarcosine and layered double hydroxides for topical ocular drug delivery.

    Science.gov (United States)

    Xu, Tingting; Xu, Xiaoyue; Gu, Yan; Fang, Lei; Cao, Feng

    2018-01-01

    To enhance ocular bioavailability, the traditional strategies have focused on prolonging precorneal retention and improving corneal permeability by nano-carriers with positive charge, thiolated polymer, absorption enhancer and so on. Glycylsarcosine (GS) as an active target ligand of the peptide tranpsporter-1 (PepT-1), could specific interact with the PepT-1 on the cornea and guide the nanoparticles to the treating site. The objective of the study was to explore the active targeting intercalated nanocomposites based on chitosan-glutathione-glycylsarcosine (CG-GS) and layered double hydroxides (LDH) as novel carriers for the treatment of mid-posterior diseases. CG-GS-LDH intercalated nanocomposites were prepared by the coprecipitation hydrothermal method. In vivo precorneal retention study, ex vivo fluorescence images, in vivo experiment for distribution and irritation were studied in rabbits. The cytotoxicity and cellular uptake were studied in human corneal epithelial primary cells (HCEpiC). CG-GS-LDH nanocomposites were prepared successfully and characterized by FTIR and XRD. Experiments with rabbits showed longer precorneal retention and higher distribution of fluorescence probe/model drug. In vitro cytological study, CG-GS-LDH nanocomposites exhibited enhanced cellular uptake compared to pure drug solution. Furthermore, the investigation of cellular uptake mechanisms demonstrated that both the active transport by PepT-1 and clathrin-mediated endocytosis were involved in the internalization of CG-GS-LDH intercalated nanocomposites. An ocular irritation study and a cytotoxicity test indicated that these nanocomposites produced no significant irritant effects. The active targeting intercalated nanocomposites could have great potential for topical ocular drug delivery due to the capacity for prolonging the retention on the ocular surface, enhancing the drug permeability through the cornea, and efficiently delivering the drug to the targeted site.

  13. Ultra-fast and highly efficient removal of cadmium ions by magnetic layered double hydroxide/guargum bionanocomposites.

    Science.gov (United States)

    Dinari, Mohammad; Tabatabaeian, Reyhane

    2018-07-15

    Finding effective methodologies for the removal of heavy metals from contaminated water are really significant. Facile and "green" techniques for adsorbents fabrication are in high demand to satisfy a wide range of practical applications. This report presents of an efficient method for preparing Fe 3 O 4 @ layered double hydroxide@ guargum bionanocomposites (GLF-BNCs). First of all, the LDH coated Fe 3 O 4 nanoparticles were simply synthesized, using ultrasonic irradiation. The citrate coated Fe 3 O 4 nanoparticles which were under negative charging and LDH nanocrystals which were charged positively make electrostatic interaction which formed a stable self-assembly component, and then guargum as a biopolymer were linked onto Fe 3 O 4 @LDH via an in situ growth method. Furthermore, the GLF-BNCs had the ability to remove cadmium ions (Cd 2+ ) from the aqueous solutions. Adsorption studies indicate that the Langmuir isotherm model and the kinetic model in pseudo-second order were appropriate for Cd(II) removal. The maximum Cd(II) adsorption capacity of the GLF8% was 258 mg g -1 . The Cd(II) was adsorbed from aqueous solutions very quickly with the contact time of 5 min by the GLF 8%, suggesting that GLF-BNCs may be a promising adsorbent for removing Cd(II) from wastewater. The effect of Fe 3 O 4 @LDH contents (2, 4 and 8 wt.%) on the thermal, physicomechanical, and morphological properties of guargum were investigated by Fourier transform infrared spectroscopy, X-ray diffraction (XRD), thermal gravimetric analysis (TGA), field emission scanning electron microscopy, transmission electron microscopy (TEM), Energy-dispersive X-ray spectroscopy and Brunauer-Emmett-Teller (BET) specific surface area techniques. The TEM results indicated that the LDH platelets are distributed within the polymer matrix. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. 21 CFR 73.1010 - Alumina (dried aluminum hydroxide).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Alumina (dried aluminum hydroxide). 73.1010... GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1010 Alumina (dried aluminum hydroxide). (a) Identity. (1) The color additive alumina (dried aluminum hydroxide) is a white, odorless...

  15. Gold Nanoclusters@Ru(bpy)₃²⁺-Layered Double Hydroxide Ultrathin Film as a Cathodic Electrochemiluminescence Resonance Energy Transfer Probe.

    Science.gov (United States)

    Yu, Yingchang; Lu, Chao; Zhang, Meining

    2015-08-04

    Herein, it is the first report that a cathodic electrochemiluminescence (ECL) resonance energy transfer (ERET) system is fabricated by layer-by-layer (LBL) electrostatic assembly of CoAl layered double hydroxide (LDH) nanosheets with a mixture of blue BSA-gold nanoclusters (AuNCs) and Ru(bpy)3(2+) (denoted as AuNCs@Ru) on an Au electrode. The possible ECL mechanism indicates that the appearance of CoAl-LDH nanosheets generates a long-range stacking order of the AuNCs@Ru on an Au electrode, facilitating the occurrence of the ERET between BSA-AuNC donors and Ru(bpy)3(2+) acceptors on the as-prepared AuNCs@Ru-LDH ultrathin films (UTFs). Furthermore, it is observed that the cathodic ECL intensity can be quenched efficiently in the presence of 6-mercaptopurine (6-MP) in a linear range of 2.5-100 nM with a detection limit of 1.0 nM. On the basis of these interesting phenomena, a facile cathodic ECL sensor has successfully distinguished 6-MP from other thiol-containing compounds (e.g., cysteine and glutathione) in human serum and urine samples. The proposed sensing scheme opens a way for employing the layered UTFs as a platform for the cathodic ECL of Ru(bpy)3(2+).

  16. Development of a biocompatible nanodelivery system for tuberculosis drugs based on isoniazid-Mg/Al layered double hydroxide

    Directory of Open Access Journals (Sweden)

    Saifullah B

    2014-10-01

    Full Text Available Bullo Saifullah,1 Palanisamy Arulselvan,2 Mohamed Ezzat El Zowalaty,2,3 Sharida Fakurazi,2,4 Thomas J Webster,5,6 Benjamin M Geilich,5 Mohd Zobir Hussein1 1Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology, 2Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; 3Department of Environmental Health, Faculty of Public Health and Tropical Medicine, Jazan University, Jazan, Saudi Arabia; 4Department of Human Anatomy, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; 5Department of Chemical Engineering and Program in Bioengineering, Northeastern University, Boston, MA, USA; 6Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia Abstract: The primary challenge in finding a treatment for tuberculosis (TB is patient non-compliance to treatment due to long treatment duration, high dosing frequency, and adverse effects of anti-TB drugs. This study reports on the development of a nanodelivery system that intercalates the anti-TB drug isoniazid into Mg/Al layered double hydroxides (LDHs. Isoniazid was found to be released in a sustained manner from the novel nanodelivery system in humans in simulated phosphate buffer solutions at pH 4.8 and pH 7.4. The nanodelivery formulation was highly biocompatible compared to free isoniazid against human normal lung and 3T3 mouse fibroblast cells. The formulation was active against Mycobacterium tuberculosis and gram-positive bacteria and gram-negative bacteria. Thus results show significant promise for the further study of these nanocomposites for the treatment of TB. Keywords: tuberculosis, isoniazid, Mg/Al LDH, nanodelivery system

  17. 21 CFR 872.3250 - Calcium hydroxide cavity liner.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Calcium hydroxide cavity liner. 872.3250 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3250 Calcium hydroxide cavity liner. (a) Identification. A calcium hydroxide cavity liner is a device material intended to be applied to the interior of a...

  18. Anionic clay as the drug delivery vehicle: tumor targeting function of layered double hydroxide-methotrexate nanohybrid in C33A orthotopic cervical cancer model.

    Science.gov (United States)

    Choi, Goeun; Piao, Huiyan; Alothman, Zeid A; Vinu, Ajayan; Yun, Chae-Ok; Choy, Jin-Ho

    2016-01-01

    Methotrexate (MTX), an anticancer agent, was successfully intercalated into the anionic clay, layered double hydroxides to form a new nanohybrid drug. The coprecipitation and subsequent hydrothermal method were used to prepare chemically, structurally, and morphologically well-defined two-dimensional drug-clay nanohybrid. The resulting two-dimensional drug-clay nanohybrid showed excellent colloidal stability not only in deionized water but also in an electrolyte solution of Dulbecco's Modified Eagle's Medium with 10% fetal bovine serum, in which the average particle size in colloid and the polydispersity index were determined to be around 100 and 0.250 nm, respectively. The targeting property of the nanohybrid drug was confirmed by evaluating the tumor-to-blood and tumor-to-liver ratios of the MTX with anionic clay carrier, and these ratios were compared to those of free MTX in the C33A orthotopic cervical cancer model. The biodistribution studies indicated that the mice treated with the former showed 3.5-fold higher tumor-to-liver ratio and fivefold higher tumor-to-blood ratio of MTX than those treated with the latter at 30 minutes postinjection.

  19. Formation of Zn-rich phyllosilicate, Zn-layered double hydroxide and hydrozincite in contaminated calcareous soils

    Energy Technology Data Exchange (ETDEWEB)

    Jacquat, Olivier; Voegelin, Andreas; Villard, Andre; Marcus, Matthew A.; Kretzschmar, Ruben

    2007-10-15

    Recent studies demonstrated that Zn-phyllosilicate- and Zn-layered double hydroxide-type (Zn-LDH) precipitates may form in contaminated soils. However, the influence of soil properties and Zn content on the quantity and type of precipitate forming has not been studied in detail so far. In this work, we determined the speciation of Zn in six carbonate-rich surface soils (pH 6.2 to 7.5) contaminated by aqueous Zn in the runoff from galvanized power line towers (1322 to 30090 mg/kg Zn). Based on 12 bulk and 23 microfocused extended X-ray absorption fine structure (EXAFS) spectra, the number, type and proportion of Zn species were derived using principal component analysis, target testing, and linear combination fitting. Nearly pure Zn-rich phyllosilicate and Zn-LDH were identified at different locations within a single soil horizon, suggesting that the local availabilities of Al and Si controlled the type of precipitate forming. Hydrozincite was identified on the surfaces of limestone particles that were not in direct contact with the soil clay matrix. With increasing Zn loading of the soils, the percentage of precipitated Zn increased from {approx}20% to {approx}80%, while the precipitate type shifted from Zn-phyllosilicate and/or Zn-LDH at the lowest studied soil Zn contents over predominantly Zn-LDH at intermediate loadings to hydrozincite in extremely contaminated soils. These trends were in agreement with the solubility of Zn in equilibrium with these phases. Sequential extractions showed that large fractions of soil Zn ({approx}30% to {approx}80%) as well as of synthetic Zn-kerolite, Zn-LDH, and hydrozincite spiked into uncontaminated soil were readily extracted by 1 M NH{sub 4}NO{sub 3} followed by 1 M NH{sub 4}-acetate at pH 6.0. Even though the formation of Zn precipitates allows for the retention of Zn in excess to the adsorption capacity of calcareous soils, the long-term immobilization potential of these precipitates is limited.

  20. Sorption of selenium on Mg-Al and Mg-Al-Eu layered double hydroxides

    International Nuclear Information System (INIS)

    Curtius, H.; Paparigas, Z.; Kaiser, G.

    2008-01-01

    Salt domes represent deep geological formations which are under consideration as final repositories for irradiated research reactor fuel elements. For long-term safety aspects the mobilisation of the radionuclides due to a water ingress is intensively investigated. At the Institute of Energy Research (IEF-6), leaching experiments were performed in a hot cell facility with UAl x -Al and U 3 Si 2 -Al dispersed research reactor fuel elements in repository-relevant MgCl 2 -rich salt brines under anaerobic conditions. The fuel plates corroded completely within one year and a Mg-Al-layered double hydroxide (LDH) with chloride as interlayer anion was identified as one crystalline phase component of the corrosion products (secondary phases). This Mg-Al-LDH was synthesized, characterized, and the ability to retard europium by an incorporation process was investigated. Europium, as a representative for lanthanides, was identified to be one of the radionuclides which were found in the corrosion products. We could show that europium was incorporated in the lattice structure. LDHs have high anion exchange capacities that enhance their potential to remove anionic contaminants from aqueous systems. In this work the sorption behaviour of selenium in the chemical form as selenite (SeO 3 2- ) on Mg-Al-LDH and on Mg-Al-Eu-LDH was investigated. Especially the influence of the larger europium-III ion was of interest. It represents in the Mg-Al-Eu-LDH about 10% of the molar aluminium amount. The sorption has been experimentally studied in a wide range of pH, ionic strength, radionuclide and sorbent concentration. Both LDHs with chloride as interlayer anion were synthesized by a coprecipitation method under controlled conditions, and their main physico-chemical properties were analyzed prior to the sorption experiments. The sorption kinetics of selenite on the LDHs in water and in MgCl 2 -rich brine were rapid using a LDH concentration of 10 g/L. Equilibrium, indicated by stable p

  1. Crystallization behavior of nanocomposites based on poly(L-lactide) and layered double hydroxides - Unbiased determination of the rigid amorphous phases due to the crystals and the nanofiller

    Science.gov (United States)

    Schoenhals, Andreas; Leng, Jing; Wurm, Andreas; Schick, Christoph

    Semicrystalline polymers have to be described by a three phase model consisting of a mobile amorphous (MAF), a crystalline (CF), and a rigid amorphous fraction (RAF). For nanocomposites based on a semicrystalline polymer the RAF is due to both the crystallites (RAFcrystal) and the filler (RAFfiller) . In most cases a separation of both contributions is not possible without further assumptions. Here polymer nanocomposite based on poly(L-lactide) and layered double hydroxide nanofiller were prepared. Due to the low crystallization rate of PLA its crystallization can be suppressed by a high enough cooling rate, and the RAF is due only to the nanofiller. The MAF, CF, and RAF were estimated by Temperature Modulated DSC. For the first time CF, MAF, RAFcrystal, and RAFfiller could be estimated without any assumption. Two different systems with a different degree of exfoliation were prepared and discussed in detail.

  2. Antituberculosis nanodelivery system with controlled-release properties based on para-amino salicylate–zinc aluminum-layered double-hydroxide nanocomposites

    Directory of Open Access Journals (Sweden)

    Saifullah B

    2013-11-01

    Full Text Available Bullo Saifullah,1 Mohd Zobir Hussein,1 Samer Hasan Hussein-Al-Ali,2 Palanisamy Arulselvan,3 Sharida Fakurazi3,41Materials Synthesis and Characterization Laboratory, 2Laboratory of Molecular Biomedicine, 3Laboratory of Vaccines and Immunotherapeutics, 4Department of Human Anatomy, Universiti Putra Malaysia, Serdang, Selangor, MalaysiaAbstract: We report the intercalation and characterization of para-amino salicylic acid (PASA into zinc/aluminum-layered double hydroxides (ZLDHs by two methods, direct and indirect, to form nanocomposites: PASA nanocomposite prepared by a direct method (PASA-D and PASA nanocomposite prepared by an indirect method (PASA-I. Powder X-ray diffraction, Fourier-transform infrared spectroscopy, and thermogravimetric analysis revealed that the PASA drugs were accommodated within the ZLDH interlayers. The anions of the drug were accommodated as an alternate monolayer (along the long-axis orientation between ZLDH interlayers. Drug loading was estimated to be 22.8% and 16.6% for PASA-D and PASA-I, respectively. The in vitro release properties of the drug were investigated in physiological simulated phosphate-buffered saline solution of pH 7.4 and 4.8. The release followed the pseudo-second-order model for both nanocomposites. Cell viability (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide [MTT] assays was assessed against normal human lung fibroblast MRC-5 and 3T3 mouse fibroblast cells at 24, 48, and 72 hours. The results showed that the nanocomposite formulations did not possess any cytotoxicity, at least up to 72 hours.Keywords: drug-delivery system, slow-release nanocarrier, tuberculosis, biocompatible nanocomposites

  3. Investigation of γ-(2,3-Epoxypropoxypropyltrimethoxy Silane Surface Modified Layered Double Hydroxides Improving UV Ageing Resistance of Asphalt

    Directory of Open Access Journals (Sweden)

    Canlin Zhang

    2017-01-01

    Full Text Available γ-(2,3-Epoxypropoxypropyltrimethoxy silane surface modified layered double hydroxides (KH560-LDHs were prepared and used to improve the ultraviolet ageing resistance of asphalt. The results of X-ray photoelectron spectrometry (XPS indicated that KH560 has been successfully grafted onto the surface of LDHs. The agglomeration of LDHs particles notably reduced after KH560 surface modification according to scanning electron microscopy (SEM, which implied that the KH560 surface modification was helpful to promote the dispersibility of LDHs in asphalt. Then, the influence of KH560-LDHs and LDHs on the physical and rheological properties of asphalt before and after UV ageing was thoroughly investigated. The storage stability test showed that the difference in softening point (ΔS of LDHs modified asphalt decreased from 0.6 °C to 0.2 °C at an LDHs content of 1% after KH560 surface modification, and the tendency became more pronounced with the increase of LDH content, indicating that KH560 surface modification could improve the stability of LDHs in asphalt. After UV ageing, the viscous modulus (G’’ of asphalt significantly reduced, and correspondingly, the elastic modulus (G’ and rutting factor (G*/sin δ rapidly increased. Moreover, the asphaltene increased and the amount of “bee-like” structures of the asphalt decreased. Compared with LDHs, KH560-LDHs obviously restrained performance deterioration of the asphalt, and helped to relieve the variation of the chemical compositions and morphology of asphalt, which suggested that the improvement of KH560-LDHs on UV ageing resistance of asphalt was superior to LDHs.

  4. Preparation, characterization and thermodynamic properties of Zr-containing Cl-bearing layered double hydroxides (LDHs)

    Energy Technology Data Exchange (ETDEWEB)

    Rozov, Konstantin; Curtius, Hilde; Bosbach, Dirk [Forschungszentrum Juelich GmbH (Germany). Inst. of Energy and Climate Research (IEK-6) Nuclear Waste Management and Reactor Safety

    2015-07-01

    Zr-containing layered double hydroxides (LDHs) with variable xZr{sub solid} = Zr/(Zr + Al) mole fractions were synthesized by a co-precipitation method at ambient conditions. The chemical compositions of samples and corresponding aqueous solutions after syntheses were analyzed by ICP-OES, EDX (Mg, Al, Zr) and ion chromatography (Cl{sup -}). Results of PXRD technique demonstrated that solids with 0 ≤ x Zr{sub solid} ≤ 0.5 show only X-ray reflexes typical for pure LDH compositions, while products of syntheses with xZr{sub solid} > 0.5 display additional patterns attributed to brucite. ICP-OES and EDX techniques shown that in pure Zr-containing LDHs the Mg/(Al + Zr) ratio is reducing with increase of xZr{sub solid} and the stoichiometry of brucite-like layers corresponds to [Mg{sub 3-2x}Al{sub 1-x}Zr{sub x}]. This fact may indicate that the incorporation of 1 Zr-containing specie results in the removal of 1 Al- and 2 Mg-containing species from the pure Mg-Al-composition. Such mechanism may be confirmed by the observation that measured a{sub 0} = b{sub 0} distances are generally consistent with theoretical estimates obtained from [Mg{sub 3-2x}Al{sub 1-x}Zr{sub x}]-stoichiometry. The presence of predominant Mg{sup 2+}, Al(OH){sub 4}{sup -} and Zr(OH){sub 5}{sup -} complexes in aqueous solutions after syntheses was established in thermodynamic calculations by applying GEMS-Selektor v.3. code and, therefore, the reaction: Mg{sub 3}Al{sub 1}(OH){sub 8}Cl{sub 1} + Zr(OH){sub 5}{sup -} = Mg{sub 1}Zr{sub 1}(OH){sub 5}Cl{sub 1} + Al(OH){sub 4}{sup -} + 2Mg{sup 2+} + 4OH{sup -} can describe a mechanism of Zr-substitution. Estimates of the molar Gibbs free energies of Zr-containing LDHs with 0 ≤ = xZr{sub solid} ≤ 0.5 show that the incorporation of Zr into the LDH increasing significantly their aqueous solubility. Thus, it is not possible to neglect that Zr can be partly localized as Zr(OH){sub 5}{sup -}-ligands in the interlayer space of the LDH structure.

  5. Novel hollow microspheres of hierarchical zinc-aluminum layered double hydroxides and their enhanced adsorption capacity for phosphate in water

    International Nuclear Information System (INIS)

    Zhou, Jiabin; Yang, Siliang; Yu, Jiaguo; Shu, Zhan

    2011-01-01

    Highlights: → Hierarchical Zn-Al LDHs hollow microspheres were first synthesized by a simple hydrothermal method using urea as precipitating agent. → The morphology of Zn-Al LDHs can be tailored from irregular platelet to hollow microspheres by simply varying concentrations of urea. → The as-prepared samples exhibit high adsorption capacity (54.1-232 mg/g) for phosphate from aqueous solution. - Abstract: Hollow microspheres of hierarchical Zn-Al layered double hydroxides (LDHs) were synthesized by a simple hydrothermal method using urea as precipitating agent. The morphology and microstructure of the as-prepared samples were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), nitrogen adsorption-desorption isotherms and fourier transform infrared (FTIR) spectroscopy. It was found that the morphology of hierarchical Zn-Al LDHs can be tuned from irregular platelets to hollow microspheres by simply varying concentrations of urea. The effects of initial phosphate concentration and contact time on phosphate adsorption using various Zn-Al LDHs and their calcined products (LDOs) were investigated from batch tests. Our results indicate that the equilibrium adsorption data were best fitted by Langmuir isothermal model, with the maximum adsorption capacity of 54.1-232 mg/g; adsorption kinetics follows the pseudo-second-order kinetic equation and intra-particle diffusion model. In addition, Zn-Al LDOs are shown to be effective adsorbents for removing phosphate from aqueous solutions due to their hierarchical porous structures and high specific surface areas.

  6. The layered double hydroxide route to Bi-Zn co-doped TiO₂ with high photocatalytic activity under visible light.

    Science.gov (United States)

    Benalioua, Bahia; Mansour, Meriem; Bentouami, Abdelhadi; Boury, Bruno; Elandaloussi, El Hadj

    2015-05-15

    In this work, a co-doped Bi-Zn-TiO₂ photocatalist is synthesized by an original synthesis route of layered double hydroxide followed by heat treatment at 670 °C. After characterization the photocatalyst efficiency is estimated by the photo-discoloration of an anionic dye (indigo carmine) under visible light and compare to TiO₂-P25 as reference material. In this new photocatalyst, anatase and ZnO wurtzite are the only identified crystalline phase, rutile and Bi₂O₃ being undetected. Moreover, the binding energy of Bi determined (XPS analysis) is different from the one of Bi in Bi₂O₃. Compared to TiO₂-P25, the absorption is red shifted (UV-vis DRS) and the Bi-Zn-TiO₂ photocatalyst showed sorption capacity toward indigo carmine higher than that TiO₂-P25. The kinetics of the photo-discoloration is faster with Bi-Zn-TiO₂ than with TiO₂-P25. Indeed, a complete discoloration is obtained after 70 min and 120 min in the presence of Bi-Zn-TiO₂ and TiO₂-P25 respectively. The identification of the responsible species on photo-discoloration was carried out in the presence of different scavengers. The study showed that the first responsible is h(+) specie with a moderate contribution of superoxide anion radical and a minor contribution of the hydroxyl radical. The material showed high stability after five uses with the same rate of photo-discoloration. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Adsorption of phosphate in hydrocalumite-like layered double hydroxides: a comparison between memory effect and ion exchange processes; Adsorcao de fosfato em [Ca-Al]-HDL: comparacao entre o efeito de memoria e troca ionica

    Energy Technology Data Exchange (ETDEWEB)

    Bernardo, M.P., E-mail: marcelapiassib@gmail.com [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil); Moreira, F.K.V.; Ribeiro, C. [Embrapa Instrumentacao (LNNA), Sao Carlos, SP (Brazil). Laboratorio Nacional de Nanotecnologia para o Agronegocio

    2016-07-01

    Phosphorus is an essential element for agriculture, but the excessive use of this element has caused severe damages to the environment. Layered double hydroxide (LDHs) are excellent candidates to remove PO{sub 4}{sup 3-} anions through adsorption process. In this work, the phosphate adsorption on hydrocalumite-like (Ca-Al) LDHs was evaluated over the ion exchange and memory effect processes. X-ray diffraction measurements revealed formation of analogous crystalline phases from both process as the phosphate concentration was increased. However, the phosphate quantity adsorbed varied according to the process used. The ion exchange route is the most efficient process to remove phosphate from aqueous medium. (author)

  8. Optical precursors with tunneling-induced transparency in asymmetric quantum wells

    International Nuclear Information System (INIS)

    Peng Yandong; Qi Yihong; Yao Haifeng; Niu Yueping; Gong Shangqing

    2011-01-01

    A scheme for separating optical precursors from a square-modulated laser pulse through an asymmetric double Al x Ga 1-x As/GaAs quantum-well structure via resonant tunneling is proposed. Destructive interference inhibits linear absorption, and a tunneling-induced transparency (TIT) window appears with normal dispersion, which delays the main pulse; then optical precursors are obtained. Due to resonant tunneling, constructive interference for nonlinear susceptibility is created. The enhanced dispersion in a narrow TIT window is about one order of magnitude larger than that of the linear case. In this case, the main pulse is much delayed and the precursor signals are easier to obtain. Moreover, the main pulse builds up due to the gain introduced by the enhanced cross-nonlinearity.

  9. Nucleation and growth kinetics of zirconium hydroxide by precipitation with ammonium hydroxide

    International Nuclear Information System (INIS)

    Carleson, T.E.; Chipman, N.A.

    1987-01-01

    The results of a study of the nucleation and growth kinetics of the precipitation of zirconium hydroxide from the reaction of hexafluorozirconate solution with ammonium hydroxide are reported. The McCabe linear growth rate model was used to correlate the results. The growth rate decreased with residence time and supersaturation for studies with 7 residence times (3.5 - 90 minutes and two supersaturation ratios (0.03 - 0.04, and 0.4). The nucleation rate increased with residence time and supersaturation. A negative kinetic order of nucleation was observed that may be due to the inhibition of particle growth by adsorption of reacting species on the crystal surfaces

  10. Engineering one-dimensional and two-dimensional birnessite manganese dioxides on nickel foam-supported cobalt–aluminum layered double hydroxides for advanced binder-free supercapacitors

    KAUST Repository

    Hao, Xiaodong

    2014-11-19

    © The Royal Society of Chemistry. We report a facile decoration of the hierarchical nickel foam-supported CoAl layered double hydroxides (CoAl LDHs) with MnO2 nanowires and nanosheets by a chemical bath method and a hydrothermal approach for high-performance supercapacitors. We demonstrate that owing to the sophisticated configuration of binder-free LDH@MnO2 on the conductive Ni foam (NF), the designed NF/LDH@MnO2 nanowire composites exhibit a highly boosted specific capacitance of 1837.8 F g-1 at a current density of 1 A g-1, a good rate capability, and an excellent cycling stability (91.8% retention after 5000 cycles). By applying the hierarchical NF/LDH@MnO2 nanowires as the positive electrode and activated microwave exfoliated graphite oxide activated graphene as the negative electrode, the fabricated asymmetric supercapacitor produces an energy density of 34.2 Wh kg-1 with a maximum power density of 9 kW kg-1. Such strategies with controllable assembly capability could open up a new and facile avenue in fabricating advanced binder-free energy storage electrodes. This journal is

  11. Antimicrobial Activity of Calcium Hydroxide in Endodontics: A Review

    Science.gov (United States)

    Shalavi, S; Yazdizadeh, M

    2012-01-01

    The purpose of endodontic therapy is to preserve the patient's natural teeth without compromising the patient's local or systemic health. Calcium hydroxide has been included in several materials and antimicrobial formulations that are used in several treatment modalities in endodontics, such as inter-appointment intracanal medicaments. The purpose of this article was to review the antimicrobial properties of calcium hydroxide in endodontics. Calcium hydroxide has a high pH (approximately 12.5-12.8) and is classified chemically as a strong base. The lethal effects of calcium hydroxide on bacterial cells are probably due to protein denaturation and damage to DNA and cytoplasmic membranes. Calcium hydroxide has a wide range of antimicrobial activity against common endodontic pathogens but is less effective against Enterococcus faecalis and Candida albicans. Calcium hydroxide is also a valuable anti-endotoxin agent. However, its effect on microbial biofilms is controversial. PMID:23323217

  12. Hydrophilic block copolymer-directed growth of lanthanum hydroxide nano-particles

    Energy Technology Data Exchange (ETDEWEB)

    Bouyer, F.; Sanson, N.; Gerardin, C. [Laboratoire de Materiaux Catalytiques et Catalyse en Chimie Organique, UMR 5618 CNRS-ENSCM-UM1, FR 1878, Institut Gerhardt, 34 - Montpellier (France); Destarac, M. [Centre de Recherches Rhodia Aubervilliers, 93 - Aubervilliers (France)

    2006-03-15

    Stable hairy lanthanum hydroxide nano-particles were synthesized in water by performing hydrolysis and condensation reactions of lanthanum cations in the presence of double hydrophilic poly-acrylic acid-b-polyacrylamide block copolymers (PAA-b-PAM). In the first step, the addition of asymmetric PAA-b-PAM copolymers (M{sub w,PAA} {<=} M{sub w,PAM}) to lanthanum salt solutions, both at pH = 5.5, induces the formation of monodispersed micellar aggregates, which are predominantly isotropic. The core of the hybrid aggregates is constituted of a lanthanum polyacrylate complex whose formation is due to bidentate coordination bonding between La{sup 3+} and acrylate groups, as shown by ATR-FTIR experiments and pH measurements. The size of the micellar aggregates depends on the molecular weight of the copolymer but is independent of the copolymer to metal ratio in solution. In the second step, the hydrolysis of lanthanum ions is induced by addition of a strong base such as sodium hydroxide. Either flocculated suspensions or stable anisotropic or spherical nano-particles of lanthanum hydrolysis products were obtained depending on the metal complexation ratio [acrylate]/[La]. The variation of that parameter also enables the control of the size of the core-corona nano-particles obtained by lanthanum hydroxylation. The asymmetry degree of the copolymer was shown to influence both the size and the shape of the particles. Elongated particles with a high aspect ratio, up to 10, were obtained with very asymmetric copolymers (M{sub w,PAM}/M{sub w,PAA}{>=}10) while shorter rice grain-like particles were obtained with a less asymmetric copolymer. The asymmetry degree also influences the value of the critical metal complexation degree required to obtain stable colloidal suspensions of polymer-stabilized lanthanum hydroxide. (authors)

  13. Layered double hydroxide nanoparticles promote self-renewal of mouse embryonic stem cells through the PI3K signaling pathway

    Science.gov (United States)

    Wu, Youjun; Zhu, Rongrong; Zhou, Yang; Zhang, Jun; Wang, Wenrui; Sun, Xiaoyu; Wu, Xianzheng; Cheng, Liming; Zhang, Jing; Wang, Shilong

    2015-06-01

    Embryonic stem cells (ESCs) hold great potential for regenerative medicine due to their two unique characteristics: self-renewal and pluripotency. Several groups of nanoparticles have shown promising applications in directing the stem cell fate. Herein, we investigated the cellular effects of layered double hydroxide nanoparticles (LDH NPs) on mouse ESCs (mESCs) and the associated molecular mechanisms. Mg-Al-LDH NPs with an average diameter of ~100 nm were prepared by hydrothermal methods. To determine the influences of LDH NPs on mESCs, cellular cytotoxicity, self-renewal, differentiation potential, and the possible signaling pathways were explored. Evaluation of cell viability, lactate dehydrogenase release, ROS generation and apoptosis demonstrated the low cytotoxicity of LDH NPs. The alkaline phosphatase activity and the expression of pluripotency genes in mESCs were examined, which indicated that exposure to LDH NPs could support self-renewal and inhibit spontaneous differentiation of mESCs under feeder-free culture conditions. The self-renewal promotion was further proved to be independent of the leukemia inhibitory factor (LIF). Furthermore, cells treated with LDH NPs maintained the potential to differentiate into all three germ layers both in vitro and in vivo through formation of embryoid bodies and teratomas. In addition, we observed that LDH NPs initiated the activation of the PI3K/Akt pathway, while treatment with the PI3K inhibitor LY294002 could block the effects of LDH NPs on mESCs. The results confirmed that the promotion of self-renewal by LDH NPs was associated with activation of the PI3K/Akt signaling pathway. Altogether, our studies identified a new role of LDH NPs in maintaining self-renewal of mouse ES cells which could potentially be applied in stem cell research.Embryonic stem cells (ESCs) hold great potential for regenerative medicine due to their two unique characteristics: self-renewal and pluripotency. Several groups of nanoparticles

  14. Precipitation of the rare earth double sodium and rare earths from the sulfuric liquor and the conversion into rare earth hydroxides through meta ethic reaction; Precipitacao do sulfato duplo de terras raras e sodio a partir de licor sulfurico e sua conversao em hidroxido de terras raras mediante reacao metatetica

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, Renata D.; Oliveira, Ester F.; Brito, Walter de; Morais, Carlos A. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)]. E-mails: rda@cdtn.br; esterfo@cdtn.br; britow@cdtn.br; cmorais@cdtn.br

    2007-07-01

    This work presents the purification study of the rare earths through precipitation of rare earth and sodium (Na TR (SO{sub 4}){sub 2}. x H{sub 2}O)) double sulfate and his conversion to rare earths hydroxide TR(OH){sub 3} by meta ethic reaction through the addition of sodium hydroxide solution to the solid double sulfate. The study used the sulfuric liquor as rare earth sample, generated in the chemical processing of the monazite with sulfuric acid by the Industrias Nucleares do Brasil - INB, Brazil, after the thorium and uranium extraction. The work investigated the influence of the main variables involved in the precipitation of Na TR(SO{sub 4}){sub 2}.xH{sub 2}O and in the conversion for the TR(OH){sub 3}, as follows: type and excess of the precipitation agent, temperature and time reaction. The obtained solid composites were characterized by X-ray diffraction, infrared and chemical analysis. The double sulfate diffractogram indicated the Na TR(SO{sub 4}){sub 2} mono-hydrated. The characterization of the metatese products has shown that, for obtaining the complete conversion of NaTR(SO{sub 4}){sub 2}.H{sub 2}O into TR(OH){sub 3}, the reaction must be hot processed ({approx}70 deg C) and with small excess of Na OH ({<=} 5 percent). (author)

  15. Layered zinc hydroxide salts: Delamination, preferred orientation of hydroxide lamellae, and formation of ZnO nanodiscs

    Czech Academy of Sciences Publication Activity Database

    Demel, Jan; Pleštil, Josef; Bezdička, Petr; Janda, Pavel; Klementová, Mariana; Lang, Kamil

    2011-01-01

    Roč. 360, č. 2 (2011), s. 532-539 ISSN 0021-9797 R&D Projects: GA MŠk ME09058; GA ČR GAP207/10/1447 Institutional research plan: CEZ:AV0Z40320502; CEZ:AV0Z40500505; CEZ:AV0Z40400503 Keywords : layered zinc hydroxide * delamination * exfoliation * hydroxide layer * ZnO Subject RIV: CA - Inorganic Chemistry Impact factor: 3.070, year: 2011

  16. The use of dissolvable layered double hydroxide components in an in situ solid-phase extraction for chromatographic determination of tetracyclines in water and milk samples.

    Science.gov (United States)

    Phiroonsoontorn, Nattaphorn; Sansuk, Sira; Santaladchaiyakit, Yanawath; Srijaranai, Supalax

    2017-10-13

    This research presents a simple and green in situ solid phase extraction (is-SPE) combined with high-performance liquid chromatography (HPLC) for the simultaneous analysis of tetracyclines (TCs) including tetracycline, oxytetracycline, and chlortetracycline. In is-SPE, TCs were efficiently extracted through the precipitation formation of dissolvable layered double hydroxides (LDHs) by mixing the LDH components such as magnesium and aluminum ions (both in metal chloride salts) thoroughly in an alkaline sample solution. After the centrifugation, the precipitate was completely dissolved with trifluoroacetic acid to release the enriched TCs, and then analyzed by HPLC. Under optimized conditions, this method gave good enrichment factors (EFs) of 41-93 with low limits of detection (LODs) of 0.7-6μg/L and limits of quantitation (LOQs) of 3-15μg/L. Also, the proposed method was successfully applied for the determination of TCs in water and milk samples with the recoveries ranging from 81.7-108.1% for water and 55.7-88.7% for milk. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Multifunctional organic–inorganic hybrid nanoparticles and nanosheets based on chitosan derivative and layered double hydroxide: cellular uptake mechanism and application for topical ocular drug delivery

    Science.gov (United States)

    Chi, Huibo; Gu, Yan; Xu, Tingting; Cao, Feng

    2017-01-01

    To study the cellular uptake mechanism of multifunctional organic–inorganic hybrid nanoparticles and nanosheets, new chitosan–glutathione–valine–valine-layered double hydroxide (CG-VV-LDH) nanosheets with active targeting to peptide transporter-1 (PepT-1) were prepared, characterized and further compared with CG-VV-LDH nanoparticles. Both organic–inorganic hybrid nanoparticles and nanosheets showed a sustained release in vitro and prolonged precorneal retention time in vivo, but CG-VV-LDH nanoparticles showed superior permeability in the isolated cornea of rabbits than CG-VV-LDH nanosheets. Furthermore, results of cellular uptake on human corneal epithelial primary cells (HCEpiC) and retinal pigment epithelial (ARPE-19) cells indicated that both clathrin-mediated endocytosis and active transport of PepT-1 are involved in the internalization of CG-VV-LDH nanoparticles and CG-VV-LDH nanosheets. In summary, the CG-VV-LDH nanoparticle may be a promising carrier as a topical ocular drug delivery system for the treatment of ocular diseases of mid-posterior segments, while the CG-VV-LDH nanosheet may be suitable for the treatment of ocular surface diseases. PMID:28280329

  18. Ultrasonically-enhanced preparation, characterization of CaFe-layered double hydroxides with various interlayer halide, azide and oxo anions (CO32-, NO3-, ClO4-).

    Science.gov (United States)

    Szabados, Márton; Varga, Gábor; Kónya, Zoltán; Kukovecz, Ákos; Carlson, Stefan; Sipos, Pál; Pálinkó, István

    2018-01-01

    An ultrasonically-enhanced mechanochemical method was developed to synthesize CaFe-layered double hydroxides (LDHs) with various interlayer anions (CO 3 2- , NO 3 - , ClO 4 - , N 3 - , F - , Cl - , Br - and I - ). The duration of pre-milling and ultrasonic irradiation and the variation of synthesis temperature in the wet chemical step were investigated to obtain the optimal parameters of preparation. The main method to characterize the products was X-ray diffractometry, but infrared and synchrotron-based X-ray absorption spectroscopies as well as thermogravimetric measurements were also used to learn about fine structural details. The synthesis method afforded successful intercalation of the anions, among others the azide anion, a rarely used counter ion providing a system, which enables safe handling the otherwise highly reactive anion. The X-ray absorption spectroscopic measurements revealed that the quality of the interlayered anions could modulate the spatial arrangement of the calcium ions around the iron(III) ions, but only in the second coordination sphere. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Competitive adsorption characteristics of fluoride and phosphate on calcined Mg-Al-CO{sub 3} layered double hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Peng [School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Zheng, Hong, E-mail: zhengh@cugb.edu.cn [School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Wang, Chong; Ma, Hongwen; Hu, Jianchao; Pu, Yubing; Liang, Peng [School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China)

    2012-04-30

    Highlights: Black-Right-Pointing-Pointer The influences of pH, contact time and order of addition of the anions were obtained. Black-Right-Pointing-Pointer The kinetic data were found to fit very well the pseudo second-order kinetic model. Black-Right-Pointing-Pointer Data of equilibrium experiments were fitted well to Langmuir isotherm. Black-Right-Pointing-Pointer The competitive monolayer adsorption capacities obviously decreased. Black-Right-Pointing-Pointer ATR-FTIR proofs of competitive adsorption were obtained. - Abstract: With synthetic wastewater, competitive adsorption characteristics of fluoride and phosphate on calcined Mg-Al-CO{sub 3} layered double hydroxides (CLDH) were investigated. A series of batch experiments were performed to study the influence of various experimental parameters, such as pH, contact time, and order of addition of the anions on the competitive adsorption of fluoride and phosphate on CLDH. It was found that the optimal pH is around 6 and it took 24 h to attain equilibrium when fluoride and phosphate were simultaneous added. The order of addition of anions influenced the adsorption of fluoride and phosphate on CLDH. The kinetic data were analyzed using the pseudo first-order and pseudo second-order models and they were found to fit very well the pseudo second-order kinetic model. Data of equilibrium experiments were fitted well to Langmuir isotherm and the competitive monolayer adsorption capacities of fluoride and phosphate were found to be obviously lower than those of single anion at 25 Degree-Sign C. The results of X-ray diffraction, Scanning Electron Microscopy with energy-dispersive X-ray analyses, and ATR-FTIR demonstrate that the adsorption mechanism involves the rehydration of mixed metal oxides and concomitant intercalation of fluoride and phosphate ions into the interlayer to reconstruct the initial LDHs structure.

  20. Tailoring surface properties and structure of layered double hydroxides using silanes with different number of functional groups

    International Nuclear Information System (INIS)

    Tao, Qi; He, Hongping; Li, Tian; Frost, Ray L.; Zhang, Dan; He, Zisen

    2014-01-01

    Four silanes, trimethylchlorosilane (TMCS), dimethyldiethoxylsilane (DMDES), 3-aminopropyltriethoxysilane (APTES) and tetraethoxysilane (TEOS), were adopted to graft layered double hydroxides (LDH) via an induced hydrolysis silylation method (IHS). Fourier transform infrared spectra (FTIR) and 29 Si MAS nuclear magnetic resonance spectra ( 29 Si MAS NMR) indicated that APTES and TEOS can be grafted onto LDH surfaces via condensation with hydroxyl groups of LDH, while TMCS and DMDES could only be adsorbed on the LDH surface with a small quantity. A combination of X-ray diffraction patterns (XRD) and 29 Si MAS NMR spectra showed that silanes were exclusively present in the external surface and had little influence on the long range order of LDH. The surfactant intercalation experiment indicated that the adsorbed and/or grafted silane could not fix the interlamellar spacing of the LDH. However, they will form crosslink between the particles and affect the further surfactant intercalation in the silylated samples. The replacement of water by ethanol in the tactoids and/or aggregations and the polysiloxane oligomers formed during silylation procedure can dramatically increase the value of BET surface area (S BET ) and total pore volumes (V p ) of the products. - Graphical abstract: The replacement of water by ethanol in the tactoids and aggregations of LDHs, and the polysiloxane oligomers formed during silylation process can dramatically increase the BET surface area (S BET ) and the total pore volume (V p ) of the silylated products. - Highlights: • Silanes with multifunctional groups were grafted onto LDH surface in C 2 H 5 OH medium. • The number of hydrolysable groups in silanes affects the structure of grafted LDH. • Replacement of H 2 O by C 2 H 5 OH in aggregations increases S BET and V p of grafted LDH. • Polysiloxane oligomers contribute to the increase of S BET and V p of grafted LDH