WorldWideScience

Sample records for double heterojunction diode

  1. High-temperature CW and pulsed operation in constricted double-heterojunction AlGaAs diode lasers

    Science.gov (United States)

    Botez, D.; Connolly, J. C.; Gilbert, D. B.

    1981-01-01

    The behavior of constricted double-heterojunction (CDH) diode lasers has been investigated up to 170 C CW and 270 C pulsed. It is found that the temperature-dependent current concentration effect responsible for low threshold-current sensitivity and temperature-invariant external differential quantum efficiency in CDH lasers saturates at about 100 C. It is also found that over a wide temperature interval (180-280 C) the threshold current density has a To value of 40-50 C and that the spontaneous emission becomes increasingly sublinear above 220 C. Both effects are believed to reflect Auger recombination.

  2. Electrical parameters of metal doped n-CdO/p-Si heterojunction diodes

    Energy Technology Data Exchange (ETDEWEB)

    Umadevi, P. [Department of Physics, Sri Vidya College of Engineering & Technology, Virudhunagar 626005, Tamilnadu (India); Prithivikumaran, N., E-mail: janavi_p@yahoo.com [Nanoscience Research Lab, Department of Physics, VHNSN College, Virudhunagar 626001, Tamilnadu (India)

    2016-11-15

    The CdO, Al doped CdO and Cu doped CdO thin films were coated on p-type silicon substrates by sol–gel spin coating method. The structural, surface morphological and electrical properties of undoped, Al and Cu doped CdO films on silicon substrate were studied. The Ag/CdO/p-Si, Ag/Al: CdO/p-Si and Ag/Cu: CdO/p-Si heterojunction diodes were fabricated and the diode parameters such as reverse saturation current, barrier height and ideality factor of the diodes were investigated by current–voltage (I–V)characteristics. The reverse current of the diode was found to increase strongly with the doping. The values of barrier height and ideality factor were decreased by doping with aluminium and copper. Photo response of the heterojunction diodes was studied and it was found that, the heterojunction diode constructed with the doped CdO has larger Photo response than the undoped heterojunction diode.

  3. Distributed-feedback single heterojunction GaAs diode laser

    International Nuclear Information System (INIS)

    Scifres, D.R.; Burnham, R.D.; Streifer, W.

    1974-01-01

    Laser operation of single-heterojunction GaAl As/GaAs diode lasers using a periodic structure within the gain medium of the device, thereby obviating the need for carefully cleaved end crystal faces to produce feedback, is reported. By varying the grating period, wavelengths from 8430 to 8560 A were observed. The threshold current densities were of the same order as for normal single heterojunction diode lasers. Some advantages in output wavelengths were observed over lasers with cleared faces. (U.S.)

  4. Trap assisted space charge conduction in p-NiO/n-ZnO heterojunction diode

    International Nuclear Information System (INIS)

    Tyagi, Manisha; Tomar, Monika; Gupta, Vinay

    2015-01-01

    Highlights: • p-NiO/n-ZnO heterojunction diode with enhanced junction parameters has been prepared. • Temperature dependent I–V throw insight into the involved conduction mechanism. • SCLC with exponential trap distribution was found to be the dominant mechanism. • C–V measurement at different frequencies support the presence of traps. - Abstract: The development of short-wavelength p–n junction is essentially important for the realization of transparent electronics for next-generation optoelectronic devices. In the present work, a p–n heterojunction diode based on p-NiO/n-ZnO has been prepared under the optimised growth conditions exhibiting improved electrical and junction parameters. The fabricated heterojunction gives typical current–voltage (I–V) characteristics with good rectifying behaviour (rectification ratio ≈ 10 4 at 2 V). The temperature dependent current–voltage characteristics of heterojunction diode have been studied and origin of conduction mechanism is identified. The space-charge limited conduction with exponential trap distribution having deep level trap is found to be the dominant conduction mechanism in the fabricated p–n heterojunction diode. The conduction and valence band discontinuities for NiO/ZnO heterostructure have been determined from the capacitance–voltage (C–V) measurements

  5. Trap assisted space charge conduction in p-NiO/n-ZnO heterojunction diode

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, Manisha [Department of Physics and Astrophysics, University of Delhi, Delhi-110007 (India); Tomar, Monika [Physics department, Miranda House, University of Delhi, Delhi-110007 (India); Gupta, Vinay, E-mail: drguptavinay@gmail.com [Department of Physics and Astrophysics, University of Delhi, Delhi-110007 (India)

    2015-06-15

    Highlights: • p-NiO/n-ZnO heterojunction diode with enhanced junction parameters has been prepared. • Temperature dependent I–V throw insight into the involved conduction mechanism. • SCLC with exponential trap distribution was found to be the dominant mechanism. • C–V measurement at different frequencies support the presence of traps. - Abstract: The development of short-wavelength p–n junction is essentially important for the realization of transparent electronics for next-generation optoelectronic devices. In the present work, a p–n heterojunction diode based on p-NiO/n-ZnO has been prepared under the optimised growth conditions exhibiting improved electrical and junction parameters. The fabricated heterojunction gives typical current–voltage (I–V) characteristics with good rectifying behaviour (rectification ratio ≈ 10{sup 4} at 2 V). The temperature dependent current–voltage characteristics of heterojunction diode have been studied and origin of conduction mechanism is identified. The space-charge limited conduction with exponential trap distribution having deep level trap is found to be the dominant conduction mechanism in the fabricated p–n heterojunction diode. The conduction and valence band discontinuities for NiO/ZnO heterostructure have been determined from the capacitance–voltage (C–V) measurements.

  6. Self-Aligned van der Waals Heterojunction Diodes and Transistors.

    Science.gov (United States)

    Sangwan, Vinod K; Beck, Megan E; Henning, Alex; Luo, Jiajia; Bergeron, Hadallia; Kang, Junmo; Balla, Itamar; Inbar, Hadass; Lauhon, Lincoln J; Hersam, Mark C

    2018-02-14

    A general self-aligned fabrication scheme is reported here for a diverse class of electronic devices based on van der Waals materials and heterojunctions. In particular, self-alignment enables the fabrication of source-gated transistors in monolayer MoS 2 with near-ideal current saturation characteristics and channel lengths down to 135 nm. Furthermore, self-alignment of van der Waals p-n heterojunction diodes achieves complete electrostatic control of both the p-type and n-type constituent semiconductors in a dual-gated geometry, resulting in gate-tunable mean and variance of antiambipolar Gaussian characteristics. Through finite-element device simulations, the operating principles of source-gated transistors and dual-gated antiambipolar devices are elucidated, thus providing design rules for additional devices that employ self-aligned geometries. For example, the versatility of this scheme is demonstrated via contact-doped MoS 2 homojunction diodes and mixed-dimensional heterojunctions based on organic semiconductors. The scalability of this approach is also shown by fabricating self-aligned short-channel transistors with subdiffraction channel lengths in the range of 150-800 nm using photolithography on large-area MoS 2 films grown by chemical vapor deposition. Overall, this self-aligned fabrication method represents an important step toward the scalable integration of van der Waals heterojunction devices into more sophisticated circuits and systems.

  7. The Development of High-Density Vertical Silicon Nanowires and Their Application in a Heterojunction Diode

    Directory of Open Access Journals (Sweden)

    Wen-Chung Chang

    2016-06-01

    Full Text Available Vertically aligned p-type silicon nanowire (SiNW arrays were fabricated through metal-assisted chemical etching (MACE of Si wafers. An indium tin oxide/indium zinc oxide/silicon nanowire (ITO/IZO/SiNW heterojunction diode was formed by depositing ITO and IZO thin films on the vertically aligned SiNW arrays. The structural and electrical properties of the resulting ITO/IZO/SiNW heterojunction diode were characterized by field emission scanning electron microscopy (FE-SEM, X-ray diffraction (XRD, and current−voltage (I−V measurements. Nonlinear and rectifying I−V properties confirmed that a heterojunction diode was successfully formed in the ITO/IZO/SiNW structure. The diode had a well-defined rectifying behavior, with a rectification ratio of 550.7 at 3 V and a turn-on voltage of 2.53 V under dark conditions.

  8. Fabrication of p-Si/n-ZnO:Al heterojunction diode and determination of electrical parameters

    Science.gov (United States)

    Ilican, Saliha; Gorgun, Kamuran; Aksoy, Seval; Caglar, Yasemin; Caglar, Mujdat

    2018-03-01

    We present a fundamental experimental study of a microwave assisted chemical bath deposition (MW-CBD) method for Al doped ZnO films. Field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD) spectroscopy were used to analyze the microstructures and crystalline structures of these films, respectively. The p-Si/n-ZnO:Al heterojunction diodes were fabricated. The current-voltage (I-V) characteristics of these diodes were measured at room temperature. The important electrical parameters such as series resistance, the ideality factor and the barrier height were determined by performing plots from the forward bias I-V characteristics using different methods. The obtained results indicate that Al doping improve the electrical properties of the p-Si/n-ZnO diode. The best rectification properties were observed in the p-Si/n-ZnO:5%Al heterojunction diode, so only capacitance-voltage (C-V) measurements of this diode were taken. Electrical parameter values such as series resistance, the built-in potential and the acceptor concentration calculated for this heterojunction diode.

  9. Low-Temperature Deposition of Layered SnSe2 for Heterojunction Diodes

    KAUST Repository

    Serna, Martha I.; Hasan, Syed M. N.; Nam, S.; El Bouanani, Lidia; Moreno, Salvador; Choi, Hyunjoo; Alshareef, Husam N.; Minary-Jolandan, Majid; Quevedo-Lopez, Manuel A.

    2018-01-01

    vapor deposition and molecular beam epitaxy. The 2D SnSe films exhibit a mobility of ≈4.0 cm V s, and are successfully used to demonstrate SnSe/p-Si heterojunction diodes. The diodes show I /I ratios of 10-10 with a turn on voltage of <0.5 V

  10. Organic semiconductor heterojunctions and its application in organic light-emitting diodes

    CERN Document Server

    Ma, Dongge

    2017-01-01

    This book systematically introduces the most important aspects of organic semiconductor heterojunctions, including the basic concepts and electrical properties. It comprehensively discusses the application of organic semiconductor heterojunctions as charge injectors and charge generation layers in organic light-emitting diodes (OLEDs). Semiconductor heterojunctions are the basis for constructing high-performance optoelectronic devices. In recent decades, organic semiconductors have been increasingly used to fabricate heterojunction devices, especially in OLEDs, and the subject has attracted a great deal of attention and evoked many new phenomena and interpretations in the field. This important application is based on the low dielectric constant of organic semiconductors and the weak non-covalent electronic interactions between them, which means that they easily form accumulation heterojunctions. As we know, the accumulation-type space charge region is highly conductive, which is an important property for high...

  11. Room-temperature-processed flexible n-InGaZnO/p-Cu2O heterojunction diodes and high-frequency diode rectifiers

    International Nuclear Information System (INIS)

    Chen, Wei-Chung; Hsu, Po-Ching; Chien, Chih-Wei; Chang, Kuei-Ming; Hsu, Chao-Jui; Chang, Ching-Hsiang; Lee, Wei-Kai; Chou, Wen-Fang; Wu, Chung-Chih; Hsieh, Hsing-Hung

    2014-01-01

    In this work, we report successful implementation of room-temperature-processed flexible n-InGaZnO/p-Cu 2 O heterojunction diodes on polyethylene naphthalate (PEN) plastic substrates using the sputtering technique. Using n-type InGaZnO and p-type Cu 2 O films deposited by sputtering at room temperature, flexible n-InGaZnO/p-Cu 2 O heterojunction diodes were successfully fabricated on PEN plastic substrates. The didoes on PEN substrates exhibited a low apparent turn-on voltage of 0.44 V, a high rectification ratio of up to 3.4 × 10 4 at ±1.2 V, a high forward current of 1 A cm −2 around 1 V and a decent ideality factor of 1.4, similar to the characteristics of n-InGaZnO/p-Cu 2 O diodes fabricated on glass substrates. The characterization of the frequency response of the room-temperature-processed flexible n-InGaZnO/p-Cu 2 O heterojunction diode rectifiers indicated that they are capable of high-frequency operation up to 27 MHz, sufficient for high-frequency (13.56 MHz) applications. Preliminary bending tests on diode characteristics and rectifier frequency responses indicate their promise for applications in flexible electronics. (paper)

  12. Esaki Diodes in van der Waals Heterojunctions with Broken-Gap Energy Band Alignment.

    Science.gov (United States)

    Yan, Rusen; Fathipour, Sara; Han, Yimo; Song, Bo; Xiao, Shudong; Li, Mingda; Ma, Nan; Protasenko, Vladimir; Muller, David A; Jena, Debdeep; Xing, Huili Grace

    2015-09-09

    van der Waals (vdW) heterojunctions composed of two-dimensional (2D) layered materials are emerging as a solid-state materials family that exhibits novel physics phenomena that can power a range of electronic and photonic applications. Here, we present the first demonstration of an important building block in vdW solids: room temperature Esaki tunnel diodes. The Esaki diodes were realized in vdW heterostructures made of black phosphorus (BP) and tin diselenide (SnSe2), two layered semiconductors that possess a broken-gap energy band offset. The presence of a thin insulating barrier between BP and SnSe2 enabled the observation of a prominent negative differential resistance (NDR) region in the forward-bias current-voltage characteristics, with a peak to valley ratio of 1.8 at 300 K and 2.8 at 80 K. A weak temperature dependence of the NDR indicates electron tunneling being the dominant transport mechanism, and a theoretical model shows excellent agreement with the experimental results. Furthermore, the broken-gap band alignment is confirmed by the junction photoresponse, and the phosphorus double planes in a single layer of BP are resolved in transmission electron microscopy (TEM) for the first time. Our results represent a significant advance in the fundamental understanding of vdW heterojunctions and broaden the potential applications of 2D layered materials.

  13. Developing high-transmittance heterojunction diodes based on NiO/TZO bilayer thin films

    Science.gov (United States)

    2013-01-01

    In this study, radio frequency magnetron sputtering was used to deposit nickel oxide thin films (NiO, deposition power of 100 W) and titanium-doped zinc oxide thin films (TZO, varying deposition powers) on glass substrates to form p(NiO)-n(TZO) heterojunction diodes with high transmittance. The structural, optical, and electrical properties of the TZO and NiO thin films and NiO/TZO heterojunction devices were investigated with scanning electron microscopy, X-ray diffraction (XRD) patterns, UV-visible spectroscopy, Hall effect analysis, and current-voltage (I-V) analysis. XRD analysis showed that only the (111) diffraction peak of NiO and the (002) and (004) diffraction peaks of TZO were observable in the NiO/TZO heterojunction devices, indicating that the TZO thin films showed a good c-axis orientation perpendicular to the glass substrates. When the sputtering deposition power for the TZO thin films was 100, 125, and 150 W, the I-V characteristics confirmed that a p-n junction characteristic was successfully formed in the NiO/TZO heterojunction devices. We show that the NiO/TZO heterojunction diode was dominated by the space-charge limited current theory. PMID:23634999

  14. Ultraviolet electroluminescence from n-ZnO/p-NiO heterojunction light-emitting diode

    International Nuclear Information System (INIS)

    Deng, R.; Yao, B.; Li, Y.F.; Xu, Y.; Li, J.C.; Li, B.H.; Zhang, Z.Z.; Zhang, L.G.; Zhao, H.F.; Shen, D.Z.

    2013-01-01

    The n-ZnO/p-NiO heterojunction was prepared by depositing a p-type NiO film on a c-plane sapphire by rf magnetron sputtering and then growing a n-type ZnO film on the NiO film by plasma-assisted molecular beam epitaxy. The heterojunction shows a diode-like rectification characteristic with a turn-on voltage of ∼3.6 V and emits UV light upon putting a forward bias. The intensity of the UV emission increases as injection current increases from 0.5 to 3.5 mA, but the wavelength of the UV emission decreases from 404 to 387 nm. It is demonstrated that the UV emission comes from near band-edge radiative recombination of electron and hole in the ZnO layer. The mechanism of the UV electroluminescence is discussed in the present work. - Highlights: ► The n-ZnO/p-NiO heterojunction was prepared by rf magnetron sputtering. ► The heterojunction shows a diode-like rectification characteristic with a turn-on voltage of ∼3.6 V. ► The heterojunction realizes UV EL emission with wavelength of 387 nm at the injection current of 3.5 mA.

  15. Photosensitive and temperature-dependent I–V characteristics of p-NiO film/n-ZnO nanorod array heterojunction diode

    Energy Technology Data Exchange (ETDEWEB)

    Long, Hao; Ai, Lei [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education of China, Department of Electronic Science and Technology, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072 (China); Li, Songzhan [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education of China, Department of Electronic Science and Technology, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072 (China); School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan, Hubei 430073 (China); Huang, Huihui; Mo, Xiaoming; Wang, Haoning; Chen, Zhao; Liu, Yuping [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education of China, Department of Electronic Science and Technology, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072 (China); Fang, Guojia, E-mail: gjfang@whu.edu.cn [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education of China, Department of Electronic Science and Technology, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072 (China)

    2014-05-01

    Highlights: • A p-NiO film/n-ZnO nanorod array heterojunction was prepared. • The heterojunction shows good morphology and crystal properties. • The diode exhibits excellent rectifying behavior. • The diode exhibits strong temperature dependent I–V properties. • The hybrid diode shows good photosensitivity under the ultraviolet irradiation. - Abstract: A p-NiO film/n-ZnO nanorod (NR) array heterojunction was prepared by deposition of NiO film on ZnO NRs using radio-frequency reactive magnetron sputtering. The well-aligned ZnO NRs were fabricated by a simple and economic hydrothermal method on a ZnO:Al-coated glass substrate. Good morphology and crystal properties of the fabricated ZnO NRs and NiO film were confirmed by scanning electron microscopy and X-ray diffraction. The p–n heterojunction exhibits excellent rectifying behaviour and strong temperature-dependent current–voltage properties in the range from −50 to 80 °C. The hybrid NR heterojunction diode shows good photosensitivity under the irradiation of 365 nm ultraviolet light. These results present potential applications in future microelectronic devices based on NiO films and the one-dimensional ZnO nanomaterials.

  16. Fabricate heterojunction diode by using the modified spray pyrolysis method to deposit nickel-lithium oxide on indium tin oxide substrate.

    Science.gov (United States)

    Wu, Chia-Ching; Yang, Cheng-Fu

    2013-06-12

    P-type lithium-doped nickel oxide (p-LNiO) thin films were deposited on an n-type indium tin oxide (ITO) glass substrate using the modified spray pyrolysis method (SPM), to fabricate a transparent p-n heterojunction diode. The structural, optical, and electrical properties of the p-LNiO and ITO thin films and the p-LNiO/n-ITO heterojunction diode were characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), UV-visible spectroscopy, Hall effect measurement, and current-voltage (I-V) measurements. The nonlinear and rectifying I-V properties confirmed that a heterojunction diode characteristic was successfully formed in the p-LNiO/n-ITO (p-n) structure. The I-V characteristic was dominated by space-charge-limited current (SCLC), and the Anderson model demonstrated that band alignment existed in the p-LNiO/n-ITO heterojunction diode.

  17. Transparent CH{sub 3}NH{sub 3}SnCl{sub 3}/Al-ZnO p-n heterojunction diode

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sunil, E-mail: skbgudha@gmail.com; Ansari, Mohd Zubair; Khare, Neeraj [Department of Physics, Indian Institute of Technology, Hauz Khas, New Delhi, Delhi-110016 (India)

    2016-05-23

    A p-type Organic inorganic tin chloride (CH{sub 3}NH{sub 3}SnCl{sub 3}) perovskite thin film has been synthesized by solution method. An n-type 1% Al doped ZnO (AZO) film has been deposited on FTO substrate by ultrasonic assisted chemical vapor deposition technique. A transparent CH{sub 3}NH{sub 3}SnCl{sub 3}/AZO p-n heterojunction diode has been fabricated by spin coating technique. CH{sub 3}NH{sub 3}SnCl{sub 3}/AZO p-n heterojunction shows 75% transparency in the visible region. I-V characteristic of CH{sub 3}NH{sub 3}SnCl{sub 3}/AZO p-n heterojunction shows rectifying behavior of the diode. The diode parameters calculated as ideality factor η=2.754 and barrier height Φ= 0.76 eV. The result demonstrates the potentiality of CH{sub 3}NH{sub 3}SnCl{sub 3}/AZO p-n heterojunction for transparent electronics.

  18. Growth and characterization of Ag/n-ZnO/p-Si/Al heterojunction diode by sol–gel spin technique

    International Nuclear Information System (INIS)

    Keskenler, E.F.; Tomakin, M.; Doğan, S.; Turgut, G.; Aydın, S.; Duman, S.; Gürbulak, B.

    2013-01-01

    Highlights: ► Ag/n-ZnO/p-Si/Al heterojunction diode was grown via sol–gel technique. ► The characterization of ZnO material was investigated. ► The heterojunction structure showed a rectification behavior. ► Ideality factor and barrier height were found to be 2.03 and 0.71 eV, respectively. - Abstract: Polycrystalline ZnO thin film was obtained on the p-Si for the heterojunction diode fabrication by sol–gel method. X-ray diffraction study showed that the texture of the film is hexagonal with a strong (0 0 2) preferred direction. Scanning electron microscope image of ZnO showed that the obtained ZnO thin films had more porous character. High purity vacuum evaporated silver (Ag) and aluminum (Al) metals were used to make Ohmic contacts to the n-ZnO/p-Si heterojunction structure. The electrical properties of Ag/n-ZnO/p-Si/Al diode were investigated by using current–voltage measurements. Ag/n-ZnO/p-Si/Al heterojunction diode showed a rectification behavior, and its ideality factor and barrier height values were found to be 2.03 and 0.71 eV by applying a thermionic emission theory, respectively. The values of series resistance from dV/d (ln I) versus I and H(I) versus I curves were found to be 42.1 and 198.3 Ω, respectively.

  19. Two dimensional MoS{sub 2}/graphene p-n heterojunction diode: Fabrication and electronic characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Su, Wei-Jhih [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China); Chang, Hsuan-Chen [Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China); Shih, Yi-Ting [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China); Wang, Yi-Ping [Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China); Hsu, Hung-Pin [Department of Electronic Engineering, Ming Chi University of Technology, 84 Gungjuan Road, New Taipei City 24301, Taiwan (China); Huang, Ying-Sheng [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China); Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China); Lee, Kuei-Yi, E-mail: kylee@mail.ntust.edu.tw [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China); Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China)

    2016-06-25

    Molybdenum disulfide (MoS{sub 2}) films are currently the most potential semiconductor materials of the two-dimensional nano-material heterojunction. Few-layer MoS{sub 2} is an n-type semiconductor that has good mechanical strength, high carrier mobility, and has similar thickness as graphene. Graphene is presently the thinnest two-dimensional material with good thermal conductivity and high carrier mobility. The graphene Fermi level can be precisely controlled using the oxygen adsorption. Therefore, graphene can be tuned from zero-gap to p-type semiconductor material using the amount of adsorbed oxygen. In this study we combine few-layer MoS{sub 2} and graphene to produce a heterojunction and exhaustively study the interface properties for heterojunction diode application. According to the results, the MoS{sub 2} band-gap increases with decreasing thickness. The I–V characteristics of the MoS{sub 2}/Graphene p-n junction diodes can be precisely tuned by adjusting different thicknesses of the MoS{sub 2} films. By applying our fabricating method, MoS{sub 2}/Graphene heterojunction diode can be easily constructed and have potential to different applications. - Highlights: • We controlled the layer thickness of MoS{sub 2} by different exfoliation times. • We presented Raman scattering of MoS{sub 2} and define their layers number. • The few-layer MoS{sub 2}/graphene pn junction diode was synthesized. • We measured the device current and voltage characteristics. • The built-in potential barrier could be adjusted by controlling MoS{sub 2} thicknesses.

  20. Single In x Ga1-x As nanowire/p-Si heterojunction based nano-rectifier diode.

    Science.gov (United States)

    Sarkar, K; Palit, M; Guhathakurata, S; Chattopadhyay, S; Banerji, P

    2017-09-20

    Nanoscale power supply units will be indispensable for fabricating next generation smart nanoelectronic integrated circuits. Fabrication of nanoscale rectifier circuits on a Si platform is required for integrating nanoelectronic devices with on-chip power supply units. In the present study, a nanorectifier diode based on a single standalone In x Ga 1-x As nanowire/p-Si (111) heterojunction fabricated by metal organic chemical vapor deposition technique has been studied. The nanoheterojunction diodes have shown good rectification and fast switching characteristics. The rectification characteristics of the nanoheterojunction have been demonstrated by different standard waveforms of sinusoidal, square, sawtooth and triangular for two different frequencies of 1 and 0.1 Hz. Reverse recovery time of around 150 ms has been observed in all wave response. A half wave rectifier circuit with a simple capacitor filter has been assembled with this nanoheterojunction diode which provides 12% output efficiency. The transport of carriers through the heterojunction is investigated. The interface states density of the nanoheterojunction has also been determined. Occurrence of output waveforms incommensurate with the input is attributed to higher series resistance of the diode which is further explained considering the dimension of p-side and n-side of the junction. The sudden change of ideality factor after 1.7 V bias is attributed to recombination through interface states in space charge region. Low interface states density as well as high rectification ratio makes this heterojunction diode a promising candidate for future nanoscale electronics.

  1. Characterization of a n+3C/n−4H SiC heterojunction diode

    Energy Technology Data Exchange (ETDEWEB)

    Minamisawa, R. A.; Mihaila, A. [Department of Power Electronics, ABB Corporate Research Center, CH-5405 Baden-Dättwil (Switzerland); Farkas, I.; Hsu, C.-W.; Janzén, E. [Semiconductor Materials, IFM, Linköping University, SE-58183 Linköping (Sweden); Teodorescu, V. S. [National Institute of Material Physics, R-077125 Bucharest-Măgurele (Romania); Afanas' ev, V. V. [Semiconductor Physics Laboratory, KU Leuven, 3001 Leuven (Belgium); Rahimo, M. [ABB Semiconductors, Fabrikstrasse 3, CH-5600 Lenzburg (Switzerland)

    2016-04-04

    We report on the fabrication of n + 3C/n-4H SiC heterojunction diodes (HJDs) potentially promising the ultimate thermal stability of the junction. The diodes were systematically analyzed by TEM, X-ray diffraction, AFM, and secondary ion mass spectroscopy, indicating the formation of epitaxial 3C-SiC crystal on top of 4H-SiC substrate with continuous interface, low surface roughness, and up to ∼7 × 10{sup 17 }cm{sup −3} dopant impurity concentration. The conduction band off-set is about 1 V as extracted from CV measurements, while the valence bands of both SiC polytypes are aligned. The HJDs feature opening voltage of 1.65 V, consistent with the barrier height of about 1.5 eV extracted from CV measurement. We finally compare the electrical results of the n + 3C/n-4H SiC heterojunction diodes with those featuring Si and Ge doped anodes in order to evaluate current challenges involved in the fabrication of such devices.

  2. Tunable reverse-biased graphene/silicon heterojunction Schottky diode sensor.

    Science.gov (United States)

    Singh, Amol; Uddin, Ahsan; Sudarshan, Tangali; Koley, Goutam

    2014-04-24

    A new chemical sensor based on reverse-biased graphene/Si heterojunction diode has been developed that exhibits extremely high bias-dependent molecular detection sensitivity and low operating power. The device takes advantage of graphene's atomically thin nature, which enables molecular adsorption on its surface to directly alter graphene/Si interface barrier height, thus affecting the junction current exponentially when operated in reverse bias and resulting in ultrahigh sensitivity. By operating the device in reverse bias, the work function of graphene, and hence the barrier height at the graphene/Si heterointerface, can be controlled by the bias magnitude, leading to a wide tunability of the molecular detection sensitivity. Such sensitivity control is also possible by carefully selecting the graphene/Si heterojunction Schottky barrier height. Compared to a conventional graphene amperometric sensor fabricated on the same chip, the proposed sensor demonstrated 13 times higher sensitivity for NO₂ and 3 times higher for NH₃ in ambient conditions, while consuming ∼500 times less power for same magnitude of applied voltage bias. The sensing mechanism based on heterojunction Schottky barrier height change has been confirmed using capacitance-voltage measurements. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Semitransparent ZnO/poly(3,4-ethylenedioxythiophene) based hybrid inorganic/organic heterojunction thin film diodes prepared by combined radio-frequency magnetron-sputtering and electrodeposition techniques

    International Nuclear Information System (INIS)

    Rodríguez-Moreno, Jorge; Navarrete-Astorga, Elena; Martín, Francisco; Schrebler, Ricardo; Ramos-Barrado, José R.; Dalchiele, Enrique A.

    2012-01-01

    n-ZnO/p-poly(3,4-ethylenedioxythiophene) (PEDOT) semitransparent inorganic–organic hybrid vertical heterojunction thin film diodes have been fabricated with PEDOT and ZnO thin films grown by electrodeposition and radio-frequency magnetron-sputtering respectively, onto a tin doped indium oxide coated glass substrate. The diode exhibited an optical transmission of ∼ 40% to ∼ 50% in the visible region between 450 and 700 nm. The current–voltage (I–V) characteristics of the heterojunction show good rectifying diode characteristics, with a ratio of forward current to the reverse current as high as 35 in the range − 4 V to + 4 V. The I–V characteristic was examined in the framework of the thermionic emission model. The ideality factor and barrier height were obtained as 4.0 and 0.88 eV respectively. - Highlights: ► Semitransparent inorganic–organic heterojunction thin film diodes investigated ► n-ZnO/p-poly(3,4-ethylenedioxythipohene) used for the heterojunctionDiodes exhibited an optical transmission of ∼ 40%–∼ 50% in the visible region ► Heterojunction current–voltage features show good rectifying diode characteristics ► A forward to reverse current ratio as high as 35 (− 4 V to + 4 V range) was attained

  4. Bidirectional electroluminescence from p-SnO2/i-MgZnO/n-ZnO heterojunction light-emitting diodes

    International Nuclear Information System (INIS)

    Yang, Yanqin; Li, Songzhan; Liu, Feng; Zhang, Nangang; Liu, Kan; Wang, Shengxiang; Fang, Guojia

    2017-01-01

    Light-emitting diodes based on p-SnO 2 /i-MgZnO/n-ZnO heterojunction have been fabricated. The material properties and the performance of heterojunction device are characterized. Current-voltage characteristics of the device show a diode-like rectifying behavior. Under forward bias, two prominent emission peaks located at 589 nm and 722 nm in the visible region and a weak ultraviolet emission are observed from p-SnO 2 /i-MgZnO/n-ZnO heterojunction device. As the device is under reverse bias, a broad visible emission band dominates the electroluminescence spectrum at a high current. Furthermore, the emission mechanism has been discussed in terms of energy band structures of the device under forward and reverse biases.

  5. Trap-mediated electronic transport properties of gate-tunable pentacene/MoS2 p-n heterojunction diodes.

    Science.gov (United States)

    Kim, Jae-Keun; Cho, Kyungjune; Kim, Tae-Young; Pak, Jinsu; Jang, Jingon; Song, Younggul; Kim, Youngrok; Choi, Barbara Yuri; Chung, Seungjun; Hong, Woong-Ki; Lee, Takhee

    2016-11-10

    We investigated the trap-mediated electronic transport properties of pentacene/molybdenum disulphide (MoS 2 ) p-n heterojunction devices. We observed that the hybrid p-n heterojunctions were gate-tunable and were strongly affected by trap-assisted tunnelling through the van der Waals gap at the heterojunction interfaces between MoS 2 and pentacene. The pentacene/MoS 2 p-n heterojunction diodes had gate-tunable high ideality factor, which resulted from trap-mediated conduction nature of devices. From the temperature-variable current-voltage measurement, a space-charge-limited conduction and a variable range hopping conduction at a low temperature were suggested as the gate-tunable charge transport characteristics of these hybrid p-n heterojunctions. Our study provides a better understanding of the trap-mediated electronic transport properties in organic/2-dimensional material hybrid heterojunction devices.

  6. Semitransparent ZnO/poly(3,4-ethylenedioxythiophene) based hybrid inorganic/organic heterojunction thin film diodes prepared by combined radio-frequency magnetron-sputtering and electrodeposition techniques

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Moreno, Jorge; Navarrete-Astorga, Elena; Martin, Francisco [Laboratorio de Materiales y Superficies (Unidad Asociada al CSIC), Departamentos de Fisica Aplicada and Ing. Quimica, Universidad de Malaga, E29071 Malaga (Spain); Schrebler, Ricardo [Instituto de Quimica, Facultad de Ciencias, Pontificia Universidad Catolica de Valparaiso, Casilla 4059, Valparaiso (Chile); Ramos-Barrado, Jose R. [Laboratorio de Materiales y Superficies (Unidad Asociada al CSIC), Departamentos de Fisica Aplicada and Ing. Quimica, Universidad de Malaga, E29071 Malaga (Spain); Dalchiele, Enrique A., E-mail: dalchiel@fing.edu.uy [Instituto de Fisica, Facultad de Ingenieria, Herrera y Reissig 565, C.C. 30, 11000 Montevideo (Uruguay)

    2012-12-15

    n-ZnO/p-poly(3,4-ethylenedioxythiophene) (PEDOT) semitransparent inorganic-organic hybrid vertical heterojunction thin film diodes have been fabricated with PEDOT and ZnO thin films grown by electrodeposition and radio-frequency magnetron-sputtering respectively, onto a tin doped indium oxide coated glass substrate. The diode exhibited an optical transmission of {approx} 40% to {approx} 50% in the visible region between 450 and 700 nm. The current-voltage (I-V) characteristics of the heterojunction show good rectifying diode characteristics, with a ratio of forward current to the reverse current as high as 35 in the range - 4 V to + 4 V. The I-V characteristic was examined in the framework of the thermionic emission model. The ideality factor and barrier height were obtained as 4.0 and 0.88 eV respectively. - Highlights: Black-Right-Pointing-Pointer Semitransparent inorganic-organic heterojunction thin film diodes investigated Black-Right-Pointing-Pointer n-ZnO/p-poly(3,4-ethylenedioxythipohene) used for the heterojunction Black-Right-Pointing-Pointer Diodes exhibited an optical transmission of {approx} 40%-{approx} 50% in the visible region Black-Right-Pointing-Pointer Heterojunction current-voltage features show good rectifying diode characteristics Black-Right-Pointing-Pointer A forward to reverse current ratio as high as 35 (- 4 V to + 4 V range) was attained.

  7. Bidirectional electroluminescence from p-SnO{sub 2}/i-MgZnO/n-ZnO heterojunction light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yanqin [School of Electronic and Electrical Engineering, Hubei Collaborative Innovation Center of Textile Industrial Chain Generic Technology, Wuhan Textile University, Wuhan 430073 (China); Li, Songzhan, E-mail: liszhan@whu.edu.cn [School of Electronic and Electrical Engineering, Hubei Collaborative Innovation Center of Textile Industrial Chain Generic Technology, Wuhan Textile University, Wuhan 430073 (China); Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Liu, Feng; Zhang, Nangang; Liu, Kan [School of Electronic and Electrical Engineering, Hubei Collaborative Innovation Center of Textile Industrial Chain Generic Technology, Wuhan Textile University, Wuhan 430073 (China); Wang, Shengxiang, E-mail: sxwang@wtu.edu.cn [School of Electronic and Electrical Engineering, Hubei Collaborative Innovation Center of Textile Industrial Chain Generic Technology, Wuhan Textile University, Wuhan 430073 (China); Fang, Guojia [Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan 430072 (China)

    2017-06-15

    Light-emitting diodes based on p-SnO{sub 2}/i-MgZnO/n-ZnO heterojunction have been fabricated. The material properties and the performance of heterojunction device are characterized. Current-voltage characteristics of the device show a diode-like rectifying behavior. Under forward bias, two prominent emission peaks located at 589 nm and 722 nm in the visible region and a weak ultraviolet emission are observed from p-SnO{sub 2}/i-MgZnO/n-ZnO heterojunction device. As the device is under reverse bias, a broad visible emission band dominates the electroluminescence spectrum at a high current. Furthermore, the emission mechanism has been discussed in terms of energy band structures of the device under forward and reverse biases.

  8. Research on a Micro-Nano Si/SiGe/Si Double Heterojunction Electro-Optic Modulation Structure

    Directory of Open Access Journals (Sweden)

    Song Feng

    2018-01-01

    Full Text Available The electro-optic modulator is a very important device in silicon photonics, which is responsible for the conversion of optical signals and electrical signals. For the electro-optic modulator, the carrier density of waveguide region is one of the key parameters. The traditional method of increasing carrier density is to increase the external modulation voltage, but this way will increase the modulation loss and also is not conducive to photonics integration. This paper presents a micro-nano Si/SiGe/Si double heterojunction electro-optic modulation structure. Based on the band theory of single heterojunction, the barrier heights are quantitatively calculated, and the carrier concentrations of heterojunction barrier are analyzed. The band and carrier injection characteristics of the double heterostructure structure are simulated, respectively, and the correctness of the theoretical analysis is demonstrated. The micro-nano Si/SiGe/Si double heterojunction electro-optic modulation is designed and tested, and comparison of testing results between the micro-nano Si/SiGe/Si double heterojunction micro-ring electro-optic modulation and the micro-nano Silicon-On-Insulator (SOI micro-ring electro-optic modulation, Free Spectrum Range, 3 dB Bandwidth, Q value, extinction ratio, and other parameters of the micro-nano Si/SiGe/Si double heterojunction micro-ring electro-optic modulation are better than others, and the modulation voltage and the modulation loss are lower.

  9. Interfacial recombination at /AlGa/As/GaAs heterojunction structures

    Science.gov (United States)

    Ettenberg, M.; Kressel, H.

    1976-01-01

    Experiments were conducted to determine the interfacial recombination velocity at Al0.25Ga0.75As/GaAs and Al0.5Ga0.5As/GaAs heterojunctions. The recombination velocity was derived from a study of the injected minority-carrier lifetime as a function of the junction spacing. It is found that for heterojunction spacings in excess of about 1 micron, the interfacial recombination can be characterized by a surface recombination velocity of 4,000 and 8,000 cm/sec for the two types of heterojunctions, respectively. For double-heterojunction spacings below 1 micron, the constancy of the minority-carrier lifetime suggests that the interfacial recombination velocity decreases effectively. This effect is technologically very important since it makes it possible to construct very low-threshold injection lasers. No such effect is observed in single-heterojunction diodes.

  10. Determination of band offsets at strained NiO and MgO heterojunction for MgO as an interlayer in heterojunction light emitting diode applications

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S.D., E-mail: devsh@rrcat.gov.in [Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh 452013 (India); Nand, Mangla [Bhabha Atomic Research Centre, Mumbai, Maharashtra 400085 (India); Ajimsha, R.S.; Upadhyay, Anuj; Kamparath, Rajiv; Mukherjee, C.; Misra, P.; Sinha, A.K. [Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh 452013 (India); Jha, S.N. [Bhabha Atomic Research Centre, Mumbai, Maharashtra 400085 (India); Ganguli, Tapas [Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh 452013 (India)

    2016-12-15

    Highlights: • Valence band offset at NiO/MgO heterojunction is experimentally determined. • Experimentally determined value of 2.3 ± 0.4 eV is significantly larger than the predicted from theoretical calculations. • The value of valence band offset is in corroboration with that estimated from the band transitivity model. • Our result can be used to predict accurately carrier transport and electroluminescence mechanisms for heterojunction LEDs. - Abstract: Valence band offset of 2.3 ± 0.4 eV at strained NiO/MgO heterojunction is determined from photoelectron spectroscopy (PES) measurements. The determined value of valence band offset is larger than that is predicted from first principle calculations, but is in corroboration with that obtained from band transitivity rule. Our PES result indicates a larger value of the valence band offset at strained NiO/MgO heterojunction and can be used to predict accurately carrier transport and electroluminescence mechanisms for n-ZnO/MgO/p-NiO and p-NiO/MgO/n-GaN heterojunction light emitting diodes.

  11. Monolithic Inorganic ZnO/GaN Semiconductors Heterojunction White Light-Emitting Diodes.

    Science.gov (United States)

    Jeong, Seonghoon; Oh, Seung Kyu; Ryou, Jae-Hyun; Ahn, Kwang-Soon; Song, Keun Man; Kim, Hyunsoo

    2018-01-31

    Monolithic light-emitting diodes (LEDs) that can generate white color at the one-chip level without the wavelength conversion through packaged phosphors or chip integration for photon recycling are of particular importance to produce compact, cost-competitive, and smart lighting sources. In this study, monolithic white LEDs were developed based on ZnO/GaN semiconductor heterojunctions. The electroluminescence (EL) wavelength of the ZnO/GaN heterojunction could be tuned by a post-thermal annealing process, causing the generation of an interfacial Ga 2 O 3 layer. Ultraviolet, violet-bluish, and greenish-yellow broad bands were observed from n-ZnO/p-GaN without an interfacial layer, whereas a strong greenish-yellow band emission was the only one observed from that with an interfacial layer. By controlled integration of ZnO/GaN heterojunctions with different postannealing conditions, monolithic white LED was demonstrated with color coordinates in the range (0.3534, 0.3710)-(0.4197, 0.4080) and color temperatures of 4778-3349 K in the Commission Internationale de l'Eclairage 1931 chromaticity diagram. Furthermore, the monolithic white LED produced approximately 2.1 times higher optical output power than a conventional ZnO/GaN heterojunction due to the carrier confinement effect at the Ga 2 O 3 /n-ZnO interface.

  12. The electrical properties of n-ZnO/p-SnO heterojunction diodes

    Science.gov (United States)

    Javaid, K.; Xie, Y. F.; Luo, H.; Wang, M.; Zhang, H. L.; Gao, J. H.; Zhuge, F.; Liang, L. Y.; Cao, H. T.

    2016-09-01

    In the present work, n-type zinc oxide (ZnO) and p-type tin monoxide (SnO) based heterostructure diodes were fabricated on an indium-tin-oxide glass using the radio frequency magnetron sputtering technique. The prepared ZnO/SnO diodes exhibited a typical rectifying behavior, with a forward to reverse current ratio about 500 ± 5 at 2 V and turn on voltage around 1.6 V. The built-in voltage of the diode was extracted to be 0.5 V based on the capacitance-voltage (C-V) measurement. The valence and conduction band offsets were deliberated through the band energy diagram of ZnO/SnO heterojunction, as 1.08 eV and 0.41 eV, respectively. The potential barrier-dependent carrier transportation mechanism across the space charge region was also investigated.

  13. Nano-crystalline p-ZnGa{sub 2}Te{sub 4}/n-Si as a new heterojunction diode

    Energy Technology Data Exchange (ETDEWEB)

    Sakr, G.B. [Nano-Science Lab., Department of Physics, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Fouad, S.S. [Department of Physics, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Yahia, I.S., E-mail: dr_isyahia@yahoo.com [Nano-Science Lab., Department of Physics, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Semicondcutor Lab., Department of Physics, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Abdel Basset, D.M. [Department of Physics, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Yakuphanoglu, F. [Physics Department, Faculty of Science and Arts, Firat University, Elazig (Turkey)

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► ZnGa{sub 2}Te{sub 4}/Si thin film was prepared by thermal evaporation technique. ► XRD and AFM graphs support the nano-crystalline of the studied device. ► Dark current–voltage characteristics of the heterojunction diode were investigated. ► Electrical parameters and conduction mechanism were determined. ► Conduction mechanisms were controlled by TE, SCLC and TCLC. -- Abstract: In this communication, ZnGa{sub 2}Te{sub 4} thin film was prepared by thermal evaporation technique on n-Si substrate. P-ZnGa{sub 2}Te{sub 4}/n-Si heterojunction diode was fabricated. The structure of ZnGa{sub 2}Te{sub 4} thin film was checked by XRD pattern and confirmed by AFM micrographs. The dark current–voltage characteristics of the heterojunction diode were investigated to determine the electrical parameters and conduction mechanism as a function of forward and reverse biasing conditions in the range (−10 V to 10 V) at temperature interval (303–423 K). The conduction mechanism was controlled by thermionic emission, space charge limited (SCLC) and trap-charge limited current (TCLC) mechanisms. The basic parameters such as the series resistance R{sub s}, the shunt resistance R{sub sh}, the ideality factor n and the barrier height φ{sub b} of the diode, the total density of trap states N{sub 0} and the exponential trapping distribution P{sub o} were determined. The obtained results showed that ZnGa{sub 2}Te{sub 4} is a good candidate for the applications of electronic devices.

  14. Growth and characterization of n-ZnO/p-GaN nanorods on silicon for the fabrication of heterojunction diodes

    Energy Technology Data Exchange (ETDEWEB)

    Guan-Hung Shen [Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Hong, Franklin Chau-Nan, E-mail: hong@mail.ncku.edu.tw [Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 70101, Taiwan (China); NCKU Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2014-11-03

    A heterojunction n-ZnO/p-GaN diode device was fabricated and characterized on Si (111) substrate. Vertically-aligned Mg-doped GaN nanorods (NRs) were grown on Si (111) by plasma assisted chemical vapor deposition. Intrinsic n-type ZnO was subsequently grown on top of p-GaN nanorods by hydrothermal method at low temperature. The effects of precursor concentrations on the morphology and optical properties of ZnO nanostructures were investigated. Various ZnO nanostructures could be synthesized to obtain different heterojunction nanostructures. The high resolution transmission electron microscopy and selected area electron diffraction results further verified that the GaN NRs were single crystals with the growth orientation along [0001], and the epitaxial wurtzite ZnO films were grown on GaN NRs. The n-ZnO film/p-GaN NR heterojunction diodes were thus fabricated. Diode-like rectifying behavior was actually observed with a leakage current of less than 2.0 × 10{sup −4} A at − 20 V bias, a forward current of 7.2 × 10{sup −3} A at 20 V bias, and the turn-on voltage at around 5.6 V. - Highlights: • High-quality zinc oxide layer was epitaxially grown on gallium nitride nanorods. • The morphology of zinc oxide can be controlled by varying the growth conditions. • The n-zinc oxide/p-gallium nitride diodes with rectifying behavior were fabricated.

  15. Growth and characterization of n-ZnO/p-GaN nanorods on silicon for the fabrication of heterojunction diodes

    International Nuclear Information System (INIS)

    Guan-Hung Shen; Hong, Franklin Chau-Nan

    2014-01-01

    A heterojunction n-ZnO/p-GaN diode device was fabricated and characterized on Si (111) substrate. Vertically-aligned Mg-doped GaN nanorods (NRs) were grown on Si (111) by plasma assisted chemical vapor deposition. Intrinsic n-type ZnO was subsequently grown on top of p-GaN nanorods by hydrothermal method at low temperature. The effects of precursor concentrations on the morphology and optical properties of ZnO nanostructures were investigated. Various ZnO nanostructures could be synthesized to obtain different heterojunction nanostructures. The high resolution transmission electron microscopy and selected area electron diffraction results further verified that the GaN NRs were single crystals with the growth orientation along [0001], and the epitaxial wurtzite ZnO films were grown on GaN NRs. The n-ZnO film/p-GaN NR heterojunction diodes were thus fabricated. Diode-like rectifying behavior was actually observed with a leakage current of less than 2.0 × 10 −4 A at − 20 V bias, a forward current of 7.2 × 10 −3 A at 20 V bias, and the turn-on voltage at around 5.6 V. - Highlights: • High-quality zinc oxide layer was epitaxially grown on gallium nitride nanorods. • The morphology of zinc oxide can be controlled by varying the growth conditions. • The n-zinc oxide/p-gallium nitride diodes with rectifying behavior were fabricated

  16. Semi-transparent all-oxide ultraviolet light-emitting diodes based on ZnO/NiO-core/shell nanowires

    Science.gov (United States)

    Shi, Zhi-Feng; Xu, Ting-Ting; Wu, Di; Zhang, Yuan-Tao; Zhang, Bao-Lin; Tian, Yong-Tao; Li, Xin-Jian; Du, Guo-Tong

    2016-05-01

    Semi-transparent all-oxide light-emitting diodes based on ZnO/NiO-core/shell nanowire structures were prepared on double-polished c-Al2O3 substrates. The entire heterojunction diode showed an average transparency of ~65% in the ultraviolet and visible regions. Under forward bias, the diode displayed an intense ultraviolet emission at ~382 nm, and its electroluminescence performance was remarkable in terms of a low emission onset, acceptable operating stability, and the ability to optically excite emissive semiconductor nanoparticle chromophores.Semi-transparent all-oxide light-emitting diodes based on ZnO/NiO-core/shell nanowire structures were prepared on double-polished c-Al2O3 substrates. The entire heterojunction diode showed an average transparency of ~65% in the ultraviolet and visible regions. Under forward bias, the diode displayed an intense ultraviolet emission at ~382 nm, and its electroluminescence performance was remarkable in terms of a low emission onset, acceptable operating stability, and the ability to optically excite emissive semiconductor nanoparticle chromophores. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07236k

  17. Fabrication of the heterojunction diode from Y-doped ZnO thin films on p-Si substrates by sol-gel method

    Science.gov (United States)

    Sharma, Sanjeev K.; Singh, Satendra Pal; Kim, Deuk Young

    2018-02-01

    The heterojunction diode of yttrium-doped ZnO (YZO) thin films was fabricated on p-Si(100) substrates by sol-gel method. The post-annealing process was performed at 600 °C in vacuum for a short time (3 min) to prevent inter-diffusion of Zn, Y, and Si atoms. X-ray diffraction (XRD) pattern of as-grown and annealed (600 °C in vacuum) films showed the preferred orientation along the c-axis (002) regardless of dopant concentrations. The uniform surface microstructure and the absence of other metal/oxide peaks in XRD pattern confirmed the excellence of films. The increasing bandgap and carrier concentration of YZO thin films were interpreted by the BM shift, that is, the Fermi level moves towards the conduction band edge. The current-voltage characteristics of the heterojunction diode, In/n-ZnO/p-Si/Al, showed a rectification behavior. The turn-on voltage and ideality factor of n-ZnO/p-Si and n-YZO/p-Si were observed to be 3.47 V, 2.61 V, and 1.97, 1.89, respectively. Y-dopant in ZnO thin films provided more donor electrons caused the shifting of Fermi-energy level towards the conduction band and strengthen the interest for heterojunction diodes.

  18. Fabrication of p-CuO/n-ZnO heterojunction diode via sol-gel spin coating technique

    Energy Technology Data Exchange (ETDEWEB)

    Prabhu, Rajeev R., E-mail: rajeevrprabhu@gmail.com [Nanophotonic and Optoelectronic Devices Laboratory, Department of Physics, Cochin University of Science and Technology, Kochi 682 022 (India); Saritha, A.C.; Shijeesh, M.R. [Nanophotonic and Optoelectronic Devices Laboratory, Department of Physics, Cochin University of Science and Technology, Kochi 682 022 (India); Jayaraj, M.K. [Nanophotonic and Optoelectronic Devices Laboratory, Department of Physics, Cochin University of Science and Technology, Kochi 682 022 (India); Centre for Advanced Materials, Cochin University of Science and Technology, Kochi 682 022 (India)

    2017-06-15

    Highlights: • Facile all-solution growth of nanostructured p-CuO and n-ZnO TSO films is reported. • Annealing the films in air affects the structural, electrical and optical properties. • p-n heterojunction using these films was fabricated in ITO/n-ZnO/p-CuO/Au structure. • Transparent heterojunction diode performed well with a V{sub on} of 2.5 V and n of 3.15. • Fabricated p-CuO/n-ZnO heterojunction diode can be used for UV detector application. - Abstract: We report a facile all-solution approach for the growth of nanostructured p-CuO and n-ZnO thin films. The influence of annealing temperature on the physical properties of CuO and ZnO thin films was examined. XRD and Raman spectra depict the structural and phase purity of solution grown CuO and ZnO films. The electrical as well as the optical properties of thin films were also studied. The average optical transmission of CuO and ZnO thin films in the visible spectral region was found to be above 80 and 95% respectively. Band gap energy variations on annealing temperature were investigated for CuO as well as ZnO films. Surface morphology analyzed by FESEM shows that the films are very smooth. All solution grown p-n heterojunction using p-CuO and n-ZnO films was fabricated in the structure ITO/n-ZnO/p-CuO/Au which showed rectification behavior with a turn on voltage of 2.5 V and an ideality factor of 3.15.

  19. Heterojunction p-Cu2O/n-Ga2O3 diode with high breakdown voltage

    Science.gov (United States)

    Watahiki, Tatsuro; Yuda, Yohei; Furukawa, Akihiko; Yamamuka, Mikio; Takiguchi, Yuki; Miyajima, Shinsuke

    2017-11-01

    Heterojunction p-Cu2O/n-β-Ga2O3 diodes were fabricated on an epitaxially grown β-Ga2O3(001) layer. The reverse breakdown voltage of these p-n diodes reached 1.49 kV with a specific on-resistance of 8.2 mΩ cm2. The leakage current of the p-n diodes was lower than that of the Schottky barrier diode due to the higher barrier height against the electron. The ideality factor of the p-n diode was 1.31. It indicated that some portion of the recombination current at the interface contributed to the forward current, but the diffusion current was the dominant. The forward current more than 100 A/cm2 indicated the lower conduction band offset at the hetero-interface between Cu2O and Ga2O3 layers than that predicted from the bulk properties, resulting in such a high forward current without limitation. These results open the possibility of advanced device structures for wide bandgap Ga2O3 to achieve higher breakdown voltage and lower on-resistance.

  20. Schottky diodes between Bi2S3 nanorods and metal nanoparticles in a polymer matrix as hybrid bulk-heterojunction solar cells

    International Nuclear Information System (INIS)

    Saha, Sudip K.; Pal, Amlan J.

    2015-01-01

    We report the use of metal-semiconductor Schottky junctions in a conjugated polymer matrix as solar cells. The Schottky diodes, which were formed between Bi 2 S 3 nanorods and gold nanoparticles, efficiently dissociated photogenerated excitons. The bulk-heterojunction (BHJ) devices based on such metal-semiconductor Schottky diodes in a polymer matrix therefore acted as an efficient solar cell as compared to the devices based on only the semiconductor nanorods in the polymer matrix or when gold nanoparticles were added separately to the BHJs. In the latter device, gold nanoparticles offered plasmonic enhancement due to an increased cross-section of optical absorption. We report growth and characteristics of the Schottky junctions formed through an intimate contact between Bi 2 S 3 nanorods and gold nanoparticles. We also report fabrication and characterization of BHJ solar cells based on such heterojunctions. We highlight the benefit of using metal-semiconductor Schottky diodes over only inorganic semiconductor nanorods or quantum dots in a polymer matrix in forming hybrid BHJ solar cells

  1. InAs/InP/InSb Nanowires as Low Capacitance n-n Heterojunction Diodes

    Directory of Open Access Journals (Sweden)

    A. Pitanti

    2011-08-01

    Full Text Available Nanowire diodes have been realized by employing an axial heterojunction between InAs and InSb semiconductor materials. The broken-gap band alignment (type III leads to a strong rectification effect when the current-voltage (I-V characteristic is inspected at room temperature. The additional insertion of a narrow InP barrier reduces the thermionic contribution, which results in a net decrease of leakage current in the reverse bias with a corresponding enhanced rectification in terms of asymmetry in the I-V characteristics. The investigated diodes compare favorably with the ones realized with p-n heterostructured nanowires, making InAs/InP/InSb devices appealing candidates to be used as building blocks for nanowire-based ultrafast electronics and for the realization of photodetectors in the THz spectral range.

  2. Investigations on structural and electrical parameters of p-Si/ MgxZn1-xO thin film heterojunction diodes grown by RF magnetron sputtering technique

    Science.gov (United States)

    Singh, Satyendra Kumar; Hazra, Purnima

    2018-05-01

    This work reports fabrication and characterization of p-Si/ MgxZn1-xO thin film heterojunction diodes grown by RF magnetron sputtering technique. In this work, ZnO powder was mixed with MgO powder at per their weight percentage from 0 to 10% to prepare MgxZn1-xO target. The microstructural, surface morphological and optical properties of as-deposited p-Si/MgxZn1-xO heterostructure thin films have been studied using X-ray Diffraction, atomic force microscopy and variable angle ellipsometer. XRD spectra exhibit that undoped ZnO thin films has preferred crystal orientation in (002) plane. However, with increase in Mg-doping, ZnO (101) crystal plane is enhanced progressively due to phase segregation, even though preferred growth orientation of ZnO crystals is still towards (002) plane. The electrical characteristics of Si/ MgxZn1-xO heterojunction diodes with large area Al/Ti ohmic contacts are evaluated using semiconductor parameter analyzer. With rectification ratio of 27894, reverse saturation current of 20.5 nA and barrier height of 0.724 eV, Si/Mg0.5Zn0.95O thin film heterojunction diode is believed to have potential to be used in wider bandgap nanoelectronic device applications.

  3. A novel ITO/AZO/SiO2/p-Si frame SIS heterojunction fabricated by magnetron sputtering

    International Nuclear Information System (INIS)

    He, Bo; Wang, HongZhi; Li, YaoGang; Ma, ZhongQuan; Xu, Jing; Zhang, QingHong; Wang, ChunRui; Xing, HuaiZhong; Zhao, Lei; Rui, YiChuan

    2013-01-01

    Highlights: •Because the ITO/AZO double films lead to a great decrease of the lateral resistance. •The photon current can easily flow through top film entering the Cu front contact. •High photocurrent is obtained under a reverse bias. -- Abstract: The novel ITO/AZO/SiO 2 /p-Si SIS heterojunction has been fabricated by low temperature thermal oxidation an ultrathin silicon dioxide and RF sputtering deposition ITO/AZO double films on p-Si (1 0 0) polished substrate. The microstructural, optical and electrical properties of the ITO/AZO antireflection films were characterized by XRD, SEM, UV–VIS spectrophotometer, four point probe and Hall effect measurement, respectively. The results show that ITO/AZO films are of good quality. And XPS was carried out on the ultrathin SiO 2 film. The heterojunction shows strong rectifying behavior under a dark condition, which reveals that formation of a diode between AZO and p-Si. The ideality factor and the saturation current of this diode is 2.7 and 8.68 × 10 −5 A, respectively. High photocurrent is obtained under a reverse bias when the crystalline quality of ITO/AZO double films is good enough to transmit the light into p-Si. We can see that under reverse bias conditions the photocurrent of ITO/AZO/SiO 2 /p-Si SIS heterojunction is much higher than the photocurrent of AZO/SiO 2 /p-Si SIS heterojunction. Because the high quality crystallite and the good conductivity of ITO film which prepared by magnetron-sputtering on AZO film lead to a great decrease of the lateral resistance. The photon induced current can easily flow through ITO layer entering the Cu front contact. Thus, high photocurrent is obtained under a reverse bias

  4. Facile fabrication and electrical investigations of nanostructured p-Si/n-TiO2 hetero-junction diode

    Science.gov (United States)

    Kumar, Arvind; Mondal, Sandip; Rao, K. S. R. Koteswara

    2018-05-01

    In this work, we have fabricated the nanostructured p-Si/n-TiO2 hetero-junction diode by using a facile spin-coating method. The XRD analysis suggests the presence of well crystalline anatase TiO2 film on Si with small grain size (˜16 nm). We have drawn the band alignment using Anderson model to understand the electrical transport across the junction. The current-voltage (J-V) characteristics analysis reveals the good rectification ratio (103 at ± 3 V) and slightly higher ideality factor (4.7) of our device. The interface states are responsible for the large ideality factor as Si/TiO2 form a dissimilar interface and possess a large number of dangling bonds. The study reveals the promises to be used Si/TiO2 diode as an alternative to the traditional p-n homo-junction diode, which typically require high budget.

  5. Structural transformations of TiO{sub 2} films with deposition temperature and electrical properties of nanostructure n-TiO{sub 2}/p-Si heterojunction diode

    Energy Technology Data Exchange (ETDEWEB)

    Aksoy, Seval; Caglar, Yasemin, E-mail: yasemincaglar@anadolu.edu.tr

    2014-11-15

    Highlights: • Titanium oxide (TiO{sub 2}) films have been deposited on p-Si substrates by sol gel spin coating technique. • The effect of deposition temperatures on structural and morphological properties of TiO{sub 2} films. • The electrical parameters of nanostructure n-TiO{sub 2}/p-Si heterojunction diode such as n, R{sub s} and ϕ{sub b} were investigated. - Abstract: Titanium oxide (TiO{sub 2}) films have been deposited on p-Si substrates by sol–gel method using spin coating technique. Structural and morphological properties were studied as a function of deposition temperatures by X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). The deposition temperatures were chosen from 700 °C to 1100 °C. Crystallization of the anatase phase and its transformation to the rutile phase were observed at 700 °C and 800 °C, respectively. The fabrication of nanostructure n-TiO{sub 2}/p-Si heterojunction diode was formed by using T7 film deposited at 700 °C. The electrical parameters such as barrier height (ϕ{sub b}) and ideality factor (n) of nanostructure n-TiO{sub 2}/p-Si heterojunction diode were investigated by using I–V measurements and observed to be 0.58 eV and 5.39, respectively. Also, the values of ϕ{sub b} and series resistance (R{sub s}) were determined by using Cheung’s and Norde methods. From the I–V measurements taken at room temperature, the space charge limited (SCLC) mechanism was determined at the low voltage region. The obtained results showed that n-TiO{sub 2}/p-Si heterojunction diode is a good candidate for the applications of semiconductor electronic devices.

  6. Low-Temperature Deposition of Layered SnSe2 for Heterojunction Diodes

    KAUST Repository

    Serna, Martha I.

    2018-04-27

    Tin diselenide (SnSe) has been recently investigated as an alternative layered metal dichalcogenide due to its unique electrical and optoelectronics properties. Although there are several reports on the deposition of layered crystalline SnSe films by chemical and physical methods, synthesis methods like pulsed laser deposition (PLD) are not reported. An attractive feature of PLD is that it can be used to grow 2D films over large areas. In this report, a deposition process to grow stoichiometric SnSe on different substrates such as single crystals (Sapphire) and amorphous oxides (SiO and HfO) is reported. A detailed process flow for the growth of 2D SnSe at temperatures of 300 °C is presented, which is substantially lower than temperatures used in chemical vapor deposition and molecular beam epitaxy. The 2D SnSe films exhibit a mobility of ≈4.0 cm V s, and are successfully used to demonstrate SnSe/p-Si heterojunction diodes. The diodes show I /I ratios of 10-10 with a turn on voltage of <0.5 V, and ideality factors of 1.2-1.4, depending on the SnSe film growth conditions.

  7. Performance of RF sputtered p-Si/n-ZnO nanoparticle thin film heterojunction diodes in high temperature environment

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Satyendra Kumar, E-mail: satyndra.singh.eee09@itbhu.ac.in [Department of Electronics and Communication Engineering, Model Institute of Engineering and Technology, Jammu, 181122 (India); Department of Electronics and Communication Engineering, Motilal Nehru National Institute of Technology, Allahabad, Uttar Pradesh, 211004 (India); Hazra, Purnima, E-mail: purnima.hazra@smvdu.ac.in [Department of Electronics and Communication Engineering, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, 182320 (India)

    2017-04-01

    Highlights: • Synthesize ZnO nanoparticle thin film on p-Si substrate using RF sputtering method. • I–V and C–V characteristics of Si/ZnO heterojunction diode are studied. • High temperature performance is analyzed accounting barrier height inhomogeneities. • Gaussian distribution of BH inhomogeneities is considered to modify Richardson plot. • Modified R constant is 33.06 Acm{sup −2}K{sup −2}, i.e. nearer to theoretical value 32 Acm{sup −2}K{sup −2}. - Abstract: In this article, temperature-dependent current-voltage characteristics of n-ZnO/p-Si nanoparticle thin film heterojunction diode grown by RF sputtering technique are analyzed in the temperature range of 300–433 k to investigate the performance of the device in high temperature environment. The microstructural, morphological, optical and temptrature dependent electrical properties of as-grown nanoparticle thin film were characterized by X-ray diffractometer (XRD), atomic force microscopy (AFM), field emmision scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), variable angle ellipsometer and semiconductor device analyzer. XRD spectra of as-grown ZnO films are exhibited that highly c-axis oriented ZnO nanostructures are grown on p- Si〈100〉 substrate whereas AFM and FESEM images confirm the homogeneous deposition of ZnO nanoparticles on surface of Si substratewith minimum roughness.The optical propertiesof as-grown ZnO nanoparticles have been measured in the spectral range of 300–800 nm using variable angle ellipsometer.To measure electrical parameters of the device prototype in the temperature range of room temperature (300 K) to 433 K, large area ohmic contacts were fabricated on both side of the ZnO/Si heterostructure. From the current-voltage charcteristics of ZnO/Si heterojunction device, it is observed that the device exhibits rectifing nature at room temperature. However, with increase in temperature, reverse saturation current and barrier

  8. Fabrication and electrical characterizations of graphene nanocomposite thin film based heterojunction diode

    Science.gov (United States)

    Rahim, Ishrat; Shah, Mutabar; Iqbal, Mahmood; Wahab, Fazal; Khan, Afzal; Khan, Shah Haider

    2017-11-01

    The use of graphene in electronic devices is becoming attractive due to its inherent scalability and is thus well suited for flexible electronic devices. Here we present the electrical characterization of heterojunction diode, based on the nanocomposite of graphene (G) with silver nanoparticles (Ag NPs), at room temperature. The diode was fabricated by depositing nanocomposite on the n-Si substrate. The current - voltage (I - V) characteristic of the fabricated junction shows rectifying behavior similar to a Schottky junction. The junction parameters such as ideality factor (n), series resistance (Rs), and barrier height (ϕb) has been extracted, using various methods, from the experimentally obtained I - V data. The measured values of n, Rs and ϕb are 3.86, 45 Ω and 0.367 eV, respectively, as calculated from the I - V curve. The numerical values of these parameters calculated by different methods are in good agreement with each other showing the consistency of the applied calculating techniques. The conduction mechanism of the fabricated diode seems to have been dominated by the Trap Charge Limited Conduction (TCLC) behavior. The energy distribution of interface states density determined from forward bias I - V characteristic shows an exponential decrease with bias from 27 × 1013 cm-2 eV-1 at (Ec - 0.345) eV to 3 × 1013 cm-2 eV-1at (Ec - 0.398) eV.

  9. A p-silicon nanowire/n-ZnO thin film heterojunction diode prepared by thermal evaporation

    International Nuclear Information System (INIS)

    Hazra, Purnima; Jit, S.

    2014-01-01

    This paper represents the electrical and optical characteristics of a SiNW/ZnO heterojunction diode and subsequent studies on the photodetection properties of the diode in the ultraviolet (UV) wavelength region. In this work, silicon nanowire arrays were prepared on p-type (100)-oriented Si substrate by an electroless metal deposition and etching method with the help of ultrasonication. After that, catalyst-free deposition of zinc oxide (ZnO) nanowires on a silicon nanowire (SiNW) array substrate was done by utilizing a simple and cost-effective thermal evaporation technique without using a buffer layer. The SEM and XRD techniques are used to show the quality of the as-grown ZnO nanowire film. The junction properties of the diode are evaluated by measuring current—voltage and capacitance—voltage characteristics. The diode has a well-defined rectifying behavior with a rectification ratio of 190 at ±2 V, turn-on voltage of 0.5 V, and barrier height is 0.727 eV at room temperature under dark conditions. The photodetection parameters of the diode are investigated in the bias voltage range of ±2 V. The diode shows responsivity of 0.8 A/W at a bias voltage of 2 V under UV illumination (wavelength = 365 nm). The characteristics of the device indicate that it can be used for UV detection applications in nano-optoelectronic and photonic devices. (semiconductor devices)

  10. White electroluminescence from ZnO nanorods/p-GaN heterojunction light-emitting diodes under reverse bias

    International Nuclear Information System (INIS)

    Zhang, Lichun; Li, Qingshan; Qu, Chong; Zhang, Zhongjun; Huang, Ruizhi; Zhao, Fengzhou

    2013-01-01

    Heterojunction light-emitting diodes (LEDs) based on arrays of ZnO nanorods were fabricated on p-GaN films by the hydrothermal method. Without any phosphors, white-light electroluminescence (EL) from ZnO nanorods/p-GaN heterojunction LEDs operated at reverse breakdown bias was observed. The EL spectra are composed of an ultraviolet (UV) emission centered at 382 nm, a blue light located at 431 nm and a broadband yellow–green light at around 547 nm, which originated from band-edge emission in ZnO, the Mg acceptor levels in p-GaN and the deep-level states near the ZnO/GaN interface, respectively. The chromaticity coordinates of EL spectrum are very close to the (0.333, 0.333) of standard white light. The origin of these emissions has been discussed and the tunneling effect in the interface is probably the mechanism to explain EL emission. (paper)

  11. Ultraviolet electroluminescence from Au/MgO/MgxZn1−xO heterojunction diodes and the observation of Zn-rich cluster emission

    International Nuclear Information System (INIS)

    Liu, C.Y.; Xu, H.Y.; Sun, Y.; Zhang, C.; Ma, J.G.; Liu, Y.C.

    2014-01-01

    In this work, ultraviolet (UV) electroluminescence (EL) is achieved from Au/MgO/Mg x Zn 1−x O heterojunction diodes. The EL mechanism and laser forming process are discussed based on the energy band diagram, impact-ionization process and disordered optical structure. For ZnO and low Mg-content MgZnO devices, their EL spectra show single near-band-edge (NBE) emission. While in high Mg-content MgZnO devices, the emission from self-formed Zn-rich MgZnO clusters is observed and also contribute to the UV EL band. These Zn-rich clusters can act as thermally-stable luminescence centers, suggesting a promising route for developing MgZnO-based UV light-emitting devices. -- Highlights: • A series of Au/MgO/Mg x Zn 1−x O heterojunction diodes with multiple Mg compositions are fabricated and ultraviolet electroluminescence is achieved. • EL mechanism and laser forming process are discussed based on energy band diagram, impact-ionization process and disordered optical structure. • The transition from spontaneous to stimulated emission is observed in these heterojunctions, and the lasing mode is random laser. • In high Mg-content MgZnO devices, the emission from self-formed Zn-rich clusters is observed, which are thermally stable luminescence centers

  12. A study of Eu incorporated ZnO thin films: An application of Al/ZnO:Eu/p-Si heterojunction diode

    Energy Technology Data Exchange (ETDEWEB)

    Turgut, G. [Department of Basic Sciences, Faculty of Science, Erzurum Technical University, Erzurum, 25240 (Turkey); Duman, S., E-mail: sduman@atauni.edu.tr [Department of Physics, Faculty of Science, Ataturk University, Erzurum, 25240 (Turkey); Sonmez, E. [Department of Physics, Faculty of K.K. Education, Ataturk University, Erzurum, 25240 (Turkey); Ozcelik, F.S. [Department of Physics, Faculty of Science, Ataturk University, Erzurum, 25240 (Turkey)

    2016-04-15

    Highlights: • Eu incorporated ZnO thin films were grown by sol–gel spin coating. • The influence of Eu contribution on features of ZnO was investigated. • Al/ZnO:Eu/p-Si heterojunction diodes were also fabricated. • The diode parameters were calculated from I–V measurements. - Abstract: In present work, the pure and europium (Eu) incorporated zinc oxide (ZnO) thin films were deposited with sol-gel spin coating by using zinc acetate dehydrate and Eu (III) chloride salts. The coated films were examined by means of XRD, AFM and UV/VIS spectrophotometer. The ZnO hexagonal wurtzite nanoparticles with (002) preferential direction were observed for all films. The values of crystallite size, micro-strain and surface roughness continuously increased from 21 nm, 1.10 × 10{sup −3} and 2.43 nm to the values of 35.56 nm, 1.98 × 10{sup −3} and 28.99 nm with Eu doping, respectively. The optical band gap value of the pure ZnO initially increased from 3.296 eV to 3.328 eV with Eu doping up to 2 at.% doping level, then it started to decrease with more Eu content. The electrical features of Al/n-ZnO:Eu/p-Si heterojunction diodes were inquired by current-voltage (I–V) measurements at the room temperature.

  13. Dual-wavelength electroluminescence from an n-ZnO/p-GaN heterojunction light emitting diode

    International Nuclear Information System (INIS)

    Tsai, Bor-Sheng; Chiu, Hung-Jen; Chen, Tai-Hong; Lai, Li-Wen; Ho, Chai-Cheng; Liu, Day-Shan

    2015-01-01

    Highlights: • The LEDs fabricated by 450 °C- and 700 °C-annealed n-ZnO/p-GaN heterojunction structures were investigated. • The structure annealed at 700 °C emitted yellowish light composed of the dual-wavelength radiations centered at 420 and 610 nm. • The long-wavelength radiation was attributed to emerge from the deep-level emission and the Ga–O interlayer emission. - Abstract: We investigated the electro-optical properties of light emitting diodes (LEDs) fabricated by using the n-ZnO/p-GaN heterojunction structures annealed at 450 °C and 700 °C, in vacuum ambient. A dominant near-UV emission at approximately 420 nm was observed from the LED fabricated by the 450 °C-annealed n-ZnO/p-GaN heterojunction structure, whereas that of the structure annealed at 700 °C emitted a yellowish light composed of the dual-wavelength emissions centered at 420 and 610 nm. The mechanism responsible for the broad long-wavelength radiation was ascribed to the transitions associated with both the deep-level emissions due to the activation of the native defects on the n-ZnO side surface and the formation of the Ga–O interlayer resulting from the in-diffusion of oxygen atoms to the p-GaN side surface of the n-ZnO/p-GaN interface.

  14. Lifetime improvement mechanism in organic light-emitting diodes with mixed materials at a heterojunction interface

    Science.gov (United States)

    Minagawa, Masahiro; Takahashi, Noriko

    2016-02-01

    To investigate the lifetime improvement mechanism caused by mixing at the heterojunction interface, organic light-emitting diodes (OLEDs) with stacked and mixed 4,4‧-bis[N-(1-naphthyl)-N-phenyl-amino]-biphenyl (α-NPD)/tris(8-hydroxyquinoline)aluminum (Alq3) interfaces were fabricated, and changes in their displacement current due to continuous operation were measured. A decrease in accumulated holes at the α-NPD/Alq3 interface was observed in the stacked configuration devices over longer operations. These results indicate that the injected hole density was reduced during continuous operation, implying that the carrier balance became uneven in the emission region. However, few accumulated holes and changes in the displacement current due to continuous operation were observed in the devices having the mixed layer. Therefore, it was deduced that the number of holes concentrated between the α-NPD and Alq3 layers was decreased by mixing at the heterojunction interface, and that the change in the number of holes was smaller during continuous operation, resulting in less degradation.

  15. Low cost, p-ZnO/n-Si, rectifying, nano heterojunction diode: Fabrication and electrical characterization

    Directory of Open Access Journals (Sweden)

    Vinay Kabra

    2014-11-01

    Full Text Available A low cost, highly rectifying, nano heterojunction (p-ZnO/n-Si diode was fabricated using solution-processed, p-type, ZnO nanoparticles and an n-type Si substrate. p-type ZnO nanoparticles were synthesized using a chemical synthesis route and characterized by XRD and a Hall effect measurement system. The device was fabricated by forming thin film of synthesized p-ZnO nanoparticles on an n-Si substrate using a dip coating technique. The device was then characterized by current–voltage (I–V and capacitance–voltage (C–V measurements. The effect of UV illumination on the I–V characteristics was also explored and indicated the formation of a highly rectifying, nano heterojunction with a rectification ratio of 101 at 3 V, which increased nearly 2.5 times (232 at 3 V under UV illumination. However, the cut-in voltage decreases from 1.5 V to 0.9 V under UV illumination. The fabricated device could be used in switches, rectifiers, clipper and clamper circuits, BJTs, MOSFETs and other electronic circuitry.

  16. Acceptor thickness effect of exciplex and electroplex emission at heterojunction interface in organic light-emitting diodes

    Science.gov (United States)

    Zhang, Wei; Yu, Junsheng; Yuan, Kai; Jiang, Yadong; Zhang, Qing; Cao, Kangli

    2010-10-01

    Organic light-emitting diodes (OLEDs) consisted of a novel fluorene derivative of 5,6-bis(9,9-dihexyl-9H-fluoren-2-yl)- 2,3-diisocyano-2,3-dihydropyrazine (BDHFLCNPy) and a hole transporting material of N,N'-Di-[(1-naphthalenyl)- N,N'-diphenyl](1,1'-biphenyl)-4,4'-diamine (NPB) were fabricated, and electroluminescence (EL) spectrum of devices were investigated. It was found that light emission around 650 nm observed in devices came from exciplex generated at heterojunction interface by NPB molecules worked as electron donor and BDHFLCNPy molecules worked as electron acceptor. Moreover, a shoulder peak around 500 nm ascribed to BDHFLCNPy exciton was observed. To systemically study the effect of heterojunction structure in exciplex formation, OLEDs with different thickness of acceptor were fabricated. The results illustrated that a shoulder peak around 600 nm occurred in EL when acceptor thickness increases, and BDHFLCNPy exciton emitting strength is relatively altered. The emission band around 600 nm is due to electroplex. The L-V-J properties of OLEDs show that device with the thinnest acceptor layer has the highest luminance and current density. On the contrary, OLEDs with thicker acceptor layer have higher luminance efficiency. The different recombination mechanism of exciton, exciplex and electroplex in heterojunction were studied. Furthermore, the acceptor thickness effect of exciplex and electroplex generating mechanism and energy transferring mechanism between them was also discussed.

  17. Charge Separation at Mixed-Dimensional Single and Multilayer MoS2/Silicon Nanowire Heterojunctions.

    Science.gov (United States)

    Henning, Alex; Sangwan, Vinod K; Bergeron, Hadallia; Balla, Itamar; Sun, Zhiyuan; Hersam, Mark C; Lauhon, Lincoln J

    2018-05-16

    Layered two-dimensional (2-D) semiconductors can be combined with other low-dimensional semiconductors to form nonplanar mixed-dimensional van der Waals (vdW) heterojunctions whose charge transport behavior is influenced by the heterojunction geometry, providing a new degree of freedom to engineer device functions. Toward that end, we investigated the photoresponse of Si nanowire/MoS 2 heterojunction diodes with scanning photocurrent microscopy and time-resolved photocurrent measurements. Comparison of n-Si/MoS 2 isotype heterojunctions with p-Si/MoS 2 heterojunction diodes under varying biases shows that the depletion region in the p-n heterojunction promotes exciton dissociation and carrier collection. We measure an instrument-limited response time of 1 μs, which is 10 times faster than the previously reported response times for planar Si/MoS 2 devices, highlighting the advantages of the 1-D/2-D heterojunction. Finite element simulations of device models provide a detailed understanding of how the electrostatics affect charge transport in nanowire/vdW heterojunctions and inform the design of future vdW heterojunction photodetectors and transistors.

  18. Flexible substrate compatible solution processed P-N heterojunction diodes with indium-gallium-zinc oxide and copper oxide

    Energy Technology Data Exchange (ETDEWEB)

    Choudhary, Ishan; Deepak, E-mail: saboo@iitk.ac.in

    2017-04-15

    Highlights: • Both n and p-type semiconductors are solution processed. • Temperature compatibility with flexible substrates such as polyimide. • Compatibility of p-type film (CuO) on n-type film (IZO). • Diode with rectification ratio of 10{sup 4} and operating voltage <1.5 V. • Construction of band alignment using XPS. - Abstract: Printed electronics on flexible substrates requires low temperature and solution processed active inks. With n-type indium-gallium-zinc oxide (IGZO) based electronics maturing for thin film transistor (TFT), we here demonstrate its heterojunction diode with p-copper oxide, prepared by sol-gel method and processed at temperatures compatible with polyimide substrates. The phase obtained for copper oxide is CuO. When coated on n-type oxide, it is prone to develop morphological features, which are minimized by annealing treatment. Diodes of p-CuO films with IGZO are of poor quality due to its high resistivity while, conducting indium-zinc oxide (IZO) films yielded good diode with rectification ratio of 10{sup 4} and operating voltage <1.5 V. A detailed measurement at the interface by X-ray photoelectron spectroscopy and optical absorption ascertained the band alignment to be of staggered type. Consistently, the current in the diode is established to be due to electrons tunnelling from n-IZO to p-CuO.

  19. Electrical characterization of Au/quercetin/n-Si heterojunction diode and optical analysis of quercetin thin film

    International Nuclear Information System (INIS)

    Tombak, Ahmet; Özaydin, C.; Boğa, M.; Kiliçoğlu, T.

    2016-01-01

    Quercetin (3,5,7,3’,4’-pentahydroxyflavone, QE), one of the most widely distributed flavonoids in fruits and vegetables, has been reported to possess a wide variety of biological effects, including anti-oxidative, anti-inflammatory, anti-apoptosis, hepatoprotective, renoprotective and neuroprotective effects. In this study organic-inorganic junctions were fabricated by forming quercetin complex thin film using spin coating technique on n-Si and evaporating Au metal on the film. Optical properties of quercetin thin film were studied with the help of spectrophotometer. The current-voltage (I-V) characteristic of Au/quercetin/n-Si heterojunction diode was investigated at room temperature in dark. Some basic parameters of the diode such as ideality factor, rectification ratio, barrier height, series resistance and shunt resistance were calculated using dark current-voltage measurement. It was also seen that the device had good sensitivity to the light under 40-100 mW/cm"2 illumination conditions.

  20. Electrical characterization of Au/quercetin/n-Si heterojunction diode and optical analysis of quercetin thin film

    Energy Technology Data Exchange (ETDEWEB)

    Tombak, Ahmet, E-mail: tahmet@yahoo.com [Department of Physics, Faculty of Art& Science, Batman University, Batman 72000 (Turkey); Özaydin, C. [Department of Computer Engineering, Faculty of Engineering and Architecture, Batman University, Batman 72000 (Turkey); Boğa, M. [Faculty of Pharmacy, Pharmaceutical Technology Department, Dicle University, Diyarbakir 21280 (Turkey); Kiliçoğlu, T. [Department of Physics, Faculty of Science, Dicle University, Diyarbakir 21280 (Turkey)

    2016-03-25

    Quercetin (3,5,7,3’,4’-pentahydroxyflavone, QE), one of the most widely distributed flavonoids in fruits and vegetables, has been reported to possess a wide variety of biological effects, including anti-oxidative, anti-inflammatory, anti-apoptosis, hepatoprotective, renoprotective and neuroprotective effects. In this study organic-inorganic junctions were fabricated by forming quercetin complex thin film using spin coating technique on n-Si and evaporating Au metal on the film. Optical properties of quercetin thin film were studied with the help of spectrophotometer. The current-voltage (I-V) characteristic of Au/quercetin/n-Si heterojunction diode was investigated at room temperature in dark. Some basic parameters of the diode such as ideality factor, rectification ratio, barrier height, series resistance and shunt resistance were calculated using dark current-voltage measurement. It was also seen that the device had good sensitivity to the light under 40-100 mW/cm{sup 2} illumination conditions.

  1. Gate-tunable diode-like current rectification and ambipolar transport in multilayer van der Waals ReSe2/WS2 p-n heterojunctions.

    Science.gov (United States)

    Wang, Cong; Yang, Shengxue; Xiong, Wenqi; Xia, Congxin; Cai, Hui; Chen, Bin; Wang, Xiaoting; Zhang, Xinzheng; Wei, Zhongming; Tongay, Sefaattin; Li, Jingbo; Liu, Qian

    2016-10-12

    Vertically stacked van der Waals (vdW) heterojunctions of two-dimensional (2D) transition metal dichalcogenides (TMDs) have attracted a great deal of attention due to their fascinating properties. In this work, we report two important gate-tunable phenomena in new artificial vdW p-n heterojunctions created by vertically stacking p-type multilayer ReSe 2 and n-type multilayer WS 2 : (1) well-defined strong gate-tunable diode-like current rectification across the p-n interface is observed, and the tunability of the electronic processes is attributed to the tunneling-assisted interlayer recombination induced by majority carriers across the vdW interface; (2) the distinct ambipolar behavior under gate voltage modulation both at forward and reverse bias voltages is found in the vdW ReSe 2 /WS 2 heterojunction transistors and a corresponding transport model is proposed for the tunable polarity behaviors. The findings may provide some new opportunities for building nanoscale electronic and optoelectronic devices.

  2. Equilibrium double layers in extended Pierce diodes

    International Nuclear Information System (INIS)

    Ciubotariu-Jassy, C.I.

    1992-01-01

    The extended Pierce diode is similar to the standard (or classical) Pierce diode, but has passive circuit elements in place of the short circuit between the electrodes. This device is important as an approximation to real bounded plasma systems. It consists of two parallel plane electrodes (an emitter located at x=0 and a collector located at x=l) and a collisionless cold electron beam travelling between them. The electrons are neutralized by a background of comoving massive ions. This situation is analysed in this paper and new equilibrium double layer (DL) plasma structures are obtained. (author) 6 refs., 3 figs

  3. Black Phosphorus-Zinc Oxide Nanomaterial Heterojunction for p-n Diode and Junction Field-Effect Transistor.

    Science.gov (United States)

    Jeon, Pyo Jin; Lee, Young Tack; Lim, June Yeong; Kim, Jin Sung; Hwang, Do Kyung; Im, Seongil

    2016-02-10

    Black phosphorus (BP) nanosheet is two-dimensional (2D) semiconductor with distinct band gap and attracting recent attention from researches because it has some similarity to gapless 2D semiconductor graphene in the following two aspects: single element (P) for its composition and quite high mobilities depending on its fabrication conditions. Apart from several electronic applications reported with BP nanosheet, here we report for the first time BP nanosheet-ZnO nanowire 2D-1D heterojunction applications for p-n diodes and BP-gated junction field effect transistors (JFETs) with n-ZnO channel on glass. For these nanodevices, we take advantages of the mechanical flexibility of p-type conducting of BP and van der Waals junction interface between BP and ZnO. As a result, our BP-ZnO nanodimension p-n diode displays a high ON/OFF ratio of ∼10(4) in static rectification and shows kilohertz dynamic rectification as well while ZnO nanowire channel JFET operations are nicely demonstrated by BP gate switching in both electrostatics and kilohertz dynamics.

  4. Power series fitting of current-voltage characteristics of Al doped ZnO thin film-Sb doped (Ba{sub 0.8}Sr{sub 0.2})TiO{sub 3} heterojunction diode

    Energy Technology Data Exchange (ETDEWEB)

    Sirikulrat, N., E-mail: scphi003@chiangmai.ac.th

    2012-02-29

    The current-voltage (I-V) relationship of aluminum doped zinc oxide thin film-antimony doped barium strontium titanate single heterojunction diodes was investigated. The linear I-V characteristics are similar to those of the PN junction diodes. The linear conduction at a low forward bias voltage as predicted by the space charge limited current theory and the trap free square law at a higher forward voltage are observed. The overall current density-voltage (J-V) characteristics of the diodes are found to be well described by the Power Series Equation J= N-Ary-Summation {sub m}C{sub m}V{sup m} where C{sub m} is the leakage constant at particular power m with the best fit for the power m found to be at the fourth and fifth orders for the forward and reverse bias respectively. - Highlights: Black-Right-Pointing-Pointer The n-n isotype heterojunction diodes of ceramic oxide semiconductors were prepared. Black-Right-Pointing-Pointer The current density-voltage (J-V) curves were analyzed using the Power Series (PS). Black-Right-Pointing-Pointer The J-V characteristics were found to be well described with PS at low order. Black-Right-Pointing-Pointer The thermionic emission and diode leakage currents were comparatively discussed.

  5. UV photo-detector based on p-NiO thin film/n-ZnO nanorods heterojunction prepared by a simple process

    International Nuclear Information System (INIS)

    Echresh, Ahmad; Chey, Chan Oeurn; Zargar Shoushtari, Morteza; Khranovskyy, Volodymyr; Nur, Omer; Willander, Magnus

    2015-01-01

    Highlights: • The p-NiO/n-ZnO heterojunction showed an obvious rectifying behavior and the response of the diode was excellent in generating photocurrent upon UV illumination. • Diode electrical performance presented here were superior to those achieved from similar heterojunction prepared by different methods. • The XPS results show that the heterojunction has a type-II band alignment with a valence band offset of 1.50 eV and conduction band offset of 1.83 eV. - Abstract: A UV photo-detector based on p-NiO thin film/n-ZnO nanorods heterojunction was fabricated using a simple two-step fabrication process. The aqueous chemical hydrothermal and thermal evaporation methods were combined to grow the ZnO nanorods and the NiO thin film, respectively. Structural investigation indicated that well aligned ZnO nanorods with hexagonal face having a preferential orientation along the c-axis (0 0 2) have been achieved and that the NiO thin film is covering all the ZnO nanorods. X-ray photoelectron spectroscopy (XPS) was used to investigate the band alignment of the heterojunction and the valence and the conduction band offsets were determined to be 1.50 eV and 1.83 eV, respectively. The current–voltage characteristics of the p-NiO thin film/ZnO nanorods heterojunction showed a clear rectifying behavior under both dark and UV illumination conditions. The response of the heterojunction diode was excellent regarding the photocurrent generation. Although other similar heterojunction diodes demonstrated lower threshold voltage, the rectification ratio and the sensitivity of the fabricated diode were superior in comparison to other similar heterojunctions reported recently, implying the vitality of the presented two-step process

  6. Photovoltaic effect on the performance enhancement of organic light-emitting diodes with planar heterojunction architecture

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Dan; Huang, Wei; Guo, Hao [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China); Wang, Hua, E-mail: wanghua001@tyut.edu.cn [Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology (TYUT), Taiyuan 030024 (China); Yu, Junsheng, E-mail: jsyu@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China)

    2017-04-15

    Highlights: • The photovoltaic effect on the performance of OLEDs was studied. • The device performance with different planar heterojunctions was investigated. • The mechanism relies on the overlap of electroluminescence and absorption spectrum. - Abstract: Organic light-emitting diodes (OLEDs) with planar heterojunction (PHJ) architecture consisting of photovoltaic organic materials of fullerene carbon 60 (C{sub 60}) and copper (II) phthalocyanine (CuPc) inserted between emitting unit and cathode were constructed, and the photovoltaic effect on OLEDs performance was studied. The electroluminescent (EL) characteristics and mechanism of device performance variation without and with different PHJs (herein including C{sub 60}/CuPc, CuPc/C{sub 60} and CuPc) were systematically investigated in red, green and blue OLEDs. Of the three combinations, OLEDs with C{sub 60}/CuPc showed the highest efficiency. It is revealed that the photovoltaic C{sub 60}/CuPc PHJ can absorb part of photons, which are radiated from emission zone, then form excitons, and dissociated into free charges. Consequently, the high device efficiency of OLEDs performance improvement was acquired. This research demonstrates that PHJ consisting of two n- and p-type photovoltaic organic materials could be a promising methodology for high performance OLEDs.

  7. Photovoltaic effect on the performance enhancement of organic light-emitting diodes with planar heterojunction architecture

    International Nuclear Information System (INIS)

    Zhao, Dan; Huang, Wei; Guo, Hao; Wang, Hua; Yu, Junsheng

    2017-01-01

    Highlights: • The photovoltaic effect on the performance of OLEDs was studied. • The device performance with different planar heterojunctions was investigated. • The mechanism relies on the overlap of electroluminescence and absorption spectrum. - Abstract: Organic light-emitting diodes (OLEDs) with planar heterojunction (PHJ) architecture consisting of photovoltaic organic materials of fullerene carbon 60 (C_6_0) and copper (II) phthalocyanine (CuPc) inserted between emitting unit and cathode were constructed, and the photovoltaic effect on OLEDs performance was studied. The electroluminescent (EL) characteristics and mechanism of device performance variation without and with different PHJs (herein including C_6_0/CuPc, CuPc/C_6_0 and CuPc) were systematically investigated in red, green and blue OLEDs. Of the three combinations, OLEDs with C_6_0/CuPc showed the highest efficiency. It is revealed that the photovoltaic C_6_0/CuPc PHJ can absorb part of photons, which are radiated from emission zone, then form excitons, and dissociated into free charges. Consequently, the high device efficiency of OLEDs performance improvement was acquired. This research demonstrates that PHJ consisting of two n- and p-type photovoltaic organic materials could be a promising methodology for high performance OLEDs.

  8. Wide bandgap collector III-V double heterojunction bipolar transistors

    International Nuclear Information System (INIS)

    Flitcroft, R.M.

    2000-10-01

    This thesis is devoted to the study and development of Heterojunction Bipolar Transistors (HBTs) designed for high voltage operation. The work concentrates on the use of wide bandgap III-V semiconductor materials as the collector material and their associated properties influencing breakdown, such as impact ionisation coefficients. The work deals with issues related to incorporating a wide bandgap collector into double heterojunction structures such as conduction band discontinuities at the base-collector junction and results are presented which detail, a number of methods designed to eliminate the effects of such discontinuities. In particular the use of AlGaAs as the base material has been successful in eliminating the conduction band spike at this interface. A method of electrically injecting electrons into the collector has been employed to investigate impact ionisation in GaAs, GaInP and AlInP which has used the intrinsic gain of the devices to extract impact ionisation coefficients over a range of electric fields beyond the scope of conventional optical injection techniques. This data has enabled the study of ''dead space'' effects in HBT collectors and have been used to develop an analytical model of impact ionisation which has been incorporated into an existing Ebers-Moll HBT simulator. This simulator has been shown to accurately reproduce current-voltage characteristics in both the devices used in this work and for external clients. (author)

  9. Diode-pumped CW frequency-doubled Nd:CNGG-BiBO blue laser at 468 nm

    International Nuclear Information System (INIS)

    Lü, Y F; Xia, J; Lin, J Q; Gao, X; Dong, Y; Xu, L J; Sun, G C; Zhao, Z M; Tan, Y; Chen, J F; Liu, Z X; Li, C L; Cai, H X; Liu, Z T; Ma, Z Y; Ning, G B

    2011-01-01

    Efficient and compact blue laser output at 468 nm is generated by intracavity frequency doubling of a continuous-wave (CW) diode-pumped Nd:CNGG laser at 935 nm. With 17.8 W of diode pump power and the frequency-doubling crystal BiB 3 O 6 (BiBO), a maximum output power of 490 mW in the blue spectral range at 468 nm has been achieved, corresponding to an optical-to-optical conversion efficiency of 2.8%; the output power stability over 4 h is better than 2.6%. To the best of our knowledge, this is first work on intracavity frequency doubling of a diode pumped Nd:CNGG laser at 935 nm

  10. Electrical Investigation of Nanostructured Fe2O3/p-Si Heterojunction Diode Fabricated Using the Sol-Gel Technique

    Science.gov (United States)

    Mansour, Shehab A.; Ibrahim, Mervat M.

    2017-11-01

    Iron oxide (α-Fe2O3) nanocrystals have been synthesized via the sol-gel technique. The structural and morphological features of these nanocrystals were studied using x-ray diffraction, Fourier transform-infrared spectroscopy and transmission electron microscopy. Colloidal solution of synthesized α-Fe2O3 (hematite) was spin-coated onto a single-crystal p-type silicon (p-Si) wafer to fabricate a heterojunction diode with Mansourconfiguration Ag/Fe2O3/p-Si/Al. This diode was electrically characterized at room temperature using current-voltage (I-V) characteristics in the voltage range from -9 V to +9 V. The fabricated diode showed a good rectification behavior with a rectification factor 1.115 × 102 at 6 V. The junction parameters such as ideality factor, barrier height, series resistance and shunt resistance are determined using conventional I-V characteristics. For low forward voltage, the conduction mechanism is dominated by the defect-assisted tunneling process with conventional electron-hole recombination. However, at higher voltage, I-V ohmic and space charge-limited current conduction was became less effective with the contribution of the trapped-charge-limited current at the highest voltage range.

  11. Excitonic processes at organic heterojunctions

    Science.gov (United States)

    He, ShouJie; Lu, ZhengHong

    2018-02-01

    Understanding excitonic processes at organic heterojunctions is crucial for development of organic semiconductor devices. This article reviews recent research on excitonic physics that involve intermolecular charge transfer (CT) excitons, and progress on understanding relationships between various interface energy levels and key parameters governing various competing interface excitonic processes. These interface excitonic processes include radiative exciplex emission, nonradiative recombination, Auger electron emission, and CT exciton dissociation. This article also reviews various device applications involving interface CT excitons, such as organic light-emitting diodes (OLEDs), organic photovoltaic cells, organic rectifying diodes, and ultralow-voltage Auger OLEDs.

  12. Preparation and characterization of electrodeposited ZnO and ZnO:Co nanorod films for heterojunction diode applications

    Energy Technology Data Exchange (ETDEWEB)

    Caglar, Yasemin, E-mail: yasemincaglar@anadolu.edu.tr [Anadolu University, Science Faculty, Physics Department, Eskisehir (Turkey); Arslan, Andaç [Eskisehir Osmangazi University, Art and Science Faculty, Chemistry Department, Eskisehir (Turkey); Ilican, Saliha [Anadolu University, Science Faculty, Physics Department, Eskisehir (Turkey); Hür, Evrim [Eskisehir Osmangazi University, Art and Science Faculty, Chemistry Department, Eskisehir (Turkey); Aksoy, Seval; Caglar, Mujdat [Anadolu University, Science Faculty, Physics Department, Eskisehir (Turkey)

    2013-10-15

    was affected significantly by Co content. The pn heterojunction diodes were fabricated and the diode parameters were determined from the analysis of the measured dark current–voltage curves. Rectifying behavior was observed from the I–V characteristics of these heterojunction diodes.

  13. A mathematical modeling framework to evaluate the performance of single diode and double diode based SPV systems

    Directory of Open Access Journals (Sweden)

    Sangram Bana

    2016-11-01

    Full Text Available In order to predict the performance of a PV system, a reliable and accurate simulation design of PV systems before being installed is a necessity. The present study concerns the development of single and double diode model of solar PV system and ensures the best suited model under specific environmental condition for accurate performance prediction. The information provided in the manufacturers’ data sheet is not sufficient for developing a Simulink based single and double diode models of PV module. These parameters are crucial to predict accurate performance of a PV module. These parameters of the proposed solar PV models have been calculated using an efficient iterative technique. This paper compares the simulation results of both the models with manufacturer’s data sheet to investigate the accuracy and validity. A MATLAB/Simulink based comparative performance analysis of these models under inconsistent atmospheric conditions and the effect of variations in model parameters has been carried out. Despite the simplicity, these models are highly sensitive and respond to a slight variation in temperature and insolation. It is observed that double diode PV model is more accurate under low intensity insolation or shading condition. The performance evaluation of the models under present study will be helpful to understand the I-V curves, which will enable us in predicting the solar PV system power production under variable input conditions.

  14. Multi-channel unidirectional transmission of phononic crystal heterojunctions

    Science.gov (United States)

    Xu, Zhenlong; Tong, Jie; Wu, Fugen

    2018-02-01

    Two square steel columns are arranged in air to form two-dimensional square lattice phononic crystals (PNCs). Two PNCs can be combined into a non-orthogonal 45∘ heterojunction when the difference in the directional band gaps of the two PNC types is utilized. The finite element method is used to calculate the acoustic band structure, the heterogeneous junction transmission characteristics, acoustic field distribution, and many others. Results show that a non-orthogonal PNC heterojunction can produce a multi-channel unidirectional transmission of acoustic waves. With the square scatterer rotated, the heterojunction can select a frequency band for unidirectional transmission performance. This capability is particularly useful for constructing acoustic diodes with wide-bands and high-efficiency unidirectional transmission characteristics.

  15. High-Performance Schottky Diode Gas Sensor Based on the Heterojunction of Three-Dimensional Nanohybrids of Reduced Graphene Oxide-Vertical ZnO Nanorods on an AlGaN/GaN Layer.

    Science.gov (United States)

    Minh Triet, Nguyen; Thai Duy, Le; Hwang, Byeong-Ung; Hanif, Adeela; Siddiqui, Saqib; Park, Kyung-Ho; Cho, Chu-Young; Lee, Nae-Eung

    2017-09-13

    A Schottky diode based on a heterojunction of three-dimensional (3D) nanohybrid materials, formed by hybridizing reduced graphene oxide (RGO) with epitaxial vertical zinc oxide nanorods (ZnO NRs) and Al 0.27 GaN 0.73 (∼25 nm)/GaN is presented as a new class of high-performance chemical sensors. The RGO nanosheet layer coated on the ZnO NRs enables the formation of a direct Schottky contact with the AlGaN layer. The sensing results of the Schottky diode with respect to NO 2 , SO 2 , and HCHO gases exhibit high sensitivity (0.88-1.88 ppm -1 ), fast response (∼2 min), and good reproducibility down to 120 ppb concentration levels at room temperature. The sensing mechanism of the Schottky diode can be explained by the effective modulation of the reverse saturation current due to the change in thermionic emission carrier transport caused by ultrasensitive changes in the Schottky barrier of a van der Waals heterostructure between RGO and AlGaN layers upon interaction with gas molecules. Advances in the design of a Schottky diode gas sensor based on the heterojunction of high-mobility two-dimensional electron gas channel and highly responsive 3D-engineered sensing nanomaterials have potential not only for the enhancement of sensitivity and selectivity but also for improving operation capability at room temperature.

  16. High-performance tandem organic light-emitting diodes based on a buffer-modified p/n-type planar organic heterojunction as charge generation layer

    Science.gov (United States)

    Wu, Yukun; Sun, Ying; Qin, Houyun; Hu, Shoucheng; Wu, Qingyang; Zhao, Yi

    2017-04-01

    High-performance tandem organic light-emitting diodes (TOLEDs) were realized using a buffer-modified p/n-type planar organic heterojunction (OHJ) as charge generation layer (CGL) consisting of common organic materials, and the configuration of this p/n-type CGL was "LiF/N,N'-diphenyl-N,N'-bis(1-napthyl)-1,1'-biphenyl-4,4'-diamine (NPB)/4,7-diphenyl-1,10-phenanthroline (Bphen)/molybdenum oxide (MoOx)". The optimized TOLED exhibited a maximum current efficiency of 77.6 cd/A without any out-coupling techniques, and the efficiency roll-off was greatly improved compared to the single-unit OLED. The working mechanism of the p/n-type CGL was discussed in detail. It is found that the NPB/Bphen heterojunction generated enough charges under a forward applied voltage and the carrier extraction was a tunneling process. These results could provide a new method to fabricate high-performance TOLEDs.

  17. Characteristics of AlGaN/GaN/AlGaN double heterojunction HEMTs with an improved breakdown voltage

    International Nuclear Information System (INIS)

    Ma Juncai; Zhang Jincheng; Xue Junshuai; Lin Zhiyu; Liu Ziyang; Xue Xiaoyong; Ma Xiaohua; Hao Yue

    2012-01-01

    We studied the performance of AlGaN/GaN double heterojunction high electron mobility transistors (DH-HEMTs) with an AlGaN buffer layer, which leads to a higher potential barrier at the backside of the two-dimensional electron gas channel and better carrier confinement. This, remarkably, reduces the drain leakage current and improves the device breakdown voltage. The breakdown voltage of AlGaN/GaN double heterojunction HEMTs (∼100 V) was significantly improved compared to that of conventional AlGaN/GaN HEMTs (∼50 V) for the device with gate dimensions of 0.5 × 100 μm and a gate—drain distance of 1 μm. The DH-HEMTs also demonstrated a maximum output power of 7.78 W/mm, a maximum power-added efficiency of 62.3% and a linear gain of 23 dB at the drain supply voltage of 35 V at 4 GHz. (semiconductor devices)

  18. A theoretical study of resonant tunneling characteristics in triangular double-barrier diodes

    International Nuclear Information System (INIS)

    Wang Hongmei; Xu Huaizhe; Zhang Yafei

    2006-01-01

    Resonant tunneling characteristics of triangular double-barrier diodes have been investigated systematically in this Letter, using Airy function approach to solve time-independent Schroedinger function in triangular double-barrier structures. Originally, the exact analytic expressions of quasi-bound levels and quasi-level lifetime in symmetrical triangular double-barrier structures have been derived within the effective-mass approximation as a function of structure parameters including well width, slope width and barrier height. Based on our derived analytic expressions, numerical results show that quasi-bound levels and quasi-level lifetime vary nearly linearly with the structure parameters except that the second quasi-level lifetime changes parabolically with slope width. Furthermore, according to our improved transmission coefficient of triangular double-barrier structures under external electric field, the current densities of triangular double-barrier diodes with different slope width at 0 K have been calculated numerically. The results show that the N-shaped negative differential resistance behaviors have been observed in current-voltage characteristics and current-voltage characteristics depend on the slope width

  19. Photocurrent characteristics of metal–AlGaN/GaN Schottky-on-heterojunction diodes induced by GaN interband excitation

    Science.gov (United States)

    Tang, Xi; Li, Baikui; Chen, Kevin J.; Wang, Jiannong

    2018-05-01

    The photocurrent characteristics of metal–AlGaN/GaN Schottky-on-heterojunction diodes were investigated. When the photon energy of incident light was larger than the bandgap of GaN but smaller than that of AlGaN, the alternating-current (ac) photocurrent measured using lock-in techniques increased with the chopper frequency. Analyzing the generation and flow processes of photocarriers revealed that the photocurrent induced by GaN interband excitation featured a transient behavior, and its direction reversed when the light excitation was removed. The abnormal dependence of the measured ac photocurrent magnitude on the chopper frequency was explained considering the detection principles of a lock-in amplifier.

  20. Solution-processed n-ZnO nanorod/p-Co_3O_4 nanoplate heterojunction light-emitting diode

    International Nuclear Information System (INIS)

    Kim, Jong-Woo; Lee, Su Jeong; Biswas, Pranab; Lee, Tae Il; Myoung, Jae-Min

    2017-01-01

    Highlights: • The n-ZnO nanorods were epitaxially grown on p-Co_3O_4 nanoplates. • The heteroepitaxial p-n junction was fabricated by using hydrothermal process. • The LEDs emitted reddish-orange and violet light related to ZnO point defects. • The Co_3O_4 nanoplates function as a hole injection layer. • Junction between 1D NRs and 2D NPs provides a new approach to design nanostructures. - Abstract: A heterojunction light-emitting diode (LED) based on p-type cobalt oxide (Co_3O_4) nanoplates (NPs)/n-type zinc oxide (ZnO) nanorods (NRs) is demonstrated. Using a low-temperature aqueous solution process, the n-type ZnO NRs were epitaxially grown on Co_3O_4 NPs which were two-dimensionally assembled by a modified Langmuir-Blodgett process. The heterojunction LEDs exhibited a typical rectifying behavior with a turn-on voltage of about 2 V and emitted not only reddish-orange light at 610 nm but also violet light at about 400 nm. From the comparative analyses of electroluminescence and photoluminescence, it was determined that the reddish-orange light emission was related to the electronic transitions from zinc interstitials (Zn_i) to oxygen interstitials (O_i) or conduction-band minimum (CBM) to oxygen vacancies (V_O), and the violet light emission was attribute to the transition from CBM to valence-band maximum (VBM) or Zn_i to zinc vacancies (V_Z_n).

  1. Stimulated emission within the exciplex band by plasmonic-nanostructured polymeric heterojunctions

    Science.gov (United States)

    Zhang, Xinping; Li, Hongwei; Wang, Yimeng; Liu, Feifei

    2015-03-01

    Organic heterojunctions have been extensively employed in the design of light-emitting diodes, photovoltaic devices, and thin-film field-effect transistors, which can be achieved by constructing a bilayer or a multi-layered thin-film deposition, or by blending two or more organic semiconductors with different charge-transport performances. Charge transfer excited states or exciplex may form on the heterointerfaces. Efficient light-emitting diodes have been demonstrated using exciplex emission. However, lasing or stimulated emission processes have not been observed with exciplex formation at organic heterojunctions. In this work, we demonstrate strong coherent interaction between photons and exciplex formation in the blends of poly-9,9'-dioctylfluorene-co-bis-N,N'-(4-butylphenyl)-bis-N,N'-phenyl-l,4-phenylenediamine (PFB) and poly-9,9'-dioctylfluorene-co-benzothiadiazole (F8BT), leading to transient stimulated exciplex emission. The responsible mechanisms involve plasmonic local-field enhancement and plasmonic feedback in a three-dimensional gold-nanoparticle matrix.Organic heterojunctions have been extensively employed in the design of light-emitting diodes, photovoltaic devices, and thin-film field-effect transistors, which can be achieved by constructing a bilayer or a multi-layered thin-film deposition, or by blending two or more organic semiconductors with different charge-transport performances. Charge transfer excited states or exciplex may form on the heterointerfaces. Efficient light-emitting diodes have been demonstrated using exciplex emission. However, lasing or stimulated emission processes have not been observed with exciplex formation at organic heterojunctions. In this work, we demonstrate strong coherent interaction between photons and exciplex formation in the blends of poly-9,9'-dioctylfluorene-co-bis-N,N'-(4-butylphenyl)-bis-N,N'-phenyl-l,4-phenylenediamine (PFB) and poly-9,9'-dioctylfluorene-co-benzothiadiazole (F8BT), leading to transient

  2. Growth and characterization of p-Cu2O/n-ZnO nanorod heterojunctions prepared by a two-step potentiostatic method

    International Nuclear Information System (INIS)

    Jeong, Yoon Suk; Kim, Hyunghoon; Lee, Ho Seong

    2013-01-01

    Highlights: •p-Cu 2 O/n-ZnO heterostructures were grown by a two-step potentiostatic method. •The high-quality p-Cu 2 O/n-ZnO nanorod heterojunctions were obtained only at relatively high temperatures of 90 and 100 °C. •p-Cu 2 O/n-ZnO heterojunctions exhibited a well-defined p–n diode characteristic. -- Abstract: p-Cu 2 O/n-ZnO nanorod heterojunctions were fabricated by a two-step process. The process was performed with potentiostatic deposition of n-ZnO nanorods on conductive indium-tin-oxide (ITO) glasses followed by potentiostatic deposition of p-Cu 2 O to form p-Cu 2 O/n-ZnO nanorod heterojunctions. The deposition condition required to form the cuprous oxide layer affected significantly the formation and microstructure of the p-Cu 2 O/n-ZnO nanorod heterojunctions. In particular, the high-quality p-Cu 2 O/n-ZnO nanorod heterojunctions were obtained only at relatively high temperatures of 90 and 100 °C. The p-Cu 2 O/n-ZnO nanorod heterojunctions exhibited a well-defined p–n diode characteristic with an ideality factor of about 4.3

  3. Characterization of poly-aniline/silicon heterojunction for gamma dosimetry

    International Nuclear Information System (INIS)

    Laranjeira, Jane M.G.; Khoury, Helen J.; Azevedo, Walter M.; Silva Junior, Eronides F. da; Vasconcelos, Elder A.

    2000-01-01

    In this work, we have developed and characterized poly-aniline/silicon heterojunction diodes for dosimetry applications. The poly-aniline thin film (thickness in order of microns) was deposited on n-type Si (1 Ωcm) by spin-coating technique from soluble poly-aniline. Al electrode was evaporated on the back side of Si wafer and a circular gold electrode with an area of 0,0036 cm 2 was evaporated on the poly-aniline film. The UV-visible and infrared characterization of the poly-aniline solution and the poly-aniline film has also been done. The heterojunction presents good rectifying behavior at room temperature and the rectification ratio were found to be 51664 ±1,0 V under ambient conditions. The saturation current densities are of the order of 1,4 μA/cm 2 at -1,0 V. The forward current correspond to the negative polarity on the aluminum electrode side and the ideality factor of diodes was approximately 2. The rectifying characteristics of diodes was changed after interaction with gamma radiation ( 60 Co) and the results shows that this devices has potential for applications in dosimetry for doses in range of 0 to 4000 Gy. (author)

  4. Origin of the Electroluminescence from Annealed-ZnO/GaN Heterojunction Light-Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Kai-Chiang Hsu

    2015-11-01

    Full Text Available This paper addressed the effect of post-annealed treatment on the electroluminescence (EL of an n-ZnO/p-GaN heterojunction light-emitting diode (LED. The bluish light emitted from the 450 °C-annealed LED became reddish as the LED annealed at a temperature of 800 °C under vacuum atmosphere. The origins of the light emission for these LEDs annealed at various temperatures were studied using measurements of electrical property, photoluminescence, and Auger electron spectroscopy (AES depth profiles. A blue-violet emission located at 430 nm was associated with intrinsic transitions between the bandgap of n-ZnO and p-GaN, the green-yellow emission at 550 nm mainly originating from the deep-level transitions of native defects in the n-ZnO and p-GaN surfaces, and the red emission at 610 nm emerging from the Ga-O interlayer due to interdiffusion at the n-ZnO/p-GaN interface. The above-mentioned emissions also supported the EL spectra of LEDs annealed at 700 °C under air, nitrogen, and oxygen atmospheres, respectively.

  5. Complete indium-free CW 200W passively cooled high power diode laser array using double-side cooling technology

    Science.gov (United States)

    Wang, Jingwei; Zhu, Pengfei; Liu, Hui; Liang, Xuejie; Wu, Dihai; Liu, Yalong; Yu, Dongshan; Zah, Chung-en; Liu, Xingsheng

    2017-02-01

    High power diode lasers have been widely used in many fields. To meet the requirements of high power and high reliability, passively cooled single bar CS-packaged diode lasers must be robust to withstand thermal fatigue and operate long lifetime. In this work, a novel complete indium-free double-side cooling technology has been applied to package passively cooled high power diode lasers. Thermal behavior of hard solder CS-package diode lasers with different packaging structures was simulated and analyzed. Based on these results, the device structure and packaging process of double-side cooled CS-packaged diode lasers were optimized. A series of CW 200W 940nm high power diode lasers were developed and fabricated using hard solder bonding technology. The performance of the CW 200W 940nm high power diode lasers, such as output power, spectrum, thermal resistance, near field, far field, smile, lifetime, etc., is characterized and analyzed.

  6. High-efficiency omnidirectional photoresponses based on monolayer lateral p–n heterojunctions

    KAUST Repository

    Tsai, Meng-Lin

    2016-10-28

    Electrical and optical properties of lateral monolayer WSe2–MoS2 p–n heterojunctions were characterized to demonstrate a high responsivity of 0.26 A W−1 with an excellent omnidirectional photodetection capability. The heterojunction functioning as a diode exhibits a prominent gate-tuning behavior with an ideality factor of 1.25. In addition, ultrafast photoresponse, low-light detectability, and high-temperature operation have been achieved. These unique characteristics pave a way for the future development of sub-nano semiconductor devices.

  7. Frequency-doubled diode laser for direct pumping of Ti:sapphire lasers

    DEFF Research Database (Denmark)

    Müller, André; Jensen, Ole Bjarlin; Unterhuber, Angelika

    2012-01-01

    . However, the superior electro-optical efficiency of the diode laser improves the overall efficiency of the Ti:sapphire laser by a factor > 2. The optical spectrum emitted by the Ti:sapphire laser shows a spectral width of 112 nm (FWHM). Based on autocorrelation measurements, pulse widths of less than 20...... fs are measured. These results open the opportunity of establishing diode laser pumped Ti:sapphire lasers for e.g. biophotonic applications like retinal optical coherence tomography or pumping of photonic crystal fibers for CARS microscopy.......A single-pass frequency doubled high-power tapered diode laser emitting nearly 1.3 W of green light suitable for direct pumping of Ti:sapphire lasers generating ultrashort pulses is demonstrated. The pump efficiencies reached 75 % of the values achieved with a commercial solid-state pump laser...

  8. Transparent Cu4O3/ZnO heterojunction photoelectric devices

    Science.gov (United States)

    Kim, Hong-Sik; Yadav, Pankaj; Patel, Malkeshkumar; Kim, Joondong; Pandey, Kavita; Lim, Donggun; Jeong, Chaehwan

    2017-12-01

    The present article reports the development of flexible, self-biased, broadband, high speed and transparent heterojunction photodiode, which is essentially important for the next generation electronic devices. We grow semitransparent p-type Cu4O3 using the reactive sputtering method at room temperature. The structural and optical properties of the Cu4O3 film were investigated by using the X-ray diffraction and UV-visible spectroscopy, respectively. The p-Cu4O3/n-ZnO heterojunction diode under dark condition yields rectification behavior with an extremely low saturation current value of 1.8 × 10-10 A and a zero bias photocurrent under illumination condition. The transparent p-Cu4O3/n-ZnO heterojunction photodetector can be operated without an external bias, due to the light-induced voltage production. The metal oxide heterojunction based on Cu4O3/ZnO would provide a route for the transparent and flexible photoelectric devices, including photodetectors and photovoltaics.

  9. Enhanced photocatalytic performance and degradation pathway of Rhodamine B over hierarchical double-shelled zinc nickel oxide hollow sphere heterojunction

    Science.gov (United States)

    Zhang, Ying; Zhou, Jiabin; Cai, Weiquan; Zhou, Jun; Li, Zhen

    2018-02-01

    In this study, hierarchical double-shelled NiO/ZnO hollow spheres heterojunction were prepared by calcination of the metallic organic frameworks (MOFs) as a sacrificial template in air via a one-step solvothermal method. Additionally, the photocatalytic activity of the as-prepared samples for the degradation of Rhodamine B (RhB) under UV-vis light irradiation were also investigated. NiO/ZnO microsphere comprised a core and a shell with unique hierarchically porous structure. The photocatalytic results showed that NiO/ZnO hollow spheres exhibited excellent catalytic activity for RhB degradation, causing complete decomposition of RhB (200 mL of 10 g/L) under UV-vis light irradiation within 3 h. Furthermore, the degradation pathway was proposed on the basis of the intermediates during the photodegradation process using liquid chromatography analysis coupled with mass spectroscopy (LC-MS). The improvement in photocatalytic performance could be attributed to the p-n heterojunction in the NiO/ZnO hollow spheres with hierarchically porous structure and the strong double-shell binding interaction, which enhances adsorption of the dye molecules on the catalyst surface and facilitates the electron/hole transfer within the framework. The degradation mechanism of pollutant is ascribed to the hydroxyl radicals (rad OH), which is the main oxidative species for the photocatalytic degradation of RhB. This work provides a facile and effective approach for the fabrication of porous metal oxides heterojunction with high photocatalytic activity and thus can be potentially used in the environmental purification.

  10. Heterojunction interface double layer and consequences for photovoltaic cells, specifically Cdsub(z)Znsub(1-z)S/Cu2S

    International Nuclear Information System (INIS)

    Boeer, K.W.

    1978-01-01

    It is shown that an interface dislocation field at a heterojunction with substantial lattice mismatch needs charge compensation which can cause a double layer producing a potential spike at the interface. Tunneling through such a spike reduces the current through the interface. Reasonable agreement between theory and experiment is obtained for Cdsub(z)Znsub(1-z)S/Cu 2 S photovoltaic cells. (author)

  11. Towards high frequency heterojunction transistors: Electrical characterization of N-doped amorphous silicon-graphene diodes

    Science.gov (United States)

    Strobel, C.; Chavarin, C. A.; Kitzmann, J.; Lupina, G.; Wenger, Ch.; Albert, M.; Bartha, J. W.

    2017-06-01

    N-type doped amorphous hydrogenated silicon (a-Si:H) is deposited on top of graphene (Gr) by means of very high frequency (VHF) and radio frequency plasma-enhanced chemical vapor deposition (PECVD). In order to preserve the structural integrity of the monolayer graphene, a plasma excitation frequency of 140 MHz was successfully applied during the a-Si:H VHF-deposition. Raman spectroscopy results indicate the absence of a defect peak in the graphene spectrum after the VHF-PECVD of (n)-a-Si:H. The diode junction between (n)-a-Si:H and graphene was characterized using temperature dependent current-voltage (IV) and capacitance-voltage measurements, respectively. We demonstrate that the current at the (n)-a-Si:H-graphene interface is dominated by thermionic emission and recombination in the space charge region. The Schottky barrier height (qΦB), derived by temperature dependent IV-characteristics, is about 0.49 eV. The junction properties strongly depend on the applied deposition method of (n)-a-Si:H with a clear advantage of the VHF(140 MHz)-technology. We have demonstrated that (n)-a-Si:H-graphene junctions are a promising technology approach for high frequency heterojunction transistors.

  12. InGaP/InGaAsN/GaAs NpN double-heterojunction bipolar transistor

    International Nuclear Information System (INIS)

    Chang, P. C.; Baca, A. G.; Li, N. Y.; Xie, X. M.; Hou, H. Q.; Armour, E.

    2000-01-01

    We have demonstrated a functional NpN double-heterojunction bipolar transistor (DHBT) using InGaAsN for the base layer. The InGaP/In 0.03 Ga 0.97 As 0.99 N 0.01 /GaAs DHBT has a low V ON of 0.81 V, which is 0.13 V lower than in a InGaP/GaAs heterojunction bipolar transistor (HBT). The lower turn-on voltage is attributed to the smaller band gap (1.20 eV) of metalorganic chemical vapor deposition-grown In 0.03 Ga 0.97 As 0.99 N 0.01 base layer. GaAs is used for the collector; thus the breakdown voltage (BV CEO ) is 10 V, consistent with the BV CEO of InGaP/GaAs HBTs of comparable collector thickness and doping level. To alleviate the current blocking phenomenon caused by the larger conduction band discontinuity between InGaAsN and GaAs, a graded InGaAs layer with δ doping is inserted at the base-collector junction. The improved device has a peak current gain of seven with ideal current-voltage characteristics. (c) 2000 American Institute of Physics

  13. Zinc oxide nanorods/polymer hybrid heterojunctions for white light emitting diodes

    Science.gov (United States)

    Willander, M.; Nur, O.; Zaman, S.; Zainelabdin, A.; Bano, N.; Hussain, I.

    2011-06-01

    Zinc oxide (ZnO) with its deep level defect emission covering the whole visible spectrum holds promise for the development of intrinsic white lighting sources with no need of using phosphors for light conversion. ZnO nanorods (NRs) grown on flexible plastic as substrate using a low temperature approach (down to 50 °C) were combined with different organic semiconductors to form hybrid junction. White electroluminescence (EL) was observed from these hybrid junctions. The configuration used for the hybrid white light emitting diodes (LEDs) consists of two-layers of polymers on the flexible plastic with ZnO NRs on the top. The inorganic/organic hybrid heterojunction has been fabricated by spin coating the p-type polymer poly (3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT : PSS) for hole injection with an ionization potential of 5.1 eV and poly(9, 9-dioctylfluorene) (PFO) is used as blue emitting material with a bandgap of 3.3 eV. ZnO NRs are grown on top of the organic layers. Two other configurations were also fabricated; these are using a single MEH PPV (red-emitting polymer) instead of the PFO and the third configuration was obtained from a blend of the PFO and the MEH PPV. The white LEDs were characterized by scanning electron microscope, x-ray diffraction (XRD), current-voltage (I-V) characteristics, room temperature photoluminescence (PL) and EL. The EL spectrum reveals a broad emission band covering the range from 420 to 800 nm, and the emissions causing this white luminescence were identified.

  14. Zinc oxide nanorods/polymer hybrid heterojunctions for white light emitting diodes

    International Nuclear Information System (INIS)

    Willander, M; Nur, O; Zaman, S; Zainelabdin, A; Bano, N; Hussain, I

    2011-01-01

    Zinc oxide (ZnO) with its deep level defect emission covering the whole visible spectrum holds promise for the development of intrinsic white lighting sources with no need of using phosphors for light conversion. ZnO nanorods (NRs) grown on flexible plastic as substrate using a low temperature approach (down to 50 0 C) were combined with different organic semiconductors to form hybrid junction. White electroluminescence (EL) was observed from these hybrid junctions. The configuration used for the hybrid white light emitting diodes (LEDs) consists of two-layers of polymers on the flexible plastic with ZnO NRs on the top. The inorganic/organic hybrid heterojunction has been fabricated by spin coating the p-type polymer poly (3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT : PSS) for hole injection with an ionization potential of 5.1 eV and poly(9, 9-dioctylfluorene) (PFO) is used as blue emitting material with a bandgap of 3.3 eV. ZnO NRs are grown on top of the organic layers. Two other configurations were also fabricated; these are using a single MEH PPV (red-emitting polymer) instead of the PFO and the third configuration was obtained from a blend of the PFO and the MEH PPV. The white LEDs were characterized by scanning electron microscope, x-ray diffraction (XRD), current-voltage (I-V) characteristics, room temperature photoluminescence (PL) and EL. The EL spectrum reveals a broad emission band covering the range from 420 to 800 nm, and the emissions causing this white luminescence were identified.

  15. Electroluminescence and rectifying properties of heterojunction LEDs based on ZnO nanorods

    International Nuclear Information System (INIS)

    Rout, Chandra Sekhar; Rao, C N R

    2008-01-01

    n-ZnO NR/p-Si and n-ZnO NR/p-PEDOT/PSS heterojunction light-emitting diodes (LEDs) have been fabricated with ZnO nanorods (NRs) grown by a low-temperature method as well as by employing pulsed laser deposition (PLD). The low-temperature method involves growing the ZnO nanorods by the reaction of water with zinc metal. The current-voltage (I-V) characteristics of the heterojunctions show good rectifying diode characteristics. The electroluminescence (EL) spectra of the nanorods show an emission band at around 390 nm and defect related bands in the 400-550 nm region. Room-temperature electroluminescence is detected under forward bias for both the heterostructures. With the low-temperature grown nanorods, the defect related bands in the 400-550 nm range are more intense in the EL spectra, whereas with the PLD grown nanorods, only the 390 nm band is prominent

  16. Fabrication and characterization of photosensitive n-ZnO/p-InSe heterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Kudrynskyi, Z., E-mail: kudrynskyi@gmail.com [Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, Chernivtsi Branch, Str. I. Vilde 5, 58001 Chernivtsi (Ukraine); Khomyak, V. [Yuriy Fedkovich Chernivtsi National University, Str. Kotsubinsky 2, 58012 Chernivtsi (Ukraine); Katerynchuk, V.; Kovalyuk, M.; Netyaga, V.; Kushnir, B. [Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, Chernivtsi Branch, Str. I. Vilde 5, 58001 Chernivtsi (Ukraine)

    2015-05-01

    Indium monochalcogenide (InSe) with a band gap of 1.25 eV is a promising material for photovoltaic applications. In this work, photosensitive anisotype n-ZnO/p-InSe heterojunctions were fabricated by means of radio-frequency magnetron sputtering of the zinc oxide onto freshly cleaved (0001) van der Waals surface of p-InSe single-crystal. Structural properties of the obtained heterostructures were investigated by means of X-ray diffraction. Surface morphology of the grown ZnO thin films was studied by means of atomic force microscopy. The electrical and photoelectrical properties of the heterojunctions were investigated using the current-voltage characteristics measured at different temperatures, capacitance-voltage characteristics and photoresponse spectra. The dominating current transport mechanisms through the heterojunctions under investigation were determined at forward and reverse biases. It was found that the developed heterojunctions n-ZnO/p-InSe show photosensitivity in the photon energy range (1.25-3.20 eV) at room temperature. In addition, we analyzed the influence of vacuum annealing of the heterojunctions at different temperatures on their photoelectric properties. - Highlights: • Thin ZnO films were grown onto van der Waals surface of InSe substrate. • n-ZnO/p-InSe heterojunctions were fabricated. • The heterojunctions are photosensitive in photon energy range from 1.12 to 3.75 eV. • Despite the lattice mismatch of 19% the heterojunctions exhibit diode-like behavior. • Vacuum annealing improves electrical properties of the heterojunctions.

  17. Si/ZnO NANO STRUCTURED HETEROJUNCTIONS BY APCVD METHOD

    Directory of Open Access Journals (Sweden)

    M. Maleki

    2015-12-01

    Full Text Available In this paper, polycrystalline pure zinc oxide nano structured thin films were deposited on two kinds of single crystal and polycrystalline of p and n type Si in three different substrate temperatures of 300, 400 and 500◦C by low cost APCVD method. Structural, electrical and optical properties of these thin films were characterized by X ray diffraction, two point probe method and UV visible spectrophotometer respectively. IV measurements of these heterojunctions showed that turn on voltage and series resistance will increase with increasing substrate temperature in polycrystalline Si, while in single crystal Si, turn on voltage will decrease. Although they are acceptable diodes, their efficiency as a heterojunction solar cell are so low

  18. Double transparent conducting layers for Si photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Ju-Hyung [Department of Electrical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260 (United States); Kim, Joondong, E-mail: joonkim@incheon.ac.kr [Department of Electrical Engineering, Incheon National University, Incheon, 406772 (Korea, Republic of); Park, Yun Chang [Measurement and Analysis Division, National Nanofab Center (NNFC), Daejeon 305806 (Korea, Republic of); Moon, Sang-Jin [Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 305-600 (Korea, Republic of); Anderson, Wayne A. [Department of Electrical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260 (United States)

    2013-11-29

    Double transparent conductive oxide (TCO) film-embedded Si heterojunction solar cells were fabricated. An intentional doping was not applied for heterojunction solar cells due to the spontaneous Schottky junction formation between TCO films and an n-type Si substrate. Three different TCO coatings were formed by sputtering method for an Al-doped ZnO (AZO) film, an indium-tin-oxide (ITO) film and double stacks of ITO/AZO films. An improved crystalline ITO film was grown on an AZO template upon hetero-epitaxial growth. This double TCO films-embedded Si (ITO/AZO/Si) heterojunction solar cell provided significantly enhanced efficiency of 9.23 % as compared to the single TCO/Si (ITO/Si or AZO/Si) devices due to the optical and the electrical benefits. The effective arrangement of TCO films (ITO/AZO) provides benefits of a lower front contact resistance and a smaller band offset to Si leading enhanced photovoltaic performances. This demonstrates a potential scheme for an effective TCO film-embedded heterojunction Si solar cell. - Highlights: • Double transparent conducting oxide films form a heterojunction to Si. • A quality indium-tin-oxide film was grown above an Al-doped zinc oxide template. • Heterojunction Si solar cell was made without an intentional doping process.

  19. Double transparent conducting layers for Si photovoltaics

    International Nuclear Information System (INIS)

    Yun, Ju-Hyung; Kim, Joondong; Park, Yun Chang; Moon, Sang-Jin; Anderson, Wayne A.

    2013-01-01

    Double transparent conductive oxide (TCO) film-embedded Si heterojunction solar cells were fabricated. An intentional doping was not applied for heterojunction solar cells due to the spontaneous Schottky junction formation between TCO films and an n-type Si substrate. Three different TCO coatings were formed by sputtering method for an Al-doped ZnO (AZO) film, an indium-tin-oxide (ITO) film and double stacks of ITO/AZO films. An improved crystalline ITO film was grown on an AZO template upon hetero-epitaxial growth. This double TCO films-embedded Si (ITO/AZO/Si) heterojunction solar cell provided significantly enhanced efficiency of 9.23 % as compared to the single TCO/Si (ITO/Si or AZO/Si) devices due to the optical and the electrical benefits. The effective arrangement of TCO films (ITO/AZO) provides benefits of a lower front contact resistance and a smaller band offset to Si leading enhanced photovoltaic performances. This demonstrates a potential scheme for an effective TCO film-embedded heterojunction Si solar cell. - Highlights: • Double transparent conducting oxide films form a heterojunction to Si. • A quality indium-tin-oxide film was grown above an Al-doped zinc oxide template. • Heterojunction Si solar cell was made without an intentional doping process

  20. Solution-processed n-ZnO nanorod/p-Co{sub 3}O{sub 4} nanoplate heterojunction light-emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong-Woo; Lee, Su Jeong; Biswas, Pranab [Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722 (Korea, Republic of); Lee, Tae Il [Department of BioNano Technology, Gachon University, 1342 Seongnam Daero, Seongnam 13120 (Korea, Republic of); Myoung, Jae-Min, E-mail: jmmyoung@yonsei.ac.kr [Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722 (Korea, Republic of)

    2017-06-01

    Highlights: • The n-ZnO nanorods were epitaxially grown on p-Co{sub 3}O{sub 4} nanoplates. • The heteroepitaxial p-n junction was fabricated by using hydrothermal process. • The LEDs emitted reddish-orange and violet light related to ZnO point defects. • The Co{sub 3}O{sub 4} nanoplates function as a hole injection layer. • Junction between 1D NRs and 2D NPs provides a new approach to design nanostructures. - Abstract: A heterojunction light-emitting diode (LED) based on p-type cobalt oxide (Co{sub 3}O{sub 4}) nanoplates (NPs)/n-type zinc oxide (ZnO) nanorods (NRs) is demonstrated. Using a low-temperature aqueous solution process, the n-type ZnO NRs were epitaxially grown on Co{sub 3}O{sub 4} NPs which were two-dimensionally assembled by a modified Langmuir-Blodgett process. The heterojunction LEDs exhibited a typical rectifying behavior with a turn-on voltage of about 2 V and emitted not only reddish-orange light at 610 nm but also violet light at about 400 nm. From the comparative analyses of electroluminescence and photoluminescence, it was determined that the reddish-orange light emission was related to the electronic transitions from zinc interstitials (Zn{sub i}) to oxygen interstitials (O{sub i}) or conduction-band minimum (CBM) to oxygen vacancies (V{sub O}), and the violet light emission was attribute to the transition from CBM to valence-band maximum (VBM) or Zn{sub i} to zinc vacancies (V{sub Zn}).

  1. A boron and gallium co-doped ZnO intermediate layer for ZnO/Si heterojunction diodes

    Science.gov (United States)

    Lu, Yuanxi; Huang, Jian; Li, Bing; Tang, Ke; Ma, Yuncheng; Cao, Meng; Wang, Lin; Wang, Linjun

    2018-01-01

    ZnO (Zinc oxide)/Si (Silicon) heterojunctions were prepared by depositing n-type ZnO films on p-type single crystal Si substrates using magnetron sputtering. A boron and gallium co-doped ZnO (BGZO) high conductivity intermediate layer was deposited between aurum (Au) electrodes and ZnO films. The influence of the BGZO layer on the properties of Au/ZnO contacts and the performance of ZnO/Si heterojunctions was investigated. The results show an improvement in contact resistance by introducing the BGZO layer. Compared with the ZnO/Si heterojunction, the BGZO/ZnO/Si heterojunction exhibits a larger forward current, a smaller turn-on voltage and higher ratio of ultraviolet (UV) photo current/dark current.

  2. Effect of mixed hole transporting host on the mobility, Gaussian density of states and efficiencies of a heterojunction phosphorescent organic light emitting diode

    International Nuclear Information System (INIS)

    Talik, N A; Woon, K L; Yap, B K

    2016-01-01

    We present an in-depth study of the hole transport in poly(vinylcarbazole) PVK films blended with small molecule tris(4-carbazoyl-9-ylphenyl)amine (TcTa). Doping TcTa in PVK introduces shallow hole traps when the doping concentration is lower than 20 wt%. It becomes percolative at higher concentrations. The energetic disorder σ of the blended system reduces from ∼72 meV at 0 wt% TcTa to ∼41 meV at 50 wt% TcTa. A correlation between σ and the film morphologies suggests that the blending of TcTa molecules in the film does not only change the film homogeneity and roughness but also the energetic disorder. In addition to the mobility study, we fabricated a red phosphorescent organic light emitting diode with the same blending system. By doping merely 5 wt% of TcTa into PVK as mixed hole-transporting hosts, the efficiency of the deep red heterojunction phosphorescent organic light emitting diode increased from 2 cd A −1 to 4 cd A −1 , suggesting that TcTa molecules assist in hole injection. (paper)

  3. Calculation of the electron wave function in a graded-channel double-heterojunction modulation-doped field-effect transistor

    Science.gov (United States)

    Mui, D. S. L.; Patil, M. B.; Morkoc, H.

    1989-01-01

    Three double-heterojunction modulation-doped field-effect transistor structures with different channel composition are investigated theoretically. All of these transistors have an In(x)Ga(1-x)As channel sandwiched between two doped Al(0.3)Ga(0.7)As barriers with undoped spacer layers. In one of the structures, x varies from 0 from either heterojunction to 0.15 at the center of the channel quadratically; in the other two, constant values of x of 0 and 0.15 are used. The Poisson and Schroedinger equations are solved self-consistently for the electron wave function in all three cases. The results showed that the two-dimensional electron gas (2DEG) concentration in the channel of the quadratically graded structure is higher than the x = 0 one and slightly lower than the x = 0.15 one, and the mean distance of the 2DEG is closer to the center of the channel for this transistor than the other two. These two effects have important implications on the electron mobility in the channel.

  4. Improvement of the beam quality of a broad-area diode laser using double feedback from two external mirrors

    DEFF Research Database (Denmark)

    Chi, M.; Bøgh, A.-S.; Thestrup, B.

    2004-01-01

    In this letter, a symmetric double-feedback configuration, to improve the beam quality of broad-area diode lasers is demonstrated. With this configuration, a symmetric double-lobed far field can be obtained, and this configuration leads to good beam quality. The beam quality factor M-2 of a diode...... laser with the emitting area 1 mumx200 mum is improved by using both the asymmetric single feedback and the symmetric double feedback. M-2 values of 4.3 for the asymmetric single-feedback laser system and 3.3 for the symmetric double-feedback laser system are obtained, whereas the M-2 value...... of the freely running laser is 42. The far and the near fields are also measured and compared for the three conditions. (C) 2004 American Institute of Physics....

  5. Comparison of symmetric and asymmetric double quantum well extended-cavity diode lasers for broadband passive mode-locking at 780  nm.

    Science.gov (United States)

    Christopher, Heike; Kovalchuk, Evgeny V; Wenzel, Hans; Bugge, Frank; Weyers, Markus; Wicht, Andreas; Peters, Achim; Tränkle, Günther

    2017-07-01

    We present a compact, mode-locked diode laser system designed to emit a frequency comb in the wavelength range around 780 nm. We compare the mode-locking performance of symmetric and asymmetric double quantum well ridge-waveguide diode laser chips in an extended-cavity diode laser configuration. By reverse biasing a short section of the diode laser chip, passive mode-locking at 3.4 GHz is achieved. Employing an asymmetric double quantum well allows for generation of a mode-locked optical spectrum spanning more than 15 nm (full width at -20  dB) while the symmetric double quantum well device only provides a bandwidth of ∼2.7  nm (full width at -20  dB). Analysis of the RF noise characteristics of the pulse repetition rate shows an RF linewidth of about 7 kHz (full width at half-maximum) and of at most 530 Hz (full width at half-maximum) for the asymmetric and symmetric double quantum well devices, respectively. Investigation of the frequency noise power spectral density at the pulse repetition rate shows a white noise floor of approximately 2100  Hz 2 /Hz and of at most 170  Hz 2 /Hz for the diode laser employing the asymmetric and symmetric double quantum well structures, respectively. The pulse width is less than 10 ps for both devices.

  6. Effect of interface voids on electroluminescence colors for ZnO microdisk/p-GaN heterojunction light-emitting diodes

    Science.gov (United States)

    Mo, Ran; Choi, Ji Eun; Kim, Hyeong Jin; Jeong, Junseok; Kim, Jong Chan; Kim, Yong-Jin; Jeong, Hu Young; Hong, Young Joon

    2017-10-01

    This study investigates the influence of voids on the electroluminescence (EL) emission color of ZnO microdisk/p-GaN heterojunction light-emitting diodes (LEDs). For this study, position-controlled microdisk arrays were fabricated on patterned p-GaN via wet chemical epitaxy of ZnO, and specifically, the use of trisodium citrate dihydrate (TCD) yielded high-density voids at the bottom of the microdisk. Greenish yellow or whitish blue EL was emitted from the microdisk LEDs formed with or without TCD, respectively, at reverse-bias voltages. Such different EL colors were found to be responsible for the relative EL intensity ratio between indigo and yellow emission peaks, which were originated from radiative recombination at p-GaN and ZnO, respectively. The relative EL intensity between dichromatic emissions is discussed in terms of (i) junction edge effect provoked by interfacial voids and (ii) electron tunneling probability depending on the depletion layer geometry.

  7. Green perovskite light emitting diodes based on the ITO/Al2O3/CsPbBr3 heterojunction structure

    Science.gov (United States)

    Zhuang, Shiwei; Ma, Xue; Hu, Daqiang; Dong, Xin; Zhang, Yuantao; Zhang, Baolin

    2018-03-01

    Perovskite light emitting diodes (PeLEDs) now emerge as a promising new optoelectronic application field for these amazing semiconductors. For the purpose of investigating the device structures and light emission mechanisms of PeLEDs, we have fabricated green PeLEDs based on the ITO/Al2O3/CsPbBr3 heterojunction structure. The emission layer inorganic perovskite CsPbBr3 film with small grain sizes (∼28.9 nm) was prepared using a two-step method. The device exhibits a typical rectification behavior with turn-on voltage of ∼6 V. The EL emission band is narrow with the FWHM of ∼25 nm. The peak EQE of the device was ∼0.09%. The working mechanism of the device is also discussed. The result of the present work provides a feasible innovation idea of PeLEDs fabrication and great potentials for the development of perovskite based LEDs.

  8. Luminescence of solar cells with a-Si:H/c-Si heterojunctions

    Science.gov (United States)

    Zhigunov, D. M.; Il'in, A. S.; Forsh, P. A.; Bobyl', A. V.; Verbitskii, V. N.; Terukov, E. I.; Kashkarov, P. K.

    2017-05-01

    We have studied the electroluminescence (EL) and photoluminescence (PL) of solar cells containing a-Si:H/c-Si heterojunctions. It is established that both the EL and PL properties of these cells are determined by the radiative recombination of nonequilibrium carriers in crystalline silicon (c-Si). The external EL energy yield (efficiency) of solar cells with a-Si:H/c-Si heterojunctions at room temperature amounts to 2.1% and exceeds the value reached in silicon diode structures. This large EL efficiency can be explained by good passivation of the surface of crystalline silicon and the corresponding increase in lifetime of minority carrier s in these solar cells.

  9. Electroluminescence of doped and undoped AlN/SiC-heterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Bruesewitz, Christoph; Vetter, Ulrich; Hofsaess, Hans [II. Physikalisches Institut, Georg-August-Universitaet Goettingen (Germany)

    2010-07-01

    AlN with its large and direct bandgap is a useful host for optoelectronic applications. Grown on 6H-SiC, a heterojunction is created, forming a diode. The light emitted by n-doped 6H-SiC via electroluminescence forms a broad band with a maximum at a wavelength of 475 nm. With the AlN layer on the surface, nitrogen atoms can diffuse into the 6H-SiC, creating new energy levels. Depending on the direction of the current and additional dopants in the AlN layer, the carrier concentration changes and new levels are available, resulting in different colours. It is shown that in this heterojunction blue, red and white colours are feasible.

  10. Design and construction of a novel 1H/19F double-tuned coil system using PIN-diode switches at 9.4T.

    Science.gov (United States)

    Choi, Chang-Hoon; Hong, Suk-Min; Ha, YongHyun; Shah, N Jon

    2017-06-01

    A double-tuned 1 H/ 19 F coil using PIN-diode switches was developed and its performance evaluated. The is a key difference from the previous developments being that this design used a PIN-diode switch in series with an additionally inserted inductor in parallel to one of the capacitors on the loop. The probe was adjusted to 19 F when the reverse bias voltage was applied (PIN-diode OFF), whilst it was switched to 1 H when forward current was flowing (PIN-diode ON). S-parameters and Q-factors of single- and double-tuned coils were examined and compared with/without a phantom on the bench. Imaging experiments were carried out on a 9.4T preclinical scanner. All coils were tuned at resonance frequencies and matched well. It is shown that the Q-ratio and SNR of double-tuned coil at 19 F frequency are nearly as good as those of a single-tuned coil. Since the operating frequency was tuned to 19 F when the PIN-diodes were turned off, losses due to PIN-diodes were substantially lower resulting in the provision of excellent image quality of X-nuclei. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Dielectric and barrier thickness fluctuation scattering in Al2O3/AlGaN/GaN double heterojunction high-electron mobility transistors

    International Nuclear Information System (INIS)

    Ji, Dong; Lu, Yanwu; Liu, Bing; Liu, Guipeng; Zhu, Qinsheng; Wang, Zhanguo

    2013-01-01

    The two-dimensional electron gas (2DEG) mobility limited by dielectric and barrier thickness fluctuations (TF) scattering in Al 2 O 3 /AlGaN/GaN double heterojunction high-electron mobility transistors (HEMTs) is calculated. Calculation shows that thickness fluctuation scattering is the main limitation in Al 2 O 3 /AlGaN/GaN double heterojunction HEMTs with thin Al 2 O 3 layer thicknesses. In addition, a study of 2DEG mobility as a function of 2DEG density, n s , shows that TF scattering acts as the main limitation when n s exceeds 2 × 10 12 cm −2 . The results may be used to design HEMTs to obtain higher 2DEG mobilities by modulating the dielectric layer and barrier thicknesses or 2DEG density. - Highlights: • The mobility limited by thickness fluctuation (TF) scattering is studied. • Results show that thickness fluctuation scattering is the main limitation. • Two-dimensional electron gas (2DEG) mobility is a function of 2DEG density. • TF scattering is the main limitation when 2DEG density exceeds 2 × 10 12 cm −2

  12. A Passive X-Band Double Balanced Mixer Utilizing Diode Connected SiGe HBTs

    DEFF Research Database (Denmark)

    Michaelsen, Rasmus Schandorph; Johansen, Tom Keinicke; Tamborg, Kjeld

    2013-01-01

    In this paper, a passive double balanced mixer in SiGe HBT technology is presented. Due to lack of suitable passive mixing elements in the technology, the mixing elements are formed by diode connected HBTs. The mixer is optimized for use in doppler radars and is highly linear with 1 dB compressio...

  13. Heterojunction Diodes and Solar Cells Fabricated by Sputtering of GaAs on Single Crystalline Si

    Directory of Open Access Journals (Sweden)

    Santiago Silvestre

    2015-04-01

    Full Text Available This work reports fabrication details of heterojunction diodes and solar cells obtained by sputter deposition of amorphous GaAs on p-doped single crystalline Si. The effects of two additional process steps were investigated: A hydrofluoric acid (HF etching treatment of the Si substrate prior to the GaAs sputter deposition and a subsequent annealing treatment of the complete layered system. A transmission electron microscopy (TEM exploration of the interface reveals the formation of a few nanometer thick SiO2 interface layer and some crystallinity degree of the GaAs layer close to the interface. It was shown that an additional HF etching treatment of the Si substrate improves the short circuit current and degrades the open circuit voltage of the solar cells. Furthermore, an additional thermal annealing step was performed on some selected samples before and after the deposition of an indium tin oxide (ITO film on top of the a-GaAs layer. It was found that the occurrence of surface related defects is reduced in case of a heat treatment performed after the deposition of the ITO layer, which also results in a reduction of the dark saturation current density and resistive losses.

  14. The Aluminum-Free P-n-P InGaAsN Double Heterojunction Bipolar Transistors

    Energy Technology Data Exchange (ETDEWEB)

    CHANG,PING-CHIH; LI,N.Y.; BACA,ALBERT G.; MONIER,C.; LAROCHE,J.R.; HOU,H.Q.; REN,F.; PEARTON,S.J.

    2000-08-01

    The authors have demonstrated an aluminum-free P-n-P GaAs/InGaAsN/GaAs double heterojunction bipolar transistor (DHBT). The device has a low turn-on voltage (V{sub ON}) that is 0.27 V lower than in a comparable P-n-p AlGaAs/GaAs HBT. The device shows near-ideal D. C. characteristics with a current gain ({beta}) greater than 45. The high-speed performance of the device are comparable to a similar P-n-p AlGaAs/GaAs HBT, with f{sub T} and f{sub MAX} values of 12 GHz and 10 GHz, respectively. This device is very suitable for low-power complementary HBT circuit applications, while the aluminum-free emitter structure eliminates issues typically associated with AlGaAs.

  15. Electronic structures of interfacial states formed at polymeric semiconductor heterojunctions

    Science.gov (United States)

    Huang, Ya-Shih; Westenhoff, Sebastian; Avilov, Igor; Sreearunothai, Paiboon; Hodgkiss, Justin M.; Deleener, Caroline; Friend, Richard H.; Beljonne, David

    2008-06-01

    Heterojunctions between organic semiconductors are central to the operation of light-emitting and photovoltaic diodes, providing respectively for electron-hole capture and separation. However, relatively little is known about the character of electronic excitations stable at the heterojunction. We have developed molecular models to study such interfacial excited electronic excitations that form at the heterojunction between model polymer donor and polymer acceptor systems: poly(9,9-dioctylfluorene-co-bis-N,N-(4-butylphenyl)-bis-N,N-phenyl-1,4-phenylenediamine) (PFB) with poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT), and poly(9,9-dioctylfluorene-co-N-(4-butylphenyl)diphenylamine) (TFB) with F8BT. We find that for stable ground-state geometries the excited state has a strong charge-transfer character. Furthermore, when partly covalent, modelled radiative lifetimes (~10-7s) and off-chain axis polarization (30∘) match observed `exciplex' emission. Additionally for the PFB:F8BT blend, geometries with fully ionic character are also found, thus accounting for the low electroluminescence efficiency of this system.

  16. Visible-blind ultraviolet photodetector based on double heterojunction of n-ZnO/insulator-MgO/p-Si

    International Nuclear Information System (INIS)

    Zhang, T. C.; Guo, Y.; Mei, Z. X.; Gu, C. Z.; Du, X. L.

    2009-01-01

    Exploiting a double heterojunction of n-ZnO/insulator-MgO/p-Si grown by molecular beam epitaxy, a visible-blind ultraviolet (UV) photodetector has been fabricated. The photodetector shows a rectification ratio of ∼10 4 at ±2 V and a dark current of 0.5 nA at a reverse bias of -2 V.The photoresponse spectrum indicates a visible-blind UV detectivity of our devices with a sharp cut off at the wavelength of 378 nm and a high UV/visible rejection ratio. The key role of the middle insulating MgO layer, as a barrier layer for minority carrier transport, has been demonstrated

  17. Zinc-oxide nanorod / copper-oxide thin-film heterojunction for a nitrogen-monoxide gas sensor

    International Nuclear Information System (INIS)

    Yoo, Hwansu; Kim, Hyojin; Kim, Dojin

    2014-01-01

    A novel p - n oxide heterojunction structure was fabricated by employing n-type zinc-oxide (ZnO) nanorods grown on an indium-tin-oxide-coated glass substrate by using the hydrothermal method and a p-type copper-oxide (CuO) thin film deposited onto the ZnO nanorod array by using the sputtering method. The crystallinities and microstructures of the heterojunction materials were examined by using X-ray diffraction and scanning electron microscopy. The observed current - voltage characteristics of the p - n oxide heterojunction showed a nonlinear diode-like rectifying behavior. The effects of an oxidizing or electron acceptor gas, such as nitrogen monoxide (NO), on the ZnO nanorod/CuO thin-film heterojunction were investigated to determine the potential applications of the fabricated material for use in gas sensors. The forward current of the p - n heterojunction was remarkably reduced when NO gas was introduced into dry air at temperatures from 100 to 250 .deg. C. The NO gas response of the oxide heterojunction reached a maximum value at an operating temperature of 180 .deg. C and linearly increased as the NO gas concentration was increased from 5 to 30 ppm. The sensitivity value was observed to be as high as 170% at 180 .deg. C when biased at 2 V in the presence of 20-ppm NO. The ZnO nanorod/CuO thin-film heterojunction also exhibited a stable and repeatable response to NO gas. The experimental results suggest that the ZnO nanorod/CuO thin-film heterojunction structure may be a novel candidate for gas sensors.

  18. Zinc-oxide nanorod / copper-oxide thin-film heterojunction for a nitrogen-monoxide gas sensor

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Hwansu; Kim, Hyojin; Kim, Dojin [Chungnam National University, Daejeon (Korea, Republic of)

    2014-11-15

    A novel p - n oxide heterojunction structure was fabricated by employing n-type zinc-oxide (ZnO) nanorods grown on an indium-tin-oxide-coated glass substrate by using the hydrothermal method and a p-type copper-oxide (CuO) thin film deposited onto the ZnO nanorod array by using the sputtering method. The crystallinities and microstructures of the heterojunction materials were examined by using X-ray diffraction and scanning electron microscopy. The observed current - voltage characteristics of the p - n oxide heterojunction showed a nonlinear diode-like rectifying behavior. The effects of an oxidizing or electron acceptor gas, such as nitrogen monoxide (NO), on the ZnO nanorod/CuO thin-film heterojunction were investigated to determine the potential applications of the fabricated material for use in gas sensors. The forward current of the p - n heterojunction was remarkably reduced when NO gas was introduced into dry air at temperatures from 100 to 250 .deg. C. The NO gas response of the oxide heterojunction reached a maximum value at an operating temperature of 180 .deg. C and linearly increased as the NO gas concentration was increased from 5 to 30 ppm. The sensitivity value was observed to be as high as 170% at 180 .deg. C when biased at 2 V in the presence of 20-ppm NO. The ZnO nanorod/CuO thin-film heterojunction also exhibited a stable and repeatable response to NO gas. The experimental results suggest that the ZnO nanorod/CuO thin-film heterojunction structure may be a novel candidate for gas sensors.

  19. Electroluminescence of Multicomponent Conjugated Polymers. 1. Roles of Polymer/Polymer Interfaces in Emission Enhancement and Voltage-Tunable Multicolor Emission in Semiconducting Polymer/Polymer Heterojunctions

    National Research Council Canada - National Science Library

    Zhang, Xuejun, Ph.D

    1999-01-01

    Effects of the electronic structure of polymer/polymer interfaces on the electroluminescence efficiency and tunable multicolor emission of polymer heterojunction light-emitting diodes were explored...

  20. Current transport and capacitance-voltage characteristics of an n-PbTe/p-GaP heterojunction prepared using the electron beam deposition technique

    Science.gov (United States)

    Nasr, Mahmoud; El Radaf, I. M.; Mansour, A. M.

    2018-04-01

    In this study, a crystalline n-PbTe/p-GaP heterojunction was fabricated using the electron beam deposition technique. The structural properties of the prepared heterojunction were examined by X-ray diffraction and scanning electron microscopy. The dark current-voltage characteristics of the heterojunction were investigated at different temperatures ranging from 298 to 398 K. The rectification factor, series resistance, shunt resistance, diode ideality factor, and effective barrier height (ϕb) were determined. The photovoltaic parameters were identified based on the current density-voltage characteristics under illumination. The capacitance-voltage characteristics showed that the junction was abrupt in nature.

  1. 303 nm continuous wave ultraviolet laser generated by intracavity frequency-doubling of diode-pumped Pr3+:LiYF4 laser

    Science.gov (United States)

    Zhu, Pengfei; Zhang, Chaomin; Zhu, Kun; Ping, Yunxia; Song, Pei; Sun, Xiaohui; Wang, Fuxin; Yao, Yi

    2018-03-01

    We demonstrate an efficient and compact ultraviolet laser at 303 nm generated by intracavity frequency doubling of a continuous wave (CW) laser diode-pumped Pr3+:YLiF4 laser at 607 nm. A cesium lithium borate (CLBO) crystal, cut for critical type I phase matching at room temperature, is used for second-harmonic generation (SHG) of the fundamental laser. By using an InGaN laser diode array emitting at 444.3 nm with a maximum incident power of 10 W, as high as 68 mW of CW output power at 303 nm is achieved. The output power stability in 4 h is better than 2.85%. To the best of our knowledge, this is high efficient UV laser generated by frequency doubling of an InGaN laser diode array pumped Pr3+:YLiF4 laser.

  2. Electrodeposition of Cu-doped ZnO nanowire arrays and heterojunction formation with p-GaN for color tunable light emitting diode applications

    International Nuclear Information System (INIS)

    Lupan, O.; Pauporté, T.; Viana, B.; Aschehoug, P.

    2011-01-01

    Highlights: ► High quality copper-doped zinc oxide nanowires were electrochemically grown at low temperature. ► ZnO:Cu nanowires have been epitaxially grown on Mg-doped p-GaN single-crystalline layers. ► The (ZnO:Cu NWs)/(p-GaN:Mg) heterojunction was used to fabricate a light-emitting diode structure. ► The photo- and electroluminescence emission was red-shifted to the violet spectral region compared to pure ZnO. ► The results are of importance for band-gap engineering of ZnO and for color-tunable LED. - Abstract: Copper-doped zinc oxide (ZnO:Cu) nanowires (NWs) were electrochemically deposited at low temperature on fluor-doped tin oxide (FTO) substrates. The electrochemical behavior of the Cu–Zn system for Cu-doped ZnO electrodeposition was studied and the electrochemical reaction mechanism is discussed. The synthesized ZnO arrayed layers were investigated by using SEM, XRD, EDX, photoluminescence and Raman techniques. X-ray diffraction analysis demonstrates a decrease in the lattice parameters of Cu-doped ZnO NWs. Structural analyses show that the nanomaterial is of hexagonal structure with the Cu incorporated in ZnO NWs probably by substituting zinc in the host lattice. Photoluminescence studies on pure and Cu-doped ZnO NWs shows that the near band edge emission is red-shifted by about 5 or 12 nm depending on Cu(II) concentration in the electrolytic bath solution (3 or 6 μmol l −1 ). Cu-doped ZnO NWs have been also epitaxially grown on Mg doped p-GaN single-crystalline layers and the (ZnO:Cu NWs)/(p-GaN:Mg) heterojunction has been used to fabricate a light-emitting diode (LED) structure. The emission was red-shifted to the visible violet spectral region compared to pure ZnO. The present work demonstrates the ability of electrodeposition to produce high quality ZnO nanowires with tailored optical properties by doping. The obtained results are of great importance for further studies on bandgap engineering of ZnO, for color-tunable LED applications

  3. A van der Waals pn heterojunction with organic/inorganic semiconductors

    International Nuclear Information System (INIS)

    He, Daowei; Yang, Ziyi; Wu, Bing; Xu, Bingchen; Zhang, Yuhan; Li, Yun; Shi, Yi; Wang, Xinran; Pan, Yiming; Wang, Baigeng; Nan, Haiyan; Luo, Xiaoguang; Ni, Zhenhua; Gu, Shuai; Zhu, Jia; Chai, Yang

    2015-01-01

    van der Waals (vdW) heterojunctions formed by two-dimensional (2D) materials have attracted tremendous attention due to their excellent electrical/optical properties and device applications. However, current 2D heterojunctions are largely limited to atomic crystals, and hybrid organic/inorganic structures are rarely explored. Here, we fabricate the hybrid 2D heterostructures with p-type dioctylbenzothienobenzothiophene (C 8 -BTBT) and n-type MoS 2 . We find that few-layer C 8 -BTBT molecular crystals can be grown on monolayer MoS 2 by vdW epitaxy, with pristine interface and controllable thickness down to monolayer. The operation of the C 8 -BTBT/MoS 2 vertical heterojunction devices is highly tunable by bias and gate voltages between three different regimes: interfacial recombination, tunneling, and blocking. The pn junction shows diode-like behavior with rectifying ratio up to 10 5 at the room temperature. Our devices also exhibit photovoltaic responses with a power conversion efficiency of 0.31% and a photoresponsivity of 22 mA/W. With wide material combinations, such hybrid 2D structures will offer possibilities for opto-electronic devices that are not possible from individual constituents

  4. A van der Waals pn heterojunction with organic/inorganic semiconductors

    Science.gov (United States)

    He, Daowei; Pan, Yiming; Nan, Haiyan; Gu, Shuai; Yang, Ziyi; Wu, Bing; Luo, Xiaoguang; Xu, Bingchen; Zhang, Yuhan; Li, Yun; Ni, Zhenhua; Wang, Baigeng; Zhu, Jia; Chai, Yang; Shi, Yi; Wang, Xinran

    2015-11-01

    van der Waals (vdW) heterojunctions formed by two-dimensional (2D) materials have attracted tremendous attention due to their excellent electrical/optical properties and device applications. However, current 2D heterojunctions are largely limited to atomic crystals, and hybrid organic/inorganic structures are rarely explored. Here, we fabricate the hybrid 2D heterostructures with p-type dioctylbenzothienobenzothiophene (C8-BTBT) and n-type MoS2. We find that few-layer C8-BTBT molecular crystals can be grown on monolayer MoS2 by vdW epitaxy, with pristine interface and controllable thickness down to monolayer. The operation of the C8-BTBT/MoS2 vertical heterojunction devices is highly tunable by bias and gate voltages between three different regimes: interfacial recombination, tunneling, and blocking. The pn junction shows diode-like behavior with rectifying ratio up to 105 at the room temperature. Our devices also exhibit photovoltaic responses with a power conversion efficiency of 0.31% and a photoresponsivity of 22 mA/W. With wide material combinations, such hybrid 2D structures will offer possibilities for opto-electronic devices that are not possible from individual constituents.

  5. A van der Waals pn heterojunction with organic/inorganic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    He, Daowei; Yang, Ziyi; Wu, Bing; Xu, Bingchen; Zhang, Yuhan; Li, Yun; Shi, Yi, E-mail: yshi@nju.edu.cn, E-mail: xrwang@nju.edu.cn; Wang, Xinran, E-mail: yshi@nju.edu.cn, E-mail: xrwang@nju.edu.cn [National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Pan, Yiming; Wang, Baigeng [National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093 (China); Nan, Haiyan; Luo, Xiaoguang; Ni, Zhenhua [Department of Physics, Southeast University, Nanjing 211189 (China); Gu, Shuai; Zhu, Jia [College of Engineering and Applied Science, Nanjing University, Nanjing 210093 (China); Chai, Yang [Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong)

    2015-11-02

    van der Waals (vdW) heterojunctions formed by two-dimensional (2D) materials have attracted tremendous attention due to their excellent electrical/optical properties and device applications. However, current 2D heterojunctions are largely limited to atomic crystals, and hybrid organic/inorganic structures are rarely explored. Here, we fabricate the hybrid 2D heterostructures with p-type dioctylbenzothienobenzothiophene (C{sub 8}-BTBT) and n-type MoS{sub 2}. We find that few-layer C{sub 8}-BTBT molecular crystals can be grown on monolayer MoS{sub 2} by vdW epitaxy, with pristine interface and controllable thickness down to monolayer. The operation of the C{sub 8}-BTBT/MoS{sub 2} vertical heterojunction devices is highly tunable by bias and gate voltages between three different regimes: interfacial recombination, tunneling, and blocking. The pn junction shows diode-like behavior with rectifying ratio up to 10{sup 5} at the room temperature. Our devices also exhibit photovoltaic responses with a power conversion efficiency of 0.31% and a photoresponsivity of 22 mA/W. With wide material combinations, such hybrid 2D structures will offer possibilities for opto-electronic devices that are not possible from individual constituents.

  6. Light emitting diode based on n-Zn0.94M0.06O nanorods/p-GaN (M= Cd and Ni) heterojunction under forward and reverse bias

    International Nuclear Information System (INIS)

    Echresh, Ahmad; Oeurn Chey, Chan; Zargar Shoushtari, Morteza; Nur, Omer; Willander, Magnus

    2015-01-01

    In this study, we report on the improvement in the optoelectronic properties of n-ZnO nanorods/p-GaN heterojunction. This was achieved by doping the ZnO with cadmium (Cd) and nickel (Ni). The ZnO and Zn 0.94 M 0.06 O nanorods grown hydrothermally on the p-GaN substrate were used to fabricate the light emitting diodes (LEDs). Structural measurement revealed that nanorods with wurtzite structure having a preferential orientation along the (002) c-axis. The UV–vis spectra show that the optical band gap of Zn 0.94 M 0.06 O nanorods is decreased in comparison to ZnO nanorods. Electrical measurements of the fabricated LEDs show an obvious rectifying behaviour with low threshold voltage. Electroluminescence (EL) characteristics of LEDs operated at forward and reverse bias were investigated. The EL spectra under forward bias show that doping ZnO nanorods with Cd and Ni led to an intensity enhancement of the broad peak in the visible region while the blue peak originating from the p-GaN substrate remains almost unaffected. The effect of doping was to reduce the valence band offsets and consequently more hole injection has occurred leading to the observed enhancement of the broad band in the visible region. Under reverse bias all heterojunction LEDs show the blue light emission peak originating from the p-GaN substrate. - Highlights: • The reduction of the optical band gap of the M-doped ZnO (M= Cd and Ni) nanorods results in reduction of the valence band offset of the n-Zn 0.94 M 0.06 O nanorods/p-GaN heterojunction LEDs. • Doping ZnO nanorods with Cd and Ni led to an intensity enhancement of the broad peak in the visible region under forward bias. • Under reverse bias all heterojunction LEDs show the blue light emission peak originating from the p-GaN substrate

  7. Functionalized graphene/silicon chemi-diode H₂ sensor with tunable sensitivity.

    Science.gov (United States)

    Uddin, Md Ahsan; Singh, Amol Kumar; Sudarshan, Tangali S; Koley, Goutam

    2014-03-28

    A reverse bias tunable Pd- and Pt-functionalized graphene/Si heterostructure Schottky diode H2 sensor has been demonstrated. Compared to the graphene chemiresistor sensor, the chemi-diode sensor offers more than one order of magnitude higher sensitivity as the molecular adsorption induced Schottky barrier height change causes the heterojunction current to vary exponentially in reverse bias. The reverse bias operation also enables low power consumption, as well as modulation of the atomically thin graphene's Fermi level, leading to tunable sensitivity and detection of H₂ down to the sub-ppm range.

  8. Frequency-doubled DBR-tapered diode laser for direct pumping of Ti:sapphire lasers generating sub-20 fs pulses

    DEFF Research Database (Denmark)

    Müller, André; Jensen, Ole Bjarlin; Unterhuber, Angelika

    2011-01-01

    For the first time a single-pass frequency doubled DBR-tapered diode laser suitable for pumping Ti:sapphire lasers generating ultrashort pulses is demonstrated. The maximum output powers achieved when pumping the Ti:sapphire laser are 110 mW (CW) and 82 mW (mode-locked) respectively at 1.2 W...... of pump power. This corresponds to a reduction in optical conversion efficiencies to 75% of the values achieved with a commercial diode pumped solid-state laser. However, the superior electro-optical efficiency of the diode laser improves the overall efficiency of the Ti:sapphire laser by a factor > 2....... The optical spectrum emitted by the Ti:sapphire laser when pumped with our diode laser shows a spectral width of 112 nm (FWHM). Based on autocorrelation measurements, pulse widths of less than 20 fs can therefore be expected....

  9. Frequency-doubled DBR-tapered diode laser for direct pumping of Ti:sapphire lasers generating sub-20 fs pulses.

    Science.gov (United States)

    Müller, André; Jensen, Ole Bjarlin; Unterhuber, Angelika; Le, Tuan; Stingl, Andreas; Hasler, Karl-Heinz; Sumpf, Bernd; Erbert, Götz; Andersen, Peter E; Petersen, Paul Michael

    2011-06-20

    For the first time a single-pass frequency doubled DBR-tapered diode laser suitable for pumping Ti:sapphire lasers generating ultrashort pulses is demonstrated. The maximum output powers achieved when pumping the Ti:sapphire laser are 110 mW (CW) and 82 mW (mode-locked) respectively at 1.2 W of pump power. This corresponds to a reduction in optical conversion efficiencies to 75% of the values achieved with a commercial diode pumped solid-state laser. However, the superior electro-optical efficiency of the diode laser improves the overall efficiency of the Ti:sapphire laser by a factor > 2. The optical spectrum emitted by the Ti:sapphire laser when pumped with our diode laser shows a spectral width of 112 nm (FWHM). Based on autocorrelation measurements, pulse widths of less than 20 fs can therefore be expected.

  10. Plasma vapor deposited n-indium tin oxide/p-copper indium oxide heterojunctions for optoelectronic device applications

    Science.gov (United States)

    Jaya, T. P.; Pradyumnan, P. P.

    2017-12-01

    Transparent crystalline n-indium tin oxide/p-copper indium oxide diode structures were fabricated on quartz substrates by plasma vapor deposition using radio frequency (RF) magnetron sputtering. The p-n heterojunction diodes were highly transparent in the visible region and exhibited rectifying current-voltage (I-V) characteristics with a good ideality factor. The sputter power during fabrication of the p-layer was found to have a profound effect on I-V characteristics, and the diode with the p-type layer deposited at a maximum power of 200 W exhibited the highest value of the diode ideality factor (η value) of 2.162, which suggests its potential use in optoelectronic applications. The ratio of forward current to reverse current exceeded 80 within the range of applied voltages of -1.5 to +1.5 V in all cases. The diode structure possessed an optical transmission of 60-70% in the visible region.

  11. Rectifying the Optical-Field-Induced Current in Dielectrics: Petahertz Diode.

    Science.gov (United States)

    Lee, J D; Yun, Won Seok; Park, Noejung

    2016-02-05

    Investigating a theoretical model of the optical-field-induced current in dielectrics driven by strong few-cycle laser pulses, we propose an asymmetric conducting of the current by forming a heterojunction made of two distinct dielectrics with a low hole mass (m_{h}^{*}≪m_{e}^{*}) and low electron mass (m_{e}^{*}≪m_{h}^{*}), respectively. This proposition introduces the novel concept of a petahertz (10^{15}  Hz) diode to rectify the current in the petahertz domain, which should be a key ingredient for the electric signal manipulation of future light-wave electronics. Further, we suggest the candidate dielectrics for the heterojunction.

  12. Red-light-emitting laser diodes operating CW at room temperature

    Science.gov (United States)

    Kressel, H.; Hawrylo, F. Z.

    1976-01-01

    Heterojunction laser diodes of AlGaAs have been prepared with threshold current densities substantially below those previously achieved at room temperature in the 7200-8000-A spectral range. These devices operate continuously with simple oxide-isolated stripe contacts to 7400 A, which extends CW operation into the visible (red) portion of the spectrum.

  13. Design and electrical characterization of Au/Anthracene/p-Si/Al organic/inorganic heterojunction

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ghamdi, Attieh A., E-mail: aaaalghamdi4@kau.edu.sa [Center of Nanotechnology, King Abdulaziz University, Department of Physics, North Jeddah (Saudi Arabia); Nawar, Ahmed M.; El-Tantawy, Farid [Department of Physics, Faculty of Science, Suez Canal University, Ismailia (Egypt); Yaghmour, S.J. [Department of Physics, King Abdulaziz University, North Jeddah (Saudi Arabia); Azam, Ameer [Center of Nanotechnology, King Abdulaziz University, Department of Physics, North Jeddah (Saudi Arabia)

    2015-02-15

    Highlights: • We have successfully fabricated a Au/Anthracene/p-Si/Al organic/inorganic heterojunction. • The calculated series resistance and the shunt resistance of the device were found to be 440 Ω and 1.47 MΩ, respectively. • The Cheung-Cheung and Norde’s models were used to investigate and determine the heterojunction parameters. • Essential junction parameters and performance of heterojunction established a photovoltaic behavior. • Open circuit voltage (V{sub oc}) 0.382 V, short circuit photocurrent (I{sub SC}) 0.72 mA and power conversion efficiency (η) of 4.65%. - Abstract: Hybrid organic/inorganic heterojunction of nanocrystalline Anthracene and p-Si was fabricated by using a conventional thermal evaporation technique. The crystal and molecular structure of the Anthracene thin films were analyzed by means of X-ray diffraction (XRD), and Fourier Transformation-Infra Red (FT-IR) spectroscopy. The morphologies of the Anthracene/p-Si were investigated by scanning electron microscopy (SEM). The dark current-voltage (I-V) characteristics of Au/Anthracene/p-Si/Al heterojunction were investigated at room temperature (293 K). The calculated series resistance and the shunt resistance of the device were found to be 440 Ω and 1.47 MΩ, respectively. The Cheung-Cheung and Norde’s models were used to investigate and determine the heterojunction parameters. The ideality factor and barrier height values of the Au/Anthracene/p-Si/Al diode were obtained to be 1.1 and 0.464 eV, respectively. The dependence of capacitance-voltage (C{sup -2}-V) for the device Anthracene/p-Si was found to be almost linear. Essential junction parameters and performance of heterojunction established a photovoltaic behavior with an open circuit voltage (V{sub oc}) 0.382 V, short circuit photocurrent (I{sub SC}) 0.72 mA and power conversion efficiency (η) of 4.65%.

  14. Multifunctional hybrid diode: Study of photoresponse, high responsivity, and charge injection mechanisms

    Science.gov (United States)

    Singh, Jitendra; Singh, R. G.; Gautam, Subodh K.; Singh, Fouran

    2018-05-01

    A multifunctional hybrid heterojunction diode is developed on porous silicon and its current density-voltage characteristics reveal a good rectification ratio along with other superior parameters such as ideality factor, barrier height and series resistance. The diode also functions as an efficient photodiode to manifest high photosensitivity with high responsivity under illumination with broadband solar light, UV light, and green light. The diode is also carefully scrutinized for its sensitivity and repeatability over many cycles under UV and green light and is found to have a quick response and extremely fast recovery times. The notable responsivity is attributed to the generation of high density of excitons in the depletion region by the absorption of incident photons and their separation by an internal electric field besides an additional photocurrent due to the charging of polymer chains. The mechanisms of generation, injection and transport of charge carriers are explained by developing a schematic energy band diagram. The transport phenomenon of carriers is further investigated from room temperature down to a very low temperature of 10 K. An Arrhenius plot is made to determine the Richardson constant. Various diode parameters as mentioned above are also determined and the dominance of the transport mechanism of charge carriers in different temperature regimes such as diffusion across the junction and/or quantum tunneling through the barriers are explained. The developed multifunction heterojunction hybrid diodes have implications for highly sensitive photodiodes in the UV and visible range of electromagnetic spectrum that can be very promising for efficient optoelectronic devices.

  15. Functionalized graphene/silicon chemi-diode H2 sensor with tunable sensitivity

    International Nuclear Information System (INIS)

    Uddin, Md Ahsan; Singh, Amol Kumar; Sudarshan, Tangali S; Koley, Goutam

    2014-01-01

    A reverse bias tunable Pd- and Pt-functionalized graphene/Si heterostructure Schottky diode H 2 sensor has been demonstrated. Compared to the graphene chemiresistor sensor, the chemi-diode sensor offers more than one order of magnitude higher sensitivity as the molecular adsorption induced Schottky barrier height change causes the heterojunction current to vary exponentially in reverse bias. The reverse bias operation also enables low power consumption, as well as modulation of the atomically thin graphene’s Fermi level, leading to tunable sensitivity and detection of H 2 down to the sub-ppm range. (paper)

  16. Monolayer WS{sub 2} crossed with an electro-spun PEDOT-PSS nano-ribbon: Fabricating a Schottky diode

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, Deliris N.; Vedrine, Josee [Department of Physics and Electronics, University of Puerto Rico-Humacao, Humacao, PR 00791 (United States); Pinto, Nicholas J., E-mail: nicholas.pinto@upr.edu [Department of Physics and Electronics, University of Puerto Rico-Humacao, Humacao, PR 00791 (United States); Naylor, Carl H.; Charlie Johnson, A.T. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States)

    2016-12-15

    Highlights: • First report on a Schottky diode formed from monolayer WS{sub 2} and PEDOT-PSSA nano-ribbon. • Straightforward and unique fabrication technique. • Diode operation is stable in air. - Abstract: WS{sub 2} and PEDOT-PSS were individually characterized with the goal of analyzing charge transport across a hetero-junction formed by these two materials. In thermal equilibrium electron flow from the WS{sub 2} conduction band into the polymer LUMO level leads to band bending that creates a potential barrier preventing further current. The measured current-voltage (I{sub DS}-V{sub DS}) curve across the hetero-junction was non-linear and asymmetric similar to a diode, with a turn-on voltage of 1.4 V and a rectification ratio of 12. The device I–V data were analyzed using the standard thermionic emission model of a Schottky junction and yielded an ideality parameter of 1.9 and a barrier height of 0.58 eV. This facile technique is the first report on a nano-diode fabricated using WS{sub 2} and PEDOT-PSS, opening up the possibility of extending this work to include other layered transition metal dichalcogenides and conducting polymers.

  17. Experimental analysis and theoretical model for anomalously high ideality factors in ZnO/diamond p-n junction diode

    International Nuclear Information System (INIS)

    Wang Chengxin; Yang Guowei; Liu Hongwu; Han Yonghao; Luo Jifeng; Gao Chunxiao; Zou Guangtian

    2004-01-01

    High-quality heterojunctions between p-type diamond single-crystalline films and highly oriented n-type ZnO films were fabricated by depositing the p-type diamond single-crystal films on the I o -type diamond single crystal using a hot filament chemical vapor deposition, and later growing a highly oriented n-type ZnO film on the p-type diamond single-crystal film by magnetron sputtering. Interestingly, anomalously high ideality factors (n>>2.0) in the prepared ZnO/diamond p-n junction diode in the interim bias voltage range were measured. For this, detailed electronic characterizations of the fabricated p-n junction were conducted, and a theoretical model was proposed to clarify the much higher ideality factors of the special heterojunction diode

  18. Red-light-emitting laser diodes operating cw at room temperature

    International Nuclear Information System (INIS)

    Kressel, H.; Hawrylo, F.Z.

    1976-01-01

    Heterojunction laser diodes of AlGaAs have been prepared with threshold current densities substantially below those previously achieved at room temperature in the 7200 to 8000-A spectral range. These devices operate cw with simple oxide-isolated stripe contacts to 7400 A, which extends cw operation for the first time into the visible (red) portion of the spectrum

  19. Intrinsic white-light emission from zinc oxide nanorods heterojunctions on large-area substrates

    Science.gov (United States)

    Willander, Magnus; Nur, O.; Zaman, S.; Zainelabdin, A.; Amin, G.; Sadaf, J. R.; Israr, M. Q.; Bano, N.; Hussain, I.; Alvi, N. H.

    2011-02-01

    Zinc oxide (ZnO) and especially in the nanostructure form is currently being intensively investigated world wide for the possibility of developing different new photonic devices. We will here present our recent findings on the controlled low temperature chemical growth of ZnO nanorods (NRs) on different large area substrates. Many different heterojunctions of ZnO NRs and p-substrates including those of crystalline e.g. p-GaN, p-SiC or amorphous nature e.g. p-polymer coated plastic and p-polymer coated paper will be shown. Moreover, the effect of the p-electrode of these heterojunctions on tuning the emitted wavelength and changing the light quality will be discussed. An example using ZnO NR/p-GaN will be shown and the electrical and electro-optical characteristics will be analyzed. For these heterojunctions the effect of post growth annealing and its effect on the electroluminescence (EL) spectrum will be shown. Finally, intrinsic white light emitting diodes based on ZnO NRs on foldable and disposable amorphous substrates (plastic and paper) will also be presented.

  20. Explosive-Emission Plasma Dynamics in Ion Diode in Double-Pulse Mode

    International Nuclear Information System (INIS)

    Pushkarev, Alexander I.; Isakova, Yulia I.

    2011-01-01

    The results of an experimental investigation of explosive-emission plasma dynamics in an ion diode with self-magnetic insulation are presented. The investigations were accomplished at the TEMP-4M accelerator set in a mode of double pulse formation. Plasma behaviour in the anode-cathode gap was analyzed according to both the current-voltage characteristics of the diode (time resolution of 0.5 ns) and thermal imprints on a target (spatial resolution of 0.8 mm). It was shown that when plasma formation at the potential electrode was complete, and up until the second (positive) pulse, the explosive-emission plasma expanded across the anode-cathode gap with a speed of 1.3±0.2 cm/μs. After the voltage polarity at the potential electrode was reversed (second pulse), the plasma erosion in the anode-cathode gap (similar to the effect of a plasma opening switch) occurred. During the generation of an ion beam the size of the anode-cathode gap spacing was determined by the thickness of the plasma layer on the potential electrode and the layer thickness of the electrons drifting along the grounded electrode. (15th asian conference on electrical discharge)

  1. Light emitting diode based on n-Zn{sub 0.94}M{sub 0.06}O nanorods/p-GaN (M= Cd and Ni) heterojunction under forward and reverse bias

    Energy Technology Data Exchange (ETDEWEB)

    Echresh, Ahmad, E-mail: ahmadechresh@gmail.com [Department of Science and Technology, Physical Electronics and Nanotechnology Division, Campus Norrköping, Linköping University (Sweden); Department of Physics, Shahid Chamran University of Ahvaz, Ahvaz (Iran, Islamic Republic of); Oeurn Chey, Chan [Department of Science and Technology, Physical Electronics and Nanotechnology Division, Campus Norrköping, Linköping University (Sweden); Zargar Shoushtari, Morteza [Department of Physics, Shahid Chamran University of Ahvaz, Ahvaz (Iran, Islamic Republic of); Nur, Omer; Willander, Magnus [Department of Science and Technology, Physical Electronics and Nanotechnology Division, Campus Norrköping, Linköping University (Sweden)

    2015-04-15

    In this study, we report on the improvement in the optoelectronic properties of n-ZnO nanorods/p-GaN heterojunction. This was achieved by doping the ZnO with cadmium (Cd) and nickel (Ni). The ZnO and Zn{sub 0.94}M{sub 0.06}O nanorods grown hydrothermally on the p-GaN substrate were used to fabricate the light emitting diodes (LEDs). Structural measurement revealed that nanorods with wurtzite structure having a preferential orientation along the (002) c-axis. The UV–vis spectra show that the optical band gap of Zn{sub 0.94}M{sub 0.06}O nanorods is decreased in comparison to ZnO nanorods. Electrical measurements of the fabricated LEDs show an obvious rectifying behaviour with low threshold voltage. Electroluminescence (EL) characteristics of LEDs operated at forward and reverse bias were investigated. The EL spectra under forward bias show that doping ZnO nanorods with Cd and Ni led to an intensity enhancement of the broad peak in the visible region while the blue peak originating from the p-GaN substrate remains almost unaffected. The effect of doping was to reduce the valence band offsets and consequently more hole injection has occurred leading to the observed enhancement of the broad band in the visible region. Under reverse bias all heterojunction LEDs show the blue light emission peak originating from the p-GaN substrate. - Highlights: • The reduction of the optical band gap of the M-doped ZnO (M= Cd and Ni) nanorods results in reduction of the valence band offset of the n-Zn{sub 0.94}M{sub 0.06}O nanorods/p-GaN heterojunction LEDs. • Doping ZnO nanorods with Cd and Ni led to an intensity enhancement of the broad peak in the visible region under forward bias. • Under reverse bias all heterojunction LEDs show the blue light emission peak originating from the p-GaN substrate.

  2. Ultraviolet and visible photoresponse properties of n-ZnO/p-Si heterojunction

    International Nuclear Information System (INIS)

    Mridha, S.; Basak, D.

    2007-01-01

    A n-ZnO/p-Si thin film heterojunction has been fabricated by a low cost sol-gel technique. The wavelength dependent photoresponse properties of the heterojunction is investigated in detail by studying the effect of light illumination on current-voltage (I-V) characteristics, photocurrent, and photocapacitance spectra at room temperature. It shows good diode characteristics with I F /I R =3.4x10 3 at 4 V and reverse leakage current density of 7.6x10 -5 A cm -2 at -5 V. From the photocurrent spectra, it is observed that the visible photons are absorbed in the depleted p-Si under reverse bias conditions, while ultraviolet (UV) photons are absorbed in the depleted n-ZnO under positive bias conditions. This indicates that such a sol-gel n-ZnO/p-Si thin film heterojunction can be used to sense both UV and visible photons though the photoresponse for UV is much slower than that of visible. The photocapacitance measurements suggest the presence of a shallow defect level in the sol-gel derived ZnO film which acts as an electron trap at ∼0.16 eV below the conduction band

  3. Correlation of heterojunction luminescence quenching and photocurrent in polymer-blend photovoltaic diodes

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Rabade, Astrid; Morteani, Arne C.; Friend, Richard H. [Cavendish Laboratory, University of Cambridge (United Kingdom)

    2009-10-19

    Charge generation in organic solar cells proceeds via photogeneration of excitons in the bulk that form geminate electron-hole pairs at the heterojunction formed between electron donor and acceptors. It is shown that an externally applied electric field increases the number of free charges formed from the geminate pair, and quenches the luminescence from the relaxed exciplex with one-to-one correspondence. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  4. Interfacial effects in organic semiconductor heterojunctions

    International Nuclear Information System (INIS)

    Stadler, P.

    2011-01-01

    The field of organic electronics has systematically gained interest in recent years, technologically and scientifically advances have been made leading to practical applications such as organic light emitting diodes, organic field-effect transistors and organic photo-voltaic cells. In this thesis a fundamental study on organic molecules is presented targeting on interfacial effects at organic heterojunctions. Generally in organic electronic devices interfaces are considered as key parameters for achieving high performance applications. Therefore in this work the emphasis is to investigate layer-by-layer heterojunctions of organic molecules. Defined heterojunctions at inorganic III-V semiconductors form superlattices and quantum-wells, which lead to interfacial effects summarized as quantum confinement and two-dimensional electron gases. Although organic molecules differ in many aspects from their inorganic counterparts, similar effects can be theoretically expected at organic heterojunctions as well. Organic molecules form van-der-Waals type crystals and domains which are macroscopically anisotropic and polycrystalline or amorphous. Organic molecules are intrinsic semiconductors and at interfaces dipoles are formed, which control the energy level alignment. In order to characterize such structures and compare them to inorganic superlattices and quantum-wells it is necessary to induce charge carriers. In this work this is established either by interfacial doping using high-performance dielectrics in a field-effect transistor structure or by photo-doping by exciting a donor-acceptor bilayer. In both cases C 60 was chosen as organic semiconductor exhibiting good acceptor properties and an electron mobility in the range of 0.5 cm 2 V -1 s -1 . The fabrication of well-defined few-molecular layers allows probing directly at the interface. Spectroscopic methods and transport measurements are applied for characterization: Photoemission spectroscopy, absorption and photo

  5. Electrical Characterization of Nanopolyaniline/Porous Silicon Heterojunction at High Temperatures

    Directory of Open Access Journals (Sweden)

    Salah E. El-Zohary

    2013-01-01

    Full Text Available Nanopolyaniline/p-type porous silicon (NPANI/PSi heterojunction films were chemically fabricated via in situ polymerization. The composition and morphology of the nanopolymer were confirmed using Fourier transform infrared, scanning electron microscopy, UV-visible, and transmission electron microscopy techniques. The results indicated that the polymerization took place throughout the porous layer. The I-V measurements, performed at different temperatures, enabled the calculation of ideality factor, barrier height, and series resistance of those films. The obtained ideality factor showed a nonideal diode behavior. The series resistance was found to decrease with increasing temperature.

  6. Graphene-based heterojunction photocatalysts

    Science.gov (United States)

    Li, Xin; Shen, Rongchen; Ma, Song; Chen, Xiaobo; Xie, Jun

    2018-02-01

    Due to their unique physicochemical, optical and electrical properties, 2D semimetallic or semiconducting graphene has been extensively utilized to construct highly efficient heterojunction photocatalysts for driving a variety of redox reactions under proper light irradiation. In this review, we carefully addressed the fundamental mechanism of heterogeneous photocatalysis, fundamental properties and advantages of graphene in photocatalysis, and classification and comparison of graphene-based heterojunction photocatalysts. Subsequently, we thoroughly highlighted and discussed various graphene-based heterojunction photocatalysts, including Schottky junctions, Type-II heterojunctions, Z-scheme heterojunctions, Van der Waals heterostructures, in plane heterojunctions and multicomponent heterojunctions. Several important photocatalytic applications, such as photocatalytic water splitting (H2 evolution and overall water splitting), degradation of pollutants, carbon dioxide reduction and bacteria disinfection, are also summarized. Through reviewing the important advances on this topic, it may inspire some new ideas for exploiting highly effective graphene-based heterojunction photocatalysts for a number of applications in photocatlysis and other fields, such as photovoltaic, (photo)electrocatalysis, lithium battery, fuel cell, supercapacitor and adsorption separation.

  7. Diode behavior in ultra-thin low temperature ALD grown zinc-oxide on silicon

    Directory of Open Access Journals (Sweden)

    Nazek El-Atab

    2013-10-01

    Full Text Available A thin-film ZnO(n/Si(p+ heterojunction diode is demonstrated. The thin film ZnO layer is deposited by Atomic Layer Deposition (ALD at different temperatures on a p-type silicon substrate. Atomic force microscopy (AFM AC-in-Air method in addition to conductive AFM (CAFM were used for the characterization of ZnO layer and to measure the current-voltage characteristics. Forward and reverse bias n-p diode behavior with good rectification properties is achieved. The diode with ZnO grown at 80°C exhibited the highest on/off ratio with a turn-on voltage (VON ∼3.5 V. The measured breakdown voltage (VBR and electric field (EBR for this diode are 5.4 V and 3.86 MV/cm, respectively.

  8. Optical pumping of deep traps in AlGaN/GaN-on-Si HEMTs using an on-chip Schottky-on-heterojunction light-emitting diode

    International Nuclear Information System (INIS)

    Li, Baikui; Tang, Xi; Chen, Kevin J.

    2015-01-01

    In this work, by using an on-chip integrated Schottky-on-heterojunction light-emitting diode (SoH-LED) which is seamlessly integrated with the AlGaN/GaN high electron mobility transistor (HEMT), we studied the effect of on-chip light illumination on the de-trapping processes of electrons from both surface and bulk traps. Surface trapping was generated by applying OFF-state drain bias stress, while bulk trapping was generated by applying positive substrate bias stress. The de-trapping processes of surface and/or bulk traps were monitored by measuring the recovery of dynamic on-resistance R on and/or threshold voltage V th of the HEMT. The results show that the recovery processes of both dynamic R on and threshold voltage V th of the HEMT can be accelerated by the on-chip SoH-LED light illumination, demonstrating the potentiality of on-chip hybrid opto-HEMTs to minimize the influences of traps during dynamic operation of AlGaN/GaN power HEMTs

  9. Fabrication and Characterization of N-Type Zinc Oxide/P-Type Boron Doped Diamond Heterojunction

    Science.gov (United States)

    Marton, Marián; Mikolášek, Miroslav; Bruncko, Jaroslav; Novotný, Ivan; Ižák, Tibor; Vojs, Marian; Kozak, Halyna; Varga, Marián; Artemenko, Anna; Kromka, Alexander

    2015-09-01

    Diamond and ZnO are very promising wide-bandgap materials for electronic, photovoltaic and sensor applications because of their excellent electrical, optical, physical and electrochemical properties and biocompatibility. In this contribution we show that the combination of these two materials opens up the potential for fabrication of bipolar heterojunctions. Semiconducting boron doped diamond (BDD) thin films were grown on Si and UV grade silica glass substrates by HFCVD method with various boron concentration in the gas mixture. Doped zinc oxide (ZnO:Al, ZnO:Ge) thin layers were deposited by diode sputtering and pulsed lased deposition as the second semiconducting layer on the diamond films. The amount of dopants within the films was varied to obtain optimal semiconducting properties to form a bipolar p-n junction. Finally, different ZnO/BDD heterostructures were prepared and analyzed. Raman spectroscopy, SEM, Hall constant and I-V measurements were used to investigate the quality, structural and electrical properties of deposited heterostructures, respectively. I-V measurements of ZnO/BDD diodes show a rectifying ratio of 55 at ±4 V. We found that only very low dopant concentrations for both semiconducting materials enabled us to fabricate a functional p-n junction. Obtained results are promising for fabrication of optically transparent ZnO/BDD bipolar heterojunction.

  10. Enhanced diode characteristics of organic solar cell with silanized fluorine doped tin oxide electrode

    Science.gov (United States)

    Sachdeva, Sheenam; Sharma, Sameeksha; Singh, Devinder; Tripathi, S. K.

    2018-05-01

    To investigate the diode characteristics of organic solar cell based on the planar heterojunction of 4,4'- cyclohexylidenebis[N,N-bis(4-methylphenyl)benzenamine] (TAPC) and fullerene (C70), we report the use of silanized fluorine-doped tin oxide (FTO) anode with N1-(3-trimethoxysilylpropyl)diethyltriamine (DETA) forming monolayer. The use of silanized FTO results in the decrease of saturation current density and diode ideality factor of the device. Such silanized FTO anode is found to enhance the material quality and improve the device properties.

  11. GaAs integrated circuits and heterojunction devices

    Science.gov (United States)

    Fowlis, Colin

    1986-06-01

    The state of the art of GaAs technology in the U.S. as it applies to digital and analog integrated circuits is examined. In a market projection, it is noted that whereas analog ICs now largely dominate the market, in 1994 they will amount to only 39 percent vs. 57 percent for digital ICs. The military segment of the market will remain the largest (42 percent in 1994 vs. 70 percent today). ICs using depletion-mode-only FETs can be constructed in various forms, the closest to production being BFL or buffered FET logic. Schottky diode FET logic - a lower power approach - can reach higher complexities and strong efforts are being made in this direction. Enhancement type devices appear essential to reach LSI and VLSI complexity, but process control is still very difficult; strong efforts are under way, both in the U.S. and in Japan. Heterojunction devices appear very promising, although structures are fairly complex, and special fabrication techniques, such as molecular beam epitaxy and MOCVD, are necessary. High-electron-mobility-transistor (HEMT) devices show significant performance advantages over MESFETs at low temperatures. Initial results of heterojunction bipolar transistor devices show promise for high speed A/D converter applications.

  12. An InP/Si heterojunction photodiode fabricated by self-aligned corrugated epitaxial lateral overgrowth

    International Nuclear Information System (INIS)

    Sun, Y. T.; Omanakuttan, G.; Lourdudoss, S.

    2015-01-01

    An n-InP/p-Si heterojunction photodiode fabricated by corrugated epitaxial lateral overgrowth (CELOG) method is presented. N-InP/p-Si heterojunction has been achieved from a suitable pattern containing circular shaped openings in a triangular lattice on the InP seed layer on p-Si substrate and subsequent CELOG of completely coalesced n-InP. To avoid current path through the seed layer in the final photodiode, semi-insulating InP:Fe was grown with adequate thickness prior to n-InP growth in a low pressure hydride vapor phase epitaxy reactor. The n-InP/p-Si heterointerface was analyzed by scanning electron microscopy and Raman spectroscopy. Room temperature cross-sectional photoluminescence (PL) mapping illustrates the defect reduction effect in InP grown on Si by CELOG method. The InP PL intensity measured above the InP/Si heterojunction is comparable to that of InP grown on a native planar substrate indicating low interface defect density of CELOG InP despite of 8% lattice mismatch with Si. The processed n-InP/p-Si heterojunction photodiodes show diode characteristics from the current-voltage (I-V) measurements with a dark current density of 0.324 mA/cm 2 at a reverse voltage of −1 V. Under the illumination of AM1.5 conditions, the InP/Si heterojunction photodiode exhibited photovoltaic effect with an open circuit voltage of 180 mV, a short circuit current density of 1.89 mA/cm 2 , an external quantum efficiency of 4.3%, and an internal quantum efficiency of 6.4%. This demonstration of epitaxially grown InP/Si heterojunction photodiode will open the door for low cost and high efficiency solar cells and photonic integration of III-Vs on silicon

  13. I-V characteristics of graphene nanoribbon/h-BN heterojunctions and resonant tunneling.

    Science.gov (United States)

    Wakai, Taiga; Sakamoto, Shoichi; Tomiya, Mitsuyoshi

    2018-07-04

    We present the first principle calculations of the electrical properties of graphene sheet/h-BN heterojunction (GS/h-BN) and 11-armchair graphene nanoribbon/h-BN heterojunction (11-AGNR/h-BN), which are carried out using the density functional theory (DFT) method and the non-equilibrium Green's function (NEGF) technique. Since 11-AGNR belongs to the conductive (3n-1)-family of AGNR, both are metallic nanomaterials with two transverse arrays of h-BN, which is a wide-gap semi-conductor. The two h-BN arrays act as double barriers. The transmission functions (TF) and I-[Formula: see text] characteristics of GS/h-BN and 11-AGNR/h-BN are calculated by DFT and NEGF, and they show that quantum double barrier tunneling occurs. The TF becomes very spiky in both materials, and it leads to step-wise I-[Formula: see text] characteristics rather than negative resistance, which is the typical behavior of double barriers in semiconductors. The results of our first principle calculations are also compared with 1D Dirac equation model for the double barrier system. The model explains most of the peaks of the transmission functions nearby the Fermi energy quite well. They are due to quantum tunneling.

  14. Different Device Architectures for Bulk-Heterojunction Solar Cells

    Directory of Open Access Journals (Sweden)

    Getachew Adam

    2016-08-01

    Full Text Available We report different solar cell designs which allow a simple electrical connection of subsequent devices deposited on the same substrate. By arranging so-called standard and inverted solar-cell architectures next to each other, a serial connection of the two devices can easily be realized by a single compound electrode. In this work, we tested different interfacial layer materials like polyethylenimine (PEI and PEDOT:PSS, and silver as a non-transparent electrode material. We also built organic light emitting diodes applying the same device designs demonstrating the versatility of applied layer stacks. The proposed design should allow the preparation of organic bulk-heterojunction modules with minimized photovoltaically inactive regions at the interconnection of individual devices.

  15. Z-Scheme NiTiO 3 /g-C 3 N 4 Heterojunctions with Enhanced Photoelectrochemical and Photocatalytic Performances under Visible LED Light Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhenyu [School; Zeng, Xiaoqiao [Chemical; Li, Kai [School; Gao, Shanmin [School; Wang, Qingyao [School; Lu, Jun [Chemical

    2017-11-14

    Direct Z-scheme NiTiO3/g-C3N4 heterojunctions were successfully assembled by using simple calcination method and the photoelectrochemical and photocatalytic performance were investigated by light emitting diode (LED). The photoanode composed by the heterojunction with about 50 wt% NiTiO3 content exhibits the best photoelectrochemical activity with photoconversion efficiency up to 0.066%, which is 4.4 and 3.13 times larger than NiTiO3 or g-C3N4. The remarkably enhanced photoelectrochemical and photocatalytic activity of the heterojunction can be due to the efficiently photogenerated electron-hole separation by a Z-scheme mechanism.

  16. Characteristics of Novel InGaAsN Double Heterojunction Bipolar Transistors

    Energy Technology Data Exchange (ETDEWEB)

    LI,N.Y.; CHANG,PING-CHIH; BACA,ALBERT G.; LAROCHE,J.R.; REN,F.; ARMOUR,E.; SHARPS,P.R.; HOU,H.Q.

    2000-08-01

    The authors demonstrate, for the first time, both functional Pnp AlGaAs/InGaAsN/GaAs (Pnp InGaAsN) and Npn InGaP/InGaAsN/GaAs (Npn InGaAsN) double heterojunction bipolar transistors (DHBTs) using a 1.2 eV In{sub 0.03}Ga{sub 0.97}As{sub 0.99}N{sub 0.01} as the base layer for low-power electronic applications. The Pnp InGaAsN DHBT has a peak current gain ({beta}) of 25 and a low turn-on voltage (V{sub ON}) of 0.79 V. This low V{sub ON} is {approximately} 0.25 V lower than in a comparable Pnp AlGAAs/GaAs HBT. For the Npn InGaAsN DHBT, it has a low V{sub ON} of 0.81 V, which is 0.13 V lower than in an InGaP/GaAs HBT. A peak {beta} of 7 with nearly ideal I-V characteristics has been demonstrated. Since GaAs is used as the collector of both Npn and Pnp InGaAsN DHBTs, the emitter-collector breakdown voltage (BV{sub CEO}) are 10 and 12 V, respectively, consistent with the BV{sub CEO} of Npn InGaP/GaAs and Pnp AlGaAs/GaAs HBTs of comparable collector thickness and doping level. All these results demonstrate the potential of InGaAsN DHBTs as an alternative for application in low-power electronics.

  17. Anomalous temperature dependent magneto-conductance in organic light-emitting diodes with multiple emissive states

    Science.gov (United States)

    Zhao, Chen-xiao; Jia, Wei-yao; Huang, Ke-Xun; Zhang, Qiao-ming; Yang, Xiao-hui; Xiong, Zu-hong

    2015-07-01

    The temperature dependence of the magneto-conductance (MC) in organic electron donor-acceptor hybrid and layer heterojunction diodes was studied. The MC value increased with temperature in layer heterojunction and in 10 wt. % hybrid devices. An anomalous decrease of the MC with temperature was observed in 25 wt. %-50 wt. % hybrid devices. Further increasing donor concentration to 75 wt. %, the MC again increased with temperature. The endothermic exciplex-exciton energy transfer and the change in electroplex/exciton ratio caused by change in charge transport with temperature may account for these phenomena. Comparative studies of the temperature evolutions of the IV curves and the electroluminescence and photoluminescence spectra back our hypothesis.

  18. Maximizing ion current rectification in a bipolar conical nanopore fluidic diode using optimum junction location.

    Science.gov (United States)

    Singh, Kunwar Pal

    2016-10-12

    The ion current rectification has been obtained as a function of the location of a heterojunction in a bipolar conical nanopore fluidic diode for different parameters to determine the junction location for maximum ion current rectification using numerical simulations. Forward current peaks for a specific location of the junction and reverse current decreases with the junction location due to a change in ion enrichment/depletion in the pore. The optimum location of the heterojunction shifts towards the tip with base/tip diameter and surface charge density, and towards the base with the electrolyte concentration. The optimum location of the heterojunction has been approximated by an equation as a function of pore length, base/tip diameter, surface charge density and electrolyte concentration. The study is useful to design a rectifier with maximum ion current rectification for practical purposes.

  19. Effects of interface modification by H2O2 treatment on the electrical properties of n-type ZnO/p-type Si diodes

    International Nuclear Information System (INIS)

    He, Guan-Ru; Lin, Yow-Jon; Chang, Hsing-Cheng; Chen, Ya-Hui

    2012-01-01

    The fabrication and detailed electrical properties of heterojunction diodes based on n-type ZnO and p-type Si were reported. The effect of interface modification by H 2 O 2 treatment on the electrical properties of n-type ZnO/p-type Si diodes was investigated. The n-type ZnO/p-type Si diode without H 2 O 2 treatment showed a poor rectifying behavior with an ideality factor (n) of 2.5 and high leakage, indicating that the interfacial ZnSi x O y layer influenced the electronic conduction through the device. However, the n-type ZnO/p-type Si diode with H 2 O 2 treatment showed a good rectifying behavior with n of 1.3 and low leakage. This is because the thin SiO x layer acts as a thermodynamically stable buffer layer to suppress interfacial reaction between ZnO and Si. In addition, the enhanced photo-responsivity can be interpreted by the device rectifying performance and interface passivation. - Highlights: ► The electrical properties of n-ZnO/p-Si heterojunction diodes were researched. ► The n-ZnO/p-Si diode without H 2 O 2 treatment showed a poor rectifying behavior. ► The n-ZnO/H 2 O 2 -treated p-Si diode showed a good rectifying behavior. ► The enhanced responsivity can be interpreted by the device rectifying performance.

  20. Efficient generation of 3.5W laser light at 515nm by frequency doubling a single-frequency high power DBR tapered diode laser

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Hansen, Anders Kragh; Müller, André

    2017-01-01

    More than 3.5 W of green light at 515 nm is generated by frequency doubling a single-frequency high power DBR tapered diode laser. The frequency doubling is performed in a cascade of PPMgLN and PPMgSLT crystals in order to reach high power and avoid thermal effects present in PPMgLN at high power...

  1. Influence of photo-generated carriers on current spreading in double diode structures for electroluminescent cooling

    Science.gov (United States)

    Radevici, Ivan; Tiira, Jonna; Sadi, Toufik; Oksanen, Jani

    2018-05-01

    Current crowding close to electrical contacts is a common challenge in all optoelectronic devices containing thin current spreading layers (CSLs). We analyze the effects of current spreading on the operation of the so-called double diode structure (DDS), consisting of a light emitting diode (LED) and a photodiode (PD) fabricated within the same epitaxial growth process, and providing an attractive platform for studying electroluminescent (EL) cooling under high bias conditions. We show that current spreading in the common n-type layer between the LED and the PD can be dramatically improved by the strong optical coupling between the diodes, as the coupling enables a photo-generated current through the PD. This reduces the current in the DDS CSL and enables the study of EL cooling using structures that are not limited by the conventional light extraction challenges encountered in normal LEDs. The current spreading in the structures is studied using optical imaging techniques, electrical measurements, simulations, as well as simple equivalent circuit models developed for this purpose. The improved current spreading leads further to a mutual dependence with the coupling efficiency, which is expected to facilitate the process of optimizing the DDS. We also report a new improved value of 63% for the DDS coupling quantum efficiency.

  2. Silicon heterojunction transistor

    International Nuclear Information System (INIS)

    Matsushita, T.; Oh-uchi, N.; Hayashi, H.; Yamoto, H.

    1979-01-01

    SIPOS (Semi-insulating polycrystalline silicon) which is used as a surface passivation layer for highly reliable silicon devices constitutes a good heterojunction for silicon. P- or B-doped SIPOS has been used as the emitter material of a heterojunction transistor with the base and collector of silicon. An npn SIPOS-Si heterojunction transistor showing 50 times the current gain of an npn silicon homojunction transistor has been realized by high-temperature treatments in nitrogen and low-temperature annealing in hydrogen or forming gas

  3. Ultrafast Exciton Dissociation and Long-Lived Charge Separation in a Photovoltaic Pentacene-MoS2 van der Waals Heterojunction.

    Science.gov (United States)

    Bettis Homan, Stephanie; Sangwan, Vinod K; Balla, Itamar; Bergeron, Hadallia; Weiss, Emily A; Hersam, Mark C

    2017-01-11

    van der Waals heterojunctions between two-dimensional (2D) layered materials and nanomaterials of different dimensions present unique opportunities for gate-tunable optoelectronic devices. Mixed-dimensional p-n heterojunction diodes, such as p-type pentacene (0D) and n-type monolayer MoS 2 (2D), are especially interesting for photovoltaic applications where the absorption cross-section and charge transfer processes can be tailored by rational selection from the vast library of organic molecules and 2D materials. Here, we study the kinetics of excited carriers in pentacene-MoS 2 p-n type-II heterojunctions by transient absorption spectroscopy. These measurements show that the dissociation of MoS 2 excitons occurs by hole transfer to pentacene on the time scale of 6.7 ps. In addition, the charge-separated state lives for 5.1 ns, up to an order of magnitude longer than the recombination lifetimes from previously reported 2D material heterojunctions. By studying the fractional amplitudes of the MoS 2 decay processes, the hole transfer yield from MoS 2 to pentacene is found to be ∼50%, with the remaining holes undergoing trapping due to surface defects. Overall, the ultrafast charge transfer and long-lived charge-separated state in pentacene-MoS 2 p-n heterojunctions suggest significant promise for mixed-dimensional van der Waals heterostructures in photovoltaics, photodetectors, and related optoelectronic technologies.

  4. Optical pumping of deep traps in AlGaN/GaN-on-Si HEMTs using an on-chip Schottky-on-heterojunction light-emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Li, Baikui; Tang, Xi; Chen, Kevin J., E-mail: eekjchen@ust.hk [Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2015-03-02

    In this work, by using an on-chip integrated Schottky-on-heterojunction light-emitting diode (SoH-LED) which is seamlessly integrated with the AlGaN/GaN high electron mobility transistor (HEMT), we studied the effect of on-chip light illumination on the de-trapping processes of electrons from both surface and bulk traps. Surface trapping was generated by applying OFF-state drain bias stress, while bulk trapping was generated by applying positive substrate bias stress. The de-trapping processes of surface and/or bulk traps were monitored by measuring the recovery of dynamic on-resistance R{sub on} and/or threshold voltage V{sub th} of the HEMT. The results show that the recovery processes of both dynamic R{sub on} and threshold voltage V{sub th} of the HEMT can be accelerated by the on-chip SoH-LED light illumination, demonstrating the potentiality of on-chip hybrid opto-HEMTs to minimize the influences of traps during dynamic operation of AlGaN/GaN power HEMTs.

  5. High-efficiency green phosphorescent organic light-emitting diodes with double-emission layer and thick N-doped electron transport layer

    Energy Technology Data Exchange (ETDEWEB)

    Nobuki, Shunichiro, E-mail: shunichiro.nobuki.nb@hitachi.com [Hitachi Research Laboratory, Hitachi Ltd., 7-1-1 Omika-cho, Hitachi-city, Ibaraki 319-1292 (Japan); Wakana, Hironori; Ishihara, Shingo [Hitachi Research Laboratory, Hitachi Ltd., 7-1-1 Omika-cho, Hitachi-city, Ibaraki 319-1292 (Japan); Mikami, Akiyoshi [Dept. of Electrical Engineering, Kanazawa Institute of Technology, 7-1 Ohgigaoka, Nonoichimachi, Ishikawa 921-8501 (Japan)

    2014-03-03

    We have developed green phosphorescent organic light-emitting diodes (OLEDs) with high external quantum efficiency of 59.7% and power efficiency of 243 lm/W at 2.73 V at 0.053 mA/cm{sup 2}. A double emission layer and a thick n-doped electron transport layer were adopted to improve the exciton recombination factor. A high refractive index hemispherical lens was attached to a high refractive index substrate for extracting light trapped inside the substrate and the multiple-layers of OLEDs to air. Additionally, we analyzed an energy loss mechanism to clarify room for the improvement of our OLEDs including the charge balance factor. - Highlights: • We developed high efficiency green phosphorescent organic light-emitting diode (OLED). • Our OLED had external quantum efficiency of 59.7% and power efficiency of 243 lm/W. • A double emission layer and thick n-doped electron transport layer were adopted. • High refractive index media (hemispherical lens and substrate) were also used. • We analyzed an energy loss mechanism to clarify the charge balance factor of our OLED.

  6. Junction parameters and characterization of Au/n-Ge{sub 15}In{sub 5}Se{sub 80}/p-Si/Al heterojunction

    Energy Technology Data Exchange (ETDEWEB)

    El-Nahass, M.M.; El-Shazly, E.A.A. [Ain Shams University, Physics Department, Faculty of Education, Roxy, Cairo (Egypt); Ali, M.H. [Ain Shams University, Physics Department, Faculty of Science, Abassia, Cairo (Egypt); Zedan, I.T. [High Institute of Engineering and Technology, Basic Science Department, El-Arish, North Sinai (Egypt)

    2016-08-15

    The analysis of the electrical properties of Au/n-Ge{sub 15}In{sub 5}Se{sub 80}/p-Si/Al heterojunction is examined. I-V characteristics show diode-like behavior. The series resistance is found to decrease with increasing the temperature in three different methods of calculations. The thermionic emission mechanism is found to be the operating mechanism at relatively low forward voltages (V < 0.25). While, at relatively high forward voltage, the space charge limited conduction is the operating mechanism. The rectification ratio, ideality factor, barrier height, total trap concentration and built-in voltage are determined. The capacitance-voltage (C-V) characteristics of Au/n-Ge{sub 15}In{sub 5}Se{sub 80}/p-Si/Al heterojunction are also investigated. The I-V curve of the Au/n-Ge{sub 15}In{sub 5}Se{sub 80}/p-Si/Al heterojunction in the dark and after illumination is clarified. (orig.)

  7. High current density 2D/3D MoS2/GaN Esaki tunnel diodes

    Science.gov (United States)

    Krishnamoorthy, Sriram; Lee, Edwin W.; Lee, Choong Hee; Zhang, Yuewei; McCulloch, William D.; Johnson, Jared M.; Hwang, Jinwoo; Wu, Yiying; Rajan, Siddharth

    2016-10-01

    The integration of two-dimensional materials such as transition metal dichalcogenides with bulk semiconductors offer interesting opportunities for 2D/3D heterojunction-based device structures without any constraints of lattice matching. By exploiting the favorable band alignment at the GaN/MoS2 heterojunction, an Esaki interband tunnel diode is demonstrated by transferring large area Nb-doped, p-type MoS2 onto heavily n-doped GaN. A peak current density of 446 A/cm2 with repeatable room temperature negative differential resistance, peak to valley current ratio of 1.2, and minimal hysteresis was measured in the MoS2/GaN non-epitaxial tunnel diode. A high current density of 1 kA/cm2 was measured in the Zener mode (reverse bias) at -1 V bias. The GaN/MoS2 tunnel junction was also modeled by treating MoS2 as a bulk semiconductor, and the electrostatics at the 2D/3D interface was found to be crucial in explaining the experimentally observed device characteristics.

  8. Polar semiconductor heterojunction structure energy band diagram considerations

    International Nuclear Information System (INIS)

    Lin, Shuxun; Wen, Cheng P.; Wang, Maojun; Hao, Yilong

    2016-01-01

    The unique nature of built-in electric field induced positive/negative charge pairs of polar semiconductor heterojunction structure has led to a more realistic device model for hexagonal III-nitride HEMT. In this modeling approach, the distribution of charge carriers is dictated by the electrostatic potential profile instead of Femi statistics. The proposed device model is found suitable to explain peculiar properties of GaN HEMT structures, including: (1) Discrepancy in measured conventional linear transmission line model (LTLM) sheet resistance and contactless sheet resistance of GaN HEMT with thin barrier layer. (2) Below bandgap radiation from forward biased Nickel Schottky barrier diode on GaN HEMT structure. (3) GaN HEMT barrier layer doping has negligible effect on transistor channel sheet charge density.

  9. Polar semiconductor heterojunction structure energy band diagram considerations

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Shuxun; Wen, Cheng P., E-mail: cpwen@ieee.org; Wang, Maojun; Hao, Yilong [Institute of Microelectronics, Peking University, Beijing (China)

    2016-03-28

    The unique nature of built-in electric field induced positive/negative charge pairs of polar semiconductor heterojunction structure has led to a more realistic device model for hexagonal III-nitride HEMT. In this modeling approach, the distribution of charge carriers is dictated by the electrostatic potential profile instead of Femi statistics. The proposed device model is found suitable to explain peculiar properties of GaN HEMT structures, including: (1) Discrepancy in measured conventional linear transmission line model (LTLM) sheet resistance and contactless sheet resistance of GaN HEMT with thin barrier layer. (2) Below bandgap radiation from forward biased Nickel Schottky barrier diode on GaN HEMT structure. (3) GaN HEMT barrier layer doping has negligible effect on transistor channel sheet charge density.

  10. Anomalous temperature dependent magneto-conductance in organic light-emitting diodes with multiple emissive states

    International Nuclear Information System (INIS)

    Zhao, Chen-xiao; Jia, Wei-yao; Huang, Ke-Xun; Zhang, Qiao-ming; Yang, Xiao-hui; Xiong, Zu-hong

    2015-01-01

    The temperature dependence of the magneto-conductance (MC) in organic electron donor-acceptor hybrid and layer heterojunction diodes was studied. The MC value increased with temperature in layer heterojunction and in 10 wt. % hybrid devices. An anomalous decrease of the MC with temperature was observed in 25 wt. %–50 wt. % hybrid devices. Further increasing donor concentration to 75 wt. %, the MC again increased with temperature. The endothermic exciplex-exciton energy transfer and the change in electroplex/exciton ratio caused by change in charge transport with temperature may account for these phenomena. Comparative studies of the temperature evolutions of the IV curves and the electroluminescence and photoluminescence spectra back our hypothesis

  11. Anomalous temperature dependent magneto-conductance in organic light-emitting diodes with multiple emissive states

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chen-xiao; Jia, Wei-yao; Huang, Ke-Xun; Zhang, Qiao-ming; Yang, Xiao-hui; Xiong, Zu-hong, E-mail: zhxiong@swu.edu.cn [School of Physical Science and Technology, MOE Key Laboratory on Luminescence and Real-Time Analysis, Southwest University, Chongqing 400715 (China)

    2015-07-13

    The temperature dependence of the magneto-conductance (MC) in organic electron donor-acceptor hybrid and layer heterojunction diodes was studied. The MC value increased with temperature in layer heterojunction and in 10 wt. % hybrid devices. An anomalous decrease of the MC with temperature was observed in 25 wt. %–50 wt. % hybrid devices. Further increasing donor concentration to 75 wt. %, the MC again increased with temperature. The endothermic exciplex-exciton energy transfer and the change in electroplex/exciton ratio caused by change in charge transport with temperature may account for these phenomena. Comparative studies of the temperature evolutions of the IV curves and the electroluminescence and photoluminescence spectra back our hypothesis.

  12. Doping concentration effect on performance of single QW double-heterostructure InGaN/AlGaN light emitting diode

    Science.gov (United States)

    Halim, N. Syafira Abdul; Wahid, M. Halim A.; Hambali, N. Azura M. Ahmad; Rashid, Shanise; Shahimin, Mukhzeer M.

    2017-11-01

    Light emitting diode (LED) employed a numerous applications such as displaying information, communication, sensing, illumination and lighting. In this paper, InGaN/AlGaN based on one quantum well (1QW) light emitting diode (LED) is modeled and studied numerically by using COMSOL Multiphysics 5.1 version. We have selected In0.06Ga0.94N as the active layer with thickness 50nm sandwiched between 0.15μm thick layers of p and n-type Al0.15Ga0.85N of cladding layers. We investigated an effect of doping concentration on InGaN/AlGaN double heterostructure of light-emitting diode (LED). Thus, energy levels, carrier concentration, electron concentration and forward voltage (IV) are extracted from the simulation results. As the doping concentration is increasing, the performance of threshold voltage, Vth on one quantum well (1QW) is also increases from 2.8V to 3.1V.

  13. Doping concentration effect on performance of single QW double-heterostructure InGaN/AlGaN light emitting diode

    Directory of Open Access Journals (Sweden)

    Abdul Halim N. Syafira

    2017-01-01

    Full Text Available Light emitting diode (LED employed a numerous applications such as displaying information, communication, sensing, illumination and lighting. In this paper, InGaN/AlGaN based on one quantum well (1QW light emitting diode (LED is modeled and studied numerically by using COMSOL Multiphysics 5.1 version. We have selected In0.06Ga0.94N as the active layer with thickness 50nm sandwiched between 0.15μm thick layers of p and n-type Al0.15Ga0.85N of cladding layers. We investigated an effect of doping concentration on InGaN/AlGaN double heterostructure of light-emitting diode (LED. Thus, energy levels, carrier concentration, electron concentration and forward voltage (IV are extracted from the simulation results. As the doping concentration is increasing, the performance of threshold voltage, Vth on one quantum well (1QW is also increases from 2.8V to 3.1V.

  14. Measuring size dependent electrical properties from nanoneedle structures: Pt/ZnO Schottky diodes

    International Nuclear Information System (INIS)

    Mao, Shimin; Anderson, Daniel D.; Shang, Tao; Park, Byoungnam; Dillon, Shen J.

    2014-01-01

    This work reports the fabrication and testing of nanoneedle devices with well-defined interfaces that are amenable to a variety of structural and electrical characterization, including transmission electron microscopy. Single Pt/ZnO nanoneedle Schottky diodes were fabricated by a top down method using a combination of electro-polishing, sputtering, and focused ion beam milling. The resulting structures contained nanoscale planar heterojunctions with low ideality factors, the dimensions of which were tuned to study size-dependent electrical properties. The diameter dependence of the Pt/ZnO diode barrier height is explained by a joule heating effect and/or electronic inhomogeneity in the Pt/ZnO contact area

  15. Structural and electrical properties of the GexSi1-x/Si heterojunctions obtained by the method of direct bonding

    International Nuclear Information System (INIS)

    Argunova, T. S.; Belyakova, E. I.; Grekhov, I. V.; Zabrodskii, A. G.; Kostina, L. S.; Sorokin, L. M.; Shmidt, N. M.; Yi, J. M.; Jung, J. W.; Je, J. H.; Abrosimov, N. V.

    2007-01-01

    The results of studying the structural and electrical properties of structures produced by the method of direct bonding of Ge x Si 1-x and Si wafers are reported. The wafers were cut from the crystals grown by the Czochralski method. Continuity of the interface and the crystal-lattice defects were studied by X-ray methods using synchrotron radiation and by scanning electron microscopy. Measurements of the forward and reverse current-voltage characteristics of the p-Ge x Si 1-x /n-Si diodes made it possible to assess the effect of the crystallattice defects on the electrical properties of heterojunctions. Satisfactory electrical parameters suggest that the technology of direct bonding is promising for the fabrication of large-area Ge x Si 1-x /Si heterojunctions

  16. Analysis of collector-emitter offset voltage of InGaP/GaAs composite collector double heterojunction bipolar transistor

    Science.gov (United States)

    Lew, K. L.; Yoon, S. F.

    2002-04-01

    The Ebers-Moll-like terminal current expressions of a composite collector double heterojunction bipolar transistor (DHBT), which takes the recombination effect into account, have been formulated and an expression for collector-emitter offset voltage [VCE(offset)] has been derived. Factors affecting the VCE(offset) of a composite collector DHBT are investigated and good agreement between the calculated and reported experimental results is shown. Analytical results showed that the transmission coefficient of the base-collector (B-C) junction does not have a considerable effect on the VCE(offset), provided that the B-C junction is of good quality. Thus, despite its asymmetric structure, the VCE(offset) of an optimally designed composite collector DHBT could be as low as that of a conventional DHBT. Hence a composite collector DHBT with low saturation voltage and negligible VCE(offset) is possible if the two conditions: (i) good quality B-C junction, (ii) base transport factor, α≈1, are fulfilled.

  17. Resistance change effect in SrTiO3/Si (001) isotype heterojunction

    Science.gov (United States)

    Huang, Xiushi; Gao, Zhaomeng; Li, Pei; Wang, Longfei; Liu, Xiansheng; Zhang, Weifeng; Guo, Haizhong

    2018-02-01

    Resistance switching has been observed in double and multi-layer structures of ferroelectric films. The higher switching ratio opens up a vast path for emerging ferroelectric semiconductor devices. An n-n+ isotype heterojunction has been fabricated by depositing an oxide SrTiO3 layer on a conventional n-type Si (001) substrate (SrTiO3/Si) by pulsed laser disposition. Rectification and resistive switching behaviors in the n-n+ SrTiO3/Si heterojunction were observed by a conductive atomic force microscopy, and the n-n+ SrTiO3/Si heterojunction exhibits excellent endurance and retention characteristics. The possible mechanism was proposed based on the band structure of the n-n+ SrTiO3/Si heterojunction, and the observed electrical behaviors could be attributed to the modulation effect of the electric field reversal on the width of accumulation and the depletion region, as well as the height of potential of the n-n+ junction formed at the STO/Si interface. Moreover, oxygen vacancies are also indicated to play a crucial role in causing insulator to semiconductor transition. These results open the way to potential application in future microelectronic devices based on perovskite oxide layers on conventional semiconductors.

  18. Flexible diode of polyaniline/ITO heterojunction on PET substrate

    Science.gov (United States)

    Bera, A.; Deb, K.; Kathirvel, V.; Bera, T.; Thapa, R.; Saha, B.

    2017-10-01

    Hybrid organic-inorganic heterojunction between polyaniline and ITO film coated on flexible polyethylene terephthalate (PET) substrate has been prepared through vapor phase polymerization process. Polaron and bipolaron like defect states induced hole transport and exceptional mobility makes polyaniline a noble hole transport layer. Thus a p-n junction has been obtained between the hole transport layer of polyaniline and highly conductive n-type layer of ITO film. The synthesis process was carried out using FeCl3 as polymerizing agent in the oxidative chemical polymerization process. The prepared polyaniline has been found to be crystalline on characterization through X-ray diffraction measurement. X-ray photoelectron spectroscopic measurements were done for compositional analysis of the prepared film. The UV-vis-NIR absorbance spectra obtained for polyaniline shows the characteristics absorbance as observed for highly conductive polyaniline and confirms the occurrence of partially oxidized emeraldine form of polyaniline. The energy band gap of the polyaniline has been obtained as 2.52 eV, by analyzing the optical transmittance spectra. A rectifying behavior has been observed in the electrical J-V plot, which is of great significance in designing polymer based flexible electronic devices.

  19. Fabrication and characterization of a CuO/ITO heterojunction with a graphene transparent electrode

    Science.gov (United States)

    Mageshwari, K.; Han, Sanghoo; Park, Jinsub

    2016-05-01

    In this paper, we investigate the electrical properties of a CuO-ITO heterojunction diode with the use of a graphene transparent electrode by current-voltage (I-V) characteristics. CuO thin films were deposited onto an ITO substrate by a simple sol-gel spin coating method and annealed at 500 °C. The x-ray diffraction pattern of the CuO thin films revealed the polycrystalline nature of CuO and exhibited a monoclinic crystal structure. FESEM images showed a uniform and densely packed particulate morphology. The optical band gap of CuO thin films estimated using UV-vis absorption spectra was found to be 2.50 eV. The I-V characteristics of the fabricated CuO-ITO heterojunction showed a well-defined rectifying behavior with improved electrical properties after the insertion of graphene. The electronic parameters of the heterostructure such as barrier height, ideality factor and series resistance were determined from the I-V measurements, and the possible current transport mechanism was discussed.

  20. Fabrication and characterization of Zn O:Zn(n{sup +})/porous-silicon/Si(p) heterojunctions for white light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Vasquez A, M. A. [INAOE, Department of Electronics, 72840 Puebla, Pue. (Mexico); Romero P, G.; Pena S, R. [IPN, Centro de Investigacion y de Estudios Avanzados, Departamento de Ingenieria Electrica, SEES, Av. Intituto Politecnico Nacional No. 2508, Col. San Pedro Zacatenco, 07360 Ciudad de Mexico (Mexico); Andraca A, J. A. [IPN, Centro de Nanociencias y Micro y Nanotecnologias, Av. Luis Enrique Erro s/n, Col. San Pedro Zacatenco, 07738 Ciudad de Mexico (Mexico)

    2016-11-01

    The fabrication and characterization of electro luminescent Zn O:Zn(n{sup +})/porous silicon/Si(p) heterojunctions is presented. Highly conductive Zn O films (Zn O:Zn(n{sup +})) were produced by applying a temperature annealing at 400 degrees Celsius by 5 min to the Zn O/Zn/Zn O arrange formed by DC sputtering, and the porous silicon (PS) films were prepared on p-type (100) Si wafers by anodic etching. The Zn O: Zn(n{sup +})/PS/Si(p) heterojunction is accomplished by applying a brief temperature annealing stage to the entire Zn O/Zn/Zn O/PS/Si structure to preserve the PS luminescent characteristics. The Zn O:Zn(n{sup +}) films were characterized by X-ray diffraction and Hall-van der Pauw measurements. The PS and Zn O:Zn(n{sup +}) films were also studied by photoluminescence (Pl) measurements. The current-voltage characteristics of the heterojunctions showed well defined rectifying behavior with a turn-on voltage of 1.5 V and ideality factor of 5.4. The high ideality factor is explained by the presence of electron tunneling transport aided by energy levels related to the defects at the heterojunction interface and into the PS film. The saturation current and the series resistance of the heterostructure were 4 x 10{sup -7} A/cm{sup 2} and 16 Ω-cm{sup 2}, respectively. White color electroluminescence is easily observed at the naked eye when excited with square wave pulses of 8 V and 1 Khz. (Author)

  1. Micro-Welding of Copper Plate by Frequency Doubled Diode Pumped Pulsed Nd:YAG Laser

    Science.gov (United States)

    Nakashiba, Shin-Ichi; Okamoto, Yasuhiro; Sakagawa, Tomokazu; Takai, Sunao; Okada, Akira

    A pulsed laser of 532 nm wavelength with ms range pulse duration was newly developed by second harmonic generation of diode pumped pulsed Nd:YAG laser. High electro-optical conversion efficiency more than 13% could be achieved, and 1.5 kW peak power green laser pulse was put in optical fiber of 100 μm in diameter. In micro- welding of 1.0 mm thickness copper plate, a keyhole welding was successfully performed by 1.0 kW peak power at spot diameter less than 200 μm. The frequency doubled pulsed laser improved the processing efficiency of copper welding, and narrow and deep weld bead was stably obtained.

  2. High-performance 4H-SiC junction barrier Schottky diodes with double resistive termination extensions

    International Nuclear Information System (INIS)

    Zheng Liu; Zhang Feng; Liu Sheng-Bei; Dong Lin; Liu Xing-Fang; Liu Bin; Yan Guo-Guo; Wang Lei; Zhao Wan-Shun; Sun Guo-Sheng; He Zhi; Fan Zhong-Chao; Yang Fu-Hua

    2013-01-01

    4H-SiC junction barrier Schottky (JBS) diodes with a high-temperature annealed resistive termination extension (HARTE) are designed, fabricated and characterized in this work. The differential specific on-state resistance of the device is as low as 3.64 mΩ·cm 2 with a total active area of 2.46 × 10 −3 cm 2 . Ti is the Schottky contact metal with a Schottky barrier height of 1.08 V and a low onset voltage of 0.7 V. The ideality factor is calculated to be 1.06. Al implantation annealing is performed at 1250°C in Ar, while good reverse characteristics are achieved. The maximum breakdown voltage is 1000 V with a leakage current of 9 × 10 −5 A on chip level. These experimental results show good consistence with the simulation results and demonstrate that high-performance 4H-SiC JBS diodes can be obtained based on the double HARTE structure. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  3. Heterojunction Structures for Photon Detector Applications

    Science.gov (United States)

    2014-07-21

    IR: Fourier-transform infrared FTO: Fluorine doped tin oxide G-R: generation-recombination HEIWIP: heterojunction interfacial workfunction internal...SECURITY CLASSIFICATION OF: The work presented here report findings in (1) infrared detectors based on p-GaAs/AlGaAs heterojunctions , (2) J and H...aggregate sensitized heterojunctions for solar cell and photon detection applications, (3) heterojunctions sensitized with quantum dots as low cost

  4. Ge/Si (100) heterojunction photodiodes fabricated from material grown by low-energy plasma-enhanced chemical vapour deposition

    International Nuclear Information System (INIS)

    Osmond, Johann; Isella, Giovanni; Chrastina, Daniel; Kaufmann, Rolf; Kaenel, Hans von

    2008-01-01

    We have fabricated a series of p-i-n Ge/Si heterojunction photodetectors with different thicknesses of the intrinsic Ge layer, different doping levels of the p and n layers and different diode diameters. Epitaxial Ge was deposited on Si(100) using low-energy plasma-enhanced CVD (LEPECVD) followed by cyclic annealing. Dark current values as low as 0.04 mA/cm 2 were achieved for 1 μm thick p-i-n photodiodes on lightly doped substrates at - 1 V bias, and external quantum efficiencies of 56% at 1.30 μm and 44% at 1.55 μm for 3 μm thick p + -i-n + photodiodes on highly doped substrates under 0.5 V reverse bias. For a 30 μm diameter diode a RC frequency of 21 GHz is obtained at a reverse bias of 1 V. With such characteristics, these diodes are attractive for telecommunication and optoelectronic applications

  5. Rectification properties of n-type nanocrystalline diamond heterojunctions to p-type silicon carbide at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Masaki; Amano, Ryo; Shimoda, Naotaka [Graduate School of Automotive Science, Kyushu University, Nishiku, Fukuoka 819-0395 (Japan); Kato, Yoshimine, E-mail: yoshimine.kato@zaiko.kyushu-u.ac.jp [Department of Materials Science and Engineering, Kyushu University, Nishiku, Fukuoka 819-0395 (Japan); Teii, Kungen [Department of Applied Science for Electronics and Materials, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan)

    2014-04-14

    Highly rectifying heterojunctions of n-type nanocrystalline diamond (NCD) films to p-type 4H-SiC substrates are fabricated to develop p-n junction diodes operable at high temperatures. In reverse bias condition, a potential barrier for holes at the interface prevents the injection of reverse leakage current from the NCD into the SiC and achieves the high rectification ratios of the order of 10{sup 7} at room temperature and 10{sup 4} even at 570 K. The mechanism of the forward current injection is described with the upward shift of the defect energy levels in the NCD to the conduction band of the SiC by forward biasing. The forward current shows different behavior from typical SiC Schottky diodes at high temperatures.

  6. Improve the surface of silver nanowire transparent electrode using a double-layer structure for the quantum-dot light-emitting diodes

    Science.gov (United States)

    Cho, Seok Hyeon; Been Heo, Su; Kang, Seong Jun

    2018-03-01

    We developed a double-layer structured transparent electrode for use in flexible quantum-dot light-emitting diodes (QLEDs). Silver nanowires (AgNWs) and highly conductive poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) were coated on a transparent substrate to obtain a highly conductive and flexible transparent electrode. The highly conductive PEDOT:PSS improved the surface roughness of the AgNWs transparent electrode film as well as the surface coverage area of the film. The double-layer structured transparent electrode showed superior mechanical properties than conventional indium-tin oxide (ITO) and AgNWs transparent electrodes. QLEDs with the double-layer structured transparent electrode also showed good reliability under cyclic bending conditions. These results indicate that the double-layer structured AgNWs/PEDOT:PSS transparent electrode described here is a feasible alternative to ITO transparent electrodes for flexible QLEDs.

  7. III-nitrides, 2D transition metal dichalcogenides, and their heterojunctions

    KAUST Repository

    Mishra, Pawan

    2017-04-01

    Group III-nitride materials have attracted great attention for applications in high efficiency electronic and optoelectronics devices such as high electron mobility transistors, light emitting diodes, and laser diodes. On the other hand, group VI transition metal dichalcogenides (TMDs) in the form of MX2 has recently emerged as a novel atomic layered material system with excellent thermoelectric, electronic and optoelectronic properties. Also, the recent investigations reveal that the dissimilar heterojunctions formed by TMDs and III-nitrides provide the route for novel devices in the area of optoelectronic, electronics, and water splitting applications. In addition, integration of III-nitrides and TMDs will enable high density integrated optoelectronic circuits and the development of hybrid integration technologies. In this work, we have demonstrated kinetically controlled growth processes in plasma assisted molecular beam epitaxy (PAMBE) for the III-nitrides and their engineered heterostructures. Techniques such as Ga irradiation and nitrogen plasma exposure has been utilized to implement bulk GaN, InGaN and their heterostructures in PAMBE. For the growth of III-nitride based heterostructures, the in-situ surface stoichiometry monitoring (i-SSM) technique was developed and used for implementing stepped and compositionally graded InGaN-based multiple quantum wells (MQWs). Their optical and microstrain analysis in conjunction with theoretical studies confirmed improvement in the radiative recombination rate of the graded-MQWs as compared to that of stepped-MQWs, owing to the reduced strain in graded-MQWs. Our achievement also includes the realization of the p-type MoS2 by engineering pristine MoS2 layers in PAMBE. Mainly, Ga and nitrogen plasma irradiation on the pristine MoS2 in PAMBE has resulted in the realization of the p-type MoS2. Also, GaN epitaxial thin layers were deposited on MoS2/c-sapphire, WSe2/c-sapphire substrates by PAMBE to study the band

  8. Organic-inorganic Au/PVP/ZnO/Si/Al semiconductor heterojunction characteristics

    Science.gov (United States)

    Mokhtari, H.; Benhaliliba, M.

    2017-11-01

    The paper reports the fabrication and characterization of a novel Au/PVP/ZnO/Si/Al semiconductor heterojunction (HJ) diode. Both inorganic n type ZnO and organic polyvinyl pyrrolidone (PVP) layers have grown by sol-gel spin-coating route at 2000 rpm. The front and back metallic contacts are thermally evaporated in a vacuum at pressure of 10-6 Torr having a diameter of 1.5 mm and a thickness of 250 nm. The detailed analysis of the forward and reverse bias current-voltage characteristics has been provided. Consequently, many electronic parameters, such as ideality factor, rectification coefficient, carrier concentration, series resistance, are then extracted. Based upon our results a non-ideal diode behavior is revealed and ideality factor exceeds the unity (n > 4). A high rectifying (~4.6 × 10 4) device is demonstrated. According to Cheung-Cheung and Norde calculation models, the barrier height and series resitance are respectively of 0.57 eV and 30 kΩ. Ohmic and space charge limited current (SCLC) conduction mechanisms are demonstrated. Such devices will find applications as solar cell, photodiode and photoconductor.

  9. ZnO and copper indium chalcogenide heterojunctions prepared by inexpensive methods

    International Nuclear Information System (INIS)

    Berruet, M.; Di Iorio, Y.; Troviano, M.; Vázquez, M.

    2014-01-01

    Solution-based techniques were used to prepare ZnO/CuIn(Se, S) 2 heterojunctions that serve as solar cell prototypes. A duplex layer of ZnO (compact + porous) was electrodeposited. Chalcogenide thin films were deposited using successive ionic layer adsorption and reaction method (SILAR). By subsequent thermal treatments in two different atmospheres, CuInSe 2 (CISe) and CuInSe 2−x S x (CISeS) were obtained. The composition and morphology of the annealed films were characterized by GXRD, micro-Raman spectroscopy and SEM. Devices prepared with CISe and CISeS show a clear photo-response. The introduction of a buffer layer of TiO 2 into the ZnO/chalcogenide interface was necessary to detect photocurrent. The presence of CISeS improves the response of the cell, with higher values of short circuit current density, open circuit potential and fill factor. These promising results show that it is possible to prepare photovoltaic heterojunctions by depositing chalcogenides onto porous ZnO substrates using low-cost solution-based techniques. - Highlights: • Heterojunctions that serve as solar cell prototypes were prepared using solution-based techniques. • The devices comprised a double layer of ZnO and CuInSe 2 or CuInSe 0.4 S 1.6 . • A TiO 2 buffer layer in the ZnO/chalcogenide interface is necessary to detect photocurrent. • The incorporation of S improved the response of the photovoltaic heterojunction

  10. All-solid-state cw frequency-doubling Nd:YLiF4/LBO blue laser with 4.33 W output power at 454 nm under in-band diode pumping at 880 nm.

    Science.gov (United States)

    Lü, Yanfei; Zhang, Xihe; Cheng, Weibo; Xia, Jing

    2010-07-20

    We generated efficient blue laser output at 454 nm by intracavity frequency doubling of a continuous-wave (cw) diode-pumped Nd:YLiF(4) (Nd:YLF) laser at 908 nm based on the (4)F(3/2)-(4)I(9/2) transition. With 32.8 W of incident pump power at 880 nm and the frequency-doubling crystal LiB(3)O(5), a level as high as 4.33 W of cw output power at 454 nm is achieved, corresponding to an optical conversion efficiency of 13.2% with respect to the incident pump power. To the best of our knowledge, this is the first blue laser at 454 nm generated by intracavity frequency doubling of a diode-pumped Nd:YLF.

  11. Power and efficiency scaling of diode pumped Cr:LiSAF lasers: 770-1110 nm tuning range and frequency doubling to 387-463 nm.

    Science.gov (United States)

    Demirbas, Umit; Baali, Ilyes

    2015-10-15

    We report significant average power and efficiency scaling of diode-pumped Cr:LiSAF lasers in continuous-wave (cw), cw frequency-doubled, and mode-locked regimes. Four single-emitter broad-area laser diodes around 660 nm were used as the pump source, which provided a total pump power of 7.2 W. To minimize thermal effects, a 20 mm long Cr:LiSAF sample with a relatively low Cr-concentration (0.8%) was used as the gain medium. In cw laser experiments, 2.4 W of output power, a slope efficiency of 50%, and a tuning range covering the 770-1110 nm region were achieved. Intracavity frequency doubling with beta-barium borate (BBO) crystals generated up to 1160 mW of blue power and a record tuning range in the 387-463 nm region. When mode locked with a saturable absorber mirror, the laser produced 195 fs pulses with 580 mW of average power around 820 nm at a 100.3 MHz repetition rate. The optical-to-optical conversion efficiency of the system was 33% in cw, 16% in cw frequency-doubled, and 8% in cw mode-locked regimes.

  12. InGaP Heterojunction Barrier Solar Cells

    Science.gov (United States)

    Welser, Roger E. (Inventor)

    2014-01-01

    A new solar cell structure called a heterojunction barrier solar cell is described. As with previously reported quantum-well and quantum-dot solar cell structures, a layer of narrow band-gap material, such as GaAs or indium-rich InGaP, is inserted into the depletion region of a wide band-gap PN junction. Rather than being thin, however, the layer of narrow band-gap material is about 400-430 nm wide and forms a single, ultrawide well in the depletion region. Thin (e.g., 20-50 nm), wide band-gap InGaP barrier layers in the depletion region reduce the diode dark current. Engineering the electric field and barrier profile of the absorber layer, barrier layer, and p-type layer of the PN junction maximizes photogenerated carrier escape. This new twist on nanostructured solar cell design allows the separate optimization of current and voltage to maximize conversion efficiency.

  13. Parameters estimation of the single and double diode photovoltaic models using a Gauss–Seidel algorithm and analytical method: A comparative study

    International Nuclear Information System (INIS)

    Et-torabi, K.; Nassar-eddine, I.; Obbadi, A.; Errami, Y.; Rmaily, R.; Sahnoun, S.; El fajri, A.; Agunaou, M.

    2017-01-01

    Highlights: • Comparative study of two methods: a Gauss Seidel method and an analytical method. • Five models are implemented to estimate the five parameters for single diode. • Two models are used to estimate the seven parameters for double diode. • The parameters are estimated under changing environmental conditions. • To choose method/model combination more adequate for each PV module technology. - Abstract: In the photovoltaic (PV) panels modeling field, this paper presents a comparative study of two parameter estimation methods: the iterative method called Gauss Seidel, applied on the single diode model, and the analytical method used on the double diode model. These parameter estimation methods are based on the manufacturer's datasheets. They are also tested on three PV modules of different technologies: multicrystalline (kyocera KC200GT), monocrystalline (Shell SQ80), and thin film (Shell ST40). For the iterative method, five existing mathematical models classified from 1 to 5 are used to estimate the parameters of these PV modules under varying environmental conditions. Only two models of them are used for the analytical method. Each model is based on the combination of the photocurrent and the reverse saturation current’s expressions in terms of temperature and irradiance. In addition, the results of the models’ simulation are compared with the experimental data obtained from the PV modules’ datasheets, in order to evaluate the accuracy of the models. The simulation shows that the I-V characteristics obtained are matching to the experimental data. In order to validate the reliability of the two methods, both the Absolute Error (AE) and the Root Mean Square Error (RMSE) were calculated. The results suggest that the analytical method can be very useful for monocrystalline and multicrystalline modules, but for the thin film module, the iterative method is the most suitable.

  14. Reaction mechanism of a PbS-on-ZnO heterostructure and enhanced photovoltaic diode performance with an interface-modulated heterojunction energy band structure.

    Science.gov (United States)

    Li, Haili; Jiao, Shujie; Ren, Jinxian; Li, Hongtao; Gao, Shiyong; Wang, Jinzhong; Wang, Dongbo; Yu, Qingjiang; Zhang, Yong; Li, Lin

    2016-02-07

    A room temperature successive ionic layer adsorption and reaction (SILAR) method is introduced for fabricating quantum dots-on-wide bandgap semiconductors. Detailed exploration of how SILAR begins and proceeds is performed by analyzing changes in the electronic structure of related elements at interfaces by X-ray photoelectric spectroscopy, together with characterization of optical properties and X-ray diffraction. The distribution of PbS QDs on ZnO, which is critical for optoelectrical applications of PbS with a large dielectric constant, shows a close relationship with the dipping order. A successively deposited PbS QDs layer is obtained when the sample is first immersed in Na2S solution. This is reasonable because the initial formation of different chemical bonds on ZnO nanorods is closely related to dangling bonds and defect states on surfaces. Most importantly, dipping order also affects their optoelectrical characteristics greatly, which can be explained by the heterojunction energy band structure related to the interface. The formation mechanism for PbS QDs on ZnO is confirmed by the fact that the photovoltaic diode device performance is closely related to the dipping order. Our atomic-scale understanding emphasises the fundamental role of surface chemistry in the structure and tuning of optoelectrical properties, and consequently in devices.

  15. Efficient generation of 1.9  W yellow light by cascaded frequency doubling of a distributed Bragg reflector tapered diode

    DEFF Research Database (Denmark)

    Hansen, Anders Kragh; Christensen, Mathias; Noordegraaf, Danny

    2016-01-01

    Watt-level yellow emitting lasers are interesting for medical applications, due to their high hemoglobin absorption, and for efficient detection of certain fluorophores. In this paper, we demonstrate a compact and robust diode-based laser system in the yellow spectral range. The system generates ...... of a laser diode enables the modulation of the pump wavelength by controlling the drive current. This is utilized to achieve a power modulation depth above 90% for the second harmonic light, with a rise time below 40  μs.......Watt-level yellow emitting lasers are interesting for medical applications, due to their high hemoglobin absorption, and for efficient detection of certain fluorophores. In this paper, we demonstrate a compact and robust diode-based laser system in the yellow spectral range. The system generates 1.......9 W of single-frequency light at 562.4 nm by cascaded single-pass frequency doubling of the 1124.8 nm emission from a distributed Bragg reflector (DBR) tapered laser diode. The absence of a free-space cavity makes the system stable over a base-plate temperature range of 30 K. At the same time, the use...

  16. 2D double-layer-tube-shaped structure Bi2S3/ZnS heterojunction with enhanced photocatalytic activities

    International Nuclear Information System (INIS)

    Gao, Xiaoming; Wang, Zihang; Fu, Feng; Li, Xiang; Li, Wenhong

    2015-01-01

    Bi 2 S 3 /ZnS heterojunction with 2D double-layer-tube-shaped structures was prepared by the facile synthesis method. The corresponding relationship was obtained among loaded content to phase, morphology, and optical absorption property of Bi 2 S 3 /ZnS composite. The results shown that Bi 2 S 3 loaded could evidently change the crystallinity of ZnS, enhance the optical absorption ability for visible light of ZnS, and improve the morphologies and microstructure of ZnS. The photocatalytic activities of the Bi 2 S 3 /ZnS sample were evaluated for the photodegradation of phenol and desulfurization of thiophene under visible light irradiation. The results showed that Bi 2 S 3 loaded greatly improved the photocatalytic activity of ZnS, and the content of loaded Bi 2 S 3 had an impact on the catalytic activity of ZnS. Moreover, the mechanism of enhanced photocatalytic activity was also investigated by analysis of relative band positions of Bi 2 S 3 and ZnS, and photo-generated hole was main active radicals during photocatalytic oxidation process

  17. 2D double-layer-tube-shaped structure Bi2S3/ZnS heterojunction with enhanced photocatalytic activities

    Science.gov (United States)

    Gao, Xiaoming; Wang, Zihang; Fu, Feng; Li, Xiang; Li, Wenhong

    2015-10-01

    Bi2S3/ZnS heterojunction with 2D double-layer-tube-shaped structures was prepared by the facile synthesis method. The corresponding relationship was obtained among loaded content to phase, morphology, and optical absorption property of Bi2S3/ZnS composite. The results shown that Bi2S3 loaded could evidently change the crystallinity of ZnS, enhance the optical absorption ability for visible light of ZnS, and improve the morphologies and microstructure of ZnS. The photocatalytic activities of the Bi2S3/ZnS sample were evaluated for the photodegradation of phenol and desulfurization of thiophene under visible light irradiation. The results showed that Bi2S3 loaded greatly improved the photocatalytic activity of ZnS, and the content of loaded Bi2S3 had an impact on the catalytic activity of ZnS. Moreover, the mechanism of enhanced photocatalytic activity was also investigated by analysis of relative band positions of Bi2S3 and ZnS, and photo-generated hole was main active radicals during photocatalytic oxidation process.

  18. Electrochemical deposition of iron sulfide thin films and heterojunction diodes with zinc oxide

    Directory of Open Access Journals (Sweden)

    Shoichi Kawai

    2014-03-01

    Full Text Available Iron sulfide thin films were fabricated by the electrochemical deposition method from an aqueous solution containing FeSO4 and Na2S2O3. The composition ratio obtained was Fe:S:O = 36:56:8. In the photoelectrochemical measurement, a weak negative photo-current was observed for the iron sulfide films, which indicates that its conduction type is p-type. No peaks were observed in X-ray diffraction pattern, and thus the deposited films were considered to be amorphous. For a heterojunction with ZnO, rectification properties were confirmed in the current-voltage characteristics. Moreover, the current was clearly enhanced under AM1.5 illumination.

  19. Piezo-phototronic effect enhanced UV photodetector based on CuI/ZnO double-shell grown on flexible copper microwire.

    Science.gov (United States)

    Liu, Jingyu; Zhang, Yang; Liu, Caihong; Peng, Mingzeng; Yu, Aifang; Kou, Jinzong; Liu, Wei; Zhai, Junyi; Liu, Juan

    2016-12-01

    In this work, we present a facile, low-cost, and effective approach to fabricate the UV photodetector with a CuI/ZnO double-shell nanostructure which was grown on common copper microwire. The enhanced performances of Cu/CuI/ZnO core/double-shell microwire photodetector resulted from the formation of heterojunction. Benefiting from the piezo-phototronic effect, the presentation of piezocharges can lower the barrier height and facilitate the charge transport across heterojunction. The photosensing abilities of the Cu/CuI/ZnO core/double-shell microwire detector are investigated under different UV light densities and strain conditions. We demonstrate the I-V characteristic of the as-prepared core/double-shell device; it is quite sensitive to applied strain, which indicates that the piezo-phototronic effect plays an essential role in facilitating charge carrier transport across the CuI/ZnO heterojunction, then the performance of the device is further boosted under external strain.

  20. Surface preparation effects on efficient indium-tin-oxide-CdTe and CdS-CdTe heterojunction solar cells

    Science.gov (United States)

    Werthen, J. G.; Fahrenbruch, A. L.; Bube, R. H.; Zesch, J. C.

    1983-05-01

    The effects of CdTe surface preparation and subsequent junction formation have been investigated through characterization of ITO/CdTe and CdS/CdTe heterojunction solar cells formed by electron beam evaporation of indium-tin-oxide (ITO) and CdS onto single crystal p-type CdTe. Surfaces investigated include air-cleaved (110) surfaces, bromine-in-methanol etched (110) and (111) surfaces, and teh latter surfaces subjected to a hydrogen heat treatment. Both air-cleaved and hydrogen heat treated surfaces have a stoichiometric Cd to Te ratio. The ITO/CdTe junction formation process involves an air heat treatment, which ahs serious effects on the behavior of junctions formed on these surfaces. Etched surfaces which have a large excesss of Te, are less affected by the junction formation process and result in ITO/CdTe heterojunctions with solar efficiencies of 9% (Vsc =20 mA/cm2). Use of low-doped CdTe results in junctions characterized by considerably larger open-circuit votages (Voc =0.81 V) which are attributable to increasing diode factors caused by a shift from interfacial recombination to recombination in the depletion region. Resulting solar efficiencies reach 10.5% which is the highest value reported to date for a genuine CdTe heterojunction, CdS/CdTe heterojunctions show a strong dependence on CdTe surface condition, but less influence on the junction formation process. Solar efficiencies of 7.5% on an etched and heat treated surface are observed. All of these ITO/CdTe and CdS/CdTe heterojunctions have been stable for at least 10 months.

  1. Electrical properties of a charge-transfer interlayer modified organic heterojunction

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Shuwen; Salzmann, Ingo; Koch, Norbert [Humboldt-Universitaet zu Berlin (Germany). Institut f. Physik; Vollmer, Antje [HZB-BESSY, Berlin (Germany)

    2010-07-01

    We investigated the effect of a thin interlayer (ca. monolayer) of tetrafluoro-tetracyanoquinodimethane (F4-TCNQ) between prototypical hole and electron transport layers (HTL and ETL) on interface energetics and current transport. As HTL we used 4,4{sup '},4''-tris(N,N-diphenyl-amino)triphenylamine (TDATA) and tris (8-hydroxyquinoline)aluminium (Alq{sub 3}) as ETL, which are commonly employed in organic light emitting diodes. The hole injection barrier into TDATA is 0.5 eV, as measured by photoemission spectroscopy. Deposition of an F4-TCNQ interlayer on top of TDATA does not further change the energy level position. However, after applying the F4-TCNQ interlayer the energy levels of Alq3 deposited on top of TDATA are 0.15 eV closer to the Fermi-level than without the interlayer. Diodes fabricated without interlayer had a 0.6 V higher onset-voltage one order of magnitude lower current density than those with F4-TCNQ. These observations can be rationalized by an increased (non-radiative) electron-hole recombination rate at the modified organic heterojunction and a changed internal electric field distribution.

  2. Electrical and optical characteristics of heterojunction devices composed of silicon nanowires and mercury selenide nanoparticle films on flexible plastics.

    Science.gov (United States)

    Yeo, Minje; Yun, Junggwon; Kim, Sangsig

    2013-09-01

    A pn heterojunction device based on p-type silicon (Si) nanowires (NWs) prepared by top-down method and n-type mercury selenide (HgSe) nanoparticles (NPs) synthesized by the colloidal method have been fabricated on a flexible plastic substrate. The synthesized HgSe NPs were analyzed through the effective mass approximation. The characteristics of the heterojunction device were examined and studied with the energy band diagram. The device showed typical diode characteristics with a turn-on voltage of 1.5 V and exhibited a high rectification ratio of 10(3) under relatively low forward bias. Under illumination of 633-nm-wavelength light, the device presented photocurrent efficiency of 117.5 and 20.1 nA/W under forward bias and reverse bias conditions, respectively. Moreover, the photocurrent characteristics of the device have been determined by bending of the plastic substrate upward and downward with strain of 0.8%. Even though the photocurrent efficiency has fluctuations during the bending cycles, the values are roughly maintained for 10(4) bending cycles. This result indicates that the fabricated heterojunction device has the potential to be applied as fundamental elements of flexible nanoelectronics.

  3. Temperature dependent electrical characterization of organic Schottky diode based on thick MgPc films

    Science.gov (United States)

    Singh, J.; Sharma, R. K.; Sule, U. S.; Goutam, U. K.; Gupta, Jagannath; Gadkari, S. C.

    2017-07-01

    Magnesium phthalocyanine (MgPc) based Schottky diode on indium tin oxide (ITO) substrate was fabricated by thermal evaporation method. The dark current voltage characteristics of the prepared ITO-MgPc-Al heterojunction Schottky diode were measured at different temperatures. The diode showed the non-ideal rectification behavior under forward and reverse bias conditions with a rectification ratio (RR) of 56 at  ±1 V at room temperature. Under forward bias, thermionic emission and space charge limited conduction (SCLC) were found to be the dominant conduction mechanisms at low (below 0.6 V) and high voltages (above 0.6 V) respectively. Under reverse bias conditions, Poole-Frenkel (field assisted thermal detrapping of carriers) was the dominant conduction mechanism. Three different approaches namely, I-V plots, Norde and Cheung methods were used to determine the diode parameters including ideality factor (n), barrier height (Φb), series resistance (R s) and were compared. SCLC mechanism showed that the trap concentration is 5.52  ×  1022 m-3 and it lies at 0.46 eV above the valence band edge.

  4. Fluorene-based narrow-band-gap copolymers for red light- emitting diodes and bulk heterojunction photovoltaic cells

    Institute of Scientific and Technical Information of China (English)

    Mingliang SUN; Li WANG; Yangjun XIA; Bin DU; Ransheng LIU; Yong CAO

    2008-01-01

    A series of narrow band-gap conjugated copo-lymers (PFO-DDQ) derived from 9,9-dioctylfluorene (DOF) and 2,3-dimethyl-5,8-dithien-2-yl-quinoxalines (DDQ) is prepaid by the palladium-catalyzed Suzuki coupling reaction with the molar feed ratio of DDQ at around 1%,5%,15%,30% and 50%,respectively.The obtained polymers are readily soluble in common organic solvents.The solutions and the thin solid films of the copolymers absorb light from 300-590 nm with two absorbance.peaks at around 380 and 490 nm.The intens-ity of 490 nm peak increases with the increasing DDQ content in the polymers.Efficient energy transfer due to exciton trapping on narrow-band-gap DDQ sites has been observed.The PL emission consists exclusively of DDQ unit emission at around 591 643 nm depending on the DDQ content in solid film.The EL emission peaks are red-shifted from 580 nm for PFO-DDQ1 to 635 nm for PFO-DDQ50.The highest external quantum efficiency achieved with the device configuration ITO/PEDOT/ PVK/PFO-DDQt5/Ba/A1 is 1.33% with a luminous effi-ciency 1.54 cd/A.Bulk heterojunction photovoltaic cells fabricated from composite films of PFO-DDQ30 copoly-mer and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) as electron donor and electron acceptor,respect-ively in device configuration:ITO/PEDOT:PSS/PFO-DDQ30:PCBM/PFPNBr/Al shows power conversion effi-ciencies of 1.18% with open-circuit voltage (Voc) of 0.90 V and short-circuit current density (Jsc) of 2.66 mA/cm2 under an AM1.5 solar simulator (100 mW/cm2).The photocurrent response wavelengths of the PVCs based on PFO-DDQ30/PCBM blends covers 300-700 nm.This indicates that these kinds of low band-gap polymers are promising candidates for polymeric solar cells and red light-emitting diodes.

  5. ZnO and copper indium chalcogenide heterojunctions prepared by inexpensive methods

    Energy Technology Data Exchange (ETDEWEB)

    Berruet, M., E-mail: berruetm@gmail.com [División Electroquímica y Corrosión, Facultad de Ingeniería, INTEMA, CONICET, Universidad Nacional de Mar del Plata, Juan B. Justo 4302, B7608FDQ Mar del Plata (Argentina); Di Iorio, Y. [División Electroquímica y Corrosión, Facultad de Ingeniería, INTEMA, CONICET, Universidad Nacional de Mar del Plata, Juan B. Justo 4302, B7608FDQ Mar del Plata (Argentina); Troviano, M. [Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN, CONICET-UNCo), Buenos Aires 1400, Q8300IBX Neuquén (Argentina); Vázquez, M. [División Electroquímica y Corrosión, Facultad de Ingeniería, INTEMA, CONICET, Universidad Nacional de Mar del Plata, Juan B. Justo 4302, B7608FDQ Mar del Plata (Argentina)

    2014-12-15

    Solution-based techniques were used to prepare ZnO/CuIn(Se, S){sub 2} heterojunctions that serve as solar cell prototypes. A duplex layer of ZnO (compact + porous) was electrodeposited. Chalcogenide thin films were deposited using successive ionic layer adsorption and reaction method (SILAR). By subsequent thermal treatments in two different atmospheres, CuInSe{sub 2} (CISe) and CuInSe{sub 2−x}S{sub x} (CISeS) were obtained. The composition and morphology of the annealed films were characterized by GXRD, micro-Raman spectroscopy and SEM. Devices prepared with CISe and CISeS show a clear photo-response. The introduction of a buffer layer of TiO{sub 2} into the ZnO/chalcogenide interface was necessary to detect photocurrent. The presence of CISeS improves the response of the cell, with higher values of short circuit current density, open circuit potential and fill factor. These promising results show that it is possible to prepare photovoltaic heterojunctions by depositing chalcogenides onto porous ZnO substrates using low-cost solution-based techniques. - Highlights: • Heterojunctions that serve as solar cell prototypes were prepared using solution-based techniques. • The devices comprised a double layer of ZnO and CuInSe{sub 2} or CuInSe{sub 0.4}S{sub 1.6}. • A TiO{sub 2} buffer layer in the ZnO/chalcogenide interface is necessary to detect photocurrent. • The incorporation of S improved the response of the photovoltaic heterojunction.

  6. Highly Sensitive Switchable Heterojunction Photodiode Based on Epitaxial Bi2FeCrO6 Multiferroic Thin Films.

    Science.gov (United States)

    Huang, Wei; Chakrabartty, Joyprokash; Harnagea, Catalin; Gedamu, Dawit; Ka, Ibrahima; Chaker, Mohamed; Rosei, Federico; Nechache, Riad

    2018-04-18

    Perovskite multiferroic oxides are promising materials for the realization of sensitive and switchable photodiodes because of their favorable band gap (heterojunction was fabricated by pulsed laser deposition. The heterojunction photodiode exhibits a large ideality factor ( n = ∼5.0) and a response time as fast as 68 ms, thanks to the effective charge carrier transport and collection at the BFCO/SRO interface. The diode can switch direction when the electric polarization is reversed by an external voltage pulse. The time-resolved photoluminescence decay of the device measured at ∼500 nm demonstrates an ultrafast charge transfer (lifetime = ∼6.4 ns) in BFCO/SRO heteroepitaxial structures. The estimated responsivity value at 500 nm and zero bias is 0.38 mA W -1 , which is so far the highest reported for any FE thin film photodiode. Our work highlights the huge potential for using multiferroic oxides to fabricate highly sensitive and switchable photodiodes.

  7. Highly transparent and conductive double-layer oxide thin films as anodes for organic light-emitting diodes

    International Nuclear Information System (INIS)

    Yang Yu; Wang Lian; Yan He; Jin Shu; Marks, Tobin J.; Li Shuyou

    2006-01-01

    Double-layer transparent conducting oxide thin film structures containing In-doped CdO (CIO) and Sn-doped In 2 O 3 (ITO) layers were grown on glass by metal-organic chemical vapor deposition and ion-assisted deposition (IAD), respectively, and used as anodes for polymer light-emitting diodes (PLEDs). These films have a very low overall In content of 16 at. %. For 180-nm-thick CIO/ITO films, the sheet resistance is 5.6 Ω/□, and the average optical transmittance is 87.1% in the 400-700 nm region. The overall figure of merit (Φ=T 10 /R sheet ) of the double-layer CIO/ITO films is significantly greater than that of single-layer CIO, IAD-ITO, and commercial ITO films. CIO/ITO-based PLEDs exhibit comparable or superior device performance versus ITO-based control devices. CIO/ITO materials have a much lower sheet resistance than ITO, rendering them promising low In content electrode materials for large-area optoelectronic devices

  8. Low driving voltage blue, green, yellow, red and white organic light-emitting diodes with a simply double light-emitting structure.

    Science.gov (United States)

    Zhang, Zhensong; Yue, Shouzhen; Wu, Yukun; Yan, Pingrui; Wu, Qingyang; Qu, Dalong; Liu, Shiyong; Zhao, Yi

    2014-01-27

    Low driving voltage blue, green, yellow, red and white phosphorescent organic light-emitting diodes (OLEDs) with a common simply double emitting layer (D-EML) structure are investigated. Our OLEDs without any out-coupling schemes as well as n-doping strategies show low driving voltage, e.g. white OLED, respectively. This work demonstrates that the low driving voltages and high efficiencies can be simultaneously realized with a common simply D-EML structure.

  9. Diffraction-limited 577 nm true-yellow laser by frequency doubling of a tapered diode laser

    Science.gov (United States)

    Christensen, Mathias; Vilera, Mariafernanda; Noordegraaf, Danny; Hansen, Anders K.; Buß, Thomas; Jensen, Ole B.; Skovgaard, Peter M. W.

    2018-02-01

    A wide range of laser medical treatments are based on coagulation of blood by absorption of the laser radiation. It has, therefore, always been a goal of these treatments to maximize the ratio of absorption in the blood to that in the surrounding tissue. For this purpose lasers at 577 nm are ideal since this wavelength is at the peak of the absorption in oxygenated hemoglobin. Furthermore, 577 nm has a lower absorption in melanin when compared to green wavelengths (515 - 532 nm), giving it an advantage when treating at greater penetration depth. Here we present a laser system based on frequency doubling of an 1154 nm Distributed Bragg Reflector (DBR) tapered diode laser, emitting 1.1 W of single frequency and diffraction limited yellow light at 577 nm, corresponding to a conversion efficiency of 30.5%. The frequency doubling is performed in a single pass configuration using a cascade of two bulk non-linear crystals. The system is power stabilized over 10 hours with a standard deviation of 0.13% and the relative intensity noise is measured to be 0.064 % rms.

  10. Interface energy band alignment at the all-transparent p-n heterojunction based on NiO and BaSnO3

    Science.gov (United States)

    Zhang, Jiaye; Han, Shaobo; Luo, Weihuang; Xiang, Shuhuai; Zou, Jianli; Oropeza, Freddy E.; Gu, Meng; Zhang, Kelvin H. L.

    2018-04-01

    Transparent oxide semiconductors hold great promise for many optoelectronic devices such as transparent electronics, UV-emitting devices, and photodetectors. A p-n heterojunction is the most ubiquitous building block to realize these devices. In this work, we report the fabrication and characterization of the interface properties of a transparent heterojunction consisting of p-type NiO and n-type perovskite BaSnO3. We show that high-quality NiO thin films can be epitaxially grown on BaSnO3 with sharp interfaces because of a small lattice mismatch (˜1.3%). The diode fabricated from this heterojunction exhibits rectifying behavior with a ratio of 500. X-ray photoelectron spectroscopy reveals a type II or "staggered" band alignment with valence and conduction band offsets of 1.44 eV and 1.86 eV, respectively. Moreover, a large upward band bending potential of 0.90 eV for BaSnO3 and a downward band bending potential of 0.15 eV for NiO were observed in the interface region. Such electronic properties have important implication for optoelectronic applications as the large built-in potential provides favorable energetics for photo-generated electron-hole separation/migration.

  11. A G-band terahertz monolithic integrated amplifier in 0.5-μm InP double heterojunction bipolar transistor technology

    International Nuclear Information System (INIS)

    Li Ou-Peng; Zhang Yong; Xu Rui-Min; Cheng Wei; Wang Yuan; Niu Bing; Lu Hai-Yan

    2016-01-01

    Design and characterization of a G-band (140–220 GHz) terahertz monolithic integrated circuit (TMIC) amplifier in eight-stage common-emitter topology are performed based on the 0.5-μm InGaAs/InP double heterojunction bipolar transistor (DHBT). An inverted microstrip line is implemented to avoid a parasitic mode between the ground plane and the InP substrate. The on-wafer measurement results show that peak gains are 20 dB at 140 GHz and more than 15-dB gain at 140–190 GHz respectively. The saturation output powers are −2.688 dBm at 210 GHz and −2.88 dBm at 220 GHz, respectively. It is the first report on an amplifier operating at the G-band based on 0.5-μm InP DHBT technology. Compared with the hybrid integrated circuit of vacuum electronic devices, the monolithic integrated circuit has the advantage of reliability and consistency. This TMIC demonstrates the feasibility of the 0.5-μm InGaAs/InP DHBT amplifier in G-band frequencies applications. (paper)

  12. Topical methyl-aminolevulinate photodynamic therapy using red light-emitting diode light for treatment of multiple actinic keratoses: A randomized, double-blind, placebo-controlled study.

    Science.gov (United States)

    Pariser, David; Loss, Robert; Jarratt, Michael; Abramovits, William; Spencer, James; Geronemus, Roy; Bailin, Philip; Bruce, Suzanne

    2008-10-01

    The use of light-emitting diode light offers practical advantages in photodynamic therapy (PDT) with topical methyl-aminolevulinate (MAL) for management of actinic keratoses (AK). We sought to evaluate the efficacy of MAL PDT using red light-emitting diode light. We conducted a multicenter, double-blind, randomized study. A total of 49 patients with 363 AK lesions had 16.8% MAL cream applied under occlusion for 3 hours, and 47 patients with 360 AK lesions had vehicle cream similarly applied. The lesions were then illuminated (630 nm, light dose 37 J/cm2) with repeated treatment 1 week later. Complete lesion and patient (all lesions showing complete response) response rates were evaluated 3 months after last treatment. MAL PDT was superior (PAK. MAL PDT using red light-emitting diode light is an appropriate treatment alternative for multiple AK lesions.

  13. Graphene/h-BN/GaAs sandwich diode as solar cell and photodetector.

    Science.gov (United States)

    Li, Xiaoqiang; Lin, Shisheng; Lin, Xing; Xu, Zhijuan; Wang, Peng; Zhang, Shengjiao; Zhong, Huikai; Xu, Wenli; Wu, Zhiqian; Fang, Wei

    2016-01-11

    In graphene/semiconductor heterojunction, the statistic charge transfer between graphene and semiconductor leads to decreased junction barrier height and limits the Fermi level tuning effect in graphene, which greatly affects the final performance of the device. In this work, we have designed a sandwich diode for solar cells and photodetectors through inserting 2D hexagonal boron nitride (h-BN) into graphene/GaAs heterostructure to suppress the static charge transfer. The barrier height of graphene/GaAs heterojunction can be increased from 0.88 eV to 1.02 eV by inserting h-BN. Based on the enhanced Fermi level tuning effect with interface h-BN, through adopting photo-induced doping into the device, power conversion efficiency (PCE) of 10.18% has been achieved for graphene/h-BN/GaAs compared with 8.63% of graphene/GaAs structure. The performance of graphene/h-BN/GaAs based photodetector is also improved with on/off ratio increased by one magnitude compared with graphene/GaAs structure.

  14. Contact light-emitting diodes based on vertical ZnO nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Panin, G. N. [Dongguk University, Seoul (Korea, Republic of); Russian Academy of Sciences, Chernogolovka, Moscow district (Russian Federation); Cho, H. D.; Lee, S. W.; Kang, T. W. [Dongguk University, Seoul (Korea, Republic of)

    2014-05-15

    We report vertical contact light-emitting diodes (VCLEDs), that are based on heterojunctions formed by using the point contacts of n-ZnO nanorods (NRs) to the p-type semiconductor substrate and that are fabricated using a new approach to the formation of LEDs (Appl. Phys. Lett. 98, 093110 (2011)). A p-type GaN film grown on a sapphire substrate was used to form n-ZnO NRs/pGaN VCLEDs on a large area of about 4 cm{sup 2}. The VCLEDs emitted a pure blue electroluminescence with high efficiency. Electroluminescence at 470 nm, which is visible to the naked eye, started at small current of about 50 μA and is attributed to the good optical properties of the structurally perfect heterojunctions in the point contacts. The VCLED configuration allows the creation of ZnO/p-GaN nano-LEDs of high density and high-quality with a greatly reduced concentration of nonradiative defects in the active regions. The VCLEDs showed the high brightness of light required for active matrix displays and general solid-state lighting.

  15. Spin-photon entangling diode

    DEFF Research Database (Denmark)

    Flindt, Christian; Sørensen, A. S.; Lukin, M. D.

    2007-01-01

    We propose a semiconductor device that can electrically generate entangled electron spin-photon states, providing a building block for entanglement of distant spins. The device consists of a p-i-n diode structure that incorporates a coupled double quantum dot. We show that electronic control of t...

  16. Organic light-emitting diodes with a spacer enhanced exciplex emission

    Science.gov (United States)

    Yan, Fei; Chen, Rui; Sun, Handong; Wei Sun, Xiao

    2014-04-01

    By introducing a spacer molecule into the blended exciplex emissive layer, the performance of the bulk heterojunction exciplex organic light-emitting diodes (OLEDs) was improved dramatically; the maximum luminous efficiency was enhanced by about 22% from 7.9 cd/A to 9.7 cd/A, and the luminous efficiency drop was reduced by 28% at 400 mA/cm2. Besides the suppressed annihilation of exciton, the time-resolved photoluminescence measurements indicated that the spacer enhanced the delayed fluorescence through increasing the backward intersystem crossing rate from the triplet to singlet exciplex state. This method is useful for developing high performance exciplex OLEDs.

  17. Strong and reversible modulation of carbon nanotube-silicon heterojunction solar cells by an interfacial oxide layer.

    Science.gov (United States)

    Jia, Yi; Cao, Anyuan; Kang, Feiyu; Li, Peixu; Gui, Xuchun; Zhang, Luhui; Shi, Enzheng; Wei, Jinquan; Wang, Kunlin; Zhu, Hongwei; Wu, Dehai

    2012-06-21

    Deposition of nanostructures such as carbon nanotubes on Si wafers to make heterojunction structures is a promising route toward high efficiency solar cells with reduced cost. Here, we show a significant enhancement in the cell characteristics and power conversion efficiency by growing a silicon oxide layer at the interface between the nanotube film and Si substrate. The cell efficiency increases steadily from 0.5% without interfacial oxide to 8.8% with an optimal oxide thickness of about 1 nm. This systematic study reveals that formation of an oxide layer switches charge transport from thermionic emission to a mixture of thermionic emission and tunneling and improves overall diode properties, which are critical factors for tailoring the cell behavior. By controlled formation and removal of interfacial oxide, we demonstrate oscillation of the cell parameters between two extreme states, where the cell efficiency can be reversibly altered by a factor of 500. Our results suggest that the oxide layer plays an important role in Si-based photovoltaics, and it might be utilized to tune the cell performance in various nanostructure-Si heterojunction structures.

  18. Improved opto-electronic properties of silicon heterojunction solar cells with SiO x /Tungsten-doped indium oxide double anti-reflective coatings

    Science.gov (United States)

    Yu, Jian; Zhou, Jie; Bian, Jiantao; Zhang, Liping; Liu, Yucheng; Shi, Jianhua; Meng, Fanying; Liu, Jinning; Liu, Zhengxin

    2017-08-01

    Amorphous SiO x was prepared by plasma enhanced chemical vapor deposition (PECVD) to form SiO x /tungsten-doped indium oxide (IWO) double anti-reflective coatings for silicon heterojunction (SHJ) solar cell. The sheet resistance of SiO x /IWO stacks decreases due to plasma treatment during deposition process, which means thinner IWO film would be deposited for better optical response. However, the comparisons of three anti-reflective coating (ARC) structures reveal that SiO x film limits carier transport and the path of IWO-SiO x -Ag structure is non-conductive. The decrease of sheet resistance is defined as pseudo conductivity. IWO film capping with SiO x allows observably reduced reflectance and better response in 300-400 and 600-1200 nm wavelength ranges. Compared with IWO single ARC, the average reflection is reduced by 1.65% with 70 nm SiO x /80 nm IWO double anti-reflective coatings (DARCs) in 500-1200 nm wavelength range, leading to growing external quantum efficiency response, short circuit current density (J sc), and efficiency. After well optimization of SiO x /IWO stacks, an impressive efficiency of 23.08% is obtained with high J sc and without compromising open circuit voltage (V oc) and fill factor. SiO x /IWO DARCs provide better anti-reflective properties over a broad range of wavelength, showing promising application for SHJ solar cells.

  19. High Detectivity Graphene-Silicon Heterojunction Photodetector.

    Science.gov (United States)

    Li, Xinming; Zhu, Miao; Du, Mingde; Lv, Zheng; Zhang, Li; Li, Yuanchang; Yang, Yao; Yang, Tingting; Li, Xiao; Wang, Kunlin; Zhu, Hongwei; Fang, Ying

    2016-02-03

    A graphene/n-type silicon (n-Si) heterojunction has been demonstrated to exhibit strong rectifying behavior and high photoresponsivity, which can be utilized for the development of high-performance photodetectors. However, graphene/n-Si heterojunction photodetectors reported previously suffer from relatively low specific detectivity due to large dark current. Here, by introducing a thin interfacial oxide layer, the dark current of graphene/n-Si heterojunction has been reduced by two orders of magnitude at zero bias. At room temperature, the graphene/n-Si photodetector with interfacial oxide exhibits a specific detectivity up to 5.77 × 10(13) cm Hz(1/2) W(-1) at the peak wavelength of 890 nm in vacuum, which is highest reported detectivity at room temperature for planar graphene/Si heterojunction photodetectors. In addition, the improved graphene/n-Si heterojunction photodetectors possess high responsivity of 0.73 A W(-1) and high photo-to-dark current ratio of ≈10(7) . The current noise spectral density of the graphene/n-Si photodetector has been characterized under ambient and vacuum conditions, which shows that the dark current can be further suppressed in vacuum. These results demonstrate that graphene/Si heterojunction with interfacial oxide is promising for the development of high detectivity photodetectors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Fabrication and electrical characterization of polyaniline-silicon heterojunction for gamma radiation dosimetry application

    International Nuclear Information System (INIS)

    Laranjeira, Jane Maria Goncalves

    2004-08-01

    In this work a technique has been developed to fabricate high quality polyaniline-silicon heterojunction diodes for use as gas and/or ionizing radiation sensors. Polyaniline thin films (40 nm thick) produced by spin-coating on silicon substrates, were the active part of the junction structure. The devices presented excellent reproducibility of their electrical characteristics with high rectification ratio, 60,000 at ±1.0 V, and typical reverse current at - 1.0 V of 3 nA at 295 K. A G/I x G plot has been used to analyze the current-voltage characteristics, yielding typical series resistance of 4 kΩ ± 5% and ideality factor in a range of 1,9 ± 0.5%. The heterojunction diode presents high sensitivity to gamma radiation in the dose range of 3 x 10 -2 to 7 kGy with a linear response in the forward and reverse bias. The excellent electrical characteristics together with the linear response with the dose, strongly suggest the application of this device for spectrometry or dosimetry of high doses of gamma radiation. These devices presented high sensitivity to gas moistures such as ammonia, nitric acid and trichloroethylene. In both cases the sensitivity was observed through shifts of the current-voltage curves, which can be easily monitored to provide a calibration curve of the sensor either as a radiation dosimeter or as a gas sensor for use in applications for gas monitoring or radiation dosimetry. Several aspects of the reliability physics of silicon-polyaniline heterojunction, such as degradation effects induced by local heating, charge trapping and temperature changes, have been discussed. These results further confirm the quality of the devices electrical characteristics and their suitability for radiation and gas sensors applications. Another interesting results presented in this work was the use of polyemeraldine nanofilms (thickness in the range 30-50 nm) deposited by 'spin coating' on glass substrates as an optical dosimeter for gamma radiation based on the

  1. Electrical characterization of the temperature dependence in CdTe/CdS heterojunctions deposited in-situ by pulsed laser deposition

    Science.gov (United States)

    Avila-Avendano, Jesus; Quevedo-Lopez, Manuel; Young, Chadwin

    2018-02-01

    The I-V and C-V characteristics of CdTe/CdS heterojunctions deposited in-situ by Pulsed Laser Deposition (PLD) were evaluated. In-situ deposition enables the study of the CdTe/CdS interface by avoiding potential impurities at the surface and interface as a consequence of exposure to air. The I-V and C-V characteristics of the resulting junctions were obtained at different temperatures, ranging from room temperature to 150 °C, where the saturation current (from 10-8 to 10-4 A/cm2), ideality factor (between 1 and 2), series resistance (from 102 to 105 Ω), built-in potential (0.66-0.7 V), rectification factor (˜106), and carrier concentration (˜1016 cm-3) were obtained. The current-voltage temperature dependence study indicates that thermionic emission is the main transport mechanism at the CdTe/CdS interface. This study also demonstrated that the built-in potential (Vbi) calculated using a thermionic emission model is more accurate than that calculated using C-V extrapolation since C-V plots showed a Vbi shift as a function of frequency. Although CdTe/CdS is widely used for photovoltaic applications, the parameters evaluated in this work indicate that CdTe/CdS heterojunctions could be used as rectifying diodes and junction field effect transistors (JFETs). JFETs require a low PN diode saturation current, as demonstrated for the CdTe/CdS junction studied here.

  2. Investigation of the negative differential resistance reproducibility in AlN/GaN double-barrier resonant tunnelling diodes

    Energy Technology Data Exchange (ETDEWEB)

    Boucherit, M.; Soltani, A.; Rousseau, M.; Deresmes, D.; Berthe, M.; Durand, C.; De Jaeger, J.-C. [IEMN/UMR-CNRS 8520, Universite Lille1, PRES Universite Lille Nord de France (France); Monroy, E. [Equipe mixte CEA-CNRS-UJF Nanophysique et Semiconducteurs, DRFMC/SP2M/PSC, CEA-Grenoble (France)

    2011-10-31

    AlN/GaN double-barrier resonant tunnelling diodes were grown by molecular beam epitaxy on GaN/sapphire template and processed into mesa diameters from 2 {mu}m to 4 {mu}m. The current-voltage characteristics were carried out in direct current operation and under-high vacuum. A sharp negative differential resistance (NDR) was detected in the forward bias at 120 K. The NDR was observed for the mesa size of 2 {mu}m at 4 V with a peak-to-valley current ratio of 3.5. The measurement conditions were chosen to make NDR reproducible more than 50 times and apparent in both scan voltage directions after electrical treatment.

  3. Analysis of electrical properties of heterojunction based on ZnIn2Se4

    Science.gov (United States)

    Attia, A. A.; Ali, H. A. M.; Salem, G. F.; Ismail, M. I.; Al-Harbi, F. F.

    2017-04-01

    Heterojunction of n-ZnIn2Se4/p-Si was fabricated using thermal evaporation of ZnIn2Se4 thin films of thickness 473 nm onto p-Si substrate at room temperature. The characteristics of current-voltage (I-V) for n-ZnIn2Se4/p-Si heterojunction were investigated at different temperatures ranged from 308 K to 363 K. The junction parameters namely are; rectification ratio (RR), series resistance (Rs), shunt resistance (Rsh) and diode ideality factor (n) were calculated from the analysis of I-V curves. The forward current showed two conduction mechanisms operating, which were the thermionic emission and the single trap space charge limited current in low (0 ≤ V ≤ 0.5 V) and high (V ≥ 0.7 V) ranges of voltage, respectively. The reverse current was due to the generation through Si rather than the ZnIn2Se4 film. The built-in voltage and the width of the depletion region were determined from the capacitance-voltage (C-V) measurements. The photovoltaic characteristics of the junction were also studied through the (I-V) measurements under illumination of 40 mW/cm2. The cell parameters; the short-circuit current, the open-circuit voltage and the fill factor were estimated at room temperature.

  4. Internal optical losses in very thin CW heterojunction laser diodes

    Science.gov (United States)

    Butler, J. K.; Kressel, H.; Ladany, I.

    1975-01-01

    Theoretical calculations are presented showing the relationship between the internal laser absorption and structural parameters appropriate for CW room-temperature lasers. These diodes have submicron-thick recombination regions, and very small spacings between the heat sink and the recombination region to minimize the thermal resistance. The optical loss is shown to be strongly dependent on the degree of radiation confinement to the active region. In particular, absorption in the surface GaAs layer providing the ohmic contact becomes very significant when the intermediate (AlGa)As layer is reduced below about 1 micron. It is further shown that excessive penetration into the GaAs regions gives rise to anomalies in the far-field radiation profiles in the direction perpendicular to the junction plane.

  5. Chemical vapor deposition growth of two-dimensional heterojunctions

    Science.gov (United States)

    Cui, Yu; Li, Bo; Li, JingBo; Wei, ZhongMing

    2018-01-01

    The properties of two-dimensional (2D) layered materials with atom-smooth surface and special interlayer van der Waals coupling are different from those of traditional materials. Due to the absence of dangling bonds from the clean surface of 2D layered materials, the lattice mismatch influences slightly on the growth of 2D heterojunctions, thus providing a flexible design strategy. 2D heterojunctions have attracted extensive attention because of their excellent performance in optoelectronics, spintronics, and valleytronics. The transfer method was utilized for the fabrication of 2D heterojunctions during the early stage of fundamental research on these materials. This method, however, has limited practical applications. Therefore, chemical vapor deposition (CVD) method was recently developed and applied for the preparation of 2D heterojunctions. The CVD method is a naturally down-top growth strategy that yields 2D heterojunctions with sharp interfaces. Moreover, this method effectively reduces the introduction of contaminants to the fabricated heterojunctions. Nevertheless, the CVD-growth method is sensitive to variations in growth conditions. In this review article, we attempt to provide a comprehensive overview of the influence of growth conditions on the fabrication of 2D heterojunctions through the direct CVD method. We believe that elucidating the effects of growth conditions on the CVD method is necessary to help control and improve the efficiency of the large-scale fabrication of 2D heterojunctions for future applications in integrated circuits.

  6. Silicon nanowire array architecture for heterojunction electronics

    International Nuclear Information System (INIS)

    Solovan, M. M.; Brus, V. V.; Mostovyi, A. I.; Maryanchuk, P. D.; Orletskyi, I. G.; Kovaliuk, T. T.; Abashin, S. L.

    2017-01-01

    Photosensitive nanostructured heterojunctions n-TiN/p-Si were fabricated by means of titanium nitride thin films deposition (n-type conductivity) by the DC reactive magnetron sputtering onto nano structured single crystal substrates of p-type Si (100). The temperature dependencies of the height of the potential barrier and series resistance of the n-TiN/p-Si heterojunctions were investigated. The dominant current transport mechanisms through the heterojunctions under investigation were determined at forward and reverse bias. The heterojunctions under investigation generate open-circuit voltage V_o_c = 0.8 V, short-circuit current I_s_c = 3.72 mA/cm"2 and fill factor FF = 0.5 under illumination of 100 mW/cm"2.

  7. Electronic and photovoltaic properties of Au/pyronine G(Y)/p-GaAs/Au:Zn heterojunction

    International Nuclear Information System (INIS)

    Soliman, H.S.; Farag, A.A.M.; Khosifan, N.M.; Solami, T.S.

    2012-01-01

    Highlights: ► The electrical and photovoltaic properties of thermally evaporated pyronine PYR(G) films on GaAs single crystal have been investigated. ► The photovoltaic properties of Au/PYR/GaAs/Au:Zn were investigated under illumination (20 mW/cm 2 ) through the finger mesh gold electrode. - Abstract: The electrical and photovoltaic properties of thermally vacuum deposited pyronine G(Y), PYR(G), thin films on GaAs single crystal were investigated. The current–voltage (I–V) characteristic of Au/PYR(G)/GaAs/Au:Zn heterojunction diode under dark condition was measured at different temperatures in the range 298–373 K. The device exhibits a rectifying property. The current in the prepared heterojunction was found to obey the thermionic emission model assisted by tunneling in the voltage range (0 s , shunt resistance, R sh , ideality factor, n, and the barrier height, Φ b . The variation of 1/C 2 with voltage shows a straight line at high frequency that indicates the formation of barrier between PYR(G) and GaAs and the potential barrier height is found to be 0.82 eV at room temperature (298 K). The photovoltaic properties of Au/PYR(G)/GaAs/Au:Zn heterojunction were investigated under illumination by using light intensity of 20 mW/cm 2 through the finger mesh gold electrode. The short circuit current (I sc ), open circuit voltages (V oc ), fill factor (FF) and the power conversion efficiency (η) of the device were evaluated from the I–V characteristics under illumination.

  8. Atomically precise graphene nanoribbon heterojunctions from a single molecular precursor

    Science.gov (United States)

    Nguyen, Giang D.; Tsai, Hsin-Zon; Omrani, Arash A.; Marangoni, Tomas; Wu, Meng; Rizzo, Daniel J.; Rodgers, Griffin F.; Cloke, Ryan R.; Durr, Rebecca A.; Sakai, Yuki; Liou, Franklin; Aikawa, Andrew S.; Chelikowsky, James R.; Louie, Steven G.; Fischer, Felix R.; Crommie, Michael F.

    2017-11-01

    The rational bottom-up synthesis of atomically defined graphene nanoribbon (GNR) heterojunctions represents an enabling technology for the design of nanoscale electronic devices. Synthetic strategies used thus far have relied on the random copolymerization of two electronically distinct molecular precursors to yield GNR heterojunctions. Here we report the fabrication and electronic characterization of atomically precise GNR heterojunctions prepared through late-stage functionalization of chevron GNRs obtained from a single precursor. Post-growth excitation of fully cyclized GNRs induces cleavage of sacrificial carbonyl groups, resulting in atomically well-defined heterojunctions within a single GNR. The GNR heterojunction structure was characterized using bond-resolved scanning tunnelling microscopy, which enables chemical bond imaging at T = 4.5 K. Scanning tunnelling spectroscopy reveals that band alignment across the heterojunction interface yields a type II heterojunction, in agreement with first-principles calculations. GNR heterojunction band realignment proceeds over a distance less than 1 nm, leading to extremely large effective fields.

  9. Silicon nanowire array architecture for heterojunction electronics

    Energy Technology Data Exchange (ETDEWEB)

    Solovan, M. M., E-mail: m.solovan@chnu.edu.ua [Chernivtsi National University, Department of Electronics and Energy Engeneering (Ukraine); Brus, V. V. [Helmholtz-Zentrum Berlin fur Materialien und Energie GmbH, Institute for Silicon Photovoltaics (Germany); Mostovyi, A. I.; Maryanchuk, P. D.; Orletskyi, I. G.; Kovaliuk, T. T. [Chernivtsi National University, Department of Electronics and Energy Engeneering (Ukraine); Abashin, S. L. [National Aerospace University “Kharkiv Aviation Institute”, Department of Physics (Ukraine)

    2017-04-15

    Photosensitive nanostructured heterojunctions n-TiN/p-Si were fabricated by means of titanium nitride thin films deposition (n-type conductivity) by the DC reactive magnetron sputtering onto nano structured single crystal substrates of p-type Si (100). The temperature dependencies of the height of the potential barrier and series resistance of the n-TiN/p-Si heterojunctions were investigated. The dominant current transport mechanisms through the heterojunctions under investigation were determined at forward and reverse bias. The heterojunctions under investigation generate open-circuit voltage V{sub oc} = 0.8 V, short-circuit current I{sub sc} = 3.72 mA/cm{sup 2} and fill factor FF = 0.5 under illumination of 100 mW/cm{sup 2}.

  10. Asymmetric anode and cathode extraction structure fast recovery diode

    Science.gov (United States)

    Xie, Jiaqiang; Ma, Li; Gao, Yong

    2018-05-01

    This paper presents an asymmetric anode structure and cathode extraction fast and soft recovery diode. The device anode is partial-heavily doped and partial-lightly doped. The P+ region is introduced into the cathode. Firstly, the characteristics of the diode are simulated and analyzed. Secondly, the diode was fabricated and its characteristics were tested. The experimental results are in good agreement with the simulation results. The results show that, compared with the P–i–N diode, although the forward conduction characteristic of the diode is declined, the reverse recovery peak current is reduced by 47%, the reverse recovery time is shortened by 20% and the softness factor is doubled. In addition, the breakdown voltage is increased by 10%. Project supported by the National Natural Science Foundation of China (No. 51177133).

  11. High-power green diode laser systems for biomedical applications

    DEFF Research Database (Denmark)

    Müller, André

    propagation parameters and therefore efficiently increases the brightness of compact and cost-effective diode laser systems. The condition of overlapping beams is an ideal scenario for subsequent frequency conversion. Based on sum-frequency generation of two beam combined diode lasers a 3.2 fold increase...... output power of frequency doubled single emitters is limited by thermal effects potentially resulting in laser degradation and failure. In this work new concepts for power scaling of visible diode laser systems are introduced that help to overcome current limitations and enhance the application potential....... Implementing the developed concept of frequency converted, beam combined diode laser systems will help to overcome the high pump thresholds for ultrabroad bandwidth titanium sapphire lasers, leading towards diode based high-resolution optical coherence tomography with enhanced image quality. In their entirety...

  12. Magneto-electronic properties and spin-resolved I-V curves of a Co/GeSe heterojunction diode: an ab initio study

    Science.gov (United States)

    Makinistian, Leonardo; Albanesi, Eduardo A.

    2013-06-01

    We present ab initio calculations of magnetoelectronic and transport properties of the interface of hcp Cobalt (001) and the intrinsic narrow-gap semiconductor germanium selenide (GeSe). Using a norm-conserving pseudopotentials scheme within DFT, we first model the interface with a supercell approach and focus on the spin-resolved densities of states and the magnetic moment (spin and orbital components) at the different atomic layers that form the device. We also report a series of cuts (perpendicular to the plane of the heterojunction) of the electronic and spin densities showing a slight magnetization of the first layers of the semiconductor. Finally, we model the device with a different scheme: using semiinfinite electrodes connected to the heterojunction. These latter calculations are based upon a nonequilibrium Green's function approach that allows us to explore the spin-resolved electronic transport under a bias voltage (spin-resolved I-V curves), revealing features of potential applicability in spintronics.

  13. Modulation of Frequency Doubled DFB-Tapered Diode Lasers for Medical Treatment

    DEFF Research Database (Denmark)

    Christensen, Mathias; Hansen, Anders Kragh; Noordegraaf, Danny

    2017-01-01

    have demonstrated power modulation from 0.1 Hz to 10 kHz at 532 nm with a modulation depth above 97% by wavelength detuning of the laser diode. The laser diode is a 1064 nm monolithic device with a distributed feedback (DFB) laser as the master oscillator (MO), and a tapered power amplifier (PA......). The MO and PA have separate electrical contacts and the modulation is achieved with wavelength tuning by adjusting the current through the MO 40 mA....

  14. Photovoltaic effects of Si-CdSe n-n heterojunctions

    International Nuclear Information System (INIS)

    Chung, C.C.; Kim, W.T.

    1979-01-01

    Si-CdSe n-n heterojunction have been prepared by growing CdSe thin film on Si(111) surface with vacuum deposition method. The sign of photovoltage of this heterojunction was reversed at 1.67eV. The energy band profile of this heterojunction was deduced from its electrical and optical properties. This lattice mismatching abrupt heterojunction had a discontinuous energy band profile with the discontinuity of 0.87eV at the conduction band, of 0.27eV at the valance band. (author)

  15. High performance MIIM diode based on cobalt oxide/titanium oxide

    Science.gov (United States)

    Herner, S. B.; Weerakkody, A. D.; Belkadi, A.; Moddel, G.

    2017-05-01

    Optical rectennas for infrared energy harvesting commonly incorporate metal/double-insulator/metal diodes. Required diode characteristics include high responsivity and low resistance near zero bias with a sub-micron area, which have not been obtainable simultaneously. Diodes based on a new material set, Co/Co3O4/TiO2/Ti and an area of 0.071 μm2, provide a median maximum responsivity of 4.1 A/W, a median zero-bias responsivity of 1.2 A/W, and a median resistance of 14 kΩ. The highest performing diode has a maximum responsivity of 4.4 A/W, a zero-bias responsivity of 2.2 A/W, and a resistance of 18 kΩ.

  16. Depleted Nanocrystal-Oxide Heterojunctions for High-Sensitivity Infrared Detection

    Science.gov (United States)

    2015-08-28

    Approved for Public Release; Distribution Unlimited Final Report: 4.3 Electronic Sensing - Depleted Nanocrystal- Oxide Heterojunctions for High...reviewed journals: Final Report: 4.3 Electronic Sensing - Depleted Nanocrystal- Oxide Heterojunctions for High-Sensitivity Infrared Detection Report Title...PERCENT_SUPPORTEDNAME FTE Equivalent: Total Number: 1 1 Final Progress Report Project title: Depleted Nanocrystal- Oxide Heterojunctions for High

  17. Enhanced piezoelectric operation of NiO/GaN heterojunction generator by suppressed internal carrier screening

    International Nuclear Information System (INIS)

    Jeong, Dae Kyung; Kang, Jin-Ho; Ryu, Sang-Wan; Ha, Jun-Seok

    2017-01-01

    A NiO/GaN heterojunction piezoelectric generator was fabricated, and the improvement in device performance was analyzed. The electrical properties of NiO were varied by regulating the gas environment during sputtering. An optimized NiO layer was adopted for high piezoelectric voltage generation. Internal carrier screening was revealed to be the dominant mechanism degrading the piezoelectric performance, necessitating the suppression of carrier screening. The highly resistive NiO layer was advantageous in the suppression of carrier transport across the junction that screened the piezoelectric field. The maximum piezoelectric voltage and current density values obtained were 7.55 V and 1.14 µ A cm −2 , respectively. The power obtained was sufficient to operate a light-emitting diode combined with a charging circuit. (paper)

  18. Toward designing semiconductor-semiconductor heterojunctions for photocatalytic applications

    Science.gov (United States)

    Zhang, Liping; Jaroniec, Mietek

    2018-02-01

    Semiconductor photocatalysts show a great potential for environmental and energy-related applications, however one of the major disadvantages is their relatively low photocatalytic performance due to the recombination of electron-hole pairs. Therefore, intensive research is being conducted toward design of heterojunctions, which have been shown to be effective for improving the charge-transfer properties and efficiency of photocatalysts. According to the type of band alignment and direction of internal electric field, heterojunctions are categorized into five different types, each of which is associated with its own charge transfer characteristics. Since the design of heterojunctions requires the knowledge of band edge positions of component semiconductors, the commonly used techniques for the assessment of band edge positions are reviewed. Among them the electronegativity-based calculation method is applied for a large number of popular visible-light-active semiconductors, including some widely investigated bismuth-containing semiconductors. On basis of the calculated band edge positions and the type of component semiconductors reported, heterojunctions composed of the selected bismuth-containing semiconductors are proposed. Finally, the most popular synthetic techniques for the fabrication of heterojunctions are briefly discussed.

  19. -MoS2 Lateral Heterojunctions

    KAUST Repository

    Li, Ming-yang

    2018-02-28

    2D layered heterostructures have attracted intensive interests due to their unique optical, transport, and interfacial properties. The laterally stitched heterojunction based on dissimilar 2D transition metal dichalcogenides forms an intrinsic p–n junction without the necessity of applying an external voltage. However, no scalable processes are reported to construct the devices with such lateral heterostructures. Here, a scalable strategy, two-step and location-selective chemical vapor deposition, is reported to synthesize self-aligned WSe2–MoS2 monolayer lateral heterojunction arrays and demonstrates their light-emitting devices. The proposed fabrication process enables the growth of high-quality interfaces and the first successful observation of electroluminescence at the WSe2–MoS2 lateral heterojunction. The electroluminescence study has confirmed the type-I alignment at the interface rather than commonly believed type-II alignment. This self-aligned growth process paves the way for constructing various 2D lateral heterostructures in a scalable manner, practically important for integrated 2D circuit applications.

  20. n-(CdMgTe/CdTe)/(p-(CdTe/ZnCdTe/ZnTe)/p-GaAs heterostructure diode for photosensor applications

    Science.gov (United States)

    Yahia, I. S.; AlFaify, S.; Abutalib, M. M.; Chusnutdinow, S.; Wojtowicz, T.; Karczewski, G.; Yakuphanoglu, F.; Al-Bassam, A.; El-Naggar, A. M.; El-Bashir, S. M.

    2016-05-01

    High quality n-(CdMgTe:I/n-CdTe:I)/(p-CdTe:N/p-ZnCdTe:N/p-ZnTe:N)/p-GaAs heterojunction diodes have been fabricated by molecular beam epitaxial growth. The illumination effect on the complex impedance and conductivity of heterostructure diode was investigated. The illumination intensities were taken up to the 200 mW/cm2 with frequency range of 42 Hz to 1 MHz. The observed real and imaginary parts of the complex impedance were strongly dependent on the illumination frequency. The inverse relation was observed between the illumination intensity and the complex impedance. The relaxation mechanism of the diode was analyzed by the Cole-Cole plots. The radius of the Cole-Cole curve decreases with increasing illumination intensity. This suggests a mechanism of illumination dependent on the relaxation process. It is also found that the conductivity increases linearly with increasing the illumination intensity. We can conclude that the new design heterostructure diode in our work is a good candidate in photodetector and optoelectronic applications.

  1. Slanted n-ZnO/p-GaN nanorod arrays light-emitting diodes grown by oblique-angle deposition

    Directory of Open Access Journals (Sweden)

    Ya-Ju Lee

    2014-05-01

    Full Text Available High-efficient ZnO-based nanorod array light-emitting diodes (LEDs were grown by an oblique-angle deposition scheme. Due to the shadowing effect, the inclined ZnO vapor-flow was selectively deposited on the tip surfaces of pre-fabricated p-GaN nanorod arrays, resulting in the formation of nanosized heterojunctions. The LED architecture composed of the slanted n-ZnO film on p-GaN nanorod arrays exhibits a well-behaving current rectification of junction diode with low turn-on voltage of 4.7 V, and stably emits bluish-white luminescence with dominant peak of 390 nm under the operation of forward injection currents. In general, as the device fabrication does not involve passivation of using a polymer or sophisticated material growth techniques, the revealed scheme might be readily applied on other kinds of nanoscale optoelectronic devices.

  2. Significantly improved photovoltaic performance in polymer bulk heterojunction solar cells with graphene oxide /PEDOT:PSS double decked hole transport layer

    Science.gov (United States)

    Rafique, Saqib; Abdullah, Shahino Mah; Shahid, Muhammad Mehmood; Ansari, Mohammad Omaish; Sulaiman, Khaulah

    2017-01-01

    This work demonstrates the high performance graphene oxide (GO)/PEDOT:PSS doubled decked hole transport layer (HTL) in the PCDTBT:PC71BM based bulk heterojunction organic photovoltaic device. The devices were tested on merits of their power conversion efficiency (PCE), reproducibility, stability and further compared with the devices with individual GO or PEDOT:PSS HTLs. Solar cells employing GO/PEDOT:PSS HTL yielded a PCE of 4.28% as compared to either of individual GO or PEDOT:PSS HTLs where they demonstrated PCEs of 2.77 and 3.57%, respectively. In case of single GO HTL, an inhomogeneous coating of ITO caused the poor performance whereas PEDOT:PSS is known to be hygroscopic and acidic which upon direct contact with ITO reduced the device performance. The improvement in the photovoltaic performance is mainly ascribed to the increased charge carriers mobility, short circuit current, open circuit voltage, fill factor, and decreased series resistance. The well matched work function of GO and PEDOT:PSS is likely to facilitate the charge transportation and an overall reduction in the series resistance. Moreover, GO could effectively block the electrons due to its large band-gap of ~3.6 eV, leading to an increased shunt resistance. In addition, we also observed the improvement in the reproducibility and stability.

  3. Significantly improved photovoltaic performance in polymer bulk heterojunction solar cells with graphene oxide /PEDOT:PSS double decked hole transport layer.

    Science.gov (United States)

    Rafique, Saqib; Abdullah, Shahino Mah; Shahid, Muhammad Mehmood; Ansari, Mohammad Omaish; Sulaiman, Khaulah

    2017-01-13

    This work demonstrates the high performance graphene oxide (GO)/PEDOT:PSS doubled decked hole transport layer (HTL) in the PCDTBT:PC 71 BM based bulk heterojunction organic photovoltaic device. The devices were tested on merits of their power conversion efficiency (PCE), reproducibility, stability and further compared with the devices with individual GO or PEDOT:PSS HTLs. Solar cells employing GO/PEDOT:PSS HTL yielded a PCE of 4.28% as compared to either of individual GO or PEDOT:PSS HTLs where they demonstrated PCEs of 2.77 and 3.57%, respectively. In case of single GO HTL, an inhomogeneous coating of ITO caused the poor performance whereas PEDOT:PSS is known to be hygroscopic and acidic which upon direct contact with ITO reduced the device performance. The improvement in the photovoltaic performance is mainly ascribed to the increased charge carriers mobility, short circuit current, open circuit voltage, fill factor, and decreased series resistance. The well matched work function of GO and PEDOT:PSS is likely to facilitate the charge transportation and an overall reduction in the series resistance. Moreover, GO could effectively block the electrons due to its large band-gap of ~3.6 eV, leading to an increased shunt resistance. In addition, we also observed the improvement in the reproducibility and stability.

  4. Highly efficient single-pass frequency doubling of a continuous-wave distributed feedback laser diode using a PPLN waveguide crystal at 488 nm.

    Science.gov (United States)

    Jechow, Andreas; Schedel, Marco; Stry, Sandra; Sacher, Joachim; Menzel, Ralf

    2007-10-15

    A continuous-wave distributed feedback diode laser emitting at 976 nm was frequency doubled by the use of a periodically poled lithium niobate waveguide crystal with a channel size of 3 microm x 5 microm and an interaction length of 10 mm. A laser to waveguide coupling efficiency of 75% could be achieved resulting in 304 mW of incident infrared light inside the waveguide. Blue laser light emission of 159 mW at 488 nm has been generated, which equals to a conversion efficiency of 52%. The resulting wall plug efficiency was 7.4%.

  5. Direct pumping of ultrashort Ti:sapphire lasers by a frequency doubled diode laser

    DEFF Research Database (Denmark)

    Müller, André; Jensen, Ole Bjarlin; Unterhuber, Angelika

    2011-01-01

    electro-optical efficiency of the diode laser. Autocorrelation measurements show that pulse widths of less than 20 fs can be expected with an average power of 52 mW when using our laser. These results indicate the high potential of direct diode laser pumped Ti: sapphire lasers to be used in applications....... When using our diode laser system, the optical conversion efficiencies from green to near-infrared light reduces to 75 % of the values achieved with the commercial pump laser. Despite this reduction the overall efficiency of the Ti: sapphire laser is still increased by a factor > 2 due to the superior...... like retinal optical coherence tomography (OCT) or pumping of photonic crystal fibers for CARS (coherent anti-stokes Raman spectroscopy) microscopy....

  6. Radial Nanowire Light-Emitting Diodes in the (AlxGa1-x)yIn1-yP Material System

    DEFF Research Database (Denmark)

    Berg, Alexander; Yazdi, Sadegh; Nowzari, Ali

    2016-01-01

    layer for emission and AlGaInP as charge carrier barriers. The different layers were analyzed by X-ray diffraction to ensure lattice-matched radial structures. Furthermore, we evaluated the material composition and heterojunction interface sharpness by scanning transmission electron microscopy energy......Nanowires have the potential to play an important role for next-generation light-emitting diodes. In this work, we present a growth scheme for radial nanowire quantum-well structures in the AlGaInP material system using a GaInP nanowire core as a template for radial growth with GaInP as the active...... dispersive X-ray spectroscopy. The electro-optical properties were investigated by injection luminescence measurements. The presented results can be a valuable track toward radial nanowire light-emitting diodes in the AlGaInP material system in the red/orange/yellow color spectrum....

  7. Analysis of the Effect of Double-wavelength Diode Laser for Relase of Pain%双波长半导体激光止痛效果分析

    Institute of Scientific and Technical Information of China (English)

    孙娟; 刘剑; 曹慧英

    2009-01-01

    Objective: Adopting quantified index to observe and analyze the effect of acute and chronic pain through double-wavelength diode laser. Methods: Using diode laser with the wavelength of 650nm / 810nm to irradiate the special tissues or aching points of patient, selecting different frequency, intensity and time to make treatment. Results: VAS scoring: P<0.05, the total efficient rate is 96%. Conclusions: Treatment with double-wavelength diode laser to various acute and chronic pain is just a definitely good curative effect, and it can release the effects of patient sleeping, daily life, communication with people and life interests caused by pain, and finally enhancing the quality of life.%目的:采用量化指标观察分析双波长半导体激光治疗急慢性疼痛的效果.方法:使用波长为650nm/810nm的半导体激光照射患者特定组织或痛点,选择不同功率、光斑、时间进行治疗.结果:VAS评分:P<0.05、治疗总有效率为96%.结论:双波长半导体激光治疗各种急慢性疼痛疗效肯定,并可缓解因疼痛对患者睡眠、日常生活、与人交往和生活兴趣的影响,提高生活质量.

  8. Amplified spontaneous emission from ZnO in n-ZnO/ZnO nanodots-SiO(2) composite/p-AlGaN heterojunction light-emitting diodes.

    Science.gov (United States)

    Shih, Ying Tsang; Wu, Mong Kai; Li, Wei Chih; Kuan, Hon; Yang, Jer Ren; Shiojiri, Makoto; Chen, Miin Jang

    2009-04-22

    This study demonstrates amplified spontaneous emission (ASE) of the ultraviolet (UV) electroluminescence (EL) from ZnO at lambda~380 nm in the n-ZnO/ZnO nanodots-SiO(2) composite/p- Al(0.12)Ga(0.88)N heterojunction light-emitting diode. A SiO(2) layer embedded with ZnO nanodots was prepared on the p-type Al(0.12)Ga(0.88)N using spin-on coating of SiO(2) nanoparticles followed by atomic layer deposition (ALD) of ZnO. An n-type Al-doped ZnO layer was deposited upon the ZnO nanodots-SiO(2) composite layer also by the ALD technique. High-resolution transmission electron microscopy (HRTEM) reveals that the ZnO nanodots embedded in the SiO(2) matrix have diameters of 3-8 nm and the wurtzite crystal structure, which allows the transport of carriers through the thick ZnO nanodots-SiO(2) composite layer. The high quality of the n-ZnO layer was manifested by the well crystallized lattice image in the HRTEM picture and the low-threshold optically pumped stimulated emission. The low refractive index of the ZnO nanodots-SiO(2) composite layer results in the increase in the light extraction efficiency from n-ZnO and the internal optical feedback of UV EL into n-ZnO layer. Consequently, significant enhancement of the UV EL intensity and super-linear increase in the EL intensity, as well as the spectral narrowing, with injection current were observed owing to ASE in the n-ZnO layer.

  9. Conductance of graphene-based double-barrier nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Setare, M R [Department of Campus of Bijar, University of Kurdistan, Bijar (Iran, Islamic Republic of); Jahani, D, E-mail: Rezakord@ipm.co, E-mail: Dariush110@gmail.co [Department of Physics, Razi University, Kermanshah (Iran, Islamic Republic of)

    2010-12-22

    The effect of a mass gap on the conductance of graphene double-barrier heterojunctions is studied. By obtaining the 2D expression for the electronic transport of the low energy excitations of pure graphene through double-barrier systems, it is found that the conductivity of these structures does not depend on the type of charge carriers in the zones of the electric field. However, a finite induced gap in the graphene spectrum makes conductivity dependent on the energy band index. We also discuss a few controversies concerning double-barrier systems stemming from an improper choice of the scattering angle. Then it is observed that, for some special values of the incident energy and potential's height, graphene junctions behave like left-handed materials, resulting in a maximum value for the conductivity.

  10. Conductance of graphene-based double-barrier nanostructures

    International Nuclear Information System (INIS)

    Setare, M R; Jahani, D

    2010-01-01

    The effect of a mass gap on the conductance of graphene double-barrier heterojunctions is studied. By obtaining the 2D expression for the electronic transport of the low energy excitations of pure graphene through double-barrier systems, it is found that the conductivity of these structures does not depend on the type of charge carriers in the zones of the electric field. However, a finite induced gap in the graphene spectrum makes conductivity dependent on the energy band index. We also discuss a few controversies concerning double-barrier systems stemming from an improper choice of the scattering angle. Then it is observed that, for some special values of the incident energy and potential's height, graphene junctions behave like left-handed materials, resulting in a maximum value for the conductivity.

  11. Conductance of graphene-based double-barrier nanostructures.

    Science.gov (United States)

    Setare, M R; Jahani, D

    2010-12-22

    The effect of a mass gap on the conductance of graphene double-barrier heterojunctions is studied. By obtaining the 2D expression for the electronic transport of the low energy excitations of pure graphene through double-barrier systems, it is found that the conductivity of these structures does not depend on the type of charge carriers in the zones of the electric field. However, a finite induced gap in the graphene spectrum makes conductivity dependent on the energy band index. We also discuss a few controversies concerning double-barrier systems stemming from an improper choice of the scattering angle. Then it is observed that, for some special values of the incident energy and potential's height, graphene junctions behave like left-handed materials, resulting in a maximum value for the conductivity.

  12. High-Power 1180-nm GaInNAs DBR Laser Diodes

    DEFF Research Database (Denmark)

    Aho, Antti T.; Viheriala, Jukka; Korpijarvi, Ville-Markus

    2017-01-01

    We report high-power 1180-nm GaInNAs distributed Bragg reflector laser diodes with and without a tapered amplifying section. The untapered and tapered components reached room temperature output powers of 655 mW and 4.04 W, respectively. The diodes exhibited narrow linewidth emission with side...... and better carrier confinement compared with traditional GaInAs quantum wells. The development opens new opportunities for the power scaling of frequency-doubled lasers with emission at yellow-orange wavelengths....

  13. Internal optical losses in very thin cw heterojunction laser diodes

    International Nuclear Information System (INIS)

    Butler, J.K.; Kressel, H.; Ladany, I.

    1975-01-01

    Theoretical calculations are presented showing the relationship between the internal laser absorption and structural parameters appropriate for cw room-temperature lasers. These diodes have submicron-thick recombination regions, and very small spacings between the heat sink and the recombination region to minimize the thermal resistance. The optical loss is shown to be strongly dependent on the degree of radiation confinement to the active region. In particular, absorption in the surface GaAs layer providing the ohmic contact becomes very significant when the intermediate (AlGa)As layer is reduced below about 1 μm. It is further shown that excessive penetration into the GaAs regions gives rise to anomalies in the far-field radiation profiles in the direction perpendicular to the junction plane. Proper design of the internal structure of the laser avoids large increases of the threshold current density as well as large decreases in the external differential quantum efficiency from interaction with the contact layer. The design curves presented can be used to predict the gain required at threshold for a broad range of structural parameters of interest in low-threshold laser design

  14. Near-infrared electroluminescence emission from an n-InN nanodots/p-Si heterojunction structure

    International Nuclear Information System (INIS)

    Wu Guoguang; Du Guotong; Gao Fubin; Shen Chunsheng; Li Wancheng; Wang Hui

    2012-01-01

    An n-InN nanodots/p-Si(1 1 1) heterojunction diode was fabricated by plasma-assisted molecular beam epitaxy. The device shows clear rectifying behaviour with a turn-on voltage of approximately 1.2 V at room temperature. The near-infrared electroluminescence (EL) can be observed under forward bias, which covers a wide wavelength range. In comparison with the photoluminescence spectra, the maximum of the EL spectra has a blueshift which is probably due to the size quantization effect of small-sized InN nanodots and their stronger contribution to the EL intensity. On the other hand, there is an obvious enhancement of the less dominant transitions on the short wavelength side of the EL spectra, which may arise from the recombination of the injected holes with the extremely high-density surface electrons of InN nanodots. (paper)

  15. Mathematical modeling of a passively Q-switched diode laser

    International Nuclear Information System (INIS)

    Abdul Ghani, B.; Hammadi, M.

    2009-11-01

    A mathematical model describing the dynamic emission of the intracavity frequency doubling (IFD) of a gain-switched InGaAs/GaAs/KTP and a gain-switched mode-locked two-sections tapered ridge-waveguide InGaAs/GaAs diode laser has been presented. The IFD of a gain-switched and a gain-switched mode-locked two-sections diode laser is modeled where one section is electrically pumped to proved gain while the second section is unpumped (reverse biased) to provide a saturable absorber. (author)

  16. Improved light emission from n-ZnO/p-Si heterojunction with HfO{sub 2} as an electron blocking layer

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhao; Li, Borui [Key Lab of Artificial Micro- and Nano- structures of Ministry of Education of China, Department of Electronic Science and Technology, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Mo, Xiaoming [School of Physical Science and Technology, Guangxi University, Nanning, Guangxi 530004 (China); Zhou, Kai [Key Lab of Artificial Micro- and Nano- structures of Ministry of Education of China, Department of Electronic Science and Technology, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Li, Songzhan [School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan 430073 (China); Song, Zengcai; Lei, Hongwei; Wen, Jian; Zhu, Ziqiang [Key Lab of Artificial Micro- and Nano- structures of Ministry of Education of China, Department of Electronic Science and Technology, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Fang, Guojia, E-mail: gjfang@whu.edu.cn [Key Lab of Artificial Micro- and Nano- structures of Ministry of Education of China, Department of Electronic Science and Technology, School of Physics and Technology, Wuhan University, Wuhan 430072 (China)

    2017-04-15

    Light-emitting diodes (LEDs) based on ZnO were fabricated on a p-Si substrate by using a pulsed laser deposition system. Significant electroluminescence (EL) improvement was demonstrated with the insertion of an HfO{sub 2} electron blocking layer (EBL) in n-ZnO/p-Si heterojunctions. Distinct near-band-edge emission at around 392 nm accompanying by a broadly strong visible emission was achieved when a proper thickness of HfO{sub 2} EBL was used. Current-voltage and capacitance-voltage measurements confirmed that a proper thickness of the HfO{sub 2} EBL can effectively balance the injection of electrons and holes, resulting in an increase of radiative recombination in the ZnO active layer and thus enhancing the EL performance of the devices. Five independent emissions corresponding to five different transition processes were proposed to clarify the EL origination of the n-ZnO/HfO{sub 2}/p-Si heterojunction LEDs by Gaussian deconvolutions. It is hoped that results in this work should be helpful for the development of ZnO-based LEDs that can integrate ZnO with the Si planar technology.

  17. A fast and zero-biased photodetector based on GaTe-InSe vertical 2D p-n heterojunction

    Science.gov (United States)

    Feng, W.; Jin, Z.; Yuan, J.; Zhang, J.; Jia, S.; Dong, L.; Yoon, J.; Zhou, L.; Vajtai, R.; Tour, J. M.; Ajayan, P. M.; Hu, P.; Lou, J.

    2018-04-01

    p-n junctions serve as the building blocks for fundamental semiconductor devices, such as solar cells, light-emitting diodes (LEDs) and photodetectors. With recent studies unveiling the excellent optoelectronic properties of two-dimensional (2D) semiconductors, they are considered to be superb candidates for high performance p-n junctions. Here, we fabricate a vertical GaTe-InSe van der Waals (vdWs) p-n heterojunction by a PDMS-assisted transfer technique without etching. The fabricated p-n heterojunction shows gate-tunable current-rectifying behavior with a rectification factor reaching 1000. In addition, it features fast photodetection under zero bias as well as a high power conversion efficiency (PCE). Under 405 nm laser excitation, the zero-biased photodetector shows a high responsivity of 13.8 mA W-1 as well as a high external quantum efficiency (EQE) of 4.2%. Long-term stability is also observed and a response time of 20 µs is achieved due to stable and fast carrier transit through the built-in electric field in the depletion region. Fast and efficient charge separation in the vertical 2D p-n junction paves the way for developing 2D photodetectors with zero dark current, high speed and low power consumption.

  18. Highly efficient and stable white organic light emitting diode base on double recombination zones of phosphorescent blue/orange emitters.

    Science.gov (United States)

    Lee, Seok Jae; Koo, Ja Ryong; Lim, Dong Hwan; Park, Hye Rim; Kim, Young Kwan; Ha, Yunkyoung

    2011-08-01

    We demonstrated efficient and stable white phosphorescent organic light-emitting diodes (OLEDs) with double-emitting layers (D-EMLs), which were comprised of two emissive layers with a hole transport-type host of N,N'-dicarbazolyl-3,5-benzene (mCP) and a electron transport-type host of 2,2',2"-(1,3,5-benzenetryl)tris(1-phenyl)-1H-benzimidazol (TPBi) with blue/orange emitters, respectively. We fabricated two type white devices with single emitting layer (S-EML) and D-EML of orange emitter, maintaining double recombination zone of blue emitter. In addition, the device architecture was developed to confine excitons inside the D-EMLs and to manage triplet excitons by controlling the charge injection. As a result, light-emitting performances of white OLED with D-EMLs were improved and showed the steady CIE coordinates compared to that with S-EML of orange emitter, which demonstrated the maximum luminous efficiency and external quantum efficiency were 21.38 cd/A and 11.09%. It also showed the stable white emission with CIE(x,y) coordinates from (x = 0.36, y = 0.37) at 6 V to (x = 0.33, y = 0.38) at 12 V.

  19. Pseudo-diode based on protonic/electronic hybrid oxide transistor

    Science.gov (United States)

    Fu, Yang Ming; Liu, Yang Hui; Zhu, Li Qiang; Xiao, Hui; Song, An Ran

    2018-01-01

    Current rectification behavior has been proved to be essential in modern electronics. Here, a pseudo-diode is proposed based on protonic/electronic hybrid indium-gallium-zinc oxide electric-double-layer (EDL) transistor. The oxide EDL transistors are fabricated by using phosphorous silicate glass (PSG) based proton conducting electrolyte as gate dielectric. A diode operation mode is established on the transistor, originating from field configurable proton fluxes within the PSG electrolyte. Current rectification ratios have been modulated to values ranged between ˜4 and ˜50 000 with gate electrode biased at voltages ranged between -0.7 V and 0.1 V. Interestingly, the proposed pseudo-diode also exhibits field reconfigurable threshold voltages. When the gate is biased at -0.5 V and 0.3 V, threshold voltages are set to ˜-1.3 V and -0.55 V, respectively. The proposed pseudo-diode may find potential applications in brain-inspired platforms and low-power portable systems.

  20. Pulsed electron beam generation with fast repetitive double pulse system

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Surender Kumar; Deb, Pankaj; Shyam, Anurag, E-mail: surender80@gmail.com [Energetics and Electromagnetics Division, Bhabha Atomic Research Centre, Visakhapatnam (India); Sharma, Archana [Accelerator and Pulse Power Division, Bhabha Atomic Research Centre, Mumbai (India)

    2014-07-01

    Longer duration high voltage pulse (∼ 100 kV, 260 ns) is generated and reported using helical pulse forming line in compact geometry. The transmission line characteristics of the helical pulse forming line are also used to develop fast repetition double pulse system with very short inter pulse interval. It overcomes the limitations caused due to circuit parameters, power supplies and load characteristics for fast repetitive high voltage pulse generation. The high voltage double pulse of 100 kV, 100 ns with an inter pulse repetition interval of 30 ns is applied across the vacuum field emission diode for pulsed electron beam generation. The electron beam is generated from cathode material by application of negative high voltage (> 100 kV) across the diode by explosive electron emission process. The vacuum field emission diode is made of 40 mm diameter graphite cathode and SS mesh anode. The anode cathode gap was 6 mm and the drift tube diameter was 10 cm. The initial experimental results of pulsed electron beam generation with fast repetitive double pulse system are reported and discussed. (author)

  1. Comparison of SHG Power Modulation by Wavelength Detuning of DFB- and DBR-Tapered Laser Diodes

    DEFF Research Database (Denmark)

    Christensen, Mathias; Hansen, Anders Kragh; Noordegraaf, Danny

    2016-01-01

    of the response of the second harmonic light to perturbations of the infrared laser diode and compare how the response differs for DFB- and DBR-Tapered laser diodes. We show that the visible light can be modulated from CW to kHz with modulation depths above 90% by wavelength detuning the laser diode.......Pulsed visible lasers are used for a number of applications such as laser displays and medical treatments. Generating this visible light by direct frequency doubling of high power diode lasers opens new possibilities on how the power modulation can be performed. We present an investigation...

  2. Lambert W-function based exact representation for double diode model of solar cells: Comparison on fitness and parameter extraction

    International Nuclear Information System (INIS)

    Gao, Xiankun; Cui, Yan; Hu, Jianjun; Xu, Guangyin; Yu, Yongchang

    2016-01-01

    Highlights: • Lambert W-function based exact representation (LBER) is presented for double diode model (DDM). • Fitness difference between LBER and DDM is verified by reported parameter values. • The proposed LBER can better represent the I–V and P–V characteristics of solar cells. • Parameter extraction difference between LBER and DDM is validated by two algorithms. • The parameter values extracted from LBER are more accurate than those from DDM. - Abstract: Accurate modeling and parameter extraction of solar cells play an important role in the simulation and optimization of PV systems. This paper presents a Lambert W-function based exact representation (LBER) for traditional double diode model (DDM) of solar cells, and then compares their fitness and parameter extraction performance. Unlike existing works, the proposed LBER is rigorously derived from DDM, and in LBER the coefficients of Lambert W-function are not extra parameters to be extracted or arbitrary scalars but the vectors of terminal voltage and current of solar cells. The fitness difference between LBER and DDM is objectively validated by the reported parameter values and experimental I–V data of a solar cell and four solar modules from different technologies. The comparison results indicate that under the same parameter values, the proposed LBER can better represent the I–V and P–V characteristics of solar cells and provide a closer representation to actual maximum power points of all module types. Two different algorithms are used to compare the parameter extraction performance of LBER and DDM. One is our restart-based bound constrained Nelder-Mead (rbcNM) algorithm implemented in Matlab, and the other is the reported R_c_r-IJADE algorithm executed in Visual Studio. The comparison results reveal that, the parameter values extracted from LBER using two algorithms are always more accurate and robust than those from DDM despite more time consuming. As an improved version of DDM, the

  3. Personal neutron diode dosemeter

    International Nuclear Information System (INIS)

    Barthe, J.; Lahaye, T.; Moiseev, T.; Portal, G.

    1993-01-01

    The control and management of neutron doses, received by workers in nuclear power or research facilities, requires a knowledge of cumulated dose equivalent or dose equivalent rate in real time. Individual dosemeters so far developed for this purpose are scarce and not very satisfactory. Passive dosemeters such as TLD systems based on the albedo effect, nuclear emulsions or solid track detectors, do not give sufficiently accurate measurements. Furthermore, the increase in the quality factor and the more restrictive new ICRP recommendations diminish the maximum admissible threshold making currently used systems obsolete. Other than bubble dosemeter systems, based on thermodynamic effects of a superheated gel, no simple electronic device is available at the present time. The development of diode based dosimetric gamma badges, having a size similar to that of credit cards, has stimulated us to design and develop a personal neutron dosemeter based on a double diode system. The results obtained are very encouraging and practical models should become available in the near future. (author)

  4. A self-powered nano-photodetector based on PFH/ZnO nanorods organic/inorganic heterojunction

    Science.gov (United States)

    Li, Xiaoyun; Liu, Wei; Li, Peigang; Song, Jia; An, Yuehua; Shen, Jingqin; Wang, Shunli; Guo, Daoyou

    2018-03-01

    PFH/ZnO nanorods heterojunctions were fabricated by spin-coating p-type Poly (9,9-dihexylfluorene) (PFH) on n-type vertically aligned ZnO nanorod arrays grown by a facile hydrothermal method on indium tin oxide (ITO) transparent conductive glass. A typical p-n junction behavior was observed in the fabricated heterojunction. The current of heterojunction increases and decreases dramatically by switching the illumination on and off at zero bias, showing potential self-powered photodetector applications. The heterojunction were capable of generating negative current when illuminated under an appropriate wavelength. The photoresponse properties of the heterojunction can be tuned by the applied bias. In vacuum, the rectifying behavior disappeared, and show only simple semiconductor behavior. Band structure of the heterojunction was schematic drawn and explain the mechanism of the properties of PFH/ZnO nanorods heterojunctions.

  5. A self-powered nano-photodetector based on PFH/ZnO nanorods organic/inorganic heterojunction

    Directory of Open Access Journals (Sweden)

    Xiaoyun Li

    2018-03-01

    Full Text Available PFH/ZnO nanorods heterojunctions were fabricated by spin-coating p-type Poly (9,9-dihexylfluorene (PFH on n-type vertically aligned ZnO nanorod arrays grown by a facile hydrothermal method on indium tin oxide (ITO transparent conductive glass. A typical p-n junction behavior was observed in the fabricated heterojunction. The current of heterojunction increases and decreases dramatically by switching the illumination on and off at zero bias, showing potential self-powered photodetector applications. The heterojunction were capable of generating negative current when illuminated under an appropriate wavelength. The photoresponse properties of the heterojunction can be tuned by the applied bias. In vacuum, the rectifying behavior disappeared, and show only simple semiconductor behavior. Band structure of the heterojunction was schematic drawn and explain the mechanism of the properties of PFH/ZnO nanorods heterojunctions.

  6. Chemically fixed p-n heterojunctions for polymer electronics by means of covalent B-F bond formation

    Science.gov (United States)

    Hoven, Corey V.; Wang, Huiping; Elbing, Mark; Garner, Logan; Winkelhaus, Daniel; Bazan, Guillermo C.

    2010-03-01

    Widely used solid-state devices fabricated with inorganic semiconductors, including light-emitting diodes and solar cells, derive much of their function from the p-n junction. Such junctions lead to diode characteristics and are attained when p-doped and n-doped materials come into contact with each other. Achieving bilayer p-n junctions with semiconducting polymers has been hindered by difficulties in the deposition of thin films with independent p-doped and n-doped layers. Here we report on how to achieve permanently fixed organic p-n heterojunctions by using a cationic conjugated polyelectrolyte with fluoride counteranions and an underlayer composed of a neutral conjugated polymer bearing anion-trapping functional groups. Application of a bias leads to charge injection and fluoride migration into the neutral layer, where irreversible covalent bond formation takes place. After the initial charging and doping, one obtains devices with no delay in the turn on of light-emitting electrochemical behaviour and excellent current rectification. Such devices highlight how mobile ions in organic media can open opportunities to realize device structures in ways that do not have analogies in the world of silicon and promise new opportunities for integrating organic materials within technologies now dominated by inorganic semiconductors.

  7. Exciplex formation and electroluminescent absorption in ultraviolet organic light-emitting diodes

    International Nuclear Information System (INIS)

    Zhang Qi; Zhang Hao; Xu Tao; Wei Bin; Zhang Xiao-Wen

    2015-01-01

    We investigated the formation of exciplex and electroluminescent absorption in ultraviolet organic light-emitting diodes (UV OLEDs) using different heterojunction structures. It is found that an energy barrier of over 0.3 eV between the emissive layer (EML) and adjacent transport layer facilitates exciplex formation. The electron blocking layer effectively confines electrons in the EML, which contributes to pure UV emission and enhances efficiency. The change in EML thickness generates tunable UV emission from 376 nm to 406 nm. In addition, the UV emission excites low-energy organic function layers and produces photoluminescent emission. In UV OLED, avoiding the exciplex formation and averting light absorption can effectively improve the purity and efficiency. A maximum external quantum efficiency of 1.2% with a UV emission peak of 376 nm is realized. (paper)

  8. Semiconductor lasers and herterojunction leds

    CERN Document Server

    Kressel, Henry

    2012-01-01

    Semiconductor Lasers and Heterojunction LEDs presents an introduction to the subject of semiconductor lasers and heterojunction LEDs. The book reviews relevant basic solid-state and electromagnetic principles; the relevant concepts in solid state physics; and the p-n junctions and heterojunctions. The text also describes stimulated emission and gain; the relevant concepts in electromagnetic field theory; and the modes in laser structures. The relation between electrical and optical properties of laser diodes; epitaxial technology; binary III-V compounds; and diode fabrication are also consider

  9. Characterization and technology of AlGaAs/GaAs phototransistor with double delta-doped base

    International Nuclear Information System (INIS)

    Radziewicz, D.; Sciana, B.; Pucicki, D.; Zborowska-Lindert, I.; Kovac, J.; Skriniarova, J.; Vincze, A.

    2011-01-01

    This work describes the fabrication and measurements of n-p-n AlGaAs/GaAs heterojunction phototransistor with double Zn-delta-doped 50 nm - thick GaAs base region. Parameters of the particular transistor epilayers were optimized by computer simulations using Silvaco Atlas program. (authors)

  10. Fabrication of Au nanoparticle/double-walled carbon nanotube film/TiO{sub 2} nanotube array/Ti heterojunctions with low resistance state for broadband photodetectors

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yan [School of Mathematics and Physics, Mianyang Teachers’ College (Mianyang Normal University), Mianyang 621000 (China); Zhang, Guowei; Dong, Zhanmin [Department of Physics and State Key Lab of Low-Dimensional Quantum Physics, Tsinghua University, Beijing100084 (China); Wei, Jinquan [Key Laboratory for Advanced Materials Processing Technology of Education Ministry, School of Materials Science and Engineering, Tsinghua University, Beijing100084 (China); Zhu, Jia-Lin [Department of Physics and State Key Lab of Low-Dimensional Quantum Physics, Tsinghua University, Beijing100084 (China); Sun, Jia-Lin, E-mail: jlsun@tsinghua.edu.cn [Department of Physics and State Key Lab of Low-Dimensional Quantum Physics, Tsinghua University, Beijing100084 (China); Collaborative Innovation Center of Quantum Matter, Beijing (China)

    2017-03-01

    A broadband photodetector based on Au nanoparticle/double-walled carbon nanotube film/TiO{sub 2} nanotube array /Ti multilayer heterojunction structures has been fabricated. A pre-electroforming process at a voltage bias of 35 V was used to switch the photodetector from a high resistance state to a low resistance state. At a voltage bias of 1 V under 532-nm laser illumination in air, the photoresponsivity of the device reached 15.41 mA W{sup −1}, which is enhanced by approximately 1.91 times when compared with that of device before deposition of Au nanoparticles. In addition, in a vacuum under a voltage bias of 1 V, the photoresponsivity of the device reached 23.29 mA W{sup −1} and 6.85 mA W{sup −1} at 532 nm and 1064 nm, respectively. The surface plasmon polaritons of the Au nanoparticles allowed extension of the sensitivity of the photosensitive regions into the mid-infrared range. The experimental results show that the device photoresponsivity reached 2.26 mA W{sup −1} at a voltage bias of 1 V under 10.6-µm laser illumination in air.

  11. Electro-optical modeling of bulk heterojunction solar cells

    Science.gov (United States)

    Kirchartz, Thomas; Pieters, Bart E.; Taretto, Kurt; Rau, Uwe

    2008-11-01

    We introduce a model for charge separation in bulk heterojunction solar cells that combines exciton transport to the interface between donor and acceptor phases with the dissociation of the bound electron/hole pair. We implement this model into a standard semiconductor device simulator, thereby creating a convenient method to simulate the optical and electrical characteristics of a bulk heterojunction solar cell with a commercially available program. By taking into account different collection probabilities for the excitons in the polymer and the fullerene, we are able to reproduce absorptance, internal and external quantum efficiency, as well as current/voltage curves of bulk heterojunction solar cells. We further investigate the influence of mobilities of the free excitons as well as the mobilities of the free charge carriers on the performance of bulk heterojunction solar cells. We find that, in general, the highest efficiencies are achieved with the highest mobilities. However, an optimum finite mobility of free charge carriers can result from a large recombination velocity at the contacts. In contrast, Langevin-type of recombination cannot lead to finite optimum mobilities even though this mechanism has a strong dependence on the free carrier mobilities.

  12. An X-band Schottky diode mixer in SiGe technology with tunable Marchand balun

    DEFF Research Database (Denmark)

    Michaelsen, Rasmus Schandorph; Johansen, Tom Keinicke; Tamborg, Kjeld M.

    2017-01-01

    In this paper, we propose a double balanced mixer with a tunable Marchand balun. The circuit is designed in a SiGe BiCMOS process using Schottky diodes. The tunability of the Marchand balun is used to enhance critical parameters for double balanced mixers. The local oscillator-IF isolation can...

  13. Temperature dependent electrical characteristics of an organic-inorganic heterojunction obtained from a novel organometal Mn complex

    International Nuclear Information System (INIS)

    Ocak, Y.S.; Ebeoglu, M.A.; Topal, G.; Kilicoglu, T.

    2010-01-01

    This study includes synthesizing a Mn hexaamide (MnHA) organometal compound (C 27 H 21 N 9 O 6 MnCl 2 ).(1/2H 2 O), fabrication of MnHA/n-Si organic-inorganic heterojunction and analysis of conduction mechanism of the device over the room temperature. After synthesizing the molecule, the structure of the compound was determined using spectroscopic methods. The Sn/MnHA/n-Si structure was constructed by forming a thin MnHA layer on n-Si inorganic semiconductor and evaporating Sn metal on organic complex. The structure has shown good rectifying behavior and obeys the thermionic emission theory. The current-voltage (I-V) characteristics of the diode have been measured at temperatures ranging from 300 to 380 K at 10 K intervals to determine the temperature dependent electrical characteristics of the device.

  14. High-power dual-wavelength external-Cavity diode laser based on tapered amplifier with tunable terahertz frequency difference

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2011-01-01

    Tunable dual-wavelength operation of a diode laser system based on a tapered diode amplifier with double-Littrow external-cavity feedback is demonstrated around 800nm. The two wavelengths can be tuned individually, and the frequency difference of the two wavelengths is tunable from 0.5 to 5:0 THz......, this is the highest output power from a dual-wavelength diode laser system operating with tunable terahertz frequency difference. © 2011 Optical Society of America....

  15. Hybrid organic-inorganic heterojunctions for photovoltaic applications

    OpenAIRE

    Dietmüller, Roland

    2012-01-01

    Hybrid organic-inorganic bulk heterojunction solar cells based on silicon nanocrystals (Si-nc) have been realized and investigated. A photo-induced charge transfer could be demonstrated in composites made of silicon nanocrystals and poly(3-hexylthiophene) (P3HT) or [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) via light-induced electron spin resonance measurements. With bulk heterojunction solar cells made of P3HT/Si-nc composites in a sandwich structure, open-circuit voltages of up to 0....

  16. 0.52eV Quaternary InGaAsSb Thermophotovoltaic Diode Technology

    International Nuclear Information System (INIS)

    MW Dashiell; JF Beausang; G Nichols; DM Depoy; LR Danielson; H Ehsani; KD Rahner; J Azarkevich; P Talamo; E Brown; S Burger; P Fourspring; W Topper; PF Baldasaro; CA Wang; R Huang; M Connors; G Turner; Z Shellenbarger; G Taylor; Jizhong Li; R Marinelli; D Donetski; S Anikeev; G Belenky; S Luryi; DR Taylor; J Hazel

    2004-01-01

    Thermophotovoltaic (TPV) diodes fabricated from 0.52eV lattice-matched InGaAsSb alloys are grown by Metal Organic Vapor Phase Epitaxy (MOVPE) on GaSb substrates. 4cm 2 multi-chip diode modules with front-surface spectral filters were tested in a vacuum cavity and attained measured efficiency and power density of 19% and 0.58 W/cm 2 respectively at operating at temperatures of T radiator = 950 C and T diode = 27 C. Device modeling and minority carrier lifetime measurements of double heterostructure lifetime specimens indicate that diode conversion efficiency is limited predominantly by interface recombination and photon energy loss to the GaSb substrate and back ohmic contact. Recent improvements to the diode include lattice-matched p-type AlGaAsSb passivating layers with interface recombination velocities less than 100 cm/s and new processing techniques enabling thinned substrates and back surface reflectors. Modeling predictions of these improvements to the diode architecture indicate that conversion efficiencies from 27-30% and ∼0.85 W/cm 2 could be attained under the above operating temperatures

  17. Novel five-state latch using double-peak negative differential resistance and standard ternary inverter

    Science.gov (United States)

    Shin, Sunhae; Rok Kim, Kyung

    2016-04-01

    We propose complement double-peak negative differential resistance (NDR) devices with ultrahigh peak-to-valley current ratio (PVCR) over 106 by combining tunnel diode with conventional CMOS and its compact five-state latch circuit by introducing standard ternary inverter (STI). At the “high”-state of STI, n-type NDR device (tunnel diode with nMOS) has 1st NDR characteristics with 1st peak and valley by band-to-band tunneling (BTBT) and trap-assisted tunneling (TAT), whereas p-type NDR device (tunnel diode with pMOS) has second NDR characteristics from the suppression of diode current by off-state MOSFET. The “intermediate”-state of STI permits double-peak NDR device to operate five-state latch with only four transistors, which has 33% area reduction compared with that of binary inverter and 57% bit-density reduction compared with binary latch.

  18. AIR FLOW AND ENVIRONMENTAL WIND VISUALIZATION USING A CW DIODE PUMPED FREQUENCY DOUBLED Nd:YAG Laser

    Directory of Open Access Journals (Sweden)

    Mircea UDREA

    2009-09-01

    Full Text Available Preliminary results obtained in developing a visualisation technique for non-invasive analysis of air flow inside INCAS subsonic wind tunnel and its appendages are presented. The visualisation technique is based on using a green light sheet generated by a continuous wave (cw longitudinally diode pumped and frequency doubled Nd:YAG laser. The output laser beam is expanded on one direction and collimated on rectangular direction. The system is tailored to the requirements of qualitative analysis and vortex tracking requirements inside the INCAS 2.5m x 2.0m subsonic wind tunnel test section, for measurements performed on aircraft models. Also the developed laser techniques is used for non-invasive air flow field analysis into environmental facilities settling room (air flow calming area. Quantitative analysis is enabled using special image processing tools upon movies and pictures obtained during the experiments. The basic experimental layout in the wind tunnel takes advantage of information obtained from the investigation of various aircraft models using the developed visualisation technique. These results are further developed using a Particle Imaging Velocimetry (PIV experimental technique.The focus is on visualisation techniques to be used for wind flow characterization at different altitudes in indus-trial and civil buildings areas using a light sheet generated by a Nd:YAG cw pumped and doubled laser at 532 nm wave-length. The results are important for prevention of biological/chemical disasters such as spreading of extremely toxic pol-lutants due to wind. Numerical simulations of wind flow and experimental visualisation results are compared. A good agreement between these results is observed.

  19. Exciplex-Sensitized Triplet-Triplet Annihilation in Heterojunction Organic Thin-Film.

    Science.gov (United States)

    Lin, Bo-Yen; Easley, Connor J; Chen, Chia-Hsun; Tseng, Po-Chen; Lee, Ming-Zer; Sher, Pin-Hao; Wang, Juen-Kai; Chiu, Tien-Lung; Lin, Chi-Feng; Bardeen, Christopher J; Lee, Jiun-Haw

    2017-03-29

    A new concept for organic light-emitting diodes (OLEDs) is presented, which is called exciplex-sensitized triplet-triplet annihilation (ESTTA). The exciplex formed at the organic heterojunction interface of 4,4',4″-tris(N-3-methyphenyl-N-phenyl-amino) triphenylamine and 9,10-bis(2'-naphthyl) anthracene (ADN) is used to sensitize the triplet-triplet annihilation (TTA) process on the ADN molecules. This results in a turn-on voltage (2.2 V) of the blue emission from the OLED below the bandgap (2.9 eV). From the transient electroluminescence measurement, blue emission totally came from the TTA process without direct recombination on the ADN molecules. The blue singlet exciton from the TTA process can be quenched by energy transfer to the exciplex, as revealed by transient photoluminescence measurements. This can be prevented by blocking the energy transfer path and improving the radiative recombination rate of blue emission. With the insertion of the "triplet diffusion and singlet blocking (TDSB)" layer and the incorporation of the dopant material, an ESTTA-OLED with external quantum efficiency of 5.1% was achieved, which consists of yellow and blue emission coming from the exciplex and ESTTA process, respectively.

  20. Mode locking and spatiotemporal chaos in periodically driven Gunn diodes

    DEFF Research Database (Denmark)

    Mosekilde, Erik; Feldberg, Rasmus; Knudsen, Carsten

    1990-01-01

    oscillation entrains with the external signal. This produces a devil’s staircase of frequency-locked solutions. At higher microwave amplitudes, period doubling and other forms of mode-converting bifurcations can be seen. In this interval the diode also exhibits spatiotemporal chaos. At still higher microwave...

  1. n-ZnO nanorods/p+-Si (111) heterojunction light emitting diodes

    Science.gov (United States)

    Tsai, Jenn Kai; Shih, Jun Hong; Wu, Tian Chiuan; Meen, Teen Hang

    2012-12-01

    In this study, we report the effects of thermal annealing in nitrogen ambient on the optical and electrical properties of zinc oxide (ZnO) nanorod (NR) arrays for the application in light emission diodes (LED). The single-crystalline ZnO NR array was synthesized on p+-Si (111) substrate without seed layer using simple, low-cost, and low-temperature hydrothermal method. The substrate surface was functionalized by hydrofluoric acid and self-assembled monolayer of octadecyltrimethoxysilane ((CH3 (CH2)17Si(OCH3)3). ZnO NRs were characterized by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), and micro-photoluminescence (micro-PL). The results of FESEM and XRD indicate that single crystalline ZnO NRs with (002) preferred orientation along the substrate surface is successfully grown on functionalized p+-Si (111) substrate. The current-voltage and electroluminescence (EL) characteristics of the LED show that the most suitable annealing temperature ranges from 400°C to 600°C. Both PL and EL spectra show broadband emissions, ultraviolet and visible (green-yellow) light. The white-like light emission is able to be observed by naked eyes.

  2. 1 CW green self-frequency-doubled Yb:YAl3(BO3)4 laser

    International Nuclear Information System (INIS)

    Dekker, P.; Dawes, J.; Wang, P.; Piper, J.

    2000-01-01

    Full text: We report 1.1 W continuous wave (CW) green output from a 977nm diode-end-pumped self-frequency-doubled Yb:YAB laser, with a diode-to-green optical conversion efficiency of 10%. Wavelength tunability from 513-546nm has been demonstrated

  3. Doped Heterojunction Used in Quantum Dot Sensitized Solar Cell

    Directory of Open Access Journals (Sweden)

    Yanyan Gao

    2014-01-01

    Full Text Available Incorporated foreign atoms into the quantum dots (QDs used in heterojunction have always been a challenge for solar energy conversion. A foreign atom indium atom was incorporated into PbS/CdS QDs to prepare In-PbS/In-CdS heterojunction by successive ionic layer adsorption and reaction method which is a chemical method. Experimental results indicate that PbS or CdS has been doped with In by SILAR method; the concentration of PbS and CdS which was doped In atoms has no significantly increase or decrease. In addition, incorporating of Indium atoms has resulted in the lattice distortions or changes of PbS or CdS and improved the light harvest of heterojunction. Using this heterojunction, Pt counter electrode and polysulfide electrolyte, to fabricate quantum dot sensitized solar cells, the short circuit current density ballooned to 27.01 mA/cm2 from 13.61 mA/cm2 and the open circuit voltage was improved to 0.43 V from 0.37 V at the same time.

  4. Foil-less plasma-filled diode for HPM generator

    International Nuclear Information System (INIS)

    Eltchaninov, A A; Kovalchuk, B M; Kurkan, I K; Zherlitsyn, A A

    2014-01-01

    Plasma-filled diode regarded as perspective source of electron beam feeding HPM generator of GW power level, comparing to conventional explosive emission vacuum diode. Electron beam generation occurs in plasma double layer, where plasma boundary plays as an anode. It allows cancelling the usage of anode foils or grids in HPM generators with the virtual cathode, which could limit its life time to few shots. The presence of ions in the e-beam drift space could raise the limiting current for a drift space, but it could affect to microwave generation also. Sectioned plasma-filled diode with beam current of about 100 kA, electron beam energy of about 0.5 MV and beam current density of 1-10 kA/cm 2 was realized. Cylindrical transport channel with the diameter of 200 mm and the length of about 30 cm was attached to the diode. Beam current measurements in a drift space were performed. Computer simulations of electron beam transport with the presence of ions were carried out with the 2.5D axisymmetric version of PiC-code KARAT. Obtained results would help optimizing electrodynamic system of HPM generator subjected to the presence of ions

  5. Characterisation of diode-connected SiGe BiCMOS HBTs for space applications

    Science.gov (United States)

    Venter, Johan; Sinha, Saurabh; Lambrechts, Wynand

    2016-02-01

    Silicon-germanium (SiGe) bipolar complementary metal-oxide semiconductor (BiCMOS) transistors have vertical doping profiles reaching deeper into the substrate when compared to lateral CMOS transistors. Apart from benefiting from high-speed, high current gain and low-output resistance due to its vertical profile, BiCMOS technology is increasingly becoming a preferred technology for researchers to realise next-generation space-based optoelectronic applications. BiCMOS transistors have inherent radiation hardening, to an extent predictable cryogenic performance and monolithic integration potential. SiGe BiCMOS transistors and p-n junction diodes have been researched and used as a primary active component for over the last two decades. However, further research can be conducted with diode-connected heterojunction bipolar transistors (HBTs) operating at cryogenic temperatures. This work investigates these characteristics and models devices by adapting standard fabrication technology components. This work focuses on measurements of the current-voltage relationship (I-V curves) and capacitance-voltage relationships (C-V curves) of diode-connected HBTs. One configuration is proposed and measured, which is emitterbase shorted. The I-V curves are measured for various temperature points ranging from room temperature (300 K) to the temperature of liquid nitrogen (77 K). The measured datasets are used to extract a model of the formed diode operating at cryogenic temperatures and used as a standard library component in computer aided software designs. The advantage of having broad-range temperature models of SiGe transistors becomes apparent when considering implementation of application-specific integrated circuits and silicon-based infrared radiation photodetectors on a single wafer, thus shortening interconnects and lowering parasitic interference, decreasing the overall die size and improving on overall cost-effectiveness. Primary applications include space-based geothermal

  6. Electroluminescence from GaN-polymer heterojunction

    International Nuclear Information System (INIS)

    Chitara, Basant; Lal, Nidhi; Krupanidhi, S.B.; Rao, C.N.R.

    2011-01-01

    Inorganic and organic semiconductor devices are generally viewed as distinct and separate technologies. Herein we report a hybrid inorganic-organic light-emitting device employing the use of an air stable polymer, Poly (9,9-dioctylfluorene-alt-benzothiadiazole) as a p-type layer to create a heterojunction, avoiding the use of p-type GaN, which is difficult to grow, being prone to the complex and expensive fabrication techniques that characterises it. I-V characteristics of the GaN-polymer heterojunction fabricated by us exhibits excellent rectification. The luminescence onset voltage is typically about 8-10 V. The device emits yellowish white electroluminescence with CIE coordinates (0.42, 0.44). - Highlights: → We use a polymer Poly (9,9-dioctylfluorene-alt-benzothiadiazole) as a p-type layer to create a heterojunction. → I-V characteristics of the device fabricated by us exhibits excellent rectification. → The p-type polymer also emits yellow light, which when combined in proper composition with GaN, give rise to white light. → Device can be readily fabricated by just spin coating the polymer over GaN reducing the cost of the device.

  7. Sub-100 fs high average power directly blue-diode-laser-pumped Ti:sapphire oscillator

    Science.gov (United States)

    Rohrbacher, Andreas; Markovic, Vesna; Pallmann, Wolfgang; Resan, Bojan

    2016-03-01

    Ti:sapphire oscillators are a proven technology to generate sub-100 fs (even sub-10 fs) pulses in the near infrared and are widely used in many high impact scientific fields. However, the need for a bulky, expensive and complex pump source, typically a frequency-doubled multi-watt neodymium or optically pumped semiconductor laser, represents the main obstacle to more widespread use. The recent development of blue diodes emitting over 1 W has opened up the possibility of directly diode-laser-pumped Ti:sapphire oscillators. Beside the lower cost and footprint, a direct diode pumping provides better reliability, higher efficiency and better pointing stability to name a few. The challenges that it poses are lower absorption of Ti:sapphire at available diode wavelengths and lower brightness compared to typical green pump lasers. For practical applications such as bio-medicine and nano-structuring, output powers in excess of 100 mW and sub-100 fs pulses are required. In this paper, we demonstrate a high average power directly blue-diode-laser-pumped Ti:sapphire oscillator without active cooling. The SESAM modelocking ensures reliable self-starting and robust operation. We will present two configurations emitting 460 mW in 82 fs pulses and 350 mW in 65 fs pulses, both operating at 92 MHz. The maximum obtained pulse energy reaches 5 nJ. A double-sided pumping scheme with two high power blue diode lasers was used for the output power scaling. The cavity design and the experimental results will be discussed in more details.

  8. Growth and characterization of AlGaN/GaN/AlGaN double-heterojunction high-electron-mobility transistors on 100-mm Si(111) using ammonia-molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Ravikiran, L.; Radhakrishnan, K., E-mail: ERADHA@ntu.edu.sg; Yiding, Lin; Ng, G. I. [NOVITAS-Nanoelectronics Centre of Excellence, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Dharmarasu, N.; Agrawal, M.; Arulkumaran, S.; Vicknesh, S. [Temasek Laboratories@NTU, Nanyang Technological University, Singapore 637553 (Singapore)

    2015-01-14

    To improve the confinement of two-dimensional electron gas (2DEG) in AlGaN/GaN high electron mobility transistor (HEMT) heterostructures, AlGaN/GaN/AlGaN double heterojunction HEMT (DH-HEMT) heterostructures were grown using ammonia-MBE on 100-mm Si substrate. Prior to the growth, single heterojunction HEMT (SH-HEMT) and DH-HEMT heterostructures were simulated using Poisson-Schrödinger equations. From simulations, an AlGaN buffer with “Al” mole fraction of 10% in the DH-HEMT was identified to result in both higher 2DEG concentration (∼10{sup 13 }cm{sup −2}) and improved 2DEG confinement in the channel. Hence, this composition was considered for the growth of the buffer in the DH-HEMT heterostructure. Hall measurements showed a room temperature 2DEG mobility of 1510 cm{sup 2}/V.s and a sheet carrier concentration (n{sub s}) of 0.97 × 10{sup 13 }cm{sup −2} for the DH-HEMT structure, while they are 1310 cm{sup 2}/V.s and 1.09 × 10{sup 13 }cm{sup −2}, respectively, for the SH-HEMT. Capacitance-voltage measurements confirmed the improvement in the confinement of 2DEG in the DH-HEMT heterostructure, which helped in the enhancement of its room temperature mobility. DH-HEMT showed 3 times higher buffer break-down voltage compared to SH-HEMT, while both devices showed almost similar drain current density. Small signal RF measurements on the DH-HEMT showed a unity current-gain cut-off frequency (f{sub T}) and maximum oscillation frequency (f{sub max}) of 22 and 25 GHz, respectively. Thus, overall, DH-HEMT heterostructure was found to be advantageous due to its higher buffer break-down voltages compared to SH-HEMT heterostructure.

  9. Growth and characterization of AlGaN/GaN/AlGaN double-heterojunction high-electron-mobility transistors on 100-mm Si(111) using ammonia-molecular beam epitaxy

    International Nuclear Information System (INIS)

    Ravikiran, L.; Radhakrishnan, K.; Yiding, Lin; Ng, G. I.; Dharmarasu, N.; Agrawal, M.; Arulkumaran, S.; Vicknesh, S.

    2015-01-01

    To improve the confinement of two-dimensional electron gas (2DEG) in AlGaN/GaN high electron mobility transistor (HEMT) heterostructures, AlGaN/GaN/AlGaN double heterojunction HEMT (DH-HEMT) heterostructures were grown using ammonia-MBE on 100-mm Si substrate. Prior to the growth, single heterojunction HEMT (SH-HEMT) and DH-HEMT heterostructures were simulated using Poisson-Schrödinger equations. From simulations, an AlGaN buffer with “Al” mole fraction of 10% in the DH-HEMT was identified to result in both higher 2DEG concentration (∼10 13  cm −2 ) and improved 2DEG confinement in the channel. Hence, this composition was considered for the growth of the buffer in the DH-HEMT heterostructure. Hall measurements showed a room temperature 2DEG mobility of 1510 cm 2 /V.s and a sheet carrier concentration (n s ) of 0.97 × 10 13  cm −2 for the DH-HEMT structure, while they are 1310 cm 2 /V.s and 1.09 × 10 13  cm −2 , respectively, for the SH-HEMT. Capacitance-voltage measurements confirmed the improvement in the confinement of 2DEG in the DH-HEMT heterostructure, which helped in the enhancement of its room temperature mobility. DH-HEMT showed 3 times higher buffer break-down voltage compared to SH-HEMT, while both devices showed almost similar drain current density. Small signal RF measurements on the DH-HEMT showed a unity current-gain cut-off frequency (f T ) and maximum oscillation frequency (f max ) of 22 and 25 GHz, respectively. Thus, overall, DH-HEMT heterostructure was found to be advantageous due to its higher buffer break-down voltages compared to SH-HEMT heterostructure

  10. ZnO-graphene quantum dots heterojunctions for natural sunlight-driven photocatalytic environmental remediation

    Science.gov (United States)

    Kumar, Suneel; Dhiman, Ankita; Sudhagar, Pitchaimuthu; Krishnan, Venkata

    2018-07-01

    In this work, we report the formation of heterojunctions comprising of graphene quantum dots (GQD) decorated ZnO nanorods (NR) and its use as efficient photocatalysts for environmental remediation. The heterojunctions has been designed to be active both in the UV and visible light regions and anticipated utilize the maximum part of the solar light spectrum. In this view, we examined the photocatalytic performance of our heterojunctions towards the degradation of colored pollutant (methylene blue (MB) dye) and a colorless pollutant (carbendazim (CZ) fungicide) under sunlight irradiation. Compared to bare photocatalyst ZnO and GQD, the heterojunction with 2 wt% of GQD (ZGQD2) showed the best photocatalytic activity by effectively degrading (about 95%) of organic pollutants (MB and CZ) from water within a short span of 70 min. The superior photocatalytic activity of these ZnO-GQD heterojunctions could be attributed to efficient charge carrier separation lead suppressed recombination rate at photocatalyst interfaces. In addition to the enhanced light absorption from UV to visible region, the high specific surface area of ZGQD2 heterojunction (353.447 m2 g-1) also imparts strong adsorption capacity for pollutants over catalyst surface, resulting in high photoactivity. Based on the obtained results, band gap alignment at ZnO-GQD heterojunction and active species trapping experiments, a plausible mechanism is proposed for photocatalytic reaction. The excellent photostability and recyclability of the ZnO-GQD heterojunctions fostering as promising photocatalyst candidate for environmental remediation applications.

  11. Current Status and Future Prospects of Copper Oxide Heterojunction Solar Cells.

    Science.gov (United States)

    Wong, Terence K S; Zhuk, Siarhei; Masudy-Panah, Saeid; Dalapati, Goutam K

    2016-04-07

    The current state of thin film heterojunction solar cells based on cuprous oxide (Cu₂O), cupric oxide (CuO) and copper (III) oxide (Cu₄O₃) is reviewed. These p-type semiconducting oxides prepared by Cu oxidation, sputtering or electrochemical deposition are non-toxic, sustainable photovoltaic materials with application potential for solar electricity. However, defects at the copper oxide heterojunction and film quality are still major constraining factors for achieving high power conversion efficiency, η. Amongst the Cu₂O heterojunction devices, a maximum η of 6.1% has been obtained by using pulsed laser deposition (PLD) of Al x Ga 1- x O onto thermal Cu₂O doped with Na. The performance of CuO/n-Si heterojunction solar cells formed by magnetron sputtering of CuO is presently limited by both native oxide and Cu rich copper oxide layers at the heterointerface. These interfacial layers can be reduced by using a two-step sputtering process. A high η of 2.88% for CuO heterojunction solar cells has been achieved by incorporation of mixed phase CuO/Cu₂O nanopowder. CuO/Cu₂O heterojunction solar cells fabricated by electrodeposition and electrochemical doping has a maximum efficiency of 0.64% after surface defect passivation and annealing. Finally, early stage study of Cu₄O₃/GaN deposited on sapphire substrate has shown a photovoltaic effect and an η of ~10 -2 %.

  12. -MoS2 Lateral Heterojunctions

    KAUST Repository

    Li, Ming-yang; Pu, Jiang; Huang, Jing-Kai; Miyauchi, Yuhei; Matsuda, Kazunari; Takenobu, Taishi; Li, Lain-Jong

    2018-01-01

    2D layered heterostructures have attracted intensive interests due to their unique optical, transport, and interfacial properties. The laterally stitched heterojunction based on dissimilar 2D transition metal dichalcogenides forms an intrinsic p

  13. Molecular heterojunctions of oligo(phenylene ethynylene)s with linear to cruciform framework

    DEFF Research Database (Denmark)

    Wei, Zhongming; Hansen, Tim; Santella, Marco

    2015-01-01

    Electrical transport properties of molecular junctions are fundamentally affected by the energy alignment between molecular frontier orbitals (highest occupied molecular orbital (HOMO) or lowest unoccupied molecular orbital (LUMO)) and Fermi level (or work function) of electrode metals. Dithiaful......Electrical transport properties of molecular junctions are fundamentally affected by the energy alignment between molecular frontier orbitals (highest occupied molecular orbital (HOMO) or lowest unoccupied molecular orbital (LUMO)) and Fermi level (or work function) of electrode metals......-tetrathiafulvalene (TTF) can form good self-assembled monolayers (SAMs) on Au substrates. Molecular heterojunctions based on these SAMs are investigated using conducting probe-atomic force microscopy with different tips (Ag, Au, and Pt) and Fermi levels. The calibrated conductance values follow the sequence OPE3-TTF...... > OPE3-DTF > OPE3 irrespective of the tip metal. Rectification properties (or diode behavior) are observed in case of the Ag tip for which the work function is furthest from the HOMO levels of the OPE3s. Quantum chemical calculations of the transmission qualitatively agree with the experimental data...

  14. InN-based heterojunction photodetector with extended infrared response

    KAUST Repository

    Hsu, Lung-Hsing

    2015-11-21

    © 2015 Optical Society of America. The combination of ZnO, InN, and GaN epitaxial layers is explored to provide long wavelength photodetection capability in the GaN based materials. Growth temperature optimization was performed to obtain the best quality of InN epitaxial layer in the MOCVD system. The temperature dependent photoluminescence (PL) can provide the information about thermal quenching in the InN PL transitions and at least two nonradiative processes can be observed. X-ray diffraction and energy dispersive spectroscopy are applied to confirm the inclusion of indium and the formation of InN layer. The band alignment of such system shows a typical double heterojunction, which is preferred in optoelectronic device operation. The photodetector manufactured by this ZnO/GaN/InN layer can exhibit extended long-wavelength quantum efficiency, as high as 3.55%, and very strong photocurrent response under solar simulator illumination.

  15. InN-based heterojunction photodetector with extended infrared response

    KAUST Repository

    Hsu, Lung-Hsing; Kuo, Chien-Ting; Huang, Jhih-Kai; Hsu, Shun-Chieh; Lee, Hsin-Ying; Kuo, Hao-Chung; Lee, Po-Tsung; Tsai, Yu-Lin; Hwang, Yi-Chia; Su, Chen-Feng; He, Jr-Hau; Lin, Shih-Yen; Cheng, Yuh-Jen; Lin, Chien-Chung

    2015-01-01

    © 2015 Optical Society of America. The combination of ZnO, InN, and GaN epitaxial layers is explored to provide long wavelength photodetection capability in the GaN based materials. Growth temperature optimization was performed to obtain the best quality of InN epitaxial layer in the MOCVD system. The temperature dependent photoluminescence (PL) can provide the information about thermal quenching in the InN PL transitions and at least two nonradiative processes can be observed. X-ray diffraction and energy dispersive spectroscopy are applied to confirm the inclusion of indium and the formation of InN layer. The band alignment of such system shows a typical double heterojunction, which is preferred in optoelectronic device operation. The photodetector manufactured by this ZnO/GaN/InN layer can exhibit extended long-wavelength quantum efficiency, as high as 3.55%, and very strong photocurrent response under solar simulator illumination.

  16. Electron distribution in polar heterojunctions within a realistic model

    Energy Technology Data Exchange (ETDEWEB)

    Tien, Nguyen Thanh, E-mail: thanhtienctu@gmail.com [College of Natural Science, Can Tho University, 3-2 Road, Can Tho City (Viet Nam); Thao, Dinh Nhu [Center for Theoretical and Computational Physics, College of Education, Hue University, 34 Le Loi Street, Hue City (Viet Nam); Thao, Pham Thi Bich [College of Natural Science, Can Tho University, 3-2 Road, Can Tho City (Viet Nam); Quang, Doan Nhat [Institute of Physics, Vietnamese Academy of Science and Technology, 10 Dao Tan Street, Hanoi (Viet Nam)

    2015-12-15

    We present a theoretical study of the electron distribution, i.e., two-dimensional electron gas (2DEG) in polar heterojunctions (HJs) within a realistic model. The 2DEG is confined along the growth direction by a triangular quantum well with a finite potential barrier and a bent band figured by all confinement sources. Therein, interface polarization charges take a double role: they induce a confining potential and, furthermore, they can make some change in other confinements, e.g., in the Hartree potential from ionized impurities and 2DEG. Confinement by positive interface polarization charges is necessary for the ground state of 2DEG existing at a high sheet density. The 2DEG bulk density is found to be increased in the barrier, so that the scattering occurring in this layer (from interface polarization charges and alloy disorder) becomes paramount in a polar modulation-doped HJ.

  17. Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cells

    Science.gov (United States)

    Rand, Barry P.; Burk, Diana P.; Forrest, Stephen R.

    2007-03-01

    Organic semiconductor heterojunction (HJ) energy level offsets are modeled using a combination of Marcus theory for electron transfer, and generalized Shockley theory of the dark current density vs voltage (J-V) characteristics. This model is used to fit the J-V characteristics of several donor-acceptor combinations commonly used in thin film organic photovoltaic cells. In combination with measurements of the energetics of donor-acceptor junctions, the model predicts tradeoffs between the junction open-circuit voltage (VOC) and short-circuit current density (JSC) . The VOC is found to increase with light intensity and inversely with temperature for 14 donor-acceptor HJ materials pairs. In particular, we find that VOC reaches a maximum at low temperature (˜175K) for many of the heterojunctions studied. The maximum value of VOC is a function of the difference between the donor ionization potential and acceptor electron affinity, minus the binding energy of the dissociated, geminate electron-hole pair: a general relationship that has implications on the charge transfer mechanism at organic heterojunctions. The fundamental understanding provided by this model leads us to infer that the maximum power conversion efficiency of double heterostructure organic photovoltaic cells can be as high as 12%. When combined with mixed layers to increase photocurrent and stacked cells to increase VOC , efficiencies approaching 16% are within reach.

  18. Tunneling-assisted transport of carriers through heterojunctions.

    Energy Technology Data Exchange (ETDEWEB)

    Wampler, William R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Myers, Samuel M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Modine, Normand A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    The formulation of carrier transport through heterojunctions by tunneling and thermionic emission is derived from first principles. The treatment of tunneling is discussed at three levels of approximation: numerical solution of the one-band envelope equation for an arbitrarily specified potential profile; the WKB approximation for an arbitrary potential; and, an analytic formulation assuming constant internal field. The effects of spatially varying carrier chemical potentials over tunneling distances are included. Illustrative computational results are presented. The described approach is used in exploratory physics models of irradiated heterojunction bipolar transistors within Sandia's QASPR program.

  19. Ambipolar organic heterojunction transistors with various p-type semiconductors

    International Nuclear Information System (INIS)

    Shi Jianwu; Wang Haibo; Song De; Tian Hongkun; Geng Yanhou; Yan Donghang

    2008-01-01

    Ambipolar transport has been realized in organic heterojunction transistors with metal phthalocyanines, phenanthrene-based conjugated oligomers as the first semiconductors and copper-hexadecafluoro-phthalocyanine as the second semiconductor. The electron and hole mobilities of ambipolar devices with rod-like molecules were comparable to the corresponding single component devices, while the carrier mobility of ambipolar devices with disk-like molecules was much lower than the corresponding single component devices. The much difference of their device performance was attributed to the roughness of the first semiconductor films, which was original from their distinct growth habits. The flat and continuous films for the first semiconductors layer can lead to a smooth heterojunction interface, and obtained a high device performance for ambipolar organic heterojunction transistors

  20. UV and visible photoluminescence emission intensity of undoped and In-doped ZnO thin film and photoresponsivity of ZnO:In/Si hetero-junction

    International Nuclear Information System (INIS)

    Zebbar, N.; Chabane, L.; Gabouze, N.; Kechouane, M.; Trari, M.; Aida, M.S.; Belhousse, S.; Hadj Larbi, F.

    2016-01-01

    Undoped zinc oxide (ZnO) and indium-doped (ZnO:In) thin films were grown at different temperatures (250–400 °C) on alkali-free borosilicate glass and n-Si (100) substrates by Ultrasonic Spray Pyrolysis method. The structural, compositional, optical and electrical properties of ZnO films were investigated by X-ray diffraction, Scanning Electron Microscopy, Rutherford Back Scattering Spectroscopy, Fourier Transform Infrared spectroscopy, photoluminescence (PL) and the four-point probe technique. The predominance of ultraviolet (UV) and blue emission intensities was found to be closely dependent on the resistivity of the film. The visible emission band (peaking at 432 nm) prevails for low film resistivity, ranging from 10 −2 to 1 Ω·cm. By contrast, for higher resistivity (> 1 Ω·cm), there is a predominance of the UV band (382 nm). The PL and photoresponsivity results of fabricated ZnO:In/n-Si(100) heterojunctions prepared at different temperatures are discussed. The maximum spectral response of the ZnO:8%In/Si heterojunction diode fabricated at 250 °C was about 80 mA/W at zero bias. The highlighted results are attractive for the optoelectronic applications. - Highlights: • Properties of ZnO thin films grown by Ultrasonic Spray Pyrolysis at 350 °C. • Photoluminescence emission intensity in undoped ZnO film: effect of the resistivity • Photoluminescence emission intensity of In-doped ZnO film is resistivity dependent. • The spectral response of ZnO:In/Si hetero-junction deposited in the range (250–400 °C)

  1. UV and visible photoluminescence emission intensity of undoped and In-doped ZnO thin film and photoresponsivity of ZnO:In/Si hetero-junction

    Energy Technology Data Exchange (ETDEWEB)

    Zebbar, N., E-mail: nacbar2003@yahoo.fr [LCMS, Faculty of Physics, University of Sciences and Technology (USTHB), BP 32, El-Alia, Algiers (Algeria); Chabane, L. [LCMS, Faculty of Physics, University of Sciences and Technology (USTHB), BP 32, El-Alia, Algiers (Algeria); Gabouze, N. [CRTSE, 02 Bd. Frantz Fanon, BP 140, Algiers (Algeria); Kechouane, M. [LCMS, Faculty of Physics, University of Sciences and Technology (USTHB), BP 32, El-Alia, Algiers (Algeria); Trari, M. [Laboratory of Storage and Valorization of Renewable Energies, Faculty of Chemistry (USTHB), BP 32, El-Alia, Algiers (Algeria); Aida, M.S. [LCM et Interface, Faculty of Sciences, University of Constantine, 25000 (Algeria); Belhousse, S. [CRTSE, 02 Bd. Frantz Fanon, BP 140, Algiers (Algeria); Hadj Larbi, F. [MEMS & Sensors, Division Microélectronique et Nanotechnologie, Centre de Développement des Technologies Avancées (CDTA), BP 17, Baba Hassen, Algiers (Algeria)

    2016-04-30

    Undoped zinc oxide (ZnO) and indium-doped (ZnO:In) thin films were grown at different temperatures (250–400 °C) on alkali-free borosilicate glass and n-Si (100) substrates by Ultrasonic Spray Pyrolysis method. The structural, compositional, optical and electrical properties of ZnO films were investigated by X-ray diffraction, Scanning Electron Microscopy, Rutherford Back Scattering Spectroscopy, Fourier Transform Infrared spectroscopy, photoluminescence (PL) and the four-point probe technique. The predominance of ultraviolet (UV) and blue emission intensities was found to be closely dependent on the resistivity of the film. The visible emission band (peaking at 432 nm) prevails for low film resistivity, ranging from 10{sup −2} to 1 Ω·cm. By contrast, for higher resistivity (> 1 Ω·cm), there is a predominance of the UV band (382 nm). The PL and photoresponsivity results of fabricated ZnO:In/n-Si(100) heterojunctions prepared at different temperatures are discussed. The maximum spectral response of the ZnO:8%In/Si heterojunction diode fabricated at 250 °C was about 80 mA/W at zero bias. The highlighted results are attractive for the optoelectronic applications. - Highlights: • Properties of ZnO thin films grown by Ultrasonic Spray Pyrolysis at 350 °C. • Photoluminescence emission intensity in undoped ZnO film: effect of the resistivity • Photoluminescence emission intensity of In-doped ZnO film is resistivity dependent. • The spectral response of ZnO:In/Si hetero-junction deposited in the range (250–400 °C)

  2. Current Status and Future Prospects of Copper Oxide Heterojunction Solar Cells

    Directory of Open Access Journals (Sweden)

    Terence K. S. Wong

    2016-04-01

    Full Text Available The current state of thin film heterojunction solar cells based on cuprous oxide (Cu2O, cupric oxide (CuO and copper (III oxide (Cu4O3 is reviewed. These p-type semiconducting oxides prepared by Cu oxidation, sputtering or electrochemical deposition are non-toxic, sustainable photovoltaic materials with application potential for solar electricity. However, defects at the copper oxide heterojunction and film quality are still major constraining factors for achieving high power conversion efficiency, η. Amongst the Cu2O heterojunction devices, a maximum η of 6.1% has been obtained by using pulsed laser deposition (PLD of AlxGa1−xO onto thermal Cu2O doped with Na. The performance of CuO/n-Si heterojunction solar cells formed by magnetron sputtering of CuO is presently limited by both native oxide and Cu rich copper oxide layers at the heterointerface. These interfacial layers can be reduced by using a two-step sputtering process. A high η of 2.88% for CuO heterojunction solar cells has been achieved by incorporation of mixed phase CuO/Cu2O nanopowder. CuO/Cu2O heterojunction solar cells fabricated by electrodeposition and electrochemical doping has a maximum efficiency of 0.64% after surface defect passivation and annealing. Finally, early stage study of Cu4O3/GaN deposited on sapphire substrate has shown a photovoltaic effect and an η of ~10−2%.

  3. Current Status and Future Prospects of Copper Oxide Heterojunction Solar Cells

    Science.gov (United States)

    Wong, Terence K. S.; Zhuk, Siarhei; Masudy-Panah, Saeid; Dalapati, Goutam K.

    2016-01-01

    The current state of thin film heterojunction solar cells based on cuprous oxide (Cu2O), cupric oxide (CuO) and copper (III) oxide (Cu4O3) is reviewed. These p-type semiconducting oxides prepared by Cu oxidation, sputtering or electrochemical deposition are non-toxic, sustainable photovoltaic materials with application potential for solar electricity. However, defects at the copper oxide heterojunction and film quality are still major constraining factors for achieving high power conversion efficiency, η. Amongst the Cu2O heterojunction devices, a maximum η of 6.1% has been obtained by using pulsed laser deposition (PLD) of AlxGa1−xO onto thermal Cu2O doped with Na. The performance of CuO/n-Si heterojunction solar cells formed by magnetron sputtering of CuO is presently limited by both native oxide and Cu rich copper oxide layers at the heterointerface. These interfacial layers can be reduced by using a two-step sputtering process. A high η of 2.88% for CuO heterojunction solar cells has been achieved by incorporation of mixed phase CuO/Cu2O nanopowder. CuO/Cu2O heterojunction solar cells fabricated by electrodeposition and electrochemical doping has a maximum efficiency of 0.64% after surface defect passivation and annealing. Finally, early stage study of Cu4O3/GaN deposited on sapphire substrate has shown a photovoltaic effect and an η of ~10−2%. PMID:28773398

  4. Influence of Asymmetric Contact Form on Contact Resistance and Schottky Barrier, and Corresponding Applications of Diode.

    Science.gov (United States)

    Zhao, Yudan; Xiao, Xiaoyang; Huo, Yujia; Wang, Yingcheng; Zhang, Tianfu; Jiang, Kaili; Wang, Jiaping; Fan, Shoushan; Li, Qunqing

    2017-06-07

    We have fabricated carbon nanotube and MoS 2 field-effect transistors with asymmetric contact forms of source-drain electrodes, from which we found the current directionality of the devices and different contact resistances under the two current directions. By designing various structures, we can conclude that the asymmetric electrical performance was caused by the difference in the effective Schottky barrier height (Φ SB ) caused by the different contact forms. A detailed temperature-dependent study was used to extract and compare the Φ SB for both contact forms of CNT and MoS 2 devices; we found that the Φ SB for the metal-on-semiconductor form was much lower than that of the semiconductor-on-metal form and is suitable for all p-type, n-type, or ambipolar semiconductors. This conclusion is meaningful with respect to the design and application of nanomaterial electronic devices. Additionally, using the difference in barrier height caused by the contact forms, we have also proposed and fabricated Schottky barrier diodes with a current ratio up to 10 4 ; rectifying circuits consisting of these diodes were able to work in a wide frequency range. This design avoided the use of complex chemical doping or heterojunction methods to achieve fundamental diodes that are relatively simple and use only a single material; these may be suitable for future application in nanoelectronic radio frequency or integrated circuits.

  5. Diode-like behavior of I–V curves of CoFe–(Al–O)/Si(100) granular thin films

    Energy Technology Data Exchange (ETDEWEB)

    Tuan Anh, Nguyen [ITIMS, Hanoi University of Science and Technology (HUST), Hanoi 10000 (Viet Nam); Hanoi Community College (HCC), Trung Kinh, Cau giay, Hanoi 10000 (Viet Nam); Van Cuong, Giap [ITIMS, Hanoi University of Science and Technology (HUST), Hanoi 10000 (Viet Nam); HungYen University of Technology and Education (UTEHY), Khoai chau, Hung Yen 39000 (Viet Nam); Anh Tuan, Nguyen, E-mail: tuanna@itims.edu.vn [ITIMS, Hanoi University of Science and Technology (HUST), Hanoi 10000 (Viet Nam)

    2015-01-15

    In this study, the electrical performance of (Co{sub 70}Fe{sub 30}){sub x}(Al–O){sub 1−x} (where x=0.1 and 0.3) granular thin films sputtered on Si(1 0 0) substrates, which were subsequently annealing at 350 °C for 1 h in vacuum, was investigated. The millimeter-sized samples were installed in an in-plane lateral Ag electrode configuration on the surface. The current–voltage (I–V) characteristics were measured in bias voltages of approximately ±7 V. The I–V curves demonstrated the so-called large Coulomb gaps and diode-like asymmetric behavior similar to a Zener diode-type rectification. This remarkable behavior was evaluated using the most suitable transport models. Results suggest that an effective magnetic diode could be fabricated from millimeter-sized magnetic granular thin films. - Highlights: • The granular MTJ systems can induce a strong collective Coulomb blockage effect. • Isolated magnetic nanoparticles can form asymmetric nano-double barrier MTJ chains. • Discrete system can induce diode-like rectification as a molecular electronic rectifier. • Irreversible cotunneling through nano-double barrier MTJ chains yields rectification. • Magnetic tunnel diodes can be created simply from the granular MTJ-type thin films.

  6. Hybrid tandem solar cells with depleted-heterojunction quantum dot and polymer bulk heterojunction subcells

    KAUST Repository

    Kim, Taesoo

    2015-10-01

    We investigate hybrid tandem solar cells that rely on the combination of solution-processed depleted-heterojunction colloidal quantum dot (CQD) and bulk heterojunction polymer:fullerene subcells. The hybrid tandem solar cell is monolithically integrated and electrically connected in series with a suitable p-n recombination layer that includes metal oxides and a conjugated polyelectrolyte. We discuss the monolithic integration of the subcells, taking into account solvent interactions with underlayers and associated constraints on the tandem architecture, and show that an adequate device configuration consists of a low bandgap CQD bottom cell and a high bandgap polymer:fullerene top cell. Once we optimize the recombination layer and individual subcells, the hybrid tandem device reaches a VOC of 1.3V, approaching the sum of the individual subcell voltages. An impressive fill factor of 70% is achieved, further confirming that the subcells are efficiently connected via an appropriate recombination layer. © 2015.

  7. Large rectification magnetoresistance in nonmagnetic Al/Ge/Al heterojunctions

    OpenAIRE

    Zhang, Kun; Li, Huan-huan; Grünberg, Peter; Li, Qiang; Ye, Sheng-tao; Tian, Yu-feng; Yan, Shi-shen; Lin, Zhao-jun; Kang, Shi-shou; Chen, Yan-xue; Liu, Guo-lei; Mei, and Liang-mo

    2015-01-01

    Magnetoresistance and rectification are two fundamental physical properties of heterojunctions and respectively have wide applications in spintronics devices. Being different from the well known various magnetoresistance effects, here we report a brand new large magnetoresistance that can be regarded as rectification magnetoresistance: the application of a pure small sinusoidal alternating-current to the nonmagnetic Al/Ge Schottky heterojunctions can generate a significant direct-current volt...

  8. High-efficiency omnidirectional photoresponses based on monolayer lateral p–n heterojunctions

    KAUST Repository

    Tsai, Meng-Lin; Li, Ming-yang; Shi, Yumeng; Chen, Lih-Juann; Li, Lain-Jong; He, Jr-Hau

    2016-01-01

    Electrical and optical properties of lateral monolayer WSe2–MoS2 p–n heterojunctions were characterized to demonstrate a high responsivity of 0.26 A W−1 with an excellent omnidirectional photodetection capability. The heterojunction functioning as a

  9. Double surface plasmon enhanced organic light-emitting diodes by gold nanoparticles and silver nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Chia-Yuan; Chen, Ying-Chung [Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Chen, Kan-Lin [Department of Electronic Engineering, Fortune Institute of Technology, Kaohsiung, Taiwan (China); Huang, Chien-Jung, E-mail: chien@nuk.edu.tw [Department of Applied Physics, National University of Kaohsiung, Kaohsiung, Taiwan (China)

    2015-12-30

    Graphical abstract: - Highlights: • The buffer layer is inserted between PEDOT: PSS and the emitting layer in order to avoid that the nonradiative decay process of exciton is generated. • The silver nanoclusters will generate surface plasmon resonance effect, resulting that the localized electric field around the silver nanoclusters is enhanced. • When the recombination region of the excitons is too close to the nanoparticles of the hole-transport layer, the nonradiative quenching of excitons is generated. - Abstract: The influence of gold nanoparticles (GNPs) and silver nanoclusters (SNCs) on the performance of organic light-emitting diodes is investigated in this study. The GNPs are doped into (poly (3, 4-ethylenedioxythiophene) poly (styrenesulfonate)) (PEDOT: PSS) and the SNCs are introduced between the electron-injection layer and cathode alumina. The power efficiency of the device, at the maximum luminance, with double surface plasmon resonance and buffer layer is about 2.15 times higher than that of the device without GNPs and SNCs because the absorption peaks of GNPs and SNCs are as good as the photoluminescence peak of the emission layer, resulting in strong surface plasmon resonance effect in the device. In addition, the buffer layer is inserted between PEDOT: PSS and the emitting layer in order to avoid that the nonradiative decay process of exciton is generated.

  10. Diode-side-pumped intracavity frequency-doubled Nd:YAG/BaWO4 Raman laser generating average output power of 3.14 W at 590 nm.

    Science.gov (United States)

    Li, Shutao; Zhang, Xingyu; Wang, Qingpu; Zhang, Xiaolei; Cong, Zhenhua; Zhang, Huaijin; Wang, Jiyang

    2007-10-15

    We report a linear-cavity high-power all-solid-state Q-switched yellow laser. The laser source comprises a diode-side-pumped Nd:YAG module that produces 1064 nm fundamental radiation, an intracavity BaWO(4) Raman crystal that generates a first-Stokes laser at 1180 nm, and a KTP crystal that frequency doubles the first-Stokes laser to 590 nm. A convex-plane cavity is employed in this configuration to counteract some of the thermal effect caused by high pump power. An average output power of 3.14 W at 590 nm is obtained at a pulse repetition frequency of 10 kHz.

  11. High-performance photoresponse from single-walled carbon nanotube-zinc oxide heterojunctions

    International Nuclear Information System (INIS)

    Chang, Jingbo; Najeeb, Choolakadavil Khalid; Lee, Jae-Hyeok; Lee, Minsu; Kim, Jae-Ho

    2011-01-01

    Photoactive materials consisting of single-walled carbon nanotube (SWNT)-zinc oxide (ZnO) heterojunctions targeted for optoelectronic applications are investigated in terms of photoresponse and photovoltaic effects. The devices based on SWNT-ZnO heterojunction films are fabricated by two step processes: first, a well aligned SWNT monolayer is deposited on an oxide substrate by the Langmuir-Blodgett (LB) technique; then a ZnO film prepared by filtration of ZnO nanowire solution is transferred onto the SWNT film to form SWNT-ZnO junctions. The SWNT-ZnO heterojunction demonstrates faster photoresponse time (2.75 s) up to 18 times and photovoltaic efficiency (1.33 nA) up to 4 times higher than that of only a ZnO device. Furthermore, the mechanisms of UV sensitivity enhancement and photovoltaic effects are explained according to the high electron mobility in the SWNT-ZnO heterojunctions.

  12. Simultaneous Q-switching and mode-locking in an intracavity frequency doubled diode-pumped Nd:YVO4 / KTP green laser with Cr4+:YAG

    International Nuclear Information System (INIS)

    Mukhopadhyay, P. K.; Ranganathan, K.; George, J.; Nathan, T. P. S.; Alsous, M. B.

    2007-01-01

    We report intracavity second harmonic (at 532 nm) generation in passively Q-switched mode-locked Nd: YVO4 laser. The width of a typical Q-switched envelope of the mode locked pulses for the green laser was around 65 ± 5 ns and the repetition rate for the mode locked pulses was 400 MHz. The intracavity frequency doubling significantly improves the depth of modulation of the mode locked pulses. The peak power of a single mode locked green pulse near the center of the Q-switched envelope was estimated to be more than 2kw and the average green power was 6 times higher than the CW green power at an incident diode pump power of 6W. (author)

  13. Efficient cascade multiple heterojunction organic solar cells with inverted structure

    Science.gov (United States)

    Guo, Tingting; Li, Mingtao; Qiao, Zhenfang; Yu, Leiming; Zhao, Jianhong; Feng, Nianjun; Shi, Peiguang; Wang, Xiaoyan; Pu, Xiaoyun; Wang, Hai

    2018-05-01

    In this work, we demonstrate an efficient cascade multiple heterojunction organic solar cell with inverted structure. By using two donor materials, poly(3-hexylthiosphene) (P3HT) and titanyl phthalocyanine (TiOPc), as well as two acceptor materials, [6,6]-phenyl C61 butyric acid methyl ester (PCBM) and C60, the cascade multiple heterojunctions of P3HT:PCBM/TiOPc:C60/C60 have been constructed. Applying the optimized inverted configuration of FTO/Zinc Tin Oxide (ZTO)/C60 (30 nm)/TiOPc:C60 (1:1.5, 25 nm)/P3HT:PCBM (1:0.8, 100 nm)/MoO3 (4 nm)/Ag, the considerably enhanced open circuit voltage (VOC) and short circuit current (JSC) can be harvested together, and the power conversion efficiency (PCE) is three times higher than that of the control cell with conventional structure. The significant improvements of the inverted cell are mostly due to the broadened spectral absorption and high efficient multi-interface exciton dissociation in the cascade multiple heterojunctions, indicating that the optimized cascade heterojunctions match the inverted structure well.

  14. Amorphous silicon/crystalline silicon heterojunctions for nuclear radiation detector applications

    International Nuclear Information System (INIS)

    Walton, J.T.; Hong, W.S.; Luke, P.N.; Wang, N.W.; Ziemba, F.P.

    1996-10-01

    Results on characterization of electrical properties of amorphous Si films for the 3 different growth methods (RF sputtering, PECVD [plasma enhanced], LPCVD [low pressure]) are reported. Performance of these a-Si films as heterojunctions on high resistivity p-type and n- type crystalline Si is examined by measuring the noise, leakage current, and the alpha particle response of 5mm dia detector structures. It is demonstrated that heterojunction detectors formed by RF sputtered films and PECVD films are comparable in performance with conventional surface barrier detectors. Results indicate that the a-Si/c-Si heterojunctions have the potential to greatly simplify detector fabrication. Directions for future avenues of nuclear particle detector development are indicated

  15. Amorphous silicon/crystalline silicon heterojunctions for nuclear radiation detector applications

    International Nuclear Information System (INIS)

    Walton, J.T.; Hong, W.S.; Luke, P.N.; Wang, N.W.; Ziemba, F.P.

    1996-01-01

    Results on the characterization of the electrical properties of amorphous silicon films for the three different growth methods, RF sputtering, PECVD, and LPCVD are reported. The performance of these a-Si films as heterojunctions on high resistivity p-type and n-type crystalline silicon is examined by measuring the noise, leakage current and the alpha particle response of 5 mm diameter detector structures. It is demonstrated that heterojunction detectors formed by RF sputtered films and PECVD films are comparable in performance with conventional surface barrier detectors. The results indicate that the a-Si/c-Si heterojunctions have the potential to greatly simplify detector fabrication. Directions for future avenues of nuclear particle detector development are indicated

  16. Hierarchical On-Surface Synthesis of Deterministic Graphene Nanoribbon Heterojunctions

    OpenAIRE

    Bronner, Christopher; Durr, Rebecca A.; Rizzo, Daniel J.; Lee, Yea-Lee; Marangoni, Tomas; Kalayjian, Alin Miksi; Rodriguez, Henry; Zhao, William; Louie, Steven G.; Fischer, Felix R.; Crommie, Michael F.

    2017-01-01

    Bottom-up graphene nanoribbon (GNR) heterojunctions are nanoscale strips of graphene whose electronic structure abruptly changes across a covalently bonded interface. Their rational design offers opportunities for profound technological advancements enabled by their extraordinary structural and electronic properties. Thus far the most critical aspect of their synthesis, the control over sequence and position of heterojunctions along the length of a ribbon, has been plagued by randomness in mo...

  17. Dielectric properties investigation of Cu2O/ZnO heterojunction thin films by electrodeposition

    International Nuclear Information System (INIS)

    Li, Qiang; Xu, Mengmeng; Fan, Huiqing; Wang, Hairong; Peng, Biaolin; Long, Changbai; Zhai, Yuchun

    2013-01-01

    Highlights: ► Bottom-up self-assembly Cu 2 O/ZnO heterojunction was fabricated by electrochemical deposition on indium tin oxide (ITO) flexible substrate (polyethylene terephthalate-PET). ► The dielectric response of Cu 2 O/ZnO heterojunction thin films had been investigated. ► The universal dielectric response was used to investigate the hopping behavior in Cu 2 O/ZnO heterojunction. -- Abstract: Structures and morphologies of the Cu 2 O/ZnO heterojunction electrodeposited on indium tin oxide (ITO) flexible substrate (polyethylene terephthalate-PET) were investigated by X-ray diffraction (XRD), scanning electronic microscopy (SEM), high resolution transmission electron microscopy (HRTEM), respectively. The dielectric response of bottom-up self-assembly Cu 2 O/ZnO heterojunction was investigated. The low frequency dielectric dispersion (LFDD) was observed. The universal dielectric response (UDR) was used to investigate the frequency dependence of dielectric response for Cu 2 O/ZnO heterojunction, which was attributed to the long range and the short range hopping charge carriers at the low frequency and the high frequency region, respectively

  18. Comparison of organic light emitting diodes with different mixed layer structures

    Energy Technology Data Exchange (ETDEWEB)

    Kee, Y.Y.; Siew, W.O. [Faculty of Engineering, Multimedia University, 63100 Cyberjaya (Malaysia); Yap, S.S. [Faculty of Engineering, Multimedia University, 63100 Cyberjaya (Malaysia); Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Tou, T.Y., E-mail: tytou@mmu.edu.my [Faculty of Engineering, Multimedia University, 63100 Cyberjaya (Malaysia)

    2014-11-03

    A mixed-source thermal evaporation method was used to fabricate organic light emitting diodes (OLEDs) with uniformly mixed (UM), continuously graded mixed (CGM) and step-wise graded, mixed (SGM) light-emitting layers. N,N′-Bis(3-methylphenyl)-N,N′-diphenylbenzidine and Tris-(8-hydroxyquinoline)aluminum were used, respectively, as the hole- and electron-transport materials. As compared to the conventional, heterojunction OLED, the maximum brightness of UM-, CGM- and SGM-OLEDs without charge injection layers were improved by 2.2, 3.8 and 2.1 times, respectively, while the maximum power efficiencies improved by 1.5, 3.2 and 1.9 times. These improvements were discussed in terms of more distributed recombination zone and removal of interfacial barrier. - Highlights: • Fabrication of OLEDs using a mixed-source evaporation technique • Three different types of mixed-host OLEDs with better brightness • Improved electroluminescence and power efficiencies as compared to conventional OLED.

  19. Bipolar characteristics of AlGaN/AlN/GaN/AlGaN double heterojunction structure with AlGaN as buffer layer

    International Nuclear Information System (INIS)

    Peng, Enchao; Wang, Xiaoliang; Xiao, Hongling; Wang, Cuimei; Yin, Haibo; Chen, Hong; Feng, Chun; Jiang, Lijuan; Hou, Xun; Wang, Zhanguo

    2013-01-01

    Highlights: •2DEG and 2DHG coexist in the AlGaN/AlN/GaN/AlGaN DH-structure. •The sheet densities of 2DEG and 2DHG vary with buffer Al content and GaN thickness. •The conditions for the disappearance of 2DHG are discussed. •Increasing buffer Al content provides better electron confinement. •Dislocation scattering is reduced in the DH-structure. -- Abstract: This is a theoretical study of AlGaN/AlN/GaN/AlGaN double heterojunction (DH) structure with AlGaN as buffer layer. Our calculation shows that as the buffer Al content increases, though two-dimensional electron gas (2DEG) sheet density decreases, the channel back-barrier caused by polarization-induced electric field in GaN provides better electron confinement. And under certain conditions the DH-structure shows bipolar characteristics, with an additional two-dimensional hole gas (2DHG) formed at GaN/AlGaN interface. The influence of the buffer Al content and GaN channel thickness on the 2DEG and 2DHG sheet densities are investigated, and the conditions for the disappearance of 2DHG are discussed. Also, the mobility inhibited by dislocation scattering is enhanced in DH-structure due to the enhancement of screening effect of the 2DEG

  20. Rational Design of Zinc Phosphide Heterojunction Photovoltaics

    Science.gov (United States)

    Bosco, Jeffrey Paul

    The prospect of terawatt-scale electricity generation using a photovoltaic (PV) device places strict requirements on the active semiconductor optoelectronic properties and elemental abundance. After reviewing the constraints placed on an ``earth-abundant'' solar absorber, we find zinc phosphide (α-Zn 3P2) to be an ideal candidate. In addition to its near-optimal direct band gap of 1.5 eV, high visible-light absorption coefficient (>10. 4cm-1), and long minority-carrier diffusion length (>5 μm), Zn3P 2 is composed of abundant Zn and P elements and has excellent physical properties for scalable thin-film deposition. However, to date, a Zn 3P2 device of sufficient efficiency for commercial applications has not been demonstrated. Record efficiencies of 6.0% for multicrystalline and 4.3% for thin-film cells have been reported, respectively. Performance has been limited by the intrinsic p-type conductivity of Zn3P 2 which restricts us to Schottky and heterojunction device designs. Due to our poor understanding of Zn3P2 interfaces, an ideal heterojunction partner has not yet been found. The goal of this thesis is to explore the upper limit of solar conversion efficiency achievable with a Zn3P2 absorber through the design of an optimal heterojunction PV device. To do so, we investigate three key aspects of material growth, interface energetics, and device design. First, the growth of Zn3P2 on GaAs(001) is studied using compound-source molecular-beam epitaxy (MBE). We successfully demonstrate the pseudomorphic growth of Zn3P2 epilayers of controlled orientation and optoelectronic properties. Next, the energy-band alignments of epitaxial Zn3P2 and II-VI and III-V semiconductor interfaces are measured via high-resolution x-ray photoelectron spectroscopy in order to determine the most appropriate heterojunction partner. From this work, we identify ZnSe as a nearly ideal n-type emitter for a Zn3P 2 PV device. Finally, various II-VI/Zn3P2 heterojunction solar cells designs are

  1. Electrical properties of CdS/CdTe heterojunctions

    International Nuclear Information System (INIS)

    Chu, T.L.; Chu, S.S.; Ang, S.T.

    1988-01-01

    The electrical properties of n-CdS/p-CdTe heterojunctions depend strongly on the cleanliness of the interface region. In this work, CdTe films were deposited on CdS/glass substrates by close-spaced sublimation (CSS) under various conditions. The dark current-voltage characteristics of the resulting heterojunctions were measured over a wide temperature range, and the capacitance-voltage characteristics were measured in the dark and under illumination. When the CdS surface is in situ cleaned prior to the deposition of the CdTe film, the current transport across the junction is controlled by a thermally activated process. Tunneling makes an important contribution to the interface recombination at temperatures below room temperature when the in situ cleaning of CdS is not used. The dark capacitance of CdS/CdTe heterojunctions prepared with in situ etching is essentially independent of the reverse bias due to intrinsic interface states. Under white light illumination, the 1/C 2 vs V relation is nearly linear. The CdS/CdTe heterojunctions without in situ cleaning showed different 1/C 2 vs V relations due to higher density of interface states. The in situ cleaning also has pronounced effects on the frequency dependence of dark and illuminated capacitances. Using the in situ cleaning technique, solar cells of about 1 cm 2 area have achieved an AM 1.5 (global) efficiency of about 10.5%

  2. Optoelectrical Properties of a Heterojunction with Amorphous InGaZnO Film on n-Silicon Substrate

    Science.gov (United States)

    Jiang, D. L.; Ma, X. Z.; Li, L.; Xu, Z. K.

    2017-10-01

    An a-IGZO/ n-Si heterojunction device has been fabricated at room temperature by depositing amorphous InGaZnO (a-IGZO) film on n-type silicon substrate by plasma-assisted pulsed laser deposition and its optoelectrical properties studied in detail. The heterojunction showed distinct rectifying characteristic with rectification ratio of 1.93 × 103 at ±2 V bias and reverse leakage current density of 1.6 × 10-6 A cm-2 at -2 V bias. More interestingly, the heterojunction not only showed the characteristic of unbiased photoresponse, but could also detect either ultraviolet or ultraviolet-visible light by simply changing the polarity of the bias applied to the heterojunction. The variable photoresponse phenomenon and the charge transport mechanisms in the heterojunction are explained based on the energy band diagram of the heterojunction.

  3. Monolayer MoS2 heterojunction solar cells

    KAUST Repository

    Tsai, Menglin

    2014-08-26

    We realized photovoltaic operation in large-scale MoS2 monolayers by the formation of a type-II heterojunction with p-Si. The MoS 2 monolayer introduces a built-in electric field near the interface between MoS2 and p-Si to help photogenerated carrier separation. Such a heterojunction photovoltaic device achieves a power conversion efficiency of 5.23%, which is the highest efficiency among all monolayer transition-metal dichalcogenide-based solar cells. The demonstrated results of monolayer MoS 2/Si-based solar cells hold the promise for integration of 2D materials with commercially available Si-based electronics in highly efficient devices. © 2014 American Chemical Society.

  4. Heterojunction laser operation of N-free and N-doped GaAs/sub 1-y/P/sub y/ (y=0.42--0.43, lambdaapprox.6200 A, 77 degreeK) near the direct-indirect transition (yapprox.y/subc/approx. =0.46)

    International Nuclear Information System (INIS)

    Coleman, J.J.; Holonyak, N. Jr.; Ludowise, M.J.; Wright, P.D.; Groves, W.O.; Keune, D.L.; Craford, M.G.

    1975-01-01

    The successful LPE growth of In/sub 1-x/Ga/sub x/P/sub 1-z/As/sub z//GaAs/sub 1-y/P/sub y/ single heterojunctions on VPE substrates makes possible the study of stimulated emission in N-free and N-doped GaAs/sub 1-y/P/sub y/ in a region (y=0.42--0.43) much closer to the direct-indirect transition (yequivalenty/subc/=0.46, 77 degreeK) than previously. Laser operation in N-free GaAs/sub 1-y/P/sub y/ on the GAMMA-Zn (E/sub Gamma/-E)) recombination transition has been achieved at energies as high as 2.00 eV (lambda=6200 A), and some line narrowing has been observed at energies as high as 2.01 eV (lambda=6170 A, y=0.43). In contrast to diodes made on lower composition substrates, the diodes of this work do not change their threshold current densities in the range 77--4.2 degreeK, indicating that laser operation occurs on direct transitions lying within approx.kT of the indirect donor states (Te) associated with the X conduction-band minima. From E/sub Gamma/+kTapprox.E/subX/-E/subd/ (y=0.42- []0.43), the depth of indirect Te donor states in GaAs/sub 1-y/P/sub y/ is estimated to fall in the range E/subd/=22--32 meV. Nitrogen doping in these laser diodes increases the threshold current densities since the N impurity is an efficient trap and introduces competing indirect recombination. For y=0.42--0.43 GaAs/sub 1-y/P/sub y/, heterojunction laser operation on the N trap lies approx.10 meV lower in energy than on the GAMMA-Zn transition. Beyond y=0.42--0.43, the N trap may be required for stimulated emission, but in this range diode operation at high currents becomes difficult because of the large change in carrier mobility

  5. Photosensitive Ox/GaAs heterojunctions: Creation and properties

    Energy Technology Data Exchange (ETDEWEB)

    Rud' , V. Yu. [St. Petersburg State Polytechnical University (Russian Federation); Rud' , Yu. V., E-mail: yuryrud@mail.ioffe.ru; Terukov, E. I.; Ushakova, T. N. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation)

    2012-06-15

    A method for the thermal oxidation of GaAs crystals in air is suggested and the first photosensitive Ox/n-GaAs heterojunctions, where Ox is a native oxide, are fabricated. The steady current-voltage characteristics and spectra of relative quantum efficiency of the new structures are studied. The features of the spectra of photoactive absorption of the obtained heterojunctions are discussed. The potential of using vacuumfree thermal oxidation of the GaAs crystals in air to fabricate broadband heterophotoconverters of optical radiation on their basis is established.

  6. Conduction band offset at the InN/GaN heterojunction

    International Nuclear Information System (INIS)

    Wang Kejia; Lian Chuanxin; Su Ning; Jena, Debdeep; Timler, John

    2007-01-01

    The conduction-band offset between GaN and InN is experimentally determined. InN/n-type GaN isotype heterojunctions grown by molecular beam epitaxy are observed to exhibit Schottky-junction like behavior based on rectifying vertical current flow. From capacitance-voltage measurements on the heterojunction, the Schottky barrier height is found to be ∼0.94 eV. The photocurrent spectroscopy measurement by backside illumination reveals an energy barrier height of 0.95 eV across the heterojunction, consistent with the capacitance measurement. By combining electrical transport, capacitance-voltage, and photocurrent spectroscopy measurement results, the conduction band offset between InN and GaN is estimated to be ΔE C =1.68±0.1 eV

  7. Modeling and optimization of a double-well double-barrier GaN/AlGaN/GaN/AlGaN resonant tunneling diode

    Science.gov (United States)

    Liu, Yang; Gao, Bo; Gong, Min; Shi, Ruiying

    2017-06-01

    The influence of a GaN layer as a sub-quantum well for an AlGaN/GaN/AlGaN double barrier resonant tunneling diode (RTD) on device performance has been investigated by means of numerical simulation. The introduction of the GaN layer as the sub-quantum well turns the dominant transport mechanism of RTD from the 3D-2D model to the 2D-2D model and increases the energy difference between tunneling energy levels. It can also lower the effective height of the emitter barrier. Consequently, the peak current and peak-to-valley current difference of RTD have been increased. The optimal GaN sub-quantum well parameters are found through analyzing the electrical performance, energy band, and transmission coefficient of RTD with different widths and depths of the GaN sub-quantum well. The most pronounced electrical parameters, a peak current density of 5800 KA/cm2, a peak-to-valley current difference of 1.466 A, and a peak-to-valley current ratio of 6.35, could be achieved by designing RTD with the active region structure of GaN/Al0.2Ga0.8 N/GaN/Al0.2Ga0.8 N (3 nm/1.5 nm/1.5 nm/1.5 nm).

  8. Continuous-wave yellow-green laser at 0.56  μm based on frequency doubling of a diode-end-pumped ceramic Nd:YAG laser.

    Science.gov (United States)

    Yao, Wenming; Gao, Jing; Zhang, Long; Li, Jiang; Tian, Yubing; Ma, Yufei; Wu, Xiaodong; Ma, Gangfei; Yang, Jianming; Pan, Yubai; Dai, Xianjin

    2015-06-20

    We present what is, to the best of our knowledge, the first report on yellow-green laser generation based on the frequency doubling of the 1.1 μm transitions in Nd:YAG ceramics. By employing an 885 nm diode laser as the end-pumping source and a lithium triborate crystal as the frequency doubler, the highest continuous wave output powers of 1.4, 0.5, and 1.1 W at 556, 558, and 561 nm are achieved, respectively. These result in optical-to-optical efficiencies of 6.9%, 2.5%, and 5.4% with respect to the absorbed pump power, respectively.

  9. Interface states in stressed semiconductor heterojunction with antiferromagnetic ordering

    International Nuclear Information System (INIS)

    Kantser, V.G.

    1995-08-01

    The stressed heterojunctions with antiferromagnetic ordering in which the constituents have opposite band edge symmetry and their gaps have opposite signs have been investigated. The interface states have been shown to appear in these heterojunctions and they are spin-split. As a result if the Fermi level gets into one of the interface bands then it leads to magnetic ordering in the interface plane. That is if the interface magnetization effect can be observed. (author). 14 refs, 2 figs

  10. Interface magnetization effect in heterojunctions based on semimagnetic compounds

    International Nuclear Information System (INIS)

    Malkova, N.

    1998-07-01

    The electronic states of stressed heterojunctions formed from narrow-gap semimagnetic semiconductors showing antiferromagnetic ordering are studies. The model Hamiltonian is constructed in the framework of the two-band envelope function approximation including far-band corrections. Heterojunctions both with normal and inverted band arrangements in the initial semiconductors are investigated. The interface Tamm-like states have been shown recently toe appear in these heterojunctions and they are spin-split with the magnetic axis perpendicular to the interface plane. The effect of far-band corrections is shown to be conditioned by the mutual movement of the constituent bands, resulting in changes and in some cases in full disappearance of the energy interval in which the interface state exists. The interface magnetization effect is expected when the Fermi level lies in one of the spin-polarized interface bands. Using the appropriate parameters, the value of the relative interface magnetization is calculated. (author)

  11. Large rectification magnetoresistance in nonmagnetic Al/Ge/Al heterojunctions.

    Science.gov (United States)

    Zhang, Kun; Li, Huan-Huan; Grünberg, Peter; Li, Qiang; Ye, Sheng-Tao; Tian, Yu-Feng; Yan, Shi-Shen; Lin, Zhao-Jun; Kang, Shi-Shou; Chen, Yan-Xue; Liu, Guo-Lei; Mei, Liang-Mo

    2015-09-21

    Magnetoresistance and rectification are two fundamental physical properties of heterojunctions and respectively have wide applications in spintronics devices. Being different from the well known various magnetoresistance effects, here we report a brand new large magnetoresistance that can be regarded as rectification magnetoresistance: the application of a pure small sinusoidal alternating-current to the nonmagnetic Al/Ge Schottky heterojunctions can generate a significant direct-current voltage, and this rectification voltage strongly varies with the external magnetic field. We find that the rectification magnetoresistance in Al/Ge Schottky heterojunctions is as large as 250% at room temperature, which is greatly enhanced as compared with the conventional magnetoresistance of 70%. The findings of rectification magnetoresistance open the way to the new nonmagnetic Ge-based spintronics devices of large rectification magnetoresistance at ambient temperature under the alternating-current due to the simultaneous implementation of the rectification and magnetoresistance in the same devices.

  12. Capacitorless one-transistor dynamic random-access memory based on asymmetric double-gate Ge/GaAs-heterojunction tunneling field-effect transistor with n-doped boosting layer and drain-underlap structure

    Science.gov (United States)

    Yoon, Young Jun; Seo, Jae Hwa; Kang, In Man

    2018-04-01

    In this work, we present a capacitorless one-transistor dynamic random-access memory (1T-DRAM) based on an asymmetric double-gate Ge/GaAs-heterojunction tunneling field-effect transistor (TFET) for DRAM applications. The n-doped boosting layer and gate2 drain-underlap structure is employed in the device to obtain an excellent 1T-DRAM performance. The n-doped layer inserted between the source and channel regions improves the sensing margin because of a high rate of increase in the band-to-band tunneling (BTBT) probability. Furthermore, because the gate2 drain-underlap structure reduces the recombination rate that occurs between the gate2 and drain regions, a device with a gate2 drain-underlap length (L G2_D-underlap) of 10 nm exhibited a longer retention performance. As a result, by applying the n-doped layer and gate2 drain-underlap structure, the proposed device exhibited not only a high sensing margin of 1.11 µA/µm but also a long retention time of greater than 100 ms at a temperature of 358 K (85 °C).

  13. Amorphous silicon crystalline silicon heterojunction solar cells

    CERN Document Server

    Fahrner, Wolfgang Rainer

    2013-01-01

    Amorphous Silicon/Crystalline Silicon Solar Cells deals with some typical properties of heterojunction solar cells, such as their history, the properties and the challenges of the cells, some important measurement tools, some simulation programs and a brief survey of the state of the art, aiming to provide an initial framework in this field and serve as a ready reference for all those interested in the subject. This book helps to "fill in the blanks" on heterojunction solar cells. Readers will receive a comprehensive overview of the principles, structures, processing techniques and the current developmental states of the devices. Prof. Dr. Wolfgang R. Fahrner is a professor at the University of Hagen, Germany and Nanchang University, China.

  14. Rectifying magnetic tunnel diode like behavior in Co2MnSi/ZnO/p-Si heterostructure

    Science.gov (United States)

    Maji, Nilay; Nath, T. K.

    2018-04-01

    The rectifying magnetic tunnel diode like behavior has been observed in Co2MnSi/ZnO/p-Si heterostructure. At first an ultra thin layer of ZnO has been deposited on p-Si (100) substrate with the help of pulsed laser deposition (PLD). After that a highly spin-polarized Heusler alloy Co2MnSi (CMS) film (250 nm) has been grown on ZnO/p-Si using electron beam physical vapor deposition technique. The phase purity of the sample has been confirmed through high resolution X-Ray diffraction technique. The electrical transport properties have been investigated at various isothermal conditions in the temperature range of 77-300 K. The current-voltage characteristics exhibit an excellent rectifying tunnel diode like behavior throughout the temperature regime. The current (I) across the junction has been found to decrease with the application of an external magnetic field parallel to the plane of the CMS film clearly indicating positive junction magnetoresistance (JMR) of the heterostructure. The magnetic field dependent JMR behavior of our heterostructure has been investigated in the same temperature range. Our heterostructure clearly demonstrates a giant positive JMR at 78 K (˜264%) and it starts decreasing with increasing temperature. If we compare our results with earlier reported results on other heterostructures, it can be seen that the JMR value for our heterojunction saturates at a much lower external magnetic field, thus creating it a better alternative for spin tunnel diodes in upcoming spintronics device applications.

  15. The illustrated brief application of defect distribution model for heterojunction device by admittance spectroscopy

    International Nuclear Information System (INIS)

    Oylumluoglu, Gorkem; Kavasoglu, A. Sertap; Kavasoglu, Nese

    2012-01-01

    Highlights: ► Admittance data are used to determine shallow or deep energy levels in heterojunction device. ► We have suggested new equivalent circuit for heterojunction device to mimic the traps. ► The used analytical model is good formulation for display exact energetic location of traps. - Abstract: The dielectric properties of the devices can be studied by using admittance spectroscopy (AS). Majority carrier traps are experimentally analyzed without sophisticated mathematical manipulation. Experimental evidence obtained from AS of the devices may display several features that cannot be explained by the usual single RC circuits representing a depleted junction region and undepleted bulk elements. In this study, ac behavior of typical pn junction diode is simulated using temperature depended AS in a broad frequency range (5 Hz to 13 MHz). The frequency-dependent admittance data of typical pn junction has been discussed based on a discrete deep or shallow trap model. The analytically obtained frequency depended −dC/dω and tan δ (loss tangent) curves are peaks function. The position of the peak depends on the temperature and dc-bias. This peak position gives us information about deep or shallow trap states. The trapping time and trap energy levels can be deduced from −dC/dω versus ω or tan δ versus ω curves. This investigation shows that suitable complex admittance measurement data obtained during the capacitance–voltage measurement process are used to calculate the trapping time and energetic position of the traps. A theoretical analysis and computer simulation are presented in order to illustrate the nature of the trap and the technique by which accurate trapping time and energy position of the trap state can be obtained.

  16. Low-threshold pure UV electroluminescence from n-ZnO:Al/i-layer/n-GaN heterojunction

    International Nuclear Information System (INIS)

    Li Songzhan; Fang Guojia; Long Hao; Wang Haoning; Huang Huihui; Mo Xiaoming; Zhao Xingzhong

    2012-01-01

    Ultraviolet (UV) electroluminescence (EL) of n-ZnO:Al (AZO)/i-layer/n-GaN heterojunctions with different intrinsic layers has been obtained. Rectifying behavior and EL spectra of the heterojunctions are investigated at room temperature. Under positive voltage, a dominant UV emission peak around ∼370 nm is observed for both AZO/i-ZnO/n-GaN and AZO/i-MgO/n-GaN heterojunctions. Nevertheless, the UV emission peak intensity of AZO/i-MgO/n-GaN heterojunction is much stronger than that of AZO/i-ZnO/n-GaN heterojunction at the same voltage. The threshold voltage of AZO/i-MgO/n-GaN heterostructured device is as low as 2.3 V. The difference of EL spectra and the emission mechanism in these devices are discussed. - Highlights: ► UV electroluminescence of n-ZnO:Al/i-layer/n-GaN heterojunctions has been obtained. ► Under positive voltage, a dominant UV emission peak around ∼370 nm is observed for both heterojunctions. ► The UV emission peak intensity of the heterojunction with i-MgO layer is much stronger than that with i-ZnO layer at the same voltage. ► The threshold voltage of n-ZnO:Al/i-MgO/n-GaN heterostructured device is as low as 2.3 V.

  17. Electrostatically Gated Graphene-Zinc Oxide Nanowire Heterojunction.

    Science.gov (United States)

    You, Xueqiu; Pak, James Jungho

    2015-03-01

    This paper presents an electrostatically gated graphene-ZnO nanowire (NW) heterojunction for the purpose of device applications for the first time. A sub-nanometer-thick energy barrier width was formed between a monatomic graphene layer and electrochemically grown ZnO NWs. Because of the narrow energy barrier, electrons can tunnel through the barrier when a voltage is applied across the junction. A near-ohmic current-voltage (I-V) curve was obtained from the graphene-electrochemically grown ZnO NW heterojunction. This near-ohmic contact changed to asymmetric I-V Schottky contact when the samples were exposed to an oxygen environment. It is believed that the adsorbed oxygen atoms or molecules on the ZnO NW surface capture free electrons of the ZnO NWs, thereby creating a depletion region in the ZnO NWs. Consequentially, the electron concentration in the ZnO NWs is dramatically reduced, and the energy barrier width of the graphene-ZnO NW heterojunction increases greatly. This increased energy barrier width reduces the electron tunneling probability, resulting in a typical Schottky contact. By adjusting the back-gate voltage to control the graphene-ZnO NW Schottky energy barrier height, a large modulation on the junction current (on/off ratio of 10(3)) was achieved.

  18. Transition-metal impurities in semiconductors and heterojunction band lineups

    Science.gov (United States)

    Langer, Jerzy M.; Delerue, C.; Lannoo, M.; Heinrich, Helmut

    1988-10-01

    The validity of a recent proposal that transition-metal impurity levels in semiconductors may serve as a reference in band alignment in semiconductor heterojunctions is positively verified by using the most recent data on band offsets in the following lattice-matched heterojunctions: Ga1-xAlxAs/GaAs, In1-xGaxAsyP1-y/InP, In1-xGaxP/GaAs, and Cd1-xHgxTe/CdTe. The alignment procedure is justified theoretically by showing that transition-metal energy levels are effectively pinned to the average dangling-bond energy level, which serves as the reference level for the heterojunction band alignment. Experimental and theoretical arguments showing that an increasingly popular notion on transition-metal energy-level pinning to the vacuum level is unjustified and must be abandoned in favor of the internal-reference rule proposed recently [J. M. Langer and H. Heinrich, Phys. Rev. Lett. 55, 1414 (1985)] are presented.

  19. Molecular orientation and electronic structure at organic heterojunction interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Shu [Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore (Singapore); Zhong, Jian Qiang; Wee, Andrew T.S. [Department of Physics, National University of Singapore, 2 Science Drive 3, 117542 Singapore (Singapore); Chen, Wei, E-mail: phycw@nus.edu.sg [Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore (Singapore); Department of Physics, National University of Singapore, 2 Science Drive 3, 117542 Singapore (Singapore); National University of Singapore (Suzhou) Research Institute, Suzhou (China)

    2015-10-01

    Highlights: • Molecular orientation at the organic heterojunction interfaces. • Energy level alignments at the organic heterojunction interfaces. • Gap-states mediated interfacial energy level alignment. - Abstract: Due to the highly anisotropic nature of π-conjugated molecules, the molecular orientation in organic thin films can significantly affect light absorption, charge transport, energy level alignment (ELA) and hence device performance. Synchrotron-based near-edge X-ray absorption fine structure (NEXAFS) spectroscopy represents a powerful technique for probing molecular orientation. The aim of this review paper is to provide a balanced assessment on the investigation of molecular orientation at the organic–organic heterojunction (OOH) interface by NEXAFS, as well as the gap-states mediated orientation dependent energy level alignment at OOH interfaces. We highlight recent progress in elucidating molecular orientation at OOH interfaces dominated by various interfacial interactions, gap-states controlled orientation dependent energy level alignments at OOH interfaces, and the manipulations of molecular orientation and ELA in OOH.

  20. Gerda: A new 76Ge Double Beta Decay Experiment at Gran Sasso

    International Nuclear Information System (INIS)

    Simgen, Hardy

    2005-01-01

    In the new 76 Ge double beta decay experiment Gerda [I. Abt et al., arXiv hep-ex/0404039; Gerda proposal, to be submitted to the Gran Sasso scientific committee] bare diodes of enriched 76 Ge will be operated in highly pure liquid nitrogen or argon. The goal is to reduce the background around Q ββ =2039 keV below 10 -3 counts/(kg-bar keV-bar y). With presently available diodes from the Igex and HdMs experiments the current evidence for neutrinoless double beta decay [H.-V. Klapdor-Kleingrothaus, et al., Mod. Phys. Lett. A16 (2001) 2409ff] can unambigously be checked within one year of measurement

  1. Electronic structure of defects in semiconductor heterojunctions

    International Nuclear Information System (INIS)

    Haussy, Bernard; Ganghoffer, Jean Francois

    2002-01-01

    Full text.heterojunctions and semiconductors and superlattices are well known and well used by people interested in optoelectronics communications. Components based on the use of heterojunctions are interesting for confinement of light and increase of quantum efficiency. An heterojunction is the contact zone between two different semiconductors, for example GaAs and Ga 1-x Al x As. Superlattices are a succession of heterojunctions (up to 10 or 20). These systems have been the subjects of many experiments ao analyse the contact between semiconductors. They also have been theoretically studied by different types of approach. The main result of those studies is the prediciton of band discontinuities. Defects in heterojunctions are real traps for charge carriers; they can affect the efficiency of the component decreasing the currents and the fluxes in it. the knowledge of their electronic structure is important, a great density of defects deeply modifies the electronic structure of the whole material creating real new bands of energy in the band structure of the component. in the first part of this work, we will describe the heterostructure and the defect in terms of quantum wells and discrete levels. This approach allows us to show the role of the width of the quantum well describing the structure but induces specific behaviours due to the one dimensional modelling. Then a perturbative treatment is proposed using the Green's functions formalism. We build atomic chains with different types of atoms featuring the heterostructure and the defect. Densities of states of a structure with a defect and levels associated to the defect are obtained. Results are comparable with the free electrons work, but the modelling do not induce problems due to a one dimensional approach. To extend our modelling, a three dimensions approach, based on a cavity model, is investigated. The influence of the defect, - of hydrogenoid type - introduced in the structure, is described by a cavity

  2. Exciplex formation and electroluminescent absorption in ultraviolet organic light-emitting diodes

    Science.gov (United States)

    Zhang, Qi; Zhang, Hao; Zhang, Xiao-Wen; Xu, Tao; Wei, Bin

    2015-02-01

    We investigated the formation of exciplex and electroluminescent absorption in ultraviolet organic light-emitting diodes (UV OLEDs) using different heterojunction structures. It is found that an energy barrier of over 0.3 eV between the emissive layer (EML) and adjacent transport layer facilitates exciplex formation. The electron blocking layer effectively confines electrons in the EML, which contributes to pure UV emission and enhances efficiency. The change in EML thickness generates tunable UV emission from 376 nm to 406 nm. In addition, the UV emission excites low-energy organic function layers and produces photoluminescent emission. In UV OLED, avoiding the exciplex formation and averting light absorption can effectively improve the purity and efficiency. A maximum external quantum efficiency of 1.2% with a UV emission peak of 376 nm is realized. Project supported by the National Natural Science Foundation of China (Grant Nos. 61136003 and 61275041) and the Guangxi Provincial Natural Science Foundation, China (Grant No. 2012GXNSFBA053168).

  3. Tailor-Made Additives for Morphology Control in Molecular Bulk-Heterojunction Photovoltaics

    KAUST Repository

    Graham, Kenneth R.

    2013-01-09

    Tailor-made additives, which are molecules that share the same molecular structure as a parent molecule with only slight structural variations, have previously been demonstrated as a useful means to control crystallization dynamics in solution. For example, tailor-made additives can be added to solutions of a crystallizing parent molecule to alter the crystal growth rate, size, and shape. We apply this strategy as a means to predictably control morphology in molecular bulk-heterojunction (BHJ) photovoltaic cells. Through the use of an asymmetric oligomer substituted with a bulky triisobutylsilyl end group, the morphology of BHJ blends can be controlled resulting in a near doubling (from 1.3 to 2.2%) in power conversion efficiency. The use of tailor-made additives provides promising opportunities for controlling crystallization dynamics, and thereby film morphologies, for many organic electronic devices such as photovoltaics and field-effect transistors. © 2012 American Chemical Society.

  4. Tailor-Made Additives for Morphology Control in Molecular Bulk-Heterojunction Photovoltaics

    KAUST Repository

    Graham, Kenneth R.; Stalder, Romain; Wieruszewski, Patrick M.; Patel, Dinesh G.; Salazar, Danielle H.; Reynolds, John R.

    2013-01-01

    Tailor-made additives, which are molecules that share the same molecular structure as a parent molecule with only slight structural variations, have previously been demonstrated as a useful means to control crystallization dynamics in solution. For example, tailor-made additives can be added to solutions of a crystallizing parent molecule to alter the crystal growth rate, size, and shape. We apply this strategy as a means to predictably control morphology in molecular bulk-heterojunction (BHJ) photovoltaic cells. Through the use of an asymmetric oligomer substituted with a bulky triisobutylsilyl end group, the morphology of BHJ blends can be controlled resulting in a near doubling (from 1.3 to 2.2%) in power conversion efficiency. The use of tailor-made additives provides promising opportunities for controlling crystallization dynamics, and thereby film morphologies, for many organic electronic devices such as photovoltaics and field-effect transistors. © 2012 American Chemical Society.

  5. Double nanosecond pulses generation in ytterbium fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Veiko, V. P.; Samokhvalov, A. A., E-mail: samokhvalov.itmo@gmail.com; Yakovlev, E. B.; Zhitenev, I. Yu.; Kliushin, A. N. [Saint-Petersburg State University of Information Technologies, Mechanics and Optics, Kronverksky Pr. 49, Saint Petersburg (Russian Federation); Lednev, V. N. [Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov Str., 38, Moscow (Russian Federation); National University of Science and Technology MISiS, Leninskyave., 4, Moscow (Russian Federation); Pershin, S. M. [Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov Str., 38, Moscow (Russian Federation)

    2016-06-15

    Double pulse generation mode for nanosecond ytterbium fiber laser was developed. Two sequential 60-200 ns laser pulses with variable delay between them were generated by acousto-optic modulator opening with continuous diode pumping. A custom radio frequency generator was developed to produce two sequential “opening” radio pulses with a delay of 0.2–1 μs. It was demonstrated that double pulse generation did not decrease the average laser power while providing the control over the laser pulse power profile. Surprisingly, a greater peak power in the double pulse mode was observed for the second laser pulse. Laser crater studies and plasma emission measurements revealed an improved efficiency of laser ablation in the double pulse mode.

  6. Bicritical behaviors observed in coupled diode resonators

    International Nuclear Information System (INIS)

    Kim, Youngtae

    2004-01-01

    We have investigated bicritical behaviors of unidirectionally coupled diode resonators having a period doubling route to chaos. Depending on the dynamical states of the drive subsystem, the response subsystem showed a dynamical behavior other than that of the uncoupled system. The experimental results agreed well with the results obtained from the simulation of unidirectionally coupled logistic maps and oscillators. A new type of scaling behavior and a power spectrum of the hyperchaotic attractor appearing near a bicritical point were also observed.

  7. Modulation of Quantum Tunneling via a Vertical Two-Dimensional Black Phosphorus and Molybdenum Disulfide p-n Junction.

    Science.gov (United States)

    Liu, Xiaochi; Qu, Deshun; Li, Hua-Min; Moon, Inyong; Ahmed, Faisal; Kim, Changsik; Lee, Myeongjin; Choi, Yongsuk; Cho, Jeong Ho; Hone, James C; Yoo, Won Jong

    2017-09-26

    Diverse diode characteristics were observed in two-dimensional (2D) black phosphorus (BP) and molybdenum disulfide (MoS 2 ) heterojunctions. The characteristics of a backward rectifying diode, a Zener diode, and a forward rectifying diode were obtained from the heterojunction through thickness modulation of the BP flake or back gate modulation. Moreover, a tunnel diode with a precursor to negative differential resistance can be realized by applying dual gating with a solid polymer electrolyte layer as a top gate dielectric material. Interestingly, a steep subthreshold swing of 55 mV/dec was achieved in a top-gated 2D BP-MoS 2 junction. Our simple device architecture and chemical doping-free processing guaranteed the device quality. This work helps us understand the fundamentals of tunneling in 2D semiconductor heterostructures and shows great potential in future applications in integrated low-power circuits.

  8. Synchrotron-radiation photoemission study of CdS/CuInSe2 heterojunction formation

    International Nuclear Information System (INIS)

    Nelson, A.J.; Gebhard, S.; Rockett, A.; Colavita, E.; Engelhardt, M.; Hoechst, H.

    1990-01-01

    Synchrotron-radiation soft-x-ray photoemission spectroscopy was used to investigate the development of the electronic structure at the CdS/CuInSe 2 heterojunction interface. CdS overlayers were deposited in steps on single-crystal p- and n-type CuInSe 2 at 250 degree C. Results indicate that the CdS grows in registry with the substrate, initially in a two-dimensional growth mode followed by three-dimensional island growth as is corroborated by reflection high-energy electron-diffraction analysis. Photoemission measurements were acquired after each growth in order to observe changes in the valence-band electronic structure as well as changes in the In 4d, Se 3d, Cd 4d, and S 2p core lines. The results were used to correlate the interface chemistry with the electronic structure at these interfaces and to directly determine the CdS/CuInSe 2 heterojunction valence-band discontinuity and the consequent heterojunction band diagram. These results show that the Katnani-Margaritondo method is unreliable in determining offsets for heterojunctions where significant Fermi-level pinning may occur and where the local structure and chemistry of the interface depends strongly on the specific heterojunction

  9. Tandem white organic light-emitting diodes adopting a C60:rubrene charge generation layer

    International Nuclear Information System (INIS)

    Bi Wen-Tao; Wu Xiao-Ming; Hua Yu-Lin; Sun Jin-E; Xiao Zhi-Hui; Wang Li; Yin Shou-Gen

    2014-01-01

    Organic bulk heterojunction fullerence (C 60 ) doped 5, 6, 11, 12-tetraphenylnaphthacene (rubrene) as the high quality charge generation layer (CGL) with high transparency and superior charge generating capability for tandem organic light emitting diodes (OLEDs) is developed. This CGL shows excellent optical transparency about 90%, which can reduce the optical interference effect formed in tandem OLEDs. There is a stable white light emission including 468 nm and 500 nm peaks from the blue emitting layer and 620 nm peak from the red emitting layer in tandem white OLEDs. A high efficiency of about 17.4 cd/A and CIE coordinates of (0.40, 0.35) at 100 cd/m 2 and (0.36, 0.34) at 1000 cd/m 2 have been demonstrated by employing the developed CGL, respectively. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  10. Electrospinning direct preparation of SnO2/Fe2O3 heterojunction nanotubes as an efficient visible-light photocatalyst

    International Nuclear Information System (INIS)

    Zhu, Chengquan; Li, Yuren; Su, Qing; Lu, Bingan; Pan, Jiaqi; Zhang, Jiawang; Xie, Erqing; Lan, Wei

    2013-01-01

    Highlights: •SnO 2 /Fe 2 O 3 nano-heterojunction-tubes are prepared by a facile electrospinning technique. •The formation mechanism of heterojunction tubes is proposed for self-polymer-templates action. •SnO 2 /Fe 2 O 3 nano-heterojunction-tubes show high photocatalytic activity under visible light irradiation. •The reasons for the high photocatalytic activity are investigated in detail. -- Abstract: Herein SnO 2 /Fe 2 O 3 heterojunction nanotubes are prepared by a facile electrospinning technique. The heterojunction nanotubes with a diameter of about 200 nm uniformly distribute SnO 2 and Fe 2 O 3 nanocrystals and present the obvious interfaces between them, which form perfect SnO 2 /Fe 2 O 3 nano-heterojunctions. A possible mechanism based on self-polymer-templates is proposed to explain the formation of SnO 2 /Fe 2 O 3 heterojunction nanotubes. The heterojunction nanotubes show high photocatalytic activity for the degradation of RhB dye under visible light irradiation. The prepared SnO 2 /Fe 2 O 3 heterojunction nanotubes can also be applied to other fields such as sensor, lithium-ion batteries

  11. Fabrication and investigation of photosensitive MoOx/n-CdTe heterojunctions

    Science.gov (United States)

    Solovan, M. M.; Gavaleshko, N. M.; Brus, V. V.; Mostovyi, A. I.; Maryanchuk, P. D.; Tresso, E.

    2016-10-01

    MoOx/n-CdTe photosensitive heterostructures were prepared by the deposition of molybdenum oxide thin films onto n-type single-crystal CdTe substrates by DC reactive magnetron sputtering. The obtained heterojunctions possessed sharply defined rectifying properties with the rectification ration RR ˜ 106. The temperature dependences of the height of the potential barrier and series resistance of the MoOx/CdTe heterojunctions were investigated. The dominating current transport mechanisms through the heterojunctions were determined at forward and reverse biases. The analysis of capacitance-voltage (C-V) characteristics, measured at different frequencies of the small amplitude AC signal and corrected by the effect of the series resistance, provided evidence of the presence of electrically charged interface states, which significantly affect the measured capacitance.

  12. Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface

    KAUST Repository

    Li, Ming Yang; Shi, Yumeng; Cheng, Chia Chin; Lu, Li Syuan; Lin, Yung Chang; Tang, Hao-Ling; Tsai, Meng Lin; Chu, Chih Wei; Wei, Kung Hwa; He, Jr-Hau; Chang, Wen Hao; Suenaga, Kazu; Li, Lain-Jong

    2015-01-01

    . Spatially connected TMDC lateral heterojunctions are key components for constructing monolayer p-n rectifying diodes, light-emitting diodes, photovoltaic devices, and bipolar junction transistors. However, such structures are not readily prepared via

  13. Wireless Power Transmission to Organic Light Emitting Diode Lighting Panel with Magnetically Coupled Resonator

    Science.gov (United States)

    Kim, Yong-Hae; Han, Jun-Han; Kang, Seung-Youl; Cheon, Sanghoon; Lee, Myung-Lae; Ahn, Seong-Deok; Zyung, Taehyoung; Lee, Jeong-Ik; Moon, Jaehyun; Chu, Hye Yong

    2012-09-01

    We are successful to lit the organic light emitting diode (OLED) lighting panel through the magnetically coupled wireless power transmission technology. For the wireless power transmission, we used the operation frequency 932 kHz, specially designed double spiral type transmitter, small and thin receiver on the four layered printed circuit board, and schottky diodes for the full bridge rectifier. Our white OLED is a hybrid type, in which phosphorescent and fluorescent organics are used together to generate stable white color. The total efficiency of power transmission is around 72%.

  14. Nanopatterned Silicon Substrate Use in Heterojunction Thin Film Solar Cells Made by Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    Shao-Ze Tseng

    2014-01-01

    Full Text Available This paper describes a method for fabricating silicon heterojunction thin film solar cells with an ITO/p-type a-Si : H/n-type c-Si structure by radiofrequency magnetron sputtering. A short-circuit current density and efficiency of 28.80 mA/cm2 and 8.67% were achieved. Novel nanopatterned silicon wafers for use in cells are presented. Improved heterojunction cells are formed on a nanopatterned silicon substrate that is prepared with a self-assembled monolayer of SiO2 nanospheres with a diameter of 550 nm used as an etching mask. The efficiency of the nanopattern silicon substrate heterojunction cells was 31.49% greater than that of heterojunction cells on a flat silicon wafer.

  15. Generalised small signal analysis of a DAR /Double Avalanche Region/ IMPATT diode

    Science.gov (United States)

    Datta, D. N.; Pal, B. B.

    1982-06-01

    A generalized small signal analysis of a DAR IMPATT diode is carried out using recent values of ionization rates and saturated drift velocities of electrons and holes for Si and GaAs taking both the drift and the diffusion of charge carriers into account. The results show similar discrete negative conductance frequency bands separated by positive conductance frequency bands for an asymmetrical structure as in the ideal case (Som et al., 1974), establishing that the harmonically related frequencies can be avoided in the Si DAR IMPATT diode. In contrast to the ideal case, however, the symmetrical DAR IMPATT here also exhibits finite negative conductance. The GaAs DAR IMPATT shows variations of negative conductance that are similar to those in Si at high frequencies (in the mm wave range); at the low frequency side (less than 1 GHz), however, the IMPATT gives uniform negative conductances unlike Si where the negative conductance comes only at higher frequencies. Consideration is given in the calculations to thin depletion layers (0.8, 1, and 2 microns) to show the usefulness of the device in the mm wave range.

  16. Comparison of the effect of diode laser versus intense pulsed light in axillary hair removal.

    Science.gov (United States)

    Ormiga, Patricia; Ishida, Cleide Eiko; Boechat, Alvaro; Ramos-E-Silva, Marcia

    2014-10-01

    Devices such as diode laser and intense pulsed light (IPL) are in constant development aiming at permanent hair removal, but there are few comparative studies between these technologies. The objective was to comparatively assess axillary hair removal performed by diode laser and IPL and to obtain parameters of referred pain and evolution response for each method. A comparative prospective, double-blind, and randomized study of axillary hair removal performed by the diode laser and IPL was conducted in 21 females. Six sessions were held with application of the diode laser in one axilla and the IPL in the other, with intervals of 30 days and follow-up of 6 months after the last session. Clinical photographs and digital dermoscopy for hair counts in predefined and fixed fields of the treated areas were performed before, 2 weeks after the sixth session, and 6 months after the end of treatment. A questionnaire to assess the pain was applied. The number of hair shafts was significantly reduced with the diode laser and IPL. The diode laser was more effective, although more painful than the IPL. No serious, adverse, or permanent effects were observed with both technologies. Both diode laser and the IPL are effective, safe, and able to produce lasting results in axillary hair removal.

  17. Gamma-ray background induced in a double Ge (Li) spectrometer at ballon altitudes in the hemisphere

    International Nuclear Information System (INIS)

    Bui-Van, N.A.; Braga, J.; Jardim, J.O.D.; Vedrenne, G.

    1986-02-01

    A double coaxil Ge(li) spetrometer has been flown for the first time in December, from the Southern Hemisphere and the induced background at ceiling in the diodes was studied. During the flight, different anti-coincidence modes were operated to estimate the gamma-ray lines. The results of 511 Kev line show that the fluxes detected by the upper diode are in good agreement with previous measurements, and indicate a probable contamination of the lower diode. (Author) [pt

  18. An Improved Memristive Diode Bridge-Based Band Pass Filter Chaotic Circuit

    Directory of Open Access Journals (Sweden)

    Quan Xu

    2017-01-01

    Full Text Available By replacing a series resistor in active band pass filter (BPF with an improved memristive diode bridge emulator, a third-order memristive BPF chaotic circuit is presented. The improved memristive diode bridge emulator without grounded limitation is equivalently achieved by a diode bridge cascaded with only one inductor, whose fingerprints of pinched hysteresis loop are examined by numerical simulations and hardware experiments. The memristive BPF chaotic circuit has only one zero unstable saddle point but causes complex dynamical behaviors including period, chaos, period doubling bifurcation, and coexisting bifurcation modes. Specially, it should be highly significant that two kinds of bifurcation routes are displayed under different initial conditions and the coexistence of three different topological attractors is found in a narrow parameter range. Moreover, hardware circuit using discrete components is fabricated and experimental measurements are performed, upon which the numerical simulations are validated. Notably, the proposed memristive BPF chaotic circuit is only third-order and has simple topological structure.

  19. 4H-SiC Schottky diode arrays for X-ray detection

    Energy Technology Data Exchange (ETDEWEB)

    Lioliou, G. [Semiconductor Materials and Devices Laboratory, School of Engineering and Informatics, University of Sussex, Falmer, Brighton BN1 9QT (United Kingdom); Chan, H.K. [School of Electrical and Electronic Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom); Gohil, T. [Semiconductor Materials and Devices Laboratory, School of Engineering and Informatics, University of Sussex, Falmer, Brighton BN1 9QT (United Kingdom); Vassilevski, K.V.; Wright, N.G.; Horsfall, A.B. [School of Electrical and Electronic Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom); Barnett, A.M. [Semiconductor Materials and Devices Laboratory, School of Engineering and Informatics, University of Sussex, Falmer, Brighton BN1 9QT (United Kingdom)

    2016-12-21

    Five SiC Schottky photodiodes for X-ray detection have been electrically characterized at room temperature. One representative diode was also electrically characterized over the temperature range 20°C to 140 °C. The performance at 30 °C of all five X-ray detectors, in both current mode and for photon counting X-ray spectroscopy was investigated. The diodes were fabricated in an array form such that they could be operated as either a 2×2 or 1×3 pixel array. Although the devices showed double barrier heights, high ideality factors and higher than expected leakage current at room temperature (12 nA/cm{sup 2} at an internal electric field of 105 kV/cm), they operated as spectroscopic photon counting soft X-ray detectors uncooled at 30 °C. The measured energy resolution (FWHM at 17.4 keV, Mo Kα) varied from 1.36 to 1.68 keV among different diodes.

  20. Quaternary InGaAsSb Thermophotovoltaic Diode Technology

    International Nuclear Information System (INIS)

    M Dashiell; J Beausang; H Ehsani; G Nichols; D DePoy; L Danielson; P Talamo; K Rahner; E Brown; S Burger; P Fourspring; W Topper; P Baldasaro; C Wang; R Huang; M Connors; G Turner; Z Shellenbarger; G Taylor; Jizhong Li; R Martinelli; D Donetski; S Anikeev; G Belenky; S Luryl

    2005-01-01

    Thermophotovoltaic (TPV) diodes fabricated from InGaAsSb alloys lattice-matched to GaSb substrates are grown by Metal Organic Vapor Phase Epitaxy (MOVPE). 0.53eV InGaAsSb TPV diodes utilizing front-surface spectral control filters have been tested in a vacuum cavity and a TPV thermal-to-electric conversion efficiency (η TPV ) and a power density (PD) of η TPV = 19% and PD=0.58 W/cm 2 were measured for T radiator = 950 C and T diode = 27 C. Recombination coefficients deduced from minority carrier measurements and the theory reviewed in this article predict a practical limit to the maximum achievable conversion efficiency and power density for 0.53eV InGaAsSb TPV. The limits for the above operating temperatures are projected to be η TPV = 26% and PD = 0.75 W/cm 2 . These limits are extended to η TPV = 30% and PD = 0.85W/cm 2 if the diode active region is bounded by a reflective back surface to enable photon recycling and a two-pass optical path length. The internal quantum efficiency of the InGaAsSb TPV diode is close to the theoretically predicted limits, with the exception of short wavelength absorption in GaSb contact layers. Experiments show that the open circuit voltage of the 0.53eV InGaAsSb TPV diodes is not strongly dependent on the device architectures studied in this work where both N/P and P/N double heterostructure diodes have been grown with various acceptor and donor doping levels, having GaSb and AlGaAsSb confinement, and also partial back surface reflectors. Lattice matched InGaAsSb TPV diodes were fabricated with bandgaps ranging from 0.6 to 0.5eV without significant degradation of the open circuit voltage factor, quantum efficiency, or fill factor as the composition approached the miscibility gap. The key diode performance parameter which is limiting efficiency and power density below the theoretical limits in InGaAsSb TPV devices is the open circuit voltage. The open circuit voltages of state-of-the-art 0.53eV InGaAsSb TPV diode are ∼10

  1. Silicon heterojunction solar cell with passivated hole selective MoOx contact

    Science.gov (United States)

    Battaglia, Corsin; de Nicolás, Silvia Martín; De Wolf, Stefaan; Yin, Xingtian; Zheng, Maxwell; Ballif, Christophe; Javey, Ali

    2014-03-01

    We explore substoichiometric molybdenum trioxide (MoOx, x MoOx, we observe a substantial gain in photocurrent of 1.9 mA/cm2 in the ultraviolet and visible part of the solar spectrum, when compared to a p-type amorphous silicon emitter of a traditional silicon heterojunction cell. Our results emphasize the strong potential for oxides as carrier selective heterojunction partners to inorganic semiconductors.

  2. Polymer-fullerene bulk heterojunction solar cells

    NARCIS (Netherlands)

    Janssen, RAJ; Hummelen, JC; Saricifti, NS

    Nanostructured phase-separated blends, or bulk heterojunctions, of conjugated Polymers and fullerene derivatives form a very attractive approach to large-area, solid-state organic solar cells.The key feature of these cells is that they combine easy, processing from solution on a variety of

  3. Resonant enhancement of band-to-band tunneling in in-plane MoS2/WS2 heterojunctions

    Science.gov (United States)

    Kuroda, Tatsuya; Mori, Nobuya

    2018-04-01

    The band-to-band (BTB) tunneling current J through in-plane MoS2/WS2 heterojunctions is calculated by the nonequilibrium Green function method combined with tight-binding approximation. Types A and B of band configurations are considered. For type-A (type-B) heterojunctions, a potential notch exists (or is absent) at the heterointerface. Both type-A and type-B MoS2/WS2 heterojunctions can support a higher BTB current than MoS2 and WS2 homojunctions. For type-A heterojunctions, the resonant enhancement of J occurs resulting in a significantly higher BTB tunneling current.

  4. Investigation of CuGaSe2/CuInSe2 double heterojunction interfaces grown by molecular beam epitaxy

    Directory of Open Access Journals (Sweden)

    Sathiabama Thiru

    2015-02-01

    Full Text Available In-situ reflection high-energy electron diffraction (RHEED observation and X-ray diffraction measurements were performed on heterojunction interfaces of CuGaSe2/CnInSe2/CuGaSe2 grown on GaAs (001 using migration-enhanced epitaxy. The streaky RHEED pattern and persistent RHEED intensity oscillations caused by the alternate deposition of migration-enhanced epitaxy sequence are observed and the growths of smooth surfaces are confirmed. RHEED observation results also confirmed constituent material interdiffusion at the heterointerface. Cross-sectional transmission electron microscopy showed a flat and abrupt heterointerface when the substrate temperature is as low as 400 °C. These have been confirmed even by X-ray diffraction and photoluminescence measurements.

  5. Laterally inherently thin amorphous-crystalline silicon heterojunction photovoltaic cell

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Zahidur R., E-mail: zr.chowdhury@utoronto.ca; Kherani, Nazir P., E-mail: kherani@ecf.utoronto.ca [Department of Electrical and Computer Engineering, University of Toronto, 10 King' s College Road, Toronto, Ontario M5S 3G4 (Canada)

    2014-12-29

    This article reports on an amorphous-crystalline silicon heterojunction photovoltaic cell concept wherein the heterojunction regions are laterally narrow and distributed amidst a backdrop of well-passivated crystalline silicon surface. The localized amorphous-crystalline silicon heterojunctions consisting of the laterally thin emitter and back-surface field regions are precisely aligned under the metal grid-lines and bus-bars while the remaining crystalline silicon surface is passivated using the recently proposed facile grown native oxide–plasma enhanced chemical vapour deposited silicon nitride passivation scheme. The proposed cell concept mitigates parasitic optical absorption losses by relegating amorphous silicon to beneath the shadowed metallized regions and by using optically transparent passivation layer. A photovoltaic conversion efficiency of 13.6% is obtained for an untextured proof-of-concept cell illuminated under AM 1.5 global spectrum; the specific cell performance parameters are V{sub OC} of 666 mV, J{sub SC} of 29.5 mA-cm{sup −2}, and fill-factor of 69.3%. Reduced parasitic absorption, predominantly in the shorter wavelength range, is confirmed with external quantum efficiency measurement.

  6. Low-Temperature Electrical Characteristics of Si-Based Device with New Tetrakis NiPc-SNS Active Layer

    Science.gov (United States)

    Yavuz, Arzu Büyükyağci; Carbas, Buket Bezgın; Sönmezoğlu, Savaş; Soylu, Murat

    2016-01-01

    A new tetrakis 4-(2,5-di-2-thiophen-2-yl-pyrrol-1-yl)-substituted nickel phthalocyanine (NiPc-SNS) has been synthesized. This synthesized NiPc-SNS thin film was deposited on p-type Si substrate using the spin coating method (SCM) to fabricate a NiPc-SNS/ p-Si heterojunction diode. The temperature-dependent electrical characteristics of the NiPc-SNS/ p-Si heterojunction with good rectifying behavior were investigated by current-voltage ( I- V) measurements between 50 K and 300 K. The results indicate that the ideality factor decreases while the barrier height increases with increasing temperature. The barrier inhomogeneity across the NiPc-SNS/ p-Si heterojunction reveals a Gaussian distribution at low temperatures. These results provide further evidence of the more complicated mechanisms occurring in this heterojunction. Based on these findings, NiPc-SNS/ p-Si junction diodes are feasible for use in low-temperature applications.

  7. Simulation of a high-efficiency silicon-based heterojunction solar cell

    Science.gov (United States)

    Jian, Liu; Shihua, Huang; Lü, He

    2015-04-01

    The basic parameters of a-Si:H/c-Si heterojunction solar cells, such as layer thickness, doping concentration, a-Si:H/c-Si interface defect density, and the work functions of the transparent conducting oxide (TCO) and back surface field (BSF) layer, are crucial factors that influence the carrier transport properties and the efficiency of the solar cells. The correlations between the carrier transport properties and these parameters and the performance of a-Si:H/c-Si heterojunction solar cells were investigated using the AFORS-HET program. Through the analysis and optimization of a TCO/n-a-Si:H/i-a-Si:H/p-c-Si/p+-a-Si:H/Ag solar cell, a photoelectric conversion efficiency of 27.07% (VOC) 749 mV, JSC: 42.86 mA/cm2, FF: 84.33%) was obtained through simulation. An in-depth understanding of the transport properties can help to improve the efficiency of a-Si:H/c-Si heterojunction solar cells, and provide useful guidance for actual heterojunction with intrinsic thin layer (HIT) solar cell manufacturing. Project supported by the National Natural Science Foundation of China (No. 61076055), the Open Project Program of Surface Physics Laboratory (National Key Laboratory) of Fudan University (No. FDS-KL2011-04), the Zhejiang Provincial Science and Technology Key Innovation Team (No. 2011R50012), and the Zhejiang Provincial Key Laboratory (No. 2013E10022).

  8. Optically controlled resonant tunneling in a double-barrier diode

    Science.gov (United States)

    Kan, S. C.; Wu, S.; Sanders, S.; Griffel, G.; Yariv, A.

    1991-03-01

    The resonant tunneling effect is optically enhanced in a GaAs/GaAlAs double-barrier structure that has partial lateral current confinement. The peak current increases and the valley current decreases simultaneously when the device surface is illuminated, due to the increased conductivity of the top layer of the structure. The effect of the lateral current confinement on the current-voltage characteristic of a double-barrier resonant tunneling structure was also studied. With increased lateral current confinement, the peak and valley current decrease at a different rate such that the current peak-to-valley ratio increases up to three times. The experimental results are explained by solving the electrostatic potential distribution in the structure using a simple three-layer model.

  9. Theoretical study on the thermal and optical features of a diode side-pumped alkali laser

    Science.gov (United States)

    Han, Juhong; Liu, Xiaoxu; Wang, Hongyuan; Cai, He; An, Guofei; Zhang, Wei; Wang, You

    2018-03-01

    As one of the most hopeful candidates to achieve high power performances, a diode-pumped alkali laser (DPAL) has attracted a lot of attention in the last decade. Comparing with a diode end-pumped alkali laser (DEPAL), a diode side-pumped alkali laser (DSPAL) has great potentiality to realize an even-higher output of alkali lasers. However, there are few related researching studies concern DSPAL. In this paper, we introduce a theoretical model to investigate the physical features of a double-directions side-pumped alkali laser. The distributions of the population density, temperature, and absorption power at the cross section of a vapor cell are systematically studied. The analyses should be valuable for design of a steady high-powered DPAL.

  10. Experimental evidence of energetic neutrals production in an ion diode

    Energy Technology Data Exchange (ETDEWEB)

    Pushkarev, A.I., E-mail: aipush@mail.ru; Isakova, Y.I.; Khaylov, I.P.

    2015-01-15

    The paper presents several experimental proofs of the formation of energetic charge-exchange neutrals in a self-magnetically insulated ion diode with a graphite cathode. The energetic neutrals are thought to be produced as a result of charge exchange process between accelerated ions and stationary neutral molecules. The experiments have been carried out using both a diode with externally applied magnetic insulation (single-pulse mode: 100 ns, 250–300 kV) and a diode with self-magnetic insulation (double-pulse mode: 300–500 ns, 100–150 kV (negative pulse); 120 ns, 250–300 kV (positive pulse)). The motivation for looking at the neutral component of the ion beam came when we compared two independent methods to measure the energy density of the beam. A quantitative comparison of infrared measurements with signals from Faraday cups and diode voltage was made to assess the presence of neutral atoms in the ion beam. As another proof of charge-exchange effects in ion diode we present the results of statistical analysis of diode performance. It was found that the shot-to shot variation of the energy density in a set of 50–100 shots does not exceed 11%, whilst the same variation for ion current density was 20–30%; suggesting the presence of neutrals in the beam. Moreover, the pressure in the zone of ion beam energy dissipation exceeds the results stated in cited references. The difference between our experimental data and results stated by other authors we attribute to the presence of a low-energy charge-exchange neutral component in the ion beam.

  11. Properties of ZnO/CuInSe/sub 2/ heterojunctions

    International Nuclear Information System (INIS)

    Qiu, C.X.; Shih, I.

    1986-01-01

    Low resistivity thin films of ZnO have been prepared by an rf sputtering technique with a target containing indium. It was found that the electrical resistivity of the deposited ZnO films was dependent on the indium content in the films. The deposition method was used to form ZnO/CuInSe/sub 2/ heterojunctions on Bridgman-grown monocrystalline CuInSe/sub 2/ samples. Electrical properties of the heterojunctions have been investigated. Spectral photovoltage variation was also measured

  12. Enhanced bulk heterojunction devices prepared by thermal and solvent vapor annealing processes

    Science.gov (United States)

    Forrest, Stephen R.; Thompson, Mark E.; Wei, Guodan; Wang, Siyi

    2017-09-19

    A method of preparing a bulk heterojunction organic photovoltaic cell through combinations of thermal and solvent vapor annealing are described. Bulk heterojunction films may prepared by known methods such as spin coating, and then exposed to one or more vaporized solvents and thermally annealed in an effort to enhance the crystalline nature of the photoactive materials.

  13. Low temperature junction magnetoresistance properties of Co{sub 0.65}Zn{sub 0.35}Fe{sub 2}O{sub 4}/SiO{sub 2}/p-Si magnetic diode like heterostructure for spin-electronics

    Energy Technology Data Exchange (ETDEWEB)

    Panda, J.; Nath, T.K., E-mail: tnath@phy.iitkgp.ernet.in

    2016-02-29

    The magnetic heterojunction diode has been fabricated by growing Co{sub 0.65}Zn{sub 0.35}Fe{sub 2}O{sub 4} (CZFO) on well cleaned p-Si substrate using pulsed laser deposition technique, and its behavior under magnetic field is experimentally studied in details. The magnetic field dependent current–voltage characteristics (I–V) have been studied at different isothermal conditions in the range of 5–300 K. The junction shows magnetic diode like rectifying behavior at low temperature, whereas at high temperatures the junction shows nonlinear I–V characteristics. Magnetic field shows a strong effect on junction resistance (CZFO/p-Si). It is interesting that the positive junction magnetoresistance (MR) thus produced, remains very large at low temperature regime (590% at 5 K) and gradually decreases at higher temperatures. In contrast, CZFO magnetic thin film shows negative MR behavior, whereas the junction shows large positive junction magnetoresistance (JMR) behavior throughout the temperature range. The origin of JMR has been best explained by standard spin injection theory. The temperature dependent spin life time (τ) has been estimated for our heterostructure. The value of τ decreases with increasing temperature. The spin life time (183 ps), spin polarization (0.71) and spin diffusion length (375 nm) have been estimated of the heterostructure at 10 K. - Highlights: • The junction magnetoresistance (JMR) of Co{sub 0.65}Zn{sub 0.35}Fe{sub 2}O{sub 4}/SiO{sub 2}/p-Si heterojunction is studied. • Heterostructure shows rectifying magnetic diode like behavior. • The highest positive JMR (590%) has been found to be at 5 K. • The origin of observed JMR has been best explained by spin injection theory. • The spin life time, spin diffusion length and spin polarization have been estimated at 10 K.

  14. Magnetic insulation regimes in high-current diodes and transmission lines of conical configuration

    International Nuclear Information System (INIS)

    Vasilenko, O.I.; Voronin, V.S.; Lebedev, A.N.

    1977-01-01

    Steady states of the electron current in a high-voltage diode and of the transmission line of conical configuration at emission current restriction by the space are considered on the basis of the self-consistant kinetic description in connection with the prospects of controlled thermonuclear synthesis. Proceeding from the magnetic self-insulation principle solved are the problems of controling the emission electron current in the double-electron geometry to prevent it from being present on the anode in the line regime and to achieve its maximum focusing in the diode regime. The motion of plasma boundaries as well as the probable contribution of the ion component of the current were not taken into consideration. It is shown that the beam focusing on the system axis takes place at sufficiently strong currents. It is connected with the fact that some part of the full diode current runs on the cathode surface. The results were compared with existing approximate diode models and with the experimetal data on focusien of strong-current beams

  15. Semiconductor device comprising a pn-heterojunction

    NARCIS (Netherlands)

    2007-01-01

    An electric device is disclosed comprising a pn-heterojunction ( 4 ) formed by a nanowire ( 3 ) of 111 -V semiconductor material and a semiconductor body ( 1 ) comprising a group IV semiconductor material. The nanowire ( 3 ) is positioned in direct contact with the surface ( 2 ) of the semiconductor

  16. Fabrication and current–voltage characteristics of NiOx/ZnO based MIIM tunnel diode

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Aparajita, E-mail: asing044@fiu.edu [BioMEMS and Microsystems Laboratory, Department of Electrical and Computer Engineering, Florida International University, Miami, Florida 33174, United States of America (United States); Ratnadurai, Rudraskandan [Global Foundaries, Malta, New York 12020 (United States); Kumar, Rajesh [BioMEMS and Microsystems Laboratory, Department of Electrical and Computer Engineering, Florida International University, Miami, Florida 33174 (United States); Department of Physics, Panjab University, Chandigarh 160014 (India); Krishnan, Subramanian [BioMEMS and Microsystems Laboratory, Department of Electrical and Computer Engineering, Florida International University, Miami, Florida 33174 (United States); Emirov, Yusuf [Advanced Materials Engineering Research Institute, Florida International University, Miami, Florida 33174 (United States); Bhansali, Shekhar [BioMEMS and Microsystems Laboratory, Department of Electrical and Computer Engineering, Florida International University, Miami, Florida 33174 (United States)

    2015-04-15

    Highlights: • Fabrication of single and bilayer tunnel diodes by sputter deposition. • Current–voltage characteristics study. • Enhanced asymmetry and non-linearity. • Study of tunneling mechanism. - Abstract: Enhanced asymmetric and non-linear characteristics of Ni–NiOx based MIM diode has been reported by the addition of a second insulator layer ZnO to form MIIM configuration. These properties are required for applications like energy-harvesting devices, terahertz electronics, macro electronics, etc. In this work, single insulator layer Ni–NiOx–Cr and double insulator Ni–NiOx–ZnO–Cr tunnel diodes were fabricated and their I–V characteristics were studied. A significant increase by one order of magnitude in asymmetry has been observed in case of bilayer NiOx/ZnO dielectric configuration at low voltages. The sensitivity of the NiOx and NiOx/ZnO dielectric configuration in MIM stack was 11 V{sup −1} and 16 V{sup −1}. The improved performance of the bilayer insulator diode is due to the second insulator which enables resonant tunneling or step-tunneling. Resonant tunneling was found to be dominant through trap assisted tunneling in the NiOx/ZnO diode.

  17. Fabrication and characterization of high quality n-ZnO/p-GaN heterojunction light emission diodes

    International Nuclear Information System (INIS)

    Zheng Hao; Mei, Z.X.; Zeng, Z.Q.; Liu, Y.Z.; Guo, L.W.; Jia, J.F.; Xue, Q.K.; Zhang, Z.; Du, X.L.

    2011-01-01

    High quality single crystalline n-type ZnO film was grown on p-type GaN substrate using molecular beam epitaxy. Transmission electron microscopy reveals a sharp ZnO/GaN interface. Light-emitting diode was fabricated from this heterostructure, and a turn-on voltage of ∼ 3.4 V was demonstrated. We found that the emission peak shifts from violet (430 nm) to near-ultraviolet (375 nm) when the driving current increases from 0.38 mA to 3.08 mA. This intriguing phenomenon can be understood by charged carrier's radical recombination occurring at both sides of the device, and the current enhancement of ZnO emission efficiency.

  18. Longitudinal polar optical phonons in InN/GaN single and double het- erostructures

    Energy Technology Data Exchange (ETDEWEB)

    Ardali, Sukru; Tiras, Engin [Department of Physics, Faculty of Science, Anadolu University, Yunus Emre Campus, Eskisehir 26470 (Turkey); Gunes, Mustafa; Balkan, Naci [School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester CO4 3SQ (United Kingdom); Ajagunna, Adebowale Olufunso; Iliopoulos, Eleftherios; Georgakilas, Alexandros [Microelectronics Research Group, IESL, FORTH and Physics Department, University of Crete, P.O. Box 1385, 71110 Heraklion-Crete (Greece)

    2011-05-15

    Longitudinal optical phonon energy in InN epi-layers has been determined independently from the Raman spectroscopy and temperature dependent Hall mobility measurements. Raman spectroscopy technique can be used to obtain directly the LO energy where LO phonon scattering dominates transport at high temperature. Moreover, the Hall mobility is determined by the scattering of electrons with LO phonons so the data for the temperature dependence of Hall mobility have been used to calculate the effective energy of longitudinal optical phonons.The samples investigated were (i) single heterojunction InN with thicknesses of 1.08, 2.07 and 4.7 {mu}m grown onto a 40 nm GaN buffer and (ii) GaN/InN/AlN double heterojunction samples with InN thicknesses of 0.4, 0.6 and 0.8 {mu}m. Hall Effect measurements were carried out as a function of temperature in the range between T = 1.7 and 275 K at fixed magnetic and electric fields. The Raman spectra were obtained at room temperature. In the experiments, the 532 nm line of a nitrogen laser was used as the excitation source and the light was incident onto the samples along of the growth direction (c-axis). The results, obtained from the two independent techniques suggest the following: (1) LO phonon energies obtained from momentum relaxation experiments are generally slightly higher than those obtained from the Raman spectra. (2) LO phonon energy for the single heterojunctions does not depend on the InN thickness. (3) In double heterostructures, with smaller InN thicknesses and hence with increased strain, LO phonon energy increases by 3% (experimental accuracy is < 1%) when the InN layer thickness increases from 400 to 800 nm (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Diode pumped solid state laser by two diodes

    International Nuclear Information System (INIS)

    Li Mingzhong; Zhang Xiaomin; Liang Yue; Man Yongzai; Zhou Pizhang

    1995-01-01

    A Nd: YLF laser is pumped by home-made quantum well diode lasers. Datum of laser output energy 60 μJ and peak power 120 mw are observed at wavelength 1.047 μm. On the same pumping condition, the output power synchronously pumped by two diodes is higher than the total output power pumped by two diodes separately. The fluctuation is <3%. The results agree with theoretical analysis

  20. Indium oxide/n-silicon heterojunction solar cells

    Science.gov (United States)

    Feng, Tom; Ghosh, Amal K.

    1982-12-28

    A high photo-conversion efficiency indium oxide/n-silicon heterojunction solar cell is spray deposited from a solution containing indium trichloride. The solar cell exhibits an Air Mass One solar conversion efficiency in excess of about 10%.

  1. The effect of interface state continuum on the impedance spectroscopy of semiconductor heterojunctions

    International Nuclear Information System (INIS)

    Brus, V V

    2013-01-01

    A quantitative analysis of the impedance spectroscopy of semiconductor heterojunctions was carried out in the presence of interface state continuum at the heterojunction interface. A comparison of the impedance spectroscopy of semiconductor heterojunctions simulated in the context of the interface state continuum model with that simulated in the scope of the single-level state model was carried and possible misinterpretations were considered. The previously proposed approaches for the determination of the interface-state-related parameters and for the calculation of the actual barrier capacitance (the single-level state model) were modified in order to take into account the effect of interface state continuum. (paper)

  2. Enhanced photoelectrochemical response of plasmonic Au embedded BiVO4/Fe2O3 heterojunction.

    Science.gov (United States)

    Verma, Anuradha; Srivastav, Anupam; Khan, Saif A; Rani Satsangi, Vibha; Shrivastav, Rohit; Kumar Avasthi, Devesh; Dass, Sahab

    2017-06-14

    The effect of embedding Au nanoparticles (NPs) in a BiVO 4 /Fe 2 O 3 heterojunction for photoelectrochemical water splitting is studied here for the first time. The present nanostructured heterojunction offers three major advantages over pristine BiVO 4 and Fe 2 O 3 : (i) the formation of a heterojunction between BiVO 4 and Fe 2 O 3 enhances the charge carrier separation and transfer, (ii) the layer of Fe 2 O 3 provides protection to BiVO 4 from photocorrosion and, (iii) the Au NPs possessing surface plasmon resonance (SPR) enhance the photoelectrochemical response by transferring energy to metal oxides by hot electron transfer (HET) and plasmon resonant energy transfer (PRET). The present study reveals that the heterojunction ITO/BiVO 4 /Fe 2 O 3 (with 32% v/v Au solution in both layers) gives the best performance and mitigates the limitations of both pristine Fe 2 O 3 and BiVO 4 . A thirteen-fold increment in applied bias photon-to-current conversion efficiency (ABPE) was observed at 1.24 V vs. RHE under the condition of 1 Sun illumination. Monochromatic incident photon-to-current conversion efficiency (IPCE) measurements indicated that an Au embedded heterojunction is more effective in harvesting visible light in comparison to a heterojunction without Au NPs.

  3. Device physics underlying silicon heterojunction and passivating-contact solar cells: A topical review

    KAUST Repository

    Chavali, Raghu V. K.

    2018-01-15

    The device physics of commercially dominant diffused-junction silicon solar cells is well understood, allowing sophisticated optimization of this class of devices. Recently, so-called passivating-contact solar cell technologies have become prominent, with Kaneka setting the world\\'s silicon solar cell efficiency record of 26.63% using silicon heterojunction contacts in an interdigitated configuration. Although passivating-contact solar cells are remarkably efficient, their underlying device physics is not yet completely understood, not in the least because they are constructed from diverse materials that may introduce electronic barriers in the current flow. To bridge this gap in understanding, we explore the device physics of passivating contact silicon heterojunction (SHJ) solar cells. Here, we identify the key properties of heterojunctions that affect cell efficiency, analyze the dependence of key heterojunction properties on carrier transport under light and dark conditions, provide a self-consistent multiprobe approach to extract heterojunction parameters using several characterization techniques (including dark J-V, light J-V, C-V, admittance spectroscopy, and Suns-Voc), propose design guidelines to address bottlenecks in energy production in SHJ cells, and develop a process-to-module modeling framework to establish the module\\'s performance limits. We expect that our proposed guidelines resulting from this multiscale and self-consistent framework will improve the performance of future SHJ cells as well as other passivating contact-based solar cells.

  4. Study of interfaces in organic semiconductor heterojunctions

    International Nuclear Information System (INIS)

    Maheshwari, P; Dutta, D; Sudarshan, K; Sharma, S K; Pujari, P K; Samanta, S; Singh, A; Aswal, D K

    2011-01-01

    The defect structure at the organic heterojunctions is studied using slow positron beam. The structural and electronic properties of heterojunctions are of technological and fundamental importance for understanding and optimization of electronic processes in organic devices. Interface trap centres play a significant role in the electrical conduction through the junctions. Depth dependent Doppler broadened annihilation measurements have been carried out in p- and n-type organic semiconductor thin films (30-80 nm) both single as well as multilayers grown on quartz substrate. The objective of the present study is to investigate the defect structure and to understand the behavior of positrons at the charged organic interfaces. Our result shows the sensitivity of positrons to the interfacial disorders that may be a convoluted effect of the presence of defects as well as the influence of the charge dipole in multilayers.

  5. Coherence characteristics of light-emitting diodes

    International Nuclear Information System (INIS)

    Mehta, Dalip Singh; Saxena, Kanchan; Dubey, Satish Kumar; Shakher, Chandra

    2010-01-01

    We report the measurement of coherence characteristics of light-emitting diodes (LEDs). Experiments were performed using red and green color LEDs directly illuminating the Young's double slit kept in the far-zone. Fourier transform fringe analysis technique was used for the measurement of the visibility of interference fringes from which the modulus of degree of spectral coherence was determined. Low degree of spectral coherence, typically 0.4 for red and 0.2 for green LED with double-slit separation of 400 μm was observed. A variable slit was then kept in front of the LEDs and the double slit was illuminated with the light coming out of the slit. Experiments were performed with various slit sizes and the visibility of the interference fringes was observed. It was found that visibility of the interference fringes changes drastically in presence of variable slit kept in front of LEDs and a high degree of spectral coherence, typically 0.85 for red and 0.8 for green LED with double-slit separation of 400 μm and rectangular slit opening of 500 μm was observed. The experimental results are compared with the theoretical counterparts. Coherence lengths of both the LEDs were also determined and it was obtained 5.8±2 and 24±4 μm for green and red LEDs, respectively.

  6. Copper oxide/N-silicon heterojunction photovoltaic device

    Science.gov (United States)

    Feng, Tom; Ghosh, Amal K.

    1982-01-01

    A photovoltaic device having characteristics of a high efficiency solar cell comprising a Cu.sub.x O/n-Si heterojunction. The Cu.sub.x O layer is formed by heating a deposited copper layer in an oxygen containing ambient.

  7. Construction of MoS2/Si nanowire array heterojunction for ultrahigh-sensitivity gas sensor

    Science.gov (United States)

    Wu, Di; Lou, Zhenhua; Wang, Yuange; Xu, Tingting; Shi, Zhifeng; Xu, Junmin; Tian, Yongtao; Li, Xinjian

    2017-10-01

    Few-layer MoS2 thin films were synthesized by a two-step thermal decomposition process. In addition, MoS2/Si nanowire array (SiNWA) heterojunctions exhibiting excellent gas sensing properties were constructed and investigated. Further analysis reveals that such MoS2/SiNWA heterojunction devices are highly sensitive to nitric oxide (NO) gas under reverse voltages at room temperature (RT). The gas sensor demonstrated a minimum detection limit of 10 ppb, which represents the lowest value obtained for MoS2-based sensors, as well as an ultrahigh response of 3518% (50 ppm NO, ˜50% RH), with good repeatability and selectivity of the MoS2/SiNWA heterojunction. The sensing mechanisms were also discussed. The performance of the MoS2/SiNWA heterojunction gas sensors is superior to previous results, revealing that they have great potential in applications relating to highly sensitive gas sensors.

  8. Fabrication and electrical characterization of polyaniline-silicon heterojunction for gamma radiation dosimetry application; Fabricacao e caracterizacao eletrica de heterojuncoes de polianilina - silicio para aplicacao em dosimetria de radiacao gama

    Energy Technology Data Exchange (ETDEWEB)

    Laranjeira, Jane Maria Goncalves

    2004-08-15

    In this work a technique has been developed to fabricate high quality polyaniline-silicon heterojunction diodes for use as gas and/or ionizing radiation sensors. Polyaniline thin films (40 nm thick) produced by spin-coating on silicon substrates, were the active part of the junction structure. The devices presented excellent reproducibility of their electrical characteristics with high rectification ratio, 60,000 at {+-}1.0 V, and typical reverse current at - 1.0 V of 3 nA at 295 K. A G/I x G plot has been used to analyze the current-voltage characteristics, yielding typical series resistance of 4 k{omega} {+-} 5% and ideality factor in a range of 1,9 {+-} 0.5%. The heterojunction diode presents high sensitivity to gamma radiation in the dose range of 3 x 10{sup -2} to 7 kGy with a linear response in the forward and reverse bias. The excellent electrical characteristics together with the linear response with the dose, strongly suggest the application of this device for spectrometry or dosimetry of high doses of gamma radiation. These devices presented high sensitivity to gas moistures such as ammonia, nitric acid and trichloroethylene. In both cases the sensitivity was observed through shifts of the current-voltage curves, which can be easily monitored to provide a calibration curve of the sensor either as a radiation dosimeter or as a gas sensor for use in applications for gas monitoring or radiation dosimetry. Several aspects of the reliability physics of silicon-polyaniline heterojunction, such as degradation effects induced by local heating, charge trapping and temperature changes, have been discussed. These results further confirm the quality of the devices electrical characteristics and their suitability for radiation and gas sensors applications. Another interesting results presented in this work was the use of polyemeraldine nanofilms (thickness in the range 30-50 nm) deposited by 'spin coating' on glass substrates as an optical dosimeter for

  9. Fabrication and electrical characterization of polyaniline-silicon heterojunction for gamma radiation dosimetry application; Fabricacao e caracterizacao eletrica de heterojuncoes de polianilina - silicio para aplicacao em dosimetria de radiacao gama

    Energy Technology Data Exchange (ETDEWEB)

    Laranjeira, Jane Maria Goncalves

    2004-08-15

    In this work a technique has been developed to fabricate high quality polyaniline-silicon heterojunction diodes for use as gas and/or ionizing radiation sensors. Polyaniline thin films (40 nm thick) produced by spin-coating on silicon substrates, were the active part of the junction structure. The devices presented excellent reproducibility of their electrical characteristics with high rectification ratio, 60,000 at {+-}1.0 V, and typical reverse current at - 1.0 V of 3 nA at 295 K. A G/I x G plot has been used to analyze the current-voltage characteristics, yielding typical series resistance of 4 k{omega} {+-} 5% and ideality factor in a range of 1,9 {+-} 0.5%. The heterojunction diode presents high sensitivity to gamma radiation in the dose range of 3 x 10{sup -2} to 7 kGy with a linear response in the forward and reverse bias. The excellent electrical characteristics together with the linear response with the dose, strongly suggest the application of this device for spectrometry or dosimetry of high doses of gamma radiation. These devices presented high sensitivity to gas moistures such as ammonia, nitric acid and trichloroethylene. In both cases the sensitivity was observed through shifts of the current-voltage curves, which can be easily monitored to provide a calibration curve of the sensor either as a radiation dosimeter or as a gas sensor for use in applications for gas monitoring or radiation dosimetry. Several aspects of the reliability physics of silicon-polyaniline heterojunction, such as degradation effects induced by local heating, charge trapping and temperature changes, have been discussed. These results further confirm the quality of the devices electrical characteristics and their suitability for radiation and gas sensors applications. Another interesting results presented in this work was the use of polyemeraldine nanofilms (thickness in the range 30-50 nm) deposited by 'spin coating' on glass substrates as an optical dosimeter for gamma

  10. Generating a 2.4-W cw Green Laser by Intra-Cavity Frequency Doubling of a Diode-Pumped Nd:GdVO4 Laser with a MgO:PPLN Crystal

    International Nuclear Information System (INIS)

    Lu Jun; Liu Yan-Hua; Zhao Gang; Hu Xiao-Peng; Zhu Shi-Ning

    2012-01-01

    High-power cw green laser radiation is generated by intra-cavity frequency doubling of a diode-pumped Nd:GdVO 4 laser with a MgO-doped periodically-poled LiNbO 3 (MgO:PPLN) crystal at room temperature. An average power of 2.4 W at 0.53 μm is obtained under the pump 15 W at 808 nm, corresponding to an overall optical-to-optical conversion efficiency of 16%. The M 2 factor of the green beam is 3.90 and 1.34 for the horizontal and vertical direction, respectively. In addition, the power fluctuation is measured to be about ±5%

  11. Surface passivation and carrier selectivity of the thermal-atomic-layer-deposited TiO2 on crystalline silicon

    DEFF Research Database (Denmark)

    Plakhotnyuk, Maksym; Schüler, Nadine; Shkondin, Evgeniy

    2017-01-01

    Here, we demonstrate the use of an ultrathin TiO2 film as a passivating carrier-selective contact for silicon photovoltaics. The effective lifetime, surface recombination velocity, and diode quality dependence on TiO2 deposition temperature with and without a thin tunneling oxide interlayer (SiO2...... heterojunction with optimized photovoltage, interface quality, and electron extraction to maximize the photovoltage of TiO2–Si heterojunction photovoltaic cells are formulated. Diode behaviour was analysed with the help of experimental, analytical, and simulation methods. It is predicted that TiO2 with a high...

  12. A Q-switched Ho:YAG laser with double anti-misalignment corner cubes pumped by a diode-pumped Tm:YLF laser

    Science.gov (United States)

    Wang, Y. P.; Dai, T. Y.; Wu, J.; Ju, Y. L.; Yao, B. Q.

    2018-06-01

    We report the acousto-optically Q-switched Ho:YAG laser with double anti-misalignment corner cubes pumped by a diode-pumped Tm:YLF laser. In the continuous-wave operation of Ho:YAG laser, the maximum s-polarized output power of 3.2 W at 2090.3 nm was obtained under the absorbed pump power of 12.9 W by rotating the fast axis of quarter-wave plate to change the output transmission of laser cavity. The corresponding optical-to-optical conversion efficiency was 24.8% and the slope efficiency was 55.7%. When one of the corner cubes was rotated to 11.8° around vertical direction or 6.7° around horizontal direction, the laser could still operate stably. For the Q-switched operation, the pulse energy of Ho:YAG laser was 9.9 mJ with a pulse width of 53 ns at the repetition rate of 100 Hz, resulting in a peak power of 186.8 kW. The beam quality factor M2 of Ho:YAG laser was 1.3.

  13. Current Status and Future Prospects of Copper Oxide Heterojunction Solar Cells

    OpenAIRE

    Terence K. S. Wong; Siarhei Zhuk; Saeid Masudy-Panah; Goutam K. Dalapati

    2016-01-01

    The current state of thin film heterojunction solar cells based on cuprous oxide (Cu2O), cupric oxide (CuO) and copper (III) oxide (Cu4O3) is reviewed. These p-type semiconducting oxides prepared by Cu oxidation, sputtering or electrochemical deposition are non-toxic, sustainable photovoltaic materials with application potential for solar electricity. However, defects at the copper oxide heterojunction and film quality are still major constraining factors for achieving high power conversion e...

  14. Photoemission investigation of the ZnSe/CdTe heterojunction band discontinuity

    International Nuclear Information System (INIS)

    Nelson, A.J.

    1995-01-01

    Synchrotron radiation soft x-ray photoemission spectroscopy and reflection high-energy electron diffraction were used to investigate the structural and electronic properties at the ZnSe/CdTe(100) heterojunction interface. ZnSe overlayers were sequentially grown in steps on p-type CdTe(100) single crystals at 200 degree C. In situ photoemission measurements were acquired after each growth in order to observe changes in the valence band electronic structure as well as changes in the Cd 4d, Zn 3d, and Te 4d core lines. The results were used to correlate the interfacial chemistry with the electronic structure and to directly determine the ZnSe/CdTe heterojunction valence band discontinuity and the consequent heterojunction band diagram. Results of these measurements reveal that the valence band offset is ΔE v =0.20 eV. copyright 1995 American Institute of Physics

  15. Structural, electronic and transport properties of armorphous/crystalline silicon heterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, Tim Ferdinand

    2011-06-15

    The present dissertation is concerned with the physical aspects of the a-Si:H/c-Si heterojunction in the context of PV research. In a first step, the technological development which took place in the framework of the thesis is summarized. Its main constituent was the development and implementation of ultrathin ({<=}10 nm) undoped a-Si:H[(i)a-Si:H] layers to improve the passivation of the c-Si surface with the goal of increasing the open-circuit voltage of the solar cell. It is shown that the effect of (i)a-Si:H interlayers depends on the c-Si substrate doping type, and that challenges exist particularly on the technologically more relevant (n)c-Si substrate. A precise optimization of (i)a-Si:H thickness and the doping level of the following a-Si:H top layers is required to realize an efficiency gain in the solar cell. In this chapter, the key scientific questions to be tackled in the main part of the thesis are brought up by the technological development. In the next chapter, the charge carrier transport through a-Si:H/c-Si heterojunctions is investigated making use of current-voltage (I/V) characteristics taken at different temperatures. The dominant transport mechanisms in a-Si:H/c-Si heterojunctions are identified, and the relevance for solar cell operation is discussed. It is found that in the bias regime relevant for solar cell operation, the theoretical framework for the description of carrier transport in classical c-Si solar cells applies as well, which enables to use I/V curves for a simple characterization of a-Si:H/c-Si structures. The next chapter deals with the microscopic characterization of ultrathin a-Si:H layers. Employing infrared spectroscopy, spectroscopic ellipsometry, photoelectron spectroscopy and secondary ion mass spectroscopy, the structural, electronic and optical properties of (i)a-Si:H are analyzed. It is found that ultrathin a-Si:H essentially behaves like layers of 10..100 times the thickness. This represents the basis for the

  16. Investigation of silicon heterojunction solar cells by photoluminescence under DC-bias

    Directory of Open Access Journals (Sweden)

    Courtois Guillaume

    2013-09-01

    Full Text Available Photoluminescence measurements on solar cells are usually carried out under open-circuit conditions. We report here on an innovative approach, in which the samples are simultaneously illuminated and DC-biased, so that the luminescence can be monitored under several operating points, that is to say several injection levels, ranging from short-circuit conditions to the light-emitting regime of the device. The experiments were performed on in-house made c-Si/a-Si:H heterojunction solar cells illuminated by a continuous green laser diode and positively biased. The luminescence spectra obtained this way were compared to those obtained with no light excitation source, which corresponds to usual electroluminescence mode and dark J(V. Firstly, the obtained luminescence spectra have shown the expected exponential dependence on the applied voltage. Furthermore, given that the amplitude of the emitted luminescence is proportional to the radiative recombination rate, this approach enables to indirectly characterise the non-radiative recombination phenomena. In the case of HJ solar cells with intrinsic thin layers processed on high quality FZ-wafers, non-radiative recombination is dominated by the defects at the c-Si/a-Si:H interface. The luminescence measurements presented here therefore give information on the quality of the surface passivation. An estimation of the interface defect density was achieved by comparing our experimental results with modelling.

  17. Crystallinity of the epitaxial heterojunction of C60 on single crystal pentacene

    Science.gov (United States)

    Tsuruta, Ryohei; Mizuno, Yuta; Hosokai, Takuya; Koganezawa, Tomoyuki; Ishii, Hisao; Nakayama, Yasuo

    2017-06-01

    The structure of pn heterojunctions is an important subject in the field of organic semiconductor devices. In this work, the crystallinity of an epitaxial pn heterojunction of C60 on single crystal pentacene is investigated by non-contact mode atomic force microscopy and high-resolution grazing incidence x-ray diffraction. Analysis shows that the C60 molecules assemble into grains consisting of single crystallites on the pentacene single crystal surface. The in-plane mean crystallite size exceeds 0.1 μm, which is at least five time larger than the size of crystallites deposited onto polycrystalline pentacene thin films grown on SiO2. The results indicate that improvement in the crystal quality of the underlying molecular substrate leads to drastic promotion of the crystallinity at the organic semiconductor heterojunction.

  18. 3.76 W of green light generated by intracavity frequency doubling of a 1081.5 nm Yb:GdYSiO2 laser with LiB3O5

    International Nuclear Information System (INIS)

    Zhang, D; Shao, Y; Liu, H P; Li, Y L; Tao, Z H; Ruan, Q R; Zhang, T Y

    2011-01-01

    Efficient continuous-wave (CW) intracavity frequency doubling of a diode-end-pumped Yb:GdYSiO 2 (Yb:GYSO) laser operating on 2 F 5/2 → 2 F 7/2 transitions at 1081.5 nm has been demonstrated. With 17.6 W of diode pump power and the frequency doubling crystal LiB 3 O 5 (LBO), a maximum output power of 3.76 W in the green spectral range at 541 nm has been achieved, corresponding to an optical-to-optical conversion efficiency of 21.4%; the output power stability over 30 min is better than 5%. To the best of our knowledge, this is first work on intracavity frequency doubling of a diode pumped Yb:GYSO laser at 1081.5 nm

  19. BaZrO3 perovskite nanoparticles as emissive material for organic/inorganic hybrid light-emitting diodes

    DEFF Research Database (Denmark)

    Tamulevičius, S.; Ivaniuk, K.; Cherpak, V.

    2017-01-01

    In the present work we have demonstrated double-channel emission from organic exciplexes coupled to inorganic nanoparticles. The process is demonstrated by yellow-green emission in light-emitting diodes based on organic exciplexes hybridized with perovskite-type dispersed BaZrO3 nanoparticles...

  20. Impact of surface morphology of Si substrate on performance of Si/ZnO heterojunction devices grown by atomic layer deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Hazra, Purnima; Singh, Satyendra Kumar [Department of Electronics and Communication Engineering, Motilal Neheru National Institute of Technology, Allahabad 211004 (India); Jit, Satyabrata, E-mail: sjit.ece@itbhu.ac.in [Department of Electronics Engineering, Indian Institute of Technology (BHU), Varanasi 221005 (India)

    2015-01-01

    In this paper, the authors have investigated the structural, optical, and electrical characteristics of silicon nanowire (SiNW)/zinc oxide (ZnO) core–shell nanostructure heterojunctions and compared their characteristics with Si/ZnO planar heterojunctions to investigate the effect of surface morphology of Si substrate in the characteristics of Si/ZnO heterojunction devices. In this work, ZnO thin film was conformally deposited on both p-type 〈100〉 planar Si substrate and substrate with vertically aligned SiNW arrays by atomic layer deposition (ALD) method. The x-ray diffraction spectra show that the crystalline structures of Si/ZnO heterojunctions are having (101) preferred orientation, whereas vertically oriented SiNW/ZnO core–shell heterojunctions are having (002)-oriented wurtzite crystalline structures. The photoluminescence (PL) spectra of Si/ZnO heterojunctions show a very sharp single peak at 377 nm, corresponding to the bandgap of ZnO material with no other defect peaks in visible region; hence, these devices can have applications only in UV region. On the other hand, SiNW/ZnO heterojunctions are having band-edge peak at 378 nm along with a broad emission band, spreading almost throughout the entire visible region with a peak around 550 nm. Therefore, ALD-grown SiNW/ZnO heterojunctions can emit green and red light simultaneously. Reflectivity measurement of the heterojunctions further confirms the enhancement of visible region peak in the PL spectra of SiNW/ZnO heterojunctions, as the surface of the SiNW/ZnO heterojunctions exhibits extremely low reflectance (<3%) in the visible wavelength region compared to Si/ZnO heterojunctions (>20%). The current–voltage characteristics of both Si/ZnO and SiNW/ZnO heterojunctions are measured with large area ohmic contacts on top and bottom of the structure to compare the electrical characteristics of the devices. Due to large surface to-volume ratio of SiNW/ZnO core–shell heterojunction devices, the

  1. A Room-temperature Hydrogen Gas Sensor Using Palladium-decorated Single-Walled Carbon Nanotube/Si Heterojunction

    Directory of Open Access Journals (Sweden)

    Yong Gang DU

    2016-05-01

    Full Text Available We report a room-temperature (RT hydrogen gas (H2 sensor based on palladium-decorated single-walled carbon nanotube/Si (Pd-SWNTs/Si heterojunction. The current-voltage (I-V curves of the Pd-SWNTs/Si heterojunction in different concentrations of H2 were measured. The experimental results reveal that the Pd-SWNTs/Si heterojunction exhibits high H2 response. After exposure to 0.02 %, 0.05 %, and 0.1 % H2 for 10 min, the resistance of the heterojunction increases dramatically. The response is 122 %, 269 % and 457 %, respectively. A simple interfacial theory is used to understand the gas sensitivity results. This approach is a step toward future CNTs-based gas sensors for practical application.DOI: http://dx.doi.org/10.5755/j01.ms.22.2.12925

  2. Annealing effect on I-V characteristic of n-ZnO-p-InSe heterojunction

    Directory of Open Access Journals (Sweden)

    Kovalyuk Z. D.

    2015-12-01

    Full Text Available The article is devoted to studying of influence of vacuum low-temperature annealing on the electrical and photoelectric characteristics of n-ZnO-p-InSe heterostructure. Indium monoselenide (InSe is a semiconductor of the A3B6 group of layered compounds. The basic unit consists of two planes of metal atoms sandwiched between two planes of chalcogen atoms (Se-In-In-Se. The absence of dangling bonds on InSe cleaved surface makes it possible to use this semiconductor as a substrate for fabrication of heterostructures based on semiconductor materials with different symmetries and lattice spacings. Zinc oxide (ZnO is the most suitable material for window materials and solar cells buffer layers application due to its marvelous transparency in the range of visible region. InSe single crystals were grown by the Bridgman technique from a nonstoichiometric melt and characterized by a pronounced layered structure along the whole length of a sample. ZnO thin oxide film was formed on freshly cleaved van der Waals surface of InSe layered crystal. n-ZnO-p-InSe heterostructure was prepared by the method of high-frequency magnetron sputtering. Sensitivity spectral areas were identified by MDR-3 monochromator with a resolution of 2.6 nm/mm. The current-voltage characteristics of the n-ZnO-p-InSe heterostructures showed a clearly pronounced diode character. In the forward bias of the initial samples, the diode factor had the value 3.7 at room temperature. It is shown that vacuum low-temperature annealing reduces shunt currents of the heterojunction, which is reflected in the decrease in the values of n from 3.7 to 2.7.

  3. Tandem organic light-emitting diodes with buffer-modified C60/pentacene as charge generation layer

    Science.gov (United States)

    Wang, Zhen; Zheng, Xin; Liu, Fei; Wang, Pei; Gan, Lin; Wang, Jing-jing

    2017-09-01

    Buffer-modified C60/pentacene as charge generation layer (CGL) is investigated to achieve effective performance of charge generation. Undoped green electroluminescent tandem organic light-emitting diodes (OLEDs) with multiple identical emissive units and using buffer-modified C60/pentacene organic semiconductor heterojunction (OHJ) as CGL are demonstrated to exhibit better current density and brightness, compared with conventional single-unit devices. The current density and brightness both can be significantly improved with increasing the thickness of Al. However, excessive thickness of Al seriously decreases the transmittance of films and damages the interface. As a result, the maximum current efficiency of 1.43 cd·A-1 at 30 mA·cm-2 can be achieved for tandem OLEDs with optimal thickness of Al. These results clearly demonstrate that Cs2CO3/Al is an effective buffer for C60/pentacene-based tandem OLEDs.

  4. Graphene Schottky diodes: An experimental review of the rectifying graphene/semiconductor heterojunction

    International Nuclear Information System (INIS)

    Di Bartolomeo, Antonio

    2016-01-01

    In the past decade graphene has been one of the most studied materials for several unique and excellent properties. Due to its two dimensional nature, physical and chemical properties and ease of manipulation, graphene offers the possibility of integration with the existing semiconductor technology for next-generation electronic and sensing devices. In this context, the understanding of the graphene/semiconductor interface is of great importance since it can constitute a versatile standalone device as well as the building-block of more advanced electronic systems. Since graphene was brought to the attention of the scientific community in 2004, the device research has been focused on the more complex graphene transistors, while the graphene/semiconductor junction, despite its importance, has started to be the subject of systematic investigation only recently. As a result, a thorough understanding of the physics and the potentialities of this device is still missing. The studies of the past few years have demonstrated that graphene can form junctions with 3D or 2D semiconducting materials which have rectifying characteristics and behave as excellent Schottky diodes. The main novelty of these devices is the tunable Schottky barrier height, a feature which makes the graphene/semiconductor junction a great platform for the study of interface transport mechanisms as well as for applications in photo-detection, high-speed communications, solar cells, chemical and biological sensing, etc. In this paper, we review the state-of-the art of the research on graphene/semiconductor junctions, the attempts towards a modeling and the most promising applications.

  5. Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface

    KAUST Repository

    Li, Ming Yang

    2015-07-30

    Two-dimensional transition metal dichalcogenides (TMDCs) such as molybdenum sulfide MoS2 and tungsten sulfide WSe2 have potential applications in electronics because they exhibit high on-off current ratios and distinctive electro-optical properties. Spatially connected TMDC lateral heterojunctions are key components for constructing monolayer p-n rectifying diodes, light-emitting diodes, photovoltaic devices, and bipolar junction transistors. However, such structures are not readily prepared via the layer-stacking techniques, and direct growth favors the thermodynamically preferred TMDC alloys. We report the two-step epitaxial growth of lateral WSe2-MoS2 heterojunction, where the edge of WSe2 induces the epitaxial MoS2 growth despite a large lattice mismatch. The epitaxial growth process offers a controllable method to obtain lateral heterojunction with an atomically sharp interface.

  6. Effect of annealing on silicon heterojunction solar cells with textured ZnO:Al as transparent conductive oxide

    Directory of Open Access Journals (Sweden)

    Roca i Cabarrocas P.

    2012-07-01

    Full Text Available We report on silicon heterojunction solar cells using textured aluminum doped zinc oxide (ZnO:Al as a transparent conductive oxide (TCO instead of flat indium tin oxide. Double side silicon heterojunction solar cell were fabricated by radio frequency plasma enhanced chemical vapor deposition on high life time N-type float zone crystalline silicon wafers. On both sides of these cells we have deposited by radio frequency magnetron sputtering ZnO:Al layers of thickness ranging from 800 nm to 1400 nm. These TCO layers were then textured by dipping the samples in a 0.5% hydrochloric acid. External quantum efficiency as well as I-V under 1 sun illumination measurements showed an increase of the current for the cells using textured ZnO:Al. The cells were then annealed at 150 °C, 175 °C and 200 °C during 30 min in ambient atmosphere and characterized at each annealing step. The results show that annealing has no impact on the open circuit voltage of the devices but that up to a 175 °C it enhances their short circuit current, consistent with an overall enhancement of their spectral response. Our results suggest that ZnO:Al is a promising material to increase the short circuit current (Jsc while avoiding texturing the c-Si substrate.

  7. Coaxial foilless diode

    OpenAIRE

    Long Kong; QingXiang Liu; XiangQiang Li; ShaoMeng Wang

    2014-01-01

    A kind of coaxial foilless diode is proposed in this paper, with the structure model and operating principle of the diode are given. The current-voltage relation of the coaxial foilless diode and the effects of structure parameters on the relation are studied by simulation. By solving the electron motion equation, the beam deviation characteristic in the presence of external magnetic field in transmission process is analyzed, and the relationship between transverse misalignment with diode par...

  8. Phosphorene/ZnO Nano-Heterojunctions for Broadband Photonic Nonvolatile Memory Applications.

    Science.gov (United States)

    Hu, Liang; Yuan, Jun; Ren, Yi; Wang, Yan; Yang, Jia-Qin; Zhou, Ye; Zeng, Yu-Jia; Han, Su-Ting; Ruan, Shuangchen

    2018-06-10

    High-performance photonic nonvolatile memory combining photosensing and data storage with low power consumption ensures the energy efficiency of computer systems. This study first reports in situ derived phosphorene/ZnO hybrid heterojunction nanoparticles and their application in broadband-response photonic nonvolatile memory. The photonic nonvolatile memory consistently exhibits broadband response from ultraviolet (380 nm) to near infrared (785 nm), with controllable shifts of the SET voltage. The broadband resistive switching is attributed to the enhanced photon harvesting, a fast exciton separation, as well as the formation of an oxygen vacancy filament in the nano-heterojunction. In addition, the device exhibits an excellent stability under air exposure compared with reported pristine phosphorene-based nonvolatile memory. The superior antioxidation capacity is believed to originate from the fast transfer of lone-pair electrons of phosphorene. The unique assembly of phosphorene/ZnO nano-heterojunctions paves the way toward multifunctional broadband-response data-storage techniques. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The Fabrication of Bulk Heterojunction P3HT: PCBM Organic Photovoltaics

    Science.gov (United States)

    Darwis, D.; Sesa, E.; Farhamza, D.; Iqbal

    2018-05-01

    Bulk heterojunction Organic photovoltaic (OPV) devices are gaining a lot of interest due to their potential for ease of processing and lower manufacturing cost sustainable energy generation. In consequence, the number of studies into the properties and characteristics of organic solar cell devices has been increased to improving their power conversion. A further advancement over past decade has shown that improved efficiency could be obtained by mixed of poly(3 - hexylthiophene) (P3HT) and [1] – phenyl - C61-butyric acid methyl ester (PCBM) as an active layer. A series of optimizations of this P3HT: PCBM blends, such as the mixture ratio variation, the annealing treatments, and solvent treatment, have been emerged to improve the efficiency of the OPV. As a result, significant improvements were achieved. Here, we report the fabrication heterojunction devices of 2.9 % efficiency. This result has been achieved using the configuration of a typical heterojunction solar cell modules consists of layered glass/ITO/PEDOT: PSS/active layer/cathode interlayer

  10. A Planar, Chip-Based, Dual-Beam Refractometer Using an Integrated Organic Light Emitting Diode (OLED) Light Source and Organic Photovoltaic (OPV) Detectors

    Science.gov (United States)

    Ratcliff, Erin L.; Veneman, P. Alex; Simmonds, Adam; Zacher, Brian; Huebner, Daniel

    2010-01-01

    We present a simple chip-based refractometer with a central organic light emitting diode (OLED) light source and two opposed organic photovoltaic (OPV) detectors on an internal reflection element (IRE) substrate, creating a true dual-beam sensor platform. For first-generation platforms, we demonstrate the use of a single heterojunction OLED based on electroluminescence emission from an Alq3/TPD heterojunction (tris-(8-hydroxyquinoline)aluminum/N,N′-Bis(3-methylphenyl)-N,N′-diphenylbenzidine) and light detection with planar heterojunction pentacene/C60 OPVs. The sensor utilizes the considerable fraction of emitted light from conventional thin film OLEDs that is coupled into guided modes in the IRE instead of into the forward (display) direction. A ray-optics description is used to describe light throughput and efficiency-limiting factors for light coupling from the OLED into the substrate modes, light traversing through the IRE substrate, and light coupling into the OPV detectors. The arrangement of the OLED at the center of the chip provides for two sensing regions, a “sample” and “reference” channel, with detection of light by independent OPV detectors. This configuration allows for normalization of the sensor response against fluctuations in OLED light output, stability, and local fluctuations (temperature) which might influence sensor response. The dual beam configuration permits significantly enhanced sensitivity to refractive index changes relative to single-beam protocols, and is easily integrated into a field-portable instrumentation package. Changes in refractive index (ΔR.I.) between 10−2 and 10−3 R.I. units could be detected for single channel operation, with sensitivity increased to ΔR.I. ≈ 10−4 units when the dual beam configuration is employed. PMID:20218580

  11. Understanding noise suppression in heterojunction field-effect transistors

    International Nuclear Information System (INIS)

    Green, F.

    1996-01-01

    Full text: The enhanced transport properties displayed by quantum-well-confined, two-dimensional, electron systems underpin the success of heterojunction, field-effect transistors. At cryogenic temperatures, these devices exhibit impressive mobilities and, as a result, high signal gain and low noise. Conventional wisdom has it that the same favourable conditions also hold for normal room-temperature operation. In that case, however, high mobilities are precluded by abundant electron-phonon scattering. Our recent study of nonequilibrium current noise shows that quantum confinement, not high mobility, is the principal source of noise in these devices; this opens up new and exciting opportunities in low-noise transistor design. As trends in millimetre-wave technology push frequencies beyond 100 GHz, it is essential to develop a genuine understanding of noise processes in heterojunction devices

  12. Influence of heterojunction interface on exciplex emission from organic light-emitting diodes under electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shengyi; Zhang, Xiulong; Lou, Zhidong; Hou, Yanbing [Beijing Jiaotong University, Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing (China)

    2008-03-15

    In this paper, electroluminescence from organic light-emitting diodes based on 2-(4'-biphenyl)-5-(4{sup ''}-tert-butylphenyl)-1,3,4-oxadiazole (PBD) and N,N'-diphenyl-N,N'-bis(3-methylphenyl)-(1,1'-biphenyl)-4,4'-diamine (TPD) is reported. Based on the exciplex emission from the TPD/PBD interface under high electric fields, the influence of the TPD/PBD interface on exciplex emission was investigated by increasing the number of TPD/PBD interfaces while keeping both the total thickness of the TPD layer and the PBD layer constant in the multiple quantum-wells (MQW) device ITO/TPD/[PBD/TPD]{sub n}/PBD/Al (n is the well number that was varied from 0 to 3). Our experimental data shows that exciplex emission can be enhanced by suitably increasing the well number of this kind of MQW-like device. (orig.)

  13. Interplay of Nanoscale, Hybrid P3HT/ZTO Interface on Optoelectronics and Photovoltaic Cells.

    Science.gov (United States)

    Lai, Jian-Jhong; Li, Yu-Hsun; Feng, Bo-Rui; Tang, Shiow-Jing; Jian, Wen-Bin; Fu, Chuan-Min; Chen, Jiun-Tai; Wang, Xu; Lee, Pooi See

    2017-09-27

    Photovoltaic effects in poly(3-hexylthiophene-2,5-diyl) (P3HT) have attracted much attention recently. Here, natively p-type doped P3HT nanofibers and n-type doped zinc tin oxide (ZTO) nanowires are used for making not only field-effect transistors (FETs) but also p-n nanoscale diodes. The hybrid P3HT/ZTO p-n heterojunction shows applications in many directions, and it also facilitates the investigation of photoelectrons and photovoltaic effects on the nanoscale. As for applications, the heterojunction device shows a simultaneously high on/off ratio of n- and p-type FETs, gatable p-n junction diodes, tristate buffer devices, gatable photodetectors, and gatable solar cells. On the other hand, P3HT nanofibers are taken as a photoactive layer and the role played by the p-n heterojunction in the photoelectric and photovoltaic effects is investigated. It is found that the hybrid P3HT/ZTO p-n heterojunction assists in increasing photocurrents and enhancing photovoltaic effects. Through the controllable gating of the heterojunction, we can discuss the background mechanisms of photocurrent generation and photovoltaic energy harvesting.

  14. A compact multi-wavelength optoacoustic system based on high-power diode lasers for characterization of double-walled carbon nanotubes (DWCNTs) for biomedical applications

    Science.gov (United States)

    Leggio, Luca; de Varona, Omar; Escudero, Pedro; Carpintero del Barrio, Guillermo; Osiński, Marek; Lamela Rivera, Horacio

    2015-06-01

    During the last decade, Optoacoustic Imaging (OAI), or Optoacoustic Tomography (OAT), has evolved as a novel imaging technique based on the generation of ultrasound waves with laser light. OAI may become a valid alternative to techniques currently used for the detection of diseases at their early stages. It has been shown that OAI combines the high contrast of optical imaging techniques with high spatial resolution of ultrasound systems in deep tissues. In this way, the use of nontoxic biodegradable contrast agents that mark the presence of diseases in near-infrared (NIR) wavelengths range (0.75-1.4 um) has been considered. The presence of carcinomas and harmful microorganisms can be revealed by means of the fluorescence effect exhibited by biopolymer nanoparticles. A different approach is to use carbon nanotubes (CNTs) which are a contrast agent in NIR range due to their absorption characteristics in the range between 800 to 1200 nm. We report a multi-wavelength (870 and 905 nm) laser diode-based optoacoustic (OA) system generating ultrasound signals from a double-walled carbon nanotubes (DWCNTs) solution arranged inside a tissue-like phantom, mimicking the scattering of a biological soft tissue. Optoacoustic signals obtained with DWCNTs inclusions within a tissue-like phantom are compared with the case of ink-filled inclusions, with the aim to assess their absorption. These measurements are done at both 870 and 905 nm, by using high power laser diodes as light sources. The results show that the absorption is relatively high when the inclusion is filled with ink and appreciable with DWCNTs.

  15. Solution-Grown ZnO Films toward Transparent and Smart Dual-Color Light-Emitting Diode.

    Science.gov (United States)

    Huang, Xiaohu; Zhang, Li; Wang, Shijie; Chi, Dongzhi; Chua, Soo Jin

    2016-06-22

    An individual light-emitting diode (LED) capable of emitting different colors of light under different bias conditions not only allows for compact device integration but also extends the functionality of the LED beyond traditional illumination and display. Herein, we report a color-switchable LED based on solution-grown n-type ZnO on p-GaN/n-GaN heterojunction. The LED emits red light with a peak centered at ∼692 nm and a full width at half-maximum of ∼90 nm under forward bias, while it emits green light under reverse bias. These two lighting colors can be switched repeatedly by reversing the bias polarity. The bias-polarity-switched dual-color LED enables independent control over the lighting color and brightness of each emission with two-terminal operation. The results offer a promising strategy toward transparent, miniaturized, and smart LEDs, which hold great potential in optoelectronics and optical communication.

  16. Highly efficient greenish-blue platinum-based phosphorescent organic light-emitting diodes on a high triplet energy platform

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y. L., E-mail: yilu.chang@mail.utoronto.ca; Gong, S., E-mail: sgong@chem.utoronto.ca; White, R.; Lu, Z. H., E-mail: zhenghong.lu@utoronto.ca [Department of Materials Science and Engineering, University of Toronto, 184 College St., Toronto, Ontario M5S 3E4 (Canada); Wang, X.; Wang, S., E-mail: wangs@chem.queensu.ca [Department of Chemistry, Queen' s University, 90 Bader Lane, Kingston, Ontario K7L 3N6 (Canada); Yang, C. [Department of Chemistry, Wuhan University, Wuhan 430072 (China)

    2014-04-28

    We have demonstrated high-efficiency greenish-blue phosphorescent organic light-emitting diodes (PHOLEDs) based on a dimesitylboryl-functionalized C^N chelate Pt(II) phosphor, Pt(m-Bptrz)(t-Bu-pytrz-Me). Using a high triplet energy platform and optimized double emissive zone device architecture results in greenish-blue PHOLEDs that exhibit an external quantum efficiency of 24.0% and a power efficiency of 55.8 lm/W. This record high performance is comparable with that of the state-of-the-art Ir-based sky-blue organic light-emitting diodes.

  17. Impact of surface morphology of Si substrate on performance of Si/ZnO heterojunction devices grown by atomic layer deposition technique

    International Nuclear Information System (INIS)

    Hazra, Purnima; Singh, Satyendra Kumar; Jit, Satyabrata

    2015-01-01

    In this paper, the authors have investigated the structural, optical, and electrical characteristics of silicon nanowire (SiNW)/zinc oxide (ZnO) core–shell nanostructure heterojunctions and compared their characteristics with Si/ZnO planar heterojunctions to investigate the effect of surface morphology of Si substrate in the characteristics of Si/ZnO heterojunction devices. In this work, ZnO thin film was conformally deposited on both p-type 〈100〉 planar Si substrate and substrate with vertically aligned SiNW arrays by atomic layer deposition (ALD) method. The x-ray diffraction spectra show that the crystalline structures of Si/ZnO heterojunctions are having (101) preferred orientation, whereas vertically oriented SiNW/ZnO core–shell heterojunctions are having (002)-oriented wurtzite crystalline structures. The photoluminescence (PL) spectra of Si/ZnO heterojunctions show a very sharp single peak at 377 nm, corresponding to the bandgap of ZnO material with no other defect peaks in visible region; hence, these devices can have applications only in UV region. On the other hand, SiNW/ZnO heterojunctions are having band-edge peak at 378 nm along with a broad emission band, spreading almost throughout the entire visible region with a peak around 550 nm. Therefore, ALD-grown SiNW/ZnO heterojunctions can emit green and red light simultaneously. Reflectivity measurement of the heterojunctions further confirms the enhancement of visible region peak in the PL spectra of SiNW/ZnO heterojunctions, as the surface of the SiNW/ZnO heterojunctions exhibits extremely low reflectance ( 20%). The current–voltage characteristics of both Si/ZnO and SiNW/ZnO heterojunctions are measured with large area ohmic contacts on top and bottom of the structure to compare the electrical characteristics of the devices. Due to large surface to-volume ratio of SiNW/ZnO core–shell heterojunction devices, the output current rating is about 130 times larger compared to their planar

  18. The effect of Gd doping on the electrical and photoelectrical properties of Gd:ZnO/p-Si heterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Baturay, Silan [Department of Physics, Faculty of Science, Dicle University, 21280 Diyarbakir (Turkey); Ocak, Yusuf Selim, E-mail: yusufselim@gmail.com [Department of Science, Faculty of Education, Dicle University, 21280 Diyarbakir (Turkey); Science and Technology Application and Research Center, Dicle University, 21280 Diyarbakir (Turkey); Kaya, Derya [Department of Physics, Institute of Natural Applied Sciences, Dicle University, 21280 Diyarbakir (Turkey)

    2015-10-05

    Highlights: • Undoped and Gd doped ZnO thin films were deposited onto p-Si semiconductor. • The Gd:ZnO/p-Si heterojunctions were compared with undoped ZnO/p-Si heterojunction. • A strong effect of Gd doping on the performance of the devices were reported. - Abstract: Undoped ZnO thin films, as well as 1%, 3% and 5% Gd-doped ZnO films, were deposited on p-type Si using spin coating. The structural properties of these thin films were analysed using X-ray diffraction, and the current–voltage (I–V) and capacitance–voltage (C–V) characteristics of the Gd:ZnO/p-Si heterojunctions were compared with those of the undoped ZnO/p-Si heterojunctions. We found that Gd doping had a strong effect on the performance of the devices, and that the Gd:ZnO/p-Si heterojunctions formed with 1% Gd-doped ZnO were the most strongly rectifying, and had the highest barrier height and the lowest series resistance. Furthermore, the I–V measurements of the 1% Gd-doped ZnO/p-Si heterojunction exhibited the strongest response to light.

  19. Photoelectric characteristics of CH3NH3PbI3/p-Si heterojunction

    Science.gov (United States)

    Yamei, Wu; Ruixia, Yang; Hanmin, Tian; Shuai, Chen

    2016-05-01

    Organic-inorganic hybrid perovskite CH3NH3PbI3 film is prepared on p-type silicon substrate using the one-step solution method to form a CH3NH3PbI3/p-Si heterojunction. The film morphology and structure are characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The photoelectric properties of the CH3NH3PbI3/p-Si heterojunction are studied by testing the current-voltage (I-V) with and without illumination and capacitance-voltage (C-V) characteristics. It turns out from the I-V curve without illumination that the CH3NH3PbI3/p-Si heterojunction has a rectifier feature with the rectification ratio over 70 at the bias of ±5 V. Also, there appears a photoelectric conversion phenomenon on this heterojunction with a short circuit current (Isc) of 0.16 μA and an open circuit voltage (Voc) of about 10 mV The high frequency C-V characteristic of the Ag/CH3NH3PbI3/p-Si heterojunction turns out to be similar to that of the metal-insulator-semiconductor (MIS) structure, and a parallel translation of the C-V curve along the forward voltage axis is found. This parallel translation means the existence of defects at the CH3NH3PbI3/p-Si interface and positive fixed charges in the CH3NH3PbI3 layer. The defects at the interface of the CH3NH3PbI3/p-Si heterojunction result in the dramatic decline of the Voc. Besides, the C-V test of CH3NH3PbI3 film shows a non-linear dielectric property and the dielectric value is about 4.64 as calculated. Project supported by the Hebei Province Natural Science Foundation of China (No. F2014202184) and the Tianjin Natural Science Foundation of China (No. 15JCZDJC37800).

  20. Efficient red phosphorescent organic light emitting diodes with double emission layers

    International Nuclear Information System (INIS)

    Ben Khalifa, M; Mazzeo, M; Maiorano, V; Mariano, F; Carallo, S; Melcarne, A; Cingolani, R; Gigli, G

    2008-01-01

    We demonstrate efficient red phosphorescent organic light emitting diodes with a bipolar emission structure (D-EML) formed by two different layers doped with a red phosphorescent dye. Due to its self-balancing character, the recombination zone is shifted far from the emission/carrier-blocking-layer interfaces. This prevents the accumulation of carriers at the interfaces and reduces the triplet-triplet annihilation, resulting in an improved efficiency of the D-EML device compared with the standard single-EML architecture. However, a current efficiency of 8.4 cd A -1 at 10 mA cm -2 is achieved in the D-EML device compared with 3.7 cd A -1 in the single-EML device

  1. Efficient red phosphorescent organic light emitting diodes with double emission layers

    Energy Technology Data Exchange (ETDEWEB)

    Ben Khalifa, M; Mazzeo, M; Maiorano, V; Mariano, F; Carallo, S; Melcarne, A; Cingolani, R; Gigli, G [NNL, National Nanotechnology Laboratory of CNR-INFM, Distretto tecnologico ISUFI, Universita del Salento, Italy, Via per Arnesano, Km.5, 73100 Lecce (Italy)], E-mail: mohamed.benkhalifa@unile.it

    2008-08-07

    We demonstrate efficient red phosphorescent organic light emitting diodes with a bipolar emission structure (D-EML) formed by two different layers doped with a red phosphorescent dye. Due to its self-balancing character, the recombination zone is shifted far from the emission/carrier-blocking-layer interfaces. This prevents the accumulation of carriers at the interfaces and reduces the triplet-triplet annihilation, resulting in an improved efficiency of the D-EML device compared with the standard single-EML architecture. However, a current efficiency of 8.4 cd A{sup -1} at 10 mA cm{sup -2} is achieved in the D-EML device compared with 3.7 cd A{sup -1} in the single-EML device.

  2. Photovoltaic properties of pentacene/[6,6]-phenyl C61 butyric acid methyl ester based bilayer hetero-junction solar cells

    International Nuclear Information System (INIS)

    Reddy, V S; Karak, S; Ray, S K; Dhar, A

    2009-01-01

    The photovoltaic properties of devices based on a new combination, pentacene/[6,6]-phenyl C 61 butyric acid methyl ester (PCBM) bilayer hetero-junctions, were investigated. The crystallinity of pentacene was found to be improved by depositing a PEDOT : PSS layer on an indium tin oxide substrate, which in turn doubled the power conversion efficiency of the device. The PCBM layer showed a significant contribution to the device photocurrent, which originated mainly due to the dissociation of excitons at the pentacene/PCBM interface. By optimizing the thickness of the pentacene and PCBM layers, a broader photo-response was obtained in the external quantum efficiency spectra indicating efficient light harvesting throughout the visible region of the solar spectrum.

  3. Surface Passivation for Silicon Heterojunction Solar Cells

    NARCIS (Netherlands)

    Deligiannis, D.

    2017-01-01

    Silicon heterojunction solar cells (SHJ) are currently one of the most promising solar cell technologies in the world. The SHJ solar cell is based on a crystalline silicon (c-Si) wafer, passivated on both sides with a thin intrinsic hydrogenated amorphous silicon (a-Si:H) layer. Subsequently, p-type

  4. Simulation of the tunnelling transport in ferromagnetic GaAs/ZnO heterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Comesana, E; Aldegunde, M; Garcia-Loureiro, A J [Department de Electronica e Computacion, Universidade de Santiago de Compostela, 15782 Spain (Spain); Gehring, G A, E-mail: enrique.comesana@usc.e [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom)

    2010-07-01

    In this work we have implemented a numerical simulator and analytical model to study the dependence of the tunnelling current on the polarization ratio of the carrier spin for a degenerate and ferromagnetic heterojunction. We have applied these models to study the behaviour of a magnetically doped GaAs/ZnO PN junction and the current transport in a PN heterojunction where the polarization of the spin of the charge carriers is also a control variable.

  5. Epitaxial Growth of an Organic p-n Heterojunction: C60 on Single-Crystal Pentacene.

    Science.gov (United States)

    Nakayama, Yasuo; Mizuno, Yuta; Hosokai, Takuya; Koganezawa, Tomoyuki; Tsuruta, Ryohei; Hinderhofer, Alexander; Gerlach, Alexander; Broch, Katharina; Belova, Valentina; Frank, Heiko; Yamamoto, Masayuki; Niederhausen, Jens; Glowatzki, Hendrik; Rabe, Jürgen P; Koch, Norbert; Ishii, Hisao; Schreiber, Frank; Ueno, Nobuo

    2016-06-01

    Designing molecular p-n heterojunction structures, i.e., electron donor-acceptor contacts, is one of the central challenges for further development of organic electronic devices. In the present study, a well-defined p-n heterojunction of two representative molecular semiconductors, pentacene and C60, formed on the single-crystal surface of pentacene is precisely investigated in terms of its growth behavior and crystallographic structure. C60 assembles into a (111)-oriented face-centered-cubic crystal structure with a specific epitaxial orientation on the (001) surface of the pentacene single crystal. The present experimental findings provide molecular scale insights into the formation mechanisms of the organic p-n heterojunction through an accurate structural analysis of the single-crystalline molecular contact.

  6. Enhanced planar perovskite solar cell efficiency and stability using a perovskite/PCBM heterojunction formed in one step.

    Science.gov (United States)

    Zhou, Long; Chang, Jingjing; Liu, Ziye; Sun, Xu; Lin, Zhenhua; Chen, Dazheng; Zhang, Chunfu; Zhang, Jincheng; Hao, Yue

    2018-02-08

    Perovskite/PCBM heterojunctions are efficient for fabricating perovskite solar cells with high performance and long-term stability. In this study, an efficient perovskite/PCBM heterojunction was formed via conventional sequential deposition and one-step formation processes. Compared with conventional deposition, the one-step process was more facile, and produced a perovskite thin film of substantially improved quality due to fullerene passivation. Moreover, the resulting perovskite/PCBM heterojunction exhibited more efficient carrier transfer and extraction, and reduced carrier recombination. The perovskite solar cell device based on one-step perovskite/PCBM heterojunction formation exhibited a higher maximum PCE of 17.8% compared with that from the conventional method (13.7%). The device also showed exceptional stability, retaining 83% of initial PCE after 60 days of storage under ambient conditions.

  7. Graphitic carbon nitride/Cu2O heterojunctions: Preparation, characterization, and enhanced photocatalytic activity under visible light

    International Nuclear Information System (INIS)

    Tian, Yanlong; Chang, Binbin; Fu, Jie; Zhou, Baocheng; Liu, Jiyang; Xi, Fengna; Dong, Xiaoping

    2014-01-01

    As a metal-free semiconductor material, graphitic carbon nitride (C 3 N 4 ), the high recombination rate of photogenerated charges and insufficient sunlight absorption limit its solar-based photocatalytic activity. Here, we reported the heterojunctions of C 3 N 4 –Cu 2 O with a p–n junction structure, which was synthesized by a hydrothermal method. The HR-TEM result revealed an intimate interface between C 3 N 4 and Cu 2 O in the heterojunction, and UV–vis diffuse reflection spectra showed their extended spectral response in the visible region compared with pure C 3 N 4 . These excellent structural and spectral properties, as well as p–n junction structures, endowed the C 3 N 4 –Cu 2 O heterojunctions with enhanced photocatalytic activities. The possible photocatalytic mechanism that photogenerated holes as the mainly oxidant species in photocatalysis was proposed base on the trapping experiments. - Highlights: • A hydrothermal method was used to prepare C3N 4 –Cu 2 O heterojunction. • The resulting heterojunction possesses broader absorption in the visible region. • The material owns a high visible light activity and stability for dye degradation

  8. Monolithic integration of a resonant tunneling diode and a quantum well semiconductor laser

    Science.gov (United States)

    Grave, I.; Kan, S. C.; Griffel, G.; Wu, S. W.; Sa'Ar, A.

    1991-01-01

    A monolithic integration of a double barrier AlAs/GaAs resonant tunneling diode and a GaAs/AlGaAs quantum well laser is reported. Negative differential resistance and negative differential optical response are observed at room temperature. The device displays bistable electrical and optical characteristics which are voltage controlled. Operation as a two-state optical memory is demonstrated.

  9. Buck-Boost Current-Source Inverters With Diode-Inductor Network

    DEFF Research Database (Denmark)

    Gao, Feng; Liang, Chao; Loh, Poh Chiang

    2009-01-01

    This paper presents a number of novel currentsource inverters (CSIs) with enhanced current buck-boost capability. By adding a unique diode-inductor network between the inverter circuitry and current-boost elements, the proposed buck-boost CSIs demonstrate a doubling of current-boost capability......, as compared with other recently reported buck-boost CSIs. For controlling the proposed CSIs, two modulation schemes are designed for achieving either optimized harmonic performance or minimized commutation count without influencing the inverter current buck-boost gain. These theoretical findings were...

  10. Hybrid van der Waals p-n Heterojunctions based on SnO and 2D MoS2

    KAUST Repository

    Wang, Zhenwei

    2016-08-30

    A p-type oxide/2D hybrid van der Waals p-n heterojunction is demonstrated for the first time between SnO (tin monoxide) (the p-type oxide) and 2D MoS2 (molybdenum disulfide), showing an ideality factor of 2 and rectification ratio up to 10(4) . The reported heterojunction is gate-tunable with typical anti-ambipolar transfer characteristics. Surface potential mapping is performed and a current model for such a heterojunction is proposed.

  11. Coaxial foilless diode

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Long; Liu, QingXiang; Li, XiangQiang; Wang, ShaoMeng [College of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031 (China)

    2014-05-15

    A kind of coaxial foilless diode is proposed in this paper, with the structure model and operating principle of the diode are given. The current-voltage relation of the coaxial foilless diode and the effects of structure parameters on the relation are studied by simulation. By solving the electron motion equation, the beam deviation characteristic in the presence of external magnetic field in transmission process is analyzed, and the relationship between transverse misalignment with diode parameters is obtained. These results should be of interest to the area of generation and propagation of radial beam for application of generating high power microwaves.

  12. Virtually pure near-infrared electroluminescence from exciplexes at polyfluorene/hexaazatrinaphthylene interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Tregnago, G.; Fléchon, C.; Cacialli, F., E-mail: amateo@polymat.eu, E-mail: f.cacialli@ucl.ac.uk [Department of Physics and Astronomy and London Centre for Nanotechnology, University College London, London WC1E 6BT (United Kingdom); Choudhary, S. [School of Soft Matter Research, Freiburg Institute for Advanced Studies (FRIAS), Albert-Ludwigs-Universität Freiburg, Albertstraße 19, 79104 Freiburg (Germany); Institut für Organische Chemie und Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104 Freiburg (Germany); Gozalvez, C. [POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, E-20018 Donostia-San Sebastian (Spain); Mateo-Alonso, A., E-mail: amateo@polymat.eu, E-mail: f.cacialli@ucl.ac.uk [POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, E-20018 Donostia-San Sebastian (Spain); Ikerbasque, Basque Foundation for Science, Bilbao (Spain)

    2014-10-06

    Electronic processes at the heterojunction between chemically different organic semiconductors are of special significance for devices such as light-emitting diodes (LEDs) and photovoltaic diodes. Here, we report the formation of an exciplex state at the heterojunction of an electron-transporting material, a functionalized hexaazatrinaphthylene, and a hole-transporting material, poly(9,9-dioctylfluorene-alt-N-(4-butylphenyl)diphenylamine) (TFB). The energetics of the exciplex state leads to a spectral shift of ∼1 eV between the exciton and the exciplex peak energies (at 2.58 eV and 1.58 eV, respectively). LEDs incorporating such bulk heterojunctions display complete quenching of the exciton luminescence, and a nearly pure near-infrared electroluminescence arising from the exciplex (at ∼1.52 eV) with >98% of the emission at wavelengths above 700 nm at any operational voltage.

  13. Virtually pure near-infrared electroluminescence from exciplexes at polyfluorene/hexaazatrinaphthylene interfaces

    International Nuclear Information System (INIS)

    Tregnago, G.; Fléchon, C.; Cacialli, F.; Choudhary, S.; Gozalvez, C.; Mateo-Alonso, A.

    2014-01-01

    Electronic processes at the heterojunction between chemically different organic semiconductors are of special significance for devices such as light-emitting diodes (LEDs) and photovoltaic diodes. Here, we report the formation of an exciplex state at the heterojunction of an electron-transporting material, a functionalized hexaazatrinaphthylene, and a hole-transporting material, poly(9,9-dioctylfluorene-alt-N-(4-butylphenyl)diphenylamine) (TFB). The energetics of the exciplex state leads to a spectral shift of ∼1 eV between the exciton and the exciplex peak energies (at 2.58 eV and 1.58 eV, respectively). LEDs incorporating such bulk heterojunctions display complete quenching of the exciton luminescence, and a nearly pure near-infrared electroluminescence arising from the exciplex (at ∼1.52 eV) with >98% of the emission at wavelengths above 700 nm at any operational voltage.

  14. Virtually pure near-infrared electroluminescence from exciplexes at polyfluorene/hexaazatrinaphthylene interfaces

    Science.gov (United States)

    Tregnago, G.; Fléchon, C.; Choudhary, S.; Gozalvez, C.; Mateo-Alonso, A.; Cacialli, F.

    2014-10-01

    Electronic processes at the heterojunction between chemically different organic semiconductors are of special significance for devices such as light-emitting diodes (LEDs) and photovoltaic diodes. Here, we report the formation of an exciplex state at the heterojunction of an electron-transporting material, a functionalized hexaazatrinaphthylene, and a hole-transporting material, poly(9,9-dioctylfluorene-alt-N-(4-butylphenyl)diphenylamine) (TFB). The energetics of the exciplex state leads to a spectral shift of ˜1 eV between the exciton and the exciplex peak energies (at 2.58 eV and 1.58 eV, respectively). LEDs incorporating such bulk heterojunctions display complete quenching of the exciton luminescence, and a nearly pure near-infrared electroluminescence arising from the exciplex (at ˜1.52 eV) with >98% of the emission at wavelengths above 700 nm at any operational voltage.

  15. The carrier transport mechanism and band offset at the interface of ZnO/n-Si(111) heterojunction

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yapeng, E-mail: liyp1984@126.com [School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723001 (China); Li, Yingfeng [School of Electrical Engineering, Shaanxi University of Technology, Hanzhong 723001 (China); Wang, Jianyuan [School of Nature and Applied Science, Northwestern Polytechnical University, Xi' an 710072 (China); He, Zhirong; Zhang, Yonghong; Yu, Qi; Hou, Juncai [School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723001 (China)

    2017-05-15

    Highlights: • The carrier transport deviated from ideal thermionic emission model. • One deep level present at the interface of ZnO/n-Si(111) heterojunction. • The band offsets of ZnO/n-Si(111) heterojunction are a type-II band alignment. - Abstract: The ZnO films were deposited on the surface of n-Si(111) substrate by pulsed laser deposition for fabrication of ZnO/n-Si(111) heterojunction. The carrier transport mechanism, deep level defects and band offsets at the interface of ZnO/n-Si(111) heterojunction were investigated by current- voltage measurement, deep level transient spectroscopy, X-ray photoelectron spectroscopy, respectively. The results showed that the barrier height and ideality factor values varied in the different linear voltage range by using the thermionic emission model, which was due to the deep level participated in carrier transport. Meanwhile, it was found that one deep level appeared at the interface of ZnO/n-Si(111) heterojunction with densities of the deep level about 8.5 × 10{sup 16} cm{sup −3} and activation energies about 224 m eV, which originated from O{sup 2−} vacancies of ZnO films. In addition, the valence band offset of the ZnO/n-Si(111) heterojunction can be calculated to be −2.4 ± 0.15 eV. The conduction band offset is deduced to be −3.5 ± 0.15 eV from the valence band offset value, indicating that the band offsets of ZnO/n-Si(111) heterojunction is a type-II band alignment.

  16. Near-diffraction-limited segmented broad area diode laser based on off-axis spectral beam combining

    DEFF Research Database (Denmark)

    Jensen, O.B.; Thestrup Nielsen, Birgitte; Andersen, Peter E.

    2006-01-01

    -feedback scheme we are able to improve the beam quality of the laser by a factor of 23 from M-2 = 55 for the free-running diode laser to M-2 = 2.4 for the laser with feedback at a drive current of 2.2 A. The improved M-2 value is a factor of 3.4 below M-2 = 8.2 for a single free-running segment. This is the first......The beam quality of a 500-mu m-wide broad area diode laser with five active segments has been improved beyond the beam quality of the individual segments. The principle of this new laser system is based on off-axis feedback in combination with spectral beam combining. By using a double...... time that the beam quality of a segmented broad area diode laser has been improved beyond the beam quality of the individual segments....

  17. Fabrication of assembled ZnO/TiO2 heterojunction thin film transistors using solution processing technique

    Science.gov (United States)

    Liau, Leo Chau-Kuang; Lin, Yun-Guo

    2015-01-01

    Ceramic-based metal-oxide-semiconductor (MOS) field-effect thin film transistors (TFTs), which were assembled by ZnO and TiO2 heterojunction films coated using solution processing technique, were fabricated and characterized. The fabrication of the device began with the preparation of ZnO and TiO2 films by spin coating. The ZnO and TiO2 films that were stacked together and annealed at 450 °C were characterized as a p-n junction diode. Two types of the devices, p-channel and n-channel TFTs, were produced using different assemblies of ZnO and TiO2 films. Results show that the p-channel TFTs (p-TFTs) and n-channel TFTs (n-TFTs) using the assemblies of ZnO and TiO2 films were demonstrated by source-drain current vs. drain voltage (IDS-VDS) measurements. Several electronic properties of the p- and n- TFTs, such as threshold voltage (Vth), on-off ratio, channel mobility, and subthreshold swing (SS), were determined by current-voltage (I-V) data analysis. The ZnO/TiO2-based TFTs can be produced using solution processing technique and an assembly approach.

  18. Electrical properties of the n-ZnO/c-Si heterojunction prepared by chemical spray pyrolysis

    International Nuclear Information System (INIS)

    Romero, R.; Lopez, M.C.; Leinen, D.; Martin, F.; Ramos-Barrado, J.R.

    2004-01-01

    Electrical, structural and compositional properties of n-ZnO/c-Si heterojunctions prepared by chemical spray pyrolysis on single-crystal n-type and p-type monocrystalline silicon(1 0 0) substrates are examined with the C-V method and admittance spectroscopy at temperature ranges between 223 and 373 K. The n-ZnO/c-Si heterojunctions show a height barrier consistent with the difference in energy of the work functions of Si and ZnO; however, the n-ZnO:Al/c-Si heterojunctions present a more complex behavior due to the defects at or near the n-ZnO:Al/c-Si interface, causing a Fermi energy pinning

  19. A hybrid heterojunction with reverse rectifying characteristics fabricated by magnetron sputtered TiOx and plasma polymerized aniline structure

    International Nuclear Information System (INIS)

    Sarma, Bimal K; Pal, Arup R; Bailung, Heremba; Chutia, Joyanti

    2012-01-01

    A TiO x film produced by direct current reactive magnetron sputtering without substrate heating or post-deposition annealing and a plasma polymerized aniline (PPA) structure deposited in the same reactor by a radio-frequency glow discharge without the assistance of a carrier gas are used for the fabrication of a heterojunction. The gas phase discharge is investigated by a Langmuir probe and optical emission spectroscopy. The individual layers and the heterojunction are characterized for structural and optoelectronic properties. PPA has polymer-like structure and texture and is characterized by saturated-unsaturated, branched and crosslinked networks. X-ray photoelectron spectroscopy reveals a slightly reduced TiO x surface, which exhibits near band edge luminescence. The free radicals trapped in PPA readily react with oxygen when exposed to atmosphere. The heterojunction shows reverse rectifying characteristics under dark and ultraviolet (UV) irradiation. The energy levels of TiO x and PPA might exhibit reverse band bending and electrons and holes are accumulated on both sides of the heterojunction. The charge accumulation phenomena at the interface may play a key role in the device performance of a hybrid heterojunction. The current-voltage characteristic of the heterojunction is sensitive to UV light, so the structure may be used for photo-sensing applications. (paper)

  20. Fabrication and Enhanced Photoelectrochemical Performance of MoS₂/S-Doped g-C₃N₄ Heterojunction Film.

    Science.gov (United States)

    Ye, Lijuan; Wang, Dan; Chen, Shijian

    2016-03-02

    We report on a novel MoS2/S-doped g-C3N4 heterojunction film with high visible-light photoelectrochemical (PEC) performance. The heterojunction films are prepared by CVD growth of S-doped g-C3N4 film on indium-tin oxide (ITO) glass substrates, with subsequent deposition of a low bandgap, 1.69 eV, visible-light response MoS2 layer by hydrothermal synthesis. Adding thiourea into melamine as the coprecursor not only facilitates the growth of g-C3N4 films but also introduces S dopants into the films, which significantly improves the PEC performance. The fabricated MoS2/S-doped g-C3N4 heterojunction film offers an enhanced anodic photocurrent of as high as ∼1.2 × 10(-4) A/cm(2) at an applied potential of +0.5 V vs Ag/AgCl under the visible light irradiation. The enhanced PEC performance of MoS2/S-doped g-C3N4 film is believed due to the improved light absorption and the efficient charge separation of the photogenerated charge at the MoS2/S-doped g-C3N4 interface. The convenient preparation of carbon nitride based heterojunction films in this work can be widely used to design new heterojunction photoelectrodes or photocatalysts with high performance for H2 evolution.

  1. The Silicon:Colloidal Quantum Dot Heterojunction

    KAUST Repository

    Masala, Silvia; Adinolfi, Valerio; Sun, Jon Paul; Del Gobbo, Silvano; Voznyy, Oleksandr; Kramer, Illan J.; Hill, Ian G.; Sargent, Edward H.

    2015-01-01

    A heterojunction between crystalline silicon and colloidal quantum dots (CQDs) is realized. A special interface modification is developed to overcome an inherent energetic band mismatch between the two semiconductors, and realize the efficient collection of infrared photocarriers generated in the CQD film. This junction is used to produce a sensitive near infrared photodetector. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The Silicon:Colloidal Quantum Dot Heterojunction

    KAUST Repository

    Masala, Silvia

    2015-10-13

    A heterojunction between crystalline silicon and colloidal quantum dots (CQDs) is realized. A special interface modification is developed to overcome an inherent energetic band mismatch between the two semiconductors, and realize the efficient collection of infrared photocarriers generated in the CQD film. This junction is used to produce a sensitive near infrared photodetector. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Double wavelength differential absorption as a technique for early diagnosis of breast cancer

    Science.gov (United States)

    Liger, Vladimir V.; Zybin, Alexander V.; Niemax, Kay; Kuritsyn, Yuri A.; Bolshov, Mikhail A.

    2005-08-01

    The double-wavelength differential molecular absorption technique with diode lasers is proposed for sensitive detection of functional status of breast tissues. The method is based on the measurement of the transmitted intensity differences of the two beams of diode lasers tuned to selected wavelengths within a broad absorption band of a human breast tissue within 700 - 800 nm spectral range. The strategy for the optimum selection of the diode laser wavelengths and initial adjustment of the detection scheme is developed. The method is demonstrated by the detection of the relative concentrations of two dyes, the optical properties of which are similar to those of a mixture of oxy- and deoxy- hemoglobin. The results of the first clinical tests of the proposed technique are briefly described.

  4. Current-Induced Spin Polarization at a Single Heterojunction

    NARCIS (Netherlands)

    Silov, A.; Blajnov, P.; Wolter, J.H.; Hey, R.; Ploog, K.; Averkiev, N.S.; Menendez, J.; Walle, van der C.G.

    2005-01-01

    We have experimentally achieved spin-polarization by a lateral current in a single non-magnetic semiconductor heterojunction. The effect does not require an applied magnetic field or ferromagnetic contacts. The current-induced spin orientation can be seen as the inverse of the circular

  5. Ultrahigh broadband photoresponse of SnO2 nanoparticle thin film/SiO2/p-Si heterojunction.

    Science.gov (United States)

    Ling, Cuicui; Guo, Tianchao; Lu, Wenbo; Xiong, Ya; Zhu, Lei; Xue, Qingzhong

    2017-06-29

    The SnO 2 /Si heterojunction possesses a large band offset and it is easy to control the transportation of carriers in the SnO 2 /Si heterojunction to realize high-response broadband detection. Therefore, we investigated the potential of the SnO 2 nanoparticle thin film/SiO 2 /p-Si heterojunction for photodetectors. It is demonstrated that this heterojunction shows a stable, repeatable and broadband photoresponse from 365 nm to 980 nm. Meanwhile, the responsivity of the device approaches a high value in the range of 0.285-0.355 A W -1 with the outstanding detectivity of ∼2.66 × 10 12 cm H 1/2 W -1 and excellent sensitivity of ∼1.8 × 10 6 cm 2 W -1 , and its response and recovery times are extremely short (oxide or oxide/Si based photodetectors. In fact, the photosensitivity and detectivity of this heterojunction are an order of magnitude higher than that of 2D material based heterojunctions such as (Bi 2 Te 3 )/Si and MoS 2 /graphene (photosensitivity of 7.5 × 10 5 cm 2 W -1 and detectivity of ∼2.5 × 10 11 cm H 1/2 W -1 ). The excellent device performance is attributed to the large Fermi energy difference between the SnO 2 nanoparticle thin film and Si, SnO 2 nanostructure, oxygen vacancy defects and thin SiO 2 layer. Consequently, practical highly-responsive broadband PDs may be actualized in the future.

  6. Coaxial foilless diode

    Directory of Open Access Journals (Sweden)

    Long Kong

    2014-05-01

    Full Text Available A kind of coaxial foilless diode is proposed in this paper, with the structure model and operating principle of the diode are given. The current-voltage relation of the coaxial foilless diode and the effects of structure parameters on the relation are studied by simulation. By solving the electron motion equation, the beam deviation characteristic in the presence of external magnetic field in transmission process is analyzed, and the relationship between transverse misalignment with diode parameters is obtained. These results should be of interest to the area of generation and propagation of radial beam for application of generating high power microwaves.

  7. Fabrication of a Co(OH)2/ZnCr LDH "p-n" Heterojunction Photocatalyst with Enhanced Separation of Charge Carriers for Efficient Visible-Light-Driven H2 and O2 Evolution.

    Science.gov (United States)

    Sahoo, Dipti Prava; Nayak, Susanginee; Reddy, K Hemalata; Martha, Satyabadi; Parida, Kulamani

    2018-04-02

    Photocatalytic generation of H 2 and O 2 by water splitting remains a great challenge for clean and sustainable energy. Taking into the consideration promising heterojunction photocatalysts, analogous energy issues have been mitigated to a meaningful extent. Herein, we have architectured a highly efficient bifunctional heterojunction material, i.e., p-type Co(OH) 2 platelets with an n-type ZnCr layered double hydroxide (LDH) by an ultrasonication method. Primarily, the Mott-Schottky measurements confirmed the n- and p-type semiconductive properties of LDH and CH material, respectively, with the construction of a p-n heterojunction. The high resolution transmission electron microscopy results suggest that surface modification of ZnCr LDH by Co(OH) 2 hexagonal platelets could form a fabulous p-n interfacial region that significantly decreases the energy barrier for O 2 and H 2 production by effectively separating and transporting photoinduced charge carriers, leading to enhanced photoreactivity. A deep investigation into the mechanism shows that a 30 wt % Co(OH) 2 -modified ZnCr LDH sample liberates maximum H 2 and O 2 production in 2 h, i.e., 1115 and 560 μmol, with apparent conversion efficiencies of H 2 and O 2 evolution of 13.12% and 6.25%, respectively. Remarkable photocatalytic activity with energetic charge pair transfer capability was illustrated by electrochemical impedance spectroscopy, linear sweep voltammetry, and photoluminescence spectra. The present study clearly suggests that low-cost Co(OH) 2 platelets are the most crucial semiconductors to provide a new p-n heterojunction photocatalyst for photocatalytic H 2 and O 2 production on the platform of ZnCr LDH.

  8. Rectifying performance in zigzag graphene nanoribbon heterojunctions with different edge hydrogenations

    International Nuclear Information System (INIS)

    Cao, Can; Chen, Ling-Na; Long, Meng-Qiu; Xu, Hui

    2013-01-01

    Using nonequilibrium Green's functions in combination with the density functional theory, we investigated the electronic transport behaviors of zigzag graphene nanoribbon (ZGNR) heterojunctions with different edge hydrogenations. The results show that electronic transport properties of ZGNR heterojunctions can be modulated by hydrogenations, and prominent rectification effects can be observed. We propose that the edge dihydrogenation leads to a blocking of electronic transfer, as well as the changes of the distribution of the frontier orbital at negative/positive bias might be responsible for the rectification effects. These results may be helpful for designing practical devices based on graphene nanoribbons.

  9. Ordered Nanopillar Structured Electrodes for Depleted Bulk Heterojunction Colloidal Quantum Dot Solar Cells

    KAUST Repository

    Kramer, Illan J.; Zhitomirsky, David; Bass, John D.; Rice, Philip M.; Topuria, Teya; Krupp, Leslie; Thon, Susanna M.; Ip, Alexander H.; Debnath, Ratan; Kim, Ho-Cheol; Sargent, Edward H.

    2012-01-01

    A bulk heterojunction of ordered titania nanopillars and PbS colloidal quantum dots is developed. By using a pre-patterned template, an ordered titania nanopillar matrix with nearest neighbours 275 nm apart and height of 300 nm is fabricated and subsequently filled in with PbS colloidal quantum dots to form an ordered depleted bulk heterojunction exhibiting power conversion efficiency of 5.6%. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Ordered Nanopillar Structured Electrodes for Depleted Bulk Heterojunction Colloidal Quantum Dot Solar Cells

    KAUST Repository

    Kramer, Illan J.

    2012-03-30

    A bulk heterojunction of ordered titania nanopillars and PbS colloidal quantum dots is developed. By using a pre-patterned template, an ordered titania nanopillar matrix with nearest neighbours 275 nm apart and height of 300 nm is fabricated and subsequently filled in with PbS colloidal quantum dots to form an ordered depleted bulk heterojunction exhibiting power conversion efficiency of 5.6%. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Precise, Self-Limited Epitaxy of Ultrathin Organic Semiconductors and Heterojunctions Tailored by van der Waals Interactions.

    Science.gov (United States)

    Wu, Bing; Zhao, Yinghe; Nan, Haiyan; Yang, Ziyi; Zhang, Yuhan; Zhao, Huijuan; He, Daowei; Jiang, Zonglin; Liu, Xiaolong; Li, Yun; Shi, Yi; Ni, Zhenhua; Wang, Jinlan; Xu, Jian-Bin; Wang, Xinran

    2016-06-08

    Precise assembly of semiconductor heterojunctions is the key to realize many optoelectronic devices. By exploiting the strong and tunable van der Waals (vdW) forces between graphene and organic small molecules, we demonstrate layer-by-layer epitaxy of ultrathin organic semiconductors and heterostructures with unprecedented precision with well-defined number of layers and self-limited characteristics. We further demonstrate organic p-n heterojunctions with molecularly flat interface, which exhibit excellent rectifying behavior and photovoltaic responses. The self-limited organic molecular beam epitaxy (SLOMBE) is generically applicable for many layered small-molecule semiconductors and may lead to advanced organic optoelectronic devices beyond bulk heterojunctions.

  12. Characteristics of heterojunctions of amorphous LaAlO2.73 on Si

    International Nuclear Information System (INIS)

    Huang Yanhong; Zhao Kun; Lu Huibin; Jin Kuijuan; He Meng; Chen Zhenghao; Zhou Yueliang; Yang Guozhen

    2006-01-01

    High-quality heterojunctions consisting of n-type amorphous LaAlO 3- δ and p-type Si without Si interfacial layer were prepared using a thin film deposition system normally used for laser-molecular beam epitaxy. Good I-V rectifying property, ferroelectricity of interface enhancement and fast photovoltaic effect have been observed in the LaAlO 3- δ /Si p-n heterojunctions. We expect that the multifunctional properties of rectification, ferroelectricity and photovoltaic effect should open up new possibilities in device development and other applications

  13. High-power diode-side-pumped intracavity-frequency-doubled continuous wave 532 nm laser

    International Nuclear Information System (INIS)

    Zhang Yuping; Zhang Huiyun; Zhong Kai; Li Xifu; Wang Peng; Yao Jianquan

    2007-01-01

    An efficient and high-power diode-side-pumped cw 532 nm green laser based on a V-shaped cavity geometry, and capable of generating 22.7 W green radiation with optical conversion efficiency of 8.31%, has been demonstrated. The laser is operated with rms noise amplitude of less than 1% and with M 2 -parameter of about 6.45 at the top of the output power. This laser has the potential for scaling to much higher output power. (authors)

  14. Electric field engineering using quantum-size-effect-tuned heterojunctions

    KAUST Repository

    Adinolfi, V.; Ning, Z.; Xu, J.; Masala, Silvia; Zhitomirsky, D.; Thon, S. M.; Sargent, E. H.

    2013-01-01

    be tuned across the light-absorbing semiconductor layer via control over CQD size, employing solution-processed, room-temperature fabricated materials. We exploit this feature by designing and demonstrating a field-enhanced heterojunction architecture. We

  15. Non-equilibrium spin and charge transport in superconducting heterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Thalmann, Marcel; Rudolf, Marcel; Braun, Julian; Pietsch, Torsten; Scheer, Elke [Department of Physics, University of Konstanz, Universitaetsstrasse 10, 78464 Konstanz (Germany)

    2015-07-01

    Ferromagnet Superconductance (F/S) junctions are rich in exciting quantum-physical-phenomena, which are still poorly understood but may provide bright prospects for new applications. In contrast to conventional normal-metal proximity systems, Andreev reflection is suppressed for singlet cooper pairs in F/S heterostructures. However, long-range triplet pairing may be observed in S/F systems with non-collinear magnetization or spin-active interfaces. Herein, we investigate non-equilibrium transport properties of lateral S/F heterojunctions, defined via electron beam lithography. In particular we focus microwave- and magneto-transport spectroscopy on conventional type-I (Al, Pb, Zn) and type-II (Nb) superconductors in combination with strong transition metal ferromagnets (Ni, Co, Fe). A cryogenic HF readout platform and advanced electronic filtering is developed and results on Al-based heterojunctions are shown.

  16. Photoemission characteristics of thin GaAs-based heterojunction photocathodes

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Cheng; Zhang, Yijun, E-mail: zhangyijun423@126.com; Qian, Yunsheng [Institute of Electronic Engineering and Optoelectronic Technology, Nanjing University of Science and Technology, Nanjing 210094 (China); Shi, Feng [Science and Technology on Low-Light-Level Night Vision Laboratory, Xi' an 710065 (China); Zou, Jijun [Engineering Research Center of Nuclear Technology Application (East China Institute of Technology), Ministry of Education, Nanchang 330013 (China); Zeng, Yugang [Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China)

    2015-01-14

    To better understand the different photoemission mechanism of thin heterojunction photocathodes, the quantum efficiency models of reflection-mode and transmission-mode GaAs-based heterojunction photocathodes are revised based on one-dimensional continuity equations, wherein photoelectrons generated from both the emission layer and buffer layer are taken into account. By comparison of simulated results between the revised and conventional models, it is found that the electron contribution from the buffer layer to shortwave quantum efficiency is closely related to some factors, such as the thicknesses of emission layer and buffer layer and the interface recombination velocity. Besides, the experimental quantum efficiency data of reflection-mode and transmission-mode AlGaAs/GaAs photocathodes are well fitted to the revised models, which confirm the applicability of the revised quantum efficiency models.

  17. Charge correlation measurements of double-sided direct-coupled silicon mirostrip detectors

    International Nuclear Information System (INIS)

    Wood, M.L.; Kuehler, J.F.; Kalbfleisch, G.R.; Kaplan, D.H.; Skubic, P.; Lucas, A.D.; Wilburn, C.D.

    1991-01-01

    Charge correlation measurements of several Micron 38 mm by 58 mm by 300 micron thick double-sided DC-coupled microstripe detectors have been made. They have been bench tested with a Sr-90 source, with the detectors operated at -22C. The correlation of the charges collected from both the diode ('holes') and the ohmic ('electrons') stripes are equal within a signal to noise resolution of 20:1 (i.e., 1,200 electrons noise) using common-mode subtracted double-correlated sampling with the Berkeley SVXD readout chip

  18. Double side electroplating for applying beta voltaic with sandwich structure

    International Nuclear Information System (INIS)

    Choi, Sang Moo; Uhm, Young Rang; Son, Kwang Jae; Kim, Jong Bum; Kim, Jin Joo; Park, Jong Han

    2015-01-01

    As a result, a variety of nuclear-based small-scale power sources have been developed with varying degrees of success and maturity. A nuclear battery with diode junction is a device that converts nuclear radiation directly to electric power. The mechanism of a nuclear battery is same as the P-N junction diode for solar cell application. The photovoltaic is operated by converted photons to electrical energy in the junction. In betavoltaic battery, beta particles are collected and converted to electrical energy as similar principle as photovoltaic. A very low current, order of nano or micro amperes, is generated in devices. The difference of the short circuit current between the pre-deposition and post deposition of Ni-63 was found to be 5 nA. This value is very low to apply device junction. To fabricate betavoltaic, Ni-63 should be coated on the double side of substrate. The bath was primarily composed of 0.2 M Ni ions, prepared by dissolving Ni metal particles in HCl. The prototype for electroplating radioactive Ni-63 on double side has been established

  19. Double side electroplating for applying beta voltaic with sandwich structure

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sang Moo; Uhm, Young Rang; Son, Kwang Jae; Kim, Jong Bum; Kim, Jin Joo; Park, Jong Han [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    As a result, a variety of nuclear-based small-scale power sources have been developed with varying degrees of success and maturity. A nuclear battery with diode junction is a device that converts nuclear radiation directly to electric power. The mechanism of a nuclear battery is same as the P-N junction diode for solar cell application. The photovoltaic is operated by converted photons to electrical energy in the junction. In betavoltaic battery, beta particles are collected and converted to electrical energy as similar principle as photovoltaic. A very low current, order of nano or micro amperes, is generated in devices. The difference of the short circuit current between the pre-deposition and post deposition of Ni-63 was found to be 5 nA. This value is very low to apply device junction. To fabricate betavoltaic, Ni-63 should be coated on the double side of substrate. The bath was primarily composed of 0.2 M Ni ions, prepared by dissolving Ni metal particles in HCl. The prototype for electroplating radioactive Ni-63 on double side has been established.

  20. A cost roadmap for silicon heterojunction solar cells

    NARCIS (Netherlands)

    Louwen, A.; van Sark, W.; Schropp, R.E.I.; Faaij, A.

    2016-01-01

    Research and development of silicon heterojunction (SHJ) solar cells has seen a marked increase since the recent expiry of core patents describing SHJ technology. SHJ solar cells are expected to offer various cost benefits compared to conventional crystalline silicon solar cells. This paper analyses

  1. A Cost Roadmap for Silicon Heterojunction Solar Cells

    NARCIS (Netherlands)

    Louwen, A.; van Sark, W.G.J.H.M.; Schropp, Ruud; Faaij, A.

    Research and development of silicon heterojunction (SHJ) solar cells has seen a marked increase since the recent expiry of core patents describing SHJ technology. SHJ solar cells are expected to offer various cost benefits compared to conventional crystalline silicon solar cells. This paper analyses

  2. Red light emission from ZnO:Eu"3"+|CuSCN hetero-junction under cathodic polarization

    International Nuclear Information System (INIS)

    Sirimanne, P.M.; Minoura, H.

    2015-01-01

    Eu"3"+ ions were bonded to ZnO ceramic via organic ligand. Surface bonded Eu"3"+ ions were exhibited specific luminescence bands due to electron transitions between f–f intra-configurationally transitions. Further enhancement of luminescence bands was observed by attaching selected oligomers to Eu"3"+ ions. A hetero-junction was prepared by depositing copper-thiocyanate on Eu"3"+ ions bonded ZnO ceramic. Red light emission was observed from surface bonded Eu"3"+ ions in ZnO:Eu"3"+|CuSCN hetero-junction under reverse bias. - Highlights: • Europium doped ZnO ceramic exhibits photo-luminescence. • Semiconductor hetro-junction was prepared. • ZnO:Eu"3"+|CuSCN hetero-junction emits red light under reverse bias.

  3. Efficient high power operation of erbium 3 µm fibre laser diode-pumped at 975 nm

    NARCIS (Netherlands)

    Jackson, S.D.; King, T.A.; Pollnau, Markus

    2000-01-01

    Efficient CW operation of a 2.71 um Er,Pr:ZBLAN double-clad fibre laser pumped with a single diode laser operating at a wavelength of 975 nm is described. A maximum output power of 0.5 W and a slope efficiency of 25% (with respect to the launched pump power) were obtained. Threshold pump powers of <

  4. Construction of fiber-shaped silver oxide/tantalum nitride p-n heterojunctions as highly efficient visible-light-driven photocatalysts.

    Science.gov (United States)

    Li, Shijie; Hu, Shiwei; Xu, Kaibing; Jiang, Wei; Liu, Yu; Leng, Zhe; Liu, Jianshe

    2017-10-15

    Constructing novel and efficient p-n heterojunction photocatalysts has stimulated great interest. Herein, we report the design and synthesis of fiber-shaped Ag 2 O/Ta 3 N 5 p-n heterojunctions as a kind of efficient photocatalysts. Ta 3 N 5 nanofibers were prepared by an electrospinning-calcination-nitridation method, and then the in-situ anchoring of Ag 2 O on their surfaces was realized by a facile deposition method. The resulting Ag 2 O/Ta 3 N 5 heterojunctions were comprised of porous Ta 3 N 5 nanofibers (diameter: ∼150nm) and Ag 2 O nanoparticles (size: ∼12nm). The photocatalytic activity of these heterojunctions were studied by decomposing rhodamine B (RhB) dye and tetracycline (TC) antibiotic under visible light (λ>400nm). In all the samples, the heterojunction with Ag 2 O/Ta 3 N 5 molar ratio of 0.2/1 displays the best activity. It is found that a synergistic effect contributes to the effective suppression of charges recombination between Ta 3 N 5 and Ag 2 O, leading to an enhanced photocatalytic activity with good stability. The photogenerated holes (h + ) and superoxide radicals (O 2 - ) play dominant roles in the photocatalytic process. These p-n heterojunctions will have great potential for environmental remediation because of the facile preparation process and exceptional photocatalytic activity. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Band alignment of B0.14Al0.86N/Al0.7Ga0.3N heterojunction

    KAUST Repository

    Sun, Haiding; Park, Young Jae; Li, Kuang-Hui; Torres Castanedo, C. G.; Alowayed, Abdulmohsen; Detchprohm, Theeradetch; Dupuis, Russell D.; Li, Xiaohang

    2017-01-01

    Owing to large bandgaps of BAlN and AlGaN alloys, their heterojunctions have the potential to be used in deep ultraviolet and power electronic device applications. However, the band alignment of such junctions has not been identified. In this work, we investigated the band-offset parameters of a BAlN/AlGaN heterojunction grown by metalorganic vapor phase epitaxy. These specific compositions were chosen to ensure a sufficiently large band offset for deep ultraviolet and power electronic applications. High resolution transmission electron microscopy confirmed the high structural quality of the heterojunction with an abrupt interface and uniform element distribution. We employed high resolution X-ray photoemission spectroscopy to measure the core level binding energies of B 1s and Ga 2p with respect to the valence band maximum of BAlN and AlGaN layers, respectively. Then, we measured the energy separation between the B 1s and Ga 2p core levels at the interface of the heterojunction. The valence band offset was determined to be 0.40 ± 0.05 eV. As a consequence, we identified a staggered-gap (type-II) heterojunction with the conduction band offset of 1.10 ± 0.05 eV. The determination of the band alignment of the BAlN/AlGaN heterojunction facilitates the design of optical and electronic devices based on such junctions.

  6. Band alignment of B0.14Al0.86N/Al0.7Ga0.3N heterojunction

    KAUST Repository

    Sun, Haiding

    2017-09-21

    Owing to large bandgaps of BAlN and AlGaN alloys, their heterojunctions have the potential to be used in deep ultraviolet and power electronic device applications. However, the band alignment of such junctions has not been identified. In this work, we investigated the band-offset parameters of a BAlN/AlGaN heterojunction grown by metalorganic vapor phase epitaxy. These specific compositions were chosen to ensure a sufficiently large band offset for deep ultraviolet and power electronic applications. High resolution transmission electron microscopy confirmed the high structural quality of the heterojunction with an abrupt interface and uniform element distribution. We employed high resolution X-ray photoemission spectroscopy to measure the core level binding energies of B 1s and Ga 2p with respect to the valence band maximum of BAlN and AlGaN layers, respectively. Then, we measured the energy separation between the B 1s and Ga 2p core levels at the interface of the heterojunction. The valence band offset was determined to be 0.40 ± 0.05 eV. As a consequence, we identified a staggered-gap (type-II) heterojunction with the conduction band offset of 1.10 ± 0.05 eV. The determination of the band alignment of the BAlN/AlGaN heterojunction facilitates the design of optical and electronic devices based on such junctions.

  7. Unraveling the High Open Circuit Voltage and High Performance of Integrated Perovskite/Organic Bulk-Heterojunction Solar Cells.

    Science.gov (United States)

    Dong, Shiqi; Liu, Yongsheng; Hong, Ziruo; Yao, Enping; Sun, Pengyu; Meng, Lei; Lin, Yuze; Huang, Jinsong; Li, Gang; Yang, Yang

    2017-08-09

    We have demonstrated high-performance integrated perovskite/bulk-heterojunction (BHJ) solar cells due to the low carrier recombination velocity, high open circuit voltage (V OC ), and increased light absorption ability in near-infrared (NIR) region of integrated devices. In particular, we find that the V OC of the integrated devices is dominated by (or pinned to) the perovskite cells, not the organic photovoltaic cells. A Quasi-Fermi Level Pinning Model was proposed to understand the working mechanism and the origin of the V OC of the integrated perovskite/BHJ solar cell, which following that of the perovskite solar cell and is much higher than that of the low bandgap polymer based organic BHJ solar cell. Evidence for the model was enhanced by examining the charge carrier behavior and photovoltaic behavior of the integrated devices under illumination of monochromatic light-emitting diodes at different characteristic wavelength. This finding shall pave an interesting possibility for integrated photovoltaic devices to harvest low energy photons in NIR region and further improve the current density without sacrificing V OC , thus providing new opportunities and significant implications for future industry applications of this kind of integrated solar cells.

  8. Hole transport in c-plane InGaN-based green laser diodes

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Yang; Liu, Jianping, E-mail: jpliu2010@sinano.ac.cn; Tian, Aiqin; Zhang, Feng; Feng, Meixin; Hu, Weiwei; Zhang, Shuming; Ikeda, Masao; Li, Deyao; Zhang, Liqun; Yang, Hui [Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123 (China); School of Nano Technology and Nano Bionics, University of Science and Technology of China, Suzhou 215123 (China)

    2016-08-29

    Hole transport in c-plane InGaN-based green laser diodes (LDs) has been investigated by both simulations and experiments. It is found that holes can overflow from the green double quantum wells (DQWs) at high current density, which reduces carrier injection efficiency of c-plane InGaN-based green LDs. A heavily silicon-doped layer right below the green DQWs can effectively suppress hole overflow from the green DQWs.

  9. Enhanced photocatalytic performance of TiO{sub 2} nanotube based heterojunction photocatalyst via the coupling of graphene and FTO

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Xiaoyou [College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Yu, Jianyuan [College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Department of Environmental and Chemical Engineering, Tangshan University, Tangshan 063000 (China); Wang, Likun; Fu, Chen; Wang, Jixia; Wang, Li [College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Zhao, Hongli, E-mail: zhaohongli@ysu.edu.cn [College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); State Key Laboratory of Metastable Materials Science and Technology, Qinhuangdao 066004 (China); Yang, Jingkai, E-mail: yangjk@ysu.edu.cn [National Defense Science and Technology, Yanshan University, Qinhuangdao 066004 (China)

    2017-08-15

    Highlights: • The rGO-TONT composites have been deposited onto FTO. • Photocatalytic reaction rate shows 3 times greater than TONT. • Chemical interaction between rGO and TONT was analyzed. • Electron transfer process in rGO-TONT/FTO heterojunction was discussed. - Abstract: The TiO{sub 2} nanotube (TONT) based heterojunction photocatalyst was developed via the coupling of reduced graphene oxide (rGO) and SnO{sub 2}:F film (FTO). Based on the characterization of Raman analysis, XRD, SEM, TEM, XPS and ESR, the crystal phase, morphology, heterojunction interfacial interaction and the photoinduced electron chemical environment of the samples are studied. In the photodegradation of methylene blue (MB) solution under UV irradiation, the rGO-TONT/FTO heterojunction photocatalyst exhibits the improved photocatalytic reaction rate, 3 times greater than that of pure TONT. The enhanced photocatalytic mechanism was discussed by PL. The effectively separate charge in heterojunction structure of rGO-TONT/FTO is responsible for the enhanced photocatalytic activity. Wherein, the abundant oxygen vacancies at TiO{sub 2} surface and the chemically bonded interface in rGO-TONT heterojunction also contributes to the interfacial electron transfer. Besides, the introduction of rGO enhanced its optical absorption capacity.

  10. Novel semiconducting boron carbide/pyridine polymers for neutron detection at zero bias

    Energy Technology Data Exchange (ETDEWEB)

    Echeverria, Elena; Enders, A.; Dowben, P.A. [University of Nebraska-Lincoln, Department of Physics and Astronomy, Lincoln, NE (United States); James, Robinson; Chiluwal, Umesh; Gapfizi, Richard; Tae, Jae-Do; Driver, M. Sky; Kelber, Jeffry A. [University of North Texas, Department of Chemistry, Denton, TX (United States); Pasquale, Frank L. [University of North Texas, Department of Chemistry, Denton, TX (United States); Lam Research Corporation, PECVD Business Unit, Tualatin, OR (United States); Colon Santana, Juan A. [Center for Energy Sciences Research, Lincoln, NE (United States)

    2014-09-19

    Thin films containing aromatic pyridine moieties bonded to boron, in the partially dehydrogenated boron-rich icosahedra (B{sub 10}C{sub 2}H{sub X}), prove to be an effective material for neutron detection applications when deposited on n-doped (100) silicon substrates. The characteristic I-V curves for the heterojunction diodes exhibit strong rectification and largely unperturbed normalized reverse bias leakage currents with increasing pyridine content. The neutron capture generated pulses from these heterojunction diodes were obtained at zero bias voltage although without the signatures of complete electron-hole collection. These results suggest that modifications to boron carbide may result in better neutron voltaic materials. (orig.)

  11. Progress in 41Ca ultratrace determination by diode-laser-based RIMS

    International Nuclear Information System (INIS)

    Mueller, P.; Blaum, K.; Diel, S.; Geppert, Ch.; Wendt, K.; Bushaw, B.A.; Trautmann, N.

    2001-01-01

    We report on progress in development and application of 41 Ca ultratrace determination by diode-laser-based RIMS. Applications include biomedical isotope-tracer studies of human calcium kinetics, cosmochemical investigations of meteorites, environmental dosimetry and radiodating. Depending on the application, 41 Ca needs to be determined at isotopic abundance in the range of 10 -9 to 10 -15 relative to the major stable isotope 40 Ca. We use either a double- or triple-resonance excitation scheme and subsequent non-resonant photoionization of calcium atoms in a collimated atomic beam. All resonant steps are excited with narrow bandwidth extended cavity diode lasers, non-resonant photo-ionization is attained with either an argon ion laser or a CO 2 laser. The resulting photo-ions are detected with a quadrupole mass spectrometer. With double-resonance excitation, the optical isotopic selectivity for 41 Ca against 40 Ca is 2x10 4 , while the triple-resonance scheme provides optical selectivity of more than 10 9 . By adding the third resonant step, overall detection efficiency increases from 1x10 -6 to 5x10 -5 and the detection limit for relative 41 Ca abundance improves from 5x10 -10 to 2x10 -13 . Both schemes have been applied to various sample types and accuracy and reproducibility of the resulting 41 Ca/ 40 Ca isotope ratios have been determined to be better than 5%

  12. The Pierce-diode approximation to the single-emitter plasma diode

    International Nuclear Information System (INIS)

    Ender, A. Ya.; Kuhn, S.; Kuznetsov, V. I.

    2006-01-01

    The possibility of modeling fast processes in the collisionless single-emitter plasma diode (Knudsen diode with surface ionization, KDSI) by means of the Pierce-diode is studied. The KDSI is of practical importance in that it is an almost exact model of thermionic energy converters (TICs) in the collisionless regime and can also be used to model low-density Q-machines. At high temperatures, the Knudsen TIC comes close to the efficiency of the Carnot cycle and hence is the most promising converter of thermal to electric energy. TICs can be applied as component parts in high-temperature electronics. It is shown that normalizations must be chosen appropriately in order to compare the plasma characteristics of the two models: the KDSI and the Pierce-diode. A linear eigenmode theory of the KDSI is developed. For both nonlinear time-independent states and linear eigenmodes without electron reflection, excellent agreement is found between the analytical potential distributions for the Pierce-diode and the corresponding numerical ones for the KDSI. For the states with electron reflection, the agreement is satisfactory in a qualitative sense. A full classification of states of both diodes for the regimes with and without electron reflection is presented. The effect of the thermal spread in electron velocities on the potential distributions and the (ε,η) diagrams is analyzed. Generally speaking, the methodology developed is usefully applicable to a variety of systems in which the electrons have beam-like distributions

  13. Dynamics of a broad-area diode laser with lateral-mode-selected long-cavity feedback

    DEFF Research Database (Denmark)

    Chi, Mingjun; Petersen, Paul Michael

    2014-01-01

    The temporal dynamics of a broad-area diode laser with lateral-mode-selected long-cavity feedback is studied experimentally. Different dynamics are observed when different lateral modes are selected. When the feedback mirror is aligned perfectly and high-order modes are selected, in most....... When the feedback mirror is aligned non-perfectly, pulse-package oscillation is observed, for the first time to our knowledge, in a diode laser with long-cavity feedback....... of the cases, the output of the laser shows a periodic oscillation corresponding to a single roundtrip external-cavity loop, but the dynamic behavior disappears in some case; when the zero-order lateral-mode is selected, periodic oscillation corresponding to a double roundtrip external-cavity loop is observed...

  14. Solution-Processed In2O3/ZnO Heterojunction Electron Transport Layers for Efficient Organic Bulk Heterojunction and Inorganic Colloidal Quantum-Dot Solar Cells

    KAUST Repository

    Eisner, Flurin

    2018-04-25

    We report the development of a solution‐processed In2O3/ZnO heterojunction electron transport layer (ETL) and its application in high efficiency organic bulk‐heterojunction (BHJ) and inorganic colloidal quantum dot (CQD) solar cells. Study of the electrical properties of this low‐dimensional oxide heterostructure via field‐effect measurements reveals that electron transport along the heterointerface is enhanced by more than a tenfold when compared to the individual single‐layer oxides. Use of the heterojunction as the ETL in organic BHJ photovoltaics is found to consistently improve the cell\\'s performance due to the smoothening of the ZnO surface, increased electron mobility and a noticeable reduction in the cathode\\'s work function, leading to a decrease in the cells’ series resistance and a higher fill factor (FF). Specifically, non‐fullerene based organic BHJ solar cells based on In2O3/ZnO ETLs exhibit very high power conversion efficiencies (PCE) of up to 12.8%, and high FFs of over 70%. The bilayer ETL concept is further extended to inorganic lead‐sulphide CQD solar cells. Resulting devices exhibit excellent performance with a maximum PCE of 8.2% and a FF of 56.8%. The present results highlight the potential of multilayer oxides as novel ETL systems and lay the foundation for future developments.

  15. Solution-Processed In2O3/ZnO Heterojunction Electron Transport Layers for Efficient Organic Bulk Heterojunction and Inorganic Colloidal Quantum-Dot Solar Cells

    KAUST Repository

    Eisner, Flurin; Seitkhan, Akmaral; Han, Yang; Khim, Dongyoon; Yengel, Emre; Kirmani, Ahmad R.; Xu, Jixian; Garcí a de Arquer, F. Pelayo; Sargent, Edward H.; Amassian, Aram; Fei, Zhuping; Heeney, Martin; Anthopoulos, Thomas D.

    2018-01-01

    We report the development of a solution‐processed In2O3/ZnO heterojunction electron transport layer (ETL) and its application in high efficiency organic bulk‐heterojunction (BHJ) and inorganic colloidal quantum dot (CQD) solar cells. Study of the electrical properties of this low‐dimensional oxide heterostructure via field‐effect measurements reveals that electron transport along the heterointerface is enhanced by more than a tenfold when compared to the individual single‐layer oxides. Use of the heterojunction as the ETL in organic BHJ photovoltaics is found to consistently improve the cell's performance due to the smoothening of the ZnO surface, increased electron mobility and a noticeable reduction in the cathode's work function, leading to a decrease in the cells’ series resistance and a higher fill factor (FF). Specifically, non‐fullerene based organic BHJ solar cells based on In2O3/ZnO ETLs exhibit very high power conversion efficiencies (PCE) of up to 12.8%, and high FFs of over 70%. The bilayer ETL concept is further extended to inorganic lead‐sulphide CQD solar cells. Resulting devices exhibit excellent performance with a maximum PCE of 8.2% and a FF of 56.8%. The present results highlight the potential of multilayer oxides as novel ETL systems and lay the foundation for future developments.

  16. Dual-wavelength high-power diode laser system based on an external-cavity tapered amplifier with tunable frequency difference

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2012-01-01

    knowledge, this is the broadest tuning range of the frequency difference from a dual-wavelength diode laser system. The spectrum, output power, and beam quality of the diode laser system are characterized. The power stability of each wavelength is measured, and the power fluctuations of the two wavelengths......A dual-wavelength high-power semiconductor laser system based on a tapered amplifier with double-Littrow external cavity is demonstrated around 800 nm. The two wavelengths can be tuned individually, and the frequency difference of the two wavelengths is tunable from 0.5 to 10.0 THz. To our...

  17. High mobility and high concentration Type-III heterojunction FET

    Science.gov (United States)

    Tsu, R.; Fiddy, M. A.; Her, T.

    2018-02-01

    The PN junction was introduced in transistors by doping, resulting in high losses due to Coulomb scattering from the dopants. The MOSFET introduced carriers in the form of electrons and holes with an applied bias to the oxide barrier, resulting in carrier transfer without doping. This avoids high scattering losses and dominates the IC industries. With heterojunctions having valence-band maxima near and even above the conduction-band minimum in the formation of Type-III superlattices, very useful devices, introduced by Tsu, Sai-Halacz, and Esaki, soon followed. If the layer thicknesses are more than the carrier mean-free-path, incoherent scattering results in the formation of carrier transfer via diffusion instead of opening up new energy gaps. The exploitation of carriers without scattering represents a new and significant opportunity in what we call a Broken Gap Heterojunction FET.

  18. Double versus single intensive phototherapy with LEDs in treatment of neonatal hyperbilirubinemia

    DEFF Research Database (Denmark)

    Donneborg, M L; Vandborg, P K; Hansen, B M

    2018-01-01

    OBJECTIVE: We investigate whether double phototherapy reduces total serum bilirubin concentration faster than single light during intensive phototherapy with high levels of irradiance using light-emitting diodes. STUDY DESIGN: Eighty-three infants with gestational age ⩾33 weeks and uncomplicated...... hyperbilirubinemia were randomized to either double (n=41) or single phototherapy (n=42) for 24 h. The mean irradiance was 64.8 μW cm-2 nm-1 from above and 39 μW cm-2 nm-1 from below. RESULTS: The percentage decreases of total serum bilirubin after 12 h of double vs single phototherapy were (mean (95% confidence...

  19. Research of the mode instability threshold in high power double cladding Yb-doped fiber amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yanshan; Ma, Yi; Sun, Yinhong; Peng, Wanjing; Tang, Chun [Institute of Applied Electronics, CAEP, Mianyang, Sichuan (China); The Key Laboratory of Science and Technology on High Energy Laser, CAEP, Mianyang, Sichuan (China); Liu, Qinyong; Ke, Weiwei [Institute of Applied Physics and Computational Mathematics, CAEP, Beijing (China); Wang, Xiaojun [Institute of Applied Physics and Computational Mathematics, CAEP, Beijing (China); Technical Institute of Physics and Chemistry, CAS, Beijing (China)

    2017-08-15

    We experimentally investigate the behavior of the mode instability (MI) threshold in the double cladding Yb-doped fiber amplifier when the amplifier is pumped by broad linewidth laser diodes and narrow linewidth laser diodes respectively. It is found that the MI threshold increases by 26% when the amplifier is pumped by the broad linewidth laser diodes. Experiment results show that the MI threshold is affected by the local heat load rather than the average or the total heat load. The calculation shows that the local heat deposit actually plays the key role to stimulate the MI behaviour. At the MI threshold position in the fiber, the local heat deposit also changes dramatically. The effect of the thermal conductivity on the MI threshold is also studied. Our investigation shows that the MI threshold increases from 1269 W to 1950 W when the thermal conductivity of the fiber amplifier is increased from 0.3 W/(m . K) to 5 W/(m . K). Through optimizing the pump linewidth and the cooling efficiency of the gain fiber, the MI threshold is doubled in our experiment. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Research of the mode instability threshold in high power double cladding Yb-doped fiber amplifiers

    International Nuclear Information System (INIS)

    Wang, Yanshan; Ma, Yi; Sun, Yinhong; Peng, Wanjing; Tang, Chun; Liu, Qinyong; Ke, Weiwei; Wang, Xiaojun

    2017-01-01

    We experimentally investigate the behavior of the mode instability (MI) threshold in the double cladding Yb-doped fiber amplifier when the amplifier is pumped by broad linewidth laser diodes and narrow linewidth laser diodes respectively. It is found that the MI threshold increases by 26% when the amplifier is pumped by the broad linewidth laser diodes. Experiment results show that the MI threshold is affected by the local heat load rather than the average or the total heat load. The calculation shows that the local heat deposit actually plays the key role to stimulate the MI behaviour. At the MI threshold position in the fiber, the local heat deposit also changes dramatically. The effect of the thermal conductivity on the MI threshold is also studied. Our investigation shows that the MI threshold increases from 1269 W to 1950 W when the thermal conductivity of the fiber amplifier is increased from 0.3 W/(m . K) to 5 W/(m . K). Through optimizing the pump linewidth and the cooling efficiency of the gain fiber, the MI threshold is doubled in our experiment. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Performance of planar heterojunction perovskite solar cells under light concentration

    Directory of Open Access Journals (Sweden)

    Aaesha Alnuaimi

    2016-11-01

    Full Text Available In this work, we present 2D simulation of planar heterojunction perovskite solar cells under high concentration using physics-based TCAD. The performance of planar perovskite heterojunction solar cells is examined up to 1000 suns. We analyze the effect of HTM mobility and band structure, surface recombination velocities at interfaces and the effect of series resistance under concentrated light. The simulation results revealed that the low mobility of HTM material limits the improvement in power conversation efficiency of perovskite solar cells under concentration. In addition, large band offset at perovskite/HTM interface contributes to the high series resistance. Moreover, losses due to high surface recombination at interfaces and the high series resistance deteriorate significantly the performance of perovskite solar cells under concentration.

  2. Rectifying effect of heterojunctions between metals and doped conducting polymer nanostructure pellets

    International Nuclear Information System (INIS)

    Long Yunze; Yin Zhihua; Hui Wen; Chen Zhaojia; Wan Meixiang

    2008-01-01

    This paper reports that the Schottky junctions between low work function metals (e.g. Al and In) and doped semiconducting polymer pellets (e.g. polyaniline (PANI) microsphere pellet and polypyrrole (PPy) nanotube pellet) have been prepared and studied. Since Ag is a high work function metal which can make an ohmic contact with polymer, silver paste was used to fabricate the electrodes. The Al/PANI/Ag heterojunction shows an obvious rectifying effect as shown in I – V characteristic curves (rectifying ratio γ = 5 at ±6 V bias at room temperature). As compared to the Al/PANI/Ag, the heterojunction between In and PANI (In/PANI/Ag) exhibits a lower rectifying ratio γ = 1.6 at ±2 V bias at room temperature. In addition, rectifying effect was also observed in the heterojunctions Al/PPy/Ag (γ = 3.2 at ±1.6 V bias) and In/PPy/Ag (γ = 1.2 at ±3.0 V bias). The results were discussed in terms of thermoionic emission theory. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  3. Valence and conduction band offsets of β-Ga2O3/AlN heterojunction

    Science.gov (United States)

    Sun, Haiding; Torres Castanedo, C. G.; Liu, Kaikai; Li, Kuang-Hui; Guo, Wenzhe; Lin, Ronghui; Liu, Xinwei; Li, Jingtao; Li, Xiaohang

    2017-10-01

    Both β-Ga2O3 and wurtzite AlN have wide bandgaps of 4.5-4.9 and 6.1 eV, respectively. We calculated the in-plane lattice mismatch between the (-201) plane of β-Ga2O3 and the (0002) plane of AlN, which was found to be 2.4%. This is the smallest mismatch between β-Ga2O3 and binary III-nitrides which is beneficial for the formation of a high quality β-Ga2O3/AlN heterojunction. However, the valence and conduction band offsets (VBO and CBO) at the β-Ga2O3/AlN heterojunction have not yet been identified. In this study, a very thin (less than 2 nm) β-Ga2O3 layer was deposited on an AlN/sapphire template to form the heterojunction by pulsed laser deposition. High-resolution X-ray photoelectron spectroscopy revealed the core-level (CL) binding energies of Ga 3d and Al 2p with respect to the valence band maximum in individual β-Ga2O3 and AlN layers, respectively. The separation between Ga 3d and Al 2p CLs at the β-Ga2O3/AlN interface was also measured. Eventually, the VBO was found to be -0.55 ± 0.05 eV. Consequently, a staggered-gap (type II) heterojunction with a CBO of -1.75 ± 0.05 eV was determined. The identification of the band alignment of the β-Ga2O3/AlN heterojunction could facilitate the design of optical and electronic devices based on these and related alloys.

  4. Atomic-Monolayer Two-Dimensional Lateral Quasi-Heterojunction Bipolar Transistors with Resonant Tunneling Phenomenon

    KAUST Repository

    Lin, Che-Yu

    2017-10-04

    High-frequency operation with ultra-thin, lightweight and extremely flexible semiconducting electronics are highly desirable for the development of mobile devices, wearable electronic systems and defense technologies. In this work, the first experimental observation of quasi-heterojunction bipolar transistors utilizing a monolayer of the lateral WSe2-MoS2 junctions as the conducting p-n channel is demonstrated. Both lateral n-p-n and p-n-p heterojunction bipolar transistors are fabricated to exhibit the output characteristics and current gain. A maximum common-emitter current gain of around 3 is obtained in our prototype two-dimensional quasi-heterojunction bipolar transistors. Interestingly, we also observe the negative differential resistance in the electrical characteristics. A potential mechanism is that the negative differential resistance is induced by resonant tunneling phenomenon due to the formation of quantum well under applying high bias voltages. Our results open the door to two-dimensional materials for high-frequency, high-speed, high-density and flexible electronics.

  5. Observation of a photoinduced, resonant tunneling effect in a carbon nanotube–silicon heterojunction

    Directory of Open Access Journals (Sweden)

    Carla Aramo

    2015-03-01

    Full Text Available A significant resonant tunneling effect has been observed under the 2.4 V junction threshold in a large area, carbon nanotube–silicon (CNT–Si heterojunction obtained by growing a continuous layer of multiwall carbon nanotubes on an n-doped silicon substrate. The multiwall carbon nanostructures were grown by a chemical vapor deposition (CVD technique on a 60 nm thick, silicon nitride layer, deposited on an n-type Si substrate. The heterojunction characteristics were intensively studied on different substrates, resulting in high photoresponsivity with a large reverse photocurrent plateau. In this paper, we report on the photoresponsivity characteristics of the device, the heterojunction threshold and the tunnel-like effect observed as a function of applied voltage and excitation wavelength. The experiments are performed in the near-ultraviolet to near-infrared wavelength range. The high conversion efficiency of light radiation into photoelectrons observed with the presented layout allows the device to be used as a large area photodetector with very low, intrinsic dark current and noise.

  6. Atomic-Monolayer Two-Dimensional Lateral Quasi-Heterojunction Bipolar Transistors with Resonant Tunneling Phenomenon

    KAUST Repository

    Lin, Che-Yu; Zhu, Xiaodan; Tsai, Shin-Hung; Tsai, Shiao-Po; Lei, Sidong; Li, Ming-Yang; Shi, Yumeng; Li, Lain-Jong; Huang, Shyh-Jer; Wu, Wen-Fa; Yeh, Wen-Kuan; Su, Yan-Kuin; Wang, Kang L.; Lan, Yann-Wen

    2017-01-01

    High-frequency operation with ultra-thin, lightweight and extremely flexible semiconducting electronics are highly desirable for the development of mobile devices, wearable electronic systems and defense technologies. In this work, the first experimental observation of quasi-heterojunction bipolar transistors utilizing a monolayer of the lateral WSe2-MoS2 junctions as the conducting p-n channel is demonstrated. Both lateral n-p-n and p-n-p heterojunction bipolar transistors are fabricated to exhibit the output characteristics and current gain. A maximum common-emitter current gain of around 3 is obtained in our prototype two-dimensional quasi-heterojunction bipolar transistors. Interestingly, we also observe the negative differential resistance in the electrical characteristics. A potential mechanism is that the negative differential resistance is induced by resonant tunneling phenomenon due to the formation of quantum well under applying high bias voltages. Our results open the door to two-dimensional materials for high-frequency, high-speed, high-density and flexible electronics.

  7. Atomic-Monolayer Two-Dimensional Lateral Quasi-Heterojunction Bipolar Transistors with Resonant Tunneling Phenomenon.

    Science.gov (United States)

    Lin, Che-Yu; Zhu, Xiaodan; Tsai, Shin-Hung; Tsai, Shiao-Po; Lei, Sidong; Shi, Yumeng; Li, Lain-Jong; Huang, Shyh-Jer; Wu, Wen-Fa; Yeh, Wen-Kuan; Su, Yan-Kuin; Wang, Kang L; Lan, Yann-Wen

    2017-11-28

    High-frequency operation with ultrathin, lightweight, and extremely flexible semiconducting electronics is highly desirable for the development of mobile devices, wearable electronic systems, and defense technologies. In this work, the experimental observation of quasi-heterojunction bipolar transistors utilizing a monolayer of the lateral WSe 2 -MoS 2 junctions as the conducting p-n channel is demonstrated. Both lateral n-p-n and p-n-p heterojunction bipolar transistors are fabricated to exhibit the output characteristics and current gain. A maximum common-emitter current gain of around 3 is obtained in our prototype two-dimensional quasi-heterojunction bipolar transistors. Interestingly, we also observe the negative differential resistance in the electrical characteristics. A potential mechanism is that the negative differential resistance is induced by resonant tunneling phenomenon due to the formation of quantum well under applying high bias voltages. Our results open the door to two-dimensional materials for high-frequency, high-speed, high-density, and flexible electronics.

  8. Depleted Bulk Heterojunction Colloidal Quantum Dot Photovoltaics

    KAUST Repository

    Barkhouse, D. Aaron R.

    2011-05-26

    The first solution-processed depleted bulk heterojunction colloidal quantum dot solar cells are presented. The architecture allows for high absorption with full depletion, thereby breaking the photon absorption/carrier extraction compromise inherent in planar devices. A record power conversion of 5.5% under simulated AM 1.5 illumination conditions is reported. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Limitation of the electron emission in an ion diode with magnetic self-insulation

    International Nuclear Information System (INIS)

    Pushkarev, A. I.; Isakova, Yu. I.; Guselnikov, V. I.

    2011-01-01

    The results of a study of the generation of a pulsed ion beam of gigawatt power formed by a diode with an explosive-emission potential electrode in a mode of magnetic self-insulation are presented. The studies were conducted at the TEMP-4M ion accelerator set in double pulse formation mode: the first pulse was negative (300-500 ns and 100-150 kV) and the second, positive (150 ns and 250-300 kV). The ion current density was 20-40 A/cm 2 ; the beam composition was protons and carbon ions. It was shown that plasma is effectively formed over the entire working surface of the graphite potential electrode. During the ion beam generation, a condition of magnetic cutoff of electrons along the entire length of the diode (B/B cr ≥ 4) is fulfilled. Because of the high drift rate, the residence time of the electrons and protons in the anode-cathode gap is 3-5 ns, while for the C + carbon ions, it is more than 8 ns. This denotes low efficiency of magnetic self-insulation in a diode of such a design. At the same time, it has been experimentally observed that, during the generation of ion current (second pulse), the electronic component of the total current is suppressed by a factor of 1.5-2 for a strip diode with plane and focusing geometry. A new model of the effect of limiting the electron emission explaining the decrease in the electronic component of the total current in a diode with magnetic self-insulation is proposed.

  10. Facet-dependent photocatalytic mechanisms of anatase TiO2: A new sight on the self-adjusted surface heterojunction

    International Nuclear Information System (INIS)

    Gao, Shujun; Wang, Wei; Ni, Yaru; Lu, Chunhua; Xu, Zhongzi

    2015-01-01

    Efficient separation of photo-generated electrons and holes is crucial for improving the photocatalytic activity of semiconductor photocatalysts. In the present study, we show surface heterojunction is existed on anatase TiO 2 with exposed {101}, {010}, {001}, and {110} facets. With the help of selective Pt deposition, it is found the Schottky junction together with proper surface heterojunction is helpful to separate the photo-generated electrons and holes. Moreover, the photo-reduction and photo-oxidation activities of the facets are depended on the reaction systems, resulting in self-adjusted surface heterojunction. The as-prepared photocatalyst will give the highest phenol degradation efficiency when Pt nanoparticles are only deposited on the {101} and {010} facets. In contrast, more Pt deposited on the {001} and {110} facets will decrease the photocatalytic activity. The average phenol degradation rate, which will gradually reduce along with the increased phenol concentration, of TiO 2 (20 mg) is ca. 1.59 mg/min when its concentration is lower than 8 mg/L. However, similar results have not been observed in P25-based reaction systems, evidencing the great influence of self-adjusted surface heterojunction. This study may be helpful to understand the photocatalytic mechanisms of semiconductor photocatalysts with exposed different facets. Thus more efficient practical application of the photocatalysts for environment protection can be reached. - Highlights: • Surface heterojunction is systematically discussed on TiO 2 with various facets. • The surface heterojunction is found to be closely related to the reaction systems. • Proper surface heterojunction and Schottky junction is positive for photocatalysis. • A new sight is given to sufficiently unleash the fascinating properties of TiO 2 . • More efficient practical application can be reached

  11. Interfacial Characteristics of Efficient Bulk Heterojunction Solar Cells Fabricated on MoOx Anode Interlayers.

    Science.gov (United States)

    Jasieniak, Jacek J; Treat, Neil D; McNeill, Christopher R; de Villers, Bertrand J Tremolet; Della Gaspera, Enrico; Chabinyc, Michael L

    2016-05-01

    The role of the interface between an MoOx anode interlayer and a polymer:fullerene bulk heterojunction is investigated. Processing differences in the MoOx induce large variations in the vertical stratification of the bulk heterojunction films. These variations are found to be inconsistent in predicting device performance, with a much better gauge being the quantity of polymer chemisorbed to the anode interlayer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. p-PEDOT:PSS as a heterojunction partner with n-ZnO for detection of LPG at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ladhe, R.D. [Thin Film and Nano Science Laboratory, Department of Physics, School of Physical Sciences, North Maharashtra University, Jalgaon 425 001 (M.S.) (India); Gurav, K.V. [Department of Materials Science and Engineering, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Pawar, S.M. [Solar Cell Laboratory, LG Components R and D Center, 1271, Sa-Dong, Sanggrok-gu, Ansan-si, Gyeonggi-do 426-791 (Korea, Republic of); Kim, J.H. [Department of Materials Science and Engineering, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Sankapal, B.R., E-mail: brsankapal@rediffmail.com [Thin Film and Nano Science Laboratory, Department of Physics, School of Physical Sciences, North Maharashtra University, Jalgaon 425 001 (M.S.) (India)

    2012-02-25

    Highlights: Black-Right-Pointing-Pointer Formation of heterojunction n-ZnO and p-PEDOT:PSS at room temperature (27 Degree-Sign C). Black-Right-Pointing-Pointer Use of this heterojunction as room temperature LPG sensor. Black-Right-Pointing-Pointer Remarkable gas response with good stability of the sensing device. Black-Right-Pointing-Pointer Use of heterojunction could offer cost-effective LPG sensor that is ecological-friendly. Black-Right-Pointing-Pointer The mass production using scalable room temperature chemical deposition process. - Abstract: Investigation towards the performance of room temperature (27 Degree-Sign C) liquefied petroleum gas (LPG) sensor based on the heterojunction between p-PEDOT:PSS and n-type ZnO is reported. The junction was developed by using chemically deposited ZnO film on to fluorine doped tin oxide (FTO) coated glass substrate followed by coating of thin slurry layer of PEDOT:PSS by using spin coating technique. Both these methods are simple, inexpensive and suitable for large area applications. Different characterization techniques were used to characterize structural, surface morphological and compositional of the material deposited. LPG sensing behavior of the heterojunction was studied at room temperature along with the stability studies. At room temperature, the heterojunction showed 58.8% sensitivity upon exposure to 1000 ppm of LPG with good response and recovery time like 225 s and 190 s, respectively. Furthermore, the LPG sensor reported is cost-effective, user friendly, and easy to fabricate using low cost chemical methods at room temperature.

  13. Performance improvement in novel germanium-tin/germanium heterojunction-enhanced p-channel tunneling field-effect transistor

    Science.gov (United States)

    Wang, Hongjuan; Liu, Yan; Liu, Mingshan; Zhang, Qingfang; Zhang, Chunfu; Ma, Xiaohua; Zhang, Jincheng; Hao, Yue; Han, Genquan

    2015-07-01

    We design a novel GeSn-based heterojunction-enhanced p-channel tunneling field-effect transistor (HE-PTFET) with a Ge0.92Sn0.08/Ge heterojunction located in channel region, at a distance of LT-H from the Ge0.92Sn0.08 source-channel tunneling junction (TJ). HE-PTFETs demonstrate the negative shift of onset voltage VONSET, the steeper subthreshold swing S, and the improved on-state current ION compared to Ge0.92Sn0.08 homo-PTFET. At low VGS, the suppression of BTBT due to the widening of the tunneling barrier caused by the heterojunction leads to a negative shift of VONSET in HE-PTFETs. At high VGS, ION enhancement in HE-PTFETs is achieved over the homo device, which is attributed to the confinement of BTBT in Ge0.92Sn0.08 source-channel TJ region by the heterojunction, where the short tunneling paths lead to a high tunneling probability. Due to the steeper average S, HE-PTFET with a 6 nm LT-H achieves a 4 times higher ION compared to homo device at a VDD of -0.3 V.

  14. Impact of CH3NH3PbI3-PCBM bulk heterojunction active layer on the photovoltaic performance of perovskite solar cells

    Science.gov (United States)

    Chaudhary, Dhirendra K.; Kumar, Pankaj; Kumar, Lokendra

    2017-10-01

    We report here the impact of CH3NH3PbI3-PCBM bulk heterojunction (BHJ) active layer on the photovoltaic performance of perovskite solar cells. The solar cells were prepared in normal architecture on FTO coated glass substrates with compact TiO2 (c-TiO2) layer on FTO as electron transport layer (ETL) and poly(3-hexylthiophene) (P3HT) as hole transport layer (HTL). For comparison, a few solar cells were also prepared in planar heterojunction structure using CH3NH3PbI3 only as the active layer. The bulk heterojunction CH3NH3PbI3-PCBM active layer exhibited very large crystalline grains of 2-3 μm compared to ∼150 nm only in CH3NH3PbI3 active layer. Larger grains in bulk-heterojunction solar cells resulted in enhanced power conversion efficiency (PCE) through enhancement in all the photovoltaic parameters compared to planar heterojunction solar cells. The bulk-heterojunction solar cells exhibited ∼9.25% PCE with short circuit current density (Jsc) of ∼18.649 mA/cm2, open circuit voltage (Voc) of 0.894 V and Fill Factor (FF) of 0.554. There was ∼36.9% enhancement in the PCE of bulk-heterojunction solar cells compared to that of planar heterojunction solar cells. The larger grains are formed as a result of incorporation on PCBM in the active layer.

  15. Strain distributions and their influence on electronic structures of WSe2-MoS2 laterally strained heterojunctions

    Science.gov (United States)

    Zhang, Chendong; Li, Ming-Yang; Tersoff, Jerry; Han, Yimo; Su, Yushan; Li, Lain-Jong; Muller, David A.; Shih, Chih-Kang

    2018-02-01

    Monolayer transition metal dichalcogenide heterojunctions, including vertical and lateral p-n junctions, have attracted considerable attention due to their potential applications in electronics and optoelectronics. Lattice-misfit strain in atomically abrupt lateral heterojunctions, such as WSe2-MoS2, offers a new band-engineering strategy for tailoring their electronic properties. However, this approach requires an understanding of the strain distribution and its effect on band alignment. Here, we study a WSe2-MoS2 lateral heterojunction using scanning tunnelling microscopy and image its moiré pattern to map the full two-dimensional strain tensor with high spatial resolution. Using scanning tunnelling spectroscopy, we measure both the strain and the band alignment of the WSe2-MoS2 lateral heterojunction. We find that the misfit strain induces type II to type I band alignment transformation. Scanning transmission electron microscopy reveals the dislocations at the interface that partially relieve the strain. Finally, we observe a distinctive electronic structure at the interface due to hetero-bonding.

  16. Formation of solid solutions on the boundary of zinc oxidezinc telluride heterojunction

    International Nuclear Information System (INIS)

    Tsurkan, A.E.; Buzhor, L.V.

    1987-01-01

    Distribution of ZnO x Te 1-x alloy composition on the interface of zinc oxide-zinc telluride heterojunction depending on the production conditions is investigated. A regularity in the formation of an extended area with constant alloy composition is detected. The regularity is explained by the fact that electric Peltier field conditioned by contact of two heterogeneous semiconductors participates in the solid solution formation process. Peltier field levels off the composition at the end length section. So, a possibility of creating a section with the assigned minor thickness alloy constant composition controlled in the interface of heterojunction occurs

  17. Visualizing the photovoltaic behavior of a type-II p-n heterojunction superstructure

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Juanjuan, E-mail: xingjuanjuan@mail.sic.ac.cn [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Electron Microscopy Group, Surface Physics and Structure Unit, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Takeguchi, Masaki [Electron Microscopy Group, Surface Physics and Structure Unit, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Hashimoto, Ayako [Electron Microscopy Group, Surface Physics and Structure Unit, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Global Research Center for Environment and Energy Based on Nanomaterials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Cao, Junyu; Ye, Jinhua [International Center for Materials Nanoarchitectonics (WPI-MANA), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2014-04-21

    Photovoltaic behavior of a CaFe{sub 2}O{sub 4}/ZnFe{sub 2}O{sub 4} p-n multi-junction was investigated with electron holography combined with an in situ light irradiation system. Potential profiles of the samples with and without light irradiation were extracted to measure the open circuit photovoltage generated either by the whole heterojunction superstructure or from each p-n junction. Investigation on the variation in the energy band configuration under light irradiation revealed the mechanism involved in the photoelectric effect, with respect to the properties of the heterojunction and its periodic quantum structure.

  18. Room temperature synthesis and photocatalytic property of AgO/Ag2Mo2O7 heterojunction nanowires

    International Nuclear Information System (INIS)

    Hashim, Muhammad; Hu, Chenguo; Wang, Xue; Wan, Buyong; Xu, Jing

    2012-01-01

    Graphical abstract: The AgO nanoparticles are attached on the surface of the Ag 2 Mo 2 O 7 nanowires to form a heterojunction structure. The AgO nanoparticles start embedding into the nanowires with increasing reaction temperature or time. Highlights: ► AgO/Ag 2 Mo 2 O 7 heterojunction NWs were synthesized at room temperature for the first time. ► AgO particles embed into the Ag 2 Mo 2 O 7 NWs with increase in reaction time and temperature. ► The heterojunction NWs display much better photocatalytic activity than the none-heterojunction NWs. ► The catalytic mechanism was proposed. -- Abstract: AgO/Ag 2 Mo 2 O 7 heterojunction nanowires were synthesized at temperatures of 25 °C, 50 °C, 80 °C, and 110 °C, under magnetic stirring in solution reaction. The catalytic activity of AgO/Ag 2 Mo 2 O 7 nanowires was evaluated by the degradation of Rhodmine B dye under the irradiation of the simulated sunlight. The synthesized samples were characterized by X-ray diffractometer, energy dispersive spectrometry, X-ray photoelectron spectrometer, scanning electron microscopy, and transmission electron microscopy. The results show that the AgO nanoparticles are attached on the surface of the Ag 2 Mo 2 O 7 nanowires to form a heterojunction structure. The length of the nanowires is up to 10 μm and the size of the AgO nanoparticles is 10–20 nm. The length of nanowires increases with increasing reaction time and temperature while the AgO particles are gradually embedded into the nanowires. The photocatalytic activity is greatly improved for the AgO/Ag 2 Mo 2 O 7 heterojunction nanowires compared with that of the pure Ag 2 Mo 2 O 7 nanowires, indicating a remarkable role of AgO particles on the Ag 2 Mo 2 O 7 nanowires in the photodegradation.

  19. Long pulse diode experiments

    Science.gov (United States)

    McClenahan, Charles R.; Weber, Gerald J.; Omalley, Martin W.; Stewart, Joseph; Rinehart, Larry F.; Buttram, Malcolm T.

    1990-10-01

    A diode employing a thermionic cathode has produced 80 A beams at 200 kV for at least 6 microseconds. Moreover, the diode operates at rates as high as 1 Hz. EGUN simulations of the experimental geometry agree with the experiments. Finally, simulation of a proposed diode geometry predicts a 1 kA, 500 kV beam.

  20. Cascade Type-I Quantum Well GaSb-Based Diode Lasers

    Directory of Open Access Journals (Sweden)

    Leon Shterengas

    2016-05-01

    Full Text Available Cascade pumping of type-I quantum well gain sections was utilized to increase output power and efficiency of GaSb-based diode lasers operating in a spectral region from 1.9 to 3.3 μm. Carrier recycling between quantum well gain stages was realized using band-to-band tunneling in GaSb/AlSb/InAs heterostructure complemented with optimized electron and hole injector regions. Coated devices with an ~100-μm-wide aperture and a 3-mm-long cavity demonstrated continuous wave (CW output power of 1.96 W near 2 μm, 980 mW near 3 μm, 500 mW near 3.18 μm, and 360 mW near 3.25 μm at 17–20 °C—a nearly or more than twofold increase compared to previous state-of-the-art diode lasers. The utilization of the different quantum wells in the cascade laser heterostructure was demonstrated to yield wide gain lasers, as often desired for tunable laser spectroscopy. Double-step etching was utilized to minimize both the internal optical loss and the lateral current spreading penalties in narrow-ridge lasers. Narrow-ridge cascade diode lasers operate in a CW regime with ~100 mW of output power near and above 3 μm and above 150 mW near 2 μm.